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Abstract 

The aim of this thesis is to provide empirical evidence on the utility of Higher 

Order Neural Networks (HONNs) as financial forecasting and trading tools. In 

order to achieve this, we use HONNs in a series of applications and 

benchmark them not only with some traditional statistical and technical 

techniques but also with some other state of the art Neural Networks (NNs) 

designs. Moreover, we test the stability and the robustness of their 

performance, a crucial property for models like HONNs, whose their modelling 

is based on trial and error rather than some formal statistical theory. 

The evidence shows that, HONNs perform similarly or outperform their NNs 

and statistical/technical benchmarks as forecasting and trading tools on the 

EUR/USD exchange rate (see chapters 4 and 5) although they do not seem 

capable of exploiting the trading strategies applied as for example the GM 

networks (see chapter 4). Their superiority is more obvious when we feed our 

NNs models with autoregressive terms rather than having as inputs 

multivariate series. Also we test and find our forecasts stable and robust 

through time (see chapter 6). Moreover, HONNs seem capable of providing 

accurate forecasts of the realised volatility of the gold bullion, brent oil and 

FTSE 100 futures index (see chapters 7 and 8). This allows us to apply and 

exploit our forecasts successfully in a Value at Risk and Option Pricing 

Modelling context. 

The above mentioned empirical evidence confirms that HONNs can provide 

accurate, profitable and robust forecasts. Our results should go some way 

towards convincing quantitative risk and fund managers to use non-linear 

alternative models like HONNs as they seem capable of outperforming the 



classical statistical/technical algorithms of their toolbox and generate higher 

return/risk profiles. 
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CHAPTER 1 

1.1 Introduction 
The development of accurate forecasting techniques is critical to economists, 

investors and risk analysts. This task is getting more complex as financial 

markets are getting increasingly interconnected and interdependent. The 

traditional statistical techniques, on which market forecasters were relying in 

previous years, seem to fail to capture the moving interrelationship among 

market variables. This context has led to a continuous search of techniques 

capable of identifying and capturing the nonlinearities, the discontinuities and 

the high frequency multi-polynomial components characterizing financial time 

series today. A class of such techniques that have provided promising results 

in previous years are Neural Networks. 

Artificial neural networks (NNs), which were firstly introduced by McCulloch 

and Pitts (1943), are mathematical models inspired by the organization and 

functioning of biological neurons. In the beginning NNs were seen as a way to 

model the human brain and expectations from its applications were high. 

However the expectations were not met until the 80's, as the lack of the 

necessary computing power put limitations on the research. Then, with the 

rapid growth of computer science and the works of scientists like Hopfield 

(1982) the interest in NNs was renewed and huge theoretical steps started to 

be made. Today NNs are applied in almost every aspect of Science including 

financial forecasting. 
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Among the numerous advantages of NNs compared to traditional statistical 

linear techniques is the fact that they are inherently nonlinear, self adaptive 

data driven (they require few a priori assumptions) and that they can 

approximate any continuous function to any desired level of accuracy (Hornik 

et al. (1989)). On the other hand, some issues such as their predictive 

unreliability with outcomes that are overly sensitive to specific training 

samples, the malicious vector and their absence of formal theoretical rules for 

the training procedures has created scepticism over their utility as forecasting 

tools. A family of NNs that seems to overcome the problem of sensitivity to the 

trainning samples and malicious vector but not the absence of formal 

theoretical rules is Higher Order Neural Networks (HONNs). HONNs can 

better approximate complex, non-smooth, often discontinuous training data 

compared to the classic Multi-Layer Perceptron models (MLPs) (Fulcher et al. 

(2006)). Moreover, they are capable of extracting higher order coefficients in 

the data and there is a one to one correspondence between the polynomial 

coefficients and the network weights. Therefore they can be considered as 

open box solutions, a much desirable property in financial applications. This 

thesis studies the forecasting and trading performance of HONNs having as 

benchmark a wide variety of NNs, statistical and technical models. 

This thesis should be of interest to both hedgers and speculators who want to 

explore the use of alternative non linear models. An accurate prediction of the 

future stock market pattern will give them a considerable advantage and allow 

them to generate attractive return/risk profiles. Moreover, the ability to 

forecast accurately the Value at Risk (VaR) will allow hedge funds and 
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investors to develop clever and effective hedging strategies while an accurate 

forecast of the future volatility can help investors to identify mispriced options 

and develop sophisticated trading strategies. Morevover, this thesis can 

contribute to the academic studies as it provides empirical evidents over the 

forecasting and trading abilities of a wide variety of non linear models over the 

mean of the EUR/USD exchange rate and the volatility of the gold bullion, 

brent oil and the FTSE 100 futures index. Also all the forecasts were 

evaluated through financial and trading criteria which makes it differ from most 

similar academic studies. Furhhermore, this thesis contribute to financial 

research by introducing a backtesting algorithm to evaluate the Value at Risk 

(see section 8.4.2.2). 

1.2 Background to the Thesis and Motivation 

HONNs were firstly introduced by introduced Giles and Maxwell (1987) as a 

fast learning network with increased learning capabilities. Although their 

function approximation superiority over the more traditional architectures is 

well presented in a series of articles (see among others Redding et al. (1993), 

Kosmatopoulos et al. (1995) and Psaltis et al. (1998)) their use in finance was 

limited until recently. This changed when scientists started to investigate not 

only the benefits of NNs against the traditional statistical techniques but also 

the differences between the different NNs models architectures. Then a wide 

variety of articles over their practical applications (for example Zhang et al. 

(2000), Dunis et al. (2005) and Fulcher et al. (2006)) verified their above 

mentioned advantages by demonstrating their superior forecasting ability and 

put HONNs in the front line of research in financial forecasting. However, 
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previous research stopped in the context of mean forecasting and there is no 

empirical evidence over their usage in demanding areas such as volatility 

forecasting in an option Pricing and VaR context. 

The motivation of this thesis is to fill this hole in the literature and to provide 

empirical evidence of the utility of HONNs in financial forecasting and trading 

applications. In order to achieve this, we benchmark HONNs not only with 

some traditional statistical and technical techniques but also with some other 

state-of-the-art NNs designs. Therefore, we will be able to validate if the 

theoretical advantages of HONNs compared to the more traditional NNs 

models are translated in more accurate/profitable forecasts. In order to 

achieve this our forecasts are evaluated through financial terms while in the 

literature most applications evaluate their financial forecasts only through 

statistical means. Moreover, we will explore the utility of HONNs if we feed 

them not only with multivariate but also with autoregressive series as inputs. 

Therefore we will be able to draw more solid conclusions on the forecasting 

ability of our models especially against our statistical autoregressive 

benchmarks as HONNs now will not have any additional knowledge 

compared to them. Furhtermore, we will examine the robstuness of the 

forecsting perfomance of HONNs and our other NNs benchmarks while in the 

literature these feature has not been studied. Moreover, this research aims to 

provide the first empircal evidents over the forecasting power of HONNs in an 

Option Pricing and VaR context something that will further dinstiguish our 

research from previous similar studies and add originality to our application. 
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1.3 Contribution to the Knowledge 

In this dissertation we test and evaluate the forecasting and trading ability of 

HONNs. We explore the utility and the robustness of their performance in 

forecasting the mean and the volatility of financial series in an Option Price 

Modelling and Value at Risk context. More specifically the contributions to 

knowledge of this dissertation are threefold: 

1) Evaluating the forecasting and trading performance of HONNs. 

In chapter 4 we test and evaluate the performance of HONNs in forecasting 

the EUR/USD exchange rate using as inputs multivariate series while in 

chapter 5 we repeat the same application after we feed HONNs and the 

benchmark NNs models with autoregressive series. In order to further 

improve the trading performance of our models we apply trading strategies 

using confirmation filters and leverage. In chapter 6 we examine the 

robustness and the stability of the forecasting and trading performance of our 

models. The previous mentioned applications will allow us to argue with 

confidence over the forecasting power of HONNs in predicting the return of 

the EUR/USD exchange rate whether multivariate or autoregressive series 

are used as inputs. Moreover, we will examine if the mentioned in the 

literature unpredictability in the NNs forecasts is still the case in HONNs. 

2) Evaluating the performance of HONNs in an Option Price Modeling 

context. 

In chapter 7 we forecast the 1-month (21 trading days) ahead volatility of the 

FTSE 100 futures index with HONNs and 3 other benchmark models. Then 
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we use our forecasts to indentify mispriced options and to exploit them in a 

simple trading application. Therefore, we will be able to examine and to 

provide the first empirical evidents around the utility of HONNs in generating 

profit through accurate volatility forecasts in an Option Price Modeling context. 

3) Evaluating the performance of HONNs in a VaR context. 

In chapter 8 we forecast the VaR of brent oil and gold bullion with HONNs and 

3 other NN and technical models. Then we evaluate our forecasts with a 

series of algorithms and backtesting functions, including an average squared 

magnitude function introduced for the first time in this thesis. Therefore we will 

contribute to the knowledge by providing the first empirical evidents around 

the forecasting power of HONNs in a VaR context. Morever, the unique 

backtesting procedure followed to chapter 8, will add originality in this thesis. 
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CHAPTER 2 

Literature Review 

In this charter we present the literature relevent to the NNs models used on 

this thesis and the applications of NNs in general, in financial forecasting and 

in an Option Price Modelling and VaR context. 

The most popular and well researched NN architecture is the MLPs. In 

Finance their use is widespread and their forecasting superiority against most 

linear statistical and technical models, well acknowledged. Yao et al. (1996) 

forecasts the GBP, DEM, JPY, CHF, and AUD against the USD exchange 

rates, from 1984 to 1995 with a MLP and a ARMA model. Their conclusions 

were in favour of the MLPs not only in terms of correct directional change 

(CDC) but also in terms of profitability. Similarly, Yao et al. (1997) forecasts 

the USD/CHF exchange rate from 1983 to 1995 having this time as 

benchmarks a `buy and hold' and a `trend following' strategy. Once more the 

MLPs perform better and produce more accurate and profitable forecasts. 

Similarly, Dunis and Williams (2002) forecast the EUR/USD exchange rate 

from October 1994 to July 2001 with a naive, a moving average convergence- 

divergence (MACD), a ARMA, a logit and a MLP model. In their evaluation the 

MLP outperforms all other strategies not only in statistical terms but also in 

terms of trading efficiency as it produces the higher annualised return. 

Moreover, Pan et al. (2003) in a forecasting application, tries to exploit the 

various dynamical swings and inter-market influences of the Australian stock 

marker index with MLP. Their model forecasts exhibits up to 80% directional 

prediction correctness of the Australian stock market returns. Furthermore, 
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Zhang et al. (2005) forecasts with a MLP the buy and sell signs of the 

Shanghai Composite Index for a seven years period. Their model generates 3 

times higher return than a naive buy and hold strategy. On the other hand, 

Zhu et al. (2008) forecasts accurately the NASDAQ, DJIA and STI stock 

market indexes with 3-layer MLPs for a 15 years period. 

Recurrent Neural networks (RNNs) have an activation feedback which 

embodies short-term memory allowing them to learn extremely complex 

temporal patterns. Their superiority against feedfoward networks when 

performing nonlinear time series prediction is well documented in Connor et 

a/. (1993) and Adam et al. (1994). In financial applications, Kamijo et al. 

(1990) applied them successfully to the recognition of stock patterns of the 

Tokyo stock exchange while Tenti (1996) achieved remarkable results using 

RNNs to forecast the exchange rate of the Deutsche Mark. Tino et al. (2001) 

use them to trade successfully the volatility of the DAX and the FTSE 100 

using straddles while Dunis and Huang (2002), using continuous implied 

volatility data from the currency options market, obtain remarkable results for 

their GBP/USD and USD/JPY exchange rate volatility trading simulation. 

Moreover, Versace et al. (2004) combines RNNs with genetic algorithms 

(GA) and made statistically accurate forecasts of the DIA exchange traded 

fund from November 2001 to February 2003. Following a similar approach 

Kim and Shin (2007) use a hybrid Recurrent-GA neural network to make 

accurate predictions of the Korea Stock Price Index 200 pattern from 1997 to 

1999. On the other hand, Lee (2004) introduces a hybrid Recurrent-Radial 

Basis network which shows promising results in forecasting and trading 33 

major Hong-Kong stocks from 1 990 to 1999. 
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HONNs were first introduced by introduced by Giles and Maxwell (1987) as a 

fast learning network with increased learning capabilities. Practical 

applications have verified the theoretical advantages of HONNs by 

demonstrating their superior forecasting ability and put them in the front line of 

research in financial forecasting. For example Knowles et al. (2005) forecasts 

with HONNs and MLPs the EUR/USD exchange rate from October 1994 to 

July 2001. In their trading application HONNs achieve 8% higher annualised 

return than MLPs. Dunis et al. (2006b) use them to forecast successfully the 

gasoline crack spread while Fulcher et al. (2006) apply HONNs to forecast the 

AUD/USD exchange rate, achieving a 90% accuracy. However, Dunis et al. 

(2006a) show that, in the case of the futures spreads and for the period under 

review, the MLPs performed better compared with HONNs and recurrent 

neural networks (RNNs). On the other hand, Dunis and Nathani (2007) 

forecast and trade the gold and the silver daily returns with HONNs, MLPs, a 

Nearest Neighbours and a linear ARMA model. In their trading application, 

HONNs produce the most profitable trades in terms of annualized return and 

information ratio. 

Psi Sigma networks were first introduced as an architecture capable of 

capturing higher order correlations within the data while avoiding some of the 

HONNs limitations such as the combinatorial increase in weight numbers. 

Shin and Ghosh (1991) and Ghosh and Shin (1992) demonstrate these 

benefits and present empirical evidence on their forecasting ability. For 

financial applications, Ghazali et al. (2006) compare them with HONNs and 

MLPs on the IBM common stock closing price and the US 10-year 
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government bond series and prove their forecasting superiority. In a similar 

paper, Hussain et al. (2006) present satisfactory results of the Psi Sigma 

forecasting power on the EUR/USD, the EUR/GBP and the EUR/JPY 

exchange rates using univariate series as inputs in their networks. 

In the field of exploiting NNs forecasts in an option pricing model context, 

Hutchinson et al. (1994) use NNs to successfully price the S&P 500 futures 

options. Malliaris and Salchenberger (1996) forecast accurately the Black- 

Scholes derived implied volatility of the S&P 100 at-the-money call options 

with a MLP model while Garcia and Gencay (2000) create an option pricing 

model with feedfoward networks which is providing smaller delta-hedging 

errors relative to the ones generate from the Black-Scholes model. Yao et al. 

(2000) forecasts the option prices of the Nikkei 225 index futures with 

backpropagation NNs. They conclude that although for volatile markets NNs 

outperform the BS model, the BS model is still good for pricing at-the-money 

options. Moreover, Meissner and Kawano (2001) use Garch volatility 

forecasts as inputs to four different NNs models and create option pricing 

models which present significant better pricing performance than the Black- 

Scholes model. Furthermore, Gencay and Altay-Salih (2003) prove that for 

deep out-of-the money options, feedfoward NNs present a substantially better 

pricing performance than the BS model. On the other hand, Hamid (2004) 

forecast the volatility of the S&P 500 futures index using a MLP model. He 

finds that his volatility forecasts are not statistically different from the realised 

volatility and more accurate than the implied volatility, generated by the 

Barone-Adesi and Whaley (1987) model, of the S&P 500 index futures 
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options. Furthermore, Pires and Marwala (2004) forecast successfully the 

prices of American style call options on the JSE Securities Exchange of South 

Africa with Bayesian NNs while Andreou et al. (2008) forecast with good 

accuracy the price of European call options on the S&P 500 by combining a 

MLP model with the Black-Sholes and the Corrado-Su (1996) models. 

Moreover, Gardovejic et. al. (2009) based on the option pricing models of 

Hutchinson et al. (1994) and Garcia and Gencay (2000) creates a modular 

NN to price the S&P-500 European call options January 1987 to October 

1994. Their model is more accurate than the BS model in all cases except in 

1987. 

In the field of Risk Management, Locarek-Junge and Prinzler (1998) estimate 

the VaR of a US dollar portfolio using a Mixture Density Network while 

Bartlmae and Rauscher (2000) using a Neural Network Volatility Mixture 

model forecast successfully the one day ahead VaR of the German Stock 

index. Taylor (2000) found NNs as useful alternatives to GARCH for 

estimating the conditional density of exchange rate returns. Neely and Weller 

(2002) argue in favour of the use of genetic programming as an alternative to 

GARCH and RiskMetrics models while Cornalba and Giudici (2004) argue in 

favour the theoretical advantages of Bayesian NNs in estimating the VaR. 

Dunis and Chen (2005) demonstrate that NNs Regression models are 

superior in forecasting the VaR of the EUR/USD exchange rate compared to 

GARCH and Stochastic Variance models. Furthermore, Liu (2005) by 

combining historical simulation and a GARCH (1,1) model with NNs, achieve 

accurate VaR estimates for the S&P 500 and the DJI indexes and the Ford 
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and IBM stocks. Similarly, Ozun and Cifter (2007) combine various GARCH, 

historical simulation and Extreme Value Theory models with Neural Networks 

to provide accurate estimates of the VaR of the Istanbul Stock Exchange. 

The aim of the first three applications of this thesis is to provide empirical 

evidents around the utility of HONNs in forecasting the mean of financial 

series with autoregressive and multivariate series. This feature will distinguish 

our research from the previous mentioned papers which fail to examine the 

robstuness of their models. Moreover, all the applications in NNs around 

forecasting the volatility in an option pricing model context, evaluate their 

forecasts with statistical means. In our research we evaluate our forecasts 

also with financial means and thus providing more solid conclusions around 

the financial utility of our models. Furhtermore, in the last chapter of our thesis 

we provide empirical evidents around the forecasting ability of several non 

linear models in forecasting the one day ahead VaR. In order to evaluate our 

forecasts we follow an unique methodology using the Christofferesen tests 

and two different loss functions. On other hand, similar papers in the literature 

stop the evaluation of their models in the Christoffersen tests. 

12 



CHAPTER 3 

Neural Network Modelling 

The primary forecasting methodologies used on this thesis are that of neural 

networks. They are used as decision models to forecast the return of the 

EUR/USD exchange rate and the variance of Gold Bullion, Brent Oil and the 

FTSE 100 futures index. NNs can take on several different types of 

architecture and because of this the 4 different neural network designs that 

are used in this thesis are explained in the following section. We also present 

the 2 NNs models of Lindemann et. al. (2004), Gaussian Mixture and Softmax 

Cross Entropy, whose performance we use as benchmarks in the fourth 

chapter. 

3.1 The Multi-Layer Perceptron 

A standard MLP has at least three layers. The first layer is called the input 

layer (the number of its nodes corresponds to the number of explanatory 

variables). The last layer is called the output layer (the number of its nodes 

corresponds to the number of response variables). An intermediary layer of 

nodes, the hidden layer, separates the input from the output layer. Its number 

of nodes defines the amount of complexity the model is capable of fitting. In 

addition, the input and hidden layer contain an extra node, called the bias 

node. This node has a fixed value of one and has the same function as the 

intercept in traditional regression models. Normally, each node of one layer 

has connections to all the other nodes of the next layer. 
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The network processes information as follows: the input nodes contain the 

value of the explanatory variables. Since each node connection represents a 

weight factor, the information reaches a single hidden layer node as the 

weighted sum of its inputs. Each node of the hidden layer passes the 

information through a nonlinear activation function and passes it on to the 

output layer if the calculated value is above a threshold. 

The network architecture of a `standard' Multi-Layer Perceptron looks as 

presented in figure 1: 

Fiq. 1: A single output, fully connected MLP model 

where 

x, ["] (n =1,2, " " ", k + 1) are the model inputs (including the input bias node) at 

time t 

[m' (m =1,2,..., j+ 1) are the hidden nodes outputs (including the hidden bias 

node) 

Yt is the MLP model output 
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unk and wý are the network weights 

is the transfer sigmoid function: S(x) =1 1111 l+e-x 

O 

is a linear function: F(x) _ x; [2] 

The error function to be minimised is: 

T 

E(ujk, wj) =I1 
(y, 

- yJu jk, w, 
)y 

, with yt being the target value [3] 
T t-1 

3.2 The Recurrent Network 

Our next model is the recurrent neural network. While a complete explanation 

of RNN models is beyond the scope of this thesis, we present below a brief 

explanation of the significant differences between RNN and MLP 

architectures. For an exact specification of the recurrent network, see Elman 

(1990). 

A simple recurrent network has activation feedback, which embodies short- 

term memory. In other words, a recurrent network uses the output of the 

hidden nodes of period t-1 as inputs to period t. The advantages of using 

recurrent networks over feedforward networks, for modelling non-linear time 

series, has been well documented in the past (see among others Elman 

(1990) and Tenti (1996)). However as described in Tenti (1996) "the main 

15 



disadvantage of RNNs is that they require substantially more connections, 

and more memory in simulation, than standard backpropagation networks" 

(p. 569), thus resulting in a substantial increase in computational time. 

However having said this RNNs can yield better results in comparison to 

simple MLPs due to the additional memory inputs. 

