
Simulation Based Parameter and
Structure Optimisation of Discrete Event

Systems

Olaf Hagendorf

A thesis submitted in partial fulfilment of the

requirements of Liverpool John Moores University

for the degree of Doctor of Philosophy

May 2009

The following figures and
appendix has been omitted
on request of the university-

Fig 1.1 (p.6)

Fig 3.1 (p.30)

Fig 3.2 (p.31)

Fig 6.1 (p.9S)

Fig 6.2 (p.97)

Appendix 0

Acknowledgements

It seems impossible to reach the end of this long process without the support from many

others, who have helped me so much along the way.

First of all, I thank my advisor, Thorsten Pawletta at Hochschule Wismar University

of Applied Sciences Technology, Business and Design, for his mentoring and support on my

research in the PhD program. His insight to scientific research and the way to carry it out

have greatly inspired me and will continue to guide me through my career path.

I would like to express my gratitude to my director of studies Dr. Gary. J. Colquhoun

at Liverpool John Moores University for his guidance, help and support throughout the

course of study within the last years. His wisdom, experience and knowledge, especially of

administrative mechanisms, burdens and resources within the university have proved

extremely beneficial for my work.

I thank my colleagues in the CEA Research Group: Prof. Dr. Peter Dlinow,

Prof. Dr. Sven Pawletta, Dipl.-Ing. (FH) Christina Deatcu, M.Eng. Stefan Behrendt, M.Eng.

Christian Fritzsche, M.Eng. Gunnar Maletzki, Dipl.-Ing. (FH) Tobias Pingel and M.Eng.

Christian Stenzel; and previous group members: Dr.-Ing Rene Fink and Dipl.-Ing. (FH)

Martin Kremp. We have had a good time together.

I would like to sincerely thank my family, especially my daughter Pia, as well as any

friends not mentioned above, for all their support during the writing of this thesis.

Finally, I would like to thank for the support given by the School of Engineering of

Liverpool John Moores University.

Contents

CHAPTERl INTRODUCTION 1

1.1 PREAMBLE 1

1.2 RATIONAL FOR SIMULATION BASED OPTIMISATlON 3

1.2.1 AContext for Simulation in Manufacturing Systems 5

1.2.2 Aims and Objectives 7

1.2.3 Cost Reduction with the Aid of Simulation based Optimisation 8

1.3 METHODOLOGY AND STRUCTURE OF THE RESEARCH 9

1.3.1 Simulation based Optimisation 10

1.3.2 Modelling and Simulation 11

1.3.3 Model Management and Model Generation 12

1.3.4 Implementation and Employment. 13

1.4 RESEARCH OUTCOMES 14

1.5 CONTRIBUTION TO KNOWLEDGE 15

1.6 CONTENTS OF THIS THESIS 16

CHAPTER2 SIMULATION BASED OPTIMISATION 18

2.1 INTRODUCTION • 19

2.2 PARAMETER OPTIMISATION 21

2.3 PARAMETER AND STRUCTURE OPTIMISATION 23

CHAPTER3 DISCRETE EVENT SYSTEM SPECIFICATION AND SIMULATION •••••••••••••••••••••••••••••29

3.1 INTRODUCTION 29

3.2 DISCRETE EVENT SYSTEM SPECIFICATION 32

3.2.1 Classic DEVSModelling 32

3.2.2 Formal Concept of Classic DEVSModelling 36

3.2.3 Classic DEVSSimulation 38

[i]

3.3 DEVS EXTENSIONS 45

3.3.1 DEVSwith Ports 46

3.3.2 Parallel DEVS 48

3.3.3 Dynamic Structure DEVS 51

3.4 EXTENDED DYNAMIC STRUCTUREDEVS 56

3.4.1 Formal Concept of EDSDEVSModelling 57

3.4.2 EDSDEVSimulation 65

CHAPTER4 MODEL MANAGEMENT - MODEL SET SPECIFICATION AND ORGANISATION 70

4.1 CLASSICSYSTEM ENTITY STRUCTURE/MoDEL BASE FRAMEWORK 71

4.2 EXTENSION OFTHE SYSTEM ENTITY STRUCTURE/MODEL BASE FRAMEWORK 76

CHAPTERS A FRAMEWORK FOR MODELLING, SIMULATION AND OPTIMISATION 79

5.1 GENERAL FRAMEWORK STRUCTURE 79

5.2 INTERFACE: OPTIMISATION MODULE - MODEL MANAGEMENT MODULE 82

5.3 INTERFACE: MODEL MANAGEMENT MODULE - MODELLING AND SIMULATION MODULE 86

5.4 INTERFACE: MODELLING AND SIMULATION MODULE - OPTIMISATION MODULE 87

5.5 ALGORITHMIC SUMMARY OFTHE FRAMEWORK 88

5.6 DEFINITION OF A MODEL SETWITH XML SES/MB 90

CHAPTER6 PARAMETER AND STRUCTURE OPTIMISATION OF MANUFACTURING SYSTEMS94

6.1 MANUFACTURING SYSTEMS 94

6.2 MODELLING AND SIMULATION OF MANUFACTURING SYSTEMS 96

6.2.1 Simulation Model Level of Detail 96

6.2.2 Fundamental Components 97

6.2.3 Measures of Performance 100

6.2.4 Analysis Issues 101

6.3 INTRODUCTION TO THE PHOTOFINISHING INDUSTRY 101

6.4 PHOTOFINISHING LAB- AN OPTIMISATION ApPLICATION 104

6.4.1 Problem Description 104

[iiJ

6.4.2 Implementation Details 107

6.4.3 Results 115

CHAPTER7 CONCLUSIONS AND FURTHER WORK.........................•........•.....•........••............ 123

7.1 CONCLUSIONS ••••••...•••••••••••••••......••••••••••••••••..........••••••••••••••••.•••.••••••••••••••••••••.•••••••••••...•••••••• 123

7.2 SUGGESTIONS FOR FURTHER WORK ••••••••••••••••••..••.•.•••••......••••••••••••••••••.••••••••••••••••••••••••••••••••••••• 126

APPENDIXA.

APPENDIX B.

REFERENCES 128

CODING EXAMPLES 132

PHOTOFINISHING MACHINES 161APPENDIXC.

APPENDIX D. PUBLICATIONS IN THE COURSE OF THIS RESEARCH 163

[iii]

List of Figures

Figure 1.1 Modelling and simulation of Manufacturing Systems (source [19]) 6

Figure 1.2 Research area structure 10

Figure 1.3 Structure of the main sections of the thesis 17

Figure 2.1 An example of an conventional simulation experiment 19

Figure 2.2 Classification of optimisation methods 21

Figure 2.3 An example of a simulation based parameter optimisation experiment 22

Figure 2.4 Components and steps of a simulation based parameter and structure optimisation

experiment 25

Figure 2.5 Schematic diagram of a simulation based parameter and structure optimisation

framework

Figure 3.1 A real-world process or system and its model (source [1])

Figure 3.2 Simulation model taxonomy (source [48])

Figure 3.3 DEVS model example

Figure 3.4 Dynamic behaviour of an atomic model

Figure 3.5 Coupled model elements

27

30

31

33

37

38

Figure3.6 An example of a Classic DEVS model with associated abstract simulator elements

39

Figure 3.7 An example of a Classic DEVS model with associated abstract simulator

elements, messages and model function calls during initialisation and simulation phases 42

Figure 3.8 Models with multiple input and output ports 47

Figure 3.9 Dynamic behaviour of an atomic PDEVS model 50

Figure 3.10 Examples of structure changes at coupled model level 52

Figure 3.11 Dynamic behaviour of a coupled DSDEVS model 55

[iv]

Figure 3.12 Examples of sequential structure changes of a coupled model

Figure 3.13 Dynamic behaviour of an atomic EDSDEVS model

Figure 3.14 Dynamic behaviour of a coupled EDSDEVS model

55

60

64

Figure 3.15 An EDSDEVS model example with associated abstract simulator elements,

messages and model function calls during initialisation phase 67

Figure 3.16 An EDSDEVS model example with associated abstract simulator elements,

messages and model function calls during simulation phase

Figure 4.1 SESIMB formalism based model generation

Figure 4.2 A SES example

Figure 4.3 Detailed pruning and model generation example

Figure 4.4 Comparison original pruning - new pruning principle

Figure 4.5 SES example with a structure condition

Figure 5.1 Structure of the simulation based optimisation framework

Figure 5.2 Transformation SES - set Xs and set Ds

Figure 5.3 Transformation XSi + SES - PES

Figure 5.4 UML Diagram of SESIMB XML Schema

68

72

72

75

77

78

80

83

85

92

Figure 5.5 An SESIMB XML example - SES tree with both valid and invalid model

structure variants

Figure 6.1 General assembly system layout (source [5])

Figure 6.2 Model detail during model validation (source [51])

Figure 6.3 General product flows of a photofinishing lab

Figure 6.4 Product flow of the considered example

Figure 6.5 Model parameter and SES of the application

Figure 6.6 PES of 132th variant

Figure 6.7 Model structure of I32th variant

Figure 6.8 A sequence diagram section of one simulation run

Figure 6.9 Fitness values of all variants with the optimum at X132

93

95

97

103

104

109

110

111

112

119

[v]

Figure 6.10 Individual fitness, best and average fitness of generations of one GA run 121

Figure B.1 A coupled model example 159

Figure C.1 Splicer (left) and URS 161

Figure C.2 DigiURS (left) and High-speed film scanner 161

Figure C.3 Analogue (left) and digital printer 162

Figure C.4 Manual (left) and automatic cutter 162

[vi]

List of Coding Examples

Listing 6.1 Matlab code section with GA initialisation and execution 115

Listing B.l Pseudo code skeleton of an atomic Classic DEVS model... 132

Listing B.2 Pseudo code skeleton of a coupled Classic DEVS model.. 133

Listing B.3 Pseudo code of a Classic DEVS root coordinator 134

Listing BA Pseudo code of a Classic DEVS simulator 135

Listing B.5 Pseudo code of a Classic DEVS coordinator 137

Listing B.6 Pseudo code skeleton of an atomic Classic DEVS with Ports model 138

Listing B.7 Pseudo code of a Classic DEVS with Ports simulator 139

Listing B.8 Pseudo code of a Classic DEVS with Ports coordinator 140

Listing B.9 Pseudo code skeleton of an atomic PDEVS model 142

Listing B.1OPseudo code of a PDEVS simulator 143

Listing B.11 Pseudo code skeleton of an atomic EDSDEVS model... 145

Listing B.12 Pseudo code skeleton of a coupled EDSDEVS model.. 147

Listing B.13 Pseudo code of an EDSDEVS simulator. 149

Listing B.14 Pseudo code of an EDSDEVS coordinator 153

Listing B.15 DTD describing the structure of SESIMB XML 156

Listing B.l6 SESIMB XML example - XML file 158

Listing B.17 Two atomic model XML files 159

Listing B.18 Coupled model XML file 159

Listing B.19 A general GA algorithm 160

[vii]

List of Tables

Table 6.1 Fundamental components of manufacturing systems (source [51]) 98

Table 6.2 Order handling times 105

Table 6.3 Production costs 105

Table 6.4 Simulation results of all model structure and parameter variants with resulting

production time, costs and fitness 118

Table 6.5 Limits of fitness function parameters and results 119

Table 6.6 Optimal and near optimal solutions 120

Table 6.7 Results of 50 optimisation experiments 120

[viii]

Chapter 1. Introduction

Chapter 1

Introduction

1.1 Preamble

Often it is of interest to study a system to understand the relations between its components or

to predict how a system is responsive to changes. Sometimes it is possible to directly

experiment with the system. However, this is not always possible e.g. due to costs when a

manufacturing system has to be stopped, changed or extended. Often the system even does

not yet exit. A model, defined as a representation of the system in order to investigate it, can

solve this dilemma. Generally, it is sufficiently to abstract the system with a view to the

analysing the issues under investigation. In terms of modelling and simulation this abstract is

named the simulation model.

A system can be classified into discrete or continuous: "Few systems in practice are

wholly-discrete or continuous; but since one type of change predominates for most systems,

it will usually be possible to classify a system as being either discrete or continuous." [25].

The analysing issue also plays a decisive role. An analogue printer in a photofinishing lab is

a typical example. It is possible to analyse the machine at a very low level with the

continuous movements of machine components and analogue film material when the

objective is to optimise the component interaction. Another, discrete viewpoint could be the

number of pictures and the length of photographic paper handled in a specific amount of

time when the objective is to plan throughput and the necessary staff.

[1]

Chapter 1. Introduction

Simulation models as a particular type of mathematical system models can be

classified too, e.g. as being static or dynamic, deterministic or stochastic, and discrete or

continuous. A static simulation model represents a system at a particular time whereas a

dynamic simulation model represents system changes over time. A deterministic simulation

model does not contain any random variables whereas a stochastic simulation model has in

minimum one random variable as an input. Discrete and continuous models can be discrete

and continuous systems. as described above. One specific type of discrete systems is the

discrete event system (DES) where state variables change at discrete points in time during

simulation.

One of the most important applications of modelling and simulation based on

discrete event systems are manufacturing systems. These systems have been modelled since

the origins of manufacturing. From the civilisations of the ancient world to the first

industries through to current high-technology production, managers and engineers have

thought about the complexities of manufacturing systems [27]. As computers developed they

became an increasing important means of modelling and simulation. The expanding

capability of computing systems and the increasing demands of engineers and managers

planning, implementing and maintaining manufacturing systems have been pushing the

boundaries of modelling and simulation research. With the decreasing costs of computing

systems, modelling and simulation applications have become an integral part of industrial

practice.

Simulation has been used widely and successfully to support the design of new

production facilities and material handling systems and to evaluate variants of existing

systems. Applications for production, warehouse-management and material handling control

can incorporate simulation techniques to evaluate staffing and operating rules, changes of

material handling and system layout or the effect of capital investment. An important

advantage in using modelling and simulation techniques is the possibility of evaluating

changes before making investment decisions and without disturbing the existing system.

[2]

Chapter 1. Introduction

Recently, with increasing globalisation, the competition conditions for

manufacturing have been changing fundamentally. A key shift is the need to move from

increasing product quantity to a combination of increasing quantity and a drive for

manufacturing flexibility. As the number and the speed of product innovations increase, the

time to market and the marketing life of a product decreases. As a consequence

manufacturers have to extend the general objective "cost saving" to "time and cost saving"

[29]. To support this market trend manufacturing systems will increase in complexity with

increasing automation, flexibility and degree of computerisation. This also implies increased

requirements for production planning. For many companies modelling and simulation

together with a combined optimisation is a strategy to fulfil these requirements. Because of

the increasing production planning requirements modelling and simulation environments

have to meet these increasing needs.

1.2 Rational for Simulation based Optimisation

Successful systems have been stable over a long time, solved real problems and

demonstrated return-on-investment (ROI). New, identical copies of such systems are not

risky because they are proved. However, it is not possible to guarantee that innovative

system changes will ever generate their RO!. Simulation enables system analysis with time

and space compression, provides a robust validation mechanism under realistic conditions

and can reduce the risk of implementing new systems. Validation is achieved using a series

of qualitative and quantitative experiments with changes of system variables and structures.

Pilot projects using real systems with reduced size and/or implemented in a low-risk

laboratory environment, can provide analysis results. Such real experiments take time and

cost. Hence, a large number of alternatives imply an initial pre-selection. Modelling and

simulation can lower the number of alternatives analysed in real experiments as the final step

[8].

[3]

Chapter 1. Introduction

One reason for system changes is the search for a better overall performance. Under

the focus of simulation this means the search for a set of model specifications e.g. input

parameters and/or structural assumptions, that leads to an optimal model performance. For

all possible variants the range of parameter values and the number of parameter

combinations may be too large to implement and simulate manually. A method to automate

this is needed. The example described in chapter 6 demonstrates this problem. Even though

only a fraction of the complete manufacturing system is modelled the number of possible

variants is overwhelming.

Many real word systems are too complex to be expressed by mathematical models.

But mathematical models are a precondition of optimisation methods. This leads to a

contradiction [2]:

• Pure optimisation models are not able to handle the complexity of both system

behaviour and structure.

• Pure simulation cannot find an optimal solution.

=> Simulation based optimisation resolves this contradiction through a combination

of both methods.

Research and application of simulation based optimisation has seen a significant

development in recent years. A Google search on 'Simulation Optimisation' in 2006 found

ca. 4.000 entries [2] in comparison to a search in 2008 with almost 80.000 entries among

others articles, conference presentations, books and software.

Until a relative short time ago, the simulation community was resistant to the use of

optimisation tools. Optimisation models seem to over-simplify the real problem and it was

not always clear why a certain solution was the best [8]. The situation changed at the end of

the 90s. An ACM Digital Library [57] search on 'Simulation Optimization' found 16.000

articles between 1960 and 2008. A significant number (15.500) of articles has been

published during the last 20 years and only 500 articles in the 28 years before. Two reasons

[4]

Chapter 1. Introduction

for this change may be the advances in modelling and simulation methods and increase of

computing power over the last two decades that has enabled simulation based optimisation.

Currently there are several algorithms to change simulation model parameters to

establish solutions with good performance and methods to compare different solutions in

terms of quality. Many commercially available discrete event or Monte Carlo simulation

software packages contain optimisation methods to search for optimal input and system

parameter values [3] e.g. WITNESS with the optional optimisation packages WITNESS

Optimizer, ARENA with the additional package OptQuest for Arena [7], SIMPROCESS and

SIMUL8 with OptQuest optimisation technology [8].

1.2.1 A Context for Simulation in Manufacturing Systems

The application of manufacturing simulation focuses on modelling the behaviour and the

structure of manufacturing organisations, processes and systems. Simulation in a

manufacturing system can be used at different phases of manufacturing system lifetime and

at different system levels as depicted in figure 1.1. Traditionally, simulation has been used in

the planning and design phase dating back to the beginning of the 1960's [26]. Today

simulation models are used in all phases of life cycle and at all system levels (see figure 1.1)

[19]. Recent developments indicate approaches that also use simulation as an integral part of

real time machine control [23] [24] [28].

[5]

Chapter 1. Introduction

Figure 1.1Modelling and simulation of Manufacturing Systems (source [19])

A broad variety of simulation tools are available for manufacturing systems. Historically

they can be classified into two major types: simulation languages and application-oriented

simulators [26]. Simulation languages are very general. Models are created by coding their

behaviour and structure and are similar to a general computer language. Simulation

languages provide very high flexibility in model creation but are complex in use for non-

scientists and non-engineers. Application-oriented simulators specialise in a given

application class. Models are often developed with a graphical user interface based on

components, dialog boxes, context menus etc. This eases model development for non-

technical users but could lead to reduced flexibility for specific problems [26]. Recent

developments indicate that both types are adapting typical characteristics of the other e.g. a

simulation language can use a graphical modelling user interface to internally produce code

which can be manually altered later.

In summary it is possible to differentiate between general purpose and application-

oriented simulation packages. The first are general packages but may have special features

for certain application. Examples of general-purpose simulation packages are Arena,

[6]

Chapter 1. Introduction

AweSim, Extend, GPSSIH, Micro Saint, MODSIM III, SIMPLE++, SIMUL8, SLX and

Taylor Enterprise Dynamics Developer. Examples of application-oriented simulation

packages for manufacturing are Arena Packaging Edition, AutoMod, AutoSched, Extend +

MFG, ProModel, QUEST, Taylor Enterprise Dynamics Logistics Suite and WITNESS.

Short overviews about the above packages and their main feature can be found e.g. in [7]

[25] [26].

Other classifications of simulation packages exist, e.g. the differentiation between

continuous and discrete simulation. Few systems are completely discrete or continuous but in

many systems one is dominant or analysis objectives require the use of a specific simulation

type. Due to the stochastic nature of systems continuous processes can be approximated by

stochastic distributions with start and stop events. Hence, a continuous system or sub system

can be described by a discrete event system. For example, in an automobile assembly line

simulation discrete events dominate but of course it would be possible to continuously

describe sub systems e.g. work piece movements. In contrast in a chemical plant continuous

state changes prevail but the switch of a valve could be modelled discretely.

In this research a general, theoretical established, discrete modelling and simulation

approach is used. Hence the research results are general statements and applicable to generic

simulation approaches and application specific systems respectively. The Discrete Event

System Specification (DEVS), used in this research, is a formalism based on discrete event

models. It supports a modular, hierarchical model construction and claimed to be a general

and powerful approach in the field of discrete event simulation. The formalism can describe

models with a formal specification and simulation model execution with generic simulation

algorithms.

1.2.2 Aims and Objectives

The research addresses a fundamental problem of simulation based optimisation. The

technique is well established but is restricted to the optimisation of system parameters. In

[7]

Chapter 1. Introduction

using these established techniques model structure is considered to be fixed as the structure

of model elements is defined during model development before an optimisation experiment.

As model performance is optimised it may be necessary to redesign the model structure. This

would conventionally be done manually by an analyst using previous simulation results,

observations or decisions based on previous experience. This manual process cannot

guarantee the global optimal solution. The aim of this research is to develop an approach to

discard the manual changes Le. to develop a combined, simulation based parameter and

structure optimisation.

The objectives are:

• Carry out a literature analysis on simulation based optimisation and search methods

• Carry out a literature analysis on the specification and simulation of modular,

hierarchical discrete events systems, particularly the Discrete Event System

Specification (DEVS) and DEVS extensions

• Advance the established approach of a simulation based parameter optimisation to a

simulation based parameter and structure optimisation

• Develop a modelling and simulation method based on DEVS and DEVS extensions

to create a merging formalism which combines advantages of different approaches

• Investigate model management and model generation methods

• "Investigate appropriate optimisation and search algorithms

• Validate the research and developed approach using an industrial application

• Publish the results in peer reviewed journals, at conferences or in other research

publications

1.2.3 Cost Reduction with the Aid of Simulation based Optimisation

The results of this research enable two different possibilities for cost reduction:

1. With increasingly complex, flexible and reconfigurable manufacturing systems the

number of possible structure variants increases. In using established approaches it

[8]

Chapter 1. Introduction

may be necessary to redesign the model structure between two parameter

optimisation runs, normally carried out manually by an analyst using previous

simulation results, observations or decisions based on previous experience. This is

time consuming and potentially error prone. With this new approach providing

automatic reconfiguration and optimisation of both model structure and model

parameters the process becomes shorter and the ability to find an optimal solution

increases.

2. Many manufacturing systems have the potential to be optimised. Using existing

machines, facilities and processes, optimisation could be used to find a new layout

and system dimension with improved performance.

The application of this research described in the thesis demonstrates both aspects.

1.3 Methodology and Structure of the Research

The four main areas investigated in this research are:

1. Introduction of simulation based optimisation approaches with regard to an

extension to a structure optimisation method

2. Modelling and simulation method based on the Discrete Event System Specification

(DEVS)

3. Model management and model generation method using the System Entity

Structure/Model Base (SESIMB) framework

4. Employing the approach with a real life manufacturing problem

- A new approach was established based on the methods 1,2 and 3. Through the linking of the

methods and the definition of appropriate interfaces between them they constitute a new

approach to a combined and automatic simulation based parameter and structure

optimisation. Figure 1.2 depicts the connections between the investigated areas.

[9]

Chapter 1. Introduction

Simulation based
Optimisation

Figure 1.2 Research area structure

1.3.1 Simulation based Optimisation

Modelling and simulation with integrated parameter optimisation to improve model

performance is an established technique. In using these established approaches model

structure is considered to be fixed as the relationships between model elements (machines,

facilities, conveyors etc.) are defined during model development before the optimisation

experiment. As model performance is optimised it may be necessary to redesign the model

structure after the optimisation experiment. This is normally carried out manually and

repeatedly by an analyst with subsequent optimisation experiments.

In established parameter optimisation methods the number of parameters and their

domains specify the search space. Depending on the optimisation method the search space is

traversed i.e. the optimisation method needs a specific knowledge about the search space

bounds. Certain points of the search space are analysed. Each point defines a certain

parameter value set. The model is initialised with this parameter value set and subsequently

simulated.

[10]

Chapter 1. Introduction

The extension using a structure changing facility means broadening the technique to

a parameter and structure optimisation. Additional variables with their associated domains

are describing possible model structure variants. The combination with the set of parameters

defines the new search space of the extended optimisation problem. Methods to transform

the set of parameters and structures to a search space definition and vice versa a search space

point to a model structure and model parameter values are an integral part of the broadened

technique.

1.3.2 Modelling and Simulation

Many different concepts and methods of modelling and simulation exist. This research is

restricted to the discrete event system specification formalism, characterised by continuous

time and discrete state changes and modular, hierarchical modelling and simulation. The

investigated und further developed discrete event system approach is based on DEVS

introduced by Zeigler [66] [67] [68]. This approach is one of the most developed, theoretical

well-founded discrete event approaches. DEVS supports the definition of modular ,

hierarchical systems and incorporates well-defined simulator algorithms.

A crucial part of the research is the analysis of the discrete event system

specification and the existing extensions with regard to simulation based parameter and

structure optimisation and its application in a prototype implementation. Based on the

Classic DEVS formalism [66] a broad range of publications with several extending

approaches are available. For the application of this research within the manufacturing

. systems domain certain Classic DEVS extensions were incorporated to establish the

Extended Dynamic Structure Discrete Event System specification formalism (EDSDEVS).

Consequently a formal concept for this unified specification was developed. The formalism

was verified with examples from [66], a benchmark application [18] and industrial

applications [16] [17].

[11]

Chapter 1. Introduction

This research is a key element of a major search project of the Research Group of

Computational Engineering (RG CEA), Hochschule Wismar University of Applied Sciences

Technology, Business and Design 1.

1.3.3 Model Management and Model Generation

In a further crucial area of the research the following key features of a model management as

part of a simulation based structure optimisation were developed:

• Declarative specification of different model structures

• Definition of a method for external controlled model structure selection

• Definition of an interface between model selection and model generation

To specify a set of modular, hierarchical models an approach has to be able to describe three

relationships: (i) decomposition, (ii) taxonomy and (iii) coupling [52] [66] [69].

(i) Decomposition means the approach has to be able to decompose a system called entity

into sub-entities.

(ii) Taxonomy means the ability to represent several, possible variants of an entity called

specialisations.

(iii) To compose an entity from sub-entities these have to be connected. This is the meaning

of a coupling relationship.

The System Entity StructurelModel Base (SESIMB) approach is able to describe these three

relationships [52], [66], [69]. The original SESIMB approach was developed to assist a

manual model design process for modular, hierarchical models using a tree like definition

- with different node and edge types and a model base containing basic components. An

essential demand for an appropriate model management method is the external

controllability. The SESIMB approach has to be changed to comply with this demand.

