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ABSTRACT

Digital wireless communication has become one of the most exciting research topics

in the electronic engineering field due to the explosive demands for high-speed

wireless services, such as cellular video conferencing. The second generation

Terrestrial Digital Video Broadcasting (DVB-T2) has been demonstrated to provide

digital communication services with very high spectral efficiency and significantly

improved performance. Orthogonal Frequency Division Multiplexing (OFDM)

systems have been increasingly deployed in mobile networks for their spectral

efficiency and optimum bit error rate. An OFDM system is a multi-carrier system

which transmits signals from a single source at different frequencies simultaneously

as parallel components. A distinguishing feature of the OFDM system is its ability to

preserve high bandwidth efficiency in high speed data streams. Among the different

types of OFDM systems, wavelet based systems have been demonstrated to have

much better bandwidth and channel performance compared to the Discrete Fourier

transform (DFT) and Discrete Cosine Transform (DCT) based systems. The DFT

and DCT systems suffer from several disadvantages including less bandwidth

efficiency due to the need for guard interval and highly complex system design.



Discrete Wavelet transform (DWT) based OFDM systems naturally overcome these

disadvantages by their design methodology and the technique of transmitting

concentrated energy over small spectral coefficients. Several types of modulation

schemes such as DPSK, QAM are employed in OFDM systems, which introduce

certain penalties such as increased bandwidth and complexity of the system design.

So a multilevel differential modulation technique namely Differential Amplitude and

Phase Shift Keying (64 DAPSK) has been proposed as an alternative solution.

DAPSK-OFDM is very suitable for high date-rate digital mobile radio channel with

additive white Gaussian noise (AWGN). In this research work it has been

demonstrated that a combination of DWT-OFDM with DAPSK modulation can be

employed to achieve very low peak-to-average power ratio (PAPR), improved bit

error ratio (BER), and much reduced inter symbol interference (lSI) & inter-carrier

interference (ICI) in wireless mobile network applications. A mathematical model

has been proposed for the DWT-OFDM system with DAPSK modulation scheme in

this work. The system performance has been evaluated via simulation using Matlab

Simulink package and also verified using Matlab programming. This proposed

DWT-OFDM with 64DAPSK hybrid system is demonstrated to have better BER

(by an order of magnitude for an SNR of 25dB) performance and improved PAPR

(by 7.2dB) and interference values. It is also demonstrated that including

companding with this system results in further reduction of PAPR. Finally, the

simulation results also demonstrate that DWT-DAPSK scheme can be successfully

employed in DVTB-T2 systems due to its very high spectral efficiency, much

improved BER and significantly reduced PAPR performance.
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Chapter i introduction

Chapter 1

INTRODUCTION

1.1 Introduction

In broad band mobile multimedia applications the transmission techniques give rise to

some drawbacks due to the time-variant and the frequency selective behaviour of the radio

channels. Multimedia applications require transmitting mixed type of data such as text, video,

graphics, speech etc. using the same radio link. Adapting the transmission itself might lead to

very different requirements of the individual services in terms admissible BER [Quality of

service (QoS)], maximum delay and data rate. Moreover, it can be expected that there will

also be a huge demand for mobile or at least wireless access to multimedia services, for

future developments. However, in the case of radio transmission, high data rates lead to

additional technical considerations. Therefore, a broad-band radio channel is characterized

[Rohling, H., et al (1999)] both by time variant behaviour caused by a moving receiver or

transmitter and by frequency selective fading, which is caused by multipath propagation. As

a result, more users will be able to receive better quality of service using such a system than

by using the traditional code division multiple access (CDMA) systems, additive white

Gaussian (AWGN) channel is used by various radio communication technologies. All the

demands posed by high data rate transmission could be addressed using orthogonal

frequency-division multiplexing (OFDM) as a transmission technique and various broad-

band communication system and services. This solution will be able to support data rates

higher than that supported by Universal Mobile Telecommunications System (UMTS) and

thus can be used in our future mobile communication systems.

1



Chapter 1 Introduction
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Figure 1-1-1 Orthogonal Frequency Division Multiplexing (OFDM)
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Figurel-1-2 OFDM Transmitters and Receiver systems

In 4G communication systems, bandwidth is a precious commodity, and service providers

are continuously met with the challenge of accommodating more users within a limited

available bandwidth (Gupta et al 2008, Xiaclong et al 2002). Fourier based multi-carrier

modulation (MCM) (often called orthogonal frequency division multiplexing (OFDM) is a

strong candidate for the next generation wireless network which requires high data bit rate

(Kumbasar, and Kucur, 2008, Li and Stuber, 2006). The main advantage of OFDM is that it

is immune to multi path fading (Kumbasar, and Kucur, 2008, Li and Stuber, 2006).

2
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Figure 1-1-3 Hybrid DWT-OFDM with DAPSK Transmission system

Currently, the OFDM transmission technique has been adopted in Europe, for digital video

broadcasting (DVB) and digital terrestrial video broadcasting (DTVB). Also, ETSI-BRAN

has selected OFDM technique for HIPERLAN 2 (High performance local area networks),

and it has also been chosen for the extension of the IEEE 802.1 standard for 5GHz frequency

range. Future mobile communication systems with data rates far higher than that of the

universal mobile telecommunication systems (UMTS) may be realized using OFDM as a

suitable modulation technique. Moreover, to improve the bandwidth efficiency, lSI, and ICI,

Discrete Wavelet Transform based OFDM (DWT-OFDM) is under consideration.

To obtain high spectral efficiency, it is necessary to employ multilevel modulation

schemes with variable amplitudes (e.g. DAPSK, QAM). These modulation schemes require

coherent demodulation that needs to estimate and track parameters of fading channels (Kang

et at 2007). Further, a differential modulation technique does not require any explicit

knowledge about the radio channel equalization process. As a result, therefore, different

modulation techniques do not require a frequency-domain equalizer in the receiver, which

reduces the computation complexity.

However, its behavior in dividing the total bandwidth into narrow sub channels results

in a detrimental effect of delays being spread due to multi path propagation. The effects of the

delay spread can be minimized using appropriate modulation technique. Therefore, OFDM

allow the DWT with DAPSK could allow high data rate transmission over highly frequency-

selective channels which will implementation cost to be recovered.

3
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Figure 1-1-4Constellation 64DAPSK

OFDM systems using discrete Fourier transform (DFT) and discrete cosine transform

(DCT) transform have been implemented and are in use in practical systems. A block

diagram of such a system is shown in Fig.I.I. However, these cosine Fourier based Systems

suffer from less bandwidth efficiency due to the need for guard intervals, and thus require a

highly complex system design. Therefore, if a conventional single carrier system is used for

this purpose, the channel equalization can be very complex. A discrete wavelet transform

(DWT) based OFDM systems overcome these disadvantages by transmitting concentrated

energy over small spectral coefficients. Many research investigations have led to the

conclusion that the wavelet based OFDM is more advantageous than the Fourier based

OFDM (Abdullah and Hussian, 2007, Sandberg and Tzannes, 1995, Akansu and Xueming,

1998, Strang and Nguyem, 1994). However, a major disadvantage of the OFDM system on

the whole is that the transmitted signal has a high peak-to-average power ratio (PAPR).

1.2 Research Motivation

In recent years, describing complex algebraic functions and analysing empirical continuous

data obtained from different types of signals at different scales of resolution have seen

significant development. The most widespread application of the wavelet transform so far has

been for data compression. This is associated with the fact that the DFT is closely related to

sub band decomposition.

Various modulation schemes such as the differential phase shift keying (DPSK),

quadrature amplitude modulation (QAM) have been employed in the OFDM systems.

However, these modulation schemes have certain drawbacks such as increased BW, complex

system design, etc. So an alternative, multilevel differential modulation technique called

Differential Amplitude and Phase Shift Keying (64 DAPSK) has been proposed by (Liu, and

4
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Wei, 2001, Tan, 2006, Hanzo et al 1999). Since then it has been shown that (Webb, W. T.,

1992) DAPSK-OFDM is very suitable for high data rate digital mobile radio, which uses

additive white Gaussian noise (AWGN) channels. This research work draws inspiration from

the research models described above, and proposes combining a DWT-OFDM system with

DAPSK modulation scheme in order to achieve a low peak-to-average power ratio (PAPR),

improved bit error ratio (BER), improved inter symbol interference (lSI) and inter-carrier

interference (fCl) in wireless mobile systems. A mathematical model for the DWT -OFDM

system with the DAPSK modulation scheme is also proposed in this work. Furthermore, the

system performance in terms of BER, PAPR, lSI and leI is also evaluated via simulation

using SimulinklMatlab software package.

1.3 Research Objectives

The principal objectives of this research can be summarized as follows: 1. To

compare and evaluate the performance of DeT , DFT and DWT -OFDM techniques in

combination with QAM, DPSK and DAPSK in terms of BER, PAPR and SNR; 2. To design

a hybrid system of DWT -OFDM with DAPSK modulation and to develop a mathematical

model for the system; 3. To simulate the mathematical model by using MATLAB code and

verify using the Simulink model; 4. To evaluate the performance of the proposed system in

terms of reduced PAPR obtained in the proposed system and the performance of leI & lSI.

1.4 Contributions

In this research work, a mathematical model that describes hybrid DWT-OFDM with

DAPSK scheme has been developed and presented. This hybrid system has been shown to

perform better in terms of spectral efficiency, compared to that of the DFT and DeT based

systems for high data rate applications such as mobile communication networks. Moreover,

the DWT is widely used for data compression. Wavelet based still image compression

methods not only out-perform traditional methods in the rate-distortion sense, but also

possess built-in scalability such that single bit stream can be transmitted progressively and

decoded from coarse to fine resolution (Guo, H., 1998) While DWT-OFDM provides many

advantages, the transmitted signal does not have a constant envelope. In this work, reduction

in the power contained in the side-lobes has been demonstrated using a new companding

transform technique for combination ofDWT OFDM with 64DAPSK.

Moreover, the proposed hybrid system is demonstrated to have improved the bandwidth

efficiency, lSI, and K'I.

5
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1.5 Thesis layout

The layout of this PhD thesis is as follows: After an introduction in Chapter 1, Chapter 2

presents the literature review on OFDM techniques and the associated modulation schemes.

Chapter 3 presents the background information on OFDM systems with different

transformations techniques and modulation schemes. Chapter 4 presents the mathematical

model and the analysis for the novel hybrid OFDM system consisting DWT system with

DAPSK scheme that can be used for wireless communication system for optimum

performance. Chapter 5 presents the simulation and analysis of the proposed system, and its

performance evaluation using Matlab/Simulink software package. The results and discussion

for simulation are presented in Chapter 6, while Chapter 7 summarises the conclusion and

provides suggestions for future extension of the work. Finally, the references are listed and

two appendices are included as well.

6
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Chapter 2

Literature Review on OFDM techniques and modulation scheme

Multicarrier modulation techniques such as orthogonal frequency division

multiplexing (OFDM) are attractive for a number of reasons. They have high spectral

efficiency since the sub-carriers are orthogonal in frequency and also adaptive bit loading

techniques can be employed.

As the OFDM techniques are suitable for both flat fading and frequency selective fading

communication channels, they have been implemented in communication systems since the

90s (Lee and Williams, 2000). The OFDM technique imposes high demands on the accuracy

of frequency synchronization. An approach of the OFDM is to change the spectral occupancy

by using pulse shaping techniques. Furthermore, OFDM appears to cope with issues such as

narrowband jamming, and also serves as a natural solution when the available spectrum is not

contiguous, for the overlay system (Mounir and Swami, 2008).

The OFDM is not without its disadvantages. One of the major disadvantages ofOFDM is its

characteristically high peak-to-average power ratio (PAPR). Severe signal distortions will

result, when high PAPR signals are transmitted through non-linear power amplifiers. Another

disadvantage is the power and bandwidth penalty imposed by the closely spaced subcarriers

and thus the cyclic guard interval makes the link performance sensitive to oscillator

frequency offset and phase noise. This means that OFDM systems require more expensive

power amplifiers. , and therefore techniques for reducing the PAPR of OFDM signals have

been studied extensively (Jun and Stuber, 2002) by researchers.

In OFDM system design, a number of parameters need to be considered, such as the

guard time's symbol duration, number of subcarriers, subcarriers spacing, the type of forward

7



Chapter 2 Literature Review on OFDM techniques and modulation scheme

error correction coding, and modulation type per subcarrier. The choice of parameters is

influenced by system requirements such as required bit rate, available bandwidth, Doppler

values and tolerable delay spread. Some requirements pose conflicting demands. For instance,

a large number of subcarriers with small subcarrier spacing are desirable to get a good delay

spread tolerance, however the opposite is true for good tolerance against phase noise and

Doppler spread (van Nee, 1996).

2.1 DFT, DeT, and DWT OFDM Systems,

2.1.1 DFT based OFDM

For analysing harmonic signals for which there is no need for local information, the

Fourier transform theory has been very useful. The Fourier series is called the discrete

Fourier transform (DFT) if it used in this way to represent finite-length sequences. In the

following discussions, ts represents one period finite-duration of a DFS sample within the

finite-duration sequence.

Fast Fourier transform (FFT) algorithms are based on the fundamental principle of

decomposing the computation of the discrete Fourier transform of length into successively

smaller DFT components. The way this principle is implemented leads to a variety of

different algorithms, all with comparable improvements in computational speed. Generally,

we have two types. The first, called decimation in time, derives its name from the fact that in

the process of arranging the computation into smaller transformations, the sequence x[n]

(generally thought of as a time sequence) is decomposed into successively smaller sub time

sequences. In the second general class of algorithms, the sequence of DFT coefficients X[k]

in which a frequency coefficient is decomposed into smaller sub frequency sequences -

hence its name, decimation in frequency (Oppenheim, A. V., et al., 1998).

8
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Already the traditional DFT based OFDM has been successful in generating research

interest in its application to high performance local area networks (HIPRLAN) (Peng and

Beaulieu, 2006), European digital video/audio systems (DVB, DAB) (Tao et al., 2007), and

in the physical layers of many wireless network standards, such as IEEE.802.11a, IEEE

802.16a. (Tao et al., 2007). It has also found applications in asymmetric digital subscriber

loop (ADLS), and in wire-line digital communications system(Bingham, 2000). The OFDM

system's digital demodulations and modulations can be realised as DFT and the inverse DFT

(IDFT), respectively (Weinstein and Ebert, 1971).

2.1.2 DCT based OFDM

The discrete cosine transform (DCT) scheme is synthesised based on a set of

cosinusoidal functions that can be used in an orthogonal basis to achieve multicarrier

modulation (MCM) (Gupta et al., 2008). DCT has better compression capability for bit rate

reduction compared to other techniques like transform coding or predictive coding (Gharge

and Krishnan, 2007). Compression plays a significant role in transmission and signal or

image processing. Most video compression standards such as MJPEG, HDTV, JPEG and H.

261, use DCT as the standard transform coding scheme(Chiu and Liu, 1992).

The DCT-OFDM can sometimes, offer additional benefits over the DFT-OFDM, since

the fast DCT algorithms provide fewer computational problems than FFT algorithms, as

proposed in(Wang and 1984). The upper bound of throughput for the DFT- based OFDM

system is less than that of the DCT-based OFDM system, in the case of exponentially and

static decaying channel profiles by using the circular convolution property of the DCT, as

reported for the DCT-OFDM system feeding a symmetrically extended data sequence (Peng

and Beaulieu, 2006).

9



Chapter2 Literature Review on OFDM techniques and modulation scheme

However, both DFT and DCT based OFDM systems need to add guard interval time

(GI) or cyclic prefixes (CP) to the signal before transmitting it, in order to spread the

successive frame symbols with an immunity against inter-symbol interference (lSI), which

decreases the spectral containment of the channel (Abdullah et al., 2009).

2.1.3 DWT based OFDM

In recent years, describing complex algebraic functions and analysing empirical continuous

data obtained from different types of signals at different scales of resolution have seen

significant development. The most widespread application of the wavelet transform so far has

been in data compression. This is associated with the fact that the DWT is closely related to

sub band decomposition.

The discrete wavelet transform OFDM (DWT-OFDM) does not require cyclic

prefixing (CP) (Dilmaghani and Ghavami, 2008) so that the spectral containment of the

channels is better for DWT than DFT and DCT-OFDM systems. Then, as alternative

platforms for replacing FFT and IFFT, the DWT and IDWT have been proposed in

(Dilmaghani and Ghavami, 2008). The DWT-OFDM system saves 20% in bandwidth (BW)

efficiency compared to DFT and DCT systems due to the elimination of CP (Tellambura,

2001). Also, DWT-OFDM can better combat narrowband interference due to its very high

spectral containment properties of wavelet filter, and its inherent robustness with respect to

inter carrier interference (lCI) than the traditional DFT (Tellambura, 2001)

In addition, using wavelet in OFDM systems results much lower levels of ICI compared

to DFT OFDM (Sandberg and Tzannes, 1995) systems, due to the huge reduction in power

contribution to the side-lobes ..

2.2 Modulation schemes
The process of transforming the information generated by a source into a signal format

that is suitable for transmission over a physical channel is denoted by the term modulation.

10
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The information is represented by a sequence of bits b, of period Tb, in the case of

digital transmission (Benvenuto et aI., 2007). The modulation theory employs frequency and

time domain analyse systems for demodulation and modulation of information-bearing

signals (Zimer et aI., 1990). The main modulation techniques used in modem digital

communication systems are QPSK, QAM, DPSK, DAPSK, etc.

