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Abstract

This study builds on a previous study that demonstrates the existence of deep

mitochondrial lineages in the gecko Tarentola boettgeri within Gran Canaria (Gubitz et al.

2005). Here, I identified and analyzed the area where the two most divergent mitochondrial

lineages meet. The primary aim was to examine how geographical structuring of mtDNA

has been maintained after secondary contact. MtDNA analyses used a 608 bascpair

fragment of the cytochrome b (cyt b) gene from 389 individuals sampled from 14

populations along a 32 km southeast (SE) transect across Gran Canaria. It revealed a low

degree of mtDNA admixture and negligible gene flow across the contact zone. This led to

the hypothesis that reproductive barriers may have formed between populations from

different mtDNA lineages. Analyses of seven body dimension and scalation characters

revealed that spatial patterns of morphological changes were not associated with the

transition in mtDNA lineage frequency across the transect. This contrasted with another

lizard species on the same island, Chalcides sexlineatus, in which phylogeography and

morphology are highly correlated. This study identified ten unique microsatellite markers

in T boettgeri. Like morphology, analyses of these microsatellites did not reveal a

pronounced spatial pattern of differentiation in the nuclear genome. These results appear to

reject the hypothesis of a physical or genetic barrier to reproduction. Studies of

microsatellites also suggested that T boettgeri is a low dispersal species and this might

explain the persistence of mtDNA contact zone. However, evidence of concordant spatial

patterns between divergence in the nuclear genome and morphology was detected. The

discordant spatial patterns of mitochondrial and nuclear genotype frequencies do not

appear to be explained by sex-biased gene flow, and are difficult to understand because of

expected interactions between the two genomes. Thus, further investigation is suggested to

allow clarification of the causes ofmito-nuclear discordance in T boettgeri.
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Chapter 1 General Introduction
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1.1 The Canary Islands and their importance in evolutionary studies

1.1.1 Geology of the Canary Islands

The Canary Archipelago is situated to the northwest of Africa, between 27°38' and

29°25' latitude and 13°20' and 18°9' longitude. The archipelago consists of seven major

islands, forming a -500 km island chain (Figure 1). The formation of the archipelago

began in the Senonian (- 80 Ma) (Balogh et al. 1999). The first island (Fuerteventura)

emerged from the seafloor during the last 20 million years (Mys), followed by westward

propagation of the island chain (Figure 1) (Hoemle and Schmincke 1993). Each island

originated from independent subaerial volcanic eruptions and the islands are separated

from one another by deep sea channels (Schmincke and Sumita 1998).

Figure 1. Map showing the Canary Islands. Numbers in brackets show approximate age

of the islands (Guillou et al. 1996; Schmincke and Sumita 1998; Anguita and Hernan

2000). (The satellite image was created using Google Earth version 5.2)
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1.1.2 Ecology of the Canary Islands

The Canary Islands have a subtropical climate with daily temperatures ranging

from approximately 18°C to 25°C at sea level (Fernandopulle 1976). Each island is

ecologically heterogeneous due to its altitude and the influence of the north-eastern

tradewinds (see Figure 2). In the islands with peaks> 800 m a.s.l., the environmental

variation also depends quite considerably on latitudinal variation. Cloud condensation on

the windward northern slope brings higher humidity to the northern parts of the islands. On

the other hand, the southern leeward parts of the islands are extremely dry.

Figure 2. A schematic representation of the vegetational zones of the Canary Islands

in relation to altitude and exposure to tradewinds (from Juan et al. 2000). Cloud layer

formed at the windward northern slope as a result of wind exposure is also shown.



1.1.3 The Canary Islands and evolutionary studies

4

The Canary Islands have become a model region for evolutionary biology over the

last 25 years due to their well-documented geographical history and high levels of

biological diversity (Machado et al. 1985; Oromi et al. 1991; Juan et al. 2000; Carrascal et

al. 2008; Reyes-Betancort et al. 2008). There has been an increasing amount of research

carried out on colonization and evolution of endemic species in the archipelago (Figure 3).
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32-

30-
28-

26-
24-

22-
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Published items in each year

4
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Figure 3. Growth in publications since 1997 containing all of the following key words:

"Canary, Islands, Evolution, Biology, and Genetics". Information obtained from the

Science Citation Index (SCI, source: Web ofSciences®).
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The origin and diversification of many Canary Island endemics have been

examined using mtDNA and other molecular markers, e.g., plants (Francisco-Ortega et al.

2000), birds (Kvist et al. 2005), insects (De La Rua et al. 2001; Emerson and Oromi 2005),

bats (Pestano et al. 2003) and reptiles (Gonzalez et al. 1996; Nogales et al. 1998). A

principal focus of these studies has been the original colonization from continental areas

and subsequent between-island dispersal (e.g., Brown and Pestano 1998; Widmer et al.

1998; Vogel et al. 2003; Cox et al. 2010). However, many studies have also uncovered

significant within-island diversification, with deep intra-specific evolutionary lineages

being described in insects (e.g., Juan et al. 1998; Emerson et al. 2000; Rees et al. 2001;

Emerson et al. 2006) and reptiles (e.g., Thorpe et al. 1996; Pestano and Brown 1999;

Brown et al. 2000; Gubitz et al. 2000; Gubitz et al. 2005; Brown et al. 2006). In many

cases these lineages appear to have originated from population vicariance caused by

volcanism-related events such as eruptions (Pestano and Brown 1999; Contreras-Diaz et al.

2003; Bloor et al. 2008). These discoveries demonstrate that distinct evolutionary lineages

can arise and persist for long periods at microgeographic scales.

1.2 Colonization and diversification of the Gran Canaria gecko, Tarentola boettgeri

Tarentola geckos comprise approximately 20 species from North Africa, Iberian

Peninsula and Macaronesia (Joger 1984a; Schleich 1984; Baez and Biscoito 1993; Baha el

Din 1997; Carranza et al. 2000 & 2002), with an isolated species being reported from the

Caribbean (Sprackland and Swinney 1998). Four Tarentola species have been described

from the Canary Islands based on immunological and morphological studies (Joger 1984b;

1984c), which has been supported by analyses of mitochondrial DNA (mtDNA) (Nogales

et al. 1998; Carranza et al. 2000). Only one species is present on each island.
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Figure 4. Distribution of Tarento/a species on the Canary Islands: T. angustimentalis

(Steindachner 1891) from Lanzarote & Fuerteventura, T. gomerensis (Joger &

Bischoff, 1983) from La Gomera, T. de/a/andii (Dumeril & Bibron 1836) from

Tenerife and La Palma, and T. boettgeri (Steindachner 1891) including the subspecies

T. b. hierrensis and T. b. bischoffi (Joger & Bischoff 1983) from Gran Canaria, El

Hierro, Selvages. Arrows indicate likely colonization events by T. boettgeri (Carranza et

al. 2000). (The satellite image was created using Google Earth version 5.2)
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Tarentola boettgeri is the only native species of gecko found on the island of Gran

Canaria. It is a small, predominantly nocturnal insectivorous lizard. It is distributed

throughout the island, from sea level up to altitudes of 1650 m, and is particularly abundant

in xeric areas in the south (Brown 1996). Phylogenetic analyses of Tarentola geckos

(based on cytochrome b, 12S rDNA and c-mos sequences) revealed that T. boettgeri

colonized the island around 5.3 - 6.7 mya (Carranza et al. 2002). T. boettgeri has also

colonized the Selvage islands, some 200 km to the north, and also the island of El Hierro in

the west of the archipelago. These two island forms have been classified as two different

subspecies (Figure 4). Three possible sources of colonization have been proposed: North

Africa, the Selvage Islands and the Madeira Archipelago (Joger 1984c; Nogales et al.

1998; Carranza et al. 2000). However, local climatic and sea conditions (i.e., direction of

the tradewinds and the Canary Current) seem to support an original colonization from the

Madeira Archipelago (Joger 1984c; Carranza et al. 2000) (Figure 4).

T. boettgeri shows extraordinarily high mtDNA diversity within Gran Canaria. Two

major mitochondrial lineages (designated A and B) have been reported (Nogales et al.

1998; Carranza et al. 2000; Carranza et al. 2002; Gubitz et al. 2005). MtDNA divergence

between these lineages is 10.9%, based on the cytochrome b gene (Gubitz et al. 2005). The

A lineage comprises 3 major sublineages, which Gubitz et al. (2005) described as AI, A2

and A3. Lineage B comprises BI and B2 sublineages (Gubitz et al. 2005). Average

mtDNA divergences among sublineages within A and Bare 4.6-8.1% (Gubitz et al. 2005).

(This thesis builds on Giibitz' work and for clarity I will use the lineage names used in his

work throughout this thesis.) Geographical distributions of the lineages are shown in

Figure 5.
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Figure 5. Broad geographical distributions of the main T. boettgeri mtDNA lineages

within Gran Canaria (redrawn from Giibitz et al. 2005). Two main lineages, A and B,

are distributed mainly in the Eastern and Western sides of the island, respectively (with the

exception of sub lineage A3 that is distributed across the island.)
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It seems likely that these deep mtDNA clades have originated in situ rather than

due to multiple colonizations and, at least in part, result from volcanic activity over the last

4 Ma (Giibitz et al. 2005). The divergence of the main A and B clades appears to predate

the Roque Nublo cycle of volcanic eruptions on Gran Canaria, with Giibitz et al. (2005)

estimating a divergence time of 4.6-11 mya. Divergence within A and B appears to

correspond to eruptions during the Roque Nublo cycle which caused population vicariance

due to major lava flows within the island. This is assumed to have occurred less than 4.3

mya. Another species of lizard, the Gran Canarian skink Chalcides sexlineatus, shows

within-island mtDNA lineages that appear to have originated in a similar way (Pestano and

Brown 1999), and even shows phylogeographic breaks that are coincident with some of the

breaks in T. boettgeri. Evidence supporting volcanism as a cause of within-island mtDNA

phylogeography has also been found in other species on the Canary Islands (e.g, Thorpe et

al. 1996; Emerson et al. 1999; Contreras-Diaz et al. 2003; Anderson et al. 2009). In

summary, all current evidence strongly supports the theory that within-island mtDNA

lineages originated from populations being isolated by major volcanic events. Subsequent

range expansion by these populations has then led to the areas of secondary contact (which

I will also call "phylogeographic breaks").

Despite the clear geographical structuring and depth of the mtDNA lineages, the

geographical variation in morphology of T. boettgeri appears to show quite a different

pattern that is associated with ecological variation in the island (Giibitz et al. 2005). This

contrasts with some other Canarian reptiles which show concordant spatial patterns of

phylogeography and morphological variation, e.g., Chalcides skinks (Pestano and Brown

1999; Brown et al. 2000). Neverthless, the finding ofa close relationship between within-

island morphological variation and habitat variation has been reported for several Canary

Island lizards (e.g., Brown et al. 1993; Thorpe et al. 1996; Bloor and Brown 2005) as well
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as for lizards in other archipelagos (Thorpe and Malhotra 1996). This has led some authors

to forward adaptative explanations of habitat-associated variation in morphology. Giibitz et

al. (2005) concluded that adaptation to environment was likely to have overidden historical

effects on the morphological variation of T. boettgeri.

1.3 Maintenance of genetic structure in T. boettgeri

T. boettgeri therefore makes an interesting model to examine how such clear

geographical structuring might be maintained between these very ancient mtDNA lineages

(Figure 5). The structuring is clearly suggestive of barriers to mtDNA flow between

populations, but there are no clear geographical barriers between populations that could

account for this. Possible explanations for low mitochondrial gene flow are low vagility

and extreme philopatry of female Tarentola (Giibitz et al. 2000; 2005). However, there is

no scientific evidence to support these explanations.

The degree of mtDNA divergence (based on cytochrome b) within T. boettgeri is

remarkably high (10.9%) and comparable to levels of interspecific divergence among other

reptiles (~ 12%) (Avise et al. 1998; Johns and Avise 1998). One hypothesis could be that

the mtDNA lineages described by Gubitz et al. (2005) represent more than one species and

that geographical structuring is maintained by a lack of gene flow between species.

Under a unified species concept (De Queiroz 2007), species are regarded as

separately evolving metapopulation lineages, and their delimitation can be achieved by

demonstrating a lack of gene flow between populations. An examination of gene flow

among T. boettgeri populations in these contact zones is therefore critical to understanding

how the geographical structuring is maintained. Many contact zone studies have reported

different rates of mtDNA gene flow into populations on either site of the contact zones,

depending on factors such as degree of divergence and rate of dispersal (Fleischer et al.
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1991; Quesada et al. 1998; Brown et al. 2006; Pedall et al. 2011). If mtDNA lineages of T.

boettgeri reflect the presence of two species it is predicted that (i) restrictions to nuclear

gene flow and (ii) coincident morphological differences should be observed along the

contact zone, as reported in other species (Szymura and Barton 1986; Helbig et al. 2001).

It was not possible for the original study to examine these hypotheses due to the

fact that it was based on only 48 specimens from across the island. Hence, nothing is

currently known about the genetic composition of the populations where the mtDNA

lineages meet. In addition, there have been no attempts to investigate patterns of nuclear

genetic variation among populations.

Explanations of patterns of mtDNA phylogeography can be largely divided into

three groups: (i) natural selection, (ii) genetic incompatibility, and (iii) demographical

factors. The effects of ecological variation on mtDNA distribution (and morphology) were

reported on an Anolis lizard in a Caribbean island (Malhotra and Thorpe 1994). Natural

selection may contribute to mtDNA distribution in two major ways. First, selective

pressures favour some haplotypes in certain environments (Mishmar et al. 2003). Second,

natural selection influences genetic structure by creation of morphological differences,

which can affect interbreeding (Davidson 2000; Pinceel et al. 2004). The first case is

unlikely to explain the main mtDNA pattern in T. boettgeri as the areas of secondary

contact between the major lineages is environmentally uniform. The latter explanation is

possible only if distinct morphological traits are associated with the different mtDNA

lineages of T. boettgeri which may be detected if historical selective pressures have led to

morphological differences (Davidson 2000).

Genetic incompatibility between parental genomes may influence the distribution

of mtDNA due to mito-nuclear interactions (Thulin and Tegelstrom 2002; Ballard and

Rand 2005). Several mitochondrial genes, particularly those involved in the electron
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transport chain, co-function and have co-evolved with their nuclear gene counterparts

(Grossman et al. 2004; Rand et al. 2004). In addition, it was reported in many species of

insects that different mtDNA haplotypes within a species reduced fitness on individuals

with different nuclear genomes (Turelli et al. 1992; Ballard and Whitlock 2004). Although

mito-nuclear co-evolution has never been studied in reptiles, it could influence the pattern

of mtDNA distribution in T. boettgeri. The process would require there to be more than

one nuclear lineage and also co-evolved mito-genomic interactions so that a mtDNA

lineage in the "wrong" nuclear background would lead to inviable offspring. If this

hypothesis is correct, nuclear loci should differ among different individuals with distinct

mtDNA lineages, and concordant patterns of nuclear and mitochondrial distribution would

be expected across the contact zone, as observed in other species (Bernardi et al. 1993;

Sequeira et al. 2005).

Demographic factors, such as low vagility have contributed to maintenance of

genetic structure in some species (Arnaud and Laval 2004; Thacker and Hadfield 2000). In

reptiles with low vagility and high philopatry, gene flow is much lower between

populations and geographical structuring is more pronounced (Garcia-Paris et al. 2000;

Hasbun et al. 2005; Barbanera et al. 2009). Although this has not been studied, Tarentola

geckos are usually considered to be a philopatric species (Thorpe 1991; Nogales et al.

1998; Gubitz et al. 2005). In order to examine the effect of low vagility on the

phylogeographic pattern large sample sizes are needed to enable estimation of gene flow

between populations.

1.4 General Aim

The aim of this thesis was to examine the population genetics of the areas where

the ancient mtDNA lineages of T. boettgeri on the island of Gran Canaria come into

secondary contact in an attempt to address how this within-island genetic structuring is
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maintained. To achieve this, T. boettgeri will be sampled intensively over the

phylogeographical break between the major lineages (Gubitz et al. 2005) in an attempt to

provide additional resolution to identify the contact zones. Morphological and molecular

data (nuclear and mitochondrial DNA) will be analysed in relation to geographical location

to clarify the nature of the genetic transition between the A and B population, i.e., to

determine the introgression of these markers across the zone, determine levels of gene flow

between populations, and determine whether the T. boettgeri mtDNA lineages represent

different species. The results obtained from this research may help shed light on the factors

that maintain the long-term stability of these contact zones and how the process of

speciation is completed.
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Chapter 2 Identification and analysis of secondary contact

between mitochondrial DNA lineages in T. boettgeri
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2.1 Introduction

Geographical events occurring on large (e.g., glaciations) and small scales (e.g.,

volcanic eruptions) have had consequences for organisms living within these areas by

driving lineage differentiation (Carson et al. 1990; Taberlet et al. 1998; Hewitt 2000).

Phylogeographical studies based on mtDNA markers have revealed numerous cases of

apparently deep historical subdivisions within species (see reviews in Avise et al. 1987;

Taberlet 1998; Avise 2001; Hewitt 2001). Many of these studies show levels of

intraspecific sequence divergence that approach interspecific levels for the taxa concerned

(e.g., Moritz et al. 1987; James and Moritz 2000; Johnson and Jordan 2000; Demboski and

Cook 2001; Brown et al. 2002; Stuart-Fox et al. 2002). In some cases, evidence for

substantial reproductive isolation have been obtained from analysis of zones of secondary

contact between mtDNA lineages (e.g., Phillips et al. 2004; Berthier et al. 2006; Mallet et

al. 2007; Larsen et al. 2010).

Molecular genetic data can provide support information for species delimitations

(Yang and Rannala 2010). The isolation-with-migration (1M)model (Nielsen and Wakeley

2001; Hey 2006) is based on populations splitting, follow by contact with genetic

exchange. If they do not exchange genes when they come back together, then this is

evidence of speciation (Slatkin 1987). Intraspecific studies of species with deep mtDNA

lineages have shown that when a long period of isolation has elapsed, then this will result

in 1) lineage sorting, i.e., reciprocal monophyly of mitochondrial lineages and 2)

substantial morphological and nuclear DNA differentiation (Matocq 2002). Intraspecific

mtDNA studies frequently detect well-supported reciprocally monophyletic lineages (e.g.,

Masta 2000; Poulakakis et al. 2005; Gutierrez-Rodriguez et al. 2008). When it is

accompanied by concordant patterns of morphology and nuclear markers at the contact

zone, it is suggested that the mtDNA lineages have diverged into distinct species. Species
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status is usually assigned to populations showing coincident splits in all of these characters

(e.g., Baker and Davis 1989; Alexandrino et al. 2005; Piller et al. 2008; Albert and

Fernandez 2009).

