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In Silico Prediction of Organ Level Toxicity:
Linking Chemistry to Adverse Effects

Mark T.D. Cronin, Steven J. Enoch, Claire L. Mellor, Katarzyna R. Przybylak,
Andrea-Nicole Richarz and Judith C. Madden

School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England

In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships

((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for in sil-

ico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL)

in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as

opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify

potential liver toxicants. In silico profilers, or groups of structural alerts, have been developed based on mech-

anisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are

robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms

or modes of liver toxicity and recommendations for the improvement of these approaches are given.

Key words: Adverse outcome pathways, Read-across, Structural alert, Liver toxicity, Hepatotoxicity,

Quantitative structure-activity relationship (QSAR)

THE CURRENT PARADIGM FOR IN SILICO
MODELLING: THE SUCCESS (OR OTHERWISE) OF 

(QUANTITATIVE) STRUCTURE-ACTIVITY
RELATIONSHIPS ((Q)SARs) TO PREDICT TOXICITY

There are a many so-called in silico or computational

approaches to predict the toxicity of chemicals (1,2). These

attempt to relate the physico-chemical or structural proper-

ties of a molecule to its toxic effect. They include, amongst

other methods, the use of (quantitative) structure-activity

relationships ((Q)SARs) as well as grouping or category for-

mation which allows for read-across. These methods have a

number of applications from screening libraries of com-

pounds in product development through to full risk assess-

ment. They also enable toxicologists and risk assessors to

replace and reduce animal testing. However, these methods

are not always reliable and must be assessed on their indi-

vidual merit for the compound and context in question.

Indeed, they may not be appropriate for some toxicity end-

points in some circumstances. In order to understand when

they may be successfully used, it is essential to describe and

assess the relative strengths and weaknesses of the various

in silico approaches. The aim of this paper is to provide an

overview of the shortfalls of the current in silico approaches

to predict toxicity and illustrate how they may be improved

for “difficult-to-predict” endpoints - in this case repeated

dose toxicity at the organ level, focussing on the liver.

In order to understand the difficulties of using in silico

approaches for toxicity prediction, and for which endpoints

they are most appropriate, it is worthwhile to consider when

they are likely to provide robust models. In particular,

(Q)SARs work optimally when a steady-state, or equilib-

rium, is achieved; this explains their utility for endpoints

such as acute fish toxicity (where an equilibrium is nor-

mally observed (3)), and, with an understanding of the

caveats such as metabolism, degradation and volatility, bio-

accumulation (4). SARs, which can be defined in terms of

structural alerts, are very amenable to provide predictive

approaches to endpoints where there is a direct interaction

between the chemical and the biological system, such as the

formation of a covalent bond in the disruption of DNA
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(leading to mutagenicity) (5) or an immunoprotein (leading

to skin sensitisation) (6).

In general “traditional” QSARs provide a correlative

approach between an effect (usually defined in terms of a

regulatory endpoint) and properties of a molecule. There-

fore, when a trivial relationship occurs, this provides a model.

However, many adverse effects following exposure to chemi-

cals are a result of disruption or perturbation to pathways

leading complex organ level toxicity (which are increas-

ingly being described through the use of Adverse Outcome

Pathways (AOPs)) (7,8). There may be many triggers to

such toxicity and many interactions that result in these effects.

They are often dependent on various absorption, distribu-

tion, metabolism and excretion (ADME) effects as well as

dose, duration and type of exposure and even lifestage of

the organism. Due to the complexity of the results of com-

plex tests e.g. for repeated dose, reproductive and develop-

ment toxicity, “traditional” (Q)SAR techniques have struggled

to provide meaningful and robust models. In terms of regu-

latory endpoints, this has meant that there are a number of

toxicological endpoints that are currently, at best, only poorly

predicted by (Q)SAR techniques; these include chronic,

reproductive and developmental toxicity, as well as non-

genotoxic carcinogenicity (9). Of these more difficult toxic-

ity endpoints for modelling, there are often complex and

interacting mechanisms that bring about the effect.

