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Abstract 

This study examines the genetic diversity of the Tenerife skink (Chalcides 

viridanus) within the context that Tenerife is now thought to have arisen as 

a single island as opposed to two/three precursor islands. DNA sequences 

were obtained from two mitochondrial regions and five nuclear loci. MtDNA 

divergence was substantial with four geographical clusters being detected. 

Two of these corresponded to two ancient areas that have undergone little 

recent eruptive activity (Anaga, Teno), while two further clusters were 

found within the more volcanically active central region. Nuclear divergence 

was low and revealed no strong geographical pattern. Estimated divergence 

of the Anaga group was 0.4-2.1 Ma ago (95% posterior interval), while the 

divergence time of the Teno cluster was 0.1-1.2 Ma ago. Phylogeographic 

distributions correspond well with ancient edifices, but divergence times 

postdate those expected under the previous ‘unification of ancient islands’ 

geological scenario. There is evidence of a major recent expansion of the 

central group following a decline in eruptive activity in this region, which 

also fits well with current geological hypotheses. Previously-described 

within-island evolutionary patterns in other Tenerife species also need to 

examined within this new geological context. 
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Introduction 

Islands have played a key role in our understanding of biogeographical 

processes chiefly through studies of inter-island dispersal, see review by de 

Queiroz (2005). Less well-known is the fact that they have also provided 

examples of divergence of contiguous populations over small discrete 

geographical areas. While several insular regions offer good examples of 

within-island diversity, including arthropods on Hawaii, reviewed by 

Roderick and Gillespie (1998), Anole lizards in the Caribbean, e.g., Malhotra 

and Thorpe (2000) and giant tortoises from the Galápagos (Ciofi et al., 

2006),  the Canary Island archipelago has become a key area for these 

studies. Research has addressed quite a broad range of taxonomic groups 

(Rees et al., 2001; Moya et al., 2004; Macías-Hernández et al., 2013; 

Mairal et al., 2015), including several lizards (Thorpe & Baez, 1987; Thorpe 

et al., 1996; Gübitz et al., 2000; Bloor et al., 2008; Suárez et al., 2014). 

Lizards seem to provide good vertebrate models for within-island diversity, 

possibly because within-island dispersal is easily interrupted due to their 

terrestrial habit. One paradigm that has emerged is the close relationship 

between historical island volcanism and genetic diversity. It has been 

facilitated by geological research that has established quite detailed 

reconstructions of the subaerial histories of the Canaries. 

The island of Tenerife provides some of the more interesting examples of 

within-island divergence. It is the largest (2032km2) and highest (3718m 

a.s.l.) Canary island and one of the tallest volcanic structures on earth (as 

measured from the ocean floor). It has a long and complex geological 

history and also harbours major ecological heterogeneity. Four endemic 

lizards are found on Tenerife, with three of these being widespread. MtDNA 

haplotype distributions within the widespread species (Thorpe et al., 1996; 

Brown et al., 2000; Gübitz et al., 2000) show associations, to a greater or 

lesser extent, with areas that correspond to the three ancient volcanoes 

that make up the island: Anaga in the north-east, Teno in the north-west 

and the large central edifice between them (Fig. 1).  
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Anaga and Teno have shown relatively little recent volcanic activity since 

their respective subaerial appearances 4.9–3.9 Ma and 6.2–5.6 Ma 

(Ancochea et al., 1990; Ancochea et al., 1999). In contrast, three major 

eruptive cycles 3.5-2.7 Ma, 2.5–1.4 Ma and 1.1–0.2 Ma affected the older 

(11.9-8.9 Ma) central edifice. These eruptions raised the height of the island 

and also produced huge flank collapses (Martí et al., 1997; Carracedo et al., 

2011). It was first thought that the three main volcanic regions arose as 

independent islands (Ancochea et al., 1990; Ancochea et al., 1999) and 

phylogeographic studies have generally interpreted within-island patterns 

within this context. However, following geochronological and isotope 

studies, a new geological consensus has emerged. Teno and Anaga appear 

to have formed as smaller shield volcanoes on the flanks of the large central 

subaerial shield and not as separate islands (Guillou et al., 2004; Carracedo 

et al., 2007; Deegan et al., 2012; Delcamp et al., 2012). Under this new 

scenario, within-island divergences of animal/plant populations require 

updated interpretations, i.e., genetic diversity needs to be considered as 

potentially having arisen from population fragmentation within one island 

rather than dispersal between independent islands. 