3.2.1 The RNN Architecture 

A simple illustration of the architecture of an Elman RNN is presented below. 

x [l] 

x [2] 

x 
[3] 

U; 
-l 

P] 

t2] 
U; 

-I 

yt 

Fig. 2: Elman Recurrent neural network architecture with two nodes on the 

hidden layer. 

where: 

[2l 
x, ýn =1ý2ý... k+1), ut [1l 

, u1 

yt 

are the model inputs (including the input 

bias node) at time t 

is the recurrent model output 

16 



dt Ef 1 (f =1,2) and w1 (n = 1,2, " " ", k+ 1) are the network weights 

U [f r (f =1,2) is the output of the hidden nodes at time t 

is the transfer sigmoid function: S(x) =1x [4] 
l+e 

0 is the linear output function 

The error function to be minimised is: 

T 

E(d1, w, ) =1(1 -Yt(d1, wt))2 [6] 

In short, the RNN architecture can provide more accurate outputs because 

the inputs are potentially taken from all previous values (see inputs UJ_, "' 

and Uj 1E2' in the figure above). 

3.3 Higher Order Neural Networks 

Higher Order Neural Networks (HONNs) were first introduced by Giles and 

Maxwell (1987) and were called "Tensor Networks". For Zhang et al. (2002), a 

significant advantage of HONNs is that "HONN models are able to provide 

some rationale for the simulations they produce and thus can be regarded as 

"open box" rather then "black box". Moreover, HONNs are able to simulate 

F(x) = xt [5l 
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higher frequency, higher order non-linear data, and consequently provide 

superior simulations compared to those produced by ANNs (Artificial Neural 

Networks)" (p. 188). 

3.3.1 The HONNs Architecture 

While they have already experienced some success in the field of pattern 

recognition and associative recall', HONNs have not yet been widely used in 

finance. The architecture of a three input second order HONN is shown 

below: 

xo 

X1 

Xo X2 

X1 
XOXI 

X2 
XOX2 

1ý 

XIX2 

HONN 

Fes: Left, MLP with three inputs and two hidden nodes, right, second order 
HONN with three inputs 

where: 

x, ["] (n =1,2,..., k+ 1) are the model inputs (including the input bias node) at 

time t 

Yý is the HONNs model output 

Associative recall is the act of associating two seemingly unrelated entities, such smell and 

colour. For more information see Karayiannis and Venetsanopoulos (1994). 
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U Jk are the network weights 

" 
are the model inputs. 

O is the transfer sigmoid function: S(x) =1 [7] 
_x 1+e 

is a linear function: F(x) _>x; [8] 

The error function to be minimised is: 

T 

E(ujk, wj) =II 
(yt 

- yt 
(ujk 

, 
)) 

, with y, being the target value [9] 
T t=l 

HONNs use joint activation functions; this technique reduces the need to 

establish the relationship between inputs when training. Furthermore this 

reduces the number of free weights and means that HONNs can be faster to 

train than MLPs. However, because the number of inputs can be very large 

for higher order architectures, orders of 4 and over are rarely used. 

Another advantage of the reduction of free weights means that the problems 

of overfitting and local optima affecting the results can be largely avoided, 

Knowles et a/. (2005). For a complete description of HONNs see Giles and 

Maxwell (1987) while a description of the network training methodology is on 

chapter 3.7. 
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3.4 The Psi Sigma Network 

Psi Sigma networks can be considered as a class of feedfoward fully 

connected HONNs. First introduced by Ghosh and Shin (1991), the Psi Sigma 

network utilizes product cells as the output units to indirectly incorporate the 

capabilities of higher-order networks while using a fewer number of weights 

and processing units. Their creation was motivated by the need to create a 

network combining the fast learning property of single layer networks with the 

powerful mapping capability of HONNs while avoiding the combinatorial 

increase in the required number of weights. While the order of the more 

traditional HONN architectures is expressed by the complexity of the inputs, in 

the context of Psi Sigma, it is represented by the number of hidden nodes. 

3.4.1 The Psi Sigma Architecture 

In a Psi Sigma network the weights from the hidden to the output layer are 

fixed to 1 and only the weights from the input to the hidden layer are adjusted, 

something that greatly reduces the training time. Moreover, the activation 

function of the nodes in the hidden layer is the summing function while the 

activation function of the output layer is a sigmoid. The figure below shows a 

Psi Sigma with one output layer. 
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Output Layer (sigmoid) 

Fixed weights equal to 1 

Hidden Layer (linear) 

Adjustable weights 

Input Layer 

x1 x2 xi 

Fiq. 4: A Psi Sigma network with one output layer 

XN 

where: 

xý (n =1,2, " " ", k + 1) are the model inputs (including the input bias node) 

yt is the Psi Sigma output 

Wi is the adjustable weights 

h(x) _ xi 

6(x) =1 l+e-X` 

is the hidden layer activation function [10] 

is the output unit adaptive sigmoid activation function [11] 

with c the adjustable term 

The error function to be minimised is: 

E(c, w; 
) 

=1ý(. v, - . 
vt (wk 

, c))2 
T t=ý 

with yl being the target value [12] 

For example let us consider a Psi Sigma network which is fed with a N+1 

dimensional input vector x= (1, x,,..., xN)T These inputs are weighted by K 

weight factors wj = (wog , W] i ,..., wNj)T ,j=1,2,.. K and summed by a layer of K 

summing units, where K is the desired order of the network. So the output of 
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the j-th summing unit, hJ . in the hidden layer, is given by: 

N 

hj = w; x= ýwkjxk +w0 , j=1,2,..., K while the output of the network is 
k=1 

K 

given by y= 6(JJ h j) (in our case we selected for Q the sigmoid function 
j=1 

U(X) =1 _xc 
[13]). Note that by using products in the output layer we directly 

1+e 

incorporate the capabilities of higher order networks with a smaller number of 

weights and processing units. For example, a k-th degree HONN with d inputs 

k 

needs 
(d +i -1)! weights if all products of up to k components are to be 

i=o i! (d +l)! 

incorporated while a similar Psi Sigma network needs only (d+1)*k weights. 

Also note that the sigmoid function is neuron adaptive. As the network is 

trained not only the weights but also c in [11] is adjusted. This strategy seems 

to provide better fitting properties and increases the approximation capability 

of a neural network by introducing an extra variable in the estimation, 

compared to classical architectures with sigmoidal neurons (Vecci et al. 

(1998)). 

3.5 The Softmax Cross Entropy Model 

The Softmax cross entropy network (henceforth SCE) is a neural network with 

a cross entropy cost function and a Softmax activation function at the output 

nodes. The main idea of this model is to approximate the probability density 

function for the target value through a histogram representing the probability 

of the target value being within a range of predefined size. The output value of 
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a SCE model is therefore a vector with as many elements as there are output 

nodes, 6 in our case (each node representing one bar of the histogram). The 

vector elements sum up to unity and represent the density function for the 

target value while each vector element stands for the probability that the 

target value lies in the value range the vector element represents. 

In order to apply the cross entropy cost function, the target values of the 

training data set have to be preprocessed so that one gets a target vector 

(rather than a single target value as with the MLP), where the target vector 

has as many elements as the SCE model has output nodes. The target vector 

consists of zeros and a single one. The value `one' indicates which output 

node of the network covers the value range where the original target value 

lies in. Since the network forecasts should be used as a density function, one 

has to take care that the output vector sums up to unity. This is done by 

superimposing the Softmax function to the actual network outputs. The 

Softmax function keeps the internal relationship between the output values 

but transforms them in a way that their values add up to unity (see equation 

[16] below). 

During the training phase (that is when the network weights are adjusted), the 

SCE model learns to map the input vector of the training data set to the target 

vector of the same data set. Since each target vector consists of a single `one' 

representing a non-overlapping range of possible output values (while the rest 

are zeros), the SCE model tries in fact to solve a classification task. 
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The network might face a situation where the same input vector is related to 

two different output values (at different times) so that the network has no other 

chance than to map the input vector to more than one output node. In doing 

so, the network generates a density function for the target value, while the 

integrated Softmax function ensures that the probabilities add up to unity. 

3.5.1 The SCE network architecture 

The difference in architecture with a MLP lies in the multiple output nodes. 

While the MLP has typically only one output node delivering a level 

estimation, the SCE network uses several output nodes to represent an 

approximation of the density function (while being trained on a classification 

task). 

F :i 

[k] [Il -[q] Zq 
xt ht yt t 

fz -0 
v 

we 
SCE 

Fiq. 5: A single output, fully connected SCE model 

where: 

xtNnN (n =1,2, """, k+ 1) are the model inputs (including the input bias node) at 
time t 
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h [m] 

(m j+ 1) are the hidden nodes outputs (including the hidden bias 
node) 

yt[g] (g =1,2,..., q) is the SCE model output before applying the Softmax 
function 

z, lgl (g 1,2,,,,,,. q) is the network value at the output node g 

U Jk and wg, are the network weights 

is the transfer sigmoid function: S(x) = 1+e 

is a linear function: F(x) =>x; 

is the Softmax function A(g) = zg = 
exp(yg_ 

191 exr yg1 

with yg being the output of the linear function 

The error function to be minimised is: 

[14] 

[15] 

[16] 

Tq 

E(u jk, wj =1 ytg " log y`g 
, with ytg being the target value [17] 

t=I g=I ztg 
(UJk 

wj 

3.6 The Gaussian Mixture Model 

The GM network was first introduced by Husmeier (1999) and is applied to 

our EUR/USD time series in Lindemann et al. (2004). Additional empirical 

evident over the GM network forecasting ability in Finance were given by 

Lindeman et al. (2005). 

The GM model represents the probability density of the data by a linear 

combination of a fixed number of normal distributions (where the distribution 
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width is adapted to the whole set of training data while the locations of the 

distribution centres depend on the actual input data xt and the dependent 

variable yt). This is done in a hidden layer where each node represents a 

normal distribution. The actual network output is not the density function itself 

but the prediction of a single value2 which is the likelihood of the actual GM 

model parameters generating the observed value of the dependent variable y 

conditioned on the input data x. 

To optimise the cost function (that is, to maximise the sum of likelihood 

values), the weights ulk and w#, determining the location of the normal 

distribution centres (pt), have to be adapted so that the distance between yt 

and pt is minimal. Doing so, the centres of the distribution are close to yt and 

therefore the likelihood and with it the value of the cost function are high. See 

figure 5 below to illustrate that working principle. 

3.6.1 The GM network architecture 

The GM architecture differs in three main ways from the benchmark 

feedforward MLP network. First, as shown by Husmeier (1999), in order to be 

a universal approximator at least a second hidden layer is necessary. Second, 

both the independent and dependent variable (x, y) are used as input data, 

since the aim is not to predict y but its density distribution P(y I x) respectively 

2 Nevertheless, the whole density distribution can be constructed by varying the value of y 

over the interesting range of the searched density function. 
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the corresponding likelihood value. Third, the network uses Gaussian 

distributions in the second hidden layer. 

Fiq. 6: GM network architecture 

The following functions are applied within the GM model: 

x1 (n = 1,2,., k+ 1) are the model inputs (including the input bias node) at 
time t 
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yt is the argument of the density function conditional on the values of the 
inputs (note that the weights of yt are fixed to 13) 

unk and W11 are the network weights 

ß; define the inverse widths of the Gaussian distributions 

ai are the mixing coefficients, with a; =1 

i is the number of applied Gaussian mixture distributions 

j is the number of applied network weights W1 

k is the number of applied network weights U Jk 

QD Gaussian distribution: 

G (y1 
- pi) 

Fi 
exp _'Bi 

- 
(yt 

- Pi )2 
,[ 

18] ß' 2; z 2 

with pi (x) :_ , 
6, > 0, at ? 0, I I] 

wý; S1 jk'ýk J, 6k = 
r-ý7 

k 

la, =1 
i 

Sigmoid function: S(x) =1 _x 
[19] 

1+e 

Linear function: P(y x) =ja; Gß, [y - pi (x)] [20] 

The error function to be minimised is: 

IT 
E(ujk 

, w,, )6, , aj 1n(P(yt IXt 
, Ulk , wy /31, a; 

ýý, 
with yt being the target 

value [211 

3 If we would not fix the weight to 1 the network could decrease the cost function not only by 

adjusting the centres of the Gaussian mixture functions but also by changing the original 

target value y, . 
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It is possible to update the parameters of the GM model by gradient descent, 

as was done with the MLP network. However this algorithm, due to the 

architectural complexity of the GM network, is very time consuming. 

3.7 Neural Network Training Procedure 

The training of the network (which is the adjustment of its weights in the way 

that the network maps the input value of the training data to the 

corresponding output value) starts with randomly chosen weights and 

proceeds by applying learning algorithms based on the backpropagation of 

errors4 (Shapiro (2000)). The learning algorithms simply try to find those 

weights which optimise the error function (normally the sum of all squared 

differences between target and actual values). Since networks are able to 

learn the training data (as well as their outliers and their noise) by heart, it is 

crucial to stop the training procedure at the right time to prevent overfitting 

(this is called `early stopping'). This can be achieved by dividing the dataset 

into 3 subsets respectively called the training and test sets used for simulating 

the data currently available to fit and tune the model and the validation set 

used for simulating future values. The network parameters are then estimated 

by fitting the training data using the above mentioned iterative procedure 

(backpropagation of errors). The iteration length is optimised by maximising 

the forecasting accuracy for the test dataset. Finally, the predictive value of 

the model is evaluated applying it to the validation dataset (out-of-sample 

dataset). 

4 Backpropagation networks are the most common multilayer networks and are the most 

commonly used type in financial time series forecasting (Kaastra and Boyd (1996). 
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In the fourth charter we forecast the EUR/USD exchange rate with the 

networks which present the better statistical performance in-sample. In the 

fifth and sixth charter, we modify the error function of our models and we use 

the networks which present the higher financial performance in-sample, in 

terms of annualised return and Sharpe ratio. In the next charters where we 

forecast the volatility, we use for each neural network design the average of a 

committee of 20 networks which presents the better statistical performance in- 

sample. Our aim is that since the starting point for each network is a set of 

random weights, forecasts can differ between networks we use the average of 

a committee in order to eliminate any variance between our neural network 

forecasts. In all cases the specifications of the NNs models used on this 

research (number of hidden nodes, number of hidden layers, order of network 

and number and type of inputs) were chosen based on trial and error in the in- 

sample period. 
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CHAPTER 4 

Higher Order and Recurrent Neural Architectures 
for Trading the EUR/USD Exchange Rate 5 

Overview 

The motivation for this chapter is to investigate the use of higher order neural 

network architectures when applied to the task of forecasting and trading the 

Euro/Dollar (EUR/USD) exchange rate using multivariate series as inputs. 

This is done by benchmarking three different neural network designs 

representing a Higher Order Neural Network (HONN), a Psi Sigma Network 

and a Recurrent Network (RNN) with three successful architectures, the 

traditional Mutilayer Perceptron (MLP), the Softmax and the Gaussian Mixture 

(GM) models, as reported in Dunis and Williams (2002,2003) and Lindemann 

et al. (2004). So in other words, the motivation of this chapter is conduct a 

forecasting competition between several up to date non linear models and to 

check if the theoretical advantages of HONNs compared to the traditional 

MLPs and RNNs are translated to more accurate/profitable forecasts. More 

specifically, the trading performance of the six models is investigated in a 

forecast and trading simulation competition on the EUR/USD time series over 

a period of 8 years. These results are also benchmarked with more traditional 

models such as a moving average convergence divergence technical model 

(MAGD), an autoregressive moving average model (ARMA) and a logistic 

regression model (LOGIT). 

5 This paper has been presented at the Forecasting Financial Markets 2008 conference in 
Aix-en-Provence (21 to 23 May 2008) and at the 50th Operational Research Society 

conference in York (9 to 11 September 2008) and after referees comments is currently in the 
last stage of the reviewing process for potential publication in `Quantitative Finance'. 
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As it turns out, the MLP, the HONN, the Psi Sigma and the RNN models all do 

well and outperform the more traditional models in a simple trading simulation 

exercise. However, when more sophisticated trading strategies using 

confirmation filters and leverage are applied, the GM network produces 

remarkable results and outperforms all the other network architectures. 

4.1 Introduction 

Neural networks are an emergent technology with an increasing number of 

real-world applications including Finance (Lisboa et al. (2000)). However their 

numerous limitations often create scepticism about their use among 

practitioners. 

The motivation of this chapter is conduct a forecasting competition between 

several up to date non linear models and to check if the theoretical 

advantages of HONNs that try to overcome some of the limitations of the 

traditional NNs, are translated to more accurate/profitable forecasts using 

multivariate series as inputs. This is done by benchmarking three different 

neural network architectures representing a Higher Order Neural Network 

(HONN), a Psi Sgima network and a Recurrent Neural Network (RNN). Their 

trading performance on the Euro/Dollar (EUR/USD) time series is 

investigated and is compared with the three best models reported by Dunis 

and Williams (2002,2003) and Lindemann et al. (2004), the Multi-layer 

Perceptron (MLP), the Softmax and the Gaussian Mixture (GM) model. In 

order the competion to be fair, we fed our networks with the same inputs as 

by Dunis and Williams (2002,2003) and Lindemann et al. (2004) who 
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computed our benchmark models. We study the forecasting power of our 

models if we feed them with autoregressive inputs in the next chapter. A direct 

comparison of the forecasting power of our models between autoregressive 

and multivariate series is beyond the scope of this chapter. 

The results of our three networks can also be compared to the more 

traditional approaches also studied by Dunis and Williams (2002,2003), 

namely a moving average convergence divergence technical model (MACD), 

an autoregressive moving average model (ARMA) and a logistic regression 

model (LOGIT). 

As it turns out, the MLP, the HONN and the Psi Sigma demonstrate a similar 

good performance and outperform the more traditional models in a simple 

trading simulation exercise, while the GM model outperforms all models when 

more sophisticated trading strategies using confirmation filters and leverage 

are applied. This might be due to the ability of the GM model to use probability 

distributions to identify successfully trades with a high Sharpe ratio. 

The rest of the chapter is organised as follows. In section 4.2, we describe the 

dataset used for this research, actually the same as in Dunis and Williams 

(2002,2003) and Lindemann et al. (2004). Section 4.3 discuss the 

methodology and gives the empirical results of all the models considered. 

Section 4.4 investigates the possibility of improving their performance with the 

application of more sophisticated trading strategies while section 4.5 provides 

some concluding remarks. 
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4.2 The EUR/USD Exchange Rate and Related 
Financial Data 

Our benchmark test is to trade the EUR/USD exchange rate based on daily 

forecasts of its London closing prices6. All time series are daily closing data 

obtained from a historical database provided by Datastream and used in 

Dunis and Williams (2002,2003) and Lindemann et al. (2004). 

Name of period Trading days Beginning End 
Total dataset 1749 17 October 1994 03 July 2001 
Training dataset 1459 17 October 1994 18 May 2000 
Out-of-sample dataset [Validation set] 290 19 May 2000 03 July 2001 

Table 1: The EUR/USD dataset 
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17 October 1994 to 3 July 2001 

Fig. 7: EUR/USD London daily closing prices (total dataset) 

Dunis and Williams (2002,2003) carried out a variable selection and 

identified the explanatory variables listed in table 2. 

6 EUR/USD is quoted as the number of USD per Euro: for example, a value of 1.2657 is 
USD1.2657 per Euro. The EUR/USD exchange rate only exists from 4 January 1999: it was 
extrapolated from 17 October 1994 to 31 December 1998 and a synthetic EUR/USD series 

was created for that period using the fixed EUR/DEM conversion rate agreed in 1998, 

combined with the USD/DEM daily market rate. 
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Number Variable Mnemonics Lag 
1 US $ TO UK £ (WMR) - EXCHANGE RATE USDOLLR 12 
2 JAPANESE YEN TO US $ (WMR) - EXCHANGE RATE JAPAYE$ 1 
3 JAPANESE YEN TO US $ (WMR) - EXCHANGE RATE JAPAYE$ 10 
4 BRENT CRUDE - Current Month, fob U$BBL OILBREN 1 
5 GOLD BULLION $/ ROY OUNCE GOLDBLN 19 
6 FRANCE BENCHMARK BOND 10 YR (DS) - RED. YIELD FRBRYLD 2 
7 ITALY BENCHMARK BOND 10 YR (DS) - RED. YIELD ITBRYLD 6 
8 JAPAN BENCHMARK BOND - RYLD. 10 YR (DS) - RED. JPBRYLD 9 
9 NIKKEI 225 STOCK A VERA GE - PRICE INDEX JAPDOWA 1 
10 NIKKEI 225 STOCK AVERAGE - PRICE INDEX JAPDOWA 15 

Table 2: Explanatory variables and Datastream mnemonics 

The observed EUR/USD time series is non-normal (Jarque-Bera statistics 

confirmed this at the 99% confidence interval) containing slight skewness and 

low kurtosis. It is also nonstationary and Dunis and Williams (2002,2003) 

decided to transform the EUR/USD as well as all the explanatory series into 

stationary series of rates of return7. 

Given the price level P1, P2,..., Pt, the rate of return at time t is formed by: 

R = 
P 

_1$ t Pt-I 

The summary statistics of the EUR/USD returns series reveal a slight 

skewness and high kurtosis. The Jarque-Bera statistic confirms again that the 

EUR/USD series is non-normal at the 99% confidence interval. 