Based on the adapted SESIMB approach three interfaces around the model

management method were designed. The first interface is a model set definition based on a

1 Research Group Computational Engineering and Automation, http://www.mb.hs-wismar.de/ceal

[12]

http://www.mb.hs-wismar.de/ceal

Chapter 1. Introduction

XML file structure. This interface is deployed to create a specific SESIMB structure. In

future extensions the development of a graphical SESIMB modeller based on this interface

would be possible. The second interface delivers model generation information to a model

generator. It is based on a XML file structure definition. This interface represents the

connector to the modelling and simulation method. The third interface communicates with

the optimisation methods during the initialisation and the optimisation phases:

1. In the initialisation phase it delivers information about the search space defined by

the set of all possible model structure and model parameter variants to the

optimisation method.

2. During the optimisation phase it receives information from the optimisation method

about the currently investigated search space point. This information is used to select

the corresponding model structure and initialises the model parameters. A

subsequent model structure validation is a crucial part of the model structure

selection.

1.3.4 Implementation and Employment

In this research methods and algorithms were implemented using the MATLAB Scientific

Computing Environment [58].

1. The modelling and simulation toolbox was not started from scratch. A pre-release of

the modeller and simulator published in [41] was the starting point. These sources

were adapted to the current MATLAB version with a new object-oriented

programming principle and were extended step-by-step. Each extension was

validated with test models for example those introduced in [66]. Each important

stage of the research was published and subject to peer review [16] [17] [18] [34].

A simulation model was implemented as a basis for later optimisation. This

model uses results, observations, structures, parameter etc. gathered by the author of

this thesis during several projects which were realised by the supporting company

[13]

Chapter 1. Introduction

Syntax Software', The company is a leading production and machine control

software developer for the photofinishing industry. The final model was validated

with original production data taken from photofinishing applications implemented

by the author.

2. The model management toolbox was developed and tested using conventional

software engineering techniques.

3. The optimisation method used the commercial available Genetic Algorithm Toolbox

[59].

4. The research application is based on industrial experience of the author. The germ of

the idea to optimise structure comes from a project enquiry made by the Kodak

Photofinishing Department to Syntax Software 6 years ago. The project was not

realised because Kodak closed their European photofinishing business.

To validate the new approach all possible model variants were simulated. The

simulation results are compared with the result of the automatic structure and parameter

optimisation. This procedure and its results are described and discussed in chapter 6.

1.4 Research Outcomes

The outcomes of this research can be divided into four parts:

1. Development of an approach for a combined, simulation based model parameter and

model structure optimisation

The extension of the established simulation based parameter optimisation by a

controllable model management is the fundamental idea behind this research.

Through this inclusion of a model management the optimisation method can

simultaneously control parameter changes as well as model structure changes to find

an optimal system configuration.

2. Development of an Extended Dynamic Structure DEVS Formalism

2 SyntaX Software Inh. 10m Satow formerly SyntaX Software O.Hagendorf I.Satow GbR,
Schweinsbrucke 9, 23966 Wismar, www.syntaxsoft.de

[14]

http://www.syntaxsoft.de

Chapter 1. Introduction

Classic DEVS and DEVS extensions has been a research topic since more than 30

years. The extensions have one joint attribute: they are based on the Classic DEVS

formalism. Hence, the decision on one DEVS extension inhibits the use of

advantages of another one. In this research selected extensions are combined to

create to a merging formalism to combine the advantages of different approaches.

3. Validation of the new approach

The approach was successfully validated with a simulation based optimisation

experiment using an industrial application. All variants of the application were

calculated and the results compared with the optimisation experiment. The global

optimal result was found with a probability of 47%. With an error of 3% of the

system performance an optimal result was found with a probability of 68%. To find

an optimal result, on an average 70% of the search space were analysed. With a

second experiment the dependency of optimisation results on search method

configuration was shown. However, the finding of an optimal search method

configuration was not within the scope of this research.

4. Publication of results

Results and intermediate steps have been published in a peer-reviewed journal and

as a book chapter and have been presented at international conferences.

1.S Contribution to Know/edge

This research has resulted in two novel formalisms:

1. an approach to extend the established simulation based parameter optimisation to a

combined simulation based parameter and structure optimisation which

automatically change system structure and parameter values to improve the overall

system performance

2. an Extended Dynamic Structure Discrete Event System Specification (EDSDEVS)

as an enhancement and combination of the Discrete Event System Specification and

[15]

Chapter 1. Introduction

some of its different extensions. The EDSDEVS formalism is used as one

component of the simulation based parameter and structure optimisation approach.

The contribution and the advantages of this approach are:

• The approach establishes a structure and parameter optimised model based on the

definition of a set of model variants. The previous manual steps of changing

structure to find an optimal system model are now incorporated into an optimisation

algorithm and thus are automated.

• Through automation the probability of finding the optimal solution grows

significantly in comparison to a manual search.

The contribution and the advantages of the EDSDEVS approach are summarised as follows:

• fusion of different extensions of the Classic Discrete Event System Specification

• implementation of modelling and simulation environment for research and teaching

1.6 Contents of this Thesis

The thesis is organised into three main sections as depicted in figure 1.3. In chapter 2 the

simulation based optimisation is introduced, limitations are outlined and the idea of an

extension of the established technique is developed. Based on this new concept of a

simulation based parameter and structure optimisation the requirements of several

algorithms, methods and interfaces are brought out. Essential components of the optimisation

concept are appropriate model management and modelling and simulation methods.

Chapter 3 starts with a short presentation of simulation and simulation model

taxonomy. The Classic DEVS formalism with the associated formal modelling concept and

simulation algorithms is introduced. Concepts of selected extensions of the DEVS formalism

are subsequently shown. The last part of chapter 3 introduces the EDSDEVS formalism as it

was developed in the scope of this research. The formal concept of EDSDEVS, the dynamic

behaviour of its components in different situation and simulation algorithms are shown.

[16]

Chapter 1. Introduction

Chapter 4 introduces the System Entity StructureIMode1 Base framework as an

approach to organise a set of model structure variants based on meta-modelling. In chapter 5

all aspects of this approach for a simulation based parameter and structure optimisation are

described in detail.

1. Introduction

2. Simulation based 3. Discrete Event
4. Model Management

Optimisation System Specification

J
5. Framework for

Modelling, Simulation
and Optimization

~

6. Application of the
Research

7. Conclusion

Figure 1.3 Structure of the main sections of the thesis

Chapter 6 demonstrates application of the approach with an optimisation example.

The problem is taken from the industrial experience of the author. The general Structure of a

photofinishing lab i.e. a company for industrial production of photos and related products is

described together with a daily problem and how this could be solved with the new approach

of a simulation based optimisation.

The thesis concludes with a summary and suggestions for further work.

[17]

Chapter 2. Simulation based Optimisation

Chapter 2

Simulation based Optimisation

Optimisation is an important research topic and has the potential for significant commercial

application. At the ACM Digital Library [57] the first publications on optimisation were

published in the early 1950s, ca. 118.000 to date. They cover a very broad range of

optimisation methods and optimisation applications. In general, the aim of an optimisation

method is to find an optimal problem solution in a given search space whereas the often

multidimensional search space defines the complete set of possible problem solutions.

Research and application of simulation based optimisation has seen a significant

development in recent years. A Google search on 'Simulation Optimisation' in 2006 found

over 4.000 entries [2] in comparison a search in 2008 found almost 80.000 entries among

others articles, conference presentations, books and software.

_The integration of optimisation techniques into simulation packages has been an

important requirement for commercial modelling and simulation tools, shown for example in

comparing two popular simulation textbooks [7] and [25] with previous editions. The third

edition of Law and Kelton [25], published in 2000, lists five commercial available simulation

based optimisation tools which did not exist at the time of the second edition of the book,

published 1991 [15].

The following chapter introduces the ideas of combining modelling and simulation

with optimisation methods. It concludes with the introduction of the new simulation based

parameter and structure optimisation approach developed in this research.

[18]

Chapter 2. Simulation based Optimisation

2.1 Introduction

In retrospect a disadvantage of modelling and simulation is the missing optimisation

capability. For many years, simulation experiments as shown in figure 2.1 have been state of

the art. An analyst creates a model e.g. based on a real system, transforms the model to an

executable model and executes a simulation with it. After a review of simulation results the

model configuration, Le. model parameters and/or model structures has to be manually

changed by an analyst, when necessary. Using a manual procedure only a relative small

number of system configurations can be examined until a suitable solution is chosen. It is not

possible to guarantee the detection of an optimal or near optimal system configuration and

the manual effort to find a solution can be considerable.

Components Steps

(Real System y
~ Modelling

(Model }
~I Programming

Solution

manual step I nonmanual step I

Figure 2.1 An example of an conventional simulation experiment

Through the combination of modelling and simulation with optimisation methods to a

simulation based optimisation method this manual procedure can be partly automated.

Mathematical optimisation generally means establishing a function minima or maxima.

Simulation based optimisation means finding the best model configuration by minimising a

[19]

Chapter 2. Simulation based Optimisation

function of output variables estimated with a simulation method [56]. Important prerequisites

are the availability of:

• suitable modelling and simulation methods

Modelling and simulation as well as model and model parameter have to be strictly

separated. With the combination of optimisation and simulation an optimisation

method needs capabilities to influence the model configuration.

• suitable optimisation methods

Figure 2.2 shows a classification of optimisation methods, identified during this

research, many others and more completed classifications exists in the optimisation

literature. Enumerating or calculus based optimisation methods are suitable when the

search space is small enough and the problem is analytically solvable respectively. If

the problem complexity is large, often search based algorithms are more appropriate.

Problem descriptions with a stochastic component are another crucial reason to use a

search based optimisation method. Because of the typical stochastic character of a

simulation calculus based optimisation methods are not appropriate for a simulation

based optimisation.

• sufficient computing power

Simulation based optimisation is typically used when the number of different model

-configurations is large. This is often accompanied with complex model structures.

Both results in considerable quantity of computing time while searching for the

optimal model configuration.

Descriptions of established and new simulation based optimisation approaches follow in

sections 2.2 and 2.3.

[20]

Chapter 2. Simulation based Optimisation

optimisation method

enumerating calculus
based

stochastic

search based

~
g"",;,",~

chemical I physical
• Simulated Annealing

biological
• Genetic Algorithm (GA)
• Evolutionary Strategy
• Particle Swarm Optimisation

Figure 2.2 Classification of optimisation methods

2.2 Parameter Optimisation

An established approach to simulation based optimisation is simulation based parameter

optimisation. The overall goal of this optimisation approach is the identification of improved

settings of user selected model parameters under control of performance measures. There is a

extensive and varied body of literature on this topic that includes several tutorials, reviews

and summaries of the current state of the art (e.g. [4], [6], [14], [32], [55], [56]). Law and

Kelton describe in [25] commercial available simulation tools with integrated optimisation

techniques using this approach of simulation based parameter optimisation. Figure 2.3 shows

a principle example of a simulation based parameter optimisation experiment. The procedure

to create an executable model follows the procedure described in figure 2.1. A crucial

difference is the detachment of model and model parameters. Based on this detachment the

optimisation method is able to alter the model parameter set to improve the result of an

- objective function. The objective function measures the model performance with current

model parameters i.e. improving the objective function result means improving the model

performance. Model parameter adjustments are carried out in a loop until a stop criteria is

fulfilled. Examples of stop criteria are (i) going below a minimum alteration rate or (ii)

exceeding the maximum number of optimisation cycles. The result of a successful

optimisation experiment (example criterion (i) fulfilled) is a parameter optimised model.

[21]

Chapter 2. Simulation based Optimisation

Components Steps

(Real system) i
".--__-------__--.-...,

> ~i"'"(~--Mo-d-el-~)i

>1r ..---.,_P~rog--:ra~.~m~mt--:·.•n~g--,
(~E-x-e-c-ut-a-b-le-M-o-d-e~1)i".-- --,

'i.

Parameter
Changes

Yes

No

Parameter Optimised Model

Solution

ma"uaJ step I nonmanual step I

Figure 2.3 An example of a simulation based parameter optimisation experiment

- According to [56], a simulation based parameter optimisation problem 0 with a set of m

deterministic model parameters X = {xi; ... xml can be formally described as follows:

• A parameter set X = [x., ... x-J has the domain set D = {d, ... dml

• The multidimensional (one for each parameter) search space S is defined by

S = {s = tv, ... v.J I Vi € d;J

• A set Y is the output set defined by Y = (y] ... Ynl = Y(X) and estimated by

simulation. Simulation experiments are often based on stochastic model properties.

[22]

Chapter 2. Simulation based Optimisation

Hence the output set Y is stochastic.

The objective function F establishes a single stochastic value from stochastic output

set Y: F = F(Y(X)) ~ 9i+. The result of the objective function is a measure of the

current model performance.

• Because of the stochastic nature of Yand consequently of F, an estimation function

•

R, the simulation response function defined by R(X)=E(F(Y(X))), is optimised, i.e. in

the scope of this approach it is minimised.

• Depending on optimisation problem and analysis required the exchange of the last

two steps, evaluation of objective function F and simulation response function R ,

can save computational effort. Hence, the simulation response function is defined by

R(X) = E(Y(X)) and subsequently the objective function by F(X) = F(R(X)).

Each parameter set Xi € S can be seen as a possible solution of O. The optimisation method

has to search the search space S to find the parameter set XOP1 € S with E(F(Y(X
oPI

))) ::;

E(F(Y(X;))) 17Xi€ S. The resulting parameter set XOP1 is considered the global optimum of O.

This approach is restricted to automated parameter optimisation. It is important to

note that automatic structure changes during optimisation are not possible with this

approach. Instead, structure changes are carried out manually by an analyst and each manual

structure change requires a repetition of the automated parameter optimisation.

2.3 Parameter and Structure Optimisation

- The extension of the optimisation approach with the ability to also change model structures

to improve system performance is a development of the idea introduced in section 2.2. This

extension is mainly directed towards a simulation based structure and parameter optimisation

as presented in figure 2.4. The approach of a simulation based parameter and structure

optimisation differs in the following extensions or modifications from the simulation based

parameter optimisation depicted in figure 2.3:

[23]

Chapter 2. Simulation based Optimisation

• An analyst does not generate a single model of the real system. In this case he has to

organise a set of models. One way of achieving this is to define a model that

describes a set of model variants instead of one single model of the system under

analysis. Models that define the creation and interpretation of a set of models are

named meta-models. If a model is the abstraction of an aspect of the real world, a

meta-model is yet another, super-ordinate abstraction of the model itself. That is

when a model describes the behaviour and structure of a real system then a meta-

model describes the behaviour and structure of different models that all describe the

behaviour and structure of the same real system in a slightly different way.

• The model management organises the set of model structures and provides a model

selection method.

• The model selection is controlled by a superior optimisation. The selection method

delivers the selected model structure information to a model generator which

generates an executable model. The parameter transfer and the simulation match the

simulation based parameter optimisation depicted in figure 2.4.

• The objective function receives simulation results to estimate the performance of

current model structure and parameters similar to the approach depicted in figure

2.4. Information generated by the model selection method can be additionally used

to establish the model performance.

• The optimisation method investigates the search space with simultaneous model

parameter and model structure changes without a manual involvement. The intention

of the optimisation method is the finding of a model structure and model parameter

set where the objective function delivers the global optimum value, in most instances

the global minimum.

[24]

Chapter 2. Simulation based Optimisation

Components Steps

(Real System)i

JI Metamodel
ModelNing

Model
Management

Parameter
Changes

Structure
ChangesPerformance

Measurement
Result

Optimisation
No Loop

Solution:
Parameter&Structure Optimised Model

,··..·.manuat&tep 'I nonmanual step]

Figure 2.4 Components and steps of a simulation based parameter and structure optimisation

experiment

A prer~quisite for an optimisation is the definition of a search space. In the approach

presented here, the search space is multi-dimensional as a result of the combination of model

structure and model parameter variants. During the optimisation loop several points of the

search space are examined. Each point defines a model structure with an appropriate

parameter set. The extension of the formal description of a simulation based parameter

optimisation problem 0, defined in section 2.2, to a combined simulation based structure and

parameter optimisation leads to 0·:

• The model parameter set Xp and its domain set Dp, in section 2.2 defined as X and D,

are extended by structure parameter set Xs and its domain set Ds. The extended set

[25]

Chapter 2. Simulation based Optimisation

definitions are: X· = Xp uXs = {xp] ... xp"" XSI ••• xsnl and

D' = D» uDs = [dm ... dp"" dSI ••• dsnl with m model parameters in set Xp and

n structure parameters in set Xs. The sets Xp and D» are defined by the current model.

The model management has to provide the sets Xs and Ds by analysing the meta-

model.

• The multi-dimensional (one for each parameter) search space S = Sp uSs is spanned

by sets of model parameter and structure variants.

• The objective function F* is defined by F*(y(X'),P(Xs)) with simulation results

Y(X')=Y(Xs uXp) and results based on structure related variables P(Xs) which are

established during the model selection. Because of the stochastic nature of the

simulation results y(X') an estimation function R, the simulation response function ,

is calculated. The results based on structure related variables P(Xs) are not

stochastic. Hence, the simulation response function is defined by R(Y(X*)) and

subsequently the objective function by F*(R(Y(X')), P(Xs)).

Figure 2.5 depicts the above formal description of a simulation based parameter and

structure optimisation framework 0* in a schematic diagram.

[26]

Chapter 2. Simulation based Optimisation

Meta-Model and Model
Parameter Definition

~

Xs DsXp o; Model Management Module
Model Structure & -1 Meta-Model Analysis I1-----------

I Parameters Information

I Model Selection 1-XSiXPi XSiI

: Optimisatior XPi Model
Structure

~ Module Information

Optimisation ~ Modeling &
Method Simulation Module

,p..
r Model Generator I

~ Executable
Model

F·(R(yJ, PJ

I
Computer Model l(Model+Simulator)

Simulation Resultsl

Objective R(Y;(XSi,xpJ)
Function Model Selection Results

P;{XsJ
- - -Initialisation Phase -Optimisation Phase

Figure 2.5 Schematic diagram of a simulation based parameter and Structure optimisation

framework

Further prerequisites of the introduced approach are:

• The modelling and simulation method with support of modular or modular,

hierarchical models and a flexible simulation engine are essential parts of the

framework. A powerful modelling and simulation method is fundamental in two

different aspects: (i) A strict separation between model and simulator are necessary

due to the crucial management of a model structure set with a downstream model

generator and a model parameter transfer. (ii) A flexible and modular, hierarchical

modelling and simulation method can incredible enlarge the application field and

ease its use.

• The cooperation between optimisation, model management, and modelling and

simulation modules has to be comprehensive. The aim of the cooperation is to

establish control of both model parameters and model structures by an optimisation

[27]

Chapter 2. Simulation based Optimisation

method. The objective function evaluates simulation results but can also incorporate

further information, generated by model management, into the evaluation. The

additional parameters can be provided by optional variables, summarised during

model selection as described in section 4.2. The search space definition used by the

optimisation module is established by the model management module. These

information exchanges require comprehensive cooperation between the above

modules.

• Using combined simulation based structure and parameter optimisation the number

of variants of different system configurations can be considerable higher than in a

pure simulation based parameter optimisation and will need more computing power

than the approach described in section 2.2.

Through the inclusion of a model management method, the optimisation method can

simultaneously control parameter changes as well as model structure changes to find an

optimal system configuration. This new approach significantly enhances the application of

simulation based optimisation. The extension of the simulation based parameter optimisation

by a controllable model management and subsequent automatic model generation is a

fundamental idea behind this research.

The modelling and simulation and model management methods take a crucial role in

this approach. The description of a discrete event modelling and simulation method, and a

model management method based on meta-modelling follow in the next two chapters.

[28]

Chapter 3. Discrete Event System Specification and Simulation

Chapter 3

Discrete Event System Specification and Simulation

After a short, general introduction to modelling and simulation this chapter explains the

DEVS formalism. The Classic DEVS formalism will be introduced together with several

extensions which are combined to form an Extended Dynamic Structure DEVS (EDSDEVS)

approach. The chapter concludes with the introduction of the EDSDEVS formalism. The

EDSDEVS modelling and simulation approach with its advanced, modular, hierarchical

model definitions and flexible simulation algorithms plays a major role in the new simulation

based optimisation approach.

3.1 Introduction

A simulation is the imitation of the behaviour and the structure of a real-world system. The

behaviour and the structure of the system are studied by developing a simulation model and

performing experiments with it. During an experiment the model is executed within a

_ simulation environment by a simulator. The model is usually created by taking assumptions

concerning the function of the system, its attributes and structures. The complete system is

split into several entities with relationships defining connections between them. A more

complex system can be split in a hierarchical manner Le. an entity can be segmented into

sub-entities which themselves can be again segmented into sub-entities. The entities are

expressed in a mathematical, logical or symbolic form. Once developed and validated a

model can be used to perform a variety of analysis concerning the real-world process or

[29]

Chapter 3. Discrete Event System Specification and Simulation

system. Analysing experiments can change the behaviour or the attributes of a certain entity,

the relationship between entities or sending changed inputs to the model.

It is possible to summarise as follows and as shown in figure 3.1:

• Modelling and simulation is the imitation of a real-world system.

• The model tries to describe real-world behaviour through states, state-transitions and

attributes.

• The model tries to describe the real-world structure throughout partitioning into sub-

entities. Subject to the modelling formalism, the structure can be defined

hierarchically.

• The model interacts with its environment based on inputs and outputs.

Figure 3.1 A real-world process or system and its model (source [1])

[30]

Chapter 3. Discrete Event System Specification and Simulation

Under some circumstances, a model can be developed based on mathematical

methods only e.g. by the use of differential equations, algebraic methods or other

mathematical techniques. However, many real world systems are to complex to be modelled

using mathematical expressions. In these cases, numerical, computer based modelling and

simulation can be used to analyse the behaviour and the structure of real word systems [7].

Many different concepts and methods for modelling and simulation exist. Oren [33]

classifies different types of simulation models with several criteria. One of the various

possible classifications is to use the two criteria - time change and state change [48]. Discrete

event models are a combination of continuous time and discrete state changes as shown in

figure 3.2. The choice of whether to use discrete state changes, continuous state changes or a

combination of both depends on the characteristics of the system under investigation and the

objectives of the study.

Figure 3.2 Simulation model taxonomy (source [48])

The Discrete Event System Specification (DEVS) is a formalism based on discrete event

models. It supports a modular, hierarchical model construction and claimed to be a general

and powerful approach in the field of discrete event simulation [66] [67].

For modelling and simulation and particularly with DEVS the term formalism is

used with a specific meaning. A modelling formalism can be described by two parts: (i)

formal model specification and (ii) simulation algorithms to execute the model [53]. The

[31]

Chapter 3. Discrete Event System Specification and Simulation

formal mathematical specification describes model structure and behaviour. The simulation

algorithms specify methods to execute any model that is described in accordance with the

formal model specification.

3.2 Discrete Event System Specification

The DEVS formalism was first introduced by Zeigler [68] in the 1970s. In [66] the authors

classify this formalism, position and compare it with other, more established modelling and

simulation formalisms. Several international research groups are working on the DEVS

formalism and are regularly publishing results at the annual DEVS Symposium at Spring

Simulation Conferences. Wainer [62] maintains a list of available DEVS tools. The DEVS

formalism is, in contrast to other modelling and simulation formalisms, not very widely used

in industrial practice. This situation exists despite the fact that the theory is a well-founded,

general formalism. It can only be assumed that one reason of the marginal acceptance is the

type of available software tools [34].

Since its first publications, in [68] the formalism has been enhanced and many

extensions have been introduced. To differentiate among them the original formalism is

termed Classic DEVS.

3.2.1 Classic DEVSModelling

pEVS is a modular, hierarchical modelling and simulation formalism. Every DEVS model

can be described by using two different model types, atomic and coupled. Both model types

have an identical, clearly defined input and output interface. An atomic model describes the

behaviour of a non-decomposable entity via input/output events and event driven state

transition functions. A coupled model describes the structure of a more complex model

through the aggregation of several entities and their couplings. These entities can be atomic

models as well as coupled models. Due to the identical interfaces and the complete

encapsulation of a model, a coupled model cannot differentiate between the different model

[32]

Chapter 3. Discrete Event System Specification and Simulation

types of its sub components. A coupled model does not need and does not even have any

information about the type of its sub-entities. The internal structure of each sub model is

completely encapsulated and separated from its parent. Due the possibility that several

entities together create a new entity which itself can be again part of another super-ordinate

entity the formalism is termed 'closed under coupling'. Thus, the construction of modular,

hierarchical models is possible [66].

~.i-C_M_1 _J,lo.utput ·
.........../ .
.' '.

am1s; A.
ta bini

'--- .-
CM1 CM2

•.•...../ -, .
.' '.

output
am2 am3 input

A. s; .-..1. be"

CM2 ta bini ta bini

am
CM

atomic model
COUPLED MODEL

Figure 3.3 DEVS model example

Figure 3.3 shows a DEVS model example:

• Structure description:

The structure of the real-world system is depicted by the structure of the DEVS

model i.e. the aggregation of entities and sub-entities and their directed coupling

relations. The top most model i.e. the root model depicts the real-world system with

an interface to its environment. This external interface is defined by the input and

output ports of the root model. The environment is modelled in an Experimental

Frame as described in [11] [66]. An Experimental Frame makes the analysis of the

modular, hierarchical model possible, generates input events and analyses the output

events. The sub-entities input and output ports are connected over directed couplings

[33]

Chapter 3. Discrete Event System Specification and Simulation

with other sub-entities input and output ports and with the output port of the super-

ordinate coupled model, respectively. Each atomic and coupled model has one input

and one output port. Depending on source and destination port the coupling relations

are named:

o external input coupling (EIC) with the input port of a super-ordinate coupled

model as source and one or more sub-entities as destination

o external output coupling (EOC) with the output port of a sub-entity as

source and the output port of a super-ordinate coupled model as destination

o internal coupling (lC) with output and input port of sub-entities as source

and destination

Example:

The coupled model CMI in figure 3.3 is the top most model Le. the root model.

The root model has an external interface with input and output ports to handle or

create external input and output events received by or sent to the experimental

frame. It contains one atomic model amI and one coupled model CM2. The

coupled model CM2 consists of two atomic models am2 and am3. As an EIC the

input port of CMI is connected to the input port of amI. As an EOC the output

port of CMI forwards events sent from the output port of amI. ICs are the

connections between the output port of amI and the input port of CM2, output

port of CM2 and the input port of amI and output port of am3 and the input port

of am2.

• Behaviour description:

The behaviour of a real-world system and sub system, respectively, is depicted by an

atomic model and its internal states, input/output events and event driven state

transition functions. At its input port it can receive external input events. An input

event is handled by an external state transition function. This function can

immediately but indirectly induce an internal event and subsequently an internal

[34]

Chapter 3. Discrete Event System Specification and Simulation

transition. With time controlled internal transitions an atomic model can react to

time events. Internal events are scheduled by a time advance function and their state

transitions are handled by an internal state transition function. After each external

and internal event the time advance function is called to schedule the next internal

event. With output events send from an output port the atomic model can influence

other entities connected to this port or create the output event of the super-ordinate

coupled model. Output events are created by an output function which is firstly

executed during internal event handling before calling the internal state transition

function.