2.2.1 QPSK modulation scheme
The quadrature phase shift keying (4-PSK) termed as QPSK, uses 2 basis functions

for its modulation. The input bit sequence is split into two bit sequences, i.e. in-phase and

quadrature sequences. The two binary sequences are then separately modulated by two

carriers, which are in quadrature. The two modulated signals, each of which can be

considered as a BPSK signal, are summed to produce a QPSK signal. Each coordinate in its

constellation quarter represents a point in real and imaginary terms in the signal space. Thus,

the transmitted signals can be represented in terms of two orthonormal functions (Zimer et al.,

1990).

The QPSK scheme is proposed in the DFT-OFDM system to improve measurement

parameters such as Bite Error Rate (BER) and avoid leI (Ryu et aI., 2005).

2.2.2 QAM modulation scheme
The quadrature amplitude modulation (QAM) is a signalling scheme that allows multiple

signals to be transmitted using quadrature carriers (Benvenuto et aI., 2007). It is a multilevel

modulation scheme that can be represented in M-QAM where M is equal to 2n
, n= 1,2 ... 8.

Although, conventional QAM requires exact channel estimation for coherent

demodulation it can also achieve high bandwidth efficiency (Kai-ming et al., 2005).

However, the channel estimation may lead to severe performance degradation when

estimation error increases and requires relatively high computational effort (Xiaoyi et aI.,

1999).

11
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There have been several research proposals to use QAM modulation scheme in

conjunction with DFT, DCT and DWT based OFDM systems. For example, DWT-OFDM

and DFT-OFDM systems with QAM modulation have been implemented in the system

demonstrated by (Abdullah et al., 2009).

However, there are certain drawbacks m using the 64QAM modulation in HF

communication systems. For example the complex equalization algorithms and channel

estimation required for this system, result in an increased cost of receiver and demands a

large amount of computation. Moreover, the small angular separation between the

constellation points imply high sensitivity to carrier synchronization, and a nonlinear

distortion in both amplitude and phase is caused when the power amplifiers are operated

close to saturation region in order to improve power efficiency.

2.2.3 DPSK modulation scheme

The differential phase shift key (DPSK) is a differential encoding of the message

sequence at the transmitter (Zimer et al., 1990). Each bit of the encoded sequence is

calculated by holding the current digit as a reference for the following bit in the sequence. A

,l' is encoded as no change of state, and a '0' is encoded as a transition from the state of the

reference bit to the opposite state in the encoded message sequence. The encoded message

sequence then phase-shift keys a carrier with phase tt and 0 (Zimer et al., 1990). The M-

DPSK modulation is proposed in (Divsalar and Simon, 1990).

For the DPSK modulation scheme, the constellation diagram describes the transition

between phase states. For the 64DPSK, a phase difference of 5.625° exists between the

adjacent phase states in the constellation diagram. Due to the noise disturbances an additional

phase deviation of 2.8125° occurs in the radio channel, which leads to an increased BER in

the receiver and thus may result in a false decision.

12
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2.2.4 DAPSK modulation scheme
The differential amplitude and phase shift keying (DAPSK) is a multilevel differential

modulation technique, which is constituted from amplitude shift keying (ASK) and DPSK

(Rohling and Engels, 1995). It reduces the computational complexity as it does not require

any explicit knowledge of the radio channel properties in the differential channel equalization

process; therefore it is not necessary to implement channel estimation and frequency-domain

equalizer.

The data bits to be transmitted are directly mapped to the phase difference and the

amplitude ratio of two consecutive modulation symbols in the same subcarrier in the

frequency domain for an OFDM symbol. But the information is contained in the difference.

between the two consecutive subcarriers in the same OFDM symbol in the time direction for

an OFDM symbol.

64-DAPSK was first proposed for digital terrestrial video broadcasting (DTVB)

application (Rohling and Engels, 1995) as an alternative modulation technique. Also, the

64DAPSK is a very attractive technique for high data-rate transmission in mobile radio

environment due to reduced complexity in its receiver design.

2.3 Performance measurements of BER, PAPR, lSI, rcr

2.3.1 Performance measurements of leI and lSI

The choice of performance measurement parameters often results in a trade-off

between conflicting requirements. For example, we can consider bandwidth, bit rate, and

delay-spread. To start with, the delay-spread directly dictates the guard time to be about two

to four times the root-mean-squared value of the delay-spread. In practical scenario, the guard

value depends on the type of coding and QAM modulation. Higher order QAM (like 64-

13
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QAM) is more sensitive to ICI and lSI than QPSK; while heavier coding naturally reduces

the sensitivity to interference such as (ICI, ISI)(Nee, 2000). Now that the guard time has been

set, the symbol duration can be fixed. To minimize the reduction in the signal-to-noise ratio

(SNR) caused by the guard time, it is desirable to have the symbol duration much larger than

that of the guard time. It cannot be increased by an arbitrary value, however, because of the

possible increase in implementation complexity, and sensitivity (ICI, lSI) to phase noise and

frequency offset (Pollet et al., 1995) as well as increased peak-to-average ratio (Pauli, 1997)

(Rapp, 1991a). Hence, a practical design choice is to make the symbol duration at least five

times the guard time, which implies a -3dB SNR loss because of the guard time.

The received signal may contain more than one replica of the transmitted signals

arriving at different time delays, causing degradation of the overall system performance and

lSI, therefore the mobile radio channel is characterized by multipath reception in addition to

direct LOS (Latif and Gohar, 2006). The sensitivity of the OFDM receiver to carrier

frequency offset (CFO) introduces ICI in the system, this carrier frequency offset can be

compensated by frequency offset estimation. However, estimation residue frequency offset

(caused by frequency differences between oscillators in the transmitter and receiver or

frequency selective fading) usually exists in OFDM system, and is inevitable. Therefore,

schemes that are robust to frequency offset (Latif and Gohar, 2006) need to be investigated.

Applying a raised-cosine window to the lSI free part of the received OFDM symbol is

proposed in (Beaulieu and Peng, 2007) to reduce ICI.

The DCT operation distributes more energy to the desired subcarrier and less energy to

the interfering subcarrier channels as opposed to the DFT operation. Therefore, the desired

subcarrier suffers from less ICI coming from neighbouring subcarriers in DCT -OFDM than

in the DFT-OFDM system (Peng and Beaulieu, 2006).

14
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The DCT-OFDM gives smaller ICI power and greater signal-to-interference ratio (SIR)

than the DFT-OFDM when the system is operating in the presence of CFO over an AWGN

channel. One can also consider the SIR defined by (Peng and Beaulieu, 2006) .

The ICI and SIR analysis suggests that the desired subcarrier suffers less ICI coming

from neighbouring subcarriers in DCT-OFDM than in DFT-OFDM. The reduced interference

will lead to better bit--error probability (BEP) performance, which can be observed from the

exact BEP expression and simulation results demonstrated by (Peng and Beaulieu, 2006). A

full range ofCFO estimation is achieved due to the anti-symmetry introduced in DCT-OFDM.

The DCT-OFDM can provide more robust and accurate estimation than the DFT-OFDM(Tao

et al., 2007).

2.3.2 BER and PAPR Performance

The probability of error in terms of the number of erroneous bits per bit number is

described as Bit Error Rate (BER), which is a commonly used performance metric.

The OFDM system of the data-conjugate shows, with respect to the PAPR and BER,

the best performance compared with the original OFDM, OFDM with the data-conversion

method and convolution coding (Ryu et al., 2005).

In certain environments, the BER performance of MCM systems with a wavelet

orthogonal base is better than those employing a Fourier base, though their PAPR is higher

than that of the MCM system employing a Fourier base. As demonstrated earlier (Zhang et al.,

2007), if the transmitted peak power is limited, no matter by .regularity or application

constraint, the average power allowed by MCM will be reduced. This will in turn reduce the

transmission range of MCM systems. Thus, to maintain spectral efficiency, a linear amplifier

With a large dynamic range is needed. This would greatly degrade the power efficiency,

Which should be avoided. Therefore, to increase the efficiency of wavelet based MCM

15
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systems, appropriate methods are required to reduce the PAPR to conserve the power

consumption (Zhang et aI., 2007).

In fact, the PAPR may be reduced by increasing the average power of signals while

keeping the peak unchanged, but the reduction in PAPR may be very limited under certain

BER performance constraints. In order to arrive at an optimum trade-off between BER

performance and the reduction in PAPR in practical OFDM systems, (Xiao et aI., 2002) has

proposed the use of piecewise scales transform (PST) using the complementary cumulative

distribution function (CCDF) of PAPR of signals. Although, several researchers have tried to

address the reduction of PAPR in the continuous- time OFDM signal (continuous-time PAPR

or convenience) (Tellambura, 2001) (Hua and Gang, 2003), only Wang and Poor have

proposed using complex modulation scheme to reduce PAPR (Wong et aI., 2008) in discrete

time domain.

Different wavelets (harr, coieflets, and symlets) have been analysed in (Khalid and Shah,

2006) to find that DWT-OFDM has lesser peak to average power ratio (PAPR). Also,

reduction by using wavelet packet tree (BWPT) structures for PAPRs of Harr, Db-4 and DB-

6 binary phase shift keying (BPSK)-wavelet OFDM(WOFDM) are compared to conventional

MalIat structures in (Kumbasar and Kucur, 2008).

Based on the detailed literature review presented, it is confirmed that while a large

selection of research work is available on DWT-OFDM systems and DAPSK modulation

schemes independently, there is no serious proposal to combine the two for high bit-rate

communication with reduced PAPR. Therefore, this research work proposes a hybrid DWT-

OFDM with 64DAPSK modulation in order to achieve much reduced PAPR and to improve

lSI and ICI due to interference in high speed mobile networks.
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Chapter 3

OFDM Systems and modulation techniques

3.1 Introduction

In conventional OFDM system guard intervals (GIs) or cyclic prefixes (CPs)

are used to prevent Inter-symbol Interference (lSI) and Inter-carrier Interference (ICI)

which converts the linear convolution into a cyclic one). This kind of conversion can

be exploited to simplify the equalisation in the receiver by substituting frequency-

domain equalisation (Zou, W.Y., and Wu, Y., 1995, Jarot, S.P.W., and Nakagava, M.,

2001). Another advantage of using GIs or CPs lies in the fact that lSI caused by .

sidebands of pulse shaping filter can be diminished. As the GI or CPs must be

discarded at the receiver, system throughput is greatly reduced (Zhang, H. et al 2007).

Also, this will have an adverse effect on bandwidth of the system. The Discrete

Fourier Transform based OFDM (DFT-OFDM) has currently drawn the most

attention in the area of wireless communication. However, in order to combat lSI a,

cyclic prefix (CP) is inserted between the DFT-OFDM symbols, and this will take up

nearly 20% of the bandwidth efficiency. Another promising MCM system, known as

the DCT based OFDM has been proposed by AL-Dhahir, N. et al 2006, where it is

shown that the DCT-OFDM can under certain circumstances, offer additional

benefits over the DFT -OFDM. In particular, the bandwidth required for DCT is half

of that required for DFT, for the same number of sub-carriers (Tan, J., and Stiber G.

L., 2002). Whereas, DWT-OFDM offers improved narrowband interference due to

very high spectral containment properties of wavelet filters, and is inherently more

robust against ICI than the DFT based OFDM systems (Khalid, S., and Shah, S.

I.,2006, Ahmed, N., 2000). In addition, DWT-OFDM is implemented using

overlapped wavelets to preserve data rate (Ahmed, N., 2000). The great reduction in
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side-lobe levels is also a motivation behind the recent trend towards wavelet based

OFDM systems.

3.2 DFT-OFDM SYSTEM

3.2.1 The basic concepts of Fourier transform
If set) is a periodic function with period T that has a finite energy per period is

expressed by the following equation(i.e., ft:o+T IS(t)2Idt < 00), when resolving this

function results in equation 3-1

3-1

where to represents an arbitrary time,

1
to =-

T

and

ao = 2:.to+T s(t)dt
T to

an = ~to+T s(t)cos (2rrntot)dt
T to

2 rto+T. )dbn = - s, s(t)sm (2rrntot tT to

e, = arctan (-~n)
where Xn is the magnitude and 0n the phase, which is the angle by which the single

equivalent phasor leads an phasor (Harlod and Samy, 2004).

3.2.2 The Discrete Fourier Transform (DFT)

OFDM employs Ns separate subcarriers to transmit data instead of one main

carrier. Input data is grouped into a block ofN bits, where N = Ns + mn and mn is

the number of bits used to represent a symbol for each subcarrier. In order to

18
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maintain orthogonality between the subcarriers, they are required to be spaced apart

by an integer multiple of subcarrier symbol rate Rs. The subcarrier symbol rate is

related to overall coded bit rate Rcof the entire system by Rs = RcIN(Gupta et al.,

2008). The output signal of an OFDM can be written using equation 3-2,

XCT) = L~~~lCk e2TIj(n-Ns/2)t/Ts 3-1

where Ck are the complex representation of subcarrier symbols and Ts is the symbol

period (Guenbacher, D. M. and Semer, A., 2001).

When the Fourier series is used in this way to represent finite-length sequence,

it is called the DFT.

3.2.3 Efficient Computation of the Discrete Fourier Transform

The DFT of a finite -length sequence of length N is given by

X[k]= L~~Jx[n]W~n, k=O,l, ... N- 3-2

where WN = e-j(27r/N), and the inverse discrete Fourier transform is given by

x[n] = ~L~':-J X[k] W;kn n= 0, 1,.... , N-1 3-3

In equations (3-3) and (3-4), both x[n] and x[k] may be complex, and also

the expressions on the right-hand sides of these two equations differ only in the sign

of the exponent of WN and in the scale factor lIN.

19

Direct evaluation of the DFT expression In equation 3-3 provides the

parameters for the following discussion. If the equation 3-3 is used as the formula for

computation of DFT, N complex multiplications and (N-1) complex additions are

required to compute each value of the DFT. This is because x[n] is complex. To

compute all N values therefore it requires a total of N2complex multiplications and

N (N-1) complex additions. Expressing Eq. (3-3) in terms of operations on real

numbers, we obtain, the resulting expression represented by equation 3-5



Chapter3 OFDM Systems and modulation techniques

X[k] =

L~~J[(Jle{x[n]}Jle{W~n}- ~m{x[n]}~m{W~n})+ j(Jle{x[n]}Jle{W~n}-

~m{x[n]}~m{W~n})] 3-4

Where, K = 0, 1... N-l,

which shows that each complex multiplication requires four real multiplications and

two real additions, and each complex addition require two real additions. Therefore,

for each value ofk, the direct computation ofX[k] requires 4N different values ofk.

The direct computation of the discrete Fourier transform of a sequence x[n] requires

4NZ real multiplications and N (4N-2) real additions. Besides the multiplications and

additions called by (3-5), the digital computation of the DFT on general-purpose

digital computer or with special-purpose hardware also requires the ability for

storing and accessing the N complex input sequence values x[n] and values of the

complex coefficients W:n. Since the amount of computation time is approximately

proportional to NZ, it is evident that the number of arithmetic operations required for

computing the DFT by the direct method becomes very large for large values ofN.

For this reason, the computational procedures that reduce the number of

20

multiplications and additions by using FFT and IFFT become the point of interest for

the researchers.

3.2.4 The Specifications for DFT
Some of the main specifications of the DFT system for consideration are discussed

below:

The Fourier series are defined as solutions of partial differential equation, under

prescribed boundary conditions. Decomposing a given function into an infinite but

discrete set of harmonic components represents the resolution of Fourier series. The
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transform of signal is often called the Fourier spectrum when it decomposes into a

sine wave of different frequencies and phases. fliCk) can be defined as the Fourier

transform of function f(x) in the space and wave number domains where x represents

the space variable and k is the wave number. The trigonometric kernel exp (-ikx), is

one of the important features in the Fourier transform that oscillates indefinitely. So

that, the localized information contained in the signal space f(x) is widely distributed

among fliCk) in the Fourier transform space. It is almost impossible to study its

.properties from those offllCk) when there are computational or observational errors

involved in the signal f(x). The Fourier transform of signal does not reflect the

change of the wave number with space or of frequency with time. Therefore, it does

not contain any local information. The Fourier transform does not aid investigation

of the problem simultaneously in both time (space) and frequency (wave number)

domains.

Having to use separate analyses for time and frequency resolution in DFT and

DCT systems make Fourier transform analysis seem inadequate for studying the

physical problems in spite of some of the remarkable successes. This is considered as

the major weakness of the Fourier transform analysis. It is therefore necessary for a

single transform to give complete time and frequency domains (or space and wave

number) of the signal, which can be used to describe the energy density of signal

simultaneously in both time and frequency domains.

21

3.2.5 Generation of Subcarriers using The Inverse Fast Fourier Transform
(IFFT)

An OFDM signal consists of the sum of subcarriers that are modulated by

using phase shift keying (PSK) or quadrature amplitude modulation (QAM). If di are

the complex QAM symbols, Nsis the number of subcarriers, T the symbol duration,
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and Ie the carrier frequency, then one OFDM symbol starting at t = ts can be written

as:

{
Set) = RE {L~~N2A+~,expV21r (fc - I+;S) et - ts))}
set) = 0 It <

Its < t :5 ts + T}
ts and t > ts + T

3-5

In the literature, often the equivalent complex baseband notation is used for

representing OFDM signal, which is given by equation 3-6. In this representation,

the real and imaginary parts correspond to the in phase and quadrature parts of the

OFDM signal, which have to be multiplied by a cosine and sine of the desired carrier

frequency to produce the final OFDM signal, as given below.

3-6

where di are the complex QAM symbols, Ns is the number of subcarriers, T the

symbol duration, and set) is a signal OFDM. Fig.3.l shows the block diagram of an

22

OFDM modulator. Here, the increasing data symbols are translated from serial to

parallel and then each symbol is modulated by a subcarrier which is orthogonal to its

neighbours.