The Tenerife skink (Chalcides viridanus) is one of three widespread endemic 

lizards found on this island. It has two close relatives, both from the Canary 

Islands: C. sexlineatus from Gran Canaria and C. coeruleopunctatus from El 

Hierro and La Gomera (Brown & Pestano, 1998). An analysis of two short 

fragments of mtDNA with relatively slow substitution rates indicated 

phylogeographical structuring and provided some support for divergent 

mtDNA groups within two of the ancient volcanic areas of Anaga and Teno 

(Brown et al., 2000). However, one of these groups was detected at only 

one Anaga site, the other was detected at only two Teno sites, and 

statistical support was weak. Also, it remains unknown whether or not 

similar patterns of divergence are evident in the nuclear DNA. A reanalysis 

of genetic patterns in this species is therefore timely, particularly given: i) 

the new geological context and ii) the availability of new statistical 

techniques such as Bayesian multispecies coalescent approaches for 

estimation of population/species divergence times (Heled & Drummond, 
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2010) and advances in methods for analyses of spatial genetic patterns 

(Corander et al., 2003; Manolopoulou et al., 2011). 

Assessment of whether or not the phylogeographic pattern in C. viridanus 

fits the former “three ancient islands” interpretation or the current “single 

island with three volcanic regions” geological interpretation must be largely 

centre around timing. Under the former, divergence occurred after 

transmarine dispersal between the two/three ancient putative islands and 

would be supported by divergence times that correspond to the period 

before these islands were joined. The subaerial ages of the Teno, Anaga and 

Roque del Conde edifices are well-established (Ancochea et al., 1990). If 

ancient island colonization occurred soon after appearance, as established in 

other Canary Island lizards (Cox et al., 2010), then late Miocene/early 

Pliocene within-island divergence times are predicted. Spatial genetic 

structuring should also show an association with the ancient islands. The 

alternative hypothesis of divergence within a single island would more likely 

favour Pleistocene divergence times. The rationale is that, similar to 

patterns observed on other islands (e.g., Suarez et al., 2004), they should 

coincide with, or postdate, the major Cañadas I and II eruptions that 

affected large parts of the centre of the island (Ancochea et al., 1990). 

These eruptions are expected to have extinguished populations and created 

dispersal barriers. Under this scenario, a spatial pattern is predicted in 

which older lineages are also associated with the more peripheral 

populations that were found in regions that were inactive at the time. 

Unfortunately this pattern does not differ much from that under the three 

ancient island scenario because both geological interpretations essentially 

recognize the three ancient areas in Tenerife. Nonetheless, under this 

hypothesis, post-eruptive colonization of the central shield is expected to 

have required major population expansion by central populations, which 

may be detectable using coalescent approaches. 

We analysed mtDNA and nuclear loci from C. viridanus sampled from a 

large number of sites across Tenerife in order to describe and assess 

patterns and causes of within-island intraspecific genetic diversity. We 
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specifically examined whether the timing of within-island genetic divergence 

was likely to fit the timescale expected under the hypothesis of dispersal 

between ancient islands, or a more recent period that coincided with major 

central eruptions and landslides on a single island. 

Materials and methods 

Fieldwork and DNA sequencing 

Chalcides viridanus (n=64) were captured by hand from 36 Tenerife sites in 

April 2010 and a 5 mm tail tip was removed before release at the site of 

capture (authorized by the Cabildo Insular de Tenerife)(Fig. 1). Latitudes 

and longitudes of each site were recorded using a Garmin eTrex GPS (see  

S1 in Supporting Information for more information). Sampling was designed 

to cover all main parts of the distribution of this species. Despite being 

found at altitudes of at least 2100m on Tenerife the species is scarce above 

1100m (Brown et al., 1992). Hence most sample sites were low altitude, 

with the exception of sites 7 and 30. Also, despite intensive searching, no 

individuals were obtained from an area of the east coast, south of the 

Güímar valley. Homologous sequences from closely-related species C. 

coeruleopunctatus and C. sexlineatus were also obtained from specimens 

collected during previous studies (Brown and Pestano, 1998; Suarez et al., 

2014). C. coeruleopunctatus specimens were from Frontera (n=1) and 

Virgen de los Reyes (n=1) in El Hierro, and from Hermigua (n=1) and 

Calera (n=1) in La Gomera. C. sexlineatus were from Tafira Baja (n=2) in 

Gran Canaria. Inclusion of these specimens allowed use of a calibration in 

phylogenetic dating analyses. 