Example:

The atomic model amI in figure 3.3 executes the external state transition function

Jex1 when it receives an input event. After initialisation and after each event

handling the next internal event is scheduled with the time advance function tao

During the internal event handling by model amI the internal state transition

function Jim is called. Before the function Jim is called an output event can be

created by executing the output function A..

• Event handling:

All input events are received over the input port regardless of event source and type.

All output events are sent over the output port regardless of event type. An event

received at an input port of a coupled model is forwarded to the connected sub-

entity(s). An event send to an output port of a coupled model by a sub-entity is

received and handled by the super-ordinate coupled model. An event send by a sub-

entity to one or more sub-entities of the same coupled model is routed by this

coupled model from sending output to receiving input port.

Example:

When CMI in figure 3.3 receives an event at its input port it is forwarded over

the EIC to amI. When CM2 forwards an output event to its output port, the event

[35]

Chapter 3. Discrete Event System Specification and Simulation

is forwarded to the input port of amI over the IC. When amI generates an output

event at its output port this event is forwarded to CM2 due to an IC and

simultaneously it represents an output event of CMI due to an EOC.

3.2.2 Formal Concept cf ClassicDEVSModelling

The Classic DEVS formal description defines coupled and atomic models as a combination

of sets and functions. The description of an atomic model is a 7- tuple [66]:

AM = (X, Y, S, 4x!, ~nt, A, ta)

• X, Yand S specify the sets of discrete inputs, outputs and internal states.

• 4xt: Q x X - S where Q = {(s,e) Is E S, O<e<tnext, elapsed time e = t - tlast}

The external state transition function o,w handles external input event at time t. It can

induce an internal transition with a rescheduling of the time of the next internal

event. The time of the external input event is stored in tlast'

• 4nr: S-S

The internal state transition function 4nr can establish a new internal state. The

execution of output function A and internal state transition function 4nr is induced by

a time driven internal event. The time of an internal event is established by the time

advance function ta. The time of the internal event is stored in tlast.

• A:S-Y

The output function A can generate an output event. If and which output event is

generated depends on the internal state S.

• ta: S - 9l(j u 00

The time advance function ta schedules the time of the next internal event after each

state transition.

Figure 3.4 shows the dynamic behaviour of an atomic model. Listing B.l in appendix B

shows a pseudo code skeleton of an atomic model.

[36]

Chapter 3. Discrete Event System Specification and Simulation

..
atomic model

X Xi external
event

~--~.. Xi EX at Ii

Si,Sk ES={sj, ... sn}

directly _ I I !

~ Si~/-Oex/Xi,si,e) ~ Yi+1
~lnduces- with e=(t,-I/asJ y. - l~S .1

• 1+ J - JL~,; i+ J/

~and
when la(si+I)=O Si+2= Oin/Si+j,IJ

yI I

-t------+-----------+
lJa.t t, I I
time of !

last event • Yk
directly A = A.(s,J

~and
Sk+1= Oin/s",l,J

t
y

internal
event at Ik

t

Figure 3.4 Dynamic behaviour of an atomic model

The description of a coupled model is a 9-tuple [66]:

CM = (dn, X, Y, D, (u,j, EIC, EOC, IC, SELECT)
• d; specifies the name of the coupled model.

• X and Y specify the sets of discrete inputs and outputs.

• D specifies the set of sub component names.

Md is the model of the sub component d

• EIC, EOC and IC are the sets of external input, external output and internal

couplings.

• The SELECT function prioritises concurrent internal events of sub components.

The figure 3.5 depicts the relations of the elements of a Classic DEVS coupled model.

Listing B.2 in appendix B shows a pseudo code skeleton of a coupled model.

[37]

Chapter 3. Discrete Event System Specification and Simulation

COUPLED MODEL CM

EIC
IC
EOC
D
{Md IdE D}
SELECT

= {{CM.X,Comp1.x} {CM.x,Comp2.X}}
= {{Comp1.Y,Comp3.x} {Comp1.Y,Comp4.X}}
= {{Comp3.Y,CM.y} {Comp4.Y,CM.y}}
= f'Comp1", "Comp2", "Comp3", "Comp4"}
= {MComp1, MComp2, MComp3, MComp4}
: priority_order(Mcomp1, MComp2, Mcomp3, MComp4)

Figure 3.5 Coupled model elements

The Classic DEVS approach supports the specification of behavioural system dynamics in

atomic systems and the specification of static component aggregations in coupled systems. It

is not possible to describe structural system dynamics at the coupled model level, i.e. the

deletion or creation of components and couplings or changes of interfaces, although all

necessary structural information is also available during simulation time as is described in

section 3.2.3. The only possibility to realise a structural system dynamic is to specify it with

logical constructs at the atomic model level. However, this removes the advantages of

reusability and model clarity and increases modelling complexity.

J.2.3 Classic DEVS Simulation

Beside the formal definition the second part of the Classic DEVS formalism is the

description of abstract simulator algorithms for the execution of DEVS models. The

algorithms are named abstract because they are implemented as a general pseudo code. The

abstract simulator has a modular, hierarchical structure matching exactly the modular ,

hierarchical structure of a DEVS model. A DEVS model can be directly transformed into an

executable simulator model using abstract simulator elements e.g. as in [48] [66] [67] shown.

The abstract simulator approach consists of three different elements namely root coordinator,

coordinator and simulator. The structure corresponds to the hierarchical DEVS model

[38]

Chapter 3. Discrete Event System Specification and Simulation

structure except the root coordinator added as the topmost entity. Each atomic model is

associated with a simulator element and each coupled model is associated with a coordinator

element.

Figure 3.6 shows the transformation of a DEVS model to an executable simulation

model using associated abstract simulator elements. The two coupled models CM1 and CM2

are mapped to two coordinator elements. The three atomic models aml ...am3 are mapped to

simulator elements.

CM2CM1

~ atomic model
~ COUPLED MODEL CJ abstract simulator element

Figure 3.6 An example of a Classic DEVS model with associated abstract simulator elements

The communication between root coordinator, coordinator and simulator instances is

message based. On top of the hierarchy the root coordinator initiates, controls and ends a

simulation cycle with different messages. It holds the simulation clock. Each coupled model

is associated to a coordinator instance. The coordinator instance forwards messages to its

subordinated coordinator and/or simulator instances. It holds the minimum time of the next

[39]

Chapter 3. Discrete Event System Specification and Simulation

internal transition event of its sub components in tnext• Each atomic model is associated with a

simulator instance. It holds the time of its own next internal events in tnext• It is important to

note that both coordinator and simulator instances have the same interfaces and receive the

same messages. Hence, a super-ordinate coordinator does not have to distinguish the type of

subordinate instances.

With this concept one prerequisite of a parameter and Structure optimisation

approach as introduced in section 2.3 is fulfilled. The modular modelling and flexible

simulation playa crucial role in model management and subsequent model generation.

Furthermore this concept enables that the modular hierarchical structure of a model

remains an unchanged part of the computational model during simulation runtime. The

preservation of the model structure is an essential prerequisite to the dynamic structure

modelling and simulation concept introduced later in this chapter. This dynamic Structure

modelling and simulation concept fulfils another prerequisite of parameter and structure

optimisation approach.

Figure 3.7 depicts the structure of a Classic DEVS model with the corresponding

abstract simulator instances. Moreover, the figure presents the different messages types

passed between the several instances of abstract simulator elements and the SUbsequent

DEVS model function calls. Because of complexity and clarity selected situations are shown

in sections:

i. (Figure 3.7a) initialisation phase with i-message handling:

During the initialisation phase model component's init functions are called because

of an i-message handling.

n. (Figure 3.7b) *-message handling created due to internal event of model am3 with a

subsequent x-message within the same coupled model:

The root coordinator advances the simulation clock and a *-message is firstly

created. The message is sent to the successor coordinator instance of coupled model

CM 1. This coordinator instance determines that the sub component CM2 is

[40]

Chapter 3. Discrete Event System Specification and Simulation

responsible for handling this event. Hence, the event is forwarded to the successor

coordinator instance of CM2. The coordinator instance determines that one of its sub

components scheduled the event. The simulator instance of model am3 initiates the

internal message handling. Due to the current internal state of am3 an output

message is generated. With the internal coupling am2-am3 the message is received

as an x-message by simulator instance/model am2.

iii. (Figure 3.7c) *-message handling created due to an internal event of model ami with

a subsequent x-message at different model levels:

The beginning of the message handling is similar to ii except the generated output

message is forwarded to another model level over internal and external input

couplings.

iv. (Figure 3.7d) *-message handling created due to concurrent internal events of

models am2 and am3:

The root coordinator advances the simulation clock and a *-message is firstly

created. The message is sent to the successor coordinator instance of coupled model

CMl . This coordinator instance determines that the sub component CM2 is

.responsible for handling this event. Hence, the event is forwarded to the successor

coordinator instance of CM2. The coordinator instance determines that two sub

components scheduled the event. The coordinator instance will then call the selectO

function to decide which sub components has a higher priority and forward the

message to the appropriate simulator instance. The simulator instance calls the

model functions A and 4nt. A result of calling A could be a y-message sent back to

the subordinate coodinator instance of CM2.

[41]

Chapter 3. Discrete Event System Specification and Simulation

......rml Classic DEVS model
~ function call ~ atomic model

~ COUPLED MODELo abstract simulator element
-+ message routing

Executable simulation model
a)

CM1 CM2

h...
start-msg

~

b) 10

d) le
"-msg t t=t,

Figure 3.7 An example of a Classic DEVS model with associated abstract simulator

elements, messages and model function calls during initialisation and simulation phases

The execution of the simulation model can be subdivided into two phases: initialisation

phase and simulation phase. Each phase is started and proceeded by several messages passed

between root coordinator, coordinator and simulator instances:

• The initialisation phase starts with an initialisation message (i-msg) generated by

the root coordinator. This message is redirected and handled by each coordinator

[42]

Chapter 3. Discrete Event System Specification and Simulation

instance and handled by each simulator instance, respectively. Each simulator

instance initialises the internal states S of the associated atomic model and

estimates the time of the first next internal event tnext• Each coordinator estimates

the minimum time of the first next internal events of all sub components. Due to

the hierarchical structure of the simulation model the root coordinator instance

gets the minimum time of the first internal event of all model components from

its direct successor coordinator after a complete i-msg handling.

• The simulation phase is started with the first *- message (*-msg) at the minimum

time of next internal event tnext estimated by the root coordinator as described

above. The consequence of a *-message are subsequent input and output

messages (x and y-msg). All simulator instances which received a *- or x-

message can change the time of their next internal event tnext• All coordinator

instances redirecting a *-, x- or y-message estimates the minimum time of next

internal events of their sub components. Due to the hierarchical structure of the

simulation model the root coordinator instance gets the minimum time of next

internal events after a complete *-message handling. The root coordinator

instance advances the simulation clock to that time and repeats the complete

process by sending the next *-message. Advancing the simulation clock and

message handling is repeated in a loop until the simulation end time tend is

reached or exceeded.

The different message types created and handled during initialisation and simulation phase

have the following characteristics:

• start-msg(tend)
The start-message is created and sent only once. It starts the simulation model

execution with the generation of an i-message.

• i-msgt)
The i-message starts the model component initialisation at time t=O. The root

coordinator instance sends one i-message to its direct successor coordinator

[43]

Chapter 3. Discrete Event System Specification and Simulation

instance to initialise all model and simulation components. Each coordinator

instance sends further i-messages to its sub components.

• *-msg(t)
A *-message received by a simulator instance starts the processing of an internal

event by calling the output function A., internal state transition function b:nt and

time advance function ta of the corresponding atomic model. The time of the =,

message is stored in tlast of the simulator instance. The output of function A. is

sent up to the parent coordinator instance as a y-message. The final execution of

function ta can cause a new time of the next internal event depending on the

internal state S of the atomic model and stored in tnext of the simulator instance.

A *-message received by a coordinator instance is sent to the successor

simulator or coordinator instance with the appropriate time tnext• For this purpose

the coordinator instance compares the actual simulation time with a list of t _
next

instance pairs. The time-instance-pairs of all next internal events of all sub

components are stored in an event chain of the coordinator instance. Concurrent

internal events i.e. different sub components have the same tnext are resolved by

the select function of the parent coupled model. After a complete handling of the

*-message the coordinator instance estimates the minimum time of next internal

events of all sub components and stores it in tnext•

• x-msg(t, x)
An x-message received by a simulator instance calls the external state transition

function 4xt and time advance function ta of the corresponding atomic model.

The time of the x-message is stored in tlast of the simulator instance. The final

execution of function ta can cause a new time of next internal event stored in t
next

of the simulator instance.

An x-message received by a coordinator instance is redirected to all sub

components with an appropriate EIC. After a complete x-message handling the

[44]

Chapter 3. Discrete Event System Specification and Simulation

coordinator instance estimates the minimum time of next internal events of all

sub components and stores it in tnext•

• y-msg(t, y)
The y-rnessage is created by an atomic model/simulator instance. It is routed by

the super-ordinate coordinator instance according the coupling relations to other

successor simulator and/or coordinator instances or to the parent of the super-

ordinate coordinator instance. Receiving simulator or coordinator instances get

this message as an x-message.

Listings B.3, B.4 and B.5 in appendix B show pseudo codes of Classic DEVS root

coordinator, coordinator and simulator.

3.3 DEVSExtensions

Extensions of the Classic DEVS formalism expand the classes of system models that can be

represented by DEVS. Several DEVS extension are introduced e.g. in [9] [38] [48] [60] [62]

and [66]. At the regular DEVS symposium held at the annual Spring Simulation Multi

Conferences the current development of DEVS, DEVS extensions and DEVS related

develo~ments are published. An incomplete list of DEVS extensions recently presented are:

• DEVS with Ports

The port extension adds additional input and output ports to atomic and coupled

models. The approach is introduced later in more detail.

• Parallel DEVS

Parallel DEVS (PDEVS) considers concurrent transition events. The approach is

introduced later in more detail.

• Dynamic Structure DEVS

Dynamic Structure DEVS (DSDEVS) enables model structure changes during a

simulation run. Several partial very different approaches exist. Dynamic structure

extensions introduced by Barros [9] and Pawletta et.al. [38] preserve the general

[45]

Chapter 3. Discrete Event System Specification and Simulation

structure of Classic DEVS modelling and simulation with additions to coupled

model definitions but unchanged atomic model definitions. Other dynamic Structure

extensions e.g. Uhrmacher with an agent based DEVS [60] introduce more extensive

modifications. The approach of Pawletta et.al. is introduced in more detail in section

3.3.3.

• Symbolic DEVS

It represents occurring events in a symbolic definition [12]. In conventional DEVS ,

the time base, its operations and relations are performed with real numbers. In

Symbolic DEVS, the objective is to explore multiple model behaviours

simultaneously e.g. with a symbolic result of the time advance function [66].

• Real Time DEVS

The DEVS model is developed in a conventional simulation environment. But it is

executed in real time rather than in model time. The time advance function delivers

time intervals rather than single values. The interval allows uncertainty when an

internal event has to take place.

• Fuzzy DEVS

.Provides another possibility to enable uncertainty into the model set and model

function definitions.

The next sections introduce three DEVS extensions in more detail. The chosen extensions

are used as a basis of the subsequent unifying DEVS formalism introduced as a key element

of this research.

3.3.1 DEVSwith Ports

The introduction of ports into the Classic DEVS formalism makes modelling easier and the

representation of information flow more clearly [66]. In Classic DEVS each model has only

a single input and a single output port. All events are received and sent over these ports.

With the port extension, a model has several input and output ports each dedicated for a

[46]

Chapter 3. Discrete Event System Specification and Simulation

specific employment i.e. event type. A model can have several output ports which can be

connected to input ports of other models as shown in figure 3.8. Hence, each event can use a

dedicated, well defined routing path. The modelling becomes more structured; a model can

become clearer and better understandable through differentiated interfaces.

atomic model
atomic modelor

orCOUPLED MODEL .
COUPLED MODELfj ~ ~ ratomic model ·.

or ·
~ COUPLED MODEL ·f--_J v;-~atomic model Xn atomic model· ·or · · or· ·COUPLED MODEL ~ COUPLED MODEL

Figure 3.8 Models with multiple input and output ports

The formal description of Classic DEVS with Ports largely remains the same except the

extended definitions of X, Yfor atomic and coupled models [66]:

X = {(p, v) Ip E InputPorts, v E Xp}

y = {(p,v) IpE OutputPorts, v E Yp}

• p is the input or output port of the model

• v is a discrete value

• Xp and Yp specify the sets of discrete inputs and outputs at port p

Whereas in Classic DEVS the coupling definitions consist of a sub model name as

destination and source, respectively, for EIC and EOC and a pair of sub model names for IC

the port extension necessitate a coupling definition extension, too:

• EIC = { (input port, d.inputpon) I inputport E Inputl'orts d ED,

d.input port E InputPorts of Md}

The external input coupling definition of a coupled model is a set of pairs of an input

port name of the coupled model itself and an input port name of the destination sub

model.

[47]

Chapter 3. Discrete Event System Specification and Simulation

• IC = { (dioutput port, di.inputport) I dcd, ED, d.outpui pon E OutputPorts of

Mdi' di.inpur port E InputPorts of Mdk, ie:»k]

The internal coupling definition is a set of pairs of an output port name and an input

port name of sub models.

EOC = { (d.output port, output.port) I d.output port E OutputPorts of Md>d ED,•

outputport E OutputPortsJ

The external output coupling definition of a coupled model is a set of pairs of an

output port name of source sub component and an output port name of the coupled

model itself.

Listings B.6, B.7 and B.8 in appendix B show pseudo codes of an example Classic DEVS

with Ports atomic model and pseudo codes of simulator and coordinator. Differences to the

Classic DEVS pendants are marked in bold face type.

3.3.2 Parallel DEVS

Parallel DEVS (PDEVS) was introduced by Chow and Zeigler [13]. It adds new elements

and functions to the Classic DEVS formalism. It allows all imminent components to be

activated and enables sending their output to other components at the same time

concurrently. Multiple outputs are combined in a bag which is sent as a whole to a model's

external state transition function. A bag is similar to a set, containing an unordered set of

elements, but allows multiple occurrences of an element. InClassic DEVS by contrast events

are handled individually. In PDEVS during the *-message handling firstly all outputs are

established before calling external and internal state transition functions. Each receiving

component is responsible for examining and interpreting its combined inputs in the correct

order. PDEVS gives the atomic model more control over the handling order of concurrent

external and internal events. In Classic DEVS a super-ordinate component, the coupled

model, is responsible for the execution order of concurrent internal events of different sub

[48]

Chapter 3. Discrete Event System Specification and Simulation

components using the select function. In PDEVS the order of simultaneous events is locally

controllable at atomic model level with an additional, third state transition function, the

confluent transition function 4on. Hence, it merges the decision logic of execution order of

concurrent events with the event handling functions at same level. Apart from that, there is

no difference in the principle of event handling to that described in section 3.2.

According to the extensions of PDEVS an atomic model is defined by the following 8- tuple

[13]:

AM = (X, Y, S, 4xt, ~nt' 4on, A. ta)

• X, Y and S specify the sets of discrete input events, output events and sequential

states.

• 4xt: Q x X' -+ S where X' is a bag covering elements of X and Q = ((s,e) I s E S,

O<e<tneXb elapsed time e = t - flast 1

The external state transition function 4xt handles a bag covering external inputs

X'= (Xi I Xi E X}.

- The internal state transition function Jint establishes a new internal state. The

execution of output function A and internal transition function Jim is induced by a

time driven internal event. The time of an internal event is established by the time

advance function tao

• 4on: S x X' -+ S

The confluent transition function 40n handles the execution sequence of Jim and 4xt

functions in case of concurrent external and internal events.

o The definition 40n (s, X') = 4x,(Jin,(s), 0, X') with 4x,(s, e, X') of the

confluent transition function is equivalent to the Classic DEVS behaviour

with a higher prioritised internal event handling.

[49]

Chapter 3. Discrete Event System Specification and Simulation

o The alternative defintion 4ois, X') = 4nt(h;xls, ta(s), X')) with 4nt(s) of the

confluent function firstly handles external events.

o The execution of the confluent function with an empty bag 4ois, null) calls

directly the internal transition function 4nt.

• A: S - yb where yb is a bag covering elements of Y

The output function A can generate a bag covering outputs yb = (s. IYi E Y J. The

generated output depends on the internal state S.

• ta: S - mt u 00

The time advance function ta schedules the time of the next internal event after each

state transition.

The figure 3.9 shows the dynamic behaviour of an atomic PDEVS model in a situation with

concurrent external and internal events. Due to the concurrent events the confluent transition

function 40n is called. Depending on the specific implementation of function 40n sequence a)

or sequence b) is executed.

x"={Xi I Xi €X}
X={Xo. ... xml ..

atomic model Y'={Yj IYj € n
Y={Yo. .. ·Yol -

'----I•• ttl 1111,1 l~
'I[, Su.Su+I.Su+2 € s={So. ... srJ

example input bag'

X: =(xa,xb,xcl ~

1:next=!u ~-+·····....I-:-tu------------t.~ a) SU+~- oex/(X', Sib e)
t with e = (tu - tlasJ

concurrent 4
external and S - >: IS "b e) Su+2= Oin,(Su+l, t)u+2- Ucont· ID A, ;I r--~~_";;;,,,UI---I
internal calling a)or b) depends on b) su+1 - Oint(SIb t,J
event at ttl specific implementation of !icon

S,,+2= Oex/(x", s"+J. e)

ex~mple output bag:

Y" ={Yd,Ye}

Figure 3.9 Dynamic behaviour of an atomic PDEVS model

The definition of a coupled model for PDEVS is the same as for Classic DEVS except for

the absence of the select function [13]:

CM = (dm X, Y, D, { Md}, EIC, EOC, IC)

[50]

Chapter 3. Discrete Event System Specification and Simulation

The generation of an executable PDEVS model is carried out similarly to Classic DEVS i.e.

the same coupling of atomic models with simulator instances and coupled models with

coordinator instances and the perpetuation of the original hierarchical model structure.

Listings B.9 and B.lO in appendix B show pseudo codes of an example PDEVS atomic

model and a PDEVS simulator. Differences to the Classic DEVS pendants are marked in

bold face type.

3.3.3 Dynamic Structure DEVS

Several approaches extend the Classic DEVS to Dynamic Structure DEVS (DSDEVS).

Barros [9] [10] and Pawletta et.al. [42] introduce two DSDEVS variants with an extension of

the coupled model definition while the atomic model definition remains unchanged. With

theses extensions the coupled model is able to change its structure during simulation time.

Uhrmacher et.al. [60] introduce an agent based approach. It defines extensions for both

atomic and coupled systems. Another approach is Cell-DEVS, a combination of cellular

automata with the DEVS formalism where each cell consists of a single DEVS model [63].

The different types of extensions are carried out due to different application fields or

problem definitions e.g. a typical Cell-DEVS application field is social and environmental

modelling and simulation. The approaches of Barros and Pawletta are extending the classic

formalism without changing its overall principle and thus the general application field of

Classic DEVS. This research is restricted to and continues the research of Pawletta. This

DSDEVS approach is introduced in detail in the following.

DSDEVS by Pawletta enables several types of structural dynamics:

• creation, destruction, cloning and replacement of sub components

• exchange of a sub component between two coupled models

• changing coupling definitions of a coupled system

Figure 3.10 shows an example of structure changes, the creation of a sub model with an

additional extension of the coupling definition.

[51]

Chapter 3. Discrete Event System Specification and Simulation

CM1 CM1

am atomic model CM coupled model t1 t

Figure 3.10 Examples of structure changes at coupled model level

Pawletta et.al. have introduced an extension of Classic DEVS to enable structure variability

during simulation time [38] ... [45] firstly named Variable Structure DEVS. To avoid name

and abbreviation confusions the name of this approach was changed to Dynamic Structure

DEVS (DSDEVS) in later publications [34] et seqq. The approach extends the coupled

model definition but the atomic model definition stays unchanged. During the simulation

time a coupled model can change its structures. Each structure can be seen as a structure

state s, with So, s., .i..s; E SDS' A single structure state Sj describes the structure relevant

elements of a coupled model i.e. it defines sub components with their couplings, the sets of

input and output events together with the concurrent internal event handling function select.

A structural change of a coupled model means the modification of the current structure state.

Additionally a structural state set HDS can store further structure information e.g. the number

of structure changes at the present time or the current structure number. External or internal

events, handled by the additional state transition functions Ox&s and Oint at coupled model

level, induce structure state changes and as a result model structure changes. This dynamic

structure extension of Classic DEVS was developed with a regard to hybrid systems, i.e.

systems with continuous and discrete event dynamics. In the following only the relevant

aspects for discrete event systems are taken into account.

A DSDEVS coupled model is defined by the following 6-tuple [38]:

CMDS = (dds, SDS, ~&s, ~nt' A, ta)

• dds specifies the name of the coupled model.

[52]

Chapter 3. Discrete Event System Specification and Simulation

• According to the above definition of a coupled model, its structure consists of sets of

sub components and coupling relations. Structure changes means modifications of

these sets. Obviously, the sets of sub systems and coupling relations could be

interpreted as a structure state. The set of sequential structure states

{So. si;s.} = SDS defines all structure variants of the variable Structure coupled

model CMDs. Structure state changes can be induced by handling external or internal

events of the coupled model itself or by state events i.e. output events of

subordinated components. A structure state is defined by a 9-tuple:

Si = (X, Y, HDS, D, {Md), ne. soc. le, select)

• X and Y specify the sets of discrete input and output events. The sets exactly

match the sets X and Y in Classic DEVS.

• The set HDS represents additional structure related state variables. They are

equivalent to the state set S of an atomic model.

• D specifies the set of sub component names.

• Md I d € D

Md is the model of the sub component d of the coupled model CMDs• The set

{ Md} defines all sub components of CMDs•

• EIC, EOC and IC are the external input, external output and internal

couplings.

• The function select prioritises concurrent internal events of the coupled

model itself and its sub components.

• Ox&s: QDS x X -+ HDs where QDS = {(h,e) I h E HDS, O<e<tnext, elapsed time e= t-t/ast}

The external and state transition function ox&s handles external input events and state

events i.e. output events of sub components. However it is unreasonable to make

changes in the set of sub components or the coupling relations by this function

directly. This could lead to ambiguous event handling because external events could

[53]

Chapter 3. Discrete Event System Specification and Simulation

simultaneously influence the dynamic of sub components and the structure state.

Consequently the 4&s function is only allowed to modify structure related state

variables in the set HDS• However, it can induce a structure state change i.e. a change

of the model structure by scheduling an immediate internal event.

The internal transition function 4nr can change the structure state s, to Sj+l and as a

result induce a structure change of CMDs• The execution of output function A and

internal transition function 4nl is induced by a time driven internal event. The time of

an internal event is established by the time advance function tao

• A: SDS- Y

The output function A can generate output events.