Although the model of divergence and subsequent genetic exchange has been the

subject of many studies, spatial patterns may be more complex than this. In particular,

different genetic markers may show different spatial patterns. For example, it is often

observed that a change in mtDNA lineage frequencies (or phylogeographic break) does not

correspond to a similar change in nuclear markers or morphology (e.g., Janzen et al. 2002;

Lindell et al. 2005; McGaugh et al. 2008; Renoult et al. 2009). Cryptic species may also be

found where transitions in mtDNA and/or nuclear allele frequencies are not associated with

morphological changes (e.g., Ravaoarimanana et al. 2004; Depraz et al. 2009; Oliver et al.

2009; Van et al. 2010). Stochastic differences in the coalescent should lead to differences

among loci. However, this does not always seem to explain differences in these spatial

patterns.

Due to its maternal mode of transmission, mtDNA will only provide information on

female-mediated gene flow. High levels of female philopatry are therefore often invoked to

explain mtDNA patterns that seem unrelated to morphology or nuclear loci (Taberlet and

Bouvet 1994; Roca et al. 2005; Caparroz et al. 2009; Urquhart et al. 2009). Analysis of

mtDNA gene flow is one way to understand the impact of female demographic history on

shaping present population structure within a species (Wilkins and Marlowe 2006).

When previously isolated lineages come into contact, contact zones may be

characterized by different degrees of hybridization, introgression, or complete isolation

(Ruedi et al. 1997; Wake 1997). Barton and Jones (1983) proposed that cytoplasmic

markers (i.e., mitochondria and chloroplasts) are expected to introgress more than nuclear

markers, since they are less likely to be linked to genes involved in reproductive,
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behavioural, or ecological differences (but see Mishmar et al. 2003; Gershoni et al. 2009).

Based on this proposal, mtDNA admixture should be common along the zone of secondary

contact between distinct mtDNA lineages. Several intraspecific studies have supported this

assumption as different levels of mtDNA admixture were reported at the zones of

secondary contact (e.g., Lu et al. 2001; Godinho et al. 2006). Jiggins et al. (1997) proposed

that a lack of mtDNA admixture in Heliconius butterflies demonstrated a barrier to gene

flow. In general, low levels ofmtDNA admixture are expected along the zone of secondary

contact between diverged populations when gene flow barriers exist.

T. boettgeri appears to show a very pronounced phylogeographical pattern. In this

chapter, I aim to identify the areas of secondary contact between the major mtDNA

lineages A and B that were described by Gubitz et al. (2005) to allow further investigation

of factors that maintain the pattern of mtDNA across Gran Canaria. These lineages seem to

have originated through population vicariance caused by volcanic eruptions (Gubitz et al.

2005). Populations are thought to have become isolated by lava flows (Figure 6). Barton

and Hewitt (1989) have suggested that contact zones formed by secondary contact should

be located in, or move towards, regions of the lowest population density. In this case, it is

envisaged that populations will have expanded their ranges into areas previously covered

by lava, where secondary contact occurred. Examination of mtDNA lineage distributions

reported in Gubitz et al. (2005) broadly indicated where populations belonging to lineage

A and B came into contact in the north, northeast and southeast of the island (see Figure 5).
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Figure 6. Schematic representation of areas covered by lave flow from volcanic

eruptions on Gran Canaria during 5.5 Mya (Gray areas) based on Perez-Torrado et

at. (1995) and Anderson et al. (2009). Possible refugia for T. boettgeri during volcanic

eruption suggested by Gubitz et al. (2005) are also presented. Broken lines indicate zones

of secondary contact between major lineages predicted in this study at north (N),

northeastern (NE) and southeastern (SE) of the island.
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T. boettgeri are relatively abundant in the south, but are found at lower densities in

the central and northern parts of the island, which can be explained by preference for arid

low altitude habitats (Brown 1996). Itwas therefore more difficult to obtain good sample

sizes from the northern contact zone and so I concentrated on locating secondary mtDNA

contact zones in the south- and northeast of the island.

At any contact zone a cline in character (allele) frequencies must exist (Barton and

Hewitt 1985; Barton and Gale 1993; Barton 2000), with the change in allele frequencies

being associated with proximity to the centre of the contact zone. The shape of the cline

can be determined by the degree of selection against hybrids and the scale of dispersal.

Neutral mixing and relatively large dispersal distances will quickly result in a wide shallow

cline whereas strong selection against hybrids, coupled with relatively small dispersal

distances will result in short, steep clines between populations (Endler 1977; Arnold 1994).

MtDNA alone provides no information on hybrids. However, as T. boettgeri is expected to

be highly philopatric, short, steep clines might be expected.

This chapter aims to obtain insights into the main processes determining

geographical structuring of mtDNA across the area of contact by detailed analyses of

population substructuring and patterns of mtDNA gene flow. Knowledge of patterns of

gene flow is essential to understanding the evolutionary processes acting when lineages are

divided in space and time or when formerly divided lineages come into secondary contact

(Hewitt 1996). Furthermore, rates of gene flow provide insights into rates of dispersal of an

organism, which in tum, help clarify population structure (e.g., Garcia-Paris et al. 2000).

For species that show female philopatry, male individuals are more likely to

migrate across the contact zone (Taberlet et al. 1995). If female philopatry is present in T.

boettgeri, I would expect to find more males on the "wrong" site of the contact zone than

females. However, it is not certain that the observation of individuals from another lineage
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on the wrong side of the contact zone is a result of recent migration or interbreeding of

populations from different mtDNA lineages. To prevent historical patterns of gene flow

from being blurred by present genetic structures, coalescent-based methods have been

employed to investigate historical migration among diverged mtDNA lineages within T.

boettgeri.

Coalescent theory has become useful in population genetic studies, particularly for

intraspecific phylogenetics (Posada and Crandall 2001; DeChaine and Martin 2006).

Coalescent theory describes the genealogical process within a sample of selectively neutral

genes from a population, looking backwards in time (Hudson 1990). The application of

coalescent theory to population genetics has provided a statistical framework to test

complex hypotheses about historical and current gene flow (Donnelly and Tavare 1995;

Templeton 1998; Fu and Li 1999; Edwards and Beerli 2000). Here, a coalescent-based

program, Migrate (Beerli 2008), was employed to identify rates of mtDNA gene flow

among populations of T. boettgeri. The program combines a conventional maximum-

likelihood and coalescent theory based approach with a Metropolis-Hastings Markov chain

Monte Carlo (MCMC; Metropolis et al. 1953; Hastings 1970) sampling approach to

concentrate the sampling of genealogies in those regions of the genealogy space that

contribute most to the final likelihood before the estimated likelihood ratios will be

calculated (Beerli and Felsenstein 2001). If T. boettgeri lineage Al and Bl represent two

diverged subspecies, it is expected that migration rates should be low between them.

2.2 Methodology

2.2.1 Sampling Regime

All individuals used in this study were obtained from the sample sites shown in

Figure 7 (see also Table 1). Sampling regime was determined by preliminary mtDNA



21

analysis of T. boettgeri caught from five sampling sites (Jl, JG, M, SA and SD) across the

described location of the phylogeographic break. (Gubitz et al. 2005). The cytochrome b

gene was sequenced for these samples. The sequences were compared to those of Giibitz et

al. (2005) and were assigned to the mtDNA lineages described by these authors (detailed

in section 2.2.5). After that, the lineages were plotted on a map to determine the

approximate mtDNA transition areas. The preliminary study identified the location of the

phylogeographic break between lineage Al and Bl at the village of Juan Grande (Figure

7). Hence, sampling was focused on areas either side of this village toward the edges of

adjacent phylogeographic breaks described by Giibitz et al. 2005 (detailed in Figure 5).

In June 2007, intensive sampling was carried out along the south-eastern area,

designated the SE transect. Suitable sample sites were selected on the basis of them

comprising natural areas with large numbers of rock shelter sites where the geckos are

found during the day. The SE transect is approximately 33 km long, covering the area from

Arguineguin (Site 02) in the south to Lomo del Card6n (Site 11; Figure 7) in the north.

Juan Grande is in the middle of these two extremes. Sample sites were separated by

approximately 5 km. Latitudes and longitudes of each site were recorded. Large sample

sizes (n ~ 30) were obtained wherever possible (see Table 1). Individuals were captured by

hand and then, several morphological characters were measured in the field (for more

detail, see Chapter 3). Tail tips were excised and preserved in absolute ethanol (99%) for

further analysis. Individuals were then released at the exact capture location.

2.2.2 Isolation of genomic DNA

Genomic ~NA of T. boettgeri was isolated from the tail tips of 425 specimens

using the protocol modified from Sambrook et al. (2000). A small amount of tail tip was

excised and transferred into a microcentrifuge tube containing 20 ul of 10% SDS, 460 ul

Tris-EDTA solution and 10 ~l of 20 mg/ml Proteinase K. The mixture was incubated at
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56°C overnight. An equal volume of phenol was added and mixed for 15 minutes. The

mixture was centrifuged at 14,000 rpm 10 minutes, and the aqueous layer was transferred

to a new microcentrifuge tube. The phenol extraction step was repeated by adding an equal

volume of phenol, centrifuged at 14,000 rpm, and then the aqueous layer transferred to a

new microcentrifuge tube. Next, 1110 volume of 5M NaCI and 10% CTAB-NaCl were

added into the mixture followed by addition of an equal volume of chloroform-isoamyl

alcohol (1:25) and mixed for 15 minutes, centrifuged to 5 minutes, and the aqueous upper

layer transferred to a new microcentrifuge tube. The chloroform-isoamyl alcohol extraction

step was repeated by adding an equal volume of chloroform-isoamyl alcohol, centrifuged

at 14,000 rpm for 5 minutes and the aqueous layer transferred to a new microcentrifuge

tube. After that, an equal volume of isopropanol was added to the microcentrifuge tube and

incubated at room temperature for at least 1 hour before being centrifuged for 15 minutes

to pellet the DNA. The pellet was washed with 70% ethanol, and resuspended in 20 ",,1

O.IXTE buffer pH 8.0. The concentration and quality of genomic DNA of the gecko were

observed on 1.4% agarose gel.

2.2.3 Amplification of mtDNA markers using the polymerase chain reaction

technique (peR)

In this study, cytochrome b (cyt b) was chosen as the mtDNA marker because of its

high rate of substitution. It is well characterized in geckos, thus, facilitating primer design.

In addition, it was previously used in the original study (Giibitz et al. 2005).

Cytochrome b (cytb) is the central catalytic subunit of ubiquinal cytochrome c

reductase (bel complex) in the mitochondrial respiratory chain (Mitchell 1976). It is a

transmembrane protein comprising of eight transmembrane helices (Irwin et al. 1991;

Esposti et al. 1993) (Figure 8 Inset). Cytb is widely used in phylogenetic studies because it

is evolutionarily informative and because of the availability of universal primers (Meyer
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1994; Johns and Avise 1998; Berry et al. 2000; Castresana 2001). Amplification of cytb

pseudogenes has been reported in several species (Collura and Stewart 1995; DeWoody et

al. 1999; Mirol et al. 2000; Lu et al. 2002). Three possible ways to avoid this are i) isolate

mtDNA through gradient centrifugation (Tamura and Aotsuka 1988), ii) use RT-PCR

(Collura et al. 1996; Triant and DeWoody 2007) and, iii) use species-specific primers with

conventional PCR. The first strategy is time consuming and is not appropriate for this

research where large sampling sizes are involved. RT-PCR is not suitable due to the

difficulty of storage and transporting fresh samples from the field locations. Therefore,

species specific primers were designed, and sequences carefully checked for signs of

pseudogenes.

PCR primers used in this study are listed in Table 2. Primers were purchased from

MWG (Germany). In order to obtain several T. boettgeri cytb sequences which were of

sufficient length to allow design of new primers, PCR was first performed with primers

MTA-s and MTF-s (see Table 2). Consequently, the PCR sequences were aligned to locate

the conserved regions (see section 2.2.4), and five T. boettgeri-specific cytb primers were

designed based on those consecutive regions and applied to all T. boettgeri specimens.

For amplification of mitochondrial markers, the reaction was performed in 25 IIIby

using 100 ng of genomic DNA, IX Premix PCR reaction buffer (75 mM Tris-HCI pH 9.0,

50 mM KCI, 20 mM (N~)2S04, 2 mM MgCh and 0.25 units of DNA polymerase) (Sigma

Aldrich) and 0.4 pmole of each primers. Forty cycles of PCR were carried out after an

initial denaturation step at 94°C for 5 minutes. Each cycle consisted of three holding

temperatures, 94°C for 1 minute to denature DNA, 1 minute at optimized temperature for

annealing (see Table 2) and trc for 2 minutes for extension, followed by a final extension

at noc for 10 minutes.
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Table 1 Locations and number of Tarentola boettgeri used in this study.

Site Local Name Geographical Number of
location individuals

01 Juan Grande 27° 49.086'N 31
ISO 27.628'W

02 Arguineguin 27° 4S.S30'N 30
ISO 40.374'W

03 Barranco de Fataga 27° 46.72S'N 30
(near Maspalomas) ISO 34.988'W

04 Carrizal 27° S3.938'N 31
ISO 24.6SS'W

OS Crude de Arinaga 27° S3.1SS'N 31
ISO 26.38S'W

06 Sardina del Sur 27° S1.223'N 30
ISO 28.096'W

07 Barranco del Draguillo 27° 48.666'N 32
(Planta de Residuos S6lidos) ISO 28.913'W

08 Mesa de las Canadas 27° 47.440'N 30
ISO 30.116'W

09 San Agustin 27° 46.S63'N 30
ISO 32.042'W

10 Llanos de Arinaga 27° SI.422'N 30
ISO 2S.118'W

11 Lomo del Card6n 27° SS.386'N 31
ISO 23.962'W

12 Tablero 27° 46.789'N 30
ISO 37.38S'W

13 Playa del Ingles 27° 4S.943'N 17
ISO 34.194'W

14 Castillo del Romeral 27° 48.021'N IS
ISO 28.178'W

JI Jinamar Unspecified 3
JG Juan Grande Unspecified 6
M Malfu Unspecified 3
SA San Agustin Unspecified 1
SD Sardina del Norte Unspecified 1
Tb Pinor de Tamadb, Artenara Unspecified I
AC Alcampo Unspecified 4
LS Las Salinetas Unspecified 3
00 Ojos de Garza Unspecified S
EC El Cortijo Unspecified 1

Note: Samples from Site Tb, AC, LS, 00 and BC were only used for reconstruction of the

phylogenetic tree.
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Figure 7. Geographical map of Gran Canaria with all sampling sites (indicated using

dots). Names given to each site correspond to information in Table 1. The centre of the

transitional zone between lineage Al and BI (identified in this study) is shown as a line.

(The satellite image was created using Google Earth version 5.2.)
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Figure 8. Schematic representation of the cytb sequence based on Howell (1989),

Irwin et al. (1991) and Esposti et al. (1993). Cytb is 1,122 basepairs. Positions of eight

helices are indicated as closed boxes. N- and C- terminus are also indicated. Positions of

primers used in Gubitz et al. (2005) and this study are indicated as arrow. Picture drawn to

scale (based on cytb sequence of T. mauritanica EU443255: Albert et al. 2009). Inset

shows secondary structure diagram of cytb and its position with respect to the inner

membrane of mitochondria. The filled squares represent heme groups. (Modified from

Esposti et al. (1993)).
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Table 2 Oligonucleotide used in screening of mtDNA markers and their descriptions.

Primer Tm Sequences of primer from 5' to 3' References Expected rca
(QC) product

MTA-s ATCTCAGCATGATGAAACTTCG Ano/is sp. 1100bp
cytochromeb

MTF-s TTTGGTTTACAAGACCAATG (Thorpeetal.2008)

CBT-FI 50.6 CCATGAGGACAAATATCATTCTG Thisstudy SeeFigure8

CBT-F2 66.0 CTGAGGCGCAACCGTAATCACCACC

CBT-RI 49.7 GTAAATGGGGGTTCTACTTGG

CBT-R2 65.l TAGGCGACTGAGGCGGCCTGG

CBT-R3 59.4 TACTGGTTGGCCGCCGCTTC

The peR products were characterized on 1.4% agarose gel containing O.Smg/ml of

Ethidium Bromide (EtBr) and observed under the UV light. In order to remove

unincorporated nucleotide and primers, the peR product was purified using QIA quick

peR purification kit (QIAGEN) as manufacturer recommendation.

The ABI PRISM™ Big Dye Terminator Sequencing Kit (Applied Biosystems)

provided all of the solutions and reagents required for the sequencing reaction. The

reaction was performed in 20 1-11by using 200 ng of purified peR product, 1 pmole of

sequence-specific primer, 4 1-11Premix (ABI PRISM™) and O.SX sequencing buffer.

Nucleotide sequences were carried out by Source Biosciences, Ltd.

2.2.4 DNA sequence analysis

Sequence comparisons were carried out using the BLAST program (Altschul et a1.

1997) within GenBank. The sequence alignment programs, BIOEDIT (Hall 1999) and

MEGA version 4 (Tamura et a1.2007) were used to align and correct the results. The mean

pairwise distances and standard error (based on SOObootstrap replicates) between and
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within lineages were calculated, using p-distances for nucleotide and amino acid (Nei and

Kumar 2000).

The cytb sequences were translated into amino acid sequences and checked for

signs of pseudogene contamination (e.g., frameshift mutations and stop codons) as

described in Bensasson et al. (2001). Haplotype assignment was performed using TCS

program version 1.21 (Clement et al. 2000).

2.2.5 Phylogenetic tree reconstruction

The cytb sequences amplified here partially overlapped with those of Giibitz et al.

(2005) (see Figure 8). Thus, thirteen 1.1 kb cytb sequences that I obtained for primer

design were aligned with those of Gubitz et al. (2005) (AY841905 .1- AY841944.1), and a

cladogram was constructed to allow comparison of lineages between the two studies (see

Appendix I).

