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Abstract 

Major depressive disorder (MDD) in the elderly is a risk factor for dementia, but the 

precise biological basis remains unknown, hampering the search for novel 

biomarkers and treatments. In this study, we performed metabolomics analysis of 

cerebrospinal fluid (CSF) from cognitively intact elderly patients (N = 28) with 

MDD and age- and gender-matched healthy controls (N = 18). The CSF levels of 177 

substances were measured, while 288 substances were below the detection limit. 

Only ascorbic acid was significantly different, with higher levels in the MDD group 

at baseline. There were no correlations between CSF ascorbic acid levels and clinical 

variables in MDD patients at baseline. At the 3-year follow-up, there was no 

difference of CSF ascorbic acid levels between two groups. There was a negative 

correlation between CSF ascorbic acid and CSF amyloid-β42 levels in all subjects. 

However, there were no correlations between ascorbic acid and other biomarkers 

(e.g., amyloid-β40, total and phosphorylated tau protein). This preliminary study 

suggests that abnormalities in the transport and/or release of ascorbic acid might play 

a role in the pathogenesis of late-life depression.  

Key words: Ascorbic acid; Biomarker; CSF; Late-life depression; Oxidative stress 
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Introduction 

Late-life depression, one of the most common psychiatric disorders in older adults, is 

a growing public health concern as the global population ages. Late-life depression is 

associated with significant functional impairment, high recurrence rates, chronicity, 

variable treatment response, and high rates of medical comorbidity and mortality 

(1-6). Multiple lines of evidence suggest that late-life depression is a risk factor for 

the development of mild cognitive impairment and dementia, including Alzheimer’s 

disease (AD) and vascular dementia (3,7-10). However, the precise molecular 

mechanisms underlying the relationship between late-life depression and dementia 

risk remain unknown. A precise understanding of this relationship would likely 

contribute to improving preventive interventions in the elderly. .  

Metabolomics is the profiling of small molecule metabolites and provides the 

potential to characterize specific metabolic phenotypes associated with a disease. 

Metabolomics has an advantage over other “omics” techniques in that it directly 

samples the metabolic changes in an organism and integrates information from 

changes at the gene, transcript, and protein levels, as well as posttranslational 

modifications (10-14). Cerebrospinal fluid (CSF) is arguably the most relevant 

sampling substrate for the in vivo study of brain disorders as it reflects the metabolic 

status and the biochemistry of the brain. Metabolomics analyses of CSF in patients 

and controls therefore have the potential to reveal protein differences linked to the 

pathogenesis of neuropsychiatric disorders that may have value as biomarkers and 

might be targets for novel treatments (15-22). We reported that the CSF ratio of 

glutamine/glutamate levels in elderly patients with MDD was significantly higher 

than that of age-matched healthy controls, and that the increased ratio in patients was 

significantly decreased after 3-year follow-up by medication in association with 

decreased depression symptoms over this time period, suggesting that abnormalities 

in the glutamine-glutamate cycle in the brain play a role in the pathogenesis of 

late-life depression (23). Furthermore, Pomara et al. (24,25) reported state-dependent 
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alterations in CSF amyloid-β42 levels in cognitively intact elderly MDD patients. In 

agreement, a recent meta-analysis showed significant reduction of CSF amyloid-β42 

levels in late-life depression (26), suggesting that elderly MDD patients have 

significant differences in amyloid-β metabolism, with a change in CSF amyloid-β42 

levels in the same direction observed in AD patients. However, there is, currently, no 

report that has evaluated the metabolomics analysis of CSF of elderly MDD patients.  

In the present study, we performed metabolomics analysis of CSF samples 

from elderly cognitive intact patients with MDD and age- and gender-matched 

healthy controls. Furthermore, we examined protein expression in postmortem brain 

samples from controls and psychiatric disorders including MDD patients. 

Results 

As reported previously (23-25), the two groups did not differ on any relevant clinical 

or demographic variable with the exception of the mean HAM-D score, which as 

expected was significantly higher in the MDD group (Table 1). Of note, the 

proportion of participants with a reported family history of AD was slightly higher in 

the control group than in the MDD group. The CSF levels of amyloid-β42 in the 

MDD group were significantly lower than those of the control group, whereas 

differences in CSF levels of amyloid-β40, total and phosphorylated tau protein did not 

differ across conditions (Table 1).  