• ta: SDS - 9lt u 00

As with the dynamic of atomic models, internal events are scheduled by the time

advance function tao After each state transition the next internal event is established

by the time advance function.

The dynamic behaviour of an atomic model is identical to the behaviour in Classic DEVS.

Figure 3.11 shows the dynamic behaviour of a variable structure coupled model. The figure

depicts two external input events and one internal event. Reasons for an input event handling

can be an external input event at the input port of the coupled model itself or an external

output event at the output port of a sub component Md of the coupled model. The handling of

both events by the coupled model is identically. As a result of an event the structure related

state variable set HDS can be changed and with the concluding call of the time advance

function an immediate internal event can be induced. An internal event is handled by a

coupled model similar to the internal event handling of an atomic model, i.e. the event

handling can induce a change of the structure state set SDS, and in this case a change in the

set of sub components {Md} and/or the coupling sets EIC, IC and EOC.

[54]

Chapter 3. Discrete Event System Specification and Simulation

Coupled Model alte

...... t1 J ev, ,

X= :...~ :;
Y=

{Xo. ... x"J ···L.~:~~~j.f·~··..j {yo. ... yor

Su E SDS = {SO""Sn}

directly
~

"Xu EX external input hu+/ = 0

I II I ~ event Xu at tu with e-t
It.,or f..at

~Induces
~ Md. u€Md.Y out ut event hu+/=o

r internal

~
Coupled Model

X= , Ytz:..-.x-m-:-iJ~ -t: }-"""''''Df;-=--.
{yo. ... yor

~ P
Md.yu at tu

-t..... •
~.at '"

with e = (tu - t/asJ

t

~. t I InducesIn erna Yv = A.(sv) and
event at tv _I Sv>l - OJ,,,(s,,, tv) ~

t" t

Figure 3.11 Dynamic behaviour of a coupled DSDEVS model

Examples of sequential model structure changes are shown in figure 3.12 a-d. The fOllowing

definitions of the structure state set describe the insert and change of sub components and

couplings as a result of internal events and changes of the sequential structure state set

Si E SOS by the function 8.nt. The subsets X, Y and Hos and the select function of a structure

state Si E Sos will not be detailed.

a) b)

rnpu~CM "" B Outpu

CM

c) d)

Input EIC ./ l EOC Output Input EIC EOC Outpu
CMI

am- J CM

Figure 3.12 Examples of sequential structure changes of a coupled model

a) Figure 3.12a depicts a coupled model CM without sub components.

D, { Md }, EIC, EOC and IC are empty sets

[55]

Chapter 3. Discrete Event System Specification and Simulation

b) In figure 3.12b the coupled model contains one sub component, the atomic model

am}, created as a result of the handling of an internal structure event i.e. the

execution of function 8,nt.

D = [umi]

Md = {Mam]}

EIC, EOC and IC are empty sets

c) Figure 3.12c depicts external input and output couplings created as a result of the

handling of an internal structure event i.e. the execution of function 8,nt.

D = [ami }

Md = {Mam]}

EIC = { (CM.Input,am].Input) }

EOC = {(am].Output,CM.Output)}

IC is an empty set

d) Figure 3.12d depicts the insert of sub component am2 and the change/creation of

several couplings as a result of the handling of an internal structure event i.e. the

execution of function 8,nt.

D = { am], amz }

u,= {Mam], Mam2}

EIC = { (CM.lnput,am/.Input)}

EOC = {(am2.0utput,CM.Output)}

IC = [Iami.Output, am2.Input)}

3.4 Extended Dynamic Structure DEVS

Sections 3.2 and 3.3 introduced the Classic DEVS formalism and several DEVS extensions.

Every extension has its advantages and widens the application field of DEVS in a different

direction, PDEVS generalises the specification and handling of concurrent events, DEVS

with Ports enables a more structured modelling and DSDEVS introduces dynamic structure

[56]

Chapter 3. Discrete Event System Specification and Simulation

changes at coupled model level during simulation time and significantly eases the modelling

of larger real systems. The extensions have one joint attribute: they are based on the Classic

DEVS formalism. Hence, the decision on one DEVS extension inhibits the use of advantages

of another one. This principle leads to the idea of a merging formalism to combine the

advantages of different approaches and widen the application field of the resulting

formalism. In [66] a first step into this direction is undertaken, the introduced PDEVS

formalism is a combination of the original PDEVS and DEVS with Ports. Further steps into

this direction are not known. The Extended Dynamic Structure DEVS (EDSDEVS)

combines Classic DEVS with the extensions: PDEVS, DSDEVS and DEVS with Ports. The

fusion results in a DEVS formalism with the following main characteristics:

• Formal model description by sets and functions

• Exact definition of simulation algorithms

• Modular, hierarchical and dynamic structure modelling and simulation formalism

• Dynamic behaviour description at atomic model level

• Dynamic structure description at coupled model level

• Exact behaviour definition at critical situations with concurrent events

• Substantial similarity between real system and model

The next section introduces the formal concept of EDSDEVS modelling with formal

descriptions and dynamic behaviour of atomic and coupled models. Section 3.4.2 goes into

detail of the EDSDEVS simulation concept with abstract simulator algorithms, message

handling and model function calls.

3.4.1 Formal Concepto!EDSDEVS Modelling

The EDSDEVS formal descriptions of coupled and atomic models as a combination of sets

and functions are similar structured as the Classic DEVS formal description as introduced in

section 3.2.2.

[57]

Chapter 3. Discrete Event System Specification and Simulation

An atomic EDSDEVS model is a fusion of PDEVS with DEVS with Port atomic model

definitions. The atomic EDSDEVS model AMEDs is defined as an 8- tuple:

AMEDS = (X, y, S, 4xt, 4nt, 4:om A, ta)

• X = {(p,v) Ip € InputPorts, v € Xp}

y = {(p,v) Ip € OutputPorts, v € Yp}

The definitions of both sets are identical to the definitions in DEVS with Ports as

introduced in section 3.3.1.

• S specifies the set of internal states and is identical to internal state set S of an atomic

Classic DEVS model.

• b:xt: Q X Xb --+ S with x!' = {Xi I Xi = (p,v), p € InputPorts, v € Xp } and

Q = {is,e) I s E S, 0 < e < tnext, elapsed time e = t - tlast}

The external state transition function b:xt handles a bag covering external inputs.

Each input consists of a pair of a discrete input v € Xp and an input port p €

InputPorts. The set Xp is the set of discrete inputs at port p and InputPorts is the set

of input ports of model AM. The function b:xt can induce an internal event with a

rescheduling of the time of the next internal event.

This extended definition of b:xt is a fusion of the b:xt definitions of PDEVS and

DEVS with Port.

The internal state transition function 8.nt can establish a new internal state. The

execution of output function A and internal state transition function 8.nt is induced by

a time driven internal event. The time of an internal event is established by the time

advance function tao

The definition is identical to definition in Classic DEVS.

[58]

Chapter 3. Discrete Event System Specification and Simulation

The confluent transition function 40n handles the execution order of & and s:1nl Uext

functions during concurrent external and internal events. In spite of the same

function signature 4onCs, X') the parameter X' is different to that in the PDEVS

definition as described in section 3.3.2. Anyhow the three 40n definitions also apply

here.

This extended definition of 40n is based on the PDEVS 40n function definition.

Unlike in PDEVS the function has to handle a bag covering inputs. Each input

consists of a pair of discrete input and input port.

• A: S - Y' with Y' = ts. IYi :-:(p, v), P € OutputPorts, v e Yp}

The output function A can generate a bag covering outputs Y'. In spite of the same

function signature Y' = A (s) the function result Y' is different to that in the PDEVS

definition as described in section 3.3.2. The function result is a bag covering outputs

Y'={ Yi I Yi = (p, v)} each consisting of a pair of discrete output v e Yp and output

port p € OutputPorts. The set Yp is the set of discrete outputs at port p and

OutputPorts is the set of output ports of model AM. If and which outputs are

generated depends on the internal state S.

This extended definition of A is based on the PDEVS A function definition. Unlike in

PDEVS the function generates a bag covering outputs each consisting of pairs of

discrete output and output port as introduced in DEVS with Ports.

• ta: S - 9i6 u 00

The time advance function ta schedules the time of the next internal event after each

state transition. The definition is identical to the definition in Classic DEVS as

introduced in section 3.2.2.

The figure 3.13 shows the dynamic behaviour of an atomic EDSDEVS model amEDS. At time

tu the confluent transition function 40n handles two concurrent events. The first event

contains a bag covering external inputs received by the atomic model amEDS· The figure

[59]

Chapter 3. Discrete Event System Specification and Simulation

depicts an example bag covering three external inputs received at two different input ports. A

concurrent internal event at tu was scheduled by the previous execution of the time advance

function tao Depending on the specific implementation of function 40n sequence a) or

sequence b) is executed. The execution of the output function A. creates a bag covering

outputs. The depicted example bag YJ' covers two outputs at two different output ports.

Xinpor/ = {xO,···xm} amEDS You/porto = {yo , ... Y p }o "io ..
inporto ... outporto ...

. inporli ..
Su,Su+l,Su+2 E S = {so, ... Sr}

outpoltj

X. ':"
Y - r:= - ...inport, outport j

x"={Xk I Xk = (v,p), Y'={Yk IYk = (v,p),
v€~ v€~
p € Inputl'orts} p €OutputPorts}

iJ number of input and output ports 4. ltlill [I
m.n.p.q number of different X and Yevents per port . .' .'
r number of internal states
>!' bag of input events

example input bag: Y' bag of output eventsX: = {(x.,inportO)'(Xb,inporto),(xc,inportl)}

)1~IiJ+
t"ext=tu~ 2:-+.....-1-------------- t Su+2 = Jint(SU+l, t,J

~alt tu b) I--~-";"";;"-...J
concurrent --~ Su+2 = Jcon(sw x"we) Su+l = Oint(Sw t,J

external and calling a) or b) depends on
internal speCific implementation of !icon

event at tu

example output bag:

yub = {(y d ,outpon
O
)'

(Ye' outpon1) }

I.
s.

bag of input messages at /.
time of concurrent external and internal message
state at time I.

Figure 3.13 Dynamic behaviour of an atomic EDSDEVS model

Listings B.ll in appendix B shows pseudo code of an atomic EDSDEVS model.

A coupled EDSDEVS model is defined by the following 7-tuple:

CMEDS = (dEDS, SEDS, ~&s, 4n/, 40m A, ta)

• dEDS specifies the name of the coupled model.

• In the EDSDEVS formalism the coupled model structure consists not only of sets of

sub components and coupling relations as in DSDEVS, introduced in section 3.3.3,

[60]

Chapter 3. Discrete Event System Specification and Simulation

but also of additional interface definitions i.e. input and output port definitions. The

set of sequential structure states {So. Sf, ... ,SnJ = SEDS has to define all structure

variants of the coupled model CMEDs· Two model structure variants can vary in

different interface definitions, in contrast to DSDEVS where each model has a non-

variable interface with a single input and a single output port. Hence, a structure

state has to incorporate interface definitions with sets of input and output ports

additionally to the structure state definition as introduced in section 3.3.3. An

EDSDEVS structure state is defined by a lO-tuple:

Si = (X, Y, HEDS, D, I M»}, InputPorts, OutputPorts, EIC, EOC, IC)

• X and Y specify the sets of discrete input and outputs. The sets exactly match

the extended definitions of X and Y as introduced in section 3.3.1 with the

introduction of DEVS with Ports.

• The sets HEDS, D and Md exactly match the sets HDS, D and Md of the

DSDEVS formalism introduced in section 3.3.3.

• InputPorts and OutputPorts specify the sets of input and output port names

of the coupled model CMEDs. These two elements of the structure state Si are

introduced by the EDSDEVS formalism.

• EIC, EOC and IC are the external input, external output and internal

couplings of CMEDs. The definition of the coupling relations exactly match

the definition as introduced with the DEVS with Ports extension in section

3.3.1.

• ox&s: Q x X' - HEDS where X' is a bag covering input, input port pairs and

Q = {(h,e) I h E H£DS,O<e<tnexI>elapsed time e = t - tlast J

The external and state transition function ~xt handles a bag covering inputs. Each

input consists of a pair of:

[61]

Chapter 3. Discrete Event System Specification and Simulation

o a discrete input v € Xp and an input port p e InputPorts. The set Xp is the set

of discrete inputs at port p and InputPorts is the set of input ports of model

CMEDs•

o a discrete output v e Md. Yp and an output port p € Md.OutputPorts where Md

is the model of the sub component d of the coupled model CM
EDs

• The set

Md' Yp is the set of discrete outputs at port p and Md.OutputPorts is the set of

output ports of model Md.

o a discrete input v € Md.Xp and an input port p e Md.lnputPorts where Md is

the model of the sub component d of the coupled model CM
EDs

• The set

Md.Xp is the set of discrete inputs at port p and Md.lnputPorts is the set of

input ports of model Md.

This extended definition of 4x/ is a fusion and extension of the 4x/ definitions of

DSDEVS, PDEVS and DEVS with Ports. In DSDEVS only state events induced by

output events of sub components are handled. However, an output port can have

coupling relations to multiple input ports. In this case there is a difference in the

handling of a single output event of a single source sub model or multipls input

events of different destination sub models. Hence, the external and state transition

function of EDSDEVS can handle both output and input events. However, the

functionality is in accordance with the description of the DSDEVS external and state

transition function ~&s introduced in section 3.3.3.

• 4n/: SEDS - SEDS

ta: SN - 9i6 u 00

The internal state transition function 4nl> and the time advance function ta exactly

match the functions of the DSDEVS formalism introduced in section 3.3.3.

[62]

Chapter 3. Discrete Event System Specification and Simulation

The confluent transition function 4-on handles the execution sequence of 4nt and Oexl

functions during concurrent external and internal events.

The EDSDEVS formalism introduces the confluent transition function also at

coupled model level due to the fusion of PDEVS and DSDEVS. A coupled

EDSDEVS model handles external, state and internal events itself instead of only

forwarding them as in PDEVS. Hence and in contrast to PDEVS, in EDSDEVS

concurrent external and internal events can occur also at coupled model level.

Consequently, a confluent transition function to handle concurrent events is also

necessary at this level. The functionality is in accordance with the description of the

confluent transition function 4-on for atomic model in this section.

• A: SEDS ---+ yb

The output function A can generate a bag covering outputs yb = {yd. An output Yi

consists of a pair of discrete output v E Yp and output port p E OutputPorts. The set

Yp is the set of discrete outputs at port p and OutputPorts is the set of output ports of

model CMEDS• If and which output event is generated depends on the internal state

SEDS'

The output function A in the EDSDEVS formalism merges three sources:

o The output function A at coupled model level is introduced by DSDEVS.

o The definition of the function creating a bag covering outputs is based on

PDEVS.

o The output event structure with pairs of output/output port is introduced by

DEVS with Ports.

The figure 3.14 shows the dynamic behaviour of a coupled EDSDEVS model CMEDS• At

time tu the confluent transition function 4-on handles concurrent external and internal events.

The first event is a bag covering inputs received at input ports by the coupled model CMEDS•

The figure depicts an example bag covering three external inputs received at two different

input ports. A concurrent internal event at tu was scheduled by the last execution of the time

[63]

Chapter 3. Discrete Event System Specification and Simulation

advance function. Depending on the specific implementation of function 40n sequence a) or

sequence b) is executed. The execution of the internal state transition function 8.nt can change

the structure state Su to Su+l or Su+l to Su+2 and therefore the model structure of CMEDS to

CMEDS' The execution of the output function A creates a bag covering outputs Y~. The

depicted example bag Y~ covers two outputs at two different output ports.

Listings B.l2 in appendix B shows pseudo code of a coupled EDSDEVS model.

Xinpono ={XO, ... xm} :--.~ .: ,. ... __, YoulPono ={Yo,· .. Yp}
inporto'" : ::~~~~: !.-~ t·~outporto •

:__.~ ~__: L..... •

inpo~. .' outportJ •--------~--~~I ~~~--------~~
X inporti = {xo , ... xn } '-- __ s_u_E_SE_DS__ _Jt:uIPorl j = {Yo'''' Yq}

Y'={Yk I Yk = (v,p),
vErjJ>

PEOUIC III!III,I I:
example output bag:Y: ={(Yd,OUtPOHo),

(Ye' OUtPOH1)}

X'={Xk I Xk = (v.p),
V EXpuMrJ.Xp uMrJ.rp,
p E InpUIPOrls uMd.lnputPorts

UMd.OUtputPorts}

CM~DS

example input bag:
X: = {(Xa' inporto)' (Xb, inporto)' (xc' inportl)}

)IM¥Jl

t=t"ext _____. 2:-t.....+---------------------- t Su+2=O/n/Su+J, t,J
~a.t tu b) 1===0=====-=1

t s (x:) Su+f = O/m(Su, t,Jconcurren _____. S.+I =«: S.' • .e
external and calling a) or b) depends on hut2 = OerrIX:, hUff, e)

internal event at tu specific implementation of 0""
x:
I,

Xinpono = {Xo,. .. xr}
inporto

atlu
i,j number of input and output ports
m,n,p,q number of differentXand Yevents per port
i' bag of input events
r' bag of output events

a) hUff = OerlX:, h; e)
with e = (tu' t/asJ

s,

bag of input messages at I,
time of concurrent external and intemal message
structure state at time I,
structure state after time I,
structure related state variables at time t.
structure related state variables after time tu

Su+1

h,
hll+J

Figure 3.14 Dynamic behaviour of a coupled EDSDEVS model

[64]

Chapter 3. Discrete Event System Specification and Simulation

3.4.2 EDSDEVSimulation

The simulation engine for EDSDEVS models is a combination and extension of the

simulation algorithms of Classic DEVS, PDEVS and DSDEVS. The message handling of

coordinators are largely similar to simulators. Each coordinator holds its own time of next

internal event in Inext_c and searches the minimum time of next internal event in Inexl of sub

components and in its own Inex/_c'

Figures 3.15 and 16 depict an EDSDEVS model example with the associated

simulation model components i.e. root coordinator, coordinator and simulator instances and

the message handling. The figure is based on and extends figure 3.7 depicting a Classic

DEVS model example with associated simulation model components and message handling.

The overall structure is very similar to the Classic DEVS simulation model execution except

for additions at the levels of coordinator and associated coupled model. Because of

complexity and clarity selected situations are shown in sections:

i. (Figure 3.l5a) initialisation phase with i-message handling:

During the initialisation phase model component's init functions are called because

of an i-message handling similar to Classic DEVS. Additionally, after structure

changes i.e. modification of the sub component set during the simulation phase the

init function is called too.

ii. (Figure 3.16b) *-message handling created due to an internal event of model am2:

The root coordinator advances the simulation clock and a *-message is firstly

created. The message is sent to the successor coordinator instance of coupled model

CM1 (not depicted). This coordinator instance compares the actual simulation time I

with its own next internal event time stored in Inext_c and determines that it is not

responsible for handling this event. Hence, the event is forwarded to the successor

coordinator instance of CM2. The coordinator instance is again not responsible for

handling the message itself but knows that a sub component scheduled the event.

The coordinator instance will then forward the message to the appropriate simulator

[65]

Chapter 3. Discrete Event System Specification and Simulation

instance associated with am2. The simulator instance of am2 calls the model

functions A, and 4nt. A result of calling A, could be a y-message sent back to the

subordinate coodinator instance of CM2. This coordinator instance reacts with the

call of the model function 4&s of CM2 and a messge forward to the simulator

instance of am3 due to an appropriate IC coupling.

iii. (Figure 3.16c) *-message handling created due to an internal event of model CM2:

The depicted situation is similar to 3.16b except that the coordinator instance of

CM2 determines that simulation time f and its fnext_c are equal. Hence, it has to handle

the *-message itself with calling A, and 4nl model functions of CM2 with the

possibility of generating a y-message sent to a sub component and/or superordinated

coordinator instance and of changing its sequential structure state SEDS.

IV. (Figure 3.l6d) concurrent event handling with the confluent transition function & .
con-

The figure depicts the handling of concurrent external and internal messages by the

coodinator instance of CM2. The confluent function of CM2 is called to handle the

concurrent messages. Depending on the specific implementation of 40n the external

transition function 4&s and internal transition/output functions 4nr. respectively, are

firstly called.The external message is concurrently handled by the function 40n and

forwarded to the simulator instance of sub component am2 as a x-message due to an

appropriate EIC. Calling the output function A, could cause a y-message sent to a sub

component and/or superordinated coordinator instance.

v. (Figure 3.l6e) x-message handling:

(i) x-message at input, of CM2 and due to an appropriate EIC at input, of am2:

The first x-message is received by the coordinator instance of CM2. This

message is handled by the function 4&s of the coupled model itself and

concurrently forwarded to the simulator instance am2 due to an appropriate

EIC. Because no concurrent internal event exists the function 40n is not called.

[66]

Chapter 3. Discrete Event System Specification and Simulation

(ii) y-rnessage at output- of am2 and due to an appropriate IC forwarded as x-

message to input, of am3:

Due to an internal event the model am2 generates a y-message. This y-message

is handled by the super-ordinate coordinator instance which calls the function

b:&s of its associated model CM2. The coordinator instance concurrently

forwards the y-message as an x-message to the simulator instance of am3

because an IC exists between the output port outputs of am2 and the input port

inpuu, of am3.

EDSDEVS model
function call inputo output,

1am1 [output,

outputs
inputo output, 2 input; input,

outputs am3 I' ~I input, mput,

CM1
CM2

---.
........... message routing

~ atomic model

~ COUPLED MODEL

D abstract simulator element

a) start-msg

t
iend root coordinator

i-msg

simulator
ofam1

simulator
of am3 ~---_,~ast

tnext

Figure 3.15 An EDSDEVS model example with associated abstract simulator elements,

messages and model function calls during initialisation phase

[67]

Chapter 3. Discrete Event System Specification and Simulation

b) *-msg at t=t,

coordinator
ofCM2

CM2

8,&s(s,e,x)

x-msq to
simulator of am3

simulator am2

c) *-msg at t=f y-msg

CM2

ofam2
~ast
toext=ti

coordinator
ofCM2

~ast
toext_c~

to xt~ --::~::-:::::::---....I-----__J11/ \oIx-rnsg
d) x-msg *-msg y-msg

att=t
aT

t
•

coordinator 8",,(s,t,X") CM2
ofCM2 ~~t T J il
~ast

messages ,,-(s) /8int(S,t)

toext C=tl I I 8....(s.e.x") I
tnext=tl U..,

Ill' 'Jjx-msg

e)
x-msg

o
:5:
!'Js:
"0
c
5'"

x-ms

CM2coordinator
ofCM2

simulator
ofam2
~ast
tnext

simulator
ofam3
~ast
tnext

Figure 3.16 An EDSDEVS model example with associated abstract simulator elements,

messages and model function calls during simulation phase

[68]

Chapter 3. Discrete Event System Specification and Simulation

Listings B.l3 and B.l4 in appendix B show pseudo codes ofEDSDEVS coordinator and

simulator algorithms.

The EDSDEVS formalism developed from this research is a fusion of Classic DEVS

with several extensions. It widens significantly the application area. This part of the research

is an as generic as possible modelling and simulation formalism based on DEVS. Further

extensions are desirable and essential. To establish a widely accepted modelling and

simulation approach extensions for parallel computing and graphical modelling are

necessary. There are also approaches for hybrid DEVS extensions i.e. the support of

continuous state changes. These proposals are recommended as further research.

[69]

Chapter 4. Model Management - Model Set Specification and Organisation

Chapter 4

Model Management - Model Set Specification and

Organisation

Zeigler introduced in [66] a simulation based system design approach. It is a plan-

generation - evaluation process. The plan phase organises design alternatives with different

model structures and model parameters within defined system boundaries to satisfy given

design objectives. During the generation phase a specific model design is chosen and the

corresponding model is generated. This model is simulated during the evaluation phase using

an experimental frame derived from the design objectives.

The System Entity StructurelModel Base framework (SESIMB) [52] [66] is such a

simulation based system design approach. It is specifically configured to define, organise

and generate modular, hierarchical models and was developed to assist an analyst in model

organisation and generation. To represent a set of modular, hierarchical models, the SESIMB

framework is able to describe three relationships: decomposition, taxonomy and Coupling.

Decomposition means the formalism is able to decompose a system object called 'entity' into

sub-entities. Taxonomy means the ability to represent several possible variants of an entity

called 'specialisation'. To interconnect sub-entities the definition of a coupling relationship

is necessary.

The literature e.g. [52], [65] [66] and [69] describes slightly different specifications

of the SESIMB framework. Hence, section 4.1 defines a classic SESIMB framework

according to [52] and [66] as a basis for further extensions introduced in section 4.2.

[70]

Chapter 4. Model Management - Model Set Specification and Organisation

4.1 ClassicSystem Entity Structure/Model Base Framework

The SESIMB framework approach is [52] [66]:

The framework consists of two parts: (i) the system entity structure and (ii) the

model base.

A modular, hierarchical model is constructed based on: (i) the declarative system

knowledge coded in a SES and (ii) predefined basic system models stored in a MB.

The partitioning of a modular, hierarchical model is highly dependent on the design

objectives. Model parameters are a typical example. They are not really a part of the

model composition structure but nevertheless they can become a part of the system

entity structure if they are crucial for describing design alternatives.

• The model generation from a SESIMB is a multistage process. The first step is a

•

•

•

graph analysing and pruning process to extract a specific system configuration.

Based on this information a modular, hierarchical model is generated.

The SES is represented by a tree structure containing alternative edges starting at decision

nodes. With the aid of different edge types and decision nodes a set of different model

variants can be defined. To choose a specific design and to create a specific model variant

the SES has to be pruned. The pruning process decides at decision nodes which alternative(s)

to chose as a consequence of specified structure conditions and selection rules. The result of

this process is a Pruned Entity Structure (PES) that defines one model variant. A

composition tree is derived from a PES. The composition tree contains all the necessary

information to generate a modular hierarchical model using predefined basic components

from the model base (MB). Figure 4.1 shows the principal organisation and the

transformation process: SES 4 PES 4 Composition Tree + MB 4 Modular, Hierarchical

Model.

[71]

Chapter 4. Model Management - Model Set Specification and Organisation

SES/MB Specification

System Entity Structure Model Base

~ LD1D
'(.}o-

Pruned Entity Structure Composition Tree Modular Hierarchical Model

~
~

~
~ IIHG~

Figure 4.1 SESIMB formalism based model generation

The used SES definition is based on definitions published in [52] and [66]. A SES is a

labelled tree consisting of different nodes with optional properties and different edge types.

Figure 4.2 depicts a SES example which is referenced by the definition.

