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Abstract. The global growth in incidence of Type 2 Diabetes (T2D) has become
a major international health concern. As such, understanding the aetiology of
Type 2 Diabetes is vital. This paper investigates a variety of statistical method-
ologies at various level of complexity to analyse genotype data and identify bi-
omarkers that show evidence of increase susceptibility to T2D and related traits.
A critical overview of several selected statistical methods for population-based
association mapping particularly case-control genetic association analysis is pre-
sented. A discussion on a dataset accessed in this paper that includes 3435 female
subjects for cases and controls with genotype information across 879071 Single
Nucleotide Polymorphism (SNPs) is presented. Quality control steps into the
dataset through pre-processing phase are performed to remove samples and
markers that failed the quality control test. Association analysis is discussed to
address which statistical method can be appropriate to the dataset. Our genetic
association analysis produces promising results and indicated that Allelic asso-
ciation test showed one SNP above the genome-wide significance threshold of
5%10~8 which is rs10519107 (Odds Ratio (OR) = 0.7409,P — Value (P) =
1.813x107%), While, there are several SNPs above the suggestive association
threshold of 5x107° these SNPs could worth further investigation. Furthermore,
Logistic Regression analysis adjusted for multiple confounder factors indicated
that none of the genotyped SNPs has passed genome-wide significance threshold
of 51078 . Nevertheless, four SNPs (rs10519107, rs4368343, rs6848779,
rs11729955) have passed suggestive association threshold.
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1 Introduction

Currently, the prevalence and the incidence of Type 2 Diabetes (T2D) throughout the
world are increasing at an alarming rate. The International Diabetes Federation (IDF)
has estimated that the number of diabetic people is expected to rise from 366 million in
2011 to 552 million by 2030 worldwide [1]. Type 2 Diabetes is a multifactorial disorder
and is the result of the complex interaction between genetic, environment and sedentary
lifestyle [2], however, genetic susceptibility has been established as a key component
of risk [3]. Twins studies have exposed that the concordance rate of T2D in monozy-
gotic twins is approximately 70% compared with 20% to 30% in dizygotic twins [4].

The major tools for identifying disease susceptibility loci are genetic variations
which are termed as Single Nucleotide Polymorphism (SNP). SNP is a single base-pair
change in the genetic code and it is the main cause of human genetic variability [5].

Genome-wide association studies (GWAS) have been widely used and specifically
developed for investigating the genetic architecture of human disease in the entire ge-
nome [6]. The ultimate aim of GWAS is to identify the genetic risk factors for common
complex diseases such as Type 2 Diabetes, Schizophrenia, Epilepsy, Obesity, Cardio-
vascular Disease, and Hypertension [6]. GWAS becomes more routinely employed
with increase the availability of less expensive genotyping technologies [7]. The iden-
tification of genetic markers that show evidence of increase susceptibility to T2D and
related traits are important to advance and facilitate the translation of this genetic infor-
mation into clinical practice [8]. This advance may help to improve risk prediction [9]
of the disease and delay or prevention of disease onset and to mitigate cares expendi-
tures [10]. However, to understand the aetiology of such complex diseases, genetic in-
formation solely would not be sufficient without considering the non-genetic factors
[11]

There are several statistical methods for association mapping including allelic test,
genotypic test, dominant test, recessive test, Cochran Armitage trend test, Fisher exact
test, and Logistic regression test [12]. However, it is difficult to specify which associa-
tion tests to use [13]. It would be ideal to design optimal analyses based on the
knowledge about the penetrance patterns of predisposing variants such as additive ef-
fect, dominant or recessive effects. Lacking this knowledge forces investigators to use
their judgment [13].

This paper considers a case-control study design to conduct several classes of as-
sociation analysis including; chi-square test based on (Allelic test, Genotypic test,
Dominant test, and Recessive test), and Logistic regression. Logistic regression is the
preferred approach to perform association analysis as it can readily expand to include
covariates such as clinical variable, sociodemographic and environmental factors. Us-
ing genetic association analysis would facilitate the investigation of genetic markers
that manifest themselves as candidate to increase susceptibility to T2D. These findings
provide starting points to researchers and professionals to investigate further and to
provide better understanding to the disease onset and advance the development of med-
ical therapies.



