
An Investigation of Useful Fluid Flow in Grinding 

Andrew Jackson 

A thesis submitted in partial fulfilment of the requirements of Liverpool 
John Moores University for the degree of Doctor of Philosophy 

April 2008 



Abstract 

The purpose of this project was to investigate the factors that affect the useful flow. In 

addition to this the effect of useful flow on differing output parameters was examined. 
The early work included the development of a novel system for the capture of useful 
flow and the subsequent use of this system in the testing of parameters affecting the 

useful flow. The useful flow device was created for use on two different surface 
grinding machines. Testing was carried out on a range of wheel speeds, with several 
grinding wheels and several supply flowrates and supply jet speeds. A Taguchi test was 
conducted to differentiate the factors that affect the useful flowrate from the ones which 
do not. Further testing was conducted on a range of wheel speed values focussed 

around the commonly accepted target of matching the jet speed. The results of these 
tests were used to draw out relationships between the useful flowrate and key input 

paramcccrs. 

The results of the Taguchi test showed the wheel speed and jet speed as having the a 
profound effect on the useful flowrate. It was also found for the first time that the 

combined effect of these two parameters had a significant influence on the useful 
flowrate, validating the speed ratio (vJv, ) as a key parameter. Testing of the wheel 
speed in full factorial testing showed that a speed ratio of between 0.5-0.9 will give the 

maximum useful flowrate. The jet speed was found to be the key to achieving a high 

percentage useful flow. As the wheel speed approaches the jet speed the useful flowrate 

was found to follow a roughly linear relationship, a situation where the air barrier 

surrounding the wheel is easily penetrated. Having the jet speed exceed the wheel 
speed did not force more fluid through the grinding contact zone. A maximum 
percentage useful flow was found to be 50 % of the applied flow for a 54 % porosity 
wheel and 30 % of the applied flow for a 45 % porosity wheel of similar grain/bond 
type. These values could not be exceeded without substantial extra effort and 
justification for this could not be found from the analysis of the output parameters. 
These values of achievable useful flowrate allowed guidance to be given on a maximum 
supply flowrate, exceeding this supply flowratc will serve only to decrease the 

percentage useful flow. 

An equation has been derived based on fluid occupation of the pores. this is known as 
the achievable useful flowrate. which can be used to predict the supply flowrate 
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required for a given grind. It has been found that the supply flowrate should normally 
be at least two to three times the achievable useful flowrate. A general guideline of four 

times allows a margin to cover a wider range of conditions. It has also been found that 

for non-aggressive grinding situations the supply flowrate can be matched to the 

achievable useful flowrate. 

Further work was carried out to analyse the surface topography of the grinding wheels 

under analysis and modelling of the surface was used to predict values of useful 
flowrate. These tests were conducted using surface replication techniques and optical 

scanning via the Uniscan and Wyko Vision® systems. Using these techniques it was 

also possible to test the dressing process and bedding-in process for their effects on a 

grinding wheel surface. Analysis of the wheel surface scans gave a value of useful 
flowrate based on filling the pores of the wheel surface. This value was compared to 

the measured useful flowrate taken from experiments showing that at no point do the 

pores of the grinding wheel become completely filled with fluid. 
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1.1 Genesis 

Grinding as a process has existed from the earliest of times in some form or other. In 

its most basic form grinding involves a hard object rubbing and removing material from 

a softer object. It can be generally expected that the harder object be one order of 

magnitude harder than the softer material. 

Grinding is a well established machining process that has been subject to substantial 

recent research and process development. The process is inherently complex due to the 

unpredictable nature of grain - workpiece interactions. As a result of this complexity, 

extensive research has been necessary to improve understanding and capability. 
Grinding as a manufacturing process is an essential part of nearly all metal cutting 

procedures; whenever a tight surface finish or geometric tolerance is needed grinding 

will be essential as the finishing process. As geometric tolerances become tighter in 

order to control complex design interactions grinding becomes increasingly important. 

P Surface Roughness, Rain microns rocess 0.05 0.1 0.2 0.4 0.8 1.6 3.3 6.3 12.5 25 

Superfinishing 

Lapping 
Polishing 

Honing 

Grinding 

Boring 

Turning 
Drilling 

Extruding 

Drawing 
Milling 

Shaping 
Planing 

Table 1, Typical surface roughness values from different finishing processes (Dagnall, 1997). 

As can be seen from Table 1 grinding typically achieves better surface finishes than 

most other processes and is predominantly the quickest way to remove material from a 

hard surface. Within the machine tool manufacturing industry as a whole grinding 

makes up 15% of a £438 million market (http: //www. mta. org. uk, Basic Facts Brochure, 

2006). 

The supply, maintenance and disposal of grinding fluid is a significant expense, 

particularly when fluid is used in high volume. Approximately 7-17% of total 
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machining cost was estimated to be consumed by the use and disposal of the grinding 

fluid (Ramesh, Huang and Yin, 2004). Any advance in this area would be beneficial to 

manufacturers. Grinding is generally a finishing stage in a multi-stage manufacturing 

process. It is applied at the high-value end of manufacturing and hence carries a 

substantial significance to all manufacturers. 

Currently, environmental legislation and concerns are disseminating down from a 

multinational level regarding the use and disposal of grinding fluids. The pressures for 

new methods take the form of EU initiatives, new parameter definitions and industry 

support groups. This will impact on UK business in the form of extra cost in purchase 

and disposal of grinding fluids and the cost of conforming to possible new quality 

standards. These factors lead to a need for nearly all machining companies to improve 

fluid delivery and disposal either for legal conformity reasons or to remain competitive 

in the increasingly aggressive European and Global manufacturing market. Despite 

common perception machine tool sales is a prosperous business for those willing to 

advance. The first six months of 2006 showed that for metal working machine tool 

manufacturers in the UK exports totalled £231.8 million, an increase of 12.4% on 

previous years (Professional Engineering, 2006). Further to this, analysis by product 

type showed that it was CNC grinding machines that had the largest trade surplus for 

the first 9 months of 2006, £ 13.7million (http: //www. mta. org. uk, Dec 2006 ). The 

increase in exports is mainly due to development in Asia and Russia (Professional 

Engineering, 2006). 

Brinksmeier et al (1999) stated `Further investigations in the fields of fluid dynamics 

processes in supply nozzles and in the grinding zone are the key to optimization of 

cooling and lubrication during grinding', it is from this notion that the terms regarding 

flow within the grinding zone have gained importance. Previous work on fluid delivery 

has mainly focussed on how to deliver fluid to the grinding machine, the effects of 

using oil or emulsion as a coolant and the need to supply fluid at high speed and in 

sufficient quantity. More recent research has seen focus on the quantity of fluid that 

actually gains access into the grinding contact zone. This quantity that enters the 

grinding contact zone is termed 'Useful flow'. Useful flow is always less than the flow 

supplied through the nozzle by the coolant system. It is commonly known that a 
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significant quantity of the delivered flow fails to enter the grinding contact zone. It is 

this difference that justifies the need for, and analysis of, the term useful flow. 

Previous researchers have based prediction of useful flow and nozzle flow, or 

recommendations on target values of useful flow and nozzle flow, on abstract terms that 

can only be obtained via specific additional testing. However, it would be much more 

valuable if useful flow could be estimated based on parameters that are readily available 

to any manufacturer. Furthermore there is a need to investigate how much useful flow 

can reasonably be achieved in a grinding operation. It is postulated in this project that 

physical limits may exist. Any guidelines for industry should account for these, there is 

little point in specifying a large target volume of useful flow if it cannot be achieved in 

practice or if there is no additional benefit in achieving it. There is a need then, to 

consider the nature of the guidance that should be given to industry on fluid delivery 

specification. 

The basic hypothesis of this work is that the useful flow mainly relates to the volume 

that can be accommodated in the surface pores of the grinding wheel. It is this notion 

that drives the theories and approaches used within this thesis. 

1.2 Aim 

The aim of this research is to establish a system to define the application of fluid 

delivery in grinding, with special relevance to useful flow. 

1.3 Objectives 

The distinct objectives of this research are: 

> To investigate and evaluate the term useful flow. 

> To design and implement a reliable useful flow collector and establish design 

methodologies 
> Correlate collected flow with grinding parameters to provide a basis for 

predicting useful flow. 

> To develop a theoretical model for the estimation of useful flow and hence the 

optimal application of grinding fluid. 

ýýý, 
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1.4 Layout 

The first chapter gives an introduction to the subject and a description of the aims and 

objectives associated with this work. The introductory chapter defines both the problem 

being assessed within this work and the needs as defined within the overall project. 

This includes the theories covering the justification for the projects and other sources of 

support located independently by the author. 

The second chapter reviews previous relevant research on the use of fluids in grinding. 

The review starts by covering the grinding process in general then focuses on the use of 

coolant in grinding and any work where fluid flow through the contact zone has been 

mentioned or measured. The chapter concludes with a review of the problems 

associated with how grinding fluid is applied in industry today. 

Chapter 3 reviews relevant grinding theory. Specifically this chapter describes 

assessment techniques employed both in industry and in some previous research 

projects. The theories presented relate to grinding effectiveness evaluation, grinding 

wheel topography specification and grinding zone geometry definitions. The chapter 

finishes with a critical analysis of previous useful flow prediction techniques 

implemented by other authors. 

Chapter 4 describes equipment used for the testing stages. All main and ancillary 

apparatus is described both in how it was used and if necessary the calibration 

procedure employed. This chapter includes all relevant information regarding the 

grinding wheels and workpiece materials. 

Chapter 5 seeks to explain the experimental process used in this thesis. A full layout 

of all the experiments carried out during this project is shown, describing in detail the 

information relevant to each individual test. 

Chapter 6 describes the development of the useful flow collection system. This began 

with the preliminary testing required to design, build and evaluate a reliable and 

repeatable useful flow measurement system. Several stages of testing are defined, 

described and reviewed for their usefulness to the main body of testing. The main body 
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of testing utilised a fully developed and reliable technique. The chapter concludes with 

a description of the fully developed useful flow collection system. 

Chapter 7 describes the main body of testing; this work is carried out as a basis for 

achieving a useful flow prediction technique. This chapter also seeks to define values 

of useful flow that should be targeted by industry as being realistically achievable. The 

argument over fluid application speed is also addressed. The results from this chapter 

are utilised throughout the thesis. 

Chapter 8 describes the tests carried out to investigate grinding wheel topography. 

The replication technique and the optical system employed along with the post- 

processing stages are detailed. Results from analysis into the effect of changes to 

dressing parameters are described along with results regarding the change of state of a 

grinding wheel surface after a dress has been performed. 

Chapter 9 seeks to utilise the knowledge gained from the testing stages to formulate a 

strategy for predicting useful flow. It is proposed that the surface pores of the grinding 

wheel act as a pump and that surface pores can be approximately filled. This hypothesis 

is used within the two approaches described in this chapter. Both approaches are 

detailed, along with experimental verification of each method using tests performed 

within this project and tests performed during other works. 

Chapter 10 presets a comprehensive discussion of all the work undertaken. The 

validity of the relationships proposed for useful flow are examined. All experimental 

and development work that was undertaken is discussed; with description of all major 

errors and obstacles found during the experimental process. 

Chapter 11 summarises the main conclusions from the thesis. Conclusions are made to 

provide concise insight into the developments this work can offer. 

Chapter 12 concludes the thesis by discussing future developments in this field and 

suggesting several projects for the continuation of the work started within this project. 
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1.5 Scope 

The thesis reviews previous research on grinding and then focuses specifically on 

useful flow and any work where fluid flow through the contact zone has been 

mentioned or measured. Previous useful flow models are analysed to draw out the key 

factors such as permeability, pressure and wheel surface topography. The research then 

discusses the analytical tools that may be used to quantify both the grinding process and 

a grinding wheel. 

A flow collector was designed to trap flow which had passed through the contact zone. 

This required all other grinding fluid to be diverted away from the collection apparatus. 

Experiments were carried out to establish the reliability of the flow collector on two 

surface grinding machines with a maximum wheel speed of 50 m/s on the first and 70 

m/s on the second. The main body of testing took place at the higher speed range. 

Several stages of initial testing were needed to design, build and test a reliable and 

repeatable method of useful flow capture. Three levels of initial testing and 

development were required in order to fully design the useful flow system. These 

incorporated a basic test, an exploratory test and then a refining test. The final 

arrangement incorporated all necessary gauging. 

Before confidence was established in the system from the tests, it was possible to 

formulate a basic strategy for predicting useful flow. It was proposed that the surface 

pores of the grinding wheel act as a pump. The surface pores can be approximately 

filled. After this, it becomes difficult to increase useful flow. This hypothesis becomes 

the basis for the remaining investigation. In order to validate this proposal tests were 

planned to measure the surface topography of several grinding wheels at various 
dressing stages. The use of a non-contact optical method of measurement allowed 

several accepted surface parameters to be defined both for verification and further 

analysis. The results are displayed and analysed along with examination of the 

effectiveness of dressing in opening up fluid carrying cavities within the wheel surface. 

The research shows that useful flow is mainly related to the volume of the surface 

pores of the grinding wheel. For an extremely porous and open wheel the surface 

pumping capacity of the grinding wheel allows a linear relationship between the useful 

flowrate and wheel speed up to where the wheel speed equals the jet speed. For a less 
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accommodating wheel, low porosity and closed surface structure, the linear 

proportionality breaks down and the relationship becomes more complicated becoming 

far more dependant on the ratio of the wheel speed to the jet speed. However, for both 

wheels the guidance for nozzle delivery speed suggests the jet speed should be 50-90 % 

of the wheel speed, this range allows the highest percentage of fluid to pass through the 

contact zone. Certain provisos exist for non-aggressive grinding situations, such as low 

depth of cut or very well suited wheels and fast workpiece speeds, in these scenarios the 

percentage can be much lower. 

For a well positioned nozzle, it was found that wheel speed, jet speed, wheel porosity 

and nozzle flowrate are the most significant parameters affecting useful flowrate. It is 

recommended that when setting up a grinding process for the first time the achievable 

useful flowrate should be used as guidance for the setup delivery conditions. The value 

of achievable useful flowrate was found to depend on the wheel speed, wheel width, 

bulk wheel porosity and grain diameter. These parameters were then related using 

knowledge developed during the experimental section of this project. Good agreement 

was found with experiments performed both within this project and from work 

described by other authors. 
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Chapter 2. Literature Review 
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2.1 Iliston of Grinding 

Gnnding, as a modern manufacturing process, has only developed over the last 150 

years and analysis of the process over the last 100 years (Alden, 1914) (Guest, 1914). In 

spite of substantial rcsearch, elements of the process are still not fully understood. 

Grinding requires a high energy input per unit volume of material removed with 

virtually all of this energy convened into heat and concentrated within what is known as 

'the grinding contact zone'. It is due to this heat generation within the grinding contact 

zone that a coolant is usually required. Grinding fluids (or coolant) are needed to 

reduce frictional losses, prevent rapid wheel wear, reduce specific energy, and maintain 

good product quality in terms of surface texture and integrity. Even with these 

requirements receiving common acceptance the actual volume of fluid flow required is 

unknown. Currently there is significant discussion on the best way to deliver fluid to 

the gnnding zone. A better understanding of the science could lead to significant 

advances in more than just process efficiency, significant steps would be possible in 

reducing process and capital costs along with a reduction of negative environmental 

effects. 

urkpiccc Jimtn n 
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Grinding is often regarded as a finishing process and consequently carries a high value 

in a manufactunng system. The most common grinding operations are surface and 

cylindncal and these are therefore the most researched. The grinding process with its 

high-energy input convert% nearly all of this energy into heat that is concentrated within 

the grinding zone. The region known as the grinding zone or contact zone refers to the 

area where contact is possible between the abrasive wheel and the workpiece. The 

contact zone region is defined by the product of the actual contact length 1, and the 

wheel width, b,. However, there will only be physical contact between the wheel and 
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the workpiece for a portion of this possible area at any one time. When considering 

wear flats there was found to be contact over only 5% of this possible region (Malkin, 

1989). This low value is due to the stochastic nature of the layout of the abrasive grains 

in the three dimensional bond of the grinding wheel. 

2.1.1 Surface Grinding 

Surface grinding is a reciprocating process where the wheel passes over a surface that 

may he larger or smaller in width than the grinding wheel employed. This geometry 

difference is overcome with a step progression so several passes are required to cover a 

complete surface. A plunge in-feed can be added at the end of the stroke when the 

wheel is in air and has passed fully over the entire surface once. most surface grinding 

is performed to gain a flat, parallel and smooth surface. Traverse surface grinding is 

represented in Figure I. 

2.1.2 Cylindrical Grinding 

Cylindrical grinding exists in two mode,,, traverse and plunge. Plunge mode is a 

straight in-feed towards the workpiece and traverse mode involves the wheel axis 

having a parallel motion to the workpicce axis with a predefined depth of cut. 
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Figure 2. Diagram of & typical external cylindrical grinding process. 

Cylindrical gnndtng machines can either produce external or internal diameters. The 

two types of machine require a different layout and present different challenges for fluid 

delivery. External gnnding is simpler for nozzle positioning than internal grinding. A 
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cylindrical process is used to gain high levels of surface finish and geometrical accuracy 

on a rotationally symmetrical part. A typical external cylindrical grinding process can 

be seen in Figure 2. 

2.1.3 Cutting Edge Developments 

The view that grinding is a finishing process is being challenged by advances in the 

process such as: High Efficiency Deep Grinding (HEDG) (Rowe et al, 2005) and Very 

Impressive Performance Extreme Removal (VIPER) (Venables, 2006) grinding 

techniques. HEDG is defined as deep grinding at high work speeds and very high 

removal rates. It has the advantage of being able to achieve low specific grinding 

energy, approximately 10 J/mm3 (Jin, Stephenson & Corbett, 2002) (Rowe & Jin, 

2001). 

VIPER cell grinding is a new technology developed by Rolls-Royce in collaboration 

with Japanese machine tool builder Makino and Austrian grinding wheel producer, 

Tyrolit. The principle is to use alumina grinding wheels mounted to a horizontal 

machining centre, this is then supplied with high pressure coolant and is currently 

mostly used when machining tough nickel based aero-alloys. VIPER techniques have 

seen little publication due to the commercially sensitive nature of the work. However, 

Axinte, Axinte and Tannock (2003) approached the subject of VIPER grinding when 

analysing the effectiveness of various cutting fluids. The setup times are greatly 

reduced by full CNC control of dressing, wheel changes and nozzle positioning. It has 

been stated that VIPER can be used as a replacement to milling and broaching and has 

been quoted as being ten times faster in material removal speeds than milling 

(Venables, 2006). 

These advances are making it possible for grinding to compete as a primary material 

removal process. It has been identified that correct fluid delivery is critical for the 

achievement of HEDG and VIPER. It remains unclear however, how to achieve the 

optimal fluid delivery conditions in these and other process operations. 

2.2 Lubrication 

The importance of lubrication in grinding is a well established fact (Brinksmeier, 

Heinzel and Wittmann, 1999). Lubricants used in grinding are commonly referred to 

as grinding fluids. A grinding fluid is used primarily for two purposes, to minimise 
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thermal energy build-up by convective cooling and minimise friction generated heat by 

lubricating the interacting faces. Grinding fluid is also used to reduce grinding wheel 

wear and improve process efficiency. The use and delivery of grinding fluid has 

attracted significant research, however conflicting advice is reported. In some situations 

a lubricant can be a hindrance, such as mirror grinding where the thermal shock of the 

workpiece hinders achievement of target tolerances; but in general it provides a much 

needed function. Although the needs of coolant are commonly accepted it has been 

found that lubrication when machining at very high wheel speeds can appreciably 

increase the capital cost of a machine and also negatively affect power demands and 

cutting forces in process (Brinksmeier and Minke, 1993). The key differences in 

current advice relate to fluid delivery speed, direction and flowrate. These aspects of 

fluid delivery have significant implications for system costs, fluid costs and process 

efficiency. Brinksmeier, Heinzel and Wittman, (1999) report on the fact that `reliable 

data on the essential requirements for efficient coolant systems are simply not generally 

available'. The difficulties presented by the grinding process such as the large 

contacting areas, high friction and coolant supply are illustrated within this review 

paper. 

Kim and Guo (1997) showed how important correct lubrication can be. In their work 

about the heat generated by a creep-feed `down' type grind, only 2-4 % of the heat 

energy generated during material removal passes to the workpiece, therefore the rest 

must either stay in the tool, pass to the chips or be removed by the coolant. This energy 

partitioning is displayed in Figure 3. In their experiment it is found that the low speeds 

and vitrified wheel allowed enough cooling to avoid burn, so this can generically be 

termed an efficient cooling situation. Rowe et al (2003) stated that advances in grinding 

technologies such as HEDG techniques rely greatly on efficient application of coolant to 

the grinding contact zone. Effects such as fluid film boiling may result in excessive 

temperature zones and this can only be counteracted during HEDG by sufficient fluid 

being applied correctly to the grinding contact zone. Rowe et al (2003) reported for a 

particular HEDG test with a removal rate of 288 mm2/s and a wheel speed of 55 m/s 

that 21 % of the heat flux can be convected by the fluid and only 2% will pass to the 

workpiece or wheel. Again, this situation describes efficient coolant delivery, and 

shows how coolant delivery if insufficient can adversely change the energy partitioning 
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in a process, possible allowing 20 % of the heat energy of the process to pass in to the 

workpiece. 

Heat energy generated in 
the grinding zone 

Chip Coolant Workpiece Wheel 

Figure 3, Grinding zone energy partition. 

2.2.1 Types of Coolant 

Grinding fluid can be split into two broad categories, oil based and water based. These 

can be further subdivided into water based emulsions and straight or neat oils. A 

neat/straight oil is pure mineral oil, including trace levels of additives if any are used at 

all. Water based emulsions consist of an oil in water mixture in the region of 1 part oil 

to 5-20 parts water. The type of oil used is further subdivided based on the composition 

of pure mineral oil and additives. A soluble oil fluid is 50-80% mineral oil, a semi- 

synthetic is 5-30% mineral oil and a semi-synthetic is less than 5% mineral oil (Howes, 

1990). 

Oil has the benefits of good lubricity, enhanced wheel life and a stronger fluid film 

than an emulsion. A neat oil has better lubricity than an oil based emulsion, thereby 

making friction less of an issue. These advantages however are offset by the fact that a 
large volume of neat oil is more costly than an emulsion. Oil is highly flammable and 
hence very dangerous, and when in an evaporated state the oil vapour is easily inhaled 

making it hazardous to an operator's health. Oil has a poor specific heat capacity, 

typically around 1.9 kJ/kgK when compared with water, the specific heat capacity of 
liquid water being roughly 4.2 kJ/kgK (Rogers and Mayhew, 2001). This means that 

water can absorb more heat energy per unit temperature than oil. This makes water a 
better conduit of energy from the contact zone. Water also has a good thermal 

conductivity of 600 W/mK in comparison to a mineral oil with a typical value of 130 

W/mk. A large thermal conductivity can reduce grinding zone temperature by 

removing the heat promptly after it has been generated. In contrast oil works better at 
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lubricating the faces that would otherwise generate large volumes of thermal energy, 

thus preventing the heat from being generated in the first place. 

Typically a water-based coolant is far cheaper to purchase than an equivalent amount 

of oil-based coolant and is generally cheaper than oil in terms of maintenance and 

cleanliness. A water based coolant (typically an emulsion with a 10% concentration in 

water) can also benefit from enhanced physical properties with the inclusion of 

additives. These additives could be: pour point depressants to aid fluid flow, extreme 

pressure additives to allow the fluid to operate effectively at high pressures or a fatty oil 

agent to aid lubricity of the fluid. Other additives are necessary to prevent bio- 

degradation due to bacteria and additives to prevent corrosion of the machinery and 

workpiece. 

The following is a list of coolant types along with their important characteristics (Irani, 

Bauer, & Warkentin, 2005) 

Synthetics Semi- 
synthetics 

Soluble 
oil 

Straight 
oil 

Heat removal/ Cooling 4 3 2 1 

Lubricity/ Film 
strength 

1 2 3 4 

Maintenance 3 2 1 4 

Filterability 4 3 2 1 

Environmental 4 3 2 1 

Cost 4 3 2 1 

Wheel life 1 2 3 4 

G-Ratios 2.5-7.5 2.5-6.5 4-12 60-120 

Table 2, Grinding fluid types and properties (5 denotes good performance and 1 denotes poor 
performance). 

When considering a coolant it is important to understand the modes of effectiveness, 
this draws attention to the importance of the coolant and its constituent parts to the 

grinding process. As an emulsion is a mixture of oil and water (and maybe other 

additives) it can be expected that the constituent parts will burn out at different rates. 

Typically oil also has a higher boiling point than water and hence will last longer in a 

grinding zone where the temperature exceeds the reported boiling point of an emulsion- 
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type grinding fluid, this is in excess of 100°C as established by Howes (1987). As the 

thermal conductivity of a mineral oil is typically a quarter of the value for water 

(Klocke, Baus & Beck, 2000) it is the water within the grinding fluid that accounts for 

the majority of thermal energy transfer that takes place within the contact zone. At that 

point where convective cooling no longer takes place the temperature of the workpiece 

interface will rise faster, the only limiting factor to rising temperature is the lubrication 

the oil can provide to the grain rake face. At around 300°C the oil will eventually burn 

out and may cause the specific grinding energy to increase and wheel wear to rapidly 

increase. Hence efficiency will drop and the surface roughness of the finished surface 

will increase. It is at this point where the coolant bums out and the lubrication fails that 

the process becomes inefficient. This may cause the part, depending on the material, to 

become thermally damaged and scrapped. 

2.2.2 Industrial Implementation and Legislation 

A focus within industry is currently on environmental effects of grinding fluids due to 

increasing legislation at a multinational level. These concerns most recently take the 

form of EU initiatives (EU Council Directive 75/439/EEC, June 1975) (Directive 

2000/76/EC of the European Parliament and of the Council of 4 December 2000) and 

parameter definitions (Council Directive on the disposal of waste oils 75/439/EEC, 

Article 1. ) designed to help implement regulations and new directives. These guidelines 

have lead to industry support groups such as the Hazardous Waste Reduction Group, 

HAZRED (http: //www. hazred. org. uk/) and the Waste Exchange 

(http: //www. wasteexchangeuk. coboth groups sole purpose is to minimise the 

disposal of waste materials. 

Recent research by the UK government (ht(p: //www. envirowise. gov. uk/home. aspx) has 

shown that the purchase, management and disposal of metal working fluids (including 

processes other than grinding) is worth approximately 15 % of overall manufacturing 

costs to the engineering industry. This statistic shows that the efficient use of coolant 

can be an effective cost savings tool. Further to this 10 % of the UK total oil sales for 

1999 (approximately 1,000,000 tonnes a year) can be attributed to metalworking as an 

industry. If metalworking alone could lower fluid usage by just 5%a year this would 

relate to a 5000 tonnes reduction and would have a significant environmental impact. 

This in turn would have a considerable effect on the amount of grinding fluids that 

would need to be disposed of. Cutting fluid at this time costs approximately £2.30 a 
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litre and disposal costs are in the region of £20 for a 200 litre barrel, excluding 
transportation costs. These costs should equate to a significant financial and 

environmental saving for any company willing to invest in improved efficiency of 

coolant application. 

Within manufacturing, certain niche sectors have arisen to accommodate the demands 

of minimal fluid usage. Minimum Quantity Lubrication (MQL) is a prime example of 

the attempts to advance coolant delivery, consumption and efficacy. Both dry 

machining and MQL are specialised fields falling outside the scope of this investigation. 

MQL currently focuses on using millilitres of oil per hour. This significantly lowers the 

purchase cost of coolant; however the exact benefits and areas of usage for MQL are 

still to be determined and verified. 

It is between MQL and conventional coolant delivery where the relevance of useful 

flow is most significant. The goal is to create a bridge between the specialist area of 

absolute minimal fluid application and the common industrial approach of `more is 

better'. This should allow some of the benefits of MQL to be applied in a more 

generalised manner. In order to achieve this kind of advance the entire grinding process 

needs to be considered. The most important grinding process parameters, such as wheel 

speed, workpiece speed, fluid delivery pressure, fluid delivery method, fluid delivery 

rate and depth of cut must be allied to any attempt at advancing grinding fluid 

application. But in reference to a useful flow definition it is expected that these will be 

of paramount significance. 

2.3 Grinding Zone Flow 

Within the following reviews a distinction is drawn between useful flow research and 

research on general delivery rates; specifically for any attempt at modelling, predicting 

or dictating what the useful flow could be. Most researchers have not attempted to 

optimise useful flowrate, as this would require a significant volume of grinding trials. 

However, some attempts are made at guidance to what the supply flowrate should be for 

a particular purpose. Such attempts are not specifically aimed at stating what the useful 

flowrate is but rather what the flow is required to be, given certain criteria, such as 

limiting a particular temperature rise. When giving a value of target grinding zone 

flowrate most times it is ignored exactly how that target can be achieved. As stated 
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previously the nozzle flow will always be greater than the grinding zone flow or useful 

flow. The principal outcomes of previous research concerned with fluid delivery, fluid 

application, and the effects of fluid on grinding performance are reported below. 

Schumack et a/ 1 1991 > analysed fluid flow in the contact zone from first principles 

using a perturbation technique. incorporating at its most complicated the 2-dimensional 

`a, ier-Stokes equation including inertial effects. Schumack et al used a smooth wheel 

that was in the spark-out position (equivalent to an infinitesimally small gap). This 

method of analysis meant that there must be a gap left between the smooth wheel and 

the workpiece for the theory to be valid. The value of Reynolds number used was based 

on a characteristic length defined by the grinding wheel radius, and a speed value 

governed by the circumferential speed of the grinding wheel. The use of grinding wheel 

radius as a characteristic length seems unusual for a case involving a gap between the 

grinding wheel and the workpiece. 
12 
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This model was found to he useful at what was termed a low Reynolds number, 

approximately 7800. At higher Reynolds number, typically 6.45x 10`, reasonable 

analysis was possible, however it failed when the Reynolds number got too high, 

typically 3.9x V. At conventional wheel speeds (typically in the region of 30 m/s) and 

jet speeds (typically above 15 m/s) the Reynolds number will exceed the limit for 

laminar flow between two plates. thereby nullifying the model. Schumack et al states 

that the contact region presurr is small in grinding. The assumption of low pressure 
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may only be true at low jet speeds and low wheel speeds. As there is no contact 

between the wheel and workpiece any thermally generated property changes must also 
be neglected. 

Schumack et al suggests that an emulsion at a low jet speed of 1.55 m/s will give a 

useful flow curve that has an upper limit at 700 ml/min, approximately 20 % of the 

applied flow. This upper limit occurs when the wheel speed is 25 m/s. Figure 4 shows 

these results in graphical form. However increasing the speed of the jet 'to 6 m/s will 

give a maximum useful flow of approximately 30 % of the applied flow, with an 

undefined upper limit occurring when the linear wheel speed is in excess of 35 m/s. 

Schumack does not make a clear distinction between the nozzle flowrate, nozzle outlet 

size and the jet speed. Schumack appears to be using a round nozzle which must have 

significant geometry change in order to change the speed by a factor of 4, assuming the 

nozzle flowrate is kept constant. Schumack shows that the nozzle flowrate can have a 

directly positive effect on the amount of fluid passing through the contact zone and that 

by having sufficient flowrate the pumping capability of the wheel is increased. At such 

a low supply flowrate of around 3.5 1/min it is difficult to differentiate when the supply 

flowrate has reached a point where any increases are no longer beneficial. Figure 4 also 

shows a hint of a trend that may exist between the wheel speed and the useful flowrate. 

It can be seen that a linear proportionality exists between the useful flow and the wheel 

speed for all three jet speeds up to a wheel speed of approximately 16 m/s, then the 

results tend to tail off. 

Schumack et at also found advantage in positioning the nozzle so it is directed toward 

the wheel rather than the gap or the workpiece. The results suggest a possible 

difference of 50 % in measured flowrate in varying the position and hence direction of 

the nozzle, with the maximum useful flow being when the nozzle is directed at the 

wheel above the contact zone. Schumack et at concludes that only a three dimensional 

model incorporating complex end effects could accurately predict true grinding flows. 

Guo and Malkin (1992) stated that the most important factors affecting the useful 

flowrate are nozzle position, jet speed and effective wheel porosity. The effective 

porosity relates directly to the bulk porosity of the wheel. All testing was conducted at 

low wheel speeds and jet speeds, and does not address the commonly held notion that 
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the jet , peed needs to match the wheel speed. Predictions of useful flow were attempted 

based on the model developed by Chang (1994) from within the same group. 

Experimental comparison was made to the work of Engineer. Guo and Malkin (1992). 

It was also stated that creep feed wheels provided better tlowrate due to their increased 

effective porosity and the impact that parameter has on the ability of the wheel to pump 

fluid through the grinding zone. Guo and Malkin (1992) postulated that film boiling 

may give rise to the failure of convective cooling thereby inducing a temperature rise in 

the sui-Lux of the workpiece. 

The work by Engineer. Guo and Malkin ( I992) was conducted on a reciprocating 

grinding machine and used mechanical flow isolation to collect the flow that had passed 

through the grinding contact zone. Engineer chose to use the term 'Percentage 

Utilisation' for useful flow. The collected flow was compared to applied flow, bulk 

wheel porosity, nozzle position, dressing and flowrate. Engineer at a! found that the 

percent utilisation was in the region of 5-20% of the applied flow. These values were 

obtained dunng a test where the tlowrate was varied by changing the pressure at the 

pump. However, this will invariably change the jet speed as well as the tlowrate. Jet 

speed is considered to have its own influence, mainly regarding the air barrier effects 

discussed later in this thesis. The results from Engineer et a! can be seen in Figure 5. 
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This value of 5-20 % was in reasonable agreement to Akiyama et al (1984), who found 

useful flow in the region of 20-40 % of the applied flow. The results of Engineer et al 

lead towards the conclusion that depth of cut, dressing parameters and workpiece speed 

are of no significance. The findings also suggested wheel dressing has a minor input 

due to the controlling function the dressing has over the more influential factor of wheel 

porosity at the surface. The most influential factors found were the bulk porosity of the 

wheel and nozzle position (Engineer, Guo, Malkin, 1992). Engineer et al showed a 

linear relationship between the useful flowrate and the applied flowrate (shown as 

nozzle exit speed in Figure 5) for the relatively low values of 30 m/s wheel speed and a 

supply flowrate of up to 3.6 I/min (0.0036 m3/min). 

The methods used to capture flow by Engineer although acceptable for the lower jet 

speeds would fail when using the more aggressive jet speeds and flowrates that are 

targeted in order to match the wheel speed. As in Figure 4, it appears there is a linear 

proportionality between the useful flowrate and jet speed. In Figure 5, the slope of the 

linear portion depends on the wheel porosity. The highest porosity gives the steepest 

slope. According to these results an increase in bulk wheel porosity from 41 % to 55 % 

can increases useful flowrate by a factor of 5 times. This is a very large difference and 

more than likely is compounded by the increase in supply flowrate that is accompanied 

by an increase in nozzle exit speed. 

The work of Engineer et al (1992) and Guo and Malkin (1992) suggests that there are 

no limiting factors or that the test was too short in its scope to accurately predict any 

upper threshold. If the percentage utilized flow is to be a function of the porosity, then 

a topographical limiting factor should be expected at a point where the wheel is 

saturated and the wheel speed is fixed. Where bulk wheel porosity is seen as influential 

attention has to be given to permeability as a possibly important factor. With no report 

made of the values of key quality parameters, grinding temperature, pressure, power, 

force; any optimisation of the value of percentage utilisation was not possible for this 

investigation. 

Chang (1994) used a theoretical model to describe several relationships some of which 

were verified against experimental data from Yasui and Tsukuda (1983) in a creep feed 

process. Chang's model described that an increase in wheel speed will decrease the 
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depth of fluid penetration into a porous wheel, this is due to the centripetal acceleration 

required by the fluid being stronger than the pressure effect the fluid will experience in 

the contact zone. The penetration depth appears to follow a decrease proportional to a 

`Power' trend. When the wheel speed is 20 m/s the fluid can penetrate 60 µm radially 

into the wheel, and when the wheel speed is 70 m/s the trend shows the penetration 

would be approximately 15 µm (see Appendix Q. It was described that the depth of 

penetration could be increased by increasing the supplied flowrate, this relationship 

appears to follow a linear trend. Chang predicted that when the flowrate is 4.21/min the 

penetration depth is 40 µm and at 18 Umin the penetration depth is 100 µm, if a linear 

trend is assumed. Chang also states that the useful flowrate can be increased by 

increasing the porosity of the wheel, in some instances the useful flowrate can be at 

least doubled when the porosity is doubled for a given jet speed. A larger useful 

flowrate can be achieved by increasing the jet speed, and that a higher porosity wheel 

will allow the nozzle exit speed to have a more pronounced effect. Therefore it was 

stated that permeability may be important when the wheel is highly porous. 