(vi)Root

I
(iii) Rootc!ec

I (couplings),-------------------+----------------,
(vi)A

I I I I
(iI)As ec ,-'" Bdec1 (iii)Bdec2

~ction rules) : I (III) I(CO~PlingS) ~UPlingS}

(v)A (v)A2 ' (v) D (v)E (v) F (v) H (v) K
(pl:d2) (pl=3) : (p2=3) (P2= 1)

~ ~f!!.eE.fi2.n.J
constraint}

(vi)B (vi)C

IOV)Cmasll8c

III(couplings)U(1.3)

Figure 4.2 A SES example

The SES formalism differentiates four types of nodes: (i) entity, (ii) specialisation, (iii)

aspect and (iv) multi-aspect. An entity node represents a system object. There are two

subtypes of entity nodes - (v) atomic entity and (vi) composite entity. An atomic entity

(figure 4.2 (v) cannot be broken down into sub-entities. The model base contains a

corresponding model for each atomic entity. Atomic models (described in chapter 3) and

atomic entities must not be mixed at this point Le. an atomic entity can also correspond to a

coupled model in the model base. A composite entity (figure 4.2 (vi) is defined in terms of

other entities, which can be of type atomic or composite entity. Thus, the root node of a tree

is always of type composite entity, while all leaf nodes are always of type atomic entity. The

[72]

Chapter 4. Model Management - Model Set Specification and Organisation

root node and each composite entity node of the tree has at least one successor node of type _

specialisation (figure 4.2 (ii), aspect (figure 4.2 (iii) or multiple-aspect (figure 4.2 (iv).

That means there is an alternate mode between entity nodes and the other node types. The

definition of the different node types can be briefly summarised as follows:

atomic entity node = (name, {av, ... av.j.selection constraints}

composite entity node = (name, successors, (aVI,." avn})

An entity node is defined by a name and is of type atomic or composite. Both node types

may have attached variables avoA composite entity node can have a single successor node of

type specialisation or multi-aspect or multiple successor nodes of type aspect. An atomic

entity node can have attached selection constraints when it is a successor of a specialisation

node.

specialisation node = (name, successors, selection rules)

A specialisation node is defined by a name and a set of successor nodes. In the tree it is

indicated by a double-line edge. A specialisation node defines the taxonomy of a

predecessor entity node and specifies how the entity can be categorised into specialised

entities. A specialisation node always has successor nodes of type atomic entity to represent

the possible specialisations. A specialisation node can define additional selection rules to

control the way in which a specialised entity is selected during the pruning process. Selection

constraints are added to successor entity nodes of a specialisation node. The specialisation

node A in figure 4.2 has two specialisations defined by the nodes Al and A2• During the

pruning process one of these specialisations is chosen. Due to the selection rule at node A2 it

is mandatory to chose node Bdecl when node A2 is chosen.

aspect node = (name, successors, coupling specification)

An aspect node is defined by a name, a set of successor nodes and coupling information. It is

indicated by a single-line edge in a SES tree. An aspect node defines a single possible

[73]

Chapter 4. Model Management _ Model Set Specification and Organisation

decomposition of its parent node and can have multiple successors of type atomic and/or

composite entity. The coupling specification is a set of couplings and describes how the sub-

entities, represented by the successor nodes, have to be connected. Each coupling is defined

by a 2-tuple. Each tuple consists of sub-entity source and destination information, e.g.

(SourceEntity.outputport, DestinationEntity.inputport). The composite entity B in figure 4.2

has two decomposition variants defined by the aspect nodes Bdecl and Bdec2• DUring the

pruning process one of the decomposition variants has to be chosen.

Using SESIMB to describe a DEVS model an aspect node defines the composition of a

coupled model.

multiple aspect node = (name, successor, coupling specification, number range property)

The definition of a multiple aspect node is similar to an aspect node. However, it defines

additionally a number range property and has only one successor node of type atomic entity.

It is indicated by a triple-line edge in a SES tree. A multiple aspect node also defines a

decomposition of a composite entity, but all sub-entities have to be of the same entity. Only

the number of sub-entities is variable according to the attached number range property. The

multiple aspect node Cmaspec in figure 4.2 illustrates the decomposition of composite entity C

that may be composed by one, two or three sub-entities L.

A multiple aspect node also defines the composition of a coupled model.

In figure 4.3 a SESIMB example points up the complete process of model generation from a

SESIMB to a modular hierarchical model. The SES tree defines a coupled model CM] with

two structure variants. The two variants are defined by the specialisation node CM2_spec

and specialisations CM2.] and CM2.2. The model base contains several basic components

which are referenced by the SES. The different possible pruning results are PES variant] and

variant2. After a transformation to a composition tree and a model generation, with the basic

components taken from the model base, the final results are the modular hierarchical model

[74]

Chapter 4. Model Management - Model Set Specification and Organisation

variant] and variant2, respectively. The SES tree does not define selection rules or selection

constraints. Hence, an analyst has to use other, external criteria to decide which alternative

structure should be chosen during the pruning process.

MB

~

~

PES

I
CM2.1

CM1 SES
I

CM1 dec
- {{CM1.x1.am1.x1}.{am1.y1.am2.x1}.

{am2.y2.am1.x2}.{sm2.y1.CM1.y1} .
.---- __ I--'{:.;_sm_2...:.y._,3.CM2.X1}.{CM2.y1.sm1.x3}}

CM2 am1 am2

";r;
CM2.1 CM2.2

CM1

I
CM1 dec=am1 am2

I
CM2.2

CM1

I
CM1 dec

r~i"
am1 am2

CM1
~s:{ ..}

CM2.1 am1 am2

CM1

~s:{ ..}

CM2.2 am1 am2

Composition
Tree

CM1Modular
Hierarchical x1

Model -"-'tt--"'"'='I

Figure 4.3 Detailed pruning and model generation example

[75]

Chapter 4. Model Management - Model Set Specification and Organisation

4.2 Extension of the System Entity Structure/Model Base Framework

Originally the SESIMB framework was developed to assist an analyst during the model

variant selection and a subsequent model generation. Pruning as a part of these processes is a

stepwise procedure with decisions at decision nodes under the control of selection rules and

structure constraints. Both rules and constraints represent supplementary

structure-knowledge as an addition to the structure-knowledge coded in the SES tree. The

supplementary structure-knowledge is used to support the selection of design alternatives

and to avoid invalid structures. This knowledge representation is customised to its usage

during the pruning. The upper part of figure 4.4 depicts the steps of the original pruning

process. An analyst initialises attached variables and makes decisions as long as unpruned

decision nodes exist. A decision at a specific decision node can cause the pruning at other

nodes according selection rules and structure constraints. The pruning in classic SES is a

n-step procedure (n is equal or less than the number of decision nodes) with the goal to

synthesise one valid model configuration.

In this research a new pruning principle is introduced. The lower part of figure 4.4

depicts the steps of the new pruning process. The new process is based on information

delivered by the optimisation method as depicted in figure 2.5 and is carried out in a single

step. A structure validation based on structure-knowledge is carried out after the pruning _

. not during - as in the original SESIMB framework. This important development means that

the new pruning procedure requires another representation for structure-knowledge

originally coded in selection rules and structure constraints. The new pruning of a SES tree is

carried out in one step based on the structure parameter set XSi• The model structure is

verified in a second, following step. The new pruning algorithm is a 2-step procedure. Figure

4.4 identifies the differences between the original and new principle. A detailed description

of the new approach is given in chapter 5.

Structure conditions as a new, alternative structure-knowledge representation are

added to composite entity nodes. They are used as the alternative to selection rules and

[76]

Chapter 4. Model Management - Model Set Specification and Organisation

structure constraints as defined in [52] and [66]. During the pruning sub trees are removed.

The remaining structure conditions are evaluated to verify the PES. Only if all structure

conditions are true the PES is valid.

Original Pruning
Start

Repeat until no unpruned decision nodes exist.

Check selection rules and
structure constraints. If
necessary automatically

prune appropriate
decision nodes.

Pruning

an unpruned
decision
node?

Make a decision
at a decision

node.

Exists

No

PES

New Pruning
Start

+

Invalid
Check

Structure
Conditions

Valid

PES

Figure 4.4 Comparison original pruning - new pruning principle

Figure 4.5 shows an example SES with a structure condition added to the composite entity

node ROOT. The SES defines 12 different design variants whereas not all variants are valid

according the structure condition. The figure depicts two variants, one valid and one invalid.

If the generated model structure contains the atomic entity nodes A2, D, E, F, L, it would be

[77]

Chapter 4. Model Management - Model Set Specification and Organisation

valid because the structure condition Pl+P2+1*P3=3+3+1*3<12 is true. The second model

Structure variant contains the atomic entity nodes A2, D, E, F, L, L. It is not valid because the

structure condition Pl+P2+2*P3=3+3+2*3<12 is false.

SES

I

C
I

Bdec1 Bdec2 Cmaspec
Icouplings:{ ..} I couplings:{ ..} IllcouPlings:{ ..}

rh II number renge property:{1,2,3}
o E F H K L

{p2=3} {p2=1} {P3=3}

Root

I (A...
Roo~ecI couplings:{..)

B

PES Variant 1

Root

I
Roo~ec

couplings:{ ..}

Variant2

B
I

C
I

Root

I
Roo~ec

couplings:{ ..}
I I ,

ABC

I I I
Aspec Bdec1. CmaspecI ~/mgs:'i'.} Ico~Plings:{ ..}

A2 DEF L L
1J21~ ~ fJD,~ ~

Bdec1 Cmaspec
~/ings:{..} IcouPlings:{..}

o EFL
~ fJD,~

structure condition:
p,+p~+1·PJ=3+3+1*3<12valid

/SPES valid

structure condition:
p,+P2+2*p3=3+3+2*3<12 invalid

/SPES invalid

Figure 4.5 SES example with a structure condition

Chapter 5 provides the description of the application of the extended SESIMB

framework. The chapter describes the combination of the introduced EDSDEVS formalism

and SESIMB approach with an optimisation method to the simulation based parameter and

structure optimisation as introduced in principle in section 2.3. The descriptions of the

pruning and the terminal model generation processes, as a part of the SESIMB framework

description, are provided in the context of other algorithms in chapter 5.

[78]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

Chapter 5

A Framework for Modelling, Simulation and

Optimisation

Chapter 2 introduced the key research concept - simulation based parameter and structure

optimisation as a merging framework of three methods, optimisation, model management,

and modelling and simulation. Chapter 3 introduced EDSDEVS as a modular, hierarchical

modelling and flexible simulation formalism as applied in the framework, and chapter 4

defines the SESIMB approach as a suitable model management framework. In this chapter a

complete framework for combined parameter and structure optimisation experiments is

proposed. After a brief description of the general framework structure, its methods are

discussed in detail and the entire algorithm is summarised. Finally implementation details to

describe a SESIMB structure with XML are introduced.

5.1 General Framework Structure

A fundamental overview of a simulation based parameter and structure optimisation

experiment is shown in figure 2.5. A more detailed structure of the framework with concrete

elements and information flow is depicted in figure 5.1. The interface definitions between

the three modules are a fundamental part of this approach. They bind the named methods

together to synthesise a simulation based parameter and structure optimisation.

On closer examination of the framework it is crucial to divide an optimisation experiment

into two phases:

[79]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

I. Initialisation phase

The model management reads and analyses a meta-model. Results of the analysis

are information about the multidimensional search space (Xs, Xp, Ds ,Dp). The

optimisation module is initialised with this information.

2. Optimisation phase

During the optimisation phase the optimisation method explores the search space

within a loop. Each examined search space point i.e. an ordered set of values

(XSi,XPi) is delivered to the model management module. This module starts up the

processes: structure synthesis, model generation, model simulation and performance

estimation. The optimisation loop ends when a stop criterion is fulfilled. Examples

of stop criteria are (i) going below a minimum alteration rate or (ii) exceeding the

maximum number of optimisation cycles. The result of a successful finished

optimisation phase is a parameter and structure optimised model.

j_XML(SESIMB)

Search Space Swith Model Management Module
____ ~5i!..J{p,_D..J~2..0____ H SES I MB II (Model Structures &
I Parameters Information) 1I XSi
I XSiXPi I PES II (Point of

I Optimisation Search Space)
Basic

I Module XPi XML
EDSDEVS• (DEVS)

Sub-Models
Optimisation - Modeling &

Method Simulation
~ 1 Module 1

I Model Generator I
lEDSDEVS Model

I EDSDEVS Simulator l
F·(R{y;), PJ 1

SimulationResult~
Objective ~ R{y;(XSi,xpJ)
Function ModelSelectionResults

I.... P;{XsJ..
.- - -Initialisation Phase .--Optlmlsatlon Phase

Figure 5.1 Structure of the simulation based optimisation framework

[80]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

The simulation based optimisation framework is segmented into the following modules,

methods and interfaces as depicted in figure 5.1:

1. Model Management Module: meta-model specification

A meta-model definition is read and interpreted by the model management during

the initialisation phase. A meta-model is defined in the form of a platform and

implementation independent XML file. The basic components of a MB are regular

EDSDEVS model components. They are referenced by the XML file with a model

name and a model instance name. The result of this step is a data structure with an

SES tree and references to a MB.

2. Interface Model Management Module - Optimisation Module: meta-model analysis

In a second step during the initialisation phase the model management module

analyses the SES tree and establishes the search space. The search space is defined

by a set of variables with their domains. These sets Xs, Ds, Xp and D; are sent to the

optimisation module.

3. Interface Optimisation Module - Model Management Module: transformation of a

search space points into a model configuration

- The model management module receives a search space point (XSi XPi
) within the

optimisation loop. The sets XSi and XPi are used to prune the SES, to synthesise the

model structure and to parameterise the model. The selected model structure and

model parameters are sent to a model generator as a platform and implementation

independent XML files.

4. Model Generation Method

Based on the received XML file with model structure information and references to

basic components the model generator creates an EDSDEVS model.

5. Simulation Method

[81]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

The EDSDEVS model is executed by an EDSDEVS simulator. In this research the

modelling and simulation method is based on the EDSDEVS formalism. Principally

this approach is not limited to EDSDEVS or DEVS formalisms exclusively.

6. Interface Model Management and Simulator - Objective Function

In this approach the objective function gets both simulation results from the

simulator and model structure selection results from the model management module

to establish the performance of the current model structure and parameter set.

7. Optimisation Method

The optimisation method establishes the next search space points to examine in a

loop until the stop criterion is fulfilled. The search space points are chosen based on

the search space definition and on previous objective function results.

5.2 Interface: Optimisation Module - Model Management Module

During the initialisation phase, the Model Management Module has to analyse the SES tree

to transform formal meta-model structure information into numerical data useable by the

Optimisation Module. Together with the model parameters the information is sent as

initialisation data to the Optimisation Module. The information, coded in the four sets X Ds, s,

Xp and D» is used to build the set X· = Xp u Xs and the corresponding domain set

D· = D» U Ds. During the optimisation phase repeated in each optimisation loop cycle the

optimisation method calculates a numerical data set xt = XPi U XSi• The set X] is sent to the

Model Management Module, which determines based on this information a new model

configuration, i.e. a new model structure and initial model parameters. Both transformations

are described by an example illustrated in figures 5.2 and 5.3.

The main task of the first transformation is to convert SES structure information to a

structure parameter set Xs and the corresponding domain set Ds. This is done by a tree

analysis starting at the root node, traversing the tree in a defined direction and considering

every node. If a node is a decision node, i.e. it is a specialisation node, multiple aspect node

[82]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

or composite entity node with alternative successor nodes, a structure parameter XSi is added

to the structure parameter set Xs and a corresponding domain dSi to the domain set Ds. The

domains of specialisation node and composite entity node are {I, ..., number of variants}.

The domain of a multiple aspect node is defined by its attached number range property.

Two general principles can be applied to traverse the tree: (i) depth-first and (ii)

breadth-first analysis. An advantage of the breadth-first analysis is the arrangement of the

variables. If it can be assumed that variant decisions at a higher level of the SES tree have

larger effects on the overall model structure than decisions near the leafs, a breadth-first

analysis should be preferred. The breadth-first analysis sorts the elements of Xs and Ds as

follows: elements on the left hand side of the ordered set correspond to higher levels of the

SES; elements on the right hand side correspond to decision nodes nearer the leafs. An

optimisation method could take this into account. Figure 5.2 illustrates the algorithm for

creating structure parameter set Xs and the corresponding domain set Ds based on SES tree

information. The analysis and Xs, Ds set build-up order is marked with small sequence

numbers.

SES (1)A ..

I
structure condition:
{P1+!:P21<13}

(2)Aclec

(3)8

I
(5)8dec

I

(4)C'
I

I
(7)Cdec2

~1=8}

(12) H 1(13)

I
(6)Cdec1

~1=4}

(10)F G(11)
I

(8)0 (9)E

I (15)cJ;;A'(14)r.'\ ", ..' .~.
""fIlespec II
11I{2,3,4} I 1 I

(16)K (17)E1 E2 E3(19)
{P2i= 2} (18)

(4)C => XS1,dS1={1 ,2} X = {Xs Xs Xs}
Ik (14)Omaspec =>Xs2,ds2={2,3,4}==::)OS={d 1'd2'd3}
l___,) (15)Espec => Xs3,ds3={1 ,2,3} S Si, S2, S3

de~ nQde· (1)...(19) analysis sequence

Figure 5.2 Transformation SES -- set Xs and set Ds

[83]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

The breadth-first analysis starts at the root node A, a non-decision node. Next nodes are non-

decision nodes Adee and B. The composite entity node C is the first decision node. It has two

alternative successors. A first parameter XSI is added to set Xs with the domain dSI = {I, 2}.

The next examined nodes are Bdee, Cdeeb Cdee2, D, E, F, G, H and I - they are non-decision

nodes. The next examined node, the multiple aspect node Dmaspee is a decision node. The

value of its number range property is {2, 3, 4}. A second parameter XS2 is added to Xs with

the domain dS2 = {2, 3, 4}. The next node, the specialisation node Espee is again a decision

node. It has three alternative successor nodes. A third parameter XS3 is added to Xs with the

domain dS3= {I, 2, 3}. The last nodes analysed K, Eb E2 and E3 are non-decision nodes. The

example SES has three decision nodes. The resulting structure parameter set is

Xs = {XSb XS2, XS3} with the corresponding domain set Ds = ldsi, dS2, dS3} with the above

determined domains. On the basis of the combination of these sets Xs, Ds, the model

parameter set Xp and its corresponding domain set Dp the optimisation method is able to

search the search space. Additional SES tree information e.g. the structure condition at node

A and the attached variables PI and P2 in figure 5.2 are irrelevant during the initialisation

phase .

. The second transformation is the reverse of the first. The Model Management

Module receives a point in the search space from the Optimisation Module i.e. the numerical

data set xt= XPi u XSi, where set XSi codes a specific model structure and set XPi codes its

model parameters. It has to synthesise the corresponding model structure and has to infer the

model parameters. The transformation has to traverse the tree in the same direction as during

the first in the initialisation phase. At each decision node the next element of current

structure parameter set XSi is used to decide: (i) which successor of a composite entity node

with alternative successors nodes is chosen, (ii) which specialisation of a specialisation node

is chosen or (iii) how many successors of a multiple aspect node are incorporated into the

PES. After pruning the model structure is verified with the evaluation of all structure

conditions. If a structure is invalid the specific set xt will be refused and this information is

[84]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

sent to the Optimisation Module. It marks this point in the search space as prohibited and

determines a new one. Figure 5.3 illustrates the principle of this transformation. The analysis

and pruning order is marked again with small sequence numbers.

current model structure
parameter set

SES (1)A

I
structure condition:
{P1+LP2i<13}

(2)-}tecx, = {1 ,4,2}

=> Cdec1
=> K1,K2,K3,~
=> E2

XS1= 1
XS2= 4
XS3= 2

r
(3)8

I
(5)8dec

I
I

(6)C~1
~1=4}

(10)F G(11)

1
(7)Cdec2

~1=8}

(12) H 1(13)
I I

(8) 0 (9)E
I I

(14)Dmaspec (15) Espec

111{2,3,4} I ',I I
(16)K (17)E1 E2 E3(19)
{P2i= 2} (18)

~oqdf. (1)...(19) analysis sequence

PES evaluation of attached variables
to validate the PES

P1+LP2i<13
P1=4

LP21=8

LS structure is valid

Figure 5.3 Transformation XSi + SES - PES

_ The breadth-first analysis starts at the root node A and continues as already described before.

The first decision node of the SES tree in figure 5.3 is composition entity node C. The first

element in XSi is xSJ=l, i.e. the first aspect node Cdecl is chosen for the PES. The next

decision node is the multiple aspect node Dmaspec and the corresponding set element is xS2=4,

i.e. the PES contains four nodes K. The last decision node is specialisation node Espec and the

corresponding set element is xS3=2, i.e. the PES contains the second specialisation of node

Espec. After pruning, the attached variables are calculated and the PES is verified by

evaluating the relevant structure conditions. In the example in figure 5.3, the aspect node

C
decl

and four atomic entity nodes K were chosen. Therefore, the structure condition at node

[85]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

A is evaluated as follows: PI + Lp2; = 4 + 8 < 13 and from this it follows that the PES is

valid.

5.3 Interface: Model Management Module - Modelling and

Simulation Module

Each optimisation cycle requires a change and adaptation of the simulation model. If the

structure parameters in Xs; are changed, a new simulation model structure has to be

generated. Otherwise, if just the model parameters in Xp; are changed, it is adequate to re-

initialise the model parameters. As illustrated in figure 5.1 all necessary information is sent

from the Model Management Module to the Model Generator of the Modelling and

Simulation Module. The Model Management Module creates XML files describing the

model structure. EDSDEVS basic components, predefined in the MB, XML files and current

model parameters coded in set Xp; are used by the Model Generator to generate the entire

EDSDEVS model.

The use of a standardised XML model description for information exchange

decouples the two modules. It is based on W3C XML schema Finite Deterministic DEVS

Models introduced in [30] and [31]. The XML interface uses the atomic and coupled model

interface descriptions with model and port names. The coupled model description described

in [31] is currently work in progress and does not contain all necessary description elements

for this approach. Therefore, the composition description of coupled models additionally

defines sub model names and coupling specification. The coupling specification defines

external input (EIC), external output (EOC) and internal coupling information (IC). An

example with corresponding XML files is illustrated in figure B.I and listings B.17 and B.18

in appendix B.

The decoupling of Model Management Module and Modelling and Simulation

Module using XML files eases the modelling and verification of the basic components

[86]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

without the Model Management Module. Additionally it will enable and ease the use of

different simulator implementations; however this will be the subject of future work.

5.4 Interface: Modelling and Simulation Module - Optimisation

Module

The objective function, defined in the Optimisation Module, (figure 5.1), estimates the

performance of the current model structure and parameter values. The function gets its input

parameters from the Modelling and Simulation Module. These are the simulation results

Y;(XSi, Xp;) and simulation response function results R(Y;(XSi' XPi)) respectively. Further input

parameters are delivered by the Model Management Module. These are the model structure

results P;(Xs;), which are based on evaluation of attached variables after pruning the SES. An

example is illustrated in figure 5.2. The aspect nodes Cdecl and Cdec2 and the atomic entity

node K define the attached variables PI and P2i· After the pruning process illustrated in figure

5.3 the values of PI and P2 are calculated as follows: P;(XSi) = {PI;Ip2;} = {4;8}. These

values may be used as further objective function parameters.

The result F·(R(Yi), Pi) of the objective function is evaluated by the optimisation

method. As a consequence of the often stochastic nature of simulation problems, a random

based optimisation method is preferable. Two established random based algorithms inspired

by the principle of the evolution of life are the Genetic Algorithm (GA) introduced by

Holland [20] and the Evolutionary Strategy (ES) introduced by Rechenberg [50]. The origins

of ES are continuous parameter problems whereas current GAs support hybrid problems.

There is an extensive and varied body of literature on this topic. Genetic algorithms have

delivered robust solutions for various simulation based optimisation problems e.g. in [47]

and [49]. Experiments realised within the scope of this research have shown that a GA is

applicable as an optimisation method for the simulation based optimisation approach.

The methods of the simulation based parameter and structure optimisation

framework described in this chapter are integrated into a general GA algorithm (listing B.19

[87]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

in appendix B). The resulting algorithmic summary of the whole framework is introduced in

the next section.

5.5 Algorithmic Summary of the Framework

As described in the preceding sections, the proposed simulation based parameter and

structure optimisation framework is composed of different methods that form a uniform

optimisation approach. The following algorithm, based on the general description in [54],

summarises the fundamental operations using a GA as optimisation method.

Initialisation Phase:

O. Analyse the SES and establish X· = Xp U Xs and D' = Dp U Ds

1. Initialise a population of individuals (generation 0) with different xt = XPi U XSi

Optimisation Phase (repeat until stop criterion is fulfilled):

2. Estimate the fitness of all individuals of the current generation

Repeat for each individual

2.1. Prune SES with XSi

2.2. If structure condition is valid, establish P;(XSi) or otherwise mark current

individual as invalid and continue with next individual

2.3. Generate EDSDEVS model

2.4. Simulate EDSDEVS model and get result Y,{XSb Xp;)

2.5. Evaluate the simulation response function R(Y,{XSi' XPi)) by repeating step 2.4

2.6. Evaluate the objective function F'(R(Yi), P;)

3. Select pairs with m individuals and create descendants using crossover

4. Mutate the descendants

5. Exchange individuals of the current generation with descendants based on a

substitution schema to create a new generation

A disadvantage of a conventional GA is the missing memory. It is possible that in different

generations the same individual is repeatedly examined. Because of the time consuming

[88]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

fitness estimation of one individual in simulation based optimisation, the addition of a

memory method is vitally important. It has to store already examined individuals with their

resulting F*(R(Y;), P;). This extension leads to the following, final algorithm summarising the

fundamental operations of the simulation based parameter and Structure optimisation

approach using a GA as optimisation method:

Initialisation Phase:

O. Analyse the SES and establish X· = Xp uXs and D*= D» uDs

1. Initialise a population of individuals (generation 0) with different xt = XPi U X
Si

Optimisation Phase (repeat until stop criterion is fulfilled):

2. Estimate the fitness of all individuals of the current generation

Repeat for each individual

2.1. Check memory if current individual is known. In case of 'true': continue with

next individual

2.2. Prune SES with XSi

2.3. If structure condition is valid, establish P;(XSi) or otherwise mark current

individual as invalid and continue with next individual

2.4. Generate EDSDEVS model

2.5. Simulate EDSDEVS model and get result Y;(XSi, XPi)

2.6. Evaluate the simulation response function R(Y;(XSi, Xp;)) by repeating step 2.5

2.7. Evaluate the objective function F*(R(Yi), Pi)

2.8. Store xt and F'(R(Yi), Pi) in memory

3. Select pairs with m individuals and create descendants using crossover

4. Mutate the descendants

5. Exchange individuals of the current generation with descendants based on a

substitution schema to create a new generation

[89]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

5.6 Definition ala Model Set with XML SESjMB

In chapter 4 the extended SESIMB framework for the simulation based optimisation

framework was formally introduced. This section describes the meta-model definition with

the framework in detail. In this approach an SESIMB meta-model definition is based on

XML [64]. Therewith the definition is platform and implementation independent. The usage

of XML has the potential to enable the development of further extensions e.g. a graphical

model designer. Figure 5.4 depicts the UML 2.0 [61] class and composition structure

diagram of the XML schema and listing B.15 in appendix B contains the document type

description (DTD [64]). Both the schema and the DTD are describing the structure of an

SESIMB XML file.