IN SILICO MODELS FOR REPEATED DOSE
TOXICITY - PREDICTING NO OBSERVED 
(ADVERSE) EFFECT LEVELS (NO(A)ELs)

Due to the complexity of the phenomenon, the test design

and protocol, and the endpoint required for (regulatory) risk

assessment purposes, predicting the toxicity of chemicals

following low dose repeated exposure, with in silico meth-

ods, remains a great challenge. There are many reasons for

the difficulty in modelling effects brought about by low

dose repeated applications of a chemical. Many of these

effects are different to those brought about by acute expo-

sure; in order to understand and model such toxicity refer-

ence to, and understanding of, the mechanism of action is

required. There are potentially many differences between

the (toxic) effects of chemicals at high, acute, doses as com-

pared to low repeated doses. A high, acute, dose may lead

to lethality by a single, and sometimes well defined, mecha-

nism and/or AOP - however currently the AOP is currently

often unknown. Prolonged exposure to low doses may lead

to a multitude of adverse effects being the results of differ-

ent mechanisms, or AOP networks (many which may cur-

rently be unknown) (10). A proportion of mechanisms have

as the initiating step a weak receptor interaction, the nature,

quantification and relevance of which may be poorly under-

stood. The perturbation of biochemical pathways, and their

assessment and prediction, of these so-called adverse events

has become the focus (at least partially) of what is cur-

rently recognised as “21st Century Toxicology” (11) whilst

it is noted that many, possibly the vast majority of, chemi-

cals will cause toxicity via unspecific effects (12-14). This

provides a strong clue, or guiding hand, for modelling, in

other words the models should be based around the individ-

ual adverse effect rather than the regulatory endpoint.

Whilst it has become apparent that modelling would be

more successful if based on individual adverse effects, it is

true to say that there are many current QSARs that attempt

to predict the “outcomes” from in vivo repeated dose toxic-

ity tests. The reason for this is that such data are perceived

as being useful to risk assessment and have been easily

retrievable from historical databases. For instance, taking

chronic mammalian toxicity as an example, the outcome is

often interpreted as a no observable (adverse) effect level

(NO(A)EL) for a substance (please note in this manuscript

the term NO(A)EL is intended to include both the no observ-

able effect level (NOEL) and no observable adverse effect

level (NOAEL)). Rather than this being a definable effect,

such as a concentration that causes a 50% effect (EC50) to a

specific organ, NO(A)ELs are the concentration at which no

(adverse) effect is seen and rely on expert interpretation of

study findings. As such the derivation and elucidation of

the actual NO(A)EL, e.g. for risk assessment purposes, is

dependent on the doses tested and what are seen as being

important and relevant adverse effects etc. Thus, whilst it is

useful for risk assessment purposes, the modelling of a

relatively arbitrarily derived values such as a NO(A)EL

may potentially pose many problems. Determination of the

NO(A)EL from chronic toxicity testing follows examina-

tion of all relevant organs (for changes and alterations com-

pared to the control) as well as clinical chemistry, behaviour

etc. For many chemicals, the NO(A)EL is dependent on

organ level toxicity i.e. the organ(s) which is/are affected by

the lowest dose. In terms of predicting NO(A)ELs, this means

that if the NO(A)EL value is as a result of organ level toxic-

ity (acknowledging that the NO(A)EL value may be a result

of many other effects), it could be considered to be a predic-

tion of organ level effects. In terms of the strengths of the

QSAR approach, it is unlikely the NO(A)EL value rep-

resents any type of steady-state equilibrium and is often an

artefact of the test design and doses tested (benchmark dose

may be more appropriate for modelling however, but has

been seldom evaluated). Neither will the QSAR comply

with a strict interpretation of the first of the OECD Princi-

ples for the Validation of QSARs in terms of it being a

defined endpoint (15).

Whilst NO(A)ELs are difficult values to model and hence

predict, we are rapidly approaching a time when there will

be widely available mammalian chronic toxicity data and

use must be made of these data. These data will be publicly

available, or available on restricted or for commercial use.

The databases include, amongst others, RepDose (16), Tox-
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RefDb (17), HESS (18), eTox (19), LeadScope (http://www.

leadscope.com/) and COSMOS (20; https://www.mn-am.com/

projects/cosmosdatasharepoint/) as well as regulatory data

available within the OECD QSAR Toolbox (http://www.

qsartoolbox.org/), eChemPortal (http://www.echemportal.

org/) and AMBIT (http://cefic-lri.org/lri_toolbox/ambit/).

