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Abstract 
The periodic alternation of light and darkness over the solar day has a fundamental role in 
synchronising human circadian rhythms. Artificial light is known to alter circadian timing 
depending on time of administration; early morning light can advance circadian timing 
while late evening light can delay circadian rhythms. Nevertheless, there is a lack of 
research on how manipulations of the body clock, via bright light, can enhance human 
performance and/or alleviate the effects of jet-Iag after transmeridian travel. The 
doctoral programme communicated in the present thesis was designed to fill some of 
these gaps in knowledge. 

In the first experiment, the acute effects of light exposure on thermoregulation, pineal 
function and autonomic nervous system function (indicated by the rate pressure product) 
were examined. At 20:00 h, eight healthy men were exposed to a baseline period of dim 
light « 12 lux) for 45 min followed by 0 lux for another 60 min. Thereafter, participants 
were exposed to either polychromatic bright light with blue photons (2500 lux), blue 
photons removed (2,500 lux) or 0 lux for 30 min. Baseline data was altered for all 
variables in the two light conditions, suggesting an "expectancy effect" .. There was 
evidence that light attenuated the nocturnal fall in core body temperature and rise in 
melatonin. These data highlight that the circadian system and other areas of the brain 
which are stimulated by light are still sensitive to short duration exposure and these 
effects are amplified by the inclusion of blue spectrum light. 

In a follow-up study, the effects of light exposure (blue photons included polychromatic 
bright light vs. no light) on subsequent early morning performance were examined under 
conditions of thermal stress. Participants were woken at 06:30 h. At 07:00, participants 
entered an environmental chamber set at 35°C and 60% relative humidity. Three 10-min 
bouts of exercise (55% V02max) were completed on a cycle ergometer with each bout 
separated with 10 min of passive recovery. Participants then completed a 10-km cycling 
time-trial. Core body temperature was measured every 30 s throughout the experiment 
using intestinal thermistors. The time of the sleep-trough in core temperature occurred 
approximately 1.75 h later following bright light (L) vs. no light (NL) (p = 0.07). Just prior to 
the time-trial, Tc was 0.27 ± 0.42°C lower in L than NL (p = 0.07). The time trial was 
completed 1.43 ± 0.63 min quicker in L vs. NL (p = 0.001). Immediately after the time trial, 
intestinal temperature was 38.21 ± 0.56°C in BL compared to 38.64 ± 0.42°C in NL (p = 
0.10). These data provide the first evidence that a 30-min exposure to bright light prior to 
sleep can delay circadian timing to the extent that exercise performance is improved in 
hot conditions during the subsequent early morning. 

In the third study, the effects of a simulated dawn during the last 30 minutes of sleep on 
the subsequent dissipation of sleep inertia were examined and it was questioned whether 
subsequent improvements in simulated work and physical performance were mediated. 
Eight participants, who reported difficulty with morning waking, were administered in a 
random order to a control (C) and a dawn simulation (OS) trial (starting 30 minutes prior 
to waking). Subjective ratings of sleep quality and alertness were obtained alongside 
measures of cognitive performance (addition and a reaction time tasks measured at 5, 30 
and 75 minutes after waking at habitual workday times). Physical performance was also 
measured 35 minutes after waking using a self-paced cycling protocol. After waking in 
the OS condition, perceived sleep quality was 1.16 ± 0.89 (p = 0.01) points higher 
compared with C. Ratings of alertness were significantly higher in OS than C throughout 



the testing period (p = 0.04). Cognitive performance improved in both trials as time­
awake increased (p < 0.0005). On average, participants completed a significantly greater 
number of additions in OS compared with C (69.5±15.3 vs. 66.9±16.7, p = 0.03). Reaction 
times were also faster in OS compared with C (0.81±0.07s vs. 0.86±0.06s, P < 0.0005). The 
self-paced trial was, on average, 21.4 s (4.7%) quicker in OS (p = 0.07). These data provide 
the first evidence that light exposure during the last 30 minutes of habitual sleep can 
increase subjective alertness and improve both cognitive and physical performance in the 
morning. 

Although light can alter circadian timing, the practical effectiveness of light for reducing 
jet-Iag symptoms in athletes is unclear. Therefore, the doctoral programme also focussed 
on light intervention studies "in the field". Twenty-two world-class female footballers 
were randomised to a bright light intervention or control group before a flight from USA 
to Europe. Intra-aural temperature, grip strength, sleep and various jet-Iag symptoms 
were measured serially. For 4 days, the bright light group were exposed to 2,500 lux of 
bright light at ::::50 cm for 45-60 min at a time-of-day predicted to accelerate circadian 
adjustment. On post-flight day 1, light transiently increased intra-aural temperature by 
0.38°C (p = 0.001). In parallel, overall jet-Iag ratings increased by ::::1 unit. Light had 
negligible effects on functioning, diet, bowel activity and sleep symptoms, which varied 
substantially between- and within-subjects over the post-flight days. In conclUSion, these 
data do not support the notion that chronobiologically-timed light is substantially 
effective for reducing jet-Iag symptoms in field conditions after world-class athletes travel 
from the USA to Europe. 

From the previous study, there appeared to be large inter-individual variation in the 
perception of what constitutes jet-Iag. Therefore, in the last study, a descriptive approach 
was employed to assess the effects of travelling over a numerous time-zones and 
different directions on perceived jet-Iag symptoms. Questionnaire data were collected 
over the first two post-flight days. An inverted-U relationship between the number of 
time zones crossed and the severity of perceived jet-Iag, function- and sleep-related 
symptoms was observed. SpeCifically, the data suggest that crOSSing over 4-7 time-zones 
resulted in greater perceptions of jet-Iag 4.4 ± 1.0 (p < 0.0005) and 2.3 ± 0.8 (p = 0.006) 
than travelling over S3 zones or ~8 zones, respectively. Within- and between-participant 
variability in jet lag symptoms was extremely heterogeneous thus further highlighting the 
rather opaque and difficult-to-study nature of jet-Iag. 

The studies in this thesis have provided a novel insight into the influence of bright light 
exposure on physiological function and performance in humans studied in both 
laboratory and field conditions. While acute and chronic phase-shifting effects of bright 
light can be detected in the controlled environment of the laboratory, the effectiveness of 
such light interventions for alleviating actual jet-Iag symptoms is difficult to detect against 
the noise of competing zeitgebers and activities associated with world-class sports 
com petitions. 
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1.1 Background 

light is typically considered in terms of the physically visible wavelength of its 

electromagnetic spectrum. Rods and cones located within the mammalian eye transpose 

the light signal into specific photons, which the brain can then integrate as meaningful 

visual information. Over the last three decades, a greater understanding of the 

importance of light in underlying human physiology has been demonstrated. The eye also 

has a system to detect environmental intensities or irradiance (Foster and Hankins, 2002). 

This system is known as the non-image forming system (NIF). A sub-set of retinal ganglion 

cells, which project directly to the suprachiasmatic nucleus (SCN), have been identified as 

the photoreceptors responsible for controlling the NIF and circadian systems, by 

providing photo-entrainment. The identification of the photosensitive pigment, 

melanopsin, within these specialised retinal ganglion cells was the catalyst that led to the 

major breakthrough in this area (Hattar et al., 2002, Provencio et al., 2000, Hankins and 

Lucas, 2002). The exact structure and mechanisms, including rod and cone input of the 

NIF, is still under intense research; and is discussed later in this thesis. 

As in many other species, biological rhythms can be detected in humans. The most 

important of these rhythms are those that cycle every 24-h; namely "circadian rhythms". 

In humans, the SCN of the hypothalamus has been identified as the master circadian clock 

(Moore and Lenn, 1972, Ralph et al., 1990, Moore-Ede et al., 1982). The SCN comprises of 

a cluster of cells that organise and orchestrate the timing of biological functions; from 

complete systems and organs, to singular cells. Isolated cells from the SCN continue to 

show rhythmicity, although the intrinsic period is slightly greater than 24-h (Moore-Ede et 

al., 1982, Weaver, 1998), In vivo, the body clock remains synchronised to a 24-h solar day 

by entrainment mechanisms involving environmental signals or 'zeitgeibers'. It is 
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generally accepted that the exposure to ocular bright light is the most predominant 

zeitgeber and this pathway is known as "photoentrainment" (Roenneberg and Foster, 

1997). 

Light, either artificial or natural (i.e. sunlight), can not only be used for entrainment but 

also re-entrainment following circadian misalignment. Disruption to the body clock via 

shift-work and jet-Iag commonly results in a general malaise, which impacts on hUtnan 

functioning. Correctly timed light exposure and/or avoidance has been shown to be 

useful in ameliorating this disturbance. However, with respect to jet-Iag, a dearth of real-

world research exists on the use of light to help facilitate realignment of the body clock. 

Furthermore, amongst the small number of published studies, there appears to be no 

examinations of light interventions for athletes. 

Exposure to bright light can also have profound effects on performance. Neurobehavioral 

responses to light exposure include improved alertness and cognitive output (Vandewalle 

et al., 2006, Chellappa et al., 2011), as indexed by specific responses to cognitive tasks in 

Photon Emission Tomography (PET) (Perrin et al., 2004) and functional Magnetic 

Resonance Imagining (fMRI) techniques (Vandewalle et al., 2006). The use of bright light 

to manipulate physical performance is relatively unknown. As mentioned above, bright 

light can be used to shift circadian timing; including body temperature and melatonin 

rhythms, which share an inverse relationship (Cagnacci et al., 1992, Dawson and van den 

Heuvel, 1998). Manipulation of the time-course of these innate rhythms has the potential 

to improve performance in certain scenarios; for example, delaying the inherent rise in 

core body temperature (Td to elicit a 'pre-cooling' effect prior to exercise in hot 

conditions. Although such responses exist theoretically, very few researchers have 
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investigated the use of bright light on physical performance both in an acute and chronic 

context; thus providing a clear rationale for this thesis. 

1.2 Aims and Objectives 

The specific aims of this thesis are: 

1. To examine the acute and chronic effects of bright light on human physiology and 

associated performance responses. 

2. To investigate the effects of light during sleep and on waking (dawn simulation) on 

subsequent physical and cognitive performance in humans. 

3. To examine the effects of supplementary artificial bright light on jet-Iag in elite 

athletes. 

4. To explore the multi-symptomatic nature of jet-Iag and how the various constructs, 

believed to contribute to jet-Iag, are perceived by individuals following actual air­

travel. 

The above aims will be achieved through the following objectives: 

1. Through knowledge gathered to formulate phase response curves to light: 

undertake a study that attempts to 'delay' the body clock, thereby lowering core 

body temperature prior to exercise in high ambient temperatures. To help address 

aim 1. 

2. To access markers of the human body clock, including core body temperature and 

melatonin, as well as the assessment of other physiological variables such as blood 

pressure and heart rate following exposure to light of differing wavelengths. To 

help address aim 1. 
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3. Investigate whether gradual increases in luminance during sleep, via dawn 

simulation device, has effects on subsequent sleep inertia and human functioning 

in the period immediately post-waking. To address aim 2. 

4. Conduct a randomised control trial on the effects of bright light on world-class 

soccer players following the completion of actual air travel across multiple time-

zones. To address aim 3 and help address aim 4. 

5. Examine data collected from the Liverpool jet-Iag questionnaire on intra- and 

inter-individual perceptions of jet-Iag and related symptoms, with particular 

reference to how these compare with documented magnitude factors (e.g. 

number of time-zones crossed). To help address aim 4. 
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Figure 2.1: Information already known about the effects of bright light exposure and 

some unknown effects (highlighted by red question marks) which will be addressed in the 

current thesis. 
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2.1 The eye, the brain and bright light 

In the human brain, light is not only processed to visually represent the external 

environment but to also detect changes in ambient light level. Irradiance information is 

transduced from the retina in the eye via the retinohypothalamic tract (RHT) to the site of 

the master circadian pacemaker. The RHT originates in the retina and is a dedicated 

monosynaptic pathway projecting directly to various hypothalamic and regulatory 

structures of the brainstem, including the SCN (Moore and Lenn, 1972). The SCN of the 

hypothalamus is a paired cluster of "'10,000 neurons and is located above the optic 

chiasm and laterally to the third ventricle; there is substantial evidence supporting the 

functional role of the SCN as the master circadian pacemaker (Hastings, 1991, Morin, 

2007, Rusak and Boulos, 1981, Meijer and Schwartz, 2003). The temporal oscillations of 

the SCN organise physiology and behaviour in order to adapt or "fine-tune" to 

environmental demands (e.g. day and night). 

2.1.2 Rods, cones and melanopsin 

Until recently it was thought that the classical photosensitive cells, rods and cones, were 

the only structures within the retina responsible for light transduction (visual and time­

keeping). However, elegant studies on rodents disproved this theory and lead to an 

appreciation of a NIF system. Prior to this breakthrough it was observed that mammals 

with enucleation did not demonstrate photoentrainment, highlighting the role of ocular 

photoreceptors in this process (Lockley et al., 1997, Foster, 1998). However, studies 

performed on blind mutant animals with complete or near-complete degeneration of 

rods and cones still reported circadian phase shifting (Foster et al., 1991, Freedman et al., 

1999, Hankins et al., 2008, Lucas et al., 1999). The discovery of intrinsically 
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photoresponsive retinal ganglion cells (ipRGCs) expressing the photopigment "melanopsin" 

(Opn4) was the major catalyst in enhancing our understanding of the NIF system (Hattar 

et al., 2002, Provencio et al., 2002). Null-Opn4 mice have a severe attenuation in the 

classical responses to light exposure (e.g. melatonin suppression); interestingly, a residual 

capacity to phase shift remains, whereas mice lacking functional rods and cones and null 

melanopsin expression are completely incapable of light-induced phase shifts (Panda et 

al., 2003, Hattar et al., 2003). Thus, suggesting that rods and cones do actually play a role 

in circadian entrainment. Indeed, under scotopic conditions it has been postulated that 

rod input via rhodopsin is the major contributing factor for photoentrainment (Bowmaker, 

2008), see Figure 2.2. 

Before the discovery of melanopsin and the subsequent research there was suggestion 

that bright light (13,000 lux) in the popliteal region could phase shift melatonin and Te 

(Campbell and Murphy, 1998). However, attempts to duplicate this study and its findings 

were unsuccessful by other groups (Wright Jr and Czeisler, 2002, Koorengevel et al., 2001); 

leading to the results generally being discarded as erroneous. Furthermore, the results 

reported by Campbell and Murphy were compounded by observations of a null effect on 

phase shifting when the abdomen and chest regions were exclusively exposed to bright 

light (Lindblom et al., 2000). Therefore, it would appear that the eyes are the only region 

which detects light for the purpose of phototherapy. 
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, " 
Figure 2.2: Pathways for light-induced activation of non-visual brain areas. Light exposure 

activates melanopsin containing intrinsically photosensitive retinal ganglion cells and rod 

and cone-driven classical ganglion cells. Melanopsin-containing ganglion cells (blue) 

project to a range of 'non-visual' areas of the brain, including the SCN, which then project 

multisynaptically to the pineal gland, as well as to many areas that share input from the 

visual photoreceptor system (yellow), such as the lateral geniculate nucleus (lGN), 

pretectum and superior colliculus (Sue). Through as yet unidentified pathways, light 

stimulates the ascending arousal system and eventually the cortex to enhance alertness 

and cognition. Furthermore, light information also reaches sleep-promoting neurons of 

the ventrolateral preoptic nucleus (VlPO) and the noradrenergic locus coeruleus (le) 

system, which is implicated in the circadian regulation of arousal. Taken from Cajochen 

(2007). 

2.2 Phase response curves 

Information from the environment (Le. light) is required to keep the body in-sync, 

otherwise a state known as "free-running" manifests (Aschoff, 1981). This phenomenon, 

in humans, is generally categorised by a slight lengthening of the intrinsic day, although 

the exact duration of tau remains debateable (Smith et al., 2009, Eastman et al., 2012, 

Czeisler et al., 1999). Although as mentioned previously, zeitgebers can also be used to 

shift the time of the internal clock. Pioneering studies involving individuals with circadian 

desynchrony, such as misaligned temperature rhythms (Czeisler et al., 1986), 
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demonstrated the potency of bright light in phase-shifting the body clock. Since, several 

groups have attempted to calculate a full phase response curve (PRC) to light (Minors et 

al., 1991, Honma and Honma, 1988, Khalsa et al., 2003, Lockley et al., 200Gb, Czeisler et 

al., 1989, Revell et al., 2012). A PRC is a figure (see Figure 2.3) which describes how a 

zeitgeber changes the phase of a circadian rhythm depending on when it is administered. 

The PRC for light is characterised by a phase delay region in the late biological day/early 

biological night, a phase advance region in the early biological day, small phase shifts 

during the middle of the biological day, and a transition point towards the end of the 

biological night. Although, it should be noted that lighting characteristics (e.g. intensity 

and wavelength), protocol duration and prior light-dark exposure can all influence results. 

Figure 2.3: Example PRC to light. Produced from (Minors et al., 1991). 
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2.2.1 The importance of light intensity 

Early studies on rodents demonstrated that, in addition to the phase-dependent 

responses, the circadian system showed intensity-dependent responses to light stimuli 

(Brainard et al., 1983, Nelson and Takahashi, 1991, Bauer, 1992, Sharma et al., 1999). In 

studies on humans, melatonin (see section 2.3.1 for further information) has been utilised 

as the predominant marker of circadian rhythmicity. It was found that a greater intensity 

of light increased levels of melatonin suppression (Brainard et al., 1988, Bojkowski et al., 

1987). However, it is important to note that the human circadian system is still sensitive 

to relatively dim levels of light ("'100 lux). Duffy and Czeisler (2009) examined the effects 

of six different light intensities (0, 12, 180, 600, 1260 and 9500 lux), administered during 

the early biological day, on human circadian rhythms. The dim light groups (0 and 12 lux) 

'free-ran' in terms of their biological timing indicating non-entrainment, whereas, the 

higher intensities elicited significant phase advances. Zeitzer et al. (2000) examined the 

effects of single 6.5-h exposures to various light intensities during the late biological 

day/early night. They reported that the resetting response and melatonin suppression 

was minimal at irradiance levels < 100 lux and saturated in response to > 1,000 lux. They 

also postulated that 50% of the maximal phase shift observed at 9,100 lux could be 

achieved at "'1% ("'100 lux) of that intensity. 

2.2.2 The importance of wavelength 

The magnetic spectrum ranges from gamma rays ("'0.1 nm) to long waves ("'1 billion nm). 

In contrast, the human visual spectrum is only "'400-700 nm. Again studies on melatonin 

suppression have been used to identify the circadian responses to different wavelengths 

of light. It has been observed that melatonin suppression was much greater at shorter 

compared with longer wavelengths. For example, monochromatic light at 460 nm 
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resulted in a two-fold greater phase delay than intensity and duration matched light at 

555nm (Lockley et al., 2003). Furthermore, short wavelength light between 436 and 456 

nm induced a phase advance similar to that of polychromatic light (Le. white light) 

containing 185-fold more photons (Warman et al., 2003). Recently, it has also been found 

that relatively short wavelengths of light (450-460 nm) have more pronounced effects on 

body temperature and melatonin rhythms, alertness, reaction times and concentration as 

well as being superior in increasing electroencephalogram (EEG) high power alpha and 

reducing EEG delta power than longer wavelengths, which indicates heightened arousal 

(Cajochen et al., 2005, Lockley et al., 2006a). These results predicate the importance of 

melanopsin in the resetting of the circadian system, since Opn4 has a maximal sensitivity 

close to 479 nm (Lucas et al., 2001). Furthermore, these findings demonstrate the 

superiority of melanopsin in the NIF system compared with cone input. The three cone 

visual photopic system has a peak sensitivity of approximately 555 nm and is the standard 

measure of illuminance; thus highlighting that photopic lux (intenSity) is an inadequate 

measure when quantifying the required drive to reset the circadian system. Although as 

mentioned previously, cones do still have a role to play in the NIF. 

In the commercial world, these findings led to a mass-marketing of devices with high 

levels of short-wavelength light and devices that were 'blue light enriched', targeting 

individuals with conditions such as seasonal affective disorder (SAD). However, concerns 

were raised that exposure to such products, which were initially unregulated, could cause 

long term damage to the retina, exacerbation of age-related macular degeneration, and a 

photosensitisation hazard with common medications including certain psychotropic drugs 

(Centre for Environmental Therapeutics). In a short review, Terman (2009) added further 

weight to the argument, suggesting that serious consideration was needed of the major 

12 



conceptual, technological and clinical advancement that blue light "enrichment" provided 

(Terman, 2009). Conversely, research into short wavelength light has since continued at 

an intense rate; with the first PRC to blue light recently published (Revell et al., 2012). The 

analysis of data was particularly sophisticated within this study. Data was collected over a 

three day free-running period followed by either a control condition or intermittent blue 

light at a specific time of day. To get a full understanding of the effect size, the phase shift 

to blue light was corrected for the free-run determined during the control session. The 

delay portion of their PRC curve was similar to those using white light (e.g. Minors et al., 

1991, Czeisler et al., 1989), however, the advance area extended later into the afternoon; 

suggesting that phototherapy utilising blue spectrum light can facilitate responses over a 

greater duration of the day, reducing the 'dead-zone'. Overall, the optimal composition of 

light required to reduce symptoms, specifically of clinical conditions (e.g. SAD), remains 

debateable. 

2.2.3 Duration of light exposure 

Much of the early research into the effects of bright light on the human circadian system 

involved protocols with long continuous periods of light exposure. For example, 

participants have been exposed to treatment durations of up to 5-h (Czeisler et al., 1989, 

Boivin et al., 1996). Although results in terms of phase shifting were significant, such 

protocols are not practically feasible meaning that refinement of methods were needed if 

phototherapy was going to have clinical implications. More recently, Rimmer et al. (2000) 

demonstrated that an intermittent protocol with a duration totalling 63% of a continuous 

protocol mediated an effect size which was equivalent to 88% of the continuous exposure. 

In addition, another study utilised an intermittent protocol amounting to 23% of the total 

duration of a continuous bright light protocol; this study was conducted during the early 

13 



biological night and both protocols significantly phase delayed with no statistical 

difference between the continuous and intermittent protocols (Gronfier et al., 2004). In a 

recent study, Zeitzer et al., (2011) postulated that repeated pulses of a moderately bright 

light stimuli (473 lux) of under 1 second (60 x 2 m-sec) could produce a significant phase 

adjustment compared with a dark control. In this study the phase-shift for the light pulse 

group was approximately 1S-times greater than the control group. Moreover, subjective 

alertness was significantly greater and delta and sigma EEG activity was significantly 

reduced. Collectively, these data indicate that humans are responsive to shorter 

durations of bright light exposure than had been previously recognised, and that the 

magnitude of the response is non linear to the duration of light exposure. 

2.2.4 Prior light-dark exposure 

Prior exposure to light has also been found to have a profound effect on the magnitude of 

response to bright light. Three studies on melatonin suppression have helped to quantify 

this response (Smith et al., 2004, Hebert et al., 2002, Chang et al., 2011). The first study to 

demonstrate such effects (Hebert et al., 2002) compared 1 week of exposure to daytime 

bright light (5000-7000 lux) vs. 1 week of daytime dim light «200 lux); with the amount 

of melatonin suppression by a 3-h night time light stimulus (500 lux) as the dependent 

variable. Results of this field study showed significantly greater suppression after the 

week of dim light compared with the week of bright light. All of the aforementioned 

studies indicated that a period of dark adaptation prior to light exposure sensitised the 

biological system, resulting in greater melatonin suppression. Additionally it has been 

suggested by Wong et al., (2005) that heightened repolarisation of photoreceptors during 

dark conditions results in greater depolarisation when light is administered. 

14 



Taken together, the data above demonstrates the complex interactions that need to be 

understood when prescribing phototherapy or attempting to phase shift the master clock. 

The timing, intensity, duration, pattern and wavelength all need to be considered to 

ensure more comprehensive and efficient protocols are utilised. 

2.3 Circadian Rhythms 

Chronobiology is the study of cyclic variation in living organisms (Ounlap et aI., 2004). 

Biological rhythms can be found in various time domains, ranging from milliseconds to 

years. Many biological functions fluctuate between night and day, over a "'24-h period -

collectively known as circadian rhythms (Minors and Waterhouse, 1986). These have a 

large influence on sleep, performance and general health in everyday life. Circadian 

rhythms can either be exogenous (controlled by external factors) or endogenous 

(controlled by the internal body clock) in their origin. 