Chapter 3 OFDM Systems and modulation techniques

Serial
To

parallel

exp

exp (-jtcNs(t-ts)IT)

Figure3-2 OFDMMODULATOR

As an example, Fig.3.2 shows four subcarriers within one OFDM signal. In

this example, all subcarriers have the same phase and amplitude but, in practice, the

amplitudes and phases will be modulated differently for each subcarrier. Note that

each subcarrier has exactly an integer number of cycles in the interval T, and the

number of cycles between adjacent subcarriers differs by exactly one. This property

23

accounts for the orthogonality between the subcarriers. For instance, if the jth

subcarrier from Eq. 3-6 is demodulated by down converting the signal at a frequency

of j/T and then integrating the signal over T seconds, the result presented by Eq. 3-7.

By examining the result from Eq. 3-7, it can be seen that a complex carrier is

integrated over T seconds. For the demodulated subcarriers this j, in the integration,

gives the desired output dj+N Iz (multiplied by. a constant factor T), which is the

QAM value for those demodulated subcarriers. For all the other subcarriers, the

integration is zero, because the frequency differences (i-j)/T produce an integer

number of cycles within the integration interval T, such that the integration result is

always zero.
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Figure 3-3 Example of Four subcarriers within one OFDM symbol, the y-axis is

amplitude and the x-axis is time

NS+l t+T (i-' )=L.2 N d. NSf it S exp j2TI-T'et - ts) dt = dj+Ns
1=.2. 1+ 2 S

2

3-7

The complex baseband OFDM signal as defined by Eq. 3-8 is, in fact, nothing more

than the Fourier transform of Ns numbering QAM input symbols. The time discrete

equivalent is the inverse discrete Fourier transform (IDFT), which is given in Eq. 3-5

where the coordinate for time t is replaced by the number n.

In practice, this transform can be implemented very efficiently by using the inverse

fast Fourier transform (IFFT). An N point IDFT requires a total of NZ complex

multiplications, which actually translate to phase rotations. Therefore, the IFFT

drastically reduces the amount of calculations by exploiting the regularity of the

operations in the IDFT. Using the radix -2 algorithms, an N-point IFFT requires only
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N/2 .I092(N) complex multiplications (Blahut, 1985). For a 16-point transform, for

instance, the difference is 256 multiplications for IDFT versus 32 for the IFFT. This

is a reduction by a factor of 8. This difference grows for larger numbers of

subcarriers as the IDFT complexity grows quadratically with N, while IFFT only

grows slightly faster than linear. The output at IDFT is represented by equation 3-9.

The number of multiplications in the IFFT can be reduced even further by using

a radix-4 algorithm. This technique makes use of the fact that in a four-point IFFT

there is only multiplication by (1, -1, j, -j), which actually does not need to be

implemented by a full multiplier, but rather using a simple add or subtract and

switch of real and imaginary parts in the case of multiplication -j. In this radix-4

algorithm, the full Fourier transform is split into a number of such trivial four-point

transforms, and only non-trivial multiplications have to be performed between the

stages of these four-point transforms. In this way, an N-point FFT using the radix-4

algorithm only requires (3/8) N (I092N - 2) complex multiplications or phase

rotations and I092N complex additions. in simplest representation, the N-point FFT

will require 1.5 phase rotations and 6 additions. Non-trivial phase rotations largely

establish that the implementation of a complex multiplication is at least an order of

magnitude larger than the complexity of an addition.
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3.3 DCT-OFDM SYSTEMS

3.3.1 Discrete Cosine Transform DCT

A signal represented by a set of cosinusoidal functions can be used on

orthogonal basis to implement the multi carrier modulation (MCM) scheme, and this

scheme can be synthesized using a discrete cosine transform (DCT) (Schuchet, et al

2001).

A signal from the cosinusoidal functions set cos(2rrnFt!t), n=O,I, ..... , N-l will

be used as the orthogonal basis to implement MCM in DCT. The rmrnmum

frequency spacing Ft! is required to satisfy the following condition, given by

equation 3-10:

fT f2 f2 ) {1 k = m}Jo ...j"Tcos(2nkFt!t) ...j"Tcos(2nmFt!t dt = 0' k * m 3-9

the duration is.2.. Hz for this spacing frequency [Tan, P., 2006]. However, it is worth
2T

noting that in DCT-OFDM system, if the data symbols dn are obtained by real

valued modulation formats, such as PAM and BPSK, the baseband DCT-OFDM

signal x (t) is still a real value. The output signal of DCT based OFDM can be

written as using equation 3-11.

Here, do, dl1 dNs-1 are N, independent data symbols obtained from a

modulation constellation, and using equation 3-12.

{
.2.. n=OPn = ..[2 ,
1 ' n = 0, 1, ... ,N,

3-Error! Bookmark not defined.
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3.3.2 Efficient Computation of the Discrete Cosine Transform
The time duration of the N transmitted symbols is Ts, and T= TslN is the time

duration per information symbol. The kth subcarrier waveform can be written as:

(
nnt krr)

cos 2rr 2T. + 2N
s

Sampling the kith subcarrier at time instants t = n T = nTslN, where n = 0, .... , N-1,

gives the discrete-time representation cos (rr nk + kIT). The modulated discrete-time
2N 2N

waveform is given by equation 3-13

Xn = L~::JXk Tk(n), n= 0, ...., N-13-11

Equation (3-14) is an inverse discrete cosine transform (IDCT), where the discrete

cosine transform (DCT) is given by

3-12

The orthogonal property of the DCT is

~N-l _{l,
Lm=O Tp(n)Tq(n)- 0,

p=q
p=l=q 3-13

This data represented by Xk can be referred to as the frequency domain data. The

subcarriers Tk(n) of the frequency domain data Xk are mutually orthogonal among

28

them. A more intuitive representation of IDCT is shown in Fig 3-3. Note that

frequency difference between neighbouring sub-carriers of the IDCT modulated

signal is !J.f = 2....
2Ts
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Phase
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Figure 3-4 Constant envelop multi carrier modulation

As seen in figure 3-3, with the frequency-domain data (Xk) as input to the

DCT, the output (xn) of the IDFT can be viewed as time-domain data. The time-

domain data sequence (xn) is applied as input to a phase modulator to generate the

band pass waveform having the complex envelope described by equation 3-16

set) = -ft ejl~(t) 3-14

with a phase given by,

0(t)= 27ThL~:-6 Xn q(t - nT) 3-15

However, if the data symbols dn are obtained by real-valued modulation formats,

such as PAM and BPSK, the baseband DCT-OFDM signal x (t) is still a real signal.

3.4 DWT -OFDM SYSTEMS
3.4.1 The wavelet transform

The wavelet transform is a type of technique derived from the Fourier

transform. The most important difference between these two transformations is that

individual wavelet functions are localized in space, while Fourier sine and cosine
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functions are not (Zhang, H., et al 2007). It is based on the idea of wavelet as a

family of functions constructed using translation and dilation of signal function t/J

and is called the mother wavelet (or called as affine coherent states). The wavelet is

defined by (Resinkoff et al., 1998) and is given by equation 3-18

1 (t-b)t/Ja,b(t) = JiiiT t/J --;- ,a, be 9i, a*O 3-16

where, a, is a scaling parameter which measures the degree of compression or scale,

and b is a translation parameter which determines the time location of the wavelet.

3.4.2 Discrete Wavelet Transform (DWT)

The discrete wavelet transform represents a function by a countable set of

wavelet coefficients, which correspond to points on a two-dimensional grid or lattice

of discrete points in the scale-time domain indexed by m and n. If the set (\I'm,nCt))

defined by (Eq.3-18) is complete in L2(~)( Hilbert space of finite energy functions)

for some choice oft/J, a, and b, then the set is called an affine wavelet. Then, we can

express any f(t) e L2(~) as the superposition by using equation 3-19.

3-17

3.4.3 The Orthogonal Base Property
To satisfy orthonormal bases in order to operate as wavelet transform, these

30

filters must be orthogonal and normal to each other. By assigning 'h' as HPF filter

coefficients and 'g' as LPF filter coefficients, the orthogonal basis can be satisfied

via four possible ways of the dot products as follows (Abdullah et al., 2009) through

equations 3-20 to 3-23:
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•< g.g >= 1 3-18

•< h.h >= 1 3-19

•< g.h >= 0 3-20

•< h.g >= 0 3-21

Where, the first two terms are related to the normal property, and the last two are for

orthogonal property. The asterisk sign indicates that the coefficients are conjugated.

Both filters are also assumed to have perfect reconstruction property. This means

that the input and output of the tow filters are expected to be the same.

3.4.4 Representation of Wavelet-based OFDM

The system uses DWT and IDWT in the receiver and transmitter function,

respectively. The output of the IDWT at the receiver can be represented (Strang, G.,

and Nguyen, T., 1997) by equation 3-24.

3-22

where, S~ are the wavelet coefficients and ljJm,n (t) is the wavelet function with

compression factor of m and n times shift for each subcarrier with translation and

dilation of signal function ljJ (number k, 0:::;k :::;N-l). The wavelet coefficients are

the representations of signal pulses in scale and position or time. The scale is related

to the frequency. Low scale represents compressed wavelet, which means that the

signal is rapidly changing, or the signal is in high frequency. On other hand, high

scale represents stretched wavelet, which means that the signal is slowly changing,

or the signal is of low frequency. Thus, the sequence Xmis translated to S~ before it

is processed in IDWT. At the receiver side, the process is reversed. The output of

discrete wavelet transform (DWT) is given by equation 3-25.
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The sequence S;:,. is decoded to Xm in order to recover the data at the

demodulator. When orthogonality between carriers is lost after transmitting a signal

through a non-uniform channel, the amount of interference between carriers in

wavelet systems is much lower than in Fourier systems since the side lobes contain

much less energy (Sandberg, S.D., and Tzannes, M.A., 1995) due to the absence of

guard bands. Also, due to the high spectral containment properties of wavelet filters,

DWT -OFDM can better combat narrowband interference and is inherently more

robust with respect to leI than traditional DFT-OFDM (Ahmed, N., 2000). So, the

classic notion of a guard band does not apply to wavelets; hence data rate can

surpass those of FFT implementations. Therefore, due to overlapping nature of

wavelet properties, this wavelet based OFDM system is not affected by delay

spreads in the channel. The great reduction in side-lobe levels is another main

motivation behind the recent trend towards using wavelets in OFDM systems.

3.4.5 Efficient Computation of the Discrete Wavelet Transform
In wavelet based OFDM, the impulse response of a deterministic (and

possibly time-varying) channel can be modelled by a linear filter het). Whereas, the

match filtering is represented by replacing ACt) and fiCt) by wkCt)and wiCt) .

WkCt) represents the wavelet carrier in IDWT operation with k sub channels to

match with carrier i. Thus, the received signal is defined by equation 3-26.

rw (t) = yw(t)*h(t) + net)
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where k is wavelet filter rank (sampling rate), Wk(t) = wk(t)*h(t) and g(g> 1) is the

wavelet genus so that kgis the filter order (number of taps in that sub-band). After

the matched filter with carrier i, the signal becomes as given in equation 3-27

lk) + (n(t),fi(t) = L~=6dkPk,O (0) + (n(t),fi(t)

3-25

where, dk,IPk,i (0) IS the recovered data with correlation term Pi,i (0). The

term L~:-J dkPk,i (0) is the interference due to the discrete filters that are no longer
k=i:i

orthogonal to one another with correlation term Pk,i(O), and Lf=oL~:-J dk,IPk,i (l) is
k=i:i

the interference term with distorted Pk,i(l) due to the overlapped nature of wavelet

transform. These two terms become 0, and only the first and last terms would appear

if the channel has no distortion. The decoder would possibly obtain almost correct

signal when the two terms are zero.

3.5 Choice of Performance measurement Parameters

The choice of various performance measurement parameters is a trade-off

between various, often conflicting requirements. For example, we can consider

bandwidth, bit rate, and delay-spread. To start with, the delay-spread directly dictates

the guard time and, as a rate, the guard time should be about two to four times the

root-mean-square of the delay-spread. The value depends on the type of coding and

QAM modulation. Higher order QAM (for example 64-QAM) is more sensitive to

leI and lSI than QPSK; whereas heavier coding reduces the sensitivity to such an

interference (Nee, 2000). Now that the guard time has been set, the symbol duration
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can be fixed. To minimize the reduction in the signal-to- noise ratio (SNR) caused by

the guard time, it is desirable to have the symbol duration much larger than that of

the guard time. It cannot be arbitrarily large, however, because of the possible

increase in implementation complexity, sensitivity to phase noise and frequency

offset (Pollet et al., 1995) as well as in the peak- to-average ratio (Pauli et al., 1997)

(Rapp, 1991b). Hence, a practical design choice is to make the symbol duration at

least five times the guard time, which implies a -3dB SNR loss due to the guard time.

After the symbol duration and guard time are fixed, the number of subcarriers

should be fixed as the required -3dB bandwidth divided by the subcarrier spacing,

which is the inverse of the symbol duration less the guard time. Alternatively, the

number of subcarriers may be determined by the required bit rate divided by the bit

rate per subcarrier. The bit rate per subcarrier is defined by the modulation type (e.g.,

16QAM), coding rate, and symbol rate (Nee, 2000).

3.5.1 Relation between BER, EVM and SNR
Bit rate (sometimes written bitrate, data rate or as variable R) (Skalar, 1994)

is the number of bits that are conveyed or processed per unit of time. The bit rate is

quantified using bits per second (bitls or bps) or multiple bits per second (Mbitls,

Gbitls, and Tbitls) or (Mbps, Gbps and Tbps).

Bit error rate (BER), error vector magnitude (EVM) and signal to noise ratio

(SNR) are common performance metrics for assessing the quality of communication

(Abdullah and Hussain, 2007). The latter can be measured using the bit error rate

(BER), which gives a simple one-to-one binary decision as to whether a bit is

erroneous or not. SNR is a direct measure of the relative power of the noise

compared to the signal. Since noise is modelled as a source of all errors in the

simplistic Gaussian noise channel model, SNR can be used to predict the
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performance of the system in terms of correctness of the reception. Due to the

simplicity of comparison, BER has been a major choice of engineers, industries and

researchers (Kai-ming et al., 2005),(MAHMOUD and , Abdullah and Hussain, 2007).

EVM is defined as the root-mean-square (RMS) value of the difference

between a collection of measured symbols and ideal symbols. (Abdullah et al., 2009).

On the other hand, BER performance against SNR is the popular performance

criterion that is used in today's communications systems. Since BER, calculations

can 0 ft e n be avoided for large packets; EVM can give the desired performance

metric before the demodulation can actually take place. This can be done without

any major change in the algorithm in adaptive systems, since BER is a direct

consequence of EVM. For performance measures for systems with small packet

communication, BER versus SNR can be easier and more useful due to complex

mathematical operations that need to be done in the digital signal processor for

calculation of EVM.

3.5.1.1 Bit error ratio

The probability of error in terms of the number of erroneous bits per number

of bits is described as Bit Error Rate (BER), which is a commonly used performance

metric. Assuming M -ary modulation with coherent detection in the Gaussian noise

channel and perfect recovery of the carrier frequency and phase, it can be shown

(Nee, 2000) using equation 3-28,
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p _ 2(1-i) [ [3109Z L] 2Eb]
b - 109zL Q L2_l No 3-26

where, L is the number oflevels in each dimension of the M-ary modulation system,

Eb is the energy per bit and No/2 is the noise power spectral density. Q[.] is the

Gaussian co-error function and is given by(Pollet et al., 1995) equation 3-29,

00 1 _yZ
Q(x) = fr=e-z dy 3-27

_00 v2n

Supposing filter as raised cosine pulses with sampling at data rate, Equation (3-29)

also gives the bit error rate in terms of signal to noise ratio as represented by

equation 3-30

p _ 2(1-i) [[3109ZL] 2Eb ]
b - 109zL Q L2_1 No 109z M 3-28

where Es/No is the signal to noise ratio for the M-ary modulation system and raised

cosine pulse shaping at data rate. Equation 4 defines the BER performance in terms

onSNR

3.5.1.2 BER upper Bound

36

Without considering AWGN the received signal on each subcarrier can be

recognized as a sum of the expected signal df and ICl signal I if a frequency error df

exists, which can be calculated using equations 3-31 and 3-32:
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3-29

3-30

where df the channel frequency error is normalized by the subcarrier frequency

separation and denoted by df, Sk - ICI coefficient function as shown in equation 3-33

below,

sin Cnd!) • n CC ) )
Sk = NstnC!Cdf-k) exp UN N - 1 df + k

N

3-31

where ak is the amplitude of side lobes being modulated by the N subcarriers.

Id+lmax land Id-Imax I are two limit values between which the amplitude of the

received signal lies, where Imaxis the maximum ICI signal with respect to df as

shown in equation 3-34.

I ~N-l
max = ~k=l ISkl

3-Error! Bookmark not defined.

The frequency error possible that Imax >d occurs when it is sufficiently large. In

such a case, a data decision error can be made even in the absence of AWON.

Critical frequency error is df value where the condition Imax = d holds. This

critical frequency error is a function ofN, for example: it takes the value df=0.17 for

N=32 and df=0.10forN =256. Since Imax is a function of N, therefore its upper

bound also varies as the function ofN (Latif and Gohar, 2006) (Ho and Yeh, 1970) .

