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ABSTRACT

Whilst it is a simple matter to outline the salient features of any non-linearity,

predicting the way in which it will affect the response of a system to incoming signals

is not so straightforward. Furthermore, removing any undesirable effects, such as

limit-cycling, is often so difficult that systems which exhibit these effects are run well

below the desired operating conditions simply to avoid them coming into play. To

completely remove the effects of a non-linearity was not considered to be possible.

This thesis shows that it is indeed possible to completely remove non-linear effects

and, along the way, presents new algorithms which streamline the whole process of

non-linear analysis and design.

The thesis begins by outlining the basic characteristics of non-linear systems and the

ways in which they can be analysed. The methods for deriving describing functions

have been investigated and a new algorithm formulated which enables the rapid

delineation of the entire family of real describing functions. The use of this algorithm

enables a comprehensive range of non-linearities to be designed and simulated and

their behaviours analysed.

However, the algorithm also enables the describing functions of more complicated

non-linear systems to be calculated for which models are not readily obtainable. Fuzzy

logic techniques are developed which can mimic these more complicated systems.

These more complicated fuzzy non-linearities are simulated and analysed in detail and

a variety of behaviour-patterns seen to emerge which are not so obvious when only the

simpler systems are investigated.

The fuzzy logic techniques have proved to be sufficiently flexible to enable non-linear

systems to be developed which are able to cancel out the effects of other non-

linearities. The behaviour of these new functions has been investigated and an

algorithm developed which enables 'inverses' of all of the real non-linearities to be

created, an inverse non-linear function being described as one which completely

nullifies the effect of another nonlinearity. Further investigation of these completely

new functions shows that the effects of non-Iinearities and their inverses are often

mutual.
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Chapter One: Introduction

Chapter One

INTRODUCTION

1.1 Background

1.1.1 Modelling real systems

When trying to understand the behaviour of a physical system, mathematical

models of the component parts are usually constructed. To simplify the

mathematics it is usually assumed that the system is linear. This is because many

of the techniques such as Bode plots, Nyquist diagrams, Nichols charts, Laplace

function models, state-space models, and many more, which have had an

important role to play in systems theory and design only work for systems whose

transfer functions can be represented by linear polynomials. The effectiveness of

a mathematical model is judged by the closeness with which its predicted

behaviour represents that of the real system. If the behaviour of the model is

sufficiently close to that of the real system then a linearized version can be

found, taking care about the range of operating conditions for which the

linearization is assumed to be valid (Atherton, 1981; Dutton et al. 1997).

However, all real systems are nonlinear to some extent and if their dynamic

behaviour cannot be adequately represented by a linear model then some method

has to be found to incorporate this into the plant model to obtain suitably

meaningful results. Whereas linear systems obey the principle of superposition,

non-linear systems do not; a simple doubling of the magnitude of an input signal
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Chapter One: Introduction

does not necessarily produce a doubling of the magnitude of the output signal.

Furthermore, a sinusoidal input to a non-linear system can lead to the production

of harmonics and sub-harmonics at the output - something which can not happen

with a linear system Consequently if two systems, each of which exhibit non-

linear behaviour, are included in the same feedback loop, the resultant behaviour

pattern will not be the simple sum of the two contributing parts.

1.1.2 Non-linear systems and unwanted oscillatory behaviour

Certain types of non-linear system (Khalil, 2002) can exhibit a phenomenon

known as limit-cycle or spontaneous oscillation and this effect has been of

particular interest as far as this research has been concerned. The effect is quite

distinct from ordinary resonance and is independent of the frequency content of

any input signal. It is a property of the architecture of the nonlinear system itself

and occurs spontaneously when the amplitude of the input signal enters a critical

range. This critical range may exist at low amplitudes but not at high, at high

amplitudes but not at low; or it may even exist for one or more intermediate

ranges of amplitudes. When a limit cycle occurs, the affected system goes into a

stable sinusoidal, or even non-sinusoidal, oscillation with an amplitude and

frequency which are characteristics of the architecture of the individual system

and are in no way connected to the frequency and amplitude of any inputs.

In control systems the complete system model is often determined by modelling

the individual components, in which case the linear and non-linear elements may

be separately described. From this realization the describing function method
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Chapter One: Introduction

gradually evolved in the late 40s and 50s (Kochenburger, 1950) and when this is

combined with classical control methods e.g. Nyquist diagrams (Kochenburger,

1950; Atherton, 1981; Nagrath et al., 1980) it becomes possible to predict when

limit cycles may occur and also to predict their amplitudes and frequency of

oscillation. However it has not proved possible with classical control techniques

to easily remove or ameliorate these unwanted effects. Once a limit cycle starts,

control of the affected system is lost. Changing the amplitude of the input signal

will often have no effect. Even removing all input signals will usually have no

effect. Once it has started, a limit cycle is self-sustaining and usually the only

way to stop it is to remove all power and shut down the system.

Up to now, the only way in which the unwanted oscillations can be avoided is to

make sure that the amplitudes of input or feedback systems reside outside certain

critical ranges or, more drastically, to redesign the system itself. Having to use

signals within limited ranges of amplitude can seriously curtail the performance

of a system but sometimes it is a price that has had to be accepted. Redesigning

the very architecture of a system is not always an option.

In this thesis a new method is presented which avoids the necessity of

redesigning the system itself by enabling the characteristics of the non-linearity

to be adjusted to either remove the conditions in which the unwanted oscillations

occur or to move them into regions of error signal amplitude in which they no

longer present operational problems.
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Chapter One: Introduction

1.1.3 Fuzzy logic control systems

Fuzzy logic control was developed by Mamdani and his team in the 1970s

(Mamdani, 1974; Mamdani and Assilian, 1975; Mamdani and Procyk, 1979) and

was first used with systems whose transfer functions could not easily be

determined. Fuzzy control systems are inherently nonlinear and can themselves

exhibit the range of features of classical non-linear systems. In particular they

can exhibit limit-cycle oscillation (Gordillo et al., 1997), although usually by

accident rather than design. They can be made to model the behaviour like

adaptive vehicle suspension units in which the coefficients of restitution change

depending upon the previous behaviour of the system. But, again, it must be

stressed that these effects have arisen more by accident than by design. The

ability to create these non-linear effects using fuzzy systems has been

demonstrated (Kim, et al., 2000; Cuesto et al., 1999) and gain and phase margin

analysis of such systems has been investigated (Perng et al., 2003). It is even

possible to create PD and PI Fuzzy Controllers (Page et al., 1999; Kwok et

al.,1991) and to use describing functions to analyse them (Aracil et al., 2004).

However, although it is possible to use a fuzzy system to create a desired limit-

cycle effect (Kim et al., 2000), there have been no reports of attempts to use this

possibility to investigate whether using such a system as a design tool will enable

the modification of the shape of a signal to control existing non-linear effects.

The whole subject area of signal modification using fuzzy techniques has hardly

been touched and, in particular, the ability to mimic specific non-linear effects

has had very little investigation. The idea of trying to use fuzzy systems to
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create inverse non-linear effects which could cancel out specific non-linearities

has had no reported investigation at all. This is the very topic which has been

addressed in this research. There is a well-established and published body of

work using, for example, feedback linearization and computer torque techniques

but they do not offer the simplicity of fuzzy systems, nor can they cope well with

large non-linearities or with systems which exhibit memory (Smith et al., 2000;

Lim et al, 2002; Kang et al., 1999; Nassirharand and Karimi, 2006). Also,

feedback linearization usually requires a complicated feedback control law

which can be sensitive to parameter uncertainties (Tewari, 2002; Nijmeijer &

van der Schaft, 1990) .

1.2 Research objectives

Fuzzy logic techniques provide a method of modifying the actual shapes of

signals which is not easily achieved by other means. Furthermore, the capacity

for fine-detail custom design of non-linear effects is virtually impossible by any

other method. It is the investigation of this signal-shaping capability and its use

to control the behaviour of non-linear systems which is at the core of this

research.

The purpose of this work was firstly to develop a signal-modification system

using fuzzy logic which would enable various standard non-linearities to be

mimicked. To avoid confusion, only type 1 fuzzy systems have been used in this

work; since using blurred fuzzy logic, type 2 systems, (Sepulveda et al., 2007)

has not been shown to confer any extra benefits as far as control systems are

concerned. A type 1 fuzzy system is one in which the envelopes defining the

fuzzy sets consist of crisp clear straight lines; in type 2 fuzzy systems the
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envelopes defining the fuzzy sets are themselves fuzzy. The strengths and

weaknesses of the available fuzzy logic controllers were assessed (Takagi, 1993;

Castro, 1995) and the most suitable was chosen for the particular task in hand. A

method was developed of using the Sugeno approach to mimic a group of

standard non-linearities which did not possess memory and so produced real, as

opposed to complex, describing functions. A decision was made to confine the

investigation only to this group of non-linearities and the only restriction this

decision imposes is that while limit-cycles of different amplitude for a given

system can be investigated, the capacity to move them to different frequency

ranges is lost. This was considered to be a restriction worth accepting in this

research. The ability to move to different frequency ranges as well as different

amplitude ranges, which would follow with complex describing functions, could

be investigated in further work.

The behaviour of these fuzzy mimics, or simulations, was checked against

standard non-linearities available in the SIMULINK toolbox. These standard

non-linearities were used in series with a type 0 third-order system to produce a

series of limit-cycles whose frequency and amplitude could be compared with

those predicted by theory. The particular third-order system was chosen because

it was the system used in paper which prompted this line of research (Kim, et al,

2000) and the intention was to compare some preliminary results with that work.

In order to accomplish this, a family of describing functions was derived and a

general algorithm developed so that a real describing function of any complexity

could be easily obtained. Again, to the best of the author's knowledge no such

algorithm has been reported in the literature. The describing functions produced

using this algorithm were then used in conjunction with the inverse Nyquist plot
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of the linear transfer function mentioned above. This transfer function (see

equation 5.1) is dealt with in more detail in chapter five. In this way the limit-

cycles could be predicted and their characteristics obtained. The next stage is

really the crux of the whole research effort, the development of the non-

linearities which would eliminate the existing non-linearities and so remove the

limit-cycles. Effectively, the aim was to develop inverses of the existing non-

linearities and their associated describing functions. In the event, from the

development of adequate inverse functions for the family of real describing

functions it was possible to discern patterns in their development. For this work

the author used MATLAB. This proved adequate for all of the work that was

carried out although the fuzzy logic toolbox was not flexible enough to enable

some more sophisticated techniques to be constructed and incorporated into

SIMULINK.

1.3 Structure of the thesis

In chapter two there is an overview of non-linear systems, together with a review

of the relevant literature and a discussion of the various techniques that could be

used for their analysis. Chapter three presents an explanation of the techniques

particularly appropriate for the type of non-linear analysis considered, i.e. phase-

plane descriptions and the describing function approach, together with a

discussion of stability issues. There are, of course, many techniques in existence

for non-liner analysis and control system design for example: Lyapunov's

method, sliding mode, feedback linearization, Popov and Zames methods but, as

7



Chapter One: Introduction

explained in chapter three, only two are appropriate for the geometrical approach

which has been used in this thesis.

Chapter four gives a detailed description of the describing function technique. A

general approach for deriving the family of real describing functions is presented

and all those functions relevant to this research programme are obtained. A

useful algorithm for rapidly obtaining these functions is also presented. Because

of the mathematical nature of this chapter complete derivations are shown in

Appendix AI.I. (This approach has been adopted throughout the thesis to avoid

cluttering the main text and also as a quick resource if any derivations need to be

checked.) To complete the non-linear discussion, chapter five uses the

describing function results, in conjunction with the inverse Nyquist of the third-

order transfer function model of the linear part of the system, to predict the

occurrence, i.e. the frequencies of oscillation and the amplitudes, of any limit

cycles that are produced with the various non-linearities. This is reinforced by

using SIMULINK and the standard non-linearities supplied within that package

to produce limit-cycle outputs for the same third-order model and then

comparing them with the predictions. Wherever possible, in all of this work, the

errors in these measurements are also estimated.

Chapter six follows on with a discussion of the general characteristics of fuzzy

systems and the various approaches relevant to the research investigation and a

discussion of the appropriate literature. Chapter seven describes how fuzzy

systems can be designed which mimic non-linear behaviour. When the fuzzy

non-linearities so obtained are put into the forward path in the simulation system

used for this research, it is possible to compare the characteristics of the resultant

8
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limit cycles with theoretical results obtained earlier. This work is followed by

designing more complicated non-linearities to produce multiple limit-cycles

which can be selectively switched on and off by suitable input signals. Chapter

eight shows how fuzzy inverse functions can be derived. The effectiveness of

these inverse functions is tested by placing them in series with the functions

whose behaviour they are meant to cancel out. A general method is also

suggested for obtaining such inverses using fuzzy logic methods. Again, to the

best of the author's knowledge, these techniques have neither been published nor

reported before.

The overall approach has been to present the various types of non-linearity as

part of an evolving story. So the same simple nonlinear examples appear several

times but in each succeeding appearance they are presented in a more developed

form and other more complicated non-linear functions start to appear to

demonstrate more subtle features, such as multiple limit-cycles.

Chapter nine presents a detailed discussion of the results obtained, the limitations

of the method and a pointer as to how the describing functions and the fuzzy

mimics of more complex systems might be obtained. Finally, the conclusions of

the investigation are presented together with a discussion of, and detailed

suggestions for, further work.

9



Chapter Two: Non-linear Systems

Chapter Two

SOME CHARACTERISTICS OF NON-LINEAR SYSTEMS

2.1 Introduction

The purpose of this chapter is to briefly explain the basic differences between

linear and non-linear systems and to outline the commonest non-linearities

used in this research work. Only the physical characteristics are mentioned

here and only for a selection naturally occurring real non-linearities.

2.2 Basic Characteristics

Non-linear behaviour is present in all physical systems, (Atherton et ai.,1980;

Leigh, 1983; Slotine and Li, 1991). Even linear systems will behave in a non-

linear fashion if taken outside their specified operating range. Sometimes non-

linear features will be deliberately introduced to improve a system's

performance, to make it safer (e.g. to keep its output within a desired range) or

even to make the overall performance more economical than might be the case

with linear components alone.

There are several ways in which non-linear systems differ from their linear

counterparts. The principle differences are:

(i) The mathematical principle of superposition no longer applies.

For linear systems, altering the magnitude of the input would not

change the shape of the output response, whereas for a non-linear

10



Chapter Two: Non-linear Systems

system there could be a considerable change both in the

percentage overshoot and in the frequencies of oscillation.

(ii) Stability behaviour of non-linear systems is different. In a linear

system this is a characteristic of the system and is determined

entirely by the location of the poles. It is independent of the

magnitude and nature of the input. Furthermore, the application of

a sinusoidal input to a stable linear system will produce a

sinusoidal output of the same frequency whose only difference

will be in phase and magnitude. If, on the other hand, the system

was non-linear there would likely be several harmonics, or sub-

harmonics present which would not have appeared in the linear

case. Furthermore, the range of stable behaviour of non-linear

systems is governed by effects which are completely unknown in

linear systems as explained in sections (iii) and (iv) below.

(iii) Limit-cycle oscillations cannot exist in linear systems but with

non-linear systems they can spontaneously occur when the

magnitude and frequency of the input signal enter certain ranges

which are properties of the architecture of the system itself, in

which the non-linear components are embedded. However, once

they start, the magnitude and frequency of the limit-cycles will

also be solely determined by this system architecture and will be

independent of the input signal, or of any other initial conditions.

Furthermore, the shape of the spontaneous limit cycle may not be

sinusoidal. Once they have started, control of the system is lost,

and the limit-cycle oscillations will continue regardless of any

11
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input signal. As limit -cycle behaviour is a core feature of non-

linear responses it was the main feature investigated with only

non-linearities with real describing functions being considered.

The reason why the addition of a modifying non-linearity into the

forward path can control the apparently uncontrollable is that it

effectively alters the architecture of the system and acts as an

adaptive controller.

(iv) Jump-resonance in non-linear systems is a phenomenon in which

there are discontinuous jumps in magnitude and phase of the

output as the initial input frequency is changed. The effect can

take two forms: (a) the hard-spring case as shown in Figure 2.la

and (b) the soft-spring case as shown in Figure2.l b. In both cases

the input is gradually increased in frequency from zero whilst

keeping its amplitude fixed; the output amplitude then varies as

shown. It will be noticed that for a range of frequencies two

different output amplitudes are possible, depending on whether

the input frequency is rising or falling.

12
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Fig. 2.1 Ca):The hard-spring case

Input frequency

Fig. 2.1 (b.): The soft-spring case

Input frequency

2.3 Common types of non-linearity

2.3.1 Continuous nonlinearities

These are elements whose input-output characteristics can be defined,

(Atherton et al., 1980; Dutton et al., 1997), by analytical functions and whose

13
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outputs are continuously differentiable with respect to the inputs, although it

does not follow that their describing functions are easily integrable, if indeed

they are integrable at all. Such non-linearities are quite common and are often

deliberately introduced into systems (to stabilize electronic circuits, for

example).

2.3.2 Discontinuous non-linearities

For these, the input-output characteristics cannot be modelled by continuous

functions over their entire range and they are not continuously differentiable -

they contain discontinuities. They can be either single-valued or multi-valued

non-linearities.

2.3.2.1 Saturation

Every system can exhibit this non-linearity since all physical systems have

limits on their range of performance. There are two forms of this non-linearity:

hard and soft saturation. Figure 2.2(a) depicts hard saturation; a typical

example being when a mechanical valve reaches its end stops. Soft saturation

occurs when the slope of the characteristic after the discontinuity, or break

point, is not zero but still has a slight slope, at least initially. In practice, in

such a case there will usually be a more gentle curved change to the new value

rather the abrupt behaviour seen with the hard-spring.

14
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input

Fig. 2.2(a): The hard saturation case:

output

input

Fig. 2.2(b): The soft saturation case.

2.3.2.2 Dead zone (or dead-space)

Many systems cannot respond to a small initial input signal but otherwise

behave in a linear fashion after the input magnitude has passed a certain

minimum value.

15
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output

input

Fig. 2.3: dead-zone

2.3.2.3 The ideal relay

The output changes between two distinct states (± some voltage level, for

example) as the input goes from some negative value, through zero, to a

positive value. It is an ideal response to which some non-linearities approach

(e.g. an electro-mechanical relay) but most real system are more complicated

than this.

output

input

Fig. 2.4: The ideal relay
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2.3.2.4 An ideal relay with dead zone

An example of this is a real electromagnetic relay. A certain amount of current

is needed before its coils are able to actuate the device. Hence there is a dead

zone as shown in Figure 2.5.

2.3.2.5

output

input

I
I

Fig: 2.5: Ideal relay plus dead-zone

Friction

This is a force which is encountered wherever there is relative movement

between bodies, no matter whether those bodies are solid, liquid or gas. The

predominant frictional force is viscous friction which is proportional to the

relative velocity of the sliding interfaces between the bodies. This viscous

force is directly proportional to the relative motion so it is a linear effect.

Another dynamic effect is Coulomb friction. It is proportional to the normal

reaction between those surfaces, the relation between them being called the

coefficient of friction. Finally, there is also a static effect, known as stiction,

which is the additional force required to start the initial relative motion

between the bodies. Strictly, this gradually decreases with relative velocity

17
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viscous force =fdxldt

stiction = F

where f is a constant, and dx is

displacement of one surface with respect

to the other.

where J.i is the coefficient of friction and

R is reaction normal the sliding surfaces.

where F is a constant.

Coulomb force = J.i.R

Beside the single valued nonlinearities mentioned above there several very

common multi-valued nonlinearities such as hysteresis, backlash, and

commonly encountered combined effects such as relay plus dead-zone and

hysteresis. In addition to these there are multivariable non-linearities which are

functions of more than one variable, such as servo-motors and transistor

characteristics.

2.4 Conclusion

In this chapter the basic differences between the characteristics of linear and

non-linear systems has been examined. This has been followed up with a

description of the physical characteristics of the commonest types of non-

linearity - confining the discussion to systems which do not possess memory or

do not produce complex describing functions. In succeeding chapters these

non-linearities are going to be reintroduced as various features of their

behaviour are uncovered. However, firstly, in the next chapter, the methods of

analyzing this behaviour have to be discussed and decisions made about which

methods are the most appropriate.
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Chapter Three

METHODS OF ANALYSING NON-LINEAR SYSTEMS

3.1 Introduction

Several main approaches to the problem of analyzing non-linear behaviour

have been developed. The first approach, a time-domain method, was

developed by Poincare (1881, 1882) and used a graphical approach which

possesses features which made it potentially useful in this investigation.

Another time-domain approach was used by Lyapunov in 1892 (English

translation 1961). His techniques were unknown out side of Russia until Lur' e

(1957) and LaSalle et al. (1961) brought his work to the attention of the

western control engineering community. They have mostly been used to

investigate the stability of any system whose model could be expressed in a

generalized state-space form. However, his methods do not lend themselves to

graphical techniques and do not help in predicting limit-cycle behaviour.

Three main frequency-domain techniques have been developed: The

describing function technique gradually evolved from the work of several

different research groups in the 1940s, (Tustin, 1947; Dutilh, 1950; Oppelt,

1948; Kochenburger, 1950), but was only reported and the approach

formalized, principally by Kochenburger, in the 1950s. Two other frequency-

domain techniques which have been developed are Popov's (1962) method and

Zames' Circle criterion, (Zames et al.,1968; Arcak et al., 2003). However,

neither of these used graphical methods to make stability predictions and were
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not specifically concerned with limit-cycle prediction. Only two of the

techniques, the phase-plane and the describing function methods, provide a

graphical approach which is suited to this investigation. These two methods

are briefly explained and their advantages and disadvantages compared. The

approach chosen for this research is then explained in more detail. An

explanation of the ways of using this for stability analysis is then outlined.

In particular, as far as this research is concerned, the main effort has been to

investigate graphical methods because, although the chosen approach has

limitations, as will be discussed later, other techniques only give information

about the range of stable conditions and tend to be rather conservative in their

results. Also they do not help in investigating limit-cycle behaviour although

the majority of instabilities in non-linear systems occur as limit-cycles,

(Atherton, 1981) .

3.2 The Phase-Plane Approach

Before the computer age the behaviour of second-order systems was

investigated by sketching their phase-plane trajectories. It was the first method

(Gibbs, 1928)which aimed to analyse non-linear behaviour by graphical means

rather than attempting to linearize differential equations. Unfortunately, before

its introduction, if the non-linearity was anything but minor any attempt to

linearize it did not remove its effects and consequently progress had been slow.

The results which a phase-plane produces are a useful way of depicting non-

linear behaviour and the approach can handle extremely non-linear conditions.

Also there is a major advantage in that if a limit-cycle is present it will have a
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distinct configuration: it will show up as an isolated closed path on the phase-

plane portrait. Trajectories near to the limit-cycle will either converge to, or

diverge from, but they cannot cross it. The amplitudes of such limit-cycles can

be read directly from the phase-plane portrait. Unfortunately the phase-plane

approach did not provide an obvious method of design which would fit in with

systems of order greater than two and for this reason it was not used in this

investigation.

3.3 The Describing Function Approach

This is a frequency domain method which was developed by several groups

independently in the 1940s (Atherton, 1975) but publication did not appear

until much later. It allows the use of polar plots to investigate the stability

conditions of a system. In particular it allows the prediction and

characterization of limit cycles.

Compared with the phase-plane approach (Dutton et al., 1997), its strengths are:

• It is applicable to systems whose linear part is of any order. In general

the method works better for higher-order systems.

• It works for discontinuous as well as continuous nonlinearities and it

has been proved to work for systems which contain more than one

discontinuous function.

• It uses simple graphical methods from which both frequency response

and amplitude information can be easily obtained.

The approximations inherent in the systems lead to a few limitations:
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• It assumes that the plant as a whole acts as a low-pass filter.

• It cannot cope with time-varying systems.

• The non-linear characteristics must be symmetrical about the origin.

• Although the method can cope with systems which do not exhibit odd-

symmetry the computational overheads to do so are onerous.

• It works best for systems in which the non-linearities are not too severe,

e.g. where the root mean square (rms) value of the output fundamental

is within 5% of the total rms output (Atherton, 1975). This is a feature

where the phase-plane approach is superior because it can cope with

highly non-linear systems although its inability to cope with systems

higher than second-order ruled it out for the purposes of this

investigation.