DNA was extracted and two mtDNA fragments were sequenced in both 

directions for all individuals to obtain: 1) 581 bp of cytochrome b gene 

sequence, 2) 982 bp of sequence incorporating partial sequences from the 

ND1 and the ND2 subunits of the NADH dehydrogenase gene and three 

intermediate tRNAs, which will be referred to as the ND sequence (see  S2). 
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Suitable primers for amplification of nuclear sequences were examined by 

testing those published by four previous studies on reptiles/amphibia 

including one study that attempted to identify rapidly-evolving nuclear 

markers (see  S2 in Supporting Information). This yielded good-quality 

sequences for ten nuclear loci in C. viridanus. These sequences were tested 

on individuals from 3‒4 sites (always including site 5 in Anaga and site 1 in 

the south) but only five loci contained variable sites (four of these had 

previously been shown to show within-species polymorphism in other 

species: see references in  S2). Up to one specimen for each of the 36 

sample sites was then sequenced for each of these five loci: PRLR (534bp, 

n=31), Rag-1 (849bp, n=32), RELN (583bp, n=35), EXPH (796bp, n=30) 

and SELT (399bp, n=30) (see  S2). 

Statistical analyses 

Relationships among mtDNA haplotypes and alleles from nuclear loci were 

examined using median joining networks, as implemented within the 

program Network 4.6.0.0 (Fluxus engineering). 

The program BPEC (Manolopoulou et al., 2011; Manolopoulou & Hille, 2016) 

is a Bayesian MCMC approach that identifies genetic clusters that are 

geographically coherent, and was applied to the mtDNA haplotypes only 

(see below). The haplotype tree and clustering parameter values, including 

the number and location of genetic clusters, are updated at each step in the 

MCMC algorithm.  Our primary aim was to visualize the geographical 

distributions (and associated uncertainty) of mtDNA clusters. This approach 

is based on a migration model and might be less appropriate for inferring 

structuring under population fragmentation (for this reason an alternative 

approach was also used, see below). The parsimony criterion was not 

relaxed due to high levels of divergence between haplotypes, and the 

maximum number of migrations was specified as six. One thousand five 

hundred posterior samples were taken from an MCMC chain of 3x106 steps. 

Spatial clustering of individuals was also analysed using the program BAPS 

v. 6 (Corander et al., 2003). Two BAPS analyses were carried out: i) mtDNA 
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sequences alone and ii) the five nuclear loci (together) with prior 

geographical information input as latitudes and longitudes. A linked model 

was used for mtDNA sequences and an unlinked model for the nuclear loci. 

The program BEAST 1.8.3 (Drummond & Rambaut, 2007) was used to 

simultaneously date divergence times and investigate relationships between 

the main mtDNA groups (identified by BAPS) using the *BEAST multispecies 

coalescent approach (Heled & Drummond, 2010). The mtDNA sequence was 

split a priori into five partitions (all containing reasonable numbers of 

variable sites) to accommodate likely differences in rate and other features 

of the evolutionary process. The partitions and respective models were: i) 

cytochrome b codon positions 1 and 2 (HKY+G), ii) cytochrome b codon 

position 3 (HKY), iii) NADH positions 1 and 2 (from both 

subunits)(TN93+G), iv) NADH position 3 (HKY+G), and v) tRNA regions 

(JC+G). The most appropriate model available in BEAST was selected after 

comparing corrected Akaike information criterion scores of different models. 

The inclusion of specimens from La Gomera and El Hierro provided a time 

calibration. Skinks from these two islands have previously been established 

as monophyletic and must have diverged sometime after the island of El 

Hierro appeared about 1.12 mya (Guillou et al., 1996; Brown & Pestano, 

1998). The ancestral node for these two island populations (on the species 

tree) was monophyly-constrained and its age specified from the gamma 

distribution G(110, 0.001) which has a median of 0.11 (time units were 10 

Ma). The root of the species tree was loosely specified from G(5.3, 0.1) 

(median: 0.497) based on previous analyses of divergence times in this 

group (Brown & Pestano, 1998; Carranza et al., 2008; Brown et al., 2012). 