3.5.2 The signal to noise ratio
The relative measure of the signal power (meaningful information) compared

to the noise power (unwanted signal) is a signal to noise ratio (SNR) expressed by

equation 3-35

37



Chapter 3 OFDM Systems and modulation techniques

SNR = Psignal
Pnolse

3-32

where, P is the average power. Within the same system bandwidth, both signal and

noise power must be measured at the same and equivalent points in a system. The

SNR is defined in decibels as in equation 3-36.

SNRdecibel = 1010910 (PSlgnal) = PSignal,dB - Pnoise,dB
Pnolse

3-33

Meanwhile, the SNR measures the ratio between an arbitrary signal level (not

necessarily the most powerful signal possible) and noise. The dynamic range

measures the ratio between the strongest undistorted signal via a channel and the

minimum discernible signal. Therefore, the concepts of signal-to-noise ratio and

dynamic range are closely related.

In most instances, the SNR is taken to indicate an average signal-to-noise

ratio, as it is possible that (near) instantaneous signal-to-noise ratios will be very

differently considered. The concept can be understood as normalizing the noise level

to 1 W (0 dB) and measuring how far the signal 'stands out'.

Supposing Gaussian noise model for wireless channels and complex signals,

SNR can be defined as in equation 3-37

38
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where It and Qt are the in-phase and quadrature signal amplitudes of the M-ary

modulations, nl,t and QQ,t are the in-phase and quadrature noise amplitudes of the

complex noise being considered.
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An alternative definition of SNR is the reciprocal of the coefficient of

variation (which is a normalized measure of dispersion of a probability distribution),

i.e., the ratio of mean to standard deviation of a signal or (Latif and Gohar, 2006)

(Ho and Yeh, 1970), given by equation 3-38.

SNR= !!.
a

3-34

where Pis the signal mean or expected value and uis the standard deviation of the

noise, or an estimate thereof. Notice that such an alternative definition is only useful

for variables that are always non-negative (such as photon counts and luminance).

3.5.2.1 SNR and EsiNo

Equation (3-37) above shows a direct measure of SNR, which can be used in

Monte Carlo simulation procedures for large symbol streams, such that T » N,

where N is the number of unique modulation symbols. Often these estimates are

simplified by considering the measure of the ratio of variances of signal and the

noise, when both are zero mean processes. For systems, which are sampled at data

rate, Es/No gives the signal to noise ratio directly,where Es is the symbol energy and

No/2 gives the noise power spectral density. This means that, for every update in

3-35

the adaptive algorithm, it can be noted that Es = tosz M Eb; for such systems EJNo

can be seen as a normalized measure of the energy per symbol per noise power

spectral density (EsfNo) given by equation 3-39

where E, is the energy per symbol in joules and p is the nominal spectral efficiency

in (bitls)lHz. EsfNo is also commonly used in the analysis of digital modulation
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schemes. The two quotients are related to each other according to the following

equation 3-40:

Es
E -N Eb
s _ 0 l M-_ - ooz

Eb No
3-36

where M is the number of alternative modulation symbols.

Note that the energy is per bit, not the energy per information bit.

EslNo can further be expressed as by equation 3-41:

s, CB

No N Is 3-37

where

CIN is the carrier-to-noise ratio

B is the channel bandwidth in Hertz.

Is is the symbol rate in baud or symbols per second.

Converting the value to the corresponding signal-to-noise ratio (SNR)

involves, the number of bits per symbol (k), number samples (nsamp), and the over

sampling factor. The factor k is used to convert Eb/NO to an equivalent Es/No,

which is the ratio of symbol energy to noise power spectral density. The factor

nsamp is used to convertEs/No, in the symbol rate bandwidth, to an SNR.

3-38

3.5.2.2 The Related bandwidth with SNR

The output of the modulator as average power is given by equation 3-42.
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where Esthe average energy of the modulator signals. Each signal carrier is a logEsM
Eb

information bit. Then the average power is given by equation 3-43.

3-39

The definition SNR can be considered as the ratio between the average signal

power and the average noise power over the signal bandwidth is given by equation 3-

44.

SNR = _P_ = (Eb). (Rb) 3-40
NoBw No Bw

For higher SNR, the error probability can be closely approximated by a

complementary error function erfc [dmin / ( 2Fo)], where dmin is the minimum

Euclidean distance between any two elements of the modulator signal set (Burr,

2001).

The parameter y, which is related to the power efficiency (y) of a modulation

scheme, expresses how efficiently a modulation scheme uses the available signal

energy to generate minimum Euclidean distance. y is defined as by equation 3-45:

y= 3-41

The above equation provides an approximation to error probability that is

asymptotically tight with large SNR.

3.6 Performance evaluation of the OFDM techniques

3.6.1 leI analysis for DCT and DFT -OFDM systems operating in the
presence of carrier frequency offset (CFO)
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In MCM systems, it is well known that carrier frequency offset (CFO),

caused by oscillator mismatch or Doppler effects, destroys the subcarriers'

orthogonality, and results in a substantial bit error rate (BER) degradation (Pollet et

aI., 1995). In addition, CFO will introduce inter carrier interference ICI in both DCT

and DFT - OFDM systems. CFO causes a number of impairments, including

attenuation and rotation of each of the subcarriers, and ICI between subcarriers. Due

to the anti-symmetry characteristics introduced, in DCT-OFDM, full-range CFO

estimation is achieved. Another advantage of using DCT-OFDM is that it can

provide more accurate and robust CFO estimation than the DFT-OFDM (Tao et al.,

2007).

Normally, in an OFDM system, there are N subcarriers with a symbol period

of T. In the ith symbol period, the N complex values aO,l ... aN-i,i modulate N

subcarriers, when the system uses a number of different types of modulation of

subcarriers within OFDM, such as phase shift keying (PSK) and quadrature

amplitude modulation (QAM). This analysis does not depend on the mapping of the

data to be transmitted to the complex values aO,l ... aN-i,i, and is therefore applicable

to all forms of modulation which can be used within OFDM. Frequency offset alone

does not cause lSI. Often a cyclic prefix (CP) is used in the OFDM system in order

to eliminate lSI and ICI caused by errors in sampling time or distortion in the

channel (Armstrong, 1999).

The DCT operation distributes more energy to the desired subcarrier and less

energy to the ICI than the DFT operation. Therefore, the desired subcarrier suffers

from less ICI coming from neighbouring subcarriers in DCT-OFDM than in the

DFT-OFDM system (Peng and Beaulieu, 2006).
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The sequence ofICI coefficients is given as Sn,k = S~,k + jS~k in DCT-OFDM,

and are given by equations 3-46 to 3-52

E)] 3-42

SnQk = 2...PkPn[r(n+k-E) + r(n-k- E) " (n+ k+ E) "(n- k+ ), 2N
3-43

. (7rX) ( 7rX)- ( ) _ sm"2 cos 41-"2
1/J x - (7rX)sin 2N

3-44

. (7rX) ( 7rX)- ( ) _ sm"2 sin 41-"2
cfJ x - . (7rX)

sm 2N

3-45

sin(7r;) cos(41+ ~X)
r(X)= ~~~~sin(;Z) 3-46

sin(¥) sin( 41+¥)
" (x) = . (7rX)sm 2N

3-47

1

.,fi'
1,

n=O
3-48

n = 0,1, ... .N,

and E = 2T /).f. Recalling that in DCT-OFDM the subcarrier frequency spacing is

1/2T Hz, E.iS the normalized frequency offset with respect to the subcarrier-

frequency spacing. There is a sequence of ICI coefficients for N-subcarrier DFT-

OFDM in the presence of normalized frequency offset (= /).fT. It was derived by

(Peng and Beaulieu, 2006) as:

3-49

3.6.2 SIR, HEP and HER in the presence of CFO in DCT and DFT -OFDM
systems

The DCT-OFDM gives smaller ICI power and greater signal-to-interference

ratio (SIR) than DFT-OFDM when the system is operating in the presence of CFO
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over an AWGN channel. One can consider the SIR defined as (Peng and Beaulieu,

2006) represented by equations 3-54 and 3-55 for DeT and DFT respectively.

3-51

The leI and SIR analysis suggests that the desired subcarrier suffers less leI

coming from neighbouring subcarriers in DeT-OFDM than in DFT-OFDM. The

reduced interference will lead to better bit error probability (BEP) performance,

which can be observed from the BEP expression and simulation result demonstrated

in (Peng and Beaulieu, 2006). In order to fully appreciate the performance of BER

and BEP in the OFDM systems, we need to consider the system performance under

various modulation schemes. (Peng and Beaulieu, 2006) have compared the

performance of QPSK, BPSK, and QAM modulation schemes. When i1 and q1 are

two bits in one QPSK symbol, the i1 BEP for the kth subcarrier can then be written as,

using equation 3-56

Pit (K) = 1/2 - Io+oo sin(wfE" S~.k) x cos (wjE; S~.k)y(w)dw 3-52

Where yew) is given by equation 3-57

3-53

According to symmetry, il bit and ql bit have the same BER, hence, the BER for the

kth subcarrier is given by equation 3-58
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Note that the BER is a function of the subcarrier index k. This is because the

leI is a function of the subcarrier index. The average BER is given by equation 3-59

By eliminating the term that contains S~k in (3-57), one can obtain the expression of

BEP in the case of BPSK modulation, as given by equation 3-60

P _ 1 r+oo sinJEbwSi,k _!W2q2X nN-1 ( ~ SI ) d
bBPSK - - - J.o e 2 n:¢:k COS W"~b nk W

r Z 1l'W n=O r

3-56

In addition, for 16-ary QAM the i I BEP can be written

3 - Error! Bookmark not defined.

For i2 bit, the error probability is given by equation 3-62

Pi2 =

1

2

fo+oo 2sin (2wd) sins(2wdSL,k) sin(wdSL,k) cos(2wdS~,k) cos(WdS~,k) P(w)dw

3-57

It is noted that the iI bit has the same BEP as the qI bit, and i2 bit has the

same BEP as q2 bit. Therefore, the average BEP can be given as in equation 3-63

S~,kwith 9t{Fn-k}, and S~kwith ~Fn-k in (3-54), (3-60), and (3-61) give the BEPs

of the kth subcarrier for DFT-OFDM with subcarrier modulation formats BPSK,

QPSK, and 16-QAM, respectively.

3.6.3 Normalised Energy Spectral Density and the meaning of normalised
frequency
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It can be shown that the components in the Fourier transform are orthogonal,

and therefore, the normalised energy of a non-periodic signal s(t) can be calculated

in the frequency domain using equation 3-64

3-59

where, Es is the total energy of the signal. The quantity 1S (f) 12is the normalised

energy spectral density (it shows how normalised energy is distributed through the

frequency band). Note that this quantity is a density and its units are (Harlod and

Samy, 2004) volts2/Hz2, which can also be expressed as voltsi-sec/Hz. IS(f)12 is

also represented by the symbol \11 (f),

IS(f)12 == 'P(f) = Normalised energy spectral density

To find the normalized energy within a given frequency band, we merely

integrate the energy spectral density over that frequency band. The most important

parameter of a coding or modulation scheme is the bandwidth requirement, which is

determined by the spectrum of the modulated signal usually presented as a plot of

power spectral density (PSD) against frequency (Harlod and Samy, 2004).
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Figure 3-5. PSD versus frequency

As shown in figure 3.4, the power spectral density (PSD) should be zero

outside the band occupied; however, this can never be achieved in reality, and so the

spectrum extends beyond the band. This may be due either to the practical

implementation of filters, or to the inherent characteristics of the modulation scheme.

Therefore, the bandwidth Bu, must be defined such that the signal power falling

outside the band is below a certain threshold, which is determined based on the

tolerance of the system to adjacent channel interference. The design of modulation

selection and coding scheme for a system should be based on the following factors:

• Bit error rate probability, Ph

• Bandwidth efficiency, 11

• Signal-to-noise density ratio, EhlNO (Eh is the energy per bit, and No is the

noise density).

The definition of bandwidth of a signal is the width of the band frequency,

which contains a sufficient number of the signal frequency components, so as to

reproduce the signal without an unacceptable amount of distortion. The bandwidth

efficiency (or spectrum efficiency) of a coding and modulation scheme is how much
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of the bandwidth requirement can be achieved by the system. This can be expressed

as the information bit rate Rh, per unit bandwidth, and is measured in bits/seclHz

(bpslHz)and is given by equation 3-65:

3-60

"Normalisation" means to scale everything by some sensible common factor.

The normalised frequency is the frequency divided by the sampling frequency in

radians, which is the Nyquist rate. So, the number of samples per cycle is the

reciprocal of the normalised frequency and gives the number of times the signal is

sampled in one cycle.

3.7 The peak to-average power ratio (PAPR)

3.7.1 Introduction
An OFDM signal consists of a number of independently modulated

subcarriers, which can give a large peak-to-average power ratio (PAPR) when added

up coherently. When N signals are added with the same phase, they produce a peak

power that is N times the average power. The peak power is defined as the power of

a sine wave with amplitude equal to the maximum envelope value. Hence, an

unmodulated carrier has a PAPR of 0 dB. An alternative measure of the envelope

variation of a signal is the Crest factor, which is defined as the maximum signal

value divided by the RMS signal value. For an unmodulated carrier, the Crest factor

is 3 dB. This 3 dB difference between PAPR Crest factors also holds for other

signals, provided that the centre frequency is large in comparison with the signal

bandwidth (Nee, 2000).

However, a large PAPR brings disadvantages such as increased complexity

of the analog-to-digital and digital-to-analog convertors and reduced efficiency of
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the RF power amplifier. To reduce the PAPR ratio, several techniques have been

proposed, which basically can be divided into three categories. First, there are signal

distortion techniques, which reduce the peak amplitudes simply by nonlinearly

distorting the OFDM signal at or around the peaks. Examples of distortion

techniques are clipping, peak windowing and peak cancellation. The second category

is coding technique, which uses a special forward-error correcting code set that

excludes OFDM symbols with a large PAPR. The third technique is based on

scrambling each OFDM symbol with different scrambling sequences and selecting

the one that gives the smallest PAPR (Nee, 2000) .

In addition, the peak to-average power ratio (PAPR) of OFDM signals can

be reduced by the use of pre-processing and post-processing techniques. One such

technique (Jun and Stuber, 2002) uses constrained coding and/or selective mapping

techniques to pre-process transmitted data to reduce the PAPR. In (Wilkinson and

Jones, 1995) (van Nee, 1996), Golay complementary codes are used to reduce the

PAPR of OFDM. Coding can also be combined with phase shifting to reduce the

PAPR (Tarokh and Jafarkhani, 2000). Post-processing techniques usually clip the

OFDM signal in an appropriate way so that clipped signals can be stored at the

receiver. A comprehensive survey ofPAPR reduction technique is presented in (Nee,

2000).

So, in a significant number of MCM systems, there is a possibility of high

peaks in the transmitted signals, which emphasises the necessity to increase the

dynamic range of the corresponding linear amplifier of the communication system or

otherwise to clip the signals. The clipped signal yields an undesirable inter-carrier

and out-of-band radiation (Paterson and Tarokh, 2000) and thus results in degraded
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system performance. Thus, such transmission schemes using orthogonal base with

high peaks must be avoided.

Although the DWT-OFDM provides many advantages, the transmitted signal

in the system does not have the constant envelope. Envelope variation is to be

controlled, to avoid operating the transmission amplifiers near their non-linear

saturation regions. If hard limiter is employed to limit the peaks, the orthogonality of

the constituent terminal functions is destroyed, resulting in potentially unacceptable

performance. One of the metrics used to quantify large envelope variation is peak-to-

average-power ratio (PAPR) value (Baxley and Zhou, 2004). So, a good

performance of an OFDM system with respect to PAPR is vital for the performance

measurement of the system.

3.7.2 PAPR in DWT system
In wavelet-based OFDM, the IFFT and FFT blocks are replaced by an

inverse discrete wavelet transform (IDWT) and discrete wavelet transform (DWT),

respectively. In Fourier based OFDM, there are M independent sub channels via a K

= 2M point IFFT operation (when the conjugate symmetry condition is imposed).

The wavelet transform converts real numbers to real numbers, and hence binary

PAPR = maxlS(t)1
2

IS(t)12
3-61

signalling must be used in each sub channel. To keep the same data rate in the

wavelet-based system, K independent binary sub channels are multiplexed together

via a K point IDWT (Khalid and Shah, 2006).

The PAPR ofthe DWT-OFDM signal can be defined as in equation 3-66

where ·IS(t)12 denotes the transmitted signal mean power.

PAPR analysis is based on its cumulative distribution with respect to the

number of binary combinations at the transmitter input (Khalid and Shah, 2006).
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By far, wavelet based multi-carrier modulation (MCM) also called wavelet

(filter bank) based OFDM (WOFDM) system seems to offer most of the advantages

and suffers from fewer disadvantages when compared to the other OFDM systems.

In the WOFDM systems, the orthogonality is satisfied by orthogonal wavelet filter

(filter bank) (Strang et aI., 1996) and no guard interval (cyclic prefix) is needed, thus

enhancing the bandwidth efficiency by 20% compared to conventional OFDM

systems. Besides (Technologies, 2001), additional bandwidth efficiency (8%) in

WOFDM systems is also provided since pilot tones are not necessary.

(Muller and Huber, 1997) proposed the use of piecewise scales transform

(PST) using the complementary cumulative distribution function (CCDF) of PAPR

of signals.

By using PST, the average power of the transmitted signals is enlarged while

their peak is kept unchanged; the reduction in PAPR should be very limited to avoid

large companding distortion as shown in the following equation 3-67

3-62

where E[ ] denotes the expectation.

The channel is modelled as an additive white Gaussian noise (AWGN) with zero

mean and No/2 variance.