Because of this greater access to data, often of unknown

quality, reliability and/or relevance, we must develop strate-

gies to model NO(A)ELs efficiently, in a manner suitable

for regulatory use and other risk assessment scenarios.

Thus, in terms of modelling a NO(A)ELs, it may be neces-

sary to identify and model the doses that bring about indi-

vidual organ level effects rather than attempting to predict

the response level in an in vivo test.

Key to modelling the NO(A)EL values will be under-

standing the value itself and how it has been derived i.e.

which organ level (or other) effect has been chosen as being

sufficiently significant to be described as toxicity. The mod-

eller should not lose sight of the fact that the NO(A)EL

value is a result of a complex in vivo study which requires

dosing of animals at a number of levels, aiming to observe

no (adverse) effect to a number of organs. The results, nor-

mally in the form of a detailed report require expert inter-

pretation and analysis to determine the NO(A)EL. Some

recent work has attempted to make this process transparent

with regard to the derivation of Thresholds of Toxicologi-

cal Concern (TTC) (21) - whilst not intended for model-

ling, such approaches may be of interest to modellers.

Despite the difficulties in predicting NO(A)ELs, there

have been a number of QSAR models (22), however there

has been no coherent or consistent assessment of their per-

formance. More recent approaches are based around the

grouping of chemicals and application of read-across (23,24).

These recent approaches include the use of new, and freely

available, expert systems for grouping chemicals according

to chronic toxicity - e.g. the OECD QSAR Toolbox, the

HESS system, AMBIT and associated database (see previ-

ous links). Whilst there may be no obvious overlap between

the more established models and the new systems, it is, of

course, entirely possible that the expert system approaches

are implicitly identifying “similar” chemicals and using those

to make the predictions of chronic toxicity. This process is

at the heart of grouping and read-across which will be

described in more detail below.

IN SILICO MODELLING OF LIVER TOXICITY

The liver is a key organ in terms of toxicology and cru-

cial in interpreting repeated dose toxicity (25-27). Obvi-

ously the liver has a vital physiological role and is prone to

toxicity due to high, first-pass, blood flow which increases

the likelihood of toxicants reaching a significant concentra-

tion. There is a range of direct, indirect and idiosyncratic

effects that chemicals can cause in the liver, some of which

are described in more detail below. The possibilities for tox-

icity (and its modelling) are complicated by the often con-

tradictory effects of metabolism in the liver (28). The liver

accounts for a significant proportion of in vivo metabolism.

It must be remembered that a high metabolic capacity that

produces a large number of novel metabolites is both bene-

ficial (in terms of detoxification and excretion) and harmful

in terms of toxification. The situation is made even more

complex due to the naturally occurring defence mechanisms

in the liver. Therefore, whilst some compounds may have

the ability to be reactive in the liver, no toxicity is seen due

to the protection offered by these systems. Commercially,

toxicity to the liver is very important and has many conse-

quences. Whilst it is especially significant to the pharma-

ceutical industry - where the term coined is Drug Induced

Liver Injury (DILI) - all industrial sectors need to be care-

ful of the harmful effects of compounds to the liver (28).

There are a number of problems in the computational

modelling of liver toxicity; these are centred around the

complexity of the endpoint, data and the current suite of

modelling techniques available (29). Specifically the prob-

lems can be summarised as follows:

• Toxicity data for modelling - whilst there are guide-

lines for the standardised reporting of preclinical outcomes,

it must be remembered that there is no specific in vivo

“test” for liver toxicity, as would be associated with other

endpoints e.g. skin sensitisation or irritation. Therefore the

modeller is reliant on other forms of data e.g. histopatholog-

ical observations from in vivo testing or reports of adverse

drug reactions from clinical use etc. It is also noted that there

is inherent variability in all in vivo studies (25,27). The net

result is that such data that may be available are not from

consistent assays, may not reflect potency and will be of

variable quality. In addition, the presentation of the data may

not be in a form suitable for modelling i.e. they may be held

within study reports and not readily available in databases.

• The datasets available for consideration are noted below,

however, their chemical space is often biased towards phar-

maceutical active ingredients and may not be representa-

tive of chemical space for other types of compounds e.g.

cosmetics or industrial chemicals.