A strict clock was used due to the shallow root (Brown & Yang, 2011). The 

hyperprior on the gamma distributed population sizes was specified from 

the uniform distribution U(0, 0.06). The MCMC chain was run for 40 million 

generations, with a sampling interval of 5000. The first 4 million 

generations were discarded as burn-in, and the run repeated three times 

from different starting positions to ensure convergence on the same 

posterior. 
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Historical demographic changes in the individual mtDNA spatial clusters 

were analysed using Bayesian skyline plots (BSPs) under the piecewise-

constant model in BEAST (Drummond et al., 2005; Drummond & Rambaut, 

2007). Only the third codon positions (ND and cytochrome b) were used for 

these analyses due to low sequence diversity within each genetic cluster. 

For each analysis, a gamma prior was placed on the most basal node which 

matched the 95% Highest Posterior Density (HPD) of the posterior 

determined by the *BEAST analysis. This allowed assessment of 

demographic changes on the *BEAST timescale. 

Results  

Spatial structuring of mtDNA 

The 581bp of aligned cytochrome b sequences (GenBank accession numbers 

KX909600-KX909663) contained 94 variable sites and the 982 bp of ND2 

sequence contained 141 variable sites (KX909822-KX909885). The MJ 

network of all mtDNA sequences revealed considerable within-island 

divergence, and suggested four clusters of haplotypes (Fig. 2). Two of these 

clusters corresponded to groups of sites within Teno (three sites) and Anaga 

(four sites) and were very divergent both from one another and from the 

remaining two clusters. These remaining clusters were separated by a 

smaller number of mutational steps and corresponded to the central areas 

of Tenerife (the more widespread one will be referred to as Central I and 

the other as Central II) but also extended into Teno and Anaga.  

The network patterns were supported by spatial clustering using BAPS. The 

highest likelihood corresponded to four mtDNA clusters, and each cluster 

had an identical haplotype composition to those described in the MJ 

network. 

BPEC phylogeography analyses favoured either three (posterior probability 

= 0.382) or four (0.306) migrations. Four clusters contained haplotypes 

with high assignment probabilities (each cluster having one or more 

haplotypes assigned with probabilities of 0.61 or higher) and were 
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interpreted, while the three additional clusters had low assignment 

probabilities and were not analysed further. One of the clusters was centred 

on the ancient area of Anaga while a second cluster corresponded to Teno 

(Fig. 3). Both of these clusters had the same haplotype compositions as two 

of the clusters detected by BAPS. The remaining two BPEC clusters 

corresponded to central areas but had slightly different compositions to the 

central groups detected by BAPS: one was confined to the north-western 

region (including Anaga) and the west coast (Fig. 3A). The other was found 

across the central part of Tenerife but does not extend significantly into 

Anaga (Fig. 3B).  

Spatial structuring of nDNA 

Low levels of sequence diversity were found within the five nuclear loci (see 

S3 in Supporting Information; EXPH5: KX909664-KX909693, PRLR: 

KX909694-KX909724, RAG1: KX909725-KX909756, RELN: KX909757-

KX909791, SELT: KX909792-KX909821). MJ network analyses of all 

markers revealed no evidence of geographical structuring. Numbers of 

mutational steps were very small and there was no clear evidence of 

associations between alleles and Teno/Anaga regions. 

The BAPS analysis of all nuclear loci revealed only one genetic cluster 

(P=0.999). This suggested little or no phylogeographic information was 

contained within these loci and so no further analyses were carried out. 

Divergence time dating 

MtDNA alone was used for dating analyses due to the lack of phylogenetic 

information within the nuclear loci. The posterior median divergence time 

for the most basal Tenerife split between north-eastern Anaga and the 

remaining haplotypes was 1.25 Ma (95% HPD: 0.4-2.1 Ma)(Fig. 4). The 

next branching event represents the separation of Teno from the central 

clades with a posterior median divergence time of 0.44 Ma (95% HPD: 0.1-

1.2 Ma). The split between the Central I and Central II clades was the most 

recent within-island divergence (posterior mean 0.05 Ma, 95% HPD: 0.0-



11 
 

0.1 Ma). Posterior support for different groups within the topology was 

generally high (Fig. 4), although not for the (Teno, (Central I and II)) node, 

which had a posterior probability of 0.55.  

Demographic history 

Historical demographic changes were analysed in the large and widespread 

Central II clade (see Fig. 2) as this contained many individuals (n=43) 

allowing examination of a reasonable number of temporal groups (five were 

used and reported here, but analyses were also performed with between 2‒

10 groups to ensure the findings were robust). A clear signature of historical 

population expansion was seen between approximately 0.01-0.02 Ma ago 

(Fig. 5). The remaining three clusters from the smaller of the two Central 

clades, Anaga and Teno, contained too few individuals (n=6‒8) to allow 

decisive analyses. However none of the tests using just 2 or 3 temporal 

groups provided any indications of population changes (results not shown). 