We measured 475 major metabolic compounds from various pathways (e.g., 

glycolytic system, pentose phosphate pathway, citric acid cycle, urea cycle, 

polyamine-creatine metabolism pathway, purine metabolism pathway, glutathione 

metabolism pathway, nicotinamide metabolism pathway, choline metabolism 

pathway and diverse amino acid metabolism pathways). In this study, we were able 

to measure 177 metabolites, while 288 were below the detection limit. Interestingly, 

there was a significant (P = 0.0029) difference in CSF levels of ascorbic acid 

between the MDD (0.304 ± 0.061 mM, N = 28) and the control groups (0.240 ± 

0.075 mM, N = 18) (Table S1)(Table 2)(Figure 1). In addition, the analysis using 
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covariates (BMI, sex, medication) was also statistically significant (P = 0.0037). 

There were no significant differences in CSF levels of other substances between the 

MDD and the control groups at baseline (Table S1). At baseline there were no 

correlations between CSF ascorbic acid levels and clinical variables in the MDD 

patients (N = 28). No correlations between CSF ascorbic acid levels and other 

clinical variables were observed. There was a significant negative correlation 

(Spearman’s r = - 0.31, P = 0.037) between CSF ascorbic acid and CSF amyloid-β42 

in the all subjects (N = 46)(Figure 2). However, there were no significant 

correlations between ascorbic acid and other biomarkers (e.g., amyloid-β40, total and 

phosphorylated tau protein) (data not shown). In addition, APOE e4 did not affect 

CSF levels of ascorbic acid in control and MDD groups (data not shown). 

At the 3-year follow-up, there was no difference of CSF ascorbic acid levels 

between two groups although the HAM-D scores in the elderly MDD patients were 

significantly decreased after medication (Table 2). Furthermore, there were no 

correlations between ascorbic acid and other biomarkers (e.g., amyloid-β40, total and 

phosphorylated tau protein) (data not shown).  

Ascorbic acid (vitamin C) is controlled in the brain parenchyma via the 

sodium dependent vitamin C transporter, SVCT2, which transfers ascorbic acid at the 

choroid plexus from blood into CSF, and also from extracellular fluid into neurons 

(27). Using Western blot analysis, we measured the expression of SVCT2 in the 

postmortem samples from the parietal cortex and cerebellum from controls and 

psychiatric disorders, including MDD, bipolar disorder (BD), and schizophrenia. 

There was no statistical difference among the four groups (Table 3). 

Discussion 

In the present study, we found that elderly patients with MDD showed increased CSF 

levels of ascorbic acid compared to age-matched healthy controls, although CSF 

levels of other metabolites were not different. Furthermore, we found a negative 

correlation between CSF ascorbic acid and CSF amyloid-β42 in the all subjects. 
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Given the possible role of CSF amyloid-β42 in the pathogenesis of late-life 

depression (24,25,28-30), these findings suggest that abnormalities in the brain levels 

of ascorbic acid might play a role in the depressive symptoms of elderly MDD 

patients. To our knowledge, this is the first report in the literature of an increase in CSF 

ascorbic acid in elderly MDD patients, suggesting abnormalities in the transport 

and/or release of the antioxidant ascorbic acid in the brains of elderly depressed 

individuals.  

Ascorbic acid is a potent water-soluble antioxidant which is not synthesized in 

the brain. Approximately 40% of ascorbic acid in the brain turns over each day. 

Ascorbic acid levels are maintained as high as 10 μM in neurons (27,31), suggesting 

that ascorbic acid is crucial for maintenance of oxidative balance. Under conditions 

of ascorbic acid deficiency, brain content of ascorbic acid is retained tenaciously, 

with decreases of less than 2% per day (27,31). Decreased brain levels of ascorbic 

acid by deficient diet of ascorbic acid may cause dangerous levels of oxidative stress 

during normal aging, and particularly during inflammatory neurodegenerative 

diseases including AD. Thus, brain levels of ascorbic acid are under strong 

homeostatic regulation (27,31). Given the role of oxidative stress and inflammation 

in late-life depression (32-36), it is likely that abnormalities in CSF ascorbic acid 

associated with oxidative stress may play a role in the pathophysiology of late-life 

depression.  