Therefore, as shown in equation 3-67 above, better performance may be

achieved against the trade-off between the reduction in PAPR and the BER of the

system, by changing not only the peak value but also the average power of the

transmitted signal.

3.7.3 The theoretical analysis of the PARP reduction method
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The discrete wavelet transform (DWT) is a type of batch processing, which

analyses a finite domain signal by breaking up the initial domain into two parts: the

detail and approximation domain (Mall at, 1999). The approximation domain is then

successively decomposed into detail and approximation domains. (Zhang et al., 2007)

have used the properties of the discrete wavelet transform (DWT). DWT generally is

scattered, i.e. a wavelet basis provides an efficient approximation of uniformly

regular signals. This means only a few coefficients of DWT dominate the

representation. Using this property in WMCM systems means that the PAPR can be

reduced with little reconstruction loss. The transmitter of a WMCM system is shown

in Fig.3-3. Let x (n) be the signal obtained after orthogonal modulation. Then, the

PAPR can be defined as in the following equation 3-68,

PAPR(dB) = 10 l0010 m{n{lx(nlt} = 10lo010 max{l~(n)12},n=0,1,.",N-l 3-63
E Ix(n)1 NL~;Jlx(n)12

Since wavelet transforms always concentrate energy on some given number

of bases, we can introduce equation 3-69 to represent the energy concentrated in a

wavelet.

XT(n) = Oiflx(n)12 < T
{ xT(n) = x(n)iflx(n)12 ;:::T,'

3-64

a threshold T and compare it with the energy of each orthogonal base. Then lets us

define a new sequence

Xl(i) = xT(n),xT(n) *' 0 i=O, 1... N-M-1: n=O, 1... N-1 3-65

Reconsidering (3-67), the PAPR can now be written (Zhang et al., 2007)

using equation 3-71,

PAPRN = 10lo0100(n),0(n)
10lo max{lx(n)12},n=0,1,,,,,N-M-l3-66

010 _l_~N-M-ll ( )12
N_ML..n=O X n
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Let the threshold T fulfil the inequality T< ~L~:-t'-1Ix(n)12.

Then, there exists the condition expressed by equation 3-72,

.!.~N-M-ll ( )12 < _l_~N-M-ll ( )12
NL..n=O X n N_ML..n=O X n . 3-67

From (3-68), (3-71) and (3-72), we obtain

PARP> PAPRN. 3-68

Equation (3-71) expresses the reduction in PAPR, as the denominator is

reduced more than the numerator. As mentioned earlier, the wavelet transform can

concentrate most of the energy in the main lobe, so that there is very little energy in

the side lobes. This means that the condition imposed on the threshold T can always

be satisfied. Therefore, we can exploit this property of the wavelet transform to

reduce the PAPR. Equations (3-66)-(3-71) show, that this method is effective in

reducing the PAPR. The only difficulty with this method is choosing the proper

threshold T. From equations 3-69 and 3-70 it is easy to realize that the higher the

value of T is, the larger M becomes which results in a lower PAPR value. On the

other hand, the higher the value of T is, the higher are the distortions of the

transmitted signals, which results in higher information loss and in BER

performance distortions. Given a certain value of T, different wavelet basis functions

perform differently in reducing PAPR, due to their characteristics (Zhang et aI.,

2007).

For implementing in the receiver, we only need an additional forward transfer

channel, which carries the label information of subspace whose energy is set to zero.
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Then, we pad zeros in subspaces, which are set to zero at the transmitter (Zhang et

aI., 2007b).
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3.7.3.1 Using CCDF with DWTIDCT based OFDM within 64QAMl64DAPSK

modulation for PAPR measurement

Clipping the amplitude of the transmitted signal that exceeds a desired

threshold is the simplest technique to control the peak-to-average power ratio. This

technique however produces a significant Out-of-Band Interference (OBI) and is also

a highly non-linear process. Companding is a good remedy for OBI, which means

'soft' compression of the amplitude of the transmitted signal. This is also an

attractive option to compand the DWT-OFDM and DCT-OFDM signals.

Furthermore, this technique not only reduces the high PAPR, but also improves the

performance bandwidth efficiency of the system.

The effectiveness of a PAPR reduction technique can be measured by using

the complementary cumulative distribution function (CCDF), which is defined as the

probability of PAPR exceeding certain threshold. This can be expressed as:

CCDF = Probability (PAPR > pO), where pO is the threshold.

The value of CCDF is directly proportional with the number of sub-carriers in the

OFDM signal. So, the CCDF of parameter could be used to measure the PAPR value

in the proposed OFDM system. The proposed combination of DWT system with

64DAPSK modulation scheme has been demonstrated to have reduced PARP level.
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3.8 AWGN channel

An additive white Gaussian noise (AWGN) channel model is the one where

the only impairment to communication is a linear addition of a Gaussian distribution

of amplitude. It is also characterised by a wideband with a constant spectral density

(expressed as watt per hertz of bandwidth) which is also described as white noise.
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This simple model does not account for frequency selectivity, fading,

nonlinearity, interference or dispersion. However, it produces tractable mathematical

models, which are useful for gaining insight into the underlying behaviour and

simplicity of a system before these other phenomena are considered.

Wideband Gaussian noise comes from celestial source such as the sun and

from many other natural sources, such as the thermal vibrations of atoms in

conductors (referred to as Johnson-Nyquist or thermal noise), black body radiation

from the earth and other warm objects.

The normal (or Gaussian) distribution is a continuous probability distribution

that has a bell-shaped probability density function, known as informally the bell or

Gaussian function is given by equation 3-73

1(X-Il)2
[ex /I (j2) = _l_e-zu 3-69

I r-I (J..,f2ii

The parameter (j2 is the variance and f1. is the mean or expectation (location

of the peak). (J is known as the standard deviation. The unit normal distribution or

the standard normal distribution is the distribution with f.t = 0 and (i = 1. Usually, a

normal distribution is used as a first approximation to describe real-valued random

variables that cluster around a signal mean value.

AWGN is a suitable model for most of the satellite and deep-space

communication links. However, for most of the terrestrial wireless channels, due to

the effects of multipath, terrain blocking, interference, etc., the AWGN is not a

suitable model. Currently AWGN is also used to represent the background noise of

the channel in modem terrestrial radio communication systems.
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Band limited AWGN cannot be ignored in modem communication systems.

Statistical analysis reveals that the amplitudes of the real and imaginary contributions

are independent variables, when the modelling band limited AWGN is in the phasor

domain, which follows the Gaussian distribution model.

3.9 Rayleigh channel

A channel can be modelled as the physical processes that modify the signal

being transmitted. For example, a channel in wireless communications can be

modelled by incorporating the reflection of the signal from every object in the

environment. Simulating external interference and/or electronic noise in the receiver,

a sequence of random numbers might also be added. Statistically, a communication

channel is modelled with three variables for repsenting an input alphabet, an output

alphabet, and for each pair (i, 0) of input and output elements a transition probability

p (i, 0). Statistical and physical modelling can also be combined. Often, for example,

the channel is modelled by a random attenuation (known as fading) of the transmitted

signal, in wireless communications, followed by additive noise. The underlying

physical processes capture the change in signal power as the attenuation term is

simplified over the course of the transmission. The noise in the model captures

external interference and/or electronic noise in the receiver. If the attenuation term is

complex it also describes the relative time a signal takes to get through the channel.

The Rayleigh fading process, in which the gain of each wireless channel experiences

independent variation while remaining constant within a frame, considers the

multipath fading channel which is frequency nonselective. The correlation function

of the Rayleigh fading process which was generated according to the Jakes model is

given (Jakes, W. C., 1974) by equation 3-74

56



R(T) = ]O(2rrtDT) 3-70

Chapter 3 OFDM Systems and modulation techniques

where tD is the maximum Doppler shift of the fading signal caused by the mobile

motion. The Doppler shift is given bytD = v/A., where v is the velocity of the mobile

and A. is the wavelength of the carrier. In most cases, the normalized maximum

Doppler shift tD T is used as the measure for the fading rate, where T denotes the

symbol duration (Der-Zheng and Che-Ho, 2001).

The model assumes that N equal-strength rays arrive at a moving receiver

with uniformly distributed arrival angles a. If a transmitted signal is x, then the

received signal y can be written as using equation 3-75

y=hx+n 3-71

where h = hc + jhs is the complex channel coefficient, n = nc + jns is the

complex additive white Gaussian noise, and h and n are assumed to be zero mean

statistically independent complex Gaussian random variables (hc' hSIncand nsare

independent). In addition, the noise is assumed to have zero mean and unit variance

(noise power is normalized to unit).

The equivalent-baseband signal at receiver is given by (Der-Zheng and Che-

Ho, 2001) equation 3-76

Where gr (t )the pulse-shaping is filter and rs denotes the average received signal-

to-noise ratio (SNR) per symbol. Thus, the average SNR per bit is given by equation

3-77
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3-73

wet) is a complex Gaussian process whose real and imaginary components have the

same power spectral density (PSD) which represents the combined distortion

introduced into the desired signal in the fading channel. Awr = 2rcflf and e are

frequency offset in radians and residual phase error introduced during demodulation,

respectively.

Rayleigh distribution is derived from two zero-mean statistically independent

normally distributed random variables J-I.l and J-I.2, each having a varianceoj , i.e., J-I.l ,

J-I.2-NeO, aJ ), according to c= .JJ-I.f + J-I.~. Then { represents a Rayleigh

distributed random variable. The probability density function (Kai-ming et al., 2005)

is given by equation 3-78

3-74

Flat Rayleigh channel with Jakes' power spectral density is used in

simulation. The frequency range of the Jakes' power spectral density is limited to the

range If I :$ fmax, fmax denotes the maximum Doppler frequency due to the motion

of the receiver or transmitter. Generation of two coloured Gaussian random

processes is based on a superposition of a finite number of harmonic functions
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according to the Rice method. The Monte Carlo Method (MCM) has been employed

for computation of the model parameters such as Doppler coefficients, discrete

Doppler frequencies and Doppler phases.

When combined, the resultant phasor's magnitude is a Rayleigh distribution random

variable, while the phase is uniformly distributed from 0 to 21t.

3.10 Related bandwidth with transmission speed
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The pulse width of transmitted data represented by this directly proportional

to the transmission speed. Also, when the pulse width is large, the first zero crossing

in the first zero crossing in the spectrum is lowered while shorter width increases the

same. In a digital communication system transmitting rectangular impulses as shown

in figure 3-5, the location of the first zero crossing in the magnitude spectrum is

directly related to the bandwidth required. For that, quantitatively examining

communication system trade-offs involving bandwidth versus transmission speed

provides the techniques and insight necessary to begin (Harlod and Samy, 2004) .

T

tl~-
o T -3IT -·lIT 0 tIT 3IT

PIMe

Figure 3-6. Rectangular pulse and its spectrum

The bit period symbolized as T=l/Tb, as shown in Fig.3-5, is the amount of

time between the two adjacent bits or the pulses, where Tb is a source out putting bits

per second. While the pulses should not overlap, they should be as wide as possible

(this minimizes bandwidth). This is accomplished by selecting a pulse width of r = T.

Pulses will be overlapping when r > T, so that pulses do not overlap when r < T but

bandwidth is wasted (since bandwidth is proportional to r).

3.11 Summary
The advantages offered by DCT over DFT technique (Al-Dhahir, N., and

Minn, H., 2005) the excellent spectral compaction and energy concentration
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properties. This in turn, leads to improved performance with interpolation-based

channel estimation and in the presence of narrow-band interference and residual

frequency offsets. In addition, it can result in improved adaptive filtering

convergence. So, the DCT is widely adopted in image/video coding standards (e.g.

JPEG, MPEG). It has been demonstrated that DCT when used with frequency-

selective channels results in a better integrated system design and could mean

reduced implementation cost. Also the DCT uses only real value processing as

opposed to the complex-valued operation in DFT. This reduces the signal processing

complexity, especially for real pulse-amplitude modulation (PAM). The DFT based

processing also suffers from in-phase/quadrature (I/Q) imbalance problems which

can cause significant performance degradation.

In this research, DWT system has been demonstrated to offer the best

features for digital wireless communication. It has an inherent advantage of not

requiring CP and as a result has good bandwidth efficiency. Also, DWT provides

side lobs of much lower magnitude than those of Discrete Fourier transforms

[Resnikoff, H.L., et al 1998], and can better combat narrowband interference. The

system is also inherently more robust with respect to ICI than traditional DFT-

OFDM, and offers simplicity of receiver design.
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Chapter 4

Design of a novel hybrid OFDM system using DWT technique with DAPSK
scheme for wireless communication systems

4.1 Introduction

The coherent demodulation techniques used in the current mobile network

design lead to increased system complexity and signalling overhead. This results

from the need for the channel estimation procedure to be updated at every OFDM

symbol, leading to a large amount of transmitted pilot tones being generated. A

decision directed channel estimation approach reduces the signalling overhead

considerably, but is very sensitive to erroneous decision on the data symbols due to

the changes in channel characteristics (Toender, Georgi et al. 2006).

To avoid using any channel estimation, equalization and tracking techniques,

differential modulation schemes can be used, encoded in time or frequency domain.

In this case, even if a time variant radio channel is considered, no pilot signals and

no radio channel estimation procedures are needed, which reduces the system

complexity significantly. Therefore in practice, differential amplitude and phase shift
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keying (DAPSK) is a very attractive technique for high-rate transmission in a mobile

radio environment (Rohling and Engels 1995), since differential detection instead of

coherent detection can be employed. The DAPSK scheme consists of DASK and

DPSK, by which the information bits are partially carried on the amplitude and

partially on the phase (Suzuki, Mi et al. 1995) and has superior performance

compared to both the schemes.

One of the major advantages of the DWT is system is that the wavelet based

system does not need a cyclic prefix to deal with delay spreads of the channel due to
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the overlapping nature of wavelet properties. As a result, it has higher spectral

containment than the DFT-OFDM and DCT-OFDM systems discussed in the

previous chapters. Moreover, the DWT is widely used for data compression. Wavelet

based still image compression methods not only out-perform traditional methods, but

also possess built-in scalability so that single bit stream can be transmitted

progressively and decoded from coarse to fine resolution (Guo 1998). In addition a

great reduction in the side-lobe levels achieved by this system is the motivation

behind the recent trend in using the wavelet in the OFDM system. While DWT-

OFDM provides many advantages, the transmitted signal does not have a constant

envelope.

Therefore, in this research work, it is proposed to develop a novel hybrid OFDM

system using DWT with DAPSK modulation. The main goal in proposing this

system is to achieve considerable reduction in the PARP of the OFDM system. With

its major advantages of reduced PAPR and optimum BER performance in fast

moving mobile environments, the newly proposed hybrid OFDM system can find a

very useful application in the 4G wireless communication systems.

4.2 Proposed Transceiver and Channel Transmission systems
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4.2.1 Wavelet-Based OFDM (DWT-OFDM)
The block diagram of the proposed wavelet OFDM system with the DAPSK

modulation scheme is given in figure 4.1 below. In the block diagram, the blocks

representing inverse discrete wavelet transform (IDWT) and DWT have replaced the

blocks for IFFT and FFT in the FFT-OFDM system. The output of IDWT can be

represented by the following equation 4-1,



Chapter4 Design of novel hybrid OFDM using DWT with DAPSK

where S;Aare the wavelet coefficients and tPm,n (t) )is the wavelet function with

compressed factor m times and shifted n times for each subcarrier (number k, 0::;k s

N-l). Also the IDWT function can be expressed as weighted sum of functions as

given by (Guo, H., 1998) equation 4-2,

where N is the length of the data sequence, B i denotes the wavelet basis function V\.}

on various scales, and the scaling basis function Sj on the coarsest scale. As the

wavelet transform is made up of compression and dilation factors, these can be

represented by low pass and high pass filtering components. The scaling function S

and the wavelet function W at different scales can be obtained from (Guo 1998)

equations 4-3 and 4-4

Sj+1 = up(Sj) * h, V\.}+1= up(V\.}) * h

With

4-3

Si = h, 4-3

where upt) denotes up-sampling, and * denotes convolution.
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Data
serial

DAPSK
demodul ~--I
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PIS
Virtual
carrieri
nsertio

n

IDWT

Figure 4-1. DWT -OFDM with DAPSK transmission system

Unlike the DCT system where the basis functions are on the same scale and

have the same support, the basis functions for the DWT have been increasing support

at coarser scales. Also, the basis functions on the same scale are merely shifts of one

another. By grouping the coefficients according to scales and enabling them, the

previous equation (Guo 1998) can be rewritten using equation 4-5,

4-4

where j is used for scale, and i is used for position within the scale, and J is the total

number of decompositions.
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4.2.2 DAPSK Modulation

4.2.2.1 Introduction

Differential amplitude and phase shift keying (DAPSK) is the combination of

differential amplitude shift keying (DASK) function and differential phase shift

keying (DPSK), as shown in Fig. 4.2 below.

Input

Dataon
amp.

Data Datton
plwi.

D.cision

Figure 4-2 The transmission model of DAPSK scheme.

Differential amplitude and phase shift keying (DAPSK) is an efficient

modulation scheme that can be implemented in wireless channel state information

(CSI) at the receiver side (Yao, Zhang et al. 2005), in that the performance of the HF

communication system (e.g. radio mobile environment) with differential modulation

has been demonstrated to be comparatively better than those with no differential

modulation. Furthermore, the differential modulation can greatly reduce the

computational complexity in the demodulation process because it does not require

complicated channel estimation and equalization procedures (Shuzheng, Huazhong

et al. 2005).