Discussion 

Studies of the effects of volcanism on island diversity have tended to focus 

on the effects of island appearance and transmarine dispersal between 

islands, e.g., Juan et al. (2000), Caccone et al. (2002),Thorpe et al. (2005), 

Garb and Gillespie (2006), Benavides et al. (2009), Cox et al. (2010). The 

within-island diversity of C. viridanus could have originated in this way if 

Tenerife originally comprised more than one independent island. Given the 

ages of the ancient edifices (see Introduction) and assuming that 

colonization occurred soon after island appearance, hypothesized 

transmarine dispersal would correspond to the Pliocene or Miocene. Instead, 

we detect Pleistocene divergence times that seem incompatible with the 

hypothesis that the genetic diversity originated through dispersal between 

putative independent islands. We therefore favour the hypothesis that 

genetic diversity originated from local extinctions and creation of dispersal 

barriers within the intermediate central shield volcano, leading to isolation 

of populations in the extreme north-east and the north-west (discussed in 

more detail below). Hence, the origin of the genetic diversity in C. viridanus 
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appears quite similar to that in lizards on the neighbouring islands of Gran 

Canaria (Gübitz et al., 2005; Suárez et al., 2014) and Lanzarote (Bloor et 

al., 2008) and also to giant tortoises on the Galápagos (Beheregaray et al., 

2003). 

A previous study also contested the ‘dispersal between ancient islands’ 

hypothesis of population divergence in another Tenerife lizard, Gallotia 

galloti (Brown et al., 2006). Divergence in this species was not dated by the 

same method used here. In particular, ancestral polymorphism was not 

taken into account, and this generally leads to estimation of older 

divergence times. However, much lower sequence divergence was detected 

(~1.4% between lineages for cytochrome b, compared with ~5% here) and 

so divergence almost certainly postdated that in C. viridanus. In the other 

widespread Tenerife lizard, the gecko Tarentola delalandii, divergence is 

much greater (~13% between lineages, cytochrome b) and is likely to have 

occurred much earlier (Gübitz et al., 2000). Estimations of within-island 

divergence times in insects show a similar level of variation, with 

Anaga/Teno forms potentially having arisen at the same time as in C. 

viridanus in some groups (Contreras-Díaz et al., 2007) while others show 

much deeper divergence, similar to T. delalandii, see review by Mairal et al. 

(2015). The next phase of analysis of within-island diversity for Tenerife will 

be to provide an explanation of these differences between species, some 

proportion of which may be attributed to technical differences in divergence 

estimation. In the next three paragraphs we offer an updated interpretation 

of within-island evolution of C. viridanus, in relation to current theories on 

the geological formation of the island.  

Both the current and previous studies support an original colonization of 

Tenerife that considerably predates the first within-island divergence (i.e., 

Anaga), possibly by more than 3 Ma (Brown & Pestano, 1998; Suárez et al., 

2014). Given the long post-colonization period, it is reasonable to assume 

that skinks would have had a fairly widespread distribution at this time. 

Hence the question is: how did the Anaga populations become isolated in 

north-east Tenerife? Our estimated time frame includes the end of the 
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penultimate eruptive cycle and the final eruptive cycle that affected the central region of 

the island after the Anaga and Teno volcanoes were fully formed and 

quiescent (Ancochea et al., 1990). A recently well-documented feature of 

Tenerife’s volcanic history is the north-east rift zone, which was active ca. 

1.1 and 0.83 Ma and situated on the island’s dorsal spine which runs from 

the centre to the north east (Carracedo et al., 2011). Eruptions along this 

dorsal ridge, with associated lava flows on the north and south-facing 

slopes, would have effectively isolated the north-eastern region, including 

Anaga, from the rest of the island (Carracedo et al., 2011). This intense 

eruptive activity was followed by major debris avalanches, which occurred 

both sides of the ridge, 0.83 Ma ago (Carracedo et al., 2011). The landslide 

on the south eastern side of the ridge was also invoked to explain a 

phylogeographic break in the sympatric lizard G. galloti (Brown et al., 

2006). In summary, there is geological evidence that eruptions and 

landslides that could have cleaved the original distribution in a manner that 

is spatially and temporally consistent with the current phylogeographic 

pattern. 