2 Background

Understanding the aetiology of complex diseases such as T2D that is caused by the
contribution of genetic and non-genetic risk factors is challenging [14]. The develop-
ment of genetic association mapping has facilitated the discovery of genetic markers
predisposing to complex diseases as T2D. Recently, several GWAS studies accompa-
nied with various statistical methods have been performed in different cohorts and/or
ethnic groups, to measure the association of genetic variants (loci) to disease suscepti-
bility and to test for statistical significant (p-value). A series of publications have ad-
dressed various aspects and strategies into T2D genetics studies to be available within
the literature for further investigations.

In [15], the authors performed a case-control study to investigate the differences in
association of peroxisome proliferator activated receptor, gamma, coac- tivator 1 alpha
(PPARGC1A) gene with T2D risk among population with African origins. The study
includes adults aged >30 years old from African Americans (cases = 124, controls =
122) and Haitian Americans (cases = 110, controls = 116). The statistical method used
within this study was Chi-squared goodness-fit test that was employed to check geno-
type counts for each SNP for Hardy-Weinberg Equilibrium. Furthermore, the t-test was
used to compare between cases and controls considering demographic (age, sex, BMI,
smoking status) and clinical information. Logistic regression approach was also used
to calculate adjusted and unadjusted Odds Ratio (OR) with 95% confidence interval
(CI). The result indicated that SNP rs7656250 (OR = 0.22, p-value = 0.005) and
rs4235308 (OR = 0.42, p-value = 0.026) showed protective association with T2D in
Haitian Americans. While in African Americans, SNP rs4235308 (OR = 2.53, p-value
=0.028) showed significant risk association with T2D.

While, in [16] the association analysis was performed on a case-control study to
investigate the role of the mutation of KCNJ11 gene (potassium inwardly-rectifying-
channel, subfamily-J, member 11) particularly E23K polymorphism (rs5219) in sus-
ceptibility to T2D. In this study, 56,349 T2D cases, 81,800 controls, and 483 family
trios were collected from 48 published studies. The statistical methods used within the
approach included Standard Q-statistic test, subgroup analysis (ethnicity, sample size,
BMI, age and sex) were utilized to explore whether the variation in these studies was
due to heterogeneity. Furthermore, the odds ratio with its 95% confidence interval of
KCNJ11 E23K polymorphism was calculated to measure the association with T2D.
Dominant and Recessive genetic models were applied to examine the association of
KCNJ11 E23K polymorphism and T2D risk. The result suggested that KCNJ11 E23K
allele of rs5219 (OR = 1.12, p < 10~°) was significantly associated with T2D risk. For
heterozygous and homozygous allele with (OR = 1.09, p < 107%) and (OR = 1.26,
p < 1073 ) respectively, significant increase of T2D risk was observed. For Dominant
and Recessive genetic models, similar results were obtained. This study suggested that
a modest but statistically effect of the 23K allele of rs5219 polymorphism in suscepti-
bility to T2D, particularly in East Asians and Caucasians. However, the contribution of
these genetic variations to T2D in other ethnic populations (e.g. Indian, African, Amer-
ican, Jews, and Arabian) appears to be relatively low.



Genetic association studies are becoming an important approach for identifying
genes particularly SNPs conferring susceptibility to complex diseases. The findings of
Disease-SNP associations have been reported consistently using various statistical anal-
ysis methods that calculate statistical significant of the SNPs and measure the strength
of the association in the study.

3 Materials and Methods

This section provides description of the dataset that is used in this paper and illustrates
the quality control steps taken to pre-process that dataset. This section also describes
the concept of genetic association analysis and provides in depth information related to
statistical methods that is used in this domain.