[22] 

Confirmation of its stationary property is obtained at the 1% significance level by both the 

Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics. 
8 For small returns as in this application, arithmetic and logarithmic returns are almost 

identical. Moreover, log returns are not linearly additive across portfolio components. 
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Fig. 8: EUR/USD returns summary statistics (total dataset) 

A further transformation includes the creation of interest rates yield curve 

series, generated by: 

yc =10 year benchmark bond yields -3 month interest rates 

Following Dunis and Williams (2002,2003) and Lindemann et al. (2004), we 

divide our dataset as follows: 

[23] 

Name of period Trading days Beginning End 
Total data set 1749 17 October 1994 03 July 2001 
Training data set 1169 17 October 1994 08 April 1999 
Test data set 290 09 April 1999 18 May 2000 
Out-of-sample data set [Validation set] 290 19 May 2000 03 July 2001 

Table 3: The neural networks datasets 
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4.3 Methodology 

A complete description of our NN architectures used on this application 

(HONN, RNN and Psi Sigma) is in chapter 3 while a description of the models 

of Dunis and Williams (2002,2003) and Lindemann et al. (2004) used as 

benchmarks is on their papers. 

We choose and use the networks which present the best statistical 

performance in-sample in terms of mean absolute error (MAE) to forecast the 

EUR/USD exchange rate return. Our networks stop training when the MSE 

between the actual values and our forecasts in the test sub-period is 

minimized. Then the predictive value of the model is evaluated applying it to 

the validation dataset (out-of-sample dataset). The trading strategy applied is 

simple: go or stay long when the forecast return is above zero and go or stay 

short when the forecast return is below zero. 9 Our methodology is identical 

with the one followed by Dunis and Williams (2002,2003) and Lindemann et 

a/. (2004). 

In the table 4 below we present the trading performance of our models 

compared with the models of Dunis and Williams (2002,2003) and 

Lindemann et al. (2004) who performed best while in Appendix A. 1.3 are the 

characteristics of our networks. Appendix A. 1.1 documents the performance 

measures used while Appendix A. 1.2 gives the results of the benchmark 

models as presented by Lindemann et al. (2004). 

9A 'long' EUR/USD position means buying Euros at the current price, while a 'short' position 
means selling Euros at the current price. 
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MACD ARMA LOGIT Naive MLP SCE GM RNN HONN Psi Sig 
Ratio (excluding costs) 0.97 1.10 1.81 1.83 2.57 2.26 2.09 2.57 2.58 2.55 

ised Volatility (excluding costs) 11.7% 11.7% 11.6% 11.6% 11.6% 11.6% 11.6% 11.6% 11.6% 11.6'' 
ised Return (excluding costs) 11.3% 12.9% 21.1% 21.3% 29.7% 26.3% 24.2% 29.8% 29.8% 29.50/ 
m Draw own (excluding costs) -7.8% -10.1% 1 -5.8% -9.1% -9.1% -7.8% -12.4% -13.8% -9.2% -5.90/ Ins Taken (annualised) 22 112 123 109 118 143 162 124 129 133 

Table 4: Trading performance results 

The trading performance of our models (RNN, HONN and Psi Sigma) in terms 

of annualized return and Sharpe ratio is similar with those obtained by Dunis 

and Williams (2002,2003) with a MLP. As the Psi Sigma and HONN models 

are able to capture higher order correlations, we expected that their 

performance should be significantly better than the ones for the MLP and 

RNN models. However, this was not confirmed by our empirical results where 

HONNs and Psi Sigma present similar performance with the other NN 

models. However, the other major theoretical advantage of Psi Sigma 

networks, namely their speed, was clearly confirmed as we achieved about 

the same results as the HONNs and the RNNs with respectively half and one 

tenth of their training time10. 

4.4 Trading Costs, Filters and Leverage 

Up to now, we have presented the trading results of all our models without 

considering transaction costs. Since some of our models trade frequently, 

taking transaction costs into account might change the whole picture. 

10 We needed about 3 minutes to train our Psi Sigma network, about 6 minutes to train our 
MLP and the HONN and about 30 minutes to train our RNN with an Intel Core 2 Duo T7300 

Fujitsu Amilo Laptop. 
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We therefore introduce transaction costs as well as a filtered trading strategy 

for each model. The aim is to devise a trading strategy filtering only those 

trades which have a high probability of being successful. This should help to 

reduce the negative effect of transaction costs as trades with an expected 

gain lower than the transaction costs should be omitted. 

4.4.1 Transaction Costs 

The transaction cost for a tradable amount, say USD 5-10 million, is about 3 

pips (0.0003 EUR/USD) per trade (one way) between market makers. But, as 

noted by Dunis and Williams (2002,2003), since the EUR/USD time series is 

a series of bid rates, we have to pay the costs only once and not twice per 

taken position. 

With an average exchange rate of EUR/USD of 0.8971 for the out-of-sample 

period, a cost of 3 pips is equivalent to an average cost of 0.033% per 

position. 

4.4.2 Confirmation Filter Strategies 

4.2.2.1 Confirmation Filters 

We now introduce trading strategies devised to filter out those trades with 

expected returns below the 0.033% transaction cost. Due to the architecture 

of our models, the trading strategy for the MLP, the RNN, the Psi Sigma and 

the HONN networks consists of one single parameter while the strategy 

applied to the SCE and GM model uses two parameters. This is because of 
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the additional available information which the SCE and GM models offer in 

terms of probability distributions. 

Up to now, the trading strategies applied to the models use a zero threshold: 

they suggest to go long when the forecast is above zero and to go short when 

the forecast is below zero. In the following, we examine how the models 

behave if we introduce a threshold d around zero (see figure 9) and what 

happens if we vary that threshold. 

The filter rule for the MLP, RNN, HONN and Psi Sigma models is presented in 

figure 9 below 

Fig. 9: Filtered trading strategy with one single parameter 

Since the forecast of the SCE and GM models provide more information than 

the other models, we are able to introduce a second parameter for the trading 

strategy, which is the probability level. 

As a result, and following Lindemann et al. (2004), all those trading signals 

are filtered out which are (a) not indicating a price move (in either direction) 

bigger than the threshold d and in addition (b) not indicating a probability 

higher than x% for the forecast price move (which is the sum of the histogram 

bars for the SCE model and the space under the density function curve for the 

GM model). If both conditions are fulfilled at the same time for an up as well 

40 

< (-d) dd> (+d) 



as for a down move, the strategy picks the trading signal with the higher 

probability. 

relevant 
probabilities 

Fiq. 10: Filtered trading strategy for the SCE model 

Fiq. 11: Filtered trading strategy for the GM model 
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The thresholds chosen by Lindemann et al. (2004) for the GM, the Softmax 

and the MLP networks are given in table 5 below. 

Model Threshold (d) 
MLP = 0.00 
SCE = 0.25 (move size > l0.3%I) 
GM = 0.00 (probability > 0.0%) 

Table 5: Chosen parameters in Lindemann et al. (2004) 

4.2.2.2 Empirical Results of the RNN, HONN and Psi 
Sigma models 

Following the methodology of Lindemann et al. (2004), we proceed with the 

selection of the optimal thresholds. Taking the test period results, we choose 

the threshold that gives the higher return and Sharpe ratio. Our chosen 

parameters are presented in the table below while the detailed results leading 

to their choice are documented in Appendix A. 1.4. 

Model Threshold (d) 
RNN = 0.05 

HONN = 0.00 
Psi Sigma = 0.00 

Table 6: Chosen parameters for each trading strategy 

For all networks, we leave the threshold at zero (d=0.0) since the profit on the 

test dataset is largest at this value. The value of d=0.1 looks promising in the 

case of Psi Sigma from a Sharpe ratio point of view but the lower level of 

profit deterred us from choosing it as a threshold. We stick therefore to d=0.0 

in all cases. 
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A summary of the out-of-sample trading performance of our three models 

benchmarked against the Naive, the MLP, the SCE and the GM networks 

using the selected thresholds as reported by Dunis and Williams (2002,2003) 

and Lindemann et al. (2004) is presented in table 7 below. 

We can see that the MLP, the RNN, the HONN and the Psi Sigma networks 

show about the same performance based on the annualised return and the 

Sharpe ratio. However, it is worth mentioning that the time used to obtain 

these results with the Psi Sigma network is half that needed with HONNs and 

one tenth that needed with RNNs. 

NAIVE MLP SCE GM RNN HONN Psi 
Sigma 

Sharpe Ratio 
(excluding costs) 1.83 2.57 2.67 2.09 2.57 2.58 2.55 

Annualised Volatility 
(excluding costs) 11.6% 11.6% 8.5% 11.6% 11.6% 11.6% 11.6% 

Annualised Return 
(excluding costs) 21.3% 29.7% 22.7% 24.2% 29.8% 29.8% 29.5% 

Maximum Drawdown 
(excluding costs) -9.1% -9.1% -5.7% -12.4% -13.8% -9.2% -5.9% 

Positions Taken 
(annualised) 109 118 120 162 124 129 133 

Transaction costs 
3.6% 3.9% 3.9% 5.3% 4.0% 4.3% 4.4% 

Annualised Return 
(including costs) 17.7% 25.8% 18.8% 18.9% 25.7% 25.6% 25.1% 

Table 7: Out-of-sample results for the chosen parameters 

4.4.3 Leverage to Exploit High Sharpe Ratios 

As we have seen, the application of a filtered trading strategy does not 

improve the results in this case, since all 3 models stick to a threshold of zero. 

The question then is whether we can gain higher risk-adjusted profits by using 

leverage. 
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The leverage factors applied are calculated in such a way that each model 

has a common volatility of 10%" on the test data set. 

Since we now have additional information (which is the leveraged trading 

results based on the test dataset), we can rethink our former choice of 

thresholds. The thresholds that we select in the end are presented in the table 

below while an insight about our selection process can been found in 

Appendix A. 1.4. 

Model Threshold (d) 
RNN = 0.05 

HONN = 0.00 
Psi Sigma = 0.00 

Table 8: Parameters for the leveraged trading strategies 

For the HONN and the Psi Sigma network we leave the threshold at 0 as the 

profit is maximized for this value on the test dataset. For the RNN we choose 

d=0.05 which gives the highest profit and Sharpe ratio on the test dataset 

and filters out only 3 trades per year. 

The thresholds reported by Lindemann et al. (2004) who follow the same 

methodology are presented in table 9 below. 

Model Threshold (d) 
MLP = 0.05 
SCE = 0.25 (move size >I0.3%I) 
GM = 0.35 (probability = 0.25) 

Table 9: Parameters for the leveraged trading strategies 

The transaction costs are calculated by taking 0.033% per position into 

account, while the costs of leverage (interest payments for the additional 

" Since most of the models (using a threshold of zero) have a volatility of about 10%, we 
have chosen this level as our basis. The leverage factors retained are given in table 10 below. 
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capital) are calculated with 4% p. a. (that is 0.016% per trading day12). Our 

final results are presented in table 10 below. 

Psi 
NAIVE MLP SCE GM RNN HONN Sigma 

Sharpe Ratio 
(excluding costs) 13 1.83 2.30 2.67 3.80 2.57 2.58 2.55 
Annualised Volatility 
(excluding costs) 11.9% 13.4% 12.5% 12.2% 11.9% 12.3% 11.9% 
Annualised Return 
(excluding costs) 21.8% 30.8% 33.2% 46.4% 30.7% 31.7% 30.4% 
Maximum Drawdown 
(excluding costs) -9.3% -10.3% -8.5% -11.3% -14.3% -9.8% -6.1 % 

Leverage Factor 1.03 1.62 1.46 3.99 1.03 1.03 1.03 
Positions Taken 
(annualised) 109 89 120 6814 121 129 133 
Transaction and 
leverage costs 3.7% 6.1% 7.1% 12.5% 4.0% 4.3% 4.6% 
Annualised Return 
(including costs) 18.1% 24.7% 26.1% 33.9% 26.7% 27.0% 25.8% 

Table 10: Trading performance - final results" 

As can be seen from table 10, GM networks are able to take advantage of the 

combination of a confirmation filter and leverage and to deliver higher Sharpe 

12 The interest costs are calculated by considering a 4% interest rate p. a. divided by 252 
trading days. In reality, leverage costs also apply during non-trading days so that we should 
calculate the interest costs using 360 days per year. But for the sake of simplicity, we use the 

approximation of 252 trading days to spread the leverage costs of non-trading days equally 
over the trading days. This approximation prevents us from keeping track of how many non- 
trading days we hold a position. 
13 The calculation is done without transaction and leverage costs due to a better 

comparability to other published numbers (which are generally calculated in this way). 
14 The SCE and GM committees have actually taken more trades than reported in the table 

above (e. g. the GM model has actually taken 134 positions). The reason why Lindemann et 
al. (2004) report a smaller number of trades is that SCE and GM committees are able to 
invest less than 100% of their total capital per position (this is due to the fact that the position 
size is determined by the average number of committee members generating a trading 

signal). Since our transaction costs of 0.033% per position are based on the assumption of 
100% of invested total capital, we have to recalculate the 134 positions of partially invested 

total capital into the equivalent number of positions with 100% of invested capital (which are 
the above shown 68 positions). 
15 Not taken into account are the following effects: 

a) The interest that could be earned during times where the capital is not traded [non- 

trading days] and could therefore be invested; 
b) The SCE and GM committees are not forced to use 100% of their capital when 

trading (leaving out a leverage factor <1), since the amount is determined by the 

average forecast of the 30 models. If the committees invest therefore only a few per 
cent of the capital available but apply the leverage factor (>1), the additional capital 
has not to be borrowed (since there is still own money available) and therefore 
leverage costs would not be incurred. Those `savings' are not taken into account 
here. 
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ratios and returns. The ability of the GM networks to capture the probability 

density of the data by a linear combination of a fixed number of normal 

distributions seems to have allowed them to exploit better the trading 

strategies applied. HONNs achieve the highest annualised return net of 

transaction costs among the other five competing models while the Psi Sigma, 

the RNN and the SCE models achieve similar performances. It seems that the 

ability of HONNs and Psi Sigma to capture higher order correlations within our 

dataset and the ability of the RNN to embody short term memory does not 

help them to exploit the leverage and the confirmation filter and to achieve 

higher trading performance. Overall, our three models perform well (see table 

7), however they do not manage to take advantage of more sophisticated 

trading strategies using confirmation filters and leverage contrary to density 

distribution networks (see table 10). 

4.5 Concluding Remarks 

In this chapter, we apply Recurrent, Higher Order and Psi Sigma neural 

networks to a one-day-ahead forecasting and trading task of the EUR/USD 

time series. We develop these different prediction models over the period 

October 1994 - May 2000 and validate their out-of-sample trading efficiency 

over the following period from May 2000 through July 2001. Our results are 

benchmarked against those of the Gaussian Mixture, the Softmax Entropy 

and the Multi-layer Perceptron models presented by Dunis and Williams 

(2002,2003) and Lindemann et al. (2004) who study the same series over the 

same time period. 
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Trading strategies that should filter out potentially unsuccessful trades by 

using a confirmation threshold have not worked out and the Psi Sigma, HONN 

and RNN models fail to exploit leverage for the asset and time period under 

review. 

Nevertheless, the trading results of the Psi Sigma, HONN and RNN models 

are similar to the best model of Dunis and Williams (2002,2003), the MLP, 

when applied without confirmation filter and leverage. When more 

sophisticated trading strategies are applied, our results are not improved 

significantly although HONNs still perform remarkably. 
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CHAPTER 5 

Modelling and Trading the EUR/USD Exchange Rate at 
the ECB Fixing 16 

Overview 

The motivation for this chapter is to investigate the use of HONNs when 

applied to the task of forecasting and trading the Euro/Dollar (EUR/USD) 

exchange rate using the European Central Bank (ECB) fixing series with only 

autoregressive terms as inputs. This is done by benchmarking HONNs with 

three other different neural network designs representing the classic MLP, a 

Psi Sigma network and a RNN and some traditional techniques, either 

statistical such as a an autoregressive moving average model (ARMA), or 

technical such as a moving average concergence/divergence model (MACD), 

plus a naive strategy. " More specifically, the trading performance of all 

models is investigated in a forecast and trading simulation on the EUR/USD 

ECB fixing time series over the period 1999-2007 using the last one and half 

year for out-of-sample testing, a original feature of this chapter. We use the 

EUR/USD daily fixing by the ECB as many financial institutions are ready to 

trade at this level and it is therefore possible to leave orders with a bank for 

business to be transacted on that basis. 

16 This paper has been presented at the Forecasting Financial Markets 2008 conference in 

Aix-en-Provence (21 to 23 May 2008) and has been accepted for publication in the `European 

Journal of Finance'. 
17 In this chaper we do not apply the GM network as the study of probalistic models is beyond 

the scope of this chapter. In chapter 4, these models were treated as benchmarks and 

presented as reported in Lindemann et al. (2004). 
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As it turns out, the MLP does remarkably well and outperforms all other 

models (even the more sophisticated HONNs and Psi Sigma) in a simple 

trading simulation exercise. However, when more sophisticated trading 

strategies using confirmation filters and leverage are applied, the HONN 

network produces better results and outperforms all other neural network and 

traditional statistical models in terms of annualised return. 

5.1 Introduction 

The motivation for this chapter is to investigate the forecasting performance of 

HONN using as inputs autoregressive terms. In order to achieve this, the 

trading performance of HONN, Psi Sigma, RNN and MLP networks on the 

Euro/Dollar (EUR/USD) time series is investigated and is compared with 

some traditional statistical or technical methods such as an autoregressive 

moving average (ARMA) model and a moving average 

convergence/divergence (MACD) model, and a naive strategy. 

The conclusions of this chapter can supplement those of chapter 4 where we 

conduct a forecasting competition over the Euro/Dollar (EUR/USD) London 

closing time series for a period of ten years (October 1994 to July 2001) using 

about the same networks but with multivariate series as inputs. 

The main reason behind our decision to use the EUR/USD daily fixing by the 

ECB is that is possible to leave orders with a bank and trade on that basis. It 

is therefore a tradable quantity while for example the London closing time 
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series used in the literature and in the previous chapter are not, as there 

maybe slide when we come to transact. Moreover, to the best of our 

knowledge the use of ECB fixing series is an original feature. 

As it turns out, the MLP demonstrates a remarkable performance and 

outperforms all other models in a simple trading simulation exercise. On the 

other hand, when more sophisticated trading strategies using confirmation 

filters and leverage are applied, HONNs outperform all models in terms of 

annualised return. Our conclusion corroborates those of Lindemann et al. 

(2004) and of the previous chapter where HONNs also demonstrate a 

forecasting superiority on the EUR/USD series over more traditional 

techniques such as a MACD and a naive strategy. However, the RNN which 

in the previous chapter performed remarkably well, show a poor performance 

in this research: this may be due to their inability to provide good enough 

results when only autoregressive terms are used as inputs. 

The rest of the chapter is organised as follows. In section 5.2 we describe the 

dataset used for this research and its characteristics. An overview of the 

statistical techniques is given in section 5.3 while section 5.4 gives the 

empirical results of all the models considered and investigates the possibility 

of improving their performance with the application of more sophisticated 

trading strategies. Section 5.5 provides some concluding remarks. 
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5.2 The EUR/USD Exchange Rate and Related 
Financial Data 

The European Central Bank (ECB) publishes a daily fixing for selected EUR 

exchange rates: these reference mid-rates are based on a daily concertation 

procedure between central banks within and outside the European System of 

Central Banks, which normally takes place at 2.15 p. m. ECB time. The 

reference exchange rates are published both by electronic market information 

providers and on the ECB's website shortly after the concertation procedure 

has been completed. Although only a reference rate, many financial 

institutions are ready to trade at the EUR fixing and it is therefore possible to 

leave orders with a bank for business to be transacted at this level. 

The ECB daily fixing of the EUR/USD is therefore a tradable level which 

makes using it a more realistic alternative to, say, London closing prices and 

this is the series that we investigate in this chapter18 

We examined the ECB daily fixing of the EUR/USD since its first trading day 

on 4 January 1999 until 31 December 2007. The data period is partioned as 

follows. 

Name of period Trading Days Beginning End 
Total dataset 2304 4 January 1999 31 December 2007 

Training dataset 1921 4 January 1999 30 June 2006 
Out-of-sample dataset [Validation set] 383 3 July 2006 31 December 2007 

Table 11: The EUR/USD dataset 

18 EUR/USD is quoted as the number of USD per Euro: for example, a value of 1.2657 is 
USD1.2657 per 1 Euro. We examine the EUR/USD since its first trading day on 4 January 
1999, and until 31 December 2007. 
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The graph below shows the total dataset for the EUR/USD and its upward 

trend since early 2006. 
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Fiq. 12: EUR/USD Frankfurt daily closing prices (total dataset) 

The observed EUR/USD time series is non-normal (Jarque-Bera statistics 

confirmed this at the 99% confidence interval) containing slight skewness and 

high kurtosis. It is also nonstationary and hence we decided to transform the 

EUR/USD series into stationary daily series of rates of return19 using formula 

[221. 

The summary statistics of the EUR/USD returns series reveal a slight 

skewness and high kurtosis. The Jarque-Bera statistic confirms again that the 

EUR/USD series is non-normal at the 99% confidence interval. 

19 Confirmation of its stationary property is obtained at the 1% significance level by both the 
Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics. 
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Series: RETURNS 
Sample 1 2303 
Observations 2303 

Mean 0.000115 
Median 7.60e-05 
Madmum 0.042938 
Minimum -0.022269 
Std. Dev. 0.006177 
Skewness 0.286813 
Kurtosis 4.622358 

Jarque-Bera 284.1414 
Probability 0.000000 

Fig. 13: EUR/USD returns summary statistics (total dataset) 

As inputs to our networks and based on the autocorrelation function and 

some ARMA experiments we selected a set of autoregressive and moving 

average terms of the EUR/USD exchange rate returns and the 1-day 

Riskmetrics volatility series. 