The regulation of the mammalian circadian pacemaker derives from a complex 

interaction of transcription and translation factors. Early in the biological day 

transcription factors CLOCK and BMAL1 hetrodimerise and activate the expression of 

Period (Per), Cryptochrome (Cry) (Shearman et aI., 1997, Gekakis et aI., 1998). These are 

then translated into protein form in the cytoplasm, where they bind together to form a 

complex that is transported back to the nucleus. This supresses the production of CLOCK 

and BMALl as Per and Cry proteins negatively feedback on their expression, and it is only 

when their expression levels drop below a certain threshold that sufficient CLOCK and 

SMALl protein can be produced to turn their expression back on. This feedback cycle 

provides near 24-hourtiming, and drives the rhythmic expression of several clock-
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controlled and clock-modulated genes, which in turn mediate circadian rhythms in 

behaviour and physiology (Albrecht, 2002, Richter, 1967). 

It is important to appreciate to what extent physiological functions are controlled by a 

self-sustaining pacemaker (Le. the body clock). Unfortunately, measuring biological 

rhythms is not easy due to the masking effects of variables such as sleep, physical activity 

and environmental factors on underlying physiology. This issue has led to the 

development of constant routine protocols to reduce the potential problems of 'masking'. 

Such protocols require participants to be kept in a constant posture and environment 

(temperature, humidity and light), and for small amounts of food to be taken at regular 

intervals. Two rhythms that have been shown to be regulated by the body clock, at least 

in part, are melatonin and body temperature. 

2.3.1 Melatonin 

Melatonin (N-acetyl-5-methoxytryptamine) is a secretary hormone that is synthesised in 

the pineal gland (Huber et al., 1998, Lerner et al., 1958). The SCN controls the secretion of 

melatonin via a multisynaptic pathway involving the paraventricular nucleus, spinal cord 

and superior cervical ganglion and is considered a robust marker of the body clock 

(Klerman et al., 2002). Melatonin levels begin to rise in the evening, prior to sleep, 

reaching their peak in the early hours of the morning and decreaSing to daytime levels 

after waking (see Figure 2.4). Melatonin is suppressed by light according to a dose 

response curve (Lewy et al., 1980). However, this response does not require a high 

irradiance; ordinary indoor lighting (80-160 lux) can reduce secretion and phase shift the 

body clock (Zeitzer et al., 2000). The pattern of emission conveys information to the rest 
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of the body regarding the light-dark cycle (Arendt, 1995). This signal is important, as it 

acts as a humoral messenger aiding the seasonal regulation of appropriate physiology and 

behavioural changes. Although for humans the technological development of indoor 

lighting, as alluded to above, is potent enough to affect the 'natural' rhythm of melatonin, 

meaning the use of such devices at night results in most humans experiencing a summer 

photoperiod year round (Cole et al., 1995). Moreover, specific groups, such as those with 

tetraplegia, are unable to secrete melatonin due to the location of the spinal injury, which 

can lead to disturbed sleep and further medical complications (Verheggen et al., 20l2). 

Endogenous melatonin is used in many studies as an indirect marker of the body clock 

and to assess the magnitude of phase shifts induced by a stimulus. Concentrations of 

melatonin in plasma and saliva have been deemed acceptable for this purpose and 

melatonin has few 'masking' effects influencing its production (Arendt, 1998, Benloucif et 

al., 2008b, Lewy et al., 2006, Klerman et al., 2002). Unlike other markers of the circadian 

phase, it is believed to be minimally masked by exogenous factors such as stress or sleep 

(Morris et al., 1990, Parfitt and Klein, 1976); although a more recent study proposed that 

sleep deprivation may influence the amplitude of melatonin (Zeitzer et al., 2007). light is 

the only recognised variable which grossly masks melatonin production. 

Plasma melatonin levels are typically measured using sensitive radioimmunoassays (Lewy 

et al., 1999), however, salivary samples may be more practical for assessing circadian 

phase (Leibenluft et al., 1996). Leibenluft et al. (1996) reported a strong correlation (r = 

O.93) between plasma and salivary assessment of melatonin as a phase marker. Although, 

there are large individual differences in peak concentrations and the time that secretion 

begins (DLMO) and stops (DLMoff) (Burgess and Fogg, 2008). These variations highlight 
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the importance of assessing the 'time' of the body clock, or at least an individual's 

chronotype (Roenneberg et al., 2003), prior to undertaking a study which involves phase-

shifting. Without such knowledge, the 'windows' in which a phase delay or phase advance 

can occur might be missed or worse still, the opposite effect than desired could occur. 
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Figure 2.4: The circadian rhythm of melatonin over a 24-h period. 

2.3.2 Core Body temperature 

The rhythm of core body temperature (Te), which is also frequently used as a marker of 

the master pacemaker, is inverse to that of melatonin; possibly inferring that melatonin is 

a regulatory factor for Te, or vice versa (Cagnacci et al., 1992). The nadir of Te occurs in the 

early morning and peaks in the late evening / early night time (see Figure 2.5). During a 

constant routine protocol these peaks and troughs are easily distinguishable whilst in 

conventional living a plateau between the hours of 14:00-h and 20:00-h is often reported 

for the Te maximum (Krauchi and Wirz-Justice, 1994). The nocturnal decline in body 

temperature is believed to involve proximal vasoconstriction of the core and distal 
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vasodilation of the limbs mediated by arteriovenous anastomoses (Waterhouse et al., 

2005a). As melatonin is a known vasodilator, this further highlights a possible 

physiological link between body temperature and the pineal hormone. Indeed, the 

administration of exogenous melatonin has been shown to transiently reduced Te 

(Cagnacci et al. , 1994, Cagnacci et al., 1995, Deacon and Arendt, 1995, Hughes and Badia, 

1997, Krauchi et al., 1997b). Although the exact mechanisms causing these hypothermic 

affects remain enigmatic. 
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Figure 2.5: The circadian rhythm of Te over a 24-h period whilst under a constant routine 

protocol. Adapted from (Edwards et al., 2002) . 

2.3.3 Effects of light on melatonin and core body temperature 

As alluded to previously in this chapter, bright light has direct effects on the body clock 

and consequently, these robust markers of the circadian pacemaker. Bright light with 

sufficient characteristics (e.g. spectrum and intensity) has the capacity to suppress 

melatonin and increase Te. For example, ten males were exposed to monochromatic light 

19 



(460 nm) for 2-h prior to nocturnal sleep. Compared with a control group, melatonin 

scretion was significantly attenuated by approximately 60% and Tc was "'O.lSoC higher at 

the end of exposure (Cajochen et al., 2005). 

2.3.4 Performance and circadian rhythms 

The body clock and the innate circadian rhythms appear have a profound effect on both 

physical and cognitive performance. From just "eyeballing" the available data it would 

indicate that performance is optimal in the evenings; a time of day when most world lead 

times are set and world records broken. However, events are usually scheduled in the 

evening, especially finals of major championships (e.g. The Olympics), due to audience 

and media demands which may account for the aforementioned finding. Although, 

circadian rhythmicity in performance was confirmed in various studies, with peaks in the 

late afternoon ("'16:00-20:00-h) and nadirs occurring during the early morning ("'04:00-h; 

see Table 2.1). This applied to components of simulated time-trials or all-out efforts to 

large muscles (such as back and leg muscles) as well as small muscle groups (such as grip 

strength). Time of day also influences self-chosen work-rate and subjective responses to 

exercise. The increase in amplitude in these studies ranges from 2 to 11% of the daily 

mean (Reilly and Waterhouse, 2009). 

This variation in performance closely follows the rhythm in Tc leading to many researchers 

hypothesising a causal link between the two; however, there are situations where a 

higher body temperature during exercise is not beneficial (see section 2.4). Moreover, 

other rhythms have been described as potentially important in the fluctuation of phYSical 

performance, including metabolic responses and hormones such as catecholamines. 

Collectively, the hypothesis that body temperature, or any other rhythm, has direct 
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perturbations on the rhythmicity of sport/exercise performance is yet to be fully 

substantiated. In contrast to much of the published research, Youngstedt and Q'Connor 

(1999) argued that there was no evidence for circadian rhythmicity in real-life sporting 

performance. They suggested that there was no compelling evidence that transmeridan 

travel impaired athletic performance although the circadian pacemaker was no longer in­

sync with the external environment. They cited methodological issues, such as poor 

protocol design, inappropriate data presentation and unsuitable data analysis techniques 

as the rationale for their argument. However, as noted by Drust et al. (200S), this did not 

stop the same researchers from providing advice to travelling athletes on alleviating jet­

lag using chronobiological concepts. 

The sleep/wake cycle also exerts effects on performance. As time awake increases, there 

is an exponential rise in the homeostatic drive for sleep. This propensity has a greater 

effect on the tasks which require a high cognitive input (e.g. shooting and archery). 

Furthermore, performance seems susceptible to the effects of partial or complete sleep 

loss. Although, skeletal muscle is more resilient to the negative effects of sleep 

deprivation (Reilly and Edwards, 2007), thus physical performance is less likely to be 

negatively affected. 
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Table 2.1: Sample of studies undertaken into the effects of time of day on performance. 

Highlighting the peak in physical performance occurs in the early evening and that tasks 

with a higher cognitive load peaks earlier in the day Adapted from (Reilly and 

Waterhouse, 2009). 

Task Time of optimal Reference 

performance 

Tennis first serve (Atkinson and Spiers, 1998) 

(speed) 18:00h 

(accuracy) 09:00h 

Simulated time trial cycling 17:30h (Atkinson et al., 200Sb) 

Simulated time trial cycling 18:00h (Bessot et al., 2006) 

Major muscle groups 20:00h (Deschenes et al., 1998) 

Badminton serve 14:00h (Edwards et al., 2005) 

Darts (short distance) 1S:OOh (Edwards et al., 2007) 

(long distance) 19:00 

Simulated time trial cycling 17:00-19:00h (Giacomoni et al., 2006) 

Elbow flexors, maximal 18:00h (Nicolas et al., 2008) 

contraction 

Cycling sprints 17:00-19:00h (Racinais et al., 2005) 

Standing broad and vertical 18:00h (Reilly and Down, 1992) 

jumps 

Soccer specific drills 16:00-20:00h (Reilly et al., 2007) 

In order to get a full appreciation of the role the body clock plays in physiology and 

performance, effects due to "confounding factors" (environment, social, time-awake etc.) 

need to be removed or taken into account. These different requirements have led to the 

development of specific protocols to help facilitate this, each of which has its own 

benefits and downfalls (see Table 2.2 for summary). One major issue that restricts the 

development of chronobiology and human performance is time and cost. To fully 

separate endogenous components and external factors, without the risk of muscle and/or 

central fatigue, protocols for a single participant would last for at least one week to a 

month. These methods appear to be too time consuming, costly and onerous for both 
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subjects and researchers. Moreover, following data collection, extrapolation to real world 

competition is difficult as athletes are highly motivated and have to overcome advertises 

such as emotional stress and anxiety. 

Table 2.2: Methods used to separate the body clock from influence of the external 

environment and time since sleep. Taken from (Reilly and Waterhouse, 2009). 

Several studies have been conducted in swimmers and these will be used to supplement 

the information provided within this section. In a study observing diurnal performance, it 

was found that 100 m and 400 m times were 3.5% and 2.5% quicker, respectively, in the 

evening (22:00-h), compared with the morning (06:30-h) (Baxter and Reilly, 1983). 

Another study utilising professional swimmers in the lead up to the 2000 Olympic Games 

reported quicker times in evening finals than morning heats (1.2% improvement) across 

three separate competitions. It was also noted that performance had to improve by "'1% 

within the Olympic year if the athlete was going to be in contention for a medal (Pyne et 

al., 2004). In a well-controlled study, Kline et al. (2007) adopted a 3-h ultra-diurnal 

sleep/wake cycle, involving 1-h of sleep in complete darkness and 2-h of wakefulness in 

dim light. Experienced swimmers performed 200 m time-trials every 9-h over a 50-SS-h 
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testing period. Times were quickest 5-7-h before the temperature minimum ("'23:00-h) 

and were worst approximately I-h before the temperature minimum ("'05:00-h). There 

was a 5.8 s (2.3%) circadian variation between the optimal and worst time. However, 

contrary data from the XXIX Olympiad in Beijing was recorded. Due to American media 

demands, the finals were held during the local morning hours. In the majority of events 

the quickest times were still set in the finals, even though the heats were held in the 

evenings when performance would be expected to be at its circadian peak. These 

anomalous results, compared with the published data, could be explained by the sense of 

occasion and/or pacing strategies or that time of day has minimal effects on performance. 

However, on balance, there appears to be sufficient data to suggest that performance in 

events of short or moderate or those which are intermittent in nature show circadian 

variation. The mechanisms which underpin these findings remain unclear and are further 

complicated by the effects of sleep loss, time awake, motivation and the environment. 

2.4 Exercise in hyperthermic conditions 

Cardiovascular physiologist, Loring Rowell, stated "Perhaps the greatest stress ever 

imposed on the human cardiovascular system (expect for severe haemorrhage) is the 

combination of exercise and hyperthermia. Together these stresses can present life­

threatening challenges, especially in highly motivated athletes who drive themselves to 

extremes in hot environments." (Rowell, 1986). Indeed, the increased metabolic heat 

production associated with exercise and an impaired ability to dissipate heat to the 

external environment represents a substantial challenge to human physiology. 

In short-lived exercise these conditions are somewhat negligible, however, during 

prolonged events performance is often diminished and the chance of heat related illness 
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increased. Empirical evidence has demonstrated that simulated performance is decreased 

in conditions of high thermal stress compared with equable climates. For example, eight 

males cycled to exhaustion at 70% V02max in four different ambient temperatures. Time to 

exhaustion was significantly influenced by ambient temperature, with the worst 

performance in the hottest condition (30.S°C). However, the optimal performance within 

this study was not observed in the condition with the lowest temperature (3.6°C); the 

effect of ambient thermal stress on exercise capacity appeared to follow an inverted U 

relationship, with the quickest time to completion at 10.5°(, At low temperatures it 

would appear that alterations in carbohydrate oxidation and oxygen consumption are 

detrimental to mechanical efficiency (Galloway and Maughan, 1997). Gonzalez-Alonso et 

al. (1999) documented the importance of Tc prior to commencing exercise and the 

hypothesised a 'critical' threshold of hyperthermic-induced fatigue. They observed an 

inverse relationship between starting Tc and time to exhaustion; a higher temperature 

resulted in a lower exercise time. Notwithstanding this, across all conditions, subjects 

fatigued at the same level of hyperthermia (40.1-40.rC). 

Whilst alterations in metabolism, fluid balance, motor drive and central nervous system 

function all appear to have a role in exercise induced fatigue in hot conditions, it is 

evident that an inability to sustain sufficient cardiac output to maintain cutaneous 

perfusion for heat loss and a critically high Tc, are the two most prominent rate limiting 

factors. Therefore, methods to reduce the impact of thermal strain on the human body 

are highly sort-after and researched. Pre-race interventions such as cold showers and 

cooling vests have been adopted in an attempt to lower body temperature. Such pre-

cooling strategies have been shown to be effective in reducing thermal as well as 

cardiovascular and psychophysical strain in athletes (Booth et al., 1997, Cotter et al., 2001, 
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Lee and Haymes, 1995). However, these techniques are often uncomfortable for the 

individual. Exogenous melatonin, as highlighted previously, can transiently reduce Te. 

McLellan et al. (1999) examined the effect of 2 x 1mg doses of melatonin on the 

thermoregulatory responses and tolerance to exercise responses during intermittent 

treadmill walking at 40°C. Melatonin did not significantly affect Te or time to exhaustion. 

McLellan et al. (2000) utilised higher doses of 5 mg melatonin during low exercise 

intensities. The higher dose of melatonin resulted in a decrease in Te at rest whilst in 

environmental conditions of 23°C, and during the first 50 minutes of exercise but this did 

not result in improvements in exercise tolerance time. At the higher environmental 

temperature of 40°C no reduction in core temperature occurred. These findings suggest 

that melatonin does not facilitate exercise performance. However, due to the 

uncompensatable nature of the heat stress together with the very low intensity of the 

exercise, it is not possible to generalise these findings to a sporting context. 

Theoretically, bright light, via phase shifting, could be utilised to lower Te prior to 

endurance exercise in the heat. Whether such an intervention is efficacious remains 

enigmatic and is discussed further in section 2.5.2. 

2.5 Applications of phototherapy 

Phototherapy is used to treat many mood disorders, especially seasonal affective disorder 

(SAD). For example, a meta-analysis on bright light treatment for SAD revealed that there 

was a significant reduction (effect size of 0.84) in depressive symptoms in the 8 studies 

which matched the inclusion criteria (Golden et al., 2005). Although more research exists 

on the use of bright light in specific mood and non-mood disorders, this is beyond the 

scope of the present review. In contrast, the use of phototherapy in both optimising 
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performance through phase shifting and recovering from major circadian misalignment 

(e.g. jet lag) in a sporting setting, is relatively poorly researched. 

2.5.1 Jet-Iag 

Athletes often travel over large distances for international events, competitions, training 

camps, and even to adhere to sponsorship agreements. This travel is often completed 

rapidly by air, and when multiple time-zones are navigated, the circadian desynchrony 

commonly known as 'jet-Iag' can manifest. Jet-Iag results from a misalignment between 

the internal 'body clock' and the new local time (Graeber, 1982, Nagano et al., 2003, 

Reilly et al., 1997). The symptoms of 'travel fatigue', which results from any travel over a 

significant distance, are initially similar to those of jet-Iag; however, these generally 

dissipate following a full night's sleep. The effects of travel fatigue from flights are often 

due to cramped conditions that offer little opportunity for exercise, a restricted choice of 

food, dehydration due to dry cabin air (Brown et al., 2001) and cabin hypoxia. Collectively 

these may increase fatigue and change the daily profiles of some variables (Coste et al., 

2005). In a recent review on managing transmeridian flights, focussing on athletes, it was 

suggested that fatigue and not jet-Iag was potentially the bigger issue for sporting 

professionals. It was argued, that whist problematic, jet-Iag was episodic and in the long 

term was less of a burden; whereas, over the course of a season, travel fatigue was 

cumulative and required a greater level of monitoring to reduce the risks of illness and 

injury (Samuels, 2012). When considered this publication makes an interesting point, 

although greater amounts of epidemiological data are required to validate the 

observations made. 
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The severity and duration of jet-Iag appears to be dependent upon the number of time­

zones crossed, the direction of travel, as well as individual perception (Graeber, 1982, 

Reilly et al., 1997, Graeber, 1989, Lowden and Akerstedt, 1998, Waterhouse et al., 2007, 

Eastman and Burgess, 2009, Forbes-Robertson et al., 2012). Locomotion north-south 

presents negligible issues in terms of jet-Iag as no or very few time zones are crossed, 

resulting in minimal disruption to the body clock. However, when travelling over the same 

number of time-zones, eastward flights generally result in a greater severity of jet-Iag 

than westward journeys. This phenomenon is due the ability of the circadian pacemaker 

to reset more easily to a delay than an advance; delaying the body clock is the common 

resynchronisation method following westward travel. The underlying physiological 

rationale for this action is the length of Tau being slightly longer than 24h (see section 

2.2). This innate susceptibility to delaying has led to advice of antidromic shifting for 

eastward flights ~ 10 time-zones. Such a technique has been demonstrated effectively in 

simulated laboratory studies (Honma et al., 1995). 

In its immediacy, jet-Iag can present a plethora of issues including: acute insomnia, 

daytime sleepiness, impaired performance (cognitive and physical), gastrointestinal 

complaints, loss of appetite, disorientation and depressed mood (Waterhouse et al., 

2007). These symptoms abate as the clock is re-aligned. Exposure to frequent jet-Iag has 

further health complications, which can be long-term. The prevalence of cancer in flight 

attendants who frequently travel across multiple time-zones is increased (Reynolds et al., 

2002, Rafnsson et al., 2001). In addition, female flight attendants are at higher risk of 

chronic menstrual cycle disturbances. Furthermore, due to the general upheaval of 

transmeridian travel, meals are often taken at irregular times and intervals; it has been 

28 



postulated that this can promote the development of cardiovascular disease and type 11 

diabetes (Hampton et al., 1996). 

As highlighted previously, the rhymicity of the body clock may produce variations in 

performance. Therefore, it is fair to postulate that jet-Iag, which causes a disruption 

between internal and external timing, will impact on athletic performance. Studies have 

suggested that performance and physiological variables are supressed for a number of 

days following transmerrdian travel (Lemmer et al., 2002, Reilly et al., 2001). Furthermore, 

performance has been shown to be reduced in sports such as netball and basketball when 

a relatively short number of time-zones, 2-3, are negotiated (e.g. Bishop, 2004). Other 

studies have demonstrated that jet-Iag has no effect on performance, however, these 

studies are minimal and on balance it would be fair to suggest that jet-Iag is an issue for 

travelling athletes. It is only in this thesis, that international level athletes have been 

studied properly. 

The most effective treatment for jet-Iag remains elusive with products including 

melatonin (Edwards et al., 2000) and temazepam (Reilly et al., 2001) studied previously. 

In the investigation by Edwards and Colleagues (2002b) oral melatonin (S mg.day-l) was 

administered to thirteen athletes and support staff travelling eastwards over 10 time-

zones at a time which was predicted to accelerate realignment of the body clock. They 

reported a null effect for their treatment, with no alleviation of jet-Iag and related 

components and no influence on the phase shifting process compared with a placebo 

treatment (n=13). Similarly, Reilly and co-workers (2001) found that a 10 mg (Iow-dose) of 

benzodiazepine (temazepam) prior to sleep on the first three nights following a westward 

flight over 5 time-zones, was ineffective at ameliorating jet-Iag symptoms compared with 
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a placebo. Specific and accurately-timed exercise and meals have also been suggested as 

methods to aid the alleviation of jet-Iag, although the data are limited. Although it has 

been postulated that exercise itself can mediate a phase-shift in either direction when 

timed correctly (Buxton et al., 2003, Baehr et al., 1999), there are no studies on the 

effects of exercise on actual jet-Iag symptoms. Furthermore, even highly strenuous 

exercise has been shown to produce only modest phase-shifts (Buxton et al., 2003). One 

study that used an "Argonne" diet (alternate days of fasting and feeding on a protein-rich 

breakfast and carbohydrate-rich evening meal for 4 days before a trans-meridian flight) 

reported positive effects in soldiers. However, the magnitude of the results was small and, 

as acknowledged by the authors, the study was impractical for military personnel. 

Numerous reviewers have advocated the exposure to and/or avoidance of light at specific 

times as beneficial (Waterhouse et al., 2007, Arendt, 2009, Sack, 2010, Eastman and 

Burgess, 2009, Forbes-Robertson et al., 2012). Nevertheless, a dearth of research into the 

use of artificial light currently exists. Boulos et al. (2002) reported that bright light visors 

(3,000 lux) mediated only modest reentrainment of circadian phase after westward travel 

over six time-zones (Boulos et al., 2002). Moreover, these shifts were not accompanied by 

any improvements in sleep, performance, or subjective assessments of jet lag symptoms. 

Furthermore, Lahti et al. (2007) reported that chronobiologically-timed light exposure did 

not significantly decrease the subjective symptoms of jet-Iag in cabin crew. 

Contrary to these findings, laboratory based simulated jet-Iag studies have shown a 

greater amount success when using bright light to re-align the body clock. For example, 

over a number of separate studies Paul et al. (2009) highlighted the importance (i.e. for 

direction and magnitude of phase adjustment) of exposure time relative to the body clock. 

Additionally, Boivin and James (2002) exposed participants to room light ("'380 lux) early 
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in the biological day ofthe new 'time-zone'. This time was advanced by 1-h each day and 

was sufficient to produce a phase advance of 5.37 ± 0.25-h in Te over 7 days. The 

comparator group were exposed to the same protocol 6-h prior to nocturnal sleep. This 

group also advanced their rhythm in Te but the magnitude was much smaller, 1.32 ± 0.9-h. 

These paradoxical findings, between laboratory and field studies, demonstrate one of the 

major issues in extrapolating data to the "real-world", efficacy vs. effectiveness. Efficacy is 

a measure of the ability of a treatment to improve whatever condition it is indicated for, 

whereas effectiveness is a measure of how well a treatment works in the "real world" 

with the target population (Flay et al., 2005). It is unequivocal that appropriately timed 

light exposure, relative to body clock time, can induce phase shifting. However in 

laboratory settings, researchers are able to control numerous variables which may impact 

on their hypothesised outcomes (e.g. social interaction, temperature, unwanted light 

exposure etc.). In a real world setting this is very rarely the case and individuals, and 

therefore outcomes, are susceptible to such masking effects. In order to get an idea of a 

treatments effectiveness, real world data needs to be collected and protocols carefully 

considered. 