The DAPSK scheme consists of DASK and DPSK, by which the information

bits are partially carried on the amplitude and partially on the phase. The transmitted
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symbol at time k is denoted as Sk , its amplitude component as ak, and phase

component as 4>kusing equations 4-6 and 4-7,

Sk = ae! 4>k4Error! Bookmark not defined.

Now, let the received symbols be represented by rk, which consists of amplitude part

bk and phase part 4>k' Since AWGN channel is assumed, the received symbols

could be expressed as follows using equation 4-8

4-6

where nk and t/J denote the Gaussian noise power and uncertain phase, respectively,

and both terms are in complex form.

At the receiver end, the detector should separate out the differential components

of amplitude and phase. This is done by using the previous symbol rk-l as a

reference to deduce the ratio of amplitude Yk and the differential phase value /). 4>k

as shown below using equations 4-9 and 4-10

4-Error! Bookmark not defined.

4-Error! Bookmark not defined.

The conventional differential detector will deduce the transmitted data of the

DAPSK signals, based on the above two equations.

4.2.2.2 The differential amplitude shift key (DASK)

The term "differential" is used here because the information is transmitted as

the difference in amplitudes between the current and previous bits. When

transmitting a phase amplitude modulation (PAM) through a band pass channel, it
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produces an amplitude shift key (ASK). Therefore, ASK can be expressed using

equations 4-11 and 4-12

4-7

h S {
A when the data from the source is a "l"}were t= .

baseband( ) 0 when the data from the source IS a "0"

4-8

where D, = (Di-1 + fl)mod4, Di-1 E {0,1,2, .. }, fl is amplitude increment and fc

represents the carrier frequency. In order to produce an energy spectral density with

all its significant components in de- to low-frequency range, PAM signals were

designated' l's and 'O's (where' 1's are transmitted by sending the carrier signal

with an amplitude of A volts, and 'O's are transmitted by sending the carrier signal

with an amplitude of 0 volts) to represent different amplitudes of the carrier signal

using binary ASK (Abdullah, Hussain et al. 2009). Formatting information to

represent ASK is based the amplitude of the transmitted signal relative to the carrier;

while for DASK, it depends on the amplitude of the transmitted signal relative to the

previously transmitted bit. For example, when the amplitude ring increases cyclically

from inner to the outer ring, the increment between rings also increases. Thus, the

amplitude of the signal can be expressed as demonstrated in (Kai-ming, Wen-bo et al.

2005).

Power spectral density for ASK has two such curves; one centred at - fc (the

carrier frequency) while the other is centred at fc. The bandwidths for both ASK and

PAM is calculated based on the percentage of in-band power required to maintain a

certain degree of accuracy. The percentage of in-band power required to maintain a

certain degree of accuracy will be the bandwidth for both ASK and PAM. The
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bandwidth of 2rb (the number of bits output by the source per second) for the ASK

contains 95% of the signal's power, while a bandwidth of r, contains 90% of the

signal's power for PAM. This means, the bandwidth for ASK is twice that of the

PAM signal, since due to the symmetry of components the frequency range occupied

by the PAM signal spectrum to the left of 0 Hz is now shifted to the right of 0 Hz in

the ASK spectrum. As a result in order to obtain 95% in-band power for an ASK

signal, the channel must be capable of reliably transmitting all frequency

components ranging from Cfc-2rb) to ( fc + 2rb), which means a bandwidth of 4rb .

4.2.2.3 The differential phase shift key (DPSK)

The DPSK scheme is based on the difference between the phase of the

transmitted signal relative to that of previously transmitted bit. A one-bit

initialization period at the beginning of each transmission is required for DPSK. The

concept of differential encoding can easily be extended to the constellation for mixed

amplitude/phase modulation. Let a E A be the differential symbol drawn from the

signal set A and s the current state of the encoder (the reference symbol). The

transmitted symbol X E X is produced from the tuple (a, s) encoder. The operator (8)

specifies the relation between a and s (Fisher, Lamp et al. 1999) given by equation

4-13

X = s(8)a, 4-9

where "(8)" is a non-commutative operation as shown below.

(8): X x A -+ X,
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a x

Delay

Figure 4-3 differential encoder

In the above figure 4-3, for the traditional DPSK, "®" is simply the complex

multiplication. Considering the classical DPSK for the encoder state, let the

differential symbol a = 1jejqJm ands = TiejqJn. So that the lead transmitted symbol

is given by Equation 4-14 (and, thus, implicitly the operator "®")

4-10

where Tk is the received signal, which consists of amplitude part bk and phase part

4.2.2.4 The M-DAPSK scheme modulation

M-DAPSK modulation is a combination ofN-DPSK and K-DASK, where M

= N*K. The encoder will produce organisation output into sets of four bits binary

(0) (1) (q) h - 2N/2 M . h d th I aldata Cm ,Cm , ...... , Cm ,were q - . appmg t ese ata to e comp ex v ue

set srn,equation 4-15 represents the set Srn

4-11

where I1qJrn and Trn represent phase transition factor and amplitude transition factor,

respectively.
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The phase transition factor ll.qJm in the transmitted complex value Smmeans

applying Gray mapping of three-bit binary data Cm (0), Cm (1) , Cm (2) for 8-DPSK

modulation according to Table 4-1 (Harlod and Samy 2004)

Table 4-1Natural Binary to Gray code

Input Input Gray Gray

decimal binary decimal !Binary

0 0000 0 0000

1 0001 1 0001

2 0010 3 0011

3 0011 2 0010

~ 0100 6 0110

5 0101 7 0111

6 0110 5 0101

7 0111 4 0100

8 1000 12 1100

9 1001 13 1101

10 1010 15 1111

11 1011 14 1110

12 1100 10 1010

13 1101 11 1011

14 1110 9 1001

15 1111 8 1000
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Table 4.2 AmplitudechoiceforDAPSKmodulation

IX/I ~tudebiub~4Ib~5
00 01 11 10

1 1 8 g2 a3
IR/I 8 8 ~ ~ 1

fil ~ tr 1 8

~ BJ 1 8 ~

The amplitude transition factor rk for each transmitted signal in Table 4.2 is

multiplied by ak-I, which is the amplitude of the previous transmitted complex

symbols. A ring factor a in M-DAPSK modulation is defined using equation 4-14

4-12

where aH and aL (aL< aH) represent the two amplitude levels of the modulated

signals. Therefore, the transmitted complex symbol dm is given by (Harlod and

Samy 2004) equation 4-17

where dm-1 represents the previously transmitted complex symbols.

The received complex symbol a m is divided by the previous received

complex symbol, to obtain the differential complex valueSm.

where rm is the received signal, which consists of amplitude part bm and phase part

0m. Since the additive white Gaussian noise (AWGN) channel is assumed, the

received symbols hold the relation as follows:

T - s eN + n = b eJ0m 4-14m- m m m
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where nm and 1jJ denote the Gaussian noise with power n and uncertain phase,

respectively, both with complex form.

The previous symbol rk-l in the differential detector is used as the reference

to detect the difference between the phase fj,()m and the ratio of amplitudes Ym

represented by equations 4-19 and 4-20 respectively.

_ 1 rm 1- bmYm- -- ---
rm-l bm-l

4-15

4-16

The conventional differential detector will detect the transmitted data on

DAPSK signals (Suzki et al., 1995) based on those two values.

4.3 Mathematical model of the DWT -OFDM system with DAPSK modulation

DAPSK
l10dulnlr

Figure 4-4 Communication System model

The DAPSK modulation process in the block diagram represented by figure

4-4 can be visualised as a series of mapping of the amplitude and phase components.

This is shown in figure 4-5 below.
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(b 1> b2,." .'" bm)n,k Bn,k Differential Sn,k
Mapping ~

Encoding

Figure 4-5 Block diagram of linear subcarrier modulation

Modulation is achieved as a mapping of serial data stream as data symbols

having a symbol rate of..:!:..,via a general phase and amplitude modulation scheme;
Ts

demultiplexing is obtained as result of mapping the symbols into a vector of N data

symbols So toSN-1. The parallel data symbol is N times longer than the serial

symbol of durationfj. The coefficients So to SN-l are constants in an OFDM system

and are computed via the inverse DWT (IDWT) of the data symbol vector. Samples

of the OFDM symbols are transmitted sequentially over the channel at a symbol rate

of2. such as the Sn in the time domain. A spectral decomposition of the received
Ts

time domain samples at the receiver rnis computed by sampling an N-tap DWT, and

the received data symbols Rn are restored in serial order and demultiplexed.

Figure 4-4 gives the functional blocks ofthe proposed DWT-DAPSK-OFDM

system. The mathematical model will be based on the hierarchical flow of the

functions in the block diagram. The carrier modulation is based on the system block

shown in Fig. 4-5, where subcarrier modulation consists of mapping the binary

sequence to the required amplitude and phase space followed by differential

encoding. Differential encoding can be expressed (Rohling, May et al. 1999) using

equation 4-21
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4-17

Therefore, the modulated symbols with amplitude and phase components can

be represented using complex notation as given below by the equation 4-22 below.

B ={ A' j6.f/JpIAI
E {-Na+1> ... ""Na -1}}

n k a .e { 1}, pE O, ,Np- 4-18

The subscripts n and k refer to the time and number of subcarriers in the

OFDM block considered, and Bn,k is the complex coded sequence describing the

transition between the different amplitude and phase states in the constellation

diagram. Note that the amplitudes are spaced by a factor a. The number of amplitude

circles is represented by Na = 2ma, and the number of phase constellation points per

amplitude circle is given by Np = 2mp I so the number of signal states is calculated as

M =Na. Np = 2m. 11 qJ is deviation angle for two successive points in one circle on

the constellation.

DAPSK can be described as a differentially encoded APSK (Der-Zheng and

Che-Ho 2001) (Weber 1978), the signal-space diagram of which is defined by the

complex signal set, given by equation 4-23

4-19

Where /1> 1 is the fixed ring ratio, and the number of bits per DAPSK signal m =

ma + mp' an,k and bn,k indicate the amplitude and phase levels of the transmitted

DAPSK signal, Sn,k I respectively. A=.JNa(p.2 - 1)j(p.2Na - 1) is the normalized

gain of signals; the average transmitted signal power is normalized to unity.

By substituting equations 4-22 and 4-29 in equation 4-21 yields equation 4-24
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S = '] an-1,k jC!;)bn-1,k { A'IA' E {-3, ..., 3}} jllqJP
n,k A.Jl.e a {O 1S}·epE,.",

4-20

Eq. (4-24) will be the output signal for DAPSK modulator, but after the virtual

carrier insertion block yields (Der-Zheng and Che-Ho 2001) (Weinstein and Ebert

1971) the equation 4-25.

s .= _!:._ ~N-l S ej2rr:nk/N
n] ..fN L..k=O n,k 4-21

In order to obtain the signal map of DWT with DAPSK substituting equation

(4-24) in Eq. (4-25) the OFDM symbol in DFT is represented by equation 4-26

.(Zn:)bI - n-1kA. /lan-1,k. e Np ,

2..L~:6{ lA' {3 3}} 4-22..fN - A' E - ,.'" j IlqJP j2rr:nk/N
a pE{O,,,.,1S}.e e

Rearranging equation 4-26 yields equation 4-27

S ,- A. { A'IA' E {-3, ".,3}} ejllqJP ~N-l an-1,k jC~n:)bn_1,k j2rr:nk/N
n] ...fN apE {O,". ,1S}' ~k=O u . e p e

lA
' {3 3}} . bn-1,k nk_ A. {A' E - ,.'" jMpp ~N-l an-1k ]2rr:(-N-+'N)

r.; a {O 1S}' e ~k=O /l =e pvN pE ,,,.,

4-23

A. { A'IA' E {-3, "., 3}} jllqJP
where E =..fN apE {O, "., 1S} . e

So, equation (4-27) represents the output of the inverse discrete wavelet

transform (IDWT) which is represented by (Abdullah and Hussain 2007) (Strang and

Nguyen 1997) as given by equation 4-28

4-24
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where {Sf} are the wavelet coefficients and t/J(t) is the wavelet function with a

compression factor of c and shifted d times for each subcarrier (number k, 0:::;k ;:::

N - 1). The wavelet coefficients are representations of signals in scale and position

or time. The scale is related to the frequency. Low scale represents compressed

wavelet which means that the signal is rapidly changing, or the signal is high

frequency. On the other hand, high scale represents stretched wavelet which means

that the signal is slowly changing, or the signal is in low frequency. Since, the IFFT

output is the sum of the received signal in discrete frequency by equation 4-29

4-25

Xm is a sequence in the discrete time domain, and {XmIO :::;m :::;N - 1} are

complex numbers in discrete frequency domain. Thus, Xm, which is a sequence in

discrete time domain in FFT, can be represented to {Sf} before it is processed in the

IDWTblock.

Therefore by substituting Eq. (4-26) in Eq. (4-28) we obtain the modulated

signal yields equation 4-30

So equation (4-30) represents the mathematical model that is proposed for the

IDWT DAPSK transmitted signal.

In the receiver side the complex received signal is (Rohling, May et al. 1999)

represented by equation 4-31
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where Hn.kis channel transfer factors and Nn.kis additive noise signal.

If differential encoding is used in the transmitter, the demodulation can be

performed either non-coherently (ne) or quasi-coherently (qc). With non-coherent

demodulation the decision is based on the quotient of two successive symbols and is

given by equation 4-32

4-28

Since, Sn,k =Sn-l,k' Bn,k it is substituted in numerator of equation 4-32

In general, successive channel transfers are strongly correlated so that

Hn,k ~ Hn-1,k and therefore cancel down in (4-31) (if the noise is neglected).

Unfortunately, D::,~ is affected twice by the noise power than D~,k(decision with

coherent demodulation), leading to a higher BER than coherent demodulation (with

perfect channel state information). Note that, with no coherent demodulation, no

channel estimation has to be performed. Thus, the computation complexity in the

receiver is relatively low.

To determine the data in sub-channel k, the transmitted waveform needs to be

matched with carrier n (Ahmed 2000; Abdullah and Hussain 2007)as represented by

equation 4-33
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4-29

where yet) is the transmitted via IFTT, fk(t) the complex exponential used in the

IFFT operation or ej2rrkm/K (K being the size the size of FFT), dk the data projected

on each carrier, and (yet), In et) equals 1 when k=n and 0 when k =n,

In a typical communication system, data is transmitted over a dispersive

channel. The impulse response of a deterministic (and possibly time-varying)

channel can be modelled by a linear filter (t) as shown using equations 4-34 and 4-35

ret) = y(t)*h(t)+n(t) 4-30

= Lf;J dktk + net) 4-31

I~being the distorted carriers due to the dispersive channel and net) is additive white

Gaussian noise.

In wavelet-based OFDM, the same conversion as for the DFT using match

filtering is performed except that the fk(t) is the complex exponential used in the

IFFT operation ej2rrkm/K (K being the size of FFT), and the coefficients are replaced

with Wk(t) and Wo(t); Wk(t) being the wavelet carrier in IDWT operation with sub-

channels to match with carrier n. Therefore, the received signal is expressed as by

equations 4-36 and 4-37

rw (t) = Yw(t)*h(t)+n(t) 4-32

4-33

where K is the wavelet filter rank (sampling rate), W~et)= W(t)*h(t), and g(g>l) is

the wavelet genus so that Kg is the filter order (number of taps in that sub-band).
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After matched filtering with carrier n, the signal is represented by equations 4-38 and

4-39.

lk)+n(t),!n(t) 4-34

= L~~JSn,k Pk,O(O) + (n(t),! net)~ = SKPk,n(O) + L~~JSn,kPk,n (0) +
k=i=n

L:!lL~~JSn,k,lPk,n(l) + nl/(t)
k=i=n

4-35

where SKPn,n (0) IS the recovered data with correlation term Pn,n (0). The

termL~:6 Sn,kPk,n (0) is the interference due to the distorted filters that are no longer
k=i=n

orthogonal to one another with correlation term S Pk,n (0), and

L~!lL~:6Sn,k,l Pk,n (Ois the interference term with correlation Pk,n (0 due to the
k=i=n

overlapped nature of wavelet transform. These two terms become zero, and only the

first and last terms would appear if the channel has no distortion. The decoder would

possibly obtain an almost correct signal when the terms are zero.

In this chapter, the mathematical representations of DWT, DASK and DPSK

schemes have been discussed briefly. Using those mathematical representations as

basic building blocks, a new mathematical model for the complete DWT-DAPSK

system has been proposed and verified analytically.
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Chapter 5

Simulation and Analysis

5.1 Introduction

A novel hybrid DWT-OFDM system with DAPSK modulation has been proposed and a

mathematical model for the system has been presented in chapter 4. The block diagram was presented

in figure 4-4. In this chapter, this proposed system has been simulated using Matlab simulink package

and also verified using Matlab programming. The results of the DWT system are compared with

those of DCT and DFT OFDM systems using various types of modulation schemes. The performance

of the systems is compared in terms of Bit-Error-Ratio (BER), Peak-to-Average-Power-Ratio (PAPR)

and Power Spectral Density (PSD).

The parameters used in this simulation are: ring ratio of phase constellation (a=/l)= 1.4,

number of carriers n=64, symbol length N=64, number of possible amplitude levels Na=4,

number of possible phase levels Np=16, and deviation angle Llcp= 22.5 .The power spectral

density (PSD) is measured with window type Hann and Buffer size 90. A random binary

stream was used for the input data and modulated data were transmitted over AWGN and

Rayleigh transmission channels. The results were achieved using an array mapping of 64

subcarriers, a message size of 10, and symbol rate of 1e9 over AWGN transmission channel.