Number Variable Lag 
1 EUR/USD exchange rate return 1 
2 EUR/USD exchange rate return 2 
3 EUR/USD exchange rate return 3 
4 EUR/USD exchange rate return 7 
5 EUR/USD exchange rate return 11 
6 EUR/USD exchange rate return 12 
7 EUR/USD exchange rate return 14 
8 EUR/USD exchange rate return 15 
9 EUR/USD exchange rate return 16 

10 Moving Average of the EUR/USD exchange rate return 15 
11 Moving Average of the EUR/USD exchange rate return 20 

12 1-day Riskmetrics Volatility 1 

Table 12: Explanatory variables 

In order to train our neural networks we further divided our dataset as follows: 

Name of period Trading days Beginning End 
Total data set 2304 4 January 1999 31 December 2007 
Training data set 1537 4 January 1999 31 December 2004 
Test data set 384 3 January 2005 30 June 2006 
Out-of-sample data set [Validation set] 383 3 July 2006 31 December 2007 

Table 13: The neural networks datasets 
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5.3 Methodology 

A complete description of our NN architectures used on this application 

(HONN, RNN, Psi Sigma and MLP) is on chapter 3. We choose and use the 

networks which present the best trading performance in-sample in terms of 

annualised return and Sharpe ratio to forecast the ECB daily fixing of the 

EUR/USD exchange rate return. Our networks are designed so they will stop 

training when the profit of our forecasts in the test sub-period is maximized. 

Then the predictive value of the model is evaluated applying it to the 

validation dataset (out-of-sample dataset). The characteristics of the networks 

used on this chapter are on Appendix A. 2.1. 

The trading strategy applied is simple and identical for all our models: go or 

stay long when the forecast return is above zero and go or stay short when 

the forecast return is below zero. Below there is a brief description of our 

statistical and technical benchmarks namely an autoregressive moving 

average model (ARMA), a moving average convergence/divergence technical 

model (MACD) and a naive strategy. 

5.3.1 Benchmark Models 

5.3.1.1 Nave Strategy 

The naive strategy simply takes the most recent period change as the best 

prediction of the future change, i. e. a simple random walk. The model is 

defined by: 
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A 
Y+, = Y, [24] 

where Y, is the actual rate of return at period t 

Y+, is the forecast rate of return for the next period 

The performance of the strategy is evaluated in terms of trading performance 

via a simulated trading strategy. 

5.3.1.2 Moving Average Convergence/Divergence 

The moving average model is defined as: 

M_ 
(Y + Y_, + Y_2 + ... + Y_�+, 

[25] t- ] 
n 

where Mt is the moving average at time t 

n is the number of terms in the moving average 

is the actual rate of return at period t 

The MACD strategy used is quite simple. Two moving average series are 

created with different moving average lengths. The decision rule for taking 

positions in the market is straightforward. Positions are taken if the moving 

averages intersect. If the short-term moving average intersects the long-term 

moving average from below a `long' position is taken. Conversely, if the long- 

term moving average is intersected from above a `short' position is taken. 

The forecaster must use judgement when determining the number of periods 

n on which to base the moving averages. The combination that performed 

best over the in sample sub-period was retained for out-of-sample evaluation. 
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The model selected was a combination of the EUR/USD and its 24-day 

moving average, namely n=1 and 24 respectively or a (1,24) combination. 

The performance of this strategy is evaluated solely in terms of trading 

performance. 

5.3.1.3 ARMA Model 

Autoregressive moving average models (ARMA) assume that the value of a 

time series depends on its previous values (the autoregressive component) 

and on previous residual values (the moving average component)20. 

The ARMA model takes the form: 

Y =0o +01 Y-I +02Y-2 +... +OpY-p +S1 -W1£t-I -W2£t-2 -... -WgEt-q [26] 

where Y 
Y_, Y_2 , and Y_P 

0o) oll 02 , and 0p 
£t 

£t-1 Et-2 
, 

and ct-p 

w, , w2 7 and wq 

is the dependent variable at time t 

are the lagged dependent variable 

are regression coefficients 
is the residual term 

are previous values of the residual 

are weights. 

Using as a guide the correlogram in the training and the test sub-periods we 

have chosen a restricted ARMA (6,6) model. All of its coefficients are 

significant at the 95% confidence interval. The null hypothesis that all 

coefficients (except the constant) are not significantly different from zero is 

rejected at the 95% confidence interval (see Appendix A. 2.2). 

The selected ARMA model takes the form: 

20 For a full discussion on the procedure, refer to Box et al., (1994) or Pindyck and Rubinfeld 

(1998). 
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Yt = 6.35.10-5 - 0.688Y_, - 0.369Y_2 - 0.219Y_7 - 0.400Y_� - 0.5401ý_12 
[27] + 0.6938 

_+0.350e _+0.249-61-7 + 0.398 
_+0.584-cl-12 t1t2t 1] 

The model selected was retained for out-of-sample estimation. The 

performance of the strategy is evaluated in terms of trading performance. 

5.3.2 Results 

In table 14 below we present the trading performance of our models for the 

out-of-sample period while Appendix A. 2.3 documents our in-sample results. 

The performance measures are presented in Appendix A. 1.1. 

NAIVE MACD ARMA MLP RNN HONN Psi Sigma 
Sharpe Ratio (excluding costs) 0.03 0.70 -0.40 1.88 0.60 0.99 1.18 

nnualised Volatility (excluding costs) 6.34% 6.38% 6.38% 6.34% 6.34% 6.37% 6.36% 
Annualised Return (excluding costs) 0.16% 

. 
4.44% 

. -2.53% . 
11.91%. 3.82% 6.29% 7.53% 

Maximum Drawdown (excluding costs) -7.32% -4.73% -10.12% -5.05% -4.64% -4.37% -4.86% 
Positions Taken (annualised) 132 20 189 109 167 80 117 

Table 14: Trading performance results 

As can been seen the MLPs outperforms all other statistical, technical and 

neural network in terms of annualised return and Sharpe ratio. Moreover, the 

major theoretical advantage of Psi Sigma networks, namely their speed, was 

clearly confirmed as we achieved our results in one half of the time needed to 

train the MLPs and the HONNs and one tenth of the time needed for the 

RNNs. 
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5.4 Trading Costs, Filters and Leverage 

Up to now, we have presented the trading results of all our models without 

considering transaction costs. Since some of our models trade quite often, 

taking transaction costs into account might change the whole picture. 

We therefore introduce transaction costs as well as a filtered trading strategy 

for each model. The aim is to devise a trading strategy filtering only those 

trades which have a high probability of being successful. This should help to 

reduce the negative effect of transaction costs as trades with an expected 

gain lower than the transaction costs should be omitted. 

5.4.1 Transaction Costs 

The transaction costs for a tradable amount, say USD 5-10 million, are about 

1 pip (0.0001 EUR/USD) per trade (one way) between market makers. But as 

the EUR/USD time series considered here is a series of middle rates, the 

transaction cost is one spread per round trip. 

With an average exchange rate of EUR/USD of 1.341 for the out-of-sample 

period, a cost of 1 pip is equivalent to an average cost of 0.008% per position. 
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5.4.2 Confirmation Filter Strategies 

5.4.2.1 Confirmation Filters 

We now introduce trading strategies devised to filter out those trades with 

expected returns below the 0.008% transaction cost. Due to the architecture 

of all our models, the trading strategy will consist by one single parameter. 

Up to now, the trading strategies applied to the models use a zero threshold: 

they suggest to go long when the forecast is above zero and to go short when 

the forecast is below zero. In the following, we examine how the models 

behave if we introduce a threshold d around zero (see figure 14) and what 

happens if we vary that threshold. The filter rule for all our models is 

presented in figure 14 below. 

Fig. 14: Filtered trading strategy with one single parameter 

5.4.2.2 Empirical Results 

The methodology that we follow for the selection of the optimal thresholds is 

simple. Taking the test period results, we choose the threshold that gives the 

higher return and Sharpe ratio. Our chosen parameters are presented in the 
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table below while the detailed results leading to their choice are documented 

in Appendix A. 2.4. 

Model Threshold (d) 
Naive =0.35 

MA =0.00 
ARMA =0.10 
MLP =0.20 
RNN = 0.00 

HONN = 0.00 
Psi Sigma = 0.30 

Table 15: Chosen parameters for each trading strategy 
For the MACD, MLP and the HONN strategies we leave the threshold at zero 

(d=0.0) since the profit on the test dataset is largest at this value. On the other 

hand, we selected as threshold the values of 0.35,0.10,0.20 and 0.30 for the 

Naive, ARMA, RNN and the Psi Sigma models respectively as in these cases 

the profit in the test sub-period is maximized. 

A summary of the out-of-sample trading performance of all models using the 

selected thresholds and taking into account the transaction costs is on the 

table below. 

Psi 
NAIVE MACD ARMA MLP RNN HONN Sigma 

Sharpe Ratio 
(excluding costs) -0.70 0.70 0.41 1.00 0.60 0.99 0.70 

Annualised Volatility 
(excluding costs) 4.12% 6.38% 3.43% 4.03% 6.34% 6.37% 5.22% 

Annualised Return 
(excluding costs) -2.90% 4.44% 1.39% 4.02% 3.82% 6.29% 3.63% 

Maximum Drawdown 
(excluding costs) -7.23% -4.73% -3.14% -2.45% -4.64% -4.37% -5.60% 

Positions Taken 
(annualised) 79 20 80 83 167 80 91 

Transaction costs 0.63% 0.16% 0.64% 0.66% 1.33% 0.64% 0.73% 
Annualised Return 

(including costs) 
-3.53% 4.28% 0.75% 3.36% 2.48% 5.65% 2.90% 

Table 16: Out-of-sample results for the chosen parameters 
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From the final row of table 16 we can see that, after transaction costs, the 

HONN network outperforms all the other strategies based on the annualised 

return. The MACD strategy also performs well and presents the second best 

performance in terms of annualized return. On the other hand, the MLP 

networks which performed best without trading filter seem to be unable to fully 

exploit the introduction of the modified trading strategy. The Psi Sigma which 

also performed well before the introduction of the trading strategy seems also 

incapable of exploiting it. However, it is worth mentioning that the time used to 

derive these results with the Psi Sigma network is half that needed with 

HONNs and the MLPs and one tenth of that needed with RNNs. 

5.4.3 Leverage to Exploit Low Volatility 

In order to further improve the trading performance of our models we 

introduce a "level of confidence" to our forecasts, i. e. a leverage based on the 

test sub-period. For the naive model, which presents a negative return we do 

not apply leverage. The leverage factors applied are calculated in such a way 

that each model has a common volatility of 10%21 on the test data set. 

The transaction costs are calculated by taking 0.008% per position into 

account, while the cost of leverage (interest payments for the additional 

capital) is calculated at 4% p. a. (that is 0.016% per trading day22). Our final 

results are presented in table 17 below. 

21 Since most of the models have a volatility of about 10%, we have chosen this level as our 

basis. The leverage factors retained are given in table 11 below. 
22 The interest costs calculation is in chapter 4 (see footnote 9). 
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Psi 
NAIVE MACD ARMA MLP RNN HONN Sigma 

Sharpe Ratio 
(excluding co, 3ts) -0.70 0.70 0.41 1.00 0.60 0.99 0.70 
Annualised Volatility 
(excluding costs) 4.12% 7.27% 9.67% 5.5% 7.23% 7.26% 8.30% 
Annualised Retum _ 
(excluding costs) -2.90% 5.06% 3.93% 5.82% 4.35% 7.17% 5.78% 
Maximum Drawdown 
(excluding costs) -7.23% -5.39% -3.58% -3.55% -5.30% -4.98% -8.90% 
Leverage Factor 

- 1.14 2.82 1.45 1.14 1.14 1.59 
Positions Taken 
(annualised) 79 20 80 83 167 80 91 
Transaction and 
leverage costs 0.63% 1.02% 11.79% 3.42% 2.19% 1.50% 4.34% 
Annualised Retum 
(including costs) -3.53% 4.04% -7.86% 2.40% 2.16% 5.67% 1.44% 

Table 17: Trading performance - final results`3 

As can be see from the last row of table 17, HONNs continue to demonstrate 

a superior trading performance. The MACD strategy also performs well and 

presents the second higher annualised return. In general, we observe that all 

models expect the HONNs, show an inability to gain any extra profit from the 

leverage as the increased transaction costs seems to counter any benefits. 

Again it is worth mentioning, that the time needed to train the Psi Sigma 

network was considerably shorter compared with that needed for the MLP, the 

RNN and the HONN networks. 

5.5 Concluding Remarks 

In this chapter, we apply Multi-layer Perceptron, Recurrent, Higher Order and 

Psi Sigma neural networks to a one-day-ahead forecasting and trading task of 

the Euro/Dollar (EUR/USD) exchange rate using the European Central Bank 

23 Not taken into account the interest that could be earned during times where the capital is 

not traded (non-trading days) and could therefore be invested. 
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(ECB) fixing series with only autoregressive terms as inputs. We use a naive, 

a MACD and an ARMA model as benchmarks. We develop these different 

prediction models over the period January 1999 - June 2006 and validate their 

out-of-sample trading efficiency over the period from July 2006 through 

December 2007. 

The MLPs demonstrated the higher trading performance in terms of 

annualised return and Sharpe ratio before transaction costs and elaborate 

trading strategies are applied. When refined trading strategies are applied and 

transaction costs are considered the HONNs manage to outperform all other 

models achieving the highest annualised return. On the other hand, the RNNs 

and the Psi Sigma models, which in previous applications over the EUR/USD 

dollar exchange rate performed remarkably well in the previous chapter seem 

to have a difficulty in providing good forecasts when autoregressive series are 

only used as inputs. 
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CHAPTER 6 

The Robustness 
and Trading the 
Fixing24 

Overview 

of Neural Networks for Modelling 
EUR/USD Exchange Rate at the ECB 

The motivation for this chapter is to investigate the use, the stability and the 

robustness of HONNs when applied to the task of forecasting and trading the 

Euro/Dollar (EUR/USD) exchange rate using the European Central Bank 

(ECB) fixing series with only autoregressive terms as inputs. This is done by 

benchmarking the forecasting performance of HONNs with two different 

neural network designs representing a Recurrent Network (RNN) and the 

classic Multilayer Percepton (MLP) and with some traditional techniques, 

either statistical such as a an autoregressive moving average model (ARMA), 

or technical such as a moving average convergence/divergence model 

(MACD), plus a naive strategy. More specifically, the trading performance of 

all models is investigated in a forecast and trading simulation on the 

EUR/USD ECB fixing time series over the period January 1999-August 2008 

using the last eight months for out-of-sample testing. Our results in terms of 

their robustness and stability are compared with our empirical work in chapter 

5 where we apply the same models and follow the same methodology 

forecasting the same series, using as out-of-sample the period from July 2006 

to December 2007. 

24 This paper has been accepted for publication in the `Journal of Derivatives & Hedge 
Funds'. 
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As it turns out, the HONN and the MLP networks present a robust 

performance and do remarkably well outperforming all other models in a 

simple trading simulation exercise in both chapters. Moreover, when 

transaction costs are considered and leverage is applied, the same networks 

continue to outperform all other neural network and traditional statistical 

models in terms of annualised return, a robust and stable result as it is 

identical to the one obtained from the authors in their previous work, studying 

a different period for the series. 

6.1 Introduction 

The motivation of this chapter is to investigate the stability and the robustness 

of the forecasting performance of HONNs. This is done by benchmarking their 

performance with two different neural network architectures representing a 

Multilayer Percepton (MLP) and a Recurrent Neural Network (RNN). 25 Their 

trading performance on the Euro/Dollar (EUR/USD) time series is investigated 

and is compared with some traditional statistical or technical methods such as 

an autoregressive moving average (ARMA) model or a moving average 

convergence/divergence (MACD) model, and a naive strategy. In terms of the 

stability and robustness of our findings, we compare them with our 

conclusions of chapter 5 where we apply the same models and follow the 

same methodology to forecast the same series, using however a different out- 

of-sample period. Concerning the inputs of our neural networks, we use the 

exact same selection of inputs and lags with chapter 5. Similarly, our MACD 

25 As Psi Sigma present a similar or lower performance than HONNs in the previous chapters 
and seem to have a difficulty with autoregressive series as inputs we decided not to use them 
in this application. 
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model is identical with the ones used in the previous chapter while on the 

other hand our ARMA model is different, as we need all coefficients to be 

significant in the new in-sample period. 

As it turns out, the MLP and HONN demonstrate a remarkable performance 

and outperform the other models in a simple trading simulation exercise. 

Moreover, when transaction costs are considered and leverage is applied the 

MLP and HONN models continue to outperform all other neural network and 

traditional statistical models in terms of annualised return. As these results are 

identical to those of chapter 5, we can argue that the forecasting superiority of 

the HONN and the MLP is stable and robust over time. In terms of the RNN, 

their poor performance in this research may be due to their inability to provide 

good enough results when only autoregressive terms are used as inputs. 

The rest of the chapter is organised as follows. In section 6.2 we describe the 

extended dataset used for this research and its characteristics. An overview of 

the methodology and the new ARMA model is given in section 6.3 while 

section 6.4 gives the empirical results of all the models considered and 

investigates the possibility of improving their performance with the application 

of more sophisticated trading strategies. Section 6.5 provides some 

concluding remarks. 
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6.2 The EUR/USD Exchange Rate and Related 
Financial Data 

The series under study is the ECB fixing of the EUR/USD exchange rate as 

described in chapter 5.2. The data period is partioned as follows. 

Name of period Trading days Beginning End 
Total dataset 2474 4 January 1999 29 August 2008 

In-sample dataset 2304 4 January 1999 31 December 2007 
Out-of-sample dataset [Validation set] 170 2 January 2008 29 August 2008 

Table 18: The EUR/USD dataset 

The graph below shows the total dataset for the EUR/USD and its downward 

trend for the beginning of 2008. 
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Fig. 15: EUR/USD Frankfurt ECB fixing prices (total dataset) 

The observed EUR/USD time series is non-normal (Jarque-Bera statistics 

confirm this at the 99% confidence interval) containing slight skewness and 

high kurtosis. It is also nonstationary and hence we decided to transform the 

67 

mOON (14 C) Cl) VV to LL) (0 CO N- N. co 00 

6) C. OO0O0OOOOO CD 00O0OO 

6) OOOOOOOOOOO0OO 
CD OO C) 

NNNNNNNNNNNNNNN 
N_ N_ N 

4 January 1999 to 29 August 2008 



EUR/USD series into a stationary daily series of rates of return26 using 

formula [22]. 

The summary statistics of the EUR/USD returns series reveal a slight 

skewness and high kurtosis. The Jarque-Bera statistic confirms again that the 

EUR/USD series is non-normal at the 99% confidence interval. 
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Series: RETURNS 
Sample 1 2473 
Observations 2473 

Mean 0.000109 
Median 7.72e-05 
Ma)dmum 0.042938 
Minimum -0.025661 
Std. Dev. 0.006164 
Skewness 0.229890 
Kurtosis 4.628188 

Jarque-Bera 294.9458 
Probability 0.000000 

Fig. 16: EUR/USD returns summary statistics (total dataset) 

The inputs of our Neural Networks are identical with those of chapter 5 as 

presented in table 12. In order to train our NNs are dataset is divided as 

follows. 

Name of period Trading days Beginning End 
Total data set 2474 4 January 1999 29 August 2008 

Training data set 1794 4 January 1999 31 December 2005 
Test data set 510 2 January 2006 31 December 2007 

Out-of-sample data set [Validation set] 170 2 January 2008 29 August 2008 

Table 19: The neural networks datasets 

26 Confirmation of its stationary property is obtained at the 1% significance level by both the 
Augmented Dickey Fuller (ADF) and Phillips-Perron (PP) test statistics. 
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6.3 Methodology 

A complete description of our NN architectures used on this application 

(HONN, RNN and MLP) is on charter I We choose and use the networks 

which present the best trading performance in-sample in terms of annualised 

return and Shapre ratio to forecast the ECB daily fixing of the EUR/USD 

exchange rate return. Our networks are designed so they will stop training 

when the profit of our forecasts in the test sub-period is maximized. Then the 

predictive value of the model is evaluated applying it to the validation dataset 

(out-of-sample dataset). The characteristics of the networks used on this 

chapter are on Appendix A. 3.1. 

In this chapter we also apply a MACID model a naive strategy as described in 

sections 5.3.1.1 and 5.3.1.2 and an ARMA model described below. 

The trading strategy applied is simple and identical for all our models: go or 

stay long when the forecast return is above zero and go or stay short when 

the forecast return is below zero. 

6.3.1 Benchmark Models 

6.3.1.1 ARMA 

Autoregressive moving average models (ARMA) assume that the value of a 

time series depends on its previous values (the autoregressive component) 

and on previous residual values (the moving average component). 
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The ARMA model takes the form: 

Y =0o +O J-I +02Y-2 +... +opY-p +6, -N'I£1-1 -14'261-2 -... -Wg6t-q [26] 

where Y 
Y_, , Y_2 , and Y_p 

00' 01,02, and 0, 
£r 

£t-, , £t-2 , and £t-p 

w1, w2, andwq 

is the dependent variable at time t 
are the lagged dependent variable 
are regression coefficients 
is the residual term 

are previous values of the residual 
are weights. 

