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Two-Dimensional Phase Unwrapping Abstract 

Abstract 

Many applications that rely on phase data, such as: synthetic aperture radar (SAR), 

magnetic resonance imaging (MRI) and interferometry involve solving the t«wo- 
dimensional phase unwrapping problem. The phase unwrapping problem has been 

tackled by a number of researchers who have attempted to solve it in many ways. This 

thesis examines the phase unwrapping problem from two perspectives. Firstly it 

develops two new techniques based upon the principles of Genetic Algorithms. 

Secondly it examines the reasons for failure of most of the common existing algorithms 

and proposes a new approach to ensuring the robustness of the phase unwrapping 

process. This new method can be used in conjunction of a number of algorithms 
including, but not limited to, the two Genetic Algorithm methods developed here. 

Some research effort has been devoted to solving the phase unwrapping problem using 

artificial intelligence methods. Recent developments in artificial intelligence have led to 

the creation of the Hybrid Genetic Algorithm approach which has not previously been 

applied to the phase unwrapping problem. Two hybrid genetic algorithm methods for 

solving the two dimensional phase unwrapping problem are proposed and developed in 

this thesis. The performance of these two algorithms is subsequently compared with 

several existing methods of phase unwrapping. 

The most robust existing phase unwrapping techniques use exhaustive computations 

and approximations, but these approaches contribute little towards understanding the 

cause of failure in the phase unwrapping process. This work undertakes a thorough 

investigation to the phase unwrapping problem especially with regard to the problem of 

residues. This investigation has identified a new feature in the wrapped phase data, 

which has been named the residue-vector. This residue-vector is generated by the 

presence of a residue, it has an orientation that points out towards the balancing residue 

of opposite polarity and it can be used to guide the manner in which branch-cuts are 

placed in phase unwrapping. Also, the residue-vector can be used for the determination 

of the weighting values used in different existing phase unwrapping methods such as 

minimum cost flow and least squares. In this work, the theoretical foundations of the 

residue-vector method are presented and a residue-vector extraction method is 

developed and implemented. This technique is then demonstrated both as an 

unwrapping tool and as an objective method for determining a quality map, using only 

the data in the wrapped phase map itself. Finally a general comparison is made between 

the residue-vector map and other existing quality map generation methods. 
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Fig. 6.10. (a) Magnitude of the wrapped phase gradient of the wrapped phase map in 

Fig. 6.8(b) and (b) combined wrapped phase gradient map of Fig. 

6.8(b)(middle section of the image) using the maximum of both the dx and dv 

wrapped phase gradient (for illustration only). 
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Fig. 6.11. Combined wrapped phase gradient map of the middle section of the wrapped 

phase map in Fig. 6.8(b) using the maximum of both the dx and dy wrapped 

phase gradient for illustration only scaled down by (a) 3x3 pixels and (a) 5x5 

pixels. 

Fig. 6.12. Branch-cut placement methods used to connect two residues; (a) original dy 

gradient map taken from Fig. 6.2(d), (b) incorrect branch-cut placement using 

straight line cuts and (c) correct branch-cut placement obeying the residue- 

vector rule. 

Fig. 6.13. Monopole residue correct branch-cut placement implemented on the dy 

wrapped phase gradient map of the wrapped phase map in 6.9(d). 

Fig. 6.14. Zero-weighted mask of the wrapped phase map in 6.2(a) using (a) phase 

variance quality map (arrows point at some of the non-masked zero-vector) 

and (b) residue-vector map showing the position of the extracted residue- 

vector pixels in the gradient phase map, (c) maximum phase gradient quality 

map, (d) pseudo-correlation quality map, (e) weighted phase variance quality 

map. 

Fig. 6.15. Branch-cuts produced by Flynn's algorithm with zero-weights provided by 

the mask of the (a) minimum phase variance quality map (b) residue-vector 

map, (c) maximum phase gradient quality map, (d) pseudo-correlation quality 

map, (e) weighted phase variance quality map. 

Fig. 6.16. Unwrapped phase map produced by Flynn's algorithm with zero-weights 

provided by the mask of the (a) minimum phase variance quality map, (b) 

residue-vector map, (c) maximum phase gradient quality map, (d) pseudo- 

correlation quality map, (e) weighted phase variance quality map. 