• As noted above, there is a plethora of modes and/or

mechanisms of action that bring about liver toxicity. This

inevitably complicates modelling if compounds with differ-

ent mechanisms of action are lumped together. Whilst it

may be preferable to develop models on a mechanistic basis,

there is currently no easy method to classify compounds into

particular mechanisms. The situation with modes of action

is complicated by the sheer number of mechanisms and the

fact they may be inter-related, dependent on dose duration

and level, the age and nutritional status of the organism,

genetic susceptibility etc.

• The current (Q)SAR approaches to modelling do not

take into account the complexity of relevant issues such as
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metabolism (either toxification or detoxification) or the

defence mechanisms naturally present in the liver. As such,

they run the risk of oversimplifying a complex toxicologi-

cal event.

Whilst there are undoubtedly concerns over the quantity

and quality of data relating to liver toxicity, there are some

significant areas where data could be utilised. Sources of

liver toxicity data are reviewed and summarised by Przyby-

lak and Cronin (29). There are several distinct and usable

(albeit of variable meaning and quality) sources of data. For

instance information on liver toxicity has long been avail-

able in the literature and clinical reports on the adverse

effects of drugs. Whilst these data are available (including

the significant datasets noted below), as noted above, they

are seldom compiled in a format suitable for modelling i.e.

with checked structures, downloadable etc. There are, of

course, a number of biomarkers for liver toxicity e.g. ALT,

ADH etc (30). These may provide usable information,

although not wholly mechanistically based. Other, more

reasonable (in terms of modelling) examples of potentially

usable hepatotoxicity data exist, for instance the United

States Food and Drug Administration (US FDA) Adverse

Effects Reporting System (FAERS), which contains infor-

mation for pharmaceuticals as well as human hepatotoxic-

ity data gathered from spontaneous, voluntary reporting

adverse effects (https://www.fda.gov/Drugs/GuidanceCom-

plianceRegulatoryInformation/Surveillance/AdverseDrug Effects/

ucm083765.htm/). Zhu and Kruhlak (31) developed a bespoke

human hepatotoxicity database for the purposes of model-

ling. This section is not intended to be a full review of

available liver toxicity data (refer to (29) for a more detailed

description). The key to modelling liver toxicity is not only

to obtain more data, but to develop an efficient strategy to

use the data that are easily available to create mechanisti-

cally relevant models.

There are a wide variety of (Q)SAR type approaches that

have been applied to predict liver toxicity and related effects.

These range from simplistic regression-based QSAR ap-

proaches for small series of compounds to much larger stud-

ies of heterogeneous groups of compounds. A commonality

in all modelling approaches is that no consistent data or test

set been analysed, with information relating to liver toxic-

ity being derived from a many sources ranging from assays

based on biomarkers, through to in vivo toxicity studies and

(human) clinical reports. It is possible to use data from high

throughput screening to derive structural rules for the hepa-

totoxicity of drugs (32) which can be applied for the screen-

ing of new compounds (see also below). Other simple QSAR

analyses have quantified the role of biomarkers for liver

effects and demonstrate that these can be rationalised accord-

ing to the chemistry underpinning the mechanism(s) of action

(33). At the other end of the spectrum, QSAR analyses have

been performed on large datasets using multivariate tech-

niques (34), with particularly large, information-rich, data-

sets becoming available e.g. Mulliner et al. (35) utilised

information for over 3700 drugs. Other approaches have

also used biological information to support predictions from

chemistry alone (36-39). Including biological and/or mecha-

nistic information is likely to improve predictions, but implic-

itly to use such models will require experimental measure-

ments of the compounds of interest.

As evidenced by recent approaches to modelling that

incorporate mechanistic information, it is essential for proper

model development that an appreciation of mechanistic of

action is at the heart of the models. This requirement may

be a challenge to toxicology as it has typically not provided

a framework or overview of the mechanisms involved in

organ level toxicity in a manner that would be amenable to

modelling - this may change with the rapid uptake of the

AOP paradigm as described below. Whilst a formal frame-

work is not available, much information about the adverse

effects to the liver is provided. For instance, “classic toxicol-

ogy” has identified the main effects to the liver, taking as an

example Schwarz and Watkins (40), chemically induced liver

injury is defined as including (in relative order of severity):