The hierarchical likelihood ratio test implemented in MODELTEST version 3.7

(Posada and Crandall 1998) was used to evaluate the most appropriate substitution models

for phylogenetic trees using the standard Akaike information criterion. MODELTEST

supported the GTR+G model with estimates of the gamma distribution shape parameter of

0.6998 and 1.3187 for codon partitions 1 and 2, respectively, and the F81+G model with

gamma shape parameter estimate ofO.7373 for position 3.

MrBayes software version 3.1.2 (Ronquist and Huelsenbeck 2003) was used to

obtain the mtDNA phylogeny by Bayesian inference. The Bayesian approach provides a

consensus tree from the posterior distribution of trees, with node support assessed by

posterior probabilities (Huelsenbeck et al. 2001). Two independent analyses were run, each

with four Markov Chain Monte Carlo (MCMC) chains. Chains were run for 2xl06

generations, and were sampled every 100 generations. The chain lengths and convergence

were determined by the standard deviation (SD) of split frequencies. As suggested in the
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MrBayes v3.1 Manual, the runs are likely to have converged on the same posterior when

the SO drops below 0.01. Once the chain had converged, a 50% majority-rule consensus

tree was created from the post-bum-in samples comprising 15,001 trees.

2.2.6 Testing population substructure

The genetic structure of T. boettgeri was investigated by analysis of molecular

variance (AMOVA) as implemented in Arlequin program version 3.5 (Excoffier and

Lischer 2010). AMOVA is a method of estimating population differentiation directly from

gene frequencies and testing hypotheses about such differentiation (Cockerham 1969,

1973; Excoffier et al. 1992). It uses the fixation index to analyze the differentiation among

the populations from different groups (or sampling locations). Hypotheses are tested using

the null distribution of the variance components. If the variance of subpopulations does not

significantly differ from the null distribution of the variance of the population, the

hypothesis that those subpopulations are differentiated from the larger population is

rejected (Excoffier et al. 1992; Excoffier 2001). The significance of the covariance

components associated with the different possible levels of genetic structure (within

populations, within group of populations, among groups) is tested using non-parametric

permutation procedures (Excoffier et al. 1992).

Genealogical relationships within lineage A and B were also represented using the

Median Joining (MJ) method (Bandelt et al. 1999) as implemented in Network version 4.6

(Fluxus Technology Ltd.). MJ is used for constructing networks from recombinant-free

population data based on a parsimony criterion (Bandelt et al. 1999).

2.2.7 Studying pattern ofmtDNA genejlow across the SE transect

The program MIGRATE version 3.1.6 (Beerli 2008) was used to estimate long-

term gene flow between mtONA lineages Al and B1. I chose to estimate historical

migration rates (u) and mutational-scale effective population sizes (8) using the maximum
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likelihood coalescent approach (Beerli and Felsenstein 1999; 2001). (Note that Il is the

mutation scaled migration rate.) The search strategy used 10 short-chains and 2 long-

chains. The program was run twice. Following a burn-in of 104 iterations, the first run was

carried out with 105 and 106 genealogies for short- and long chains, respectively, with a

sampling interval of 20 generations. The second run sampled 106 and 107 genealogies

using short- and long chains, with a sampling interval of 100 generations. Migration rates

(u) between each pair were plotted against geographical distance between each site. To

enable a comparison of results between mtDNA and nuclear data, numbers of migrants per

generation were obtained from the product of the migration rate (u) and e, as was

suggested in the user manual.

2.3 Results

2.3.1 Cytb sequence variation

A total of 389 high quality cytb sequences were obtained (which corresponded to

176 unique haplotypes; see Appendix 2). Comparison of these sequences with those in

GENBANK confirmed sequence identity with T. boettgeri cytb sequences submitted by

Carranza et al. (2000) and Giibitz et aL (2005). Translation to amino acid sequences did not

reveal evidence of pseudogene amplification. Regions containing ambiguous bases (at the

beginning and end of the sequences) were removed providing 608 bp for analysis.

The 608 bp were aligned and no indels were detected (see Figure 9). The mean base

composition was 0.30 (A); 0.26 (T); 0.32 (C) and 0.13 (G), and the transition/transversion

ratio was 1.84 (outgroup included: T. delalandii). Numbers of nucleotide and amino acid

segregating sites (including outgroup) are 40.15% and 5.30%, respectively.

2.3.2 Phylogenetic relationships within T. boettgeri and location of area of

secondary contact
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The tree based on the 176 haplotypes contained five major well-supported branches

consistent with Gubitz et al. (2005) (Figure 10). Bayesian posterior probabilities strongly

supported major clades (1.00), except for Clades Al and A2 (0.79). Clades A and B are

reciprocally monophyletic. Relationship within lineage A are clear: lineage Al and A2 are

more closely related, while A3 outgroups these two lineages. Within Clade Al and BI,

there are also two well-supported branches (1.00) which I designate Subclade Ala, Alb,

Bla and Bib.

Concordance between this tree and that of Gubitz et al. (2005) allowed all

haplotypes to be assigned to clades and subclades without ambiguity (see Appendix 2).

Average uncorrected nucleotide (P) distance (Nei and Kumar 2000) were calculated. The

uncorrected raw divergence between Clade A and B is 12.0%, which is higher than

previously reported (10.9%; Gubitz et al. 2005). Similar to previous studies, divergence

within Clade A (10%) is higher than within Clade B (4.9%). The uncorrected raw

divergence within Subclades (see Table 3) indicated that divergence within Subclades Ala

and Alb is higher than between Subclades Bla and BIb.

Table 3 Average uncorrected nucleotide p-distances within and among mtDNA

subclades At and Bt.

Clade Ala Alb Bla
Alb 0.023
Bla 0.122 0.121
BIb 0.123 0.123 0.014
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Figure 9. Schematic representation of nucleotide consensus sequence alignment of T.

boettgeri with T. delalandii as an outgroup. Asterisks indicated base positions, which

varied between lineage A and B. Lines indicated position of helices D - H (Esposti et al.

1993).
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Figure 9 (cont.)
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Figure 10. Bayesian Inference tree constructed from 176 cyt b hapJotypes of T. boettgeri

across the island with T. delalandii (TdeOl) as an outgroup. Bayesian posterior support values

are indicated at each node. This analysis shows the posterior support for the main clades to be

discussed. Detailed analyses of relationships within these clades are shown in Figures 12 and 13.
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The main phylogeographic break between populations with Al and Bl haplotypes

occurs in the centre of the SE transect, between site 08 and 14 (Figure 11). Sites 01 and 07

(near the centre of the transect) contain both mtDNA lineages.

The phylogenetic tree revealed that most individuals sampled from the SE transect

corresponded to Giibitz et al. (2005) clades Al or B1. However, an individual classified as

lineage A2 was found at site 03. In addition, individuals corresponding to clade B2 were

found at sites 01 (n = 5) and 06 (n = 2) (see Appendix 2).

2.3.3 Population differentiation within lineage Al and El

AMOVA revealed a high and significant level ofmtDNA differentiation (86.3% of

total variation; p < 0.0001) between sampled populations from the north and south of the

centre of the transect (see Table 4). In addition, genetic variation within regions (2.65% of

total variation), and within sampling sites (11.05%) were also significant (p < 0.0001).

Table 4 AMOV A based on mtDNA sequences of T. boettgeri sampling across the SE

transect. (d.f., degree of freedom; Fst, Fixation index)

Source of Variation d.f. Sum of Variance Percentage of Fst p-value
squares com_Q_onents variation

Among groups 1 5450.54 30.69 86.30 0.86 <0.0001
Among populations 12 337.27 0.94 2.65 0.19 <0.0001
within groups
Within populations 348 1367.99 3.93 11.05 0.89 <0.0001
Total 361 7155.81 35.56
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Figure 11. Geographical map of the SE transect. Pie charts show clade membership

frequencies at the different sampling sites. Individuals from Clades Al and Blare

separated into Subc1ades Ala/Alb and Bla/Blb, respectively. Inset: Map of Gran Canaria

with the SE transect indicated within the triangle.
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The median-joining (MJ) networks provided further resolution of the relationship

among haplotypes from lineages Al and Bl (Figure 12 and 13). For lineage AI, the

network identified two main clusters, which will be referred to as subclades Ala and Alb

(see Figure 12). Subclades Ala and Alb were connected by seven substitutions and one

median vector. Within each subclade, most haplotypes differed by one mutational step,

with a few exceptions. Most individuals were grouped into subclade Ala, which comprised

two clusters connected by two mutational steps (Figure l2B).

For lineage Bl, two main clusters corresponding to subclades Bla and BIb were

connected by four substitutions (Figure 13). Subclade Bla comprised two core haplotypes

connected by two substitutions and a median vector. Subclade BIb contained only a single

cluster ofhaplotypes.

2.3.4 Pattern ofmtDNA genejlow across the SE transect

Patterns of long-term gene flow (estimated from migration rates: Il) between sites is

summarized in Figure 14. As expected, mtDNA gene flow decreased with increasing

distance between sites. Migration rates are particularly high between sites with the same

mitochondrial clades (Figure 14, see also Table 5). However, migration rates are lower

between sites with different mtDNA clades. The results also indicated substantial gene

flow between various sites containing either mtDNA lineage Al or BI and sites 01 and 07,

where both lineages co-occurred. They also strongly suggested asymmetric gene flow from

lineage Al to BI as migration from Al to Bl occurred at the higher rates than from BI to

Al (Table 5).



(A)

38

(4)

(7)

Figure 12. (A) A median-joining (MJ) network based on mtDNA sequences from

lineage At. Haplotypes are represented by circles, with circle size proportional to

haplotype frequencies. Yellow circles represent the haplotypes belonging to lineage Ala,

while lineage Alb are blue circles. Median vectors (red circles) are also presented. The

lengths of the lines are proportional to the number of substitutions (shown in brackets).

The scale of a single substitution is shown in the lower left comer. (B) Fine scale of MJ

network for lineage Ala.
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Figure 13. Median-joining network of lineage Bt. Haplotypes are represented by circles.

Black and green circles represent the haplotypes belonging to lineage Bla and BIb,

respectively. Median vectors are red circles. The lengths of the lines are proportional to the

number of substitutions (shown in brackets), and the scale of a single substitution is shown

in the lower left comer.
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2.4 Discussion

2.4.1 Cytb sequence variation and mtDNA lineages distribution across the SE

transect

Sequence divergence was found to be greater than that reported by Gubitz et al.

(2005). The main reason for this appears to be the different location of the primers on the

cytb gene. Primers designed in this study are located at the C-terminus of cytb (see Figure

8) while primers used by Gubitz et al. (2005) were located at the N-terminus (Kocher et al.

1989; Moritz et al. 1992). It is generally known that the C-terminus of cytb has a higher

substitution rate than the N-terminus (Howell 1989; Edwards et al. 1991). In addition, cytb

sequences used in this study included helices E and H, which are the least conserved

regions (Esposti et al. 1993). This is because they do not contain heme-binding site, and,

are thus less involved in the electron transfer chain (Irwin et al. 1991; Zhang et al. 1998).

This study confirmed the five major mtDNA lineages of T. boettgeri determined by

Gubitz et al. (2005). The results were also geographically concordant with the previous

study: mtDNA lineage Al is distributed along the southern coast of Gran Canaria, while

lineage B 1 is found in the south-east of the island. However, the findings differ

significantly from Gubitz et al. (2005).

First, Gubitz et al. (2005) reported no mtDNA admixture between lineage Al and

B 1. This would be unusual since it is typical to find mtDNA admixture at the area of

secondary contact (e.g., Tomaru et al. 1998; Vallianatos et al. 2001; Phillips et al. 2004;

Gum et al. 2005; Pinceel et al. 2005; Kuchta 2007). However, it is likely to be due to

Gubitz et al. 's (2005) less intensive sampling across this area. The more intensive sampling

design used here .allowed identification of mtDNA admixture at Site 01 and 07, where

lineages Al and B 1 co-exist. Nevertheless, the fact that it occurred at only two sites,
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despite short distances between sites and large sample sizes, provides strong evidence that

the degree of mtDNA admixture is surprisingly limited.

Second, the finding of haplotypes corresponding to clade A2 and B2 in the SE

transect also contradicts Gubitz et al. (2005). These authors showed that lineage A2 is

restricted to the north-western and B2 to the north-eastern parts of the island. The

geographical ranges of lineage Bland B2 meet in the east of the island. It is possible that

low levels of southwards migration of mtDNA lineage B2 may explain this. However, if

this was the case, lineage B2 should be observed along the SE transect. Instead it is found

at only two sites (site 01 and 06) near the centre of the transect, suggesting that this is

unlikely. This study does not exclude the hypothesis that both lineages may have extended

their ranges via other areas rather than along the coast. However, these areas are beyond

the SE transect and Gubitz et al.'s (2005) description is insufficient to examine this

hypothesis. Thus, it remains unclear whether the observation of these northern lineages in

the south of the island are solely a result of natural expansion.

Another possibility was that individuals were introduced from north to the south-

east of the island. The effects of human activities on endemic species by alteration of the

environment and introduction of species into new habitats are well-known (see review in

Vitousek et al. 1997). The impacts of human activities on the Canary islands fauna have

also been reported in insects (De La Rua et al. 2001; Vargus et al. 2004), birds (Suarez et

al. 2012), amphibians (Recuero. et al. 2007), and reptiles (Cejudo and Marquez 2001;

Morales et al. 2009). In Gran Canaria, human activities were shown to be responsible for

within-island genetic diversity of the honeybee, Apis melifera (De La Rua et al. 2001). In

addition, studies of colonization and range expansions of Hemidactylus geckos in

Mediterranean and Atlantic islands, including Gran Canaria, indicated that they were the

result of human-mediated transportation (Carranza and Arnold 2006). Unlike Hemidactylus
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geckos and A. melifera, there was no evidence suggesting that T boettgeri has a

commensal existence with humans. Nevertheless, genetics and biogeographical studies of

an amphibian, Hyla meridionalis, across the Canary islands and within each island

revealed the patterns associated with movements among high activities areas, such as

cultivations and livestocks areas (Recuero et al. 2007). I cannot rule out this possibility for

T boettgeri, especially as sites 0 I, 03 and 06 were located in the the villages, next to the

main roads (pers. obs.). As the geckos and their eggs are small, it remains possible that the

individuals from the northern clades may have been accidentally transported to these

southern sites. Thus, human introduction may be the best explanation for the occurrences

of lineages A2 and B2 at these locations (particularly the unexpected presence of a single

individual from lineage A2 at site 03).

2.4.2 MtDNA gene flow across the zone of secondary contact

Clines in haplotype frequencies indicated that mtDNA lineages Al and Bl meet at

a narrow contact zone (approximately 3.3 km wide). This zone is situated at equal

distances from the two putative refugia (Gubitz et al. 2005) from where they originated. In

Gubitz et al. (2005), putative refugia were proposed based on areas unaffected by lava flow

during two recent volcanic eruptions (see Figure 6). However, due to a high rate of erosion

in the south of the island, it is difficult to predict the actual scale of lava flow (Mehl and

Schminke 1999). Therefore, in this study the refuge hypothesis (originally proposed by

Endler 1982) and geology of the island were used for evaluation of the refugia. In

agreement with the refuge hypothesis (Endler 1982) which predicts that secondary contact

zones will be equidistant from refugia, the location of refugia should be within the areas

proposed by Gubitz et al. (2005). In addition, there is evidence to suggest that mountain

ridge environments remained unaffected by the lava flows (e.g., Anderson et al. 2009).

Thus, it is possible that high altitude habitats, particularly Fataga and east of Santa Lucia
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de Tirajana were the refugia for lineages Al and B1, respectively. This seems to provide

additional support for Gubitz et al's hypothesis of the geographical origins of lineages Al

and Bl.

Interestingly, the SE contact zone is located at the exact location of a reported

phylogeographic break between mtDNA lineages of C. sexlineatus (Pestano and Brown

1999). It is not unusual for phylogeographic breaks within species to cluster in particular

geographic locations, which is often explained by species range expansion from their

refugia (e.g., Avise 1992; Hewitt 1996; Guillaume et al. 2000; Hewitt 2001; Swenson and

Howard 2005). Quite often, the mtDNA lineages appear to have diverged at different times

(as evidenced by different levels of sequence divergence for the same genes) but show

concordant geographic patterns (Guillaume et al. 2000; Hewitt 2000). This is the case with

C. sexlineatus which shows a much shallower divergence that appears to have arisen

during the last period of within-island volcanism and so postdates sequence divergence of

major mtDNA clades in T. boettgeri around 2 Ma. MtDNA data on the third lizard species

on Gran Canaria, Gallotia stehlini are unpublished but apparently show a very shallow and

geographically very distinct pattern (R. Brown, pers. comm.).

Given the approximate age of the common mtDNA ancestor of these two clades,

and the scenario proposed by Gubitz et al. (2005), the time since secondary contact would

be expected to be quite ancient, not recent. High levels of mtDNA admixture are expected

among populations with no barriers to gene flow (Comas et al. 2004; Gum et al. 2005).

Although it is not possible to estimate the time when secondary contact between lineage

Al and Bl took place from this study, it should have occurred sometime after the last

period of volcanic activity (between approximately 3 Mya and present). We detected very

limited historical mitochondrial gene flow across this region, which is clearly indicative of

a barrier. There is no evidence of a present-day physical barrier and there is no evidence of
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current or recent geological events that would have interrupted genetic exchange between

populations in this region. One possible hypothesis is that there is a biological barrier to

mtDNA gene flow between populations, as could occur due to genetic incompatibility

between nuclear and mtDNA genomes (Dasmahapatra et al. 2002; Kim and Sappington

2004). This will be explored in chapter 5.

The stability and maintenance of phylogeographic patterns depends on the

longevity and vagility of the organisms (Hewitt 1996). Thus, organisms with low vagility

should exhibit low dispersal rates and show strong phylogeographic patterns (Branch et al.

2003; Martinez-Solano et al. 2007). There are no reports on the life span of T boettgeri.

However, inferred mtDNA migration rates between populations containing the same clades

and separated by <5 km appear relatively high, but generally decline rapidly with

increasing geographical distance. The width of the contact zone is also related to dispersal

(Endler 1977; Barton and Hewitt 1985) with the narrow SE contact zone indicating low

dispersal. Together these results suggest that low vagility or high philopatry may help

explain the geographical patterns. Nevertheless it seems unlikely that this has a major

influence on maintaining the mtDNA structure across the centre of the transect. The

number of female (7) and male (4) Al individuals observed on the "B1 side" of the contact

zone does not correspond to what should be expected from species with strong female

philopatry. Thus, it implies intrinsic factors, such as cyto-nuclear incompatibility, may

have more influence on maintaining the contact zone than female philopatry.