Following the isolation of Anaga, the subsequent split occurred in the late 

Pleistocene leading to divergence of Teno from the more central populations 

(broadly ~0.5 Ma ago). The distribution of this group is clearly centred on 

the ancient Teno volcanic edifice. Eruptions and landslides in the north-west 

rift zone could have isolated Teno populations, but these events occurred 

mainly during the Holocene (Carracedo et al., 2007) and therefore seem too 

recent. Some eruptions did occur around the periphery of Teno at times 

that fit the divergence time, such as the Tierra del Trigo (0.2 Ma) and 

Montaña de Taco (0.7 Ma) eruptions, but current geological evidence 

suggests they were quite localised (Carracedo et al., 2007) and so do not 

provide convincing explanations of long-term vicariance. Nevertheless, the 

ongoing activity and location of this rift zone within the recently-active 

Cañadas edifice seems to provide the most likely cause of the isolation of 

Teno populations. 
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The origins of the two clusters detected within the central clade are more 

difficult to interpret, especially as cluster compositions (and therefore 

geographical distribution) are dependent on the method of analysis. A 

geographically coherent genetic cluster that is associated with the region 

between the central volcano and Teno is detected by BPEC. Its distribution 

and low level of divergence suggest that it could have originated through 

population fragmentation caused by the Holocene volcanism in the north-

east rift zone, as discussed previously. The population expansion detected 

in the larger of the two central clusters post-dated the major explosive 

period that marked the end of the formation of the central Teide volcano 

(Carracedo et al., 2007). A similar signature of post-eruptive expansion has 

been documented in Galápagos tortoises from the island of Isabela 

(Beheregaray et al., 2003). In summary, extinctions that gave rise to 

refugia populations, which recolonized central regions of the island when 

suitable habitat became available, could account for the origins and 

demographic histories of the two central clades. 

Finally, nuclear sequences provided little information on the 

phylogeographic pattern. This was likely due to low substitution rates 

leading to incomplete lineage sorting between regions. While microsatellite 

regions might intuitively appear to be better markers, a recent study that 

used microsatellites to examine genetic diversity in C. sexlineatus on Gran 

Canaria (Suárez et al., 2014) found only a small proportion of the twelve 

markers to be informative (although divergence time was older than within 

C. viridanus, i.e., ~ 2Ma) (Suárez et al., 2014). This suggests that in some 

cases within-island divergence might be too old to render microsatellites a 

useful marker but too recent for a small number of nuclear sequences to be 

informative. Future genome-wide SNP analyses are likely to resolve this 

issue, once approaches become financially accessible to more researchers. 

For example, a very recent RADseq study by one of the authors detected 

evidence of historical isolation in the genome of the Tenerife lizard Gallotia 

galloti which has a similar divergence time to that observed here (Brown et 

al., 2016). 
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Figure Legends 

Fig. 1. The 36 sample sites on Tenerife (Google Earth, Grafcan), showing 

the regions containing exposed ancient rocks in Anaga and Teno (delimited 

by white lines) and other geological features mentioned in the text.  

Fig. 2. Median-Joining (MJ) network showing relationships between Tenerife 

skink mtDNA haplotypes, and also their geographical locations. 

Corresponding colours are used on the MJ figures and the Tenerife image 

(which is from Google Earth: Grafcan). 

Fig. 3. Posteriors on the distributions of the main Teno (NW) and Anaga 

(NE) geographical mtDNA clusters, detected using BPEC. A. and B: 

Posteriors for the distributions of the two “central” clusters. Background 

Tenerife image is from Google Earth (Grafcan). 

Fig. 4. *BEAST multispecies coalescent tree for Western Canary Island 

Chalcides (C. sexlineatus from Gran Canaria, C. coeruleopunctatus from La 

Gomera and El Hierro, and the four identified clades within C. viridanus 

from Tenerife (Anaga, Teno, Central I and II). Values in parentheses are the 

95% highest posterior densities on divergence times in units of 10 Ma. 

Italicised values on branches are posteriors for the terminating node on the 

branch. 

Fig. 5. Bayesian skyline plot for the large central II group of Chalcides 

viridanus haplotypes (see Figure 2), indicating rapid recent population 

growth starting around 20 ka ago (1 time unit = 10 Ma). The intermediate 

line is the median, upper and lower lines give the 95% HPDs from the 

posterior for population size. 
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Appendices 

Appendix 1. Table of latitudes and longitudes of the 36 sample sites in 

Tenerife obtained in the field using Garmin eTrex GPS (see also Fig. 1 in 

main paper). 

