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Summary - The evolutionary genetic mechanisms that are responsible for the 

transition of free-living nematodes to parasites are unknown and current nematode 

models used to study this have limitations. The gastropod parasite Phasmarhabditis 

hermaphrodita could be used as a new model to dissect the molecular mechanisms 

involved in the evolution of parasitism. Phasmarhabditis hermaphrodita is a 

facultative parasite of slugs and snails that can also be maintained easily under 

laboratory conditions like Caenorhabditis elegans and Pristionchus pacificus. 

Phasmarhabditis hermaphrodita and Phasmarhabditis species are easy to isolate from 

the wild and have been found around the world. The phylogenetic position of 

Phasmarhabditis is ideal for genomic comparison with other Clade 9 species such as 

C. elegans and P. pacificus, as well as mammalian and insect parasites. These 

attributes could make P. hermaphrodita an excellent choice of model to study the 

evolutionary emergence of parasitism. 

 

Keywords - Caenorhabditis elegans, gastropods, genetic model, parasites, 

Pristionchus pacificus.  
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Nematodes have evolved to parasitise plants, mammals and arthropods 

multiple times (Blaxter et al., 1998); however, the genetic mechanisms of how a free-

living nematode evolves into a parasite are largely unknown. It has been proposed that 

several factors must occur, for example, nematodes must have evolved close 

relationships with arthropods as mammalian parasitic nematodes are thought to have 

arisen from insect parasitic ancestors (Blaxter & Koutsovoulos, 2015). These 

relationships can be loosely classified as necromeny or phoresy. Necromeny (‘waiting 

for the cadaver’), was proposed by Schulte (1989) and arises when nematodes infect 

an invertebrate, wait in the body until it dies and then reproduces on the decaying 

cadaver. Phoresy is where nematodes use hosts as a means of transport and has been 

documented in many species. These sorts of associations require pre-adaptations, such 

as the formation of dauer juveniles, which can tolerate stressful conditions and host 

enzymes e.g., proteases (Poulin, 1998; Weischer & Brown, 2000). In order to 

understand the molecular mechanisms that are involved in these evolutionary 

transitions there are few genetic nematode models that can be used. This is because a 

suitable model would have to exhibit both a necromenic and parasitic lifestyle. It 

would also have to be easily culturable under laboratory conditions, preferably using 

Nematode Growth Media (NGM) agar plates seeded with a bacterial food source 

where it can be grown in large amounts quickly (to allow forward genetic approaches 

and genetic crosses) and not require growth or maintenance in mammalian hosts as 

they are logistically and financially prohibitive. Strains and species of the nematode 

should also be able to be isolated easily from the wild to facilitate micro and macro-

evolutionary studies. It should (ideally) be a self-fertilising hermaphrodite that can 

produce males in low numbers for genetic crosses and that can be used to make 

isogenic and inbred lines. These are all prerequisites that were used in the selection 
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and development of Caenorhabditis elegans and Pristionchus pacificus making them 

formidable nematode genetic model organisms (Brenner, 1974; Sommer et al., 2000). 

As well as being able to maintain and easily culture a proposed parasitic model 

nematode in the laboratory, the evolutionary position of an ideal model for parasitism 

would need to be a species that was closely related to other model nematodes and was 

related to a plethora of other necromenic and phoretic nematodes that were associated 

with gastropods or arthropods and mammalian parasites. A nematode that meets all of 

these previously listed prerequisites is the terrestrial gastropod parasitic nematode, 

Phasmarhabditis hermaphrodita. I believe, like Wilson et al. (2015), that it would be 

an excellent model to answer the most pertinent biological questions about the 

evolutionary emergence of parasitism, including which traits and which genomic 

features are associated with parasitism? What selective forces maintain them and how 

do these change through the on going struggle between host and parasite? (Blaxter & 

Koutsovoulos, 2015). Here I detail how and why P. hermaphrodita (and other 

Phasmarhabditis species) would be excellent candidates for answering these 

fundamental questions about the molecular mechanisms involved in the evolutionary 

emergence of parasitism. 