3.4 The Describing Function Method in Detail

The basic approach is to assume that the input to a non-linearity is sinusoidal

x = X.sin(liJt) (3.1)

It can be shown (Gibson, 1963) that the output can be represented by

y = Au + AI sin(liJt) + BI cos(wt) + A2 sin(2liJt) + B2 cos(2liJt) +... (3.2)

If the nonlinearity is symmetric about the origin, and since most systems

behave like low-pass filters which cause the magnitude of higher-frequency

components to be attenuated, the output reduces to

y = AI sin(liJt) + B, cos(liJt) (3.3)

1 21C

where AI = - J y.sin(ax).d(ax)
1i 0

&
1 21C

B) = - Jy.cos(ax).d(ax) ... (3.4)
1i 0
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The solution to this function has to be found in a piecemeal fashion. However

there is quarter-wave symmetry so there are no cosine terms in the harmonics;

thus BI = 0 and the output equation reduces to

.............................................. (3.5)

Hence Al only need to be calculated and because quarter-wave symmetry is

also present, this becomes

;r

4 2
Al = - Jy.sin(OJt).d(OJt)

Jro
................................... (3.6)

The function which describes the response of the non-linearity to a sinusoidal

input is called the describing/unction of the system and is given by

N=~
X

...................................................... (3.7)

More formally, it is "the ratio of the fundamental output to the magnitude of an

applied sinusoidal input" (Atherton, 1996, p 37). However, although the

technique was widely applied, the assumption that the method applied to single

odd-symmetric and to multiple nonlinear elements was not proven until the late

1950s (Loab, 1956; West and Douce, 1954; Grensted, 1955).

As the concept behind the derivation of a describing function is essentially one

of quasi-linearization in which several assumptions are made it might be

expected that for more accurate work some harmonic correction terms would

be necessary. Johnson (1952) calculated the correction values that should be

applied. He found was that the first correction term for the fundamental

frequency is zero. Thus the predicted frequency of oscillation should be quite
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accurate, which is born out by the results of this investigation, within ± I% of

expected values. The accuracy of the predicted amplitudes should be slightly

less but again the results between predicted and actual simulated behaviour

have been reasonably close, within ±1.5% of expected values.

3.5 Stability Analysis using Describing Functions

In a linear system a simple unit feedback arrangement might be as in figure 3.1.

c
+

G(jm)

r

Figure 3.1: Basic linear system with unit feedback

Here the transfer function IS
CUm) =
RUm) 1+GUm)

GUm) and the corresponding

characteristic equation is 1+GU m) = 0 . In its simplest open-loop form the

Nyquist criterion indicates that the system will be stable whilst iGUm)i < -1 at

phase crossover (Nyquist, 1932). If the open-loop transfer function GOw) is

stable, then the closed loop system is unstable for any encirclement of the point

-1. For a non-linear system in which the non-linearity can be replaced by a

describing function N (X, m), the non-linear function can be placed in series

with the linear portion and will obey the usual block-diagram rules

(Kochenburger, 1950) as in figure 3.2
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+
_.. N(X,m) GUm)

-

Figure 3.2: Feedback system with nonlinearity shown separately

The characteristic equation has now become

1+G(jm)N(X,m) = 0 (3.8)

Kochenburger postulated that, because the describing function is effectively a

partially linearized description of the non-linearity, the system will be stable

whilst

IG(jm)N(X,m)1 <-1 ...... (3.9)

This extension of the Nyquist criterion is completely heuristic and still has no

mathematical basis; however, it works. So, for stability, using a Nyquist

diagram with an inverse describing function superimposed the following

condition must be satisfied at phase crossover:

IG(j,m)1 < -IN(~'{()I (3.10)

However, it is easier to use the inverse Nyquist diagram, in which case this

becomes:

1I . I > -IN(X,m)1G(Jm)
(3.11)
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Kochenburger's Stability Criterion:

In order for a system to remain stable, the locus iCUm)i must keep the entire

locus - XN(X,m)/ on the right; or the inverse locus )(cUaJ)/ must keep the

locus -iN (X, aJ)ion the left (or must completely enclose the whole of the

locus).

To demonstrate the practical use of Kochenburger's criterion assume that the

describing function is a complex quantity, in which case the situations

described in Figure 3.3 could exist. This Figure shows some of the

consequences of the Kochenburger criterion (the arrows on the describing

function loci indicate direction of increasing amplitude whilst the arrows on the

inverse Nyquist loci indicate direction of increasing frequency).

The various cases are explained in Figures 3.3 and 3.4. The directions of

increasing amplitude of the describing function loci are shown by blue arrows

and the directions of increasing frequency of the inverse Nyquist loci are

shown by red arrows

Firstly, consider the simplest cases, in Figure 3.3 (Ia) and (b)):

(a) If the describing function locus, in blue, stays entirely to the left of the

inverse Nyquist locus, in red, as frequency increases then the system is

entirely stable. The gain in this region being less than unity.

(b) If the describing function locus stays entirely to the right of the inverse

Nyquist locus as frequency increases (again as shown by the direction of
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the red arro ) then the s 'tern is cntircl unstable. l hc gain in this re lie n

being greater than unity.

(a) A completel stable s stem (b) A completely unstable ... stern
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Secondly, Figure .4 ((a), (b) and (c)) demonstrates more complicated cases:

(a) If, for small input magnitudes the des ribing function 10 us is to the len
f the in er e yqui: t locus (it is en los d, r t the left r the in crsc

quist locus in the sense sh wn b the direction of the red arro ) as the

[requeue increases, the s stern is stable but if it is n t inclosed far lar le

input amplitudes the syst m is unstable and will bee me m re so. i.c. the

describing function locus mo cs from a region here the gain is I ss than

unit to region where it is greater than unit

(b) Thi: case shows a s stem which is unstable for small amplitudes but

stable for large. Small disturbances lie outside the inverse quist 10 us

and grow until the crossover point is reached when the gain becomes

unity and the phase difference is 180°. If the amplitude increased be ond

this point the gain would fall b 'low unity and the p iint on the dcscribin I

function would fall back to the crossover position. lienee there is a stable
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oscillation at crossover (a limit-cycle). The frequency of the oscillation

will be given by the value of the radial frequency on the inverse Nyquist

locus at crossover and the magnitude by the magnitude of the describing

function at the same point. This is an example of soft excitation since the

limit-cycle behaviour is triggered for small inputs.

(c) This is an example of hard excitation. For small inputs the describing

function lies below point A and is enclosed by the inverse Nyquist locus

and so will be stable. However, if the input amplitude goes above that at

point A on the diagram the system will be unstable and because the gain

is now greater than unity the operating point will be carried around to

position B. If the operating point is carried past point B then the system

gain becomes less than unity and it will be carried back to this point

where a limit-cycle will occur.

If the describing function had been of the frequency-dependent type then there

would be a range of possible describing function loci, but the only one which

would matter would be that one which had the same frequency at the

intersection with the inverse Nyquist locus as the inverse Nyquist locus itself-

all others would decay.
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(a) Stable for small inputs, unstable for large (b) Unstable for small inputs, stable for large

IIG
-N IIG

Limit
Cycle ~

-N r

(c) Hard excitation: inputs below A give stable response, above A unstable
and limit-cycle forms at point B

A

-N

IIG

Fig.3.4: More Inverse Nyquist/describing function graphs

The work reported in this thesis was confined to non-linearities which were not

frequency dependent and also did not exhibit hysteresis of any sort. Such non-

linearities all have real describing functions. If such describing functions had

been used in the examples in Figures 3.3 and 3.4 they would have lain entirely

along the real axes and although the same effects would have occurred they

would not have been so obvious on the graphs.

However, there is an alternative diagram which can be used in conjunction

with the frequency information gained from Figures 3.3 and 3.4: a real

describing function can be plotted against the magnitude of the error signal (or

the input signal), as in Figure 3.5, and the inverse Nyquist value at intersection

(gleaned from Figures 3.3 and 3.4) can be superimposed as a horizontal line on

it. The amplitude of the describing function, and hence the amplitude of the
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limit-cycle, can be simply read off from this graph as that point of intersection

of the two loci at which the describing function is falling in magnitude.

N

Figure 3.5: A real describing function locus with an inverse Nyquist
magnitude superimposed on it.

Inverse Nyquist

Describing function

x

Magnitude of limit-cycle oscillation

3.6 Conclusion

A survey of the main techniques for stability analysis has been presented in this

chapter. The reasons why only two of these techniques were suitable for this

investigation was explained and their advantages and disadvantages were

summarized and reasons given for deciding to use the describing function

technique. The manner in which Nyquist's methods could be combined with

describing functions was then presented and the main expected outcomes from

the interaction of these two loci were delineated. Finally, because this

investigation was dealing with real describing functions a more compact and

informative graphical method using the inverse Nyquist locus was introduced.
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This more compact method has become the method of choice for subsequent

analysis. In the next chapter a general solution is obtained which enables all

real describing functions to be easily produced. These describing functions are

then used in conjunction with the compact graphical method outlined above to

enable limit-cycles to be predicted, together with their expected magnitudes.
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Chapter Four

A GENERAL SOLUTION FOR A FAMILY OF REAL

DESCRIBING FUNCTIONS

4.1 Introduction

This chapter takes the describing method described in chapter three and

presents a graphical method for obtaining describing functions. It then

proceeds to use the technique to develop a general solution for obtaining the

family of real describing functions. These are the describing functions whose

non-linear characteristics are the same irrespective of whether the magnitude of

the input signal is increasing or decreasing. Obtaining a general solution also

permits the creation of algorithms for its implementation and one such

algorithm is presented in section 4.3. Although the general methods of

deriving complex describing functions are well known, to the best of the

author's knowledge this general solution for generating real describing

functions has not been reported in the literature and neither has the associated

algorithm.

The purpose of developing a general method is to enable easy and rapid

delineation of the describing functions for the non-linearities used in this

investigation. Using this result, the describing functions for various common

linearities and for a couple of cases, which have been of particular use in this

research, are easily obtained. The describing functions for these special cases
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are developed in section 4.4. To round off this topic, a method of dealing with

continuous functions is explained and concludes with an example.

4.2 The Graphical Method

As described earlier the development of the graphical describing function

technique can be traced to several groups working independently (Tustin, 1947;

Dutilh, 1950; Oppelt 1948; Kochenburger, 1950). However these wartime

developments did not come into general use until the mid 1950s (as reported by

Atherton, 1975 and 1997). It is basically an harmonic balance approach

modified for feedback control. This meant that only the principal harmonic

was used and higher-order oscillations were considered to be negligible due

filtering influence of the inertia inherent in the overall process which was being

controlled. The basic graphical approach is shown in Figure 4.1. It is assumed

that the input is sinusoidal (bottom left-hand comer of the diagram) and this is

mapped via the non-linearity (represented at the top left-hand comer of the

diagram) to an output. The input has n input magnitude x plotted against time t.

The non-linear transformation translates the input magnitude x, on the

horizontal axis, to the output magnitude y on the vertical. The output is a plot

of output y against time t. This is the same time period as for the input signal

and hence the output signal y, due to the non-linear transformation is correlated

with the input.

Assuming a sinusoidal input, then the input equation will be given by:

x = X.sin(liJt) (3.1)

and the output equation will be:

y = AI sin(liJt) (3.5)
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Hence the describing function is

A
N(X,w) = .; (3.7)

with

7f

4 2 •
Al = - J y.sm(wt).d(ax) (3.6)

7! 0

The method is a quasi-linearization process in which a section of a static non-

linearity is represented by a gain which depends on the magnitude of the input

signal (Atherton, 1981; Gibson, 1963). For this reason it is assumed that the

non-linearity consists oflines of constant slope to each side of the break-points,

the integrations can be calculated in a piecewise fashion to give:

4 ral a2Al = 7r Jy.sin(wt).d(wt) + Jy.sin(wt).d(wt)
o ~

+Jy. sin(m/).d( llIt)l·· (4.1)
a2

where the individual values of y in each of the separate linear sections has the

form

y = Kx + c . .. . .. . .. . . . .. . . .. . .. . . . .. . .. . . .. . .. . . .. . .. . . . (4.2)

in which K is the slope of the relevant section. The positions at which the

slopes K abruptly change value have been termed break points in this

investigation.
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y y OUTPUT

Slope K2
Slope KI
Slope KO

3rr/2 2rr

Non-linear
Characteristic

Fig. 4.1: The basic describing function graphical approach

4.3 A General Solution

Gibson (1963) showed how to obtain a general describing function by using

this piecewise linear approach but aimed for an overall solution. It is the

author's opinion that various features of this general method can be made

clearer by considering single-valued non-linearities separately from double, or

multi-valued, non-linearities. Single-valued non-linearities will produce real,

as opposed to complex, describing functions and they can often be described
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by polynomial functions. By doing this, a simplified method for generating the

describing functions of real non-linearities has been obtained. This work has

resulted in a straightforward and relatively simple method of generating

describing functions which was not available before. For the purposes of this

research there is the added advantage that since there will be no frequency

shifts, the superposition of the inverse Nyquist locus onto the describing

function diagram is simplified since only one value of the inverse Nyquist

locus will need to be considered.

By taking Gibson's initial construction, in Figure 4.1, with two breakpoints and

extending it to n breakpoints the graph will have (n - 1) linear sections with

slopes KoKI'" K, ... Kn, with breakpoints occurring at horizontal positions

P; P
2

••• P; ... Pn (with Poat the origin if necessary), jumps in the vertical plane

(y-direction) at QIQ2 ... and angles on the sinusoidal input of

The non-linearity will have the form shown in Figure 4.2.

(This will replace the on-linear characteristic, top left-hand comer of Figure 4.1,

which maps the input signal to the output signal)
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y Slopes K

x

Fig. 4.2: Non-linear function with n breakpoints

The cut-off points on the sine curve will occur as in Figure 4.3. (This replaces

the sinusoidal-type of output in the top right-hand comer of Figure 4.1.)

y

Fig. 4.3: Cut-off points on the sine curve
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The calculation of AI will be given by the extended form of equation 4.1 :

A -iI-
ff

U1 U2Jy.sin(wt).d(wt) + Jy.sin(wt).d(wt) + ...
o a,

a, ~

... + J y.sin(wt).d(wt) + ... + J y.sin(wt).d(wt)
............... (4.3)

which produces a general solution for the describing function:

The full derivation and the corresponding Matlab coding are shown In

Appendix One.

If Coulomb friction, or relay action, IS present at initial amplitudes then

equation (4.4) has to be adjusted.

Consider the case where only Coulomb friction is present:

as p~o y=Q ,Figure (4.4),Ko =00 and K\ =0.

Also from Figure (4.4), P = Q
K

Hence equation (4.4) reduces to N = 4Q for all values of X
JiX

Alternatively, define y = 0 in the interval [0,0], with y=Q in the interval [0+,00]

and y = -Q in the interval [-00, 0-]. The function is now symmetric so
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The describing function is then given by

N = ~ = __!_.~ r% y.sin(OJt).d(OJt) and this is integrable.
X X 7r Jo

7f

4 f2 . 4Q [ JrJ 4QN=- Qsm(OJt).d(OJt)=- cosO-cos- =-
Mo M 2 M

Q
Slope K

p

Fig. 4.4: Relationship between P and Q

4.4 An Algorithm for generating real describing functions

A method for using the general solution given in equation (4.4) to generate

particular real describing functions which can deal with discrete cases is now

presented.
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The Algorithm:

If Coulomb friction or relay action is present start at stage one, otherwise start
at stage two.

Stage One: (a) If Coulomb friction or relay action is present then make

4Q the first term of the describing function, where Q is
7rX
the value of the Coulomb friction term.

(b) If dead-zone is also present multiply the above result by

~ 1- ( ; )'] , where P is the dead-zone break-point.

Stage Two: (a) If saturation is not present make K; the first term of the
describing function. (K n is the gain of the last stage of the
non-linearity.) or add it to the result of stage one.

(b) If saturation is present then omit this term.

Stage Three: (a) If there are n breakpoints then add n terms of the form

~ (K,_, -K,{sin-fJ )+(;) [1-(;n)
where i =0 ~ n.

Go to end.
(b) If saturation is present then change the last of the terms in

stage 3(a) to

~ K"_{Sin-r;' )+(P;,) [I-(P;,n)
go to end.

End.

4.5 Some Typical Examples

Dutton et al. (1997, p705) lists some common describing functions. These are

easily obtained from the general solution given in equation (4.4). Below are

the derivations relevant to this research.
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4.5.1 The trivial case: the straight line

The trivial case of a simple straight with no non-linearities is presented for two

reasons: (i) it is a useful first test to check that the final describing function

equation has the correct form, (ii) the result is needed later in the investigation.

There are no break-points so n = 0, & K, = K since there is only one

slope.

Equation (4.4), the general equation, reduces to

N= ![K.~ +(K-KK··)]=K (4.5)

This is the slope of a straight line - as expected.

y N(x)

Slope K K

xx

The sloping straight line Its describing function

Fig. 4.5: The straight line and its describing function

4.5.2 Hard Saturation

This is the classical case shown in all textbooks and papers described simply as

'saturation'. In practice the input/output characteristic lies somewhere between
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the hard and soft saturation cases. With reference to equation 4.4,

n = 1, Ko = K, KI = 0, P, = P so the describing function is:

........................... (4.6)

when X > P and N = K otherwise.

y

x____/ p

Fig.4.6(a): Hard saturation non-linearity

N(x)

Note: When K is
negative the graph is
inverted

K

p x

Fig.4.6(b): Hard saturation describing function

4.5.3 Soft Saturation

This is where the slope of the graph above the break point is not zero. As there

is only one breakpoint and the slope after it is not zero it follows that:

n = 0, Ko = Ko, KI = KI = KIl, P, = P, so the describing function is
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............... (4.7)

when X > P and N = Ko otherwise.

y

Fig.4.7(a): Soft saturation non-linearity

N(x) Note: The signs and
Ko relative magnitudes of

the slopes matter

K
J ..... ..... .. 1 ...............

p x

Fig.4.7(b): Soft saturation describing function

4.5.4 Dead-zone

This is the case in which the process does not react until the input signal is

above a certain threshold level, there is effectively one break-point.

n = 1, Ko = 0, Kt = K" = K, P. = P, giving a describing function
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........................ (4.8)

when X > P and N = 0 otherwise.

N(x)

y

K

P Note: The sign
ofK matters

Dead-zone non-linear characteristic Dead-zone describing function

Fig.: 4.8: Dead-zone Non-linear Characteristic and its
Describing Function

In Figures 4.8 the comment is made that 'the sign matters'. For all real

systems the value of K must be positive, greater than unity for amplification

and less than unity for attenuation; however there is nothing to prevent a

software value that is negative being used for system modification purposes.

4.5.5 Dead-zone plus hard saturation

n = 2, Ko = 0, K, = K, K2 = 0

So the describing function is

when X > P2' N as for deadzone when P, < X ~ P2 and N = 0 when X ~ P; .
.............. (4.9)

45



Chapter Four: A General Solution for a Family of Real Describing Functions

Note: Again the
sign of K mattersN(x)

y K

x

x

Non-linear characteristic Describing function

Fig. 4.9: dead-zone plus hard saturation

4.5.6 Dead-zone plus soft saturation

The parameters are n = 2, Ko = 0, K), K2 «1 which give a describing
function:

N~3_ K,~ -+in-t~H;) [I-(~nl
~ +(K, -K'{Sint~)+(;) [1-(;)']1
when X > P2' n as for deadzone when P., < X < P2 (4.1 0)

and N = 0 when X ::;P., .

N(x)

x

Non-linear characteristic Describing function

Fig.: 4.10: Dead-zone plus soft saturation
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4.5.7 The Ideal Relay (or pure Coulomb friction)

Although the relay and Coulomb friction non-linearities are quite separate

effects their characteristics are similar and hence so are their describing

functions. They can be considered as extensions of the case in section 4.3.2 as

p ~ 0, and letting y = Q when x = P. Also, Ko = 00, KI = 0 .

p ~ 0, sin-I(!_) ~ sin-I(O) ~ 0,
In these cases, as X

So (n~[l-(~)']~~ and

as demonstrated in Appendix ALI stated in the algorithm in section 4.3.

Hence equation (4.4) reduces to

N= 4Q
7rX

for all values of X .
.............................. (4.11)

x x

N(x)

y

Q

Non-linear characteristic Describing function

Fig. 4.11: Relay (Coulomb friction)
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4.5.8 Coulomb friction plus viscous drag

Using similar arguments to the previous case, when Ko = 00, KI = K , equation

(4.4) becomes:

............... (4.12)
again, for all values of X .

N(x)

y

K

x

x

Non-linear characteristic Describing function

Fig.4.12: Coulomb friction plus viscous drag

4.5.9 Coulomb friction plus viscous drag plus saturation

Putting KI = 0, K2 = K, & K = ° in equation (4.4) gives:

.............. (4.13)

When X > P, same as for the Coulomb friction

and viscous drag case otherwise.

The derivation of this solution is in appendix A2.
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N(x)

y
Saturation Non-lin.

K

\

Coulomb Non-lin.
Q

Combined Non-lin.

p x

p x

Non-linear characteristic Describing function

Fig.4.13: Coulomb friction plus viscous drag plus saturation

4.5.10 Triple slope non-linear characteristics

Although the previous example could be considered to have three distinct

slopes, it belongs to the Coulomb or relay group rather than the triple slope

group since its describing function characteristics are quite different. The

behaviour of non-linearities with up to three break points was investigated

since it was noticed that by judicious choice of the relative values, and also the

signs, of the slopes Ko, Kp K2 and K3 of the straight sections, some multi-

peak describing functions could be obtained which gave the possibility of

multiple crossings of the inverse Nyquist locus. As only real describing

functions are being investigated all of the frequencies would be the same but

different amplitudes of the limit-cycle oscillations can be obtained.

Using equation (4.4) with slopes Ko K) K2 and breaks at P, P2 gives the

equation:
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N ~ ~ K2• ~ +(K, - K+in'(;) +(~) [1-(;),]J+.
ff (Ko_ K,fsrn _,(; ) + (;) [1-( ; )2] 1

. ..... (4.14)

With the graphical results shown in Figure 4.14(a) and 4.14(b)(i-iii).

The non-linear
characteristic

FigA.14(a) : The triple-slope nonlinearity

For this particular non-linearity the shapes of the describing function for

several different combinations of the slopes Ko, KI & K2 are important for

later work.

Note: The slopes of the
various sections are
dependent on (Kn_1 - KJ,
where Kn_P K; are the
respective end values of those
sections.

N(x)

x

Fig.4.14 Cb) Describing functions for various combinations of
triple-slopes
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N(x)

x

N(x)

x

Fig. 4.14 Cb) (continued)

4.5.11 A non-linearity with three break-points (four slopes)

In this case only one condition is considered: Ko > K] & K] < K2 & K2 > K3•

Again, the results are obtained by using equation (4.4) to give

N=3_
7r

K,~ +(K,-K+in-f; )+(;) [1-(1)']1+·
(K, - K,{sin-f;) +(;) [I-eH]1+··
(Ko - K,{Sintn+(;) [1-(;)']1

...... (4.15)
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The graphical results are shown in Figures 4.15(a) and 4.15(b). These results

are used later in the investigation.

y

FigA.] 5Ca):Non-linearity with three breakpoints

x

N(x)

o
x

FigA.15 Cb):Describing function for the three-breakpoint case

4.5.12 The four-breakpoint case

The final discrete case to be considered is the non-linearity with five straight

sections and four breakpoints. Again, only one condition is being considered
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but later in the research that enables the crux of the investigation to be

completed: Namely, the deliberate use of artificially created non-linearities to

alter the behaviour of systems which contain inherent undesirable non-linear

properties of their own. Using values of the slopes such that

K,~ +(KJ-K'lsm-'(~) +(~) [l-(i )']]+
(K'-K+nt;)+(~) [1-eH]]+·
(K,-K'lsin-'(~ )+(i) rl-(~)']]+
(Ko- K'lsin-t;)+(i) [l-(i )']]

...... (4.16)

With the graphical results shown in Figures 4.16(a) and 4.16(b)

x

Fig.4.16(a): Non-linearity with four-breakpoints
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N(x)

Fig.4.16(b): Describing function for the four-breakpoint case

x

4.6 Continuous Real Non-linear Systems

All of the above cases were examples of discrete straight-line non-linearities.

However, the non-linearity does not have to consist of discrete elements; it

could be a continuous function. Provided such a continuous non-linear element

is symmetric about the origin and still produces a real describing function it

will belong to the family of solutions given by equation (4.4). In general, if the

output y = j(x) fulfils these requirements then

4 '!..
AI = -12 y.sin(wt).d(wt) (3.6)

7r 0

as before, so

4 ~ 4 '!..
A = -12 j(x)sin(wt).d(mt) = -12 j(X.sin(wt))sin(wt).d(wt) (4.13)

7r 0 7r 0
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The continuous function may, or may not, be integrable but if a large number,

n, of piecewise elements of the non-linearity are considered then the individual

elements f(x,) can be treated as constants and the integral reduces to the

simple form

4 IJr
Al = - 2 K sin(mt).d(mt)

Jl' 0
..................................... (4.14)

where K is a constant, and this equation has already been solved.