The structure is divided into three main sub structures (i) SES tree, (ii) MB, (iii) properties:

I. The SES tree sub structure is defined within the ses sub tree of the XML structure.

The six nodes (i) composite, (ii) atomic, (iii) multiaspect, (iv) aspect,

(v) specialisation and (vi) specialisation-entity correspond to the different entity

types of the formal SESIMB description as introduced in chapter 4. An exception is

the specialisation-entity node which matches an atomic node. It is introduced to

eases the SES XML file verification. The connections within the UML class and

composition diagram defines the container class/contained class relationShip and the

m:n relations between both components. Each component has one attribute, the

'entity name esname. This name is used to logically connect XML elements within

the XML SES, MB and property sub structures e.g. an atomic entity definition from

the ses sub tree with the mb_atomic model implementation definition from the

modelbase sub tree.

2. The MB is defined within the modelbase sub structure. The sub structure references

(a) model implementations and defines (b) model interfaces:

a. Nodes of the type mb_atomic and mb_specializationentity references basic

components. The models are not directly defined within an SESIMB XML

[90]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

file. The above nodes refer to a model implementation. The attribute

classname refers to the model implementation class name and the attribute

modelname names the specific model instance name. Both class and instance

names are necessary to enable multiple usage of a component. The node

mb_aspect is not a reference to a model implementation but is used to

synthesise a model during model generation.

b. Nodes of the type atomic, specialization and aspect have attached coupling

information. Hence the corresponding modelbase nodes mb_atomic,

mb_aspect and mb_specialization define interfaces with input and output

ports. Each model i.e. the corresponding structure in the modelbase can have

several inports and outports named with the attribute name and combined in

list structures inports and outports. Even though a specialisation node does

not have a model implementation it has a definition in the modelbase sub

tree. All child nodes of a specialisation share the same interface deSCription

which is defined once at parent node level.

3. To avoid scattered node property definitions all properties are defined in the

properties sub structure. An aspect node defines a coupled model i.e. besides the

sub components defined within the ses sub structure additional coupling information

are necessary. A modelcouplings sub structure with a corresponding name in the

'esname attribute describes the coupling information in eic, eoc and ic lists. The

number of possible children of a multiple aspect node is defined by the

varNumberOfComponent structure. Nodes can have attached variables defined

within the var structure and coupled with the esname attribute to the corresponding

ses sub structure. Optional structure conditions are defined within the constraint

structure.

[91]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

1
ses_mb ~

1 , -----SES sub-structure 1---
I ses I Property sub-structure ~1

1Y ~ properties

I composite 0.."--- .1 1 J1

ff'~\' modelcouplings 1
lJ.esname: string(idl) 1

!.: r 1

elc ;
,

I aspect I -inport : string(idl) il-esname : string(idl) la. I 0,,", Ii tI
I

f-component : string«(i:lI)l..1 ~ 1 1 spec a za on -comconentjnport : Istring{idl)o "-esname: string(idl) I
10.."" 1

" aoc Iatomic I component: string(idO
-esname : string(idl) I 1,," f-component_outport : strin (id

1_
I speclalizatlonentlty I -outport : string(idl)
l-esnarne : string(idl) I

0,,'"
0,," 0,," le T

I multlAspect I -cornponentt : string(idl)
l-esname : string(idl) I ~mponent1_outport: strin (idl)

1 11
~mponent2 : string(idl)

MS sub-structure ~mponent2_inport : string idl)
-4if model base

0,," 1 1 0,,"
mb_speclallzatlonentlty varNumberOfComponents

-esname : string(idl) resname : string(idl) 1-classnarne : string(idl) -min: unsigned long(idl)
modelname : string(idl) -max: unsigned long(idl)

0,,"/ " 10,,"
mb_atomlc mb_speclalizatlon I constraint

-esname : string(idl) -esname : string(idl) I -name: string(idl) ,

-cl_'m''''~ 0..' typ ",_ •• ,-" •• meterj ~
-modelname : string(idl) mb_aspect action: string(idl) = {enablelvalid}

',\ ' ...,..,.,,,,,,,,d, -condltion : string(idl) = {gtlltleqlgteqllteqln
1 -classname: string(idl) var_name1 : string(idl)
-modelname : string(idl) -var_name2 : string(idO

0..110. 0,,1 0,,1 1 ~1

-destination: string(idl)

I Inports I I outports I
0,,"

var

1J

1 -name: string(idl)
-esname : string(idl)

1,," -typ : string(idQ= {intemallextemal}
I Inport I r outport I -externai_string : string(idl)
I-name: string(idl) J I-name: string(idl) I value: string(idl)

)

Figure 5.4 UML Diagram of SESIMB XML Schema

The example SES in figure 5.5 defines two structure variants through two different

specialisations AI and Az at Aspec. With the structure condition at the ROOT entity the PES

can be verified after pruning. Figure 5.5 depicts the structure variants after pruning and

model generation. Due to the structure condition only one model variant is valid. The listing

B.16 in appendix B shows the corresponding meta-model definition with an SESIMB XML

file. The three sub structures ses, modelbase and properties are separated with an empty line,

XML elements, attributes and values are highlighted with different colours.

[92]

Chapter 5. A Framework for Modelling, Simulation and Optimisation

SES ROOT

I {Pmax = 6}
structure condition:
{PI + P2 < Pmaxl

ROOTdec
{{A. Aoul1' B.BintJ,
{A.Aout2' B.Binz},
{B.Bout, C.Ci,,}}

B
I

Bdec
{{B.Binl,DDi,J,
B.Bin2,E.EintJ,
DDout,E,Einz},
EEout,B.BouJ}

o E
{P2= 3}

Model Structure Variants

valid structure: 2 + 3 < 6 is true

invalid structure: 3 + 3 < 6 is false

Figure 5.5 An SESIMB XML example - SES tree with both valid and invalid model

structure variants

The next chapter starts with an overview of modelling and simulation of manufacturing

systems and demonstrates the application of the introduced framework with a project from

industry.

[93]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

Chapter 6

Parameter and Structure Optimisation of

Manufacturing Systems

This chapter demonstrates the application of the introduced framework for a simulation

based parameter and structure optimisation with a real industrial project. It starts with a short

review of types, components and complexity of manufacturing systems in the context of

modelling and simulation. Current manufacturing system planning concepts and a range of

modelling and simulation concepts for manufacturing system simulation are presented in an

overview.

A broad choice of modelling and simulation packages is commercially available ,

developed to reflect the changing requirements of manufacturing applications. As discussed

in chapter 2 not all demands of manufacturing modelling and simulation are satisfied

optimally. A real life example using the approach developed in this research demonstrates

how this can be accomplished.

-6.1 Manufacturing Systems

The focus of manufacturing is the combination and transformation of raw material to a

product with a market potential using industrial machines [21] [22]. This is a very simple

principle but is difficult to achieve and maintain. The challenge is that the market potential

and the requirements of manufacturing system are changing continuously. A manufacturer

who does not adapt will lose competitiveness and vice versa a company that handles these

[94]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

changes most effectively will succeed. A major issue for managers and engineers is the

continuous analysis of manufacturing system performance and the use of methods to

improve operations and adapt to new market situations. Analysis using modelling and

simulation is potentially a powerful management method.

Depending on the point of view it is possible to differentiate between several types

of manufacturing systems. Two widely used, described in more detail in [5] are the

following:

• serial system

An assembly line as a typical example of a serial system is a sequential set of

workstations connected by material handling systems. Component parts are

assembled or machined to produce a finished product in a line. The assembly

activity can be divided into work elements as the smallest unit of productive work. A

subset of work elements are assigned to each workstation. A work piece passes the

complete line in a sequence. After leaving the final workstation the product is

complete. Such systems are often used to produce a high volume of a small number

of similar products. Figure 6.1 shows an example of a serial system with several

lines with sub assembly manufacturing and a final end product assembly line.

Figure 6.1 General assembly system layout (source [5])

[95]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

• shop scheduling system

In contrast to a serial system a job scheduling system manufactures a variety of

different products. Work pieces can follow different routes with significant different

processing time at a workstation. Regularly work pieces are combined in batches or

jobs of one or more parts which are manufactured on the same route Le. with the

same production sequence and similar processing time. If all batches are processed

in the same sequence of workstations the system is named flow shop. In contrast, in a

job shop each batch type has the same production sequence. With a growing

flexibility and pressure to decrease manufacturing cost the complexity of job shop

systems is increasing considerably. Hence the planning of job shop systems is

making greater than ever demands.

6.2 Modelling and Simulation of Manufacturing Systems

The simulation of manufacturing and material handling systems is one of the most important

applications of discrete event modelling and simulation techniques [7]. These techniques

have been successfully used as an aid in the design of new systems as well as an evaluation

tool for improvements to existing systems, as a daily staffing, material and operation

planning tool and so on.

_Even though both the types of manufacturing systems and the analysis issues vary

substantially the different modelling and simulation techniques share some common

characteristics as described in the following sections.

6.2.1 Simulation Model Level of Detail

In principle every model is an approximation of the real world. Depending on the analysis

objectives irrelevant characteristics and details can be omitted when creating a model. In

simulation literature this principle is called level of abstraction [51] because the model is an

abstraction or approximation of the real system. The appropriate level of detail can

[96]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

distinguish between valid and invalid or successful and unsuccessful simulation experiments.

It is claimed that a good rule is to add details step by step during a model validation process

because starting with a low level of detail usually leads to fewer simulation results to be

validated [51]. The analyst stops the process when the model is close enough to real system

behaviour to provide results for analysis. This validation approach is an iterative process that

results in a sufficiently accurate model. Figure 6.2 depicts the correlation between model

detail and validation time [51]. The asymptotic behaviour of the relationship may mean more

effort to increase the level of detail from 95% to 100% than creation of the initial model with

95% accuracy.

Figure 6.2 Model detail during model validation (source [51])

6.2.2 Fundamental Components

Manufacturing systems produce a wide range of products with many types of production

methods using many different system layouts. Nevertheless there are common components

- that can describe many manufacturing operations. These common components are the basis

elements of a simulation model [51]. Table 6.1 depicts these basic elements.

[97]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

Product Resource Demand Control

Parts/pieces Equipment layout Customer orders Warehouse management

Routings Equipment costs Start date Inventory control

Process time Number of machines Due date Shop floor control

Setup time Failure WIP inventory WIP tracking

Bill of material Maintenance Restricted resources

Yield Number of operators Station rules

Rework Shift schedules

Table 6.1 Fundamental components of manufacturing systems (source [51])

Product. Parts or pieces are the products manufactured. Products may be handled as a

single item or production unit or combined to batches depending on the manufacturing

process named batch or job. A batch can be described as a production unit in a SUbsequent

process. Products are manufactured in a defined sequence, the routings. Depending on the

manufacturing process and on the product the routing can be sequential e.g. in an automobile

assembly line i.e. a serial system or complex e.g. in a semiconductor production process i.e.

a job scheduling system. For each manufacturing step the setup and processing time

determine the total cycle time. These times depend on the machine and/or product and can be

deterministic or stochastic.

A product can be assembled from several items, i.e. sub assemblies, defined by the

product structure file or bill of material (BoM). Each item in the BoM can be the result of a

production process. During the manufacturing process all BoM items must be available at a

- defined point of time relative to the final product assembly or product due date. The

modelling of manufacturing systems with a delivery or production of sub assemblies lust-In-

Time to minimise waste and inventory is an important manufacturing paradigm today. The

typical example of this principle is the automobile industry.

Yield and rework are found in many manufacturing processes. The reasons are

imperfect processes and operations. Both factors influence the process throughput and other

[98]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

characteristics e.g. the costs. With a lower level of detail both characteristics can also be

omitted.

Resources. Resources include machines and human operators, mobile and immobile

equipment, material and storage systems etc. They are used to manufacture a product. The

equipment layout and the number of machines have an effect on the production flow and the

speed of operation. The equipment costs influence amongst others the manufacturing cost of

a product. Staff number can be a restricted resource, e.g. the number of machines and with

these the necessary number of operators is higher than the available number of operators. In

this context shift schedules have to be possibly considered.

The equipment has unplanned and planned down times, random failures or regular

maintenance. During these times production has to stop or product flow has to be rerouted

when alternatives are available.

Demand. Costumer orders define the demands on a manufacturing process. Start and due

dates are determined by these customer orders for products. An important question of

production management is the determination of the latest start date for BoM items to

complete the order before the due date.

Normally production does not start from an idle state instead there is some work-in-

process (WIP) e.g. in buffers, on conveyors or in machines. The modeller can decide to

accept an initialisation phase until the model contains a certain amount of WIP to start the

real experiment or initialise the model with work-in-process data.

Control. Control systems determine how products flow through the manufacturing

processes, collect status information about products and/or resources, inspect the compliance

of resource or demand constraints and decide about the use of the restricted recourses. A

control algorithm can influence a simulation with changes of input data e.g. a changed

[99]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

semi finished part order in an assembly line or changes in inwards and outwards goods

movements in a warehouse management system. A shop floor or/and an inventory control

algorithm can change model properties and model structure e.g. a storage area extension or

reduction or an equipment layout modification of a manufacturing system. A WIP tracking

system can deliver current process status information for control strategies. Station rules

define local scheduling decisions, e.g. the working sequence in a manufacturing cell from

simple first in, first out control strategy to a more complex such as a custom order dependant

priority control strategy.

6.2.3 Measures of Performance

The methods to evaluate the performance of a real system and model have to be the same

otherwise it will be difficult to have confidence in simulation and analysis results. Because

both the real system and its model are based on random events the performance measure is a

statistical analysis of real system and simulation system results. The following measurements

are typical for a manufacturing system [51]:

• Throughput of sub model (such as a machine or process) or the complete model

• Cycle time at a process or overall

• Queueing time or length

• .Response time of material handling equipment

• WIP

• Resource utilisation

• System specific performance measures (scrap rate, waiting time at a process etc.)

Due to the fact that a manufacturing system is a complex system it is important to note that

model changes to improve one measure usually change other measures, for optimisation this

is an important issue.

[100]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

6.2.4 Analysis Issues

Using the measures described in chapter 5 an analyst experiments with a model to

understand coherences of model elements and the behaviour of the whole system using input

value, model parameter and model structure changes. Among others the following are typical

analysis questions [51]:

• Determining bottlenecks

• Determining required staffing levels

• Evaluating the scheduling of staff

• Evaluating the scheduling of tasks

• Evaluating the control system

• Recovering strategies for random events

The identification of bottlenecks is often an analysis issue. The problem is the direct

influence of the experiment on the bottleneck. With changes of anything in the model the

primary bottleneck can move to other elements of the model. So the identification of a

bottleneck can be a complex task and requires the examination at both local and global

model levels.

A second important analysis issue is the determination of resource levels.

Manufacturing systems with a fluctuating production volume, e.g. with seasonal

dependencies, require such an analysis. An example is the staff requirement. It can change

constantly and has to be planned regularly. An associated issue is the scheduling of staff

- between manufacturing system elements. With intelligent scheduling strategies it may be

possible to employ fewer staff and still maintain sufficient throughput or to increase the

throughput without increasing staff costs.

6.3 Introduction to the PhotoftnishinB Industry

The application in this research uses developments and problems in the photofinishing

industry and investigates a small part of a production process to validate the key research

[101]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

concept. The photofinishing industry specialises in high volume production of thousands to

millions of pictures per day but has nevertheless a relatively broad range of different

products. As a consequence of significant changes in the photography market, notably the

introduction of digital cameras with a considerable reduction of analogue and an increase of

digital orders during recent years, a mix of analogue and digital production facilities are

used. The change of the main production material from analogue to digital material has lead

to concentration from many, local working, smaller laboratories to few, large, nationwide

working laboratories and fierce competition between them. The situation is driving an urgent

need to be as cost effective as possible.

Figure 6.3 shows general structure and product flow through the different

departments of a typical photofinishing laboratory. It is possible to differentiate between

three main production departments to depict the production flow analogue film/digital image

- photographic picture:

I. The material arrives in several forms at the login process. After sorting the product

mixes, some 10 to some 100 single orders are combined into batches. Each batch

contains only one production material and one product type, e.g. undeveloped

analogue film and specific paper width and surface. The batch creation is done with

different machine types: (i) a splicer combines undeveloped film rolls onto a large

. film reel, (ii) a universal reorder station (URS) combines analogue reorders to a strap

of film strips, (iii) a digital URS scans the analogue reorders and creates a digital

batch, (iv) a digital splicer handles digital data carriers (CDs, flash cards etc.) and (v)

software applications combine digital images collected by a web server. Steps (i) and

(ii) creates analogue and steps (iii) ...(v) digital batches.

II. Undeveloped analogue batches have to be developed. Analogue material can be

scanned for the next steps which could be CD production and digital printing. As an

alternative, the analogue batches are printed at an analogue printer. The result of

both printer types is a huge reel of exposed photographic paper.

[102]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

III. After the development of a photographic paper reel the final step is cutting.

Regarding paper cutting both cutter and digital cutter are comparable. A DigiCutter

is specialised for paper cutting without a film cutter but possibly equipped with

several paper cutters each able to cut different paper widths. Finally items are

packed and identified for delivery to customers.

c--------orders (analogue/digital):
c------- from dealer, post, internet

In sorter
(manuell/automatic)

Login

--
'"

DigiURSSplicer URS DigiSplicer Software Application for
Internet orders

/
-,
'. .

.............. ..

<, •••••••••••••................

,,,,,,,,,,--
Analogue
Printer

III

Out sorter

Postage

'---__ -"I analogue machine

'----- I digital machine

._ -- analogue material

............... digital data

......._ other material
e.g. paper

Universal Reorder
Station

URS

Figure 6.3 General product flows of a photofinishing lab

F· C 1 C 4' appendix C show a selection of photofinishing machines.Igures III

[103]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

The product flow splicerlURS - development - analogue printer - development _

cutter was the common production flow before the digital era and is typical serial

manufacturing system. Nowadays there are several possible material routes through

production with the same end product but different processing time, machine and operator

requirements and costs i.e. a photofinishing lab now appears more as a job scheduling

system. It is possible to employ fewer operators than available workstations and produce on

time if an appropriate production structure and effective organization method are used to

manage production. In a typical company with staff of some 10 to some 100, possibly more

than one employee is necessary to organise the complete production.

6.4 Photofinishinq Lab - An Optimisation Application

The validation is based on developments and problems in the photofinishing industry and

investigates a small part of a production process to demonstrate the approach. The germ of

the idea to this example comes from a project enquiry made by the Kodak Photofinishing

Department (closed down) to Syntax Software [58] 6 years ago.

6.4.1 Problem Description

For this project the login and splicer departments are studied in detail with a structure as

depicted in figure 6.4.

unsorted single orders
/\

In sorter
(automatic)

In sorter
(manual)

machine/
work place...... -
material flow

~ boxes with sorted
_,. _,. "/ .::: _ ~ers

SPIi;;;-/ / SPI~r / I ; . / ~icer-- -- '-.. ,,/ ----- ---....-.___ ---
in batches combined orders

Figure 6.4 Product flow of the considered example

[104]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

• System description

The source materials, unsorted, single orders, are sorted by product type manually or

automatically into boxes. These sorted orders are combined to batch reels at splicers. An

automatic sorter is handled by one or two operators, whereas manual sorting is done by

the number of available operators without the need of a machine. A splicer is handled

by one operator. Operators can be moved between machines. The handling time of the

machines is listed in table 6.2.

Order handling time (s)

0,9 < 1 (equal distribution)
Table 6.2 Order handling times

Sorting and splicing of a defined amount of orders takes a production time depending

on type of machines, number of operators and organisation strategies. The production

time is estimated by simulation.

A specific production system causes costs. In this case study the costs depends on the

number of operators as shown in table 6.3.

Table 6.3 Production costs

• Simulation model level of detail and fundamental components

Each workstation is taken as a black box with a defined processing time and resource

utilisation. Workstations need a specific number of operators to manufacture and can be

enabled or disabled. Further properties do not exit.

Source material is modelled as a data structure with material type and planed end

product type.

[105]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

A production or department manager is modelled as a control model. The model can

enable and disable workstations and organise material flow depending on the

availability of operators, unhandled source material and queue lengths.

The number of operators is a model property used by the control model. Operators are

moved between departments and workstations to enable and disable workstations.

Operator movements does not cost any time.

To minimise complexity additional considerations e.g. setup time, maintenance and

failure are not modelled. Shift schedules and other components in connection with

operators are not modelled too.

• Performance Measurement

For a performance measurement the sorting and splicing of a defined number of orders

are simulated. The simulation output of a single run delivers the production time and

cost Y = {Yproduetion time, Yeosts} of the current model variant.

The simulation response function calculates the average over 50 runs. They are passed

to the objective function that is defined by the term:

* * _ ..F = F(Y) = Ul * rl * Yproduction time + U2 r2 Ycosts --? rmrnmurn

The factors aj and a2 normalise the values of the variables, Yproduetion time and Yeosts. The

factors rl and r2 define the relevance of the variables, Yproduetion time and Yeosts. With the

factors aj=llmax_production_time, a2=1Imax_costs, rj=l and r2=1 both variables are

within the range between 0 and 1 and have the same relevance. The maximal value of

the production time can be calculated with a minimal production system i.e. one

operator, manual sorting and one splicer. The maximal value of the costs is defined by

the upper bound of the parameter number of operators. In this case study for both

variables, Yproduetion time and Yeosts the same relevance is chosen. Depending on the analysis

objectives a different relevance of Yproduetion time and Yeosts can be used.

The result of the funtion F is the performance of the investigated model variant.

• Analysis issues

(106]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

The production time and consequently the cost for a specific number of orders varies

depending on the type and number of machines used, number of operators and the

strategy to organise operators i.e. the initial distribution and succeeding movement of

operators between machines and departments. The challenge for modelling is to

minimise the combination of the production time of a given number of orders and the

costs i.e. employing a minimal number of operators.

6.4.2 Implementation Details

Figure 6.5 shows the SES, describing possible model structures and the model parameter

number of operators. Both the SES and the model parameter are the open quantities of the

optimisation problem. The model structure variants are characterised by the use of: (i)

automatic and/or manual sorting, (ii) one to eight splicers and (iii) one of three different

department organisation strategies to share operators between machines and departments.

Depending on selected alternative nodes during the pruning process several structure related

attached variables will be initialised with different values. The SES defines 72 model

Structure variants in all. In addition there is one model parameter, the number of operators

with a range of one to eight. The combination results in 576 model variants. Not all model

variants define useful combinations. For example a model with four operators and eight

splicers delivers the same result as a model with four operators and four splicers since in

both variants only four splicers at all can be used. To exclude the useless variants the root

node MODEL defines a structure condition that reduces the valid number of model variants

to 275.

The following list describes the nodes and basic components, respectively:

• DEP_LOGlN

The login department model can have three different sorting configurations. The first

configuration applies only manual, the second only automatic and the third combines

both sorting types. The number of available operators in this department is managed

[107]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

by the controllerspee model. Decisions of the controllerspee model may be a function of

the queue_order length.

• DEP_SPLICER

The splicer department model can consist of a different number of splicers. The

number of available operators in this department is managed by the controller
spee

model. Decisions of the controllerg., model may be a function of the queue_box2

length.

• controller.j;

The specialisation node controller.j; has three successor nodes each implementing

another staff organisation strategy:

o ctrll:

The strategy starts with employing operators in the login department. If

more staff is available than needed they are employed in the splicer

department. After sorting is finished all staff is employed in the splicer

department.

o ctrl2:

The strategy starts with employing operators in the login department. If

more staff is available than needed they are employed in the splicer

department. If the queue_box length is larger or equal than four all staff is

employed in the splicer department. If the queue_box length is smaller than

four the initial staff arrangement is recovered.

o ctr13:

The strategy starts with employing half of operators in the login department

and the other half in the splicer department. After sorting is finished all staff

is employed in the splicer department.

[108]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

Model Parameter SES

#_of_operators={1, 8}
MODEL

structure conditions:
{max(manuJogin+autoJogin,#_of_splicers)<=# of operators~D __
(manu_login*S+auto_login*2+#_of_sPlicers»=#_of_operators}

MODEl.lec

DEP_LOGIN CONTROLLER
I

controllerspec
IIDEP _LOGINdec1 DEP _LOGINdec2 DEP _LOGINdec3

queue_ queue_
order box1

sorter manu
{manu]ogin=1}

queue_
order

sorter auto
{auto]ogin=1}

queue_
box1

queue_
order

queue_
box1

sorter auto
{auto_iOgin=1}

Figure 6.5 Model parameter and SES of the application

To solve this example, the search space has to be defined in terms of a structure parameter

set, a model parameter set and their corresponding domain sets. Using the principle

introduced in section 5.2 the structure parameter set and the corresponding domain set are

defined by:

Xs = {XOEP _LOGIN, Xcontrollerspec, Xsplicennaspec}

Ds = {dOEP_LOGIN, dcontrollerspec, dsplicermaspec} with

dOEP_LOGIN = {I; 2; 3}

dcontrollerspec = {I; 2; 3}

d -{1'2'3'4'5'6'7'8}splicermaspec - """,

The model parameter set and the corresponding domain set are defined by:

Xp= {x#_oCoperators}

Dp={ ~_oCoperators} with ~_oCoperators = {I; 2; 3; 4; 5; 6; 7; 8}

Hence, the resulting search space is defined by:

x- x-o x,
x = { XOEP_LOGIN, Xcontrollerspec, Xsplicennaspec, x#_oCoperators}

[109]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

Each model variant defines one point in the search space. With the principle introduced in

section 5.2 a PES can be derived and a corresponding model can be generated. One point of

the search space is X 132= {2; 2; 2; 2}. This means that the aspect node DEP-LOGINdec2 and

the specialisation ctrl, are chosen, the number range property value of the multiple aspect

node splicermaspec is two and the model parameter #_oJ_operators is also two. Figure 6.6

depicts the PES of model variant 132. The generated EDSDEVS model is illustrated in

figure 6.7.

MODEL
I

MODE'-<lec

DEP_LOGIN
I

DEP_LOGINdec2

I

DEP_SPLICER
I

DEP_SPLICERdec

queue_ sorter_ queue_
order auto box1

queue_ splicer1 splicer2 queue
box2 batch-

Figure 6.6 PES of 132thvariant

[110]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

ROOT

MODEL
DEP_LOGIN orders

queue
status I queue_ ~ r

I order e
a

~
orders d

y
operator!, _"J sorter_

II auto
ctrl2

box. EF
unsorted

I
queue_ I orders
box1

• generator~
queue status boxes with sorted orders

0 DEP_SPLICER
P ~ box
e queue_ I transducer
r box .1 box2

r .. r
a
t e e

a a ~.0 d d batches
r , y ~ys

splicer1 I splicer2 l
~ I .1 queue_ I

batch -I batch I batch
1

1

Figure 6.7 Model structure of 13th variant

All model variants use intensively the dynamic structure characteristics of the EDSDEVS

formalism. The model of the department manager (model ctrl2 in figure 6.7) activates and

deactivates several atomic models (models sorter_auto, splicerJ and splicer2 in figure 6.7)

and creates and destroys couplings respectively based on the department manager algorithm

and the current model state. Figure 6.8 shows a sequence diagram section of one simulation

run. Depending on queue lengths messages are generated and sent to the control model that

enables/disables models and creates/destroys couplings.