 

Phasmarhabditis hermaphrodita was developed as a weapon  

 

 Phasmarhabditis hermaphrodita is largely known as a biological control 

agent (Nemaslug®), which is used by farmers and gardeners to kill several pestiferous 

slug species from the families Milacidae, Limacidae and Vagnulidae (Rae et al., 

2007; Wilson et al., 1993a). Phasmarhabditis hermaphrodita is broadcast at a rate of 

3 × 109 nematodes ha-1 and has been successfully used to reduce slug damage in 
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oilseed rape, winter wheat, strawberries, asparagus, Brussels sprouts, orchids and 

hostas (Wilson et al., 1994, 1995a; Glen et al., 2000; Grewal et al., 2001; Ester et al., 

2003a, b, c). Phasmarhabditis hermaphrodita is sold in the U.K., Ireland, France, The 

Netherlands, Belgium, Germany, Denmark, Norway, Finland, Poland, Spain, the 

Czech Republic, Italy and Switzerland (Rae et al., 2007). Phasmarhabditis 

hermaphrodita (strain DDTM1) is also used further afield in agriculture in Kenya as 

Slugtech® (Talwana et al., 2016). Previous to its development as a biological control 

it was isolated and studied by the great nematologists of the latter 19th and early to 

mid 20th centuries such as Schneider in 1859, Emile Maupas in 1900 and Herta 

Mengert in 1953. It was first isolated in 1859 by Schneider from decaying terrestrial 

molluscs and named Pelodytes hermaphroditus. It was then studied by Maupas in 

1900 who proposed it had a necromenic lifestyle (although did not use this term). At 

this time he also studied several other nematodes including C. elegans (Maupas, 

1900). Decades later these two nematodes were also collected together by Sydney 

Brenner and his team in the 1960s and kept in culture before he finally decided on 

using C. elegans. Phasmarhabditis hermaphrodita could have easily been chosen 

instead of C. elegans as it showed the same advantageous characteristics in culture 

and Brenner had actually collected more strains of P. hermaphrodita than C. elegans! 

(see Cold Spring Harbour Laboratory Archives, 2017; 

http://libgallery.cshl.edu/items/show/75709). Over a hundred years after its initial 

description by Schneider it was isolated and studied intensively by Mike Wilson and 

co-workers at Long Ashton Research Station (Glen et al., 1996). After an extensive 

body of work investigating culture conditions (Wilson et al., 1993ba, 1995b, c), host 

range (Wilson et al., 1993ab) and conducting field trials (Wilson et al., 1994) it 
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showed huge promise as biological control agent for slugs and has been on the market 

since 1994.  

Phasmarhabditis hermaphrodita is Clade 9 nematode (Van Megen et al., 

2009), which contains many necromenic and parasitic species of insects, gastropods 

and mammals. For example, Oscheius tipulae is associated with Tipula paludosa 

(Sudhaus, 1993), C. elegans and C. briggsae use slugs and snails as phoretic and 

necromenic hosts (Kiontke & Sudhaus, 2006; Petersen et al., 2015), and 

Heterorhabditidoides chongmingensis is entomopathogenic (Zhang et al., 2008). 

More distantly related families include insect pathogens (Heterorhabditidae) as well 

as mammalian pathogens from families such as Strongylidae, Ancylostomatidae and 

Trichostrongylidae and Heligmonellidae (Kiontke et al., 2007; van Megen et al., 

2009). Thus, P. hermaphrodita is in an excellent phylogenetic position for 

comparative genomics with these other parasitic and necromenic species, as well as 

the model nematodes C. elegans and P. pacificus. 

Phasmarhabditis hermaphrodita is part of the Phasmarhabditis genus that 

contains P. apuliae, P. papillosa, P. neopapillosa, P. valida, P. nidrosiensis, P. 

californica, P. tawfiki, P. bonaquaense, P. bohemica and P. huizhouensis (Andrássy, 

1983; Hooper et al., 1999; Azzam, 2003; Tandingan De Ley et al., 2014, 2016; Huang 

et al., 2015; Nermuť et al., 2016a, b). There is also a ‘Phasmarhabditis sp. EM434’ 

from the east coast of North America but it is poorly characterised and only several 