steatosis, porphyria, veno-occusive disease, cholestasis, hepa-

titis, cell death from necrosis or apoptosis and the develop-

ment of tumours. Whilst this list covers the main effects, it

is a mixture of mechanisms and observations of effects. Others

have defined the diverse mechanisms that result in hepato-

toxicity, for instance Jaeschke et al. (41) described in some

detail the intricacies of the mechanisms of bile acid-induced

hepatocyte apoptosis, oxidative stress, CYP2E1-dependent

toxicity, drug-induced hepatotoxicity as a result of the for-

mation of reactive metabolites and the various effects of

mitochondrial dysfunction. More specific mechanisms of

DILI has been defined by Yuan and Kaplowitz (42). This

knowledge, whilst not necessarily complete or in a format

entirely suitable for modelling, does provide a starting point

for the development of in silico models for liver toxicity.

A NEW PARADIGM FOR IN SILICO MODELLING: 
INCORPORATING ADVERSE OUTCOME

PATHWAYS AND NEW APPROACH
METHODOLOGIES

In order to predict toxicity from low dose repeated expo-

sure (to humans) accurately, in silico modelling will need to

move away from the simplistic aspects of QSAR modelling.

The road to success, either in terms of predicting adverse

effects at the organ level, or directly predicting NO(A)ELs,

is to deconstruct the problem into the relevant components,

model these and then combine the predictions into a mean-

ingful estimate of “safety” (43). A toxic effect can be

rationalised into the intrinsic toxicity of a substance and the

exposure to it. This paper describes how intrinsic toxicity

may be modelled, however prediction of exposure through

the modelling of kinetics, is described elsewhere. The mod-
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elling of the intrinsic toxicity of compounds is placed in the

context of chemical grouping and read-across.

Chemical grouping is the process by which chemicals are

gathered together on a rational basis. Once a group of chemi-

cals or analogues has been created, should a new (the tar-

get) chemical be allocated into the group, and appropriate

data be obtained, then an activity may be interpolated by the

process of read-across (2). The use of predictions from read-

across to fill data gaps has grown in popularity recently, in

particular as a response to the requirements of the REACH

legislation (44). The key to grouping compounds success-

fully is determining a suitable criterion, or set of criteria, on

which to develop the group (45). With regard to grouping

relating to predicting NO(A)EL (as with other endpoints),

there has already been success in forming groups of com-

pounds on a mechanistic basis, particularly emphasising the

role of organ level toxicity (23,24). Therefore, in terms of

developing a strategy for predicting a NO(A)EL, this can be

considered to be a two-stage process:

- identification of relevant organ toxicity that relates to

NO(A)EL e.g. through an appropriate “profiler” for group-

ing, and

- identification of analogues (i.e. sharing similar relevant

molecular fragments, stuture or properties) and undertaking

of read-across with the group.

Assuming a potential approach to the computational mod-

elling of liver toxicity and formation of groups or categories

is based around mechanistic (or mode) of action informa-

tion, a process to organise the information is required. One

such way forward is through the understanding of toxicity

pathways and the formalisation (if required) into AOPs

(7,8,46-48). The toxicity pathway concept is at the heart of

what is termed 21st Century toxicology (11). AOPs are

being developed for numerous human and environmental

effects and are being recorded on the AOP Wiki (see the

web-site: aopwiki.org). The basis for developing an AOP

has been defined by the OECD, amongst others, and it

includes the following:

- Identification of a molecular initiating event (MIE).

The MIE can be thought of as the direct link between the

interaction of the chemical at the molecular site of action,

e.g. covalent binding or receptor mediated toxicity. It is the

definition of MIE that provides the direct link to chemistry,

hence it can provide information for 2-D or 3-D structural

alerts and, as such, can provide the basis of chemical grouping.

- A series of one or more key (or intermediate) events.

These form the basis of the pathway and can be thought of

as linked building blocks. These key events are the biologi-

cal linkages, they can be defined and have the potential for

assays to be developed for them. At this point, rational or

intelligent testing of chemicals in assays for the “over-rid-

ing” key event(s), i.e. the rate limiting step(s), could assist

in the definition of domains of activity of an AOP.

- An adverse effect or apical event which can, if required,

be related to a regulatory endpoint. This may be considered

at the organ or individual for human toxicology (and popu-

lation or even ecosystem level for environmental effects).