[111]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

I queue_order I
I
I

I qUeUe_box2!
I
I
I
I MSQ_full

ctrl2 sorter_auto

Disable
length>=4

MSQ_empty Enable

I splicerx]
I
I
I

Enable:

length==O
Msg_empty Disable

r----y~==~--~I
I
I
I
I
I
I
I

Enable:

length<4

Figure 6.8 A sequence diagram section of one simulation run

Numerous commercial and non-commercial GA implementations exist. In this research the

commercial toolbox MATLAB® GA toolbox [59] released by The MathWorks™ is used.

The default MATLAB GA parameter settings were used, except for a decreased population

size of 15 and an adjusted stop criterion:

if the weighted average change in the fitness function value over x generations (x=20 in

1Si and x=5 in 2nd experiment) is less than 0.01, the algorithm stops.

In the following all GA parameters and their values are listed. A description and lists of

possible values as well as the algorithm description can be found in [59].

Population:

• Population type: Double Vector

• Population size: 15

• Creation function: Uniform

• Initial population: []

• Initial scores: []

• Initial range: [0; 1]

Fitness scaling:

[112]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

• Scaling function:

Selection:

• Selection function::

Reproduction:

• Elite count:

Rank

Stochastic uniform

• Crossover fraction:

Mutation:

• Mutation function:

• Scale:

• Shrink:

Crossover:

• Crossover function:

Migration:

• Direction:

• Fraction:

• Interval:

Algorithm settings:

• Initial penalty:

• Penalty factor:

Hybrid function:

• Hybrid function:

Stopping criteria:

• Generations:

• Time limit:

• Fitness limit:

• Stall generations:

2

0.8

Gaussian

1.0

1.0

Scattered

Forward

0.2

20

10

100

None

100

Inf

-Inf

20 (1st experiment)

5 (2nd experiment)

[113]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

• Stall time limit: 20

• Function tolerance: 0.01

• Nonlinear constraint tolerance: 0.000001

Display to command window:

• Level of display: Final

Vectorize:

• Fitness function is vectorized: Off

The population size and the stop criteria are adapted for this case study. It is possible that

changes of other parameters would lead to better optimisation results but further experiments

are not undertaken in the scope of this research.

Each simulation run estimates the production time of 200 orders with a random

production type mixture. The optimisation was repeated 50 times for each stop criterion with

different random number generator initialisations. Listing 6.1 shows a Matlab code section

of the optimisation initialising and executing the GA.

13 j :itJ.c,Jl"d outside ut: t r.Ls tt •. c t i.c n
function example_optim_exp(ses)

I l (I. ut·, F·J J I' I. , , t h ,,(
~_j': J :11 I Cl ~l<_j '~\ ' ' .. ~! ,.) .,..,t

fitnessFunction = @exec_simu;

r b j ('t (JI::;h",l

Rc,' , ri

, . ,. It .1 1. I ;
~ I-~ I;

[LB UB] ses.generateBounds();

o ~JI. ,rd',,',' III J II i"''_'
nvars = size(LB,2);

~u I • t '.J \

options gaoptimset;

Hu·.Ii
options
options
c (, r t i 'l 1.,

options =

l'! 1, . (I (II it t .. -
gaoptimset(options, 'populationS~ze' ,15);
gaoptimset(options, 'StallGenLlmlt' ,20); il

.).(uti. I'," c'~t:. (• () L ,) n " , ," t. a J .l:_, r l. 1..ni t' ,',);;).'
gaoptimset(options, 'TolFun' ,0.01);

exp.
(;;''1-' •

LI.! (',I

[X,FVAL,REASON,OUTPUT,POPULATION,SCORES]

[114]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,nonlconFu
nction,options);

Listing 6.1 Matlab code section with GA initialisation and execution

6.4.3 Results

To validate the research framework the global optimum estimated through simulation of all

system variants is compared with the result of an optimisation experiment. In both

experiments the performance rating of a variant is established by the same objective function

using the following function definition:

F = F(Y) = a} * rl * Yproduction time + £l;? * rz * Ycosts

rl = r2 = 1 - same relevance of both paramters

a} = 11566 - maximal production time with a minimal production system is 566 (1Si line

in table 6.4)

- maximal costs are 8

The simulation results of all 275 variants are shown in table 6.4. The columns control

strategy, login and # of splicers specifies the model structure and the column # of operators

specifies the model parameter as described in subsection 6.4.2. The production time values

are the simulation result of the production of 200 orders. The costs correspond to the number

of operators and the fitness is calculated with the above objective function.

[115]

MrlrlrlrlrlNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNmmmmmmmmmmmmmmmmmmmmmmmmmMmmm

~ rlNmq~~~OONmq~~~oom~~~~OO~~~~OO~~~OO~~OO~OOOOrlNmNm~

'"ou

..... '"o Q.

..0

.....O~rlrlrlrlrlrlrlrlNNNNNNNmmmmmm~~~q~~~~~~~~~~OOrlrlrlNNN

.!:!
"ii

'"

~~rlMM

'"

NN

l..O""'OOl./")W""'OOlO,.....OO,.....OOOO

OOOOOOl./")LnOOOOOOOOOO.r:; ai" 0'" ~ ...oc:i 0'1'" 0\ ¢'" 0\ 0'" en'" 0'1'" en'"
\..OLnlOlOLI'lIJ'l~Lf'lLl'lLf'l~o:::t'd'

mmmmmmmMmmrt"lMM

mmMmmmmmmMmmM

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

The fitness values of a1l275 model variants are shown graphically in figure 6.9.

0,8

o 20 40 60 80 100 120 140 160 180 200 model 240
variant

260

0,4

Figure 6.9 Fitness values of all variants with the optimum at XI32

The limits of the objective function parameters i.e. model generation and simulation results

and objective function results are shown in table 6.5. The solution XI32 has the minimal

fitness value 0.4859 i.e. this solution is the global optimum. Figure 6.6 shows the PES and

figure 6.7 the model structure of this variant.

min max

production time 49,5 566

costs 1 8

fitness 0.4859 1,5442

Table 6.5 Limits of fitness function parameters and results

Beside the global minimum several local minima exist with a very close fitness value, as can

be seen in figure 6.9. Table 6.6 lists the global optimum (green line) and all near optimal

solutions with a maximal variation of 3% of the maximal fitness value of 2. The solutions 2,

4 and 7 are identical to solutions 1, 3 and 6 due to the preferred assignment of the two

available operators to the automatic login i.e. the manual login is not used in variants 2, 4, 7.

The solutions 1, 3 and 6 differ in the control strategy whereas the most flexible control

strategy 2 delivers the optimal result. Solutions 3 and 5 are based on different system

configurations. With the used same weighting of production time and costs the solution 3 is

the optimal solution, with a higher weighting of production time solution 5 would be a better

variant.

[119]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

no. ctrl login # of #of prod. costs fittness
strat. typ splicers ops time

1 1 2 2 2 139,8 2 0,4969
2 1 3 2 2 149,3 2 0,5137
3 2 2 2 2 133,5 2 0,4859
4 2 3 2 2 133,8 2 0,4863
5 2 3 3 3 87,3 3 0,5291
6 3 2 2 2 149,5 2 0,5141
7 3 3 2 2 148,5 2 0,5124

Table 6.6 Optimal and near optimal solutions

With other relevance factors rl and r: the optimal system configuration is different. E.g.

without the consideration of costs two global optima with a production time of 49.5 exist

(XS6 and X267). These solutions produce the specified number of orders in the shortest time.

In each of the two GA optimisation experiments the optimisation was repeated 50

times to estimate average values because of the stochastic nature of GA. Each optimisation

experiment uses one stop criterion as described in section 6.4.2.

The results with average number of investigated individuals, optimum and near

optima found are shown in table 6.7. The results show that the number of investigated

individuals (194 and 102) is significant less than the number of all variants (275). The

probability to find the optimal or near optimal solution is high (68% and 50%) but the

finding is not guaranteed. Both, the number of investigated individuals and the finding

probability depend highly on chosen GA parameters as can be seen when comparing the

results of optimisation experiment I and 2 in table 6.7.

Stop criterion I Stop criterion 2 (uses
(uses weighted average weighted average change
change over 20 generation) over 5 generation)

Average number of
investigated individuals to 194 102

find an optimum
Optimum X 132 47% 21%

Near optimal
results with max 21% 29%

3.2% error
Table 6.7 Results of 50 optirnisation expenments

[120]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

An example of the development of individual fitness values, best and average generation

fitness during a single optimisation experiment is shown in figure 6.10. The diagram shows

the fast convergence of the average fitness of the generations. After two generations each

generation contains the optimal solution once in minimum and after the 7th generation the

fitness value does not change anymore.
,.----_._._--_._-_.

1,6

III
III
CIIe.~...

0,8

0,4

0

0

•. ____.._.-----------------
• •••• •• •• • •....

• best fitness of generation

• fitness

... avarage fitness of generation

•• ••• •• ., , •
••• 1111.1111 111.111111111111...,

15 30 45 60 75 90 # of individual 120

Figure 6.10 Individual fitness, best and average fitness of generations of one GA run

The results show that the optimisation approach developed in this research delivers an

optimal solution with a high probability and with significantly less simulation runs in

comparison to a complete simulation study of all model variants. Consequently the new

approach of a simulation based parameter and structure optimisation is validated with a first

real industrial example. There is a potential to increase the probability and/or decrease the

number of simulation runs to estimate the optimal solution through adaptations of the GA

parameters or with the use of other search methods.

For a potential application of the introduced approach it is necessary to extend the

model to a complete Photofinishing Laboratory. Although the model of the case study is

relative small the computing time of an optimisation experiment is on average between some

10 minutes and a few hours. However, the case study is carried out with a prototypical

implementation of the simulation method and ideal parallelisation possibilities of GAs are

not used. Hence, it can be assumed that there is a huge potential of runtime optimisation.

[121]

Chapter 6. Parameter and Structure Optimisation of Manufacturing Systems

The introduced case study stands for many flexible production systems. It can be

assumed that the developed framework can be applied to other, comparable systems with the

ability of modular, hierarchical modelling.

[122]

Chapter 7. Conclusions and further Work

Chapter 7

Conclusions and further Work

7.1 Conclusions

Simulation in a manufacturing context focuses on modelling the behaviour and the structure

of manufacturing organisations, processes and systems. Many manufacturing systems have

the potential to be optimised and to exploit this potential simulation based optimisation

techniques are an important step forward. The overall goal of applying of these techniques is

the identification of improved user selected system parameters. This research deals with a

fundamental optimisation problem in discrete event simulation. Optimisation is well

established but restricted to the optimisation of system parameters. Model structure is

considered to be fixed, defined during model development. In simulation based optimisation

using automated model parameter changes and manual model structure adaptations the

global optimal system configuration cannot be guaranteed. With the growing use of flexible

manufacturing systems and the increasing demand for product customisation the number of

manufacturing system variants increases consequently the demand for structure optimisation

is becoming increasingly more important.

This research has developed a simulation based optimisation method to solve the

limitations of the established techniques. A crucial difference to established simulation based

parameter optimisation is the application of a method based on meta-modelling to manage a

set of models. The new optimisation method can simultaneously control both model

[123]

Chapter 7. Conclusions and further Work

parameter changes and model structure selection. The result of a successful optimisation

experiment using this approach is a parameter and structure optimised model. The key

research aim to develop an approach to replace conventional manual structural changes i.e.

to develop a combined, simulation based parameter and structure optimisation has been

achieved.

An essential prerequisite of the new approach is a modular, hierarchical modelling

and simulation method with a strict separation of model and simulator. This research

determined the DEVS formalism as a suitable method. DEVS as a two-part definition

consisting of a formal model specification and a simulation algorithm to model execution

was introduced in the 70s and since then has been continuously developed. Many DEVS

extensions have one joint attribute: they are based on the original DEVS formalism and have

not taken advantage of the potential in combining extensions. For this reason the research

has been followed the idea of a merging formalism to combine the advantages of different

approaches. The new EDSDEVS formalism developed from this research is a fusion of

Classic DEVS with selected extensions. It is an as generic as possible, powerful modelling

and simulation formalism based on DEVS. A second key research aim to develop a

modelling and simulation method based on DEVS and DEVS extensions to create a merging

formalism has been achieved.

A further prerequisite for simulation based optimisation is an appropriate model

management method. This research determined the SESIMB approach as a suitable method.

Originally the SESIMB framework was developed to assist an analyst during a manual

model variant selection. Changes to the SESIMB approach and algorithms to embed it into

the simulation based optimisation have been developed within the research.

The final prerequisite is a suitable search method to find the optimal model

configuration in the general multidimensional search space. Many search algorithms exist.

One category widely used in both research and commercial applications are genetic and

[124]

Chapter 7. Conclusions and further Work

evolutionary algorithms. For a practical investigation of the fundamental simulation based

parameter and structure optimisation framework a commercial GA is used.

Validation of the work has been achieved using an industrial problem where the

ability to control manufacturing system structure is an important optimisation factor. The

photo-processing industry relies on management of the process flow to achieve profitability

and this application demonstrates both how the new framework functions and the validity of

the GA used in a real world situation. In two optimisation experiments it has been shown that

the results are significantly dependent on the GA parameters. However in both experiments

the probability to find an optimal or near-optimal model configuration is equal to or greater

than 50%. An increased probability of an optimal solution is preferable however this will be

the subject of further work.

The framework is implemented as MATLAB toolboxes and uses a commercial GA

toolbox respectively. In the prototypical implementation of the framework and the validation

of the work it has been shown that the use of MATLAB has both advantages and

disadvantages. It is a powerful and productive environment to solve scientific and

engineering problems and to implement prototypical applications. A disadvantage is the

interpretative operation method. Particularly in simulation based optimisation where

numerous, time consuming simulation runs lead to long execution times. However, there are

parallel computing MATLAB toolboxes which support several aspects of parallelisation. The

algorithmic summary shown using a GA is a promising approach to improve execution time

by parallelisation.

During the research project the important steps have been published in a peer-

reviewed journal, at international conferences and as a book chapter. Appendix C presents

the publications.

[125]

Chapter 7. Conclusions and further Work

7.2 Suggestions for further work

This research has established an approach to simulation based parameter and structure

optimisation. Whilst this thesis presents the ideas, principles and a first example, it also

opens up several future research directions. Future research directions can be divided into

two areas (i) investigations of simulation based optimisation framework (ii) EDSDEVS

formalism.

i. The introduced approach defines the model structure variants at the meta-model

level as a static structure. Otherwise it uses a dynamic structure modelling and

simulation method to execute the selected model configuration. The dynamic

changes of the model structure during the simulation time are not considered in this

approach i.e. the optimisation regards only the initial model structure as a static

structure. It seems feasible to add dynamic structure changes during the model

lifetime as an additional criterion to the optimisation. An example is the length of

stay of a sub model. This approach considers the initial existence of the sub model

but its lifetime may play an important role in the search for an optimal model

configuration.

With the SES XML definition a platform and implementation independent

meta-modelling definition already exists. The manual modelling based on direct

writing a XML file is not straightforward. General XML editors can assist the

modelling but cannot replace a dedicated SES XML editor. A graphical SESIMB

modelling application is a reasonable extension.

As already shown in section 6.4.3 the optimisation results and the number of

optimisation cycles depends on the GA parameters. There is much literature about

GA methods and parameterisation. The experience gained in this research has shown

that further investigations in this direction are necessary. Hence, the optimisation of

GA parameters is a further research topic.

[126]

Chapter 7. Conclusions and further Work

There are also other promising search methods. Another nature analogue

method is the Particle Swarm Optimisation (PSO) approach based on swarm

intelligence of social groups. This group of algorithms is relative new, introduced

around 10 years ago. The number of publications and applications is growing fast.

The literature review has shown evidence that this algorithm group can solve

problems like the simulation based optimisation as well as GAs.

ii. The new EDSDEVS formalism developed from this research is a fusion of Classic

DEVS with several extensions. This part of the research is a step to a generic

modelling and simulation formalism based on DEVS. Further extensions are

desirable and essential e.g. extensions for parallel computing and graphical

modelling. There are also approaches for hybrid DEVS extensions i.e. the support of

continuous state changes. These are proposals for further research. The last proposal,

the hybrid DEVS, is already a current research project topic of the Research Group

CEA.

The importance and topicality of the idea behind this research can be seen in two brand new

research proposals, the first currently in preparation and the second announced at

30.03.2009:

A research proposal at the Deutsche Forschungsgemeinschaft (DFG German

Research Foundation) for further developments of the simulation based parameter and

structure optimisation approach and its application to the optimisation of energy efficiency

of process chains and manufacturing structures is currently in preparation. The optimisation

of energy efficiency of process chains i.e. among other things the structure optimisation of

process chains is a planned priority programme of DFG.

In a call for proposal of the Federal Ministry of Education and Research of Germany

a sponsorship is announced with the topic 'safeguarding competitiveness by versatile

manufacturing systems'. One matter of the proposed research is covered by the optimisation

technique introduced in this thesis.

[127]

[15]

[16]

[17]

[18]

References

AppendixA. References

[1]

[2]

Amnn W. (1994) Eine Simulationsumgebung flir Planung und Betrieb von
Produktionssystemen. Springer.
April J., Marco Better M., Glover F., Kelly J., Laguna M. (2006) Enhancing
Business Process Management with Simulaiton Optimization. Proceedings of the
2006 Winter Simulation Conference.
April J., Kelly J., Glover F., Laguna M. (2003) Practical Introduction to Simulation
Optimization. Proceedings of the 2003 Winter Simulation Conference.
April J., Glover F., Kelly J., and Laguna M. (2001) Simulation/Optimization using
"Real- World" Applications Proceedings of the 2001 Winter Simulation Conference
pages 134-138. '
Askin RG., Standridge C.R (1993) Modeling an Analysis of Mamifacturing Systems.
John Wiley & Sons.
Azadivar F. (1999) Simulation Optimization Methodologies. Proceedings of the 1999
Winter Simulation Conference, pages 93-100.
Banks J., Carson II J.S., Nelson B.L., Nicol D.M. (2003) Discrete-Event System
Simulation. Prentice Hall.
Barnett M. (2003) Modeling & Simulation in Business Process Management. BP
Trends Newsletter, White Papers & Technical Briefs, 1-10.
http://www.bptrends.com [accessed November 20,2008].
Barros F.J. (1996) Modeling and Simulation of Dynamic Structure Discrete Event
Systems: A General Systems Theory Approach. PhD thesis. University of Coimbra.
Barros FJ. (1996) The dynamic structure discrete event system specification
formalism. Transactions of The Society for Modeling and Simulation International
Mar 1996, vol. 13. '
Breitenecker F. (1992) Mode.ls, methods and ~xpe.rimen~s - A new structure for
simulation systems. Mathematics and Computer In Simulation 34, 1-30, Amsterdam:
North Holland.
Chi S.D. (1997) Model-based Reasoning Methodology Using the Symbolic DEVS
Simulation. Transaction of SCS 14(3) p.141-152.
Chow A.C., Zeigler B.P. (1994) Parallel DEVS: A Parallel, Hierarchical, Modular
Modeling Formalism Proceedings of the 1994Winter Simulation Conference.
FU M.C., Glover F.W. (2005) Simulation Optimization: A Review, New
Developments, and Applications. Proceedings of the 2005 Winter Simulation
Conference.
Fu M. C., Andrad6ttir S., Carson J. S., Glover F., Harrell C. R, Yu-Chi Ho, Kelly J.
P., Robinson S. M. (2000) Integrating Optimization and Simulation: Research and
Practise. Proceedings of the 2000 Winter Simulation Conference.
Hagendorf 0., Pawletta Th. (2008) An Approach for Simulation Based Structure
Optimisation of Discrete Event Systems. Proceedings of the 2008 Spring Simulation
Conference.
Hagendorf 0., Pawletta T., Pawletta S., Colquhoun G. \2006) An approach for
modelling and simulation of variable structure manufacturing systems. ICMR 2006
Liverpool/UK.
Hagendorf 0., Colquhoun G., Pawletta T., Pawletta S. (2005) A DEVS - Approach to
ARGESIM Comparison C16 'Restaurant Business Dynamics' using MatlabDEVS.
Simulation News Europe, no.44/45, (December).

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[128]

http://www.bptrends.com

[29]

[30]

[31]

[32j

[33]

[34]

[35]

[36]

[37]

References

[19] Heilala J., Montonen J., Salmela A., Jarvenpaa P. (2007) Modeling and Simulation
for Customer Driven Manufacturing System Design and Operations Planning.
Proceedings of the 2007 Winter Simulation Conference.
Holland J.H. (1975) Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. The
University of Michigan Press.
Ireson W.G. (1963) Factory Planning and Plant Layout. Prentice-Hall Englewood
Cliffs, NJ.
Kalasky D.R. (1996) Manufacturing Systems: Modeling and Simulation in Systems
Modeling and Comupter Simulation. Ed. Kheir N.A. Marcel Dekker, Inc.
Kremp M., Pawletta T., Colquhoun G. (2004) Optimisation of manufacturing
control strategies using online simulation. In Proceedings of the 5th EUROSIM
Congress on Modeling and Simulation, eds. G.Attiya & Y.Hamam (6 pages). Paris.
SCS-European Publishing House, Ghent (Belgium).
Kremp M., Pawletta T., Pawletta S., Colquhoun G. (2004) Simulation based control
of a flexible manufacturing system, published in German. Proc. of 11th symposium
of maritime electrical engineering, electronics und information technology.
(workshop: control and feedback control systems, pp. 15-18). University of Rostock.
Law A.M., Kelton W.D. (2000) Simulation Modeling and Analysis. McGraw-Hill
2000 3rdEdition.
Law A. M., McComas M. G. (1999) Simulation of Manufacturing Systems.
Proceedings of the 1999 Winter Simulation Conference.
Lucie-Smith E. (1983) A History of Industrial Design. Phiadon Press Limited
Oxford.
Maletzki G., Pawletta T., Pawletta S., Dunow P., Lampe B. (2008) Simulation Model
based Rapid Prototyping of Complex Robot Control Applications. (German) In: atp-
Automatisierungstechnische Praxis, Oldenbourg Verlag, Mtmchen, 50(2008)8, pages
54-60.
Milberg J. (1992) Wettbewerbsfaktor Zeit in Produktionsuntemehmen. (German) In:
Tagungsband Munchner Kolloquium 91, Springer, pages 13-31.
MittaI S. (2007) DEV~ Unified Process f?r Int~gra~edDeve~opment and Testing of
Service Oriented Architectures. PhD TheSIS, University of Arizona.
MittaI S. (2007) W3C XML schema Finite Deterministic DEVS Models.
http://www.saurabh-mittal.comlfddevs/ [accessed November 21,2008].
Olafsson S., Kim J. (2002) Simulation Optimization. Proceedings of the 2002 Winter
Simulation Conference.
Oren T. I. (1989) Simulation Model: Taxonomy. in: Encyclopaedia of Systems and
Control, (Ed.) Singh, M., Pergamon Press.
Pawletta T., Deatcu C., Pawletta S., Hagendorf 0., Colquhoun G. (2006) DEVS-
Based Modeling an~ Simulation in .Scie~tific .and Technical Computing
Environments. Proceedings of the 2006 Spnng Simulation Conference, Huntsville/AI

USA.
Pawletta T., Pawletta S. (2004) A DEVS-based simulation approach for structure
variable hybrid systems using high accuracy integration methods. Proceedings of
CSM2004 - Conference on Conceptual Modeling and Simulation, Part of the
Mediterranean Modelling Multiconference (13M), Genova, Italy, October 28-31

2004.
Pawletta T., Lampe B., Pawletta S., Drewelow, W. (2002) A DEVS-Based Approach
for Modeling and Simulation of Hybrid Variable Structure Systems. Modeling,
Anlysis, and Design of Hybrid Syste~s. E~gel S., Frehse. G., Schnieder E. (Ed.),
Lecture Notes in Control and InformatIon SCIences 279, Spnnger, pages 107-129.
Pawletta T., Pawletta S., Drewelow W. (1998) Integration of discrete event
simulation methods in interactive scientific and technical computing environments.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[129]

http://www.saurabh-mittal.comlfddevs/

[48]

[49]

[50]
[51]

[52]

[53]

[54]

References

[38]

In R. Zobel, editor, Proceedings of the 12thEuropean Simulation Multiconference
pages 251-255. SCS European Publishing House, 1998. Manchester, June, 16-19.'
Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) Dynamic structure
simulation based on discrete events. In ASIM-Mitteilungen Nr. 53, pages 7-11 9
Workshop Simulation and AI, Ulm, Germany, Februar 1996. ' .
Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) Modeling and
Simulation of Variable Structure Systems. Proc. of the 3rd International Symposium
on Methods and Models in Automation and Robotics - MMAR'96 (IEEE),
Miedzyzdroje, Poland, Ed.: Banka, S.; Domek, S. and Emirsajilow, Z.; 1996, Vol. 3,
pages 1219-1223.
Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) A new Approachfor
Simulation of Variable Structure Systems. Proceedings of the 41 thConference
KoREMA (IEEE), Ed.: Vukic, Z.; Opatia, Croatia, September 1996 September 1996
Vol. 4, pages 83-87. '
Pawletta T., Lampe B.P., Pawletta S., Drewelow W. (1996) An object oriented
Frameworkfor modeling and simulation of variable structure systems. Proceedings
of the SCS Summer Computer Simulation Conf., Portland, Oregon, July 1996, pages
8-13.
Pawletta T., Pawletta S. (1995) Design of a Simulator for Structure Variable
Systems. Proceedings of the 5th International IMACS-Symposium on System
Analysis and Simulation, Berlin, SAMS 1995 Vo1.18-19, Ed. Sydow, A., Gordon &
Breach, 1995, pages 471-474.
Pawletta T., Pawletta S. (1995) Object-Oriented Simulation of Continuous Systems
with Discrete Changes in Structure. Proceedings of the 9thEuropean Simulation
Multiconference, Prag, Ed.: Snorek, M.; Sujansky, A. and Verbraeck, A., SCS
International, 1995, pages 627-630.
Pawletta T., Pawletta S. (1995) Simulation of modular hierarchical systems with
discrete structure changes. Proceedings of the 40th Anniversary Conference
KoREMA (IEEE), Zagreb, Ed. Vukic, Z.; April 1995, Vol. 1, pages 356 - 359.
Pawletta T., Pawletta S., Dimitrov E. (1994) Modelling and Simulation of Structure
Variable Systems. (German) Advances in Simulation (Fortschritte in der
Simulationstechnik), Ed.: Kampe, G. and Zeitz, M., Vieweg Verlag, Braunschweig,
1994, pages 59-64.
Pawletta T. (1992) Comparison 2 -Modelling of aflexible manufacturing system,
System EXTEND. Simulation News Europe, (1992)6, pages 32-33.
Pierreval H., Caux C., Paris J. L. , Viguier F. (2003) Evolutionary approaches to the
design and organization of manufacturing systems. Computers and Industrial
Engineering Volume 44, Issue 3 (March 2003).
Praehofer, H. (1992) CAST Methods in Modelling. Pichler, F., Schwfutzel, H.
Springer Pub.
Ray J. P., Tomas S. C. (1998) Simulation optimisation using a genetic algorithm.
Simulation Practice and Theory 6 (1998), pages 601-611.
Rechenberg 1. (1972) Evolutionsstrategie. (German) Friedrich Frommann Verlag.
Rohrer M.W. (1998) Simulation of Manufacturing and Material Handling Systems.
In: Handbook of Simulation ed. Banks J. John Wiley & Sons, Inc.
Rozenblit J.W., Zeigler B.P. (1985) Conc~pts f~r Kno.wledg--Based System Design
Environments. Proceedings of the 1985 Wmter Simulation Conference.
Satjoughian H., Huang D. (2005) A multi-formalism modeling composition
framework: Agent and discrete:ev~nt mod~ls. Pa~r presented a~the 9

th
~EE

International Symposium on Distributed SImulatIon and Real TIme Apphcations,
Montreal, Quebec, Canada.
Schonberg E., Heinzmann F., Feddersen S. (1994) Genetic Algorithms and
Evolutionary Strategies. (German) Addison-Wesley.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[130]