Examples of non-linearities represented by third and ninth-order polynomials

will be investigated in chapter eight.

4.7 Conclusion

In this chapter a new method of deriving real describing functions has been

developed, together with an algorithm which enables the describing functions

to be rapidly obtained. It has been shown to be applicable to continuous as

well as to discontinuous states. As the method allowed real describing

functions to be easily and rapidly obtained, the opportunity was taken to obtain

a large range of describing functions for this particular family of non-linearities.

The purpose of this was to enable various features to be seen which are not

normally so obvious from just a few examples. Because of this approach it has

become clear that many describing functions can be sketched intuitively by

hand.

The next stage, which is dealt with in chapter five, has been to place various

non-linearities in series with a transfer function which has been chosen as a

standard for this investigation. These combinations have been placed, in tum,
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in the forward path of a unit feedback circuit. The describing functions of

standard non-linearities and then various custom-designed non-linearities have

been calculated and the performance assessments used to develop prediction

techniques for more sophisticated systems.
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Chapter Five

SIMULATION AND ANALYSIS OF NON-LINEAR

SYSTEMS

5.1 Introduction

This chapter deals with the interaction of a group of non-linear systems, as

represented by real describing functions, with the inverse Nyquist locus of a

type 0, third-order, linear system with a transfer function is given in equation

5.1.

K
G(s) = ---:--------::---

S3 +5i +6s+1
........................ (5.1)

This is an adaptation of an example used by Kim, et al. (2000) which was the

transfer function for an incubator used in a gynaecology ward. For the

purposes of this investigation gain K had to be greater than 29 to ensure that

the basic system would be unstable without any non-linear elements present. A

value of K = 50 was chosen to give an unstable response and so ensure limit-

cycle behaviour in appropriate cases without having to add extra gains to the

non-linearities, and this gave a unit-feedback step response shown in Figure

5.1. The roots for this value of K are:

-5.5676, +0.2838 + 3.0132j, +0.2838 - 3.0132j

From the closed-loop characteristic equation the frequency of oscillation is

2.45 radls (to 3 significant figures) and is independent of K. If the magnitude

of the inverse Nyquist is calculated for K = 50 with only the real terms present

(i.e.: for the point were it crosses the real axis) then the cross-over point is
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found to be -0.58 cm. This is the inverse Nyquist value shown in red in Figure

3.5 [reproduced here for clarity] and in all subsequent figures which plot the

describing function/inverse Nyquist loci.

0.58

Inverse Nyquist

Describing function

x

Magnitude of limit-cycle oscillation

Figure 3.5: A real describing function locus with an inverse Nyquist
magnitude superimposed on it.

The relevant calculations are shown in Appendix A2.1.

6

·6

·8

.10o

Fig. 5.1:

G(s)=50/(S3+5s2+6s+ 1)

-tnp.JtSlgnal
- output signal

10
(seconds)

tandard transfer function with unit feedback

The method of analysis, based on Kochenburger's Stability Criterion (section

3.5), as ume that the non-linear element can be dealt with separately and its
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describing function found. The describing functions for these non-Iinearities

were then used in conjunction with the inverse Nyquist plot of the transfer

function in equation 5.1 to predict when limit-cycles would occur and to obtain

their characteristics in the manner shown in Figure 3.5. For the derivation of

describing functions, general calculations and other programming, MATLAB

has been the package of choice. Similarly with SIMULINK because it is so

well integrated with MATLAB. Simulation of the various non-linearities in

series with the transfer function with unit feedback gain produces limit-cycle

outputs whose frequencies and amplitudes can then be compared with the

theoretical predictions.

The arrangement shown in Figure 5.2 was used, but with the non-linear block

absent, to obtain the output response to a step input as shown in Figure 5.1.

The responses, with the non-linear block present, for all of the non-linear

modules can then be compared with this result.

Non-
linearity

Transfer
function

Output

Step up at 0
seconds

Step down at
10 seconds

Fig.5.2: Basic testing arrangement
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5.2 Testing the system with the standard non-linearities

As shown above. a value of K which made the basic system unstable so that no

extra gains had to be added to the non-linearities, and then when these were

present, if all other conditions are favourable, limit-cycles would occur.

A SIMULINK model was used, with various standard non-linearities from the

toolbox inserted. The basic arrangement is shown in Figure 5.2.

5.2.1 Hard Saturation

When the saturation non-linearity was used, with a I0 second step as input, the

oscillatory output shown in Figure 5.3 was produced. A step of two units was

used so that it would comfortably pass into the saturation region. A vital check

was run at this stage. This took the form of an open-loop simulation run with a

ramp input and only the non-linearity in the forward path, Figure 5.4a. The

output of this, Figure 5.4b gave the correct form (correct parameters) for the

characteristic to be used when obtaining the describing function. The

describing function for this non-linearity was calculated using a suitable .m file

and the output then plotted with the magnitude of the Inverse Nyquist diagram

superimposed on it to produce the result shown in Figure 5.5. From this, the

expected magnitude of the limit cycle was then obtained and the result

compared with the simulation in Figure 5.3.
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5

4

3

2

:J
a.
"S
0

0

-1

-2

-3
0 5 10 15

time (seconds)
20

Fig. 5.3: Limit-cycle oscillation with hard saturation

L
25

l

30

Unit ramp
input

Non-linear
characteristic

Fig. 5.4a: Circuit to display the non-linear characteristic
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-1 -----;----;:tI •.

3

2

-2

-3 ••
o

.. ·T....
-- saturation output

• ramp input

.........

...........
2 3

time (seconds)
4 5 6

Fig. 5.4b: Hard saturation characteristic

0.9

0.8

OJ
z 0.7
:>
Cl.
:> 0.6
0
c
0n 0.5
c
.2
Ol 0.4c
:0"5 0.3en
Q)

0
0.2

0.1

0
0

-- Describing function
-- Nyquist value at crosso-..er
.......... Magnitude of limit-cycle

T

2 3 5 6
.....L __L_ _ __.l_

7 8 9 104
error e (input to the non-linearity)

Figure 5.5: Plot of describing function N(x) against input x - hard saturation

The calculated magnitude of the limit-cycle, from Figure 5.5, is 2.15 ± 0.02

The actual magnitude of the limit-cycle, from Figure 5.3, is 2.15 ± 0.03.
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From appendix 2.1, the calculated frequency of oscillation is 2.45±0.001 rad/s.

From Figure 5.3, the measured frequency of oscillation is 2.4±0.03 rad/s.

5.2.2 Soft Saturation

This is the case where the saturation does not set in immediately but there is a

smooth, albeit fairly rapid, transition from the initial linear response to the full

saturation effect.

MATLAB does not supply an example of this non-linearity so what is shown

here is the interaction between the inverse Nyquist locus and the describing

function. As a general rule in this research, whenever a required non-linearity

was not available in MATLAB it was simply created using the fuzzy methods

described in chapter six. In the case of soft saturation the describing function

used is for a system with one break-point, an initial slope of unity and a final

slope of 0.1. This calculated result will be used in chapter seven to compare

with the simulation result obtained using the fuzzy logic version of this non-

linearity. The result is shown in Figure 5.6 and, from this, the calculated

(predicted) magnitude of limit-cycle is 1.91±0.02.
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0.8

-- Describing function
-- Nyquist value at cros sover
.......... Magnitude of limit-cycle

0.9

w
Z 07
:5a.

~ 0.6 __ ------~----------------~--------~---+--~c
ot5 0.5
c
.2
g> OA
:0
.~ 0.3

c3
0.2

0.1

6 7
_ _J__ _ __l__

8 9 10
o o 4 52 3

error e (input to the non-linearity)

Figure 5.6: Plot of describing function N(x) against input x - soft saturation

5.2.3 Dead-zone

This non-linearity is one of the standards available in SIMULINK and so its

behaviour can be tested. However, on its own, it did not produce a stable limit-

cycle effect. It simply went from over-damped decay of the signal at low gain

settings, to runaway oscillation at higher gains. This was exactly what was

expected when looking at the describing function in Figure 4.8. Provided the

value of the inverse yquist at the crossing point was below the slope of the

outer part of the non-linearity, so that the describing function locus crossed it,

the locus would simply go from a region where the gain was less than unity, so

that the input signal would simply decay, to a region where the overall gain

was greater than unity. After that point, with no way back as far as the

describing function was concerned, the oscillations would simply grow

uncontrollably. The system would be unstable.
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5.2.4 Dead-zone plus hard saturation

This non-linearity CAN be duplicated, as shown Figure 5.7, using the standard

modules supplied in the SIMULINK toolbox.

According to the basic describing function locus shown in Figure 4.9 this has

the potential to exhibit the limit-cycle effect. Accordingly, a simulation

arrangement was designed, similar to Figure 5.7, and this was used to produce

the oscillatory response shown in Figure 5.8. This oscillatory response was

produced with the limits of the saturation non-linearity set to ±1 and dead-zone

set to ±O.5.

Step up at 0
seconds

OutputTransfer
function

Dead Satur-
ation-zone

Step down at
10 seconds

Fig. 5.7: Simulation arrangement for dead-zone plus hard saturation
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The calculated magnitude of the limit-cycle, from Figure 5.10, is 1.79 ± 0.02

The actual magnitude of the limit-cycle, from figure 5.8, is 1.78 ± 0.03

As before, from Appendix 2.1, the calculated frequency of oscillation IS

2.45±0.001 rad/s and, from Figure 5.8 the measured frequency of oscillation is

2.44 ± 0.03 rad/s

5.2.5 Dead zone plus soft saturation

As in the case of the soft saturation non-linearity on its own, MATLAB does

not supply an example of this effect and the required module was created using

the fuzzy methods described in chapter six. All that is shown at this stage is

the interaction between the inverse Nyquist locus and the describing function.

The describing function used is for systems with two break-points, an initial

slope of zero, followed by a slope of one and a final slope of 0.1. Again, the

67



Chapter Five: Simulation and Analysis of Non-linear Systems

calculated result will be used in chapter seven to compare with the simulation

result obtained using the fuzzy logic version of this non-linearity. From Figure

5.11 the predicted magnitude of the limit-cycle is 1.87 ± 0.02.
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0.6
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.Q
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c
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T

--- --:~J-- Describing function
-- Nyquist value at crOSSO\A9r
.......... Magnitude ~I~it-cycle

_.1
9 102 3 4 6 7 85

input to the non-linearity

Fig. 5.11: Describing function N(x) / input x - Dead-zone + soft saturation

5.2.6 The ideal relay (or pure Coulomb friction)

This gives a describing function of the form Y = Yx and consequently would

cross the inverse Nyquist locus for any value of x, all decided by the value of

the gain K of the linear part of the system. However, it is not possible to have a

pure Coulomb effect on its own because the non-linearity must be some effect

after time zero. The ideal relay is usually shown with saturation and that is

what we have here.
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The calculated magnitude of the limit cycle, from figure 5.l4, is 2.25±0.02

The actual magnitude of the limit-cycle, from Figure 5.12, is 2.30±0.03

From appendix 2.1, calculated frequency of oscillation is 2.45±0.001 rad/s

From Figure 5.12, the measured frequency of oscillation is 2.42±0.03 rad/s

5.2.7 Coulomb friction plus viscous drag

This is similar to the previous case except that the whole describing function is

raised by an amount equal to the value of the slope of the viscous drag. This

has the effect of moving the cross-over point on the inverse Nyquist diagram,

and hence the magnitude of the limit-cycle, to a higher value. Also, the gain of

the viscous drag must be less than 0.58 (the value of the inverse Nyquist where

it eros es the real axis) otherwise no limit-cycle will occur.
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The calculated magnitude of the limit-cycle, from Figure 5.16, is 7.48±0.02

The actual magnitude of the limit-cycle from SIMULINK is 7.15±0.03

From appendix 2.1, calculated frequency of oscillation is 2.4S±O.OOl rad/s

From Figure S.14(b), the measured frequency of oscillation is 2.4S±O.03 radls

5.2.8 Coulomb friction plus viscous drag plus saturation

Again, the viscous drag must be less than 0.58 (the value of the inverse Nyquist

where it crosses the real axis).

Couloni:> +/-1, Viscous drag 0.4 for 1.5 seconds, Saturation +/-1.6
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Fig.5.18: Coulomb friction plus viscous drag plus hard saturation
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The calculated magnitude of the limit-cycle, from Figure 5.20, is 3.53±0.02

The actual magnitude of the limit-cycle from Figure 5.18 is 3.S2±0.03

From appendix 2.1, the calculated frequency of oscillation is 2.4S±O.OOl radls

From Figure S.18, the measured frequency of oscillation is 2.42±O.03 rad/s.

5.2.9 The triple slope non-linear characteristic

This sub-group of non-linearities is more complex than the earlier ones and

none are available as standards in SIMULINK. Only their describing functions

are presented in this section. In this investigation they were designed by fuzzy

logic methods and their performances are demonstrated in chapter seven.
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Fig. 5.21: De cribing function for the triple-slope characteristic - Case (i)
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The magnitude of the limit-cycle = 8.SS±0.1S. It is worth noting that when the

magnitude of the signal exceeds the inverse Nyquist value, at 1.7±O.lS, the

overall gain will become greater than unity and the signal will be swept around

to the limit-cycle position. The magnitude of the signal will appear to jump

and the bounded oscillation will set in.

5.3 Non-linearities which produce more than one limit-cycle

These non-linearities are representative of a group which has the potential to

exhibit different limit-cycles triggered by inputs at different amplitudes. The

examples given here can only produce a maximum of two limit-cycles apiece;

but in principle, given sufficiently complicated functions, any number of limit-

cycles, of different magnitudes, could be produced by the same non-linearity.

This would carry across to the complex non-linearities which would have the

potential to produce multiple limit-cycles with different frequencies as well as

different amplitudes.

Such involved functions are rarely produced in mechanical systems except for

the case of vibrating plates. They are not unknown in the chemical industry,

although they are rarely recognized for what they are. They can also appear in

electronic circuits and in software systems. Windows 7 provides one example:

when a package is interrogated before it has fully loaded and the background

brightness starts to oscillate. It is stopped by resetting the package by starting

the task manager.

However, because of their complexity, there are no standard examples

available in any simulation packages, and certainly there are none available in
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SIMULINK. For this reason, only the describing functions, and their

associated predictions, are presented in this section. The actual functioning

non-linearities have been designed by fuzzy logic methods, and their behaviour

demonstrated, in chapter seven. This is a further advantage of the design-

technique that has been developed for use in this investigation. Apart from a

comment in Atherton (1981) to the effect that since a particular differential

equation may have more than one limit-cycle solution they may exist one

inside another in a phase-plane portrait there are few other mentions in the

literature, (Bendixson, 1901). To the best of the author's knowledge, no

detailed investigations of their interactions have been reported in the research

literature.

5.3.1 A non-linearity with three break-points (four slopes)
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Fig.S.24: De cribing function for the three break-point characteristic
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This time there are two positions where limit-cycles might occur: (i) first limit

cycle at 1.60±O.OS, second limit-cycle at 9.1S±O.08.

5.3.2 The four break-point case (five slopes)

This characteristic presents a slightly different situation to the previous case.

Again, there are two positions at which a limit-cycle may occur, the first limit-

cycle at 1.64±O.OS and the second at S.08±O.OS but looking at the extreme right

of the graph a critical point i marked.
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5.4 The significance of critical points

In Figure 5.25, it can be seen that there is a critical value for the error signal,

9.85 ± 0.3 in this case, in which a rising value of the describing function may

cross the inverse Nyquist locus a second time. This holds out the potential for

instability if the input signal rises high enough (higher than this value). If

using the describing function as a design tool, it can be seen from chapter four

that the ends of the describing loci are asymptotic to the value of final slope.

So to prevent runaway oscillation all that is needed is to make sure that the

value of the final slope of the non-linearity is less than the value of the inverse

Nyquist. A similar situation exists in the triple-slope characteristic case (ii).

From Fig. 5.22 it can be seen that there is a critical point where, if the input

(error) signal exceeds 7.5±0.3 there will be runaway oscillation. Looking at

Figure 5.25 it can be seen that there is an earlier critical point, at about 3.41. If

the input signal is higher than this value then the system enters a region in

which the gain is great than unity. The result will be that as the error signal is

swept around the loop its value will continue to increase until the second limit-

cycle position is reached. So the input signal does not have to reach a value of

5.08 to initiate the second limit-cycle oscillation; all that is necessary is that it

is higher than that first critical point and it will automatically be amplified to

the second limit-cycle value.

5.5 Conclusions

In this chapter the transfer function which had been chosen to be used, in

conjunction with which all of the non-linearity performances were to be
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judged, was introduced. The describing functions for the standard non-

linearities were then obtained and any limit-cycles and their characteristics

were predicted. These were then compared with simulated results.

More involved non-linear systems were then designed and their performances

predicted. These designs culminated in systems which were predicted to

produce multiple limit-cycle. However, since none of these non-linearities

were part of the standard range supplied by SIMULINK, the checking of their

performances against actual simulations has been postponed until chapter

seven. Then they can be designed using fuzzy-logic techniques. Before this,

the methods of fuzzy logic have to be introduced in chapter six.

The final item discussed was the concept of critical points, as defined in this

chapter. Their relevance will be examined in chapters seven and eight.
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Chapter Six

FUZZY SYSTEMS

6.1 Introduction

Fuzzy logic theory was developed in the 1960s (Zadeh, 1965, 1969) but it was

not until the 1970s that the concepts were applied to control engineering

(Mamdani, 1974; Mamdani et al.,1975). Since then, fuzzy logic theory in all

of its manifestations has continued to gain momentum. Kandel (1982) listed

over 3000 "Key references in fuzzy pattern recognition". In the journal for

Fuzzy Sets and Systems over 5000 papers have been published so far; and

similar numbers of papers have been published in other journals such as the

IEEE Transactions in Fuzzy Logic. Zimmerman (1996) gave a database figure

of 12000 published papers. Although fuzzy set theory was never a universal

panacea that could solve all problems it has proved that it has considerable

potential for a host of practical applications

For the current research the attraction of fuzzy control systems is that they are

inherently non-linear and can themselves exhibit the range of features of

classical non-linear systems. Furthermore, fuzzy logic techniques provide a

very flexible method of modifying the actual shapes of signals by design.

There are many other methods which are available to do this but when it comes

to suptly designing partial inverses of a system, or to designing systems with

several non-linearities then the fuzzy approach is superior.
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In this chapter the basic principles of fuzzy logic and of fuzzy control systems

are briefly outlined. The possible alternative methods of altering the output

signal are explained and reasons given for the approach chosen in this research.

6.2 Fuzzy Control Systems

The standard fuzzy controller design stems from the original one developed by

Mamdani. He used a signal and its derivative as the inputs but this can be

generalized to a group of input signals, each signal representing a different

physical quantity. As an example, a two-input signal system, with a single

output, is considered. Firstly, the crisp inputs have to be converted to fuzzy

signals. This is accomplished by defining a group of fuzzy sets for each input

variable, each set representing a range of the same physical variable as the

input crisp signal but also representing the probability that the signal is

represented in that range. For example, temperature might be represented by

three sets, each representing a range of temperatures and each set labelled by a

subjective term: cold, warm and hot as in Figure 6.1. The shape of the fuzzy

set can be quite arbitrary, within certain bounds, but a triangular shape is the

most easy to use because the membership values are most easily calculated for

that shape. A related point is that triangular sets do not introduce any

distortions or biases into the fuzzy calculations. In our example, a given crisp

temperature value, 22°C say, would appear to intersect the fuzzy set labelled

warm at the 0.7 mark, whilst it would cut the set labelled hot at 0.3. The

significance of the membership function figures is that they represent the

degree of confidence that an element which happened to be within that set is

entirely a full-blown member of it i.e.: 100% membership, probability of
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membership =1 (which is the maximum it can be), or perhaps is partly a

member of orne other set. In this example the single crisp temperature value

22°C is represented by two singleton fuzzy quantities: set Hot (22/0.3) and set

Warm (22/0.7). The first number in brackets represents the element itself (its

value or name) and the second number is its membership value for that set.

In general, this process of fuzzification of real, crisp, quantities produces two

fuzzy values for each crisp value if there is overlap of the defined fuzzy sets, or

one fuzzy value if there is no overlap but the defined fuzzy sets are just

touching.

Cool Warm Hot

Membership
values

0.7

0.3

0
0 10 20 22 30 40

Temperature (DC)

Fig. 6.1: Fuzzy inQut sets reQresenting tem12erature ranges

The next stage is to create a rule-base which looks at each fuzzy value for a

given physical quantity and compares it with each respective fuzzy value for

the incoming signal value for every other physical quantity. The outcome of

the series of comparisons is formulated as a rule base which states what the

output signal from the fuzzy controller, for that group of inputs, should be.

This rule base is utilised by the inference engine which also applies appropriate
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weighting to the individual output signals depending upon the membership

values of the inputs. When all the fuzzy input signals at a given time-sample

have been cross-correlated in this fashion their collective output results are

then combined in some suitable fashion, in the defuzzification section, to give a

single crisp output signal. What methods are employed to calculate the crisp

output signal depends on the type of rule-base being used and sometimes on

other factors such as the amount of computing power available or the purpose

of the control system in use. The overall format of the basic fuzzy controller

is shown in Figure 6.2.

Rule-
base

1
_.. fuzzifier Inference defuzzifier
-... engine1I

CRISP
INPUTS

FUZZY
INPUTS

FUZZY
OUTPUTS

CRISP
OUTPUT

Fig.: 6.2: A typical fuzzy control arrangement

6.3 Methods for tuning the fuzzy control systems

Currently there are four known ways in which the output signal of a fuzzy-

logic controller can be adjusted, or tuned: (i) by adjustment of the fuzzy sets

themselves (Ross, 2004) (ii) by altering the rule-base (Kickert et al., 1978) ( iii)

by using an inference filter (Kiendl, 1994, 1998; Liming Hu et al., 2007; Guier
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et al., 2005; Mendoza et al., 2007) or (iv) by using negative as well as

positive rules (Kiendl, 1998;Krone et al., 1996; Branson et al., 2001).

(i) Various shapes can be used to define the fuzzy sets and can have a

significant effect in classification and cluster analysis but for control

purposes they have little effect on overall performance (Mansoor et al.

2007; Mitiam and Kosko, 2001). As already mentioned, it is usually

best to use triangular sets for control work as the use of other shapes

simply distorts the incoming signal and adds an extra unwanted

complication to the design process. The number of fuzzy sets used, and

their positions, do have a major bearing on performance and this needs

to be carefully considered. However, the greater the number of fuzzy

sets used the greater is the computational overhead.

(ii) The design of a fuzzy rule base is still to a large extent intuitive. Some

statistical methods are available but most methods are still heuristic.

Evolutionary programming techniques have shown promise in

optimising rule-bases but nothing has been applied to the problem of

deliberately creating non-linearities. (Wang et al., 1998; Casillas et al.,

2005). The basic Mamdani design for the rule-base is the most difficult

to tune because it is a linguistically-based system. In fact this was one

of the drawbacks of the initial Mamdani approach because it does not

lend itself easily to mathematical manipulation. Consequently

designers tended not to trust it since they could not 'prove' that the

system was stable or was always going to be stable. A major advance
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was the introduction of the Sugeno, or Takagi-Sugeno-Kang, method of

fuzzy inference (Sugeno, 1985). This resulted in a method which was

much more mathematically and, more importantly as far as this

research was concerned, much more geometrically tractable than

Mamdani .

(iii) A powerful method of adjusting the output signal is to use an inference

filter (Kiendl, ]994). This involves inserting a filter between the fuzzy

output of the inference engine and the crisp output calculation stage of

the controller, Figure 6.3, in practice splitting the defuzzifier into two

parts. The method usually consists of applying a position-weighted

function to the fuzz output signal. The extra computational overhead

in using such a filter is very small and it has the potential to provide

fine-tuning for the s stem. To date, there have been no reports of the

technique being applied to create or enhance non-linear effects.

Fig.6.3: se of an inference filter

(iv) If a set of circumstance necessitate the shut-down or, at least, the rapid

reduction in the amplitude of the signal levels in a system (for instance,
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to prevent damage) then a fuzzy controller which can handle negative

rules can be used (Kiendl, 1998). This can be looked upon as a fuzzy

multiplexer which would allow controller selection, not just rule

selection, to be made. Although the development of a hyperinference

engine is simple in principle, the Matlab fuzzy toolbox does not easily

lend itself to this modification of its architecture. Because of this

consideration, plus the fact that the creation of a switching mechanism

is not part of the main thrust of this research, it was decided that it

should be left for future development.