2.4.3 Population substructure within mtDNA lineages ofT boettgeri

An important finding of my study is the detection of quite deep lineages within

lineages Al and B1 (see Table 3). This allowed further analysis ofmtDNA structuring in

this geographical region. The two sub lineages, A 1a and B 1a are the predominant

haplotypes, which are geographically widespread, particularly near the zone of secondary
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contact. Sublineages Alb and BIb were less frequent and found mainly near the ends of

the transect.

When migration rates are high, populations are genetically well mixed, and the

correlation between genetic distance and geographic distance is modest (Wilkins and

Marlowe 2006). MtDNA migration rates indicated that gene flow within lineages Al and

B I occurred at a higher rate than between lineages. Thus, it gave rise to lower mtDNA

divergences within lineages Al (2.3%) and BI (1.4%) than between lineages Al and Bl.

Although low dispersal appears to play a role in determining the mtDNA

distribution along the SE transect, it is unknown why there is such a low level of mtDNA

admixture and why mtDNA gene flow between lineage Al and BI is asymmetric. It is

possible that hybrids harbouring mtDNA lineage BI in a putative nuclear background that

corresponds to mtDNA lineage Al could be less fit, and vice versa. Hence the next part of

this study will address nuclear loci within this species in order to examine this and other

hypotheses.
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Chapter 3 Patterns of morphological variation across the

mtDNA contact zone
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3.1 Introduction

The role of morphology is prominent in studies of speciation. Speciation is usually

associated with discrete morphological character differences between groups of organism

(e.g. Brochu and McEachran 2000; Bauer et al. 2007). In contact zone studies, when

diagnosable morphological and molecular characters appear to be concordant across broad

geographic regions, it is often assumed that the two populations are independent

evolutionary units (Matocq 2002). In addition, some morphological characters may be

determinants of pre-mating isolation and thus can be important for mantaining contact

zones between morphologically differentiated populations (Bensch et al. 1999; Rohwer et

al. 2001).

Concordant patterns of morphological and genetic differentiation provide good

evidence of reproductive isolation and speciation (Szymura and Barton 1991). Interspecific

studies of zones of secondary contact generally report pronounced morphological

differentiation, mostly accompanied by concordant genetic differentiation (e.g., Heaney

and Timm 1985; Dessauer and Cole 1991; Szymura and Barton 1991; Glor et al. 2004;

Fitzpatrick et al. 2008; Gligor et al. 2009). Intraspecific studies have also reported

morphological differentiation in areas of secondary contact between previously isolated

populations, where, in some cases, spatial patterns of morphological differentiation are

concordant with mtDNA distributions (Fleischer et al. 1991; Arntzen and Wallis 1999;

Good and Sullivan 2001; Bates et al. 2004).

However, several intraspecific studies also report discordant patterns of

morphology and mtDNA (Cronin 1992; Brower 1996; Wiens and Penkrot 2002; Toon et

al. 2003; Yang and Kenagy 2011). Biased gene introgression, extensive hybridization, and

sexual selection are among several reasons used to explain this phenomena (Garcia-Paris

et al. 2003; Babik et al. 2005; Leache and Cole 2007; Hird and Sullivan 2009; Renoult et
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al. 2009). Moreover, some intraspecific studies report genetic differentiation between

populations on either side of the secondary contact zone with no clear pattern of

morphological differentiation (Brower 1994; Stone and Cook 2000). In these cases, it is

sometimes suggested that convergent selection regimes on either side of the contact zone

have overridden the effects of allopatric divergence and left no trace on morphology

(Thorpe et al. 1996; Johansson et al. 2008a).

Selection is one of the factors proposed to maintain the contact zone (Jiggins and

Mallet 2000; Dasmahapatra et al. 2002). In particular, sexual selection resulting from

morphological differentiation between populations may play an important role (Rolan-

Alvarez et al. 1999). For examples, assortative mating has been associated with different

colour patterns in Heliconius butterflies (Mallet et al. 1998), body sizes and colour in birds

(Cicero 2004; Gay et al. 2007) and newts (Babik et al. 2003), and sexual organs in wood

rats (Matocq 2002) and fruit flies (Coyne 1993). Analyses of morphological differentiation

across the contact zone may therefore help provide a better understanding of the

persistance of distinct lineages.

In this chapter, I aimed to assess whether the geographical distributions of T

boettgeri mtDNA lineages Al and Blare accompanied by morphological changes. Avise

(1987) suggested that mtDNA variation may not correlate with other aspects of the genome

because of selection, introgression, poor resolution of the data, or lineage sorting.

However, if mtDNA lineages ate indicative of separate species rather than intraspecific

variation, then this should have a significant effect on morphological character states and

nuclear DNA (Bradley and Baker 2001). Since it is possible that mtDNA may cause

genetic incompatibility, which may eventually lead to speciation, then individuals from

different mtDNA lineages should show distinct morphological characters. If strong

reproductive barriers exist between these mtDNA lineages, then concordant geographical
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patterns of morphology and mtDNA are expected. Alternatively, hybrids may be observed

at the contact zone and sites where mtDNA admixture occurs, suggesting significant

nuclear gene flow between individuals with different mitochondrial types.

This study will also be useful to determine whether morphological differentiation

plays an important role in maintaining the contact zone. Baack and Rieseberg (2007)

suggested that when diverged populations come into contact, the extent of introgression

between them is related to the degree of differentiation that they have accumulated. As

mentioned in Chapter 2, there is relatively little mtDNA admixture at the zone of

secondary contact. Therefore, if differentiated morphological characters between northern

and southern populations are found, they may act as pre-mating barriers. If this is the case,

hybrids should be rare and restricted only within the contact zone.

3.2 Methodology

3.2.1 Morphological characters

All individuals in this analysis are from the SE transect (locations of sample sites

on this transect are described in Chapter 2). Only individuals large enough to sex were

included in the analyses. Sex was established by hemipenal inversion and head shape

examination. Large sample sizes were obtained (males n = 169, females n = 226) to allow

detection of subtle morphological trends. Seven morphological characteristics, that have

already been shown to vary geographically within Tarentola spp. (Thorpe 1991; Gubitz et

al. 2000; Gubitz et al. 2005), were selected (Table 6). Measurements were taken on live

animals. Each character was recorded three times to minimize measurement error. The

body dimensions were measured in millimetres using a vernier caliper accurate to two

decimal places. Scalation characteristics were counted under the light microscope before

releasing the animals at the original locations.
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3.2.2 Statistical methods used to determine pattern of morphological diversity ofT.

boettgeri

Analyses were carried out using SPSS (version 17, IBM Corporation).

Morphological characters were tested for group (site) and sex differences. Kolmogorov-

Smirnov of normality and Levene's test of homogeneity of variances were used to

determine whether the data met the main assumptions of the ANOV A. Scalation characters

and body size (snout-vent length) were analyzed using one-way analysis of variance

(ANOV A) to assess whether there were significant differences among sites. Nutrition and

ecological conditions (i.e., population density and food abundance) may affect the growth

of animal and cause differences between populations. To avoid this problem, head length

and head depth were adjusted for body size using analysis of covariance (ANCOV A).

Discriminant Function Analyses (DFAs) were used to obtain generalized patterns

of variation across sites. To determine the effects of sexual dimorphism on morphological

characters in this species, I treated the sexes separately. Variation was examined using

plots of mean function scores against geographical position on the transition zone. It

should be noted that these plots are intended to depict general phenetic grouping patterns

based on the overall among-site morphological variations.

Principal component analysis (PCA) is an unconstrained ordination technique that

is best used with correlated data to produce new uncorrelated variables that represent the

main features of the original data. To clarify relationships between morphological data and

mitochondrial DNA at the putative contact zone, PCA was used to discriminate

morphological differences between individuals from 3 sites near the centre of the transect

zone, containing 3 mitochondrial haplotype clades (AI, B I and B2). Male and female

morphological data were combined. In this analysis, the most variable factor scores
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(normalized so that the pooled within-group standard deviation is unity) are plotted against

each other to obtain a graphical representation of patterns of variation within the group.

Table 6 Quantitative Trait Data Collection.

I Category I Trait I Abbrev. I Description
I

Body Snout-vent length SVL Anterior tip of the snout to
dimensions the anterior edge of the vent

Head length HL Ear to the anterior tip of the
snout

Head depth HD At the posterior edge of the
eye

Scalation Large lamellae LAL Number of large lamellae (at
least two times as wide as
long) on the fourth toe of
right hind foot

Pre-cloacal scales PRECL Counted from leg axis to
cloaca

Upper labial scales UPLAB Counted from the middle of
on right and left the eye to the mental scale
sides (excluding the mental)

Lower labial scales LOLAB
on right and left
sides

Note: See Figure 15 for more det.ail
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(A)

(C)
(D)

Figure 15. Schematic diagrams showing morphological characters recorded in T.

boettgeri. (A), (B) are ventral and dorsal view, respectively. (C) Ventral view of the right

hide foot. (D) Head view of T boettgeri.
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3.3 Results

3.3.1 Variation in morphological characters between groups and sexes

Levene's test of homogeneity of variances demonstrates that, except for PRECL (F

= 4.523, P < 0.001), the variances of the samples were approximately equal for each

character. Kolmogorov-Smirnov tests of all three body dimensions and one scalation

character (PRECL) were found to be normally distributed with p values> 0.05. Three

scalation characters (LAL, UPLAB and LOLAB) showed significant deviations from

normality. Therefore, the scalation characters were not analysed using ANOVA, since they

did not meet the assumptions of this approach.

The ANOVA of body dimension indicated that snout-vent length (SVL) shows

significant differences among locality and between sexes (see Table 7). However, the

interaction of site and sex is not significant. Analyses of covariance (ANCOVA) revealed

that head depth (HD) differed significantly between sites (Table 7), but there is no

significant difference in head length (HL) among sites. Both characters differ significantly

between sexes. However, there is no geographical variation in sexual dimorphism in either

character (i.e., no site-sex interaction).

3.3.2 Discrimination/unction analysis of T. boettgeri

The DFAs revealed that the patterns of among-site variation were quite

multidimensional. As a result, the first three DFs for both males (55.0%, 18.2% and 13.9%

of variance) and females (54.9, 16.7% and 12% of variance) were used for further analysis

of variation between-groups and classification of individuals (Table 8). One-sample

Kolmogorov-Smirnov tests for normality revealed that all DFs were normally distributed.
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Table 7 Summary of ANOVA and ANCOVAs of body dimension characters. The F-

ratio for the ANOV A on SVL and a two-way ANOCV A for HL and HD are given. The

factors are site (df= 13,366) and sex (df= 1,366). P values less than 0.05,0.01 and 0.001

are represented by the letters a, band c, respectively.

II 'T. Locality Sex Locality*Sex

SVL 3.10c 24.04c 1.22TIS

HL 1.06TIS 11.73b 1.18ns

HD 3.89c 14.24c 1.65ns

Table 8 Summary of variable loading for DFA. Structure matrix (pooled within-group

correlations between discriminating variables and standardized canonical discriminant

functions) 1, 2 and 3 are shown for males (M) and females (F). Variables are ordered by

absolute size of correlation within function. The asterisk (*) represents largest absolute

correlation between each variable and any DF. Canonical discriminant functions,

eigenvalues, percent variance, cumulative percent variance and squared canonical

correlation (canonical correlation) are given.

DFI DF2 DF3
Structure Matrix M F M F M F
SVL -0.680* 0.883* 0.414 0.121 0.374 0.101
HL 0.339 0.196 0.805* 0.615* 0.323 -0.402
HD 0.204 0.210 0.491 0.079 0.741 * 0.606*
LAL 0.129 -0.034 0.594 0.581 0.628* -0.250
PRECL -0.080 0.267 -0.032 -0.246 0.121 0.053
UPLAB 0.199 -0.068 0.166 0.044 0.322 0.068
LOLAB 0.139 0.322 -0.075 -0.193 0.135 0.050
Eigenvalue 0.833 0.589 0.276 0.179 0.211 0.129
% of variance 55.0 54.9 18.2 16.7 13.9 12.0
Cumulative % 55.0 54.9 73.3 71.6 87.2 83.6
Canonical correlation 0.674 0.609 0.465 0.390 0.417 0.338
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DF scores were examined by mtDNA lineages. Since males and females are

different, each sex was analysed separately. Mean DF scores of individuals belonging to

mtDNA lineage Al and BI were calculated separately and plotted against distances from

the centre of the contact zone. Mean DF were plotted to show morphological variation

along the transect (Figure 16 and Figure 17). Individuals belonging to mtDNA lineages A2

and B2 were plotted separately in order to determine whether they were differentiated from

the majority of individuals (which belong to mtDNA lineage Al and BI). In general, DF

plots revealed no distinguishable pattern of variation between the north and south of the

contact zone for either males or females.

For male DFI, northern populations (mtDNA lineage BI) exhibited slightly lower

means than those of southern populations (mtDNA lineage AI). This is except for three

sites (site 01,07 and 14) at the centre of the transect, which show high means (see Figure

16A). At site 07, the 95% confidence interval of individuals from mtDNA lineage Al

slightly overlapped with that of lineage B1, but was still distinguishable. At site 01, DF1

scores of two individuals belonging to lineage B2 are not similar. Within southern

populations, DFI scores were highest at site 02, but appear to be lowest for site 12 and 13

(Figure 16A).

For male DF2 and DF3 each individual was plotted separately at site 07 due to

highly variable DF scores among population from lineage AI. In both cases, patterns of

variation are not distinguishable between northern and southern populations. Nevertheless,

means of site 02 are also clearly differentiated from other sites. Moreover, mean DF3 at

site 07 is highest of all northern populations.
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Figure 16A. Means and 95% confidence intervals for DFI for males. Means of

individuals classified by mtDNA lineage across the sites. Means were plotted based on

location of sampling sites (numbers above bars), from south (-) to east (+) of the contact

zone.
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(B) Male DF2
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For females, at site 01, individuals classified into mtDNA lineage Al have highly

variable DF scores, leading to a large overlap with the confidence interval for B1

individuals. This was also observed at site 07 (for DF3 only). Therefore, individual DF

scores was plotted to examine these patterns in more detail (see Figure 17).

In contrast to males, patterns of variation in females were less pronounced (Figure

17). Nevertheless, at the centre of the transect (site 01, 07 and 14), mean DFI and DF2

scores for individuals belonging to mtDNA lineage Blare also high (Figure 17A and

17B). Moreover, at site 02 means of DFI and DF3 differ from other sites as observed in

males (Figure 17A and Figure 17C). DF scores of female individuals containing mtDNA

lineage B2 from site 01 and site 06 were also compared. They varied between and within

sites.

Scatter plots (Figure 18 and Figure 19) indicate that there was complete

morphological overlap of individuals from different mtDNA lineages.

3.3.3 Principal components analysis on individual sites

Results of the PCA are shown in Table 9. High cumulative percent variances are

observed in the first three PCs (41.30%, 24.44% and 12.82% of variance). A scree plot

between eigenvalue and component number showed a dramatic decline in variation from

component 3 onward, which corresponds to expression of cumulative variance (data not

shown). The scatter plot of PC scores 2 against 1 and 3, respectively, were shown in Figure

20. It did not appear possible to morphologically discriminate between individuals with

different mitochondrial haplotypes.
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Figure 18. Scatter plots of male DF scores: (A) DFI against DF2 and (B) DF2 against

DF3. Individuals are labelled according to mtDNA lineages: circle (AI), star (A2) box

(B1) and triangle (B2).
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DF3. Individuals classified into mtDNA lineages AI, BI and B2 are represented as circle,

box and triangle, respectively.
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Table 9 Summary results for peA. Variable loading on each PC are shown. Eigenvalues,

percent variance, cumulative percent variance are given.

Matrix PC1 PC2 PC3 PC4 PC5 PC6 PC7

SVL 0.947 0.014 0.054 0.062 0.122 -0.133 -0.253

HL 0.930 -0.009 0.109 0.174 0.089 -0.187 0.224

HD 0.931 0.027 -0.069 0.000 0.090 0.345 0.029

LAL 0.043 0.523 0.802 -0.273 -0.080 0.027 0.001

PRECL 0.419 0.593 -0.420 -0.329 -0.430 -0.053 0.011

UPLAB -0.168 0.702 0.024 0.675 -0.143 0.039 -0.024

LOLAB -0.238 0.769 -0.240 -0.176 0.512 -0.025 0.019

Eigenvalues 2.891 1.710 0.897 0.704 0.505 0.177 0.116

% Variance 41.295 24.435 12.816 10.054 7.215 2.531 1.654

Cumulative% 41.295 65.730 78.546 88.599 95.815 98.346 100.000
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3.4 Discussion

3.4.1 Pattern of morphological variation across the mtDNA transition zone

In this study, ANOVA and ANCOVA indicated significant differences in

individual characters among sample sites. Despite this, the DFA and the PCA revealed that

there was no clear north-south pattern corresponding to the pattern of mtDNA variation.

Lack of concordance between morphology and mtDNA indicates that historical isolation

may have had little influence on morphology of T. boettgeri. Several studies support this

assumption (e.g., Bridle et al. 2001; Ballard et al. 2002). A study of leaf-litter skinks,

Carlia rubrigularis, which reported deep mtDNA divergence (~12%) between populations

across the Black Mountain Corridor, found remarkably similar morphologies between

regions (Schneider et al. 1999).

Lack of clear geographical patterns in morphology suggested continuous nuclear

gene flow between populations, which will diminish nuclear DNA differentiation (Slatkin

1987). Therefore, a lack of significant morphological differentiation between populations

from north and south of the SE contact zone suggests no geographical patterns will be

observed in the nuclear DNA as a result of extensive gene flow across the island. This

hypothesis is reasonable only if there is no spatial variation in morphology of T. boettgeri.

However, substsntial differentiation in morphology was reported across the whole island,

although the geographical patterns do not correspond to the distribution of mtDNA

lineages (see Gubitz et al. 2005). Therefore, the results obtained in this study merely

indicate that mtDNA and nuclear DNA spatial patterns are discordant, and this is reflected

in this morphological study.