[64]
[65]

[66]

[67]

[68]

[69]

References

[55] Swisher J.R. (2003) Discrete-Event Simulation Optimization using Ranking,
Selection, and Multiple Comparison Procedures: A Survey. ACM Transaction
04.2003.
Swisher, J.R. Hyden, P.D. (2000) A Survey of Simulation Optimization Techniques
and Procedures. Proceedings of the 2000 Winter Simulation Conference.
The ACM Digital Library (2009) htre,:llportal.acm.org.
The Mathworks™ (2008) MATLAB . http://www.mathworks.comlproducts/matlab/.
The Mathworks™ (2008) Genetic Algorithm and Direct Search Toolbox™.
http://www.mathworks.comlproducts/gads/.
Uhrmacher A.M., Arnold R. (1994) Distributing and maintaining knowledge: Agents
in variable structure environment. 5th Annual Conference on AI, Simulation and
Planning of High Autonomy Systems, pages 178-194.
Unified Modeling Language http://www.uml.org/(2009).
Wainer, G. A. (2005) DEVS Tools. DEVSStandardization Group,
http://www.sce.carleton.calfaculty/wainerlstandardltools.htm.
Wainer G., Giambiasi N. (2001) Application of the Cell-DEVS paradigm for cell
spaces modelling and simulation. SIMULATION Transactions of The Society for
Modeling and Simulation International, Jan 2001; vol. 76.
World Wide Web Consortium http://www.w3c.orgIXMU(2009).
Zeigler B. P., Hammonds P. E. (2007) Modeling And Simulation-Based Data
Engeneering. Elsevier Academic Press.
Zeigler B.P., Praehofer H., Kim T.G. (2000) Theory of Modelling and Simulation.
3rdedition, Academic Press.
Zeigler B.P. (1984) Multifacetted Modelling and Discrete Event Simulation.
Academic Press.
Zeigler B.P. (1976) Theory of Modelling and Simulation. l" edition, John Wiley &
Sons.
Zhang G., Zeigler B.P. (1989) The system Entity Structure: Knowledge
Representation for Simulation Modeling and Design. In:. Artificial Intelligence,
Simulation, and Modeling. Widman L.E., Loparo K.A., NIelsen N.R. (Ed.), John
Wiley & Sons Inc, pages 47-73.

[56]

[57]
[58]
[59]

[60]

[61]
[62]

[63]

[131]

http://www.mathworks.comlproducts/matlab/.
http://www.mathworks.comlproducts/gads/.
http://www.sce.carleton.calfaculty/wainerlstandardltools.htm.

Coding Examples

Appendix B. Coding Examples

atomic_model

variables:

tlast time of last event

s internal state

function init()

II initialise state variable set Sand tnextwith the time of the first internal event

end function

function 8.xl. e, x)

t=tue+e

II do something with x.value

end function

function 8;nl.t)

SK-- SK+III calculate next internal state SK+Ifrom current internal state SK

end function

function t = tat)

t = ...
end function

function y = A.()

II calculate next internal state event

y. value = ... II set value ofy-message

end function

end atomic_model

Listing B.1 Pseudo code skeleton of an atomic Classic DEVS model

[132]

Coding Examples

coupled_model

function Md- = select(imminent)

Md- = ... II choose one ojthe sub component from component list imminent

end function

end coupled_model

Listing B.2 Pseudo code skeleton of a coupled Classic DEVS model

[133]

Coding Examples

variables:

t simulation clock

tend simulation end time

when receive start-msg(tend)

send i-msg() to sub-ordinate DEVS coordinator

t := tnextof sub-ordinate coordinator

while t < tend

send *-msg(t) to sub-ordinate DEVS coordinator

t := tnextof sub-ordinate coordinator

Listing B.3 Pseudo code of a Classic DEVS root coordinator

[134]

Coding Examples

variables:

tlast time of last event

tnext time of next internal state event

am associated atomic model

when receive i-msg()

am.init()

tlast:= 0

tnext:= am.tai)

when receive *-msg(t) at time t

ift <> tnext

error: bad synchronisation

y:= am.A()

send y in y-message to parent coordinator

am.O;ntt)

tlast:= t

tnext:= tlast+ am.tat}

when receive x-msgit, x) at time t with value x

if not (tlastst 5tnext)

error: bad synchronisation

am.o.xtt-tlast' x)

tlast := t

tnext:= tlast+ am. tat)

Listing B.4 Pseudo code of a Classic DEVS simulator

[135]

Coding Examples

variables:

tlast time of last event

tnext time of next internal state event

CM associated coupled model

when receive i-msg()

foreach sub component Md E CM.M

send i-msg() to Md

tlast:= 0

II determine time of next scheduled internal state event of all sub components

tnext:= mine { Md.tnextIMd E CM.M})

when receive *-msg(t) at time t

ift <> tnext

error: bad synchronisation

II find all sub components with a true condition tnext=t

imminent := {Md IMd E CM.M ,IIMd' tnext=t}

II call select junction to determin one sub component to send the *-msg

Md- := select(imminent)

send *-msg(t) to Md-

tlast := t

II determine time of next scheduled internal state event of all sub components

tnext:= mine { Md.tnextIMd E CM.M})

when receive x-msgit, x) at time t with value x

ifnot (tlnst~t ~tnext)

error: bad synchronisation

II get all sub components Md- with an appropriate EIC

receivers:= subcomponents {Md IMdECM.M} with {coupling I couplingE CM.EIC}

[136]

Coding Examples

II forwards the x-msg to all appropriate sub components

foreach sub component Md- in receivers

send x-msg(t, x) to Md-

t/ast:=t

II determine time of next scheduled internal state event of all sub components

tnext:= min({Md.tnext IMd E CM.M})

when receive y-msgit, y) at time t with value y

II forwards y-msg to super-ordinate model if an appropriate EOC exists

if exist coupling in CM.EOC

send y-msgit, y) to parent model

II get all sub components Md- with an appropriate IC

receivers:= subcomponents {Md 1MdECM.M} with {coupling I couplingE CM.IC}

II creates from y-msg and sends it as an x-msg to all appropriate sub components

foreach sub component Md- in receivers

send x-msgit, y-x) to Md-

Listing B.5 Pseudo code of a Classic DEVS coordinator

[137]

Coding Examples

atomic_model

variables:

tlast time of last event

s internal state

function £txt e, x)

t = tlast + e

switch x.port

case inputport«

II do something with x. value received at input port inputporto

case inputport;

II do something with x. value received at input port inputportn

end switch

end function

function y = A.()

y.port = . .. II set output port of y-message

y. value = ... II set value ofy-message

end function

Listing B.6 Pseudo code skeleton of an atomic Classic DEVS with Ports model

[138]

Coding Examples

when receive *-msg(t) at time t

ift <> tnext

error: bad synchronisation

y:= am.A()

send value y. value in y-message to parent coordinator at port y.port

am.t5;nlt)

tlast:= t

tnext:= tlast+ am.tat)

when receive x-msgit, X, p) at time t with value x at port p

ifnot (tlast~t ~tnext)

error: bad synchronisation

am.o.xl t-tlast'x,p)

tlast:= t

tnext:= tlast+ am.tat}

Listing B.7 Pseudo code of a Classic DEVS with Ports simulator

[139]

Coding Examples

when receive x-msgit, X,p) at time t with value x at port p

ifnot(tlast5t 5tnext)

error: bad synchronisation

II get all sub components Md' with an appropriate EIC

receivers:= subcomponents {Md IMdC CM.M} with {coupling I coupling e CM.EIC}

II forwards the x-msg to all appropriate sub components

foreach sub component Md' in receivers

send x-msg(t, X, Md ..p) to Md' at port p

tlast := t

II determine time of next scheduled internal state event of all sub components

tnext:= min((Md.tnext IMd c CM.M})

when receive y-msgl t, y, p) at time t with value y at port p

II forwards y-msg to super-ordinate model if an appropriate EOC exists

if exit coupling in CM.EOC

II coupling is a structure with the elements {sub component, Ps Pd' }Duree, estznat;on

foreach coupling in CM.EOC

send y-msgit, y, coupling.PdestinoJion)to parent model

II get all sub components Md' with an appropriate IC

receivers:= subcomponents {Md 1Md c CM.M} with {coupling I coupling e CM.IC}

II creates x-msg from y-msg and sends it as an x-msg to all appropriate

sub components

foreach sub component Md' in receivers

foreach coupling in CM.IC with coupling between y.source and Md ..p

send x-msg(t, y-X, Md..p) to Md- at port p

Listing B.8 Pseudo code of a Classic DEVS with Ports coordinator

[140]

Coding Examples

atomic_model

variables:

tlast time of last event

s internal state

function initi)

II initialise state variable set Sand tnext with the time of the first internal state

event

end function

function 4on(t, x_bag)

II default implementation of a confluent function matches Classic DEVS

functionality

OextO, x_bag)

end function

function Oext e, x_bag)

t=tue+e

foreach x in x_bag

II do something with x. value

end function

function b;nt t)

SK-+ SK+lII calculate next internal state SK+lfrom current internal state SK

end function

function t = tat)

t = ...
end function

II calculate next internal state event

function y_bag = A.()

[141]

Coding Examples

y. value = ... II set value of y-message

y_bag +=y

end junction

end atomic model

Listing B.9 Pseudo code skeleton of an atomic PDEVS model

[142]

Coding Examples

when receive *-msg(t) at time t

ift <> tnext

error: bad synchronisation

y_bag := am.A()

send y_bag in y-message to parent coordinator

when receive x-msgit, x_bag) at time t with x_bag

ifnot (tlast~t ~tnext)

error: bad synchronisation

ift=tnext and x_bag is not empty

II concurrent external and internal event

am.4on(t, x_bag)

else ift=tnext and x_bag is empty

II internal event

am.tt/t)

else

II external event

am.4x/t-tlasb x_bag)

end if

tlast:= t

tnext:= tlast+ am. tat)

Listing B.IO Pseudo code of a PDEVS simulator

[143]

Coding Examples

atomic_model

variables:

tlast time of last event

s internal state

function initi t)

II initialise state variable set Sand tnextwith the time of the first internal state

event

II t=Oinitialisation at simulation start

II t>Oinitialisation after structure change

end function

function 4:oit, x_bag)

II default implementation of a confluent function matches Classic DEVS

functionality

d;nlt)

suo. x_bag)

end function

function dexle, x_bag)

t = tlast+ e

foreach x in x_bag

II do something with x.value received at x.port

switch x.port

case inputporto

II do something with x.value received at input port inputporto

case inputportn

II do something with x.value received at input port inputpon;

[144]

Coding Examples

end switch

end Junction

function ~n,(t)

s; -+ Su+J II calculate next internal state Su+J Jrom current internal state su

end function

function t = tai)

t= ...

end function

II calculate next internal state event

function y_bag = A.()

y. value = II set value ofy-message

y.port = II set output port of y-message

y_bag += y

endJunction

end atomic_model

Listing B.Il Pseudo code skeleton of an atomic EDSDEVS model

[145]

Coding Examples

coupledmodel

variables:

tlast time of last event

s internal state

junction iniu t)

II initialise structure and state variable set Sand tnext with the time of the first

internal

II state event

II t=Oinitialisation at simulation start

II t>Oinitialisation after structure change

end junction

junction 4olt, x_bag)

II default implementation similar to an atomic model

functionality

b.nlt)

4&lO, x_bag)

end function

junction 4&l e, x_bag)

t = tlast + e

foreach x in x_bag

II do something with x.value received at x.port

switch x.port

case inputporto

II do something with x.value received at input port inputporto

case mputpon,

[146]

Coding Examples

II do something with x.value received at input port inputpon;

end switch

end function

function 4nt(t)

s; ~ Su+1 II calculate next internal state Su+1 from current internal state Su

end function

function t = tat)

t = ...
end function

function y_bag = A,f.t)

II calculate next internal state event

y. value = II set value ofy-message

y.port = II set output port ofy-message

y_bag +=y

end function

end coupled_model

Listing B.12 Pseudo code skeleton of a coupled EDSDEVS model

[147]

Coding Examples

variables:

tlast time of last event

tnext time of next internal state event

am associated atomic model

when receive i-msg(t)at time t

II t=O initialisation at simulation start

II t>O initialisation after structure change

am.init(t)

tlast:=t

tnext:= am. tat)

when receive *-msg(t) at time t

ift <> tnext

error: bad synchronisation

y_bag := am.A()

send y_bag in a y-message to parent coordinator

when receive x-msglt, x_bag) at time t with value x_bag containing x. value und x.port pairs

ifnot (tlastst ~tnext)

error: bad synchronisation

if t=tnextand x_bag is not empty

II concurrent external and internal event

am.4:ol t, x_bag)

else if t=tnextand x_bag is empty

II internal event

am.4n/t)

else

II external event

[148]

end if

tlast := t

am.o.xf t-tlast, x_bag)

tnext := tlast + am. tat)

Coding Examples

Listing B.13 Pseudo code of an EDSDEVS simulator

[149]

Coding Examples

variables:

tlast time of last event

tnext time of next internal state event of the coupled model or a sub component

tnext_c time of next internal state event of the coupled model

CM associated atomic model

II CM.st current, sequential structure state

IMM II imminent children

mail II output mail bag

II t=O initialisation at simulation start

II tz-U initialisation after structure change

when receive i-msg(t)at time t

CM.init(t)

foreach sub component Md e CM.st.M

send i-msgtt) to Md

tlast:= t

II determine time of next scheduled internal state event of coupled model

tnext_c:= CM.taO

II determine time of next scheduled internal state event of coupled model and all

II sub components

tnext:= mini tnext_o{ Md.tnextIMd e CM.st.M})

when receive *-msg(t) at time t

ift <> tnext& t<>tnext_c

error: bad synchronisation

II internal state transition event of the coupled model CM itself

if t= tnext_c

y_bag := CM ..J.,()

[150]

Coding Examples

send bag of valueloutput port pairs in a y-message to parent coordinator

II internal state transition event of a sub component of CM

else if t=tnext

II find all sub components with a true condition tnext=t

IMM := {Md Iu, E CM.s,.M A Md· tnext=t}

foreach Md in IMM

send *-msg(t) to Md

when receive x-msg(t, x_bag) at time t with value x_bag containing pairs of x. value/x.port

ifnot (tlastSt Stnext_c)

error: bad synchronisation

if t=tnext_cand x_bag is not empty

CM.4onf t, x_bag) II concurrent external and internal event

else if t=tnexu and x_bag is empty

CM.4nt(t) II internal event

else

CM. ~&s(t-tlast>x_bag) II external event

end if

II get all sub components M» with an appropriate EIC

receivers:= subcomponents {Md IMdE CM.s,.M} with {coupling I couplingE

CM.stoEIC}

II forwards the x-msg to all appropriate sub components

foreach sub component Md. in receivers

CM. ~&s(t-tlasl>x.bas) II external event of sub component

send x-msg(t, x_bag, Md..p) to Md- at port p

foreach sub component Md. in IMM and not in receivers

send x-msgit, NULL,NUll) to Md· II send empty bag, input port is ignored

[151]

Coding Examples

tlast:= t

tnext_c:= tlast+ CM.taO

tnext:= mine tnexter { Md.tnextIMd E CM.st.M})

when receive y-msgit, y_bag, d) at time t with y_bag with valuelport pairsJrom d

II collect all y-messages from all sub components

if d is not the last not reporting d in IMM

add (y_bag, d) to mail

mark d in IMM as reporting

II all sub components now handled their <message

else if d is the last not reporting d in IMM

CM.Ox&it-tlast,mail)

// check external coupling to form sub-bag of parent output

y_bagparent= NULL

Joreach d in mail where (y_bag and d) has an appropriate EIC

add y_bag to y_bagparent

send y-msgit, y_bagparent" CM) to parent model

II check IC to get children Md- with an appropriate IC who receives a sub bag

receivers := subcomponents {Md Id in mail, M dE CM.st.M} with {coupling I

coupling e CM.stoIC}

foreach sub component Md- in receivers

creates sub bag x_bag from mail with elements where Md- is receiver

send x-msgit, x_bag) to M»

mark d in IMM as sending

Joreach sub component Md- in IMM where Md- is not sending

send x-msgit, NULL) to Md-

tlast:= t

tnext_c:= tlast+ CM.taO

[152)

Coding Examples

Listing B.14 Pseudo code of an EDSDEVS coordinator

[153]

Coding Examples

<?xml version="l.O" encoding="us-ascii"?>
<!--

DTD for an SES.
-->

<!ELEMENT top (ses_mb»

<!ELEMENT ses (modelbase I ses I properties)*>

<!ELEMENT modelbase ((mb_composite I mb_atomic I mb_aspect I

mb_specialization I mb_specializationentity I mb_multiAspect)+»

<!ELEMENT ses (composite»

<!ELEMENT properties ((modelcouplings I var I varNumberOfComponent I

constraint)+»

<!ELEMENT modelcouplings ((eic I eoc I ic)+»
<!ATTLIST model couplings

esname CDATA #REQUIRED>

<!ELEMENT mb_composite EMPTY>
<!ATTLIST mb_composite

esname CDATA #REQUIRED>

<!ELEMENT composite ((aspect I specialization I multiAspect)*»
<!ATTLIST composite

esname CDATA #REQUIRED>

<!ELEMENT mb_atomic ((inports I outports)*»
<!ATTLIST mb_atomic

esname CDATA #REQUIRED
classname CDATA #REQUIRED
modelname CDATA #REQUIRED>

<!ELEMENT atomic EMPTY>
<!ATTLIST atomic

esname CDATA #REQUIRED>

<!ELEMENT mb_aspect ((inports I outports)*»
<!ATTLIST mb_aspect

esname CDATA #REQUIRED
classname CDATA #REQUIRED
modelname CDATA #REQUIRED>

<!ELEMENT aspect ((entity I specialization I multiAspect I

atomic)*»
<!ATTLIST aspect

esname CDATA #REQUIRED>

<!ELEMENT mb_specialization ((inports I outports)*»
<!ATTLIST mb_specialization

esname CDATA #REQUIRED>

<!ELEMENT mb_specializationentity EMPTY>
<!ATTLIST mb_specializationentity

esname CDATA #REQUIRED

[154]

Coding Examples

classname CDATA #REQUIRED
modelname CDATA #REQUIRED>

<!ELEMENT specialization (specializationentity+»
<!ATTLIST specialization

esname CDATA #REQUIRED>

<!ELEMENT specializationentity EMPTY>
<!ATTLIST specializationentity

esname CDATA #REQUIRED>

<!ELEMENT mb_multiAspect EMPTY>
<!ATTLIST mb_multiAspect

esname CDATA #REQUIRED>

<!ELEMENT multiAspect (atomic»
<!ATTLIST multiAspect

esname CDATA #REQUIRED>

<!--
internal var will be set internally in the ses
external var references an external variable
-->
<!ELEMENT var EMPTY>
<!ATTLIST var

name CDATA #REQUIRED
esname CDATA #REQUIRED
typ (internallexternal) "internal"
external_name CDATA #IMPLIED
value CDATA #IMPLIED>

<!ELEMENT varNumberOfComponent EMPTY>
<!ATTLIST varNumberOfComponent

esname CDATA #REQUIRED
min CDATA #REQUIRED
max CDATA #REQUIRED>

<!ELEMENT inports (inport+»

<!ELEMENT outports (outport+»

<!ELEMENT inport EMPTY>
_<!ATTLIST inport

name CDATA #REQUIRED>

<!ELEMENT outport EMPTY>
<!ATTLIST outport

name CDATA #REQUIRED>

<!ELEMENT eic EMPTY>
<!ATTLIST eic

inport CDATA #REQUIRED
component CDATA #REQUIRED
component_inport CDATA #REQUIRED>

<!ELEMENT eoc EMPTY>
<!ATTLIST eoc

component CDATA #REQUIRED

[155]

Coding Examples

component_outport CDATA #REQUIRED
outport CDATA #REQUIRED>

<!ELEMENT ic EMPTY>
<!ATTLIST ic

component I CDATA #REQUIRED
componentl_outport CDATA #REQUIRED
component2 CDATA #REQUIRED
component2_inport CDATA #REQUIRED>

<!ELEMENT constraint EMPTY>
<!ATTLIST constraint

name CDATA #REQUIRED
typ (entitylparameter) #REQUIRED
action (enablelvalid) #IMPLIED
condition (gtlltleqlgteqllteqlneq) #IMPLIED
var_namel CDATA #IMPLIED
var_name2 CDATA #IMPLIED
destination CDATA #IMPLIED>

Listing B.IS DTD describing the structure of SESIMB XML

[156]

Coding Examples

<?xml version="l.O" encoding="utf-B"?>
<!DOCTYPE ses SYSTEM "ses.dtd" (]>
<ses_mb>

<ses>
<composite esname="ROOT">

<aspect esname="ROOTdec">
<composite esname="A">

<specialization esname="Aspec">
<specializationentity esname="Al"l>
<specializationentity esname="A2"1>

<Ispecialization>
</composite >
<composite esname="B">

<aspect esname="Bdec">
<atomic esname="D"I>
<atomic esname="E"I>

</aspect>
</composite >

</aspect>
</composite >

</ses>

<modelbase>
<mb_aspect esname="ROOTdec" classname="ROOT" modelname="root"l>
<mb_specialization esname="Aspec">

<outports>
<outport name="Aoutl"l>
<outport name="Aout2"1>

<Ioutports>
<1mb_specialization>
<mb_aspect esname="Bdec" classname="B" modelname="b">

<inports>
<inport name="Binl"l>
<inport name="Bin2"1>

</inports>
<outports><outport name="Bout"I><loutports>

<1mb_aspect>
<mb_atomic esname="D" classname="D" modelname="d">

<inports><inport name="Din"I></inports>
-<outports><outport name="Dout"I><loutports>

<1mb_atomic>
<mb_atomic esname="E" classname="E" modelname="e">

<inports>
<inport name="Einl"l>
<inport name="Ein2"1>

</inports>
<outports><outport name="Eout"I><loutports>

<1mb_atomic>
</modelbase>

<properties>
<modelcouplings esname="ROOTdec">

<ic componentl="A" componentl_outport="Aoutl"
component2="B" component2_inport="Binl"l>

<ic componentl="A" componentl_outport="Aout2"
component2="B" component2_inport="Bin2"1>

</modelcouplings>
<modelcouplings esname="Bdec">

<eic inport="Binl" component="D" component_inport="Din"l>
<eic inport="Bin2" component="E" component_inport="Ein2"1>

[157]

Coding Examples

<ic componentl="D" componentl_outport="Dout"
component2="E" component2_inport="Einl"/>

<eoc component="E" component_outport="Eout" outport="Bout"/>
</modelcouplings>
<var esname="ROOT" name="pmax" typ="internal" value="6"/>
<var esname="Al" name="pl" typ="internal" value="2"/>
<var esname="A2" name="pl" typ="internal" value="3"/>
<var esname="D" name="p2" typ="internal" value="3"/>
<constraint name="scl" condition="lt" var_namel="pl+p2"

var_name2="pmax" action="valid" typ="parameter"/>
</properties>

</ses_mb>

Listing B.l6 SESIMB XML example - XML file

[158]

Coding Examples

server transducer
job_oute::: --,.. pjob_in

MODEL

Figure B.l A coupled model example

<?xml version="l.O" encoding="utf-8"?>
<atomic modelName="server" xmlns="AtomicDevs">

<inports/>
<outports>

<outport>job_out</outport>
</outports>

</atomic>

<?xml version="l.O" encoding="utf-8"?>
<atomic modelName="transducer" xmlns="AtomicDevs">

<inports>
<inport>job_in</inport>

</inports>
<outports/>

</atomic>
Listing B.17 Two atomic model XML files

<?xml version="l.O" encoding="utf-8"?>
<coupled modelName="MODEL" xmlns="CoupledDevs">

<Models>
<Model><devs>server</devs></Model>
<Model><devs>transducer</devs></Model>

</Models>
<inports/>
<outports/>
<EIe/>
<Ie>

<coupling>
<SrcModel>server</SrcModel><outport>job_out<loutport>
<DestModel>transducer</DestModel>

<inport>job_in</inport>
</eoupling>

</Ie>
</Eoe>

</coupled>
Listing B.I8 Coupled model XML file

[159]

Coding Examples

o. Define the search space and chose an appropriate information encoding in chromosomes

1. Initialise a population of individuals with different chromosomes (generation 0)

Repeat until stop criterion is fulfilled

2. Estimate the fitness of all individuals of the current generation

3. Select pairs with m individuals and create descendants using crossover

4. Mutate the descendants

5. Exchange individuals of the current generation with descendants based on a

substitution schema to create a new generation

Listing B.19 A general GA algorithm

[160]

Photofinishing Machines

Appendix C. Photofinishing Machines

Figure C.1 Splicer (left) and DRS

Figure C.2 DigiDRS (left) and High-speed film scanner

[161]

Photofinishing Machines

Figure C.3 Analogue (left) and digital printer

Figure C.4 Manual (left) and automatic cutter

[162]

PAGE/PAGES
EXCLUDED

UNDER
INSTRUCTION

FROM
UNIVERSITY