Krishnan et al (1995) used a novel method of capturing the flow using unique physical 

boundaries surrounding the wheel. It was found that a percentage useful flow up to 55 

% could be measured when using a highly porous wheel at workpiece speeds equivalent 

to creep feed and using low wheel speeds. Krishnan observed that the grit size, wheel 

porosity, wheel speed and nozzle position were the key influences to useful flowrate. 

Agreement was found with Guo and Malkin (1992) in that dressing had a secondary 

influence, and more specifically the dressing depth being the factor with any control at 

all. This brought to attention the surface condition of the wheel as possibly being a key 

factor to the ability of the wheel to transmit fluid. The wheel speeds employed for 

testing by Krishnan were limited to 30 m/s, slow by modern standards. No attention 

was drawn to the influence of the jet speed even though applied nozzle flowrates were 

varied and labelled as key. Increasing the flowrate was most likely achieved by 

increasing the pressure at the supply pump; this would undoubtedly lead to an increase 

in jet speed if the same nozzle was used. This would make separating the two factors 

difficult and drawing conclusion on either impossible. The effects of the air boundary 

layer that is generated around a rotating wheel and hence the needs for an increased jet 

speed were not addressed. Krishnan also introduced an approach similar to Marinescu 

et al (2004) that utilised a value of useful flowrate to estimate the thickness of a fluid 
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layer that is equivalent in volume to the useful flow. This approach involved creating a 

theoretical fluid layer thickness based on a comparison to the grain diameter. All the 

wheels tested were vitrified alumina wheel with grain sizes of between 108-184 µm. 
Krishnan's results pointed to a value of huf equivalent to 10-16 times the average grain 
diameter when using applied flowrates of approximately 135 1/min and grinding wheel 

porosities ranging from 45-55%. These are extremely high values for huf and are most 
likely a result of the very high supply flowrate and very high jet speed. The situation 

employed could easily be considered inefficient due to the large amounts of energy 

required to accelerate the fluid to such high speeds. 

In the review paper by Brinksmeier, Heinzel and Wittman (1999), a discussion of the 

grinding zone flowrate led to an acknowledgement that any increase in coolant jet speed 

could lead to lower cooling efficiency (Brinksmeier et al, 1999). This finding was 
linked to a geometric limitation to the flow through the grinding arc (Vits, 1989 from 

Brinksmeier et al, 1999). Brinksmeier also drew attention to an optimal value of 

grinding wheel wear and residual stresses found by Tawakoli et al (1990) when a nozzle 
flowrate of 601/min was applied at a pressure of 15 to 20 bar. The paper by Kovacevic 

and Mohan (1995) describes the use of a nozzle flowrate of 3.6 1/min as giving a 

decrease in process forces of 25 % and surface roughness of 50 % in comparison to a 

flood fluid application system. 

In the work by Gviniashvili et al (2004) a simulated grinding situation was 
implemented, this was a `zero gap' scenario achieved using a gap elimination technique, 

similar to Schumack (1991). Gviniashvili's results showed that to achieve a sufficient 

useful flowrate the nozzle should be positioned as close as possible to the contact zone. 

It showed that at high wheel speed, the difference in measured useful flow could be up 

to 100 %. Particular attention was paid to the spindle power requirements to overcome 

the fluid resistance to motion. It remained undetermined whether a true contact would 

add to the power needed for fluid traction. This power value is a combination of 

coolant jet drag from the need to accelerate the applied coolant and the hydrodynamic 

drag effect present due to viscous shear of the fluid. Gviniashvili et al (2004) 

concluded that matching wheel speed and jet speed allows useful flowrate per unit 

power to be approximately maximised and prevents total power from becoming 

excessive. The use of experimentally determined correction factors limit the extent to 
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which the model developed within this work can be applied without additional 

calibration. Further to this was a tentative suggestion that when the wheel speed 

matches the jet speed, the spindle power to accelerate the fluid will be equal to the jet 

power. 

Gviniashvili et al (2004) also showed the effect of an air barrier, as was previously 

demonstrated by Ebbrell et al (2000). At high speed, the air boundary layer around the 

wheel tends to deflect the grinding fluid making it more difficult for coolant to get close 

to the wheel surface. Also shown was the effect of the disruption of the air barrier by a 

nozzle and scraper arrangement. This creates a pocket directly after the scraper where a 

fluid can be entrained by the wheel as a new air barrier is formed. This aids the coolant 

in passing into the contact zone. 

As has been stated in this chapter and shown by mentioned authors the now expected 

to pass through the contact region is strongly dependant on the bulk porosity of the 

wheel, the wheel speed, nozzle position and the jet speed. Exact relationships have yet 

to be fully established. 

2.4 Issues of Coolant Application 

When specifying or analysing a coolant system several factors need to be addressed. 
These are nozzle design, nozzle position, nozzle angle and supply flowrate. 

Nozzle design characterises the type of nozzle being used and the specific geometry it 

employs. There are three categories of nozzle employed today; jet nozzles, slot nozzles 

and shoe nozzles. Although the shoe nozzle can be an extremely effective method of 

utilising fluid without waste, it has some significant drawbacks. A shoe nozzle relies on 

being able to apply a fluid pressure directly to the wheel periphery thereby forcing fluid 

into its pores by virtue of its permeability. A shoe nozzle uses pressure to force 

grinding fluid far enough into the wheel in order that it may be retained until that 

segment of the wheel reaches the contact zone. Typically the difference between the 

shoe nozzle position and the grinding zone is at least 45° on the wheel periphery. 

Powell (1979) observed that a shoe nozzle can force fluid through the periphery of a 

wheel up to a radial depth of 10mm when a highly porous wheel is used, this value was 

later theoretically corroborated by Chang (1994). The usefulness of grinding fluid 
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forced up to and beyond 10mm is questionable and is yet to be verified. The outlet of 

the nozzle must be in intimate contact with the wheel surface at all times, this forms the 

seal that allows a pressure to build up and force fluid into the wheel. However, the 

wheel will decrease in diameter as a grinding process is performed or as a dress is 

performed thus creating a gap between the wheel and the nozzle once again. It is this 

need for a pressurised fluid volume to be in contact with the wheel surface that is its 

major disadvantage. No system exists that at a reasonable cost can maintain this 

intimate contact hetween the nozzle and the wheel as the wheel diameter decrease.. 

0 

Figure 6, Flow trace of a tna_»Jr+i particle passing through a %lot nozzle, showing a flow 
recirculation area indicating poor nozzle design 1 Baines-Jones, 2005). 

The most common type of nozzle in use today is the jet nozzle. This type comes in 

many forms, with the most common being the click-lock plastic variety. These plastic 

nozzles are available in various outlet geometries with the most common being round 

and slot, however others do exist. The round jet type creates a cylindrical stream of 

fluid that can be readily directed into an area of interest, in this case the grinding contact 

inlet zone, and can have a wide possibility of speed,. This type has benefit found in its 

simplicity, they are generally easy to manufacture and always easy to use. However, 

this case of use is its downfall. As the nozzle is easily positioned it is also easily moved 

out of position. There is a tendency by operators to move an awkward nozzle and this 

can negate many of the advantages this type of nozzle can provide. A suitable jet 

nozzle can allow the user the ability to reach high nozzle emission speeds, Kovacevic 

and Mohan (1995) reached speeds of 365 m/s with a 380 MPa supply pressure through a 

jet nozzle. This is considered very high pressure and therefore costly to attain, and in 

order to reach the high nozzle emission speeds the outlet of the nozzle would need to 

have a very %mall diameter. Kos acevic et a! showed the benefit of large jet speeds in 
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low grinding zone temperature, reduced wheel wear and loading and an improved 

surface finish on the part. The authors also referenced a paper by Ganesan, Guo and 

Malkin (2001) stating that increased coolant pressure could lead to a reduction in 

process total force at higher cutting speeds. 

A paper by Ramesh, Huang and Yin (2004) found that a water based coolant will help 

to avoid thermal damage and achieve better surface integrity as well as a higher 

grinding ratio. Although at no point did Ramesh measure or quantify useful flow. 

Ramesh et al (2004) also found that increasing the jet speed whilst maintaining the 

flowrate can be beneficial to grinding forces along with allowing less coolant to be 

used. Further to this the authors suggested that a ceiling of 18 - 20 1/min for nozzle 

flowrate exists. Beyond this value of applied flowrate any improvement in grinding 

force, power flux and surface roughness was deemed minimal. Many grinding trials 

were performed explicitly varying coolant speed and flowrate, this was achieved by 

varying the nozzle outlet size. The concept of a physical limit to the amount of fluid 

that should be supplied is in keeping with the ethos of this thesis. The transferability of 

this value needs to be scrutinized. 

It is also important to position and direct the jet nozzle correctly as a high emission 

speed will generally imply a small cross-sectional area for the stream of fluid. Precise 

nozzle positioning has seen little concerted research effort as it is intrinsically difficult 

to separate nozzle flowrate, speed, position and type for complete analysis. Engineer, 

Guo and Malkin (1992) showed the benefit of close positioning in the amount of fluid 

forced through the contact zone. Engineer et al also brought to attention the need to 

have good positioning in combination with sufficient supply flowrate. Furthermore, a 

nozzle angle which is tangential to the wheel and at a position 10° - 25° before the 

contact zone was seen as the optimal angle and position for free jet fluid delivery (Vits 

1985 and Ot, 1991 from Brinksmeier et al, 1999), this result was independently verified 

by Brücher (1996 from Brinksmeier et al, 1999). Of course, if the jet speed matches the 

wheel speed, a tangentially directed water or oil jet can easily displace air because the 

momentum of the liquid is much greater than the momentum of the air. However, if the 

jet speed is much lower than the wheel speed, the jet may be required to point slightly 

more directly towards the wheel surface to avoid being diverted by the boundary layer. 

1ýý; 26 



This means that conclusions reached by previous workers for the optimum angle may 

only be relevant for a particular combination of jet speed and wheel speed. 

In conjunction with nozzle position and direction is the concept of a coherent jet 

design. Coherency in terms of fluid dynamics describes the tendency of a stream of 

fluid leaving an orifice to break up after a given distance. It is this break up of the fluid 

that means that a nozzle must be placed near to the grinding contact zone. A non- 

coherent nozzle jet breaks up quickly, not allowing jet speed to be maintained over a 

significant area of impact. If jet coherency is maintained then the nozzle can be 

positioned further from the grinding contact zone. This would allow significant 

flexibility in coolant application system design. Jet break-up distances are estimated in 

the PhD thesis by Cui (1995) and the paper by Baines Jones (2006) and the need for jet 

coherency is emphasised by Webster, Mindek and Cui (1995). Indeed the work by 

Baines-Jones highlights a newly relevant factor of peak velocity length, defining the 

distance that the jet stream will take to lose a significant area of fluid velocity from a 

given cross-section. 

2.4.1 Air Barrier 

Ebbrell et al (1999) showed the negative effect of flow reversal when a flood 

application method is used (see Figure 8). The air barrier created by a high speed 

grinding wheel causes a reversal of flow just before the grinding zone inlet area, thereby 

opposing any flow directed towards the contact zone. This is due to the non-slip effect 

inherent to any fluid flow over a real wall such as the grinding wheel surface. The fluid 

directly in contact with the wall will have a similar velocity to the wall, in this case the 

air in contact with the wheel will move at vr. The fluid away from the wall will have a 

mean bulk speed, which in this case is zero as it can be considered stationary air. A 

gradient will exist between the air at the wheel and the bulk air, the thickness of this 

layer where there is a gradient is known as the air boundary layer. The exact nature of 

this boundary layer in regards to a grinding wheel has yet to be fully defined. The effect 

of the roughness of the wheel surface will tend to induce a turbulent boundary layer 

earlier than an equivalent smooth wheel. Essentially a rougher surface makes the 

critical Reynolds number for transition lower; thereby change from laminar to 

transitional to turbulent boundary layer happens at lower wheel speeds. It is unlikely 

that a laminar boundary layer will predominate with any grinding wheel due to the high 

wheel speeds and inherently rough surface. However, whether the boundary layer is in 
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a transitional state or fully turbulent will depend on the combination of specific wheel 

surface speed and possibly the roughness. At low wheel speeds and low grinding wheel 

surface roughness's the boundary layer may hold within the transition region longer 

than a rougher wheel. Simple calculations of the Reynolds number for a flow over a flat 

plate for comparisons is shown below. This can be used for rough comparison to a 

grinding w heel of diameter 250mm. 

Re=Ux 
v 

When U is tree stream velocity, x is the distance along the surface from Ex)int of zero 

boundary layer thickness, in this case the grinding wheel circumference, v is the 

kinematic viscosity. 
30-0.75 

Rt= =1.4x10° 1.6x10 ` 

A Reynolds number of I. 4x l0'° mean% the boundary layer will be in a transitional 

phase. A transitional phase means there would be a reasonable thickness of laminar 

sub-layer but with some turbulence properties such as eddy formation. The Reynolds 

number would need to be below approximately 5x IO` to be laminar and above 

approximately 5x l0° to be turbulent. As mentioned previously these values could be 

expected to decrease with increasing roughness. A larger Reynold-, number generally 

mean% a larger boundary layer thickne. s. Hence it would present a more substantial 

resistance to penetration. 

Ebbrell et al also recommend tiring the jet slightly above the area of flow reversal, the 

nature of this rcvcnc flow can be seen as fluid velocity vectors in Figure 7 and Figure 8 

and also as a photograph of a real setup in Figure 8. 
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Figure 7. IDA diagram showing fluid flow vector% around an anti-cluckwisr rotating wheel in a 
spark out position iNu, 2005). 
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Figure S. Diagram %bowing predicted air flow pattrrns around a clockwise rotating grinding wheel, 
kh. Picture showing fluid backing up at the contact zone due tu a now reversal caused bs the 

boundary layer, right i F: bbrell. 2000). 

Marine u er al (2004) stated that in order to penetrate the air barrier the rate of 

momentum per unit width of the wheel of the incoming fluid must he at least equal to 

the momentum of the air barrier. The rate of momentum of the fluid is given by 

M, =P'A'. v- w .f 
Where p, = Fluid density. h,,, = Jet thickness and ºv r, = Jet speed 

The rate of momentum of an air boundary layer of thickness ha,,, generated by the wheel 

is given by 

M, =p,. 
hw. 

'ý . (3) 

Where p,, = Air density. h,,,, = Air boundary layer thickness and v, = Wheel speed 

Thee two equations allow an approximation of the minimum jet , peed that will be 

required to penetrate the air barrier, as %hown in equation (4). This is assuming the jet 

profile u cd will supply the entire length of the grinding zone contact inlet. 

º. = º, 
0. 

ý. 
h. 

ý' (4) 

A common recommendation is to match the speed of the coolant jet to the peripheral 

speed of the grinding wheel. Matching the jet speed to the wheel speed will have two 

mayor effect-., penetration of the air barrier and a lowering of the power loss due to fluid 

drag. This pi ncipk is used by Gvinia hvili rt al (2(X)3) when calculating the useful 

flowrate based on the momentum equation (ice equation (27)). Ott (1991, from 

Bnnk. mcter et u/. 1999) also suggests that a free jet speed should be roughly 60-100 % 

of the wheel speed. Wheel speeds at the time were in the region of 30-60 m/s, so 

matching the jet speed to the wheel speed was possible with a convenient value of 

pressure and flowrate. However, modern wheel speeds can be up to or exceed 1(X) m/s 
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so achieving a jet speed of 100 m/s becomes more costly; sometimes requiring the 

grinding system to nearly double the area it needs to occupy, in turn adding up to 40% 

to the capital cost of the machinery. 
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Chapter 3. Theory 
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3.1 Modelling in Grinding 

This chapter presents some general grinding theory and the mathematical relationships 

necessary for understanding the grinding process and the work presented within this 

thesis. 

3.1.1 Specific Grinding Energy 

The evaluation of a grinding process will normally include several key factors. 

Specific Grinding Energy, e, is one of the most important factors when assessing the 

efficiency of a grinding process. Specific grinding energy is the ratio of the machining 

power to the rate of material removal and is related to the efficiency of the process. A 

higher value than might be expected for a given process means the machining power is 

increasing for no extra material removal, an inefficient state. 

e_ 
P_F(v, ±vw) 

e QW bwaevw 
(5) 

Where P= Grinding power, Qw = Material removal rate, Ft = Tangential force, vs = 
Grinding wheel speed, v,,, = Workpiece speed, bw = Contact width, ae = Actual depth of 

cut and ± designates either up-grinding or down-grinding for surface grinding 

operations; or internal or external for cylindrical grinding. 

When considering this value in relation to grinding fluid effectiveness, it is worth 

noting that Ft, is lowered by the correct use of coolant. This is obvious when you 

consider the force interactions occurring during a simple surface grind. At any point 

there are 3 components of force resulting from the interaction of wheel on workpiece; 

Ft, F,, and Fa, as shown schematically in Figure 9 (Fa not shown). In a single grinding 

pass during a traverse process the axial force component, FQ can be treated as 

insignificant in comparison to the much larger normal force, F, and tangential force, FF 

components. 
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Figure 9, Grinding wheel schematic showing forces. 

The normal force is larger than the tangential force. It can also be considered that the 

normal force is the reaction of the abrasive as the grains attempt to plunge into the 

workpiecc. The normal force is a function of the stiffness of the machine, the wheel 

surface integrity and type of workpicce. It i, the tangential force that drives any 

material removal; this is why F, is a factor in the specific grinding energy and why the 

specific grinding energy is an important measure when assessing a grinding scenario. 

The relevance becomes clear when you consider a single grain. 

Figure 10 show% the path of a single grain of an abrasive as it passes through a 

workpiece during the process of removing material from a planar surface. The abrasive 

grain is passing through the material with a speed equivalent to t', - v,,.. 

Normal 

(r.,, n Force, F,, 
('hip 

ntial 
F, 

Figure 10, SmWe grain schematic, i ti. B wheel direction of motion opposite to Figure 9. ) 

33 

Motion ot the grain through the 
workpiere 



The path of the grain can be described as follows, the grain plunges into the 

workpiece. traverses an arc and then leaves the workpiece having removed a section of 

material equivalent to the volume in front of the path of the grain. The tangential force 

is a representation of the materials resistance to having a section sheared from its 

surface. The motion of this force is tangential to the rotating wheel, removing material 

from the %%orkpicce surface in the form of a grinding chip (also called swarf). 

At the interface between the grain and the workpiece there are key tribological 

interactions, such as friction, lubrication and heat transfer. Correct lubrication of the 

abrasive grain rake face will decrease both the cutting and sliding energies (Osman and 

Malkin. 1972) and reduce the grinding power by lowering tangential force. However, at 

shallow depths of cut with high wheel speeds any coolant can be a hindrance as it 

increases the power demands of the process (Werner and Tawakoli, 1988). A lower 

tangential force will in turn reduce the specific grinding energy. Marineau et al (2004) 

explains how there are three key areas of material change where shearing of workpiece 

material take% place. An area of compression ahead of the negative rake angle of the 

chip cause% the material to compact in front of the grain and be forced up the leading 

face of the grain. This is the first stage of chip formation. This compression induces a 

shear cone at the base of the forming chip, it is this and the coupled effect of the arced 

path of the grain as it is being pulled from the material that induces the chip to separate 

from the workpiece. As the grain is ploughing through the material it will carve a 

groove, this is due to material being removed in the form of a chip and also being 

displaced towards the %ides of the groove. A lessening of friction at the sides of the 

grain will reduce the drag forces on the grain and consequently benefit the overall 

grinding efficiency. 

F'riiýurý . tk u Fcrtiary %hc: u 

Figure I I, COOK e$ of hear some applied to an abrasive grain (Marineecu et al 2004). 
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3.1.2 Equivalent Chip Thickness 

The Equivalent Chip Thickness, heq is considered another good general measure of 

overall process efficiency. This value gives the thickness of an equivalent material 

layer for a volumetric removal rate per unit width; it does not actually represent the 

thickness one might expect to measure on a machined chip. Accepting the relevance of 

chip thickness as an indicator of process performance it is relevant to note that it is 

inversely proportional to the wheel speed. 

heq = Qe. 
Vw 

V, 
(6) 

When v,, = Workpiece speed, vs = Linear wheel speed and ae = Actual depth of cut. 

The equivalent chip thickness is known to compare well with other performance 

characteristics, but cannot differentiate between wheel types and topographies. Grain 

spacing for example can have a large effect on surface finish but is not recognised by 

the equivalent chip thickness. Reducing the chip thickness or increasing the wheel 

speed is known to reduce the workpiece roughness and cutting forces and increase the 

wheel life. It is worth noting that Shaw (1996) found that in general, the specific 

energy varies exponentially with the uncut chip thickness, h, n. 
1 

eC=C 

m 

(7) 

Where x is a function of the volume of material removal attempted, 0.3 for stock 

grinding and nearly 1 for finish grinding and h,,, is given by equation (8). 

hm =2L. 
v.. fri° 

vs ds 
(8) 

Where L= Grain spacing, ds = Wheel diameter, ae = Actual depth of cut, vw = 
Workpiece speed and vs = Wheel speed. 

This concept is explained by Rowe and Chen (1997) using the `sliced bread analogy' 

and is an advance on what is commonly known as the `size effect'. The sliced bread 

analogy describes how if the number of slices of a loaf is increased the amount of 

energy expended slicing the loaf will increase accordingly. 

35 



3.1.3 Thermal Damage Threshold 

One of the most important variables when considering whether a grind has been 

successful is grinding zone temperature. Should the temperature get too high the part 

may burn. This can result in one or more of the following phenomena: visual damage, 

phase transformations, size errors, material softening, chemical reactions, tensile 

residual stresses (possibly with cracks) and will generally cause the part to be scrapped. 

A temperature of 300°C can be considered an approximate boundary to thermally 

damaging effects for grinding most steels. This will obviously vary depending on 

material type. A fine line exists between the positive effects of grinding, inducing 

compressive stresses to the surface thus pre-loading the material; and the negative 

effects of inducing excessive tensile stresses into the surface that occur when the large 

heat source is removed. 

Several models have been developed for predicting the grinding zone temperature. 

Variations tend to be on the method of definition of the theoretical heat flux used, such 

as; a triangular source (Rowe et al, 1997), a circular arc source (Rowe et al, 2003) or a 

uniform source (Rowe et al, 2004). As an example of the methodology employed for 

these predictive models the circular arc source as described by Rowe et al (2003) is 

shown in equation (9). 

T_ 
1ce2 aýx-l, coso') K Vr 1 

ý. k 
J4' 

0 2. a 0 
(9) 

Where r. X- l; cos ; 
)2 + (z - l; cos ; 

)2 
, KO is the Bessel function of second kind, 

order zero, ais thermal diffusivity, k is thermal conductivity, l; is the arc length, Dis the 

angle of the coordinate under analysis and x and z represent coordinates along the 

circular arc 

Firstly, the assumption is made that the total heat flux from the grinding contact is 

shared between the workpiece (subscript w), grinding wheel (subscript s), grinding fluid 

(subscript f) and the grinding chips (subscript ch). The heat flux, qt is defined by the 

power used during the grind divided by the area of the grinding contact. This can be 

seen in equation (10), 
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P Pw+P, +Pf+Pti 
9ý-A bJ 

(10) 

Where q, = Heat energy, A, = Contact area, 1, = Contact length and P= Power 

When assuming the power that is passed through these four conduits is dissipated as 

heat it becomes necessary to consider the basic heat transfer mechanisms used. This 

equation is then developed to include convection factors to approximate the heat 

transfer rate at the different interfaces, as shown in equation (11), 

q, = qW + qs +qf+ qh = hW. T.,, + h., T. +hfT. + kh. TCh (11) 

Where T= Temperature and h= Heat transfer coefficient 

This equation then uses values from Carslaw (1959), Hahn (1966), Morgan et al 

(1998), Rowe (2001) and Rowe et al (2003), to approximate the values of heat transfer 

for the workpiece, wheel, fluid and chips respectively. A value of chip temperature is 

also approximated at this stage. This then leads to equation (12), which defines the 

maximum temperature expected within the grinding zone when using a workpiece- 

wheel partition ratio, R,,, S that defines the dispersion of the heat flux between the 

workpiece and the grinding wheel. 

0.8Rws(e. -e�ef , 2L- y 
+8 m (%mc`w 

le a (12) 

Where e, = total specific energy due to grinding, e, = specific energy convected by the 

grinding chips, er= specific energy convected by the fluid, le = Real contact length and 

9a = Workpiece ambient temperature and where R,,, s is given by 

1 
=1+ 

Ka 
Rws (ri. v, ) (APC)w 

(13) 

Where ro = Wear flat contact radius, Kg = Coefficient of thermal conductivity for the 

abrasive, x= Coefficient of thermal conductivity for the workpiece, p= Workpiece 

density and c= Workpiece specific heat capacity 

Ebbrell (2003) reported typical values of R,, S for various wheel speeds using the values 

of thermal conductivity reported by Morgan et al (1998) and Rowe et al (1997) for 

Alumina and cBN. 
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3.1.4 Contact Zone Length 

When considering any measurement that is a function of the grinding contact zone it is 

necessary to analyse the geometry of the contact zone. The contact zone area is the 

product of the contact width, b,. and the geometric contact length, ! K. The contact width 

is commonly the wheel width and as such is specific to a machine setup and will remain 

constant unless the wheel is changed. However, the contact length is highly dependant 

on the type of grind being attempted, the material being ground and the grinding wheel 

being used. 

When viewing the scaled schematic of a grind an estimate can be attempted of the 

expected contact length based on stiff object geometry as shown in Figure 12. 

However. Qi (1995) showed that the geometrical contact length is always an 

underestimate of the actual contact length achieved when grinding, sometimes by a 

factor of 3. A 'real' contact length, lr according to Qi et al (1997) is dependant on the 

roughness of the wheel, the normal force, the depth of cut and the mechanical properties 

of the wheel. The deformation of both the wheel and the workpiece causes a 

lengthening effect of the contact zone. So when considering the length of any grinding 

contact zone it is important that the more realistic value of real contact length is used. 

This becomes apparent in the analysis of the thermal model for the calculation of 

grinding zone temperature (Morgan et al, 1998). 

a.: 
ar . 

Figure 12, (. rumrtrical contact length i left) and 'Real' contact length (right) schematic. 

These considerations lead Qi to the following equations defining the real contact 

length based on roughness parameters, equation (14) and a second equation utilising a 

contact area approach, equation (15 ). 
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And 

l, =[R,. 8. F, (Ks +KW)ds +a. ds]os (14) 

2 o. s 

1 =[R A. 
R°. (F 

") +a. d, (15) 
Hy 

Where R,. =a */ao = Roughness Factor, a* = The effective `contact radius' of a rough 

surface defined by Greenwood and Tripp (1967) and ao = The contact radius for smooth 

surfaces given by Hertz theory 

3.2 Grinding Wheels 

A grinding wheel is a bonded structure containing many abrasive grains. It is these 

grains that remove material from the workpiece. The most common abrasive is 

Aluminium Oxide, otherwise known as Alumina or Corundum. These Alumina grains 

are generally suspended in a vitrified or resinoid bond. A vitrified bond is a high 

temperature sintering of powdered glass, frits, clays and chemical fluxes. Grinding 

wheels can also be made from many other types of abrasives see Table 3. Each 

grinding wheel is tested and given a maximum rpm and surface speed which it should 

not exceed, this is a safety factor designed to stop a wheel from fracturing due to 
internal stresses caused by its own centrifugal force. 

Abrasive type Hardness (GPa) Density (kg/m) Melting Point (°C) 

Diamond 56-102 3520 3700 

Aluminium Oxide -21 3980 2040 

Silicon Carbide -24 3220 2830 

Cubic Boron Nitride 

(cBN) 

42-46 3480 3200 

Table 3, Typical properties of abrasive grains. 
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These grains can be suspended in many types of bonds, see Table 4 

Bond Type Hardness (GPa) Elastic Modulus (GPa) 

Resin 2.4 1.2 

Vitrified 3.7 4.1 

Metallic 2.7 5.5 

Table 4, Typical properties of wheel bond types. 

3.2.1 Structure 

Grinding wheels can be made up of many types of bond and grain. This makes it 

necessary to have a specification system in place to define exactly what type of wheel is 

being used for an individual grinding scenario. This comes in the form of a grinding 

wheel standard marking system, an example of such can be found in Figure 13. The 

marking system can give a large amount of detail, and is helpful to both the user and 

manufacturer. 
Abrasive Grade Bond type type Abrasive 

Prefix grain Structure Manufacturers 
size record 

52-A-46-J-7-V-23 
71 

Dense 
2 

A= Alumina 
3 

111117 4 
C= Silicon Carbide 

Very 5 

Coarse Medium 

/70 

ine Fine 6 

8 30 220 7 

10 36 80 240 8 

12 46 90 280 

7 

14 54 100 320 10 

16 60 120 400 11 

20 150 500 12 

24 180 600 13 
14 
15 
16 Open 

R= Resinoid 
E= Shellac 
O= Oxychloride 
R= Rubber 
RF = Rubber reinforced 
S= Silicate 
V= Vitrified 

Soft Medium Hard 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

Figure 13, Example of grinding wheel standard marking system for Alumina and Silicon wheels 
with explanation of terms. 
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The grain size value relates to the sieves used to sort the grains before they are formed 

into a wheel. Using the `grain size' value allows an estimation of the grain diameter to 

be found. The average value of grain diameter can be found using an empirical 

relationship such as equation (16), or by using a table of Grit Classification (Rowe at u! 

p400,2004); 

15.2 
clý, =M [iýtnt] (16) 

Where M= Abrasive grain size from wheel specification (Malkin, 1989) 

For example, the wheel with the specification shown in Figure 13 shows an abrasive 

grain size of 46. Using the tables, an abrasive grain size of 46 relates to a grain 

diameter of 350 um. Using the formula in equation (16), an abrasive grain of 46 gives 

an average grain diameter of 330i im, as shown below. 

15.2 
cl ,= 46 = 0.331nm or 330ium 

A useful visualisation of the composition of a grinding wheel structure was created by 

Peters, Snoeys and Decnaut (1968), illustrated in Figure 14. 
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Figure 14, Grinding Wheel phase diagram, Peters, Snoeys and Decnaut (1968). 

This system defines the wheel make-up based on its three constituent parts; bonding 

material, abrasive grain and porous space. Each apex of the triangle represents a 100 % 

concentration of one element, a technical impossibility. A line that connects the apex of 

the triangle to the mid-point of the opposing side will trace a decrease in the percentage 

41 



concentration from 100 % to zero. This means that at any point in the triangle the 

following statement of volume percentage is true; 

Vg +Vb+VP=1OO (17) 

Where Vg = Percentage volume of grain, Vb = Percentage volume of bond, Vp = 
Percentage volume of porosity 

Another feature of this diagram is the iso-lines that represent contours of constant 

porosity, bond volume and grain volume. By using Figure 14 it is possible to describe 

the porosity of the wheel based on some predefined empirical relationships. If the 

structure number, S of the grinding wheel is known, equation (18) can be used to define 

an approximated value of bulk wheel porosity. 

Vp (%) =45+ 
Sn 

1.5 (is) 

Where n is an integer correlating to the letter grade of the wheel, (for example, when 

the letter grade is A; n is 1, when the letter grade is B; n is 2, etc. ). So for the wheel 

described in Figure 13, equation (18) is as follows when S=7 and n= 10 (Grade J gives 

a value of 10). 

v 45 + 
7-(2xlo) (%)= 

1.5 

VP (%) = 36% 

It can be expected that the bulk wheel porosity is -36% for this wheel. 

It is known that a porous wheel is a necessity when creep feed grinding with a shoe 

nozzle. It was shown by Powell that fluid penetration is dependant on bulk wheel 

porosity (Powell, 1979) and is more of an issue when considering use of a shoe nozzle. 

Powell also draws reference to the permeability of a wheel as having particular 

relevance to the fluid flow in his work. This value defines the volume of flow that can 

move within the wheel through the interstitial channels connecting the internal pores of 

a wheel. As previously stated, Powell found this value useful as he was expecting 

penetration to a depth of 10mm, thus the permeability or the ability of the wheel to 
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transport fluid to its interior was stated as a key factor. For work with jets of coolant 

from standard nozzles rather than shoe nozzles it is believed permeability will be of 

lesser significance in terms of useful flow. However, there will undoubtedly be some 

fluid forced into the wheel during any grinding process. This is shown by the 

commonly understood need to leave the wheel spinning after any wet grind. Further to 

this the permeability of the wheel is a difficult parameter to obtain, and as such is of 

limited use in deriving guidelines for industrial use. 

3.2.2 Wheel Wear 

When considering the life span of a grinding wheel the mechanisms of transient wear 

must be considered; the most common of these is categorised as attritious wear. This is 

represented in Figure 15a by a single point dressing tool performing the wear in the 

abrasive grain. Attritious wear in this instance is caused by the many cuts an abrasive 

grain performs chipping away and rounding off its leading edge. Wheel wear is best 

described by the material volume removal rate from the wheel, this is generally used in 

conjunction with the workpiece material removal rate in the form of the Grinding Ratio 

or G-ratio of the process. 

The radial volume of material removed from the wheel is given by 

VS ='rdeArebs (19) 

Where de = Mean diameter of wheel before and after grinding, Lire = Measured decrease 

in wheel radius. 

The G-Ratio, G is given by 

G= 
V"' 

(20) 
V, 

Where Vw = Volume of material removed from the workpiece = b,, ael. 

The grinding ratio is a useful measure of the appropriateness of the wheel/process to 

the task required. A high grinding ratio (-1000) may sometimes imply the wheel is too 

hard for the task. A low grinding ratio (-1) means the wheel is not hard enough for the 

material being machined (Marinescu et al, 2003). 

ývý; 43 



3.2.3 Dressing 

During a grinding process a wheel can expect to become blunt and clogged with 

workpiece debris. The sharp cutting faces that are necessary to remove material from 

the workpiece will dull and instead of inducing ploughing and cutting will merely 

promote a rubbing action that does not remove material. A dull wheel will tend to have 

an increased wear flat area, this is a region where the wheel rubs and does not cut. 

Wear flats are the result of attritious wear to the grains leading edge. In this situation it 

has been shown that the normal and tangential forces increase significantly (Malkin, 

1989). This increase of forces lowers the efficiency of the process and raises the 

likelihood of thermal damage. Thus the dressing process is necessary for the operator in 

order to refresh the N heel . urtace. 

The effect of dulling over time (or artificially introduced by poor dressing parameters) 

is true of all grinding wheels and justifies the need to dress a wheel to re-introduce 

sharpness. The dressing process can sometimes be accompanied by a truing process. 

Both processes involve using a material harder than that of the wheel grain, generally 

diamond. The purpose of the dressing process is to produce new cutting faces on the 

wheel surface by cutting through the wheel. The truing process has the purpose of 

removing material from the wheel to prevent significant run-out of the wheel from its 

spindle. 

r 

Figure ISa, Attritious wear of Figure 15b, Crain fracture due Figure 15c. Bond fracture due to 
the grain due to dressing with to dressing with a single point dressing with a single point 

a single point diamond. diamond diamond 

The dressing process take-, advantage of the friable nature of a wheel. When the 

diamond passes through the wheel surface one of two processes can take place; grain 
fracture or bond fracture. Grain fracture is represented in Figure 15b and involves the 

grain breaking : cross a fracture plane induced by the dressing tool, thus exposing in the 
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wheel surface a new profile with a new sharp edge. Bond fracture is when the bond 

holding the abrasive grain fractures thus exposing a new grain or exposing a pore, 
displayed in Figure 15c. It has been shown that this process does not necessarily 
fracture the grain along the exact profile of the dressing tools helical path. Malkin and 

Anderson (1972) showed the size of the dressing debris could be larger than dressing 

depth but smaller than grain size, it was concluded that the process was two-stage. 

Firstly grain fracture occurs, and then once the grain has been significantly eroded the 

bond holding the grain in place will fracture releasing the grain. 

The dressing parameters used are dressing depth, ad and dressing federate, Id. The 

dressing process is most succinctly defined by the Overlap ratio given below. This 

value defines how many times a single point diamond can be expected to pass through a 

length equivalent to its own diameter. A high overlap ratio will leave a shallower 

pattern in the wheel and tends to mean a closed wheel surface. 