Divergence in morphology may have occurred in response to spatially variable

natural selection as was reported for several volcanic island endemics (Fritts 1984; Baez

and Brown 1997; Malhotra and Thorpe 2000; Filardi and Smith 2005; Wolf et al. 2008),
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including Gran Canaria (Brown and Thorpe 1991; Thorpe and Baez 1993). Previous

studies of T. boettgeri also suggested that morphological variation has arisen in response to

ecological diffrerences (i.e., arid, humid, altitude and vegetation) within the island

(Nogales et al. 1998; Gubitz et al. 2005). If this hypothesis is true, morphology at the SE

transect should be uniform due to a lack of environmental differentiation (Garcia

Rodriguez et al. 1990; Brown 1991). Nevertheless, some sampling sites (particularly at site

01, 02 and 07) showed pronounced morphological difference, regardless of their mtDNA

backgrounds. This suggested that morphology of individuals from those sampling sites

might be influenced by other factors, such as difference in nuclear DNA backgrounds.

3.4.2 Role of morphology in maintaining the contact zone

Lack of distinct phenotypic traits suggests that morphology does not contribute to

the maintenance of the mtDNA contact zone. It also indicates that it is probably unlikely

that the mtDNA transition is due to any restriction of migration or gene flow between

populations on the transect, otherwise morphology would show a similar pattern. It also

suggests no corresponding nuclear DNA contact zone exists, and therefore the mtDNA

contact zone is unlikely to be maintained by cyto-nuclear incompatibility. Nevertheless,

information from interspecific studies, where concordant spatial patterns of nuclear and

mtDNA were reported, demonstrate that cyto-nuclear incompatibilities are not necessarily

coupled with pronounced morphological differences (e.g., Sweigart et al. 2006; Fritz et al.

2008; Pryke and Griffith 2008; Furman et al. 2010). This could be confirmed by

demonstrating an association between nuclear and mtDNA genotypes across individuals.

This will be examined through detailed analyses of multilocus nuclear DNA in the next

chapters.
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Chapter 4 Identification and development of microsatellite

markers
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4.1 Introduction

This chapter is based on a manuscript that has been published (Appendix 3):

'Tejangkura, T and Brown, RP. Ten novel microsatellite loci from the Gran Canarian

gecko, Tarentola boettgeri, and their applicability in other Tarentola. Molecular Ecology

Resources Database 1 April 2010 - 31 May 2010 Volume 10, Issue 6, pages 1098-1105,

November 2010'

Phylogeographical analysis of T boettgeri within Gran Canaria detected five major

mtDNA lineages, which appear to have been on separate evolutionary trajectories for

several million years, consistent with patterns of volcanism within the island. This finding

makes T boettgeri an interesting model for examining putative speciation on a

microgeographic scales. However morphological variation is not consistent with the

pattern of mtDNA divergence (Gubitz et al., 2005; this thesis). Since morphological

variation mayor may not reflect underlying variation in the nuclear DNA, it was also of

interest to examine nuclear DNA markers to determine whether the phylogeographical

break observed in the SE of the island corresponded to a similar transition in the nuclear

genome. Recent methodological advances have facilitated the use of multilocus data to

reconstruct the evolutionary history of diverging populations, which can provide a means

for testing demographic models of speciation. and quantifying biological relevant

parameters underlying species limits (Good et al. 2008). Therefore, microsatellites have

emerged as the most popular and versatile marker type for ecological applications (Selkoe

and Toonen 2006).

Microsatellites (or Short Tandem Repeats: STRs) are repetitive sequences of

mostly 2 to 4 nuc1eotides with a widespread occurrence particularly in multicellular

organisms (Ramel 1997). They appear to be more or less uniformly distributed across

eukaryotic genomes, but are under-represented in coding regions, and perhaps telomeres
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(Goldstein and Schlotterer 2001). Microsatellites are thought to anse by the process

referred to as DNA slippage or slipped strand mispairing (Bennett 2000). This slippage is

thought to occur within the DNA-DNA polymerase complex, which mediates DNA

replication, as a consequence of mispairing (by one or occasionally more repeat unit)

between the original template strand and the newly synthesised DNA strand. The region of

unpaired DNA is then formed a loop (Figure 21). If the loop is on the new strand, the net

effect is addition of a repeat unit. If this is on the template strand, it is removed by

enzymatic proofreading and the net effect is the loss of a repeat unit. It should be noted that

microsatellite mutations are the interaction between slippage and mismatch repair

mechanism maintaining the fidelity of DNA replication. Thus, if the observed DNA

mutation rate is low, micro satellites would be very rare and less polymorphic. If they are

high, many would show changes from one generation to the next, preventing pattern of

inheritance being investigated accurately (Bennett 2000).

The uses of microsatellite loci has become widespread in studies of relatedness,

paternity and population structure due to their abundance in eukaryotic genomes, high

polymorphism, and amenability to peR technology (Goldstein and Schlotterer 2001).

Microsatellite sequences are considered the most revealing DNA markers available for

inferring population structure and dynamics (Zhang and Hewitt 2003). Many highly

polymorphic micro satellites of various types of repeat have been reported for reptiles (e.g.

Gardner et al. 1999; Bloor and Davila 2008), some with potentially cross-species uses

(e.g., Bloor et al. 2006; Suarez et al. 2008). However, no microsatellites have been

reported for the genus Tarentola. Therefore, another aim of this thesis is the development

of polymorphic microsatellite markers specific to T. boettgeri, will be useful to further

population investigation by allowing analyses of nuclear DNA.
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A IDICII'tQa

51-----Cj~A-CA-CA-CA- .....3'
3' GT-GT-Gl'-Gl'-GI' ------ 5'
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3' V-GT-GT-GT------ 5'

Figure 21. Strand slippage during DNA replication. (A) The extending strand slips

backwards, resulting in the insertion of an extra repeat within the newly synthesised strand.

(B) The extending strand slips forward, resulting in the deletion of a repeat within the

newly synthesised strand. (From Bennett 2000)
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Our purpose here was to identify microsatellite markers for subsequent analysis of

within-island contact zone of two T. boettgeri mitochondrial lineages Al and Bl. In this

study, we used tetranuc1eotide microsatellite loci due to the greater stability in the genome

and low strand slippage-errors than the commonly used dinucleotide and trinucleotide

repeats (Ramel 1997). The tetranuc1eotide (AAAG)n microsatellite-enriched library was

constructed and tested for the suitable nuclear DNA markers to identify genetic variation

and transitional zone of T. boettgeri on Gran Canaria.

4.2 Methodology

4.2.1 Source of material and primers

Sources of genomic DNA, synthetic oligonuclotide primers and chemical reagents

are as described in Chapter 2. The oligonucleotide primers used for construction of

microsatellite-enriched library are listed in Table 10. The physical map of the high copy

plasmid vector, pGEM-T Easy (Promega) used as a vector for construction of

micro satellite-enriched library is shown in Figure 22. Genomic DNA of T. boettgeri was

isolated as mentioned in Chapter 2.

4.2.2 Microsatellite Enriched Library Construction

Microsatellite loci were isolated from a partial genomic library enriched for the

tetranuc1eotide (AAAG)n repeat sequence using ~m enrichment protocol modified from

Gardner et al. (1999) and Bloor et al. (2006). Genomic DNA was isolated from a single T.

boettgeri sampled near Pinor de Tamadaba (Tb), in the centre-west of Gran Canaria

(corresponding to clade A3 in Gubitz et al. 2005). Five micrograms of genomic DNA was

digested in a total volume of 20 III with 5 units of the restriction endonuclease Sau3AI

(New England Biolabs) at 37°C for 3 hrs and 5 III of Sau3AI digested DNA was observed

on 1.5% agarose gel. Only complete digested DNA was used for micro satellite library

construction.
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4.2.2.1 Generation of Sau3AI adaptor and ligation with digested DNA

fragments

In order to amplify the unknown DNA fragments, Sau3AI adapter was added to

both ends of the fragments. To generate an adaptor, 1.5 nmol of linker oligo S62 was pre-

heated at 80°C before being hybridized to an equal amount (1.5 nmol) of linker oligo S61.

The solution was removed to RT and allowed to cool slowly over 1 hr. Then, 5 I-1gof

Sau3AI digested DNA was ligated to 0.9 nmol of the adapter in IX DNA ligase buffer

containing 40 units T4 DNA ligase (Promega) in a total volume of 200 1-11at RT. This

reaction mix was placed into a container and left to cool slowly to 4°C in the incubator.

The DNA was ethanol precipitated, resuspended in 20 1-110.1 X TE buffer pH 8.0 and

electrophoresed on a 2% agarose gel. DNA fragments of a selected size range (300-1000

bp) were purified using a Gel Extraction Kit (Sigma Aldrich).

4.2.2.2 Magnetic Isolation of (AAAG}nMicrosatellites

Subtractive hybridization was carried out with 3' biotinylated oligo (AAAG)6 and

bound to Streptavidin MagneSphere ParaMagnetic particles (Streptavidin MagneSphere

ParaMagnetic kit, Promega). 100 1-11of Streptavidin MagneSphere ParaMagnetic particles

were resuspended and washed as per manufacturers recommendation and resuspended in

1001-115X SSC~(1XSSC == 0.15M NaCl, 15 mM tr-isodiumcitrate) containing 200 pmol of

Biotinylated oligo S64. The bead mixture was incubated for 15 min at RT, washed 3 times

in 5X SSC and resuspended in 50 1-11of IX hybridization solution (0.5M NaCl, 4% w/v

polyethylene glycol 8000) at 55°C.
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Table 10 Oligonucleotide used in microsatellite enriched library construction and

their descriptions.

Primer Tm Sequences of primer from 5' to 3'
Gene/DNA References(DC) element

Standard primers for DNA sequencing
T7 promoter,

T7 38.8 TAATACGACTCACTATAGGG pGEM-T easy
vector
SP6 promoter, Promega

SP6 30.6 TATTTAGGTGACACTATAG pGEM-T easy technical
vector manual No. 042

M13F 41.7 GTTTTCCCAGTCACGAC M13 primers,
pGEM-T easy

M13R 36.2 CAGGAAACAGCTATGAC vector

Tetranucleotide (AAAG}n microsatellite-enriched library
Sau3AI linker

S6l 61.7 GGCCAGAGACCCCAAGCTTCG
oligo A, Primer
specific to
Sau3AI

pGATCCGAAGCTTGGGGTCTCTGG
Phosphorylated Egernia stokesii

S62 67.3 CC
Sau3AI linker (Refseth et al.
oligo B 1997; Gardner et

S64 N/A (AAAGMBiotin]
Biotinylated al. 1999)
probe
Primer specific

S6 47.4 (AAAG}6 to (AAAG}n
element
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T7l
1 start

Apal 14
Aalll 20
~ZII 26

31
Ncot 37

pGEP-TEasy BstZt 43
Victor Not I 43

(3015bp) Sac II 49
~J 52

54
~I 70. 77
BstZ I 77
Pstl 88
Sail 90
Ndel 97
~JI 109

118
Nsf I 127

141
fsps

Figure 22. pGEM- T Easy Vector circle map and sequence reference points. (Picture

taken from Promega, pGEM-T and pGEM-T Easy Vector Systems Promega technical

manual No. 042)
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In a separate tube, 10 I-llof the ligated DNA/adapter solution was added to 40 I-llof

IX hybridization solution which includes 20 pmol of S61. The mixture was heat-denatured

at 95°C for 5 min and cooled to 55°C before adding all the resuspended bead mixture and

incubated for 20 min at 55°C. The beads were then washed four times (in 100 I-llof 2X

SSC, 10 pmol S61) at RT and then washed 4 times in 100 I-lIIX SSC, 10 pmol S61 at 30°C

to remove unbounded DNA fragments. The captured DNA fragments were eluted from the

beads by denaturing for 20 min at room temperature in 20 I-ll0.15M NaOH. The solution

was neutralized with 1.3 I-ll1.25M acetic acid, and 2.2 I-lllOX TE (PH 8.0) and DNA was

purified using a Qiagen column (QIA quick PCR purification kit, QIAGEN).

4.2.2.3 PCR Amplification a/Captured Fragments and Cloning into pGEM-

T Vector

The enriched DNA (-280 ng) was amplified in a 50 I-llvolume containing IX

premix PCR buffer (Sigma Aldrich) and 30 pmol of S61. The amplification was carried out

in a thermal cycler with one cycle of denaturing at 94°C for 3 min, annealing for 45 s at

60°C, extension for 1 min at ire followed by 39 cycles of 94°C for 45 s, 60°C for 45 s,

trc for 45 s, ending in one cycle of noc for 5 min. The PCR product was purified using

QIA quick PCR purification kit (QIAGEN) and eluted in 20 I-llelution buffer. The purified

PCR product was ligated into pGEM- T easy vector (Promega) following the modified

protocol fro~ Sambrook et al. (2000).

Plasmid-DNA ligation was carried out using T4 DNA ligase (Invitrogen Inc.) that

catalyzed the formation of phosphodiester bond of two adjacent nucleotides between the 3'

hydroxy and the 5' phosphate. The ligation was performed in 10 I-llreactions by using the

appropriate molar ratio of plasmid vector to insert (1:3),5 units of T, DNA ligase and IX

ligation buffer (250 mM Tris-HCl pH 7.6, 50 mM MgCh, 5 mM ATP, 5 mM DTT, 25%

(w/v) polyethylene glycol-8000). The ligation mixture was incubated at 25°C-4°C for 16
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hours. Recombinant plasmids were transformed into competent cells E. coli strain JM 109

(Promega) for amplifying the plasmids. The 2 ,.,..1of ligation mixture was added into 10 ,.,..1

pre-warmed 65°C molecular grade water (Sigma Aldrich), mixed and incubated at 65°C for

20 minutes. After that, 200 ,.,..1of E. coli 1M 109 competent cells was added with 10 ,.,..1of

pre-warmed 65°C ligation mixture, mixed and incubated on ice for 30 minutes. The

recombinant plasmids were introduced into the competent cells by heat-shock at 42°C for

50 seconds and put on ice immediately. Next, 400 ,.,..1of SOC medium was added into the

cell mixture. After incubation at 37°C for 1 hour, the transformed cells were spread on LB

agar plates, containing 100 ug/ml of ampicillin, 40,.,..1of20 mg/ml X-gal and 100,.,..1ofO.l

M IPTG, and incubated overnight at 37°C. Transformants were differentiated by

blue/white colonies.

4.2.2.4 Recombinant plasmid DNA extraction using modified CTAB method

The E. coli colonies containing recombinant plasmid (white colonies) were grown

overnight in 3 ml LB broth containing 100 ug/rnl of ampicillin. The 3 ,.,..1of cultured cells

were centrifuged at 14,000 rpm for 1 minute. After discarding the supernatant, the pellet

was resuspended in 200 ,.,..1of STET (8% sucrose, 0.1% TritonX-100, 50 mM Tris-HCl pH

8.0), added to 10 ,.,..1of 50 mg/mllysozyme solution, mixed and incubated at 37°C for 10

minutes. The suspension was boiled for 45 seconds and centrifuged immediately at room

temperature fur 15 minutes. The pellet was removed using a toothpick and then 1/10

volume of 5% CTAB was added. After being centrifuged for 5 minutes, the pellet was

resuspended in 300 ,.,..1of 1.2 M NaCl, vortexed, added with 5,.,..1of 10 mg/ml RNase and

incubated at 37°C for 15 minutes. After incubation, the mixture was added with an equal

volume of chloroform-isoamyl alcohol, mixed, and then centrifuged for 5 minutes. The

upper phase was transferred to a new tube, added with 1/10 volume of 5M NaCI, mixed,

added equal volume of isopropanol and mixed. Following this, it was centrifuged at 14,000
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rpm for 15 minutes, the pellet DNA was resuspended with 30 ul of molecular grade water

(Sigma Aldrich). The recombinant plasmid was digested with EcoRI to roughly estimate

size of the PCR fragments.

4.2.2.5 Detection of Microsatellite-Containing Clones Using PCR

PCR amplification with two vector primers (T7 and M13 reverse primers) and the

nonbiotin-Iabelled (AAAG)6 primer (S6) was used to identify the PCR product containing

AAAG repeats. The PCR reactions were performed in a total volume of 25 ~l with IX

premix PCR buffer (Sigma Aldrich) and 2 pmol of each primer. The reaction conditions

were one cycle of 9 min at 95°C, 45 s at 60°C, 2 min at noc; 34 cycles of 45 s at 94°C, 45

s at 60°C and 2 min at ire; followed by 1 cycle of 5 min at noc. The products were

visualized by agarose gel (1.5%) electrophoresis. Clones giving two (or more) bands were

considered likely to contain a microsatellite and were PCR amplified with the vector

primers T7 and M13 reverse using similar conditions to those given above. The PCR

products were purified and cycle-sequenced using 5 pmol of T7 primer and BigDye

Terminator V3.I kit (Applied Biosystems) with procedures specified by the manufacturer.

DNA sequences were determined using the Applied Biosystems 3130 DNA Analyzer.

DNA sequences surrounding a microsatellite locus, termed the flanking regions, are

generally conserved across individuals of the same species and sometime different species

(Selkoe and-Toonen 2006). Therefore, clones were chosen based on long flanking

sequence with no sign of unambiguous motif, such as dinucleotide repeats. Therefore,

primers for PCR amplification of each microsatellite locus were designed using the

program VNTI (Invitrogen, Inc.) based on their flanking regions.

4.2.2.6 Microsatellite marker selection, labelling and multiplex PCR

amplification
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All primers designed for microsatellite analysis are listed in Appendix 3. As the

markers were designed solely on an individual belonging to mitochondrial clade A3, it was

necessary to test them with the preliminary group to examine whether they were applicable

to the entire population. Each microsatellite marker was test-amplified with five

individuals (JGOI, SDOI, ThOI, MOl and 1101) from the preliminary group. Successfully

amplified markers with appropriate size (range between lOOto 600 bp) were chosen for

further analysis.

Labelled Primers were ordered from Applied Biosystems. One primer from each

pair was fluorescently end-labeled with 6-FAMTM,VIe®, NEDTMor PET® to distinguish

each microsatellite loci. Multiplex amplifications were carried out in 25111with IX premix

peR buffer (Sigma Aldrich) and 0.25 pmol of each primer. Two multiplexes were created

according to the annealing temperatures. The peR reaction conditions were: one cycle of 5

min at 95°e; 35 cycles of 1 min at 95°e, I min at 55 and 500e for multiplex 1 and 2,

respectively, and 1 min at rrc. followed by 1 cycle of 10 min at ire. Fluorescently

labeled fragments were run on an Applied Biosystems 3730 DNA Analyzer with the

GeneScan LlZ600 size standard (Applied Biosystems).