     It has been reported that CSF levels of ascorbic acid in humans were higher 

than blood (37-39), supporting ascorbic acid as a “nourishing liquor” that constantly 

surrounds the brain (40). At the choroid plexus, ascorbic acid is actively transported 

across the basolateral membrane by SVCT2 into the epithelium and then released 

into the CSF (31,39). In this study, we found higher CSF levels of ascorbic acid in 

elderly patients with MDD, suggesting that higher CSF levels of ascorbic acid 

depends on both active “carrier” transport processes and “barrier” integrity of the 

blood-brain barrier. This may be necessary to prevent ascorbic acid from diffusing 
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out of the brain driven by the concentration gradient (39). However, we did not find 

any changes in the expression of SVCT2 in the postmortem brain samples from 

MDD. Nonetheless, further research on the role of SVCT2 in the transport of 

ascorbic acid is needed. 

It has also been reported that the CSF: plasma ratio of ascorbic acid in AD 

patients was higher than that in controls (39,41-43), suggesting increased 

consumption of ascorbic acid as a result of oxidative stress in the AD brain, leading 

to lower plasma levels (39). In 32 adults followed for one year with 

mild-to-moderate AD, the rates of cognitive decline were not explained by CSF or 

plasma ascorbic acid independently (39). Taken together, it seems that increased CSF 

levels of ascorbic acid in elderly MDD patients may be due to an increased transport 

of ascorbic acid into CSF from blood although plasma levels of ascorbic acid were 

not measured in this study. Further precise studies underlying the reasons of higher 

CSF levels of ascorbic acid are needed. 

A recent study using [11C]PK11195 and positron emission tomography 

demonstrated an increased microglial activation in the brain from patients with 

late-life depression (44), suggesting neuroinflammation (or oxidative stress) in the 

brain in elderly MDD patients. It is well known that peripheral inflammatory 

substances (e.g., C-reactive protein, interleukin (IL)-8, IL-6, tumor necrosis factor 

(TNF)-α) are higher in patients with late-life depression (35,36). Furthermore, 

immunological biomarkers, such as vascular endothelial growth factor (VEGF), the 

chemokine eotaxin, TNF-α, interferon-γ, and macropharge inflammatory protein-1α, 

are associated with brain structure in late-life depression (36). Taken together, it is 

likely that compensatory responses to oxidative stress in the brain of elderly MDD 

patients may contribute to the increased CSF levels of ascorbic acid although further 

detailed study on this hypothesis is needed.  

We previously reported a reduction of amyloid-β42 in the same MDD patients 

at baseline (24). Interestingly, we found a negative correlation between CSF ascorbic 
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acid and CSF amyloid-β42 in the all subjects, suggesting a close relationship between 

these two biomarkers. Importantly, CSF ascorbic acid in elderly MDD patients was 

no longer significantly different from controls after a 3-year period; the loss of 

significance coincided with reduction in the severity of depressive symptoms, 

suggesting that abnormalities in CSF ascorbic acid in elderly depression 

may be state-dependent. Furthermore, Pomara et al. (24) reported higher CSF levels 

of isoprostane, a biomarker for oxidative stress, in the same patients with MDD. 

However, there was no correlation between CSF ascorbic acid and CSF isoprostane 

in all the subjects (data not shown). Taken together, these findings highlight that static 

indices such as levels of ascorbic acid either in CSF or brain reflect dynamic and brain 

region specific alterations in the oxidative balance.    

      Humans have lost the ability to synthesize ascorbic acid (27). A 

cross-sectional and prospective study showed that use of ascorbic acid supplement is 

associated with reduced prevalence and incidence of AD, suggesting the 

effectiveness of dietary supplementation of ascorbic acid in older adults (45). A 

recent meta-analysis showed that serum levels of ascorbic acid in patients with MDD 

were lower than controls, and that serum levels of ascorbic acid in patients with 

MDD were increased after antidepressant therapy (46). Therefore, it is possible that 

supplementation of ascorbic acid in elderly patients with MDD may contribute to 

reduced prevalence of AD. 

Finally, there are some limitations to this preliminary study that should be 

noted. The main limitation was small sample size, and similar, future studies in 

late-life depression would likely benefit from larger sample sizes. In this study, we 

did not use the multiple test correction since the purpose of this study was the global 

analysis of a number of metabolites as a pilot study. Follow-up study with much 

more samples should be conducted to validate our pilot findings. Another limitation 

was that we did not measure plasma ascorbic acid in the subjects of this study. Given 

the role of CSF: plasma ratio of ascorbic acid (39,42,43), it is of great interest to 
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study the relationship between CSF: plasma ratio of ascorbic acid and late-life 

depression. 