3.1 Data Description

The Nurses’ Health Study (NHS) cohort data set is used in this paper and it is provided
by the Database of Genotypes and Phenotypes (dbGap) [17]. The NHS was established
in 1976. Participants were 121,700 female registered nurses between age 30 to 55 and
residing in 11 U.S states. All nurses responded to mailed questionnaire requesting in-
formation related to their medical history and lifestyle characteristics. Since then, the
Nurses have been requested twice a year to fill questionnaire and attain updated infor-
mation (for instance information on newly diagnosed illness). Furthermore, all partici-
pants were requested to provide blood samples, in which 32,826 members responded.
The cases and controls participants were selected form the NHS T2D study. DNA of
cases and controls participants were genotyped using the Affymetrix Genome-Wide
Human 6.0 array. The ultimate version of the dataset includes 3435 female subjects for
cases and controls with genotype information across 879071 SNPs. Participants in this
dataset are identified as Hispanic or non-Hispanic and each belong to one of four racial
categories (White, African-American, Asia or Other). Most participants are White and
non-Hispanic representing (97.4%) of the dataset. The NHS dataset also includes cor-
responding clinical and dietary data, such as age, gender, BMI, alcohol intake, smoking
status, physical activity, medical and family history.

3.2  Data Preprocessing

In this paper, the accessed genetic data is in PLINK format. PLINK v1.07 [18] is a
whole genome data analysis toolset which is developed for handling SNP data. The
files in PLINK format are very large and could cause issues with computational perfor-
mance. As such, we convert these files to binary format using PLINK 1.07 toolset.
Transferring to a binary formatted file, resulting in a considerable reduction in file size
and significantly enhancing computational efficiency. This step is important for pre-



paring the dataset for quality control and filtering procedures. We performed data qual-
ity control for individuals and genetic data to produce a subset of reliable genetic mark-
ers and samples to be used for association analysis phase. Firstly, this study has been
restricted to White and non-Hispanic ancestry to reduce potential bias due to population
stratification. We removed data samples which have been reported with discordant sex
information and duplicated or related individuals. Quality control for genetic markers
was considered to remove genetic markers (SNPs) with > 0.1 missing data and with
Minor Allele Frequency (MAF) of <0.05. We further conducted Hardy-Weinberg Equi-
librium (HWE) and discarded those SNPs with a p-value <0.001 in control samples.
Following the quality control steps, 3255 individuals and 665092 markers remained in
the study from the original sample of 3435 and 879071, respectively.

3.3 Association Analysis

An association analysis of a case-control study aims to compare the frequency of alleles
or genotypes at genetic marker loci (SNP) between cases and controls from a given
population. This analysis will detect if there are any differences in the frequency of
alleles between individuals in the study. The testing leads to determine whether the
difference in alleles’ frequency is statistically significant. In this situation that alleles
(genetic marker) can be recognized as to be associated with the phenotype (disease trait)
[19]. In other words, association analysis is a series of single-locus statistics tests, ex-
ploring each SNP separately for association to the phenotype.

In a case-control design study, the association between a single SNP and disease
status can be based on standard contingency table tests for independence [13]. contin-
gency table is widely used to display genetic marker (SNP) in the format of genotype
or allele frequency by disease status (case-control) [19]. Each single SNP consists of
minor allele a and major allele A among case and control groups and these can be rep-
resented as a contingency table of the disease status by either genotype count (e.g. aa,
Aa and AA) with dimension of 2 x 3 of 2 degrees of freedom (d.f.) or allele count (a
and A) with dimension of 2 x 2 of 1 d.f. The genetic data can also be analyzed assuming
a prespecified genetic model, as contingency table allows for different models of dis-
ease penetrance such as dominant model and recessive model. For example, the contin-
gency table of dominant model of penetrance can be summarized as a 2 x 2 table with
1 d.f. of genotype count of AA versus Aa or aa as any number of copies of minor allele
a increase the risk of disease. While to test for a recessive model of penetrance, the
contingency table is represented as 2 x 2 table with 1 d.f. requiring two copies of minor
allele a to increase the risk of disease as the genotype count of recessive model is aa
versus the combined count of Aa and AA [20].