4.2.2.7 Sizing and genotyping of microsatellite-containing amplicons

The fluorescent labelled fragments (referred here as amplicons) were subjected to

microsatellite binning. This was done using GeneMapper® software version 4.0 (Applied

Biosystems). Number of loci was calculated for each microsatellite marker. Polymorphism

data were test for deviation from Hardy-Weinberg equilibrium and linkage disequilibrium.

All calculations were performed using the program ARLEQUIN ver. 3.5 (Excoffier and

Lischer 2010). A sequential Bonferroni correction were applied to correct for multiple

comparisons (Rice 1989).
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4.3 Results

4.3.1 Identification and quality control screening of microsatellite markers

Approximately 300 recombinant colonies were sequenced. Only 32 sequences

(10%) contained at least six-uninterrupted micro satellite repeats and contained enough

flanking sequence to allow design of primers. Ten out of fifteen microsatellite markers

successfully amplified the preliminary group (data not shown). Eight of these

micro satellite loci were pure tetranuc1eotide repeats, two loci (Tb72 and Tb240) were

compound micro satellites (Table 11). These microsatellite markers were screened on the

candidates from the SE group.

Polymorphism data were obtained by typing 40 individuals from Site 03 and 05

(n=20 each) in which corresponded to the two principal mtDNA lineage Al and B1.

Microsatellite markers were found to amplify reliably. All loci were variable within each

site with the number of alleles per locus ranged from four to fifteen (Table 11). The

shortest allele amplified was 122 basepairs (Tb49) and the longest allele was 577

basepairs. The observed and expected heterozygosities for Site 03 ranged from 0.45 to 1.00

and 0.54 to 0.94, respectively. The observed and expected heterozygosities for Site 05

ranged from 0.70 to 1.00 and from 0.53 to 0.93, respectively. Despite the significant

deviations from Hardy-Weinberg equilibrium were detected in locus Tb72 [after sequential

Bonferroni correction (Rice 1989)], there was no obvious evidence of null alleles. No

evidence of linkage disequilibrium was found (after sequential Bonferroni correction).

4.3.2 Cross-species applications

Cross-species amplification of the multiplex PCRs was assessed by typing twenty

individuals of Tarentola delalandii from a single site (Boca Cangrejo) on Tenerife, and 6

individuals of Tarentola caboverdianus from the island of Sao Vicente, Cape Verde. All

ten microsatellite markers were successfully amplified in both species and were found to
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be variable (3- 16 alleles in T delalandii, and 3- 10 alleles in T caboverdianus) (Table 12).

Significant deviations from Hardy-Weinberg were observed in T delalandii (locus Tb49),

but none in T caboverdianus. Significant linkage disequilibrium was detected for Tb192

and Tb35 in T caboverdianus (data not shown).

4.4 Discussion

Total ten newly identified (AAAG)-repeated microsatellite loci were isolated from

T boettgeri. The percentage of recombinant clones was rather disappointing (10%) when

compared to the rate of 16.7% in Gardner et al. (1999) and 20.3% in Bloor et al. (2006).

The difference in enrichment efficiency, particularly lower percentage of recovery, may be

due to the change in screening protocols. Alternatively, it may be due solely to nature of

the genome of organism, itself. Note that we also discarded any clones containing

recombinant plasmid with insertions smaller than 300 basepairs as they are unlikely to

contain good flanking regions for primer design. However, the number of usable

microsatellite loci (polymorphic and in HWE) obtain here are comparable to other

microsatellite isolation experiments on lizards using the same protocols (e.g. Bloor et al.

2006; Suarez et al. 2008; Johansson et al. 2008b). Significant deviations from Hardy-

Weinberg equilibrium detected in locus Tb72 of T boettgeri could be due to the presence

of null alleles or a Wahlund effect (Wahlund 19~8). The latter explanation is quite feasible

because of potential substructuring in the area: the two sites are close to the mtDNA

contact zone. The observation of compound or interrupted tandem repeats is common

phenomenon (Goldstein and Schlotterer 2001). The compound tetranucleotide repeats were

also identified from T boettgeri as in other reptiles, even when use different type of repeat

and protocols (e.g. Bloor et al. 2008).
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The variability detected at these microsatellite loci in T. boettgeri suggest they will

provide an excellent tool for analyzing within-island nuclear DNA structuring relative to

mtDNA structuring in both T. boettgeri and T. delalandii, which both show interesting

patterns of within island evolution (Giibitz et al. 2000; Gubitz et al 2005). Successful

cross-amplification in the Tenerife and Cape Verde Tarentola suggests that these loci are

likely to be useful for the entire Makariogecko subgenus, which includes all the Western

Canary and Cape Verde Island Tarentola, as well as a Moroccan species (Carranza et al.

2002).

Table 12 Polymorphism data for the multiplexed loci based on 20 individuals of

Tarentola delalandii from Tenerife (Canary Islands) and 6 individuals of Tarentola

caboverdianus from Sao Vicente (Cape Verde Islands).

T. delalandii (n = 20) T. caboverdianus n= 6)
Size range Size range

Locus NA (bp) Ho HE NA (bp) Ho HE
Tb48 12 133 - 188 0.85 0.90 10 137 - 212 1.00 0.97
Tb71 15 329 - 398 1.00 0.92 8 326 - 384 1.00 0.92
Tbn 12 500-615 0.95 0.85 5 502-519 1.00 0.80
Tb192 13 357 - 423 0.95 0.91 6 368 - 396 0.50 0.89
'fb240 16 481 - 580 0.95 0.94 8 501- 573 1.00 0.92
Tb8 11 210 - 303 0.90 0.80 4 211-252 0.50 0.45
Tb35 14 373 - 443 0.80 0.88 8 371 - 445 0.67 0.92
Tb49 3 137 - 204 1.00* 0.56 3 137-174 1.00 0.62
Tb213 8 459 - 547 0.85 0.84 7 464 - 550 0.67 0.77
Tb234 6 330 - 380 0.40 0.50 5 330 - 396 0.67 0.58

NA,number of alleles; Ho, observed heterozygosity; HE, expected heterozygosity.
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Chapter 5 Variation in microsatellite DNA across the mtDNA

contact zone



92

5.1 Introduction

Speciation occurs when reproductive isolation arises between differentiated gene

pools (Noor 2002). Dobzhansky (1936) and Muller (1942) proposed that incidental genetic

divergence in allopatry could create genetic incompatibilities, which resulted in substantial

post-zygotic isolation. This hypothesis has been supported in several studies (reviewed in

Orr and Presgraves 2000). Investigating genetic structure at the zone of secondary contact

is, therefore, important for understanding the influence of genetic incompatibilities on

maintaining species/population boundaries (Knowles and Richards 2005).

In previous chapters, I have demonstrated that T. boettgeri populations at the centre

of the transect show a sharp transition in mtDNA lineage composition, but no

corresponding change in morphology. Previous studies have demonstrated that nuclear

genetic differentiation prevents successful reproduction among populations which show no

clear morphological differentiation (e.g., Phillips et al. 2004; Furman et al. 2010). The aim

of this study was to investigate the genetic structure of the gecko using nuclear gene

markers.

Various nuclear markers have been employed to investigate patterns of genetic

structure at contact zones among reptile populations, including single copy nuclear (sen)

genes (e.g., Zarza et al. 2008; Okamoto and Hikita 2009) and microsatellites (e.g., Carlsson

et al. 2004; Gibbs et al. 2006; Godinho et al. 2008). At the beginning of this study, several

sen genes, reported to successfully amplify in other reptiles [e.g., c-mos (Saint et al. 1998),

MHC, GAPD (Dolman and Phillips 2004), RAG 1 (Townsend et al. 2004), Phosducin

(Bauer et al. 2007)] were tested with T. boettgeri. Only two of them (RAGland

Phosducin) exhibited substitutions when populations from across the island were

examined, and divergence was low «1% segregating sites). In addition, the sequences
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were indistinguishable between individuals from mtDNA lineages A and B. Thus, it was

considered that they were not very suitable for this study.

There is evidence that analyses of several markers will provide better estimates of

gene flow, natural selection, hybridization and linkage disequilibrium system compared

with single-locus analyses (Simonsen et al. 1998; Kruuk et al. 1999b; Yang and Rannala

2010). This is because each genetic marker will have its own history, depending on

fundamental processes, such as rates of recombination, mutation and selective constraints

(Sunnucks 2000). It therefore appeared sensible to use microsatellite markers, for which

several independent loci can be characterised together (as described in Chapter 4) and

which show a higher evolutionary rate than other sen sequences. I aimed to use variation in

microsatellite repeat number to infer introgression and gene flow across the contact zone.

Influence of dispersal on microsatellite variation was also assessed. The results will also be

useful to examine the hypothesis that the mtDNA pattern is due to the existence of two

incipient species.

It is useful to consider how populations mix at a contact zone. MtDNA admixture

at a contact zone can reflect either (i) simple temporary mixture of individuals from two

populations, or (ii) interbreeding and formation of hybrids (Chow and Takeyama 2000;

Nielsen et al. 2003; Durand et al. 2005). Simple admixture should leave its signature in the

form of heterozygote deficiencies (Wahlund effect; Wahlund 1928) and linkage

disequilibrium across loci that differ in allele frequency between populations (Nielsen et

al. 2003), which are the result of strong barriers to gene flow (Barton 2000; Phillips et al.

2004). If the two populations interbreed, then no heterozygote deficiency should be

present, even though genotypic disequilibria may be observed across loci when contact

between populations is sufficiently recent (Durand et al. 2005).
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In T. boettgeri, low mtDNA admixture and gene flow point to the hypothesis of two

independent populations as a result of genetic incompatibilities. This would predict

substantial deviation from Hardy-Weinberg and linkage disequilibrium at nuclear loci.

More obviously, clear geographical structure of nuclear markers is expected, resulting

from genetic divergence in allopatry. These patterns have been described by several other

reptile studies in which divergence in allopatry has occurred (e.g., Carlsson et al. 2004;

Howes et al. 2006; Demastes et al. 2007; Pedall et al. 2011). Under this hypothesis it

would be expected to observe at least two main subpopulations comprising of individuals

with differentiaed nuclear genotypes.

It is also possible that individuals from the two mtDNA lineages interbreed. If

reproductive isolation is incomplete, introgressive hybridization between differentiated

lineages may occur after secondary contact (Borge et al. 2005; Mallet 2005). Introgression

rates can vary among loci (Payseur et al. 2004). In general, genes with alleles that reduce

fitness in at least some environments or genetic backgrounds should be prevented from

introgressing across the contact zones (Barton 2001). If there is strong selection acting on

many loci distributed over the whole genome, all loci will form concordant clines in the

change of allele frequency at the contact zone, which are maintained by a selection-

dispersal balance (Gay et al. 2007). Nevertheless, neutral alleles (e.g., mtDNA) may pass

easily across the zone unless generalized barriers, such as differential adaptations and

genetic incompatibilities, are present (Grahame et al. 2006). At the contact zones where

genetic incompatibilities are reported, concordant clines in the change of allele frequency

among nuclear and mtDNA markers are usually observed (e.g., Alexandrino et al. 2005;

Adams et al. 2006). Thus, in T. boettgeri, geographically concordant clines in allele

frequency among all microsatellite and cytb markers would be expected under the genetic
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incompatibility hypothesis. Levels of nuclear gene introgression and number of hybrid

individuals would be expected to be low and observed only at the contact zone.

Alternatively, the spatial variation in microsatellites may be discordant with

mtDNA. Spatial discordance between pattern of nuclear and mtDNA markers have been

reported in many studies (e.g., Lu et al. 2001; Zarza et al. 2011). Apart from selection,

several factors, such as sex-biased dispersal, and homoplasy, may explain this (Dowling

and Secor 1997; Rieseberg 1998; Larmuseau et al. 2010). Population dynamics, spatial

distribution and genetic structure are closely tied to patterns of dispersal, which is

influenced by many characteristics of the individual, such as age or sex (Rivera et al.

2006). Sex-biased dispersal occurs when individuals of one sex move and breed at greater

distance from the natal site than the other sex (Favre et al. 1997; Wolff and Plissner 1998).

Sex-biased dispersal is a feature of the species' evolutionary ecology, since the dispersing

sex is less structured (genetically) and should present a larger heterozygote deficit (Goudet

et al. 2002). It also can generate variable introgression rates of loci across the genome

leading to discordant geographical patterns among them (Barton and Hewitt 1989;

Lyrholm et al. 1999; Castella et al. 2001). Therefore, it is necessary to investigate sex-

biased dispersal in T. boettgeri to understand the role of dispersal in shaping genetic

structure.

Male-biased dispersal is generally predicted in taxa with polygynous mating

systems with a greater female investment in offspring, and female-biased dispersal in

monogamous species where both parents share the cost of the offspring (Greenwood 1980;

Dobson 1982; Wolff and Plissner 1998; Handley and Perrin 2007). Reptiles are mostly

polygynous and male-biased dispersal has been demonstrated in lizards, such as the

iguanidae (e.g., Doughty et al. 1994; Rassmann et al. 1997), scincidae (e.g., Olsson and

Shine 2003), and anoles (e.g., Johansson et al. 2008a). There is no information on the
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mating system of Tarentola geckos. Nevertheless, it was reported that geckos are generally

gregarious, lack territoriality, and are likely to have a polygynandrous mating system

(Todd 2005; LaDage et al. 2008). Moreover, rates ofmtDNA gene flow suggest philopatry

in female T. boettgeri (see Chapter 2). Hence, the initial expectation was that dispersal

might be male-biased in T. boettgeri, and I aimed to test this using indirect methods that

infer sex-specific dispersal rates from the spatial distribution of alleles or genotypes as

described in Goudet et al. (2002).

If there is evidence of male-biased dispersal then discordance between geographical

pattern of micro satellites and mtDNA is expected. This may also imply that the contact

zone is maintained by endogenous selection and dispersal. Alternatively, geographical

patterns of micro satellites may coincide with mtDNA. Such concordance is likely to arise

only when populations have been reproductively separated from one another for a

reasonably long period of time (Avis 1989; Avis and Ball 1990). This can be viewed as

evidence that vicariance events have also played an important role in shaping the

geographical distribution of nuclear DNA of T. boettgeri. In this case, the contact zone is

likely to be shaped and maintained by endogenous selection (i.e., strong cyto-nuclear

incompatibilities) rather than dispersal, which may be indicative of speciation. If this is the

case, then it can be viewed as evidence that the contact zone is maintained by strong cyto-

nuclear incompatibilities, which may be indicative of speciation.

5.2 Methodology

5.2.1 Amplification and evaluation of microsatellites

Ten microsatellite loci were characterized for all individuals captured from the

transect. Primers and multiplex PCR for microsatellite amplifications were as described in

Chapter 4. The software ARLEQUIN version 3.5 (Excoffier and Lischer 2010) was used
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for exact testing of Hardy-Weinberg equilibrium and linkage disequilibrium for all

localities and loci.

Microchecker version 2.2.3 (Dewoody et al. 2006) was used to detect three

common scoring errors (null alleles, stuttering and large allele dropout [i.e. short allele

dominance D. Microchecker identifies errors such as those in samples of panmictic

populations of diploid organisms (van Oosterhout et al. 2004). Sequential Bonferroni

corrections (Rice 1989) were applied wherever necessary. Any microsatellite locus that

failed these tests was eliminated from the analysis.

5.2.2 Examination of sex-biased dispersal

Sex-biased dispersal was tested using the software FSTAT version 2.9.3 (Goudet

1995) to calculate gene diversity (Hs), F1S, FST, mean assignment index (mAIC) and

variance of the assignment index (vAIC) separately for each sex. The test was two-sided,

i.e., the null hypothesis is that there is no sex-biased dispersal. Statistical significance of

these indices was determined by 100 randomisations as implemented in the software. A

bias in dispersal between the sexes should be reflected as statistically significant

dissimilarity in the estimated parameters (Goudet et al. 2002).

5.2.3 Investigating population genetic structure

To infer population structure using micro satellite loci without defining a priori

groups, a model-based clustering method, the admixture population ancestry model (allele

frequency independent), implemented in STRUCTURE version 2.3.3 (Pritchard et al.

2000) was used. The number of population clusters (K) was estimated using two methods:

(i) average values of likelihood scores [L(K)], and (ii) the second order rate of change of

the likelihood (~K) as described in Evanno et al. (2005). Likelihood scores [Ln P(D)] were

obtained from three Bayesian clustering replicates with k ranging from 1 to 5 (assuming

the number of populations was three, i.e., populations with mtDNA clade A, mtDNA clade
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B, and hybrid populations). Each replicate was run for 106 generations and the first 106

generations discarded as bum-in. Individuals were assigned to a population on the basis of

their genotypes (Pritchard et al. 2000).

5.2.4 Studying pattern of microsatellite genejlow

The program MIGRATE version 3.1.6 (Beerli 2008) was used to estimate long-

term gene flow across the transect, similar to the mtDNA study (Chapter 2, section 2.2.7).

In this study, microsatellite evolution was modelled as a continuous Brownian process.

Parameter distributions were estimated using the maximum likelihood coalescent approach

(Beerli and Felsenstein 1999; 2001). Following a bum-in of 104 iterations, both runs were

carried out with 5 x 105 and 5 x 106 genealogies for short- and long chains, respectively

which were sampled every 100 iterations. The program was run twice and results were

generally stable.

S.3 Results

5.3.1 microsatellite variation and sex-biased dispersal

A total of 390 individuals were successfully genotyped, of which 222 were female

and 168 were male. All loci were variable within each site with the number of alleles per

locus ranged from four to twenty-two (Table 13). Significant deviations from Hardy-

Weinberg equilibrium were detected mostly at the centre (site 01, where three mtDNA

lineages were found), and at both ends of the transect (sites 02 and 11; see Table 14).

Several pairs of loci demonstrated evidence of linkage disequilibrium (after sequential

Bonferroni correction). Significant disequilibria between pairs of loci is particularly high at

sites 02 and 12, which are located at the southern end of the transect (Figure 23). Linkage

disequilibrium was also observed at sites 05, 06, 10 and 11, which are located at the

northern end of the transect (Figure 23).
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Microchecker did not reveal evidence of null alleles, stuttering or large allele

dropout observed in any loci (data not shown). Microsatellite locus Tb49 demonstrated

high homozygosity (more than 50%), which might be due to non-random mating (Palo et

al. 1995; Wattier et al. 1998). Nevertheless, adding or removing this locus did not have any

impact on subsequent analyses. Therefore, reported results are based on all ten

microsatellite loci.