     In conclusion, we found that the CSF levels of ascorbic acid in elderly patients 

with MDD were significantly higher than that of age-matched healthy controls. 

These preliminary findings suggest that oxidative imbalance in the brain reflected by 

abnormalities in CSF ascorbic acid play a role in the pathogenesis of late-life 

depression. Further studies measuring CSF and plasma levels of ascorbic acid using 

larger cohorts, particularly cohorts of antidepressant-naïve MDD patients, will be of 

great interest. 

Materials and Methods 

Participants 

This study was approved by the institutional review boards of the Nathan Kline 

Institute for Psychiatric Research and the New York University School of Medicine. 

Metabolomics analysis of this study was approved by Research Ethics Committee of 

the Graduate School of Medicine, Chiba University. All methods were performed in 

accordance with the guidelines and regulation of the National Institutes of Health, 

USA. Participants were volunteers who responded to advertisements in local 

newspapers and flyers or were recruited from the Memory Education and Research 

Initiative Program (24). All participants provided informed consent prior to 

examination and received up to $450.00 in compensation. A total of 133 participants 

completed the baseline evaluation, and 51 of these took part in the optional lumbar 

puncture procedure. Of these 51 participants, three were excluded because of 

evidence in their MRI scans of confluent deep or periventricular white matter 

hyperintensities, defined as one or more hyperintense lesions measuring at least 10 

mm in any direction. One individual was excluded because of a Mini-Mental State 

Examination (MMSE) score below 28. Of the 47 remaining participants, 28 were 

diagnosed with MDD by a board-certified psychiatrist, leaving 18 comparison 

subjects. The structural interview for DSM-IV disorders (SCID) was administered by 
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a psychiatrist to establish an MDD diagnosis. Of the 28 patients with MDD, 21 

(75%) had recurrent episodes. Table 1 summarizes the demographic and clinical 

characteristics of the study participants at baseline. 

Procedure 

The study was conducted over four visits, usually one week apart. The first three 

visits were conducted at the Nathan Kline Institute for Psychiatric Research and the 

Clinical and Translational Science Institute, New York University Langone Medical 

Center. During the first visit, for the purpose of obtaining informed consent, study 

procedures were explained and participants were informed of their rights. 

Participants’ medical and psychiatric histories, including family history of AD, were 

also obtained, and their vital signs were measured. Participants then underwent a 

psychiatric evaluation, and their global cognitive status was assessed using the 

MMSE. Additionally, the Hamilton Depression Rating Scale (HAM-D) was 

administered to rate the severity of current depressive symptoms. Subjects who met 

the criteria for past MDD but were not currently depressed (i.e., HAM-D score below 

16) were included as MDD subjects. Blood was drawn for routine clinical labs and 

APOE genotyping. During the second visit, participants underwent an MRI scan of 

the head to quantify the magnitude of vascular brain pathology. During the third visit, 

subjects underwent a comprehensive neuropsychological assessment, including the 

Buschke Selective Reminding Test (47), the Trail-Making Test, parts A and B (48), 

and the category fluency test (49).  

Finally, during the fourth visit, a lumbar puncture was performed by a 

neuroradiologist under guided fluoroscopy in a subset of participants. Prior to the 

procedure, which was performed between 9:00 a.m. and 10:00 a.m., participants 

were asked to fast overnight. A total of 15 ml of clear CSF was collected in three 

polypropylene tubes labeled “A” (first 5 ml), “B” (second 5 ml), and “C” (third 5 ml). 

The tubes were immediately placed on ice for a maximum of 1 hour until the samples 
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were centrifuged at 4°C (at 1500 rpm) for 10 minutes. Then, aliquots of 0.25 ml were 

placed into 1.00-ml polypropylene cryogenic vials and put into Nunc eight-cell 

storage boxes (Nalge Nunc International, Rochester, N.Y.) at -80°C. All amyloid-β, 

tau, and amino acids determinations were performed from tube “C”. 

Among these participants, MDD patients (N=19) and comparison control 

subjects (N=17) were followed for 3 years. The MDD patients were receiving 

antidepressant, such as including SSRIs (paroxetine, escitalopram, fluoxetine), 

SNRIs (venlafaxine, duloxetine), and mirtazapine (23,24). Clinical data, including 

physical examination, routine laboratory tests, psychiatric evaluations, HAM-D 

rating scale, cognitive functions, and CSF samples were collected at 3-year 

follow-up. 