The Overlap ratio is defined below, 

Ud=fd (21) 

Where bd = Dressing tool engagement length andfd = Dressing feed rate. 

3.2.4 Topography 

When referring to the topography of a grinding wheel one generally means the surface 

topography on the periphery of the wheel. The definition of topography can be 

influenced by many factors: grit size, dressing lead, dressing depth, bulk porosity, bond 

type etc. Some researchers have observed that only the bulk porosity can influence the 

useful flow significantly and of the dressing parameters only the dressing depth is 

suspected to have any influence at all (Krishnan, 1995). 

It is widely accepted that the porosity of the wheel can have a significant effect on 

process outputs. When using a creep feed process a highly porous wheel is normally 

advised. The effect of porosity on the surface topography of the wheel has been 

somewhat overlooked. Krishnan (1995) postulated that a varying surface porosity could 

affect the ability of the wheel to pass fluid through the grinding zone, whereas Cui 

(1995) seemed to show that the surface topography was barely a secondary influence. It 

is known that the effect of a change in the surface topography of the wheel over time 
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can be detrimental to the surface finish and power requirements of a process. This 

transient effect is overcome by dressing the wheel thereby removing swarf from the 

pores and exposing or creating new cutting faces. This proves the effect of dressing on 

surface topography and therefore the ability of the wheel to transport fluid through the 

grinding zone. The measurement of the small changes to topography and useful flow 

created by differing dressing depths of cut would be very difficult to quantify. It is 

likely that the effect of dressing to remove swarf and therefore re-expose pore space is 

the only way the dressing could affect the useful flow. 

In preceding analyses of grinding wheel topography some interesting parameters have 

been developed. Cai (2002) presented a comprehensive study of topography for cBN 

grinding wheels, defining several useful parameters and their relevance to process 

outputs. Specifically the term Effective Volume Porosity ratio, VP ,, was presented as a 

definition of the effective volume of the pores to the volume of the wheel. 

Ltz, 
VP. = 

V. 
I22Zi (22) 

Where V, = Percentage volume of pores, V�, = Volume of wheel, z= Radial depth into 

the wheel, z; = The active radial depth into the wheel below which the cutting edges are 

active. 

Cai tested two internal cBN grinding wheels. One had a high porosity but small grain 

size, this gave an effective volume porosity ratio of 0.45. The other had a medium 

porosity with a large grain size giving an effective volume porosity ratio of 0.35. 

Testing using two external wheels both of vitrified cBN, the higher porosity wheel 

showed an effective volume porosity ratio of 0.5 and the lower porosity wheel showed 

an effective volume porosity ratio of 0.35. It was also noticed that during grinding tests 

the porosity volume ratio of the wheel dropped 14 % when nearing the end of the 

dressing cycle. 

The use of this parameter is dependant on verification by manual analysis of the height 

of a reference plane in the grinding wheel surface. This reference plane defines the 

position of the workpiece when it is truly in contact with the wheel. Any grain below 

this reference plane would be considered not in contact with the workpiece surface and 

ýýý. 
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therefore not active in the cutting process. This is a very useful parameter but is 

difficult to obtain, requiring analysis through a combination of optical systems and 

manual interpretation. The effective volume porosity ratio used an understanding 
developed around the value of Active Cutting Edge Density, Q. This value gives an 

approximation of the amount of cutting edges that will be employed during a grinding 

pass. This is further developed by the understanding that the number of active cutting 

edges are dependant upon the dynamic effect of the wheel deflection during a cut, and 

hence is known as the Dynamice Cutting Edge Density, Cdy� and is given by. 

c 

Cdyn 
- 

Cstat 
vw 

/C 
Vs 

(23) 

Where Cstat = Static cutting edge density, 0' = Wheel rotation angle during contact 
length and superscript c is a constant for a particular wheel and dressing conditions, 

values range from 0.4 - 0.8. 

Further to this is the influence of the theory of irregular grain spacing and depth, which 

is also summarised by the value of dynamic cutting edge density. The values obtained 

by Cai (2002) are approximately 10-60 cutting edges per mm2 for a cBN vitrified wheel 

with grain diameters of 90 µm. These values show that at least 90 % of the grinding 

contact area does not experience direct contact between the wheel and the workpiece. 

3.3 Coolant Flow through the Grinding Zone 

The definition of useful flow is based solely on the volume of fluid passing through the 

grinding contact zone. The useful flowrate is known to depend on the flowrate 

delivered from the nozzle but it is also dependant on other factors, such as nozzle jet 

speed, nozzle position and wheel speed. The purpose of this work is to advance this 

definition and to focus on a further adaptation of the term useful flow. 

It is at this point the author would choose to add some clarifications to the use of the 

term `useful flow'. The term useful has the following meanings in the English 

language. 

Useful, Adjective 1, able to be used for a practical purpose or in several 

ways. 2, informal very able or competent (Oxford English Dictionary, 

2007) 
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When using this word it is necessary to define `usefulness'. For this investigation 

usefulness could be assumed when any flow that passes through the grinding zone 

performs the functions described in previous chapters, such as reducing grinding wheel 

wear, reducing forces between the contacting surfaces, providing cooling and improving 

process efficiency. Previously useful flow has been defined as being fluid that has 

passed through the grinding contact zone only and although the author would not 

dispute this definition the application of `useful' in this context makes several 

assumptions. Most of these characteristics are assessed using standard grinding output 

parameters, so in order to term any flow passing through the contact zone as `useful' it 

must be defined as such by the use of these established grinding assessment criteria. 

Since only flowrate that passes through the grinding contact zone can provide 

lubrication or cooling benefits, the term useful flow in the context of this thesis is 

restricted to the existing definition of flow through the grinding contact. However, the 

author proposes that useful flow can be further related to several definable contributory 

concepts. The first is termed the `Convenient Flow' and refers to the amount of fluid 

which will fill any gaps between the wheel/grains and workpiece due solely to surface 

geometry. This definition allows a close comparison to the mechanics of a 

displacement style pump. Therefore convenient flow is defined as stated below. 

Convenient flow is the flow that passes through the grinding zone based 

solely on the topography of the interface. 

What can be termed convenient will be a function of surface porosity, wheel speed and 

wheel width only, as defined by Rowe in equation (24). It could be considered for the 

convenient flow that beyond a single grain depth the wheel is an impervious solid. The 

ability to fill the pores may not be a physically possibility, it may be true that only a 

percentage of the available space can be utilised. It may also be true for more porous 

wheels that fluid penetrates deeper than the surface pores. 

The secondary concept incorporates any and all unknown or intangible factors. These 

could include pressurised flow, permeated flow or any thermally induced physical state 

changes. These parameters are difficult if not impossible to manually assess during a 

grinding trial and have in the past been subject to either offline analysis or simplified 
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predictive modelling. This clarification surrounding useful flow leads to the following 

definition proposed by the author. 

Useful flow is defined as the amount of fluid that passes through the 

grinding contact zone. 

The useful flowrate is always less than the nozzle flowrate, and can be represented as a 

percentage of supply flowrate and termed the percentage useful flow. Depending on 

process and supply conditions the useful flow could be a range of values; a useful 

flowrate of 10 Vmin may perform as effectively to the part specification as a useful 

flowrate of 201/min. In this scenario it would be beneficial to the process as a whole to 

use the least amount of coolant. With this in mind a further definition is necessary. 

This advancement of the definition considers that there will be a maximum value of 

useful flowrate that may be achieved but which may be excessively costly in terms of 

plant specification and power consumption. This value may provide the most benefit 

and the highest value of flowrate through the grinding zone but at too high a cost. 

However, as no manufacturing process can be considered independent of its overheads 

there will also be a value that is capable of fulfilling the process requirements whilst 

minimising plant and power costs. This has been termed the Optimal Useful flow and 

refers to the most efficient value of useful flow; the definition is given below, 

The optimal useful flow is the minimum amount of fluid that passes 

through the grinding contact zone functioning as an effective lubricant and 

providing sufficient local cooling 

The optimal useful flow is the true target of any grinding operation. It is this value of 

optimal useful flow that will allow the grinding process to proceed at its highest 

efficiently. It is expected that optimisation of applied flow will have a three-fold 

benefit. 

> Reducing the cost to the manufacturer. 

¢ Lessening the environmental impact of the process waste. 
¢ Delivering process improvements. 
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Using the optimal useful flow will mean there will be no thermal damage, size holding 

will be achieved, tolerances will be held and efficient power usage will be possible. It 

will also have minimised the amount of fluid required to do the job thereby allowing 

cost savings in fluid usage, purchasing and disposal. A truly optimised value of useful 
flow would require complete knowledge of the requirements of each individual process. 

Thus optimisation as a term is difficult to utilise when discussing a grinding process in 

general terms. 

It is important to quantify a term that has relevance to the processes being analysed 

within this thesis. Although the optimised useful flow value is the overall goal of any 

process setup it is not something that is a worthwhile target within this work. Any 

guidance in terms of an optimised useful flowrate will be inherently very 

process/system specific and thus non-transferable. As the optimised useful flow is a 

modification of the idea of useful flow we also now choose to add a further 

modification. So far we have described the optimal useful flow as being the ideal target 

to aim for; achievable and identifiable only for individual processes. More than likely 

this is not the case and in this situation we define a further parameter as the achievable 

useful flow. 

The achievable useful flowrate can be considered a target value, one that a user may 

hope to realistically achieve without the meticulous analysis required of a truly 

optimised useful flow. It can be said that this value takes no account of needs and 
defines only the possible useful flow a setup may achieve without explicit knowledge of 

process requirements. The achievable useful flow is a more realistic target and will in 

most cases be a percentage of the convenient flow that takes account of known 

limitations found during exploratory experiments. 

3.3.1 Current Theory 

Rowe et al (2004) estimated useful flow by two methods, both based on the 

assumption of making a comparison to average thickness of the fluid layer. The 

governing equation containing the equivalent fluid layer is shown in equation (24). 

Qy =hfXv xIds (24) 
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Where h,, = Equivalent fluid layer, v, = Wheel speed, b, = Wheel width (when bs >_ bw 

workpiece width) and Qu = Useful volumetric flowrate 

Although simple in nature equation (24) remains the basis of all models to date, with 

advances existing in the estimation of the equivalent fluid layer and the interpretation of 

the speed term. The average thickness of the fluid layer was defined by Rowe in two 

separate ways, the first method is topographical. This method defines a porosity value 

and the surface pore depth of the wheel to give the thickness of the fluid layer. The 

thickness of the fluid layer in equation (25), is based on the pores of the surface of the 

wheel being filled with fluid. Rowe assumes fluid carried through the grinding contact 

by the pores of the wheel is considered to be the maximum useful flow that can be 

achieved without further pressurising fluid beyond the surface of the wheel. In light of 

the terms just introduced this method can be considered to give a value of maximum 

convenient flowrate. This definition benefits from its simplicity in implementation, 

however the thickness of the fluid layer is very difficult to predict and will be dependant 

on many other variables. The surface pore depth is an unknown and has no method of 

prediction that does not involve a value acquired from preceding direct measurement. 

Hence up to this time the value of hpores has been compared to the average grain 

diameter, dg and some other factors. 

huf = 0x hp,,., 
s 

(25) 

Where hpo, e. = Mean depth of pores and 0= Bulk wheel porosity. 

The second approach explored by Rowe et al (2004) was to define how thick a fluid 

layer would need to be for enough heat conduction to take place to make the 

temperature at the surface of the fluid boundary layer ambient. This thickness layer was 

termed the thermal boundary layer and is given in equation (26). This equation assumes 

a solid stationary layer of fluid exhibiting constant heat transfer due to its thermal 

diffusivity, thus it can be defined using standard material thermal properties. 

huf = 2x 
FýýVlr 

(26) 

Where a= Thermal diffusivity =k, k= Thermal conductivity, cp = Specific heat 
pc p 

capacity, p= Density and 1, = Real contact length. 
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Gviniashvili et al (2004) used an equation that is based on the conservation of 

momentum equation. Equation (27) shows the power required to cause a rate of change 

of fluid momentum of the grinding fluid through the contact zone related to the delivery 

nozzle parameters. Equation (27) shows the volumetric useful flowrate in relation to the 

spindle power, wheel speed, jet speed, a frictional power loss coefficient and a jet speed 

loss coefficient. 

Q. 
_1 

KfxPf 
2 

pf v, -(Kjxvj)vs 
(27) 

Where Pf= Spindle power due to fluid, vv = Jet speed, Kj = Jet speed loss coefficient and 
Kf= Spindle power loss coefficient. 

Gviniashvili's (2003) second approach is based on the conservation of energy 

equations and is shown in Equation (28). This is a derivation relating the kinetic energy 

of the flow from the jet to the kinetic energy of the useful flowrate passing through the 

contact zone plus the pressure energy deriving from the rejected flowrate and other 

losses. The pressure energy in the contact zone is a function of the useful flow and 

yields the contact pressure. The values of K1, Kf, Kg and p, are all determined 

experimentally. 

2 

pf(KBxvs) -2pß Q" 
Pf (pfxv52)-2p, (28) 

Where pf= Density of grinding fluid, p, = Contact pressure and Kg = Fluid velocity loss 

coefficient. 

Gviniashvili's use of experimentally determined parameters makes use and verification 

of the validity of the model very difficult. With four experimental parameters existing 

within a single definition of the useful flow the accuracy and robustness of the equation 

to predict useful flowrates is questionable. However the use of momentum equations to 

define the ability to penetrate the air barrier proves an interesting step and is an 

approach that has proved useful to authors in the past. 

Metzger (1986) chose a different approach in defining a minimum required flowrate 

Q,, that is then related to the value of useful flow. This minimum flowrate is a target to 
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aim for governed by the change in spindle power during a grind. This power difference 

is assumed to relate the contact friction between the wheel and the workpiece, in turn 

this friction becomes heat and has to be removed by the coolant. Thus the minimum 

flowrate is the smallest flowrate that could remove the friction-generated heat from the 

contact zone. Metzger's equation is shown equation (29). Metzger's equation is an 

interesting aside in the analysis of useful flow, giving a target that should be achieved 

with no regard as to how this may be done. The use of a target based on a 

predetermined value of spindle power presumably in dry conditions seems limiting. 

60xPs 
4.184xCxpxnxMB 

(29) 

Where P, = Grinding power, C= Specific heat capacity of the fluid, p= Fluid density, rj 

= Nozzle efficiency, AO = Friction generated temperature rise. 

The next approach presented is by Cui (1995). This method assumes the flowrate is 

governed by the topography and the pressure gradient through the contact zone. A 

simplified version assuming a linear speed gradient is presented in equation (30). It can 

be seen that equation (30) is equivalent to the Couette flow between two parallel plates 

that have a relative speed vs and separation h. There is a more complex version that 

equates a non-linear pressure gradient between the wheel and the workpiece seen in 

equation (31). 

Q. =hxbx-vf (30) 

Where h= Mesh parameter (grit size in mm) 

2d 

Cy 
Z 

Q. = bh xIJ vs 
y+h-y dy (31) 

hh2 dx h) h 

Where u= Dynamic Viscosity, p= Pressure and y= Position across the grinding zone. 

Cui also defined a value called relative ram pressure that can be used to describe a 

constant pressure value across the grinding contact zone inlet area. This is shown in 

equation (32); 

PRR= 1 
2pv2 (32) 
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When p= density and v= fluid speed. 

The inclusion of pressure as a key part of the analysis is a valuable progression in the 

discussion of useful flow. However, merely using it to define variations in speed across 

the contact thickness seems not to be confronting the main effect a pressure build up 

would have. A significant increase in pressure within the contact zone could be 

expected to have two key consequences; the first would be to increase the pressure 

required of the fluid to enter the contact zone. The second impact would be in forcing 

fluid into a porous wheel. Only with a completely non-porous wheel will there be no 

radial fluid penetration into the wheel. An assumption of no porosity seems to be 

counter-intuitive, at the very least an approximation based on expected penetration 

depth should be used or even a factor allowing for some penetration. Cuff's use of a ram 

pressure allows a degree of flexibility in the definition of the boundary conditions one 

might associate with a volume analysis of the contact zone. A ram pressure value is a 

plausible means of assessing the efficacy of nozzle positioning and type. This may 

however need some provisos attaching due to the losses a free-stream jet will have 

between the nozzle outlet and the grinding inlet zone. A linear ram pressure profile 

across the contact zone is an elegant way of representing the inlet but would be 

inherently difficult to replicate in real-life. 

Cui also ventured a methodology similar to Metzger in attempting to predict the 

requirement of a flowrate based on knowing the amount of heat energy generated by the 

grinding wheel spindle. Knowing this generated energy level allows a prediction of the 

required volume of fluid necessary to dissipate this energy. This was achieved by 

constructing a rig that measured the fluid temperature directly before and after passing 

through the contact zone. Cui predicts the amount of coolant a process will require 

using equation (33). This equation defines the volume of fluid required based solely on 

the term Q,, which is the amount of fluid required for convection of the generated heat 

energy. 
1.94 

16.2 1!! '1 
_ 

AT Q` (33) 
1.44 In ' 1.5 32.2 

Where W, 
� =Spindle power, AT = Change in fluid temperature. 
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Then using a relationship taken from external cylindrical plunge grinding the useful 

flowrate is predicted using equation (34) based on a value of corrected delivery 

flowrate, Qd. The corrected delivery flowrate value is a summation of the needs of the 

system including the convection and various other factors. 

Q. = 0.26Qd. sa (34) 

This relationship was approximated from Cui's results and no attempt was made to 

robustly verify the validity of the equation. This method is found to have limited scope 

for execution. 

Finally the work of Chang (1994) is addressed. Chang used an analytical approach to 

attempt to predict various grinding performance parameters. The method for calculating 

useful flow involved taking a control volume D-C-G-H, and balancing the forces the 

fluid experiences across it. The control volume, shown in Figure 16, defines an area 

equal to an internal section of the wheel, with no distinction made between the wheel 

surface and the wheel internal volume. It is a reasonable assumption that there will be a 

distinction between the method of fluid transport at the surface of the wheel and the 

method of fluid transport inside the wheel. Chang goes into great detail concerning the 

forces acting on the control volume, defining the fluid pressure force at the inlet (side 

H-C), the permeability force within the wheel, the centripetal force required by the fluid 

for the rotational motion of the wheel and the pressure force the fluid feels from the 

geometry of the contact zone (side D-C). Chang also brings in further advances in the 

use of a modified Reynolds equation to equate pressure to the determination of fluid 

penetration into the wheel. 
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Figure 16, Diagram of the control volume used by Chang (1994). 

At the crux of his work Chang utilises the concept of permeability. Permeability can 
be considered a measure of the ability of a material to transmit fluid. Chang's work 

uses equations that assume the porosity within a grinding wheel to be both uniform and 

independent of orientation. Chang draws on the idea of wheel permeability as being a 

major factor controlling the volume of useful fluid flow. It is postulated that the 

permeability becomes important when the wheel is of a vitrified composition or is 

highly porous. If the permeability is a controlling factor and no distinction is drawn 

between the internal fluid flow and surface flow then the surface porosity will need to 

be similar to the bulk wheel porosity. 

Defined within the work is the penetration depth of the fluid into the wheel, there is 

however no distinction drawn between the fluid penetration into the wheel and the fluid 

that has been `used' either for conduction or lubrication in the grinding contact zone. It 

is self-evident that for a contact length measured in millimetres any fluid penetrating 

10mm into the wheel, as can be achieved with a shoe nozzle, will have no positive 

effect on the specifics of the grinding zone. Although the governing equation is similar 
in nature to the definition used by Rowe in equation (24) much complexity exists within 

the concept of permeability. Due to the use of permeability, the terms defining the 

fluid speed and the fluid layer thickness require further specific definition. At its most 

simplistic level Chang's useful flow predictive model can be seen in equation (35). 
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Qu = hxbs xoxug (35) 

Where h= Depth of fluid penetration into the wheel, u o= Tangential fluid velocity 

through porous media and Q� = Useful volumetric flowrate. 

This equation can only be solved when a further three equations (36), (37) and (38) are 

solved simultaneously using a set of boundary conditions that describe the following 

initial form. 

1. At the inlet the tangential velocity of the fluid through the porous media is zero. 

At 00, ug =0 

2. The variation of the depth of fluid penetration is linear and governed by a 

function of the angle of interest and the wheel radius. 
dhldO=cotOOR 

3. The pressure at the inlet is given by a ram pressure that is governed by the 

workpiece speed, nozzle jet speed and fluid density. 

P=Po=p(V, ) 
+V"")2/2 

4. That the change in pressure across the grinding zone is zero. 

dP 
_0 dx 

The following two equations, equation (36) and equation (37), relate the flow of 

momentum across the boundaries of the control volume, shown in Figure 16, in the 

tangential direction and the radial direction respectively. Equation (38) is a 

modification of the Reynolds equation for lubrication for a two dimensional analysis 

and accounting for the permeability of the grinding wheel. 

ue ddu, 9-kp 
(Vf-ue)=0 (36) 

1 ueh d Zh 
- 

h2 due Z+ 2ueh due A+11-1), ah due 
+ 2R dO2 R( d9) R d9 d9 2kk dB rep (37) 

1u u�h dh 1 Ph2o d12 PR 
2k d8+2 

(V-ue)de 
k9 P 
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d 
H3 

dp 
= 6, u (V, +V, v) 

dH 
+ 

24k. P (-. 
_Ef-')e2 (38) 

dx dx dz 0hR 

Where bs = Wheel width, 0= Porosity of wheel, kr = Radial permeability, ke = 
Tangential permeability, R= Grinding wheel radius, 0= Angular position, vs = 
Peripheral velocity of porous wheel, v�, = Speed of workpiece, h= Depth of fluid 

penetration into the wheel, H= Hydrodynamic film thickness, ,ü= Dynamic viscosity, p 

= Fluid density and P= Hydrodynamic pressure (see Figure 16). 

The need for such complex equations limits the applicability of this model and 

prevents solutions being found without major simplifying assumptions. Although it is 

undeniably thorough, accounting for so many variables introduces a level of 

complication that could be avoidable by eliminating the secondary effect variables 

through preliminary testing. 

The use of theory so far in regards to useful flowrate prediction has been somewhat 

varied and confused. This has manifested itself in either complex equations that are 

difficult to replicate and therefore verify; or simplifications of what can be considered 

essential parts of the useful flow analysis. The only accessible and verifiable equations 

are what are termed within this document the convenient flow analyses. Predictions 

based on topographies should be easily transferable between processes, independent of 

process type, wheel type or other physical limitations. It should also be possible to 

compare experimental values of measured useful flowrate directly with predictions of 

convenient flowrate. 

The experimental nature of this project led the author to favour a more practical and 

exploitable way of defining the useful flow theoretically. As such equation (24) has 

been preferred for adaptation from the results of this work. This equation was deemed 

the most likely to allow the use of commonly held input parameters to predict a value of 

useful flowrate. The practical nature of the term h,, f has also been deemed important to 

the experimental analysis of useful flowrate. 
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Chapter 4. Equipment 
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4.1 Introduction 

During the course of the testing several pieces of equipment were common to many of 

the testing stages. Therefore a section has been devoted to concise description of the 

equipment used throughout the preliminary and main stage testing. The equipment used 

for the tests can be subdivided into the grinding trials equipment and the topography 

testing equipment. After these sections the equipment integral to all the tests or of 

minor significance is described as the ancillary equipment. 

4.2 Grinding Trials 

Below is described all the equipment required for the grinding trials. This includes the 

grinding machines, coolant supply systems, data acquisition system and all sensing 

equipment. 

4.2.1 Grinding Machines 

Two grinding machines were used for the testing conducted throughout this project. 

All developmental testing was conducted on an Abwood Series 5020 grinding machines 

described in detail below. The Abwood grinding machine allowed complete access to 

all parts of the system, giving the flexibility required when developing the useful flow 

collector. The main testing was conducted on a Jones and Shipman Dominator surface 

grinding machine. This machine tool had full CNC control of all axes leading to a far 

greater accuracy in the control of key variables. The Dominator was not available from 

the start of this project so was not used for the development stages. This was in some 

ways fortuitous as the Dominator did not allow the necessary access due to it being a 

closed-guard system. 

4.2.1.1 Abwood Series 5020 Surface Grinding Machine 

Developmental experimentation was carried out on the Abwood Series 5020 grinding 

machine as it was the most accessible and flexible of grinding machines available. The 

Abwood was capable of conventional wheel speeds and had analogue pneumatic 

controls for the automatic traverse cycles, this restricted accuracy in programmed 

traverse speed. The power of the spindle motor power was 2.2 kW at a continuous rate, 

this allowed a maximum speed of approximately 50 m/s using a 190 mm diameter 

wheel running at 5000 rpm. The machine specification can be seen in Table 5. The 

Darenth coolant unit was attached to the Abwood so high fluid pressures could be 

applied to the worktable area. 
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Parameter Value 

Spindle motor power 2.2 kW continuous power 

8 kW instantaneous power 

Spindle speed Variable up to 6000 rpm 
Longitudinal travel, via worktable 530 mm 

- Resolution 10 µm 

Cross traverse of head, via headstock 260 mm 

- Resolution 10 µm 

Vertical traverse of head, via head stock 350 mm 

- Resolution 1 µm 

Maximum wheel size 400 mm x 25 mm 

Automatic feed Pneumatic control in X, Y 

and Z axis. 

Other information Cantilever headstock, 

mechanical magnetic chuck, 

Table 5, Specification for Abwood Series 5020 Surface grinding machine. 

The wheel speed was controlled through an AC servo motor fitted during a previous 

experiment giving variable control up to 6000 rpm. An accuracy of approximately 20 

rpm was achievable when programming in set-up mode using the analogue controller. 
During a grind cycle a `constant power' feedback system meant the wheel speed could 
be maintained within an accuracy of approximately ±50 rpm, this was verified before 

full trials began using a portable tachometer attached to the wheel spindle. 

4.2.1.2 Jones and Shipman Dominator 624 Surface Grinding Machine 

The main body of the testing was carried out on a newly acquired Jones and Shipman 

`Dominator' 624 surface-grinding machine. The Dominator was equipped with full 

CNC control using the `Easy' software package, this allowed fully automated grinding 

and dressing. Testing at higher speed ranges was possible as the machine came 

equipped with a high-speed spindle and an upgraded motor. The machine also came 
fitted with a custom built acoustic emission system courtesy of Balance Systems, Italy. 

This extra package allowed semi-automated wheel balancing, along with acoustic 

emission measurement from the wheel and the worktable, and also spindle power 

readings. The Darenth coolant unit was attached to the Dominator so high fluid 
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pressures could be applied to the machine tool coolant delivery system. The 

specification of the Dominator can be seen in Table 6. 

Parameter Value 

Spindle motor power 11 kW continuous power 

Spindle speed Variable up to 4386 rpm 

Longitudinal travel, via worktable 640 mm 

Resolution 0.1 µm 

Max traverse speed 24 m/min 
Cross traverse of head, via headstock 200 mm 

Resolution 0.1 m 

Max traverse speed 6 m/min 
Vertical traverse of head, via head stock 440 mm 

Resolution l µm 
Max traverse speed 6 m/min 

Maximum wheel size 300 mm x 70 nun (76.2 mm bore) 

Automatic feed Digital servo motor driven ball- 

screw mechanism on all axis. 
Other information Full load electrical power 

consumption 24 kVA, mechanical 

magnetic chuck. 

Table 6, Specification for Dominator 624 surface grinding machine. 

Full CNC control of wheel speed was possible with secondary readings from the 

attached acoustic emission system. The Easy software allows automation of most 

simple processes, however the single pass required for the main test had to be simulated 

in a creep feed cycle. 

4.2.2 Integrated Sensors 

The sensor array courtesy of Balance Systems, Italy, was integrated into the 

Dominator and used to monitor the acoustic emission and the spindle power of the 

grinding machine. As part of the custom array several other sensors were available but 

were not used directly for measurement. All acoustic emission and power systems were 

integrated into the hardware of the Dominator controller and as such had been pre- 
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calibrated at the factory. However for the power and acoustic emission readings to be 

utilised successfully an analogue output was configured on the control board. The 

Balance Systems equipment came with 9-pin analogue output that can be used to feed 

continuous instantaneous data into a Data Acquisition System. The control board 

allowed two outputs, in this case attached to the power and the worktable acoustic 

emissions. Both of these sensors were configured at the control board using a digital 

volt meter, this allowed verification of the analogue readings. The acoustic emission is 

a relative value and as such merely required that performance be checked and 

confirmed. The power meter could be configured to output a series of readings 

depending on the accuracy required and the range necessary. 

4.2.2.1 Acoustic Emission system 

There were four sensors attached through the Balance Systems controller, only two of 

which were relevant to testing during this project. A power sensor was attached to each 

phase of the three-phases of the motor powering the spindle. With these direct power 

measurements values of grinding force can be calculated. An acoustic emission sensor 

was attached to the worktable to obtain readings from the workpiece. The acoustic 

emission from the worktable sensor afforded the author the ability to monitor the 

grinding positions during a grinding pass. 

4.2.2.2 Power Meter 

A measure of power from the grinding wheel motor spindle was possible using the 

Balance Systems sensors integrated to the Dominator machine. The balance systems 

sensors were fitted to all three phases of the motor thereby obtaining an instantaneous 

value of voltage on all three phases. These readings are then averaged using a Root 

Mean Square equation, thus getting an accurate running value of the power required by 

the grinding wheel. The value of grinding power is calculated by obtaining a value of 

no-load power for when the wheel is spinning and the coolant is on and then subtracting 

the total power value obtained during the test. 

4.2.3 Coolant Supply Systems 

In order to conduct testing at high pressure a high pressure coolant supply system was 

used, this is described further below. This system was attached using high pressure 

hydraulic hose to the grinding machine. For both machines a flowmeter was fitted as 

close to the nozzle as physically possible in order to accurately measure the flowrate of 

\\(; 
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the coolant and thus obtain the jet speed using simple continuity equations. A system 

for limited nozzle positioning was available for connecting the coolant supply system to 

each grinding machine. 

4 . 2.3.1 Arboga Darenth high Pressure Coolant System 

The coolant system used vas an Arboga Darenth type 2210/3057. It supplied coolant 

up to 35 bar at a tlowrate of up to 100 Vmin. The Darenth is equipped with two filtering 

mechanisms; a cartridge type and a centrifuge type. Control of the Darenth was carried 

out using a digital display of the motor power; pressure readings were available at the 

outlet of the pump and at the outlet of the system. Further flow control is possible via a 

restriction valve at the outlet of the pump. The Darenth unit can be seen in Appendix C. 

4.2.3.2 Flo%meter 

A tlowmeter was installed in the pipe system connecting the Darenth coolant supply 

unit to the grinding machine in order to accurately gauge the flowrate coming from the 

supply pump. An Omega FTB-791 L unit was used which allowed accuracy of ±0A5 

Umin using an inline flow-turbine system incorporating a digital display. A tlowmeter 

was also present at the Darenth outlet pipe, however this was an analogue unit and 

allowed a reading accuracy of only t0.5 Umin. Field calibration of the Omega unit was 

possible in order to calibrate for different fluids. The unit was supplied pre-calibrated 

for water at ambient temperatures and testing proved that this was an accurate 

calibration for use with the Hy%ol XF emulsion in a -90% water mix. The FTB-791 L 

unit can be seen in Figure 17. 

F igurr 17. t low nwtcr showing straight lead inlet section. 

The tlowmeter selected had a working range of I. 9-37.9 1/min. It could operate in 

temperature-, of -10 up to 60°C and was rated up to a pressure of 103 bar. The unit was 

also capable of having the digital display located remotely from the main turbine unit. 

This allowed the unit to be located as close to the inlet of the Dominator coolant system 

64 



as possible. It was recommended that there be a straight pipe of at least 20 cm in length 

before the inlet to the flowmeter, this recommendation is based around the flowmeter 

working when it is measuring a fully developed flow. This was accommodated as much 

as our unique space requirements would allow. 

The flowmeter was required to measure the flow of a two-phase (dirty) liquid. This 

was outside of its standard operating conditions. With this in mind the system was 

calibrated to ensure accuracy and was regularly stripped apart and cleaned to ensure any 

particulate build up would not affect the readings. Even with the three filtering systems 

employed to clean the fluid, removing all the debris that had been carried from the 

grinding zone could not be guaranteed. However, the flowmeter dealt well with the 

particulate-contaminated fluid passing through it. No significant loss of accuracy was 

recorded. 

4.2.4 External Sensors 

In order to conduct the tests satisfactorily both grinding machines were equipped with 

several extra pieces of equipment; some allowing additional measurements and others 

as essential extras to the successful completion of a grinding experiment. 

4.2.4.1 Dynamometer 

In order to measure the grinding forces on the Abwood grinding machine a Kistler 

dynamometer type 9257A was used. This is a three axis system that allows 

measurement up to 5000 N in conventional X, Y, and Z for the system developed 

around it. It allowed measurement to a resolution of <0.01% of designated full scale, 
however calibration was only carried out up to 500 N, so linearity beyond that scale for 

this specific experimental rig was never verified and accounted for. The Kistler 9257A 

is a piezoelectric transducer. This type of transducer gives each component of force a 

proportional electric charge. This charge, once fed through the charge amplifier, will be 

readable as a voltage that is proportional in value to the force impinging upon the 

dynamometer. This voltage is then fed into the analogue input of a Data Acquisition 

system (DAQ) and using values obtained from calibration can be post-processed to give 

a value of the force being experienced by the dynamometer and hence the experimental 

rig. 
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The dynamometer required a base to secure it both to the workpiece and table. This 

base had to electrically insulate the dynamometer and all other components mounted 

above the dynamometer from the magnetic worktable. The insulation prevented noise 

from the grinding machine being picked up in the thermocouple sensor. This was done 

using an ABS plastic block machined to roughly an inch thick with two metallic feet 

attached with , crew, to its base. The metallic feet were used so the system could be 

held in place by the magnetic chuck of the Abwood grinding machine. ABS was 

chosen as it is an effective electrical insulator and was also capable of being machined 

to size with strong threads. 

The dynamometer was calibrated using a simple pulley system attaching known 

weights at a given angle to the measuring plane of the dynamometer. This can be seen 

schematically in 

Figure 18. Calibration took place using a random distribution of masses; this was done 

in both loading and un-loading modes as recommended by the manufacturer. The 

dynamometer also had the workpiece attached so any effect the workpiece arrangement 

might have could be accounted for during calibration. The calibration took place at an 

ambient temperature of -20°C. The charge amplifier was set at 'long' reading scale 

during calibration and testing. The cable connecting the dynamometer and the weights 

had a high modulus of elasticity and as such will have not significantly change 

dimension due to the strain exerted during the calibration process. 
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Figure 18, E%periewntal rig for calibration of the dynamometer. 
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For the normal component of force the charge amplifier was set at a sensitivity of 8.04 

pC/N and the scale was set at 1000 units per volt. For the tangential force component 

the charge amplifier was set with a sensitivity of 3.75 pC/N and the scale was set at 500 

units per volt. Both of these values were taken from the calibration certificate issued to 

the dynamometer/charge amplifier system and worked well across the range required 

for calihration. 
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Figure 19, Normal force calibration results. 
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Using the calibration lines extracted from the graph it was possible to state that for the 

normal force a scale of 1.93x 10 ̀  V/N could be used, and that with the equipment 

attached the 0 value was at -57.1 mV. These values give an error of no more than 4%, as 

can be seen from Figure 19 where the error is worked out by calculating the difference 

between the measured value and the value obtained via the factor shown above. For the 

tangential force a factor of 3.28x 10 4 V/N and an offset of -0.7mV were found, this 
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Figure 20. Tangential force calibration curve. 



value of offset was considered negligible and was considered to be 0 for post-processing 

of the data. It was also noticed that the system suffered from a considerable transient 

drift problem. This problem occurred over periods of hours rather than minutes so this 

issue was easily overcome during testing by resetting the 'Zero' of the system prior to 

each test. 