Using as a guide the correlogram in the training and the test sub-periods we 

have chosen a restricted ARMA (11,11) model. All of its coefficients are 

significant at the 95% confidence interval. The null hypothesis that all 

coefficients (except the constant) are not significantly different from zero is 

rejected at the 95% confidence interval (see Appendix A. 3.2). 

The selected ARMA model takes the form: 

Y, = 12.8 - 10-' - 1.217Y, 
-, - 

0.478Y, 
-2- 

0.140Y, 
-7 + 0.197Y1-1 , [28] 

+ 1.214ct-1 + 0.474s1-2+ 0.152c1-7 - 0.218Et-, , 

The model selected was retained for out-of-sample estimation. The 

performance of the strategy is evaluated in terms of trading performance. 

6.3.2 Results 

In the table below we present the trading performance of our models for the 

out-of-sample period while Appendix A. 3.3 documents our in-sample results. 

The performance measures are presented in Appendix A. 1.1. 
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- - - - --- 
NAIVE MACD ARMA MLP RNN HONN 

Lhýaýe:, ý R a ti o (7 ::: ý:: -exc, -Iud-ingi-co-s Fs)- 1.28 -0.02 -0.45 0.74 0.40 0.86 
Annualised Volatility (excluding costs) 9.51% 9.54% 9.54% 9.18% 9.54% 9.49% 
Annuaiised Retum (excluding costs) 

- 
12.14% -0.19% -4.32% 6.82% 3.83% 8.16% 

Maximum Draw down (excluding costs) -3-69% -9.85% -11.39% -5.78% -5.91% -7.21% 
Positions Taken (annualised) 108 28 185 107 93 170 

Table 20: Trading performance results 

As can been seen the naYve strategy outperforms all other models by far. 

These results are surprising not only because the simplicity of the na"Ne 

model but also based on the training sub-period results (see Appendix A. 3. c). 

There the na*fve strategy presents an annualised return of -1.07% and a 

Sharpe ratio of -0.10. Moreover, with a closer look over the returns in our out- 

of-sample period we observe that the positive and the negative returns are 

clustered. In order to verify that the sequence of signs of the returns in the 

validation period is not random, we conduct the Wald-Wolfowitz or runs test 

for randomness. The test confirms that the sequence of signs is not random at 

the 99% and 95% confidence interval. So as the na*(ve strategy is only using 

as a forecast for tomorrow today's return, it is able to exploit this phenomenon 

and present a remarkable performance. This anomaly was not present in 

previous years and that is why the performance of the naYve strategy in- 

sample is so much worse. In the circumstances, this phenomenon is 

accidental and we have no reasons to believe that it should continue in the 

future and we thus discard the results of the na"Ne strategy from our 

conclusions. 

Concerning the rest models, we can see that the HONN performs significantly 

better than the RNN and the traditional MLP models. 
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6.4 Trading Costs, Leverage and Robustness 

Next we introduce transaction costs as well as a leverage for each of our 

models. Moreover, we examine the robustness of our models by examining 

and comparing our results with the conclusions of chapter 5 where we studied 

the same series with the same models but over a different period. The out-of- 

sample period here is 2 January 2008 to 29 August 2008 while in the previous 

charter was 3 July 2006 to 31 December 2007. The purpose of this test is to 

validate the robustness of our models through time and to provide concrete 

empirical evidence of the forecasting power of our models. 

6.4.1 Transaction Costs 

The transaction costs for a tradable amount, say USID 5-10 million, are about 

1 pip (0.0001 EUR/USD) per trade (one way) between market makers. But as 

the EUR/USD time series considered here is a series of middle rates, the 

transaction cost is one spread per round trip. 

With an average exchange rate of EUR/USD of 1.341 for the out-of-sample 

period, a cost of 1 pip is equivalent to an average cost of 0.008% per position. 

In the table below we present the performance of our models after transaction 

costs are considered. 
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MACD ARMA MLP RNN HONN 
Sharpe Ratio (excluding costs) -0.02 -0.45 0.74 0.40 0.86 
Annualised Volatility (excluding costs) 9.54% 9.54% 9.18% 9.54% 9.49% 
Annualised Retum (excluding costs) -0.19% -4.32% 6.82% 3.83% 8.16% 
Maximum Drawdown (excluding costs) -9.85% -11.39% -5.78% -5.91% -7.21% Positions Taken (annualised) 28 185 107 93 170 
Transaction Costs 0.20% 1.30% 0.75% 0.65% 1.19% 
Annualised Retum (including costs) -0.39% -5.62% 6.07% 3.18% 6.97% 

Table 21: Out-of-sample trading performance results with transaction costs 
(02/01/08-29/08/08) 

We observe that although the HONN model presents higher transaction costs, 

it continues to outperform the other models in terms of annualised return. The 

MLP comes second while the RNN demonstrates a third best performance. 

On the other hand, the ARMA and MACD models have a rather disappointing 

performance as they both present negative annualised returns. 

In the table below we present the empirical results of our models for the out- 

of-sample period studied in the previous charter, 3 July 2006 to 31 December 

2007. 

MACD ARMA MLP RNN HONNs 
Sharpe Ratio (excluding costs) 0.70 -0.40 1.88 0.60 0.99 
Annualised Volatility (excluding costs) 6.38% 6.38% 6.34% 6.34% 6.37% 
Annualised Retum (excluding costs) 4.44% -2.53% 11.91% 3.82% 6.29% 
Maximum Drawdown (excluding costs) -4.73% -10.12% -5.05% -4.64% -4.37% 
Positions Taken (annualised) 20 189 109 167 80 
Transaction Costs 0.16% 1.51% 0.87% 1.33% 1 0.64% 
Annualised Retum (including costs) 4.28% -4.04% 11.04% 2.48% 1 5.65% 

Table 22: Out-of-sample trading performance results with transaction costs 
(03/07/06-31/12/07)27 

We observe that in both periods the MLP and HONN models clearly 

outperform the other strategies. In the latest period the HONN model has a 

better performance while one and a half year before the MLP presented better 

27 The forecasted series presented here are the same used in charter 5. Because in both our 
previous applications confirmation filters deteriorate the trading performance of our models 
we decided not to apply them in this study. 
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results. On the other hand, the ARMA model in both periods presents a rather 

disappointing trading performance. This empirical evidence allows us to argue 

that HONNs and MLPs have a consistent and better performance than the 

RNN, MACD and ARMA models in forecasting the ECB daily fixing of the 

EUR/USD. 

6.4.2 Leverage to Exploit Low Volatility 

In order to further improve the trading performance of our models we 

introduce a "level of confidence" to our forecasts, i. e. a leverage based on the 

test sub-period that takes into account the low volatility of the trading 

performance of our models. For the ARMA and the MACD models, which 

show a negative return we do not apply leverage. The leverage factors 

applied are calculated with the same way as in the previous chapter. 

The transaction costs are calculated by taking 0.007% per position into 

account, while the cost of leverage (interest payments for the additional 

capital) is calculated at 4% p. a. (that is 0.016% per trading day). Our results 

are presented on the table 23 below. 

MACD ARMA MLP RNN HONN 
Sharpe Ratio (excluding costs) -0.02 -0.45 0.74 0.40 0.86 
Annualised Volatility (excluding costs) 9.54% 9.54% 10.01% 10.02% 9.96% 
Annualised Return (excluding costs) -0.19% -4.32% 7.43% 4.02% 8.56% 
Maximum Drawdown (excluding costs) -9.85% -11.39% -6.30% -6.21% -7.57% 
Positions Taken (annualised) 28 185 107 93 170 
Leverage - - 1.09 1.05 1.05 
Transaction Costs 0.20% 1.30% 0.99% 0.79% 1.33% 
Annualised Return (including costs) -0.39% -5-62% 6.44% 3.23% 7.23% 

Table 23: Trading pertormance - tinal results- (02/01/08-29/08/08) 

Not taken into account the interest that could be earned during times where the capital is 
not traded (non-trading days) and could therefore be invested 
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As can be seen from the last row of table 23, the HONN model continues to 

demonstrate a superior trading performance. Similarly, the MLP and the RNN 

continue to perform well and present the second and the third highest 

annualised return respectively. In general, we observe that all models where 

leverage was applied were able to exploit it and increase their trading 

performance despite the higher transaction costs. 

The performance of our models for a different out-of-sample period, 3 July 

2006 to 31 December 2007, is given in table 24 below. 

MACD ARMA MLP RNN HONN 
Sharpe Ratio (excluding costs) 0.70 -0.40 1.88 0.60 0.99 
Annualised Volatility (excluding costs) 7.27% 6.38% 7.16% 7.23% 7.26% 
Annualised Retum (excluding costs) 5.06% -2.53% 13.45% 4.35% 7.17% 
Maximum Drawdown (excluding costs) -5.39% -10.12% -5.70% -5.30% -4.98% 
Positions Taken (annualised) 20 189 109 167 80 
Leverage 1.14 - 1.13 1.14 1.14 
Transaction Costs 1.02% 1.51% 1.67% 2.19% 1.50% 
Annualised Retum (including costs) 4.04% -4.04% 11.78% 2.16% 5.67% 

Table 24: Trading performance - final results"'(03/07/06-31/12/07) 

We note that in both periods the MLP and the HONN models continue to 

outperform the other models as they are able to exploit the leverage and 

present an increased trading performance in both out-of-sample periods. So 

even if the ranking of these two models is different in the two out-of-sample 

forecasting periods retained, they clearly outperform all other models in all 

cases something that allows us to argue with confidence about their 

forecasting superiority and their stability and robustness through time. On the 

29 Not taken into account the interest that could be earned during times where the capital is 

not traded (non-trading days) and could therefore be invested. 
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other hand, the RNN model was not able to exploit the extra memory inputs in 

their architecture and presents rather disappointing results. Moreover, the 

time spent to derive the RNN results is five times longer than the time needed 

with the HONN and the MLP models. Similarly, the MACD and the ARMA 

models present a very weak forecasting power even though their training sub- 

period performance was promising (see Appendix A. 3.3). 

6.5 Concluding Remarks 

In this chapter, we apply Multi-layer Perceptron, Recurrent, and Higher Order 

neural networks to a one-day-ahead forecasting and trading task of the 

EUR/USD exchange rate using the European Central Bank (ECB) fixing 

series with only autoregressive terms as inputs. We use a na*fve, a MACD and 

an ARMA model as benchmarks. Our aim is not only to examine the 

forecasting and trading performance of our models but also to see if this 

performance is stable and robust through time. In order to do so, we develop 

these different prediction models over the period January 1999 - December 

2007 and validate their out-of-sample trading efficiency over the following 

period from January 2008 through August 2008. To examine the robustness 

and the stability of our models we compare our results with those from 

chapter 5 where using the same models and the exact same selection of 

autoregressive terms as inputs to the neural networks, but with an out-of- 

sample period between July 2006 and December 2007. 
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As it turns out, the MLP and HONN models clearly outperform the other 

models in both out-of-sample periods in terms of annualised return. Our 

conclusions are the same even after we introduced transaction costs and a 

leverage to exploit the low volatility of the trading performance of those 

models. This enables us to conclude with confidence over their forecasting 

superiority and their stability and robustness through time. On other hand, the 

RNN model seems to have a difficulty in providing good forecasts when only 

autoregressive series are used as inputs. Similarly, the ARMA and the MACD 

models present low or even negative annualised returns in this application 

despite their satisfactory training sub-period performance. 
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CHAPTER 7 

Modelling and Trading the Realised Volatility of the 
S30 FTSE100 Futures with Higher Order Neural Network 

Overview 

The motivation for this chapter is to investigate the use of Higher Order Neural 

Networks (HONNs), when applied to the task of forecasting and trading the 

21 -day ahead realised volatility of the FTSE 100 futures index. This is done by 

benchmarking their results with those of two different neural network designs, 

the Multi-Layer Percepton (MLP) and the Recurrent Neural Network (RNN), 

along with a traditional technique, Riskmetrics. More specifically, the 

forecasting and trading performance of all models is examined over the eight 

FTSE 100 futures maturities of the period 2007-2008 using the realised 

volatility of the last 21 trading days of each maturity as our out-of-sample 

target. The statistical evaluation of our models is done by using a series of 

measures such as the the mean absolute error (MAE), the mean absolute 

percentage error (MAPE), the root mean squared error and the Theil-U 

statistic. Then we apply a simple trading strategy to exploit our forecasts 

based on trading at-the-money (ATM) calls options on FTSE 100 futures. 

As it turns out, HONNs demonstrate a. remarkable performance and 

outperform all other models not only in terms of statistical accuracy but also in 

terms of trading efficiency. We also note that both the RNNs and MI-Ps 

30 This paper has been presented at the Forecasting Financial Markets 2009 conference in 

Luxemburg (27 to 29 May 2009) and is currently being reviewed by 'Studies in Nonlinear 

Dynamics & Econometrics'. 
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provide sufficient results in the trading application in terms of cumulative profit 

and average profit per trade. 

7.1 Introduction 

The motivation for this chapter is to investigate the use of Higher Order Neural 

Networks (HONNs), when applied to the task of forecasting and trading the 

21 -day ahead annualised volatility of the FTSE 100 futures index. This is done 

by benchmarking their results with those of two different neural network 

designs, the Multi-Layer Percepton (MLP) and the Recurrent Neural Network 

(RNN), along with a traditional technique, RiskMetrics. 

In order to evaluate statistically our models we compute the mean absolute 

error (MAE), the mean absolute percentage error (MAPE), the root mean 

squared error and the Theil-U statistic. Then we compare our forecasts with 

the relevant Black-Scholes (1973) market derived implied volatilities and we 

apply a simple trading strategy based on trading at-the-money (ATM) calls 

options on FTSE 100 futures. As it turns out, HONNs demonstrate a 

remarkable performance and outperform all other models not only in terms of 

statistical accuracy but also in terms of trading efficiency. We also note that 

both the RNNs and MLPs provide satisfactory results in the trading application 

in terms of cumulative profit and average profit per trade. 

The rest of the chapter is organised as follows. In section 7.2, we describe the 

dataset used for this research and its characteristics. An overview of the 

RiskMetrics volatility is given in section 7.3. Section 7.4 gives the empirical 
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results of all the models in terms of their statistical accuracy and trading 

efficiency while section 6 provides some concluding remarks. 

7.2 The FTSE 100 Futures and Related Financial Data 

Our benchmark test is to forecast the 21-day ahead realised volatility of the 

FTSE 100 futures returns. For the FTSE 100 futures there are four delivery 

months: March, June, September and December. Trading ceases on the third 

Friday of the delivery month of the contract as soon as reasonably practicable 

after 10: 15 (London time) once the Expiry Value of the Index has been 

determined. In our application we are examining the 8 different futures 

contracts which are expiring in 2007 and 2008. For each of the 8 contracts we 

have their closing prices for almost a year before their expiration. 

More specifically we are examining the 8 different FTSE100 futures contracts 

presented on the table below. 

Delivery month of the contract Available trading days from Datastream 
March 2007 260 
June 2007 265 

September 2007 265 
December 2007 264 

March 2008 264 
June 2008 265 

September 2008 260 
December 2008 264 

Table 25: FTSE 100 futures contracts 

In the figure below we present the FTSE 100 index level for 1 January 2006 

to 31 December 2008 while on Appendix A. 4.1 we present for the same 

period the 21 -days realised standard deviations of the FTSE 100 returns. 
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Fýq. 17: FTSE 100 index closing prices in pounds 

In all cases, we used the last 21 days as out-of-sample dataset and the rest 

of the days as in-sample clataset. All the eight series are non-normal (Jarque- 

Bera statistics confirm this at the 99% confidence interval) containing 

skewness and high kurtosis and are nonstationary. For the purpose of our 

research we transform them to into stationary series of returns using formula 

[22]. 

The summary statistics of the eight futures returns series reveal that they 

contain a slight skewness and high kurtosis. The Jarque-Bera statistic 

confirms again that all series are not normally distributed at the 99% 

confidence interval. 

In the absence of any formal theory behind the selection of the inputs of a 

neural network and due 

81 



the restrictions that you have on our available dataset we fed our networks 

with the first 4 autoregressive lags of the FTSE 100 returns 21 -day annualised 

realised volatility. The inputs of our NNs models for each of the 8 maturities 

are as presented on the table below. 

Number Variable Lag 
1 21 -day realised volatility 1 
2 21 -day realised volatility 2 
3 21 -day realised volatility 3 
4 21 -day realised volatility 4 

Table 26: Explanatory variables for the MLPs, RNNs and HONNs models 

7.3 Methodology 

In this chapter we benchmark HONNs with two more traditional NNs designs, 

a MLP and RNN model, and a statistical technique such as the RiskMetrics 

volatility in the task of forecasting the 21 -day ahead annualised volatility of the 

FTSE 100 futures index. An estimation of the realised 21-day ahead 

annualised volatility, which we are interested in forecasting as accurately as 

possible, can be given by the expression: 

t 

cT, +, --JV252ýR, 21 1-20 

futures index. 

[29] where Rt is the realised daily return of the FTSE 100 

A complete description of our NN architectures used on this application 

(HONN, RNN and MLP) is on chapter 3. Since the starting point for each 

network is a set of random weights, forecasts can differ slightly between 

networks. In order to eliminate any variance between our NNs forecasts, we 

used the average of a committee of 20 NNs which presents the better 

statistical performance in-sample. The characteristics of the NNs used in this 
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chapter are presented in Appendix A. 4.2. The target value in all our networks 

is the 21-day ahead estimated annualised volatility of our series as defined 

from equation [29]. In the section below we present our Riskmetrics volatility 

benchmark. 

7.3.1 RiskMetrics Volatility 

The RiskMetrics volatility model is treated as a benchmark model owing to its 

simplicity and popularity in volatility forecast. Derived from the GARCH(1,1) 

model, but with fixed coefficients, RiskMetrics volatility is calculated using the 

standard formula: 

RAIVOL', = bal', + (I - b)Rl' [30] where a, ' is the futures index variance at time 

R2 is the futures index squared return at time t and b=0.94 for daily data. In t 

this chapter we use RiskMetrics volatility to forecast 21 -day ahead annualised 

volatility for the out-of-sample period. The RiskMetrics volatility is calculated 

from equation [30] and then we use equation [31] below to calculate the 21- 

A 

step ahead annualised volatility forecast: o7t+, = RMVOL, V252 [31 

7.4 Empirical Results 

7.4.1 Statistical Performance 

As it is standard in the literature, in order to evaluate statistically our forecasts, 

the RMSE, the MAE, the MAPE and the Theil-U statistics are computed. The 

RMSE and MAE statistics are scale-dependent measures but give a basis to 

compare volatility forecasts with the realised volatility while the MAPE and the 

Theil-U statistics are independent of the scale of the variables. In particular, 
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the Theil-U statistic is constructed in such a way that it necessarily lies 

between zero and one, with zero indicating a perfect fit. A more detailed 

description of these measures can be found on Pindyck and Rubinfeld (1998), 

Theil (1966) and Dunis and Chen (2005) while their mathematical formulas 

are on Appendix A. 4.3 For all four of the error statistics retained (RMSE, 

MAE, MAPE and Theil-U) the lower the output, the better the forecasting 

accuracy of the model concerned. In the table below we present our results 

for the in-sample period while our results for the out-of-sample period are on 

Appendix A. 4.4. 

RiskMetrics MLPs RNNs HONNs 
MAE 0.0730 0.0563 0.0347 0.0291 
MAPE 44.43% 30.51% 15.95% 16.49% 
RMSE 0.0953 0.0824 0.0706 0.0436 
Theil-U 0.2140 0.1919 0.1641 0.0992 

Table 27: In-sample statistical performance 

As it can be seen from tables 27 and 53 , 
HONNs outperform all other models 

and present the most accurate forecasts in statistical terms in both in-sample 

and out-of-sample periods. It seems that their ability to capture higher order 

correlations gave them a considerable advantage compared to the other 

models. On the other hand, RNNs come second and MI-Ps come third in our 

statistical evaluation in both periods while the RiskMetrics model presents the 

least accurate forecasts. Furthermore, we observe that the statistical 

performance of our NNs is better in-sample than out-of-sample, something 

that was expected. Moreover, it is worth noting that the time that we need to 

train our HONNs was less than the time needed for the RNNs and the MI-Ps. 
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7.4.2 Out-of-Sample Trading Performance 

However, as we are interested to test our models not only in terms of 

statistical accuracy but also in terms of trading efficiency we apply a realistic 

trading strategy once our volatility forecasts substantially differ from the 

implied volatilities of the ATM call options on FTSE 100 futures. As can been 

seen from the table below, the actual option prices of ATM call options on 

FTSE 100 futures, 21 days before the expiration of the underlying future 

contract, considerably differ in some maturities from the Black-Scholes 

generated option prices if in place of the implied volatility we put our relevant 

21-steps ahead volatility forecasts. 