Jet-Iag is multi-symptomatic and highly subjective which complicates the monitoring and 

'treatment' further. As expressed previously this malaise can affect various aspects of 

physiology including the sleep/wake cycle, digestive system and cognition. The Liverpool 

jet-log questionnaire and Columbia jet-log questionnaire were developed as more 

comprehensive approaches to monitoring jet-tag, including questions relating to sleep 

and fatigue; whereas much of the early subjective work on the topic simply employed a 

single visual analogue scale (VAS) to measure overall feelings of jet-Iag. However, the 
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development of these 'new' questionnaires has not led to complete understanding of 

how individuals recover from jet-Iag due to individual characteristics and time-course of 

recovery. It appears that symptoms recover at different rates from each other or jet-Iag 

itself (e.g. Waterhouse et al., 2000, Graeber, 1989). Furthermore, dependent on the time 

of day, certain symptoms are expressed to a greater or lesser extent. For example, 

Waterhouse et al. (2000) observed the amount of perceived jet-Iag in the morning is 

predicted by the time of waking from sleep (earlier times predicting more jet-Iag) and by 

a decreased alertness 30 min after waking; and the amount of jet-Iag in the daytime is 

predicted by the fall in the perceived ability to concentrate. Although this study 

attempted to get an understanding of how different symptoms relate to overall jet-Iag, 

this was done using a simple regression model on each question. Therefore, the 

contribution of each variable may well have been inaccurately assessed in terms of jet-Iag 

as an overall construct. A more in-depth analysis will be used within this thesis to 

facilitate a greater appreciation of how symptoms manifest individually and as overall 

constructs which contribute to jet-Iag. 

2.5.2 Sport performance 

Contrary to the theory 'evening is best', there are data to support the notion that 

endurance performance, especially in hot conditions, is improved in the morning when 

core temperature is lower (see section 2.3.2). Hobson et al. (2009) reported that time to 

exhaustion in high ambient temperatures (35°C) was, on average, 5.3 minutes longer in 

the morning compared with the afternoon. This observation supports the hypothesis that 

lower Tc in the morning delays the onset of fatigue due to delaying the onset of a 'critical' 

Tc (Krauchi et al., 2006). 
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As alluded to previously, phototherapy could potentially be used as an ergogenic aid for 

athletes. Recently, Atkinson et al. (2008a) postulated that bright light exposure could 

mediate a "natural" state of pre-cooling. They reported that evening bright light 

attenuated the rise in Te the subsequent morning and during exercise in six male 

participants compared with dim light exposure. Although exercise was completed in this 

study, no performance outcomes were measured. Therefore, deducing a true 

understanding of how athletic capacity is affected by bright light from this study is 

difficult. Other previous studies into the effects of bright light exposure on humans at rest 

and during exercise have produced contradictory findings. Zhang and Tokura (1999) 

examined the effects of bright light (5,000 lux) exposure from 06:00-12:00-h and during 

subsequent exercise. They reported that Te was significantly attenuated compared to dim 

light. Furthermore, Aizawa and Tokura (1998) reported that Te was significantly lower 

after bright light exposure in the morning compared with dim light. These findings are 

surprising since bright light in the morning (after the temperature nadir) generally 

increases Te rather than reducing it. Understanding the effect of bright light on 

subsequent performance following sleep is one of the fundamental aims of this thesis. 

O'Brien and O'Connor (2000) used bright light in a slightly different context. The purpose 

of their study was to examine the effects of light exposure during 20 minutes of maximal 

cycling performance. They reported no significant differences between their three light 

conditions in average total power output: 1,411 lux (274.9 6 21.8 W), 2,788 lux (274.4 6 

20.5 W), and 6,434 lux (270.3 6 19.8 W). There was no significant difference in alertness, 

leg muscle pain, perceived exertion, heart rate, V02, or mood responses to exercise 

among the trials. This study demonstrates that acute light exposure during exercise has 

no effect. However, this null response could be due to the relatively high intensities of 
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light used in each condition and the fact that stimuli above 1000 lux can saturate the 

circadian system (Zeitzer et aI., 2000). Furthermore, no details of environmental 

conditions or time of day were provided within this investigation, which may well be 

confounding factors. Paradoxically, a recently published study by Kantermann et al. (2012) 

reported positive effects of bright light before and during exercise. Participants were 

exposed to a dose of light, either bright ("'4,400 lux) or dim ("'230 lux), for a total of 160 

minutes. During the last 40 minutes participants completed an exercise test on a cycle 

ergometer. Total work was significantly greater in the bright light condition, which was 

paralleled with an increase in individual strain (e.g. heart rate and lactate). It would 

appear from the results that an augmented activation facilitated by greater illuminance 

was the catalyst for improved performance. More research is required on this topic 

before reliable conclusions can be made. 

2.5.3 Dawn simulation 

Although the exact effects of sleep on human physiology remain equivocal there is 

evidence to suggest it influences restoration, thermoregulation, tissue repair, immune 

control and memory processing (Walker, 2008). Perhaps the most intriguing effects of 

sleep are those that persist over the waking phase. For example, during the period of 

"sleep inertia" individuals can experience grogginess, disorientation, decreased motor 

control and lower cognitive and physical performance (Dinges, 1990, Kleitman, 1964, 

Tassi and Muzet, 2000). 

Artificial dawn simulation is considered a method to help reduce the symptoms related to 

sleep inertia. Dawn simulation was developed by Terman et al. (1989) and essentially 

involves the gradual increase in illuminance of low intenSity light prior to the subject 
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waking from sleep. Terman et al. (1989) orignally designed their product based on the 

observations made in SAD patients. They recruited 3 particiapnts with SAD and exposed 

them to a dawn simulation protocol over 7 days; starting at 0 lux at 2:59 AM rising to 800 

lux at 4:53 AM and to a maximum of 1,000 lux a minute later and was maintained until 

the patient arose. This exposure resulted in promotion of circadian phase adjustments, 

morning melatonin supression, regularisation of sleep patterns and antidepressent 

responses. This study, although intially informative had a small sample. The authors 

openly called for larger controlled studies, to firstly confirm their findings and secondly to 

help determine the underlying mechanisms involved. 

Table 3 presents details of the methods and findings of a large number of studies on 

dawn simulation. Most of these studies concern the treatment of individuals with SAD. 

Within these studies dawn simulation has allowed for; significant decreases in depressive 

symptoms (Avery et al., 2001; Avery et al., 2004; Terman & Terman, 2006), circadian 

phase advances (Term an et al., 1989 & Terman & Terman, 2010), eased the difficulty in 

awakening and reduced the severity of tiredness (Avery et al., 2002 & Thorn et al., 2004). 

In healthy subjects dawn signals have; reduced sleep inertia (Gimenez et al., 2010 & 

Fromm et al., 2011), prevented phase delays of melatonin (Danilenko et al., 2000) and 

increased post-awakening cortisol levels (Thorn et al., 2004). 

From the early studies on dawn simulation it was difficult to get a clear understanding of 

any treatment effect. For example, Avery et al (1992a) decreased depressive ratings from 

baseline using a dawn simulation, however, the illuminance of their treatment was 

relatively high, peaking at 1700 lux. Participants did not tolerate this well, with early 

morning wakings, headaches, agitation and muscle tension. Furthermore, the lack of a 
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true placebo within dawn simulation studies makes it difficult to fully appreciate the 

treatment effects. Indeed, the nature of phototherapy research makes it problematic to 

separate the treatment effect from chance since it is very difficult to mask the treatment 

from both the participant and researcher. This is issue is discussed in the review by Duffy 

and Czeisler (2009). 

There are several further limitations of the literature. Many earlier studies only used one 

bedside light meaning that total light exposure could not be ensured (i.e. if the subject 

slept facing away from the light), which potentially limits the magnitude of the effects 

(Terman et al., 1989; Avery et al., 1994; Lingjearde et al., 1998). Moreover there appears 

to be within study protocol variation, for example; a variable amount of days of exposure 

to dawn simulation between subjects in the study by Gimenez et al. (2010) and a 

variation in light intensity (100-300 lux) between subjects in the study by Lingjaerde et al. 

(1998). 

In a recent study on late chronotypes involving 30 min of dawn simulation prior to waking, 

Van De Werken et al. (2010) reported significantly decreased subjective sleepiness and 

increased subjective "activation". Nevertheless, cognitive performance, Te and, contrary 

to Thorn et al. (2004), awakening cortisol were not influenced by dawn simulation. This 

was the first study to observe the effects of dawn simulation on performance; although 

no research group has yet observed the effects of such a protocol on physical 

performance. This gap in the literature will be addressed within this thesis. 

The use of late chronotypes by Van De Werken et al. (2011) is methodically sound. 

Individuals whom are classed as late chronotypes usually prefer to retire to bed later and 
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rise later the following morning compared with intermediate and early chronotypes 

(Roenneberg et al., 2003). This usually means that late chronotypes have to rise earlier 

than desired on workdays resulting in a large discrepancy between their obligatory and 

preferred timing of sleep (Roenneberg et al., 2003, Horne and Ostberg, 1976, Zavada et 

al., 2005). This discrepancy can induce sleep debt, otherwise known as social jetlag 

(Wittmann et al., 2006). Ultimately, this sleep deprivation may lead to a 'vicious circle' of 

increasing severity of sleep inertia (Taillard et al., 2003). Therefore, this group is likely to 

respond positively to a treatment such as dawn simulation. 
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Table 2.3: Summary of findings from studies involving dawn simulation intervention. OS = Dawn simulation 

Study Participants Population OS Intensity (lux) OS Duration 

Avery et al., 
1992a 

Avery et al., 
1992b 

Avery et al., 1993 

Avery et al., 1994 

Avery et al., 2001 

Avery et al., 2002 

Danilenko et al., 
2000 

Fromm et al., 
2011 

Gasio et al., 2003 

7 

9 

4 M, 10 F 

1 M,9F 

4 M, 27 F 

5 M, 23 F 

9M 

44M,59F 

9F 

SAD patients 

SAD patients 

SAD patients 

SAD patients 

SAD patients 

SAD patients 

Normal Population 

Young population (7 -
18 year olds) 

Elderly Dementia 
patients 

0.001-1700 

0.001- 275 

0.001-250 

0.001-250 

0.001-250 

0.001-250 

0.001-155 
average 

0.001-300 

0.001- 210 

Dose (days) 
(m in) 

120 7 

150 7 

120 7 

90 7 

90 42 

120 7 

90 6 

30 7 

34 21 

:l0 

Effect 

Decreases in Hamilton Depression Scale scores were not 
significant: 18.0 (pre-intervention) 11.3 (post intervention). 
Frequent early morning awakenings were reported. 

Average Hamilton Depression Scale scores decreased post 
intervention. 

Average Hamilton Depression Scale scores dropped from 17.1 
(pre-intervention) to 5.5 (post-intervention). 

Significant improvement in mean Hamilton Rating for Depression: 
20.7(pre-intervention) 8.0 (post intervention). 

84% of participants showed response (decrease of ~50% from 
baseline SIGH-SAD scores) 61% of participants showed remission 
(SIGH-SAD score ~8). 

Significant decrease in both difficulty awakening assessment and 
sleepiness. 

Prevented the phase delays of melatonin and temperature that 
occurred in control conditions. 

Participants reported greater ease in getting up and increased 
alertness. 

(Dusk and dawn sim) Shortened sleep latency, increased sleep 
duration, increased nocturnal immobility, decreased nocturnal 
activity and small advance in circadian rest-activity rhythm. 



Study Participants Population OS Intensity (lux) OS Duration Effect 
Dose (days) 

Gimenez et al., 
2010 (1) 23 Normal population 0.001 - 50/250 30 42 Both studies show beneficial effects on subject ratings of sleep 

(2) 23 Normal population 0.001- 264.7 30 14 inertia. There were no significant shifts in dim light melatonin 
average onset. 

Leppamiki et al., 30M, 47 F Normal population 0.001- 214 30 28 Improved quality of sleep (Average 1.7 Increase on quality of 
2003 average sleep scale). 

Un&jaerde et al., 27 SAD patients 0.001 - between 60/90 14 Improvements were rated by patients themselves on a visual 
1998 100 and 300 analogue scale: average improvement of 40%. 

Terman et al., 3 SAD patients 0.001-800 114 7-14 Circadian phase adjustments, morning melatonin suppression, 
1989 regularised sleep patterns and antidepressant responses. 

Terman& 22 M, 77 F SAD patients & Bipolar 0.0003 -250 210 21 Average improvement of 49.5% of participants SIGH-SAD scores. 
Terman, 2006 11 patients 

Terman& SAD patients 0.001-250 93 21 Average phase advance of 34.9 min in dim light melatonin onset. 
Terman, 2010 

Thorn et al., 2004 7 M,5 F Normal Population 0.001-250 30 2 50 - 150% increase in cortisol post-awakening and higher 
alertness. 

Van de Werken 8M,8F late Chronotypes 0.001-300 30 1 Significant decreases in levels of sleepiness and increases in 
et al., 2010 activity. No significant effects on cognitive performance, core 

body temperature or cortisol. 
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2.6 Acute effects of light 

The majority of this review has so far focused on the effects of light from a phase shifting 

viewpoint; however, exposure to light also mediates a number of acute responses in 

human physiology. One effect that has already been documented is the suppression of 

melatonin. This decline in humoral secretion from the pineal gland has been postulated as 

the indirect mechanism by which light increases alertness, especially in night time studies. 

It has been hypothesised that melatonin elicits these effects by attenuating SCN-

dependent mechanisms responsible for promoting and maintaining cortical and 

behavioural arousal at particular times in the circadian cycle (Dijk and Czeisler, 1995). 

However, more recent studies have reported that bright light exposure mediates an 

increase in alertness independent of time of day (Le. during the daytime when melatonin 

levels are almost undetectable) (lafrance et al., 1998, Cajochen, 2007). In the brain, it 

appears that light does not simply affect the SCN and hypothalamic regions but cascades 

across a large network of neural connections to decrease sleepiness, and improve mood 

and alertness (Vandewalle et al., 2006). These alterations in brain function and subjective 

parameters, via bright light, have been shown to increase cognitive performance 

(Vandewalle et al., 2009). The utilisation of PET and fMRI in the afore-cited studies has 

finally quantified the altering effects of bright light. Thus, the argument that participants 

have never been 'blinded' to light treatment is less noteworthy. 

Other aspects of human physiology have been shown to be acutely responsive to bright 

light, including increases in Tc (covered in section 2.5) and heart rate (Scheer et al., 2004). 

These immediate responses to light also appear to be dependent upon the characteristics 

of stimulus (e.g. dose and wavelength). Cajochen et al. (2005) observed, that 2-h of 

monochromatic light at 460 nm mediated superior suppression of melatonin and 
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sleepiness and increased Te and heart rate to a greater extent than intensity- and 

duration-matched light at 550 nm and a no light control. Furthermore, the differences 

between the second light and control condition for the majority of outcomes were 

negligible. 

2.7 Summary 

This literature review summarises some of the key effects that bright light has on human 

physiology. Whilst it is unequivocal that bright light synchronises the circadian system and 

has the ability to phase shift the body clock to different 'times', it is unclear to what 

extent bright light manipulation can have on human performance. Furthermore, the 

application of common theory, such as the use of bright light to alleviate jet-Iag, is poorly 

researched. The research that does exist in these areas is either inadequately designed or 

lacks sufficient outcome variables to arrive at valid conclusions. The present thesis aims 

to address this dearth in research and the shortcomings of previous publications within 

the topic area relating to bright light exposure and human performance and functioning. 
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CHAPTER 3 

GENERAL METHODS 
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3.1 Participants 

Prior to each laboratory-based study (Chapters 4, 5 and 6), participants were provided 

with details of procedures in writing along with a verbal explanation, before they gave 

written informed consent. All studies were approved by Liverpool John Moores University 

Research Ethics Committee and adhered to ethical standards set out in the Declaration of 

Helsinki. All participants completed a health questionnaire to ensure they met the 

relevant inclusion criteria. These included; being normotensive (SBP <130 and DBP < 85 

mmHg), having no known history of cardiovascular, cerebrovascular, metabolic or 

respiratory diseases and being free from medication other than the oral contraceptive pill. 

The participants were non-smokers, they were not involved in shift-work nor had they 

undertaken travel across multiple time-zones less than 1 month prior to the start of each 

study. In the laboratory-based studies all participants were recreationally active, typically 

engaging in moderate intensity (e.g. continuous running/cycling) aerobic activities for at 

least 3 days/wk; none were competitive semi-professional or professional athletes. With 

the exception of Study 3, participants reported that they had a normal sleep-wake cycle, 

which was regulated in the week prior to testing commencing. In Chapters 4 and 5, all 

participants were either a moderate or intermediate chronotype according to the 

questionnaire of Waterhouse et al. (2001). The chronotype questionnaire developed was 

a composite scale of previous items (Torsvall and Akerstedt, 1980, Horne and Ostberg, 

1976). This ensured the exclusion of participants who were extreme morning chronotypes 

and extreme evening chronotypes since it is known that morning and evening types differ 

in the phase of their endogenous circadian rhythms (Smith et al., 1989, Waterhouse et al., 

2001). 
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In Chapter 6, participants were classed as either intermediate or extreme evening types 

on the morningness-eveningness questionnaire. This population is shown to be at 

increased propensity of extended sleep inertia in the post-waking phase. Female 

participants were tested in the early follicular phase (day 1-7) of the menstrual cycle, 

determined by the first day of menstruation, or during menstruation of the pill 

withdrawal phase ("'day 2-7). 

In Chapter 8 completion of the questionnaire was taken as implied consent. These 

participants were not screened for any major medical issues but were asked to give a 

number of general parameters, including age, gender, height and weight. Chapter 7 all 

participants were elite soccer players who had completed travel across multiple time­

zones (5-8). All participants were either moderate or intermediate chronotypes and were 

free from illness in the two weeks prior and during the testing period. 

3.2 Familiarisation 

Prior to the laboratory-based experiments commencing all participants were familiarised 

with equipment and the sleep laboratory environment. During this session, 

anthropometric data were collected; Height (cm) was measured using a stadiometer 

(Seca, Birmingham, UK) and body mass (kg) was recorded using weighing scales (Seca, 

Birmingham, UK). Resting blood pressure was measured using a mercury 

sphygmomanometer (Accoson, Birmingham, UK) following a 10 minute period of seated 

passive rest. 
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3.3 Physiological measurements 

3.3.1 Salivary melatonin immunoassay EL/SA 

Saliva is a readily available specimen which can be collected by non-invasive procedures 

(Hofman, 2001). The samples were collected within a tube before been transferred to 

storage (-80D C) until analysis took place « less than 6 weeks after collection). The 

participants were asked to clear their mouth of any saliva, via swallowing, they were then 

instructed to allow saliva to slowly build up in their mouths before discharging into the 

sample tube. Participants were not allowed to consume water at least 10 min prior to 

collection taking place; food was not consumed 30 min before. Duplicate samples of 100 

III were analysed for melatonin concentration using an Enzyme-Linked Immunosorbant 

assay Kit (Direct Saliva melatonin ElISA, Buhlmann, Switzerland). The method comparison 

by the manufacturer with saliva melatonin radioimmunoassay following a linear 

regression analysis was R2=0.84. The limits of agreement of saliva melatonin levels to 

other samples (blood plasma and urine) have been determined as acceptable (Benloucif 

et at, 2008a). 

3.3.2 Intestinal temperature 

Ingestible temperature sensors were used to monitor intestinal temperature and act as a 

surrogate of Tc (HTSOOO2, CorTemp, Human Technologies International, Palmetto, USA). 

This method of Tc measurement has been shown to be a valid method of measurement 

(Darwent et a!., 2011, Gant et at, 2006, Q'Brien et al., 1998, Edwards et at, 2002). 

Comparisons of the thermometric pill output and rectal temperature (often considered 

the most practical and accurate site for measuring core temperature) were reported by 

Gant, Atkinson and Williams (2006). The data presented suggested that though there was 

a small systematic bias between the recorded intestinal and rectal temperatures it was 
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consistent and within an acceptable range. The limit of agreement results showed a 

negligible random error of O.Ol°e difference. It was therefore deemed that the 

thermometric pill gave accurate and reliable readings of core temperature. 

The pill is small (22.6 mm x 10.7 mm), ingested orally with water, and measures Tc 

continuously as it travels through the digestive tract. Sampling rate can be varied 

between one second to 24 h, in the studies within the current thesis data were recorded 

every 30 s. Each pill contains a crystal quartz oscillator which vibrates in direct proportion 

to the temperature of the surrounding area. This vibration then transmits a low frequency 

radio wave to an external data logger (HT150001, eorTemp, Human Technologies 

International, USA) attached to a participant's waist. 

Six hours prior to the start of the experiments each participant attended the laboratory to 

ingest the pill. On arrival at the laboratory, participants consumed 100 ml of cold ("'11°C) 

water. If the temperature varied by S O.l°e it was deemed that the sensor was sufficiently 

sited in the gastrointestinal tract and the experimental protocol could begin. The duration 

of this ingestion period varies between studies; however 4-8-h has been shown to be 

acceptable. The data logger was then placed in a pouch that was fitted around the 

participant's waist. 

3.3.4 Intra-aural temperature 

Intra-aural temperature IAT (3000A, FirstTemp, Genius, USA) of the right ear was 

measured in Chapter 7. This technique was utilised due to its ease of use and relative 

inexpensive compared with other techniques, although, it is considered to have a greater 

random error than other methods. However, a number of studies consider tympanic 
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temperature to be acceptably accurate as an equivalent measure of Te (Bock et al., 2005, 

Erickson and Kirklin, 1993, Fadzil et al., 2010). Nevertheless, other authors have deemed 

the use of the technique unacceptable (Lawson et al., 2007, Fulbrook, 1997). In a recent 

study by Rubia-Rubia et al. (2011) where several methods of temperature measurement 

were compared, they reported that IAT presented the smallest range of error or 

variations from their 'gold standard' reading compared with all the other devices tested. 

To facilitate valid and reliable measurements, 3 readings were obtained at each data 

collection point. Furthermore, measures took place in an environment that had 

standardised ambient temperature and air-flow as each of these can affect readings. 

3.3.5 Skin temperature 

Skin thermistors (120046, HAB A/S, Copenhagen, Denmark) were attached to the 

participants left infraclavicular region, left forearm, mid-medial section of the left thigh 

and mid-medial section of the left calf (Ramanathan, 1964) using Transpore medical tape 

(3M, Loughborough, UK). The thermistors were attached to a data logger (TM9616, HAB 

A/S, Copenhagen, Denmark) to allow continuous monitoring and recordings at 10 s 

intervals. 

In Chapter 6, for data collection during sleep, wireless iButtons (DS1922L, Maxim 

Integrated Products, Sunnyvale, California, USA; resolution 0.0625°C) were used. The 

same anatomical pOSitions were used as above and data was collected at 1 min intervals. 

iButtons have been shown to have a mean random error of - 0.09°C (- 0.4°C at most) 

with a systematic error of 0.05°C (0.09°C at most). These properties can be improved by 

using calibration (Van Marken Lichtenbelt et al., 2006). For both techniques (thermistors 

and iButtons), weighted mean skin temperature (Tsk) was then calculated using the 
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formula 0.3 Tchest + 0.3 Tarm + 0.2 Tthigh + 0.2 Tcalf (Ramanathan, 1964). 

3.3.9 Activity and sleep monitoring 

An actiwatch (AW4, Cambridge Neurotechnology Ltd., Cambridge, UK) was placed on the 

participant's left wrist. This is a light weight electronic device that measures and records 

physical movements. Activity is measured via a piezo-electric accelerometer that records 

integration of amount, intensity, and duration of movement. The accelerometer was 

given to monitor the participants' adherence to the protocols given while not under 

laboratory supervision and to also monitor objective sleep quality. The 'watch' was 

programmed to record every minute and later analysed for sleep latency, sleep efficiency 

and actual sleep time (Actiwatch Activity and Sleep Analysis 5, Neurotechnology Ltd, 

Cambridge, UK). Whilst this method is widely used and generally considered to be an 

accurate and reliable measure of activity and sleep levels, some researchers have 

reported overestimations in sleep quality and time asleep (Verbeek, Klip & Declerck, 

2001). Nevertheless, it has been established as effective in determining the effects of 

various behavioural and medical interventions on sleep-wake patterns (Sadeh and Acebo, 

2002). 

3.3.10 Dominant hand grip strength 

Dominant hand grip strength was recorded in Chapter 7 using a hand grip dynamometer 

(Grip-D, Takei Scientific Instruments co. LTD, Japan). Three measures were obtained and 

then averaged for hand grip strength. A short rest period ("'15s) was given between 

attempts to ensure sufficient recovery. Grip strength is conventionally accepted as a good 

marker of circadian rhythms in muscle performance (Reilly et al., 2001). 
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3.4 Liverpool jet-Iag questionnaire 

This questionnaire was designed to self-assess various components associated with jet-Iag 

and includes measures of fatigue, motivation, hunger, meal satisfaction, sleep quality and 

bowel movement. Ratings are measured on -5 to +5 scale with 0 representing 'normal' 

habitual ratings prior to travel. The overarching question pertains to the subjective rating 

of overall jet-Iag on a visual analogue scale (VAS), labelled "0 -no jet-Iag" to "10 - very 

bad jet-Iag". 