DNA sequences seem to exist on the National Center for Biotechnology Information 

database (NCBI) (Kiontke et al., 2007). Also there are two un-described South 

African species (Phasmarhabditis sp. SA1 and SA2) (Ross et al., 2012). The 

Phasmarhabditis genus is closely related to other gastropod parasites, such as Agfa 

flexilis and Angiostoma limacis, although morphologically they are very different 
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(Ross et al., 2010; Tandingan De Ley et al., 2016). Most Phasmarhabditis species are 

found in terrestrial environments, although P. nidrosiensis and P. valida are found in 

marine and littoral habitats. The infection behaviour of many of these species is 

unknown and only P. hermaphrodita and P. neopapillosa have been shown to kill 

slugs (Wilson et al., 1993b; Glen et al., 1996). Like C. elegans, P. hermaphrodita is a 

self-fertilising hermaphrodite that produces males in low numbers (Maupas, 1900). It 

is a facultative parasite and able to grow on rotting slug or vegetation (Tan & Grewal, 

2001) and does not need a slug host to reproduce.  

 

Current nematode genetic model organisms pose problems when studying the 

evolution of animal parasitism 

 

Caenorhabditis elegans and P. pacificus are excellent at unravelling the 

genetic mechanisms of different traits but are not ideal to understand the evolutionary 

emergence of parasitism. The wild type strain of C. elegans (strain N2) was isolated 

in 1956 and has since undergone hundreds of thousands of generations fed on the 

laboratory food, Escherichia coli OP50. Its natural ecological niche is rotting 

vegetation, such as apples, where it lives a quiet life eating bacteria and eukaryotes 

like yeast (Frezal & Felix, 2015) but can also be found on or in slugs and snails 

(Petersen et al., 2015). There is little evidence of parasitism across the Caenorhabditis 

genus (Kiontke & Sudhaus, 2006), although it has been suggested that C. briggsae 

can become entomopathogenic when fed certain bacteria such as Serratia marcescens 

(Abebe et al., 2011); however, this has been disputed (Rae & Sommer, 2011). Hence, 

the study of C. elegans to study the evolution of parasitism would be severely limited. 



 8 

Pristionchus nematodes from the Diplogastridae are associated with beetles 

where they can be easily isolated (Morgan et al., 2012). They are necromenic 

nematodes (Herrmann et al., 2006) and there is little evidence to suggest they are 

parasitic. Undoubtedly, a full genome sequence, genetic techniques such as forward 

and reverse genetic tools and transgenic techniques (Sommer, 2015) make 

Pristionchus a formidable genetic nematode but not one to answer fundamental 

questions about parasitology, as it is not actually a parasite. That is not to say that they 

may never evolve to become parasitic as necromeny is thought to be a stepping-stone 

to true parasitism (Dieterich et al., 2008). 

Other nematodes that have been proposed as models to study parasitism 

include mammalian parasites e.g., Strongyloides sp. However, the major problems 

with many of these mammalian parasites are associated with culturing techniques, 

which are labour intensive as they have long lifecycles that require mammalian hosts 

and they can be difficult for genetic studies. For example, Strongyloides stercoralis is 

a pathogen of humans, representing a biohazard risk and must be maintained in dogs 

(Lok, 2007). Strongyloides ratti must be maintained in rats (Viney & Lok, 2007) and 

infective stages need to be collected from faeces. Trichnella spiralis is a pathogen of 

humans (Mitreva & Jasmer, 2006) and Brugia malayi requires two hosts to complete 

its lifecycle (Aedes mosquitos and a mammalian host), hence making it time 

consuming to culture in the laboratory (Lok & Unnasch, 2013). These difficulties 

make doing standard genetic experiments like forward genetic screens difficult, but by 

no means impossible (Viney et al., 2002). Similarly, reverse genetics approaches 

utilising RNA interference (RNAi) have been shown to work in mammalian parasites 

such as B. malayi (Aboobaker & Blaxter, 2003), Nippostrongylus brailiensis (Hussein 

et al., 2002) and Ascaris suum (Islam et al., 2005) but there are questions about its 
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efficacy, repeatability and whether only a selection of genes can be inhibited (Geldhof 