Results obtained from tests for sex-biased dispersal are shown in Table 15. The sex

with greater dispersal should exhibit higher within-group gene diversity (Hs), heterozygote

deficit (F[s) and variance of assignment index value (vAIC), while the philopatric sex

should exhibit higher among-groups genetic variance (Fsr) and average assignment index

value (mAlC) (Goudet et al. 2002). Thus, the results tentatively suggest that males may

have a higher dispersal rate than females. However, there were no significant differences

between male and female in any of these indices, so this hypothesis is not statistically

supported.

5.3.2 Population structure inferred from microsatellite data

Average values of likelihood scores [L (K)] were lowest for one [k = 1, L(K) = _

19200.83] but higher for two clusters [k = 2, L (K) = -18240.57] (Figure 24). However, the

L (K) for k =3 (-18257.60) is quite similar to that of k = 2. Nevertheless, the L\K show a

clear peak at k = 2 (Figure 25), supporting two main genetic groups.



100

'<:j" 0 0 <rl - - M - N- - - 0\ - - - - '<:j" - -
M 0 '<:j" M 0 ...... 0 <rl...... - - 1.0 ...... - ...... - 0\ 1.0 -
N 0 1.0 r-- 0 N r--- <rl M- - - r--- - - - - 00 - -
- 1.0 r--- - 00 1.0 1.0 N M -- - - - - - - N 1.0 - N

0 N 1.0 <rl '<:j" M '<:j" - <rl- - - 00 - - - - r--- - -
0\ - 0\ <rl 0 <rl 1.0 r- r---
0 - - 1.0 - - - - 00 - -
00 - 1.0 N '<:j" M <rl 0 '<:j" N

0 0 - - <rl - - - - - - -.t::~

r- '<:j" r- 1.0 r-- <rl M 0 M 1.0
0 - - - - - - N '<:j" - -
1.0 N 1.0 r--- <rl M 0\ - 0\
0 - ...... 0\ ...... - - - '<:j" - -
<rl N 0\ N 00 '<:j" M <rl <rl
0 ...... ...... - - - - - <rl <rl -
'<:j" 00 00 1.0 - M r-- N M
0 - ...... 0\ ...... - - - <rl - -
M N r- r--- M M '<:j" <rl
0 - ...... 0\ - - - - '<:j" '<:j" -
N 1.0 1.0 M 0\ 0 1.0 '<:j" <rl -0 - - - - - - - 00 - N

...... N N M M N 1.0 <rl <rl
0 - r- - ...... ...... ...... 0\ - - ......

0

:E-0.....
'"ell N 0 M '<:j"0 ell
1-0 ;:3 00 - N 0\ '<:j" <rl 0\ - M
U U '<:j" r- r- - N 00 M '<:j" N N

~
0 ~

~ ~ ~ ~ ~ ~ ~ ~ ~.....l E-<



N
00o

o
00o

*N.,.,
o

<'">
00o

N
00o

.,.,
00o

0..
00o

N
00o

o
0..o

.,.,
t-o

N
00o
o
00o

"""00o

*<'">.,.,
o

00
00o t-o t-o

00
00o

*o
t-o

N
t-o

<'">
00o

t-ooo
t-
t-o

.,.,
00o

o
00o '"00o

N
00o

*o.,.,
o

00.,.,
o

*r-
'"o

*.,.,
'"o

or-o

<'">
00o

00

'"o
00
00o

0\
00o

0\
00o

N
00o

0\
00o

00
o

$o
t-ooo

r-o
00
t-o

o
00o

*t-ooo

.,.,
t-o

t-ooo
0\
00o

t-o

r-
0\o

r-ooo

*(Cl
o

or-o
o
0\o

'"00o

<'">
00o

o
00o

r-
0\o

or-o
o
0..o

.,.,
o

o
0\o

r-ooo
*<'">.,.,
o

0\
r-o

*so
0::o

t-ooo
<'">
00o

00
00o

*00
'"o

0\
00o

00

'"o
0\
00o

r-ooo
o
0\o

'"00o
*~o

t-o..o

<'">o

r-
0\oo

:I:

OJ
:I:

t-ooo
o
00o

00
No

0\
t-o

No

o
0..o'"00o

r-ooo

*.,.,
"""o

*~o
.,.,
00o

N
00o

*g,
o

r-ooo

t-ooo
00
00o

.,.,
00o

<'">
00o
00
00o

o
0..o

r-
0\o

"""00o

*o
0..o

00
r-o

<'">
00o

*<'">
00o

o
0\o

00
"':
o

<"l
00o

r-ooo
r-ooo '"00o

*o
0\o

r-
r-o

r-r-o

101



102

E 1D"

::l·c
.0._-
::l
eT
.~ ~ •-c
OJ
bO
n:I~
C._
-E".§
'0
.Q....
0
~ . •
n:I
0-....
0...
OJ
.0
E 2-
::;,
Z

• •
•
•

" I02.GQ
Scaled distances from the centre of the SEtransect

T.ua .GO
,

HIli

Figure 23. Summary of linkage disequilibrium analysis between pairs of

microsatellite loci for each population along the SE transect. Proportion of locus pairs

in significant linkage disequilibrium is shown against scaled distances from the centre of

the transect. (Significant level =:; 0.05)
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Table 15 Summary results for sex-biased dispersal for fourteen localities within the

SE transect. Deviation from Hardy-Weinberg expectations (F1s), FST, gene diversity (Hs)

mean assignment index (mAl C) and variance of mean assignment index (vAIC) for

females (F) and males (M) are shown. P-values arc from two-tailed tests.

<.; F1s FST n, mAIC vAIC
F 0.039 0.044 0.821 0.134 13.171
M 0.044 0.033 0.828 -0.177 16.566
p-value 0.870 0.090 0.320 0.490 0.140

A geographically structured cluster of microsatellite genotypes is shown in Figure

26. Individuals were mostly assigned to cluster 1 (see Table 16). Within this cluster, some

microgeographical substructuring is also apparent. Individuals assigned to cluster 2 are

found mainly within sites 01, 02 and II, which are located at the central and extreme ends

of the transect. Genotype diversities between clusters are low (p-distance = 0.092). There

was no clear evidence of parental and hybrid forms. Few individuals showed signs of co-

ancestry, except for a few individuals admixed between clusters I and 2 mainly at sites 04,

07 and 11 (Figure 26).

Additional analysis was carried out to clarify how microsatellite genotypes were

structured outside the SE transect using individuals sampled from site SA, Tb, SA, JG, M

and 11.The results show that most individuals were assigned to cluster I. Individuals from

site JG and Jl showed admixture between cluster I and 2 (see Appendix 4).
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runs for each k value, where k is the number of population clusters.
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Table 16 Proportion of membership of each pre-defined 14 populations in each of the

two clusters. Asterisks (*) represent the highest proportion of membership.

Inferred Clusters
Site 1 2
01 0.001 0.999*
02 0.827* 0.173
03 0.993* 0.007
04 0.945* 0.055
05 0.987* 0.013
06 0.997* 0.003
07 0.978* 0.022
08 0.987* 0.013
09 0.998* 0.002
10 0.998* 0.002
11 0.805* 0.195
12 0.988* 0.012
13 0.998* 0.002
14 1.000* 0.000
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5.3.3 Pattern of gene flow across the transect

Pairwise migration rates against pairwise geographical distances are shown in

Figure 27. Gene flow is not associated with either geographical distances or mtDNA

lineage.

Rates of gene flow between sampling sites are generally similar (Table 17). The

majority of individuals from the north of the contact zone correspond to mtDNA lineage

Blwhile most individuals from the south of the contact zone correspond to mtDNA lineage

AI. Rates of gene flow from south to north (1.02) are slightly lower than from north to

south (1.07; Figure 28). However, it conflicts with the pattern ofmtDNA gene flow, which

suggested higher rates of gene flow from the south to the north of the transect.

5.4 Discussion

5.4.1 Influence of gene flow and dispersal on population structure based on

microsatellites

The absence of prominent differentiation between populations north and south of

the mtDNA contact zone implied that historical isolation has played little or no role in the

formation and maintenance of the observed nuclear genetic structure in T. boettgeri.

Hence, what are the factors underpinning nuclear genetic variation in this study area? The

dual influences of gene flow and dispersal on shaping and maintaining pattern of genetic

structuring in reptiles are known to be important (e.g., Ciofi and Bruford 1999; Ujvari et al.

2008). It has been suggested that genetic structuring could be induced solely by limited

dispersal ability of individuals that prevent genetic exchanges throughout a given area

(Slatkin 1993). When dispersal and gene flow are highly restricted, the species usually

shows strong geographical structure (e.g., Prosser et al. 1999; Dubey and Shine 2010). In

contrast, in the absence of strong barriers to gene flow, the difference in allele frequency is

expected to fade away with time under the effect of dispersal (Gay et al. 2007).
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Figure 27. Scatter plots of migration rates (based on micro satellites) and geographical

distances between sampling sites. Squares, triangles and circles represent migration rates

from sites comprising mtDNA lineages A, B and sites with both mtDNA lineages (site 01

and 07 only). Pearson correlations (r) between migration rates and distances are: rA toA =

0.101 (p = 0.596), rAtoB = -0.079 (p = 0.649), rAtoM = -0.274 (p = 0.388), rBtoA = 0.055 (p

= 0.744), ra toB= -0.066 (p = 0.733), rB toM= 0.020 (p = 0.950), rMtoA= 0.000 (p = 0.999),

rMtoB = 0.075 (p = 0.816).
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Figure 28. Diagram showing directions of gene flow across the mtDNA contact zone.

The yellow broken line shows the centre of the zone. White arrows indicate bidirectional

gene flow across the contact zone. Numbers in parenthesis are average rates of gene flow

(u) from south (red) and north (light blue) of the contact zone. MtDNA admixture sites are

within the green circle. Red arrows represent gene flow from south, while light blue arrows

represent gene flow from the north.
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If gene flow among sampling sites is not highly restricted, this would have lead to

an isolation-by-distance pattern, in which neighbouring populations show closer genetic

affinities than do geographically distant populations (Wright 1943). In this study, there was

no correlation between genetic structure and distances (see Figure 27). It suggests 1)

dispersal is highly limited or 2) the study area did not cover the maximum range of

dispersal of the species (Monsen and Blouin 2003). There is no evidence supporting

limited dispersal in T. boettgeri. Therefore, this hypothesis is rejected. Despite the fact that

there are no studies that have provided direct measures of dispersal distances in Tarentola

geckos, short-dispersing distances and low rates of dispersal have been reported in other

geckos. A study of the gecko, Gekko japonicus, demonstrated limited long-distance

dispersal was a likely explanation of the population genetic variation in this species (Toda

et al. 2003). Evidence of low dispersal has been reported from mark-captured studies of

Hemidactylus turcicus, which also demonstrated that the movement was less than 6 km

(Selcer 1986). In T. boettgeri, migration rates estimates (estimated between 1.0-3.9

immigrants/generation) are much lower compared to species such as the garter snake,

Thamnophis sirtalis sirtalis (2.7-37.6 migrants/generation: Bittner and King 2003), and the

tungara frog, Physalaemus pustulosus (16 migrants/generation: Lampert et al. 2003).

However, these species are clearly highly vagile. Instead, estimates are comparable with

species 'known to disperse only short distances, such as the white-toothed shrew Crocidura

russula (1.5 migrants/generation; Favre et al. 1997). This study supports the idea that

dispersal in T. boettgerii is low and that this may have influenced the nuclear genetic

structure.

The results suggested gene flow among site 01, 02 and 03 led to greater nuclear

background similarity at these sites. However, based on their locations, direct migration

among these sites is less likely. Nevertheless, human-induced migration may occur (see
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previous discussion). Neither explanation is possible for mtDNA. That is because no Bl

individuals are found at site 02, despite the results suggesting migration from site 01 and

11. A possible hypothesis is that site 02 and 11 may have received some gene pool from

other populations outside the SE transect, which share similar nuclear DNA background to

site 01. Thus, additional intensive sampling and micro satellite studies will be necessary to

examine this further. Nevertheless, this does not explain why nuclear composition of site

01 differs from other sites. Itmay be a result of interbreeding among individuals from three

mtDNA lineages (AI, Bl and B2). Nevertheless individuals containing mtDNA lineage Al

and Blare not differentiated in terms of microsatellite DNA. Although two individuals

belonging to mtDNA lineage B2 are also observed at site 06, the nuclear genotypes are not

similar to site 01. Hence the explanation of "contamination" by individuals from the B2

mtDNA lineage also appears unlikely.

5.4.2 Lack of correlation between spatial patterns of microsatellite and mtDNA

variation

The analysis of nuclear genetic structure revealed two subpopulations with a

substantial degrees of genetic differentiation. Yet, this does not reflect mtDNA

phylogeographical groupings. Generally, nuclear-mtDNA spatial discordance is explained

as being due to (1) size homoplasy (Larmuseau et al. 2010), or (2) sex-biased dispersal

(e.g., Gay et al. 2007; Lukoschek et al. 2b08). It was proposed that size homoplasy may

reduce the signal of differentiation detected by the microsatellite markers, thus, causing

dissociation between spatial patterns of mtDNA and nuclear DNA (Estoup et al. 1995;

Liepelt et al. 2001). Nevertheless, in this study, the allelic variation and wide size range of

micro satellite markers indicated substaintial nuclear DNA divergence, thus, homoplasy is

unlikely to explain this (see Appendix 5). In addition, simulation studies suggest that size
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homoplasy will have less effect on estimates of population differentiation than gene

migration (Estoup et al. 2002).

A lack of correlation between mtDNA phylogeography and nuclear DNA genetic

data is often attributed to differences in the levels of male and female gene flow (Waits et

al. 2000). This explanation is not well supported as the tests revealed that sex-biased

dispersal is not significant. Nevertheless, the results do not fully reject a minor role of sex-

biased dispersal on nuclear-mtDNA discordance (see section 5.4.4).

Apart from the possibilities mentioned above, it has been reported that nuclear gene

flow among populations can account for discordance irrespective of sex-biased dispersal

(e.g., Garcia-Paris et al., 2003; Gonzalez and Zardoya 2007). In T. boettgeri, the pattern of

nuclear gene flow clearly differs from that of mtDNA. This would be expected to provide

different spatial patterns. However, the reasons for these differences in patterns of gene

flow between nuclear and mtDNA are difficult to explain using the information obtained

so far.

5.4.3 Deviations/rom Hardy-Weinberg equilibrium and linkage disequilibrium

Deviations from Hardy-Weinberg equilibrium (HWE) are observed in eleven out of

fourteen sampling sites, mostly at sites 01, 02 and 11. This could be a result of (1) the

Wahlund effect (Wahlund 1928) and/or (2) dispersal and selection against particular

heterozygotes (MacCullum et al. 1998). The Wahlund effect has been extensively used to

explain deviation from HWE in contact zone studies (e.g., Daguin et al. 2001; Pereira and

Wake 2009). Nevertheless, this explanation is not appropriate here as there is no evidence

of a nuclear DNA contact zone.

In species with limited dispersal, inbreeding leads to deviation from HWE

(Gutierrez-Rodriguez and Lasker 2004), for example, the geckos, Oedura reticulata and

Gehyra variegata, which tend not to disperse far from their natal sites (Sarre et al. 1995;
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Hoehn et al. 2007). If there is selection against hybrids, then deviation from HWE should

be observed at many loci (Griebeler et al. 2006; Arias et al. 2008; Maletzky et al. 2010). In

this study, low migration rates suggested low dispersal. Despite a lack of obvious

environmental variation, endogenous selections may be operating (Phillips et al. 2004). A

lack of hybrid genotypes in this study also supports this. Therefore, a combination of

dispersal and selection is the most likely explanation of deviation from HWE, particularly

at site 01.

Linkage disequilibrium (LD) is not always due to close proximity of markers on the

chromosome, but can occur due to admixture or migration (Lewontin and Hartl 1991). At

the location where two genotypes meet, the presence of LD, coupled with deviation from

HWE, suggests that random mating has not yet been established and

admixturelhybridization of subpopulations is recent (Waits et al. 2000; Redenbach and

Taylor 2003; Rubidge and Taylor 2004). LD was detected at half the sites. At some of

these sites (e.g., 02 and 11), evidence of deviation from HWE was also observed.

Therefore, it is reasonable to conclude that gene flow among subpopulations has occured

quite recently and has not yet reached equilibrium. In summary, genetic structure in T.

boettgeri appears to be a result of non-random mating, low dispersal and/or unknown

endogenous factors.

~5.4.4Evidence of sex-biased dispersal?

During fieldwork, male geckos were often found with one female under the same

rock. Nevertheless, at some sample sites where geckos were very abundant, two females

were often observed with one male (personal observation). These observations are similar

to Hoplodactylus maculatus gecko, which is viewed as evidence of a polygynous species

(Todd 2005). Male-biased dispersal is expected in polygynous species.
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In a study of the large treeshrew, Tupaia tana, it was demonstrated that sex-biased

dispersal can also be inferred from different migration rates between microsatellite and mt

loci (Munshi-South 2008). If migration rates based on micro satellites are lower than those

of mtDNA, then females disperse more than males. On the other hand, if mtDNA

migration rates are lower, then females philopatry is inferred. The overall number of

migrants estimated (using MIGRATE) from microsatellites (-2.6 migrants/generation) was

more than three time higher than for mtDNA-based estimates (-0.7 migrants/generation).

The substantially higher migration rates for microsatellites suggested that historical gene

flow in T. boettgeri has been male-biased, which might contribute to the mtDNA-nuclear

discordance. Nevertheless, male-biased sex dispersal was not detected here. This is perhaps

not surprising. First, simulation studies have shown that the power of the tests is low when

the bias is lower than 80:20, i.e., at least 80% of males disperse and only 20% of females

disperse (Goudet et al. 2002). It has also been suggested that when migration is low, such

as in T. boettgeri, immigrants are very rare and may thus pass undetected (Goudet et al.