6.4 The tuning approach chosen

At an early stage in this investigation a decision had been made to investigate

non-linearities whose describing functions only had real parts, as opposed to

complex systems. This had an immediate advantage in that it simplified the

fuzzy design enormously since only one crisp input will be required for each

controller. The restriction also meant that only limit-cycles of fixed frequency

could be investigated but this was felt not to be too serious a limitation at this

stage. Furthermore, it avoided the inherent problem of fuzzy systems: the large

computational overhead associated with 'rule explosion'. As the number of

inputs increases and the number of input fuzzy sets increases, the number of

computations increases enormously - multiplicatively, not just additively. For

instance, if the number of inputs is doubled and the number of fuzzy sets per

input increases threefold the computational effort required increases by a factor

of six. Actual numerical values have been included when this topic is

discussed in more detail later in the thesis.
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6.4.1 The fuzzy input sets

All sources (Ross, 2004; Passino et al., 1997; Zimmermann, 1996) suggest that

the size, number and position of the input fuzzy sets have a major bearing on

performance. They affect the shape and slope of the rule-surface and the slope

is directly proportional to the gain of the fuzzy controller. If narrow fuzzy sets

are used then the slope of the rule-surface becomes steeper. So the gain of the

fuzzy controller is dependent on the width of the fuzzy sets, particularly the

central fuzzy sets. This is important because in order for a limit-cycle to occur

the gain of the fuzzy controller must be greater than the gain-margin of the

plant. It will be shown, in chapter seven, that when deliberately creating non-

linearities the number of input fuzzy sets needs to be one more than the number

of break -points.

6.4.2 The choice of inference method

As discussed earlier, the Mamdani rule-base is the most difficult to tune

because it is a linguistically-based system whereas a Sugeno rule-base lends

itself to mathematical manipulation. Consequently the Sugeno type was

chosen as the rule-base system of choice for this investigation. In a zero-order

Sugeno system a typical fuzzy rule will have the form:

If input x is a fuzzy singleton in set A and input y is a fuzzy singleton in set B

then output z = k:

where A and B are pre-defined input fuzzy sets and k is a constant. So all the

output membership functions are singleton spikes. However, for the purposes
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of this research the zero-order is not flexible enough. In a first-order Sugeno

system the rules will be of the form:

If input x is afuzzy singleton in set A and input y is afuzzy singleton in set B

then output z = m*x+n*y+c

where m, nand c are constants. However, this investigation is confined to real

non-linearities and therefore only a single input is required. So the rules for a

first-order Sugeno system will be reduced to the form:

If input x is afuzzy singleton in set A then output z = m *x+c . .. . . . . . .. (6.1)

Higher-order Sugeno-like systems exist but they are more complicated and add

nothing of value to this investigation.

6.4.3 Possible use of an inference filter

Conventional systems offer limited defuzzification methods. The two

commonest in Mamdani-type systems are CoG (centre of gravity) and MoM

(mean of maximum). In each separate application these options are usually

interactively tested to see which produces the best results. They are ad hoc

approaches and they do not enable sensitive optimization to be carried out.

Sugeno types of rule-base are mathematically more tractable, particularly the

first-order systems, but they still do not allow the overall range of possible

fuzzy output signals to be globally adjusted.
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To overcome this drawback two approaches have been developed: the

inference filter approach and the torque method of defuzzification. The

inference fillter, Figure 6.3, is placed between the fuzzy outputs and the

defuzzification stage and has the form

m(u,) = m(u,).h(u-u,) (6.2)

Where m(u,) is the membership value of element uj output by the inference

engine and m(u,) is the modified membership value of the same element after

passing through the inference filter. The magnitude of each individual fuzzy

output is modified by some function h which is distance selectable from some

pivotal position u.

r

By contrast, in the torque approach an extra term Lmk(u).(u - Uk) is added to
k=l

the formula for the crisp output. It can be looked upon as the torque induced

by mk (u) about some pivotal point u. mk (u) is the degree of activation of

rule k and (u - Uk) is the distance of the fuzzy output singleton from the pivot

position. Although the notions of inference filter and torque were developed

separately, the torque approach is simply a subset of the inference filter method.

MATLAB does allow a limited form of inference filtering in that it allows each

rule to be selectively weighted. However, they can only be weighted by a

factor between 0 and 1. Use was made of this limited form in chapter eight

when selective design of partial inverse describing functions was investigated.

6.5 The fuzzy approach used in this research

The Sugeno type 1 design approach was chosen, using single input signals and

triangular input fuzzy sets which were coincident but not overlapping. It was
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found that this approach enabled discontinuous non-linearities which have

straight sections beween break points to be easily designed. Further it was

found that the technique could be extended to continuous non-linearities. The

author is not aware of any other technique which allows non-linear systems to

be designed in such an easy and straightforward manner. The technique has

allowed a sufficiently large range of non-linearities to be rapidly developed for

it to be possible to identify patterns between them which were not previously

obvious and had not been reported in the literature. The effect of critical

points in influencing the range of input values that can exist before a limit-

cycle is activated, the interaction between adjacent limit-cycles if the system

possesses more than one, when is a system going to be stable and when

unstable - all points which will be considered in the next two chapters.

6.6 A Template

In order that fuzzy logic Sugeno type one functions could be easily designed, a

template was devised in which all the important features of each design could

be seen at a glance. An example of the template is shown in Figure 6.4 and the

complete details can be found in Appendix A3.5.
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0 [KI C, ] Z=K,X+C,

Defined slope and OlOB [Kz C2] Z=K2X + C2

constant for equ"
for each
straight line
section
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RULEBASE If input is ZE then output is OZE
If input is PS then output is OPS
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cases to avoid this problem ery slight overlapping of the input fuzzy sets was

RULESURFACE

Graph of non-
linearity

allowed. The number of inputs required is determined by the number of

K_,Slopes of straight
sections

Fig.6.4: Template for the design of the fuzzy non-linear functions
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break-points which are required plus and end of range value. Since linearities

which are symmetrical about the origin are being investigated, the pattern of

fuzzy sets will also be symmetric about the origin. Also, the fuzzy sets at each

end define the range of inputs to which the system will be able to respond. The

range must be chosen to be large enough otherwise signals will be able enter

the system which are out-of-range and therefore are not defined as far as the

software is concerned. The result of such a scenario would be that the output

which would be complete spurious and unrelated will the actual true state of

affairs.

The outputs obey the Sugeno type 1 arrangement. The output between each

pair of break-points will be a straight line give by equations of the form

y = Kx +C in which K represents the slope of the straight line and constant C

will be that value which satisfies the corresponding values of x and y at the

start of that particular linear, or pseudo-linear, section.

The rulebase used in this design is a one-to-one correlation between inputs and

outputs taken in order.

Finally, the template shows the shape ofthe fuzzy rule-surface which, with this

design arangement, should correlate exactly with the shape of the nonlinearity

which would be seen if a unit ramp were input to this designed module in an

open-loop arrangement.
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6.7 Conclusion

This chapter started with an overview of where fuzzy logic came from. The

next item was a brief introduction to fuzzy logic theory as applied to control

systems. An explanation of the various tuning methods available was

presented, including some modem methods not often seen but which have a

potential relevance to this research. After giving an overview of the tunning

methods available decisions were made about which were most appropriate for

this work. Some of the methods which have the potential to be useful but are

not directly relevant at this this stage have been earmarked for future work. In

general, the techniques which have been so earmarked suffer from excessive

computational time requirements rather than any inherent complexity in their

implementation.

Once the decisions had been made about the fuzzy techniques to be used the

next step was to apply them to the design of non-linear systems. This work is

reported in chapter seven, together with an analysis of their performance.
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Chapter Seven

SIMULATION AND ANALYSIS OF FUZZY NON-LINEAR

SYSTEMS

7.1 Introduction

As discussed in chapter six, the first-order Sugeno type of fuzzy system was

found to be the most suitable for this research since the inference rules take the

form of linear equations, as stated in equation (6.1):

If input x is a fuzzy singleton in set A then output z=m*x+c

(Note: that the symbol K was used to represent the slope when deriving the

basic describing function. Although the symbols m and K are completely

interchangeable, to avoid confusion the symbol K has been used in the rest of

this work)

It was also decided that triangular input sets would be used since, as already

reported, the shape of fuzzy sets is not critical for control system and fuzzy

membership values for that shape are the most easily calculated and do not

introduce any distortions or biases into the fuzzy calculations.

A series of trials took place with different numbers of input sets, with varied

widths, with sets which overlapped by differing amounts and with sets which

just touched but did not overlap. It was found that the shape of the fuzzy input

sets did not really matter if they were just touching, except for square-shaped

sets which caused considerable cross-talk at their junctions. However, no

drawbacks were found using triangular sets, with trapezoidal end sets, so the

research continued with these in use.

96



Chapter Seven: Simulation and Analysis of Fuzzy Non-linear Systems

With the input sets just touching each other, the membership functions of the

fuzzy input quantities appeared to play no part in the output of the inference

section. However, if there was any overlap of the input sets then the

membership functions did make a contribution and this was seen in the

smoother transition from one section to another. Because it was easy to see,

and to design, the output responses, the subsequent research was conducted

with the sets just touching. When any particular non-linearity was designed,

although the output response could seen by looking at the rule-surface (which

was two-dimensional in this case where there was only one input) the

subsequent model was tested in the SIMULINK arrangement shown in Figure

7.1, this was to ensure that some unexpected distortion(s) had not crept in.

Ramp
~

Fuzzy ____. Signal detector
input non-linearity e.g.: CRO

Fig. 7.1: Testing arrangement to ensure the non-linearities have the correct
parameters.

For every fuzzy input a corresponding output of the form z=Kx+c was

designed and the rule-base consisted of a one-to-one relation between the

inputs and the outputs. Using this technique, replicas of the standard modules

from chapter five were designed and tested to evaluate how closely the fuzzy

methods could emulate ordinary classical results. When this had been

successfully demonstrated the techniques were used to design the more
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involved non-linearities whose behaviour had been predicted in chapter five

but which are not ordinarily seen.

7.2 Fuzzy Hard Saturation

The fuzzy non-linearity consists of three fuzzy input sets and three outputs with

the values shown in Figure 7.2. This was embedded in the general SIMULINK

circuit shown in Figure 7.3. From this arrangement the set of signals shown in

Figure 7.4 was obtained.

From Figure 7.4, the measured frequency of oscillation was 2.40±0.03 rad/s.

This compares favourably with the calculated frequency of 2.45 ± 0.001 rad/s

(see Appendix 2.1). From Figure 7.4, the measured magnitude of the limit-

cycle was 2.05±0.03 which compared with the calculated magnitude of

oscillation, from Figure 5.5, of 2.15±0.02. So, in Figure 7.4, comparing with

the results shown in Figure 5.3, the fuzzy simulation was a close fit to the

saturation module supplied with SIMULINK package. The results from Figure

5.3 were superimposed in Figure 7.4 for comparison.
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Fig. 7.3: General SIMULINK model of the fuzzy non-linear control circuits
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Fig. 7.2: Settings for the fuzzy hard saturation module
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Fig. 7.4: Fuzzy hard saturation impulse response
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7.3 The dead-zone non -linearity

30

From Figure 7.6 the measured frequency of the limit-cycle oscillation was

10

2.43±O.03 rad/s. Again, this compares favourably with the calculated limit-

cycle frequency of2.4S±0.001 radls (see Appendix 2.1). From Figure 5.10 the

calculated magnitude of the limit-cycle was 1.79±0.02. From Figure 7.6, the

actual magnitude was 1.8S±0.03.
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NB NS ZE PS PB

INPUT ww
-10 -1.5 -0.5 0.5 1.5 10
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OZS [0, 0] z=O
0 S [1, 0.5] z = x + 0.5
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If input is NB then output is ONB
If input is NS then output is ONS
If input is ZE then output is OZE
If input is PS then output is OPS
If input is PB then output is OPB

10

RULEBASE

RULESURFACE 1

-1

-1.5 -0.5 0.510 1.5

Fig.7.5: Settings for the Fuzzy dead-zone plus saturation model
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Fig. 7.6: Fuzzy dead-zone + saturation response

7.4 The relay (Coulomb friction)

In chapter five three case of this were considered. Here, the ideal relay case has

not been considered since there would be nothing new to be seen between that

and the case with viscous drag.

7.4.1 Coulomb friction plus viscous drag

From Figure 7.8 the measured frequency of the limit-cycle oscillation was

2.42±0.03 rad/s. From appendix 2.1 the calculated limit-cycle frequency was

2.45±0.00 1 rad/s. From Figure 5.17 the calculated magnitude of the limit-

cycle was 7.48±0.02 and from Figure 7.8, the actual magnitude was 7.68±0.03.

102



Chapter Seven: Simulation and Analysis of Fuzzy Non-linear Systems

B PB

INPUT V_
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Fig. 7.7: Settings for the Coulomb friction plus viscous drag model
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Fig. 7.8: Coulomb friction (Relay) plus viscous drag response
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7.4.2 Coulomb friction plus viscous drag plus hard saturation

NB NS PS PB

INPUT

-10 -1.5 0 1.5

OPB [0 1.6] Z= 1.6
OPS [0.4 1 ] Z = O.4x +1
ONS [0.4 -1 ] Z = O.4x - 1
ONB [0 -1.6] Z = -1.6

OUTPUT
10

RULEBASE

This was included as a logical extension of the previous section because it

If input is NB then output is ONB
If input is NS then output is ONS
If input is PS then output is OPS
If input is PB then output is OPB

1.6

exemplified several features of describing functions which could be used in

RULE SURFACE

1

-1

-1.6

Fig.7.9: Settings for Coulomb friction plus viscous drag plus saturation

o 1.5-10 -1.5 10

design work at a later stage.
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Fig. 7.10: Coulomb friction (Relay) plus viscous drag plus saturation response

From Figure 7.10 the measured frequency of the limit-cycle oscillation was

2.40±0.03 rad/s. From appendix 2.1 the calculated limit-cycle frequency was

2.45±0.001 rad/s. From Figure 5.20 the calculated magnitude of the limit-

cycle was 3.52±0.03 and Figure 7.10 gave an actual magnitude of3.53±0.03.

7.S Triple-slope non-linear characteristics

Starting with this group of non-linearities the design technique that had been

developed began to show its worth. These non-linearities had much more

involved describing functions which exemplified a rich variety of non-linear

features. As mentioned in chapter four, there were three main cases to be

considered for the triple slope non-linearity and these depended on the relative
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values of adjacent slopes. This was because the formulae for the describing

function depended on the relationship (K;_I - K;) where K;_I & K; were the

values of adjacent slopes. There were three distinct cases:

7.5.1 Case (i): Ko > K1 > K2

NB ZE PS PB

4

S

-4

INPUT

-10 -4 -1 0 1 4 10

OUTPUT OPB [ 0.2 2 ] Z= O.2x + 2
OPS [ 0.6 0.4 I Z = 0.6x + 0.4
OZE [ 1 0 I z= x
ONS [ 0.6 -0.4 ] Z = 0.6x - 0.4
0 B [ 0.2 -2 ] Z = O.2x - 2

RULEBASE
If input is NB then output is ONB
If input is NS then output is ONS
If input is ZE then output is OZE
If input is PS then output is OPS
If input is PB then output is OPB

RULE SURFACE

Fig. 7.11 Settings for fuzzy triple-slope (Case (i))
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Fig. 7.12: Fuzzy triple-slope response

From Figure 7.12 the measured frequency of the limit-cycle oscillation was

2.48 ± 0.07 rad/s. From appendix 2.1 the calculated limit-cycle frequency was

2.45 ± 0.001 rad/s. From Figure 5.21 the calculated magnitude of the limit-

cycle was 6.5 ± 0.05 and Figure 7.12 gave an actual magnitude of6.34 ±0.26.

7.5.2 Case (ii): Ko > Kt & K2 > Kt

In this instance, from Figure 5.22 it could be seen that the describing function

predicted that there would be a critical input magnitude above which the

system would be unstable and runaway oscillation would occur. To

demonstrate this effect, an annotated version of Figure 5.22 is given here (now

Figure 7.13).
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When gain = 50, the critical value = 7.5±0.3 and the magnitude of limit-cycle =

1.6±0.02. When the signal magnitude was less than the critical value the

system oscillated at the limit-cycle frequency. However, when the input was

greater than the critical value the signal was swept into the region where the

gain was greater than unity and runaway oscillation occurred.
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0.7

0.6

~ 0.5z
:5
Q.

:5
0 0.4
c
0

~c:
.2 0.3
Cl
c:
:0·c
o
<J) 0.2
~

0.1

0
0

-- Describing function
-- Imerse Nyquist \Calueat crossover
.......... Magnitude of limit-cycle
...... .. critical \Calue

3 4 5
J_ __j_

6 7
.L ___J____

8 9 102
input 10 the non-linearity

Fig. 7.13:Triple-slope describing function showing cross-over values
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7.5.3 Case (iii) - K; < K\ & K2 < K\

Referring to Figure 5.23, when the input was less than the critical value the

response to a step-input decayed - as could be seen in Figure 7.16.

However, when the input was an impulse greater than the critical value then the

signal swept around to the limit-cycle position - as can be seen in Figure 7.17.

The measured value of the limit-cycle was 9 ± 0.6 rad/s.

From Figure 5.22 the calculated value of the limit-cycle was 8.55±0.lS.
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Fig. 7.16: Triple response case (iii) with a step input less than critical value.
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Fig.: 7.17: Triple response case (iii) with a step input> the critical value.

However, when the input was an impulse greater than the limit-cycle value the

signal was again swept back to the limit-cycle point.
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Fig. 7.18: Fuzzy triple response case (iii), step input> limit-cycle value
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OUTPUT OPB [ 0.2 2.6 ] ~= 0.2 x + 2.6"\.
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0 B [ 0.2 - 2.61 Z= 0.2x - 2.6

RULE SURFACE

Fig. 7.19: Settings for the fuzzy triple-slope model- case (iii)
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7.6 Non-linearities which produce more than one limit-cycle

As discussed in chapter five, these were examples of non-Iinearities which

could be designed to ha e limit cycles at different amplitudes. The two designs

have three and four break-points respectively. However that was not the

reason for choosing them. Of more importance was that the first example had

a describing function which inherently got smaller at high signal values and so

should never have runaway instability, whilst the second had a describing

function which got larger at high signal values and so had to have stability

designed into it if runaway oscillation was to be avoided.
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7.6.1 The three break-point case

From Figure 7.21, the measured frequency of the limit-cycle oscillation was

2.41 ± 0.07 rad/s. From Appendix 2.1 the calculated limit-cycle frequency was

2.45 ± 0.001 rad/s. From Figure 5.24 the calculated magnitude of the lower

limit-cycle was 1.60 ± 0.05 and of the higher limit-cycle it was 9.2 ± 0.08.

From Figure 7.21 the actual magnitude of the lower limit-cycle was 1.52 ± 0.7

and of the higher limit-cycle it was 10.1 ± 1.2.

It was found, by successively increasing the values of the second impulse

magnitude, that the second limit-cycle was reached once the impulse had been

raised above about 5.6; although it took several oscillation to reach this new

stable position.
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Fig. 7.20: Settings for the fuzzy THREE-breakpoint model
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Fig. 7.21: Fuzzy three-breakpoint response showing two limit-cycles
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7.6.2 The four break-point case

INPUT

\13 B ill NS ZE PS PM PB PVB

-15 -6 -4 -2 -1 0 1 2 4 6 15

OUTPUT

RULE SURFACE

-10 -6 -4

2 4

OP\13 [ 0.75 -1.54] z = 0.75x - 1.54
OPB [ 0.22 2.44] z = 0.22x + 2.44
OPM [ 0.8 -0.68 ] z = 0.8x - 0.68
OP [ 0.22 0.48 ] z = 0.22x + 0.48
OZE [ 0.7 0 ] z = 0.7x
o lS [ 0.22 -0.48] z = 0.22x - 0.48
0 11 [ 0.8 0.68 ] z = 0.8x + 0.68
ONB [ 0.22 -2.44] z = 0.22x -2.44
0 \13 [ 0.75 1.54 ] z = 0.75x + 1.54

-2 -1

4

1 6 10

-4

Fig. 7.22: Settings for the fuzzy FOUR-breakpoint model

From Figure 7.23 the measured frequency of the limit-cycle oscillation was

2.4] ± 0.07 rad/s. From appendix 2.1 the calculated limit-cycle frequency was

2.45 ± 0.00] rad/s.

115



Chapter Seven: Simulation and Analysis of Fuzzy Non-linear Systems

From Figure 5.23 the calculated magnitude of the lower limit-cycle was 1.8 ±

0.05 and of the higher limit-cycle it was 5.50 ± 0.05. From Figure 7.23 the

actual magnitude of the lower limit-cycle was 1.85 ± 0.26 and of the higher

limit-cycle it wa 5.56 ± 0.26. The simulation output was shown twice. In the

second simulation, Figure 7.24, a third step input was applied, above the

critical value, and the signal went unstable with the amplitude rising

uncontrollably.

KO=O.7,K 1=0.22, K2=0.8,K3=0.22, K4=0. 75,P1 =1, P2=2, P3=4, P4=6
12

10

8

6
en::;
Cl. 4::;
0
ro 2c
OJ
'iii

0

-2

-4

-6
0

-- step input
-- signal output

.L

30
.i,

402010 50
tirre (seconds)

Fig, 7.23: Fuzzy four-breakpoint response showing two limit-cycles
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KO=O.7,K1=0.22, K2=0.8, K3=0.22, K4=0. 75,P1 =1, P2=2, P3=4, P4=5
40

35

30

25

(/) 20::;
Q_

::;
0 15
(ij
c
OJ 10'iii
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-5

-10
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-- step input
-- signal output

L

8050
time (seconds)

4020 100 120

Fig. 7.24: Fuzzy four-breakpoint response showing two limit-cycles and
runaway oscillation

KO=O.7,K1=0.22,K2=0.8,K3=0.22,K4=0. 75,P1 =1, P2=2, P3=4, P4=6
12 ~

--step inputl
-- Signal outputI

J. "i ~ _10
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-2o 40 60 8020 100
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Fig. 7.25: Limit-cycle spontaneously flipping from the higher value to the
lower
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7.7 Discussion of Results

This chapter has demonstrated that the author's new approach to designing

non-linearities, namely the combination of the Sugeno type one system with an

arrangement of input fuzzy sets which were just touching each other, provided

a powerful and very effective way of simulating functions which do not

possess memory and always produce real describing functions. As suggested

in the literature (Mansoor et al. 2007; Mitiam and Kosko, 2001) although

triangular functions have been used here, almost any shape of fuzzy set would

work - with the possible exception of square functions when there could be

cross-talk between adjacent input sets. In this investigation input sets which

were just touching have been used and they gave clear demarcation between

adjacent non-linear sections. If the input fuzzy sets were to overlap slightly

then the output functions would show smooth transitions from one non-linear

element and the next. This was found to be useful on occasion to avoid noisy

responses with some of the more involved designs - particularly when

designing inverses as discussed in chapter eight. However, the use of inputs

which just touched each other was more appropriate with the describing

function approach which made use of piecewise integration.

The method has been applied to a range of standard non-linearities and these

results have been compared both with the standard non-linear functions

supplied by SIMULINK and with predictions from theory. In each case the

outputs produced by fuzzy and by non-fuzzy means were indistinguishable

from each other. Also, they agreed with theoretical prediction to within one or

two percent.
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The success of the technique, plus its very simplicity, gave confidence in

extending it to more sophisticated structures, in particular structures which had

the potential to exhibit more than one limit-cycle. Two examples have been

given: the three break-point case and the four break-point case. In both cases

two limit cycles were predicted and were founds to exist with the magnitudes

expected. From Figures 5.24 and 5.25, showing describing functions with the

inverse Nyquist superimposed on them, some further behaviour-patterns could

be predicted associated with the cross-over points where the magnitudes of the

describing function were rising. These were positions, labelled as critical

points, where the describing functions were going from regions in which the

overall gain was less than unity to places where the gain was greater than unity.

When these were encountered, the magnitudes of the signals, as they went

around the feedback loop, were going to be swept to ever-higher values and

might, if there was a downward cross-over point higher up, be swept to that

limit-cycle position, otherwise instability would occur. This behaviour-pattern

could be found over the whole range of signal-magnitudes, leading to situations

where (i) non-linear systems were stable for low magnitudes but not at high

(e.g.: dead-zone, and the four-breakpoint case), (ii) were unstable at low

magnitudes but then became stable at high (e.g.: the triple-slope characteristic,

the four-breakpoint characteristic and Coulomb friction) , or (iii) have regions

of stability or of instability (e.g.: triple-slope case (ii), the three and four

breakpoint cases).