Actual RiskMetrics MI-Ps RNNs HONNs 
March 2007 64.5 188.5 67 62 67 
June 2007 104 73 90 86 87 

September 2007 168.5 145 130 187 128 
December 2007 179 140 175.5 172 175 

March 2008 178 183 172.5 168 164 
June 2008 128 115 ill 107 99 

September 2008 127.5 126 139 145 108 
December 2008 288 223 279 225 215 

Table 28: Actual and derived option premia in pounds 

Our aim is to exploit the differences between the implied volatility and our 

forecasted volatility by identifying mispriced call options. In order to do so, we 

are going to compare the Black-Scholes derived implied volatility of ATM call 

options 21 days before their expiration with our relevant 21-day ahead 

annualised volatility forecaStS31. If the difference in absolute terms of the 

forecasted volatility from the prevailing implied volatility is bigger than a given 

31 We are aware that because of the risk premium the implied volatilities will differ from the 
relevant realised volatilities at any time point. However, it is beyond the scope of this 
application to identify and quantify the size and the effect that the risk premium has in our 
application. 
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threshold and the forecasted volatility is bigger than the implied, we will buy 

the ATM call. If the implied is bigger, we will sell the ATM call. In all the other 

cases that the difference in absolute terms between the forecasted and the 

implied is smaller than the threshold we will not take a position in the market. 

In our application, we consider 4 thresholds: 0.5%, 1%, 1.5% and 2%. In the 

table below we show the difference between our forecasts and the relevant 

implied volatilities. 

RiskMetrics MLPs RNNs HONNs 

March 2007 17.36% 0.46% -0.35% 0.38% 

June 2007 -4.35% -0.49% -1.64% -1.62% 

September 2007 -5.37% -7.08% 2.67% -7.37% 

December 2007 -5.63% -0.51% -0.97% -0.60% 

March 2008 0.86% -0.84% -1.47% -2.07% 

June 2008 -1.84% -1.93% -3.03% -4.26% 

September 2008 -0.26% 1.90% 2.87% -3.38% 

December 2008 -11.79% -1.63% -11.59% -14.81 

Table 29: Difference between torecasted and implied volatilities 

In terms of our exit rules, a position in a call is held for 10 days after it is firstly 

initiated. This is happening, because of the drop in time value during the life of 

an option. Moreover, as we are trading based on volatility forecasts we are 

interested during our trading our calls to be as near ATM as possible. Thus 

avoiding the effect that the underlying market fluctuations has on their price. 

As an optimurn period that a call will continue to be near ATM, we choose the 

10 days. The transactions costs for one call are assumed to be 3.40f- per 
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round tri p32 . The trading performance of our models for each of the 4 different 

thresholds is presented on the tables below. 

RiskMetrics MLPs RNNs HONNs 

_Cumulative 
Profit -145.92% -24.81% -6.49% -4.23% 

Trades 7 6 7 7 
Buys/Sells 2/5 1/5 2/5 1/6 
Profitable Trades 29% 50.0% 42.9% 57.1% 
Average Profit per 
Trade -20.85% -4.13% -0.93% -0.60% 

Table 30: Trading performance for 0.5% threshold 

RiskMetrics MLPs RNNs HONNs 
Cumulative Profit -113.67% 35.46% 86.03% 88.28% 
Trades 6 4 6 6 
Buys/Sells 2/4 1/3 2/4 1/5 
Profitable Trades 33.33% 50.00% 50.00% 66.67% 
Average Profit per 
Trade -18.94% 8.87% 14.34% 14.71% 

Table 31: Trading performance for 1% threshold 

RiskMetrics MLPs RNNs HONNs 

Cumulative Profit -113.67% 35.46% 53.78% 88.28% 
Trades 6 4 5 6 
Buys/Sells 2/4 1/3 2/3 1/5 
Profitable Trades 33.33% 50% 40% 66.67% 
Average Profit per 
Trade -18.94% 8.87% 10.76% 14.71% 

Table 32: Trading pertormance tor i. z&)v/o tnresnoia 

RiskMetrics MLPs RNNs HONNs 

Cumulative Profit -197.97% 1.13% 33.20% 67.71% 
_ Trades 5 1 4 5 

Buys/Sells 2/3 0/1 2/2 1/4 

Profitable Trades 20.00% 100.00% 50.0% 60.00% 

Average Profit per 
Trade -39.59% 1.13% 8.30% 13.54% 

Table 33: 1 racling pertormance Tor zv/o tnresnoia 

We observe that HONNs outperforms all other models as they demonstrate a 

superior trading performance for each of the four thresholds. Moreover, the 

32 These costs were obtained from brokers (see, for instance, www. interactive-brokers. com). 
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MLPs and the RNNs demonstrate also a sufficient performance with positive 

cumulative profits for 3 of the 4 thresholds. On the other hand, the trading 

results of the RiskMetrics are rather disappointing with negative cumulative 

profit in all cases. In general, this empirical evidence allows us to argue that 

NNs were able to successfully identify mispriced options and present a 

satisfactory trading performance. 

7.5 Concluding Remarks 

In this chapter, we apply Multi-layer Perceptron, Recurrent, and Higher Order 

neural networks to a 21-day-ahead forecasting and trading task of the FTSE 

100 futures returns realized volatility. As a statistical benchmark we use the 

RiskMetrics volatility. We evaluate our forecasts not only in terms of statistical 

accuracy but also in terms of trading efficiency by applying a simple trading 

application. 

Our results indicate that HONNs outperform all other models as they present 

the more accurate forecasts and the higher trading performance. These 

results may be attributed to their ability to capture higher order correlations 

within a dataset. We also note that the RNNs and the MI-Ps show sufficient 

results in the trading application in terms of cumulative profit and average 

profit per trade. On the other hand, the statistical and trading performance of 

RiskMetrics is rather disappointing as it presents the worst results in both the 

statistical and trading applications. 
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CHAPTER8 

Modelling Commodity Value at Risk with Higher Order 
Neural NetworkS33 

Overview 

The motivation for this chapter is to investigate the use of a promising class of 

neural network models, Higher Order Neural Networks (HONNs), when 

applied to the task of forecasting the one day ahead Value at Risk (VaR) of 

the oil brent and gold bullion series with only autoregressive terms as inputs. 

This is done by benchmarking their results with those of a different neural 

network design, the Multilayer Percepton (MLP), an Extreme Value Theory 

model (EVT) along with some traditional techniques such as an ARMA- 

GARCH (1,1) model and the Riskmetrics volatility. In addition to these, we 

also examine two hybrid Neural Networks-RiskMetrics volatility models. More 

specifically, the forecasting performance of all models for computing the VaR 

of the brent oil and the gold bullion is examined over the period 2002-2008 

using the last year for out-of-sample testing. The evaluation of our models is 

done by using a series of backtesting algorithms and two loss functions: a 

violation ratio calculating when the realised return exceeds the forecast VaR 

and an firstly introduced average squared violation magnitude function 

computing the average magnitude of the violations. 

As it turns out, the hybrid HONNs-RiskMetrics model does remarkably well 

and outperforms all other models in forecasting the VaR of gold and oil at both 

33 This paper has been presented at the Forecasting Financial Markets 2009 conference in 

Luxemburg (27 to 29 May 2009) and is currently being reviewed by the Vournal of Applied 

Financial Economics' for potential publication. 

89 



the 5% and 1% confidence levels, providing an accurate number of 

independent violations which also have the the lowest magnitude on average. 

The pure HONNs and MI-Ps along with the hybrid MLP-RiskMetrics model 

give also satisfactory forecasts in most cases. 

8.1 Introduction 

The motivation for this chapter is to investigate the use in Risk Management 

of Higher Order Neural Networks (HONNs) which have provided some 

promising empirical evidence in forecasting and trading stock market patterns. 

This is done by benchmarking their results with those of a different neural 

network design, the Multilayer Percepton (MLP), an Extreme Value Theory 

model (EVT) along with some traditional techniques such as an ARMA- 

GARCH (1,1) model and the Riskmetrics volatility. Moreover, we are 

examining two hybrid Neural Networks-RiskMetrics volatility models. 

Their forecasting performance over the one day ahead VaR of gold and oil 

series is evaluated by using a series of back-testing algorithms such as the 

three tests suggested by Christoffersen (1998) and by implementing two loss 

functions, such as the violation ratio and an average magnitude regulatory 

function. We consider two different confidence levels, 5% and 1 %. Also in our 

application we consider both tails of the return distribution (long and short 

position). In the absence of a formal theory around the selection of inputs on a 

Neural Network model and for our forecasting competition to be fair with the 

more traditional techniques, we select only autoregressive terms as inputs to 

our neural network models. 
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As it turns out, the hybrid HONNs-RiskMetrics model does remarkably well 

and outperforms all other models in forecasting the VaR of gold and oil at both 

the 5% and 1% confidence levels providing an accurate number of 

independent violations which have also the lowest magnitude on average. In 

other words the HONNs-RiskMetrics model produces an accurate 

independent exception process and gives the smallest difference on average 

between the forecast VaR and the actual return when an exception occurs. 

The pure HONNs and MI-Ps along with the hybrid MLP-RiskMetrics model 

also give satisfactory forecasts in most cases. On the other hand, our EVT 

model presents a disappointing performance something that can be attributed 

to the fact that only a few extreme events are present in our dataset. 

The rest of the chapter is organised as follows. In section 8.2, we describe the 

dataset used for this research and its characteristics. An overview of the VaR 

framework and the statistical/technical models used in this research is given 

in section 8.3. Section 8.4 gives the empirical results of all the models 

considered while section 8.5 provides some concluding remarks. 

8.2 The Brent Oil and the Gold Bullion Series 

Our benchmark test is to forecast the one day ahead VaR of the brent oil and 

gold bullion based on their closing prices. All series are obtained from a 

historical dataset provided by Datastream. 

We examine our series since 1 April 2002 until 31 March 2008. The data 

period is partitioned as follows. 

91 



Name of period Trading Days Beginning End 
Otal dataset 1566 1 April 2002 31 March 2007 

Training dataset 1305 1 April 2002 30 March 2007 
Out-of-sample dataset [Validation set] 261 2 April 2007 1 31 March 20081 

Table 34: The Gold and Oil dataset 

The graph below shows the total clataset of gold and its strong upward trend 

from 2005 to 2007. 
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Fýq. 18: Gold daily closing prices (total dataset) 

Below the graph depicts the trend of oil for the review period. 

Gold 
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Fig. 19: Oil daily closing prices (total dataset) 

Oil 

Both the gold and oil time series are non-normal (Jarque-Bera statistics 

confirm this at the 99% confidence interval) containing skewness and high 

kurtosis and are nonstationary. For the purpose of our research we transform 

them to into stationary series of returns using the formula: 

P, 
[22] 

PI-I 

Where Rt is the rate of return and Pt is the price level at time t. 

The summary statistics of the oil returns series reveal a slight skewness and 

high kurtosis. The Jarque-Bera statistic confirms again that the oil series is 

non-normal at the 99% confidence interval. 
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Fýq. 20: Oil returns summary statistics (total dataset) 

On the other hand, the gold returns series exhibit negative skewness and high 

kurtosis. Once again, the Jarque-Bera statistic confirms that the gold series is 

non-normal at the 99% confidence interval. 

500 

400 

300 

200 

100 

0 

Series: RETURNS 
Sample 1 1566 
Observations 1566 

Mean 0.000773 
Median 0.000714 
Ma)dmum 0.040737 
Minimum -0.060905 
Std. Dev. 0.010347 
Skewness -0.566385 
Kurtosis 5.825585 

Jarque-Bera 604.6783 
Probability 0.000000 

E/]g. 21: Gold returns summary statistics (total dataset) 
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In the absence of any formal theory behind the selection of the inputs of a 

neural network, we examine the autocorrelation function and conduct some 

ARMA and neural networks experiments in order to help our decision. We end 

up using the first 10 autoregressive lags as inputs to the MLP and HONNs 

models for both oil and gold. For our hybrid MLP-RiskMetrics and HONNs- 

RiskMetriGs models we add as input the first lag of the 1-day RiskMetrics 

volatility. 

Number Variable Lag 
I Gold or Oil return 
2 Gold or Oil return 2 
3 Gold or Oil return 3 
4 Gold or Oil return 4 
5 Gold or Oil return 5 
6 Gold or Oil return 6 
7 Gold or Oil return 7 
8 Gold or Oil return 8 
9 Gold or Oil return 9 
10 Gold or Oil return 10 
I1 1 -day Riskmetrics Volatility 1 

Table 35: Explanatory variables for the MLP-RiskMetrics and HUNNs- 
RiskMetrics hybrid models 

In order to train our neural networks we further divide our clataset as follows: 

Name of period Trading days Beginning End 
Total data set 1566 1 April 2002 31 March 2008 
Training data set 1045 1 April 2002 31 March 2006 
Test data set 260 3 April 2006 30 March2007 
Out-of-sample data set [Validation set] 261 2 April 2007 31 March 2008 

Table 36: The neural networks clataset 

8.3 Methodology 

Under a probabilistic framework, at the time t, we are interested in the risk of a 

financial position for the next h periods. If we define AV(h) to be the asset 

value change from time t to t+h, then this quantity is measured in e. g. dollars 
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and is a random variable at time t. Denote the conditional density function 

(CDF) of AV(h) byF, (x). Then we define the VaR of a long position over the 

time horizon h with probability p as: 

Pr[AV(h):! ý VaR] = Fh(VaR) [32] 

For a long position, the loss occurs when AV(h) --< 0 and so the VaR defined in 

[32] is assumed to have a negative value. On the other hand, for the short 

position the loss occurs when AV(h) >- 0 and the VaR has a positive value. 

For long positions, the left tail of F, (x) is important while for short positions 

the right tail is important. As an investor can buy or sell an asset we consider 

both tails of the distribution. Moreover, the asymmetries between the tails of 

the return distributions of our assets (something that can be observed to some 

extent from figures 17 and 18) enables one to draw additional conclusions 

when large discrepancies are observed in our results for long and short 

positions. 

The above equation can be also interpreted as the probability that the holder 

would encounter a loss greater than or equal to VaR is p. So in other words, 

VaR is a story of modelling the tail behavior of the CDF Fh(x). However, the 

CDF is unknown in practice and most VaR forecasting models require an a 

priori definition of the CDF. In our research for our models except the EVT 

model, we will consider that the unknown CDF is that of the normal 

distribution. Although we acknowledge that our series do not follow the normal 

distribution, we decide to take this assumption for the sake of simplicity. This 

assumption is most common in the literature (see among others Lee and 
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Saltoglu (2001), Dunis et al. (2005), Rau-Bredow (2004) and Liu (2005)). The 

normality assumption also implies that the VaR modelling will be similar for 

long and short positionS34 . 
Estimating the CDF of the series, something that 

could enable one to use different specifications in the VaR estimation for long 

and short positions is far beyond the scope of this thesis. 

A complete description of our NN architectures used on this application 

(HONN and MLP) is on chapter 3. Since the starting point for each network is 

a set of random weights, forecasts can differ slightly between networks. In 

order to eliminate any variance between our NNs forecasts, we used the 

average of a committee of 20 NNs which presents the better statistical 

performance in-sample. The characteristics of the NNs used in this chapter 

are presented in Appendix A. 5.1. The target value in our networks is the one 

day estimated volatility of our series else the absolute value of the return of 

our assets. After we forecast the volatility, we compute the VaR using the 

formula below: 

A 

7Rq V47R q= 071+1 C [33] where vo is the VaR forecast for t+l period with q% t+l q 1+ 

A 

confidence level, at+, is the forecasted volatility for period t+1 from our MI-Ps 

and Cq 'Sthe critical value of the normal distribution for q% confidence level. 

34 We have also considered the case that the CIDIF follows the Student distribution with 6 

degrees of freedom. Our results, which are available upon request, are not given here in 

order to conserve space and because they are not significantly different from those obtained 

under the normality assumption. In the relevant literature, other options have been considered 

as the Weibull distribution or various techniques to identify the CIDF of the series under study. 
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8.3.1 RiskMetrics Volatility 

The RiskMetrics, volatility model is treated as a benchmark model owing to its 

popularity in risk measurement. Roughly speaking, RiskMetrics is one of the 

simplest tools for measuring financial market risk under the VaR framework. 

Derived from the GARCH(1,1) model, but with fixed coefficients, RiskMetrics 

volatility is calculated using the standard formula: 

RAfVOL' =b 072 + (I - b)R 
2 [30] where 072 is the asset variance at time t, R2 is 

I t-I IIt 

the asset squared return at time t and b=0.94 for daily data. In this chapter we 

use RiskMetrics volatility to forecast 1-day ahead volatility for the out-of- 

sample period. The RiskMetrics volatility is calculated from equation [30] and 

then we use equation [34] below to calculate the 1-step ahead volatility 

AA 

forecast: o7t+i = RWOLt [34]. Then we compute VaR as: VaRý,, = o7t+i c [33] 
1+ q 

A 

where VaR q is the VaR forecast for t+1 period with q% confidence level, (7, +, t+1 

is the forecasted volatility for period t+1 and Cq'S the critical value of the 

normal distribution for q% confidence level. 

8.3.2 ARMA-GARCH(l, l) 

We also forecast the VaR of our assets, with an ARMA-GARCH(l, l) model. 

Since the seminal contribution of Engle (1982), ARCH and GARCH type 

models have become standard tools to model the volatility of financial market 

data. An ARCH-GARCH nriodel consists of two equations. The first one is an 

ARMA equation for the returns R,. In our research we model the returns with a 
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restricted ARMA(l 0,10) model where all coefficients are significant at the 95% 

confidence interval. The second equation is used to model the variance of the 

underlying series. In our application we model the variance with a 

GARCH(l, 1) equation. Justification for the use of GARCH(l, 1) and not of one 

of its numerous variations can be provided based on the empirical evidence of 

Corhay and Rad (1994), Vasilellis and Meade (1996) and Walsh and Tsou 

(1998). 

In mathematical terms an ARMA(p, q)-GARCH(l, l) can be expressed as: 

pq 

Rt =C+l +La u +u 
.,, 
8xR 

x I-x I 
X=l X=j 

U2= w+ au 
2+ ßU2 

1 t-1 1-1 

(Mean equation) [35] 

(Variance equation) [36] 

Using the above two sets of equations and assuming that the errors u, follow 

the normal distribution, we can obtain forecasts of the future return and 

variance. Our estimation outputs are provided in Appendix Al. We obtain the 

one day ahead VaR forecast of our series with: 

AA 

Vý, Rq Vý, Rqj 
I t+l = Rt+i - cqut+i [37] where 1+ is the VaR forecast for t+l period with 

AA 

q% confidence level, Rt+i and a, +, obtained from equations [35] and [361 

respectively while Cq'S the critical value of the normal distribution for q% 

confidence level. 

8.3.3 Extreme Value Theory Model 

Extreme Value Theory (EVT) is a powerful and yet fairly robust framework to 

study the tail behaviour of a distribution. Even though the theory was primarily 

applied to climatology and hydrology, recently there has been an increasing 
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number of extreme value studies around VaR and Risk Management in the 

literature (see for example Bali (2003), Gencay and Selcuk (2004), Gili and 

Kellezi (2006) and Samuel (2008)). 

There are two main approaches in estimating VaR with EVT, namely the 

method of block over maxima and the method of peaks over threshold (POT). 

In our research, based on the empirical evident provided by Gili and Kellezi 

(2006) who compared the two methods and demonstrated the superiority of 

POT, we will estimate VaR with the POT approach. Moreover, in our 

estimation we decided to follow the unconditional approach. In real world 

environments, the unconditional approach is preferred as it can provide stable 

estimates through time while avoiding the time consuming computations 

required by the conditional approach (Gili and Kellezi (2006) and Samuel 

(2008)). So in these lines and based on the empirical evident of Gili and 

Kellezi (2006) we follow the POT approach. 

The POT method is based on a theorem stated by Picklands (1975) and 

Balkerna and de Haan (1974). According to it, for a large class of underlying 

distribution functions F the conditional excess distribution F, (y), for a 

threshold u large enough, is well approximated by the generalised Pareto 

distribution (GPD). In simple words, the implementation of the POT method 

involves three steps. First we choose a sufficient high threshold to satisfy the 

above mentioned theorem. In our application we choose our threshold 

following the methodology employed by Bali (2003). He suggests choosing as 

threshold the distance of 2 standard deviations from the in-sample mean. For 

gold, this produces 33 extreme events for long positions and 29 for short 
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Positions (respectively 2.5% and 2.2% of the in-sample observations). For oil, 

we have 33 extreme events for long positions (2.5% of the in- sample clataset) 

and 32 for short positions (2.4% of the in-sample clataset). Then based on the 

excesses over the threshold, we estimate the parameters of the GPD using 

the method of momentS35. In the end, we estimate VaR using the formula: 

A 

Vý7Rq =U+u nA I pyý _j] [38] where VaR q is the VaR estimate for the q% A Nu 

AA 

confidence level, u is is the threshold, a and ý are the moments estimates of 

the shape and scaling parameters of the GPD respectively, n is the sample 

size and Nu is the number of observations above u. More details around the 

POT method and our VaR estimation can be found at Gili and Kellezi (2006) 

and Samuel (2008). 

8.4 Backtesting 

8.4.1 Christoffersen Tests 

Christoffersen (1998) introduced a three step VaR evaluation procedure. In a 

likelihood ratio (LR) testing environment, he introduced a test of correct 

unconditional coverage, a test of independence and a test for conditional 

coverage. As a first step in order to evaluate our models we follow this 

procedure. 