4.2.4.2 Temperature Sensor 

A thcrmo duple used to measure the temperature inside the grinding zone. This 

was achieved using a single pole thermocouple adapted from a standard double pole T- 

Type thermocouple. The use of an adapted T-Type thermocouple allows use of only 

one of the legs in conjunction with the workpiece, where the workpiece acts as the 

second leg. This technique allows the thermocouple to be grindable. A J-type junction 

is formed when the grinding wheel passes over the exposed single pole and smears it 

over the workpiecc thereby forming a junction at the ground surface. The single pole 

method requires the thermocouple to be integrated into the workpiece at an early stage 

in its manufacture. The workpiece must be designed to allow for this. The signal is 

then fed through a thermocouple amplifier to a Data Acquisition system (DAQ) for 

post-processing. Not until the grinding wheel has smeared the thermocouple over the 

workpiece will a junction be formed, thus closing the circuit allowing a signal to be 

retrieved. An open thermocouple junction presents an infinite resistance to the circuit 

and hence no signal, this can be seen in Figure 2 1. This was demonstrated by Batako, 

Rowe and Morgan (2O05) where a review of temperature measurement, techniques was 

shown, specifically for use during a HEDG grinding process. Batako et u! (2(X)5) 

reached the conclusion that the single pole thermocouple technique was the most 

reliable for that particular application. This work also proved the latency of the 
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Figure 21, Graph showing an open thermocouple Figure 22, Schematic of thermocouple 
junction (Batako et al 2005). junction build. 

For the measurement of temperature in these experiments a J-Type thermocouple was 

formed by embedding a Constantin strip in a mild steel workpiece. The Constantin strip 

was sandwiched into a split workpiece and electrically insulated from the workpiece 

using a combination of thin Mica strips (approximately 20µm thick), insulating varnish 

and electrical wire sheath. This can be seen in Figure 22. With one end exposed at the 

workpiece surface, the other was connected to a female J-type socket mounted in the 

wall of the workpiece. The remaining junction of the female J-type socket was 

connected using electrical wire to the workpiece in close proximity to the socket. 

Once the thermocouple was mounted inside the workpiece a continuity test was 

performed to guarantee electrical isolation of the thermocouple leg. Proving electrical 

isolation at this stage guaranteed that during a grinding pass the junction would only be 

formed at the workpiece surface. A J-type electrical wire was then used to connect the 

socket of the workpiece to the amplifier. The amplifier was then plugged into the DAQ 

system, this data then needed to be offset using calibration data to get a true value of 

temperature. A calibration procedure was devised to analyse the complete 

thermocouple system used during this test. 

Calibration took place using an oil bath, a digital thermometer, a hot plate and a 

ventilation chamber. Firstly the workpiece surface was ground so that a junction was 

formed. The workpiece was then lowered into the bath of oil until the ground surface 

was about 10mm deep into the oil. With the workpiece immersed in the oil the hot plate 

was used to heat the oil, everything was kept within a ventilation chamber for safety 

purposes. As the oil was slowly heated from ambient up to 150°C, measurements were 

taken of both the oil temperature and the thermocouple. The oil used had a low thermal 

conductivity and as such changed temperature slowly, this allowed sufficient time to 

assume the workpiece had obtained the same temperature as the oil. The experimental 

rig can be seen in Figure 23. 
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Figure 23. Thermocouple calibration arrangement. 
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By comparing the voltage output to the temperature measured by the digital 

thermometer a graph was created to calibrate the particular setup in use for this 

experiment. The calibration graph can be seen in Figure 24. The results showed that 

over a range of 20 up to I l0°C in cooling and heating phases a linear approximation can 

be made that will be accurate to within 2%. 
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Figure 24. Thermocouple calibration chart. 

Once calibrated. the system was used for testing on the Abwood. However, before the 

main testing the equipment was updated to include a dedicated amplifier devised 
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specifically for this series of tests. Integral to this upgrade was the use of a Michigan 

Scientific AMP-TC2J-M 1. 

4.2.5 Data Acquisition System 

A data acquisition (DAQ) system was necessary in order to read the continuous 

analogue data stream that would come from the thermocouple, dynamometer, acoustic 

emission and power sensors. 

Extracting data from a real data source invariably involves issues of both collection 

and manipulation to overcome. One of the main difficulties is filtering out noise that a 

system may pick up from external interference. This is generally a function of the 

systems surrounding the equipment. It is always best to try and avoid these sources of 

error either by adequate electrical shielding or sufficient distance, however some cannot 

be ignored and must be handled in post-processing. Specifically in an analysis relating 

to grinding it is generally found that the motor driving the grinding wheel will induce a 

signal in the DAQ equipment, again it is only viable to approach removal of this type of 

noise in post-processing. 

The DAQ system is used to acquire data received from the sensors. A National 

Instruments NI-6250 data acquisition card was chosen to fulfil these needs. The 

requirement of the experiment was to have 3 analogue inputs at a sampling rate of 10 

kHz per channel, sampling simultaneously. The NI-6250 has 8 analogue inputs using a 

16-bit ADC, this allows a single channel of data at a sampling rate 1.25x 106 

Samples/sec or multiple channels at a rate of up to 1x106 Samples/sec in total. It also 

comes with an analogue triggering system allowing future adaptation of the collection 

system described later. The DAQ card was purchased in conjunction with a CB-68LP 

68-pin connector block for connecting the various inputs via a simple grub screw 

electrical coupling. A SHC68-68-EPM shielded cable was used to connect the pin 

connector block to the NI-6250 card mounted inside the PC. A basic PC was used for 

these experiments as any hardware intensive data analysis would be conducted on one 

of the more powerful workstation PC's within the laboratory. 

The hardware was controlled using LabView 7.1. A program was written for the tests 

in the Labview 7.1 `Virtual Instrument' (VI) environment so that continuous analogue 

data was sampled from all sensors at a frequency of 10 kHz. This data was then 
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manipulated in binary file format to form a3 column matrix. The inputs required for 

Abwood testing were temperature, tangential force and normal force. For the main 
body of testing the inputs were temperature, acoustic emission and spindle power. For 

both systems the software was designed to give a visual display of the current values in 

a graphical and a numerical way. It also allowed front end control of sampling rates, 
input of values for control of the internal data buffering and the ability to write the data 

to a binary file with 3 columns of data. The data stream was written continuously into a 
file that can be saved and then post processed. The program can be seen in Appendix 

D. The front end of the program used for the main body of testing can be seen in Figure 

25. 
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Figure 25. DAQ program used for the main tests. 

The post-processing took place in the MATLAB programming environment. The 

program performing the post-processing involved; using the sampling frequency to 

establish a time domain for reference, separating and tagging the individual inputs and 

then using a low-pass Butterworth filter to extract the noise from each signal then 

plotting the data in a logical manner. The MATLAB code used for the main test can be 

found in Appendix D. 
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4.3 Topography 

A previous project within the AMTReL group (Cai, 2002) had defined the best 

methods of taking an impression of a grinding wheel and thus measuring a profile. 

These methods, described in detail later, involve equipment still available within the 

group and have been shown to give accurate and reliable results. Below is described all 

the equipment required for the grinding wheel topography tests. 

4.3.1 Microset 101RF 

The impression of the wheel surface was created using a polymer compound called 

Microset 101RF, this type of replication product allows fast cure times, excellent 

reproduction of microstructures and is also well suited to low temperature situations. 

Microset 101RF is a fluid so this allowed a greater degree of flexibility in use than 

would have been possible in comparison to the thixotropic type of compound 

sometimes used. The fluid was pumped into a bath which the wheel was lowered into; 

the fluid was then allowed to cure for approximately an hour. Once cured the replica 

was pealed away as delicately as possible. Unfortunately, this process meant a certain 

amount of detail was lost into the wheel. This is unavoidable when using any low- 

viscosity replicating product that is designed to penetrate through narrow passages into 

large pores. 

4.3.2 Uniscan OSP100 

The replicas were created using the Microset IOIRF fluid, these samples could then be 

analysed using an optical scanning unit called Uniscan OSP100. The Uniscan is a laser 

triangulation type system, capable of a resolution of 0.5 µm over a scale of 100 mm2 

and a depth of 35 mm. Using a5 mm by 5 mm sampling area each scanning line was 

separated by approximately 10 µm. Although the Wyko RST Plus system offers more 

accuracy on topography, the need to have the option of a larger sample area and deep 

pores led to the use of the Uniscan laser triangulation approach. The depth 

measurement also made the use of the Uniscan system preferable. As Cai (2002) 

reported, the Wyko RST system has a higher resolution but it is only suitable with a 

small sample size and could not measure height differences of more than 500 µm. 

4.3.3 WYKO Vision® Software Tool 

Once the scan was made with the Uniscan system the data could be transferred to a 

desktop computer for analysis in the Wyko Vision® software package. Although the 
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Uniscan system had a limited analysis package, the Vision® software package from the 

Wyko RST plus system offered far more flexibility in both visualising the scanned area 

and also in topographical analysis. 

4.4 Ancillary Equipment 

In order to conduct the tests satisfactorily both grinding machines were equipped with 

several extra pieces of equipment; some allowing measurement of various parameters 

and others as essential extras to the grinding experiments. 

4.4.1 Workpiece Materials 

During the tests three types of workpiece material were used; a general purpose Mild 

Steel, EN 3B bearing steel and BO1 tool steel. The general purpose mild steel was used 

for ease of manufacture during the early stages of collector development, the exact 

specification was unknown. During the main body of testing an EN3B / 070M20 (from 

BS 970-3: 1991) bearing steel was used, this represented an easier to grind material. A 

BO1 tool steel was used to represent a harder to grind material, this material was further 

through hardened to a hardness of approximately 53 HRc. 

4.4.2 Grinding Wheels 

All testing was conducted using alumina wheels with vitrified bonding. Initial testing 

was conducted using a custom made alumina wheel (otherwise known as the Altos 

wheel) The grains within the Altos wheel were of a particular long aspect ratio, in the 

region of 10: 1. Visual methods found the grains have an average characteristic length at 

the widest point of 850 gm. A typical grain can be seen in Figure 26. The exact wheel 

specification was not known as this particular wheel was custom made for a previous 

project many years ago. However, previous testing within the laboratory had found the 

porosity to be between 50-55%, this was verified using the volume displacement 

method as used by Krishnan, Malkin and Guo (1995), where the wheel was found to be 

54% porous in bulk structure. The Altos wheel was initially 200 mm in diameter but at 

the start of testing was actually measured at 188 mm using a vernier calliper. The Altos 

wheel was approximately 25 mm wide with no supporting solid annulus. 
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Figure 26. SF %I image of an indi%idual alumina grain from the : Altos %%heel. 

The grinding trials that did not use the Altos wheel were performed with another 

alumina grinding wheel with a 01 W-A-60-K-/-V-L specification, this was known as the 

Flexovit wheel and was supplied by Saint Gobain Abrasives. All wheel specifications 

are stated to conform to EN 12413. The Flexovit wheel had an initial diameter of 310 

mm with a width of 25 mm. This wheel was rated for use at up to 70 m/s linear wheel 

speed. Using the same principle as described in verifying the Altos wheel, the Flexovit 

wheel was, found to have a porosity of 44 %, this was verified by the manufacturer. 

According to equation (16) this wheel should have abrasive grains averaging a diameter 

of 250 Nm. Testing using visual aids showed that the grains within this particular wheel 

had a profile that could be approximated to a circle i. e. an aspect ratio of approximately 

I: I. Visual measurement showed that the grains had an average diameter of 340 um at 

the v irk t Moir, ' 

Ftgurr 27.4t anu. gr of an indi. idual alumina grain from the Flexu,, it %%heel. 

A further wheel w, %% used during the topography tests, this was again an alumina 

vitrified wheel described for the purposes of this thesis as the 'Universal' grinding 
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wheel, the specification is 52-A-46(1)-J-7-V-L. Using the same visual technique the 

Universal wheel was found to have an aspect ratio of approximately 1: 1, with a 

diameter of 440 µm. Equation (16) stated that the grains within this wheel should have 

an approximate diameter of 330 µm. 

Figurr 28, SI %I imagr, if an indiidual alumina grain from the l nisrrsal %%heel. 

The . ample sizes for all of the visual measurements were limited, thereby restricting 

the ability of the sample to reflect the overall true value of the average grain size. 

However, given the large amount of grains contained within the wheel and the limited 

capacity to remove grains from a wheel that is needed for grinding tests (without 

adversely affecting the balance), the sample size of approximately thirty from a 

population of nearly 200 extracted grains was deemed sufficiently representative. 
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Chapter 5. Experimental Procedure 
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5.1 Introduction 

The experimentation required for the project can be split into 3 distinct sections 

1. Useful flow collector development trials 

2. Grinding trials 
3. Topography trials 

Some of the testing for these distinct sections overlaps; so at this point it is worth 
describing the procedure that is common for each stage of the testing. The specific 

results and exact nature of each test is discussed later in this document. 

The layout of the experimental portion of this work was designed with specific goals 

in mind. Firstly the development of the useful flow collector. Then followed the 

analysis of the useful flowrate using a (Taguchi) fractional factorial approach; this gave 

qualitative results that were expanded on using full factorial testing. The experimental 

part of the project was then concluded with a wheel analysis section to aid the 

topographical analysis of the work. 

The purpose of the preliminary testing was to develop the useful flow collection 

system. However, at a certain point of maturity the collector was proved reliable, 

therefore some the results in this section could be trusted for further analysis. Several 

developmental stages are not shown in detail as they were used for verification of parts 

that were later superseded or had no merit in terms of analysis of useful flow. The 

Surface Grinding Trials and Taguchi trials all used a fully developed useful flow 

collector and as such are complete trials where the results are repeatable and 

reproducible. The Topography trials also draw reference to some of the useful now 

collection testing results. Where this has happened the relevant test from the grinding 

trials has been referenced using the notation described above. 

5.2 Trials Layout 

All experiments were conducted using the equipment described in Chapter 4, the 

combinations of which vary. The layout of the trials can be described as follows with 
the needs for each test in regards to the sections previously listed shown after. 
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" Preliminary testing 

o Test 1 

o Test 2 

o Test 3 

" Surface Grinding Trials 

o Abwood speed ratio test 

o Dominator speed ratio test 

o Jet flowrate/speed test 

" Taguchi Trial 

" Topography Trials 

o Bedding-in test 

o Dressing test 

5.2.1 Preliminary Test Stages 

All testing at the developmental stage was conducted on the Abwood grinding 

machine using the Altos grinding wheel at conventional wheel speeds. Beyond these 

parameters the following differences were considered key. 

" Test 1 varied the wheel speed vs and was unique in using a preliminary useful 

flow collection system that had side scrapers that extended beyond the contact 

zone. This situation can be seen in detail in Figure 29 and is described fully in 

the following chapter. This first test used the plunge cycle grinding operation. 

This was done to ease the initial requirements placed on the first generation of 

the useful flow capture system. 

Grinding Machine Abwood 

Grinding wheel Altos 

Type of Process Plunge 

Useful flow collector Development stage 1 

version 

Workpiece material Mild steel 

Depth of cut 10 µm plunge 

Traverse speed n/a 

Wheel speed 7-17 m/s 
Supply flowrate 7.2 Umin 
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Jet speed 12 m/s 

Coolant type 8-10% Hysol X solution 
Variables measured Useful flow 

Variables to be tested vs 

Table 7, Summary specification for preliminary test 1. 

" Test 2 varied the wheel speed vs and jet speed vv (by varying the supply flowrate 

qd) and used the next stage of the useful flow collection system but also with 

extended sides, this can be seen in detail in Figure 30 in the following chapter. 
Grinding Machine Abwood 

Grinding wheel Altos 

Type of Process Traverse 

Useful flow collector version Development stage 2 

Workpiece material EN3B 

Depth of cut 20 µm 

Traverse speed 2 mm/s 

Wheel speed 25-45 m/s 
Supply flowrate 11-331/min 

Jet speed 19-54 m/s 
Coolant type 8-10% Hysol X solution 

Variables measured Useful flow 

Variables to be tested vs, vj(qd) 

Table 8, Summary specification for preliminary test 2. 

" Test 3 varied the wheel speed vs and jet speed vj. This test used the fully 

developed flow collection system that covers the sides only up to the contact 

zone. 

Grinding Machine 

Grinding wheel 
Type of Process 

Useful flow collector version 

Workpiece material 

Depth of cut 
Traverse speed 

Abwood 

Altos 

Traverse 

Fully Developed for the Abwood 

Mild steel 

20µm 

2 mm/s 
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Wheel speed 11-51 m/s 

Supply flowrate 18.9 Umin 

Jet speed 35-45 m/s 
Coolant type 8-10% Hysol X solution 

Variables measured Useful flow 

Variables to be tested vs, vj 

Table 9, Summary specification for preliminary test 3. 

Test 1 and 2 were predominantly used for developing the useful flow collector. Test 3 

was the final stage of developing the useful flow collector and as such some of the 

results have been referenced in the discussion of the surface grinding trials. 

5.2.2 Surface Grinding Trials 

Only trials with a fully developed useful flow collector were allocated to the surface 

grinding trials section. All of these results were considered reliable for their accuracy. 

The surface grinding trials were conducted on both the Abwood and the Dominator 

grinding machine. The useful flow collection system used on both machines was 

essentially identical; the only changes between the two were either aesthetic or machine 

specific in nature. The key differences of each test were as follows. 

" Abwood speed ratio test was designed to test the effect of wheel speed on 

useful flow, therefore only the wheel speed, vs was varied. This test used the 

Altos grinding wheel and the fully developed useful flow collector with side 

scraping up to but not beyond the contact zone. 

Grinding Machine Abwood 

Grinding wheel Altos 

Type of Process Traverse 

Useful flow collector version Fully Developed for the Abwood 

Workpiece material Mild steel 
Depth of cut 25 µm 

Traverse speed 6 mm/s 
Wheel speed 11-51 m/s 

Supply flowrate 18.9 Umin 

Jet speed 24 rn/s 
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Coolant type 8-10% Hysol X solution 

Useful flow, Grinding zone temperature, 
Variables measured 

tangential force, normal force, 

Variables to be tested vs, 

Table 10, Summary specification for the Abwood speed ratio test. 

" Dominator speed ratio test was designed to take the previous Abwood test a 

stage further in terms of wheel speed and also to use a different wheel; with this 
in mind only the wheel speed, v3 was varied. The test was conducted using the 
Flexovit grinding wheel and the fully developed useful flow collector adapted 
for the different machine. 

Grinding Machine 

Grinding wheel 

Type of Process 

Useful flow collector version 

Dominator 

Flexovit 

Traverse 

Fully developed and adapted for the 

Dominator 

Workpiece material Mild steel 
Depth of cut 35 µm 

Traverse speed 10 mm/s 
Wheel speed 14-69 m/s 

Supply flowrate 18.9 Umin 

Jet speed 24 m/s 
Coolant type 8-10% Hysol X solution 

Useful flow, Grinding zone temperature, 
Variables measured 

spindle power. 
Variables to be tested vs, 

Table 11, Summary specification for Dominator speed ratio test. 

" Jet flowrate/speed test was conducted on the Dominator grinding machine and 

was designed to test the effects of varying the jet flowrate independent of the jet 

speed, with a fixed wheel speed. Consequently only the jet speed vj and the 

supply flowrate qd were varied for this trial. This test was also conducted using 

the Flexovit grinding wheel and the fully developed useful flow collector. 

82 



Grinding Machine Dominator 

Grinding wheel Flexovit 

Type of Process Traverse 

Useful flow collector version 
Fully Developed and adapted for the 

Dominator 

Workpiece material Mild steel 

Depth of cut 35 µm 
Traverse speed 10 mm/s 

Wheel speed 30 m/s 
Supply flowrate 6-24 Umin 

Jet speed 10-40 m/s 
Coolant type 8-10% Hysol X solution 

Useful flow, Grinding zone temperature, 
Variables measured 

spindle power. 

Variables to be tested vv, qd. 

Table 12, Summary specification for Jet flowrate/speed test. 

All three of these tests were used for the analysis of the useful flowrate. During all of 

the tests the temperature was measured. For the Abwood speed ratio test the force was 

measured, but for the Dominator speed ratio test and the Jet flowrate/speed test the 

power was measured. This change was to remove the dynamometer as an issue for 

testing (due to its inability to cope with fluid ingress) and because the Dominator had a 

wider scope of integrated sensors. 

5.2.3 Taguchi Trials 

Part of the grinding trials was a fractional factorial test following a Taguchi 

methodology. The Taguchi trials and the experimental method are described in detail in 

Chapter 7.5. 

5.2.4 Topography Trials 

The majority of the topography trials are purely measurement of the surface 

topography of grinding wheels in different states. These tests were conducted on the 

Abwood and Dominator grinding machines using the Altos and Flexovit grinding 

wheels. Some stages of system testing are mentioned during discussions later in the 
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thesis, however these are not used for analysis so are not summarised below. The key 

tests of each of the topography trials are as follows 

" Dressing tests were conducted to discover how the dressing affects the surface 

topography and therefore the fluid carrying capability, of the grinding wheel. 

Testing was conducted on the Universal grinding wheel. The purpose of the test 

was to vary the key dressing parameters of feed ratefd and dressing depth ad. 

Grinding Machine Dominator 

Grinding wheel Universal 

Variables to be tested ad, fd. 

Table 13, Summary specification for Dressing test. 

" Bedding-in tests are designed to test the wear effect of the bedding-in process 

on the surface topography of the wheel. Testing was carried out using the 

Flexovit grinding wheel. During this test the bedding-in process was analysed 

by taking samples at various stages of wheel wear post dressing. 

Grinding Machine Dominator 

Grinding wheel Flexovit 

Variables to be tested n/a 

Table 14, Summary specification for Bedding-in test. 

" Several further samples were made on both the Altos and Flexovit grinding 

wheels, with samples taken from a steady state grinding wheel. The purpose of 

this test was to allow the author to compare the surface topography of the 

grinding wheel to a measured value of useful flow. 

For every topography sample an impression is taken of the wheel surface using the 

Microset replicating fluid. Before each sample is created the wheel must be cleaned of 

swarf and fluid, this was done with a combination of high speed spinning and an air gun 

directed at the surface. The sample was then created by filling a dipping bath with 

Microset fluid and lowering the wheel into the bath up to a depth of at least 3 mm. The 

sample was then allowed to set for approximately 30 minutes. Once the sample had set 

it was removed from the wheel surface, this process invariably resulted in some of the 

fluid being left within the surface. Although regrettable this cannot be helped, as the 

fluid penetrates deep into the wheel it passes through small passages filling larger pores 
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beyond. Once the sample is peeled away these features were lost as the semi-solid fluid 

broke. Finer detail is still clear within the sample and significant pores could still be 

seen, represented by the semi-solid peaks of the Microset fluid. 

The sample was then taken to the Uniscan system to be optically scanned. The 

resulting data was then exported to the Wyko Vision® software for post-processing. 

The post-processing was performed in several stages. Firstly the data is inverted so that 

the data represents the wheel surface rather than the surface of the negative replica. 

Secondly the data is passed through the `cylinder and tilt' filter, this allows the 

curvature of the wheel to be accounted for and also any tilting of the sample that may be 

caused by an uneven surface on the face opposing the wheel impression. This data is 

then filtered using a level 3 window pass filter, this allows a lot of the fluctuations that 

occur at the grain surface to be removed, thus cleaning the image slightly. This also 

tended to even out the extremes of the sample that are due to bad reflections or gaps in 

the replica material. At this point the surface analysis techniques of the Wyko Vision® 

software could be employed to pick out standard values such as Ra, Rt or Rp. The 

Wyko Vision® software then allowed the processed data to be exported as cloud point 

data in an ASCII file type for further analysis in MATLAB. The MATLAB program 

was then used to analyse the surface further by line-scanning the data and building more 

detailed datasets. The techniques in MATLAB allowed nearly limitless control of how 

the sample could be analysed. 
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Chapter 6. Useful Flow Collector Development 

Vom 
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6.1 Introduction 

Following the review of previous approaches to flow capture and grinding analysis a 

series of tests were planned in order to begin development of a novel approach to useful 

flow capture. These preliminary experiments were designed to test the effectiveness of 

the devised flow capture methods throughout development. The key flow capture ideas 

were identified and used in the design of the final version of the useful flow capture 

device. 

6.2 Aims 

0 

The aim for the preliminary testing stage was solely to measure useful flow. This was 

the most significant and necessary advance for this project. In order to complete the 

investigation it was essential to find a way to capture and measure the amount of fluid 

that passes through the contact zone in a way that is both functional and repeatable. 

One further requirement of the fluid collection system was that it be capable of housing 

or attaching to the necessary extra gauging; temperature sensor, power/force sensors. 

6.3 Collector Development stage 1 

To begin the design process an initial investigatory test was planned. This stage of 

testing is summarised earlier as preliminary test 1. The purpose was to establish some 

fundamentals before the testing and design process could progress into novel design 

development. Therefore, the goals of preliminary test 1 were as follows; 

" To prove a volume of flow through the contact region was collectable with the 

machinery available. 

" Assess approximate volumes of fluid. 

9 To analyse a method of capture. 

" Compare results to the work of previous authors. 

Testing was carried out on the Abwood surface grinding machine using a flow 

collection device that was adapted from a previously used experimental rig. As stated 

in the goals, the testing was to prove flow passes through the contact zone in a 

significant enough volume to be collected and to also approximate the volume of flow 

so a suitable collector and channelling system could be developed. Previous works 

had shown that collectable flow could be approximately 40 % of the applied flow 

(Engineer et al, 1992) or up to 90 % in certain situations (Gviniashvili, 2003). Further 
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to this, should the collection methods prove instantly viable, direct comparison could be 

made with work by other authors in the field. 

" Gnniiling 
WI WI Coolant 

supply 

Grinding wheel.. 
plunge direction 

Culkti tahk 
flow sick 

fýý ,ý raýc rn 

Figure 29. Schematic of Plunge grind process used in collector development stage 1. 

The methodology for capture of the flow was to physically isolate the fluid that had 

passed through the grinding contact zone. This required using side scrapers, a 

workpiece the same width as the wheel and a post-contact zone scraper. The physical 

barriers needed to be in contact with the wheel, this meant it was necessary to attempt to 

minimise the drag effects that physical contact would have on the grinding outputs. The 

side scraper consisted of a foam glued to an aluminium plate that was spring mounted to 

the workpiece, this would allow the side scrapers to 'hug' the wheel and workpiece thus 

creating a physical barrier to the fluid along the sides of the wheel. The post contact 

zone scraper had to be held rigidly in position so contact could be maintained with the 

wheel periphery at all times. However, this contacting area needed to be as minimal as 

possible so as not to induce a force which could distort later results. Aluminium was 

used for this scraper as this is considered an easy-to-grind material and would provide 

minimal resistance to the wheel when contact is made. 

Preliminary test I showed some promising results but also highlighted the need to 

conduct testing using a traverse grinding operation rather than a plunge type. The 

Abwood grinding machine has a cantilevered headstock resulting in a lack of machine 

stiffness. When the wheel was lowered into position and the cut applied, a tendency for 

the wheel to 'bounce' was observed. This meant that a constant contact between the 

wheel and the workpiece could not be guaranteed during a test. Therefore, any flow 

88 



collected may have passed through what was essentially an open passage rather than a 

true grinding contact zone. 

By efficient physical isolation and with this machine type it was possible to collect in 

the region of 40 % of the applied flow. This value had close agreement with the work 

of Engineer and Guo (1992) and Krishnan et al (1995). The collection method proved 

satisfactory as was demonstrated when the machine was operated with no front splash- 

guard attached. This situation would normally result in both the operator and the front 

control panel becoming saturated in coolant, but with the collector and scraper in place 

no coolant splashed towards the front of the machine. One of the main findings of this 

test was that 40% of the applied supply flowrate could be passed through the contact 

zone and subsequently collected with suitable physical isolation systems. Another key 

finding was that a continuous cut could not be guaranteed with a plunge-type grinding 

process thus a traverse grind process was needed for future tests. This made it 

necessary to convert the successful methodology shown within this test to a traverse 

grinding situation. 

6.4 Collector Development Stage 2 

Having established some key design characteristics for the useful flow capture device 

from the first preliminary test, the next test was planned to verify that these methods 

were also viable for a traverse grind. This stage of testing was summarised previously 

as preliminary test 2. 

The second stage of design for the useful flow collection system involved splitting the 

main components in two so that they could move relative to each other. The primary 

parts included the flow director and side scrapers; this formed the system that directed 

the isolated flow away from the surrounding/rejected fluid. The secondary part was the 

post contact zone scraper and was designed to attach to the head-stock of the machine 

so that the scraper could be located in a fixed position relative to the wheel. These 

changes made the system more complex and meant some adaptations had to be made to 

the Abwood wheel guard, but it did allow isolation and extraction of the contact zone 

fluid whilst maintaining a cut on the Abwood using a traverse grind. The system in 

Figure 30 illustrates the wheel, collector and scrapers. 
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Figure 30, (AL) rrprr, rntauun of tra. rr%c grinding %)%trm for collector dr%rlopmrnt Stage 2. 

Thee deNiý,, n adaptati nN meant the "heel w a. capable of moving laterally relative to 

the side scrapers thereby allow ing a basic traverse grind to be performed. The resulting 

system isolated the flow in . uch a way that it follows the path shown in Figure 31. 
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Figure 31, Path or nud through collection system used in Development stage 2. 

These tests provided sonic expected and unexpected results, these are discussed in full 

in regards to the useful flow in Chapter 7.4. The coolant was again extremely well 

directed as was expected, the use of the side , scrapers and post-contact zone scraper 

worked well. It was visible that at faster wheel speeds the coolant was being ejected 

from the wheel further after the contact zone than previously suspected. It seemed that 

the grinding fluid had managed to penetrate further into the wheel when the higher 
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wheel speeds and jet speeds were employed. The deeper penetration meant the fluid 

was not being ejected from the wheel after the position of the post contact zone scraper. 
This situation would allow some of the flow that had possibly passed through the 

contact zone, maybe in a subsurface layer, to escape the isolation and collection 

systems. With this in mind an adaptation was planned to allow collection from roughly 

a quarter of the wheel periphery directly after the contact zone. 

The results from the useful flow collection were satisfactory in principle. However, a 
large volume was being collected, at the highest over 80% of the applied flow was 

being collected after passing through the contact zone during the cut. It was found that 

with a high speed/high flowrate coolant jet aimed directly at the grinding nip, a 

significant ram pressure was being created at the inlet to the contact zone. This pressure 

was in part due to the side scrapers completely encompassing the area before and after 

the contact zone. This situation allowed a pressurised reservoir of fluid to form at the 

entrance to the grinding contact zone. Although this is a very useful occurrence when 

grinding, indeed almost an ideal situation, it was entirely unrealistic in terms of 

repeatability on a day-to-day industrial basis and would provide no understanding of 

grinding in a normal factory situation. However, the principle that the Altos wheel was 

capable of carrying such volumes of fluid proved extremely useful to the work. The 

unnatural pressure zone was not wanted in the actual grinding trials and so in order to 

remove this effect the isolation and scraping system was redesigned so the side barriers 

would not protrude further than the grinding contact zone at any time. This was 

achieved by making the side barriers part of the post contact zone scraper arm, this 

meant that the sides no longer had relative motion to the wheel, it would be fixed in a 

position where it would always hug the wheel and provide side barrier only up to the 

grinding nip. 

The practicality of collecting for a fixed period was also an issue raised during this 

test. It proved awkward guaranteeing that collection of fluid only took place when a cut 

was being performed. This was because the isolator and scraping system were always 

attached and working to isolate and direct all flow passing through the contact zone. It 

was necessary during this test to start a grinding pass but wait approximately two 

seconds before collecting the fluid from the end of the system. This delay guaranteed 

that collection was taking place of only the flow that had passed through when a cut was 
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being performed and not of flow that was passing through the system before complete 

isolation had been achieved. This situation proved quite wasteful in terms of resources. 
A system was designed to automate the collection period thus overcoming this issue. 

This system utilised an optical sensor, a pneumatic valve, a rotary actuator, a control 

circuit and some design variations to the flow director. The optical sensor was mounted 

to trigger a pneumatic valve that changed an input to the actuator altering its state, this 

then mechanically redirected the flow to where it could be collected. This system 

allowed complete control of the timing of collection. 

6.5 Collector Development Stage 3 

It was at this stage that all the remaining systems were installed, tested and verified. 

This involved testing and proving the temperature sensing equipment, the dynamometer 

and the data acquisition apparatus. 

The testing took place on the Abwood grinding machine using the Altos wheel which 

had a diameter of 186mm at the time. The Abwood had the facility to automatically 

traverse in the x-axis, this was controlled by a rather loose hydraulic valve. The valve 

required trial and error measurement in order to set it to run at a constant speed of 2 

mm/s. Although quite slow it was necessary to run at this speed so sufficient flow could 

be collected for measurement. At this stage no formal testing took place of the collector 

system, although the developments were verified for its functionality by running 

grinding passes no testing was conducted in regards to a larger experimental design. 

Fluid collection and measurement was undertaken using a channelling system and a 

collection chamber. The mass of the chamber was pre-measured so measurement of the 

collected fluid was by mass rather than volume. This removed the issue of frothing that 

is normally associated with a high speed wheel and coolant jet that would affect any 

measurement by volume. In order to guarantee this method the density of the coolant 

was established prior to testing. Although the coolant is nearly 90% water it was 

necessary to verify a true value of density for the mixture. The density of the grinding 

fluid mixture at the ambient temperature was found to be 991 kg/m3. 
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I inure 32, Schematic of experimental rig. 

In term, of assessing the equipment nearly all sections were assessed and found to be 

at least satisfactory. Some cosmetic changes were decided upon for the final design and 

are listed below. 

I. An expansion of the fluid channel through the director. 

2. Tighter tolerances on the scraper system to improve alignment to the wheel. 

3. Location from a machined face of the wheel guard. 

4. A more controllable optical interrupter would be preferable. 

It was decided that it was desirable to test over a wider speed range than possible with 

the Abwood machine. Therefore the decision was made to transfer the project to the 

new Jones and Shipman Dominator surface grinding machine. In transferring to the 

new machine most parts had to go through minor design alterations. No new 

methodologies were necessary in transferring the collector to the new machine. 

6.6 Collector Final Design 

In line H ith ttw de%clup iwnt. ot ttk preliminary tests a final design was achieved 

during the fifth generation of the useful flow device. This iteration was considered fully 
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developed and is the one used for the final preliminary test and all the Surface Grinding 

Trials. This system utilised the following key features; 

" Side scrapers. 

" Post contact zone scraper. 

" Controlled flow collection period. 

" Multiple channels for collection of fluid and rejection. 

During the final few iterations of the collection system design changes were carried 

out using Solidworks© 2006. This system allowed the machinery to be completely 

modelled in a CAD environment; this limited the errors in the manufacturing stages. 

The final stage of the useful flow collections system could be split into 4 main sections 

defined blow and described in detail in the following sections. 

" Flow isolating system 

" Collected flow director with actuator 

" Optical trigger with circuit 

" Channelling system 

6.6.1 Flow Isolating System 

The scraping system included the use of side scrapers, post contact zone scrapers and 

location geometry features. The side scrapers and post contact zone scraper used the 

same principles developed for the design used in Preliminary test 2. This involved 

forming a sealed channel for all flow that passes through the grinding contact zone (see 

Figure 33). The side scrapers covered the sides of the wheel and the side of the 

workpiece, they were designed to cover roughly 5 mm below the workpiece face. The 

sides were made from aluminium so there was some flexure possible in the fit. The 

insides of the scrapers were covered with a sponge so that there was no metal-on-metal 

contact to add to the power requirements of the system. The first stages of testing had 

utilised a black foam that had proven useful in previous tests, this material was highly 

flexible and easily adhered to the aluminium. However, this substance had a tendency 

to tear at wheel speeds above 35 m/s. For the higher wheel speeds of the main body of 

testing this was not satisfactory. For these tests a silicon sponge was used that allowed 

minimal contact friction and did not tear under when exposed to large shearing forces. 

The used of this sponge required pre-treatment to increase the surface energy of the 
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metallic surfaces. A post contact zone scraper was used at a position of 90° passed the 

grinding contact zone. This post contact zone scraper used the foam as a harrier. 

Figure 33. CW drawing %how inx .c raper pu itiuning, fluid flow direction and the physical 
boundaries empiu»ed to isolate the grinding contact zone flow. 

The fluid crapers for this , vytem required accurate positioning relative to the wheel. 

To do this a wheel guard was manufactured to replace the original. The new guard had 

several ground face% each with a flatness tolerance of 20 µm, further to this a squareness 

tolerance of 20 µm was, necessary between the wheel front face and the guard end face. 

The scraper was mounted to the left face and thus the two ground surfaces were held 

together. 

6.6.2 FIoM Director Control Wale 

With the scraping system isolating the grinding zone flow from the rejected flow, a 

flow director was required to control the start and the duration of the collection period. 

A device was designed and manufactured that was attached to the end of the workpiece 

that would direct the flow away from the workpiece. This flow was forced into a 

channel with two exits, one that expels fluid back into the machine coolant handling 

systems and one that directs. fluid into a channelling system for collection and analysis. 

The control of the flow direction was achieved using a rotating valve similar in concept 

to the Thames Barrier employed in London. l' K. This valve can be seen in Figure 34. 
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F igurr 31. Krprr, rntatiun of flow control . alve. 