The calculation of degrees of freedom is based on the inheritance models in which
representing by genotypic, allelic, recessive and dominant [20]. Therefore, the degrees
of freedom of genetic model is calculated based on the (number of rows in the contin-
gency table — 1) x (number of columns in the contingency table — 1) [21]. For example,
for allelic test where the number of both rows and columns is 2, the degrees of freedom
is(2-1)x2-1)=1.



The contingency table for case and control analyses using different genetic model of
penetrance has been summarized in Table 1, where DF represents degrees of freedom.

Whereas 0;; refers to the observed frequency of individuals in cases and controls, i
refers to row number and j to column number. For example, in genotypic model test
0,, refers to the observed frequency of individuals in cases when genotype aa occurs.

Test DF Contingency table representation
aa Aa AA
Genotypic test 2 Cases Ou On O
Controls On O Oa3
i AA Aaor aa
Dominant
1 Cases Ou Ou
model
Controls On Oy,
. aa Aaor AA
Recessive
1 Cases Ou O
model
Controls On Oy,
a A
Allelic test 1 Cases Ou O1,
Controls On O

Table 1. Contingency Table for Different Genetic Models

Practically the association test within genetic data of case and control status is to test
the null hypothesis of no association between the SNP and phenotype of interest (dis-
ease status) in the contingency table. Pearson’s chi-squared test (x2) can be used to test
for association. The principle of chi-squared test (x2) is to compare the distributions of
observed and expected values of their contingency tables [22]. Chi-square test summar-
ies the differences between the observed frequency values and the expected frequency
values at a single genetic marker loci (SNP) across cases and controls.

The following equation presents the standard Chi-square test for independence of
rows and columns in the contingency table considering genotypic model for association

[20]: ,
0y — B
2 ZZZ% (1)

i

Where E;; is the expected frequency of allele or genotype in case and control and
0,; refers to observe frequency of individuals.

Following the calculation of Chi-Square test, the p-value for Chi-Square is deter-
mined based on the degrees of freedom of the test if it has 1 or 2 degrees of freedom.
The p-value is a measure of the significance of the Chi-squared test. Formally, the p-
value is defined as the probability of seeing a value of test statistic (chi-square statistic
test) as equal to or larger than the one that was observed in a given dataset, assuming
the null hypothesis (no association) is true [6]. More specifically, the p-value represents
the degree of association between the SNP and the phenotype across the entire sample



set. This means that lower p-value indicates that it is unlikely for the results to occur
under the null hypothesis of (ho association) [6].

logistic regression is defined as a statistical method for predicting binary outcome
[19]. Logistic regression model can be used to analyze the contingency table for inde-
pendence, where disease status accounts as binary traits (0/1) for case and control.

Logistic regression approach can be easily expanded to allow for covariates includ-
ing further SNPs, sociodemographic and clinical factors. In a case-control study, the
strength of an association is measured by the odds ratio (OR) [19]. Odds ratio is the
ratio of the odds of disease in exposed group (cases) compared with non-exposed group
(controls) [19]. For example, based on the variables provided from Table 1, the allelic
OR measure the association between disease and allele considering the odds of disease
if allele A (major allele) is carried in compared to the odds of disease if allele a (minor
allele) is carried. The following formula is used to estimate the allelic OR for allele A
[23].

odds of disease with A allele

OR, =
4 odds of disease with a allele

2

The strength of association of allele A is estimated based on the value of OR. There-
fore, OR’s value equal to 1 indicates no association, more than 1 indicates an associa-
tion, and less than one indicates protective association.