Rayleigh channels were considered with a direct path delay vector of [0-2e-3], an average

path gain vector of [0-3], and Doppler spectrum types of both flat fading and selective

frequency fading. In addition, the number of samples considered for the symbols is 1000. The

number of samples was fixed at this value so that the simulation results could be obtained in a

reasonable amount of time, because if the number of samples for the sub carriers and symbols

Were larger, the time for running the simulations will be longer. However, it has been verified

that any larger number of samples for both the parameters does not make significant

difference to the results.
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5.2 Spectrum of the transmitted signals

I.
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r~Qu~I':~(til)
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Figure 5-1. 64DAPSK modulated signalbefor the wavlet transformation

~o~----------------------------------~
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.or: iD
c
en 0
~

,0

Figure 5-2.Transmitted signal at the IDWT-OFDM before AWGN channel with 64-DAPSK

modulation

Figure 5-1 represents the output at the DAPSK block in figure 4-1. Figure 5-2 shows

the output of the transmitter after the IDWT and DAPSK modulator, the signal spectrum

covering a wide frequency range. Figure 5-3 shows the effect of noise introduced by the

AWGN channel on the signal spectrum as measured at the receiver side of the channel. A

reduction in the amplitude, at the two ends of the spectrum can be seen in the figure.
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Figure 5-3 Received signal DWT-OFDM after AWGN channel with 64-DAPSK modulation

5.3 Spectrum of the received signal

Figure 5-4 represents the 64-series of DWT data at the receiver end before the

demodulation process. In the figure it can be clearly seen that the main lobes have higher

power than the side lobes. At least 40dB signal power difference could be seen from fig. 5-4,

which means that the signal is spectrally efficient. This also means that this system has

reduced inter symbol interference (lSI) , good signal to noise ratio (SNR) and thus reduced

BER which in principle also leads to reduction in peak-to-average power ratio (PAPR).

20~--~----'---~----~~~----~--~----~--~
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-20

-40

Frame: 5 Frequency CmHz)

Figure 5-4 Received signal at the output ofDWT block in the DWT-OFDM system
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Figure 5-5 Received single subcarrier signal after the demodulator in the DWT-OFDM

system

Finally, figure 5-5 shows the output at the receiver end, after the demodulator. This

spectrum has good bandwidth efficiency as can be seen from the wide bandwidth of a single

subcarrier signal in figure 5-5. However, the information streams are still spectrally efficient

with negligible effect due to inter carrier interference (ICI).

5.4 PSD of the transmitted and received random binary streams

Figures 5-6 and 5-7 represent the power spectral density (PSD) of the random binary

input stream and the detected signal stream at the receiver, respectively. In this case, it can be

noted that the PSD of the detected signal has a much lower sidelobs (~25dB lower than the

main lobe level) compared to the main lobe, which implies that the system is immune to ICI

and lSI due to the non-overlapping of symbols.
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Figure 5-6 PSD of the transmitted binary stream
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Figure 5-7 PSD of the detected signal

5.5 Performance over the Rayleigh channel

500

Figures 5-8 and 5-9 represent the impulse response and the frequency response of the

tnodulated signal over a multipath fading Rayleigh channel respectively.
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Figure 5-8 Impulse Response over Rayleigh channel

Figure 5-8 shows the magnitudes of two impulse responses of the channel namely, the

bandlimited channel response and infinite bandwidth channel response. The infinite

bandwidth signal is represented by the green curve. The multipath component with largest

delay value is shown in blue, and the one with zero delay value in red, and they are both

bandlimited. The channel output is obtained by convolving the input signal with that of the

channel impulse response. So, the time period of the output signal is same as that of the

channel response.
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Figure 5-9 Frequency Response over Rayleigh channel

Figure 5-9 shows the frequency response of the transmitted signal over Rayleigh channel;

it is represented by a convex sequence of pulses, each with a wide band of 500Hz and a peak
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of 8dB. The variation with time is constant which leads to higher stability. The varying

magnitudes of the multipath gain over time for the narrow band and wide band signal are

approximately 0 dB and 10 dB, respectively.

5.6 Simulation data for the DWT -OFDM system with 64DAPSK scheme modulation

5.6.1 Simulated DWT -OFDM signal

Subcarrier index

Figure 5-10 simulated d (k) signal for DWT

l.'!!
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.:2' ~1 I:l
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Figure 5-11 DWT-OFDM systems with 64-DAPSK modulation signal with flat fading and AWGN at

SNRof25dB

Figure 5-10 presents the simulated random stream of binary message d (k) at the DWT

transformation block. Fig. 5-11 shows the constellation of the signal through DWT-OFDM

system with 64-DAPSK scheme modulation over flat fading and AWGN channels at SNR of

25dB. In the I-Q coordinate system, this is seen as distributed rings with an amplitude factor a
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==1.6,which is the ratio between the current symbol and previous. Here, the distances between

symbols are equal, which leads to non-overlapping subcarriers with no lSI. This in turn leads

to simple decision criteria at the receiver and thus simplifies the receiver design.

5.6.2 BER and PAPR performance of the received signal

Table 5-1 presents the simulation results of BER values for a range of SNR values

under both flat fading and frequency selective fading channel conditions for the DWT-OFDM

with 64DAPSK modulation system. The system seems to have better BER performance

under flat fading conditions compared to the frequency selective fading channel for up to

26dB of SNR value, and the performance becomes the same above this value.

Table 5-1 BER Performance over frequency selective and flat fading channel

SNR [dB] Flat fading channel BER Frequency selective channel BER

5 0.291 0.296
10 0.198 0.204
15 0.084 0.082
20 0.018 0.020
26 0.001 0.004
28 0.001 0.001

The simulation results of these performance characteristics for the DWT and DCT-

OFDM systems with 64 DAPSKl64QAM modulation schemes are also presented below. The

simulations considered uncoded random binary for input. Figures 5-12 to 5-14b represent the

simulation results of BER vs. SNR for DWT, DCT and DFT based OFDM systems with 64

DAPSK over AWON channel orland with Rayleigh flat fading or frequency selective fading

channels. From these figures it can be noted that the DWT system achieves a BER of 10-3 for

an SNR value of at least 4dB less than that requiered by DCT and DFT systems under all

channel conditions.
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Figure 5-12 BER vs SNR for DWT-OFDM via AWG
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Figure 5-13 BER vs SNR for DWT -OFDM via AWGN and Rayleigh flat fading
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Figure 5-14 BER vs SNR for DWT-OFDM via AWGN and Rayleigh frequency selective

channel
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Figure 5-15 PAPR for DWT, DCT, and DFT based OFDM 64-DAPSK

Figure 5.15 illustrates the PAPR characteristics for DWT, DCT, and DFT based OFDM

systems with 64-DAPSK modulation, using cumulative complementary distribution function

(CCDF). From this figure it can be noted that the DWT system shows at least 5 dB reduction

in PARP compared to DFT and DCT systems.
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Figure 5-16 PAPR for DWT, DCT, and DFT based OFDM systems for a range of SNR values

Figure 5-16 presents the PAPR characteristics for the DWT-OFDM system with

64DAPSK scheme modulation for a range of SNR values. It can be seen clearly that at least 1

dB reduction in PAPR is achieved for a 5dB increase in the SNR value.
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Figuers 5-17 represents the PAPR values simulated for the DCT-OFDM system for a

range of SNR values. It can be seen that values are all the same for the entire range, and there

is no difference made by the increasing values of SNR.

5.7 Simulation results for the Power Spectral Density (PSD) signal for DWTIDCT

systems with 64DAPSKlQAM modulation schemes, with uncoded random binary input

stream

Figures 5-18 to 5-20 represent the power spectral density of the received signal for

DWT (and DCT)-OFDM systems with 64QAM modulation schemes using AWGN channel

with Gaussian spectrum and Rayleigh channel with Jakes spectrum. The simulation results

indicate that the DWT-OFDM with 64QAM scheme has higher signal power than the DCT

based OFDM system using the same modulation scheme. It is also clearly seen that the power

spectral density (PSD) for DWT -OFDM is approximately 20-40dB/rad/sample better than the

nCT-OFDM system when using the 64QAM scheme modulation via AWGN transmission

channel type. This huge difference in PSD between the received signals which were

transmitted with the same input power leads to the observation that DWT system has much

better signal to noise ratio. Whereas, the DWT-OFDM system with 64QAM using Rayleigh

with Jakes spectrum demonstrates to have higher bandwidth efficiency TJ when compared to

the DCT OFDM system under exactly same conditions. The DCT-OFDM seems to have

better TJ than PSD signal using the AWGN and Rayleigh with Gaussian spectrum. This

means that the spectrum for this system will have smaller side-lobes and so will be immune

to inter-symbol interference (lSI).
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Periodogram Power Spectral Density Estimate DWT/DCT with 64QAM with channel AWGN
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Figure 5-18 Power spectral densities for DWT and DCT systems with 64QAM

modulation schemes over AWGN channel

Periodogram Power Spectral Density Estimate DWT/DCTwith 64QAM (Rayliegh,GAUSSIAN)
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Figure 5-19 Power spectral densities for DWT and DCT systems with 64QAM

modulation schemes over Rayleigh (GAUSSIAN) channel
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Power Spectrum Dinsety Estimate DWT/DCT-OFDM with 64QAM (Rayliegh,Jakes)
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Figure 5-20 Power spectral densities for DWT and DCT systems with 64QAM

modulation schemes over Rayleigh (Jakes) channel

Figures 5-21 to 5-23 represent the power spectral density of the received signal

for DWT (and DCT)-OFDM systems with 64DAPSK modulation scheme using

AWGN or Rayleigh channels with Gaussian and Jakes spectrum respectively. The

DWT-OFDM system with 64DAPSK has 75dB higher PSD than that of the DWT-

OFDM system with 64QAM scheme, though with less bandwidth efficiencyn.
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Figure 5-21 Power spectral densities for DWT system with 64DAPSK modulation

over Rayleigh (Jakes) channel
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Figure 5-22 Power spectral densities for DWT system with 64DAPSK modulation

over Rayleigh (Gaussian) channel
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Figure 5-23 Power spectral densities for DWT systems with 64DAPSK

modulation schemes via AWGN channel

The results shown in figures 5-24 and 5-25 represent the PSD values for DWT

system with various signal manipulations to reduce PAPR. Figure 5-24 represents

the DWT-OFDM system with 64DAPSK scheme using Rayleigh Channel for the

signal with exponential processing, and with and without Companding.
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PSD of nocorll>anded, cOrll>anded & Exponantial signals OVVT-OFDMwith 64DAPSK Rayleigh channel
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Figure 5-24 DWT with 64DAPSK using Rayliegh Channel (JAKES and

GAUSSIAN)

The characteristics seem to suffer from out-of-band interference (OBI)

compared to the signal that has gone through companding or exponential transforms.

The DWT-64DAPSK system using Rayleigh channel with Jakes or Gaussian

spectrum is shown to have at least 32dB lower PSD with or without companding

when compared to that with exponential transform. The PSD of the DWT and DCT

OFDM systems were also simulated with and without fl-law companding, and

exponential transforms.
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PSD of nocorrpandedl & corrpanded and exponantial signals DVVT-OFDM with 64DAPSK AVllGN
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Figure 5-25 PSD for DWT with 64DPASK over AWON channel

Figures 5.25 and 5-26 represents the DCT-OFDM system with 64DAPSK and

64QAM schemes respectively over Rayleigh Channel and AWON channels. The

DCT-64QAM is shown to have at least 15dB lower PSD with exponential transform

PSD of nocompanded. companded and exponatial signals DCT-OFDM with 64QAM
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Figure 5-26 PSD for DCT with QAM Rayleigh's channel(OAUSSIAN and JAKES)

and AWON
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when compared to that with or without companding.

~

~
~

I 0.004

J
0.003

0.002

0.001

••• __ • .__.I. l ..._

1 1.5
PAPER(dB)

Fig.5-27 CCDF for DWT/DCT with QAM for no-companding,

companding and Exponential transformations

In figure 5-27, continuous lines represent the complementary cumulative

distribution (CCDF) vs. PAPR performance for DWT systems, whereas the dashed

lines represent the same for DCT systems. It can be observed from the graph that

both DCT and DWT systems with companding show at least 1.9 dB further

reduction in PAPR than the system without companding; also the system with

exponential transform shows 1.3 dB further reduction in PAPR than without

companding.
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Chapter 6

Performance evaluation of DWT -DAPSK for DVB- T application

6.1 Introduction

The layered transmission technology that is used to support the multiple

services (broadcasters and mobile communications operators) in Terrestrial Digital

Video Broadcasting (DVB-T) with different priorities is not suitable for mobile

applications because the DVB supports only low mobility and has high power

consumption. The Digital Video Broadcasting-Handheld (DVB-H) system, which is

especially developed for mobile services addresses those issues and provides high

speed.

Recent research investigations identify the OFDM to be most suitable for the

upcoming DVB-H system and wireless communication systems due to its excellent

robustness against impairments due to frequency-selective fading channels

(Ladebusch and Liss, 2006).

Recently, the OFDM systems have attracted considerable research attention as

a suitable candidate for the next-generation digital television terrestrial broadcasting

systems (DTTB) and the 4th generation mobile receivers. The OFDM system has

been successfully implemented by (Yang and Wang, 2012), (Martoyo and Jondral,

2002) and (L. Dai et al., 2012) in the wireless broadcasting applications such as

Digital Video Broadcasting (DVB) and Digital Audio Broadcasting (DAB). The

above mentioned systems have demonstrated data rates in the range of 40 Mbits/s

and the DTTB system could deliver 40 GB of contents to unlimited number of local

servers. In (Ladebusch and Liss, 2006), the ETSI-BRAN system employs DVB-T

transmission technique for HIPERLAN 2 (high performance local area networks). A
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DVB- T system supports networks covering portable mobile receivers in buses, cars,

and indoor receivers (Ladebusch and Liss, 2006).The digital dividend has been

designated as a matter of controversy between broadcasters and mobile

communications operators which occupy part of it as desired (Kalogirou et al., 2009).

Therefore, future mobile communication systems with data rates far beyond that is

employed in Universal Mobile Telecommunication system (UMTS) can be realised

using OFDM for the transmission technique.

6.2 Simulation results of DWTIDCT with 64DAPSKlQAM in DVB-T systems

When the input data of the DWT-OFDM system block (presented in chapter 4)

is changed to that of DVB- T, created by using a trellis code with length = 256 and

Fs=1000, the bandwidth efficiency and PAPR of the system has improved. These

simulation results are presented in figures 6-1 to 6-4.
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Figure 6-1 Power spectral density of DWT system with 64QAM modulation

over AWGN channel
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Figure 6-2 Power spectral density of the DCT system with 64QAM

modulation over AWGN channel

Figures 6-1 to 6-4, depict the simulation results for the power spectral density

of the received signal for DWT (and DCT)-OFDM systems with 64DAPSK and

64QAM modulation schemes using AWGN channel transmission for DVB- T input

data types. From these figures, it can be seen that the DWT-64QAM system occupies

less than half the bandwidth (369Hz) than that for DCT-64QAM system (800Hz);

the DWT systems also possesses a superior power spectral density of 65dB/Hz

compared to the diminutive value of 4.5 dB/Hz for DCT.
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Figure 6-3 Power spectral density for DWT system with 64DAPSK modulation

via AWGN channel using trellis code
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Figure 6-4 Power spectral density for DCT system with 64DAPSK

modulation via AWGN channel using trellis code

It also can be seen from these figures that the DWT system possesses at least 7

times better BW efficiency than the DCT system. This high BW efficiency ensures
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immunity to inter-carrier interference (ICI) in the receiver. Moreover, the DWT

system also has very small sidelobs than the DCT system which is the representing

factor for immunity against inter-symbol interference (lSI).

From figures 6-3 and 6-4, it can be seen that the DWT-64DAPSK system

occupies more than twice the bandwidth (700Hz) compared to that of the DCT-

64DAPSK system (260Hz), while having a superior power spectral density of

88dB/Hz compared to 48 dB/Hz for DCT. This means that the DWT system shows

at least 50% improvement in BW efficiency compared to DCT system. This high

BW efficiency ensures immunity against inter carrier interference (ICI) in the

receiver. Moreover the DWT system has 50% less power in the sidelobs compared to

DCT system, which results in improved immunity against inter symbol interference

(ISI) than the DCT system.

FSDof orginal & corrpanded s~nals
-----r---r-___,----,-----,:---r---,---l---,

ro

~ ·40

=
en
ea, .60

-80

·100

0.2° 0.1 O.g0.3 OA 0.5 0.6 0.7 0.8
~rrral~ed frequency(pi rad/sarrple)

Figure 6-5 PSD for DWT with QAM for without, with companding and exponential
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Figure 6-6 PSD for DCT with QAM for without, with companding
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Figure 6-7 PSD for DCT with 64DAPSK for without, with companding

and exponential transform via AWGN using trellis code

Figures 6-5 through 6-7 compare the PSD performance of the DWT & DCT

systems with and without companding to that of with exponential transform. From

these figures, it is seen that DWT-QAM system with exponential transform has 35dB
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lower PSD compared with the same system with no companding. It also has 25 dB

lower PSD with the system having companding. However, the performance of the

DCT with QAM modulation is not as good as that of the DWT system. It shows a

meagre 5 dB difference from both non-companding & companding processes. In

fig.6-7, it is shown that DCT with DAPSK performance is slighter better, in that

DCT-DAPSK has lower (10 dB) PSD compared to companding and non-

companding processes.
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Chapter 7

Conclusion and suggestions for future expansion

In this research work, a novel hybrid DWT-OFDM system with 64DAPSK

modulation scheme has been proposed to achieve reduced peak-to-average power

ratio (PAPR) for high speed mobile network applications. A mathematical model for

the whole system has been derived based on the existing mathematical

representations for individual component blocks. The functional blocks have been

simulated using Matlab Simulink software package and the results were also verified

using Matlab programming. The simulation results demonstrate that the proposed

system is not only spectrally more efficient, but also shows significant improvement

in 8ER and PAPR performance compared to the traditional DCT and DFT systems

under the same simulation conditions.