The need for a device like this %%as noticed early in preliminary test 1. However, it 

was only after Development Stage 2 that the level of control required for the timing of 

the flow collection became essential. The scraping system was transient in its abilities 

to isolate flow regimes and at certain times and position% it was not a sealed system, at 

these times any flow passing through the valve could not be guaranteed as having 

passed only through the grinding contact zone. Accounting for these errors in real time 

meant designing both a controlling sensor mechanism and a form of valve to control the 

flow direction. The flow director is depicted in Figure 35. The open and close 

positions can be seen in Figure 36. The director was made from mild steel as the 

material composition was not of great importance, there are minimal loads on this part 

and any contact mechanics require the director to remain un-deformed. The valve was 

made from a self-lubricating bronze, which was machined to a tight fit within the 

director but would wear in relation to the steel director to form the required seal. 

'4 

Figure 35. l'AL) drawing of flow director; left %howing solid with valve, right showing only the 
director with a trampareat front face to show the internal structure. 
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Figure 36, Side view of flow director with tran., parent front and a highlighted fluid path, left image 
showing flow direction when collecting, right %ide showing now direction for rejection. 

As the vale was e%. enualI) a rotating pi%ot, a device was required to rotate the barrier 

into the open and close positions. This was achieved using an SMC rotary actuator 

(type CDRBIBWL'30-I80S-R73L) mounted onto a stand with a coupling between the 

actuator and the barrier. This single vane system used two pneumatic inputs to allow up 

to a 180° rotation on the output shaft. With the use of two mechanical stoppers the 

actuator could be set to move between the two required positions. The shaft was 

coupled to the valve, housed within the director, thereby controlling the direction of 

flow out of the director. In order to control the rotary actuator some form of triggering 

system with a control circuit was required. 

6.6.3 Optical Trigger and Control Circuit 

The control of when the actuator collected and rejected the flow required some sort of 

logical triggering. This wa. --, firstly achieved using a simple optical switch in 

conjunction with a basic control circuit. The optical switch was fixed on a bracket that 

was mounted to a point on the Abwood just below the slide-way of the x-axis. A 

machined piece of aluminium wa., mounted on the slide-way and thus moved with the 

workpiece. As the aluminium passed through the gate of the optical switch a signal was 

sent to a pneumatic valve that altered the air input to the rotary actuator and changed the 

direction of fluid flow. The logic can be seen clearly in the flow diagram in Appendix 

C. 

Much the same system was used when the equipment was transferred to the 

Dominator, however a more accurate method of flagging when collection was required 

was developed. This adaptation involved the use of an interrupter blade mounted to a 

rig at the back of the machine that was attached to the x-axis. The upgraded locating 
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mechanism can be seen in Figure 37. Although this allowed better accuracy and a less 

exposed position for the optics it meant that the control circuit had to be redesigned. 

The circuit was adapted to use two sensors rather than one, this was necessary because 

the Dominator automatically retracts once a grinding pass is completed. Since the 

optical sensors are mounted on the x-axis the interrupter would pass back through the 

optical gate thus triggering the %al. e and allowing unwanted fluid into the collection 

system. It was therefore necessary to have a second sensor that was triggered shortly 

after the grinding pass was finished. The sensor trips the circuit and locks the valve in 

its default 'rejecting flow' position. 

"\ J 

I aKurr 3-. Optical tnggcnng ' .. t, m for the flow director. 

6.6.4 Channelling S stem 

Once the grinding zone tlow was separated from the rejected flow it was necessary to 

channel it away to a point where it was contained. This was done with a channel of 

plastic pipe-, connected to a container. On the Abwood this system took the flow 

outside of the machine housing. On the Dominator the flow system and collection was 

kept inside the housing. This was unavoidable as the Dominator employed a closed 

guard system where grinding could not take place without the machine guard closed and 

locked in place. The collection container was separated from the pipe network by a 

quick-lock junction, this allowed easy access and water-tight connections. Several 

junctions existed between the interconnected parts, flow director to pipe, pipe to 

container, these were all scaled using an instant gasket mixture. The use of this material 

allowed the system a certain amount of flexibility that was beneficial as grinding passes 

accumulated. Once it pass had been performed and fluid collected the flow container 

could be detached and taken away for measurement. 

As can he seen in Figure 38, the final system employed . several methodologies 

developed from the preliminary testing and some adapted from previous work. The 
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amalgamation proved highly effective w hen coupled with a sophisticated sensor array 

and a suitable grinding rig. 

The fully developed useful flow system has also seen some adaptation for use in 

external cylindrical plunge grinding processes. Although this thesis does not involve 

cylindrical processes the project this work was part of has a vested interest in the 

development to cylindrical pnxesses. 
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Chapter 7. Surface Grinding Trials 
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7.1 Introduction 

The main body of testing was conducted to analyse the effects of useful and to verify 

and assist in the development of a method of useful flow prediction. This section of the 

project was split into several parts. The chapter begins with a discussion of useful flow 

and how it is affected by various parameters. These tests were only possible due to the 

development of the collection device described in Chapter 6. Discussion then moves on 

to how the amount of useful flow affects the performance of certain process 

characteristics. Grinding trials were conducted using standard full factorial methods 

along with a fractional factorial test using Taguchi methodology. The tests discussed 

within this chapter were previously summarised in Chapter 5 under the headings 

Preliminary Test 2, Preliminary Test 3, Abwood speed ratio test, Dominator speed ratio 

test, Jet flowrate/speed test and the Taguchi Trial. It is worth noting that Preliminary 

Test 2 is separated from the main body of discussion within this chapter. Although 

some interesting results were found the issue of the side scrapers clouds the ability to 

compare and analyse results. 

The work then moves towards analysing the volume of collected flow and how this 

can be predicted in order to reduce applied flow volumes and improve the effectiveness 

of fluid application. 

7.2 Aim 

The aim of the main body of testing within this chapter was to both validate theory and 

to develop further understanding of the effect certain parameters have on useful flow 

and how these values can be manipulated to increase or decrease useful flow values. 

7.3 Specific Objectives 

During the grinding trials the objectives were as follows: 

9 Measure useful flow. 

" Analyse how the useful flow is affected by the programmed parameters. 

o Programme parameters are defined as wheel speed, jet speed, jet flowrate 

and workpiece type. 

" Analyse how the useful flow affects the process outcomes. 

o Measure and record power, acoustic emission, actual depth of cut and 

temperature. 
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7.4 Preliminary Test 2 

Several of the development stages of testing involved fluid capture in various 

situations. Once the capture device had reached the level of maturity where it was 

capable of providing reliable and repeatable results the findings could be addressed 

completely. However, just prior to this stage the collector had the design characteristic 

of providing too much cover to the area before the contact zone. This situation pushed 

the useful flowrate above what could be sensibly expected. The reason for these large 

values of useful flow could not be replicated in production and as such provided only 

theoretical insight rather than true guidance to industry. Although not useful for the 

longer term interests of this project, the effects of this situation have proved interesting 

and are therefore discussed within this chapter. 

Preliminary Test 2 was planned to allow various ratios of wheel speed to jet speed to 

be tested. As mentioned previously there is an expectation that a relationship exists but 

as yet this correlation is unproven. This experiment was designed so that a total of 20 

tests were performed, a broad range of values were selected. Five wheel speeds were 

chosen for analysis based on the known limits for both the Abwood grinding machine 

and the Altos grinding wheel. The experimental plan is shown in Table 15. 

Prior to each experiment the workpiece was machined so a constant starting surface 

was assured. This was done by performing two cuts with a programmed depth of cut of 
5 µm each with full coolant at a wheel speed of 2000 rpm. Where a clean constant 

surface was not visibly achieved this step was repeated. The coolant delivery flowrate 

was varied at the pump to give four variations of jet speed at given wheel speeds. 

Dressing was performed to give an open wheel structure. A full experimental 

specification can be seen in Table 15. 
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Wheel speed, 
V. (mss) 

Jet speed, v, 
(mss) 

supply 
Qe flowrate, 

(Umir1) 

Ratio 
(v/va 

1 24.6 1 189 114 0.77 

1 24.6 21 28.4 17.0 1.15 

1 24.6 3 35.3 21.2 1.44 

1 24.6 4 40.4 24.2 1.64 

2 29.5 1 18.9 11.4 0.64 
2 29.5 2 28.4 17.0 0.96 
2 29.5 3 35.3 21.2 1.20 
2 29.5 4 40.4 24.2 1.37 
3 34.5 1 18.9 11.4 0.55 
3 34.5 2 28.4 17.0 0.82 

3 34.5 3 35.3 21.2 1.03 

3 34.5 4 404 24.2 1.17 

4 39.4 2 284 17.0 0.72 
4 39.4 3 35.3 21.2 0.90 
4 39.4 4 40.4 24.2 1.03 
4 39.4 5 45.4 27.3 1.15 
5 ' 45.3 3 35.3 21.2 0.78 
5 45.3 4 40.4 24.2 0.89 
5 45.3 5 45.4 273 1.00 
5 45.3 7 53.6 32.2 1.18 

Table 15, Experimental plan for Prelimiuarry Test 2, conducted on the Abwood grinding machine 
using the Altos grinding wheel. 

Figure 39 showed that the collected tlowrate (or useful tlowrate) increased with jet 

speed. The increasing useful flowrate tended to level off at higher jet speed, this is 

likely to be due to the fluid being increasingly rejected from the entry zone when the jet 

speed is in excess of wheel . peed. It was argued by Gviniashvili (2003) that under these 

conditions jet momentum is being used to drive the wheel. There is an exchange of 

momentum associated with the change in direction of the rejected flow. 
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Figure 39. Collected flow rate %ersu jet speed at carious wheel speeds for Preliminary Test 2. 

Figure 40 , how, the useful tlo as a percentage of the applied flow. Percentage 

useful flow is a rather more abstract parameter than useful tlowrate. Useful flow or 

percentage useful flow is a function of the applied flow and as such gives a good 

indicator of the amount of rejected flow from a system. It can he stated that the 

percentage useful flow has a higher dependency on parameters such as wheel speed, jet 

speed, nozzle tlowrate and nozzle position. The interpretation of percentage useful flow 

is therefore more difficult than the interpretation of actual useful flowrate. The 

applicability of percentage useful flow as indicative of the effectiveness of fluid 

delivery or of the usefulness for grinding performance is also more difficult. It is 

possible to maximise percentage useful flow and find that actual useful tlowrate is less 

than could be achieved with a higher nozzle tlowrate, a higher jet speed or with a higher 

wheel speed. The interpretation of percentage useful flow remains ambiguous except 

where nozzle flowrate remain, constant. It appears to measure effectiveness of fluid 

delivery but does not measure actual useful flow which differs for different supply 

flowrates. The true effectiveness of a sylteng would be dependant on both the 

percentage useful flow and the useful tlowrate. For a truly efficient system the 

percentage useful flow would need to be maximised and the useful flow would need to 

be optimised. 
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Figure 40, Percentage collected flow venus jet . peed at various wheel speeds for Preliminary Test 

The results in Figure 40 showed collection of up to SO% of the applied flow. It was 

reasoned that this high percentage useful flow occurred because the side plates restricted 

the sideways escape of fluid from the grinding nip. In other words the volume of fluid 

rejected was reduced, a.. indicated by the high percentage useful flow. This might well 

be an advantage for fluid delivery but the use of side plates that extend alongside the 

entry region is considered to be impracticable in general grinding practice. There has 

been no precedent for this level of collection in a real grinding process without side 

plates of this geometry surrounding the entry region. The isolation system was known 

to be functioning adequately, and although this was not the final design it had most of 

the major principles employed and was capable of isolating and collecting the useful 

flow. The Alto% wheel employed in this test had been designed to be extremely porous 

and allow vast quantities of fluid to be transmitted. This result has not been used for 

direct comparison to the other jet speed/wheel speed tests as the method of varying the 

jet speed does not provide sufficient isolation between the two influential factors of 

supply flowrate and jet speed. This does not detract from the relevance of the volume 

of the fluid that was transmitted through the grinding zone. 

There is an approximately linear portion at lower jet speeds. The slopes of the linear 

portions increase with wheel , peed. These results are consistent with measurements by 

Gviniashvili and are also consistent with the hypothesis that useful flow depends on the 

wheel surface flow pumped by the wheel pores. This follows since the surface flow is 

expected to increase with wheel speed. The fact that useful flow increases with jet 
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speed is consistent with the expectation that greater jet speed leads to better filling of 

the wheel surface pores. 

Findings from other researchers suggest that a 50% limit is a more practical percentage 

useful flow, achievable with a conventional grinding set-up. Only in trials without 

actual grinding contact have percentage useful flow figures as high as 80% 

(Gviniashvili, 2001) been achieved. The 80% figure is interesting when considering the 

balance between penetration into the wheel (and the usefulness of that flow), against the 

fluid carrying capability of the surface of a wheel. 

7.5 Taguchi Test 

In analysing the effects of the input parameters it was necessary to conduct tests that 

account for as many variables as possible. The intention of this type of test was to 

eliminate the need to fully test parameters that were found to be ineffectual on useful 

flowrate. As grinding is such a complex process ten parameters were identified as 

possibly influential on the volume of flow that passes through the grinding zone. To do 

a full factorial test on ten parameters at only two levels would take 210 tests = 1024 

tests. With this in mind a fractional factorial approach was utilised in order to include 

as many parameters as feasible in a test designed to see which had the most significant 

influence. A fractional factorial approach allows qualitative results only. Analysis, 

research and discussion led to the identification of seven key parameters that could be 

assessed using the resources available. These can be seen in Table 16 below. 

Parameter Level 
1 2 

A Material Type 01 ------ Mild SteE 
B Nozzle position Near ------ Far 
C Jet Velocity 50 m Is ------ 10 m/s 
D Dressing condition Coarse ------ Fine 
E Work piece surface speed 2 mm/s ----- 10 mm/s 
F Wheel surface speed 35 m/s ------ 65 m/s 
G Engagement, Actual depth of cut 6 µm ------ 40 µm 

Table 16, Parameters and level designations for the Taguchi test. 

An L216 orthogonal array was identified as being suitable as it allowed enough space to 

measure all seven parameters along with several interactions between the parameters 

with some remaining columns for error estimation (columns 5,10 and 14). Each 

parameter is tested at two levels, `High' and `Low'. These values should represent the 

extreme ends of the range of values a parameter can be, at each extreme it should be 
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expected that the measured parameter will be affected. Unfortunately this also has to 

take into account what is feasible with the equipment available. It can be seen from the 

array in Error! Reference source not found. that columns 3,6,9,12 and 15 have been 

assigned interactions, these interactions have been assessed as relevant to the testing and 

analysis of either the useful flow directly or the other process outputs. One of the key 

interactions is represented in column 15, this is the interaction between the wheel speed 

and the jet speed, this has been discussed previously by this author and others but no 

proof beyond personal knowledge and experience has been forwarded regarding this 

issue. By including the interaction effect this should prove that the combined effect of 

the two parameters does directly influence the useful flow. 

A B ExF C n BxC D E CxG n F DxF G n CxF 
Column No. Test Run 

Trial No. 1 2 3 4 5 6 7 89 10 11 12 13 14 15 i ii 
1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 22 2 2 2 2 2 2 2 
3 1 1 1 2 2 2 2 11 1 1 2 2 2 2 3 
4 1 1 1 2 2 2 2 22 2 2 1 1 1 1 4 
5 1 2 2 1 1 2 2 11 2 2 1 1 2 2 " 
6 1 2 2 1 1 2 2 22 1 1 2 2 1 1 " 
7 1 2 2 2 2 1 1 11 2 2 2 2 1 1 
8 1 2 2 2 2 1 1 22 1 1 1 1 2 2 " 
9 2 1 2 1 2 1 2 12 1 2 1 2 1 2 
10 2 1 2 1 2 1 2 21 2 1 2 1 2 1 to 
11 2 1 2 2 1 2 1 12 1 2 2 1 2 1 11 
12 2 1 2 2 1 2 1 21 2 1 1 2 1 2 12 
13 2 2 1 1 2 2 1 12 2 1 1 2 2 1 1e 
14 2 2 1 1 2 2 1 21 1 2 2 1 1 2 14 
15 2 2 1 2 1 1 2 12 2 1 2 1 1 2 ," 
16 2 2 1 2 1 1 2 21 1 2 1 2 2 1 ,. 

Table 17, Table showing the experimental layout for a `2' level 16 factor orthogonal array. 

Finally some post-testing analysis is performed to analyse the validity of the results, 

this is in the form of a confidence test. This type of test allows the user to allocate a 

level of confidence to a result, where this value represents an estimate of the strength 

that an effect has on the analysed output. 

7.5.1 Results 

Analysis of a test such as this can be most easily viewed via direct effects charts. This 

type of chart is designed to show visually which parameter has the strongest effect on 

what is being measuring, this is shown by the longest line/steepest gradient. Further to 

this the signal to noise ratio can be plotted to show the clarity of the indicator. 
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Figure 41, Direct effect chart for useful flowrate. A= Material Type, B= Nozzle position, C= Jet 
Speed, D= Dressing condition, E= Work piece surface speed, F= Wheel surface speed 

and G= Engagement, Actual depth of cut. 

What can be seen clearly from Figure 41 is the strong effect, signified by the long line, 

corresponding to the C parameter, jet speed, and another strong effect in the F parameter 

column, wheel speed. What can also be clearly seen is that the interaction between 

these two parameters has an equally strong effect. It can also be seen from Figure 41 

that columns 5,10 and 14 that were assigned no parameters show minimal variation, 

these columns can be used for error checking and the small lines/shallow gradients 

prove the residual effects within the analysis are small. By examining the results it can 

be seen that the highest volume of useful flow was passed through the contact zone 

when the jet speed was high (Cl) and the wheel speed was high (F2). It can also be said 

that neither the material type, nozzle position, dressing condition, workpiece surface 

speed or depth of cut had a strong effect on the useful flowrate. It is worth noting that 

the range of nozzle position was somewhat limited by the internal mechanisms within 

the Dominator grinding machine. With this in mind the conclusions on the effect of the 

nozzle position come with a proviso that when the nozzle is within 10 cm of the wheel 

surface any variation will have little effect at jet speeds greater than 10 m/s and supply 

flowrates greater than 41/min. This assumption of minimal effect may not be true when 

the nozzle is moved appreciably further away. Indeed it has been shown by Baines- 

Jones (2007) within AMTReL on a related project that large nozzle distances from the 
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grinding contact are detrimental. Therefore distances much larger than 10 cm need to 

be accompanied by a suitably optimi. td 'coherent' nozzle arrangement. 

Using these results an ANOVA table was constructed, this allowed the author to run a 

confidence check using an F-ratio test, the results of which can be seen in Table 18. For 

a 95 `k confidence level the F-ratio need-, to be above 10.1. it can be seen that for 

parameters C, F and CxF the confidence levels are adequate. Another possibly notable 

effect appears to be visible in column A. the material type. This however shows only a 

slight effect and when combined w ith only a 90 % confidence interval it can be viewed 

as possibly anomalous. 
source ää v v F 

A 0 18262 1 0.182623 7.35 
B 000364 1 0.003638 0.15 
C 8 79300 1 8.793068 353.74 
O 0 02267 1 0 022673 0.91 
E 001625 1 0.01625 0.65 
F 196429 1 1 95428 7 78.62 
G 010765 1 0.10765 4.33 
EF 000710 1 0.007102 0.29 
BC 0 04611 1 0 046114 1.86 
CG 0 0045 1 0.004453 0.18 
OF 0 OOü 1 1 0.00451 0.18 
CF 7 36230 1 7.362304 296.18 

" 0 07457 3 0.024858 

r 1857927 is 

Table 1X_-% No %% table for the useful now rate results, where SS is the Sum of the Squares for each 

variable, r is the degrees of freedom. % is the variance, represents errors as a factor and F is the 

value from the F -test. 

Examining the interaction CxF further in Figure 42 shows the non-parallel lines that 

signify a definite relationship between the two parameters. A cross-over of the lines 

provides definitive proof but the sharp gradients are enough to validate the trend. It can 

also be more clearly seen that the highest useful tlowrate is indeed at Cl F2, high jet 

speed and high wheel speed. 
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Figure 42. Interaction chart of the useful flowrate %bowins Jet speed, C and wheel speed, F. 

A direct effect. chart can A1 , A) plouted for the percentage useful flow as in Figure 43. 

This chart should be expected to %how roughly the same effects as Figure 41, and 



although the jet speed, parameter C, shows as a factor with considerable effect, the 

wheel speed, parameter F, does not. The interaction of the two parameters is again 
highlighted as significant. The F-ratio for jet speed and the interaction between the jet 

speed and the wheel speed puts them both in the 95% confidence interval bracket. The 

ANOVA table for the percentage useful flow results can be seen in Appendix However 

wheel speed falls into the 90% confidence bracket, possibly too low to draw a definite 

conclusion. 
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Figure 43, Direct effect chart for useful flow. A= Material Type, B= Nozzle position, C= Jet 
Speed, D= Dressing condition, E= Work piece surface speed, F= Wheel surface speed and G= 

Engagement, Actual depth of cut. 

It can also be seen from Figure 43, that the best situation for utilising large amounts of 

the applied flow is to have a low supply flowrate (C2), low wheel speed (Fl) and low 

depth of cut (G1). However, this condition results in a low useful flowrate and a 

condition where the wheel contact is starved of grinding fluid. This demonstrates the 

limited applicability of results presented in terms of percentage useful flow. The low 

confidence interval shows the true effect of the depth of cut, G1 may not be significant, 

this could be due to the film boiling experienced during some of the more demanding 

tests. This effect could have lowered the amount of useful flow that could be collected 

after the contact zone, thus lowering the percentage of flow collected within the system. 

The most noticeable effect within this analysis is the interaction between wheel speed 

and jet speed on the amount of useful flow utilised. This parameter has a confidence 

ratio above 99%. This leads to the need for an analysis of the individual interaction 

chart for the percentage useful flow. 
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Figure $4. Interaction chart the useful flow showing jet speed, C and wheel speed, F. 

What can be clearly -. en is that the best percentage useful flow's are achieved for the 

combination of parameters C2 F1 and Cl F2. Both of these combinations correlate to 

when the jet speed, and the wheel speeds are at their most similar i. e. when the speed 

ratio% are nearest I. 

7.6 Jet Speed /"Wheel speed 

As discussed earlier the pertrt%ed need to match coolant jet speed to grinding wheel 

speed leads to demand% for larger and more expensive equipment in new high speed 

grinding machine%. The following second stage% of testing were designed to analyse the 

effect of the process parameters of supply tlowrate, jet speed and wheel speed. 

7.6.1 Preliminary Test 3 

The first stage of this analysis took place on the Abwocxi grinding machine using the 

Altos grinding wheel. The testing has been summarised previously as Preliminary Test 

3. The samples were made to give a 'grindable' length of 60 mm. An existing nozzle 

positioning system was used which allowed the nozzle to be moved closer to the wheel 

and move higher up the wheel. The nozzle was aimed so the fluid jet hit horizontally 

just above the grinding zone, parallel to the workpiece. 

Nozzle Exit bright, h., i mm i Nozzle exit . Area, m' Nozzle exit speed, vj, m/s 

45 ')rIU 35.1 m/s 

0.40 8x 10 39.4 m/s 

0.35 7x 10 45.1 m/s 

fable 19. %ozuk exit dimension table for Preliminary Test 3. 

The test was conducted with 3 %cparatc nozzles with differing outlet areas, this allowed 

3 jet speeds to be achieved whilst keeping the supply tlowrate constant at 18.9 l/min. 



The nozzle fluid exit areas were all 20 mm wide so that coverage of the grinding zone 

was roughly constant, the remaining definitions are shown in Table 19. 

24 trials were conducted with jet speed/wheel speed ratios of 0.8 - 1.6 (vlvs). 

Measurement of the actual depth of cut was also attempted, however this proved 
difficult with the novel useful flow equipment and the limitations of the control drive 

positioning of the Abwood. For ease of execution the wheel speeds were varied for a 

given jet speed, then the nozzle was changed and the wheel speeds were varied again. 
This test was conducted over a range of wheel speeds and jet speeds so trends could be 

observed for both parameters. The experimental plan can be seen in Table 20. 

Test 
No, 

Jet speed, 
v, (M/S) 

Wheel speed, 
V. (MIS) 

Ratio 
(v/Vs) 

1 45 29 1.55 
2 45 32 1.41 
3 45 35 1.29 
4 45 38 1.19 
5 45 41 1.10 
6 45 44 1.02 
7 45 47 0.96 
8 45 51 0.89 
9 39 26 1.52 
10 39 29 1.36 
11 39 32 1.23 
12 39 35 1.12 
13 39 38 1.04 
14 39 41 0.96 
15 39 44 0.90 
16 39 47 0.84 
17 35 23 1.52 
18 35 26 1.35 
19 35 29 1.21 
20 35 32 1.10 
21 35 35 1.00 
22 35 38 0.92 
23 35 41 0.85 
24 35 44 0.80 

Table 20, Experimantal plan for Preliminary Test 3 on the Abwood grinding machine using the 
Altos grinding wheel. 

A dress was performed every time the nozzle was changed or an unexpected event 

such as an impact of the wheel on the workpiece occurred, this was followed by several 

grinding passes to gain wheel stability. Dressing was also performed whenever the 

wheel started to blunt. A single point diamond was used with a dressing depth of 10 µm 

and a feed rate of approximately 200 mm/min. 
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7.6.1.1 Results 

The results shoed that the u%eful flowrate could be increased with a greater wheel 

speed. this can be seen in Figure 45. The results proved difficult to interpret 

conclusively as to whether a predictable trend existed between wheel speed and useful 

flowrate, and jet speed and useful flowrate. 
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Figure 35, Results for preliminan test 3 showing useful flowrate versus wheel speed for 3 fluid jet 
speed.. a=25 µaß r. =2 mm/s. Q, =18.9 Umin. 

Figure 45 appears to , how that increasing the jet speed increases useful flowrate, 

however the results do not follow a consistent trend. This may be because the range of 
jet speeds is small and experimental errors were reasonable in these early tests. lt is 

worth noting that the equipment suffered a transient deterioration as testing took place 

and that the 35 m/s test took place last. Although this might have affected the exact 

values of the useful flow and grinding force results somewhat, it is expected that the 

trends identified from this early test are still valid. 

When considering these tests involved a constant supply flowrate the value of 

percentage useful flow becomes less abstract and can be viewed as concisely as the 

useful flowratc. thus it can be considered a measure of the efficiency of the grinding 

setup used. It can be seen from Figure 46 that percentage useful flow approached a 

maximum of approximately 50% of the applied flow, a value more in agreement with 

Previous works. 
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Figure $6. Results for Prdiminarv Test 3 rlwwing percentage useful flow versus speed ratio for 3 
fluid jet speeds, a=L; pin. Y. =2 mm/-, Q, =18.9 Vmin. 

In regard-, tu the . peed ratio i%. ue. Figure 4t' %ho%s the percentage useful flow against 

the speed ratio. For the jet speed of 45 rnh a trend appears, to be visible showing a peak 

of percentage useful flow at a value close to a speed ratio of 1, when the wheel speed 

equals the jet speed. It would have been expected that the other two jet speeds might 

have shown a similar trend of having a peak at a speed ratio of 1. The test where the jet 

speed is 40 m/s appears to nearly show the same trend, however the test where jet speed 

is 35 m/s doe% not. The initial findings from the speed ratio graphs are difficult to 

interpret fully over the small range that was necessitated by the wide range of input 

values used. For the purposes of the overall project this test served to show that trends 

seem to exist and that at certain values of speed ratio key variations in a useful flow 

trend may occur. 

After conducting this test it seemed that a follow-up test would be useful in order to 

establish if any trend exists over the larger range of jet speed/wheel , peed ratios. This 

required a test where the speed range could be extended in both directions. 

7.6.2 Abwood Speed Ratio Trst 

The purpose of this test AA.,, . uIcly to assess the interaction of the speed ratio and 

useful flow over a larger range of wheel speeds. It was a practical necessity to vary the 

wheel speed rather than the het speed. To keep a constant supply tlowrate in order to 
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separate the effects of jet speed and jet flowrate would have required a massive range of 

nozzles with differing outlet sizes. 

One significant change to the experimental setup was that a nozzle with an exit 

dimension of 0.65 mm x 20 mm was used to allow the jet speed to be fixed at 24 m/s 

with a delivery flowrate of 18.9 Umin. Then using a range of wheel speed of 11 - 50 

m/s (1200 - 5200 rpm), speed ratios of 0.4 -2 were possible. This test was conducted 

using a similar approach to Preliminary Test 3, the experimental plan can be seen in 

Table 21. The equipment and setup can be seen in Appendix C. Each experimental run 

was performed at least twice and an average of the results used for discussion. The full 

results are shown in Appendix A. Repetitions of results were done both for verification 

purposes and also when a thermocouple junction was not formed. In this situation all 

the remaining data; useful flow, power, could still be recorded and would not have been 

affected by the lack of a thermocouple junction. 

Test 
No. 

Jet speed, 
vi (mls) 

Wheel speed, 
V. m/s) 

Ratio 
(v/v8) 

1 24.3 11.6 2.10 
2 24.3 12.0 2.01 

3 24.3 12.8 1.89 
4 24.3 13.5 1.80 
5 24.3 14.3 1.70 
6 24.3 15.1 1.60 
7 24.3 16.2 1.50 
8 24.3 17.4 1.40 
9 24.3 18.8 1.29 

10 24.3 20.2 1.20 
11 24.3 22.2 1.09 

12 24.3 24.1 1.01 
13 24.3 26.5 0.92 

14 24.3 30.4 0.80 
15 24.3 34.7 0.70 

16 24.3 40.5 0.60 

17 24.3 50.1 0.48 

Table 21, Experimental plan for Abwood speed ratio test. 

7.6.2.1 Results 

At this stage the useful flow collection system provided repeatable and reliable results. 

Therefore the results from this test were not used to assess the equipment but only to 

analyse the results of the assumption that jet speed needs to match wheel speed. 
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Figure $7. Re-Alts from Abwood speed ratio test showing useful flowrate versus wheel speed, 
a=2Spm. Y. =6 mm/s. Q, = 18.9 Umin. 

The useful tlowrate results can he seen in Figure 47 plotted against wheel speed; and 

the percentage useful flow results can be peen in Figure 48 plotted against the speed 

ratio (º Jv, ). Both results show a definite trend in regards to the amount of fluid that can 

pass through the grinding contact cone. Figure 47 shows how the wheel speed has a 

definite effect during this test. It can be seen that as the wheel speed increases the 

useful flow increase. In Figure 47 when the wheel speed is smaller than the jet speed 

the percentage useful flow i, approximately linearly proportional to the wheel speed. 

This situation is due to a smaller air boundary existing around the wheel at low speeds. 

This air boundary layer can be penetrated quite easily with sufficient fluid speed in 

conjunction with a tlowrate high enough so that the wheel is never short of fluid to 

pump through. However, at high wheel speeds, the air boundary layer is increased in 

thickness and also in it-, momentum. A higher jet speed is therefore required to penetrate 

the boundary layer. Also, a larger jet tlowrate is required to ensure a sufficient quantity 

is supplied to satisfy the achievable useful tlowrate after allowing for an increased rate 

of fluid rejection. When considering the air boundary layer as a key factor to fluid 

ingress it is necessary to consider the type of boundary layer that could be expected. A 

smooth wheel of this diameter would have a Reynolds number of between 3x 1O and 

1x106. A fully turbulent boundary layer would be expected when Re > W06 106 and 

considering a rougher surface would be expected to lower this limit, it would be 
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expected that this boundary layer would be transitional to fully turbulent. Additionally 

the Altos wheel might be expected to produce a transitional boundary layer in the lower 

speeds due to its reduced circumference, thereby presenting a thinner and more easily 

penetrated boundary layer. As the speed increases it would quickly become a fully 

turbulent boundary layer, presenting a more substantial resistance to the application of 

grinding fluid. 

A linear portion in relationship between the wheel speed and the useful flowrate would 

be expected if the pumping rate of the system is dependent on the pumping volume of 

the wheel. The pumped flowrate therefore increases with wheel speed. This tends to 

support the prediction according to equation (24), where a direct proportionality is 

proposed between the useful flowrate and the wheel speed. However, the pumped 

volume needs to be calibrated for the wheel condition and compared with the predicted 

value from the wheel porosity. These results suggest a good correlation between the 

Rowe theory of equation (24) and the values in the low speed ratio `linear' region with 

this grinding wheel. 

Figure 48 shows that the maximum percentage useful flow was approximately 50% of 

the applied flow for this experimental arrangement. It appears that this maximum 

percentage useful flow occurs as the nozzle jet speed approaches the wheel speed, 

where the speed ratio is less than 1. For this experiment the maximum percentage 

useful flow also represents the maximum useful flowrate. What is also clarified by 

Figure 48 is the relevance of the speed ratio factor. Although the results have been 

transformed due to the inverse ratio, thereby the linear portion referred to earlier now 

shows a curve, the points of interest become clearer. When the wheel speed reaches the 

jet speed the ratio is 1, all values below this represent the preferred region of operation 

for a manufacturer, high wheel speed and low jet speed. The region above a ratio of 1 

represents higher jet speeds than wheel speeds and would realistically not be used by 

industry without explicit guidance pertaining to definitive benefits. It is this region that 

the manufacturers wish to avoid; indeed they would prefer not to approach it at all, 

preferring to work well below a ratio of 1. However, this region is of interest to this 

project as it represents a situation where the fluid supply flowrate can be considered 

plentiful to the pumping demands of the wheel. Below a ratio of 1 is most likely where 
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the effect of the air barrier will be %ub, tantial, because in this region the wheel speed is 

highest in comparison to the jet speed. 
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Figure 48 Percentage useful flow vertun speed ratio for the : %bwood speed ratio test, a=25 µm, 
v, -=bmads, Qp1L9 I/min using the Altos wheel. 

The strong influence of wheel speed over the useful flow during this test and some of 

the other preliminary tests suggests that the pumping effect of the wheel may have a 

very large impact over the volume of flow that can pass through the contact zone. With 

this being the case the topography of the wheel will be an integral factor, as such the use 

of the convenient flow term with its basis in wheel topography becomes more 

appreciable. 

7.6-1 Dominator Speed Ratio Test 

In order to have a fuller picture of the effects of the wheel speed and the speed ratio on 

the useful flow a test wa. % planned to measure the flow at higher-than-conventional 

wheel speeds and with a different wheel. This test used the Jones and Shipman 

Dominator Surface grinding machine. By using the stiffer machine with the faster 

spindle several factors could he addressed that were previously impossible to tackle, the 

most important of which were the higher wheel speeds and the different wheel porosity. 

The experiment was performed over a range of wheel speeds of 14 - 69 m/s, giving a 

speed ratio range of 0.35 - 1.7. The samples were made to give a 'grindable' length of 

100 mm. The workpiece speed was again increased slightly up to 10 mm/s, this gave a 

collection txriod of 10 seconds. The slot nozzle was positioned roughly 5 mm from the 
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wheel periphery, with the jet stream parallel to the workpiece. The jet speed was kept 

constant and the wheel speed was varied to achieve the range of speed ratios required. 
The supply flowrate was 18.9 Umin, as in the previous Abwood speed ratio test. The 

layout of the equipment can be seen in Appendix C, the experimental plan is shown in 

Table 22. Each experimental run was performed at least twice and an average of the 

results is illustrated in Figure 49, the complete results can be seen in Appendix A. 

Again, this was necessary when the thermocouple junction had not formed and was 

carried out for completeness even when a junction had been formed. 

Test 
No. 

Jet speed, 
V, (M/S) 

Wheel speed, 
V. (M/S) 

Ratio 
(V/Vs) 

1 24.3 14.1 1.72 
2 24.3 17.3 1.40 
3 24.3 20.4 1.19 
4 24.3 23.6 1.03 
5 24.3 26.7 0.91 
6 24.3 29.8 0.81 
7 24.3 33.0 0.74 
8 24.3 36.1 0.67 
9 24.3 39.3 0.62 
10 24.3 42.4 0.57 
11 24.3 45.6 0.53 
12 24.3 48.7 0.50 
13 24.3 51.8 0.47 
14 24.3 55.0 0.44 
15 24.3 58.1 0.42 
16 24.3 61.3 0.40 
17 24.3 64.4 0.38 
18 24.3 68.8 0.35 

Table 22, Experimental plan for Dominator speed ratio test. 