35 Moments estimators for the GPD were derived by Hosking and Wallis (1987). According to 

the empirical evident provided by Singh and Guo (1995) the method of moments seems more 

appropriate than the maximum likelihood estimation for our dataset. 
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8.4.1 
.1 LR Test of Correct Unconditional Coverage 

Let us consider a dummy variable d'for model k which takes the value of 1 k 

when the return falls behind the VaR forecast estimated from model k and 0 in 

all other cases. Then the indicator sequence d' should follow the binomial k 

distribution with likelihood L(a) = (I - a)"O a n, where a= P(d' = 1), no is the k 

number of 0 in the d, sequence and n is the number of 1. In an accurate VaR kI 

model with confidence level q%, q should equal a. Else the probability to have 

a violation should be q%. Christoffersen (1998), under the null that we have a 

correct violation ratio, formulated all this in the standard LR test presented 
belOW36: 

nj 
q) 

n. 

LRuc = -2 log[-ýý ; r(I) [39] where n, is the number of violations, 
1IT 

nj , )no 

no is the number of non-violations, q is the coverage rate of the VaR model 

and ;T= 
"' is the maximum likelihood estimate of q. 

no + n, 

8.4.1.2 LR Test of Independence 

The second test is to check whether the indicator sequence d' (else the k 

sequence of violations for our VaR forecasts of model k) is serially 

independent. Christoffersen (1998) was motivated to such a test by noting 

that a constant VaR given by the unconditional distribution from a GARCH 

model will have too many exceptions during periods of high volatility and too 

36 Kupiec (1995) and McNees (1995) apply similar tests of unconditional coverage. 
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few during periods of low volatility. Because volatility tends to cluster, failing to 

adequately model volatility in the VaR will result in serial correlation in the 

violation sequence. 

Under the null hypothesis that the exception sequence is serially independent 

and the alternative that it is a first order Markov process, the likelihood ratio of 

independence can be tested by: 

(I - ;T )noo+nll , nol+nll 
LRind = -2 log[ 22d> X(l) [40] where n, is the 

01 
) noo , no, ; Tj I) 

njo , nj I 
01 11 

number that value i is followed by j in the violations sequence, 7rol - 
no, 

noo +no] 

nil 
and ; r2 = 

no, + n, , 
njo + n,, noo +no, + n, ,+ njo 

8.4.1.3 LR Test of Conditional Coverage 

By combining the two tests, the third test for conditional coverage can be 

constructed. This time the null hypothesis is that that we have an independent 

exception process with correct violation ratio while the alternative is that we 

have a first order Markov process with a different transition probability matrix. 

The likelihood ratio statistic is: 

LRcc = -2log[- 
P" (1 - P)"o 

_] 
d4 X(2) [41 

(I_ ZO, yoo , no I (I_ njo , nl I 
01 11 

8.4.1.4 Results 

The likelihood ratio statistics of the Christoffersen tests for our models are 

presented in Appendix A. 5.3. Our results indicate that all our models except 
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the EVT model give a correct violation ratio with an independent exception 

process. In other words, that most our models made accurate forecasts in a 

VaR framework. Moreover, we observe that there is no discrepancy in the 

results for the long or short positions. So despite the fact that the modelling of 

VaR is similar for both tails (which are asymmetric and seem to have different 

characteristics), our VaR forecasts prove satisfactory in both cases. 

These results prevent us from distinguishing among different, but close 

alternative models. This weakness of Christoffersen tests is also noted in 

similar applications such in Sarma et al. (2003), Cakici and Foster (2003) and 

Fantazzini (2007). Moreover, these tests as any other statistical test are 

subject to Type 11 errors. Therefore, in order to distinguish our models we 

follow another approach, the one of loss functions. 

8.4.2 Loss Functions 

In order to verify the reliability of our models and to distinguish their VaR 

forecasting performance we apply two different loss functions. The main 

contribution in this area is the one of Lopez (1998) who defines the general 

In 

form of those loss functions as: G=-2ýC, +, 
[42] where C,, i =f(R,, i, VaR, 

+i) n j=1 

if R, 
+j -. < VaR, +i and Cl+j - g(Rt+i . VaR, +, 

) if R, 
+j ý! VaRt+, such that 

f(Rl+i . 
VaRj) ý!! g(R, +i, 

VaRj) - 

The Basel Committee on Banking Supervision (1996) indicates that the 

magnitudes as well as the number of exceptions are a matter of regulatory 
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concern. In our research we consider one loss function to incorporate the 

number of exceptions and one for their magnitude. 

8.4.2.1 Violation Ratio 

The violation ratio (or the hit rate) is simply the percentage occurrence of an 

actual loss greater than the predicted maximum loss in the VaR framework. In 

1 261 

our application this can be formulated as: G=-IHt+i (43] where 261 j=1 

H, if Rt+, -< VaR, +, and H, 
+, --.,: 0 if Rl+i ý! VaR, with R, and VaR, +, 

to be 

the actual return and the forecasted VaR from our models for day t+i and 261 

to be the number of trading days in the out-of-sample period. In our 

application, we want our models to have a violation ratio as close as it can be 

to our confidence level. In other words, a prefect model will give a violation 

ratio of 1% and 5% for the 1% and 5% confidence levels respectively. In table 

37 below we present the violation ratios of our models for gold. 

RiskMetrics ARMA- EVT MLP HONNS MLP- HONNs- 
GARCH RiskMetrics RiskMetrics 

5% Long 4.59% 4.98% 7.66% 5.75% 4.59% 5.75% 4.59% 

Confidence - Short 6.90% 7.66% 8.81% 6.51% 4.21% 3.83% 4.59% 
Level 

1% -C-o-ng 2.68% 2.30% 1.92% 1.53% 1.53% 1.15% 1.15% 

fid C I ence on - Short 1.92% 1.53% 3.83% 1.15% 1.15% 1.92% 1.5370 
Level 

Table 37 Violation Ratios for Gold 
Note: The entries in bold represent each time the closest violation ratios to the benchmark. 
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We observe that the hybrid HONNs-RiskMetrics model outperforms all other 

models most of the time. However, models such as the HONNs and the 

hybrid MLP-RiskMetrics give also satisfactory violation ratios. On the other 

hand, we note that the traditional RiskMetrics, and the more sophisticated EVT 

models present an unsatisfactory performance with large deviations of their 

ratios from the benchmarks. The violation ratios for oil are presented in the 

table below. 

RiskMetrics ARMA- EVT MLP HONNS MLP- HONNs- 
GARCH RiskMetrics RiskMetrics 

5% Long 5.78% 3.83% 0.08% 3.45% 4.30% 3.10% 4.59% 

Confidence 
Short 6.13% 3.07% 2.68% 4.60% 4.60% 4.60% 5.75% 

Level 

1% Long 2.69% NA NA 1.92% 2.54% 2.29% 1.52% 

Confidence I II I I 
Short 1.52% NA NA NA 1.53% 0.38% 1.15% 

Level 

Table 38: Violation Ratios for Oil 
Note: The entries in bold represent each time the closest violation ratios to the benchmark. 
NA indicates that there were 0 violations and therefore we are unable to assess the model. 

We can see that NNs show a more accurate violation ratio compared to the 

statistical techniques. More specifically in most cases the hybrid HONNs- 

RiskMetrics model seems to outperform all other models with the MLP and 

HONNs giving also close ratios to the benchmark. Furthermore, we observe 

that for oil, the performance of ARMA-GARCH and the EVT models is 

unsatisfactory with too few or too many violations in the out-of-sample period. 

8.4.2.2 Average Squared Magnitude Function 

Next in order to examine the magnitude of our models violations, we consider 

an average magnitude loss function. We want the magnitude of violations of 
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our models to be as small as possible. This is in order to take into account not 

only the risk but also the amount of possible default in the position. Different 

kinds of magnitude loss functions have already been proposed by Lopez 

(1998) and Sarma et aL (2003). However, all functions proposed in these 

papers depend crucially on the number of exceptions. The fewer the 

exceptions, the smaller are the function results. This deficiency is crucial as 

the theoretical framework of these functions suggests accepting as best the 

model that gives us the smaller realization for the magnitude function. So we 

may reject a correctly specified model with an accurate number of exceptions 

because it produces a higher loss function than a more conservative model. 

For example let us assume that we are studying an asset at the 95% 

confidence level. A very conservative model with 1 violation (0.04% violation 

ratio for our out-of-sample clataset) will usually be preferred with the Lopez 

(1998) function to a model with 13 violations (4.98% violation ratio) 

irrespective of the magnitude of the violations of both models. In other words, 

a conservative model has always an advantage even on more accurate 

specified models. This disadvantage has already been noted by Caporin 

(2003). To overcome this problem, we measure the average squared cost of 

exceptions with a separate loss function, independently from the number of 

exceptions, and not jointly as in Lopez (1998) and Sarma et aL (2003), 

avoiding thus the previous mentioned possible misspecifications. For that 

1 261 

V,, 
[44] with V the number of reason we consider the function below: E=- 1] T 

violations of our model, T, = (R,,, - VaR, ) 2 when R,,, -< VaR,,, and Tj =0 when 

RI, ý! VaR, +, .A model which minimises [44] is preferred over alternative 
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models. We use the average magnitude function to further discriminate 

between models with similar or identical hit rates. In the table below we 

present the average magnitude of violations of our models for gold. 

RiskMetrics ARMA- EVT MLP HONNS MLP- HONNs- 
GARCH RiskMetrics RiskMetrics 

5% Long 0.0247% 0.0251% 0.0331% 0.0231% 0.0227% 0.0218% 0.0236% 

Confidence 
Short 0.0040% 0.0045% 0.0104% 0.0123% 0.0069% 0.0053% 0.0056% 

Level 

1% Long 0.0230% 0.0299% 0.0166% 0.0187% 0.0169% 0.0172% 0.0165% 

Confidence 
Short 0.0031% 0.0182% 0.0033% 0.0076% 0.0029% 0.0051% 0.0993% 

Level 

Table 39: Average squared magnitude of violations for gold 
Note: The entries in bold represent each time the smallest average squared magnitude 

We generally observe that the magnitude of violations for short positions is 

smaller than the one for long positions. Furthermore, we note that for the 5% 

confidence level our results are inconclusive as the models giving the best 

violation ratio (see table 37 above) are giving us the larger magnitudes and 

vice versa. On the other hand, for the 1% level the results seem clearer: the 

hybrid HONNs-RiskMetrics and the HONNs models have the best violation 

ratio (see table 37 above) and the smallest average violation magnitude for 

long and short positions respectively. This allows one to argue that for these 

particular cases the HONNs-RiskMetrics and the HONNs models are more 

accurate forecasters of VaR for gold. Table 40 below shows the results of the 

average squared magnitude function for oil. 
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RiskMetrics ARMA- EVT MLP HONNS MLP- HONNs- 
GARCH RiskMetrics RiskMetrics 

5% Long 0.0085% 0.0047% 0.0097% 0.0052% 0.0048% 0.0057% 0.0042% 
Confidence 

-' - - - § h 0 rt 0.0058% 0.0038% 0.0127% 0.0096% 0.0024% 0.0031% 0.0022% 
Level 

1% Long 0.0013% NA NA 0.0035% 0.0027% 0.0043% 0.0019% 

Confidence 
Short 0.0008% NA NA NA 0.0015% 0.0019% 0.0010% 

Level 

Table 40: Average squared magnitude of violations for oil 
Note: The entries in bold represent each time the smallest average squared magnitude. NA 
indicates that there were 0 violations and therefore we are unable to assess the model. 

For the 5% level we observe that for long positions the hybrid HONNs- 

RiskMetrics model has not only the best violation ratio (see table 38 above) 

but also the smallest average magnitude for its violations. For short positions, 

we note that the HONNs-RiskMetrics model continues to have the smallest 

average magnitude on for its violations and that the HONNs model which has 

the best hit rate gives the second smallest realization for the magnitude 

function. For the 1% confidence level the RiskMetrics model has in both cases 

the smallest magnitude for its violations. However, it has also the worst 

violation ratios (see table 38 above). On the other hand, the hybrid HONNs- 

RiskMetrics model has the second smallest realization in results for the 

magnitude function and the best hit rate for both long and short positions. 

8.5. Concluding Remarks 

In this chapter, we apply Higher Order Neural Networks to a one-day-ahead 

forecasting task of the Value at Risk of gold bullion and Brent oil. This is done 

by benchmarking the HONNs results with those of a Multilayer Percepton 
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(MLP) network, an Extreme Value Theory model (EVT) along with some 

traditional techniques such as an ARMA-GARCH (1,11) model and the 

RiskMetrics volatility of the series. In addition to these, we also examine two 

hybrid Neural Networks-RiskMetrics volatility models. We develop these 

different prediction models over the period April 2002 to March 2007 and 

validate their out-of-sample efficiency over the following period from April 

2007 through March 2008. The evaluation of our models is done by using the 

three tests procedure suggested by Christoffersen (1998) and two loss 

functions, such as the violation ratio calculating when the realised return 

exceeds the forecast VaR and an average squared magnitude function, firstly 

introduced in this application, which focuses on the average magnitude of 

these violations. 

Our VaR estimation was computed based on the assumption that our assets 

follow the normal distribution. Although our models provided accurate VaR 

forecasts we aknowledge that a different distribution or methodology to 

compute the VaR may have led to beter estimations. 

The hybrid HONNs-RiskMetrics model demonstrates a better forecasting 

performance providing an accurate number of independent violations at the 

5% and 1% confidence levels for both long and short positions. The HONNs, 

the MLP and the hybrid MLP-RiskMetrics model also demonstrate a good 

performance in most cases. On the other hand, the EVT model produces 

disappointing forecasts, something that can be attributed to the fact that only 

a few extreme events are present in our dataset. In the circumstances, our 
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results should go some way towards convincing a growing number of 

quantitative risk managers to experiment beyond the bounds of the more 

traditional risk models. Moreover, our unique methodology to estimate the 

VaR through NNs should lead to more expiriments around the utility of NNs in 

financial research. 

III 



CHAPTER 9 

General Conclusions and Future Work 

The general motivation of this thesis was to provide empirical evidence on the 

utility of HONNs in financial forecasting and trading applications. In order to 

achieve this, we benchmarked HONNs not only with some traditional 

statistical and technical techniques but also with some other state-of-the-art 

NNs designs. Therefore, we were able to validate if the theoretical 

advantages of HONNs compared to the more traditional NNs models are 

translated into more accurate and hence profitable forecasts. Moreover, we 

explored the utility of HONNs if we feed them not only with multivariate inputs 

but also with autoregressive series as inputs. Thus we are able to draw more 

solid conclusions on the forecasting ability of our models especially against 

our statistical autoregressive benchmarks as HONNs incorporated no 

additional knowledge compared to them. 

In chapters 4 and 5 we demonstrated the forecasting and trading superiority 

of HONNs in the task of forecasting the returns of the EUR/USD exchange 

rate using multivariate and autoregressive series as inputs. Although HONNs 

with multivariate series as inputs provided only slightly better results than our 

NNs benchmarks, with autoregressive series their trading performance was 

significantly better than that of MLP, RNN and Psi Sigma networks. We also 

note that all our models failed to exploit confirmation strategies using filters 

and leverage. They thus failed to further improve on their original trading 

results. Moreover, we observe that for the period and the series under study 

the RNNs and the Psi Sigma networks seem to have a difficulty in providing 
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good forecasts when only autoregressive series are used as inputs. 
Furthermore, in chapter 6 we demonstrate that the forecasting and trading 

performance of HONNs is stable and robust over time. This is an essential 

property in real world applications for models like HONNs whose modelling is 

based on trial and error rather than on some formal statistical theory. 

In chapter 7 we examine the use of HONNs when applied to the task of 

forecasting and trading the 21-day ahead realised volatility of the FTSE 100 

futures index. We evaluated their performance not only in terms of statistical 

accuracy but also through a simple trading application that integrates 

trasanction costs. HONNs demonstrate a remarkable performance and 

outperform MLP, RNN and the RiskMetrics volatility models not only in terms 

of statistical accuracy but also in terms of trading efficiency. 

In chapter 8, we test the ability of HONNs to forecast accurately the one day 

ahead VaR of the brent oil and gold bullion. This time we used the MLP and 

the RNN networks, an EVT model along with an ARMA-GARCH (1,1) model 

and the Riskmetrics volatility as benchmarks. We also examine a hybrid 

HONNs-RiskMetrics model where we use the Riskmetrics volatility as an input 

to HONNs network. As it turns out, the hybrid HONNs-RiskMetrics model 

does remarkably well and outperforms all other models in forecasting the VaR 

of gold and oil at both the 5% and 1% confidence levels, providing an 

accurate number of independent violations which also have the lowest 

magnitude on average. 
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The above mentioned empirical evidence allows us to argue with confidence 

that HONNs can provide accurate, profitable and robust forecasts. Their 

performance seems superior to that of the MLP and RNN models and of the 

linear ARMA, MACD and RiskMetrics volatility techniques. Compared to Psi 

Sigma they seem to have the same forecasting accuracy when we feed them 

with multivariate series and a better one when autoregressive series are used 

as inputs. Moreover, we note that the time needed to train HONNs was far 

less than the time needed for RNN networks. In general, our results should go 

some way towards convincing quantitative risk and fund managers to use to 

alternative non-linear techniques such as HONNs as they generate higher 

return/risk profiles. 

Moreover, this research can be extended and contribute to more fields in 

financial research. A direct comparison in the forecasting perofmance of 

HONNs when multivariate and autoregressive series are used as inputs will 

offer a more complete view around their forecasting abilities and limitations. 

Moreover, a study over their sensitivity to changes in the training period will 

further examine the robstuness of their performance while chapter 8 can be 

extended if we consider other CDF for our assets such as the Weibull 

distribution or other models such as a conditional EVT model. In the end, a 

study over the statistical significance of our forecasts. 
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APPENDIX 

A-1.1 Performance Measures 
The performance measures are calculated as follows: 

Performance 
Description Measure 

AiN Annualised Return R 252 *-j, R, [45] 
Nj 

with Jý being the daily return 
N 

Cumulative Return R' = LR, [461 

Annualised AN V252 Y (R, 
- R-Y [471 Volatility N-I 

Sharpe Ratio SR =R [481 
A 

Maximum negative value of I (R, ) over the period 
Maximum 1 [49] 
Drawdown MD Min Rj 

N 
j=i 

Table 41: Trading simulation performance measures 
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A. 1.2 Results of Alternative Benchmark Models (Chapter 4) 

NAIVE MACD ARMA LOGIT MLP 
Sharpe Ratio (excluding costs) 1.83 0.97 1-10 1.81 2.57 

Annualised Volatility (excluding costs) 
- 

11.6% 11.7% 11.7% 11.6% 11.6% 
An nualised Return (excluding costs) 21.3% 11.3% 12.9% 21.1% 29.7% 
Maximum Drawdown (excluding costs) -9.1% -7.8% -10.1% -5.8% -9.1% ý50sitions Taken (annualised) 109 22 112 123 118 

Table 42: Out-of-sample trading performance results for traditional models as 
reported by Dunis and Williams (2003, table 1.20, p. 35) 
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A. 1.3 Networks Characteristics (Chapter 4) 

Below are presented the characteristics of the networks for the different 

architectures that presented the best statistical performance on the training 

and on the test sub-period and that we used on this chapter. 

Reccurent HONNs Psi Sigma 
Learning algorithm Gradient descent Gradient descent Gradient descent 
Learning rate 0.001 0.001 0.5 
Momentum 0.003 0.003 0.5 
Iteration steps 500 500 500 
Initialisation of weights N(O, 1) N(O, 1) N(O, 1) 
inputnodes 10 10 10 
Hidden nodes (11ayer) 5 N. A 5 
Order N. A 3 4 
Output node 

Table 43: Network characteristics 
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A. 1.4 Empirical Results (Chapter 4) 
The table below shows the results of the filtered trading strategy applied to the 

test dataset for different values of d. We choose the threshold that gives the 

highest return. 

ýction of 
nntimnl 

Threshold 

hreshold 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
)ased on the 
est period 
ýNN 28.4% 27.8% 12.9% 4.36% 1.43% -0.6% -0.5% -0.1% 0.2% 0.3% 

(2.93) (2.39) (2.87) (1.81) (0.98) (-1.1) (-0.9) (-0.2) (1.28) (1.29) 
ýONN 22.5% 17.0% 13.9% 5.99% -4.8% -0.1% -0.2% 0.5% -0.9% 0.6% 

(2.31) (1.94) (1.76) (0.88) (-0.9) (-O. J) (-0.1) (0.2) (-0.4) (0.37) 
Psi Sig si Sigma 24.9% 21.8% 14.1% 4.3% 1.44% 0.52% 0.51% 0.52% 0.00% 0.00% 

Ifol E-1, 

Table 44: Results for alternative threshold values 
Note: The entries represent the annualized return values while the values in parenthesis 
represent the Sharpe ratio. 