When a limit-cycle oscillation occurred, the magnitude of the signal was

increasing and decreasing in a cyclical fashion which means that it was moving
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up and down the describing function characteristic. If the magnitude of the

oscillation was greater than the distance between the limit-cycle position and

the next critical point then there was a chance that the signal would jump out of

the stable oscillation position and either enter the region of instability or move

to the next limit-cycle location. This effect was more likely to occur with the

higher limit-cycle because its magnitude of oscillation was greater. An

example of this effect was demonstrated in Figure 7.25. In Figure 7.24, the

start of runaway oscillation was shown. It was possible to design the non-

linearity such that the higher critical point did not exist or was much higher

than the oscillation of the higher limit-cycle. It was this feature: that the design

of new and exotic non-linearities was now possible, which enabled the

investigation of non-linear signal cancellation and modification. These results

were summarized in Figure 7.26 (a, b and c). The red lines indicate the range

of oscillation associated with each limit-cycle.

o critical points
X limit-cycles

; ....... ,.

,- f'o r

~ ~ ~~
.... ,

Limit-cycle
Stable may flip to
lirrur lower level
cycle

Fig. 7.26 Ca}: Effects of relative Qositions of limit-cycles and critical
Qoints - stable system.
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o critical points
X limit-cycles

...

Stable
Limit-
cycle

'-' ~"

Limit-cycle
may flip to
lower level

v

Fig. 7.26 Cb) : Effects of relative positions of limit-cycles and critical
points - runaway oscillation if input signal is too high.

o critical points
X limit-cycles

... v

'table
Limir-
cycle

Limit-cycle
may flip to
lower level

Fig. 7.26 Cc) : Effects of relative positions oflimit-cyc1es and critical
points - runaway oscillation if the higher limit cycle is initiated.

The author i not aware of any other arrangement which allows non-linear

systems to be designed in such a straightforward manner. The technique

allows the design and modification of non-linearities to be accomplished so

easily that it ha enabled patterns to be observed which have previously passed
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unnoticed - such as the fact that describing functions transform the slopes of

straight sections of the non-linearities to horizontal asymptotes.

7.8 Conclusion

This chapter started with an explanation of how the use of single -input fuzzy

systems which employed input fuzzy sets which were just touching, but not

overlapping, was developed to create non-linear systems. The newly-

developed technique was then used to create a set of non-linearities which were

compared with the standard set available in SIMULINK. The performance of

the fuzzy non-linearities was indistinguishable from the standard set. This

agreement between the fuzzy method for creating non-linearities and the

standard results already available gave confidence in applying the technique to

more complicated systems. Creating this confidence in being able to

extrapolate the new technique was necessary because otherwise the more

complicated systems could not be designed and tested since there was no other

design technique readily available. A general-purpose programming language

might have been utilised to do the design work if necessary but it would have

required considerably more effort that the use of the fuzzy approach required

without any guarantee of success.

Fuzzy non-linearities were then created for the more complicated systems for

which describing functions had been developed in chapter five. Using these

systems the behaviour of multiple limit-cycles as tested, and the relative

stability and the interactions between them, was both predicted and observed.
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The concept of critical points was introduced, with their relevance being both

demonstrated and discussed.

A feature which has emerged is that a describing function transforms the slopes

(gains) of the linear sections of the non-linearities into horizontal asymptotes

on the diagram used for displaying the describing function locus use in this

research, Fig. 3.5. Furthermore, the break points appear as vertical asymptotes

on the same type of diagram. This immediately produces as technique for

quickly creating look-up tables for non-linearities by using these asymptotic

effects and avoiding the use of mathematical calculations.

The next stage, in chapter eight, was to use these techniques both to create

'inverse' non-linearities, which could cancel-out the effects of standard non-

linearities, and to adjust signals so that non-linear effects which existed could

be modified at will. But this would first require an investigation into what

effect an 'inverse' function, in the sense employed in this research, would have

on a signal.
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Chapter Eight

Using Fuzzy Logic to Modify and Control Linear Systems

8.1 Introduction

The received wisdom was that it was inherently impossible to develop a perfect

inverse of a non-linear system to cancel out all non-linear behaviour, Lee et al.

(2001), Vashkov et al. (1998), Foo et al. (2001), because the principle of

superposition did not apply. However, although it might be true that it was not

possible to find inverses analytically there were cases in which complete

inverses could be found by geometric means. In particular, it was possible to

find inverses for systems which have real describing functions, as has been

demonstrated in this chapter. In any case, often a complete inverse function

did not have to be found: all that was necessary was that the shape of the native

describing function became modified sufficiently for it to no longer cross the

inverse Nyquist locus.

In this chapter the concept of an inverse function, as applied in this

investigation, was considered, some conclusions drawn, and a suitable

approach developed for creating such functions. The approach was then tested

by applying it to the standard functions already developed. The 'inverses' of

the standard functions thus created were then placed in series, in open loop,

with the original functions and the results of applying ramp inputs were

investigated. The research proceeded with the investigation of 'partial inverse'

functions which removed selected sections of a non-linearity. Finally, the
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problem of creating inverses of continuous non-Iinearities was considered and

the initial method was extended to include this group.

8.2 The effect of an inverse function

If a ramp input was applied to systems with an embedded non-linearity in an

open-loop circuit then the output signal would be representative of that non-

linearity. If a perfect inverse of the non-linearity was then placed in series the

output should simply have been the original ramp input, as in Figure 8.1. What

become evident during the course of this research was that it was indeed

possible, provided that the nonlinearity had a real describing function, to create

a perfect inverse. Furthermore, such inverses were simply the mirror images of

the original nonlinearities about the unit ramp. This was because all the

inverse had to do was to nullify the instantaneous gain introduced by the non-

linearity at each point along its path. If this effect was looked at more closely

some unexpected results emerge. In Figure 8.2 the effect of dead-zone,

followed by a unit linear response, was shown together with its mirror-image

about a unit ramp.

Output would be a unit ramp with the
non-linearity superimposed on it.

L--~_;_~_tram__ p~1 ·1,-_~_~_~e_-~_in_e_ar~1·IL..._~_. __ -l

Unit ramp ---+
Non-linear

---+ Perfect r--+ -:input system mverse

Fig. 8.1: The effect of a perfect inverse function
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y

Mirror-image

Dead-zone
plus linear
response

x

Fig. 8.2: Dead-zone plus linearity with its mirror image in the unit ramp

What was immediately obvious was that the mirror image was the same as the

non-linear characteristic for Coulomb friction plus a linearity. So Coulomb

friction, or the ideal relay, was the inverse of dead-zone and vice-versa. This

result could also be predicted algebraically as shown in Appendix A3.2. The

general transformations as far as the slopes (gains) of the piecewise linear

sections of the non-linearities were concerned were shown in Table 8.1.
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Table 8.1: General scaling transformations to create inverses

Non-linear gain Inverse gain

0 ---+ 00

0.2 ---+ 5
0.5 ---+ 2
1 ---+ 1
2 ---+ 0.5
5 ---+ 0.2
00 ---+ 0

Another way of looking at these results was to say that the mirror image rotated

about the unit ramp was the same as interchanging the axes. However, when

creating the fuzzy inverse a few subtleties had to be taken into account. When

dealing with non-linearities which were approximated by a series of straight

lines it was a simply enough task to construct the inverse by hand but if the

inverse of a continuous non-linear function was to be constructed, or if the

linear approximation was at all complicated, then it was easier to produce a

two-column table of data in which one column represented the magnitude of

the input signal and the other the corresponding values of the function. To

create the inverse, the two columns were simply reversed. However, when

actually constructing the fuzzy inverse function then the break-points for the

inverse were the projections onto the y-axis with reference to the original non-

linearity; whereas they were given by the projections onto the x-axis for the

original function. Since they were the projections of the original function onto

the y-axis these new break-points would not be symmetrical about the 45° line

when compared with the original function's break-points .. Likewise the slopes

127



Chapter Eight: Using Fuzzy Logic to Modify and Control Linear Systems

would be with reference to the y-axis from the original non-linearity rather than

the x-axis. Since these two axes were orthogonal, if K* was the mirror image

of the original slope K, it followed that (See Appendix A3.1)

K.K· = 1 (8.1)

It ws then possible to develop a general method for designing a fuzzy non-

linearity, and its inverse, for systems with real describing functions.

8.3 The design of a fuzzy non-linearity and its inverse

In all cases a Sugeno type 1 fuzzy controller design was used. Again, as shown

in the template in chapter six, triangular fuzzy input sets which just touch each

other were the shape of choice. Just touching, so that the adjacent slopes were

continuous and also so that adjacent slopes of the non-linearity have their own

exclusive fuzzy sets without overlap or undefined sections.

(In both the initial function and its inverse the fuzzy inputs used were isosceles

triangles. Although, as mentioned later, the requirement on the shape of the

fuzzy sets was not too prescriptive.)

The outputs were of the form y = Kx + c where K was the slope of the relevant

section of the non-linearity and, in each case, c was a suitable constant to

ensure that the adjacent slopes of the outputs were connected.

The breakpoints, Pi , were the values of input x at which the gradients of the

various straight-line slopes which approximate the non-linearity changed value.
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Since the function passed through the origin it followed that Po = O. Also, K;

was the slope between break-points Pi and Pi+/.

C; was the constant in the output section of the fuzzy non-linearity, with Co = 0

Since the values of c, had to be chosen so that adjacent slopes of the outputs

were connected (just touching) it followed that the constant of the nth straight

line was given by:

n

Cn = I(K,-I - K,}P, (8.2)
,=1

Just as the triangular inputs of the starting functions were projections of the

non-linearity onto the x-axis, so the triangular inputs of its inverse function

were projections of the same non-linearity onto the y-axis. It was shown, in

equation (8.1), that K.Ko=] where Kwas the gradient ofa section of the non-

linearity and K' was the gradient of the corresponding section of its inverse.

Consequently, from Figure 8.3, the gradients of the inverses were:

K: = 11K, for all values of i (8.3)

The breakpoints on the inverse function were given by po;, with p'o= O.

It followed, from Figure 8.3, that:

n-I

Pn' = I(K'-I -K,)P, +Kn_1Pn (8.4)
,=1

The values co; represented the constants of the output section of the fuzzy

inverse non-linearity and coo = 0 since the inverse function would also pass

through the origin. They also had to be chosen so that adjacent slopes of the

outputs were connected (just touching) so it followed that the constant of the

nth straight line would be given by:

c: = i:(K:_1 - «; )p,. (8.5)
,=1
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The derivations of these equations are shown in Appendix 3.3.

y Inverse function

K' p'
n n

K* p.'
I I

K' p:0 0

K' p'
~I ~I

..... K* p'
~n ~n

Fuzzy
Inputs

Fuzzy
output
slopes

Break
points

Original function

Fig. 8.4: General Geometrical Design of a Fuzzy Non-linearity and its
Inverse

8.4 Proving the method

8.4.1 A block-diagram explanation of how the design method was tested.

To recapitulate., when a ramp input is fed into an open-loop arrangement of a

non-linaerity in series with another non-linearity which is its perfect inverse the

output will be a ramp of the same slope as the input, Figure 8.6.
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Ramp Inverse Non- Ramp
input ~ non- ____. linearity f--------. output

linearity

Fig.: 8.6: Open-loop arrangement of non-linearity and its inverse

When a unit step is input to the standard test transfer function, with unit

negative feedback ansd a forward gain of 50, the output isd runaway oscillation

(as designed), see Figure 8.7.

~

Output
Step Transfer . .mcreasmg
input function oscillation

-ve

Fig. 8.7: Feedback arrangement for the transfer function alone

When the test non-linearity is placed in series with the transfer function in the

forward path of the closed loop,and a step input is applied, the output will be a

limit-cycle (as designed), see Figure 8.8.
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Step
input

-ve

Fig. 8.8: Feedback arrangement with non-linearity present

Finally, Figure 8.9 shows the situation when a perfect inverse of the non-

linearity is placed in series with the non-lineaerity and the transfer function in

the forward path of the closed loop, and a step input is applied. The output will

be ever-increasing oscillation. If this output is compared with the resultant

behaviour when the transfer function was on its own in the forward path of the

closed loop the two runaway oscillatory outputs should be identical - if the

inverse is a perfect inverse of the original non-linearity.

-re)Step Inverse
---+

Non- r---. T.F. -~ Ever-
input non- linearity increasing

linearity oscillation...
-ve I

Should be
identical
I

Transfer Ever
Function increasing

osciIlation
-ve

Fig. 8.9: Inverse cancelling-out the effect of the original non-linearity
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With each inverse non-linearity under test, the routines outlined in the above

block-diagrams, Figures 8.6 to 8.9, were followed and the resultant ouput

graphs displayed.

8.4.2 The range of design features on which the method was tested.

Since Sugeno type 1 fuzzy systems provided a sufficiently robust method for

designing non-linear systems that method has been used to design the perfect

inverses of the standard non-linearities already encountered and these have

then been implemented in fuzzy form and their effectiveness evaluated. The

approach was then used for some of the systems which possessed multiple

limit-cycles in order to check that the technique really was a robust design tool.

Further, it was shown to be possible to use the design tool to modify non-

linearities in more selective ways rather than just eliminating them, particularly

when used in conjunction with the describing function/inverse Nyquist graphs.

Finally, two examples of continuous system were chosen to demonstrate that

the technique really was generally applicable except for the case of saturation,

when creating inverses.

8.5 Some standard results

In previous chapters a comprehensive range of standard results and their

behaviour-patterns were investigated. Not all of them need to be considered

here either because some pairs of nonlinearities act as mutual inverses or for

reasons which will be explained as each case is considered. Saturation is a

non-linearity which relates to the intrinsic ability of a system to respond over

all possible ranges of input signal. Now, since all systems have physical
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limitations which govern their response ranges no software technique can get

around that problem. This feature is discussed later in this chapter in section

8.6.2.] . Dead-zone on its own has not been considered. If a system only

consisted of the dead-zone non-linearity then it would never respond to any

input. Also, although dead-zone followed by a linear response is common no

limit-cycling would occur. However, in the case of a dead-zone followed by a

linear response followed by saturation, which is a much more realistic

proposition, then a limit-cycle would occur. If the dead-zone can be

completely removed, but not the saturation, then the limit-cycle response

should change to that of saturation on its own. Since the describing functions

for soft and for hard saturation were similar the soft saturation case was chosen

as the starting-point of the standard cases presented here.

8.5.1 Dead-zone plus soft saturation

In Figure 7.5 the settings for a dead-zone plus linear section plus hard

saturation module were displayed. However, when it comes to designing an

inverse, two further practical considerations have to be taken into account (i) as

will be explained more fully in section 8.6.3.1, there is a physical limit on the

response to hard saturation and so when designing an inverse the case of dead-

zone plus linear section plus SOFT saturation has been considered here (ii)

there is also a software cvonsideration. In order for the inverse to operate

correctly the response of the software must be declared to exist over the

complete operating range of the investigation. The settings for the required

non-linearity are shown in Figure 8.11. From these a simple mirror image was

designed and the results are also shown in Figure 8.11. The non-linearity
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drawn, the mirror image created and then the settings for the fuzzy inverese

calculated.

After it had been designed, the fuzzy inverse module was tested against its

original non-linear counterpart as described in section 8.4.1. In the original

experiment, when only the fuzzy soft saturation module had been used, the

output had been a limit cycle, Figure 7.4. However, this time, with the inverse

also present, the result was runaway oscillation exactly the same as had been

achieved in the original circuit, Figure 5.1, when the transfer function was on

its own

A general comment about fuzzy logic simulation is relevant at this stage. Care

had to be taken to make sure that the fuzzy signals had been defined over large

enough ranges. If they had not been then the resulting output could be in an

undefined range and the observed output would usually be zero, or sometimes

something completely spurious.

8.5.2 Colomb friction plus viscous drag

As explained earlier, Coulomb friction and dead-zone were mutual inverses.

Therefore in finding the inverse for the dead-zone we automatically had the

inverse of the Coulomb friction case - without further manipulation.
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Fig. 8.12: Ramp input to the in erse and then dead zone plus soft saturation,

in that order (open loop)
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Fig. 8.13: Output with deadzone + soft saturation + standard transfer function

Note: In Figure 8.14 care had to be taken to ensure the fuzzy modules had been

defined with a wide-enough operating range (±40 in this instance).

138



Chapter Eight: Using Fuzzy Logic to Modify and Control Linear Systems

5

4

3

2-:J
.9-
:J

~
::; 0CLc

<ii -1c
.gl
tf)

-2

-3

-4

-5
0

-- step input
• TF. output when Coulomb n.l. acts as inxerse

--TF. without non-linearities
'r- T

__L_ __ .L

2 3 4 5 6 7 8
time (seconds

Fig. 8.14: Step response to inverse + dead-zone in series with standard

transfer function

20 ,-

15
- rarrp input ,I
-- Couloni:l n.l.

10 -- im.erse non-lineari1y
--output

<fl
:; 5a.
:5
0:s 0a.
c;

m
c -5rn
·00

-10

-20 o
1.

6
_l

8 102 4
time (seconds)

Fig.: 8.15: Ramp input to Coulomb friction and its inverse,

(open loop). Inverse between ramp input and the Coulomb friction
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-15 o 2 9 10

Fig. 8.16: Closed-loop step-response to the inverse function +Coulomb non-

linearity in series with the standard transfer function

From Figure 8.15, when the deadzone non-linearity was acting as the

inverse to the Coulomb effect, and was placed before the Coulomb non-

linearity, the output response to the ramp input did show a residual deadzone.

Consequentely the presence of Coulomb friction with the deadzone acting as

the inverse before it did remove the effects of the non-linearity from the tranfer

function response BUT it also left a residual phase shift as shown in Figure

8.16. However, if the deadzone non-linearity (which was acting as the inverse

function here) was placed AFTER the transfer function then the system

response was that of the transfer function on its own without any residual phase

shift, Figure 8.17.
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5 -: - --

4

3

2
u»

~1-s
o:s 0 ..' __ ......rr
Cl.
c

~ -1
.Ql
'" -2

-3 -- step input

-4
• combined output

-- transfer function output alone J ••
3 4

time (seconds

____j__ _L..._

567-5o 2

Fig. 8.17: Coulomb + inverse in series with standard transfer function

with the inverse function placed after the transfer function

8.5.3 The triple-slope non-linearity

Only case (ii), Ko > K, & K2 > K, , was shown as cases (ii) and (iii) would

be mutial inverses and case (i) added nothing extra to the demonstation of the

method. After the models had been designed, the fuzzy inverse module, case

(ii), was then placed in series with its inverse and a unit ramp input applied to

this open-loop arrangement. The output was a unit ramp identical to the input

signal, Figure 8.18. The two fuzzy modules were then placed in a closed loop

circuit as in Figure 8.9 and a step-input applied. In the original experiment,

when only the case (ii) module had been used, the output had been a limit cycle,

Figure 7.15. However, this time the result was runaway oscillation exactly the
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same as had been achieved in the original circuit, Figure 5.1, when no non-

linearity had been present. The roles of the two modules were reversed and the

results were identical, showing that they were indeed mutual inverses. The

design details of the fuzzy modules was shown in Figure 8.19. and the open-

loop results in Figure 8.18. It would be noticed that the input fuzzy functions

were not exact mirror images of each other. Although strict adherence to the

original theoretical discussion would suggest that this should have been so, in

fact there was some lee-way in deciding on the positions of the break-points. It

appeared to be much more important that the respective slopes were mutual

inverses

8

6

4

:5 2
Cl.
:5
~
:5 0Cl.
c

rn
c
.2' -2
IJl

T

-- ramp input
• combined output

-- inverse n.l.
-- original n.l.

j__ _ -----'-__ __i_

S 6 7
-8o 2 3 4

time (seconds)

Fig. 8.18: Results of the triple-slope non-linearity and its inverse in series with

the ramp input (open loop)
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ORJGINAL MODEL

S ZE PS PB

THE INVERSE MODEL

• TB ::\S ZE PS PBNB

-20 -4 -1 1 4

OUTPUT

20 -20 -1.3 -0.7 0.7 1.3 20

OPB [1 - 2.7 ] Z= x- 2.7
OPS [ 0.2 0.5 ] Z= 0.2x + 0.5
OZE [ 0.7 0 ] Z= x
ONS [0.2 -0.5 ] Z = 0.2x - 0.5
0 B [ 1 2.7 ] Z= x + 2.7

RULEBASE

OPB [ 1 2.7] Z = -,+2.7
OPS [ 5 -2.5J Z = 5x - 2.5
OZE [ 1.43 01 Z= 1A3;.;
ONS [ 5 2.5] Z = 5;.;+ 2.5
ONB [ 1 -2.7 J ~= >:-2.7"\.

If input is NB then output is ONB
If input is S then output is ONS
If input is ZE then output is OZE
If input is PS then output is OPS
If input is PB then output is OPB

RULESURFACE

SLOPES OF SECTIONS

0.70.2 0.2 1 5 1.43 5 1

Fig. 8.19: The triple-slope model and its inverse
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Fig.: 8.20: Limit-cycle output using the tripleslope fuzzy non-linearity
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Fig.8.21: Step response to tripleslope in series with its inverse
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8.6 The double limit-cycle examples

In chapter seven two examples were shown which each produced two limit-

cycles. The demonstration now was to show that not only could complete

inverses be obtained but, what might be more useful in certain circumstances, a

partial inverse could be selectively designed to remove one or the other limit-

cycles but not both. The initial design was for a complete inverse to remove

both limit-cycles and then the selective design was introduced.. Initially the

three break-point (FOUR SLOPE) model was dealt with. After this the general

tabular method was the used to find the inverse for the four break-point (FIVE

SLOPE) model.

8.6.1 The three break-point (four-slope) non-linearity

This section begins with the creation of the complete inverse function and its

subsequent testing and goes on to look at the creation of two partial inverses: (i)

a partial inverse which removes the upper limit-cycle and (ii) a partial inverse

which removes the lower limit-cycle.
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8.6.1.1 The complete inverse function

ORIGINAL MODEL THE INVERSE MODEL

ill S ZE PS PM PB NB :r\!MNS ZE PS PM PBB

INPUT

4 6 40 -40 -4.3 -1.3 -0.7 0.7-1 1.3 4.3 40-40 -6 -4

OUTPUT

OPB [515.5 1 Z = 5:-:- 15.5
OPM [0.673.13 ] Z = O.6h.:+3.13
OPS [5 -2.5 I z = 5.,\,- 2.5
OZE [lA3 0] Z= 1.43.....·
ONS [5 2.5 ] Z = 5:-:+ 2.5
ONilI [0.67 -3.13 J Z = 0.67>: -3.!3
ONB [5 15.5] Z=5:-:+ 15.5

OPB [0.2
OPM [1.5
OPS [0.2
OZE [0.7
o S [0.2
o I [1.5
o B [0.2

3.1 I z = 0.2x + 3.1
-4.7 ] r= 1.5x-4.7
0.5] Z= 0.2x + 0.5
o ] z= x

-0.5 ] Z = 0.2x - 0.5
4.7 ] Z = 1.5x + 4.7
-3.1] Z=O.2x-3.1

If input is NB then output is ONB
If input is NS then output is ONS
If input is ZE then output is OZE
If input is PS then output is OPS
If input is PB then output is OPB

RULEBASE

RULESURFACE

-20 -6 -4 -1

1 4 6 20

SLOPES OF SECTIONS

I 0.2 1.5 0.2 0.7 0.2 1.5 0.2 5 0.67 5 1.43 5 0.67 5

Fig. 8.22: The three break-point model and its complete inverse
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KO=0.7, K1=0, K2=1.5, K3=0.2, P1=1, P2=4, P3=6
25

f==- step input1it --- signal ou~20

15
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Q_

"5
o
co
c
Cl
'iii

5

~AAAAAAAAhAAAaAI
o ~VVVVHVfVVWVVV

-5

-10

-15 o
_l

100 15050
time(seconds

Fig.8.23: The fuzzy three breakpoint response showing two limit-cycles.

Fuzzy Non.Lin. + Fuzzy Im.erse/ system without non-linearity
15 .,----r - T

Fig. 8.24: Closed-loop response of the three-breakpoint model and its inverse
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- transfer function output alone
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in series with the standard transfer function
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x
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.9-
::::l

~ 2.5
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.2 2
OJc
:Q
UID 1.5
o

K0=1.43, K1=5, K2=0.67, K3=5, P1=1, P2=4, P3=6
4

3.5

-- Describing functi~n ~ l
-- Magitude of the i~\erse Nyquis~t crossover'..