et al., 2006, 2007). Far superior to RNAi in terms of efficacy and efficiency is 

CRISPR-Cas genome editing technology, which has been developed for C. elegans, 

Caenorhabditis sp. 9 and P. pacificus (Lo et al., 2013; Witte et al., 2015), but has not 

been shown to work in parasitic species as yet. Unlike mammalian parasites, the 

facultative parasite P. hermaphrodita is a saprobic microbivorous nematode that can 

reproduce on slug faeces, dead earthworms, insects and leaf litter quickly and in great 

numbers (Tan & Grewal, 2001; MacMillen et al., 2009, Rae et al., 2009; Nermuť et 

al., 2014). It does not need a terrestrial gastropod to complete its lifecycle and has 

been grown under laboratory conditions for over 20 years (Wilson et al. 1993a) and 

initial research outlined the optimum bacteria and growth conditions that are needed 

to grow P. hermaphrodita en masse (Wilson et al., 1995b, c). Another advantage of 

using P. hermaphrodita is that it can also be grown easily in vivo in slug hosts 

following protocols by Wilson (2012).  

Entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) have 

been proposed as genetic models to understand the genetics of bacterial symbiosis and 

parasitism. Recently, the genomes and transcriptomes of several Steinernema species 

including S. carpocapsae, S. scapterisci, S. monticolum, S. feltiae and S. glaseri have 

been sequenced and unravelled an abundance of protease genes that are thought to 

responsible for causing death to insects (Dillman et al., 2015). Also the genome of 

Heterorhabditis bacteriophora has been sequenced and has revealed that 

approximately 50% of putative protein coding genes had no homology to other 

sequenced nematodes (Bai et al., 2013). The sister group of the Heterorhabditidae is 

the Strongylomorpha (Blaxter et al., 1998), thus making their phylogenetic position 

very exciting in comparative genomic studies. Undoubtedly, both of these nematodes, 
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coupled with genetic tools such as RNAi (which has been shown to work in H. 

bacteriophora; Ratnappan et al., 2016) hold huge potential for identifying genes 

involved with insect pathogenicity due to the evolution of bacterial symbiosis. 

However, P. hermaphrodita is different. It does not have a strict symbiotic 

relationship with bacteria and associates with a vast array of many different species 

(Rae et al., 2010). It is true that P. hermaphrodita is grown on Moraxella osloensis 

under factory conditions and that large quantities, when injected, will kill slugs such 

as Deroceras reticulatum (Tan & Grewal, 2001), but the bacterium is not vertically 

transmitted to further nematode offspring (which are pathogenic to slugs) (Rae et al., 

2010) and P. hermaphrodita can kill slugs without M. osloensis and when grown on 

lots of different bacterial species (Wilson et al., 1995b, c). Hence, M. osloensis is 

unnecessary for P. hermaphrodita to kill slugs (see Wilson & Rae, 2015). Therefore, 

P. hermaphrodita could be used as a genetic model to understand the evolutionary 

emergence of parasitism and not the evolution of parasitism due to bacterial 

symbiosis.  

 

Phasmarhabditis spp. are easy to isolate from the wild 

 

 For any burgeoning nematode genetic model it is absolutely essential that it 

can be collected and isolated easily from the wild. This is true for current nematode 

models. Global sampling efforts have isolated several hundred C. elegans strains and 

26 Caenorhabditis species from six continents (Frezal & Felix, 2015), which are 

available from the Caenorhabditis Genetic Stock Centre (USA). Similarly, sampling 

efforts by Pristionchus researchers have collected 28 species of Pristionchus 

(Ragsdale et al., 2015) and hundreds of strains of P. pacificus are available from the 
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Sommer laboratory, Tübingen, Germany (Morgan et al., 2012). These natural isolates 

have shown natural genetic variation in behaviour, cold tolerance and dauer formation 

in P. pacificus (Hong et al., 2008; Mayer & Sommer, 2011; McGaughran & Sommer, 

2014) and in C. elegans natural variation approaches have been successful in 

understanding genes involved with hybrid incompatibility, copulatory plugging, 

foraging behaviour and thermal tolerance (De Bono & Bargmann, 1998; Harvey & 

Viney, 2007; Rockman & Kruglyak, 2009). These collections, whether of C. elegans 

or P. pacificus, allow for in depth analysis of traits at the macro- and micro-

evolutionary level and Phasmarhabditis and P. hermaphrodita do not have to be any 

different. Phasmarhabditis spp. are easy to isolate (Wilson et al., 2016), can be 

cultured on rotting slug or agar plates (Wilson, 2012) and can be identified easily with 

species-specific PCR primers (Read et al., 2006). There are many studies over the last 