The table below shows the. results of the filtered trading strategy applied to the 

test dataset for different values of d after taking leverage into account. We 

choose the threshold that gives the highest return. 

on of the 

hold 
d on the 

Threshold 

---T- 10.25 0.3 0.35 0 005 0.1 0.15 0.2 10.4 0.45 

1-ýI, V%-l 1%-'W - NN r , 29.2% 
(2.93) 

- 29.7% 
(4.3) 

13.2% 
(2.87) 

4.5% 
(1.81) 

1.47% 
(0.98) 

-0.6% 
(-l) 

-0.5% 
(-0.9) 

-0.1% 
(-0.2) 

0.3% 
(1.3) 

% 

0.27% 
(1.3) 

7% 0 
ONN 23.2% 

. 31 J2 11- 
17.5% 
(1.94) 

14.3% 
(1.76) 

6.17% 
(0.88) 

-4.9% 
(-0.3 

-0.1% 
(-0.2) 

-0.2% 
(-0.1) 

- 

0.52% 
(0.2) 

2% 

-0.9 
(-0.4) 

00% 0 

. (0.4) 
00% 0 _ I si Sigma 25.1% 

(2.5) 
22.4% 
(2.1) 

14.3% 
(3.74) 

4.45% 
(2.5) 

1.48% 
(1.3) 

0.52% 
(0.93) 

0.52% 
(0.93) 

0.5 
(0.93) . (0.00) . (0.00) 

Table 45: Results for alternative threshold values 

Note: The entries represent the annualized return values while the values in parenthesis 

represent the Sharpe ratio. 
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A-2.1 Networks Characteristics (Chapter 5) 
We present below the characteristics of the networks used in chapter 5. 

MLP Reccurent HONNs Psi Sigma 

Learning algorithm Gradient 
descent 

Gradient descent Gradient descent Gradient descent 

Learning rate 0.001 0.001 0.001 0.5 
Momentum 0.003 0.003 0.003 0.5 
Iteration steps 1000 1000 1000 500 
Initialisation of weights N(O, 1) N(O, 1) N(O, 1) N(O, 1) 
Inputnodes 12 12 12 12 
Hidden nodes (Ilayer) 7 5 NA 6 
Order NA NA 3 4 
Output node 1 1 1 1 

Table 46: Network characteristics 
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A. 2-2 ARMA Model (Chapter 5) 
The output of the ARIVIA model used in chapter 5 is presented below. 

Dependent Variable: RETURNS 
Method: Least Squares 
Date: 02/29/08 Time: 12: 38 
Sample (adjusted): 13 1920 
Included observations: 1908 after adjustments 
Convergence achieved after 12 iterations 
Backcast: 1 12 

Variable Coefficient Std. Error t-Statistic Prob. 

c 6.35E-05 0.000151 0.420579 0.6741 
AR(l) -0.688152 0.040492 -16.99463 0.0000 
AR(2) -0.369020 0.067865 -5.437592 0.0000 
AR(7) -0.218734 0.073635 -2.970535 0.0030 

AR(l 1) -0.400372 0.043749 -9.151508 0.0000 
AR(l 2) -0.539713 0.052040 -10.37107 0.0000 
MA(l) 0.692697 0.034799 19.90592 0.0000 
MA(2) 0.349884 0.064745 5.404045 0.0000 
MA(7) 0.248779 0.073280 3.394927 0.0007 

MA(l 1) 0.397565 0.039306 10.11460 0.0000 
MA(l 2) 0.584116 0.052393 11.14877 0.0000 

R-squared 0.014757 Mean dependent var 7.04E-05 
Adjusted R-squared 0.009563 S. D. dependent var 0.006518 
S. E. of regression 0.006487 Akaike info criterion -7.232214 
Sum squared resid 0.079834 Schwarz criterion -7.200196 
Log likelihood 6910.533 F-statistic 2.841359 

Durbin-Watson stat 2.006369 Prob(F-statistic) 0.001639 

Inverted AR Roots . 
89-. 28i . 

89+. 28i . 
61+. 70i . 

61-. 70i 

. 
14+. 98i . 

14-. 98i -. 37+. 89i -. 37-. 89i 

-. 73+. 67i -. 73-. 67i -. 89+. 16i -. 89-. 16i 

Inverted MA Roots . 
90-. 28i . 

90+. 28i . 
62+. 70i . 

62-. 70i 

. 
14+. 98i .1 

4-. 98i -. 37+. 89i -. 37-. 89i 

-. 73-. 68i -. 73+. 68i -. 90+. 16i -. 90-. 16i 

134 



A. 2.3 Empirical Results in the Training and Test Sub-Periods (Chapter 5) 

NAIVE MACD ARMA MLP RNN HONN Psi Sigi 
Sharpe Ratio (excluding costs) 

- -0.22 2.49 1.20 0.41 0.34 0.51 0.54 
Annualised Vola tility (excluding costs) 10.28% 10.24% 10.33% 10.36% 10.35% 10.36% 10.35 
Annualised Retum (excluding costs) -2.25% , 

25.45% 
, 

12.40% 
. 

4.27% 3.51% 5.31% 5.551. 
Maximum Drawdown (excluding costs) -29.39% -5.96% -9.69% 1-21.42% -21.37% -29,79% -20.31 Positions Taken (annualised) 77 10 53 1 77 97 52 75 

Table 47: In-sample trading performance 
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A-2.4 Threshold Selection (Chapter 5) 

The table below shows the results of the filtered trading strategy applied to the 

test dataset for different values of d. We choose the threshold that gives the 

highest return. 

Selection of Threshold 
the optimal 
threshold 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
based on the 
test period 
Naive 

-1.1% -3.7% -2.2% -1.7% -2.5% -1.2% 1.1% 4.5% 2.0% 4.0% 

- 
(-0.1) (-0.4) 

' 
(-0.3) (-0.2) (-0.4) (-0.2) (0.2) (0.8) (0.4) (0.8) 

WAC D 5.3% -0 . 7% -2.5% 3.7% 0.3% -0.2% 0.0% 0.0% 0.0% 0.0% 
(0.6) (-0.1) (-0.5) (1.1) (0.1) (-0.8) (0.0) (0.0) (0.0) (0.0) 

ARMA 6.6% 3.9% 7.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
(0.8) (0.7) (2.0) (0.3) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 

MLP 6.3% 8.7% 9.2% 1.7% 12.2% 11.1% 6.2% 5.4% 3.9% -0.1% 
(0.7) (1.1) (1.2) (1.5) (1.8) (1.7) (1.0) (1.0) (0.9) (-0.1) 

RNN 10.1% 8.1% 5.6% 4.9% 4.2% 5.4% 4.6% 7.5% 6.6% 8.7% 
(1.1) (0.9) (0.7) (0.6) (0.5) (0.7) (0.6) (1.0) (0.9) (1.2) 

HONN 6.9% 4.2% 2.9% 3.6% 1.3% 1.7% 0.4% 0.2% 0.2% 0.0% 
(0.8) (0.6) (0.5) (0.9) (0.5) (0.8) (0.6) (0.8) (0.8) (0.0) 

Psi Sigma 6.3% 5.0% 5.2% 5.6% 10.4% 10.1% 10.5% 9.7% 7.7% 5.3% 
(0.7) (0.6) (0.7) (0.8) (1.5) (1.5) (1.6) (1.7) (1.5) (1.2) 

Table 4 8: Resul ts for alternative threshold values 
Note: The entries represent the annualized return values while the values in parenthesis 
represent the Sharpe ratio. 
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A-3.1 Networks Characteristics (Chapter 6) 
We present below the characteristics of the networks used in chapter 6. 

MLP RNN HONN 

Learning aigoilthm Gradient descent Gradient descent Gradient descent 
Learning rate 0.001 0.001 0.001 
Momentum 0.003 0.003 0.003 
Iteration steps 20000 20000 10000 
Initialisation of weights N(O, 1) N(O, 1) N(O, 1) 
Inputnodes 12 12 12 
Hidden nodes Player) 7 5 NA 
Order NA NA 3 
Output node 1 1 1 

Table 49: Network characteristics 
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A-2.2 ARMA Model (Chapter 6) 
The output of the ARMA model used in chapter 6 is presented below. 

Dependent Variable: RETURNS 
Method: Least Squares 
Date: 09/03/08 Time: 17: 28 
Sample (adjusted): 12 2303 
Included observations: 2292 after adjustments 
Convergence achieved after 59 iterations 
Backcast: ?0 

Variable Coefficient Std. Error t-Statistic Prob. 

c 0.000128 0.000128 1.002067 0.3164 
AR(l) -1.216599 0.042416 -28.68222 0.0000 
AR(2) -0.475940 0.081259 -5.857069 0.0000 
AR(7) -0.139565 0.046558 -2.997679 0.0027 
AR(l 1) 0.197421 0.055779 3.539363 0.0004 
MA(l) 1.213517 0.039315 30.86659 0.0000 
MA(2) 0.473609 0.077725 6.093399 0.0000 
MA(7) 0.152391 0.044815 3.400464 0.0007 
MA(l 1) -0.217830 0.054607 -3.989048 0.0001 

R-squared 0.008541 Mean dependent var 0.000122 
Adjusted R-squared 0.005067 S. D. dependent var 0.006169 
S. E. of regression 0.006153 Akaike info criterion -7.339687 
Sum squared resid 0.086446 Schwarz criterion -7.317159 
Log likelihood 8420.282 F-statistic 2.458312 
Durbin-Watson stat 1.997623 Prob(F-statistic) 0.011925 

Inverted AR Roots . 
75 . 

65+. 46i . 
65-. 46i . 

23+. 77i 

. 
23-. 77i -. 21-. 82i -. 21+. 82i -. 73-. 67i 

-. 73+. 67i -. 94-. 20i -. 94+. 20i 

Inverted MA Roots . 
76 . 

66+. 46i . 
66-. 46i . 

24+. 78i 

. 
24-. 78i -. 21+. 83i -. 21-. 83i -. 73-. 68i 

-. 73+. 68i -. 94+. 20i -. 94-. 20i 
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A-3.3 Empirical Results in the Training and Test Sub-period (Chapter 6) 

NAIVE MACD ARMA MLP RNN HONN 
Sharpe Ratio (excluding costs) -0.10 0.51 1.17 0.46 0.16 0.48 
Annualised VoCat-ijity (excluding costs) 10.36% 10.44% 10.42% 9.97% 10.38% 10.40% 
Annualised Return (excluding costs) -1.07% 5.31% 12.19% 4.62% 1.67% 4.95% 
Maximum Drawdown (excluding costs) -29.39% -15.35% 12.91% 1-17.63% 

- -23.82% 1-18.20% 
lPositions Taken (annualise-d) 79 11 113 17 5 63 1 106 

Table 50: Training sub-period trading performance 
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A-4.1 21 -day FTSE 100 Volatilities (Chapter 7) 

In the figure below we present the 21-day rolling annualised volatilities of the 

FTSE 100 returns from 1 January 2006 to 31 December 2008. 
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Fýg. 22: 21-day annualised volatilities 

We observe that there is a peak in the 21-day rolling volatilities as we 

approach the end of a FTSE 100 futures maturity month. We also note that 

the volatility during the last 6 months of 2008 is substantially higher than the 

period before. All this phenomena can lead to misspecifications to our NNs 

estimations as we are forced to use 1 year's data for each maturity in order to 

train sufficiently our models. However, as can been seen from table 12 our 

models seem robust to this anomaly and present statistically accurate 

forecasts. 
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A. 4.2 Networks Characteristics (Chapter 7) 
We present below the characteristics of the networks used in chapter 7. 

MLP RNN HONN 

Leaming algorithm Gradient descent Gradient descent Gradient descent 
Leaming rate 0.001 0.001 0.001 
Momentum 0.003 0.003 0.003 
Iteration steps 10000 5000 4000 
Initialisation of weights N(O, 1) N(O, 1) N(O, 1) 
Inputnodes 4 4 4 
Hidden nodes (Ilayer) 3 5 NA 
Order NA NA 3 
Output node I I I 

Table 51: Network characteristics 
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A. 4-3 Statistical Measures (Chapter 7) 
The statistical measures are calculated as follows: 

Performance Description Measure 
I+n Mean Absolute AME =(I) 1] 

.4 
1(ý, 

- (T-r 
Error n =, +, 

with a. being the actual volatility and a, the 
forecasted value 

Mean Absolute I+n 

Percentage AMPE 
n Error 

I+n Root Mean RMSE y 07 07 
r)2 Squared Error 4-j 

( 
n -, =, +, 

I+n 

'4ý-a 

(ý y 
CTIT -a r)2 

Theil-U Theil -Un, =, +,. 

+ 
nn 

Table 52: Statistical measures 

[501 
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A-4.4 Out-of-sample Statistical Performance (Chapter 7) 
In the table below we present the out-of-sample statistical performance of our 

models. 

RiskMetrics MLPs RNNs HONNs 

0.0663 0.0677 0.0498 0.0463 
M 

ý 
26.27% 23.31% 17.84% 16.89% 

RMS El - 0.0937 0.0940 0.0765 0.0742 
Theil-U 1 0.1607 0.1590 0.1339 0.1343 

Table 53: Out-of-sample statistical performance 
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A. 5.1 ARMA-GARCHOM Models (Chapter 8) 
Below is the output of the ARMA-GARCH(l 

, l) model for gold. 
Dependent Variable: RETURNS 
Method: ML - ARCH 
Date: 06/27/08 Time: 16: 07 
Sample (adjusted): 11 1305 
Included observations: 1295 after adjustments 
Convergence achieved after 39 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 
MA backcast: ? 0, Variance backcast: ON 
GARCH = C(16) + C(17)*RESID(-l )A 2+ C(18)*GARCH(-l) 

Coefficient Std. Error z-Statistic Prob. 

C 0.000649 0.000269 2.413482 0.0158 
AR(1) -0.741380 0.115455 -6.421403 0.0000 
AR(2) -0.493408 0.118689 -4.157155 0.0000 
AR(3) -0.482961 0.116673 -4.139425 0.0000 
AR(4) -0.459740 0.180691 -2.544340 0.0109 
AR(5) 0.607182 0.187913 3.231196 0.0012 
AR(9) -0.176388 0.069070 -2.553755 0.0107 

AR(l 0) -0.615690 0.091550 -6.725173 0.0000 
MA(1) 0.763123 0.117246 6.508705 0.0000 
MA(2) 0.537017 0.117484 4.570988 0.0000 
MA(3) 0.543289 0.120257 4.517746 0.0000 
MA(4) 0.547401 0.185787 2.946393 0.0032 
MA(5) -0.570967 0.195965 -2.913620 0.0036 
MA(9) 0.171212 0.070241 2.437485 0.0148 

MA(l 0) 0.640706 0.097483 6.572484 0.0000 

Variance Equation 

C 

RESID(-1 )A 2 
GARCH(A) 

1.22E-06 
0.032150 
0.955908 

3.62E-07 3.360921 
0.009824 3.272623 
0.010019 95.40560 

0.0008 
0.0011 
0.0000 

R-squared 0.026836 Mean dependent var 0.000665 

Adjusted R-squared 0.013881 S. D. dependent var 0.010226 

S. E. of regression 0.010155 Akaike info criterion -6.450380 
Sum squared resid 0.131684 Schwarz criterion -6.378571 
Log likelihood 4194.621 F-statistic 2.071428 

Durbin-Watson stat 2.042341 Prob(F-statistic) 0.006334 

Inverted AR Roots . 
81+. 30i 

. 
81-. 30i . 41-. 89i . 41+. 89i 

. 
03,95i . 

03+. 95i -. 74+. 63i -. 74-. 63i 

-. 88-. 44i -. 88+. 44i 

Inverted MA Roots . 
81+. 30i 

. 
81-. 30i . 

42-. 91 i . 42+. 91 i 

. 
03-. 95i . 

03+. 95i -. 75,64i -. 75+. 64i 

-. 89+. 44i -. 89-. 44i 
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The output of the ARMA-GARCH(1,1) model for oil used in chapter 8 is 

Presented below. 

Dependent Variable: RETURNS 
Method: ML -ARCH 
Date: 06/29/08 Time: 12: 05 
Sample (adjusted): 3 1305 
Included observations: 1303 after adjustments 
Convergence not achieved after 500 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 
MA backcast: ? 0, Variance backcast: ON 
GARCH = C(6) + C(7)*RESID(-l )A 2+ C(8)*GARCH(-l) 

Coefficient Std. Error z-Statistic Prob. 

c 0.001122 0.000542 2.068413 0.0386 
AR(l) 0.400771 0.172971 2.316989 0.0205 
AR(2) -0.645944 0.168823 -3.826161 0.0001 
MA(l) -0.462364 0.163894 -2.821120 0.0048 
MA(2) 0.689704 0.160640 4.293469 0.0000 

Variance Equation 

c 1.78E-05 7.95E-06 2.235393 0.0254 
RESID(-l)A2 0.040061 0.017154 2.335444 0.0195 
GARCH(-l) 0.917790 0.027824 32.98527 0.0000 

R-squared 0.008869 Mean dependent var 0.000939 
Adjusted R-squared 0.003511 S. D. dependent var 0.020854 
S. E. of regression 0.020817 Akaike info criterion -4.946019 
Sum squared resid 0.561186 Schwarz criterion -4.914262 
Log likelihood 3230.332 F-statistic 1.655356 
Durbin-Watson stat 2.023904 Prob(F-statistic) 0.116056 

Inverted AR Roots . 
20-. 78i . 

20+. 78i 

Inverted MA Roots . 
23+. 80i . 

23-. 80i 
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A. 5.2 Networks specifications (Chapter 8) 

Below we present the characteristics of the networks used in chapter 8. They 

are identical for both gold and oil. 

MLP I HONNs 
Learning algorithm 
Leaming rate 
Momentum 
Iteration steps 
Initialisation of weights 
Inputnodes 
Hidden nodes (11ayer) 
Order 
Output node 

Gradient descent 
0.001 
0.003 
50000 
N(O, 1) 

10 (11 for the hybrid) 
7 

NA 
I 

Gradient descent 
0.001 
0.003 
30000 
N(O, 1) 

10 (11 for the hybrid) 
NA 
3 
1 

Table 54: Network characteristics 
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A. S. 3 Christoffersen Test Results (Chapter 8) 

RiskMetrics ARMA- EVT MLP HONNS MLP- HONNs- 
GARCH RiskMetrics RiskMetrics 

5% 
LRuc 0.0913 0.0002 3.3744 0.2932 0.0913 0.2932 0.0913 

Confidence 

Level LRind 1.2560 0.2845 0.3104 0.1412 2.7288 3.1051 0.2845 

LRcc 1.3473 0.2847 3.6848 0.4344 2.8200 3.3988 0.3758 

1% LRuc 5.1068 3.2536 1.7430 0.6430 0.6430 0.0561 0.0561 

Confidence 
LRind 0.4419 0.3301 0.2349 0.1559 0.1559 0.0932 0.0932 

Level 

LRcc 5.5487 3.5837 1.9779 0.7989 0.7989 0.1494 0.1494 

Table 55: Likelihood ratio statistics of gold for long positions 
Note: The entries in bold represent rejection of the null hypothesis. In all other cases the null 
hypothesis is not rejected. 
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RiskMetrics ARMA- EVT MLP HONNS MLP- HONNs- 
GARCH RiskMetrics RiskMetrics 

5% 
LRuc 1.7765 1.7765 6.5732 1.1537 0.3572 0.8133 0.8133 

C fid on ence 

Level LRind 0.2028 0.2028 0.9389 0.1482 1.0585 0.8785 0.8785 

LRcc 1.9763 1.9763 7.5121 1.3019 1.4158 1.6918 1.6918 

1% LRuc 1.7430 0.6430 12.2981 0.0561 0.0561 0.6430 1.7430 

Confidence 
LRind 0.2349 0.1559 0.8784 0.0932 0.0932 0.1559 0.2349 

Level 

LRcc 1.9779 0.7990 13.1766 0.1493 0.1494 0.7990 1.9779 

Table 56: Likelihood ratio statistics of gold for short positions 
Note: The entries in bold represent rejection of the null hypothesis. In all other cases the null 
hypothesis is not rejected. 
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RiskMetrics ARMA- EVT MLP HONNS MLP- HONNs- 
GARCH RiskMetrics RiskMetrics 

5% 
LRuc 0.2932 0.8133 15.082 1.4776 0.3573 2.3726 0.0913 

Confidence 

Level 
LRind 1.9565 0.8785 0.0464 0.7159 1.0585 0.5704 1.2560 

LRcc 2.2497 1.6917 15.129 2.1935 1.4158 2.9430 1.3473 

1% LRuc 5.1068 NA NA 1.7430 5.1069 3.2536 0.64304 

Confidence 

Level LRind 0.4419 NA NA 0.2349 0.4419 0.3301 0.1559 

LRcc 5.5487 NA NA 1.9779 5.5487 3.5837 0.7989 

Table 57: Likelihood ratio statistics of oil for long position 
Note: Entries in bold represent rejection of the null hypothesis. In all other cases the null 
hypothesis is not rejected. NA indicates that we had 0 violations and therefore we are unable 
to assess our model. 
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RiskMetrics ARMA- EVT MLP HONNS MLP- HONNs- 
GARCH RiskMetrics RiskMetrics 

5% 
LRuc 0.6569 2.3726 3.5261 0.0913 0.0913 0.0913 0.2932 

Confidence 

Level 

LRind 1.0756 1.5122 1.9733 0.4198 1.2560 0.4198 1.9565 

LRcc 1.7325 3.8848 5.4995 0.5111 1.2560 0.5111 2.2497 

LRuc 0.6430 NA NA NA 0.6430 1.3113 0.0561 
1% 

Confidence 
Level LRind 0.1560 NA NA NA 0.1559 0.0154 0.0932 

LRcc 0.7990 NA NA 0.7990 1.3267 0.1494 

Table 58: Likelihood ratio statistics of for with short position 
Note: Entries in bold represent rejection of the null hypothesis. In all other cases the null 
hypothesis is not rejected. NA indicates that we had 0 violations and therefore we are unable 
to assess our model. 
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