In Chapter 7 and Chapter 8 questionnaire data were pooled and summed into related 

constructs for analysis. Some of the questions were on a linear scale with lower scores 

meaning worse than normal symptoms and higher scores meaning better than normal 

symptoms or vice versa. Conversely some variables had no positive response. Thus, data 

with a negative outcome were given a positive score and data with a positive outcome 

were given a negative score. These data were then summed and the greater the value of 

the overall constructs the worse the related symptoms. For example, an overall rating of 

10 is worse than a rating of 6; and a rating of -2 is better than "normal" perceived ratings, 

which is represented by zero. The data were allocated into constructs for function 

(fatigue, concentration, motivation and irritability), diet (hunger prior to meal, meal 

palatability and post-meal satisfaction), sleep (sleep latency, quality, inertia, start-time 

and waking time) and bowel movement (frequency and stool consistency). 
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CHAPTER 4 

STUDY 1 

ACUTE RESPONSES OF THE THERMOREGULATORY 
SYSTEM AND PINEAL GLAND TO LIGHT EXPOSURE OF 

DIFFERENT WAVELENGTH 
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4.1 Introduction 

In human physiology, light is typically considered most for its visual function or its 

involvement in circadian control via periodic variation in the light/dark cycle. The 

development of bright light therapy for people with Seasonal Affective Disorder (SAD) 

means that individuals were exposed to high concentrations of light (Rosenthal et al., 

1984). These acute treatments were reported to improve depressive symptoms as well as 

general mood and alertness. Nevertheless, it is only recently that the more subtle effects 

of bright light on human physiology have been appreciated. The rapid suppression of 

melatonin (Lewy et al., 1980, Brainard et al., 1997) and elevation of Te (Cajochen et al., 

1992, Dijk et al., 1991) are well documented responses to light and are also commonly 

used as markers of phase shifting effects in Chronobiology. 

Understanding the multifaceted actions of bright light has important implications for 

intervention prescription and industrial design of bright light devices. Previous research 

into the acute responses to light, as with phase-shifting effects, demonstrates a 

heightened sensitivity to short wavelength stimuli. Light in the 'blue' section of the 

electromagnetic spectrum has been shown to be more effective in suppressing melatonin 

(Brainard et al., 2001a, Brainard et al., 2001b), decreaSing subjective sleepiness (Cajochen 

et al., 2005) and eliciting the strongest reduction in cone ERG (3 wave-implicit time 

(Hankins and Lucas, 2002) compared with intensity matched light with a higher 

wavelength. Therefore, the aim of the present study was to investigate the effects of 

illuminance-matched polychromatic bright light, one with blue photons removed, and a 

no light control on the direct response of melatonin and body temperature. It was 

hypothesised that the acute effect of bright light would be blue-shifted, such that the 
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blue photon removed light would be less effective at reducing melatonin and elevating Tc 

than light with blue photons present. 

The rationale for conducting this study is two-fold. Ultimately, the acute effects of bright 

light reported by Cajochen et al. (2005) were desired to be translated into a phase­

shifting effect that would be useful for exercise performance in the early morning 

(Chapter 5). However, there are ethical issues surrounding the use of the monochromatic 

blue light which Cajochen et al. (2005) selected. The main concern relates to damage of 

the eye, speCifically Photokeratitis (a burn of the cornea) and injury to the retina (Terman, 

2009). Therefore, a compromise was reached via a specifically-designed light condition 

for this thesis in which blue photons were filtered. This light condition was compared 

with "normal" unfiltered bright light originating from a commercially available product, in 

order to examine the question of how important is blue light and, in turn, how these 

results compared with those of Cajochen et al. (2005). 

4.2 Methods 

4.2.1 Participants 

Eight males were recruited for the present study. The mean ± SO age, body mass, height 

and maximal oxygen uptake (V02max) of the participants was 22 ± 2 years, 80.8 ± 10.37 kg, 

1.82 ± 0.10 m and 44.9 ± 2.5 ml·kg-1·min-1, respectively. All participants were healthy, 

non-smokers and none reported having a history of major illness or sleeping problems. 

No participant was involved in nocturnal shift work and none had undertaken 

transmeridian travel during the 30 days prior to the study commencing. Participants were 

asked to refrain from alcohol, caffeine, coco-based products, bananas and strenuous 

exercise 24-h prior to attending the laboratory for each trial. Participants reported 
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conventional nychthemeral wake-up and retiring to bed times, 06:45-08:30-h and 22:45-

00:15-h respectively; reported times were 30-90 min later on free-days (i.e. weekends). 

Participants were asked to maintain their regular weekday sleep-wake cycle during 48-h 

prior to testing. Written informed consent was obtained, and all procedures were 

approved by the ethics committee at Liverpool John Moores University and adhered to 

the Declaration of Helsinki. 

4.2.2 Laboratory protoco/s 

Participants attended the laboratory on four separate occasions, the first for 

familiarisation purposes, followed by three further visits to complete the main 

experimental conditions. Data collection for this study took place during the winter and 

early spring months in the UK, November-April. 

During the initial visit, participants became accustomed to all measurement tools and 

apparatus to be used during the experimental procedures, including the sleep laboratory. 

Anthropometric measures and resting blood pressure (mercury sphygmomanometer) 

were recorded during this visit. Resting blood pressure was measured with the participant 

seated following 10 min of quiet rest. 

4.2.3 Experimental trials 

Trials were ordered in a counterbalanced fashion and were separated by 5-11 days. 

Participants arrived at the laboratory at 19:30-h and adopted a semi-supine seated 

position which was maintained for the whole of the evening testing period, this period 

allowed for measures to return to resting values prior to the light protocol commencing. 

Following instrumentation, at 20:00-h, lighting in the laboratory was reduced to <12 lux 
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for 45 min (Fig. 1). This period was followed by a one hour period of no light. The 

laboratory lighting was switched off and participants were asked to wear a commercially 

available eye-mask. This period was followed by a 30 min intervention. Participants were 

exposed to one of three interventions: 1) Participants remained in the no light 

environment (no light condition, NL). 2) Participants were exposed to 2,500 lux of 

polychromatic light from a light box (Zip, Lumie, Cambridge, UK). The light box was placed 

50 cm from the participant, they were told not to look directly into the light box for the 

whole intervention period but instead to gaze at the light for short intermittent periods 

and to keep the light in their periphery for the remainder of the intervention (bright light, 

L). 3) The bright light was again used, although on this occasion participants were 

instructed to wear a pair of filter glasses (Solar3, Eschenbach optik, Ridgefield, 

Connecticut). These glasses filtered-out light <520nm (Blue-photons removed, NB). Due 

to the use of this filter, the light box was moved closer to the participant (18.5 cm) to 

ensure that the light box still produced 2,500 lux at eye-level. Following the intervention 

period, participants were administered dim light for a further 75 minutes before retiring 

to bed at 23:45. Participants slept in the laboratory in shorts and t-shirt or vest with a 

10.5 tog duvet. Prior to sleep, participants were allowed to use the toilet and to clean 

their teeth. 
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Figure 4.1: Schematic of study design for the lighting protocol used in Chapter 4 and 

Chapter 5 and the sleep and exercise times in Chapter 5. 

4.2.4 Measurement procedures 

At lS :00-h (five hours prior to attending the laboratory), participants were issued with a 

silicon coated thermometric pill (CorTemp, Human Technologies International, USA) and 

instructed to swallow it with 50 ml of water. The thermometric pill was used to record 

Intestinal temperature (Tc). Saliva samples were collected at numerous stages during the 

lighting protocol and immediately frozen (-80°c). The samples were later analysed for 

melatonin concentration from duplicate samples using an enzyme linked immunsorbant 

assay kit (Direct salvia melatonin ELlSA, Buhlmann, Schonenbuch, Switzerland). Skin 

thermistors were attached to the participant's upper chest, mid forearm, upper thigh and 

medial side of the calf using sweat-proof tape (Transpore, 3M, Loughborough, England). A 

data logger (TM9616, ELLAB, Copenhagen, Denmark) recorded the temperature of each 

skin therm istor. Weighted mean skin temperature (Tsk) was later calculated (Ramanathan, 

1964). 
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4.2.5 Statistical Analysis 

A sample size for the present study was calculated using the primary outcome variable for 

Chapter 5 and is detailed in section 5.2.3. Data were reduced within each phase of the 

lighting protocol. During the initial and final dim light phases data were binned into 3x15 

min blocks; during the lights off period data were binned into 3x20 min blocks; during the 

intervention phase data were binned into 3x10 min blocks, with the exception of HR and 

BP data which were averaged in 6x5 min blocks. HR and BP data were then multiplied to 

give RPP. Data were analysed using two-factor within-subjects factors (trial x time) 

generalized estimation equations (Ballinger, 2004), with order of trial effect controlled 

within the model. The data were analysed using Statistical Package for Social Sciences 

(SPSS) for Windows (Version 17, SPSS Inc., Chicago, IL, USA). Data are presented as mean 

± SD (95% Cl). The alpha level of significance was set at p S 0.05. 

4.3 Results 

4.3.1 Baseline measurements 

Measurements obtained 45 min into the protocol were considered the baseline period 

and are presented in Table 4.1. The dim-light levels were identical in all conditions 

although participants were aware which light intervention they were going to receive 

later in the protocol. There were trends for melatonin and Te to be higher in the NB and L 

baseline periods, although the only statistically significant difference was for RPP being 

higher in NB compared with NL. Mean skin temperature provided reciprocal results to 

that of Te; significantly higher temperatures being recorded in the NL baseline period 

compared with both the NB and L baseline periods. 
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Table 4.1: Baseline measurements. Taken as the end of the first "Iow lux" period, 45 

minutes into the protocol. * denotes statistical significant difference. 

No blue 
Light No light 

NB vs. L NB vs. NL L vs. NL 
Variable light p-value p-value p-value 

Melatonin 
11.7 ± 10.2 15.6 ± 14.1 9.3 ± 12.4 0.48 

(pg.mrl) 
0.35 0.17 

Core body 37.05 ± 
temperature 37.06 ±0.12 

0.16 
36.97 ±0.26 0.91 0.38 0.39 

(0C) 

Mean skin 32.57 ± 
temperature 32.58 ±0.41 

0.48 
33.05 ±0.44 0.96 0.02* 0.04* 

(0C) 

4.3.2 No light measurements 

In Te there were significant reductions in all conditions by 0.17 ± 0.14°e (0.09 to 0.24, P < 

0.0005) in L, 0.19 ± 0.15°C (0.08 to 0.29, P < 0.0005) in NL and 0.19 ± 0.09°e (0.12 to 0.26, 

p < 0.0005) in NB. Melatonin and Tsk increased in all conditions; however, none of these 

changes were statistically significant. 

4.3.3 Intervention measurements 

Between the end of the no light phase and intervention the time course of melatonin 

changed in the l group compared with NL and NB. Concentrations in both NL and NB 

significantly increased between these time points, 3.7 ± 4.8 pg.mr
1 

(-0.05 to -6.9, p = 0.03) 

and 5.6 ± 7.9 pg.mr1 (-0.01 to -11.1, P = 0.04), respectively. Whereas concentrations in L 

decreased, however this did not reach significance -3.3 ± 9.6 pg.mr
1 

(-10.0 to 3.4, P = 0.33; 

Figure 4.3). 

During the intervention phase there were reductions in Te in all 3 conditions, however, 

this was slightly attenuated in the two light conditions, with the magnitude of the 

decrease appearing to be wavelength dependent. After the 30 min intervention 
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compared with the end of the no light phase, core body temperature was altered by -0.04 

± 0.14D C (-0.14 to 0.05, P = 0.42) in l, -0.08 ± O.11°C (-0.15 to -0.01, P = 0.04) in Nl and -

0.06 ± 0.14DC (-0.15 to 0.04, P = 0.25) in NB (see Figure 4.4). 

Skin temperature was statistically unaltered by the intervention. However, the direction 

of the change during the intervention phase was different for the two light conditions 

(increase) compared with the Nl condition (decrease) (see Figure 4.5). 

4.3.4 Post intervention measures 

Between the end of the intervention and the final post measure taken there were no 

significant differences observed in Tsk. In all conditions Te reduced further, with a 

significant decrease of 0.07 ± 0.3rC (0.04 to 0.09, P < 0.0005) in NB. Conversely 

melatonin increased across all groups, with a significant rise of 4.4 ± 19.5 pg.mr1 (1.1 to 

7.7, p = 0.01) in l. 
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Figure 4.2: Mean±SD Melatonin response during evening light protocol. Parenthesises on 

the x-axis denote minutes elapsed in each stage of the intervention. * t Denotes 

significant difference from proceeding value in Land NL, respectively. 
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Figure 4.3: Mean±SD Te in all response during evening light protocol. Parenthesises on the 

x-axis denote minutes elapsed in each stage of the intervention. 1\ * t Denotes significant 

difference from proceeding value in NB, Land NL, respectively. 
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Figure 4.4: Mean±SD Tsk response during evening light protocol. Parenthesises on the x­

axis denote minutes elapsed in each stage of the intervention. * t Denotes significant 

difference from proceeding value in Land NL, respectively. 

4.4 Discussion 

The aim of the present study was to investigate the acute effects of short duration light 

exposure, with differing characteristics, on thermoregulatory pineal and function. 

Furthermore, an aim was to investigate how these variables respond to subtle changes in 

the lighting environment and how these compared to documented results to confirm the 

effectiveness of the intervention. There was evidence that light attenuated the rise in 

evening melatonin concentrations and delayed the fall in Te associated with this time of 

day, in addition there is indication that this response is blue-shifted, but the differences 

were not significant. 
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Exposure to bright light affected the time course of melatonin and Tc as indexed by 

significant time x condition interactions. In terms of melatonin, the present data are in 

good agreement with those previously reported (Brainard et al., 2001a, Cajochen et al., 

2005, Thapan et al., 2001). These studies documented a greater suppression of melatonin 

during monochromatic blue light exposure compared with higher wavelengths of light. 

However, this study has different protocol characteristics than those mentioned above. 

Firstly, the interventional product used was polychromatic meaning that in L .... 43% of 

photons were blue spectrum. Secondly, the duration of the exposure (30-min) was 

shorter than those utilised in other studies. These disparities between protocols may 

account for the differences in the effect size documented. To the knowledge of the 

author this is the first study to document such observations with a short duration 

protocol and using polychromatic light. Notwithstanding this it must be noted that the 

treatment effect may have been more pronounced due to the extended periods of dim 

and no light; said conditions have been shown to amplify the typical responses to light 

(Wong et al., 2005). 

Although an interaction was noted in Tc responses, the variation between conditions was 

subtle. Indeed, the magnitude of decline was attenuated in the two light conditions, with 

this response appearing to be somewhat blue-shifted (i.e. there was a less reduction in 

the condition which contained blue photons). In L, Tc began to increase from the 

preceding measurement after 20-min of the intervention until 30-min post exposure. 

Again, a protocol with longer exposure duration may have augmented the treatment 

effect. Cajochen and colleagues (2005) only began to note significant effects 4s-min into 

their experimental intervention. Perhaps future studies should alter the duration of 

exposure across the different phases of the experiment (i.e. increase light exposure and 
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reduce dim and no light phases). The overarching principle of such experiments should be 

to reduce durations of protocols whist optimising results to make phototherapy 

practically relevant (see Chapter 5). 

A novel finding from this study is the potential anticipatory effect that bright light may 

have on human physiology. These findings can be used to underpin the design and 

protocols of phototherapeutic devices and their use. Across the three conditions during 

the initial dim light and no light phases, with the exception of Tsk, all within-variable 

responses were in the same direction (Le. increase in melatonin; decreases in body 

temperature and RPP). However, an interesting observation in the present study was the 

absolute differences at baseline. It is apparent from simply eyeballing the data that the 

initial values in the two light conditions, especially in body temperature and RPP, are 

greater than those in the control condition. This variance could be explained by an 

expectancy effect as participants were not blinded to conditions on arrival at the 

laboratory. These types of anticipatory effects have been reported across a range of 

situations. For example, Zaregarizi et al. (2007) postulated that the most important aspect 

for inducing the acute reduction in BP prior to a siesta could be the expectancy of sleep 

itself. Lockley et al. (2006a) stated that the parallel elevation in cortisol prior to light 

exposure in two trials with differing wavelength characteristics may have been due to 

subjects' anticipation of the extended novel experimental intervention. This response has 

also been observed in patients before surgical procedures (Czeisler et aI., 1976). 

Although this study was conducted under very tightly controlled laboratory conditions 

(constant posture and room temperature), skin temperatures are still prone to exhibiting 

large inter- and intra-individual variance (Krauchi and Wirz-Justice, 1994). This 
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characteristic may go some way to explaining the different time course between 

conditions, especially during the initial two phases when conditions were matched 

between trials. Perhaps the use of further measurements sites and the calculation of 

distal-proximal skin temperature gradients may provide more concise information. 

Specifically relating to how bright light exposure may alter the evening shifts in core to 

shell thermodynamics that is associated with sleep onset (Krauchi, 2007) and whether 

this has any practical or clinical implications. 

The data indicate that the protocol used in the present study was sufficiently powerful to 

acutely manipulate human physiology, as indexed by acute changes in melatonin and core 

body temperature. However, the magnitude of the effects were reduced compared with 

those reported by Cajochen et al. (2005), which could be a direct result of differences in 

the inherent protocol. Nevertheless, the results confirm the effectiveness of the protocol 

for producing the expected responses. Additionally, this study indicates that the lighting 

protocol used was sufficiently powerful to evoke acute responses in various physiological 

systems; whether this effect is magnified via scotopic periods prior to the intervention 

cannot be deduced from the present study design. 
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CHAPTER 5 

STUDY 2 

PRE-SLEEP EXPOSURE TO BRIGHT LIGHT ALTERS 
THERMOREGULATORY RESPONSES AND 

PERFORMANCE DURING SUBSEQUENT MORNING 
EXERCISE 

64 



5.1 Introduction 

It is widely accepted that exposure to ocular bright light is the most important zeitgeber 

for circadian entrainment in mammals, including humans (Cajochen et al., 2006, Duffy 

and Czeisler, 2009). Depending on the time of administration relative to 'body clock time', 

exposure to bright light can result in phase delays (to later times) or advances (to earlier 

times) of circadian rhythmicity in many physiological functions. For example, exposure to 

light in the hours before the nadir of the daily rhythm in Tc induces a phase delay, 

whereas exposure to light after the nadir advances the rhythm. These responses can be 

described across a full 24-h cycle to provide a phase response curve to light for humans, 

which is now well-described (Minors et al., 1991). 

In sport, it is common for long distance running and cycling events to be scheduled in the 

morning, one reason being that athletes might be less prone to thermal stress. For 

example, during the recent Commonwealth Games in Delhi, the Marathon events started 

before 07:00-h local time. This scheduling is based, in part, on the knowledge that during 

competition in high ambient temperatures, a primary objective is to keep Tc low because 

a high correlation exists between the onset of fatigue and reaching a 'critical' Tc 

(Gonzalez-Alonso et al., 1999). Consequently, pre-race interventions such as cold showers 

and cooling vests have been adopted in an attempt to lower Tc. Such pre-cooling 

interventions have been shown to be effective in reducing thermal as well as 

cardiovascular and psychophysical strain in athletes (Booth et aI., 1997, Cotter et al., 2001, 

Lee and Haymes, 1995). Furthermore, the n,aturally lower Tc in the morning hours has 

been postulated as a reason for improved performance in high ambient temperatures. In 

support of this notion, Hobson, et al. (2009) reported a greater time to exhaustion whilst 

cycling at 65% V02peak in the high temperatures by approximately 5 minutes at 06:45-h 
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(45.8 ± 10.7 min) compared with 18:4s-h (40.5 ± 9.0 min), with initial Te been o.re lower 

In the morning. 

fn a recent study, Atkinson, et al. (2008a) hypothesised that manipulation of circadian 

timing via carefully-timed exposure to bright light could act to 'pre-cool' an athlete prior 

to an endurance event in hot conditions. In this study exposure to evening bright light 

delayed the time that Te fell to its minimum during sleep by 1.46 ± 1.24-h, leading to a 

lower Te (0.20°c ± 0.17°c) prior to exercise undertaken the following morning. 

Nevertheless, no performance-related outcome was measured in this study to confirm 

that the changes in Te by the bright-light actually improved athletic capability. 

The relationships between bright light, circadian rhythmicity and endurance performance 

In the heat are still enigmatic. Therefore, the aim of the present study was to manipulate 

Tc by exposing participants to bright light, with short wavelength characteristics, prior to 

the nocturnal sleep period. It was hypothesised that evening exposure to bright light 

results in (i) melatonin suppression, (ii) a delay in the circadian timing of Te; consequently 

leading to a lower Te immediately prior to and during exercise undertaken in the 

subsequent morning, and (iii) improved endurance performance due to this 'pre-cooling' 

Intervention. 

5.2 Methods 

Data collection in the present chapter was continued from previous chapter, with the NB 

condition removed as this present study aimed to observe the effects of light (BL) vs. no 

intervention (NL); therefore, participants, laboratory procedures and the intervention 

phase of this chapter can be found within in section 4.2 Furthermore, some of the 
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measurement procedures are the same as those documented previously. The following 

section continues where section 4.2.3 concluded. 

5.2.1 Experimental trials 

At 06:30-h on the following morning, the participants were woken by a researcher and 

provided a sample of saliva. Participants then got out of bed and drank 568 ml of water 

and ingested a cereal bar. To recover from any effects of sleep inertia, participants then 

rested for 30 min (Tassi and Muzet, 2000). Participants were then moved to an 

environmental chamber, which was pre-set to a temperature of 35°C and a relative 

humidity of 60%. Thermistors (120046, ElAB A/5, Copenhagen, Denmark) were attached 

to the participant and then followed a two minute baseline recording period prior to 

exercise. The initial exercise protocol was intermittent and comprised three 10-min bouts 

of upright cycling at 55% V02 max on a cycle ergometer. Each bout was interspaced with 

10 min of seated passive rest. Two minutes after ceasing each exercise bout participants 

provided a saliva sample. Participants were then allowed to consume water until five 

minutes into the rest period. Following the completion of the intermittent protocol, 

participants undertook a 10-km self-paced time-trial. During this time trial, participants 

were allowed to drink water ad libitum and adjust the workload on the cycle ergometer 

to their self-selected pace. Throughout the exercise period (end of each 2-km stage), 

ratings of perceived exertion (RPE) were recorded using the Borg scale (Borg, 1982). 

5.2.2 Measurement procedures 

Core body temperature was continuously recorded from the same thermometric pill as 

ingested in Chapter 4 at a sample rate of 30 s. For the present study saliva samples were 

taken prior to the no light phase and 15 minutes post-intervention, after waking and 
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during exercise, and immediately frozen (-80G C). The samples were later analysed for 

melatonin concentration from duplicate samples using an enzyme linked immunsorbant 

assay kit (Direct salvia melatonin ELlSA, Buhlmann, Schonenbuch, Switzerland). Skin 

thermistors were re-attached to the participant's upper chest, mid forearm, upper thigh 

and medial side of the calf using sweat-proof tape (Transpore, 3M, loughborough, 

England). A data logger (TM9616, ElLAB, Copenhagen, Denmark) recorded the 

temperature of each skin thermistor. Weighted mean skin temperature was later 

calculated (Ramanathan, 1964). 

5.2.3 Statistical Analysis 

The primary outcome was the time to complete the 10-km time trial. Such protocols have 

been found to be highly reliable with test-retest coefficients of variation (CV) < 2% 

(Atkinson and Nevill, 2001). Using the NQuery software (Cork, Ireland), it was estimated 

that 8 subjects would enable the detection of a statistically significant difference between 

trials of 3.3% assuming a CV of 2%, P<0.05 and 80% power with a two-tailed paired t-test. 

Data collected prior to the evening light intervention phase were averaged and entered 

into the hypothesis test as a single covariate (Altman, 1991). Post-intervention and during 

sleep Te data was binned into 15 min blocks. Following sleep, during the exercise and time 

trial phase data (Te and Tsk) were binned depending on phase/stage i.e. each 10 min 

exercise and rest period and each 2km travelled, respectively. 

Data were analysed using two-factor within-subjects factors (trial x time) generalized 

estimation equations (Ballinger, 2004), with order of trial effect controlled within the 

model. Post-hoc analysis was used to assess the differences between and within trials. 
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One important summary statistic was an estimate of the time of minimum Te during sleep. 

Core temperature data were averaged into 1s-min time periods for data smoothing 

purposes. The absolute value and the time of the lowest of these 1s-min averages as an 

estimate of the body temperature minimum during sleep was recorded. The data were 

analysed using Statistical Package for Social Sciences (SPSS) for Windows (Version 17, 

SPSS Inc., Chicago, IL, USA). Data are presented as mean ± SO (9s% Cl). The alpha level of 

significance was set at p ~ 0.05. 