2002; Vitalis 2002). Second, it is likely that females T. boettgeri are not entirely

philopatric. In polygamous species, the female takes responsibility for acquiring and

defending the territory for nesting and feeding the offspring and, therefore, benefits more

from philopatry (Perrin and Mazalov 1999). Nevertheless, in some species, females also

disperse but less frequently and over sma1ler distance than males, and thus weaken the sex-

bias in dispersal (e.g., Mossman and Waser 1999; Lampert et al. 2003). In T. boettgeri,

gene diversity (Hs) values are almost equal between males and females (Table 15)

suggesting that dispersal may occur equally in both sexes.

In conclusion, the nuclear genetic variation in T. boettgeri clearly differs from the

phylogeographical pattern but it is not entirely clear as to why this is so. Low dispersal
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seems to explain some of the nuclear genetic structure, with dispersal rates appearing to be

similar to those in quite philopatric species.
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Chapter 6 Conclusion and General Discussion
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6.1 No evidence of reproductive isolation or speciation among populations from

different mtDNA lineages

Speciation arises as reproductive isolation evolves between diverging populations

(Orr and Presgraves 2000). In T. boettgeri, persistence of spatial pattern of mtDNA led to

the hypothesis of reproductive isolation between mtDNA lineages. Under this hypothesis,

the following predictions were made (1) concordant spatial patterns of mtDNA and

microsatellites, (2) low rate of gene flow across the contact zone, and (3) evidence of

mechanical barriers to gene flow and reproduction. However, this is not supported by my

analyses of micro satellites and morphology.

There are reasons to expect concordance of nuclear and mtDNA lineages. Several

mitochondria genes encoding functional units are tightly linked with genes encoded in

nuclear genomes. This suggests potential for co-evolution between mitochondria and

nuclear genomes (Schmidt et al. 2001; Gershoni et al. 2009). Spatial patterns of mtDNA

could be explained as result of selection against individuals with different mtDNA lineages

and nuclear genomes because of the disruption of co-evolved interactions between them

(Cruzan and Arnold 1999; Rand et al. 2004; Ellison and Burton 2006) as hypothesised by

other intraspecific studies on Canary Island lizards (Pestano and Brown 1999; Gubitz et al.

2000). In this study, despite the deep mtDNA divergence, mtDNA lineage-specific

microsatellite alleles were not found. Since greatest divergence is found between mtDNA

lineages A and B, this implies that mtDNA lineage has no influence on spatial patterns of

nuclear DNA in this species. Thus, the hypothesis of mito-nuclear incompatibility is

rejected in this species.

Restriction of gene flow can be expected at the contact zone between species (e.g.,

Arntzen and Wallis 1999; Petit and Excoffier 2009). In this study, low rates of mtDNA

gene flow suggested that gene flow between sites across the centre of the transect might be
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restricted or absent. However, nuclear gene flow, which was observed at constant rates

among sites and across the mtDNA contact zone, did not appear to be restricted. Moreover,

a lack of significant mophological differentiation is not suggestive of a barrier to gene

flow. Thus, the results indicated no obvious evidence of reproductive or other gene flow

barriers.

Concordant mtDNA and nuclear gene trees can indicate substantial reproductive

isolation and can be found among populations/subspecies (e.g., Smith et al. 2002; Glor et

al. 2004; Yang and Rannala 2010). If the observed mtDNA break reflects speciation

between members of each lineage, then the nuclear genome and/or morphology should also

show concordant spatial patterns at the mtDNA contact zone. In studies of contact zones

among different reptile taxa, it is typical to find concordant spatial patterns between

nuclear and mtDNA (e.g., Leavitt et al. 2007; Joger et al. 2007). Given there was no

evidence of genetic incompatibility or a gene flow barrier with respect to the nuclear

genomes, the likelihood that this represents a case of incipient speciation is ruled out.

6.2 Possible causes of spatial discordance between mtDNA and nuclear DNA markers

The lack of correspondence between nuclear DNA and mtDNA at the contact zone

could indicate different evolutionary histories for nuclear and mtDNA genomes (Roca et

al. 2005; Di Candia and Routman 2007; Egger et al. 2007). There have been reports of

geographical range shifts in nuclear DNA andlor morphology contact zones as a result of

asymmetric gene flow (introgression) between differentiated populations leading to nuclear

transition zones that are several kilometres away from the mtDNA contact zones (e.g.,

Garcia-Paris et al. 2003; Kawakami et al. 2007; Ruegg 2007; Ganem et al. 2008). In this

study, despite the inference of asymmetric gene flow from the mtDNA, a similar finding is

not supported by microsatellites or morphology. Neither of these show evidence of
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differentiaton between populations from north and south of the transect. Moreover, there is

no evidence of a microsatellite transition zone outside the SE transect (see Appendix 4).

In other cases, spatial discordance between nuclear and mtDNA markers has been

explained as a result of sex-biased dispersal (e.g., Lemaire et al. 2005; Gligor et al. 2009;

Carvajal-Vallejos et al. 2010). This also includes cases of the homogenizing effect of male-

biased dispersal leading to less structured distribution of nuclear DNA, such as in the bat

Myotis myotis (Castella et al. 2001) and the mexican black iguana (Ctenosaura pectinata;

Zarza et al. 2011). Nevertheless, no statistical support for sex-biased dispersal in T.

boettgeri was obtained.

Thorpe et al. (2008; 2010) proposed the influence of ecological selection on nuclear

DNA, which does not relate to allopatric divergence or mtDNA phylogeography, based on

the studies of Martinique anole Anolis roquest. If this is the case here, spatial pattern of

nuclear divergence should be concordant with the pattern of ecological variation across

Gran Canaria. Microsatellites from individuals from high altitude (TbO1) and the north of

Gran Canaria (SD01, JI01-JI03), (ecologically very different areas compared with the SE

transect), are not differentiated from southern individuals. Therefore, it does not seem that

nuclear variation in T. boettgeri has been influenced by the ecology of the island.

However, this information is based on very few individuals/populations and so, further

analyses are required before a more definitive conclusion can be obtained.

6.3 Factors maintaining the spatial pattern of mtDNA lineages

The persistence 'of spatial genetic variation results from a lack of gene flow

between populations (Taberlet et al. 1995). Selection and dispersal were proposed as

factors affecting rate of gene flow, which also influence structure, cline and maintenance

of the contact zones (Haldane 1948; Barton and Hewitt 1982). In T. boettgeri, there is no
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doubt that mtDNA contact zones have been maintained by low rates of mtDNA gene flow

across the zones. It is clear that low gene flow is not a result of genetic incompatibility;

thus, it does not support influence of endogenous selections. Moreover, lack of

morphological differentiation between populations from different mtDNA lineages

suggested that a mechanical barrier is unlikely.

Low dispersal is one of the factors proposed to maintain the contact zones between

historically allopatric populations (Hare and Avise 1996; Sotka and Palumbi 2006). When

dispersal is low, the introduced allele/haplotype may be lost, unless it benefits organisms in

the new habitat (Holt and Gomulkiewicz 1997). In T. boettgeri, low levels of dispersal

were detected using both mtDNA (female dispersal) and microsatellites, which in part help

explain the long-term persistence of the mtDNA contact zone. Environmental homogeneity

along the transect does not suggest that there is differential ecological adaptation of

mtDNA lineages. Therefore, mtDNA gene flow should depend on rates of migration and

dispersal. There is some (weak) evidence to suggest that females are less likely to disperse

long-distances, thus mtDNA gene flow is reduced in relation to distances. Therefore, the

contact zone may be trapped within the dispersal range preferred by females (5-10 km).

Outside that range, number of female immigrants tended to be low. This will increase

chance that the haplotype will be lost, particularly, if the majority of migrants were males.

Additional effects of low dispersal on maintaining of the contact zones was also

reported. Based on interspecific studies, Bull (1991) proposed that a low dispersing species

will be numerically disadvantaged and less able to penetrate the range of the resident

species. This is because lower numbers of immigrants decrease the chance of (1) succesful

competition for resources (including mating) with the resident population (Bull 1991;

Bergstrom 1992), and (2) adaptation to the presence of other predation or parasitism

beyond the edge of the contact zone (Paine 1974; Bergstrom 1992; Case, et al. 2005).
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Where dispersal is low, weak intereactions with other species such as these will be

sufficient to maintain the contact zones, where influence of environment and genetics are

unclear (Bridle and Vines 2007). Thus, in T. boettgeri, it is suggested that low dispersal

has contributed, at least in parts, to the long-term persistence of the mtDNA contact zone.

6.4 Conclusion

The detailed study of area of secondary contact between two mostly diverged

mtDNA lineages of T. boettgeri revealed a strong mtDNA phylogeographical break with

no transition in nuclear DNA background or morphology in correlation to spatial pattern of

mtDNA. Thus, mtDNA lineages do not represent distinct species, but rather show

population diversity within the species. This suggests that the mtDNA contact zone has not

been maintained by incompatibility of nuclear genes or by mechanical barriers to breeding.

The results also implied that T. boettgeri is a low dispersal species, thus, the mtDNA

contact zone should be maintained by demographic factors rather than phenotypic or

genotypic factors.

It is surprising that despite the long period of isolation that has given rise to

mtDNA divergence there appears to be no similar pattern in the nuclear DNA.

Nevertheless, it remains possible that micro satellites used in this study do not reflect the

patterns across the entire nuclear genome. Based on studies of highly polymorphic markers

in ~human (micro satellites, RFLP, SNPs), only a small percentage of genetic variation

(10%) was due to differences between races, while the majority of the variation was

accounted for within population diversity (Lewontin 1972; Nei and Roychoudhury 1974;

Barbujani et al. 1997; Risch et al. 2002). Thus, fairly large numbers of markers are needed

for detection of population structure in humans (at least 100 microsatellites, Bamshad et al.

2003). Clearly, mtDNA divergence among human populations is much lower than that

observed here. Nevertheless, it is possible that by increasing the number of micro satellite
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loci, markers may be found with similar genealogical histories that observed in the

mtDNA.
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Appendix 1 A reference tree constructed from 13 T. boettgeri cytb sequences obtained

in this study and 39 sequences from Giibitz et al. (2005) (marked with 'c') with T.

delalandii (TdeIOl) as an outgroup. Numbers on branches are Bayesian posterior

probabilities.
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Appendix 2 List of baplotypes

Haplotype Individual Lineage
HI 01.01, 01.07, 01.10, 01.17, 01.20, 04.23, 04.25, 04.27, 11.04, 11.07, 11.08, BIb

11.18, 11.29, OG2, 0G3, OG5
H2 01.02,01.04,01.06 B2
H3 01.03,01.09,01.14,01.16,01.25 B1a
H4 01.05 Ala
H5 01.08 B1a
H6 01.11,02.01,02.10,02.13,02.14,02.19,02.29,03.13,03.21 Ala
H7 01.12 B1a
H8 01.13 B2
H9 01.18 B1a
HIO 01.19 B1a
Hll 01.21, 01.23, 01.24, 04.03, 04.12, 04.22, 05.01, 05.04, 06.03, 06.14, 06.15, Ala

06.16, 06.17, 06.18, 06.20, 06.21, 06.23, 06.24, 06.30, 07.03, 07.04, 07.11,
07.16, 07.19, 07.22, 07.28, 07.31, 10.01, 10.02, 10.14, 10.28, 11.05, 11.10,
14.01,14.02,14.03,14.07,14.08,14.12,14.14,14.15, JG04, JG05

H12 01.22 B2
H13 01.26 Ala
H14 01.30,01.31 B1a
H15 02.02, 02.04, 02.05, 02.15, 02.16, 02.17, 02.18, 02.20, 02.21, 02.22, 02.24, Ala

02.25, 02.27, 02.28, 02.30, 03.15, 03.17, 03.19, 03.25, 03.26, 03.27, 09.03,
12.12, 13.12, 13.15

H16 02.03 Ala
H17 02.06 Ala
H18 02.07,02.12 Ala
H19 02.08 Alb
H2O 02.09, 12.01, 12.03, 12.04 Ala
H21 02.11 Ala
H22 02.23 Ala
H23 02.26 Ala
H24 03.01,03.07,03.16 Ala
H25 03.02,08.02,08.07,08.16,08.18,09.01,09.10,09.20 Ala
H26 03.03,03.04,03.06,03.22,03.29 Ala
H27 03.05,03.23 Ala

H28 03.08 Ala

H19 03.09, 07.15, 07.20, 08.08, 08.15, 08.17, 08.19, 08.25, 08.28, 09.02, 09.05, Ala
09.18,09.24,09.28,09.29,12.05,12.16,12.20,12.21, 12.28, 13.11

H30 03.10,03.12,03.24 Ala
H31 03.11 Ala
H32 03.14 Ala
H33 03.18 A2
H34 03.20 Ala
H37 03.28 Ala
H36 03.30 Ala
H37 04.01,04.02,04.04,04.07,04.21,04.28, M02 B1a
H38 04.05 B1a
H39 04.06 B1a
H40 04.08,06.04,07.27 B1a



156

Haplotype Individual Lineage
H41 04.09, 04.14, 04.18, 04.24, 04.31, 05.02, 05.03, 05.05, 05.06, 05.12, 05.16, B1a

05.18,05.19,05.21,05.22,05.24,05.25,05.27,05.29, 05.30, 05.31, 06.01, AC1,
AC2, AC3, OG4

H42 04.10 B1a
H43 04.11,04.17,04.19,04.26,04.30 B1a
H44 04.13 B1a
H45 04.15 BIb
H46 04.16, 11.02 BIb
H47 04.20 B1a
H48 04.29 B1a
H49 05.07 B1a
H50 05.09,05.11 BIb
H51 05.10 B1a
H52 05.13 B1a
H53 05.14 B1a
H54 05.17 B1a
H55 05.20 B1a
H56 05.26 B1a
H57 05.28 B1a
H58 06.02, 06.25, 06.26 B1a
H59 06.05 B1a
H60 06.06 B1a
H61 06.07,06.29 B1a
H62 06.08 B1a
H63 06.09,06.22, 10.05, 10.26 B1a
H64 06.10,06.19,07.05,14.04 B1a
H65 06.11 B1a
H66 06.12, 06.27 B2
H67 06.13 B1a
H68 06.28 B1a
H69 07.01,07.06 Ala
H70 07.02 Ala
H71 07.07 B1a
H72 07.09 Ala
H73 07.10, JG06 Ala
H74 07.14,08.01, JG01, SA01 Ala
H75 07.17,07.29 B1a
M76 07.18,07.26 B1a
H77 07.23 B1a
H78 07.25 B1a
H79 07.30 B1a
H80 08.03, 08.23 Ala
H81 08.04 Ala
H82 08.05 Ala
H83 08.06 Ala
H84 08.09 Ala
H85 08.10 Ala
H86 08.11, 08.30 Ala
H87 08.12 Ala
H88 08.13 Ala
H89 08.20 Ala



157

Haplotype Individual Lineage

H90 08.21 Ala

H9l 08.22 Ala

H92 08.26 Ala
H93 08.29 Ala
H94 09.04 Ala
H95 09.08 Ala
H96 09.13,13.02,13.07,13.10,13.17 Ala
H97 09.14,09.19 Ala
H98 09.15 Ala
H99 09.17 Ala
HIOO 09.21 Ala
HlOl 09.22 Ala
Hl02 09.23 Ala

Hl03 09.26 Ala

Hl04 09.27 Ala

Hl05 09.30 Ala

Hl06 10.03 BIb

Hl07 10.04,10.21 Bla

Hl08 10.06 Bla

Hl09 10.08 Bla

HllO 10.09 Bla

HIll 10.10 Bla

Hl12 10.11 Bla

Hl13 10.16 Bla

Hl14 10.17 Bla

HIlS 10.18 Bla

Hl16 10.19 Bla

HI17 10.20 Bla

Hl18 10.22 Bla

Hl19 10.23, 11.20 Bla

H120 10.24 Bla

H12l 10.25 Bla

H122 10.27 Bla

H123 10.29 Bla

H124 10.30 Bla

H125 11.01, 11.25, 11.26, 11.27, 11.28, M03 Bla

H126 11.03, 11.23, 11.24 BIb

H127 11.06, 11.09 Bla

HI28 11.11 Bla

H129 11.12 BIb

H130 11.13 BIb

H13l 11.14 BIb

H132 11.16 BIb

H133 11.17 BIb

H134 11.19 BIb

H135 11.21 BIb

H136 11.22 BIb

H137 11.30 BIb

H138 12.02 Ala

H139 12.06 Alb
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Haplotype Individual Lineage
HI40 12.08 Ala
Hl4l 12.09 Ala
HI42 12.10 Ala
HI43 12.11, 12.18, 12.19 Alb
HI44 12.13 Ala
HI45 12.22 Ala
HI46 12.23 Ala
HI47 12.24 Alb
Hl48 12.25 Ala
HI49 12.26 Alb
HI50 12.27 Alb
HI51 12.29 Ala
HI52 12.30 Ala
HI53 13.01 Ala
Hl54 13.03 Ala
HI55 13.04 Ala
HI56 13.05 Ala
HI57 13.06 Alb
HI58 13.08 Alb
HI59 13.09 Ala
HI60 13.13 Ala
HI61 13.14 Ala
HI62 13.16 Ala
Hl63 14.05 Bla
Hl64 14.06 Bla
HI65 14.09 Bla
HI66 AC4 BIb
HI67 ECI BIb
HI68 1002 Ala
HI69 nOI, n03 B2
Hl70 n02 B2
HI71 LSI B2
HI72 LS2, LS3 Bla
HI73 MOl Bla
Hl74 OGI Bla
HI75 SDOI A2
HI76 TbOI A3
~
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Appendix 4 Assessment of population structure based on ten micro satellite loci and

assuming two populations (k = 2). The y-axis represents proportions of the multilocus

genotype in each site that is attributable to co-ancestry with cluster 1 (red) and 2 (green).

Individuals are grouped along the x-axis according to their sites. This analyses differs from

Figure 26 because individuals sampled from site SA (15), Tb (16), SD (17), JG (18), M

(19) and II (20) were included here. Table shows proportion of populations in each genetic

cluster for site SA, Tb, SD, JG, M and n.

1.00

080

0.60

0.40

0.20

000

Sampling sites

Inferred Clusters
Site 1 2

SA 0.995* 0.005

Tb 0.995* 0.005

SD 0.990* 0.010

JG 0.937* 0.063

M 0.988* 0.012
n 0.978* 0.022

1617



173

Appendix 5 Dot plots of genotype scores of each micro satellite locus against putative

geographical locality. Centre of the SE transect represented as '0'.
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