Site Latitude Longitude 

1 N 28 01.387' W 16 41.398' 
2 N 28 02.397' W 16 40.625' 
3 N 28 17.968' W 16 22.810' 
4 N 28 31.449' W 16 09.324' 
5 N 28 30.437' W 16 11.725' 
6 N 28 24.986' W 016 19.615' 
7 N 28 24.720' W 016 24.420' 
8 N 28 33.597' W 16 09.382' 
9 N 28 33.641' W 16 12.849' 

10 N 28 31.215' W 16 17.613' 
11 N 28 32.267' W 16 21.420' 
12 N 28 32.505' W 16 21.237' 
13 N 28 29.865' W 16 25.142' 
14 N 28 29.483' W 16 16.439' 
15 N 28 22.923' W 16 22.615' 
16 N 28 26.746' W 16 28.036' 
17 N 28 24.035' W 16 31.284' 
18 N 28 23.714' W 16 35.773' 
19 N 28 23.615' W 16 39.365' 
20 N 28 21.984' W 16 51.368' 
21 N 28 21.769' W 16 50.554' 
22 N 28 22.157' W 16 49.414' 
23 N 28 22.226' W 16 46.804' 
24 N 28 22.309' W 16 43.131' 
25 N 28 05.985' W 16 44.148 
26 N 28 07.715' W 16 45.691 
27 N 28 10.235' W 16 47.906 
28 N 28 11.965' W 16 49.428 
29 N 28 13.011' W 16 49.998 
30 N 28 17.925' W 16 48.900 
31 N 28 18.970' W 16 51.319 
32 N 28 20.178' W 16 51.094 
33 N 28 19.778' W 16 24.901 
34 N 28 07.009' W 16 34.894 
35 N 28 04.331' W 16 39.241 
36 N 28 17.702' W 16 25.054 
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Appendix 2. Primers used for amplification of mtDNA and nuclear DNA 

sequences. 

Locus Primers Reference 

MtDNA ‒

Cytochrome b  

Forward 

5’-AAAACTTAATGGCCCACAACC-3’ 

Reverse 

5’-TGGGTGGAATGGAATTTTGT-3’ 

This study 

MtDNA ‒ 

NADH 

Forward 

5’-GCCCCATTTGACCTTACAGAG-3’ 

Reverse 

5’-ATTGCTGCTATTCAGCCTAGGTGGGC-3’ 

 

Forward: 

Macey et 

al., 1998 

Reverse: 

Suarez et 

al., 2014 

EXPH5 Forward (F1*) 

5’-

AATAAACTKGCAGCTATGTACAAAACAAGTC-3’ 

Reverse (R1)  

5’-AAYCGCCCTTCTGTGAGTGACCTCT-3’ 

 

Portik et 

al., 2012 

RELN Forward (RELN61F)  

5’-GAGTMACTGAAATAAACTGGGAAAC-3’ 

Reverse (RELN62R) 

5’-GCCATGTAATYCCATTATTTACACTG-3’ 

Pinho et 

al., 2010 
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PRLR Forward (PRLR-F15)  

5’-GACARYGARGACCAGCAACTRATGCC-3’ 

Reverse (PRLR-F35) 

5’-GACYTTGTGRACTTCYACRTAATCCAT-3’ 

Townsend 

et al., 

2008 

RAG-1 Forward (RAG-1F) 

5’-TGCACTGTGACATTGGCAA-3’ 

Reverse RAG-1R 

5’-GCCATTCATTTTYCGAA-3’ 

Townsend 

et al., 

2004 

SELT Forward (SELT-F6) 

5’-GTTATYAGCCAGCGGTACCAAGACATCCG-

3’ 

Reverse (SELT-R6) 

5’-GCCTATTAAYACTAGTTTGAAGACTGACAG-

3’ 

Jackson & 

Austin, 

2012 
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Figs. S1-S5 Median joining networks indicating levels of polymorphism 

within the five nuclear loci. Node areas are proportional to numbers of 

individuals, with the smallest nodes containing only one individual in all 

cases. Nodes indicated in blue or red are those that contain only individuals 

from within either the Teno or Anaga regions, respectively (all other nodes 

are indicated in yellow). 
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