- In addition, and also linked to mode of action (49),

there is a need in risk assessment to understand or describe

the exposure of an organism to a chemical. This can be thought

of in terms of the type, route, duration and dose of the expo-

sure. For some endpoints e.g. developmental toxicity, the

lifestage at which exposure is made may be important.

With regard to modelling and understanding of liver tox-

icity, a small number of AOPs have been formally defined,

which may be a good starting point for modelling, these

include

• Cholestatic liver injury induced by inhibition of the bile

salt export pump (50).

• Protein alkylation leading to liver fibrosis (51).

• Sustained AhR activation leading to rodent liver tumours

(52).

Whilst progress is being made, the relatively small num-

ber of AOPs as compared to the number and complexity of

liver toxicity mechanisms emphasises that much effort and

progress is still required in this area. For those AOPs avail-

able, they clearly indicate that there is a direct link from the

MIE to chemistry through understanding of effects such as

the capability to react covalently with biological (macro-)

molecules (53). As a consequence, definition of the chemis-

try associated with protein reactivity may be one starting

point for defining the domain of an MIE associated, for

instance, with fibrosis. The organic chemistry mechanisms

for protein reactivity has been defined, in part at least, by

Enoch et al (6). However, these are very general rules, cov-

ering all potential aspects of reactions with proteins. It also

true, however, that many chemicals will not act through

these specific AOPs and will need to considered in a differ-

ent manner (12-14).

In order to implement the strategy to identify organ level

toxicity (and hence having a reasonable chance of predict-

ing NO(A)ELs transparently and accurately) more work is

required. In particular, effort is required to define organ

level toxicity and provide profilers to assist in the rational

and mechanistically based grouping of chemicals. Such an

approach is provided by Sakuratani and co-workers (23)

and several others (24), although it is limited. As a starting

point, the key organs relating to endpoints following repeated

low dose exposure to chemicals must be identified. These

include for instance, the liver, kidneys, heart, lung, skin and

several others. The list of important organs is long but not

endless. It is, of course, important to define which is the

“most important” organ level toxicity, but it is beyond doubt

that the liver represents one of the most important organs

with regard to harmful effects of chemicals.

Recently, to support the justification of grouping of com-

pounds to allow for read-across, the concept of data from

“New Approach Methodologies” (NAMs) has been described.
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NAMs include any evidence that may support toxicological

evaluation and prediction, including existing data from non-

guideline tests, tests to other species or for other effects, in

chemico, in vitro, high throughput and content and molecu-

lar biology data (54). The use of NAMs to support group-

ing has been shown to be important for liver toxicity (24).

To illustrate the complexity of these issues, the following

sections provide a status update on the modelling of toxic-

ity of chemicals that affect the liver, with a particular

emphasis on grouping compounds.

AN EXAMPLE OF IN SILICO MODELLING:
DEVELOPMENT OF STRUCTURAL ALERTS FOR 

LIVER TOXICITY AND RECOMMENDATIONS
FOR IMPROVEMENT

In the context of this paper, a “Structural Alert” is defined

broadly as any fragment of a molecule (typically 2-D) that

is associated with a particular toxicity. Ideally the fragment

is well defined and can be coded computationally to allow

for ease of use and be related to the mechanism of action or,

if applicable, the MIE of the AOP. There are two general

applications for structural alerts: firstly to make a direct pre-

diction of the hazard associated with a compound, secondly

to provide a rational basis for grouping and hence allow for

read-across. These applications are not independent, but sel-

dom well defined. Due to the complexities of modelling

organ level toxicity, and effects to the liver in particular,

future efforts must pay more attention to the role of mecha-

nisms of action. As such, AOPs provide a possible frame-

work for organising the effort and modelling initiatives.

Recent progress has used the information provided by

AOPs to derive in silico modelling approaches, some recent

advances are summarised in Table 1 and associated refer-

ences (6,55-62). What is clear from Table 1 is the breadth

and diversity of the mechanisms, the MIE and, as a result,

the type of modelling approach taken. These modelling ap-

proaches range from organic chemistry derived alerts for

covalent binding through to groups of SMARTS strings and

3-D toxicophores for receptor binding.

Following the development of a limited number of alerts

for liver toxicity, the following recommendations are made

for further development of alerts in the future.