7.6.3.1 Results 

The testing in regards to the useful flow showed that the expected parabolic trend did 

repeat for the stiffer machine and the less porous wheel at higher wheel speeds, as 

shown in Figure 49. The gradient of the linear portion appears to be much steeper and 

not as pronounced when the speed ratio is high. However the linear portion does not 

pass through the origin as in the Abwood tests. This constant region at the lower wheel 

speeds suggests the relationship between wheel speed and useful flowrate may be more 

complicated for less porous wheels. It is postulated that this is related to a combination 

of the lower porosity of the wheel employed on the Dominator and its larger diameter. 

The low porosity would be expected to allow less useful flowrate at lower wheel speeds 
in the linear range and hence lead to a lower percentage useful flow. The larger wheel 
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diameter would be expected to lengthen the hydrodynamic wedge region at the grinding 

nip and the effect of this might increase useful flowrate at higher wheel speeds. 

The linear portion of the graph, visible in Figure 49 between the wheel speeds of 30 

m/s and 40 m/s, exists when the wheel speed equals the jet speed to where the wheel 

speed is nearly double the jet speed. Although not as linear in nature as the Abwood 

tests and of a much steeper gradient the point where it occurs and stops remains similar. 

The region of steep increase for the Dominator and the Flexovit wheel combination 

starts when the speed ratio is just below 1, and ends when the speed ratio is 

approximately 0.5. It can be stated that for the Flexovit wheel this region of linearity 

appears to be condensed, this is more easily seen in Figure 50. 
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Figure 49, Useful flowrate versus wheel speed for the Dominator speed ratio test, when vJ = 24.3 

m/s, qd=18.9 I/min, using the Flexovit wheel on the Dominator grinding machine. 

The reduced porosity of the Flexovit wheel suggests it should be capable of pumping 

less fluid for a particular wheel speed and supply flowrate. This is confirmed by Figure 

49. However, Figure 49 appears to show that the useful flowrate only increases when 

the wheel speed exceeds jet speed. The wheel speed at which useful flowrate peaks is 

higher than for previous tests when the higher porosity wheel is used. The wheel speed 

for maximum useful flowrate is almost twice the jet speed. 

According to previous results it would be expected that the linear portion should 

follow pass through the origin. Results at the lowest wheel speeds do not fit well with 

previous reasoning and results. Useful flowrate remains almost constant and much 
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higher in value than expected for very low wheel speeds suggesting that for this wheel 

the fluid jet easily penetrated the air barrier in this low speed range. It is conjectured 

that the nozzle was positioned so close to the wheel that it acted as a scraper. If this was 

the case it is possible that fluid attached to the boundary layer and was carried into the 

contact much more efficiently at low wheel speeds than would otherwise have been the 

case. Further investigation into the scraper effects would be advisable in this case. 
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Figure 50, Percentage useful flow versus speed ratio for the Dominator speed ratio test, when Vj _ 
24.3 nits, qd=18.9 I/min, using the Flexovit wheel on the Dominator grinding machine. 

As the speed ratio drops below a value of 1 the useful flow increases significantly with 

increasing wheel speed. The useful flowrate peaks at a speed ratio of approximately 0.5 

for the Flexovit wheel compared with a ratio of roughly 0.7 for the Altos wheel. The 

overall shape of Figure 50 for the Flexovit wheel has similarities to the comparable 

Figure 48 for the Altos wheel. Above the speed ratio of 1, where the jet speed exceeds 

the wheel speed, the useful flowrate for the Flexovit wheel is relatively constant. This 

constancy in the results despite an increasing wheel speed appears contrary to previous 

prepositions. The region where the jet speed exceeds the wheel speed, i. e. when vlvs > 

1.2, is not a region industry would be expected to operate, indeed it would be preferred 

by industry to operate well below vj/vs = 1. This region is of interest from an analytical 

viewpoint only, and as stated previously is not a target operating region for any 

manufacturer. 
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These results draw into question the need for matching exactly the wheel speed to the 

jet speed, shown in Figure SO by the highest percentage useful flow being at a speed 

ratio of below one. Indeed there appears to be benefit in having the jet provide 

sufficient flowrate to the contact zone that the wheel can then utilise dependant solely 

on wheel speed. During these tests the supply conditions were favourable, in that at no 

point the wheel was starved of either power from the spindle or grinding fluid; and that 

the jet speed was of less consequence when the nozzle is positioned close enough to 

interrupt the air barrier. 

During the testing at the higher wheel speeds with the Dominator above 50 m/s, the 

volume of flow collected tended to continue to increase rather than tail off as shown in 

previous tests. These top end results proved unreliable in repetition, likely due to the 

aggressive nature of the grinding being attempted. The sensitivity of these results to the 

nature of the wheel surface made repeatability questionable therefore they have been 

disregarded for analysis purpose%, however they can still be seen in Figure 5l. 
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Figure 51. Complete vet of results %howing the . peed ratio against useful now rate for the Dominator 

speed ratio tests using the Fkto,, it wheel on the Dominator grinding machine, when q,, =18.91/min 
unless otherwise stated. 

Further to this is the trend was different at lower wheel speeds from the Abwood 

speed ratio test these result% were repeated. The repetition, were carried out at different 

fluid input values, one set of tests were performed at a higher fluid jet speed of 45m/s, 
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the other test was performed at a lower supply flowrate of 8.5 1/min and jet speed of 
20m/s. These tests were conducted in order to compare to a higher jet speed and to 

compare to a lower, possibly insufficient, flowrate. The complete set of results can be 

seen in Figure 51. In this figure the higher speed values have also been shown, as stated 

these values buck the trends shown in other results but are shown here for completeness. 

What can be seen clearly in Figure 51 is the repeatability of the trends found in the 

first run of tests. Particular interest is found in tests conducted using a jet speed of 
45m/s and the supply flowrate of 18.9 I/min. The importance of the speed ratio again is 

clearly visible, showing the steep increase in useful flowrate as the wheel speed 

approximately matches the jet speed. The constant portion at low wheel speeds again 

occurs up to the steep gradient, the reasoning for this is not clear, what is clear however 

is that for the Flexovit wheel the speed ratio is of paramount importance. Again support 
is found for advising a user to operate at a speed ratio of 0.5-0.9, this can be seen clearly 

in the speed ratio graph shown in Appendix A. 

The fact that the useful flowrate is constant below the speed ratio of 1 suggests that the 

ability to fill the pores is poorer when the wheel speed is lower than the jet speed. It is 

postulated that the difference between the wheel speed and the jet speed may have 

exaggerated effects on the useful flowrate for a less porous wheel. A low porosity 

wheel surface would allow less penetration into the pores and give less fluid adherence 

space at the surface of the wheel. A low porosity wheel surface would allow less 

penetration into the wheel at the point of fluid impact. The rate of fluid rejection from 

the wheel surface is proportional to the reaction to the centripetal force the fluid would 

experience as a result of the wheel speed. Therefore the wheel would reject more fluid 

at higher wheel speeds. 

The balance of fluid held at the wheel surface and fluid rejected due to reaction forces 

would need to be considered alongside the speed ratio. The nature of the difference 

between the wheel speeds can be described as follows. When the wheel speed matches 

the jet speed the fluid jet will impact on a surface moving at the same speed. The 

centripetal reaction of the wheel upon the fluid stream would be lower; the momentum 

would be preserved due to the similar directions of motion. If the jet speed is below the 

wheel speed the wheel will be required to accelerate the fluid upon impact. As the jet 

stream impinges on the wheel with sufficient flowrate an accommodating wheel will 
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entrain, within its large pores, a fluid jet that has sufficient speed to penetrate the air 
barrier. A less accommodating wheel, one with a more closed surface, will not be able 

to deal with the different momentums by entraining fluid as efficiently. As jet speed 

exceeds the wheel speed a low porosity wheel surface that cannot absorb excess fluid by 

forced penetration will tend to reject the oncoming fluid based purely upon the differing 

speeds. Momentum preservation will tend to cause the fluid to deflect from the wheel 

surface as the fluid cannot accelerate a wheel that has its speed kept constant by the 

grinding machine spindle. Consequently, one might expect the speed ratio to have a 

more pronounced effect on useful flowrate due to surface porosity. 

The results for the low jet flowrate of 8.5 1/min show useful flowrate reducing as 

wheel speed increased. This tends to confirm that insufficient flowrate leads to 

starvation. A low jet flowrate means the jet momentum is reduced. As the wheel speed 

is increased, the air boundary layer is increased and the jet momentum is insufficient to 

penetrate the air barrier. At the lowest wheel speed, the percent useful flowrate 

approaches 25 % but as wheel speed increases this values falls. 

7.7 Jet Flowrate/Speed Tests 

In analysing the useful flow in reference to the delivery conditions it became obvious 

that separating the effects of the jet flowrate, m1 from the jet speed vi would be 

important. For the majority of testing to this point one of these two values were kept 

constant. This meant that the analysis of the differentiable effects of these parameters 

has not been fully addressed. Therefore a test was devised that would attempt to qualify 

this issue; this meant varying the flowrate whilst keeping the jet speed constant and vice 

versa. Without a very large range of nozzle sizes or a nozzle with an adjustable height it 

was impossible to completely maintain the flowrate as a constant. Therefore the 

flowrate is maintained as tightly as possible for each range of jet speeds, vp The jet 

speed was varied by changing the nozzle exit height. The test was conducted on the 

Dominator grinding machine using the Flexovit grinding wheel. The experimental plan 

can be seen in Table 23 

ýýý; 
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Test 
No. 

Nozzle 
height 
(mm) 

Jet speed, 
v mis i() 

Jet 
flowrate, 
mi (1/min) 

Wheel 
speed, v, 

(m/s) 

Ratio 
v/v) (, 

1 0.50 40 24.0 30 1.33 
2 0.50 30 18.0 30 1.00 
3 0.50 20 12.0 30 0.67 
4 0.50 10 6.0 30 0.33 
5 0.65 30 24.0 30 1.00 
6 0.65 20 16.0 30 0.67 
7 0.65 10 8.0 30 0.33 
8 0.40 40 19.0 30 1.33 
9 0.40 30 14.0 30 1.00 
10 0.35 40 17.0 30 1.33 
11 0.85 20 20.0 30 0.67 
12 0.85 10 9.8 30 0.33 

Table 23, Experimental plan for jet speed/flowrate test. 

7.7.1 Results 

The results from these tests show the difficulty of trying to differentiate the effects of 
these two intrinsically linked parameters. Figure 52 shows the useful flowrate against 

the jet flowrate. Figure 52 shows that there is little variation in useful flowrate between 

a supply flowrate of 6 Umin and 24 Umin. The lack of major variation in this constant 

wheel speed test further suggests that the wheel speed has the strongest effect on the 

useful flowrate in comparison to all other input parameters. From this test it can be seen 
that the maximum useful flowrate is -2.21/min when v, 3=30 m/s and when either vj=10 

m/s with mj=8 1/min; or vj =20 m/s with mj =16 I/min. This shows approximate 

agreement with the Dominator speed ratio test, with the same wheel and same 

equipment and methods. During this test useful flowrate was -2.7 l/min when v5=30 

m/s, vj=24 m/s and mj=18.9 1/min. The setup for this Dominator speed ratio test can 
however be more readily compared to Tests 2 and 11 for this trial, where v3=30 m/s, 

vj=20 m/s, mj=20 1/min and vs=30 m/s, vj=30 m/s and mj=18 1/min. For both of these 

tests the useful flowrate is approximately 1.6 1/min, much below the equivalent 

Dominator tests. This test was repeated and an average is presented, when useful 
flowrate varies little the effect that even minor variation in input parameters can have is 

significant. What can be definitely concluded is that for the Flexovit wheel running at 
30 m/s up to 2.5 1/min useful flow is achievable, whether it is necessary to input the 

effort required to reach this value would be dependant upon the process requirements. 

125 



2 
A 

I 

" v? -401/s. vWs-1 3 

" vi-30W$. vyvs"t 0 
" -20n li. vyvs-0 67 

-I OWS. vyvs4 33 

0 
ss 20 25 30 

Supply P--n% (Ihwln) 

Figure 52. Useful flowrate verws supply Auwrate for the jet %peed/ lowrate test, when v, = 30 m/s, 
a=30 µm, v, -10 mnvh, using the Flexovit wheel on the Dominator grinding machine. 

What little %ur1suon there is het%een the values is difficult to explain. The consistency 

of the useful flowrate values is in general agreement with the results from the lower 

speed ratio tests on the Dominator. Examination of Figure 52 and more specifically 

with the jet speed of 10 m/s shows the variation that can exist from one test to the next, 

in this case nearly 30 Where the results have proven Tightly more consistent, for 

example between the results for the jet speeds of 30 and 40 m/s, a slight increase in 

useful tlowrate can be seen when the jet speed is increased. When considering the fact 

that the useful tlowrate has remained constant the percentage useful flow should be 

considered. Examination of this parameter shows how the amount of rejected flow 

increases as the supply tlowrate is increased; shown by the decrease in percentage 

useful flow visible in Figure 53. The grinding situation attempted could be considered 

favourable, at no point was it expected that the grind would result in workpiece burn. 

Indeed throughout testing both the grinding zone temperature and the grinding power 

remained within tolerable limits. 
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The results displayed in Figure 52 can be examined further by splitting the parameters 

down into groups of similar supply tlowrates. This is done with several of the results by 

grouping the flowrate+ of around 12 l/min and 22 l/min, illustrated in Figure 54. What 

can be seen is how the minimal variation that does exist could be more affected by jet 

speed than jet tlowrate. A definite upward trend in useful tlowrate is visible as the jet 

speed is increased. The increase is slight though, and it could be argued that it can be 

attributed to the very slight variation in the tlowrates. What is clear from this result 

however is that the increase of 10 Vmin in applied tlowrate has had little effect on the 

useful flowrate. This reinforces the idea that increasing the supply flowrate has 

negligible effects if the het , peed is not sufficient. 
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grinding machine. 
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7.8 Process Outputs 

lt i, key to the Hk)rk to not only define what it is possible to conveniently pass through 

the grinding contact but to also consider what is necessary to pass through the grinding 

zone. The definition of the optimal useful flow states that there is a limit beyond which 

no benefit is gained when the specific requirements of the fluid are considered 

separately. With this in mind during the testing stages performance parameters were 

evaluated to give an indication of the effectiveness of the fluid delivery. 

7.8.1 Grinding Zone Temperature 

The temperature . %a- measured a_s droned in Chapter 4.2.4.2 during the Taguchi tests 

and several of the speed ratio test,. The purpose was to monitor the possible onset of 

thermal damage, for the more severe grinding trials visual effects such as temper 

colours were visible along with less tangible effects of noise, bounce and misting. 

Excessive temperatures also tend to be accompanied by power spikes, which are 

discussed in the following chapters. 
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Figure 56, Grinding zone temperature and useful 
flow rate plotted against wheel speed with a jet speed, 

v, =45 m/s from Preliminary Test 3 on the Abwood 
grinding machine using the Altos grinding wheel, 

a=25 pm, v.. =2 mm/s. Qd=18.9 Umin. 

Preliminary Test 3 showed no significant trend in regard to grinding zone temperature, 

as can be seen in Figure 55. It can be seen that the slightly higher jet speeds had the 

lower temperatures. And that as the wheel speed increased and the useful flowrate 

increased the temperature tended to level out or slightly decrease. Results from the 

Abwood speed ratio test, visible in Figure 57, showed the temperature remained within 

tolerable limits suggesting a favourable grind was being performed with adequate useful 

flow. The temperature again had a tendency to increase and then level off, with the 
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increase being mainly due to the increasing wheel speed. It is worth noting at this point 

that the energy partitioning within the contact zone will have had a key influence on the 

workpiece surface temperatures. 
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Figure 57. Temperature and percentaxe useful flow plotted against wheel speed from the Abwood 

speed ratio test on the %bwood grinding machine using the Altos grinding wheel when a=25 µm. 
º". =6 men/%, Q, =1ä. 9 Umin. 

From Figure 5H it in b seen that ,A trend exists between the grinding zone temperature 

and the useful flowratc. the trend being an initial increase followed by a levelling-off 

when the flowrate reaches a certain value. 
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Figure 58, Temperature paotted against useful flowrate from the Abwood speed ratio test on the 
Abwoud grinding machine using the Utum grinding wheel when a=25 µm, v. =6 mm/s, Q, j=18.9 

1/min. 

Finally the Taguchi testing is considered in regard-, to temperature. Although the test 

was designed around the measurement of the useful flow, and as such the 'high' and 

'low' were picked only to affect the useful tlowrate, it is possible to examine the results 

in reference to grinding zone temperature. The extreme range of the parameters 

unfortunately did not lend itself well to temperature measurement, as such only half of 
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the tested values picked up temperature readings. It is however still possible to 

conclude qualitatively from these results based on the measured and visible thermal 

effects. For the three lowest temperatures from the tests a useful flow of 6-15% was 

measured, this equated to useful tlowrates of at least 0.5 l/min. During several tests 

there was visible burn on the workpiece, in some cases quite severe, this can be seen in 

Appendix C. This was due in the most part to the depth of cut being the 'high' value. 

In these cases the useful flowrate was below 0.5 1/min in all but one test, where the 

author observed significant bounce from the spindle thereby not ensuring a constantly 

closed grinding contact. However, there were tests where the grinding temperature was 

acceptable and the coolant tlowrate was below 0.5 l/min, in these tests the grind being 

attempted was very favourable (such as a shallow depth of cut, fast wheel speed with a 

fast workpiece or a plentiful coolant supply tlowrate). This can be summarised by 

saying that in regards to temperature as a grinding process assessor that insufficient 

useful flowrate with large depth of cut and slow workpiece speeds can lead to thermal 

damage. Also it can be stated that a low useful tlowrate is acceptable provided there is 

a small depth of cut and a high workpiece speed. 

7.8.2 Grinding Power 

Measuring the grinding power was performed throughout the testing phase by 

measurement of the force using a dynamometer attached to the workpiece or by direct 

measurement of the power via the grinding wheel spindle. Both methods proved robust 

and reliable during testing. 
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For Preliminary Test 3. which was the first test equipped for force measurement the 

power remained low, again reinforcing the interpretation that this test had favourable 

grinding conditions, this can be seen in Figure 59 and in more detail in Figure 60 when 

plotted with useful tlowrate. The force shows similar trend to the temperatures from 

Figure 55. Indeed Figure 60 shows how the force can increase as the wheel speed 

increases; however as the useful flowrate levels-off the force also tends to level-off or 

even drop. This i, accompanied by the drop in useful flowrate expected when the wheel 

speed exceeds the jet speed. as proportionally less fluid is being carried by the wheel 

this could have an effect on force being measured. What can be seen is a general 

decreasing trend as the wheel speed increases, this is expected as a faster wheel speed 

means a smaller grain depth of cut. 
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Figure 61, tangential force and useful flow plotted against wheel speed from the Abwood speed 
ratio test on the thwood grinding machine using the Utos grinding wheel when a=25 µm, v,,. =6 

mnvs. Q, = 18.9 (/min and v, =24.3 m/s. 

The follow-up test.. howed the same effect where the grinding force tended to 

decrease with the wheel . peed after an initial increase in the inefficient 'slower' wheel 

speed range, this is shown in Figure 61. Forces initially increase as percentage useful 

flowrate increases and then reduce as the useful tlowrate increases. The force is 

normally expected to decrease as wheel speed increases. The reduction in forces is 

clearly predominated by the kinematic effect of increasing wheel speed. The useful 

f]owrate cannot be considered to be cntical in this case. The useful flow followed the 

same trend as the force, suggesting that there was always sufficient flowrate and that the 

wheel speed had the controlling influence over the tangential force. 
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This can be more interestingly displayed as shown in Figure 62, this illustrates the 

effect of useful flowrate appears to have on the tangential force, it can be seen that the 

force tends to decrease as the useful flowrate increases, barring one spurious point it 

could be considered to level-off at a useful flowrate of around 6 I/min. The initial 

increase is where the process is not receiving enough useful flow, beyond 4 1/min the 

flow appears to positively affecting the process and then beyond 6 Umin the benefits 

begin to tail off. To make definitive statements on these results is difficult as the 

purpose of the work was not to conduct large volumes of tests to directly prove the 

effect the useful flowrate has on the complex property of grinding force. 
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Figure 62, Tangential Force plotted against useful flowrate from the Abwood speed ratio test on the 
Abwood grinding machine using the Altos grinding wheel when a=25 µm, vw=6 mm/s, Qd=18.9 

Umin. 

During the Taguchi tests the power results were sufficient to draw some tentative 

conclusions. Again the values of high and low have affected the overall validity 

bringing the results to approximately an 80% confidence level. Statistically this is a low 

value and where the test designed to focus solely on power it would require re- 

designing. However, as with the temperature some qualitative conclusions can still be 

drawn. Analysis of the direct effects charts appears to show that the dressing condition, 

the wheel surface speed and the depth of cut have the biggest effect over the power 

readings. 
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Figure 63, Direct effect chart for grinding power from the Taguchi test on the Dominator grinding 
machine using the Flexovit wheel. A= Material Type, B= Nozzle position, C= Jet Speed, D= 

Dressing condition, E= Work piece surface speed, F= Wheel surface speed and G= Engagement, 
Actual depth of cut. 

These trends agree with what is generally understood to be true in the grinding 

industry. This validates some of the trends beyond the statistical methods. Several of 

the highest power readings from the Taguchi tests correlated to high useful flowrates, 

however these were the tests that experienced severe burn and significant juddering and 

bounce during the grind. Of the other tests where moderately high levels of power were 

measured there was an even spread of high to low useful flowrates, suggesting that the 

power is not significantly affected by the useful flowrate. Indeed the lowest useful 

flowrate measured did not have a high power reading. 

Tentative conclusions can be made on the impact of sufficient flowrates and 

insufficient flowrates. The Taguchi tests provided limited insight into the power in 

regards to the useful flowrate. Earlier testing showed a possible correlation of useful 

flowrate to force, the exact trends are not clear as the far more influential factor of 

wheel speed masks the lesser effect of useful flowrate. The force when viewed in 

regards to speed ratio showed some effect, this ratio has been shown to affect the useful 
flowrate strongly and thus it could be stated that any correlation could be attributed to 

the useful flowrate achieved. This is not proof of a direct effect but certainly implies a 

relationship that should be investigated in depth during a subsequent project. 
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This series of testing shows a trend regarding the useful flow and the grinding force in 

reference to the speed ratio. The extent and influence of this trend still needs further 

verification, it is postulated that this effect may change when the wheel speed is above a 

certain value. 

7.8.3 Surface Roughness 

The direct effects charts extracted from the Taguchi test showed the main effects can 

be attributed to parameters D, F and to a lesser extent G. The confidence ratios for 

these parameters were just below 90%, a value that can be considered statistically low, 

suggesting the smaller effects should be scrutinised carefully in terms of their true 

influence. This is due to the appropriateness of the parameters chosen, for a test 

focussed solely on surface roughness the limits would have been different. It should be 

noted however that the dressing condition and wheel speed would be expected to 

strongly influence the surface roughness, thus agreeing with accepted industrial 

knowledge. 
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Figure 64, Direct effect chart for surface roughness, Ra from the Taguchi test on the Dominator 
grinding machine using the Flexovit wheel. A= Material Type, B= Nozzle position, C= Jet Speed, 

D= Dressing condition, E= Work piece surface speed, F= Wheel surface speed and C= 
Engagement, Actual depth of cut. 

Examination of the data from these tests shows that for the best five surface 

roughness's not less than 0.6 1/min of useful flowrate was achieved, showing no 
influence from the nozzle flowrate/speed. Two out of the three worst surface 
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roughness's corresponded to measurements of useful flowrate lower than 0.61/min, also 

correlating to the fine dressing condition and the fast wheel speed. 

To summarise, there is a correlation between grinding and dressing conditions and 

surface roughness. These effects tend to mask direct effects that might be attributed to 

useful flowrate. Any direct effect would need to be investigated with a more 

conventional analysis of effects of useful flowrate under carefully controlled 

experiments where effects of dressing and grinding conditions are eliminated. 
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Chapter 8. Topography Trials 
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8.1 Aim 

The hypothesis of the project is that there is a correlation between the surface 

topography of the grinding wheel and the amount of flow that can be passed through the 

grinding zone. It was anticipated that a correlation could lead to a predictive model that 

would require minimal or no extra testing and understanding of the wheel to predict an 

achievable useful flowrate. 

8.2 Approach 

In approaching this issue from the standpoint of convenient flow it becomes necessary 

to define some wheel characteristics that are not standard and can maybe be varied and 

controlled, namely the surface topography of the grinding wheel. The topography is 

mainly dependant on two factors, these being the manufacturer's design specification 

and the dressing applied to a wheel by the user. The relevant parts of the specification 

will be the grain size, bonding type and the level of porosity. Certain types of wheels 

lend themselves to the need for further verification beyond the range of this work, such 

as the SpherowinTM technology used by Winterthur, Germany. The SpherowinTM 

technology creates porosity by the introduction of micro-bubbles in addition to bonding 

material and abrasive grains. 

It is known that dressing will affect the performance of a wheel; this is generally 

understood to be the effect of removing wheel loading and creating new cutting faces. 

However, the practice of dressing may affect the fluid carrying capability of the wheel, 

this is most certainly true in regards to re-opening pores by removing swarf from within 

them. Dressing may also provide benefit from the effect of bond fracture and therefore 

the creation of new pores roughly the size of the abrasive grains that have been 

removed. 

The basic model for useful flow has been described previously as the Rowe model, 
found in Marinescu et al (2004) as 

Qu = vxb3 xhuf (39) 

This can be re-written for 2 dimensional convenient flow as follows. 
Qc = Vs "Yb'hpores 

(40) 
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Where v= characteristic speed, br = grinding wheel width, h�f = Equivalent fluid film 

thickness, hpo e, = Average pore depth and c= Bulk wheel porosity. 

The model shown in equation (39) is the basis of all models developed to date. From 

this equation the heavy dependence on a value of speed is clear, this is generally the 

grinding wheel speed, vs. The definition of the equivalent fluid layer thickness, h�f is 

where most variations in modelling exist. The proposition of this work is that the fluid 

layer and hence useful flow can be intrinsically linked to what is referred to within this 

work as the convenient flow. This being the amount of fluid a wheel can transport 

based on its surface topography. 

By analysing the structure of the topography of the wheel surface and approximating 

the amount of fluid the wheel can carry, without excessive fluid penetration, it may be 

possible to approximate a target for supply flowrate based on approaching or surpassing 

the value of convenient flow. 

8.3 Experimentation 

In order to support the theory that the fluid carrying capability of the wheel is an 

integral factor in useful flow, several experiments were undertaken to measure the 

surface topography and the useful flow. Some initial tests were carried out, with the 

purpose being to test the equipment and develop the systems that would be required in 

analysis. The first test was designed to measure and quantify the surface topography of 

a grinding wheel dressed using various values of dressing depth and dressing lead. 

Quantifying the values of surface topography allows the fluid carrying capability of the 

wheel, or the convenient flow to be approximated. By varying the dressing during these 

tests the influence of this factor on the convenient flow can be approximated. The 

second was to test the effect the bedding-in process has on the surface topography. The 

third was to analyse two wheels of varying porosity and grain size. These values can 

then be compared to the measured amounts of fluid collected during the grinding trials. 

8.3.1 Initial Topography Tests 

In order to begin the analysis some initial testing was planned to verify the process of 

capturing and analysing the surface topography of the wheel, as described and used by 

Cai (2002). This initial test used the Microset 1O1RF replica type substance described 

in Chapter 4.3.1, to take an impression of the wheel surface. This impression was then 
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measured using the OSPIOOA optical scanner so a topography could be recreated with 

software techniques. 

Initial testing was conducted on the Altos grinding wheel. One such result can be seen 

in Figure 65, this initial image shows the negative impression that the replica gives, thus 

the high spots in the image correlate to pore% within the wheel structure. This shows the 

image prior to the inversion and filtering technique described earlier. A large sample 

area (20 mm x 15 mm) was used for the first test so an overall view of the wheel could 

be produced. The left and right edge% of the sample clearly show the curvature of the 

wheel. Later techniques removed this distortion so a clearer view can be taken and the 

curvature of the wheel can be disregarded. This initial test proved the validity of the 

processes, in good agrecnncnt w ith Cai 12002). 
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In order to investigate the effect dressing has on wheel surface topography a test was 

conducted where dressing was varied over a range of overlap ratios. 

Krishnan (1995) stated that dressing depth has an effect on useful flow but that 

dressing lead was largely ineffectual. If this is true then varying the dressing depth will 

have an obvious effect on the topography: thus any measurement parameter used during 

this test that shows a significant change can be used as an estimator of the fluid carrying 

capacity of the wheel. This can be further clarified by using the test where dressing lead 

is varied and checking that any variation is minimal. The test was conducted using the 

plan shown in Table 24. 
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Test 
Order 

Dressing Parameters 
Overlap 

Dressing teed Dressing No. of ratio, Ud 
rate, 1, depth, a,, passes 

1 50 20 2 10 
2 50 5 2 10 
3 250 20 2 2 
4 500 20 2 1 
5 750 ýr 

r 
20 2 0.67 

Table 24, Topo*raphý test experimental plan. 

83.2.1 Re%ult% 

The intention ot the topography test was to show how the dressing parameters can 

affect the surface topography of the wheel. However, Figure 67 shows how the 

principal surface roughness parameter exhibit minimal variation due to the changes to 

the dressing variable-.. It is the R, value (peak to trough distance) that shows any 

reasonable variation. However it is known that the R, value is strongly affected by the 

extreme value, that may exist within a sample. The large variations in the value of R, 

cannot have resulted from dressing variations alone. In Figure 66 the R, is 2mm, this 

cannot have been directly attributed to 2 dressing passes each at 20 tm depth of cut. A 

visual check was performed on the surface of the sample to verify the scale of the 

variation wa. % in the order of millimetres rather than microns. 
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Figure 66, N c. ko analysis of topography data in initial testing of the Universal wheel. 

Although dre' ing is know n to improve grinding performance by exposing new cutting 

faces and cleaning the wheel of . warf it does so without making large scale changes to 

the surface topography of the wheel. The more significant voids exist as a function of 
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the wheel type. The measurement of R, (approximately 2 mm) shown in Figure 65 for 

the Altos wheel and then Figure 66 for the universal wheel with a reasonably porous 

matrix are several times larger than the values Cai (2002) reports for a vitrified bond 

cBN wheel IR, = 0.5mm, for similar measurement method); thus defining the wheel 

structure is the over-riding factor in fluid pore space availability. However, it should be 

mentioned that a significantly robust dressing pass (very fast feed rate, fi or very deep 

dress dep(h, a4) could cause extra pore spaces to occur via bond fracture, so it should be 

noted that in some caves the dressing can have an effect. 
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833 Bedding-in test. ' 

Most analy, i, of wheel surfaces is performed on either freshly dressed wheels or 

heavily used wheels. It is known that just after dressing a grinding wheel in use will 

show unstable power characteristics due to the larger/weaker peaks being removed. The 

remaining stronger peak% of the wheel carry the load and perform the actual material 
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removal. This is known commonly as the bedding-in process, run-in process or wear-in 

process and is when the `weaker' peaks of the surface topography are removed by direct 

contact with a workpiece. It is therefore necessary to investigate the effect that the 

bedding-in process has on the surface topography. 

This bedding-in is common to other mating-surface processes such as bearings and as 

such has led to various surface roughness parameters being defined. Most notable are 

the ones which relate to a graph called a Bearing Ratio Curve, as defined in the British 

Standard EN ISO 13565-2. This graph shows the amount of contact that can be 

expected between two surfaces when they mate together, the parameters inrl, Rk and R& 

that are common to this type of chart relate directly to the wearing-in process. The Rk is 

the working portion of the surface that would carry a bearing load after the run-in 

period. The Rpk is the reduced peak height and is the value of height above the Rk that 

will remain after the surface has bedded-in. Mr] is a percentage of the original profile 

and defines a level above which lies only the remaining peaks (Rpk). Specifically of 

interest is the value of Rk + Rpk and the overall height of the sample, it is the difference 

between these two values that can be considered in bearing terms the bedding-in height. 

A diagram explaining these parameters can be found in Appendix C. 

Analysis of the bedding-in effect was performed on the Flexovit wheel, the 

topographies to be analysed were; freshly dressed, after touching-on (spark out position) 

and after stability has been achieved (according to the power readings). A dressing lead 

of 375 mm/min was used with a dressing depth of 20 µm; this gave an overlap ratio of 2 

with a wheel surface speed of 45 m/s. 

83.3.1 Results 

By examining the results from both the bearing ratio curves and the MATLAB 

analysis some interesting features can be seen. The small sample bearing ratio curve 

predicts that the load will be carried at a height of 252 µm, this is given by the sum of 

the positive Rk value, labelled on the left side of the bearing ratio curve as Z, and the Rik 

value, seen in Figure 69. When compared to the measured peak value of 628 µm it can 

be expected that 380 µm will be removed during the bedding-in process. This position 

of load carrying height is analogous to a worn-in or bedded-in height, as described in 

previous chapters. This can be compared to the test results where the worn-in peak 

height is 404 µm, visible in Figure 70. 
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Figure 69, Bearing ratio curve for the frcnhh, drein d small ample of the Flexovit grinding wheel, 
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. alur. 

The situation the Bearing Ralik) curse de. crihe is analogous but not directly 

comparable, a bearing ratio curve applies to materials of similar hardness. In grinding 

this is obviously not the case is the grinding wheel (more specifically the abrasive 

grain) is magnitude% harder than the workpiece. Although the wheel will wear slightly 

due to the bedding-in processes it will not he expected to wear as much as it's opposing 

surface and the amount of wear will depend heavily on the surface it is in contact with. 

It can also be seen in Figure 70 that there is a slight increase in peak height from the I 

pass to the I(X) pa.. e% result. This is due to the exact positioning of the sample on the 

surface of the wheel. The value of peak height is dependant on the level that the system 

defines as zero. This zero is decided based on the arithmetic mean of all the points. 

Examination of txxh the filtered and unfiltered results show that the peak removal is 

roughly 50% of the overall peak height of the pores (see Figure 70), this relates to 15% 

of the overall peak-to-trough height in the sample, as -shown in Figure 7I. All results 

are shown in Appendix C. The more easily comparable value is the R, given in Figure 

71, this values shows a decrease of -170 µm between the freshly dressed and worn-in 

wheel states. It can also be seen from Figure 71 that the majority of removal of these 

extraneous peaks happens very quickly after dressing, possibly within a few passes of a 

grinding wheel. 
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Figure 70. Peak height using a . mall sample of the tlexovit wheel. wheel. 

Analysis of the surtace% alw allo%ed a mean to be taken of the heights of the peaks, it 

was found that the difference between the mean of the maximum heights and troughs 

varied little through all the samples. It also becomes apparent that the mean peak height 

value for the wheel in any state is similar to the worn-in value predicted by the bearing 

ratio curve. This is shown in the bearing ratio curve in Figure 69, and was described 

previously as 252 µm roughly agrees with the mean peak value of 260 µm shown in 

Figure 70. This process of averaging the highest points is found to remove less than I% 

of the points within the %ample. 

8.3.4 Grinding trials 

In order to correlate the topography to the useful flow testing, it was necessary to take 

samples from the grinding wheels which had been used for useful flow collections 

trials. These were the Alto-, and Flexovit wheels. All samples were taken during the 

ground-in steady state for the wheel surface. Sampling was performed in two ways; one 

was as larger sample of 19 mm x 25 mm and another 'close-up' of 5 mm x5 mm. This 

allowed evaluation of both the averaged values and the individual feature values. It can 

be %ccn from Figure 72 that the smaller %ample site is a close-up of a section of the 

large sample (noting the slightly different scales employed in each image). 

The purpose of these tests were to approximate the space available within the surface 

of the wheel that can be conveniently occupied by fluid. This was achieved by taking 
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the cloud point data and analysing it point by point with a user-created MATLAB code. 

This code was designed to evaluate the . pace occupied below a level defined by the 

highest point on the wheel, thus giving a value of surface porosity. The high point 

refers to the engagement depth dunng a grinding pass, and was the main impetus for the 

preceding bedding-in test. 

8 3.4.1 Results 

The result, l or this test are used more during the Modelling chapter and specifically in 

Approach I. therefore the specific-, of the results are discussed in detail during the 

following chapter. Movºever. the results of the topography scans themselves are 
discussed in this section. 
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Figure 72. Diagram , hawing the %malkr sample in reference to the larger sample. with keN features 
identified. 

Analysis of these samples required some features to be clearly defined, the most 

important being the highest point of the analysis as a reference. This high point was 

found to be somewhat ambiguous depending on the interpretation of the wheel 

curvature by the Wyko Software. An example of a contour map is visible in Figure 72. 