Fig. 6.17. Implementation of the branch-cut placement of mask-cut method using the 

wrapped map of Fig. 6.10(d) shows an (a) incorrect placement of branch-cut, 

(b) phase distortion in the unwrapped phase map and (c) 3D-surface of the 

unwrapped phase with phase distortion. 

Fig. 6.18. Branch-cuts produced by Flynn's algorithm with zero-weights provided by 

the mask of the (a) minimum phase variance quality map (b) residue-vector 

map, (c) maximum phase gradient quality map, (d) pseudo-correlation quality 

map, (e) weighted phase variance quality map. 

Fig. 6.19. Unwrapped phase map produced by, Flynn's algorithm with zero-weights 

provided by the mask of the (a) minimum phase variance quality map (b) 
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residue-vector map, (c) maximum phase gradient quality map, (d) pseudo- 

correlation quality map, (e) weighted phase variance quality map. 

Fig. 6.20 (a) Mask of the maximum phase gradient quality map of the fairy's elbow, (b) 

Mask of the residue-vector map of the fairy's elbow, (c) the branch-cuts made 

at the elbow by Flynn's algorithm using the maximum phase gradient quality 

map, (d) the branch-cuts made at the elbow by Flynn's algorithm using the 

residue-vector map, (e) the unwrapped phase at the elbow by Flynn's 

algorithm using the maximum phase gradient quality map and (f) the 

unwrapped phase at the elbow by Flynn's algorithm using the residue-vector 

map. 
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Chapter 1 

1. Introduction 

Many digital image processing techniques can be used to extract phase distributions 

from images generated by applications such as: optical and microwave interferometry, 

magnetic resonance imaging (MRI), synthetic aperture radar (SAR), synthetic aperture 

sonar, adaptive optics, seismic processing and aperture synthesis radio astronomy, etc 
[Huntley (2001)]. In many of the mentioned applications, the extracted phase relates to 

physical quantities such as surface topography in interferometry, wavefront distortion in 

adaptive optics, the degree of magnetic field inhomogeneity in the water/fat separation 

problem of magnetic resonance imaging or the relationship between the object phase 

and its bi-spectrum phase in astronomical imaging [Huntley (2001)]. Such techniques 

that rely on calculating the phase distribution suffer from one disadvantage; they 

employ the arctangent function in order to extract the phase. However, the arctangent 

operator produces results wrapped onto the range -7r to + 7r. Thus, in order to retrieve 

the contiguous form of the phase map, an unwrapping step has to be added to the phase 

retrieval process [Cusack (1995), Buckland (1995)]. 

Phase unwrapping is a technique used on wrapped phase images to remove the 27[ 

discontinuities embedded within the phase map. It detects a 2r phase jump and adds or 

subtracts an integer offset of 2n to successive pixels following that phase jump based on 

a threshold mechanism, thus, retrieving the contiguous form of the phase map. A 

complete review of phase unwrapping is presented by Ghiglia et al. [Ghiglia and Pritt 

(1998)]. Phase unwrapping is not a straightforward step because of the possible 

presence of different kinds of noise and geometric layout of fringe lines. In the case of 

analysing interferometric fringes such noise sources (residues) are: 

" Low signal-to-noise ratio of the fringes caused by electronic noise, speckle 

noise, or a low fringe modulation; 

" Violation of Shannon's theorem; 

" Object discontinuities [Gutmann (1999)]. 
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On the other hand, geometric layout problems are: 

0 Intersection of fringe lines due to the use of some phase extraction algorithms 

causes the phase to be lost and in some algorithms this is classified as a potential 

residue (residue is an inconsistency in the wrapped phase data preventing 

straightforward unwrapping). 

0 Object shadow causes the loss of fringe lines, thus, loss of phase [Gutmann 

(1999)]. 

As a result, many phase unwrapping algorithms have been developed in an attempt to 

solve these problems. However, the variety of forms, shapes and densities of noise that 

might be found in real wrapped phase maps makes the problem of phase unwrapping 

complex and difficult to solve, even given the significant amount of research effort 

expended to date and the large number of existing phase unwrapping algorithms. 

So, phase unwrapping algorithms were developed to overcome the pixels affected by 

noise. These algorithms calculate a gradient estimate by evaluating the difference 

between two consecutive pixels, then if the absolute value of the gradient estimate is 

greater than it, then an offset of + or -2n is add to correct the phase [Fornaro et al. 