Metabolomics analysis of human CSF samples 

Metabolomics analyses of CSF samples from the MDD and control groups were 

performed at the Chemicals Evaluation and Research Institute, Japan (CERI, Tokyo, 

Japan) using an GC-MS/MS based multiple reaction monitoring metabolomics 

platform. GC/MS/MS analysis was performed using a GCMS-TQ8030 (Shimadzu 

Co., Kyoto, Japan) with a fused silica capillary column (BPX-5; 30 m × 0.25 mm 

inner diameter, film thickness: 0.25 µm; SGE Analytical science by Trajan Scientific 

Australia Pty Ltd). Quantifications of the metabolites were conducted with the 

built-in GCMS Solution software (Ver.4.20, Shimadzu) and GC/MS/MS Smart 

Metabolites Database (Ver. 2.0, Shimadzu). In this study, 475 major metabolic 

compounds from various pathways (glycolytic system, pentose phosphate pathway, 

citric acid cycle, urea cycle, polyamine-creatine metabolism pathway, purine 

metabolism pathway, glutathione metabolism pathway, nicotinamide metabolism 

pathway, choline metabolism pathway and diverse amino acid metabolism pathway) 

were selected for metabolomics analysis (Table S1).  
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Western blot analysis  

Postmortem brain samples (parietal cortex and cerebellum) from control, major 

depressive disorder (MDD), bipolar disorder (BD), and schizophrenia were obtained 

from the Neuropathology Consortium of the Stanley Medical Research Institute (MD, 

USA) (Table S2) (50-52). Tissue samples were homogenized in Laemmli lysis buffer, 

and total protein levels were measured using the DC protein assay kit (Bio-Rad, 

Hercules, CA, USA). Aliquots (50 μg of total protein) were incubated for 5 min at 

95 °C, with an equal volume of 125 mM Tris/HCl, pH 6.8, 20% glycerol, 0.1% 

bromophenol blue, 10% β-mercaptoethanol, 4% sodium dodecyl sulfate, and 

subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, using 

Mini-PROTEAN® TGX Stain-Free™ Gels (AnykD, cat #: 456-8125, Bio-Rad). 

Proteins were transferred onto polyvinylidenedifluoride (PVDF) membranes using a 

Trans Blot Mini Cell (Bio-Rad). For immunodetection, the blots were blocked with 

3% BSA in TBST (TBS + 0.1% Tween-20) for 1 h at room temperature (RT), and 

kept with primary antibodies overnight at 4°C. Membranes were probed using a 

sodium-ascorbate co-transporter 2 (SVCT2) antibody (cat #: sc-9926, 1: 200, Santa 

Cruz Biotechnology, CA, USA). The next day, membranes were washed three times 

in TBST, and incubated with horseradish peroxidase conjugated anti-goat antibody 1 

hour, at RT. After final three washes with TBST, the bands were detected using 

enhanced chemiluminescence (ECL) prime the Western Blotting Detection system 

(GE Healthcare Bioscience, Tokyo, Japan). The blots then were incubated in the 

stripping buffer (2% SDS, 100 mM β-mercaptoethanol, 62.5 mM Tris/HCL PH 6.8) 

for 30 min at 60°C followed by three time washed with TBST. The stripped blots 

were kept blocking solution for 1 hour and incubated with the primary antibody 

directed against β-actin. Images were captured with a Fuji LAS3000-mini imaging 

system (Fujifilm, Tokyo, Japan), and immunoreactive bands were quantified. 

Statistical analysis 

First, Student t-test, and Fisher’s exact test were used to compare the MDD and 
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control groups on MMSE scores, years of education, body mass index, age, 

incidence of diabetes, gender, APOE genotypes, and reported family history of AD 

(Table 1). Second, Student t-test was used to compare the two diagnostic groups with 

respect to all remaining CSF variables. Data of 3-year follow-up were analyzed using 

two-way repeated multivariate analysis of variance (MANOVA). Spearman’s rank 

correlation coefficient was used. All tests were two-tailed, and statistical significance 

was established at an α of 0.05, unless differently noted. All analyses were conducted 

using SPSS 22 (SPSS, Inc., Chicago) and SAS Ver. 9.4 (SAS Institute, Cary, North 

Carolina, USA). 
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Figure legends 

Figure 1. CSF levels of ascorbic acid in control and MDD groups 

There was a significant (P = 0.0029) difference in CSF levels of ascorbic acid 

between the control groups (0.240 ± 0.075 mM, N = 18) and MDD (0.304 ± 0.061 

mM, N = 28). 