20 years that have dissected, chopped, killed and collected slugs and snails looking 

for Phasmarhabditis spp. For example, 956 slugs were collected by Tandingan De 

Ley et al. (2014), which yielded 10 isolates of Phasmarhabditis spp, including four P. 

hermaphrodita from California, USA. While this is a very low return, it is in stark 

contrast to a survey conducted by Morand et al. (2004) who found that 18-64% of 

slugs were infected with P. hermaphrodita and 33-100% of slugs were infected by P. 

neopapillosa. By taking similar approaches P. hermaphrodita and Phasmarhabditis 

species have been isolated around the world, including UK (Wilson et al., 1993ab), 

Germany (Schneider, 1859; Mengert, 1953), France (Coupland, 1995; Maupas, 1900), 

Czech Republic (Nermuť et al., 2010, 2016a), Iran (Karimi et al., 2003), Egypt 

(Azzam, 2003; Genena et al., 2011), Norway (Ross et al., 2015), Chile (France & 

Gerding, 2000), New Zealand (Wilson et al., 2012) and South Africa (Ross et al., 

2012). Recently, new species of Phasmarhabditis have been isolated in China (P. 
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huizhouensis) (Huang et al., 2015), Italy (P. apuliae) (Nermuť et al., 2016a) and in 

Czechoslovakia (P. bonaquaense and P. bohemica) (Nermuť et al., 2016b, c). Also a 

new species of Phasmarhabditis (P. californica) has been isolated and described from 

the USA (Tandingan De Ley et al., 2016). Interestingly, this species has also been 

found in New Zealand and recently it has been found parasitising slugs (Geomalacus 

maculosus) in Ireland (Carnaghi et al., 2017) and snails in Wales (Rae, unpublished).  

As many Phasmarhabditis species and P. hermaphrodita have been isolated around 

the world this opens up collaborative efforts to understand the genetic diversity of 

these species using population genomics as well as looking at natural genetic variation 

in virulence towards slugs. By screening through hundreds of species or strains of P. 

hermaphrodita, if natural variation in virulence was observed, strains showing 

extreme phenotypes could be mated and Genome Wide Association Studies (GWAS) 

could be carried out to discover genes essential for pathogencity towards slugs and 

their evolution across the genus. From an applied perspective the discovery of these 

strains and species from around the world could enhance the use of Phasmarhabditis 

as a biological agent to control not just slugs but also snails that are vectors of human 

disease. For example, it was recently shown that P. hermaphrodita can kill 

Biomphalaria spp., which are vectors of Schistosoma mansoni in Africa (Okonjo et 

al., 2015).  

 

Phasmarhabditis hermaphrodita as a model to understand the genetics of host 

interactions 

 

Four out of five clades of Nematoda (Blaxter et al., 1998) include slug 

parasitic nematodes, which suggest there are multiply origins of slug parasitism (Ross 
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et al., 2010). These include seven families of nematodes (Agfidae, Alloionematidae, 

Angiostomatidae, Cosmocercidae, Diplogasteridae, Mermithidae and Rhabditidae) 

and 108 described species of nematode (Grewal et al., 2003a). These nematodes use 

slugs and snails as paratenic, definitive and intermediate hosts. Of the 61 nematode 

species that use molluscs as intermediate hosts, 49 of these are from the 

Metastrongyloidea (Grewal et al., 2003a). Of the 47 species that use molluscs as 

definitive hosts, 33 belong to the Rhabditida (Grewal et al., 2003a). Of the 108 

species of nematodes that use molluscs as hosts the only species that has evolved to 

be pathogenic towards them is P. hermaphrodita. It is a gastropod-specific parasite 

and does not affect other organisms such as earthworms, flatworms, acarids, 

collembolans or insects (Grewal & Grewal, 2003; Iglesias et al., 2003; DeNardo et 

al., 2004; Rae et al., 2005). Thirty-six slug and snail species have been tested for 

susceptibility to P. hermaphrodita (strain P. hermaphrodita DMG0001) (Table 1). 