There is a need for the better definition of structural
alerts. The structural features associated with protein reac-

tivity described and defined by Enoch et al. (6) and which

are freely available in the OECD QSAR Toolbox and Tox-

Tree software, are intended to be generalistic and provide

an overview of the entirety of possible organic chemistry

mechanisms associated with protein reactivity. They may be

used to identify potentially reactive compounds (and hence

hepatotoxic due to reactivity) but they should not be consid-

ered to be predictive of any single endpoint; indeed, the

intention of developing these alerts was to provide a basis

for grouping with the assumption the read-across would be

performed and the strong possibility that the group would

contain compounds with, and without, toxicity (53,63). A

further complication of such reactive compounds is whether

metabolism is relevant and how this may have been cap-

tured within the alerts (for some structural alerts metabo-

lism is implicit, for others it must itself be predicted).

For individual organ level toxicity, the current set of alerts

could be better defined. It should be noted that some struc-

tural alerts are already well defined and documented, for

instance those present within the DEREK Nexus software

[https://www.lhasalimited.org/products/derek-nexus.htm].

However, as we more formally link alerts to toxicity path-

ways through the AOP, the alerts themselves will need to be

defined more precisely. As noted previously, so-called “chem-

istry” alerts for use in grouping and read-across are very

general; for organ level toxicity these will need to be more

carefully defined. Indeed, such alerts could go further into

what are being termed “chemotypes” (64). Chemotypes have

the capability to incorporate structural features with physico-

chemical properties. Technically, these may need to extend

the use of SMARTS strings into more sophisticated mark-

up languages such as CSRML. A proposal has already been

Table 1. Structural alerts and other freely available in silico approaches that may assist in the identification of liver toxicants

Effect
Molecular initiating

event
Type(s) of structural alert

Numbers

of alerts
Reference

Phosopholipidosis Trapping of molecules with 

lysosomes

Generalistic structural alerts >300 Przybylak et al. (55,56)

Reactive hepatotoxicity 

including fibrosis

Disruption of cellular function Structural alerts for covalent binding >100 Enoch et al. (6)

Mitochondrial toxicity Disruption of proton gradient Structural alerts for redox cycling, 

uncoupling etc

>200 Nelms et al. (57,58)

Liver toxicity (as identi-

fied in humans)

Various Miscellaneous relating to various 

mechanisms of liver toxicity

>150 Hewitt et al. (59)

Steatosis Nuclear receptor binding SMARTS strings for binding to vari-

ous nuclear receptors

>200 Mellor et al. (60,61)

Steatosis Binding to LXR Toxicophores <500 Tsakovska et al. (62)
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made for the incorporation of chemotypes, captured through

CSRML to be integrated into KNIME Workflows for the

prediction of chronic toxicity (57,65).

There is a need to develop alerts or categories for non-
reactive liver toxicity AOPs. A significant area for improve-

ment is the development of alerts for AOPs for non-reac-

tive mechanisms of liver toxicity. This can be performed in

at least three ways:

• Firstly, the MIE(s) can be identified and structural alerts

built around them. This has the advantage of being thor-

ough and robust, but it is likely to be slow.

• A second method is to search chemical structures

associated with toxicity for alerts. The utility of structural

similarity is that it may rapidly provide indicators of struc-

tural alerts associated with toxicity (59,66). A posteriori

these can be interpreted in terms of mechanisms. Whilst

this may be a more rapid process to develop alerts, it still

requires effort to interpret alerts, will inevitably be depen-

dent of current (published and available) knowledge, and

could be open to misinterpretation of results. At this point,

some of the large data compilations (e.g. ChEMBL, Pub-

Chem) may be relevant to assist in the interpretation of

models (61,65).

• Thirdly, alerts could be developed from the AOPs and

defined through rational testing of the key, or intermediate,

events. This is by far the most costly and time consuming

method to determine and define categories but will result in

the most mechanistically relevant and robust categories,

supported by experimental evidence.