5.3 Results 

5.3.1 Light Intervention and Sleep 

The exposure to bright light in the early biological night, prior to the exercise day, 

suppressed the rise in salivary melatonin concentration (Figure 5.1). However, the 

differences between BL and NL did not reach statistical significance [-9.0 ± 25.4 pg.ml-1 (_ 

29.3 to 11.3, p = 0.35)]. Immediately after waking at 06:30-h, the differences in melatonin 

concentrations were negligible [BL = 23.2 ± 10.0 pg.ml-1 (16.3 to 30.1) vs. NL = 24.9 ± 5.9 

pg.ml- 1 (20.8 to 29.0), p = 0.54]. 
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Figure S.l: Mean ± SD salivary melatonin concentrations changes in response to evening bright 
light or no light intervention compared with 45-min post dim light. 
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Evening bright light delayed the l e minimum during sleep; with the temperature nadir for 

BL occurring at approximately 04:30-h compared with approximately 02:45-h in NL {P = 

0.07} {Figure 5.2}. Although the temperature nadirs may have occurred at different times, 

the absolute values of these minima did not significantly differ [L = 36.36 ± 0.21°C {36.21 

to 36.50} vs. NL = 36.36 ± 0.35°C {36.12 to 36.61}, p = 0.95]. Nevertheless, l e was 0.16 ± 

0.30°C {-0.37 to 0.05, P = 0.13} lower in BL compared to NL in the 15 minutes prior to 

waking. 
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Figure 5.2: Mean ± SD Tt measured at rest, post light intervention and during sleep prior to and 

during sleep. Bright light condition No light condition. 

5.3.2 Exercise and Time-Trial 

During the subsequent intermittent exercise in the heat, l e increased as expected: From 

waking to the end of the intermittent exercise, Te increased by 1.08 ± 0.34°C {0.84 to 1.32, 

P <0.0005} in Land 1.29 ± 0.44°C {0.98 to 1.59, P <O.OOOS} in C Immediately prior to the 

initiation of the 10-km time-trial, l e in the BL condition was 0.27 ± 0.42°C {-0.S7 to 0.02, P 
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= 0.06) lower than NL. There was evidence that the differences between conditions 

observed in Te increased as the time-trial progressed (P < 0.0005) (Figure 5.3), with a 

significant difference between conditions (p = 0.047). At the end of the time-trial core 

temperature was 38.21 ± 0.56°C (37.84 to 38.57) in BL compared with 38.64 ± O.4rC 

(38.34 to 38.93), p = 0.10. Changes in mean Tsk were similar to those observed in Te, with 

a highly significant increase over time (p < 0.0005). There was a significant overall 

difference between groups, with BL 0.26 ± 0.33°C (0.03 to 0.49, p = 0.03) lower on Te 

average then NL (Figure 5.4). 

At 2-km participants reported a statistically lower rating of perceived exertion in NL 

compared with BL [BL = 15.00 ± 2.03 (13.59 to 16.41) vs. NL = 13.85 ± 2.15 (12.37 to 

15.34), p = 0.02. Throughout the rest of the time-trial the differences in RPE were 

negligible between the two conditions (Figure 5.5). 

At the completion of the 10-km time-trial, participants during BL were 1.43 ± 0.63 min 

(0.98 to 1.87, P < 0.0005) faster than during NL. This trend was observed throughout the 

time-trial; however the magnitude of the difference at 2-km did not reach statistical 

significance (p = 0.15) (Table. 1). 
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Figure 5.3: Mean ± SO Te measured prior to and during iQ-km time-trial. * denotes 

significant effect of condition . # denotes significant effect of time. Bright light 
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Table 5.1: Cumulative time taken to complete each 2km stage of the 10km time 

trial (minutes.seconds). Data presented as mean ± SO 

2km 4km 6km 8km 10km 

Trial 

Light 04.02 ± 00.96 07.93 ± 01.60 11.73 ± 02.02 15.15 ± 01.90 18.67 ± 02.15 

No Light 04.26 ± 00.60 08.47 ± 01.42 12.67 ± 02.20 16.37 ± 02.20 20.10 ± 02.48 

p-value 0.15 < 0.0005 < 0.0005 < 0.0005 < 0.0005 

5.4 Discussion 

The novel finding in the present study is that 30-min of polychromatic light at an intensity 

of 2500 lux, 1 hour prior to nocturnal sleep, mediated changes in Te and improved cycling 

performance in a 10-km time-trial. These data also exhibit the importance of a lowered Te 

before and during exercise in the heat and how light can be used to facilitate this 

adjustment in the homeostatic set-point of Te. These findings have implications for 

athletes competing in early morning events under conditions of high thermal stress. 
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It has been demonstrated that the ingestion of exogenous melatonin lowers Tc during 

subsequent intermittent exercise (Atkinson et al., 2005a). In more recent research 

(Atkinson et al., 2008a), focused on bright light exposure, and established that evening 

bright light led to a lower Tc during exercise the following morning. In the current study, 

for the first time, the effects of a bright light protocol on cycling performance 

immediately after waking in high ambient temperatures were observed. This is the first 

study, to the knowledge of the author, which has examined the residual effects of 

evening bright light on subsequent early morning physical performance. 

The exposure to ocular bright light in the early biological night transiently attenuated the 

"normal" rate of decrease in Tc. In parallel, the "normal" rise in melatonin, associated 

with healthy individuals (Burgess and Fogg, 2008), was suppressed; although it is 

important to note that light may exert it effects independently from those of melatonin. 

In agreement with other researchers (Cajochen et al., 2005, Kubota et al., 2002), the 

transient increase in Tc found in the bright light condition led to delayed timing in Tc 

minimum. Previous studies observing the effect of bright light interventions on the timing 

of the Tc nadir have reported different effect sizes. For example, proceeding exposure to 

ocular bright light in late-evening/early-night; delays in the Tc rhythm of 1.12-h, 0.75-h 

and 1.46-h were observed by Kubota et al. (2002), Krauchi et al. (1997a) and Atkinson et 

al. (2008a), respectively. 

The inherent differences in methodologies may go some way to explaining the 

contrasting magnitude of observed effects. The timing ("real world" clock vs. body clock), 

intensity, duration and spectral distribution of light, as well as prior light-dark exposure, 

have all been hypothesised as contributing factors which influence phase-shifting effects. 

74 



The delay in temperature minimum of approximately 1.75h in the present study resulted 

in a lower Te during the final 15 minutes of nocturnal sleep by 0.16°C in Bl. It should be 

noted that in studies which involve attempted circadian manipulation and exercise, 

directly measuring the effects of the interventional product on any changes in the full 

circadian rhythm of Te not feasible. This is due to the inherent study aim of participants 

having to complete exercise after waking from nocturnal sleep. It is well documented that 

physical activity produces masking effects on circadian rhythms, making estimates of 

circadian phase unreliable. 

Following a 30 minute period to reduce the effects of transient sleep inertia (Tassi and 

Muzet, 2000) and three 10 minute bouts of light-moderate exercise, the difference in Te 

had increased to "'0.3°C. The lower starting Tc, in these recreationally active participants, 

resulted in the quickest time to completion in a 10km cycling time-trial in the bright light 

condition. A lower starting Te has been shown to improve cycling performance in previous 

studies conducted in conditions of high thermal stress. Hobson et al. (2009) postulated 

that a lower rectal temperature at 06:45-h compared to 18:45-h meant that participants 

were able to cycle for approximately 5 minutes longer until reaching exhaustion in the 

morning. Atkinson et al. (2008a) reported after evening bright light exposure that Te was 

lower prior to morning exercise in the heat compared to dim light. During the subsequent 

exercise RPE was lower in their evening bright light condition. 

High levels of hyperthermia have been associated with the onset of fatigue, which was 

indexed in the present study by high RPE scores. Gonzalez- Alonso et al. (1999) reported 

lower starting Te resulted in a longer time to exhaustion in the heat, although a critical 

temperature of just above 40°C was observed. It was postulated that higher Te resulted in 
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a decline in cardiac output; attributed to a larger reduction in stroke volume via increased 

skin blood flow and skin blood volume. However, other factors have been hypothesised in 

the aetiology of hyperthermia-induced fatigue. For example, deviations from the 

homeostatic set-point in; brain temperature (Nybo, 2012), hydration status, metabolic 

regulation and/or central nervous system control (Hargreaves, 2008). 

Pre-cooling is adopted by many athletes as a method of improving performance. In a 

recent meta-analysis, which included 27 studies, Wegmann et at. (2012) concluded that 

firstly, pre-cooling is more effective at improving performance in hot (>26°(; +6.6%) than 

moderate temperatures (18-26°(, +1.4%). Secondly, pre-cooling prior to time-trials 

improves performance, on average, by +4.2%. Thirdly, the methods utilised (and changes 

in performance) in the selected studies were cold drinks (+15.0%), cooling packs (+5.6%), 

a cooled room (+10.7%), cooling vests (+4.8%) and water application (+1.2%). This 

compares to a 7.2% improvement using the present interventional product over the 10-

km time-trial. Furthermore, the confidence interval highlight that the population mean 

difference could be as small as 0.98 min and as large as 1.87 min. It is likely that even the 

lower limit of this confidence interval is practically significant in an event of this duration. 

Mean Tsk generally followed a similar profile to Te, with increaSing values as the time-trial 

progressed and higher temperatures, on average, in NL. Given the association with 

increasing Te and the up regulation of heat loss mechanisms via the skin, this finding 

would be expected. High Tsk has been proposed as an important rate limiting factor in 

exercise intensity (Jay and Kenny, 2009, Schlader et al., 2010). Whether Te or Tsk is a 

better marker of exercise capacity is yet to be fully substantiated. 
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Ratings of perceived exertion increased over time, although there were no discernible 

differences between conditions at the end of the time-trial. This finding is not surprising 

as individuals were asked to performance close to maximal capacity in very high ambient 

temperatures that they are not accustomed to. Therefore, the lower body temperature 

noted in BL may have reduced comparative thermal strain leading to increased effort; 

proportionately improving time to completion during the 10-km time-trial. Indeed, 

Schlader et al., (2010) highlighted that a reduction in exercise intensity may transpire in 

order to protect against higher perceived exertion responses in the heat. 

Beyond Atkinson et al. (2008), only one other study has observed the effects of bright 

light on physical performance and subjective responses to exercise. O'Brien and O'Connor 

(2000) stated that physiological and subjective responses to 20 minutes of stationary 

cycling were unaffected by light. However, direct comparisons between this and the 

current study are difficult as light was altered acutely during exercise rather than, 

chronically, prior to exercise. Furthermore, no information was provided about the 

ambient conditions in which exercise was performed. 

Interestingly, immediately after waking there were minimal differences in the observed 

salivary melatonin concentrations. This is surprising, especially with the evening 

suppression of melatonin in the current study and the substantiated inverse relationship 

between Te and melatonin (Cagnacci et al., 1992). One possible mechanism that may have 

influenced the lack of variation between groups post-waking is postural changes. Upon 

awakening, when the samples were provided, some participants remained in bed for a 

short time while others got up immediately, this may well have varied across trials within 

subjects, influencing melatonin concentrations. The effects of posture on melatonin have 
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been reported by two previous studies (Deacon and Arendt, 1994, Nathan et al., 1998). 

Deacon and Arendt (1994) were the first to observe such effects and found that levels rise 

with standing after being supine and fell when the reverse posture was adopted. The 

mechanism behind this, especially for salivary melatonin, remains unclear. However, it 

has been postulated that the gravitational forces associated with postural changes (e.g. 

supine to standing) may influence the human circulatory system (Hagan et al., 1978), and 

in turn hormone concentrations. 

In summary, the results presented in this study demonstrate the potential for evening 

bright light exposure, prior to sleep, to be used as an ergogenic aid for endurance 

performance in high ambient temperatures during morning training and/or competition. 

A lower Tc prior to waking was manipulated, which led to improved 10-km cycling time­

trial. This technique has the potential to be more comfortable for the individual than 

other, more traditional, 'pre-cooling' techniques which often involve cold-packs on the 

skin on partial/full immersion in ice-baths. 
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CHAPTER 6 

STUDY 3 

USING DAWN SIMULATION TO REDUCE SLEEP 
INERTIA AND IMPROVE POST-WAKING 

PERFORMANCE IN HUMANS 
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6.1 Introduction 

"Sleep inertia" is a transient state between sleep and feeling fully awake. Individuals can 

experience grogginess, disorientation, decreased motor control and lower cognitive and 

physical performance (Oinges, 1990, Kleitman, 1964, Tassi and Muzet, 2000). Sleep inertia 

can be experienced to some degree after sleep of any duration (Jewett et al., 1999, 

Brooks and Lack, 2006). Nevertheless, the duration and severity of sleep inertia is 

influenced by the preceding sleep duration, the presence of prior sleep deprivation and 

the individual's chronotype. After a typical 8-h sleep period, sleep inertia can persist for 

up to 2-h after waking (Jewett et al., 1999). In terms of severity, Wertz et al. (2006) 

reported that cognitive performance is worse immediately after waking (Le. with sleep 

inertia) than it is during a state of total sleep deprivation. Furthermore, a nap of any 

duration, at any time of day, still results in sleep inertia and the magnitude of this effect 

appears to be most dependent on sleep stage at waking rather than nap duration (Folkard 

et al., 1976). The severity of sleep inertia was also observed to be more pronounced 

around the nadir of Tc compared with its circadian peak. 

Individuals whom are classed as late chronotypes usually prefer to retire to bed later and 

rise later the following morning compared with intermediate and early chronotypes 

(Roenneberg et al., 2003). This usually means that late chronotypes have to rise earlier 

than desired on workdays resulting in a large discrepancy between their obligatory and 

preferred timing of sleep (Roenneberg et al., 2003, Horne and Ostberg, 1976, Zavada et 

al., 2005). This discrepancy leads to a state of sleep debt, which has been termed "social 

jetlag" (Wittmann et al., 2006). Ultimately, this sleep deprivation may lead to a 'vicious 

circle' of increasing severity of sleep inertia (Taillard et al., 2003). For elite athletes or 

recreational exercisers, training in the early morning soon after waking is common. Since 
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sleep inertia has been shown to reduce physical performance, indexed by hand grip 

strength (Jeanneret and Wilse, 1963), it would seem reasonable to postulate that if sleep 

inertia is present, exercise intensity (the training stimulus) and, therefore, training 

adaptations may be reduced (Reilly and Edwards, 2007). Furthermore, and possibly of 

greater concern, the risk of injury may also be increased via reduced psychomotor 

vigilance (Terman et al., 1989). Therefore, methods to ameliorate the effects of sleep 

inertia are warranted, for the general public and athletes. 

Artificial dawn simulation has been proposed to reduce the symptoms related to sleep 

inertia. Dawn simulation involves the gradual increase in illuminance of low intensity light 

prior to the waking from sleep. Data from previous studies have indicated that dawn 

simulation improves sleep quality, increases the awakening cortisol response (Thorn and 

Hucklebridge, 2004), decreases subjective sleepiness and stimulates subjective 

"activation" (Van De Werken et al., 2010). Importantly, no researcher has examined the 

effects of dawn simulation on subsequent exercise performance soon after waking. 

Therefore, the aim of the present study was to examine the effects of a 3D-min dawn 

simulation protocol on sleep inertia outcomes in subjects who show a late chronotype 

("Owls"). It was hypothesised that dawn simulation results in (i) improved subjective 

alertness post-waking (ii) changes in the rhythms of Tt and melatonin, and (iii) improved 

cognitive and physical performance in the post-waking period. 

6.2 Methods 

6.2.1 Participants 

Eight young adults were recruited for the present study (four males; four females), with a 

mean ± SO age 24 ± 9 years. No participant was involved in nocturnal shift work and none 
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had undertaken transmeridian travel during the 30 days prior to the study commencing. 

Participants had to live a regular lifestyle, that consisted of at least three 'workdays' a 

week. Participants had to be classed as moderate evening or evening types (rated on the 

morningness-eveningness scale (Horne and Ostberg, 1976). They also had to report taking 

~45 minutes to fully wake-up in the morning on 'workdays' (Munich chronotype 

questionnaire (Roenneberg et al., 2003)). These inclusion criteria resulted in a participant 

cohort of later chronotypes. AI! participants were healthy, non-smokers and none 

reported having a history of major illness nor had any been diagnosed sleeping problems. 

None of the participants were taking medication, prescribed or otherwise, except oral 

contraceptives (three women). The one woman not using contraception was always 

tested at the early follicular phase of the menstrual cycle. Participants were asked to 

refrain from alcohol, caffeine, coco-based products, bananas and strenuous exercise 24-h 

prior to attending the laboratory for each trial. Participants were asked to maintain their 

regular workday sleep-wake cycle during 48-h prior to the start of the testing phase. 

Participants gave written informed consent to undertake the study, and all procedures 

were approved by the ethics committee at Liverpool John Moores University and adhered 

to the Declaration of Helsinki. 

6.2.2 Laboratory protoco's 

Participants attended the chronobiology laboratory at Liverpool John Moores University 

on three separate occasions; the first for familiarisation purposes, and the second and 

third to complete the main experimental conditions (intervention condition and control 

condition). Lighting conditions were standardised to 300 lux, at eye level, when sat 50 cm 

from the cognitive testing computer screen and when on the exercise bike. Temperature 
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was controlled at -21°C. Data collection took place during the British winter and early 

spring time (December - March). 

During the initial visit, participants became accustomed to all measurement tools and 

apparatus to be used during the experimental procedures, including our sleep laboratory. 

Anthropometric measures and resting blood pressure (mercury sphygmomanometer) 

were recorded during this visit. Resting blood pressure was measured with the participant 

seated following 10 min of quiet rest. All participants were normotensive. 

6.2.3 Experimental trials 

Trials were ordered in a counterbalanced fashion and were separated by 5-9 days. The 

night prior to attending the sleep laboratory the experimental phase began and 

participants were asked to sleep, in their own homes, the exact times they would sleep in 

the laboratory. To monitor compliance participants were issued with a wrist accelometer 

(Actiwatch, Neurotechnology Ltd, Cambridge, England). Participants were asked to attend 

the laboratory two hours prior to the initiation of sleep and slept for a period of 8-h in the 

laboratory. To calculate sleep time, reported times of wake and sleep from the 

participants Munich Chronotype Questionnaire were utilised. From these values a mid-

sleep point was determined and 4 hours were counted either side of this time (within the 

nearest 15 min) to calculate sleep onset and awakening. 

The experimental trials were identical with the exception of the thirty minutes prior to 

waking. During this time participants either slept normally in complete darkness (control 

condition [e]) or were exposed to dawn Simulation [OS] (see below for details). Each 

night's sleep ended with an audible alarm. At the same moment, a researcher entered the 
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room to ensure the participant was awake. Upon waking participants were allowed to 

attend the bathroom if required. After waking participants underwent a 75 minute testing 

protocol which conSisted of: three bouts of cognitive assessment, one physical 

performance test and monitoring of physiological and subjective variables (see 

measurement procedures for further details). 

6.2.4 Dawn Simulation 

Two dawn simulation devices (Lumie Bodyclock Active 250, Lumie, Cambridge, UK) were 

placed at either side of the participants' bed at a distance of 30 cm to ensure participants 

were exposed to the light. Thirty minutes prior to awakening, dawn simulation was 

initiated, starting at 0.001 lux rising to 300 lux following the sigmoidal illumination ramp 

(Figure 6.1). Accuracy was confirmed by measurement of illuminance with a digital 

photometer (ILM350 ISO-TECH, RS components, Corby, UK). 
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Figure 6.1: Sigmoidal illumination ramp for dawn simulation device. 
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6.2.5 Measurement Procedures 

One hour prior to sleep participants ingested a silicon coated thermometric pill (CorTemp, 

Human Technologies International, Palmetto, USA) with 50 ml of water. The 

thermometric pill was used to record Intestinal temperature (Tc). Data was sampled every 

30 seconds, beginning 2-h prior to waking. Skin temperature was measured using 

iButtons (DS1922L, Maxim Integrated Products, Sunnyvale, California, USA; resolution 

0.0625°q that were placed in 4 locations: left infraclavicular region, left forearm, mid-

medial section of the left thigh and mid-medial section of the left calf. Data were sampled 

every minute, beginning 2-h prior to waking. Prior to sleep, participants were also fitted 

with an accelerometer (Actiwatch, Neurotechnology Ltd, Cambridge, UK) that was worn 

on the wrist. Data were recorded every minute and later analysed for sleep latency, sleep 

efficiency and actual sleep time (Actiwatch Activity and Sleep AnalYSis 5, Neurotechnology 

Ltd, Cambridge, UK). Saliva samples were collected 60 and 5 min before sleep and at 0, 15, 

30, -45 (post time trial), 60 & 75 min during the experimental protocol and were 

immediately frozen (-80°C) and later analysed for melatonin concentrations. Upon waking 

subjective sleep quality was recorded on a 10 cm Visual Analogue Scale ranging from 

good to poor sleep. Subjective ratings of alertness were obtained using the Karolinska 

Sleepiness Scale (KSS) (Akerstedt and Gillberg, 1990) at 1, 5, 15, 30, 45, 60, and 75 min 

post-waking. Ratings on the KSS range from 1 to 9, with 1 meaning very alert and 9 

meaning very sleepy. 

On each visit participants were familiarised with the cognitive tests on two occasions 

prior to sleep. During the post-waking period data was collected on three occasions, at 5, 

30 and 75 min. These tests were conducted using the Vienna system (Vienna Test System, 

A2340, Vienna, Austria). For the first test, a 1.5 min work series preference test, 
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participants had to mentally calculate additions and enter a single digit response. All 

additions consisted of two numbers of single units and participants had to enter the last 

digit ofthe calculation (e.g. S + 7 = 12, the correct entry on the keyboard would be 2). The 

second test was a determination unit test, which is a complex multi-stimuli reaction unit 

(Pouw, 1991). The unit allows for the presentation of coloured optical stimuli, which are 

presented in 10 different locations. Within a 1.S min time period participants were 

required to respond to as many of these optical cues as possible by pressing the 

corresponding coloured reaction key. In addition to the coloured lamps, an extra 2 white 

lights were positioned centrally requiring subjects to press a left or right foot pedal when 

the corresponding side was lit. For both cognitive tests: total, correct and incorrect 

responses were recorded along with mean reaction time. 

Immediately following the second battery of cognitive tests, approximately 3S min post 

waking, physical performance was assessed using a 4-km self-paced cycling time-trial 

using a cycle ergometer (Premier 8i Ergo_bike, Daum Electronics, Furth, Germany). This 

particular test was chosen as a measure of moderate duration performance as it has been 

shown to be repeatable under standardised conditions (1.6% coefficient of variation, 

(Altareki et al., 2009)) and has been shown to be sensitive to interventions. For example 

in the study by Altereki et al. (2009) a significant difference was seen between 4-km time 

trials in two different temperature conditions. Prior to the time-trial commencing 

participants were allowed a 2 min warm-up period. During this period participants were 

instructed to ascertain their preferred resistance (Watts) for the start of the time trial. 

Participants were blinded to all information expect distance travelled. Changes in power 

output and ratings of perceived exertion (RPE) (Borg, 1982) were recorded at the end of 

each km. 
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6.2.6 Data Analysis 

With a sample size of 8 participants, a paired t-test with a 0.05 two-sided significance 

level would have 80% power to detect a difference in time trial performance of 1.9%, 

assuming that the within-subjects typical error (coefficient of variation) is 1.6% (Altareki 

et al., 2009). Temperature data, core and skin, were sampled every 30 sand 1 min, 

respectively. These data were then binned into single data points represented in the 

results section below. Data were analysed using two-factor within-subjects factors (trial x 

time) generalized estimation equations (Ballinger, 2004), with order of trial effect entered 

into the model. Time-trial and sleep quality data were analysed using paired t-tests. A 

secondary analysis was also performed on the relationship between melatonin and Te; 

data were examined with appropriate within-subjects correlations (Bland and Altman, 

1995). The data were analysed using Statistical Package for Social Sciences (SPSS) for 

Windows (Version 17, SPSS Inc., Chicago, Il, USA). Data are presented as mean ± SO (95% 

Cl). The alpha level of significance was set at p S 0.05. 

6.3 Results 

6.3.1 Subjective ratings and sleep 

Subjective alertness was worse immediately after waking 5.8 ± 1.7 [4.6 to 7.0] and 

generally improved over the testing period to 2.1 ± 0.6 [1.7 to 2.5], p < 0.0005). However, 

alertness was significantly better in OS (3.5 ± 1.2 [2.6 to 4.4]) compared with C (4.1 ± 1.1 

[3.3 to 4.9], p = 0.04; Figure 6.2). Ratings of perceived sleep quality on a simple VAS were 

also higher in OS (6.8 ± 1.6 [5.4 to 8.2]) compared with C (5.6 ± 1.7 [4.2 to 7.0], p = 0.01). 