The peak values trom the same wheels do not seem to correlate, however by taking an 

average of the peaks through the sample a reliable value is reached showing consistency 

between wheel type%. This is logical as the samples are not taken in the exact same 

position on the wheel so variation in exact peak height is to be expected. The small 

sample was found to have less than 3U peaks per sample, this made it susceptible to 

population fluctuations. What can also be seen in Figure 73 is the variation in the 

ARº 
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trough value for the larger sample. this shows the open nature of the structure of the 

Altos wheel. As mentioned previously, the Altos wheel was a one-off designed to have 

an extremely open bond type and with the large/long grains used the surface tends to 

have large voids. 
1.5 " W$ A** i Samp* Lm 1.8   Altos wheel, large 
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Figure 73, ('hart %bowing topography data from the Altos Figure 74, Chart showing the R, of the 
and Flczorit grinding wheeb, means for the Altos and Flexovit 

grinding wheels. 

During analysis an a erage is taken for the lowest point. Looking at Figure 73 this 

may seem illogical as the difference between the mean value and the extreme value is 

large. It is necessary however to remove these extreme trough values, these can be 

considered errors in measurement. The difference between the actual trough value 

(lowest point in the , ample) and the mean trough value is representative of less than 

0.5% by volume of the overall sample. This small volume represents pores of 

considerable size, however these pores are infrequent and sporadic in the Altos wheel, 

for example in the 19 mm x 25 mm sample only 3 such pores existed and in the smaller 

sample size there is none of the same magnitude. In the smaller samples there is no 

need to account for this possibility as the samples taken never had the extreme 

pores/errors. Indeed for similar testing on the other grinding wheels this situation was 

even sparser. 

The evaluation of wheel surface porosity and the use of these results for comparative 

purposes is given in the next chapter. 
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Chapter 9. Modelling 
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9.1 Introduction 

The final part of the work is to use the knowledge from the testing procedures to 

predict the amount of useful flow that can be achieved; or to predict the amount of flow 

that needs to be applied to achieve a good grind. These two approaches are different 

and each is defined. 

One method is based on the topography work and defines what can be achieved if the 

pores of the wheel are filled or nearly filled. This is then compared with the 

experimental work to define a value of the percentage of the pores that are filled. The 

second approach uses the grinding trials to approximate a value of convenient flow that 

can be achieved during a grinding trial based on the equivalent fluid film thickness, h�f. 

This value of huf is then compared to known physical data from the grinding wheel. 

9.2 Approach 1 

The first approach uses the idea that the pores can be filled completely with fluid, and 

that the full pores would approximately define a value of maximum useful flow or 

convenient flowrate. This value is then adjusted to account for the assumption that the 

pores can never be completely filled. This gives a value of achievable useful flow, 

based on the wheel surface topography; this value is always dependant upon a sufficient 

supply flowrate and jet speed and should never be considered independently of these 

factors. 

Using a code developed in MATLAB, profiles of the wheel surface were re-created 
from the surface samples and used to calculate the space available on average 

throughout the sample. By coupling the profiles with the results of the bedding-in 

analysis and an assumed wheel speed, a value of useful flow could be approximated for 

what could be described as a rotationally symmetrical grinding wheel. This idealised 

wheel surface is obviously not representative of the true surface of a grinding wheel, 
instead it would resemble a multi grooved vee-belt pulley wheel. A factor must be used 
in order to account for this distorted situation, it has been postulated that the bulk wheel 

porosity would be suitable for such an adaptation. This analysis system allows an 

approximation of the wheel carrying capabilities to be performed for each sample. This 

can be seen in Figure 76 and Figure 77. 
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9.2.1 \lrthodokos 

The most important pan of this approach i, the `I ATLAB code producing the value of 

convenient flow. The program performing this calculation can be seen in Appendix D. 

The MATLAB code %tart% by extnwting important values from the sample. These 

include several key feature%, such as the highest and lowest points throughout the entire 

data set. The value of lowest position is taken from finding the minimum of the entire 

dataset. This value represents the lowest point of measurement into the wheel, the 

depth of the deepest pore. The code then breaks the sample down into 2D strips of data, 

each individual line-scan of a given sample. The value of the highest point is taken by 

putting the maximum value from each line scan into a vector and then taking an 

arithmetic mean of this vector. This highest value is needed to represent the point 

where the grain% of the wheel have penetrated into the impermeable workpiece, thus 

creating a physical boundary to fluid flow. This average of the highest point gave a 

reliable value of the expected point of contact with the wheel and the workpiece, as 

discussed during the bedding-in tests in Chapter 8.3.3. This allows the program to 

create a representation of an area that is bounded by the impermeable workpiece and the 

deepest point of the wheel surface. This calculated value is used by the program as a 

way of working out the amount of space that would be available for fluid if the grains 

were removed from the surface. This value of total area is used for reference during the 

analysis to predict s ýolunk of u. ctul t1m% 

Lowest point of sample 
------------- 

%veraged high point of sample 

Highest point of sample 

%% urkpsrcr 

Figure 75, Illustration of wheeUworkpiece interface used for NIATLAB analysis 

The code then , cans each point on the line and integrates it to calculate the value of the 

total area that is occupied by the grinding wheel, thus the remaining area is the value of 

pore space in the grinding wheel surface that can be occupied by grinding fluid. This 

value is then combined with the wheel speed and the bulk wheel porosity (to remove the 

aforementioned 'vee-belt' effect) giving a value of convenient flow. 
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This method relies purely on the wheel surface topography and the wheel speed and 

can be used universally wherever the exact wheel surface topography is known. The 

value of convenient flow achieved here assumes that the pore space available 

(represented in Figure 75 by the internal white area) within the wheel is completely 

filled with fluid. Further to this the calculated value of convenient flow assumes a 

plentiful supply of fluid, thus is only valid in conjunction with a well designed fluid 

application system. 

9.2.2 Findings 

The values shown in Figure 76 can be compared to the useful flow trials performed on 

both the Altos and Flexovit wheels. All predictions were performed assuming a wheel 

speed of 30 m/s. During the grinding trials the useful flow for the Flexovit wheel never 

exceeded 41/min when the wheel speed was 30 m/s. For the Altos wheel the collected 

flowrate never exceeded 81/min when the wheel speed was 30 m/s. For the Altos wheel 

there was the test with the unnatural pressure created at the nip to the inlet zone caused 

by the extended side scrapers, for this test the collected flow was nearly 15 1/min. 

Figure 76 shows the results of the topography analyses performed in relation to the 

grinding trials shown previously in Chapter 8.3.4. In these topography tests it was 

shown that the smaller sample size gave the most reliable results and was less 

susceptible to the experimental error inherent to optical surface analyses of this type. A 

full set of the results of the Flexovit wheel surface samples is shown in Figure 77, each 

sample relates to a different test but all can undergo the same analysis for pore space 

described above. What can be seen is a consistency of results from this type of analysis, 

as would be expected from several samples taken from the same wheel. 
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Comparing experimentally measured maximum useful flowrate with calculated 

convenient flowratc it can be concluded that for the Flexovit wheel it is possible to fill 

between 50% and 60% of the available -, pace within the wheel surface. For the Altos 

wheel it is possible to fill 60% to 70% of the available space within the wheel surface. 

This method has shown the definition of the surface topography as a key factor to the 

identification of the fluid carrying capabilities of a grinding wheel. 

9.3 Approach 2 

A second approach is tu predict a %alue of useful llowrate based on the equivalent fluid 

thickness layer found dunng the grinding trials. This value can be used to model the 

requirements of the fluid delivery system needed for a given grinding process. The 

process assumes the fluid carrying capabilities of the wheel are a consequence of the 

topography of the wheel and are controlled primarily by the wheel speed. Exactly how 

the fluid is transported is inconsequential as the prediction is based on an equivalent 

fluid thickness dcnved from experiment or estimated from known variables. This 

methodology leads to the prediction of an achievable useful tlowrate, again this value is 

dependant upon the fluid supply being sufficient. 

9.3.1 %tethodokov 

Throughout the grinding trials the equivalent fluid layer thickness, h, # was evaluated 

from the measured useful flow results so that an impression of the tendencies could be 
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built up. This approach is based around equation (24), where h,,, is used directly to 

predict useful flow. Developing this further required a deeper understanding of what 

value of h�, can be achieved during experimentation. Indeed it would be ideal if the h�j 

could be compared to the values indicative of wheel surface topography such as 

abrasive grain diameter and bulk wheel porosity. Therefore this approach revolved 

around the comparison of experimentally derived values of h�, to the known physical 

parameters of a grinding wheel. 

93.2 Findings 

Compari. wn is made tu the Abwood speed ratio test and the Dominator speed ratio 

tests described previously. For the Altos wheel on the Abwood grinding machine the 

equivalent fluid layer thickness, h., was found by experiment to be in the region of 120- 

200 µm. When utilising an h, y of 200 Nm in equation (24) and comparing to the 

Abwood speed ratio tests the result, are promising, as can be seen in Figure 78. A 

strong correlation can be seen for wheel speed up to 30 m/s. This suggests that when 

there is adequate fluid supplied the useful tlowrate is strongly dependant on the wheel 

speed, this in turns leads to the conclusion that the wheel topography responsible for 

pumping the fluid is key to the value of useful flow. It can also been seen that this 

relationship is only true for a certain range of speed ratios. 
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When compared to the %urtacx topography results the value of h�, approximates well to 

a fifth of the difference between the mean height and depth of the surface topography 

(where this value is approximately I. 1 mm, see Figure 74) and correlates well to the 
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value of RA which averages around 190 µm for all Altos samples (see Appendix A). 

The use of equation (24) taken from Marinescu et al (2005) proves difficult to use when 

considering the grain aspect ratio. Use of grain diameter proves conceptually difficult 

when considering the Alto. %%heel where the aspect ratio of an average abrasive grain is 

10: I. at this high ratio the diameter has no simple physical relevance. Using a value of 

ds of 1000 pm for the Alto% wheel does not correlate with the results shown within this 

work. Considering the 10: I aspect ratio, a characteristic grain length is maybe more 

appropriate. The approximation that can be made is that hui is a fifth of the grain length 

(rather than diameter in the case of the Alto, wheel). This assumption is made as the 

grains will lie randomly within the wheel structure, thus the porosity is likely to be 

controlled more strongly by the larger dimension of the grain. Indeed in the case of the 

Altos wheel, which was a one-off created for the laboratory for a previous project, the 

large aspect ratio was chosen to induce a very open wheel structure. 

The results for the Altos tests can he further corroborated by analysis using the same 

approach for the Flexovit wheel tests, one of which is shown in Figure 79. For the 

Flexovit wheel the eyui%altnt fluid layer thickness, h�t calculated from experiment was 

between 40-80 µm. The value of hw = 70 µm was used for Figure 79; the fit for this 

value was reasonably good. Although the curved tendency of the useful flow results for 

this combination of grinding wheel and grinding machine tended to increase the error. 
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This value of h�f can again be compared to values obtained from topography analysis, 

where it is approximately a fifth of the difference between the mean height and depth of 

the surface topography (where this value is approximately 0.5 mm). Observation of the 

bearing ratio curve for the Flexovit wheel sample shows Rpk to be on average 80 µm, 

see Figure 69. The good agreement for these values suggests they can be utilised in the 

decision making for the fluid application process. When considering h�f in regards to 

the grain diameter for the Flexovit wheel the results prove slightly more promising. 

With an average grain diameter, dg of approximately 350 pm the h�f is approximated 

well by using the same value of a fifth stated previously. This provides good agreement 

to the calculations made for the Altos wheel for the achievable value of convenient 

flow, again it should be stated that this comes with the proviso of a favourable fluid 

application system. This approach can be combined with the wheel specification data to 

give the following equation for predicting the achievable useful flowrate. 

_1 
(15.2 

Q� -v, bs 
SI M )[mm] (41) 

Where M is the grit size from the wheel specification. 

Equation (41) could be modified to include the bulk wheel porosity value, 0 and the 

value of expected pore filling as shown in equation (42) 

rM1 
Qu=vs b, "o'f 

15.2 

l )[mm] (42) 

This equation can be used to predict the value of achievable useful flowrate for a given 

wheel and process. This can then be used in conjunction with experimentally 

determined values of percentage useful flow for a wheel to give guidance on a supply 

flowrate. This value of suggested supply flowrate with a suitably adjusted nozzle 

positioning system and at the recommended jet speed should give an efficient fluid 

delivery system. These input values can then be tweaked to adjust to the specific nature 

of the whole system on both output requirements and system limitations, this tweaking 

will allow a unique optimised useful flowrate to be achieved. 

At this point it seems reasonable to compare this approach to the experimental data 

available from researchers who have measured useful flow in the past. Engineer et al 

(1992) produced results by measuring useful flow. He also supplied sufficient data to 
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be able to compare results to the predictions within this work. The graph shown in 

Figure 5 illustrates the amount of flow collected at various supply flowrates using 

varying wheels. The wheel specification is provided in full so the approach using an 

approximation of the huf from grain size can be employed. By using equation (42) the 

following can be deduced. 

Qu =30[m/s]"19[mm]"0.5.1 2" 
15. 
M2/1 I[mm] 

Where vS=30 m/s, br=19 mm and M=60. 

Qu =3.61x10-sm3/s=2.21/min 

This gives a value of useful flowrate that could be achieved if the jet speed, vv where 

much higher for the grinding performed during Engineer's tests. As the grain size is the 

same for all the grinding wheels used during the tests the value of achievable useful 

flowrate varies only due to the changing wheel porosities. It can be seen from the range 

of jet speeds used in Figure 80 that at no point is the speed ratio approaching 1. The 

values of collected flow found by Engineer are at the most 50% of the achievable useful 

flow. This can be explained by comparing to the results of the Dominator speed ratio 

test where the Flexovit wheel is used, this wheel is similar in nature to the 38A60I8VBE 

used by Engineer. In the Dominator speed ratio tests roughly 2.21/min useful flowrate 

is achieved with a nozzle jet speed of 24.3 m/s and the jet flowrate of 18.9 Umin, 

comparing this to the 0.31/min achieved by Engineer using a nozzle jet speed of 0.6 m/s 

and a flowrate of 4.1 1/min. When the Engineer value of useful flowrate is scaled up so 

the supplied flowrates match, the values of useful flowrate are similar. In fact any 

remaining difference can be assumed to be due to the effect of the jet speed not being 

similar to the wheel speed. 
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Figure 80. t seful flow rate ,, er us nozzle exit speed for grinding wheels of various bulk porosities m, 

showing the cakulated achievable useful flow rate when v, =30 m/s, a=12 &m. s1=I60 µm, º',, =0.09m/s, 
b. =I9 ern and d, =250 mm. 1 Engineer et al. 1992). 

A further compsnwon has also been performed for direct correlation to results from this 

project this is shown in Appendix A. This additional work compares the results from 

Preliminary Test 3 with the prediction from equation (42). For this test equation (24) 

proved difficult to interpret. This is due to the effect of an average grain aspect ratio of 

10: 1. However, equation (42) can also be added to these results to see the applicability 

of this model, again it prove% to show close alignment to the measured results. In this 

test the prediction of the useful flow can be seen to follow the upward linear trend found 

during previous tests, this again show% that the linearity tails off at around where the 

wheel . peed approaches the het . peed. 
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Chapter 10. Discussion 
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The aim of this work was to provide further understanding of the term useful flow in 

grinding applications. Providing a deeper understanding would allow savings to be 

made in industry regarding the amount of coolant required for a process. This would in 

turn have implications for the environmental impact the manufacturing industry makes 

as a whole. As discussed earlier even small savings in coolant delivery volume and 

application speed can result in significant savings when scaled up to multiple machines 

in many companies. 

One of the key developments required for this project was the design and manufacture 

of a useful flow collection system. Without such a device the analytical testing would 

not have been possible and any advance in modelling would have been unverifiable and 

redundant. As shown in Chapter 6, a fully developed and thoroughly tested system was 

designed and implemented on two very different surface grinding machines. The nature 

of the arrangement allowed any material, any wheel type, any wheel speed, any depth of 

cut and any coolant application speed or flowrate to be tested. There were restrictions 

in terms of the workpiece geometry and the worktable speed, but beyond that there was 

tremendous scope afforded by the useful flow collection system that was developed for 

this project. 

With a reliable and repeatable useful flow collection system developed the onus then 

moved onto testing the parameters that may affect the useful flowrate on any given 

system. This was approached firstly with a fractional factorial methodology so that as 

many aspects could be addressed as possible. Wheel speed, jet speed and flowrate were 

found to have the strongest effects on useful flowrate. Interestingly, and for the first 

time, the combined effect of jet speed/flowrate and wheel speed was found to have a 

significant effect on the amount of useful flowrate achievable for a given process. This 

provided new understanding well beyond previous views that jet speed must match 

wheel speed. 

The project then moved onto full factorial testing of fewer parameters. Using full 

factorial testing it was possible to examine in greater detail the relationships that had 

been discovered qualitatively during the Taguchi testing. The key requirement at this 

stage were to further investigate the effect of wheel speed, jet speed and jet flowrate on 

useful flowrate 
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The wheel speed testing proved that the effect was a nearly linear proportionality up to 

a point defined by a value of speed ratio (vj/vs). The linear proportionality found lent 

credence to the initial proposition that the topography of the wheel is the predominant 

effect over the amount of flow that can pass through the contact zone. Indeed this linear 

relationship would be expected if the volume of flow is dependant on the fluid pumping 

capability of the wheel. The fluid pumping capability can only be dependant on 

topography and speed of the wheel. The type of wheel and the speed at which the 

grinding fluid is applied can affect this linearity. It was found that a low porosity wheel 

(approximately 45 %) with a visibly closed structure is more affected by the ratio of 

wheel speed and the jet speed. 

The speed of the jet flow can also be considered key to the work as a slow jet of 

sufficient flowrate will approach the situation of flood cooling which for high wheel 

speeds has been shown to be ineffectual (see Figure 7 and Figure 8). Jet speed and its 

effect on useful flowrate has been considered on two fronts, one is in regards to the 

speed ratio value mentioned previously and the other is in regards to combined and 

separate effects it has with jet flowrate. When considering the speed ratio the desire is 

to avoid matching the jet speed to the wheel speed; something which is becoming a 

costly process in the modern environment of increasing wheel speeds. Testing has 

shown that there is little point in having jet speed exceed wheel speed, it has been found 

that this serves only to decrease percentage useful flow thus increasing rejection and 

lowering efficiency. The Altos tests show clearly a trend between the jet speed and the 

wheel speed when the flowrate can be considered sufficient. What can be seen from 

Figure 48 is that the maximum achievable percentage useful flow was 50 % when the 

jet speed was approximately 70 % of wheel speed. It could be concluded from this that 

the best ratio is vj = 0.7v5, this situation should provide the highest utilisation of the fluid 

being applied. It should however be noted that the useful flow is 45-50 % for the ratio 

range of 0.5 < vj / vs < 0.9, it could therefore be said that for a suitably `easy' grind 

there is benefit in dropping the ratio to 0.5 or below without losing too much in terms of 

process outputs. It has been shown from both the Abwood and the Dominator speed 

ratio tests that the largest volume of useful flowrate will be achieved in the region where 

the speed ratio is between 0.5-1, indeed for both tests conducted the ideal ratio was 

approximately 0.6. It has also been shown from the Taguchi results that in a situation 
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where grinding could be considered `easy' (for example when needing only a shallow 

cut, or a conventional cut with a well suited wheel) this ratio can be lowered 

significantly. In general terms the jet speed is required to penetrate the air barrier that is 

generated around the spinning grinding wheel. A high wheel speed and powerful air 

barrier will tend to increase the rejection of fluid, thus lowering the percentage useful 

flow. A lower percentage useful flow could be considered an inefficient state of 

operation as effort employed to apply the rejected fluid would be wasted. Work within 

the AMT Research Laboratory has shown that the percentage useful flow could be 

increased using a pre-nozzle scraper. This may allow more fluid to adhere to the wheel 

surface. However, the topography limits discussed earlier will still tend to limit what 

can be carried through the grinding zone and be considered useful flowrate. 

Analysis of the supply flowrate has been clouded in the past by being allied to changes 

in jet speed, thus masking the individual effects. This had been necessary to limit the 

requirements of the fluid application system being used. Work within this thesis shows 

the effect jet flowrate can have on the useful flowrate. It has been shown that the 

topography limits the amount of flowrate that can be achieved and be considered useful. 

When accompanied with the expected value of percentage useful flow which is difficult 

to exceed for a given wheel (approximately 50 % for the Altos wheel and 30 % for the 

Flexovit wheel), applying more flowrate to the grinding zone merely decreases the 

percentage useful flow. Testing where the jet flowrate and jet speed are varied 

independently has shown that increasing the flowrate beyond the achievable value 

provides no gain in terms of useful flow. 

During the testing temperature, power and force were recorded. The main purpose 

was to verify the quality of the grind that had been performed based on the useful 

flowrate that had been achieved. Results in this regard were representative rather than 

conclusive. During the Taguchi test temperature, power and surface roughness were all 

recorded, but as the analysis was designed for maximum variation of useful flow the 

results of these other parameters suffered. Consequently the confidence intervals found 

were low making conclusions tentative, however results could still be interpreted. 

Figure 57 showed the results from the Abwood speed ratio test and was indicative of the 

results from the other tests. What is visible is an increasing temperature as useful 
flowrate increased; though this is mostly due to the kinematic effect of increasing wheel 
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speed. A noticeable and important effect was the tendency for the grinding zone 

temperature to stabilise as the useful flowrate reached a peak, even when the wheel 

speed kept increasing. For the Abwood testing the force was measured. What can be 

seen from the Abwood test shown in Figure 61, is that as the wheel speed is increased 

the force tends to drop. This would be expected for constant specific energy and 

indicates that the reduced chip thickness with increasing wheel speed was insufficient to 

increase specific energy sufficiently to increase force. There has to be a substantial 

increase in specific energy before forces increase with wheel speed. This drop was 

consistent throughout the scale of the wheel speeds tested even when the wheel speed 

exceeded the jet speed. 

The initial proposition of the surface topography being of utmost importance to the 

useful flowrate required that a means of measuring the topography be found. The 

analysis of the topography was conducted using methods proven within the Laboratory; 

however the author still conducted preliminary trials to verify that results could be 

relied on. 

The author started by testing the effect of dressing on the wheel surface. It was found 

that the dressing did not have significant effect on the large scale variations within the 

topography. Variation induced by the dress was not found to affect the nature of the 

pores within the wheel surface. It is these pores that carry the fluid through the contact 

zone. It was suspected dressing may affect the wheel surface by bond fracture, thus 

opening `grain-sized' pores. This was not found to be frequent within the dressing 

parameters used for this test. It could be concluded that only an `aggressive' dress 

could affect the wheel surface enough to vary the achievable useful flowrate. It should 

be noted that the cleaning effect of a dress would re-open the wheel surface for fluid. 

However, the specific type of dress performed, beyond the previously mentioned 

aggressive approach, would not affect the wheel surface topography, in regards to useful 

flowrate, in any way. 

The estimation of useful flowrate from the wheel surface topography relied upon the 

measurement of porosity across a plane through the wheel. This planar measurement 

required sensible measures of the upper (peak grain height) and lower limits (pore 

depth) of the wheel surface. It is known that dressing a wheel often leads to instability 
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in the power readings during the first few grinding passes, this is due to the wheel 

bedding-in and the `weaker' grain peaks being removed. Each measurement of the 

surface topography tended to be taken directly after a dress, therefore it was necessary 

to know how much was removed from the peak height during the bedding-in process. 

Thus a test was planned to measure the topography immediately after a dress, then after 

1 grinding pass (when the wheel would still be unstable) and then after 100 grinding 

passes (when the wheel can be considered stable). This test showed that some of the 

peak height measured is removed during the bedding-in process as expected. It was 

found that this process removed approximately 15 % of the peak-to-trough height. Due 

to the nature of the predictive model, this difference has the potential to induce a 40 % 

error into the prediction of the achievable useful flowrate. 

The final use for the topography measurements was to take samples from the grinding 

wheels that have been used during useful flow collection trials. These samples could 

then be analysed and used to predict the achievable useful flowrate, this could then be 

compared to the values found during testing. The samples showed the variation that can 

be expected between different wheel types, this is shown in Figure 76. The topography 

based predictions stated the Altos wheel could have a convenient useful flowrate of 

around 13 1/min when vs is 30 m/s; and the Flexovit wheel approximately 5 I/min at the 

same wheel speed. These values are both based on the pores being completely filled 

with coolant. By comparison to the experimental values of useful flowrate it was found 

that it may only be convenient to fill -60 % of the available pore space. This leads to 

the conclusion that in the case of these wheels the achievable useful flowrate is roughly 

60% of the convenient flowrate. The result of Preliminary Test 2 shows that the value 

of convenient useful flowrate can be exceeded with suitable, if unorthodox, grinding 

zone inlet conditions, in this test the measured useful flowrate reached 17 Umin. 

One of the goals of this project was to find a way to predict the achievable useful 

flowrate based on readily available parameters. The supposition that the topography of 

the wheel was a key parameter suggested a value from the wheel specification would be 

preferable. During testing the author used measured values of useful flowrate to 

correlate to the parameter huj. It was found that for the wheels under analysis the Rowe 

equation defined in equation (24) should be adapted by having the h�f equivalent to a 
fifth of the grinding wheel grain size, dg. This value of a fifth was related to a 
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multiplication of the bulk wheel porosity and an assumed value of filling half of the 

pores space. This allows the user to predict the achievable useful flowrate as v, 

approaches vv. It can then be proposed that as the wheel speed exceeds the jet speed the 

useful flowrate will not exceed the value reached when vv = vs. It should be noted that 

the achievable useful flowrate may not be the optimal useful flowrate, as has been 

shown during the Taguchi trials a significantly lower useful flowrate can be sufficient 

for a shallow cut grinding situation. 

As stated previously optimisation is extremely process dependant, so for the tests 

conducted during this project the optimised values can be considered as follows. The 

values of useful flow taken from the speed ratio tests can be considered un-optimised, as 

they are based only on what was collected during trials where good surface finishes and 

reasonable grinding power levels were maintained. However, the Taguchi trials 

provided analysis involving `poor' grinding scenarios. Indeed as was highlighted in 

Chapter 7.8 it was below a level Q� = 0.5 Umin when the process parameters 

deteriorated significantly. With this in mind it could be considered that for the Flexovit 

wheel on the Jones and Shipman Dominator could have an optimised useful flowrate of 

0.5 Umin. This value relates to an hufof 45 µm, so where the value of 45 [Lm relates to 

the achievable useful flowrate, a value of h�1=45 µm is optimal in terms of reducing the 

fluid/power requirements of the process. This can be then be used to approximate the 

flow that needs to be applied via the nozzle. Chapter 7.6.3 describes how for the 

Flexovit wheel the maximum achieved useful flow was 30 %. If it is assumed that 30 % 

is a reasonable amount of flow utilisation for a well specified nozzle type and position, 

then the user needs to apply 0.67 1/min per mm of wheel width at a suitable nozzle jet 

speed. 

The speed of the jet flow can also be considered key to the work as a slow jet of 

sufficient flowrate will approach the situation of flood cooling which for high wheel 

speeds has been shown to be ineffectual (see Figure 7 and Figure 8). The Altos tests 

show clearly a trend between the jet speed and the wheel speed when the flowrate can 

be considered sufficient. What can be seen from Figure 48 is that the maximum 

achievable percentage useful flow was 50 % when the jet speed was approximately 70 

% of wheel speed. It could be concluded from this that the best ratio is vj = 0.7vs, this 

situation should provide the highest utilisation of the fluid being applied. It should 
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however be noted that the useful flow is 45-50% for the ratio range of 0.5 < vj / vs < 
0.9, it could therefore be said that for a suitably `easy' grind there is benefit in dropping 

the ratio to 0.5 or below without losing too much in terms of process outputs. 

164 



Chapter 11. Conclusions 
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A reliable and repeatable novel useful flow collection system has been developed, 

incorporating automatic operation of a timed flow collection arrangement. This system 

has proven transferable between surface grinding machines and is adaptable to external 

cylindrical grinding with minimal further development. 

Taguchi testing has shown the most significant factors affecting the useful flow are 

wheel speed, jet speed, jet flowrate and the combined effect of these three parameters. 

The relationship between useful flowrate and wheel speed has been shown and 

expanded upon using the Speed ratio term. Approximate relations between maximum 

useful flow and speed ratio are shown. 

It has been found that useful flowrate is affected significantly by grinding wheel 

surface topography and that achievable useful flowrate can be estimated from grain size 

using the adapted Rowe equation. A simple and easily applied model has been 

developed and can be used requiring knowledge of grinding wheel speed, average grain 

size and bulk wheel porosity. It has also been shown that the approximate pore space 

available in the grinding wheel surface can be calculated via analysis of impressions of 

the wheel surface. 

Further to this it has been shown that jet speed has an effect on useful flowrate when 

viewed in relation to the wheel speed. A decision on jet speed should be made based on 

the wheel speed required and the severity of the grind being attempted. Jet flowrate is 

also found to be effectual on the useful flowrate but only up to a point. When 

increasing the jet flowrate beyond this value it becomes very difficult to increase the 

useful flowrate, thus further increases in jet flowrate only serve to lower percentage 

useful flow. In this region where there is no benefit in increasing jet flowrate the only 

way to increase useful flow is to increase jet speed. The benefit of having enough 

useful flowrate has been shown and guidance has been provided both on predicting the 

amount of jet flowrate and also on the jet speed that should be used. 
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11.1 Contribution to knowledge 

The following can be considered novel and show the unique contributions to knowledge 

this project has achieved. 

9A design framework for the collection of useful flow. 

"A fractional factorial test covering many grinding variables proving conclusively 

the key variables as wheel speed and jet speed. 

" Experimental proof of the effect of the combination of wheel speed and jet speed 

over useful flow rate. 

" Understanding of the effect on useful flowrate of varying key input variables. 

"A guideline of jet speed for a given wheel speed. 

" vj =0.6vs. 

" Values of expected percentage useful flow for a given wheel type. 

"A program to analyse a grinding wheel surface impression and output a value of 

convenient flowrate. 

"A model for a predicting useful flowrate through a surface grind based on 

standardised wheel values and experimental knowledge. 
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Chapter 12. Suggestions for Further Work 
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The following areas are suggested for further work into the subject surrounding this 

project: 

" More grinding wheels should be analysed to verify the relationship between the 

grain size and the useful flowrate. A test involving wheels of similar and 

differing grain size and bulk porosity would allow the model to be verified and 

advanced. 

" Adaptation of the useful flow collection system to the cylindrical grinding 

process. This would allow faster wheel speeds to be tested and analysis of 

whether the differing kinematics affect the relationship the grinding wheel has 

with the useful flow. 

" Further benefit could be gained from insight into the fluid penetration into the 

wheel and at what position the penetrating fluid actually re-emerges from the 

wheel. This would provide insight into the need to force fluid beyond the 

surface pores and clarity surrounding what depth of penetration the fluid remains 

useful. 

" There would be benefit in adapting the system to be used on a HEDG grinding 

machine. The application of fluid is considered critical in this process. 

However, some suspect that at extremely high removal rates HEDG becomes a 

practically dry grinding process, this is due to the large arc of contact and 

aggressive feeds and speeds. The application of the useful flow collection 

system might provide insight into the amount of fluid that usefully passes 

through the HEDG contact zone. It would show whether all the useful flow is 

`burnt out' or whether it re-emerges as fluid. This raises the further question as 

to the ability of collected flow to accurately represent useful flow where a 

proportion of the flow is vaporised. 
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Appendix A. Supplementary Test Results 
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13 22 1 12 2 11 2 2 1 1 2 2 1 0 0.6279 0.61706 Vs 
14 22 1 12 2 12 1 1 2 2 1 1 2 14 1.7725 2.72232 Vs 
15 22 1 21 1 21 2 2 1 2 1 1 2 is 0.6824 0.68966 Vs 
16 22 1 21 1 22 1 1 2 1 2 2 1 is 0.242 0.24803 Vs 

Table of results from Taguchi experiment for Useful flow rate. 
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Grinding Experiment 
AB ExF Cn BxC DE CxG nF DxF Gn CxF U/F 

Column No. Test Run 
Trial No. 12 3 45 6 78 9 10 11 12 13 14 15 i il 

1 11 1 11 1 11 1 1 1 1 1 1 1 t 4.78% 5.07% 
2 11 1 11 1 12 2 2 2 2 2 2 2 2 10.08% 12.39% 
3 11 1 22 2 21 1 1 1 2 2 2 2 3 16.59% 13.83% 
4 11 1 22 2 22 2 2 2 1 1 1 1 a 7.20% 6.48% 
5 12 2 11 2 21 1 2 2 1 1 2 2 s 9.85% 11.98% 
6 12 2 11 2 22 2 1 1 2 2 1 1 s 4.41% 3.46% 
7 12 2 22 1 11 1 2 2 2 2 1 1 7 4.32% 5.19% 
8 12 2 22 1 12 2 1 1 1 1 2 2 e 24.49% 21.61% 
9 21 2 12 1 21 2 1 2 1 2 1 2 9 8.30% 11.75% 
10 21 2 12 1 22 1 2 1 2 1 2 1 to 3.28% 3.46% 
11 21 2 21 2 11 2 1 2 2 1 2 1 11 5.59% 5.93% 
12 21 2 21 2 12 1 2 1 1 2 1 2 12 12.96% 12.82% 
13 22 1 12 2 11 2 2 1 1 2 2 1 13 2.99% 2.94% 
14 22 1 12 2 12 1 1 2 2 1 1 2 14 8.44% 12.96% 
15 22 1 21 1 21 2 2 1 2 1 1 2 is 16.25% 16.42% 
16 22 1 21 1 22 1 1 2 1 2 2 1 is 5.76% 5.91% 

Table of results from Taguchi experiment for Percentage useful flow. 
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Direct effect chart for Percentage useful flow. A= Material Type, B= Nozzle position, C= Jet 
Speed/flowrate, D= Dressing condition, E= Work piece surface speed, F= Wheel surface speed 

and G= Engagement, Actual depth of cut. 
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ANOVA Results Table 

Source SS v v F 
A 0.00211 1 0.002106 2.64 
B 0.00084 1 0.000845 1.06 
C 0.01328 1 0.013283 16.66 
D 0.00018 1 0.000182 0.23 
E 0.00061 1 0.000606 0.76 
F 0.00345 1 0.003446 4.32 
G 0.00283 1 0.002833 3.55 
EF 0.00001 1 5.3E-06 0.01 
BC 0.00133 1 0.001327 1.66 
CG 0.00166 1 0.001663 2.09 
DF 0.00047 1 0.000472 0.59 
CF 0.06476 1 0.064762 81.22 
e 0.00239 3 0.000797 

T 0.09392 15 

ANOVA table for the percentage useful flow results, where SS is the Sum of the Squares for each 
variable, v is the degrees of freedom, V is the variance and F is the value from the F-test. 
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Grinding Experiment 
AB ExF Cn BxC DE CxG n F DxF G n CxF Surface finish 

Column No. Test Run 
Trial No. 12 3 45 6 78 9 10 11 12 13 14 15 i H 

1 11 1 11 1 11 1 1 1 1 1 1 1 0.10 0.07 pm 
2 11 1 11 1 12 2 2 2 2 2 2 2 2 0.08 0.125 µm 
3 11 1 22 2 21 1 1 1 2 2 2 2 3 0.2 0.15 µm 
4 11 1 22 2 22 2 2 2 1 1 1 1 4 0.3 0.22 µm 
5 12 2 11 2 21 1 2 2 1 1 2 2 5 0.17 0.14 dun 
6 12 2 11 2 22 2 1 1 2 2 1 1 e 0.15 0.105 µm 
7 12 2 22 1 11 1 2 2 2 2 1 1 a 0.12 0.15 pm 
8 12 2 22 1 12 2 1 1 1 1 2 2 s 0.11 0.13 µm 
9 21 2 12 1 21 2 1 2 1 2 1 2 a 0.3 0.22 µm 
10 21 2 12 1 22 1 2 1 2 1 2 1 10 0.09 0.13 Iun 
11 21 2 21 2 11 2 1 2 2 1 2 1 11 0.145 0.155 pm 
12 21 2 21 2 12 1 2 1 1 2 1 2 12 0.06 0.07 pm 
13 22 1 12 2 11 2 2 1 1 2 2 1 13 0.18 0.2 µm 
14 22 1 12 2 12 1 1 2 2 1 1 2 ,. 0.1 0.1 µm 
15 22 1 21 1 21 2 2 1 2 1 1 2 is 0.065 0.095 pm 
16 22 1 21 1 22 1 1 2 1 2 2 1 e 0.35 0.29 pm 

Table of results from Taguchi experiment for surface finish, Ra. 
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Direct effect chart for Surface finish. A= Material Type, B= Nozzle position, C= Jet 
Speed/flowrate, D= Dressing condition, E= Work piece surface speed, F= Wheel surface speed 

and G= Engagement, Actual depth of cut. 
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Grinding Experiment 
AB ExF Cn BxC DE CxG n F DxF G n CxF Power 

Column No. Test Run 
Trial No. 12 3 45 6 78 9 10 11 12 13 14 15 i ii 

1 11 1 11 1 11 1 1 1 1 1 1 1 i 1.77 2.1 kW 
2 11 1 11 1 12 2 2 2 2 2 2 2 2 1.708 1.644 kW 
3 11 1 22 2 21 1 1 1 2 2 2 2 3 2.219 2.24 kW 
4 11 1 22 2 22 2 2 2 1 1 1 1 a 1.57 1.3 kW 
5 12 2 11 2 21 1 2 2 1 1 2 2 s 5.947 5.85 kW 
6 12 2 11 2 22 2 1 1 2 2 1 1 e 3.351 3.61 kW 
7 12 2 22 1 11 1 2 2 2 2 1 1 7 1.56 1.199 kw 
8 12 2 22 1 12 2 1 1 1 1 2 2 s 0.612 0.456 kW 
9 21 2 12 1 21 2 1 2 1 2 1 2 9 5.8 5.749 kW 
10 21 2 12 1 22 1 2 1 2 1 2 1 10 0.19 0.47 kW 
11 21 2 21 2 11 2 1 2 2 1 2 1 11 1.86 1.7 kW 
12 21 2 21 2 12 1 2 1 1 2 1 2 12 1.45 1.423 kW 
13 22 1 12 2 11 2 2 1 1 2 2 1 13 0.49 0.79 kW 
14 22 1 12 2 12 1 1 2 2 1 1 2 14 1.09 1.129 kW 
15 22 1 21 1 21 2 2 1 2 1 1 2 is 0.812 0.834 kW 
16 22 1 21 1 22 1 1 2 1 2 2 1 is 5.391 5.355 kW 

Table of results from Taguchi experiment for grinding power. 
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Direct effect chart for Power. A= Material Type, B= Nozzle position, C= Jet Speed/flowrate, D= 
Dressing condition, E= Work piece surface speed, F= Wheel surface speed and G= Engagement, 

Actual depth of cut. 
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Appendix B. Engineering Drawings 
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Engineering drawing of one side of scraping arrangement. 
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Engineering drawing of Body Section 1 of scraping arrangement. 
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Engineering drawing of Body Section 2 of scraping arrangement. 
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Appendix C. Supplementary Figures and Pictures 
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Flow imAation , yUVIIL Jwwist %Ir M U& , scrapers in grey, steel infrastructure in white and contact 
foam in green. 