Thus, to develop better organ-specific profilers we need

to start from a mechanistic basis (e.g. through the AOP con-

cept) and have several high quality anchors including data

for apical endpoints and/or adverse effects along with key

events. Should structural similarity be attempted as a fast

track to develop these alerts, the information must not be

over-interpreted and there must be confidence to eliminate

poor, badly defined, or unjustifiable alerts. Many alerts will

be related to receptor binding interactions (e.g. with hor-

monal receptors or signaling pathways). This will require

new technologies to power the next generation of profilers –

the profilers in the OECD QSAR Toolbox, for example, are

based on 2-D structure. This will have to transform into

capturing 3-D structure, a full capability to capture stereo-

isomerism information as well as toxicophores. Many of

these techniques are well established in drug discovery, we

need to see a greater cross-over into toxicology as pro-

posed by Tsakovska et al (62). Lastly, development of in

silico models as described here is not a short-term fix, it is a

long-term solution and there must be patience, understand-

ing of the limitations and a better integration of efforts be-

tween disparate sciences such as molecular (systems) biol-

ogy, computational chemistry, chemoinformatics and toxi-

cology.

There is a need for a better understanding, and inclu-
sion in models, of the role of metabolism and (bio)kinetics.
All in silico models for toxicity prediction need to incorpo-

rate the role of metabolism either implicitly, or through the

prediction of metabolites. Clearly this is even more vital for

liver than most other organs. Whilst considerable progress

has been made in the development of metabolic simulators

(67), there has still been no true assessment of their reliabil-

ity to, for example, predict reactive metabolites. Due to the

long-term effort in the development of systems for predic-

tion of metabolism, it is likely that they are comprehensive.

What is required is a concerted effort to define the likely

routes for the production of reactive metabolites. Then we

must determine if any routes are missing from the current

predictive schemes and implement them more effectively.

As part of this, better strategies are required to identify the

stable and significant metabolites (rather than complete

metabolic trees which may include short-lived metabolites).

As a final part of the strategy for predicting chronic toxic-

ity, and organ level effects in particular, more effort will be

required in the use of biokinetics to predict organ-level con-

centrations. This topic is outside of the scope of this paper,

but the role of toxicokinetics has been well known for many

years. The key will be to provide models to assess whether

concentration of toxicant in an organ will be above what is

being termed the Point of Departure (POD) (68).

CONCLUSIONS AND OVERALL
RECOMMENDATIONS FOR IN SILICO

MODELLING TO SUPPORT THE PREDICTION OF 
ORGAN LEVEL TOXICITY

Chronic toxicity is a key (regulatory) endpoint for risk

assessment of chemicals across numerous industrial sec-

tors. Risk assessment is normally performed by consider-

ation of the NO(A)EL values for a particular chemical.

There are a number of methods to predict NO(A)EL values

but few, if any, currently have the capability to replace the

existing in vivo tests. In the future, in silico modelling may

be based around the prediction of organ-level effects, with

regard to this the prediction of effects to the liver is one of

the most important. There is a need for a better liver toxic-

ity prediction strategy, this may include more reliable data

with an understanding of mechanisms/effects and a frame-

work of mechanisms of action and/or AOPs - such approaches

could be applied to all other relevant organs. In particular

there is a need to define MIEs to create alerts, groups and

potentially (Q)SARs. To assist this, we need better use of

rational and intelligent NAMs, i.e. non-animal (e.g. in vitro,

-omics etc) testing to define domains of the MIEs. Lastly,

no single model, or modelling approach will predict organ

level toxicity efficiently, and a better consideration and inte-

gration of metabolism and kinetics is required both at the

level of physiologically-based pharmacokinetic (PBPK) mod-
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elling to predict internal dosing and distribution as well as in

vivo and in vitro toxicokinetics to allow for extrapolation.

The following overall recommendations for the develop-

ment of in silico models for toxicity following low dose

repeated exposure are made.

• Developing QSAR models directly to predict NO(A)EL

values for a broad spectrum of compounds and effects is

unlikely to provide robust models.

• In order to develop models to predict repeated dose tox-

icity computationally, organ level effects must be consid-

ered.

• Most in silico toxicology effort at the organ-level has

centred on the liver; however, predicting liver toxicity requires

further effort to identify the effects, mechanisms and suit-

able data.

• Structural alerts provide the basis for grouping com-

pounds into categories which may allow for read-across.

There is evidence that read-across within robust categories

may be a suitable method to predict NO(A)ELs especially

when supported by NAMs.

• Structural alerts will need to developed for further mech-

anisms of action of organ level toxicity. Adverse Outcome

Pathways (AOPs) will provide a guide to collect this infor-

mation.

• AOPs should be utilised to establish the link between

the definition of chemistry underpinning the MIE and the

adverse effect.
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