From the simulation results, the proposed DWT-OFDM system usmg

64DAPSK modulation scheme is demonstrated to have at least 20 to

40d8/rad/sample higher spectral density (PSD) in the received signal compared to

that of the DCT -OFDM under the same simulation conditions. This leads to the

observation that the DWT-OFDM system possesses much better signal-to-noise ratio

(SNR) than the DCT-OFDM systems.

Moreover, the DWT-OFDM system with 64QAM using Rayleigh with Jakes

spectrum demonstrates to have higher bandwidth efficiency Tl when compared to the

DCT OFDM system under exactly the same conditions. However, the DCT-OFDM

seems to have better Tl than PSD signal using the AWGN and Rayleigh with

Gaussian spectrum. This means that the spectrum for this system will have smaller

side-lobes and so will be immune to inter-symbol interference (ISI). From the
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analysis carried out, it can be noted that the DWT system achieves a BER of 10-3 for

an SNR value of at least 4dB less than that requiered by DeT and DFT systems for

all different channel conditions.

Most importantly, the proposed DWT-DAPSK system was demonstrated to

achieve at least 3 to 7 dB reduction in PAPR compared to the DeT and DFT systems

respectively. Also, adding further signal processing such as companding to the

system has been demonstrated to reduce the PAPR further (~1.9dB) compared to the

systems not employing companding. Systems using exponential transform achieved

1.3 dB less PAPR than that without any transform. These performance figures lead

us to believe that the proposed combination of DWT-DAPSK system with

companding or exponential transforms should be best suited for the next generation

mobile communication networks. In fact such systems with reduced PAPR have

been demonstrated to be very suitable for the terrestrial-digital-video-broadcasting

(DVB-T) systems. Also in this research, the BW efficiency of the DWT-OFDM

system' with both 64QAM and 64DAPSK modulation schemes via AWON

transmission channel has been shown to be better than the DeT-OFDM system

under similar conditions. The DWT system with QAM shows 7 times better BW

efficiency than the DeT with QAM modulation. The DWT with DAPSK modulation

has shown 100% improvement in BW efficiency than the DeT system with DAPSK.

The better BW efficiency possessed by the DWT with DAPSK is an indicator of the

system's immunity to inter-carrier interference (K'I) which in turn guarantees high

bitrate, high quality data transmission. The DWT system also displays minimal side-

lobes which contribute to its immunity to inter-symbol interference (lSI).

106



Chapter7 Conclusion

The proposed combination of DWT-DAPSK system with companding or

exponential transforms should be best suited for the next generation mobile

communication networks.

The model proposed in this research deserves further study. It would be

useful if simulations could be carried out to verify the suitability of the proposed

system for the 4th generation mobile networks. This work can also be extended to

include cases where certain quality of services (QoS) will be required; such as lower

transmission power (decreased PAPR), high spectral efficiency and better resilience

to fading, optimum BER etc.
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Appendix A

Matlab code written by the candidate for simulating the mathematical model

nsamp=l;

snr = EbNo + 10*loglO (k) - 10*log(nsamp);

Snoisy = awgn (P,snr, 'measured');

%Create a fast fading channel

h = rayleighchan (1/9600, 100);

h.DopplerSpectrum = doppler. gaussian (0.3)

h.StoreHistory = 1; %Allow states to be stored

FadeSig = filter (h,P );%Process samples through channel

plot (h); %open channel visualization

%%Received Signal

Snoisy = awgn (fadeSig,snr, 'measured');

Prx =Snoisy;

% Create options object and set properties

scatterplot (Snoisy);

hp = spectrum.periodogram('hann');

% Create periodgram

% Create options object and set properties

hpopts psdopts (hp,Snoisy);

hpsd = psd(hp,Snoisy,hpopts);

figure(4)

plot (hpsd) ;

[H,W]=freqz(Snoisy,1,12B);

mag=20*loglO(abs(H) );

phase=angle(H)*lBO/pi;

%compute frequency response

%phase angle in degrees

figure(5),clf

subplot(2,1,1),plot(W/(2*pi),mag)

title('Magnitude response of recieved DWT-OFDM')

xlabel ('Digital frequency in Hz'),ylabel ('Magnitude in dB')
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subplot(2,1,2),plot(W/(2*pi),phase)

title('phase response of recieved) ')

xlabel('Digital frequency '),ylabel('Phase in Degrees')

title('phase response of recieved DWT-OFDM) ')

Xlabel ('Digital frequency '),ylabel('Phase in Degrees')

nSamp = 8;

ul =Snoisy;

u=reshape (ul. ',l,numel(ul));

[ca] =dwt(u, 'haar');

%create demodulate

hDemod = modem.qamdemod (hMod);

xrec=demodulate (hDemod,ca);

u2=xrec;

hp = spectrum.periodogram('hann');

% Create periodgram

% Create options object and set properties

hpopts psdopts(hp,xrec);

hpsd = psd(hp,xrec,hpopts);

figure(6)

plot (hpsd) ;

[H,W]=freqz(xrec,1,128);

mag=20*loglO(abs(H) );

phase=angle(H)*180/pi;

%compute frequency response

%phase angle in degrees

figure(7),clf

subplot(2,1,1),plot(W/(2*pi),mag)

title('Magnitude response of DETECT SIGNAL')

xlabel('Digital frequency in Hz'),ylabel ('Magnitude in dB')

subplot (2,1,2),plot(W/(2*pi),phase)

title('phase response of DETECT SIGNAL) ')

xlabel('Digital frequency '),ylabel('Phase in Degrees')
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%air.m

in=8;

[aJ=airy(in) ;

L=length(in);

for i=l:L;

a(i)=cos( (1/3)*(iA3)+(in(i)*i) )/L;

end

%comp decomp.m

x=-O.S:O.l:O.S;

x=x(x~=O);

alp=[S 7.S J;

figure(12),clf

for k=l:length(alp)

Al=airy(alp(k)*abs(x));

AO=airy(O);

dem=(AO-Al) .A2;

beta=sqrt ((x.*x) Idem) ;

fx=beta.*sign(x) .*(AO-Al);

xlr= {,0-- , , 'ro--' ,'ko--' };

figure(12),clf

subplot(2,1,1);

plot(x,fx,xlr{k});

hold on;

end

legend (,alp=S ','alp=7 .S ','alp=12. S ',4) ;

title('Companding profile of the proposed algorithm');

xlabel('x');ylabel('y');

grid on

for k=l:length(alp)

Al=airy(alp(k)*abs(x));
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AO=airy(O);

dem=(AO-A1) ."'2;

beta=sqrt ((x.*x) Idem) ;

fx=beta.*sign(x) .*(AO-A1);

xlr= {,0-- , , 'ro--' ,'ko--' };

subplot(2,l,2);

plot(fx,x,xlr{k});

hold on;

end

legend ('alp=5' ,'alp=7 .5','alp=12. 5',4) ;

title('De-Companding profile of the proposed algorithm');

xlabel ('y') ;ylabel ('x');

grid on;

%OBL.m

alp=30;

ndct=256;

nSym = 1000; %number of symbol

nsub=64;

sll=decimate (sl,64,l);

sigdct=idct(sl) ;

x1=sigdct;

A1=airy(alp*abs(x1));

AO=airy(O) ;

dem=(AO-A1) ."'2;

beta=sqrt ((xl.*x1) Idem) ;

fxl=beta.*sign(x1) .*(AO-Al);

intrm=airy(O)-real(xl)/abs(beta);

rst=l./(airy((intrm)) );

finv=(l/alp) .*sign(real(x1)) .*rst;

%%exponential %%%%%%%
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d=l;

at=xl.*xl;

ap=( (l-exp(-(xl.*xl)/var(xl))) .A2)/d;

alpexl=(at./ap) .A(d/2);

for i=l:l:length(xl)

dx=sign(real(xl(i)) )*(alpexl(i)*(l-exp(-(xl.*xl)/var(xl))) .A2);

hxl(i)=sign(real(xl(i)) )*(alpexl(i)*(l-exp(-(xl.*xl)/var(xl))) .A2)/dx;

ab(i)=sqrt(-var(xl)*log(l-(xl(i)Ad)/alpexl(i)) );

invhxl(i)=sign(real(xl(i)) )*ab(i);

end

fvtool(sigdct/-30,1,fxl/-30,1,hxl/-30,2);grid off;

title('PSO of original & companded signals');

Xlabel('Normalized frequency(pi rad/sample) ');ylabel('PSO(db/rad/sample) ');

legend('Orginal', 'Proposed', 'Exponential'

%% CCOF.m

w=O.Ol:O.1:2*pi;

xin=ul;alp=30;xin(xin<O);xin(xin>O)=1;

fs=( (2*pi) ./w);

alp=30;

ndct=256;

nsubl=4 ;

nSym = 64; %number of symbol

s3=reshape(sl. ',numel(sl),l);

sig=decimate(s3,64,1);

sigdct = idct(s3);

xl=sigdct;

Al=airy(alp*abs(xl) );

AO=airy(O) ;

dem=(AO-Al) .A2;

beta=sqrt ((xl.*xl) Idem) ;
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beta1=beta(10,10);

fx=beta1.*sign(x1) .*(AO-A1);

intrm=airy(0)-real(x1)/abs(beta1) ;

rst=l./(airy( (intrm)));

finv=(l/alp) .*sign(rea1(x1)) .*rst;

%%exponential %%%%%%%

d=l;

at=x1 (10,1) .*x1 (10,1);

pr=2"4;

ap=((1-exp(-(x1(10,1) .*x1(10,1))/var(x1(10,1)))) ."pr)/d;

alpext=(at./ap) ."(d/2);

xlt=x1 (10,1);

for i=length(x1)

dx=sign(real(x1(i)))*(alpex1(i)*(1-exp(-(x1.*x1)/var(x1))) ."2);

dx1=sign(real(x1(i)) );

dx2=resample(dx1,64,1);

dx3=(alpex1(i)*(1-exp(-(x1.*x1)/var(x1))) ."2);

dx4=resample(alpex1(i),10,1);

hx1(i)=dx1.*(dx4.*dx3')/dx';

ab(i)=sqrt(-var(x1(i) )*log(1-(x1(i)"d)/alpext(1)));

invhx1(i)=sign(real(x1(i)))*ab(i);

end

invx1=invhx1' ;

nBit=100;

nBitPerSymbol=8;

nSymbol=ceil(nBit/nBitPerSymbol);

figure(14),clf

meanSquareValue2=sum(invx1.*conj (invx1),2)/ndct;

peakValue2 = max (invx1. *conj (invx1), [],2);

paprSymbo12=peakValue2./meanSquareValue2;
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paprSymboldB2 = 10*log10(paprSymbo12);

[n1 p1] = hist (paprSymboldB2, [0:2:4] );

plot(p1*0.3,cumsum(n1)/nSym*0.3);hold on;

meanSqureValue2=sum(fx1.*conj (fx1),2)/ndct;

peakValue2 = max (fx1.*conj (fx1), [],2) ;

paprSymbo12=peakValue2./meanSquareValue2;

paprSymboldB2 = 10*log10(paprSymbo12);

[n1 p1] = hist(paprSymboldB2, [0:2:4]);

plot(p1*.03, (cumsum(n1)/nSym)*0.3, 'r');hold on;

meanSqureValue2=sum(x1.*conj (x1),2)/ndct;

peakValue2 = max (xl.*conj (xl), [],2) ;

paprSymbo12=peakValue2./meanSquareValue2;

paprSymboldB2 = 10*log10(paprSymbo12);

[n1 p1] = hist (paprSymboldB2, [0:2:4] );

plot (p1, (cumsum(n1) /nSym), 'g');

y1im ([0 O. 01] );

xlim([-0.013]);

title('Effectiveness of the proposed algorithm');

xlabel('PAPER(dB) ');ylabel('Complementary Cumulative Distribution
Function');

legend('Exponential', 'Proposed', 'No companding',4);

%BER .m

N=64; %length of the subcarriers

Nsym=16; %no. of symbols

iter =30; %no. of iterations

M=16;

%MODULATION

alp=30;

t=1:1:265;

w=sum( (2*pi./t));

TrDataBit = abs(round(msg_orig)); %generates random 200 symbols
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

E= [0:2:63]; %signal to noise ratio vector in dB

for k=l:iter;

for j=l:length(E)

end

end

x2=P;

%operation

%%%%%%%%%%% proposed%%%%%%%%%%%%

Al=airy(alp*abs(x2) );

AO=airy(O);

dem=(AO-Al) ."2;

A2= (x2.*x2) ';

beta=sqrt( ((abs(x2)) ."2)/dem);

betal =beta(l);

fx2=betal.*sign(x2) .*(AO-Al);

%%%%%%%%%%%%%exponential%%%%%%%%%%%%%

d=l;

at=x2."2;

ap=( (1-exp(-((x2."2)/var(x2)))) ."2);

Id=find(ap==O);ap(ld)=O.OOOl;

apl=resample(ap,8,l);

alpeA=(at./ap) ."(d/2);

for i=1:length(x2)

dx=sign(real(x2(i)) )*(alpexl(2)*(1-exp(-(x2(i)"2)/var(x2))) ."2);

hx2(i)=sign(real(x2(i)))*(alpexl(2)*(1-exp(-(x2(i)"2)/var(x2))) ."2)/dx;

ab(i)=sqrt(-var(x2)*log(1-(x2(i)"d)/alpexl(2)));

invhA(i)=sign(real(x2(i)))*ab(i);

end

%%%%%%%%%%%%%%%%end of Transmitter
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%%%%%%%%%%%%%%%%%%%%%%%

EbNol=lO;

snr = EbNo + lO*loglO(k) - lO*log(nsamp);

RxDataIdct awgn(x2,snr, 'measured');

RxDataIdctl awgn(fx2,snr, 'measured');

RxDataIdct2 awgn(hx2,snr, 'measured');

%%%%%%%%%%%%%%%%%%%%End of channel

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cn=round (4*AO) ;

Rx=dct(RxDataIdct);

RxData=xrec; %RxData(RxData>O)=l;

nla=[l:16] ;

[nl bl]=biterr(xrec(1:numSymb/6),TrDataBit);

%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Rxl=dct(RxDataIdctl);

F=log2(abs(Rxl) );

dy=tan(real(Rxl)/imag(Rxl) );

dyl=dy(l);

Fl = yl./2*pi.*dyl;

FF=F-l;

FF1=Fl-l;

Fl1=F-FF;

FFl1=FI-FF1;

mll=resample(ml,16,1);

U=round(Fll) .*mll';

Ul=round(FFll) .*m2;

uu=resample(Ul,4,1);

UU=plus(uu,U');

Ml=8;

hDemod modem. dpskdemod ('M', M,
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'SymbolOrder', 'Gray', 'OutputType', 'Bit');

hDemodl = modem.pamdemod('M', M,

'SymbolOrder', 'Gray', 'OutputType', 'Bit');

U_int = intdump(UU, nsamp);

numEncPlot = numplot / codeRate; tEnc

G=int8(U_int);

Gl=real(U_int);

if Gl>l

Gl=G2;

(O:numEncPlot-l) * codeRate;

else Gl=O;

end

GG1=bi2de(Gl);

msg_demod = demodulate (hDemod, GG1);

msgl_demod=demodulate(hDemodl,GG1);

demodata2=plus(msg_demod,msgl_demod);

RxDatal=demodata2; %RxDatal(RxDatal>O)=l;

[n2 b2j=biterr(RxDatal(1:numSymb/6),TrDataBit);

%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Rx2=dct(RxDataldct2);

F=log2(abs(Rxl) );

Fl=yl./2*pi.*tan(real(Rx2)/imag(Rx2) );

FF=F-l;

FF1=Fl-l;

Fl1=F-FF;

FFl1=Fl-FF1;

mll=resample(ml,16,l);

U=round(Fll) .*mll';

Ul=round(FFll) .*m2;

uu=resample(Ul,4,l);

UU=plus(uu,U');
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Ml=8;

hDemod = modem.dpskdemod('M', M,

'SymbolOrder', 'Gray', 'OutputType', 'Bit');

hDemodl = modem.pamdemod('M', M,

'SymbolOrder', 'Gray', 'Output Type', 'Bit');

Oint = intdump(OO, nsamp);

numEncPlot = numplot / codeRate; tEnc

msg_demod = demodulate (hDemod, GG1);

msgl_demod=demodulate(hDemodl,GG1);

demodata3=plus(msg_demod,msgl_demod);

RxData2=demodata3; %RxDatal(RxDatal>O)=l;

(O:numEncPlot-l) * codeRate;

[n3 b3]=biterr(RxData2(1:numSymb/6),TrDataBit);

figure;clf

El=resample(E,32,1);

bll=decimate(bl,16,1);

b22=decimate(b2,16,1);

b33=decimate(b3,16,1);

semilogy(E,b22, 'kx-');hold on;

YLim=[10A(-20) 0];

XLim=[O 70];

title('Performance analysis');

xlabel('Eb/NO(dB) ');ylabel('Bit Error Rate');

%legend('No companding',4);

%legend('Proposed',4);

legend('Exponential',4);

%legend('No companding)

Appendix B

List of conference and journal publications achieved/submitted
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