3.4  Association Analysis of Geneva NHS Dataset

We conducted a case-control association analysis in an unrelated, white and non-His-
panic racial subpopulation to compare the frequency of alleles or genotypes at genetic
marker loci (SNP) between cases and controls of Geneva NHS Dataset. The association
analyses were performed using PLINK v1.07. We calculated the odds ratio with its 95%
confidence interval (95% CI) to evaluate the strength of association between SNPs and
T2D. Pearson’s chi-squared test (x?) was used to test the null hypothesis of no associ-
ation. We conducted Allelic association test to explore the association between single
allele of the SNP and the disease trait (Type2 Diabetes). Furthermore, genetic associa-
tions were also assessed using logistic regression methods were performed to calculate
adjusted odds ratio with its 95% CI to assess the association of all SNPs in the study
with disease status of binary traits (0/1) for case and control. Logistic regression was
adjusted for covariate including (age, BMI, smoking status and physical activity) to
examine the differences in the results that occur when the test based on a model ac-
counting for non-genetic risk factors.

4 Results

Allelic association test’s result suggested that there are at least one SNP above the ge-
nome-wide significance threshold of 5x10~8 While, there are several SNPs above the
suggestive association threshold of 5x1076. Manhattan plot has been used to visualize



the results of the association as represented in Fig. 1(a). Allelic test indicated that SNPs
rs10519107 (OR = 0.7409,P = 1.813x107°) , rs809736 (OR = 0.7461,P =
7.627x1077) , rs810517 (OR = 0.7904,P = 2.682x107%) , rs12571751 (OR =
0.7913,P = 2.975x107°%) , rs10181181 (OR = 0.7738,P = 3.908x107%)
rs1020731 (OR = 0.7765,P = 4.882x107°) showed protective association with
T2D. Significant associations were detected in allelic test with SNPs rs4368343
(OR = 1.890,P = 9.916x1077) , rs6848779 (OR = 1.2760,P = 1.578x107°) ,
rs11729955 (OR = 1.2750,P = 1.812x107%) , rs11701035 (OR = 1.3480,P =
2.736x107°). Table 2, demonstrated SNPs above suggestive threshold < 10~¢ with
their OR and the p-value.

CHR SNP P-value OR Association
15 rs10519107 1.813x107° 0.7409 Protective
15 rs809736 7.627x1077 0.7461 Protective
2 rs4368343 9.916x1077 1.2890 Association

rs6848779 1.578x107°¢ 1.2760 Association
4 rs11729955 1.812x107° 1.2750 Association
10 rs810517 2.682x107° 0.7904 Protective
21 rs11701035 2.376x107° 1.3480 Association
10 rs12571751 2.975x107° 0.7913 Protective
2 rs10181181 3.908x107° 0.7738 Protective
2 rs1020731 4.882x107° 0.7765 Protective

Table 2. SNPs with the Suggestive of Association From Allelic Test

Logistic Regression analysis adjusted for multiple confounder factors suggested that
none of the genotyped SNPs has passed genome-wide significance threshold of
5x1078 as represented in Fig. 1(b). Nevertheless, the result also indicated that the SNP
rs10519107 (OR = 0.7599,P = 3.583x10~7) showed protective association with
T2D whereas SNPs rs4368343(0OR = 1.3210,P = 8.623x1077), rs6848779(0R =
1.3,P = 2.456x107°), rs11729955 (OR = 1.3,P = 2.521x107%) detected signifi-
cant association with T2D as shown in Table 3.

CHR SNP P-value OR Association
15 rs10519107 3.583%x1077 0.7599 Protective
2 rs4368343 8.623x1077 1.3210 Association
4 rs6848779 2.456x107° 1.3 Association
4 rs11729955 2.521x107° 1.3 Association

Table 3. SNPs with the Suggestive of Association from Logistic Regression Test
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Fig. 1. Manhattan plot demonstrated the —log,,(p) for association of SNPs in a white racial
subpopulation NHS data analysis. (a) Manhattan Plot for Allelic Association Test. (b) Manhattan
Plot for Logistic Regression adjusted for confounders including age, bmi, smoking status and
physical activity.

We used Q-Q plot as demonstrated in Fig. 2 to visualize the relationship between the
expected distribution of p-value (null) and observed distribution of p-value of the asso-
ciation test. Allelic test showed that there is a slight deviation in the upper right tail
from the y=x line, this suggests the existence of some form of association in the NHS
dataset. Logistic regression adjusted for covariates suggested satisfactory and promis-
ing outcomes are observed between the expected p-values and calculated p-values, also
showed less possibility of systematic bias (population stratification). As most observed
SNPs in the study showed no statistical significance than would be expected, however
for a number of observed SNPs statistical significance are above the expected and this
indicates true association between these SNPs and T2D.