There were no statistically significant or substantial differences in objective sleep quality 

data during sleep measured via Actiwatch (Le. sleep efficiency, sleep latency and total 
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sleep time; Table 6.1}. There were also no significant differences in sleep variables during 

the last 90 min of sleep between each trial {Table 6.1}. 

Table 6.1: Mean ± SO objective sleep data. 

Sleep efficiency (%) 

Sleep latency (min) 

Total sleep time (h) 

90-min pre-waking sleep efficiency (%) 

90-min pre-waking total sleep time (h) 

9 

8 

7 ~ 

6 

lit 5 

!Q 4 

3 

2 

1 

o 

I 

o 5 15 

Control 

86.7 ± 4.4 

13:00 ± 12:45 

06:55 ± 00:21 

80.8 ± 11.0 

01:11 ± 00:09 

30 

Dawn simulation 

86.8 ± 6.0 

09:08 ± 05:53 

06:56 ± 00:29 

78.2 ± 14.0 

01:10 ± 00:12 

GEE 
Condi ·on. p = 0.04 
Time: p <: 0.0005 

Condi 'on • Ti e: p = 0.01 

5 60 7S 

Timefrom waking (minutes) 

p-value 

0.97 

0.42 

0.97 

0.71 

0.79 

Figure 6.2: Mean ± SO Karolinska Sleepiness Scale. Blue line denotes control condition; 

red line denotes dawn simulation condition. 

6.3.2 Performance 

In the cognitive tests, performance generally improved over the testing period (Le. 

performance improved as time awake increased in both conditions). In the additions test, 

the total number of additions made was, on average, greater in OS {69.5 ± 15.3 [56.2 to 

88 



77.6]) than C (66.9 ± 16.7 [57.9 to 81.1], P = 0.03; Figure 6.3). This corresponds to a 3.9% 

improvement in performance. The same trend was observed for the number of correct 

additions made in the 90 s allocation, although this did not quite reach statistical 

significance (67.7 ± 16.7 [56.1 to 79.2] vs. 65.5 ± 15.0 [55.1 to 76.0], p = 0.06). In the 

multi-choice reaction test performance was significantly better in OS (0.81 ± 0.02 s [0.76 

to 0.85 s]) compared with C (0.85 ± 0.03 s [0.79 to 0.90 5], P < 0.0005; Figure 6.3). This 

corresponds to a 4.7% improvement in cognitive performance. Furthermore, the number 

of correct responses given was significantly greater in OS compared with C. 

89 



GEE 
Condi ion ' p = 0.03 

90 Tirre: p <0.0005 

8 5 

~ 80 
.g 
.t:: 

:g 75 « 
tit .. := 70 

65 

60 

0.95 

0.90 
.-
.l::). 

" 0.8 5 e 
i= 
= .g 

0.80 tZ 
IW 

& 
0.75 

0 .70 

Tirre * Condi ion: p = 0.46 

1 2 

1 

3 
Test 

GEE 
Condition: p < 0.0005 

Time: p < 0.0005 

TilT'e * Condi ion: p = 0 .32 

2 3 

Test 

Aver age 

Average 

Figure 6.3: Mean ± SO multi-choice reaction time test and total number of additions for 

each test point post-waking (1 = 5 mini 2 = 30 min and 3 =75 min) and the average of 

these test . Blue line denotes control condition; red line denotes dawn simulation 

condition . 

The time taken to complete the 4km time-trial was 21.4 s (-1.1 to 44.0 s, P = 0.07; Figure 

6.4) faster in OS than C. This corresponds to a 4.7% improvement in time. There were no 

statistical differences in the selected workload between the two conditions. RPE was 

slightly greater in OS compared with C at the end of the time-trial, although this did not 

reach statistical significance. 
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Figure 6.4: Time taken to complete 4-km time-trial in control and dawn simulation 

condition . Red line denotes average. 

6.3.3 Core and skin temperature 

Core body temperature increased over the testing period by 0.72 ± 0.200( [0.58 to 0.86], 

p < 0.0005; Figure 6.5) . Converse ly, Tsk decreased over this same period by 2.83 ± 0.900( 

[-2 .21 to -3 .46], P < 0.0005) . There were significant interactions (condition x time) 

observed for both core and skin temperature (p ~ 0.001) . In Te the observed differences 

between conditions manifested post-waking (Figure 6.5L with more pronounced 

increases in OS. However, none of the time-point post-hoc comparisons reached 

stati st ical significance . In Tsk the interaction is less clear, with no discernible visual 

differences between the time-courses of the two conditions and no significant post -hoc 

compari sons at each time-point between conditions. 

91 



38 .0 

1 
GEE 

V 3 .8 Condi ion: p = .45 

L 1 
<- Irre p <: 0.0005 
~ 
= 37 .6 ilT e '* Co di i n: < 0.0005 

1 
.. ! ---~ 
~ 3 .4 
E 1 ~ 3 ._ r >-
't: ---1 ~ 3 .0 H-~ 
3 36 .8 

36 .6 

- 0 -10 0 5 15 30 45 60 5 

Time re lat ive t o w aking (m in) 

Figure 6.5: Mean ± SO Te during the last 30 minutes of sleep and waking phase of testing. 

Blue line denotes control condition; red line denotes dawn simulation condition . 

6.3.4 Salivary melatonin 

Immediately post-waking there were negligible differences in melatonin between 

conditions . Nevertheless, melatonin concentrations were significantly lower in OS 

compared with C at 15 min post-waking (3 .9 ± 5.1 [0.3 to 7.5, P = 0.03]) and at 30 min 

post-waking (5.2 ± 6.2 [0.9 to 9.4, P = 0.02]); Figure 6.6. After exercise, these differences 

dissipated. The magnitude of responses to exercise were different between conditions; 

with a negligible increase in pre- to post- exercise melatonin concentrations in C (0.8 ± 6.6 

[-3.8 to 5.4], P 0.73), but a significant increase in the OS condition (5.0 ± 2.9 [3 .0 to 7.0] P 

< 0.0005) . 
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Figure 6.6: Mean ± SO melatonin prior to sleep and during waking phase of testing. Blue 

line denotes control condition; red line denotes dawn simulation condition. 

The correlation between changes in Te and melatonin was 0.07 in C. In OS, this correlation 

was negative and strong (r = -0.72). Due to missing-at-random data, Te from one 

participants' was not included in this analysis. 

6.4 Discussion 

The primary aim of the present study was to examine the effects of 30-min dawn 

simulation on sleep inertia and subsequent early morning exercise performance in 

recreational exercisers. It was observed that following dawn simulation the time to 

complete a 4-km time trial improved by 4.7%. Although this difference was not 

statistically significant, the results may well be practically important. The 95% confidence 

interval indicates that the population mean difference is likely to be between a slightly 

negative value (-1.1 s) or as great as a 44.0 s improvement. Although the lower limit 

indicates a negative outcome, the upper limit suggests that the improvement in 
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performance would be considered advantageous. These data provide novel insight into 

the use of phototherapy in sport and exercise as the effects of dawn simulation on 

physical performance has, to the knowledge of the author, never been investigated 

previously. The use of dawn simulation prior to waking maybe a useful tool to improve 

performance in early morning sporting events and also increase training productivity. 

It was also observed that cognitive performance outcomes (problem solving [3.9%] and 

reaction time [4.7%]) were significantly better after dawn simulation exposure compared 

with the control condition. Conversely, in a study with a similar design, Van de Werken et 

al. (2010) found no effect of dawn simulation on cognitive performance; however a 

reduction in sleep inertia severity was reported. This null effect is somewhat paradoxical 

given the fact that reduced sleep inertia is generally associated with improved cognitive 

performance. Nonetheless, the differences in reported outcomes may be due the 

inherent differences with test design (e.g. length and stimuli). 

The changes in physiological study outcomes noted in this investigation may go some way 

to explaining the mechanisms by which these changes in performance manifest. 

Subjective improvements in alertness paralleled with increased cognitive output; this 

continuum was observed intra- and inter-condition. Additionally, A significant reduction 

in melatonin was seen in the dawn simulation condition 15 and 30 minutes post-waking. 

These reductions may be due to a residual effect of the light exposure on the pineal 

gland. It is well established that light suppresses the secretion of melatonin (Lewy et al., 

1980); however, it is important to note that light may exert it effects independently from 

those of melatonin. 
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Due to its soporific effects, the reduction in melatonin may actually be the catalyst for the 

improvement in alertness. Indeed increased melatonin, whether endogenous or 

exogenous, is associated with decreased alertness (Cajochen et al., 2003). Previous 

studies examining the effects of dawn simulation on melatonin have produced 

contrasting results. Studies by Danilenko et al. (Danilenko et al., 2000) and Terman et al. 

(Terman et al., 1989) reported shifts in the dim light melatonin onset, whereas Gimenez 

et al. (Gimenez et al., 2010) reported no change. These paradoxical findings could again 

be due to the inherent differences in study design, sampling rate and intensity and 

duration of light exposure. In the present study, as with others, involving attempted 

circadian manipulation and exercise, directly measuring the effects of the interventional 

product on any changes in the full circadian rhythm of variables (Le. melatonin and Te 

[discussed below)) is not feasible. This is due to the inherent study aim of participants 

having to complete exercise after waking from nocturnal sleep. It is well documented that 

physical activity produces masking effects on circadian rhythms, making estimates of 

circadian phase unreliable. 

A greater increase in Te was observed post-waking in the treatment condition, although 

this was not statistically significant. This larger rise in Te may be dependent upon the 

significant decrease in salivary melatonin in the dawn simulation condition. This is 

evidenced by highly negative within subjects correlation between melatonin and Te from 

waking to 30 min post-waking. The inverse relationship between melatonin and Te is 

frequently reported in the field of chronobiology and related disCiplines. The greater 

increase in Te may actually have influenced both cognitive and physical performance. 
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Higher body and brain temperatures have been shown to increase synaptic function via 

increased transmission speed (Masino and Dunwiddie, 1999, Masino and Dunwiddie, 

2000). Wright et al. (2002) reported that an increase in body temperature of only "'0.1Soc 

was associated with improved cognitive performance, suggesting that small changes in 

body temperatures can influence cognitive output. This hypothesis may go some way to 

explaining the differences in cognitive performance throughout the testing period. Given 

that Tc and cognitive performance significantly increased throughout the waking period 

and Tc and cognitive performance were generally higher in the dawn simulation condition. 

Taken together, changes in cognitive performance may be somewhat dependent upon Tc. 

Certain brain functions appear to have different limits of thermal sensitivity (Wilkinson et 

al., 1964) and if temperature is too high, performance levels decrease (Hancock and 

Vazmatzidis, 2003). During physical activity, perhaps with the exception of long-duration 

exercise or conditions of extreme hyperthermia, increased body temperature is linked 

with improved results, similar to the effects of a warm-up. Increasing overall body 

temperature is associated with; reductions in muscle and joint stiffness, enhanced nerve 

transmission, increased anaerobic metabolism and increased oxygen delivery to muscles 

(Bishop, 2003), all of which have been shown to improve exercise performance. However, 

compared with some studies (e.g. Bergh and Ekblom, 1979) the difference in Tc between 

conditions prior to the time-trial in the present was small ("'0. 16°C). Nonetheless, this 

mechanism may go some way to explaining the differences in 4-km time-trial 

performance. 

Van de Werken and colleagues (2010) hypothesised that a change in skin blood flow and 

therefore subsequent alterations in skin temperature upon waking resulted in reduced 
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sleep inertia. In the present study no change in Tsk between conditions was observed, 

however the technique utilised by Van de Werken (2010) is more sensitive than the 

current method; meaning that such changes may have not been detectable. As with much 

research utilising light it is difficult to blind participants to conditions. Although it could be 

argued that a treatment effect was observed due to no true placebo, the participants 

were not informed of the experimental rationale. 

Whether dawn simulation actually effects the circadian system is equivocal. Appropriately 

timed light exposure can produce large phase-shifts, in melatonin and body temperature 

for example. A predominant issue with dawn simulation research is measuring the 

quantity of light which penetrates through the eyelid; something that remains largely 

enigmatic in the current literature. Reports vary from around 5% penetration (Ando and 

Kripke, 1996) to attenuation of circadian-effects of light by approximately two orders of 

magnitude (Bierman et al., 2011). Recent preliminary data has demonstrated that light 

through the eyelids can suppress the secretion of melatonin (Figueiro and Rea, 2012). 

These results are to some extent in agreement with the findings of the present study, in 

which an acute drop in salivary melatonin levels was noted. Although in terms of dawn 

simulation, further investigation is required to fully substantiate any affects, both acute 

and chronic, on the circadian system. 

The author acknowledges that extrapolation of results, especially those of physical 

performance, from recreation ally active individuals to professional athletes needs to be 

done so with caution. The variation between times for elite athletes is likely to be 

reduced. Furthermore, these results may only be valid for the time at which sleep inertia 
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is present (Le. immediately post-waking). Moreover, the use of dawn simulation with 

early chronotypes per se may well be ineffective but this remains to be investigated. 

In summary, a single exposure to 30 minutes dawn simulation prior to waking from 

nocturnal sleep reduces the transient effects of sleep inertia in late chronotypes. This 

amelioration in sleep inertia was accompanied by improved physical performance and 

significantly improved cognitive functioning. This in turn, may well be beneficial for 

athletes who train or compete in the early morning; as well as for individuals who work in 

an environment that requires high cognitive load. The mechanisms by which dawn 

simulation exerts its effects remain undetermined and further investigation is required to 

substantiate this. 
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CHAPTER 7 

STUDY 4 

THE PRACTICALITY AND EFFECTIVENESS OF 
SUPPLEMENTARY BRIGHT LIGHT FOR REDUCING JET­

LAG IN ELITE FEMALE ATHLETES 
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7.1 Introduction 

Jet-Iag can be experienced when there is misalignment between the internal 'body clock' 

and the new local time following a transmeridian flight across multiple time zones 

(Graeber, 1982, Reilly et al., 1997, Nagano et al., 2003). Unlike travel fatigue, the 

symptoms of jet-Iag can vary with time of day and do not tend to abate until circadian 

rhythms are aligned to the new time zone. Jet-Iag is considered a sleep disorder (ICSD, 

2005) and its primary symptoms are, but not limited to, acute insomnia and day time 

sleepiness, impaired physical and neurocognitive performance, poor mood, irritability and 

gastrointestinal complaints (Waterhouse et al., 2007, Arendt, 2009, Haimov and Arendt, 

1999, Arendt et al., 2005). 

Although early studies involved the use of a single analogue scale for measurement of the 

general perception of jet-Iag, more recent researchers have employed multi-symptom 

measurements at numerous times of day for several days after the flight (Edwards et al., 

2000). The severity and duration of these symptoms appears to be dependent upon the 

number of time-zones crossed, the direction of travel, as well as the individual perception 

(Graeber, 1982, Reilly et al., 1997, Graeber, 1989, lowden and Akerstedt, 1998, 

Waterhouse et al., 2007, Eastman and Burgess, 2009). Since jet-Iag is a multi-symptom 

condition resulting from a 'real-world' problem, it is difficult to research the effectiveness 

of any treatments for symptoms. This is compounded by the fact that different 

physiological systems adapt to a new time zone at different rates and individuals perceive 

the relative importance of each symptom differently (Waterhouse et al., 2007). However, 

the promotion of accelerated phase shifting of the body clock via careful timing of 

"zeitgebers" is considered a useful intervention for alleviating jet-Iag (Sack, 2010). 
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While the various important zeitgebers of human circadian rhythms are well-known from 

laboratory-based studies, there is a lack of well controlled field studies to ascertain 

whether manipulation of these zeitgebers is effective for reducing jet-Iag symptoms 

(Waterhouse et al., 2007). A difficulty in this research is the separation of any acute 

effects of a treatment from the circadian phase shifting effects. This problem has been 

discussed with respect to melatonin, hypnotics and exercise, but not to light. This is 

surprising given that one of the most commonly-advised treatments for jet lag is to seek 

or avoid light after arrival at times depending on the phase response curve for light 

(Minors et al., 1991, Revell and Eastman, 2005, Khalsa et al., 2003), even though light is 

also known to have acute effects on body temperature and alertness (Cajochen et al., 

2005). 

To date, there are only two published field studies on the effectiveness of bright light on 

jet-Iag symptoms. Boulos et al. (2002) reported that use of bright light visors (3,000 lux) 

elicited only modest re-entrainment of circadian rhythms after westward travel over six 

time-zones. These shifts were also not accompanied by any improvement in sleep, 

performance, or subjective assessments of jet lag symptoms. Lahti et al. (2007) reported 

that chronobiologically-timed light exposure did not significantly decrease the subjective 

symptoms of jet-Iag in cabin crew. 

Jet-Iag can be merely a self-limiting irritation for many travellers, especially people 

travelling for vacation (Sack, 2010). Nevertheless, there is a fundamental requirement for 

international-level athletes to perform well and be physiologically at their optimum soon 

after travel. International athletes often travel for training camps, international 

competition and tournaments and their travel schedules and obligations soon after arrival 
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are considerable. Therefore, the use of jet-Iag alleviating methods, such as indoor bright 

light, may be unacceptable and impracticable during international travel. 

Previously, the effects of melatonin (Edwards et al., 2000) and temazepam (Reilly et al., 

2001) on various symptoms of jet-Iag in athletes have been examined. Neither 

intervention mediated notable improvements in jet-Iag symptoms in this population. 

However, like the studies on bright light, these studies did not adhere fully to CONSORT 

recommendations, which guide researchers in good practice for reporting randomised 

control trials (RCT). No research group has yet investigated the effectiveness of artificial 

bright light for reducing the jet lag symptoms experienced by world class athletes, 

especially using a formal RCT approach. Therefore, the aim of the present study was to 

investigate the practicalities and effects of appropriately timed supplementary light 

exposure on elite female soccer players following eastward travel over at least five time 

zones. The primary objective was to evaluate the investigational product on subjective 

jet-Iag, compared to a control group. The secondary objectives included evaluations of 

circadian phase using body temperature and hand grip strength and the analysis of the 

manifestation and recovery other subjective symptoms relating to jet-Iag. 

7.2 Methods 

7.2.1 Participants 

This was a, parallel-group randomised controlled trial. With respect to the framework of 

sports performance research (Atkinson et al., 2008b), this was a phase 11 study of 

intervention effectiveness in "real-world" conditions. Twenty two elite female soccer 

players from a national team volunteered for this study. The players were aged 26 ± 4 

years, had body mass of 65.1 ± 5.9 kg and a height of 1.71 ± 0.05 m (mean ± SO). The 
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participants travelled from the east-coast of the USA to Lisbon, Portugal (5 time-zones 

eastward). Ten players travelled from the west-coast of the USA prior to the final air­

travel to Portugal (a total of 8 time-zones eastward), although the number of such players 

was ultimately balanced across groups (n=5 in each) and this source of variability was 

partitioned out of all analyses. All travel was undertaken on the same day. Data were 

collected in February 2010. The time of sunrise and sunset were "'07:30 and "'18:20-h, 

respectively at this time of year. Participants were provided with electronic and hard 

copies of the study protocol before supplying informed consent to undertake the study. 

All procedures were approved by the local ethics committee and conform to the 

Declaration of Helsinki and the ethical guidelines of IJSM (Harriss and Atkinson, 2011). 

7.2.2 Group allocation procedures 

During the study, players were accommodated in 11 hotel rooms, two to a room, with 

rooms coded 1 through 11 in the order of the assigned room number. Therefore, players 

were randomly assigned, through a blinded individual,to independent control or 

intervention arms using simple randomisation with no blocking (StatsDirect software v. 

2.7.8, Altrincham, Cheshire, UK). Room was the unit of randomisation as the two players 

accommodated in the same room had to receive the same treatment - intervention or 

control, as allocated - to avoid contamination. The software uses the Mersenne Twister 

algorithm for random number generation (Matsumoto and Nishimura, 1998) with the 

seed taken from the computer clock. Before the arrival of the players, the 11 hotel rooms 

were labelled as Intervention or Control in accordance with the randomisation schedule, 

with concealment of the identity of the players to be housed in each room. The 

reservation details were not known to the person labelling the rooms. Owing to illness, 
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two participants, one from each group, were obliged to drop out of the study; all their 

data were discarded from the study. Therefore, a total of 20 participants completed the 

randomised study (11 Intervention: 9 Control). A small amount «1%) of the questionnaire 

data were missing completely at random due to oversight by the participants. All 

physiological data were collected successfully. Participants' characteristics are shown in 

Table 1. 

7.2.3 Research design 

Following a 7-h flight from New Jersey, USA, the players and support staff arrived in 

Lisbon at around 09:DO-h. This was followed by a 2-h journey to their hotel via coach. 

Immediately upon arrival at the hotel, participants undertook the first battery of tests 

prior to consuming lunch. The same battery of tests was then completed prior to the 

evening main meal and retiring to bed on the first day. Also, for the subsequent three 

post-flight days the tests were undertaken at four times a day, prior to: breakfast, lunch, 

evening meal and retiring to bed at approximately 08:00-h, 13:30-h, 18:00-h and 22:0D-h, 

respectively. The participants slept between 23:00- and 07:30-h. The measures included 

in the battery of tests were intra-aural temperature IAT (3000A, FirstTemp, Genius, USA) 

of the right ear, and dominant hand grip strength (Grip-D, Takei Scientific Instruments co. 

LTD, Japan). Three measures were obtained and then averaged for hand grip strength. A 

short rest period ("'155) was given between attempts to ensure sufficient recovery. 

Participants were familiarised with the hand dynamometer prior to the trip and then 

again when they arrived in Portugal before the first battery of tests were completed. 

Subjective ratings of jet-Iag were obtained on a visual analogue scale (VAS) with a score 0 

= no jet-Iag and 10 = very bad jet-Iag (Arendt and Deacon, 1997, Reilly et aI., 2001). These 

subjective ratings of jet-Iag were obtained as part of the entire Liverpool jet-Iag 
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questionnaire (Waterhouse et aI., 2000). These questionnaire data were taken following 

the physical measurements and after meal consumption, if applicable. Data were 

collected in either the eating hall during the day or players' rooms at night. 

During the intervention periods the control group (C) were instructed to continue with 

their regular activities; these included reading, general socialising and watching television. 

During this time, the individuals assigned to C were asked to remain in their rooms and 

where possible to avoid going outdoors. This group acted as the comparator group. The 

light group (L) were issued with a portable bright light device (Lumie LED SAD lamp, 

Cambridge, UK) and were exposed to 2,500 lux of polychromatic bright light at 50 cm at a 

time of day predicted to accelerate the body clock to the new time-zone (Waterhouse et 

al., 2007). Participants were exposed to a single dose of artificial light for 45-60 min per 

day. Optimally participants were asked to use the light boxes for 60 continuous minutes. 

However, sometimes events such as meetings with coaching staff and other support staff 

meant that this was reduced to 45 min, although it must be noted that this was only an 

issue on day 3 and 4, and the full intervention period was completed by all the 

participants of L on the first two days. Compliance to the intervention period was 

monitored at least twice per session by the researchers. The time of the interventions 

were presented was: day 115:30-16:30, day 2 14:3()"'15:30, day 3 10:30-11:30 and day 4 

09:45-10:45 (Figure 7.1). Participants in L were given one light box between two people, 

that is, one per room, meaning that one light box was used by two athletes at the same 

time. It is recognised that light boxes are designed to be used by individuals, but this 

compromise was necessary in order to implement the intervention. Participants were 

instructed how to use the light box and informed that they were free to read and 

continue to socialise with their roommate. Once the intervention period was complete 
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the participants continued with their usual activities. Each participant in their pair 

simultaneously received polychromatic bright light of 2,500 lux at approximately 50 cm 

for 45-60 minutes on 4 consecutive days. Besides this intervention, no restrictions were 

placed on any of the players' exposure/avoidance to light, as this would disrupt the 

players' schedule. 
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Figure 7.1: Time of light exposure relative to estimated body clock time . = Denotes time light is 

required to advance the body clock for participants travelling from the East-coast of the USA (5 

time-zones). W Denotes time light is required to advance the body clock for participants 
• • travelling from the East-coast of the USA (8 time-zones).: ! Denotes time that light treatment 

took place. _ Denotes time of training (either gym-based or field-based). 
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7.2.4 Data reduction 

Questionnaire data were pooled and summed into related constructs for analysis. Some 

of the questions were on a linear scale with lower scores meaning worse than normal 

symptoms and higher score meaning better than normal symptoms or vice versa. 

Conversely some variables had no positive response. Thus, data with a negative outcome 

were given a positive score and data with a positive outcome were given a negative score. 