Picture showing now isolation system i with a transparent front wall) when attached to the Dominator 
wheel guard. 
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1%((' k�tar% actuator mounted to the , fand and with the coupling attached. 

Thermocouple slot 
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Workpiece %howing location of thermocouple %lot in green. the red area shows grinding face of workpiece. 
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SE: %1 innge of grain I from the l nivenal , rrn. irn, A heel. alsoshowing scale and approximated 
tlrrncn. u'm. 

Si %1 mLaKr if grain 1 from thr t ºu. rrwl grinding %hevi, also showing scale and approximated 
dintirnsiow. 
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SF. s1 inuge of grain I from the %Ito% grinding wheel, also showing scale and approximated dimensions. 

C-14 

SF. \1 image of grain 2 from the %Ito� grinding wheel. also showing scale and approximated dimensions. 



SF %I s., of grow : fne tke Fk o it grinding wheel, also showing scale. 
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fF \I tnugr ., ( ; t., nn I Iri-m Ihr Hev), bit Innding wheel. also showing scale. 
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the direction of air flow 

Rotary actuator air input switches 
from input 1 to input 2 

Barrier is rotated 
to position 2 

Flow is channelled to 
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Yes 

Is optical switch 
still interupted 

Pneumatic valve switches and 
changes air flow to default 

Barrier rotates back to 
position 1 

Test is over 

Flow chart describing behaviour of pneumatic valve control circuitry 
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Matlab programs 

Grinding trials Program 
%%%%%%%%%%o%oý o%%%o%o/ o%oý oý %%oý %%°ý %%oý o%%%o%o%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% %%%%°l %%%°l %%%%%%%%%%% 

%%%%%% %%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% Analyse DAQ %% %%%%%% % %% % %%%%%%%%%%% 

%%%%%%%%%%%%%%%% Data and graph %% % %%%%% % %%% % %%%%%%%%%% 
%%%%%%%%%%%%%%%% %%%%%%%%%% % %%%%%%%%%%%% 

%%G /0%% %0/00/0 % 0/00/0 %%G%0/00/01y00/0 %%, Y % %%%%%%%%%G%G%G% % %%G%% % °/O%C%%%%C%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all; clc; clear 

%%%%%%%%%%%%%%%%%%%%%% Initial data %%%%%%%%%%%%%%%%%%%%%%%%%% 

Fs = 10000; %lnput sampling frequency 

%%%%%%%%%%%%%%%%% Load, filter and graph data from test %%%%%%%%% %%%%%%%%% 

load test. txt; %file data input 
temp = size(test); %Finds value of size of matrix 

m= (temp(1,1)); %Creates variable from above for One 8 
n= m/Fs; 
p= n-(1/Fs); 

xl=(0: 1/Fs: p); %Creates vector for time based on Fs 
x- x1'; %Column 1 labelled x Time 

y1=(test(1: m, 1)); %Column 1 labelled y Temp 
y2=(test(1: m, 2)); %Column 1 labelled y AE Table 

y3=(test(1: m, 3)); %Column 1 labelled y Power 

%%%%%%%%%%%%%% %%%%%u % %% % %% % %% % %%%%%%%%%%%%% %%%%%%%%%% 

% temp filter 
[b, a]=butter(3,0.003, 'low'); % best settings 1.0.075 3,0.0075 

yl t=filter(b, a, yl ); 

%Acoustic Emmission filter 
[b, a]=butter(3,0.0007; low'); % best settings 2,0.007 

y2f=filter(b, a, y2); 

%Power filter 
[b, a]=butter(2,0.007, low'); % best settings 2.0.007 

ß3f=filter(b, a, y3); 

%%%%%%%%%%%%%%%%%%%%%%% a%%%%%%%ol % o/ %% o/ %%%%%%%%%%%%%%%% 

o%o%%%%%%%o/ o%o10% %%%% Graphing %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

xminl = min(x)-(0.2*min(x)); 
xmaxl = max(x)+(0.2*max(x)); 

figure (1); 
subplot(2,1,1); 
plot(x, y1; -r); 
hold on; 
plot(x, y1 f; -b'); 
hold on; 
title('Comparison - Both Results Temp'); 
xdabel(Time (s)'); 
ylabel('Voltage (V)'); 
yminl =min (yl)-(0.2(sgrt(min(y1)'min(yl)))); 
ymaxi = max (y1)+(0.2*max(y1)); 

if yminl==yniaxl; 
=-11; ymini 
= 11; ymaxi 

else 

end 
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axis([xminl xmaxl yminl ymax1j); 
%%%%%%%%%%%%%%%%%%%%% Temperature scaling %%%%%%%%%%%%%%%%%%%% 
y1 fc=((y1 f-0.0054)'(1 /0.0088)); 
%y1fc=(((-3.08190e-4). "(y1f. ̂ 8))+((9.39996e-3) *(y1f. ^7))-(0.112851. "(ylf. ^6))+(0.674855. *(ylf. A5))- 
(2.13994. *(y1 f. ̂ 4))+(3.83305. *(y1 f. A3))-(5.35333. *(y1 f. ̂ 2))+(101.034. '(y1 f))-O. 0875775); 

subplot(2,1,2); 
plot(x, y1 fc; -b'); 
title(Temp'); 
xiabel(Time (s)'); 
ylabel(Temp (C)'); 
yminl = 0; 
ymaxt =150; 
axis([xminl xmaxl yminl ymaxl])-. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o% o% % %o %o% %%% 

figure (2); 

plot(x, y2, '-e); 
hold on; 
plot(x, y2f, -b'); 
hold on; 
title('Comparison - Acoustic Emission table'); 
xdabel(Time (s)'); 
ylabel(Voltage (V)'); 
ymin2 = min (y2)-(0.2*(sgrt(min(y2)*min(y2)))); 
ymax2 = max (y2)+(0.2*max(y2)); 
axis(xminl xmaxl ymin2 ymax2]); 

% %% %o%%%%%%% %o%%%%%%% %o %o%%%% %o %o%%% %%1o %o%%%%%%% %o% %%%%%%%%%% 

figure (3); 

subplot(2,1,1); 
plot(x, y3, '-e); 
hold on; 
plot(x, y3f, -b'); 
hold on; 
title('Comparison - Powers); 
xlabel(Time (s)'); 
ylabel('Power kW'); 
ymin3 = min (y3)-(0.2"(sgrt(min(y3)*min(y3)))); 
ymax3 = max (y3)+(0.2*max(y3)); 
axis([xmint xmaxl ymin3 ymax3]); 

%%%%%%%%%%%%%%%%%% Force-Normal scaling %%%%%%% % %%%%%%%%%%%%%%% 
y3fc=((y3f/100)*7.5); 

subplot(2,1,2); 
plot(x, y3fc; -b'); 
title('Power'); 
xdabel(Time (s)'); 
ylabel('Power (kW))'); 
ymin3 = min (y3fc)-(0.2*(sgrt(min(y3fc)*min(y3fc)))); 
ymax3 = max (y3fc)+(0.2*max(y3fc)); 
axis([xminl xmaxl ymin3 ymax3]); 

figure (4); 
H3 = plot(x, y3fc, -. b'); 

hold on; 

[AX, H1, H2] = plotyy(x, y2f, x, ylfc, plot'); 
set(get(AX(1); Ylabel'); String', Power (kW)'); 
set(get(AX(2), 'Ylabel'), String', Temperature (C)'); 

tiitle(Test-'); 
xlabel('Time (s)'); 

%Change this (to y3fcl)if an offset is needed for 
NORMAL force 

% change to y2fcl if Inversion Is needed 

set(H1, LineStyle, '-'); % tangential 
set(H1; color'; r); 
set(H2, 'LineStyle'; - ); % temp 
set(H2, 'color'; g'); 
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[legh, objh] = Iegend([H1 H2 H3], AE Table', Temp', 'Power'); 

set(AX(1), 'bo)', off'); 
set(AX(1), 'YLim', [-0.25 2.25]); 
set(AX(1), 'YTick', [-0.25 0 0.25 0.5 0.751 1.25 1.5 1.75 2 2.25]); 
set(AX(2), YLim', [0 200]); 
set(AX(2), YTick', [0 20 40 60 80 100 120 140 160 180 200]); 
set(AX(2), 'YColor; g'); 

saveas(4, 'Dominator Taguchi Test_figure4. jpg') 

% 0/00/0 o%o%%%% o/ o/ %% % %%%%%%%%% % %%% %%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%%%%%% Post processing %%%% %%%%o%o%o%%%%%%%%%%%% 

%%%%%% Create Vector for maximum power %%%%%%%%%%%%%%%%%%%% 

power_dif=0.5; 
interval=1; 

Load start _time=5; Load-sample-period=1 0; 
Load_end_time=Load_start_time+Load_sample-period; 
no_load_sample_end=2; 
no_load_sample_period=l; 

endue =0.9'temp(1,1); 
load vest=Q; 
no_load_vect=Q; 
s_time=p; 
send=p; 
subs time=p; 
z=0; 
z1=0; 
a=0; 
b=0; 

10=1]; j1=[]; 
j2=p; 
j3=1; 
14=1; 

l1=1; 
i2=1; 

t0=no_load_sample. penod*Fs; 
that f=no_load_sampl e_end' Fs; 
tl=interval'Fs; 
t2=Load_start_time*Fs; 
t3=Load_end time"Fs; 

%% %%%%%%%% Create vector of load power %%%%%%%%%%%%%%%%%%%%%%%% 

while I<=endue; 
a=test(l, 3); 
b=test(i+tl, 3); 

if b-a>power dif; 
j1=i; 
j2=i+t2; 
j3=i+t3; 
s_time=j2/Fs; 
s_end=j3JFs; 

for j=(j2: 1: J3); 

z=test(j, 3); 
Ioad_vect(i 1,1)=z; 
11=11+1; 

end 

i=end_p; 
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else 

end 
1=i+1; 

end 

%%%%%%%%%%%%%%%% Create vector of no load power %%%%%%%%%%%%%%%% % %%%% 

jhalf=jl-thalf; 
jO=j1-thalf-t0; 
subs time=j0/Fs; 
sub_e time jhalf/Fs; 

disp(['No Load Start time, (s) =']), disp(sub_s time) 
disp(['No Load End time, (s) _]), disp(sub_e time) 
disp(['Full Load Start time, (s) =']), disp(s_time) 
disp(['FuII Load End time, (s) =']), disp(s_end) 

for j=(j0: 1: jhalf); 
zl=test(j, 3); 
no_load_vect(i2,1)=z1; 
i2=i2+1; 

end 

Loadyect_adj=((Ioad_vectJ100). '7.5); 
No_load_vect_adj=((no_load_vectJ100). '7.5); 

%% % %%%% % %%%%%%% Calculate grinding power %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ave Ioad-power=mean(Load vect_adj); 
max Ioadpower=max(Load_vect_adj); 
aveso_loadpower=mean(No_load vect_adj); 
max no_loadpower=max(No_load_vect_adj); 
grindingpower=ave_loadpower-ave no_Ioad_power; 

disp(['Mean Full Load Power, (kW) =]), disp(ave_loadjower) 
disp(['Max Full Load Power, (kW) =]), disp(ma)_load-Power) 
disp(['Mean No Load Power, (kW) =]), disp(ave_no_load_. power) 
disp(['Max No Load Power, (kW) =]), disp(max no_load-power) 
disp(['Grinding Power, (kW) =]), disp(grinding power) 

%%%%%%% Display and save data %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

TestName ='Data_09-200T; 
Test. Max 

_Temp = max(yl fc); 
TestMedian_Temp = median(yl fc); 
Test. Min_AE Table = min(y2f); %% change to y2fcl if inversion Is needed 
Test. Max_AE_Table = max(y2f); 
TestMedian_AE Table = median(y2f); 
TestGrinding_Power = grinding-power, 
TestNo_Load_Power = ave_no_loadpower, 

Test 

%%%%%%%%%%%%%%%%%%%%%%0/00/0 %% %%%%%%%% %%%/o%%%%%%%%%%%%%% 
%% o/ o%o%o%o%o%o/ %%%%o%%%%%%% END %%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o o %%%%%o o%%%%%%%%o/ 6 %% i'o % 
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Topography program 1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%% PROGRAM FOR SMALL %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% SAMPLE SIZE %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% 5.3mm x 7mm %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% 5mm x 3.8mm %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%o%%%%%%%%% %%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all, clc, clear 

%load aj_3_5. txt % BEDDING IN TESTS 
load 2bf3. txt % CONVENIENT FLOW TESTS 
%load 1bf5. txt % CONVENIENT FLOW TESTS 

%fiIel=aL3_5; % BEDDING IN TESTS 
filel=X2bf3; % CONVENIENT FLOW TESTS 
%filel=Xlbf5; %CONVENIENT FLOW TESTS 

temp=(size(filel)); 
endll = temp(1,2); % establish side 2 
endl2= temp(1,1); % establish side 1 

%%%%%%%%%%%%% Input Analysis parameters %%%%%%%%%%%%%%%%%%%%%%%% 
o/ %% %%o/ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

vs=30; % wheel speed in m/s 
bsjnm=25; % wheel width in mm 
bs=0.025; % wheel width in m 
%wheel_. porosity=0.54; % Pink wheel (1) 54% 
wheeLporosity=0.44; % white wheel (2) 44% 
wheel-. porosity perc=wheelporosity'100; 

%%%%%%%%%%%%%% Setup parameters for loops %%%% %%%% %%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0locm/ %%%%%%% 

1-l; 

=1; 
b--D; 

%% % %%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%% Analysis of initial profiles %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%o/ o/ o/ o/ o/ o/ o/ o/ %%%%%%%%%%%%%%%%%%%%%% 

11=5.3; 
12=7; 

%I1=5; 
%12=3.8; 

I1_inc=11/endll; 
12_inc=12/endl2; 

11_vect=(0+11_inc: il_inc: ll); 
12 vect=(0+12_inc: l2_inc: I2); 

%%%%%%%%%%%% %o/ o/ %%%%%%%%%%%%%%%%%% %%%%%%%% % %%%%%%%%%%% 
%%*/ oý /o" %% Evaluate area for subtraction of integrals o/ %%%%%%%%%%%%%%%%% 
o/ %%% %%%%%%%%%%%%%%%%%%%%% % %%%%%%%%%%%%%%% %%%%%%%%%%%% 
%%%%%%%%% Find trough value o%o%o%%%%%%%%%%%%%%%% 
0/00/0 

zl=min(filel); % Create vector of minimum points 
z2=min(zl); % Create vector of minimum points 
z2-nean_min vector=mean(zl ); % find mean of vector of minimums 
z3=z2_meanjnin_vector; % Create lower limit for use In fluid calculations 
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z3_mm=z3/1000; % Convert low point to milimetres 

%% % %%%%%% % o/ o/ %% % %% % %% % %% % %% % %%%%%%%%%%%%%%%%%%%%%%%%%% 

%o/ o%o%%%%o%%o/ %%o%% Find Peak value o/ o/ o/ o/ o/ o/ %%%%%ok%%%%%%%%% 

%%%%%%%% %%% %o lo %o%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

wl=max(filet); % Create vector of maximum points 
w2-m, 

% find mean of vector of maximums w2-nean ean_maývector=mean(w1); 
w3=w2-mean-max-vector; % Create upper limit for use in fluid 

calculations using mean of mean 

w3_mm=w3/1000; % Convert high point to miiimetres 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Rt=w3-z2; % Calculate height of maximum area 
area_t=Rt endl2; % Calculate maximum UNIT area 

for row all rows 
Rt_rnm=RU1000; % convert At to millimetres 
tot_area_mm2=Rt_mm'bs_mm; % Calculate maximum area In mm2 

for all rows 
Rtt=v2-z2; % Calculate height of maximum area 
Rtl_mm=Rtl/1000; % convert Rtt to millimetres 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% Initiate scanning of profiles %%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for 1=(1: 1: endl I); % Select row to analyse 
k=0; 
vol=p; 
Y=D: % clear'/ for next Increment 

e=Q; 
c=fiiel (:, i); % create row vector at row T 

for J=(1: 1: endl2); % Pass through row 
d=filel (j, i); % pick point to analyse 
a=d+abs(z2); % offset data against lowest 

point so all values are positive 
w4=w3+abs(z2); % crate a maximum point for sampling 

if a>=0 & a<=w4; % Is point greater than value and 
less than the adjusted height 

k=k+1; % Increment along vector y 
y(1, k)=a; % add point to vector y 
J=J+1; % Increment along row 

elseif a>=0 & a>=w4; % Is point greater than value and 
greater than the adjusted height 

k=k+1; % Increment along vector y 
y(1, k)=w4; % add point to vector represensted 

by maximum height w3 
% Increment along row 

else 
1=J+1; 

end 

end 

%%%%%%%%%%%%%%% calculate area occupied by +ve values %%%%%%%%%%%%%%%%%% 

b_temp=trapz(y); % Integrate altered row 
b(1,1)=b_temp; % add Integrant to new vector' D' 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-I. %%% i%oJ'e%%% Ji%% 

If 1=50; 
prof l=(filel(:, I))11000; 
profl alt=(c+abs(z3)). /1000; 

end 
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rf ! =l 00; 
prof2=(filel(:, i))J1000; 
prof2_alt=(c+abs(z3)). /1000; 

end 

if i=150; 
prof3=(filel(:, i))J1000; 
prof3_alt=(c+abs(z3))J1000; 

end 

%% % %%%%% % %% calculate values of open space from row vector %%%% % %%%%%%% %%% 
vol=area_1-b_temp; % calculate space vol for each row by 

subtracting integrant from total area 
vol_space_vect(1, i)=vol; % add calculated area to a vector to 

store value 

area perc=((vol)/(area_1))'100; % create pecentage (as a %) value for 
each integrate over possible max 

area perc_dec=(vol)/(area_1); % create pecentage (in decimal form) 
value for each Integrate over possible max 

vol_spaceperc_vector(1,1)=area perc; % create vector store data of percentage 
free space per row I 

tot_area_space_mm_vect(1,1)=area perc_dec'tot_area_mm2; % create true volume available for fluid 
in each row 

%%%% 01010%%%Olelo% %%%010%%% %%01010%% 1o 10010%%%Olelo o %%%%% %%%%lo%%% 1o%% 

1=i+1 ; % Increment to next row 

end 

%%%%%%%%%%%%%%%%% l %%%%%%%o/ o/ %%%% %%%%%%%% %%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%% Calculate output values %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %% %%%%%% 

max-peak_jnm=w2/1000; 
min peak_mm=22/1000; 

Total_space_area=sum (tot_area_space_mm_vect); 

ave_area_space_mm2=Total_space_area/endil ; 

ave_area_space_m2=ave_area_space_mm2/(1 e6); 

vol_space_perc=nean(vol_space perc_vector); 

vol_flowrate_m3s=ave_area_space_m2'vs; 
vol flowrate_Imin=vol_flowrate_m3s*(1e3)*60; 
vol flowrate2_Imin=vol_flowrate_Imin'wheelporosity; 

max_ area_space_m2=tot_area_mm2/(1 e6); 

max_vol_flowrate_m3s=max area_space_m2"vs; 
max vol flowrate_Imin=max_voI_flowrate_m3s*(1e3)*60; 

% find highest point in analysis 
% find lowest point in analysis 

% calculate total volume available in 
sample 

% calculate average area available In 
contact zone (mm2] 

% calculate average area available In 
contact zone (m2] 

% Calculate average surface porosity (%J 

% calculate flow rate [m3/s] 
% convert flow rate [Vmin] 
% use bulk wheel prosity to factor 

uniform flowrate value 

% calculate average are available in 
contact zone (m2J 

% calculate flow rate (m3/sJ 
% convert flow rate (1/min) 

%%%%%%%%%%%%%%%% Display all relevant data %%%% % %%%%%%%%%%%%%%0/*%% 6%%% 

disp([Wheelspeed, vs (m/s) disp(vs) 
disp(['Wheel width, bs (mm) =]), disp(bs_mm) 
disp(['Bulk wheel porosity, phi (%) =']), disp(wheel_porosity perc) 
disp(' ') 
disp(['Average surface porosity, (%) =']), disp(vol_spaceperc) 
disp(['Average area available for fluid, (mm2) =1), disp(ave_area_space_jnm2) 
disp(['Possible Volumetric Flowrate, Qu (Vmin)=]), disp(vol_flowrate_Imin) 
disp(['Realistic Volumetric Flowrate, Qu (Vmin)=']), disp(vol_flowrate2_Imin) 
disp(' ') 
disp(['Highest point on topography (mm) =']), disp(max peak_mm) 
disp(['Highest point of analysis (mm) =']), disp(w3_mm) 
disp(' ') 
disp(['Lowest point on topography (mm) =']), disp(min peak_mm) 
disp(['Lowest point of analysis (mm) =']), disp(z3_mm) 
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disp(['Equivalent Rt (mm) ='j), disp(RLmm) 
disp(['Rt (mm) =']), disp(Rtl_mm) 

%%%%%%%%%% Plot relevant graphs %%%%%%%%%%%%%%%%%%%%%%%%%% 

set(0; Units'; pixels') 
scn_posl=get(0, 'ScreenSize'); 
scn_pos=sc n_pos 1. ̀0.9; 
scn, _pos(1,1)=5; scn_ pos(1,2)=10; 
scn_pos(1,3)=scn_pos1(1,3); 

figure(1) 
plot(It vect, vol_space_perc_vector) 
title('Showing percentage of free space under each rove); 
xdabel('Distance through sample (mm)'); 
ylabel('Percentage free space (%)'); 
saveas(1. 'Percentage free space versus row for large sample size', 'bmp') 

figure('Position', scnpos) 
figure(2) 
title('Showing comparison of true profile to offset only profile'); 

subplot(3,1,1); 
plot(12_vect, prof1; -r'); hold on; 
plot(12_vect, prof i -alt, 

'-b'); 
ytabel('Height (mm)'); 
xlabel('Distance through sample (mm)'); 

subplot(3,1,2); 
plot(l2_vect, prof2, '. -r'); hold on; 
plot(l2_vect, prof2_alt, '-b'); 
ylabel('Height (mm)'); 
)dabel('Distance through sample (mm)'); 

subplot(3,1,3); 
plot(12_vect, prof3, '-r'); 
hold on; 
plot(12 vect, prof3_alt, '-b'); 
ylabel('Height (mm)'); 
xlabel('Distance through sample (mm)'); 
saveas(2, 'Example of three profiles through the sample', 'bmp') 

%%%%%%%%olof%%%%%ofof%%%%%oYof%oYof%%%ol%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oho/o/%%%%%%%o/%ooo/o/%%%%%%%%%%%%%%%%%%%%%%o/o/o/o/off%%%%%%%%%%% 
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Topography program 2 

°ý %%%%%%%% %°ý %%% / °%°%%%%%%%%%% / o/. lyo %%%%% %°/ °/ %%%%% %°%%%%%% 

%%%%%%%%%%%%%%%%% %%%%%%%%%%%% %%%%% 

%%%%%%%%%%%%%%%%% PROGRAM FOR LARGE %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% SAMPLE SIZE %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% 19mm x 25mm %%%%% % %%%%%%%%% % %% 
%%%%%%%%%%%%%%%%% 15mmx20mm %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%o1 o1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all, clc, clear 

%Ioad aj_3_20. txt % BEDDING IN TESTS 
%Ioad 1f5. txt % DRESSING TESTS 
%Ioad 1af5. txt % CONVENIENT FLOW TESTS 
load 2af3. txt % CONVENIENT FLOW TESTS 

%filel=aj_3_20; % BEDDING IN TESTS 
%filel=Xlf5; % DRESSING TESTS 
%filel=Xlaf5; % CONVENIENT FLOW TESTS 
filel=X2af3; % CONVENIENT FLOW TESTS 

temp=(size(filel)); 
endll=temp(1,2); % establish side 2 
endl2= temp(1,1); % establish side 1 

%o%o%o%%%o%o%o%o%%%% % %%% %o%%%%%% % %%% % %%%%%%%% % %% %o% % %%% %o % %%%%% 
%%%%%%%%%%% Input Analysis parameters %%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

vs=30; % wheel speed in m/s 
bsjnm=25; % wheel width In mm 
bs=0.025; % wheel width in m 
%wheelporosity=0.54; % Pink wheel (1) 54% 
wheelporosity=0.44; % white wheel (2) 44% 
wheelporosityperc=wheel_. porosity*100; 

%%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%o% o% % %%%% 
%%%%%%%%%%%%%% Setup parameters for loops %%%%%%%%%%%%%%%%%%%% 
%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

M; 
1=1; 
b=[]; 

%%%%%%%%%%%%%%%% %°y °y%%%%%%%%%%%%%%%°y 0 

%%% Analysis of initial profiles 
%% % %%% % 0/0%%%%%0/ %%%%%%"/ o/ oY o/ %% % 0/0%%%%%%%%%%o %IW/0%%%%%%%%%%% 

%11=15; 
%12=20; 

%I1=5; 
%12=5; 

I1=19; 
12=25; 

I1_inc=11/endll; 
12_inc=12/endl2; 

11 vect=(0+I1_inc: Ilinc: I1); 
12_vect=(0+12_inc: 12_inc: 12); 

% BEDDING IN TESTS 

% DRESSING TESTS 

% CONVENIENT FLOW TESTS 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Evaluate area for subtraction of integrals %%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%% %%%%%%% %%%%%%%%%%%%%%%%%%a%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% Find trough value %%%%%%%%%/%%%%%%%% 

%%%%%%%%%%%%%%%% %%%%%%%%%%% %% %%%%%%%%%%%%%%%%%%%% 
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z1=min(filet); % Create vector of minimum points 
z2=min(zl); % Create vector of minimum points 
z2_mean_nin_vector=mean(z1); % find mean of vector of minimums 
z3=z2_mean_min_vector, % Create lower limit for use in fluid calculations 

z3_mm=z3/1000; % Convert low point to millimetres 

%% %%%%%%%%%% Find Peak value %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 00010%%%%%%%00%00%%00010010%%0o%%%%%%% 

w1=max(filel); % Create vector of maximum points 
w2=max(wl); 
w2_mean_max_vector=mean(w1); % find mean of vector of maximums 
w3=w2_mean_max vector; % Create upper limit for use In fluid 

calculations using mean of mean 

w3-mm=w3/1000; % Convert high point to milimetres 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Rt=w3-z2; % Calculate height of maximum area 
area_1=Rt'endl2; % Calculate maximum UNIT area for row all rows 
Rt mm=RU1000; % convert Rt to millimetres 
tot area_mm2=Rt_mm*bs_mm; % Calculate maximum area In mm2 for all rows 
Rtl=w2-z2; % Calculate height of maximum area 
Rt1 mm=Rtl/1000; % convert Rtl to millimetres 

%% % %%%%%%%%%%%%%%%%%%%%%%, Y %%%%%% % %%%%% %%%%% %% % %%%°k%%% 
%%%%%%%%%%%%%%%%% Initiate scanning of profiles %%%%%% %%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i=(1: 1: endll); % Select row to analyse 
k=0; 
vol=[]; 
Y--O; % clear' y' for next Increment 
e=Q; 
c=filel (:, i); % create row vector at row I 

for j=(1: 1: endl2); % Pass through row 
d=filel a, i); % pick point to analyse 
a=d+abs(z2); % offset data against lowest point so all 

values are positive 
w4=w3+abs(z2); % crate a maximum point for sampling 

if a>=0 & a<=w4; % is point greater than value and less than 
the adjusted height 

k=k+1; % Increment along vector y 
y(1, k)=a; % add point to vector Y 
j=j+1; % Increment along row 

elseif a>=0 & a>=w4; % is point greater than value and greater 
than the adjusted height 

k=k+1; % Increment along vector y 
y(1, k)=w4; % add point to vector represented by 

maximum height vß3 
j=j+1; % Increment along row 

else 
j=j+1; 

end 

end 

%%%%%%%%% calculate area occupied by +ve values %%%%%%%%%%%%%% 

b_temp=trapz(y); % Integrate altered row 
b(1, i)=b_temp; % add integrant to new vector'b' 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %%%%% %% % %%%%%%%%%%%% 

if 1=50; 
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prof 1=(files (:, i))J1000; 
prof l-alt=(c+abs(z3))Jl 000; 

end 

if 1=100; 
prof2=(filet (:, i))J1000; 
prof2_alt=(c+abs(z3))J1000; 

end 

if i==150; 
prof3=(filel(:, i))J1000; 
prof3_ait=(c+abs(z3))J1000; 

end 

%%%%%%%% calculate values of open space from row vector 
vol=area_1-b_temp; 

vol space vect(1, i)=vol; 

%%%%%%%% 

% calculate space vol for each row by 
subtracting integrant from total area 
% add calculated area to a vector to store value 

area perc=((vol)/(area_1))'100; % create pecentage (as a %) value for each 
integrate over possible max 

area perc_dec=(vol)/(area_1); % create pecentage (in decimal form) value for 
each integrate over possible max 

vol_space perc_vector(1, i)=area perc; % create vector store data of percentage free 
space per row I 

tot_area_space_mm_vect(1,1)=area perc_dec*tot_area_mm2; % create true volume available for fluid in 
each row 

%%%%%%%%%0/00/0% %%%%%%%%%%% %%%%%%%%%%% % %%%%%%%%%%%%%%%%% 

1=1+1 ; 

end 

Increment to next row 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%% Calculate output values %%%%%%%%%%%%%o%o%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

max_. peak_mm=w2/1000; 
minpeak_mm=z2/1000; 

Total space_area=sum(tot_area_space_mm_vect); 
ave_area_space_mm2=Total_space_area/endl l; 

ave_area_space_m2=ave_area_space_mm2/(t e6); 

vol_space-perc=mean(voi_space-perc_vector); 

vol flowrate_m3s=ave_area_space_m2'vs; 
vol_flowrate_Imin=vol flowrate_m3s'(1e3)'60; 
vol_flowrate2_Imin=vol flowrate_Imin'wheel_. porosity; 

max_area_space_m2=tot_area_mm2t(1 e6); 

max_vol flowrate_m3s=max_area_space_m2'vs; 
max_vol flowrate_Imin=max_vol_ lowrate_m3s*(1 e3)*60; 

% find highest point in analysis 
% find lowest point in analysis 

% calculate total volume available In sample 
% calculate average area available In 
contact zone[mm2] 
% calculate average area available In 

contact zone [m2] 

% Calculate average surface porosity (%j 

% calculate flow rate [mats] 
% convert flow rate [Vmin] 
% use bulk wheel prosity to factor unitomi 
flowrate value 

% calculate average are available In 
contact zone (m2] 
% calculate flow rate [m3/sj 

% convert flow rate [Vmin] 

%%%%%%%%%%%%%%%% Display all relevant data %%%%%%%%%%%%%%%%%%%%%%%%%% 

disp(['Wheelspeed, vs (m/s) disp(vs) 
disp(['Wheel width, bs (mm) disp(bs_mm) 
disp(['Bulk wheel porosity, phi (%) = ]), disp(wheel. porosity-perc) 
disp(' ') 
disp(['Average surface porosity, (%) =1), disp(vol_space perc) 
disp(['Average area available for fluid, (mm2) =']), disp(ave_area_space_mm2) 
disp(['Maximum Volumetric Flowrate, Qu (Vmin)=']), disp(max_vol flowrate_Imin) 
disp(['Possible Volumetric Flowrate, Qu (Vmin)=']), disp(vol_flowrate_Imin) 
disp(['Realistic Volumetric Flowrate, Qu (Vmin)=']), disp(vol_flowrate2_lmin) 
disp(' ') 
disp(['Highest point on topography (mm) =']), disp(max_.. peak_mm) 
disp(['Highest point of analysis (mm) _']), disp(w3_mm) 
disp(' ') 

D-12 



disp(['Lowest point on topography (mm) =1), disp(min_peak_mm) 
disp(['Lowest point of analysis (mm) ='j), disp(z3_mm) 
disp(['Equivalent Rt (mm) =']), disp(Rt_mm) 
disp(['Rt (mm) =1), disp(Rtl_mm) 

%%%%%%%%%%%%%%%%%%%% Plot relevant graphs %%%%%%%%%%%%%%%%%%%%%%%%%% 

set(0, 'Units'; pixels') 
scn_pos 1=g et(0, 'ScreenS ize'); 
sc n-pos=scn_pos 1. ̀0.9; 
scn_pos(1,1)=5; 
scn-pos(1,2)=10; 
scnaos(1,3)=scn-posl(1,3); 

figure(1) 
plot(l1_vect, vol_space perc_vector) 
title('Showing percentage of free space under each row'); 
xlabel('Distance through sample (mm)'); 
ylabel('Percentage free space (%)'); 
saveas(1, 'Percentage free space versus row for large sample size', 'bmp') 

figure('Position', scnpos) 
figure(2) 
title('Showing comparison of true profile to offset only profile'); 

subplot(3,1,1); 
plot(12_vect, prof 1; 
hold on; 
plot(12_vect, proflalt, '-b'); 
ylabel('Height (mm)'); 
xlabel('Distance through sample (mm)'); 

subplot(3,1,2); 
plot(12_vect, prof2; -r'); 
hold on; 
pl ot(l2_vect, prof2_alt, '-b'); 
ylabel('Height (mm)'); 
xlabel('Distance through sample (mm)'); 

subplot(3,1,3); 
plot(12_vect, prof3, -r'); 
hold on; 
pl ot(12_vect, prof3_alt, '-b'); 
ylabel('Height (mm)'); 
xlabel('Distance through sample (mm)'); 
saveas(2, 'Example of three profiles through the sample', 'bmp') 

om, 
%o%o%o%%%o%o%%%%%o%o%%%%% END o%o%%%%%%%%o%o/ %%%%%%%%%%o%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%°o%%%%%% 
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