The conclusions from these experiments should be taken with some caution. This is 

because these tests have always been carried out with the commercial strain of P. 

hermaphrodita (designated DMG0001), which was isolated over 20 years ago, and 

these experiments have never been repeated with any other naturally isolated 

Phasmarhabditis species. It is therefore unknown if natural strains differ in their 

pathogenicity towards slugs. The only study looking at this was by Wilson et al. 

(2012) who showed that a strain of P. hermaphrodita isolated from slugs in New 

Zealand was pathogenic to D. reticulatum. 

It is clear that P. hermaphrodita is able to parasitise and kill many different 

pestiferous slug species including D. reticulatum, D. panormitanum, Arion ater, 

Milax budapestensis and M. sowerbyi (Wilson et al., 1993ab; Rae et al., 2009). There 

are however, some slug species that are resistant to P. hermaphrodita such as Limax 
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pseudoflavus and Limax maximus (Rae et al., 2008; Grewal et al., 2003b). In general 

all slugs from the Limacidae tested are resistant, whereas all Agriolimacidae are 

highly susceptible. The reasons for this are unknown. Some slug species are only 

susceptible as juveniles e.g., A. ater and A. lusitanicus (Wilson et al. 1993ab). Snails, 

like slugs, differ in their susceptibility to P. hermaphrodita. For example, Helix 

aspersa (young stages) and Cernuella virgata are susceptible to P. hermaphrodita but 

some species such as Cepaea nemoralis and Discus rotundatus are resistant 

(Coupland, 1995; Wilson et al., 2000). Interestingly, some of these infection studies 

have obtained different results. For example, C. hortensis and L. stagnalis have been 

shown to be susceptible to P. hermaphrodita in some studies (Wilson et al., 2000; 

Morley & Morrit, 2006), whilst resistant in others (Rae et al., 2009; Whitaker & Rae, 

2015). Perhaps there is natural genetic variation in host immunity towards these 

nematodes from snails collected from different areas?  

How slugs and snails combat infection by P. hermaphrodita has not been 

investigated in any great detail. One study (Scheil et al., 2014) investigated if 

phenoloxidase (PO) activity was altered in infected snails but found there was no 

effect. However, recently, snails such as C. nemoralis and Achatina fulica were 

shown to have the ability to trap, encase and kill parasitic nematodes in their shell 

(Williams and Rae, 2015; 2016). Although to investigate this further more extensive 

molecular analysis will have to be carried out to profile the genes that are responsible 

for producing the shell, such as calcite and aragonite as well as glycoproteins and 

polysaccharides (Marin & Luquet, 2004). 

 

Phasmarhabditis hermaphrodita as a genetic model that can be used to 

understand parasite behaviour and how parasites manipulate host behaviour 
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As well as virulence P. hermaphrodita could be used to study the genetics of 

parasite behaviour. In order to find hosts P. hermaphrodita responds to slug mucus 

and faeces, dead slugs and host volatiles (Rae et al., 2006, 2009; Hapca et al., 2007a, 

b; Nermuť et al., 2012). These experiments were based on a modified assay that is 

commonly used by C. elegans researchers, e.g. Bargmann et al. (1993), to examine 

genes and neurons involved with behaviour. An important point to note about the use 

of P. hermaphrodita to study behaviour is that it can be observed not only on agar 

plates (Rae et al., 2006, 2009; Hapca et al., 2007a) but also in more realistic 

ecologically relevant substrates such as sand and soil (Hapca et al., 2007b; Macmillan 

et al., 2009; Nermuť et al., 2012). Therefore it should be possible to use forward 

genetics and mutagenise nematodes and look for mutants that are defective in 

attraction to slug mucus (or showing increased attraction), which may reveal 

ecologically important genes essential for chemotactic behaviour in soil. Another 

important point is that researchers using C. elegans and P. pacificus in chemotaxis 

assays concentrate on the adult stage of the lifecycle (Bargmann et al., 1993; Hong et 

al., 2008). In a parasitic nematode species, such as P. hermaphrodita (and all 

rhabditid nematodes parasites), this approach would not be ecologically relevant as it 

is the dauer stage that is used to find and penetrate into hosts. Dauer stage P. 