These data were then summed and the greater the value of the overall constructs the 

worse the related symptoms. For example, an overall rating of 10 is worse than a rating of 

6; and a rating of -2 is better than "normal" perceived ratings. The data were allocated 

into constructs for function (fatigue, concentration, motivation and irritability), diet 

(hunger prior to meal, meal palatability and post-meal satisfaction), sleep (sleep latency, 

quality, inertia, start-time and waking time) and bowel movement (frequency and stool 

consistency). 

7.2.5 Statistical analysis 

22 participants were accessible, which is a typical number of players in a soccer squad. 

This sample size is similar to those in previous studies (Reilly et al., 2001, Edwards et al., 

2000). The primary outcome was overall subjective jet-Iag (0-10 scale) which has been 

reported to have a standard deviation of approximately 2 units (Edwards et al., 2000). It 

was estimated that a sample size of 10 in each group would have 80% power to detect a 

reduction in jet lag of 2.3 units (standardised effect size of 1.3 using a two group t-test 

with a 0.05 one-sided significance level). 

The data analysts were blinded to group allocation; the coding for each group being 

revealed only after all primary statistical analyses was completed. Most, but not all (e.g. 
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sleep-related data), variables were measured at baseline (pre-intervention) soon after 

arrival in the new time zone and before any intervention was introduced. These pre­

intervention data were presented as mean ± SD and entered as a covariate in the 

statistical model which is considered best practice (Vickers and Altman, 2001). Analysis of 

data in this way has been found to be a more powerful approach than absolute or 

percentage change analysis when correlations between repeated measures are low-to­

moderate (0.3-0.5) as they were with the present data. Variables without a pre­

intervention baseline were analysed in the same model excluding baseline covariate 

control. The influences of prior travel from west coast of USA or not was explored also in 

the statistical model and also included as a between-subjects factor in the model. The 

analysis approach was based on Generalized Estimating Equations, which is considered a 

powerful and robust approach to the analysis of repeated measures data (Ballinger, 2004). 

The least significant difference approach to multiple comparisons was adopted in line 

with current advice not to employ Bonferroni, or similar, approaches to type I error 

control, especially when data are repeated measures (Rothman, 1990, Perneger, 1998). 

The data were analysed using Statistical Package for Social Sciences (SPSS) for Windows 

(Version 17, SPSS Inc., Chicago, IL, USA). Data are presented as mean ± SD (95% Cl). The 

alpha level of significance was set at P S 0.05. 

7.3 Results 

7.3.1 Pre-intervention 

Pre-intervention values for the various outcomes are presented in Table 2. Differences in 

these variables were found to be negligible (effect size < 0.25) between the study groups, 

although a substantial difference between means was noted for the diet-related outcome 
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(effect size = 0.62). However, all these pre-intervention baselines, including those for diet, 

were entered as covariates in the GEE model. 

7.3.2 Overall rating 0/ jet-log 

Overall ratings of jet-Iag were greatest during the evening of the first arrival day, 

especially in the light group (Figure 7.2A). Jet lag was 1.15 ± 3.76 (0.34 to 2.68, P = .13) 

and 1.09 ± 3.32 (0.22 to 2.40, P = 0.10) points higher (worse) for the light group compared 

with controls in the early evening and night-time, respectively. Although these differences 

were observed they did not reach statistical significance. Subjective jet-Iag, averaged 

across the whole of day 2, was 0.93 ± 2.13 (0.09 to 1.77, P = 0.03) points higher in the 

light compared with controls, this difference was statistically significant. While the control 

group showed further decrease (improvement) in jet-Iag between days 2 and 4 by 0.58 ± 

1.02 (-0.25 to 1.41), P = 0.17) points, this did not reach a level of statistical significance. 

The jet lag ratings for the light group decreased significantly between days 2 and 3 by 

1.11 ± 0.86 (-0.61 to 1.62. P < 0.0005) points, and by 0.86 ± 0.15 (0.57 to 1.16, P < 0.0005) 

points between days 3 and 4. In summary, overall jet lag ratings were actually higher in 

the light group for approximately 24-h after the first light exposure, but these ratings 

decreased more substantially over the remaining post-flight days so that jet lag was rated 

as lower at the end of the 4-day study in l. 

7.3.3 Function-related ratings 

Like overall jet-Iag, function ratings were worst in the 8-12-h immediately after arrival and 

showed the most substantial improvement during the 2nd post-flight day. Nevertheless 

there were some differences between function and overall jet lag ratings in response to 

the light intervention and in terms of general time course. First, function-related 
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symptoms were generally much worse in the morning compared with other times of day 

[lunch = 1.67 ± 1.73 (0.98 to 2.36, P < 0.0005); Evening = 1.15 ± 2.28 (0.25 to 2.04, P = 

0.012); Night = 1.31 ± 2.18 (0.45 to 2.17, P = 0.01) points lower compared to morning 

measures]. The largest difference in function symptoms was observed soon after the first 

light exposure on day 1 but, unlike jet-Iag, function ratings were better in the light group 

during this period (Figure 7.2B). However, this difference of 2.44 ± 8.02 (-0.73 to 5.61, P = 

0.13) points at 18:00-h on day 1 did not reach statistical significance. 

7.3.4 Diet- and Bowel-related ratings 

Bowel-related ratings showed only a shallow decrease from 2.5 to 1.5 units between days 

1 and 4 (Figure 7.3). Negligible differences between groups were noted in the time course 

of diet-related symptoms (P ~ 0.136) and time of meal; lunch vs. evening meal (P~0.238). 

7.3.5 Sleep-related symptoms 

The best overall ratings of sleep were reported on the first night (Figure 7.4) in contrast to 

jet lag ratings being rated as the worst just before this sleep period (Figure 7.2A). Worse 

sleep was then reported on subsequent post-flight nights; worst scores being reported on 

the second night. The difference between the first and second night's sleep was 5.97 ± 

4.18 (3.50 to 8.43, P < 0.0005) points higher in the light group compared with only 2.38 ± 

4.08 (-0.28 to 5.03, P = 0.08) pOints higher in the control group. 
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Figure 7.2: Ratings of subjective jet-Iag (A), overall subjective function (B), Intra-aural temperature 

(C) and average grip strength (D) over 4 post-flight days post intervention . * denotes significant 

difference between groups at time-point. # denotes significant difference between groups on day. 

(A) and (B) Higher values mean worse symptoms. Presented as Mean ± SD. C - Black line with 

circles; L - Grey line with squares 
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7.3.6 Intra-aural temperature and grip strength 

Intra-aural temperature showed significant (P < 0.0005; Figure 7.2C) diurnal variation, 

which increased in peak-trough magnitude from 0.58°e on post-flight day 2 compared 

with 0.64°e on post-flight day 4 (P < 0.0005). Intra-aural temperature generally increased 

over the 4 post-flight days (difference between day 2 and day 4 0.07 ± 0.18°e (0.00 to 

0.14, P = 0.06) but there was evidence (P = 0.008) that this depended on study group; 

intra-aural temperature being 0.38 ± 0.33°e (0.16 to 0.600 e, P = 0.001) higher for L 

compared with e on the first post-flight day. 

Grip strength also showed significant diurnal variation (P < 0.0005) with higher values in 

the afternoon and evening (Figure 7.20). The time-course of grip strength was 

significantly different in L compared with e (P = 0.001), although no clear differences can 

be seen (Figure 7.20). 
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Figure 7.3: Subjective ratings relating to bowel factors over 4 post-flight days. Higher values mean 

worse symptoms. Presented as Mean ± SO. C - Black line with circles; L - Grey line with squares 
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7.4 Discussion 

This study is the first randomized control trial of a bright light intervention for reducing 

jet-Iag symptoms in world-class athletes. This research is also novel in terms of the 

consideration of both the immediate and longer-term effects of a supplementary light 

intervention on a comprehensive suite of jet-Iag symptoms measured repeatedly over 

four post-flight days. Although the bright light protocol was based on chronobiological 

principles derived from laboratory experiments on the circadian phase shifting effects of 

light, it did not substantially reduce symptoms of jet-Iag. In keeping with data from 

laboratory experiments, light mediated an acute increase in body temperature, when 

measured immediately after each light exposure, but this did not translate to any positive 

effects on jet-Iag symptoms in the present field-based study. Nevertheless, considerable 

compromises were necessary for the intervention to be acceptable to the players and 

coaching staff, the most significant of which were that players were exposed to the bright 

light in pairs rather than as individuals Also this particular time-zone transition meant that 

athletes were required to stay in their rooms during exposure, even though it was light 

outside, the sample size was naturally small, dictated by the size of the playing squad and 
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jet-Iag was found to be an extremely heterogeneous construct for these athletes, with 

high inter- and intra-variability in symptoms. 

The clearest effects of light were found to be acute rather than chronobiological (i.e. 

phase shifting effects) in this field-based study. For several symptoms, including intra-

aural temperature (IAT), overall ratings of jet-Iag and symptoms relating to functioning 

and performance, the differences between groups were most pronounced following the 

first exposure to light. This acute photothermic effect of light agrees with data from 

laboratory studies. For example, Babia et al. (1991) reported transient increases in 

tympanic temperature whenever participants were exposed to periods of bright light. 

This apparent masking influence of light is generally under-researched especially in 

relation to its link with the phase-shifting effect (Postolache and Oren, 2005). 

The data indicates that there might be two distinct effects of supplementary bright light 

in field conditions - an acute psychophysiological effect, which in the current study was 

not useful to the athletes (possibly due to being restricted to their room during exposure 

for example) and a more favourable longer-term effect which caused jet-Iag symptoms to 

reduce from their zeniths more rapidly. This latter effect may be explained by more rapid 

phase-shifting induced by bright light, but this cannot be confirmed by the results of the 

study. This complicated nature of both the construct of jet-Iag as perceived by athletes 

and the acute and phase-shifting effects of chronobiotics is further highlighted by the 

finding that sleep on the first night of arrival in the new time zone was the rated as best in 

quality, while overall jet-Iag ratings were highest at this time. All these observations 

support the research work of Waterhouse et al. (2007) that the symptoms of jet-Iag are 

rated relatively differently at different times of day and do not necessarily vary in parallel 
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with overall ratings of general jet-Iag. The obvious high inter-individual variability in 

symptoms compounds this problem. 

The lack of well-controlled studies on bright light during field conditions is surprising. To 

the knowledge of the author, there are only two previous field studies that have 

examined the effects of artificial bright light on jet-Iag (Boulos et al., 2002, Lahti et al., 

2007). These studies were not randomised controlled trials, but their findings agree with 

the results from the present study. Boulos, et al., (2002) used 3000 lux visors in an 

attempt to alleviate jet-Iag and described only "modest" circadian phase-shifts. Lahti, et 

al. (2007) concluded that the use of artificial lights boxes mediated no effects on 

subjective feelings of jet-Iag. Based on the overall evidence from these two studies and 

the present chapter, it cannot be concluded, at present, that artificial bright light is 

effective in the treatment of actual jet-Iag symptoms. 

The disparity between these findings and those from experiments involving simulated 

shifts of the sleep-wake cycle (1997) can be explained by the fact that jet-Iag is largely a 

subjective collection of a wide range of different symptoms which may not vary 

completely in parallel with changes in circadian phase during adjustment to a new time 

lone. This classic case of an intervention having efficacy but uncertain effectiveness in the 

real world is a common problem in exercise science research (Flay et al., 2005). It is 

possible that, in order to obtain a favourable effect on symptoms, a much more 

demanding (in terms of time and disturbance to training) protocol was required. 

However, in a population that needs to be highly active outdoors and already needs to 

adhere to a busy schedule, an even more demanding intervention protocol would be at 

least very inconvenient and at worst intolerable to world class athletes. The impact of 
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participants being exposed to the light intervention in pairs cannot be overlooked. This is 

contrary to most manufacturers' instructions for use but it was necessary for the study to 

be undertaken; only a certain number of light boxes could be transported and the players 

naturally shared rooms. 

The objective measure of physical performance (grip strength), IAT and most of the 

subjective measures demonstrated diurnal variation during this study. Grip strength and 

IAT were generally lowest in the morning, which agrees with past research (Drust et al., 

2005) and serves to illustrate that these outcomes were sensitive to the effects of time of 

day during this field study. The peak-trough magnitude of the subjective measures was 

observed to decrease slightly over each post-flight day. This is congruent with the findings 

of previous studies on jet-Iag in athletes (Reilly et al., 2001, Edwards et al., 2000) where 

greater negative feelings were reported prior to sleep and immediately after waking and 

these symptoms diminishing over subsequent post-flight days. This is further evidenced 

by the fluctuations in function-related symptoms. The ratings fall throughout the daytime 

but then are higher at the start of the subsequent day. It was demonstrated by 

(Waterhouse et al., 2000) that fatigue and jet-Iag are highly correlated. The fact that 

individuals had just woken, paralleled with circadian desynchrony, may exacerbate the 

ratings of diminished function and an overall increase in jet-Iag. Conversely, physiological 

measures increased in peak-trough magnitude over the data recording period; a trend 

that was evident in both groups. This increase in peak-trough variation for strength and 

temperature indicate attenuation in jet-Iag as the body clock, external cues and the sleep­

wake cycle become more closely aligned post-flight. 
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Due to time restraints and being unable to access all the world-class athletes freely over 

an extended period, only one physical performance outcome (grip strength) was obtained, 

whereas previous researchers have monitored other performance outcomes including 

reaction time and back and leg strength (Reilly et al., 2001). On the first day of 

measurements, grip strength was lowest at pre-intervention and then increased to its 

highest values prior to sleep, coinciding with a time that would relate to early evening in 

the disturbed body clock rhythm. On the subsequent days, the diurnal variation of grip 

strength resembled the normal late afternoon/early evening peaks and early morning 

nadirs. As originally stated by Reilly, et al. (2001) this interaction between post-flight day 

and time of day highlights the folly with assessing athletic performance across multiple 

time zones without 1) measuring performance at different times of the day and 2) 

allowing adequate time for the performance rhythm to be restored before sports 

competitions are attempted. Although a statistically significant interaction between 

treatment group, day and time of day for grip strength was produced, a clear trend in 

phase-shifting is extremely difficult to infer with the current number of measurements (4 

per day) that were feasible in this elite group of athletes. 

The observation of superior sleep-related variables on the first night after arrival is 

common and probably explained by general travel fatigue (Waterhouse et al., 2007). The 

fact that these variables were worst on the second night is consistent with jet-Iag 

beginning to exert its more longer-lasting influence. It was only on day 3 that sleep-

related variables began to improve. It is unlikely that any of the results reported are 

influenced by individual morning-evening types. Each participant recorded scores of 

either moderate morning or evening types or neutral scores (neither morning nor evening 

types). This supports the notion of Atkinson and Reilly (1996) that athletes of the same 
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age and sport show little variation in this factor. Moreover, although not directly 

controlled for in the random group allocation, morningness-eveningness results were not 

different between the two groups. 

It has been postulated that exercise itself can mediate a phase-shift in either direction 

when timed correctly (Buxton et al., 2003, Baehr et al., 1999). The players recruited for 

the current study undertook training, outdoor or gym based, at least once a day. 

Nevertheless, the timing of this exercise, on the whole, was outside the times predicted 

to mediate phase advances or delays (Waterhouse et al., 2007). Furthermore, the 

outdoor training sessions were conducted during daylight hours; the stimulus of bright 

light is a much more potent zeitgeber than physical activity and would off-set any effect 

of exercise. Even highly strenuous exercise has been shown to produce only modest 

phase-shifts (Buxton et al., 2003). Therefore, the potential that exercise could have 

influenced circadian phase in the current study is highly unlikely. 

As already indicated, this study had limitations, which would be expected when one is 

studying world-class athletes prior to a major international tournament. First, to get a 

true understanding of circadian phase; temperature should be monitored at more regular 

intervals, this would enhance profiling and increase the ability to deduce specific within 

measure variables such as acrophase, amplitude and mesor values. Secondly, a greater 

range of performance measures (e.g. reaction time tests), including pre-flight baseline 

measures, would have allowed for a greater understanding of how jet-Iag exerts its 

effects and how, if at all, supplementary bright light effects these variables. Finally, the 

timing of the treatment period was scheduled in line with suggestions from previous 

reviews (Waterhouse et al., 2007). This meant that the treatment group were exposed to 
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the light box during day light hours and the control group had the option to be exposed to 

the natural light as they were not restricted with activities during the intervention time, 

although they were asked, if possible, not to go outdoors. Also, restricting individuals to 

isolated dark conditions, such as the controls during the intervention period, is not 

realistic to the usual field setting; therefore, a true indication of the effects of 

supplementary bright light on jet-Iag would not have been ascertained. 

The use of chronobiologically-timed supplementary bright light in the current study did 

not alleviate the effects of jet-Iag in world-class female football players travelling east 

across 5-8 time zones. The light was administered on arrival, according to 

chronobiological principles, in pairs and indoors even though it was light outside at the 

same time of day. This study also naturally involved a small sample size. In agreement 

with previous studies on jet-Iag, different symptoms of jet-Iag were emphasised at 

different times of day and appeared to recover at different rates between- and within­

subjects. This variability in the study outcomes is further compounded by the exposure to 

potential masking effects, such as sunlight and exercise, which were impossible to control 

tightly in this field study. 
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CHAPTER 8 

STUDY 5 

THE LIVERPOOL JET-LAG QUESTIONNAIRE STUDY: 
EXPLORING THE RELATIONSHIP BETWEEN 

DIRECTION OF TRAVEL, TIME-ZONES CROSSED AND 
SUBJECTIVE SYMPTOMS OF JET-LAG 
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8.1 Introduction 

In study 4 (Chapter 7), the effects of bright light on jet-Iag symptoms in elite female 

soccer players were explored. In keeping with other studies in similar populations but 

testing the different interventions of melatonin and temazepam, no statistically 

significant reduction in jet-Iag was observed. Although the overarching concept of jet-Iag 

is one that many individuals understand, the underlying perceived components of jet-Iag 

are diverse and complex, and it is this "noise" that may have compromised the detection 

of effects in the previous study. 

Jet-Iag is multi-symptomatic in nature with a lack of consistency in the type and severity 

of symptoms reported between individuals. As well as this individuality, jet-Iag duration 

and magnitude appears to be dependent on the number of time-zones crossed and the 

direction of travel (Graeber, 1982, Reilly et al., 1997, Graeber, 1989, Lowden and 

Akerstedt, 1998, Waterhouse et al., 2007, Eastman and Burgess, 2009). However, when 

travelling over the same number of time-zones, eastward flights generally result in a 

greater severity of jet-Iag than westward journeys. 

The highly subjective nature of jet-Iag complicates the monitoring and 'treatment'. As 

expressed previously this malaise can affect various aspects of physiology including the 

sleep/wake cycle, digestive system and cognition. The Liverpool jet-Iag questionnaire and 

Columbia jet-Iag questionnaire were developed as more comprehensive approaches to 

monitoring jet-Iag, including questions relating to sleep and fatigue. Whereas much of the 

early subjective work on the area simply employed a single visual analogue scale (VAS) to 

measure overall feelings of jet-Iag. However, the development of these 'new' 

questionnaires has not lead to full understanding of how individuals recover from jet-Iag 
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due to individual characteristics and time-course of recovery. It appears that symptoms 

recover at different rates from each other or jet-Iag itself (e.g. Waterhouse et aI., 2000, 

Graeber, 1982). Furthermore, dependent on the time of day, certain symptoms are 

expressed to a greater or lesser extent. For example, Waterhouse et al. (2000) observed 

the amount of jet-Iag in the morning is predicted by the time of waking from sleep (earlier 

times predicting more jet-Iag) and by a decreased alertness 30 min after waking; and the 

amount of jet-Iag in the daytime is predicted by the fall in the perceived ability to 

concentrate. Although this study attempted to get an understanding of how different 

symptoms relate to overall jet-Iag, this was done using a simple regression model and 

within individuals who had crossed the same number of time-lones. Indeed, to the 

knowledge of the author no study has observed the differences in jet-Iag perception over 

multiple time-lones in the same and different directions of travel. This is surprising given 

the commonly cited theory that more zones crossed results in greater jet-Iag. However, it 

should be acknowledged that several studies have reported empirical data from different 

flights, although, these have often only compared long- vs. short-haul flights (Bourgeois­

Bougrine et aI., 2003) or eastward vs. westward travel over a similar number of time­

lones (lemmer et al., 2002). 

The overall aim of the present study is to observe the effectiveness of the Liverpool Jet­

lag Questionnaire in: 

1. Detecting which construct(s) of symptoms, if any, pertain most closely to the 

overall ratings of jet-Iag. 

2. Detecting the severity of jet-Iag depending on classical causality factors (Le. time­

zones crossed and direction of travel). 
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8.2 Methods 

8.2.1 Participants 

Data from 43 (22 females) participants were used for the present study. Participants were 

aged 32 ± 11 years had body mass of 69.6 ± 11.8 kg and a height of 1.72 ± 0.10 m (mean ± 

SO). Travel took place to and from various locations around the globe, between 0 and 11 

time-zones; 22 travelled eastward; 19 westward; and 2 did not change time-zone (e.g. 

portugal to UK). All procedures were approved by the local ethics committee. Completion 

of the questionnaire was taken as implied consent. 

8.2.2 Research design 

Data was collected using the Liverpool jet-Iag questionnaire (Waterhouse et al., 2000). 

Individuals were asked to commence the questionnaire pack on the first full day after 

travel was undertaken, or as soon as possible thereafter. The pack contained a general 

section on how to complete the questionnaires; a questionnaire on demographic 

information and flight details; and 8 jet-Iag questionnaires specific to the time of day that 

completion was requested. The study period was 2 days and on each day participants 

completed questionnaires <30-min post-rising, immediately post-lunch and -dinner and 

<30-min prior to retiring to bed. 

8.2.3 Data reduction 

Data reduction undertaken on questionnaire data in the present chapter was the same as 

that in Chapter 7, for the ease of the reader the details are repeated below. 

Questionnaire data were pooled and summed into related constructs for analysis. Some 

of the questions were on a linear scale with lower scores meaning worse than normal 
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symptoms and higher score meaning better than normal symptoms or vice versa. 

Conversely some variables had no positive response. Thus, data with a negative outcome 

were given a positive score and data with a positive outcome were given a negative score. 

These data were then summed and the greater the value of the overall constructs the 

worse the related symptoms. For example, an overall rating of 10 is worse than a rating of 

6; and a rating of -2 is better than "normal" perceived ratings. The data were allocated 

into constructs for function (fatigue, concentration, motivation and irritability" diet 

(hunger prior to meal, meal palatability and post-meal satisfaction), sleep (sleep latency, 

quality, inertia, start-time and waking time) and bowel movement (frequency and stool 

consistency). 

8.2.4 Statistical analysis 

The number of time-zones crossed (:S3, 4-7 or ~8) and direction of travel (eastward or 

westward) was entered into model as between-subject factors; Chronotype was entered 

as a covariate. The number levels for the within subject-factor was dependent on the 

number of occasions which the specific question was asked. Significant interactions were 

explored using appropriate post-hoc analysis. The least significant difference approach to 

multiple comparisons was adopted in line with current advice not to employ Bonferroni, 

or similar, approaches to type I error control, especially when data are repeated 

measures (Rothman, 1990, Perneger, 1998). The data were analysed using Statistical 

Package for Social Sciences (SPSS) for Windows (Version 17, SPSS Inc., Chicago, Il, USA). 

Data are presented as mean ± SO (95% Cl). The alpha level of significance was set at P :S 

0.05. 
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8.3 Results 

8.3.1 jet-Iag 

Ratings of perceived jet-Iag followed an inverted U profile with respect to number of t ime 

zon es crossed, with significantly worse scores when travelling over 4-7 zones vs . :53 zones 

(difference = 4.4 ± 1.0 Cl : 2.4 to 6.4, P < 0.0005) or ~8 zones (difference = 2.3 ± 0.8 Cl: 0.7 

to 3.9, P = 0.006) (see Figure 8.1). This profi le was more pronounced for westward (p :5 

0 .004) vs. eastward travel . There was a trend for jet-Iag being worse for eastwards than 

w estwards travel, but this diffe rence did not reach statistical significance (difference = 0.9 

± 0 .6 Cl : -0.4 to 2.2, P = 0.18). There were interactive effects of direction of travel and 

num ber of time-zones crossed; with greater j et-Iag following westward travel over 4-7 

time-zo nes than eastward (d iffe rence = 2.2 ± 1.3 Cl : -0.4 to 4.7, P = 0.09), and vice-versa 

over ~8 time-zones (difference = 1.7 ± 0.9 Cl : -0.1 to 3.5, P = 0.07). 
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Figure 8.1: M ean±SD jet-Iag ratings over the number of time-zones crossed. * Denotes 

statistica lly significant difference from preceding measure . t Denotes statistically 

signi fica nt diffe rence between :53 and ~8 zones. 
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8.3.2 Function 

Like the overall jet-Iag ratings, functioning symptoms followed an inverted U profile, 

albeit less pronounced (see Figure 8.2). For 4-7 vs . ~8 zones crossed the trend was similar 

as that observed for jet-Iag but was not statistically significant (difference = 2.4 ± 1.4 Cl : -

0.5 to 5.3, P = 0.10); the effect remained significant between 4-7 vs. ~3 zones crossed 

(difference = 4.7 ± 1.8 Cl: 1.1 to 8.3, p = 0.01). There were negligible effects of travel 

direction (p = 0.89), although the "inverted U" profile was more prominent after 

westward vs. eastward travel; jet-Iag being worse after travel over 4-7 zones vs. ~3 zones 

westward (difference = 6.7 ± 2.4 Cl: 1.8 to 11.7, p = 0.009) and 4-7 vs . ~8 westward 

(difference = 5.0 ± 2.4 Cl : 0.1 to 10.0, P = 0.045) . There were no significant differences 

wh en comparing results of individual time-zone groups with direction of travel. 
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Figure 8.2 : M ean±SD jet-Iag ratings over the number of time-lones crossed. * Denotes 

statistically significant difference from preceding measure . 
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8.3.3 Sleep 

As with the previous two variables, perceived sleep symptoms immediately after waking 

followed an inverted U profil e (see Figure 8.3). Symptoms were significantly worse 4-7 vs. 