Allelic-Test Logistic Test Adjusted for Age, BMI, Smoking, and Physical Activity

8
Observed —log(p)
1 2 3 4 5 6
L

0
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Fig. 2. Q-Q plot showing the expected (null) vs. observed p-value. The red line represents the
null hypothesis of no association. While the black dot refers to the observed —logqo(p). (&) Q-
Q plot for Allelic test. (b) Q-Q plot for logistic test adjusted for confounders



5 Discussion

In this paper, our discussion of the results presented in Section 4 is based on the con-
sideration of the genetic association analysis that is performed to investigate genetic
variations that show evidence of increase susceptibility to T2D. These findings may
serve as a rigorous ground to advances the improvement of early predication, and pre-
vention of the disease onset. We focused on two widely used association analysis in-
cluding allelic test and logistic regression model. It is assumed that allelic test has an
additive effect and so it is commonly used. However, logistic regression is the preferred
approach due to its flexibility to allow for covariates effects including further SNPs,
clinical and sociodemographic risk factors.

Of the list of SNPs obtained from allelic association test, only rs10519107 in chro-
mosome 15 passed the genome-wide significance threshold of 5x1078. However,
rs10519107 showed protective association to T2D with respective odds ratio of 0.7409.
The location of rs10519107 is in the Retinoic Acid Receptor-Related Orphan Receptor
Alpha (RORa) gene region. RORa gene has known to play an important role in the
regulation of lipid and glucose metabolism and insulin expression that are involved in
the development of T2D. Researchers in [24] suggested that the genetic variation in
RORa gene might be an indication to the individual’s susceptibility to T2D. This indi-
cates that the effect of rs10519107 to the susceptibly to T2D could show risk association
if it is investigated in another ethnicity populations. Furthermore, nine SNPs have
passed the suggestive association threshold of 5x10¢. However, the risk association
of rs11701035 could not reach statistical significance. This is probably due to small
sample size effect.

Unlike other study, information obtained from logistic regression model have con-
sidered the use of non-genetic risk factors such as age, Body Max Index (BMI), smok-
ing status, and physical activity. The effects of these factors on the association analysis
have shown promising results however, less SNPs have reached the suggestive associ-
ation threshold and none of the genotyped SNPs has passed genome-wide significant
threshold. Nevertheless, rs10519107 has shown protective association with statistically
significance while the remaining (rs4368343, rs6848779, rs11729955) have shown risk
association indicating probably with larger sample size these SNPs could worth further
investigation.

Although our analysis generated promising results there are other approaches could
be considered to model the complexity of non-linearity of genotype-phenotype interac-
tions. Logistic regression has limited power for modelling such interactions. The non-
linearity approaches are necessary in discovering the aetiology of complex diseases as
T2D. Machine learning algorithms have shown considerable promise. Using machine
learning techniques will allow to model the relationship between combinations of
SNPs, environmental and clinical factors with disease susceptibility and thus to provide
an advanced measurement to the aetiology of T2D. Moreover, considering the correla-
tions between gene-environment interactions and the effects of epistasis (gene-gene in-
teractions) are fundamental to advance researchers and scientists understanding of dis-
ease mechanisms as genetic factors (single SNP) do not act independently to increase
disease risk.



6 Conclusions

Association analysis tests have been performed to explore the significant association
loci (SNPs) that show evidence of increase susceptibility to T2D. Several genetic mod-
els have been chosen for association test, more specifically association under logistic
regression adjusted for confounders particularly clinical and environmental factors has
been examined to measure the strength of association and significant level within gen-
otype-phenotype information. The analyses revealed satisfactory and promising results
with significance level (p-value) were observed. The preliminary results that have been
obtained are encouraging however, further exploration insights into this dataset re-
mains.
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