0.5o

linearity, shown in Figure 8.25, was adjusted in two ways: selective removal of

6 8 102 4
input x

Fig. 8.25: The describing function for the three-breakpoint inverse.

inverting, describing function shown in Figure 8.26. This had the effect of

8.6.1.2 Partial inverse functions

The next step was to only partially eliminate the non-linearity. To demonstrate

this partial elimination the inverse describing function for the four-slope non-

the higher and lower limit-cycles.

(i) Removal of the higher limit-cycle:

Firstly, the lower part of the original non-linearity was left untouched and

the inverse effect for the upper part, the higher signal amplitudes, was

increased considerably. This gave the modifying, no longer completely

towards the inverse Nyquist value and so the second limit-cycle was

removed. However, this had the effect that for high input values the system

148
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would be unstable, as in Figure 8.27. However, if the inverse describing

function had been adjusted so that after the first break-point, when the

magnitude of the original four-slope describing function was at its lowest

value, the locus continued to be kept below the inverse Nyquist cross-over

value then not only would there only be one limit-cycle but also run-away

oscillation at high magnitudes would be avoided. Such a modification to

the inverse describing function was shown in Figure 8.28.

33.5z
:;% 3
o
c:
og 2.5

.2
OJc
:0"5
~o 1.5

KO= 1, K1 =0.67, K2=5, P1=4,P2=6
4.5 T

4

2

T -- Describing function

l-- lnverse Nyquist value at crossove

0.5 o 40 5010 20 30
input to the non-linearity

Fig. 8.26: The first modification to the inverse describing function which

removes the higher limit-cycle.
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K0=1 ,K1 =1,K3=0.67,K4=5
30

25 -- step input
-- signa Ioutput

20 •.

<n

~ 15
:::J
o
<ii
§, 10
'(ji

5

o

-5o 80 10020 40 60
tirre(seconds)

Fig. 8.27: The four-slope (three-breakpoint) response with the first

modification to the inverse function which allowed run-away oscillation

K0=1 ,K1 =0.67,K2=0.67,P1=4,P2=6

0.95 1--Describing function ~ l
l-,-- In~~e Nyquist vaue at crossove~

E 0.9
z
~ 0.85
:;
o
§ 0.8
tsc
.2 0.75
Cl
c
:0 0.7·5
lflo 0.65

0.6f

_L

40
L

30
0.55 o 5010 20

input to the non-linearity

Fig. 8.28: The second modification to the inverse which also removes the

second limit-cycle but keeps the system stable.
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K0=1, K1=1,K3=0.57,K4=0.57
20

15

10
2
OJ
0.-s
0 5
roc
OJ
'iii

0

-5

-10
0

l
- .

-- step input
-- signal outputj

_l

80 10020 40 50
time(seconds)

Fig.8.29: The three-breakpoint response, upper limit-cycle removed, with the

inverse keeping system stable

(ii) Removal of the lower limit-cycle:

Next was the use of the modified describing function for the design of the

inverse to remove the lower limit cycle but still allow the higher limit-cycle

to exist. Firstly, the descibing function was modified so that the combined

locus would remain above the inverse Nyquist at low input amplitudes but,

at the same time, making sure that the gain at the second limit-cycle point

remained at unity. This was accomplished by judicious adjustment of the

slopes (K values) and of the positions of the break-points (P values). The

result can be seen in Figure 8.30. A further feature of this modified

describing function was that at high signal values it decayed to a very low

value, 0.15 in this case. This ensured that the system remained stable.
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However, the describing function started at a value greater than that of the

inverse Nyquist and after crossing at the limit-cycle point it continued

downwards. So small input signals produced a describing function in the

unstable region and consequently were swept on to the limit-cycle position

- which in this case was the higher position because the first crossover

point had been removed.

KO=1.43, K1=3.6, K2=0.15, P1=1, P2=2.3
-,------, ----,-------,-------,----,2.5

-- Describing function

2

-- In\erse Nyquist I(llue at crossover
: where lower limit-cycle was

:5a.i3 1.5
co
:;0
o
c
.2
g' 1
:0
·c
u
Ul

'"o
0.5

6 8
L 1- _ _L

10 12 14 16 18 20
oo 2 4

error e (input to the non-linearity)

Fig. 8.30: Modified describing function to remove lower limit-cycle

K0=1.43, K1 =3.6, K2=O.15 K3=0.15
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-'--- -
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Fig. 8.31: Inverse applied to remove lower limit-cycle.
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8.6.2 The four breakpoint case

An inverse was created for the four-breakpoint (five slope) example from

section 5.3.2. Table 8.2 gave the input values and the cumulative

amplifications introduced by the non-linearity, whilst Table 8.3 gave the same

story but with the axes effectively reversed. The fuzzy non-linear modules

relating to these tables were then created, Figure 8.32, and these modules

inserted into an open-loop arrangement as in Figures 7.1 and 8.6, first singly

and then in series with each other. The results are shown in Figure 8.34. The

original non-linear modules was inserted into a SIMULINK feedback circuit,

Figure 7.3, and gave the results shown in Figure 8.33. The fuzzy inverse

module was then inserted into the forward loop, immediately before the

original fuzzy non-linear module, and the simulation re-run. The results were

shown in Figure 8.35. The cumulative values gave the break-points for the

inverse function.

Table 8.2: Effect of non-linearity Table 8.3: Effect of inverse

Input signal Cumulative
Non-linearity

-10 5.96
-6 2.96
-4 2.52
-2 0.92
-1 0.70
0 0
1 0.70
2 0.92
4 2.52
6 2.96
10 5.96

Input signal Cumulative
inverse n-1.

5.96 -10
2.96 -6
2.52 -4
0.92 -2
0.70 -1
0 0
0.70 1
0.92 2
2.52 4
2.96 6
5.96 10

153



Chapter Eight: Using Fuzzy Logic to Modify and Control Linear Systems

ORIGINAL MODEL

NM NS 'lE PS PMNBNVB PB PVB

15-2 -1 o-15 -6 -4 2 4 6

INVERSE MODEL

NVB NB NM NS ZE PS PM PB PVB

INPUT

-15 -2.96 -2.52 -0.92 -0.7 0 0.7 0.92 2.52 2.96 15

OUTPUT

OPVB [0.75 -1.54] OP\'B [1.33 2.06 J
OPB [0.22 1.64 ] OPB [4.55 7.47 J
OPM [0.8 -0.68] OP1\! [1.25 0.85 I
OPS [0.22 0.48] OPS [4.55 -2.19]
OZE [0.7 0 J OZE [1.43 0 1
ONS [0.22 -0.48 J ONS [4.55 2.19 J
ONM [0.8 0.68] ONM [1.25 -0.85 I
0 B [0.22 -1.64 J ONB [4.55 7.47 I
0 VB [0.75 1.54] ONVB [1.33 -2.06]

RULE SURFACES 1:f
r

6

4

2
01

.2l
·4'

·6

,SI

_J L

·5 0 5 10

Fig. 8.32: The four break-point model and its inverse
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KO=O.7, K1=0.22, K2=0.8, K3=0.22, K4=0.75, P1=1, P2=2, P3=4, P4=6
12 ..,. -..,.-- -T -

10 I in~.ut signal l
-- output signal
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Fig. 8.33: The effect of the four break-point non-linearity
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Fig. 8.34: Ramp input to open-loop four break-point model and effect
of its inverse
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KO=0.7, k1=0.22, k2=0.8, k3=0.22, k4=O.75, p1=1, p2=2, p3=4, p4=6
5

14

3

2

~ -1
0>
rJl

-2 - . - - I-- step input signal
....•..... output signal with fuzzy non-linearity and inverse

-- original output signal

-3 t
I

-4

_L

3
_L

7
J
8

L
4

time (seconds

1..
5

..L

6
-5o 2

Fig. 8.35: The effect of the four break-point (five-slope) non-linearity cancelled

out by its inverse

A non-linearity was designed which allowed the two limit-cycles but attempted

to reduce the system to an overdamped state if a very large impulse was

applied. The result was that the system reverted to the lower limit-cycle

oscillation. The reason for this behaviour was that the large amplitude created

at the termination of the large third impulse was able to carry the signal down

below the critical point shown on the describing function, Figure 8.37, and

hence into the region dominated by the first limit-cycle. However, it must be

stressed that the switching to a lower limit-cycle was entirely random and

could not be predicted. The test which gave the result shown in Figure 8.36

was repeated many times; sometimes the switch to the lower limit-cycle

occurred, sometimes the oscillation remained at the higher level.
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K=0.7, K1=0.22, K2=0.8, K3=0.22, K4=0.1, P1=1, P2=2, P3=4, P4=6, GAIN 50

14 r=:--- input signa .1
12 -- output signal_[
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Fig. 8.36: Modified non-linearity, four break-point C5-slope) with final slope
values set to 0.1
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L

2 3
x (input to the non-linearity)

Fig. 8.37: The describing function for the non-linearity which produced a
reversion to the lower limit-cycle.
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8.6.3.1

8.6.3 Continuous real non-linear systems

Two polynomials were investigated and the results demonstrated here. One

polynomial exhibited saturation and the limitations imposed on the inverse are

discussed. The other polynomial did not exhibit saturation and is included to

demonstrate that the method of creating inverse also works for higher-order

polynomals.

A continuous polynomial which exhibits saturation:

The first of the two coninuous real system to be considered was the cubic

polynomial p = -O.Ol125x3 + O.69x The graphs of this polynomial and its

corresponding describing function are shown in Figures 8.38 and 8.39.

y

x

Fig.: 8.38: The cubic polnomial with a curve
similar to a saturation non-linearity
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KO=0.67875, K1 =0.61125, K2=0.47625, K3=0.27375, K4=0. 00375, P1 = 1, P2=, P3=3, P4=4

0.7

0.6

~ 05
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:::>
o 0.4
c:o
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-- Magnitude of im.erse Nyquist at crossover (0.57)

I ... .:_:..... Limit.<:y~ (3~5) _~ __ -~--,--l

:.~ ____L_ L

234 567 B
x (input to the non-linearity)

10

0.1 r

oo 9

Fig. 8.39: Polynomial describing function for four breakpoints

These results are approximations to the data shown in Table 8.4. From this, the

data in Table 8.5 was created as the first step in creating the inverse. Matlab

was used to obtain a polynomial best fit to this data. It was found that a

polynomial of power three was as good as a polynomial of power five and a

polynomial of power four gave excessive values for x = ±4. Therefore the

cubic approximation was chosen. The characteristics of this function and its

inverse were shown in Figure 8.40.

Table 8.4
PI = -0.0112SX3 + 0.69x

Table 8.5
Inverse of table 8.4

x y !-:"y

5 2.0715
4 2.04 0.0315
3 1.76625 0.27375
2 1.29 0.47625
1 0.67875 0.61125
0 0.0000 0.67875
-1 -0.67875 0.61125
-2 -1.29 0.47625
-3 -1.76625 0.27375
-4 -2.04 0.0315
-5 -2.04375

l/!-:,.y x Y

2.0715 5
31.746 2.04 4
3.6530 1.76625 3
2.0997 1.29 2
1.6360 0.67875 1
1.4733 0.0000 0
1.6360 -0.67875 -1
2.0997 -1.29 -2
3.6530 -1.76625 -3
31.746 -2.04 -4

-2.04375 -5
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FUZZY MODEL OF pt = -O.01125x1 + O.69x

NB NM S ZE PS PM PBNVB PVB

INPUT

-4 -3 -2 -1 b-15 2 3 4 15

INVERSE MODEL

VB NB NM NS ZE PS PM PB PVB

INPUT

-2.04-1.77 -1.29 -0.68 0 0.68 1.291.77 2.04-15 15

OUTPUT

OPVB [0.0315 1.914 ]
OPB [0.27375 0.945 ]
OPM [0.47625 0.3375 ]
OPS [0.61125 0.0675 ]
OZE [0.67875 0 ]
ONS [0.61125 -0.0675]
0 M [0.47625 -0.3375]
0 B [0.27375 -0.945 ]
ONVB [0.0315 -1.914 1

OP'\'B [31.746 60.76 I
OPB [3.6530 -3.466 ]
OPM [2.0997 0.7086]
OPS [1.6360 0.11251
OZE [1.4733 0 1
O~S [1.6360 0.1125 J
ONl\1 [2.0997 0.7086 J
ONB [3.6530 3.466 1
ONYB [31.746 60.76 I

RULE SURFACES

5

4

3 - P=-O.01125i+o.69X] ,
-theimerse

2

E
'§ 0
~

-1

-2

-3~

-4

-5
-5 0

x

Fig. 8.40: The continuous non-linearity PI = -O.01125x3 +O.69x
and its inverse
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KO=O.67875,K1=O.61125, K2=O.475625, K3=O.27375, K4=O.0315,P1-1, P2=2,P3=3,P4=4
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Fig. 8.41: Output using the continuous non-linearity

From Figure 8.41 the magnitude of the limit-cycle was found to be 3.57 ± 0.2.

Looking at the describing function, Figure 8.39 for this polynomial

approximation, the limit-cycle predicted magnitude was 3.65 ± 0.05.

When looking at the characteristics of this non-linearity, and its inverse, Figure

8.40, it was clear that the inverse did not cover the extremities of the original

non-linearity and so could not create a full inverse. This would be a feature of

all systems in which saturation plays a part. It was not possible to overcome

the physical boundary limitations of a system. However, within those

boundaries the inverse process was very effective as could be seen in Figure

8.42.
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Fig. 8.42: Result of inverse and original signal

8.6.3.2 A continuous polynomial which doesn't exhibit saturation

The second polynomial did not exhibit saturation and therefore would be

capable of having a perfect inverse. The polynomial used was

p = -O.OOOlx9 - O.0032x7 +O.0501x5
- O.2726x3 +O.9256x

Itwas approximated by the data in Table 8.6
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Table 8.6

Ninth-order Polynomial Data

x y (P) !J.y

5 2.88
4 2.18 0.7
3 1.90 0.28
2 0.9 1
1 0.7 0.2
0 0 0.7
-1 -0.7 0.2
-2 -0.9 1
-3 -1.90 0.28
-4 -2.18 0.7
-5 -2.88

Table 8.7

Inverse of Table 8.6

Slope x y

2.88 5
1.43 2.18 4
3.57 1.90 3
1 0.9 2
5 0.7 1

1.43 0 0
5 -0.7 -1
1 -0.9 -2

3.57 -1.90 ,..,
-j

1.43 -2.18 -4
-2.88 -5

0.7

061

x- 0.5z...
:::J
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:::J
0 0.4
c
0
n
c
:::J 0.3-0>
C
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'5
en 0.2<Il
0
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Fig. 8.43: Describing function for ninth-order polynomial
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From Figure 8.39 there was a first limit-cycle at 1.6 ± 0.05, a second Iimit-

cycle at 3.9 ± 0.07; a first critical point at 2.88 ± 0.05 and a second critical

point at 5.1±0.07.

The fuzzy non-linearity and its inverse were the next items created, Figure 8.44.

Then followed the test of a ramp signal being input to the open-loop

arrangement of the non-linearity in series with its inverse. This gave the result

shown in Figure 8.46. The actual SIMULINK arrangements that were used

were as shown in Appendix 3.4.

There was a unit input from 1 to 10 seconds, sufficient to trigger the first limit -

cycle; a pulse input of 4.5 units from of 20 to 30 seconds, sufficient to trigger

the second limit-cycle; and a pulse input from 40 to 50 seconds which

exceeded the second critical value and so caused runaway oscillation, as shown

in Figure 8.45.

The measured value of the first limit cycle was 1.8±0.3 and that for the second

limit-cycle was 3.8±0.2.
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Fig. 8.44: The continuous, ninth-order, non-linearity
and its inverse
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KO=O.7,K1=0.2,K3= 1,K40.28,K5=0. 7,P1 =1 P2=2,P3=3, P4=4
20

15

10

5
ID
"0~--·c 0
Cl
C1l
E
ro -5
c
Cl·en

-10

-15

-20

-25
0

-- input signal
-- output signal

...L__ _j____ __ ---'--_--'

50 6010 20 30 40 70 80

time (seconds

Fig.8.4S: Effect on the basic transfer function of the non-linearity

p = O.OOOlx9
- O.0032x7 + O.OSOlx5

- 0.2726x3 + O.9256x

From Figures 8.43 and 8.45 it should be noticed that the second impulse, which

triggered oscillation about the second limit-cycle position only had to be

slightly above the critical point. Once that cross-over position had been

exceeded the error signal was swept around to the limit-cycle position.

When the in erse was created it cancelled out the effect ofthe ninth-order non-

linarity and runaway oscillation occurred without any intervening limit-cycle

tage , Figure 8.47.
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Fig. 8.47: In erse in series with the 9th-order non-linearity in series with the
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standard test transfer function and unit feedback compared with the

1n thi chapter it has been demonstrated that inverses could be created and so

the effects of many non-linearities could be erased from a system. It has also

168

been demonstrated that partial inverses could equally easily be devised so that

non-linear characteristics could be selectively modified. The transfer function

cho en to repre ent the test system was a third-order sytem with gain set

2 3

performance of the test transfer function on its own.

8.7 Some general comments

uff ientl high that it gave an unstable response. The system was tested with

a po iti gain margin and again the insertion of a non-linearity in series with

the tran f r function ga e a limit-cycle response but only if the inherent gain

in the n n-linearit wa rai ed 0 that the gain margin was reduced to zero. If
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the inverse non-linearity was miss-calculated then it was possible for it to cause

an intrinsically stable linear system to become unstable but this would only

occur if the overall gain caiused the gain margin to go below zero

The techniques used have proved to be remarkably simple to apply although, to

the best of the author's knowledge, there are no references in the literature.

There have been several instances in which papers have reported on the use of

fuzzy methods to create limit-cycle or other non-linear effects but nobody has

apparently gone to the next step and used these techniques to modify the

signals. Furthermore, most researchers have appeared to stay with Mamdani' s

method of creating rule-bases and this approach does not easily lend itself to

design work. One surprising feature was that, having found a method which

enables non-linear design and system-modification to be performed, there was

considerable leeway in actually choosing the parameters necessary to complete

the task.

Finally, the first of the two examples in section 8.6.3 was that of a continuous

non-linear system which had an inherent saturation characteristic. All systems

ultimately possess this characteristic and it represents a real physical limit

beyond which nothing can respond. Beyond the saturation limit there was no

signal. The techniques presented here are techniques for modifying and

adjusting signals which exist. They cannot create a signal when there is

nothing there. If they did then the newly-formed signal would be pure

invention and might bear no relation to reality.
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8.8 Conclusions

A considerably amount of work has been done by many researchers in trying to

understand non-linear effects from an analytical standpoint (Nijmeijer and an

der Shaft, 1990). Such work has not paid sufficient heed to the fact that non-

linearities could inherently most easily be explained geometrically. In this

chapter the whole concept of inverse non-linearities has been explored from a

geometrical viewpoint and it was found that, basically, a inverse non-linear

function was simply a reflection of the original non-linearity about the 45° line.

Using this notion it has been possible to produce a general algorithm which

enabled inverse non-linearities to be designed for any non-linear system which

did not possess memory and so had a real describing function. However, all of

this work relies on the assumption that the describing function approach always

correctly predicts limit-cycle behaviour - it usually does but there are

exceptions (Engelberg, 2002).

Complete inverse non-linear functions were not always required and by using

describing functions as reference-levels it has proved possible to design partial

inverse functions which enabled undesirable effects to be removed but also

built-in other desirable features. An example would be the ability to make an

inherently unstable system stable.
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Chapter Nine

Conclusions and Suggested Further Work

9.1 Conclusions

Two disparate subject areas have been brought together in this research and the

result has been the development of new techniques which enable non-linear

effects to be studied and signal-modification to take place in a manner which

has not previously been available. To set the scene, after the general

introduction, chapter two was devoted to a description of the difference in

chacteristics between linear and non-linear systems and a description of the

more usual types of non-linearity. Reference was continually made to these

'standard-forms' throughout the thesis as the various techniques of analysis and

design were introduced. Gradually the various features associated with them

were uncovered and patterns began to emerge. Patterns which ultimately aided

the design and modification of non-linear systems in general.

The next stage was to decide which analytical techniques might be most

helpful in the investigation. Of all the techniques available only two provided

approaches which were at all tractable and these were both graphical: the

phase-plane approach and the describing function method. Of the two, the

describing function approach offered the greater potential for analysing and,

ultimately, modifying non-linear systems. So that became the method of

choice.
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Stability analysis was discussed and a method from the earliest days of using

describing functions turned out to be the most useful by far for predicting when

non-linear systems would become unstable: the Kochenburger Stability

Criterion which linked Nyquist and describing function techniques. This

criterion could be used with Nyquist or Inverse Nyquist loci. The inverse locus

was more convenient and was the locus used throughout this work. A

condensed method of using Kochenburger's criterion, shown in Figure 3.5, was

chosen as it allowed easy measurements to be made and emerging patterns of

behaviour to be seen. This technique was used repeatedly, for each new

describing function obtained, to predict the magnitudes of limit-cycles and

where critical points existed.

The standard graphical method for obtaining describing functions was

explained in detail and then a general solution, together with an associated

implementation algorithm, was obtained in chapter four. The development of

this particular general method for the family of real, as opposed to complex,

describing functions was considered a necessity so that the whole group of

such functions could be obtained relatively easily and quickly. With the

availabililty of this facility it became possible to see patterns emerging between

groups of non-linearities. To the best of the author's knowledge, the existence

of such relationships has not appeared in the literature. Certainly, the general

method for obtaining real describing functions and the associated algorithm has

not appeared in the literature.
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Chapter six presented a condensed survey of how fuzzy systems of various

types could be used in this investigation. It was not meant to be a detailed

explanation of how fuzzy controllers work, rather how they can be used. In

fact a couple of fuzzy systems which the author thinks have potential for signal

analysis and design have been described even though they were subsequently

postponed to the further work category.

The meat of the investigation started in chapter seven with the simulation of

non-linear systems by fuzzy means. Again, the standard non-linearities were

considered, the condensed version of Kochenburger's method was used to

predict the size of limit-cycles and then the results obtained with fuzzy non-

linearities compared with them. Once the technique had been proved by

comparing fuzzy non-linearities with standards available in the Matlab toolbox,

more sophisticated systems were devised which theory predicted should

produce multiple limit cycles. The Matlab fuzzy toolbox did not lend itself to

very complicated designs and so the investigation was limited to two systems,

the three and four breakpoint cases, each of which produced double limit-

cycles. Using the describing function and the inverse-Nyquist locus the

positions of the limit-cycles were predicted as well as critical cross-over points.

The practical results agreed very closely with the predictions. Some extra

features were also observed which could be explained by reference to the

describing function/inverse Nyquist diagrams.

The describing function/inverse Nyquist diagram rapidly proved its use as a

design tool and it was used as the starting point for most of the inverse
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functions produced in chapter eight. Families of mutual inverse non-linear

systems were predicted and successfully produced. Further, partial inverses

were also produced which enable various features to be turned on or off. For

instance, making an inherently unstable system stable or vice-versa; also

switching off one or the other limit-cycles in two-cycle systems.

The investigation had been limited to real systems which did not possess

memory and which did not produce complex describing functions. The reason

for this self-imposed restriction was because of the very high computational

demands of the Matlab fuzzy logic toolbox. It was found that with more than

one input to the fuzzy logic toolbox the system response was far too slow.

This ruled out many interesting systems such as those involving backlash,

hysteresis of any sort and the jump-resonance cases. However, it was felt that

if real systems were initially investigated and these were thoroughly

understood then the more sophicated cases could be considered in later work.

Detailed study of the real systems in this research proved productive, enabling

useful results and conclusions to be drawn.

9.2 Suggested further work

Although a potential strength of fuzzy set theory lies in its algorithmic promise

there is a wall which the subject must surmount: that of the rapid increase in

computational demand as the complexity of the problems increase. The theory

is not yet computationally able to solve large and complex problems in an

efficient manner. For this reason considerable research effort has gone into the

development of fuzzy algorithms but, so far, to little published success. There
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has been recent work in developing scripting languages (e.g.: Fuzzxcript') for

the subject. Although the results so far appear limited, this development work

is being attempted by an army of enthusiasts under the umbrella of The Code

Project. This acts as a development resource for software developers, mostly

using Microsoft resources, who are able to use published material under the

Code Project Open Licence (CPOL)2. Whether this development will aid

fundamental research in the subject remains to be seen. Several commercial

tools are available but they tend to be expensive and dedicated to specific tasks.

A major effort by the professional reseach community is the development of

the Fuzzy Markup Language (FML) (Acampora and Loia, 2005) and this is

currently being standardized by a task force within the IEEE CIS Standards

Committee. At present it is probably better to develop one's own software in-

house.