~3 zones crossed (difference = 7.1 ± 2.5 Cl : 2.1 to 12.1, P = 0.006) and were slightly 

greater than the al ph a level of significance for 4-7 vs. ~8 zones (difference = 3.8 ± 2.0 Cl: 

0.2 to 7.8, P = 0.062). Th e differences after westward travel were both significantly lower 

for ~3 (difference = 9.0 ± 3.4 Cl : 2.1 to 15.8, P = 0.012) and ~8 (difference = 8.4 ± 3.4 Cl : 

1.6 to 15.3, P = 0.017) zones crossed compared with 4-7. There was evidence that 

eastward travel resulted in worse sleep, although this was not statistically significant 

(difference = 2.5 ± 1.6 Cl: 0.7 to 5.7, P = 0.118). Symptoms were worse after travelling 8 or 

more times-zones east than west (difference = 5.6 ± 2.2 Cl: 1.1 to 10.1, P = 0.015) . 
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Figure 8.3: M ean±SD sleep rat ings over the number of time-zones crossed . * Denotes 

stati sti cally significant difference from preceding measure. 
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8.3.4 Diet- and Bowel-related symptoms 

Neither diet- nor bowel-related perceived ratings showed any significant effects of travel 

direction, number of time-zones crossed or interaction between these variables. 

8.4 Discussion 

The major finding from the present descriptive study was the inverted-U relationship 

between the number of time zones crossed and the severity of perceived jet-Iag, 

function- and sleep-related symptoms. Specifically, the data suggest that crossing over 4-

7 time-zones results in greater perceptions of 'jet-Iag' symptoms than travelling over S3 

zones or ~8 zones. Although unexpected, this finding illustrates the complexity of jet-Iag 

perception, which may vary not completely in parallel with the magnitude of disturbance 

of the human circadian clock. Other important factors are probably the time of day of 

arrival in the new time zone and the more positive effects of travel fatigue on other 

symptoms of jet-Iag, especially those related to sleep on the first night after arrival. 

The inverted U relationship between number of time zones crossed and severity of jet-Iag 

symptoms challenges the notion that the more time zones that are crossed the more 

severe the jet-Iag. This is an assumption in the literature which is mainly gleaned from 

laboratory-based studies and "single-trip" type studies in the field (e.g. Waterhouse et al., 

2007, Sack, 2010, Herxheimer and Waterhouse, 2003). Because a disruption to the body 

clock is considered the underlying causality of jet-Iag, it is intuitive to think that the 

further the distance travelled from 'home' the greater the jet-Iag suffered. In agreement 

with this notion, the mildest jet-Iag symptoms were recorded following travel over S3 

zones. The contradictory data, 4-7 vs. ~8 zones, is supported somewhat by the previous 

Chapter 7 where no difference in jet-Iag ratings were reported between individuals who 
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had crossed 5 zones and those who crossed 8; the control group data is included in the 

current study analysis. These findings suggest that, at least initially, for those who are 

suffering any noticeable jet-Iag that the effects are of similar magnitude and independent 

of the number of time-zones crossed. This finding is novel and emphasises the need of 

real-world studies to examine a time-zone dependent response to jet-Iag, if one exists. 

However, it should be noted that the results observed in the present study are relatively 

acute and the longer lasting effect in this sample are unknown due to lack of long term 

follow-up. 

Although no formal correlation analysis was performed it would appear from the parallel 

nature of the time course in symptoms that the constructs of sleep and function are the 

most influential to the overall changes in jet-Iag. As with the rating of jet-Iag an inverted U 

profile was observed; whereas, in diet and bowel-related variables there were no 

significant changes with the number of time-zones crossed or the direction of travel. This 

indicates that these later variables may be poor markers of overall perceived jet-Iag. 

However, jet-Iag appears to be very heterogeneous in its nature with perception in the 

severity and components varying between individuals. This is compounded further by a 

lack of understanding of what jet-Iag actually is and whether, for example, being sleepy is 

associated with jet-Iag per se or other factors such as travel fatigue or boredom. As 

mentioned previously the reported effects on sleep and function from air travel were 

most directly related to that of jet-Iag. These findings match those of Waterhouse et al. 

(2000) who reported perceived jet-Iag at any time is predicted by the amount of fatigue 

at that time (increased fatigue predicting more jet-Iag); the amount of jetlag in the 

morning is predicted by the time of waking from sleep (earlier times predicting more jet-

lag) and by a decreased alertness 30 min after waking; and the amount of jet-Iag in the 
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daytime is predicted by the fall in the perceived ability to concentrate. In a further study 

Waterhouse and colleagues (2005b) reported that falls in alertness and motivation were 

accurate predictors of increased jet-Iag when measured at the same time. Moreover, 

Lowden and Akerstedt (1998) concluded that jet-Iag was most closely related to the 

amount of sleepiness and the number of awakenings during sleep. 

There was evidence that eastward travel was worse than westward for overall jet-Iag and 

sleep, although neither effect reached statistical significance. Nevertheless, phase 

advancing, as required following eastward, is considered more difficult than delaying the 

body clock due to the intrinsic length of tau (Aschoff, 1981). This is further compounded 

by an increased inability for individuals to initiate sleep following travel to the east 

(Takahashi et al., 2002), an example is provided below. This often means that the 

recovery from jet-Iag is prolonged after eastward travel with the circadian pacemaker 

resetting at an average of 57 minutes earlier per day compared with 92 minutes later per 

day following westward travel (Ashcoff, 1975). However, it should be noted that this 

direction effect wasn't evident for all the variables and it appears that functioning is 

affected at the same rate independent of travel direction. A possible rationale for why 

sleep variables are affected less proceeding westward travel could be due to the time of 

arrival and an associated increase in the homeostatic drive for sleep. For example, flying 

over 6 time-zones westward and arriving at 16:00-h local time would result in the body 

clock oscillating at time representative of 22:00-h, which would result in an enhanced 

need for sleep at night in the new environment. Conversely, this increases the likelihood 

of waking early from sleep. The use of hypnotics may counter this issue; however, this 

could lead to increased daytime sleepiness and off-set any jet-Iag alleviation methods. 

The opposite is observed for eastward travel with poor sleep during the new night-time, 
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including delayed sleep onset, often reported (Waterhouse et al., 2007). Moreover, the 

issue of sleep in the new environment can be compounded further by inappropriate use 

of sleeping tablets and napping during the flight at times which are counterproductive to 

realignment of circadian phase. 

As it stands this study has a small sample size. This is highlighted by no participants in the 

s3 category travelling eastward, meaning that analysis is incomplete. Further participants 

would enable results to be generalised and may allow for the effects of other parameters 

on jet-Iag to be explored such as gender, age and ethnicity. Due to the inherent nature of 

this study there is a lack of control and the researcher is reliant on the participants' 

honesty in the completion of the questionnaire. Furthermore, the observation period may 

need to be extended to get a full understanding of the jet-Iag time course. 

In summary, from the data presented it appears that the Liverpool jet-log questionnaire is 

sensitive to changes in time-zone and direction of travel, which on the most part, are 

consistent with the current understanding of how these factors influence the severity of 

jet-Iag. In the current sample the constructs of sleep and functioning are most predictive 

of overall jet-Iag whereas diet and bowel symptoms provide insufficient information. 

Identifying effective methods for measuring jet-Iag, especially in a field setting, remains 

an issue and more sensitive models may need to be developed, which in-turn could 

enhance the reliability when measuring alleviation techniques. 
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CHAPTER 9 

SYNTHESIS OF FINDINGS 
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9.1 Overview 

The research described in the present thesis was designed to investigate the effects of 

phototherapy on aspects related to sport and exercise; specifically how light can be used 

to improve physical and cognitive performance and to establish its effectiveness in 

ameliorating jet-Iag. Specifically, these studies examined the responses of the circadian 

system following light exposure to adjust and realign biological rhythms, respectively; 

with the objective of optimising physical and cognitive performance in situations which 

enervate human functioning (e.g. extreme hyperthermia, sleep inertia and jet-Iag). 

Chapter 4 aimed to assess the acute effects of bright light exposure on human physiology 

and to validate the lighting protocol utilised by comparing the results with published data. 

Chapters 5 and 6 were completed in laboratory settings where conditions and exposure 

to competing zeitgeibers could be controlled. These studies explored how phototherapy, 

through different delivery strategies, can be used to facilitate improvements in 

performance. Following laboratory studies, a field study was conducted to observe the 

effects of phototherapy on jet-Iag alleviation in world-class athletes, similar phYSiological 

measurements were taken in all studies as markers of the body clock, with measures of 

physical and cognitive collected using various tools and methods. 

9.2 Major Findings 

Although involving different conditions and protocols, the studies in Chapters 5 and 6 

demonstrated that phototherapy, both in terms of chronobiological and acute effects, 

can enhance human performance. In Chapter 5 the use of 30 minutes of bright light prior 

to habitual nocturnal sleep delayed the circadian rhythm of Te, which in turn led to a 

lower temperature at waking. During subsequent exercise in hot conditions, iQ-km 
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cycling time trial performance was improved compared with a no light control condition. 

The difference in Te between conditions (0.2rq prior to commencing the time-trial did 

not quite reach statistical significance (p = 0.07) but was practically meaningful compared 

with other methods of pre-cooling. 

In Chapter 6, the more acute effects of light were investigated and a controlled protocol 

of gradual illumination 30 minutes prior to waking was found to reduce the subjective 

and objective severity of sleep inertia. Human functioning, as indexed by cognitive and 

physical performance, significantly improved over the duration of the testing period in 

both the control and intervention conditions; however, improvements in these variables 

occurred more rapidly in the dawn simulation condition. Given these results and the 

desire for "marginal gains" (Stewart and Hopkins, 2000, Atkinson, 2003) in sport, it would 

not be unreasonable to suggest that phototherapy could be used as an ergogenic aid, in 

terms of both its phase-delaying properties when administered in the evening and its 

general more acute effects on human alertness and performance following a period of 

sleep. 

Contrary to the findings from the laboratory-based studies, in Chapter 7, a supplementary 

light intervention was not found to have any substantial effects on the alleviation of jet 

lag symptoms. A chronobiologically timed intervention did not accelerate the realignment 

of the body clock over the first 4 post-flight days nor did it aid in reducing the subjective 

ratings of jet-Iag symptoms vs. a comparator group. These results highlight the complex 

nature of jet-Iag, especially the within- and between-subject variability in symptoms 

making the detection of any effects difficult amongst the background of noise in the real 

world. In Chapter 8, these issues were further explored. Surprisingly the jet-Iag 
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multivariate symptoms reported by individuals whom had travelled over a range of time­

zones and in differing directions did not produce the results expected from information 

derived from published laboratory-based simulations (Paul et al., 2009, Boivin and James, 

2002). Taken together these studies demonstrate that our understanding of jet-Iag clearly 

has a sound scientific basis (derived from laboratory studies); however, knowledge about 

the effectiveness of jet-Iag interventions is modest when competing synchronisers are 

present in the "real world" and individuals' perceptions are not considered. 

In Chapter 4, it was found that the circadian system and other areas of the brain which 

are stimulated by light are still sensitive to even relatively short duration exposures. 

There was some evidence to suggest that these responses were innervated to a greater 

extent via light which contains blue photons. Furthermore, it appears from the data that 

participants knowing that they are about to receive bright light produces an anticipatory 

effect, similar to that seen in the reduction in BP prior to napping (Zaregarizi et al., 2007), 

which induces a shift from the set-point in the measured variables. 

9.3 General Discussion 

Effective techniques for enhancing human functioning and performance are highly 

desired in the world of sports competition and in the ergonomics of performance in 

occupational contexts. Theoretically, manipulation of the circadian system, via the potent 

stimulus of bright light, is one method by which this can be obtained. In Chapter 5 and 

Chapter 6 it was demonstrated that phototherapy was indeed efficacious in enhancing 

physical and cognitive performance. 
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In Chapter 5, it was found that a chronobiological effect of light reduced Tc prior to 

exercise in the heat and improved physical performance. This improvement may have 

been mediated by a phase delay in Tc produced by evening exposure to ocular bright light. 

Prior to the present thesis, only one other study had investigated the effects of light on 

the circadian rhythm of Tc and physical outcomes (Atkinson et aI., 2008a). Although 

evening bright light facilitated a phase delay and a trend towards lower RPE during 

subsequent exercise, no actual measures of performance were obtained in this study. 

Interestingly, in Chapter 5 no difference in RPE was noted, however, a significant 

improvement in performance in the evening bright light condition was observed. This 

combined finding suggests that the participants chose a higher power output for the 

same level of perceived exertion, which was translated to an improved time to 

completion over a 10-km time-trial. Mechanistic rationale for this thermal-related 

reduction in fatigue include attenuating the decline in cardiac output and enhanced 

homeostatic regulation of brain temperature (Nybo, 2012), hydration status, metabolic 

and/or central nervous system control (Hargreaves, 2008). However, deducing which 

mechanism(s) is/are responsible for the delaying the onset of hyperthermia-induced 

fatigue is unattainable from the present studies. Although, from the data presented it 

appears that evening bright light could be used to lower pre-exercise temperature in 

humans. 

Pre-cooling strategies have been adopted in sporting situations and occupational settings 

with the aim of reducing Tc when the body is likely to be subjected to thermal stress. 

Passive methods such as cold water immersion, ice jackets and resting in hypothermic 

conditions as we" as pharmacological interventions (e.g. melatonin) and the consumption 
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of cold drinks have been investigated. For example, 60 minutes of cold water immersion 

was shown to reduce Te by o.rc compared with a control condition which in turn 

extended the distance covered during 30 min of self-paced treadmill running by "'300 m 

(Booth et al., 1997). Furthermore, Siegel et al. (2012) reported that exercise tolerance 

time whilst running in hot conditions was significantly increased following cold water 

immersion and ice slurry ingestion by approximately 10 and 6 minutes, respectively, 

compared with hot water ingestion. However, reporting times to exhaustion is not 

directly transferable to actual sport performance. Moreover, such techniques may well be 

uncomfortable for the participant and require considerable time for a significant 

reduction in body temperature to be achieved (Drust et al., 2000, Marino, 2002). 

Exogenous melatonin is a method which could be beneficial, however the results are 

equivocal. Atkinson et al (2005a) reported that a 2.5 mg dose of melatonin ingested 75-

min prior to a bout of intermittent exercise attenuated the rise in Te during exercise, 

however, no performance outcomes were measured. Mclellan et al. (2000) utilised 

higher doses of 5 mg melatonin during low exercise intensities. Melatonin resulted in a 

decrease in Te whilst resting in equable conditions (23°C) and during the first 50 minutes 

of exercise but this did not translate into improvements in exercise tolerance time. 

In Chapter 6, the thesis progressed to demonstrate that phototherapy, through dawn 

simulation, was effective in reducing the transient state of sleep inertia and improved 

subsequent cognitive and physical performance. Once again the mechanisms 

underpinning these results are not fully realised from the present study. A significant 

decrease in melatonin 15- and 30-mins post-waking was observed during the intervention 

condition. Due to the innate soporific nature of melatonin, such a reduction may have 

eased the difficulty in awakening. However, this did not translate into any significant 
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changes in Tsk or T Cl which is surprising since these measures often vary in parallel. Van De 

Werken et al (2010) hypothesised that the dissipation of sleep inertia following dawn 

simulation involves light sleep and an accelerated skin temperature decline after 

awakening. However, monitoring sleep stage or depth via EEG was not conducted nor 

was any significant effect on skin temperature observed. Another potential mechanism 

for increased arousal following dawn simulation is a superior increase in cortisol 

compared with a control condition (Thorn and Hucklebridge, 2004), although such 

findings have disputed (Van De Werken et al., 2010). 

The master pacemaker, which orchestrates rhythmicity in surrounding and peripheral 

cells and organs, is highly sensitive to bright light exposure. Therefore, the results from 

Chapters 5 and 6 are not surprising. However, the positive outcomes in performance and 

arousal in the laboratory-based studies did not translate into any alleviation of jet-Iag by 

phototherapy. A "timed" intervention, informed via chronobiological principles, was 

ineffective at substantially reducing subjective symptoms of jet-Iag. Although similar 

findings have been reported in other real-world studies (Lahti et al., 2007, Soulos et al., 

2002), data from laboratory-based experiments suggest that bright light should be an 

effective countermeasure for jet-Iag. This disparity between field and laboratory studies 

can be explained by the fact that jet-Iag is largely a subjective collection of a wide range 

of different symptoms which may not vary completely in parallel with changes in 

circadian phase during adjustment to a new time zone. This classic case of an intervention 

having efficacy but uncertain effectiveness in the real world is a common problem in 

exercise science research (Flay et al., 2005). An interesting observation in Chapter 7 was 

that light mediated an acute increase in body temperature, when measured immediately 

after each light exposure, but this did not translate to any positive effects on jet-Iag 
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symptoms. Chapter 8 revealed further complexities when assessing jet-Iag, with 

deviations from traditional theories with certain aspects of the results. The inverted U 

relationship between jet-Iag and other symptoms such as function- and sleep-related 

constructs for the number of time-zones crossed contextualises this issue. 

Together, these data highlight the need to further our understanding of jet-Iag in a real­

world setting. It would be beneficial for sport teams and other groups who may require 

optimal performance soon after air travel to appreciate an individual's phase (Le. 

chronotype) and how susceptible they are to jet-Iag. Such knowledge may allow for 

individual programmes to be developed which may enhance the alleviation of jet-Iag. 

However, such courses of action may require considerable time and cost meaning that 

they are unlikely to be undertaken. 

Along with chronic (phase-shifting) effects, light exposure is also capable of producing 

acute changes in bodily processes. In Chapter 4 it was demonstrated that the various 

aspects of physiology are rapidly altered during short duration bright light exposure. 

There was evidence to suggest that melatonin and Tc were also manipulated by light and 

that all responses were affected by the characteristics of the stimulus (Le. wavelength). 

The effects of light on melatonin and Tc are well documented and the results presented 

here although not significant follow the respective trends of suppression and 

augmentation .. It is also evident that these acute responses are required prerequisites 

for phase shifting to effects to be realised. 

Figure 9.1 is a schematic representation of the findings summarised within the present 

chapter, which has been developed from Figure 2.1. The schematic shows the interaction 
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between acute and chronic effects and the positive results produced in both cognitive 

and physical performance. Furthermore, it highlights the confounding factors that may 

have influenced the results. 

? 

Figure 9.1: Schematic representation of the major findings presented within the present 

thesis. 
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9.4 Methodological consideration and limitations 

There are several noteworthy strengths in the methods of the current thesis. Firstly, the 

use of time-trials oppose to time to exhaustion as a measure of physical performance 

allows for the results to be compared in actual sporting events. Secondly, the use of an 

isolation chamber in Chapters 4, 5 and 6 meant that participants were subjected to a 

standardised environment which minimised the exposure to exogenous masking factors 

allowing for a more accurate measure of the treatment effect. Thirdly, the use of baseline 

covariate control in the statistical analysis of Chapters 4, 5, 6 and 7 eliminates the 

possibility of differences detected via interventions being masked or enhanced by the 

differences between groups at baseline. 

Nevertheless, limitations are still apparent within this thesis. In Chapter 7 the timing of 

the treatment period was scheduled in line with suggestions from previous reviews 

(Waterhouse et al., 2007). This meant that the treatment group were exposed to the light 

box during day light hours, during which time the control group had the option to be 

exposed to the natural light, although they were asked, if possible, not to go outdoors. 

Also, restricting individuals to isolated dark conditions, such as the controls during the 

intervention period, is not realistic to the usual field setting; therefore, a true indication 

of the effects of supplementary bright light on jet-Iag would not be ascertained. 

Furthermore, the use of one light box between two individuals is not ideal; however, 

logistic restrictions meant that this was inevitable. In Chapter 8 the sample size is 

inadequate to generalise the results to the whole population. Data collection is planned 

beyond this thesis to allow results to be explored in-depth and perhaps a model of jet-Iag 

and its recovery to be formulated. Furthermore, the observation period may need to be 

extended to get a full understanding of the jet-Iag time course. 
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In Chapter 6 EEG was not adopted as a measure. This would have allowed for the sleep 

stage at waking to be deduced, which could explain the differences in sleep inertia at 

waking. Moreover, it would have allowed quantification of whether the participant was 

actually asleep during the intervention phase prior to waking. Although the actiwatch 

data shows no significant difference between conditions, the variables measured are 

indirect and not as accurate as those produced by EEG. Finally, the issue of blinding 

participants to interventions during light exposure remains problematic. In dawn 

simulation studies this could be masked to an extent by using rapid vs. gradual increase in 

iIIuminanace, although participants would still be exposed to some degree of light. In 

studies utilising light boxes a true "control" is difficult to ascertain as well as whether 

bright light exposure alone is enough to produce changes in performance (i.e. a hawthorn 

effect). 

Placebo effects have long been recognised as an issue in all types of research and have 

led to the development of sophisticated research designs in an attempt to minimise or 

eliminate erroneous results. A recent systematic review (Beedie and Foad, 2009) on this 

topic relating to sport performance reported that administrating a placebo manipulated 

performance by -1.9% to 50.7% compared with baseline/control data, with the magnitude 

of the effect usually falling between 1-5%. Therefore, as no true placebo was presented in 

any of the present intervention studies, the results might be affected. This issue is much 

discussed within the bright light literature (reference??) and presents a major on-going 

hurdle in the attempt to produce accurate and reliable results. 

Comparing data collected between studies is compounded by the use of different 

methods of measurement for the same variable. For example, both intestinal and intra-
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aural temperature act as surrogate measures for core body temperature within the 

present thesis. Although the results were not directly compared the ability to do so is 

limited. A short study to determine the variability between the two methods would 

negate this issue and allow for reliable comparisons between data. In addition the 

method of saliva collection undertaken in Chapters 4, 5 and 6 has not been validated 

against the manufactures guidelines. Although internal validity was maintained as the 

collection method used was closely controlled. 

9.5 Directions for future research 

There are several potential areas of future research that have emerged from the studies 

reported in this thesis. These are primarily concerned with unravelling the physiological 

mechanisms pertaining to the interactions between bright light exposure and 

performance manipulation. Additionally, further work on jet-Iag alleviation techniques is 

required in an applied setting, however, prior to this work methodologically sound and 

valid techniques may need to be developed. 

Firstly, a consensus within the literature needs to be reached on what lighting protocol 

stimulates the optimal response from the circadian system whilst still been viable for a 

participant to complete on a regular basis (Le. not excessively time consuming). 

Components that need to be assessed, along with duration, are intensity, spectral 

composition and whether prior dark episodes are a worthwhile addition in light protocols 

(Le. is the treatment effect greater after a dark episode or is this time better spent in light 

exposure ?). 
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Due to the heterogeneous nature of jet-Iag developing techniques to aid with its 

alleviation is difficult. Future research should initially develop a protocol within a 

laboratory setting, to assess efficacy. Once this is established work in the field can be 

undertaken using the same model, this would allow for direct comparisons to be made 

between laboratory findings and real-world effectiveness. Furthermore, in the field to get 

a true understanding of circadian phase; temperature should be monitored at regular 

intervals, this would enhance profiling and increase the ability to deduce specific within 

measure variables such as acrophase, amplitude and mesor values. Secondly, a greater 

range of performance measures (e.g. reaction time tests), including pre-flight baseline 

measures, would allow for a greater understanding of how jet-Iag exerts its effects and 

how, if at all, supplementary bright light and/or other interventions effect these variables. 

Finally, for the results found in Chapter 5 and Chapter 6 to be endorsed as credible 

interventions for elite sports performance further data needs to be collected using 

professional athletes. Thus, research investigating phototherapy and its effects on 

performance need to be assessed in specific target populations. 
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