Figure 2. Correlations between CSF ascorbic acid and CSF amyloid-β42 

There was a significant negative correlation (r = - 0.31, P = 0.037) between CSF 

ascorbic acid and CSF amyloid-β42 in the all subjects (N = 46). 
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Table 1. Demographic and Clinical Characteristics of Cognitively Intact Individuals with MDD and Age-Matched Control Subjects at Baseline 

Characteristic Control Group MDD Group Statistical Analysis 

  (N=18) (N=28) P Value 

Age (years) 67.3 ± 6.7 66.5 ± 5.4 0.67 

Education (years)a 16.6 ± 2.8 16.5 ± 2.7 0.86 

Body mass index 28.4 ± 4.6 28.8 ± 6.7 0.85 

21-item HAM-D 1.1 ± 1.9 14.9 ± 8.8 <0.001 

MMSE 29.5 ± 0.5 29.8 ± 0.6 0.17 

Total recall rating 65.1 ± 12.3 64.9 ± 13.9 0.95 

Delayed recall rating 8.5 ± 2.9 9.5 ± 2.5 0.24 

Trail-Making Test score 

    Part A 36.3 ± 12.0 36.0 ± 14.1 0.95 

    Part B 81.2 ± 32.2 86.1 ± 23.2 0.55 

Category fluency test 42.4 ± 7.7 40.6 ± 8.2 0.46 

  N (%) N (%) P Value 

Diabetes 4 (22) 5 (18) 0.72 

Female 11 (61) 10 (36) 0.13 

Family history of Alzheimer's disease 5 (28) 3 (11) 0.69 

  N (%) N (%) P Value 

Apolipoprotein genotype 

     APOE e4 positive 4 (22) 11 (39)  

     APOE e4 negative 14 (78) 17 (61) 0.35 

  pg/ml pg/ml P Value 

Amyloid-b42 340.2 ± 186.8 224.7 ± 125.1 0.02 
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Amyloid-b40 6374.7 ± 2689.0 5146.0 ± 2369.0 0.11 

Total tau proteinb 311.0 ± 134.3 273.0 ± 114.3 0.31 

Phosphorylated tau protein 49.7 ± 19.7 48.9 ± 25.9 0.92 

The data are the mean ± standard deviation (SD). 

21-item HAM-D: 21-item Hamilton Depression Rating Scale, MMSE: Mini-Mental State Examination 
a Data for one control subject were not available. 
b Data for one MDD patient were not available. 

The data at baseline are from Pomara et al. (26). 
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Table 2. HAM-D score and CSF levels of ascorbic acid in subjects at baseline and 3-year follow-up 

Characteristic          Baseline    3-Year Follow-up   Statistical Analyses (P Values) 

 

  Control (N=18) MDD (N=28)  Control (N=17) MDD (N=19)  ME time  ME MDD Interaction 

 

21-item HAM-D 1.315 ± 1.565 13.67 ± 8.815  2.235 ± 6.01 8.478 ± 7.79  0.005  <0.001  <0.001 

 

Ascorbic acid  0.240 ± 0.075 0.304 ± 0.061  0.241 ± 0.095 0.270 ± 0.098  0.175  0.835  0.359 

(mM) 

The data are the mean ± standard deviation (S.D.). 

MDD: Major depressive disorder, 21 HAM-D: 21-item Hamilton Depression Rating Scale 

Analysis = 2x2 Repeated multivariate analysis of variance (MANOVA)  

ME time = Main effect of time (baseline and follow up), ME MDD = Main effect of MDD-status (depressed and controls) 
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Table 3. Expression of SVC2 in the parietal cortex and cerebellum from psychiatric disorders 

Brain regions Controls  MDD  BD  Schizophrenia  One-way ANOVA 

 

Parietal cortex 1.000 ± 0.052 0.896 ± 0.134 0.907 ± 0.099 0.969 ± 0.078  F (3,56) = 0.270, P = 0.846 

 

Cerebellum 1.000 ± 0.074 1.117 ± 0.104 0.948 ± 0.084 0.948 ± 0.123  F (3,56) = 0.661, P = 0.580 

 

The data are the mean ± S.D. (N = 15). 

MDD: Major depressive disorder, BD: Bipolar disorder 

The values were shown as the ration of SVCT2 to β-actin. 

 

 