The development of design tools in-house , tailored to our specific research

needs, should make the investigation of devices such as the inference filter and

the positive-negative rule scenario much easier to handle. The inference filter,

or its counterpart the torque defuzzifier hold out the possibility of much finer

control of the signal modification process. The positive-negative rule scenario

can be generalised to a set of n parallel devices for which the hyperinference

engine acts like a programmable switching device. In this form it effectively

becomes a supervisory controller (Linkens et al., 1993) which can select the

best rule scenario for the conditions at hand.

I A fuzzy logic control language - see Carmel Gafa (2009)- CPOL licence
2 The code project - www.codeproject.com - an open site for programming enthusiasts.
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In this research the rapid increase in computational complexity as the size of

the fuzzy control machine increases is the main reason why some of the more

sophisticated devices were earmarked as future work. The investigation of

systems with two or more inputs is the logical next step so that non-linear

systems with memory, eg.: hysteresis, can be brought into the basic framework

that has already been developed. This will mean investigating complex, as

opposed to real, describing functions. This will, in turn, raise the possibility of

modifying the behaviour of limit-cycle oscillations in ways which change their

frequency of oscillation as well as their amplitude. Another non-linearity

which should be amenable to the approach used in this thesis is the phenomena

of jump-resonance; the possibility exists of being able to selectively change the

characteristic of a system from the hard-spring to the soft-spring case. Another

feature which deserves investigation is the hint, encountered on a few

occasions during the present research, that the higher limit-cycles sometimes

exhibit amplitude modulation.

The work done so far has demonstrated how the undesirable effects of simple

non-linearities can be cancelled out, or at least modified, so that for the range

of parameters in which the system is operating a more linear behaviour reigns.

As mentioned earlier the received wisdom was it would be impossible to find

complete inverses. That, it thought, would be the equivalent of finding an

inverse for the state matrix of the system and was considered impossible since

the principle of superposition does not apply. However, although the previous

statements may be true for analytical solutions the fuzzy logic approach is

176



Chapter Nine: Conclusions and Suggested Further Work

essentially geometric. Using the fuzzy approach, the problem reduces to one of

finding the inverses of the rule-surface. For a two-input system, the minimum

if a complex is to be investigated, requires the finding of an inverse of a 2-

dimensional surface which should not be too difficult. Systems with more than

two inputs will require higher-order geometries. In such cases the system-

modification abilities ofthe fuzzy controller would be really tested.

The work presented here has all been simulation and using only one transfer

function for the linear element. Other transfer functions were tested but to a

much lesser extent. The system appears to be robust as far as the design of the

non-linear inverses was concerned. What needs to be investigated further is

the sensitivity of the technique to parameter and structural changes of real non-

linear systems. Furthermore, there may be other approaches, besides the fuzzy

approach, which might be useable in creating non-linear inverses but, as far as

the author has seen in the literature, although the creation of limit-cycle

behaviour has been reported nobody has followed through with attempts to

develop general methods for the design of non-linear inverses.

Ultimately, if presented with a non-linear plant whose characteristics are

unknown then it would be desirable to be able to design a self-organising fuzzy

controller (Mamdani, 1979; Tsang, 200I) which could modify the non-linear

behaviour automatically.

The whole area of signal and system conditioning by fuzzy means is one which

has hardly been investigated.
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APPENDIX AI.I

A GENERAL SOLUTION FOR A FAMILY OF REAL,

SINGLE-VALUED, DESCRIBING FUNCTIONS

For a family of single-valued describing functions, which can be approximated to

straight lines between the points (break-points) at which their slopes change value,

Gibson's graphical method can be extended. Referring to Figures 4.2 & 4.3, for n

breakpoints occurring at horizontal positions Po~ ... P; ... Pn slopes

KoK, .. ' K, .. ,K; , jumps in the vertical plane at Q,Q2'" and angles on the

sinusoidal input, where the breakpoints occur, of aJa2 ••• a, ...an'~ , the

describing function will have the form:

a, I

............... (4.3)

J y.sin(wt).d(wt) +1y.sin(wt).d(wt) +...
o at

1r

~ 2
... + I y.sin(wt).d(@t)+ ... + Iy·sin(wt).d(wt)

with y = K,x and x = X. sin(oX)

Between 0 s oX < a,

Between a, ~ ax < al+'
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Jr
'\nd between a S 011< -
J n 2

](

+ fi [Knx+ ~(Ko -KI)+···+ p;(Ki-j - KJ+ ... + p,,(Kn_1 - KJ]sin(OJI).d(ml)
an

For convenience, let AI = All + AJ2where, putting X =X sin(OJI):

A = i[f' KoX sin2(0JI).d(0JI)+ ... +(,., K;Xsin2(0JI).d(ml) + ...]

" ](

Jr + 12 KnX sin2(0JI).d(0JI)
an

and

(1~(Ko - KI )sine OJI).d( 011)+

4 r,'[~(Ko - KI)+ P2(KI - K2 )]sin(OJI).d(OJI) + ...
AI2 =- [

Jr + a:·'[~(Ko -KJ+ ... +~(K;_I-KJ]sin(OJI).d(mt)+ ...
](

+ P[~(Ko -KJ+ ... +~(K;_I -KJ+ ... +PJKn_I-KJ]sin(ml).d(OJI)a.

., • 2 ( ) 1 1 (2) . A .Substituting SIll 011 = - - -cos 011 into II gives
2 2

4 If Ir' II~All = - +- J,2 KnX.d(OJI)-- KoX.cos(20J1).d(0JI)-- KIX.cos(20J1).d(0JI)- ...
Jr 2 a. 2 2 a,

1 r'" (2 ) d 1 ~-- K,X.cos ax. (ax) - ... -- J" KnX.cos(20J1).d(0JI)
2 a, 2 an

I r' )[1 1 [,+,- KoX.d(ax)+- KIX.d(ax)+ ... +- K;X.d{OJt)+ ...
2 2a, 2a,
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Ko(a, -O)+K,(a2 -a,)+ ... +K,(a, -a,_,)+ ... +Kn(; -an]

_ Ko {sin(2a,) - sin(O)}- K, {sin(2a2) - sin(2at)}2 2
. . At, = ~: - ~ 2 {sin(2a3) - sin(2a2)} - ••• - ~' {sin(2ai+t) - sin(2a)} - ...

Kn{. () . (2 )} (Kt-Ko) . (2) (K,-Ki_t)·-2 sm n -sm an + 2 .sm at + ... + 2 .sm(2aJ+ ...

+ (Ko - Kn-J .sin(2a
n
)

2

= 2X l(Ko -Kt)at + ... +(K,_t -K,)a, + ... +(Kn-t -Kn)an +Kn.; J
7r +(Kt -Ko)sinal.cosal + ... +(K,-K'_I)sina,.cosa, + ... +(Kn -Kn_l)sinan.cosan

Looking at AI2 :

1C

+ P[~(Ko -KI)+···+P;(K,_, -K;}+ ... +Pn(Kn_1 -Kn)]sin(aJt).d(aJt)
a.

4
A =-

12 1( + [", [~(Ko - KI) + ... + P;(K'_I - K;}]sin(at).d(at) + ...
a,

(2 ~(Ko - KI)sin(aJt).d(aJt) +

('[~(Ko - KI) + P2(KI - K2)]sin(aJt).d(aJt) + ...

~(Ko -K1)cosal -ri«, -K1)cosa2 +{~(Ko -K1)+P2(K, -K2)}cosa2

- {~(Ko - K1) + Pz(K, - K2)}cosa3
+ {~(Ko - K,)+ Pz(K, -K2)+ ~(K2 - K3)}cosa3 - •••

4.. AJ2 = - -{~(Ko - KI)+ P2(K1 - K2)+···+ P;-I(K,_2 -Ki-I)+ P;(K'_I - KJ}cosa,
1(

- {~(Ko - K1) + Pz(KI - K2) + ... + P;(K'-2 - K,_,) + P;(Ki-I - K,)}cosa'+1 + ...

+ {~(Ko -KI)+···+P;(K,_I -K,)+ ... +]>.(Kn_1 -Kn)}cosan
1(

-{~(Ko -K1)+···+P;(K,_1 -K,)+ ... +Pn(Kn-1 -Kn)}cos2
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4[ n ].. Ale = - IP,(K'-I -K,)cosa, .
1T ,"I

(A1.1.2)

Now the general fonn of the describing function will be given by

1T n n •
K".-+ I(K'-I-K,)a, - I (Kj_1 -K;)smajcosaj

. . N = ~ 2 ,=1 ,=1
1f 2 n

+-IP,(KH - K,)cosa,
X ,=1

since (;, ) = sina, 'N becomes:

[

J[ " " • ]2 K".- + I(KH - K,)a, +I (Kj_1- K;}smaj cosrz,
N = - 2 ,=1 ,=1

J[

Also, since cosa, = ~[l - sin2 a, ]

If Coulomb friction or relay action is present then the first term has to be

adjusted. Referring to Figure 4.4, reproduced here for clarity, there is a

relationship between P on the x (input) axis and Q on the y (output) axis:
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And as P ~ 0 sin-I(;) ~ sin-leO) ~ 0

p

Q

Fig. A1.1.1: Relationship between P and 0
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APPENDIX 1.2

MATLAB CODE FOR THE GENERAL SOLUTION WITH
FOUR BREAKPOINTS

Only the code for four breakpoints
shown because producing results for
values of n simply leads to a lot of

(n= 4) has been
several different

repetition.

%function [N] = polynomial approximation
%describing function of a non-linearity with an inner slope KO,
%a middle slopes Kl, K2 and K3 and an outer slope K4.
%Break points at Pl, P2, P3 and P4.
clear all
disp('This proqram plots out the describinq function for')
disp('a polynomial approximation with FOUR break points')
disp('Please state the value of slope of the inner linear
section' )
xo = input ('KO = ')
disp('Please state the value of the slope in the first middle
linear section')
Itl = input('KI = ')
disp('Please state the value of the slope of the next section')
!t2 = input ('K2 = ')
disp('Please state the value of the slope of the next section')
!t3 = input ('K3 = ')
disp('Please state the value of the slope of the outer linear
section' )
1t4 = input( 'K4 = ')
disp('Please state the value at which the first break-point
occurs' )
PI = input ('PI = ")
disp('Please state the value at which the second break-point
occurs' )
p2 = input ('P2 = ")
disp('Please state the value at which the third break-point
occurs' )
P3 = input ('P3 = ')
disp('Please state the value at which the fourth break-point
occurs' )
P4 = input('P4 = ')
n=O;
for B=-5:0.1:5

n=o+I;
if B<=-P4

N=(4/pi)*(lt4*pi/4+«ltO-Kl)/2)*asin(-Pl/E)+«Kl-
!t2)/2)*asin(-P2/E)+ ...

+«!t2-K3)/2)*asin(-P3/B)+«K3-K4)/2)*asin(-P4/B) ...
+«KO-Kl)/2)*(-Pl/B) *sqrt(I-(-Pl/B) A2)+ .
+«Kl-!t2)/2)*(-P2/B)*sqrt(1-(-P2/B)A2)+ .
+«!t2-!t3)/2) *(-P3/B) *sqrt(I-(-P3/B)A2)+ .
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+«~3-~4)/2)*(-P4/E)*sqrt(1-(-P4/E)A2» ;
elseif B >=P4

N=(4/pi)*(~4*pi/4+«~O-~)/2)*asin(P1/E)+«~1-
~)/2)*asin(P2/B)+ ...

+«~-~)/2)*asin(P3/E)+«~-~4)/2)*asin(P4/E)+ ...
+«~O-~)/2)*(P1/E)*sqrt(1-(P1/E)A2)+ .
+«~1-~)/2)*(P2/E)*sqrt(1-(P2/E)A2)+ .
+«~-~)/2)*(P3/E)*sqrt(1-(P3/E)A2)+ .
+«~3-~4)/2)*(P4/E)*sqrt(1-(P4/E)A2» ;

elseif B>-P4 && E<=-P3
N=(4/pi)*(~*pi/4+«~O-~1)/2)*asin(-Pl/E)+«Kl-~)/2)*asin(-

P2/E)+ ...
+«~-~)/2)*asin(-P3/B)+«~O-~1)/2)*(-Pl/E)*sqrt(1-(-

P1/B)A2)+ ...
+«~1-~)/2)*(-P2/B)*sqrt(1-(-P2/E)A2)+ ...
+«~-~)/2)*(-P3/B)*sqrt(1-(-P3/E)A2» ;

elseif B<P4 5& B>=P3
N=(4/pi)*(~*pi/4+«~O-~1)/2)*asin(Pl/E)+«~-

~)/2)*asin(P2/B)+ ...
+«~-~)/2)*asin(P3/B)+«~O-~)/2)*(Pl/E)*sqrt(1-

(P1/E)A2)+ ...
+«~-~)/2)*(P2/E)*sqrt(1-(P2/E)A2)+ ...
+«~-~)/2)*(P3/E)*sqrt(1-(P3/E)A2» ;

elseif E>-P3 && E<=-P2
N=(4/pi)*(~*pi/4+«~O-~)/2)*asin(-Pl/E)+«Kl-~)/2)*asin(-

P2/B)+ ...
+«~O-~)/2)*(-Pl/E)*sqrt(1-(-Pl/E)A2)+ ...
+«Kl-~)/2)*(-P2/B)*sqrt(1-(-P2/E)A2» ;

elseif E<P3 && B>=P2
N=(4/pi)*(~*pi/4+«~O-~1)/2)*asin(Pl/E)+«~-

~)/2)*.sin(P2/B)+ ...
+«~O-~)/2)*(Pl/E)*sqrt(1-(Pl/E)A2)+ ...
+«~1-~)/2)*(P2/E)*sqrt(1-(P2/E)A2» ;

elseif E>-P2 " B<=-Pl
N=(2*~/pi)*(pi/2+«~O/~1)-1)*(asin(-P1/E)+ ...
+«-Pl/B)*sqrt(1-(-Pl/E)A2»»;

elseif B<P2 "E>=Pl
N=(2*~/pi)*(pi/2+«KO/~1)-1)*(asin(pl/E)+ ...
+«Pl/B)*sqrt(1-(Pl/B)A2»»;

else
N = ~O;

end
B;
A(n,l)=B;
A(n,2)=N;
end
A
t=l:lOl;
x=A(t,2) ;
plot(A(: ,1),A(:,2» ;
grid;
title('Plot of Describing function N(e)aqainst input e -
polynomial approximation n=4');
xlabel('error e (input to the non-linearity) ');
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y1abe1('Describing function output N(e) ')
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APPENDIX 1.3

DESCRIBING FUNCTION FOR COULOMB FRICTION
PLUS VISCOUS DRAG PLUS SATURATION

Q

x

Fig. A 1.3.1: Characteristic for Coulomb friction + viscous drag + saturation

y ,

p

With reference to the Figure 4.2: Kt = 0, K2 = K, K3 = 0

This is similar to the case of Coulomb friction plus viscous drag but the

integration has to be split into two parts.

4 la 4 J!!_(Q \N=- y.sin(mt).d(mt)+- 2 +KP,.sin(mt).d(mt)
7rX 0 7rX a

.. N = _i_ ra (Q +KX sin(mt) ).sin(mt).d(mt) +_i_J~ (Q +KP}sin(aJI).d(mt)
7rX Jo 7rX a

.. N =~[r~.sin(mt).d(mt) +r~sin
2
(mt).d(mt) +]

7rX J:Qsin(mt).d(mt) +J:KPsin(mt).d(mt)

., N = :x[fQ.Sin(tlII).~(tlII)+ rKXSin2(tlII).d(tlII)+]

J:KP.sin(mt).d(aJI)
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4Q 4KP 4K la ( 1 1 ).. N =-+-.cos(a)+- ---cos(2wt) .d(wt)
JZX JZX JT022

4Q 4KP 2K K.. . N = - + -. cos(a) + - a - -. sm(2a)
JZX JZX JT JT

Now P = X.sin(a) so a = sin-t;) cos(a) =~[l-(;n
and sin(2a) = 2.;~[l-(; )']
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APPENDIXA2

INVERSE NYQUIST CALCULATIONS

AND

ROOT LOCI
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APPENDIX 2.1

INVERSE NYQUIST CALCULATIONS

Ma tlab Codi.ng

1 clear all
2 % Inverse Nyquist Calculations
3 disp('Inverse Nyquist Calculations')
4 disp (' ')
5 disp(' w(rad/s) real imag')
6 n=O;
7 for w=2.36:0.01:2.6
8 n=n+1;
9 q=«j*w)A3+5*(j*w)A2+6*(j*w)+1)/50;
10 x=real(g);
11 y=imag (g) ;
12 A(n,l)=w;
13 A(n,2)=x;
14 A(n,3)=y;
15 end
16 A

Relevant results

w(rad/s) real tmag

2.3600 -0.5370 0.0203
2.3700 -0.5417 0.0182
2.3800 -0.5464 0.0160
2.3900 -0.5512 0.0138
2.4000 -0.5560 0.0115
2.4100 -0.5608 0.0092
2.4200 -0.5656 0.0070
2.4300 -0.5705 0.0046 { 2.4480 -0.5793 0.0004
2.4400 -0.5754 0.0023 2.4490 -0.5798 0.0001
2.4500 -0.5802 -0.0001 +-- 2.4500 -0.5802 -0.0001
2.4600 -0.5852 -0.0025 2.4510 -0.5807 -0.0004
2.4700 -0.5901 -0.0050
2.4800 -0.5950 -0.0075
2.4900 -0.6000 -0.0100
2.5000 -0.6050 -0.0125
2.5100 -0.6100 -0.0151
2.5200 -0.6150 -0.0177
2.5300 -0.6201 -0.0203
2.5400 -0.6252 -0.0229
2.5500 -0.6302 -0.0256

Nyquist value at crossover when gain is 50 is 0.58 ± 0.001
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Inverse Nyquist when gain is increased to 70

Inverse Nyquist Calculations

w(rad/s) real lffiag

>\-, -

2.4000 -0.3971 0.0082
2.4100 -0.4006 0.0066
2.4200 -0.4040 0.0050
2.4300 -0.4075 0.0033
2.4400 -0.4110 0.0016
2.4500 -0.4145 -0.0001 +-

2.4600 -0.4180 -0.0018
2.4700 -0.4215 -0.0036
2.4800 -0.4250 -0.0053
2.4900 -0.4286 -0.0071
2.5000 -0.4321 -0.0089

Nyquist value at crossover when gain is 70 is 0.41 ± 0.05

Matlab code same as in the first case except line 9 changes to:

9 g=«j*w)A3+S*(j*w)A2+6*(j*w)+1)/70;
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ROOT LOCUS

Root Locus Editor (C)
8

6

4

2

'!2
x« 0 •OJ
co

E
-2

-4

-6

-8
-10 -8 -6 -4 -2

Real Axis

•

\

2 4o

50
Fig.A2.1.1: Root locus for open-loop transfer function g = ---::-------:----

S3 +5s2 +6s+1
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APPENDIX 2.2

CODING FOR SELECTED DESCRIBING FUNCTIONS

The hard saturation case (Madab coding: modified program Gensolh.m)

clear all
disp('This program plots out the real describing function for')
disp('nonlinearities which only have straight lines between the
breakpoints')
disp('In this case, only one break point, so n=1')
disp('for the saturation function')

KO = 1
K1=0
n=O
P1=1

for E=-10:0.1:10
n=n+1
if E<=-P1

N =(2/pi)* (KO-K1)* (asin(-P1/E)+«-P1/E)*sqrt(1-(-P1/E)A2) »;
elseif E>=P1

N =(2/pi)*(KO-Kl)*(asin(P1/E)+«P1/E)*sqrt(1-(P1/E)A2»);
else

N = KO;
end

E;
B(n,l)=E;
B(n,2)=N;

% C gives the plot of the Nyquist value at crossover

C(n,l)=E;
C(n,2)=0.57;

% D gives the magnitude of the limit-cycle

0(n,1)=2.15;
0(n,2)=1.1*N-0.02;
end
B
C
D

plot(B(: ,1),B(: ,2),CC: ,1),CC: ,2), 'r',D(: ,1) ,D(: ,2), 'k', 'Linewidth'
,1.5) ;
grid;
title('Fig.5.4:Plot of Describing function N(x)against input x -
Hard Saturation');
xlabel('input to the non-linearity');
ylabel('Describing function output N(x) ')
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leqend('Describing function', 'Nyquist value at
crossover', 'Magnitude of limit-cycle')
The soft saturation case (Gensols.m)

clear all
disp('This program plots out the real describing function for')
disp('the soft saturation case. This has straight lines between')
disp('the breakpoints. In this case, only one break point, so n=l')
disp('with intial slope 1 and final slope 0.1')
KO = 1
K1=0.1
n=O
P1=1
for E=-10:0.1:10
n=n+1
if E<=-P1

N =(2/pi)*(KO-K1)*(asin(-Pl/E)+«-P1/E)*sqrt(1-(-P1/E)A2)»;
alseif E>=P1

N =(2/pi)* (KO-K1)* (asin(Pl/E)+«P1/E)*sqrt(1-(Pl/E) A2») ;
else

N = KO;
end

E;

B(n,l)=E;
B(n,2)=N;
C(n,l)=E;
c(n,2)=O.57;
D(n,1)=1.91;
D(n,2)=1.1*N-O.02;
end
B
C
o
plot(B(: ,1),B(: ,2),CC: ,1),CC: ,2), 'r',0(: ,1) ,0(; ,2), 'k', 'Linewidth'
,1.5) ;
grid;
title('Fig.5.5:Plot of Describing function N(x)against input x -
Soft Saturation');
xlabel('input to the non-linearity');
ylabel('Describing function output N(x) ')
legend('Describing function','Nyquist value at
crossover','Magnitude of limit-cycle')

The dead-zone plus hard saturation case (dead sat df.m)

clear all
disp('This program plots out the describing function for')
disp('dead-zone plus hard saturation')
% Value of slope of the inner linear section
KO = 0
% Value of the slope in the middle linear section
Kl = 1
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% Value of the slope in the outer linear section')
K2 = 0
% Value at which the first break-point occurs')
PI = 0.5
% Value at which the second break-point occurs')
P2 = 1.5
n=O;
for E=0:0.1:10

n=n+l;
if E>=P2

N=(4/pi)*(K2*pi/4+«KO-Kl)/2)*asin(Pl/E)+«Kl-
K2)/2)*asin(P2/E)+ ...

+«KO-Kl)/2)*(Pl/E)*sqrt(1-(Pl/E)A2)+«Kl-
K2)/2)*(P2/E)*sqrt(1-(P2/E)A2»;
elseif E<P2 && E>Pl

N=(2*Kl/pi)* (pi/2+«KO/Kl)-1)* (asin(Pl/E)+«Pl/E) *sqrt(l -
(Pi/E)A2))» ;
else

N = KO;
end
E;
A(n,l)=E;
A(n,2)=N;

% C gives the plot of the Nyquist value at crossover

C(n,l)=E;
C(n,2)=0.57;

% D gives the magnitude of the limit cycle

D(n,l)=1. 79;
D(n,2)=1.2*N-0.l;
end
A
C
D

plot(A(: ,1) ,A(: ,2),C(: ,1),C(: ,2), 'r',D(: ,1) ,D(: ,2), 'k', 'Linewidth'
,1.5) ;
grid;
xlabe1('input to the non-linearity');
ylabel('Describing function output N(x) ')
leqend('Describing function', 'Nyquist value at
crossover', 'Magnitude of limit-cycle')

The dead-zone plus soft saturation case (dead softsat.m)

clear all
disp('This program plots out the describing function for')
disp('dead-zone plus soft saturation')
% Value of slope of the inner linear section
KO = 0
% Value of the slope in the middle linear sectlon
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K1 = 1
% Value of the slope in the outer linear section')
K2 = 0.1
% Value at wh~ch the first break-point occurs')
PI = 0.5
% Value at which the second break-point occurs')
P2 = 1.5
n=O;
for E=0:0.1:10

n=n+1;
if E>=P2

N=(4/pi)*(K2*pi/4+«KO-K1)/2)*asin(P1/E)+«K1-
K2)/2)*asin(P2/E)+ ...