hermaphrodita have been used in all chemotaxis experiments (Rae et al., 2006, 2009; 

Hapca et al., 2007a, b; Nermuť et al., 2012) and not adults and other stages as they 

cannot penetrate into slugs (Tan & Grewal, 2001) as their main purpose is to feed on 

bacteria and reproduce. In summary, by using P. hermaphrodita ecologically relevant 

genes and neurons responsible for finding gastropod hosts in P. hermaphrodita could 
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be identified and compared with C. elegans behaviour regulatory networks which 

could provide fascinating insight into the evolution of host seeking behaviour. 

Once a slug is infected by P. hermaphrodita it can severely affect the 

behaviour of its host. For example, infection by P. hermaphrodita makes slugs slower 

(Bailey et al., 2003), stop feeding (Glen et al., 2000), die and be avoided by predators 

(Foltan & Puza, 2009), move down into soil to die (Pechova & Foltan, 2008), more 

likely to be found under refuge traps (Wilson et al., 1994), and freshwater snails 

(Lymnaea stagnalis) are more likely to be found outside water (Morley & Morrit, 

2006). The advantages of controlling slug behaviour means that the host can be 

positioned in a place that is better for the growth and reproduction of the nematodes 

and its offspring e.g., deeper down in soil or away from freshwater. In vivo genetic 

analysis of P. hermaphrodita when infecting slugs or snails using transcriptomics and 

RNA-Seq could provide an unparalleled opportunity to unravel novel genes that are 

responsible for manipulating the behaviour of hosts.    

Uninfected slugs can detect and avoid areas where P. hermaphrodita has been 

applied (Wilson et al., 1999; Wynne et al., 2016). This is interesting, not only from an 

agricultural application and financial point of view as less nematodes could be applied 

to crops deterring slugs from those areas (Hass et al., 1999), but also from an 

evolutionary and genetic perspective. This means that over time slugs have evolved 

closely with P. hermaphrodita and are aware that these nematodes have the ability to 

cause ill health. This poses questions such as: what are the nematodes producing that 

the slugs are detecting? How do slugs detect nematodes? Are there strains of P. 

hermaphrodita that are not detected by slugs? Ultimately, the answers to these 

questions, and many others, could be answered by analysis of the secretome of P. 

hermaphrodita. This approach successfully identified small molecules, such as 
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ascarosides, which are exuded from C. elegans (and other nematodes such as P. 

pacificus) and are regulators of a vast array of processes such as dauer formation and 

olfaction (Ludewig & Schroeder, 2013). 

 

Conclusions 

 

Currently, there are no forward, reverse or transgenic techniques that have 

been developed for P. hermaphrodita but the genomes and transcriptomes of P. 

hermaphrodita (and several other Phasmarhabditis species) are currently being 

sequenced and are part of the 959 Nematode Genomes initiative (Kumar et al., 2012). 

To unravel genes involved in the evolution of virulence the ideal analysis would 

involve comparing the genome of P. hermaphrodita to C. elegans or C. briggsae. 

Could C. elegans become pathogenic to slugs and snails if these potential virulence 

genes were transferred from P. hermaphrodita? Coupled with comparisons of the 

genomes of C. elegans and P. hermaphrodita, transcriptomics and RNA-Seq could be 

used to profile the genes that are being expressed by P. hermaphrodita when infecting 

slugs. The analysis of the genome of P. hermaphrodita and development of genetic 

tools could unravel genes involved in an array of processes and it could enhance the 

use of P. hermaphrodita or Phasmarhabditis spp. as a biological control agents of 

slugs and snails that are of agricultural and health importance not just in northern 

Europe but worldwide.  
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