+«KO-Kl)/2)*(P1/E)*sqrt(1-(P1/E)A2)+«K1-
K2)/2)*(P2/E)*sqrt(1-(P2/E)A2»;
elseif E<P2 && E>P1

N=(2*K1/pi)*(pi/2+«KO/K1)-1)*(asin(P1/E)+«P1/E)*sqrt(1-
(PI/E) ....2) ) ) ) ;
else

N = KO;
end
E;
A(n,l)=E;
A(n,2)=N;

% C gives the plot of the Nyquist value at crossover

C(n,l)=E;
C(n,2)=O.S7;

% D gives the magnitude of the limit cycle

D(n,1)=1.87;
D(n,2)=1.2*N-O.1;
end
A
C
D

plot(A(: ,1),A(: ,2),C(: ,1),C(: ,2), 'r',D(: ,1),D(: ,2), 'k', 'Linewidth'
,1.5) ;
grid;
xlabel('input to the non-linearity');
ylabel('Describing function output N(x) ')
legend('Describing function', 'Nyquist value at
crossover', 'Magnitude of limit-cycle')

The Coulomb friction or ideal relay case (Coulomb.m)

clear all
disp('This program plots out the describing function for')
disp('a simple Coulomb friction non-linearity')

%'Q is the value of the cut-off on the y-axis')
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Q = 1;
n=O;
for E=0:0.1:10

n=n+1;
if E>=O.1

N=(4*Q/(pi*E»;
elseif E<=0.1

N=(4*Q/(pi*E»;
else

N=O;
end
E;
A(n,1)=E;
A(n,2)=N;

% C gives the plot of the Nyquist values at crossover

C(n,1)=E;
C(n,2)=0.57;

% D gives the magnitude of the limit-cycle

0(n,1)=2.25;
0(n,2)=1.1*N-O.02;
end
A;
C;
0;
plot (A(:,1),A(:,2),C (: ,1),C ( : ,2),'r',0(:,1),0(:,2), 'k ' , 'Linewidth'
,1.5) ;
grid;
xlabel('x (input to the non-linearity) ');
ylabel('Describing function output N(x) ');
legend('Describing function', 'Nyquist value at
crossover', 'Magnitude of limit-cycle')

Coulomb friction plus viscous drag (Coulombviscous.m)

clear all
disp('This program plots out the describing function for')
disp('a simple Coulomb friction + viscous drag non-linearity')

% Q is the value of the cut-off on y-axis

Q = 1;

% K is the value of the slope the viscous drag

K = 0.3;
n=O;
for E=2:0.1:10

n=n+1;
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if E>=O.l
N=(4*Q/(pi*E»+ K;

else
N=O;

end
E;
A(n,l)=E;
A(n,2)=N;
C(n,l)=E;
C(n,2)=0.57;
D(n,1)=4.72;
D(n,2)=1.18*N-0.2;
end
A;
C;
D;

plot(A(: ,1),A(: ,2),C(: ,1),C(: ,2), 'r',D(: ,1),D(: ,2), 'k', 'Linewidth'
,1.5) ;
grid;
% title('Plot of Describing function N(x)against input x - Coulomb
friction + Viscous Drag non-linearity');
xlabel('input x');
ylabel('Describing function output N(x) ');
legend('Describing function', 'inverse Nyquist value at
crossover', 'Magnitude of limit-cycle')

Coulomb friction plus viscous drag plus saturatiom (Coulomb viscous sat.m)

clear all
disp('This program plots out the describing function for')
disp('a simple Coulomb friction + viscous drag')
disp('+ saturation non-linearity')
% Q is the value of the cut-off on y-axis
Q = 1;
% K is the value of the slope the viscous drag
K 0.4;
% P is the value on the x-axis at which the saturation starts')
P=1.5;
n=O;
for E=1:0.1:10

n=n+1;
if E>1.5

N=(4*Q/(pi*E»+«2*K*P)/(pi*E»*sqrt(1-
(P/E)~2)+«2*K)/pi)*asin(P/E);
elseif E<=1.5 && E>=O.l

N=(4*Q)/(pi*E)+K;
else

N=O;
end
E;
A(n,l)=E;
A(n,2)=N;
C (n, l)=E;
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C(n,2)=O.57;
D{n,1)=3.53;
D{n,2)=1.3*N-O.2;
end
A;
C;
D;

plot{A{: ,1),A{: ,2),CC: ,1),CC: ,2), 'r' ,D{: ,1) ,0(: ,2), 'k', 'Linewidth'
,1. 75) ;
grid;
% title('Plot of Describing function N(x)against input x - Coulomb
friction + Viscous Drag non-linearity');
xlabel('input x');
ylabel('Describing function output N{x) ');
leqend('Describing function', 'inverse Nyquist value at
crossover', 'Magnitude of limit-cycle')

Triple-slope characteristic - 3 cases (triple slope.m)

clear all
disp('This program plots out the describing function for')
disp('a polynomial approximation with two break points')
disp('Please state the value of slope of the inner linear section')
KO = input ('KO = ')
disp('Please state the value of the slope in the middle linear
section' )
K1 = input{ 'K1 = ')
disp('Please srtate the value of the slope in the outer linear
section ")
K2 = input ('K2 = ')
disp('Please state the value at which the first break-point
occurs' )
P1 = input{'P1 = ")
disp('Please state the value at which the second break-point
occurs' )
P2 = input ('P2 = ')
n=O;
for E=0:0.1:10

n=n+1 ;
if E<=-P2

N=(4/pi)*(K2*pi/4+({KO-K1)/2)*asin{-P1/E)+{{Kl-K2)/2)*asin{-
P2/E)+ ...

+«KO-Kl)/2)*(-P1/E)*sqrt{1-{-P1/E)A2)+{{Kl-K2)/2)*{_
P2/E)*sqrt(1-(-P2/E)A2»;
elseif E>=P2

N=(4/pi)*(K2*pi/4+({KO-Kl)/2)*asin(P1/E)+«K1-
K2)/2)*asin(P2/E)+ ...

+«KO-Kl)/2)*(P1/E)*sqrt(1-(P1/E)A2)+«Kl_
K2)/2)*(P2/E)*sqrt(1-(P2/E)A2»;
elseif E>-P2 && E<-Pl

N=(2*Kl/pi)* (pi/2+«KO/K1)-1)* {asin{-P1/E)+«-Pl/E)*sq rt(l-(-
P1/E)A2»»;
elseif E<P2 && E>Pl
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N=(2*K1/pi)*(pi/2+«KO/K1)-1)*(asin(P1/E)+«P1/E)*sqrt(1-
(P1IE) "2))));
else

N = KO;
end
E;
A(n, l)=E;
A(n,2)=N;
C(n,l)=E;
C(n,2)=O.57;
D(n,1)=8.55;
D(n,2)=1.3*N-O.2;

end
A
C
D

plot(A(: ,1),A(: ,2) ,CC: ,1) ,CC: ,2), 'r',D(: ,1),D(: ,2), 'k', 'Linewidth'
,1.5) ;
grid;
xlabel('input to the non-linearity');
ylabel{'Describing function output N(x) ')
legend{'Describing function','Nyquist value at
crossover','Magnitude of limit-cycle')
title('KO=O.4,Kl=1.0,K2=O.2,P1=1,P2=4')

Non-linearity with three break-points - first case with
more than one limit-cycle (three breakpoints.m)

%Describing function of a non-linearity with an inner slope KO,
%a middle slope2 KI and K2 and an outer slope K3.
%Break points at PI, P2 and P3.

clear all
disp('This program plots out the describing function for')
disp('a polynomial approximation with three break points')
disp{'Please state the value of slope of the inner linear section')
KO = input ('KO = ')
disp('Please state the value of the slope in the first middle
linear section')
Kl = input('Kl = ')
disp('Please state the vaue of the next section')
K2 = input( 'K2 = ")
disp('Please state the value of the slope in the outer linear
section' )
K3 = input('K3 = ')
disp('Please state the value at which the first break-point
occurs' )
P1 = input (,PI = ')
disp('Please state the value at which the second break-point
occurs')
P2 = input (,P2 = ')
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disp('Please state the value at which the third break-point
occurs')
P3 = input ('P3 = ')
n=O;
for E=O:O.1:10

n=n+l;
%if E<=-P3
% N=(4/pi)*(K3*pi/4+«KO-KI)/2)*asin(-PI/E)+«KI-K2)/2)*asin(-
P2/E) + ...
% +«K2-K3)/2)*asin(-P3/E)+«KO-KI)/2)*(-PI/E)*sqrt(1-(-
PI/E) "2)+ ...
% +«KI-K2)/2)*(-P2/E)*sqrt(1-(-P2/E)"2)+«K2-K3)/2)*(-
P3/E)*sqrt(1-(-P3/E)"2» ;
%else
if E>=P3

N=(4/pi)* (K3*pi/4+«KO-Kl)/2) *asin(Pl/E)+«Kl-
K2)/2)*asin(P2/E)+ ...

+«K2-K3)/2)*asin(P3/E)+«KO-KI)/2)*(Pl/E)*sqrt(1-
(Pl/E)"2)+ ...

+«Kl-K2)/2)*(P2/E)*sqrt(1-(P2/E)"2)+«K2-
K3)/2)*(P3/E)*sqrt(1-(P3/E)"2»;
%elseif E>-P3 && E<-P2
% N=(4/pi)*(K2*pi/4+«KO-KI)/2)*asin(-PI/E)+«KI-K2)/2)*asin(-
P2/E)+ ...
% +«KO-KI)/2)*(-Pl/E)*sqrt(1-(-Pl/E)"2)+«Kl-K2)/2)*(-
P2/E)*sqrt(1-(-P2/E)"2» ;
elseif E<P3 && E>P2

N=(4/pi)*(K2*pi/4+«KO-Kl)/2)*asin(Pl/E)+«Kl-
K2)/2)*asin(P2/E)+ ...

+«KO-Kl)/2)*(Pl/E)*sqrt(l-(Pl/E)"2)+«Kl-
K2)/2)*(P2/E)*sqrt(1-(P2/E)"2»;
%elseif E>-P2 && E<-PI
% N=(2*Kl/pi)*(pi/2+«KO/Kl)-1)*(asin(-Pl/E)+«-Pl/E)*sqrt(l-(-
PI/E)"2))));
elseif E<=P2 && E>Pl

N=(2*Kl/pi)*(pi/2+«KO/Kl)-1)*(asin(Pl/E)+«Pl/E)*sqrt(1-
(Pl/E)"2))» ;
else

N = KO;
end
E;
A(n,l)=E;
A(n,2)=N;

% C gives the plot of the Nyquist value ay crossover

C(n,l)=E;
C(n,2)=O.57;

% D gives the magnitude of the FIRST limit-cycle

D(n,1)=1.8S;
D(n,2)=1.2*N-O.l;

% F gives the magnitude of the SECOND limit-cycle
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F(n,1)=8.3;
F(n,2)=1.2*N-O.I;
end
A
C
D
F
plot (A(:,1) ,A (:,2),C (:,1) ,C (:,2) ,'r',D (:,1) ,D (:,2),'k',F (:,1) ,F (:,
2),'m','Linewidth',1.5);
grid;
ylabel('Output');
xlabel('error e (input to the non-linearity) ');
title('KO=1,Kl=-O.25,K2=1.5,K3=-O.5,Pl=1,P2=3,P3=4')
legend('describing function', 'magnitude of inverse Nyquist at
crossover', 'first limit-cycle', 'second limit-cycle')

Non-~inearity with four break-points, showing
possibi~ity of two
existence of a critica~

breakpoints and the possib~e
point

% Describing function of a non-linearity with an inner slope KO,
% a middle slopes KI, K2 and K3 and an outer slope K4.
% Break points at PI, P2, P3 and P4.
clear all
disp('This program plots out the describing function for')
disp('a polynomial approximation with FOUR break points')
disp('Please state the value of slope of the inner linear section')
KO = input( 'KO = ')
disp('Please state the value of the slope in the first middle
linear section')
KI = input( 'KI = ')
disp('Please state the value of the slope of the next section')
K2 = input( 'K2 = ')
disp('Please state the value of the slope of the next section')
K3 = input( 'K3 = ')
disp('Please state the value of the slope of the outer linear
section' )
K4 = input( 'K4 = ')
disp('Please state the value at which the first break-point
occurs' )
PI = input ('PI = ')
disp('Please state the value at which the second break-point
occurs')
P2 = input('P2 = ')
disp('Please state the value at which the third break-point
occurs')
P3 = input ('P3 = ')
disp('Please state the value at which the fourth break-point
occurs' )
P4 = input('P4 = ')
n=O;
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for E=O:O.l:lO
n=n+l;

% ~f E<=-P4
% N=(4/pi)*(K4*pi/4+«KO-Kl)/2)*asin(-Pl/E)+«Kl-K2)/2)*asin(-
P2/E)+ ...
% +«K2-K3)/2)*asin(-P3/E)+«K3-K4)/2)*asin(-P4/E) ...
% +«KO-Kl)/2)*(-Pl/E)*sqrt(1-(-Pl/E)~2)+ .
% +«KI-K2)/2)*(-P2/E)*sqrt(1-(-P2/E)~2)+ .
% + «K2-K3) /2)* (-P3/E) *sqrt(l- (-P3/E) A2)+ .
% +«K3-K4)/2)*(-P4/E)*sqrt(1-(-P4/E)~2»;
% else
if E >=P4

N=(4/pi)*(K4*pi/4+«KO-Kl)/2)*asin(Pl/E)+«Kl-
K2)/2)*asin(P2/E)+ ...

+«K2-K3)/2)*asin(P3/E)+«K3-K4)/2)*asin(P4/E)+ ...
+«KO-Kl)/2)*(Pl/E)*sqrt(1-(Pl/E)A2)+ .
+«Kl-K2)/2)*(P2/E)*sqrt(1-(P2/E)A2)+ .
+«K2-K3)/2)*(P3/E)*sqrt(1-(P3/E)A2)+ .
+«K3-K4)/2)*(P4/E)*sqrt(1-(P4/E)A2»;

% elseif E>-P4 && E<=-P3
% N=(4/pi)*(K3*pi/4+«KO-Kl)/2)*asin(-Pl/E)+«K1-K2)/2)*asin(-
P2/E) + ...
% +«K2-K3)/2)*asin(-P3/E)+«KO-K1)/2)*(-P1/E)*sqrt(1-(-
P1/E) A2)+ ...
% + ((Kl-K2 )/2)* (-P2/E) *sqrt (1-(-P2/E) A2)+ ...
% +«K2-K3)/2)*(-P3/E)*sqrt(1-(-P3/E)A2»;
elseif E<P4 && E>=P3

N=(4/pi)*(K3*pi/4+«KO-Kl)/2)*asin(Pl/E)+«Kl-
K2)/2)*asin(P2/E)+ ...

+«K2-K3)/2)*asin(P3/E)+«KO-Kl)/2)*(Pl/E)*sqrt(l-(Pl/E)A 2)+ ...
+«Kl-K2)/2)*(P2/E)*sqrt(1-(P2/E)A2)+ ...
+«K2-K3)/2)*(P3/E)*sqrt(1-(P3/E)A2»;

% elseif E>-P3 && E<=-P2
% N=(4/pi)*(K2*pi/4+«KO-K1)/2)*asin(-P1/E)+«K1-K2)/2)*asin(-
P2/E) + ...
% +«KO-K1)/2)*(-P1/E)*sqrt(1-(-P1/E)A2)+ ...
% +«KI-K2)/2)*(-P2/E)*sqrt(1-(-P2/E)A2»;
elseif E<P3 && E>=P2

N=(4/pi)*(K2*pi/4+«KO-Kl)/2)*asin(Pl/E)+«Kl-
K2)/2)*asin(P2/E)+ ...

+«KO-Kl)/2)*(Pl/E)*sqrt(1-(Pl/E)A2)+ ...
+«Kl-K2)/2)* (P2/E)*sqrt(1-(P2/E)A2» ;

% elseif E>-P2 && E<=-P1
% N=(2*K1/pi)*(pi/2+«KO/K1)-1)*(asin(-P1/E)+ ...
% +«-P1/E)*sqrt(1-(-P1/E)A2»»;
elseif E<P2 && E>=Pl

N=(2*Kl/pi)*(pi/2+«KO/Kl)-1)*(asin(Pl/E)+ ...
+«Pl/E)*sqrt(1-(Pl/E)A2»»;

else
N = KO;

end
E;
A(n,l)=E;
A(n,2)=N;

% C gives the plot of the inverse Nyquist value at crossover
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C(n,l)=E;
C(n,2)=O.57;

% D gives the magnitude of the FIRST limit-cycle

D(n,1)=1.65;
D(n,2)=1.2*N-O.1;

% F gives the magnitude of the SECOND limit-cycle

F(n,1)=5.15;
F(n,2)=1.2*N-O.1;

% G is a critical point

G(n,1)=9.7;
G(n,2)=1.2*N-O.1;
end
A
% t=1:101;
% x=A(t,2) ;
plot(A(: ,1) ,A(: ,2) ,C(: ,1) ,C(: ,2), 'r' ,D(: ,1) ,D(: ,2), 'k' ,F(: ,1) ,F(:,
2), 'm' ,G(: ,1) ,G(: ,2),':', 'Linewidth' ,1.5);
grid;
title('KO=l, K1=-O.5, K2=1.5, K3=-1.2,K4=1.5, P1=1,
P2=2,P3=4,P4=6');
xlabel('input x');
ylabel('Describing function output N(x) ')
legend('Describing function','Magitude of the inverse Nyquist at
crossover', 'FIRST limit-cycle', 'SECOND limit-cycle','critical
point' )
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APPENDIXA3

INVERSE FUNCTIONS

AND

SAMPLE SIMULINK MODELS
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APPENDIX 3.1

Relation between the slope of a function and its mirror image

x

y C <I>

B

A

Fig. A3.I.I: Relation between a slope and its reflection in the 45° axis.

Let m be the slope line AB, then m = tan(a)

From the diagram, B + t/> = 45 , so t/> = 45 - B

If K' is the slope of line AC, the mirror of AB in the 45° axis,

then K* = tan(B +2t/» = tan(90 _ B) =_tan--'..(9_O_:_)-_tan_(:.._B):.._
1+ tan(90). tan(B)

tan(B)j
K* = 1- jtan(90) = 1 =_1

.. ){an(90) + tan(B) tan(B) K

K.K· = I
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APPENDIX 3.2

Algebraic relation between dead-zone and Coulomb friction.

This is from unpublished work of Dr Barry Gomm. It shows an algebraic

relationship between dead-zone and Coulomb friction. Its significance only

became apparent as this research progressed.

-a

y

Fig. A.3.2.1: Dead-zone characteristic

x
a

m(x-a)

m(x+a)

when x = a, y = 0 = mx + Cl ----. Cl = - rna
when x = -a, y = 0 = rnx + C2 ----. C2 = + rna

{
co+a

let x = gem) =
co-a

m~O

m<O
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Table A3.2.1

Removing dead-zone

w x y

2a 3a 2am
a 2a rna
0 a 0

-a -2a -rna
-2a -3a -2am

y

V X

V -,.

Fig. A3.2.2: Dead-zone removed by adding Coulomb friction

Hence by adding a constant in the y direction, the dead-zone in the x-direction

has been removed.
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APPENDIX 3.3

The Design of a Fuzzy Non-linearity and its Inverse

Relation between P and p*

Fig. A3.3.1: Relation between P and p.

y
P;:I
p'
I

p'
3

............: (1 .

p.
2

p.'
I

p'o

P; x

Fig. A3.3.1 shows the relationship between P and r' for all Pi. If the slope of the line

between any Pi and Pi+I is K, it follows that:

~'= Ko~
p2' = Ko~ +KI(P2 -~) =(Ko-KJ~ +KIP2
~. = Ko~ + K,(~ - ~)+ K2(P3 -P2) = (Ko - K,)~ +(K, - KJP2 + K2P:.

n-I

Pn• =L (Ki_1 - KJP; + Kn_, P; (A3.3.1)
i=1
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Relation between c, K and P

Fig. A.3.3.2 shows the output from a type I Sugeno fuzzy controller. Each straight
section can be represented by the equation y = Kx + C •

The equation for the first section is y = Ko x + co' where Ko is the gradient of that
section. Since this line passes through the origin, Co = O.

At the upper end of the first straight section, start of the second section:
YI =Ko~ and XI =~
The equation for the second section is:
YI = KI XI + Cl ~ K, P; = KI ~ + Cl

:. Cl = (Ko - KI)~

At the upper end of the second section, start of the third section:
Y2 = Ko ~ + KI (r; - ~) and X2 = r;
The equation of the second section is:
Y2 = K2x2 +c2 ~ Ko~ +K,(P2 -~)= K2r; +c2
:. c2 = (Ko -KJ~ +(KI -K2)r;

Repeating this procedure for every section leads to the general result:

n

c, = ~)Ki_1 - K;)p, (A3.3.2)
1=1

y ......'............

x

Fig. A3.3.2: Relation between c, K and P
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APPENDIX 3.4

SAMPLE SIMULINK MODELS

SIMULlNK open-loop arrangement showing the fuzzy non-linearity in series with its
inverse.

Cj)----~J
Clock

{9 ~ -BI. Scope Z I'00,., I. r Scope

~.. ~lMl_1 .-EJ
Fuzzy Non I InverseFuzzy To WorkspaCE2

Linearity L Non Linearity

.-~~ {w] 1- -u
To Workspace1 To Workspaca\ Scope 3

-LIM\} 0- -~r:J
Fuzzy Non
Linearity

To Workspace

Ramp

C»IENWQPAEI\fI'OItISOOF~f'UttY1IIIOI'OI!'L ,.,.-

RIIMP _F_1NV_0U'f_
CON11'PttIle; IffICONTA'KfiI

Fig.A3.4.1: SIMULINK arrangement to dertermine the open-loop responses of a
non-linearity and its inverse to a ramp input.
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SIMULINK arrangement showing the effect of the block, of the fuzzy non-linearity in
series in series with the standard tranfer function, with unit feedback. Also present in
parallel is the unitary feedback results for the transfer function on its own. Impulse
sources at the front end to supply square pulse of varying height to show when
various featurs are triggered, i.e: first and second limit-cycles and the exceeding of the
final critical value.

Scope11e JtjIScopef
[ ~-4
Initial input

eJ
Scope2

--£]
Scope3

t---------ICv J
Fuzzy output

_~ >--S1Ol _,l_]]
v ~
Gain Transfer Fen Scope1T "" ",

Step

rr. IT}-

pj.J StepS

e
Scope ScopeS

P_r-- m-----
Step4

Scope10 e-JJ- Scope?

Step3 r- Cll
Scope9 Step2

Scope6

Fuzzy Non
Linearity

Final output

-fi

To Workspace

0---
ClocKI Timebase

Fig. A3.4.2: SIMULINK arrangement to show effect of fuzzy non-linearity
on the standard transfer function
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SIMULINK arrangement showing the effect of the block, of the fuzzy non-linearity in
series with its inverse in series with the standard tranfer function, with unit feedback.
Also present in parallel is the unitary feedback results for the transfer function on its
own.

.g r--{]
{g .~

controller
ImtlaJ Input

y'.,}-><"l- .- ~)-----. --{JXXli--{71X'JLt,; ·~,.~~;d-
1) J L ':;'::':';"'";::':~,::%
Step1 I

~J~

-fl
Scope3

~ v 1
Fuzzy output

Scope1

Final output

Scope -+>- - -{d~£J-
Gain1 Transfer Fcr1

-~-

l_
{ -t l To Workspace

J--
Clock1 Timebase

Fig. A3.4.3: SIMULINK arrangement to show how the fuzzy inverse cancels out
the effect of the original fuzzy non-linearity
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APPENDIX A3.5

TEMPLATE FOR THE FUZZY NON-LINEAR FUNCTION
DESIGNS

Input fuzzy sets NB NS ZE PS PB

just touching

\NWINPUT

Defined signal
Lower Limit P-2 P-t Pt Pz Upper

range and
breakpoint
positions

OPB [K2 Cl] Z=K1X +Cz
OPS [Kt Ct] Z=K1X+Ct

OUTPUT OZS [Ko Co] Z=KoX+Co
ONS [Kt Ct] Z=KtX+Ct

Defined slope and ONB [K2 C2] Z=K2X+C2

constant for equ"
for each
straight line
section

If input is NB then output is ONB
If input is NS then output is ONS

RULEBASE If input is ZE then output is OZE
If input is PS then output is OPS
If input is PB then output is OPB

1
RULESURFACE )1\

Graph of non-
linearity

\1/ -1

Slopes of straight K2 Kt Ko Kt Kl

sections

Fig.A3.S.1: TemQlate for the desigD of the fuzzy non-linear
functions
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The input to the fuzzy function is via triangular fuzzy sets which a just touching. The

boundaries of these fuzzy sets are the break points PI ... Pn• These input are

connected to the linear output functions by a 1-1 rule-base which introduces no

distortion since the same break-point vales are used as the boundaries of the Sugeno

type 1 outputs. Each output section is represented by a straight line and the slope K

and constant C is calculated either by using the algorithm or by first principles.
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