(1997)]. Because of the presence of corrupted regions within the image, this step cannot 

be performed unless an integration step is performed. Integration can be of two forms 

either local or global and it can be a combination of both as in the hybrid model 

[Fornaro et al. (1997)]. 

Local integration involves integrating the phase gradient of pixels in an image over a 

path starting from a certain point and going over all the pixels, in essence, unwrapping 

the image. Path independent unwrapping is obtained in the absence of residues that can 

arise from either noise or object discontinuities. The unwrapped result is independent of 

the unwrapping path; hence, the complete phase map is consistent. However, in the 

presence of corrupted pixels (residues), taking just any path is not possible anymore. 

Consequently, unwrapping becomes path dependent, where it has to manoeuvre 

between pixels choosing the best path to follow where the pixels are not corrupted by 

error. To overcome path dependence, many ways have been suggested and 

implemented. One of the first algorithms developed to overcome path dependence using 

local integration is Goldstein's branch cut algorithm [Goldstein (1988)]. This algorithm 
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finds corrupted pixels called residues characterized by having two kinds of polarities, 
positive and negative. Then, by growing the search area, it locates close opposite 

polarity residues and connects them by a branch cut, thus joining each pair with all the 

pixels that separate them. These branch cuts, then, will be avoided while unwrapping 

until unwrapping of non-corrupted pixels has been accomplished. Therefore. by 

identifying corrupted regions and excluding them from integration, unwrapping can 
follow any path independently achieving an unwrapped image. This algorithm is one of 
the fastest still. It gives accurate results where it can unwrap but it is limited to areas of 

moderate residue density. Moreover, a wrong choice of a single branch cut will cause 

errors to propagate over the whole image [Fornaro et al. (1997)]. Other algorithms based 

on local integrations are quality-guided [Ghiglia and Pritt (1998)], mask cut [Ghiglia 

and Pritt (1998)], Flynn's minimum discontinuity [Flynn (1997)], and phase 

unwrapping by means of genetic algorithm [Collaro et al. (1998)]. 

Global integration uses a different way for unwrapping images while still using the 

estimated phase gradient. The procedure is to minimize the least squared distance (the 

squared difference) between the estimated phase gradient and the true gradient of the 

unknown unwrapped phase [Fornaro et al. (1997)]. In this way, a smooth solution is 

achieved by the resultant minimization. That can be done by integrating over all the 

possible paths within the image not like local integration, which integrates over one 

single path, thus, spreading the error over the whole image. Like the previous method, 

this method also encounters a large number of errors once a corrupted region is present 

in the image. So, weighting measures in Weighted Least-Squared and LP-norm 

algorithms were introduced to exclude corrupted regions [Ghiglia and Romero (1996)]. 

However, the success of algorithms using such a method relies on choosing the weights, 

which puts a huge load on the performance of the algorithm. One advantage of this 

method over algorithms that use residue branch cut technique is unwrapping residue- 

rich regions. This method actually uses noisy areas in the image while unwrapping, 

which was difficult or impossible to unwrap using the local methods. Thus, global 

integration forces unwrapping in these regions providing estimates, which are more 

accurate than the local methods. 

These two methods have their own advantages and disadvantages, therefore, a hybrid 

model was introduced to use their merits and exclude their demerits. In essence, 

4 
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researchers had found that there is a connection between methods using local and global 
integration. In other words, the least-squares solution (global method) at a given point is 

the average of all the solutions obtained by simple path-following (local method) radial 
paths from the point to the boundary [Ghiglia and Pritt (1998)]. It was also found that in 

some cases, the global and the local approaches were finding the same solution by 

minimizing the same error measure even though using completely different methods 
[Ghiglia and Pritt (1998)]. Moreover, another link exists; when Goldstein's branch cut 

algorithm minimizes the branch cut lengths in the local method, it is actually equivalent 
to minimizing the number of discontinuities in the global method [Ghiglia and Pritt 

(1998)]. Therefore, one way to achieve the merits of both methods is by using a joint 

method. This is accomplished by using the excellent unwrapping way of the path- 
following method when unwrapping non-corrupted regions. Whilst in the case of the 

corrupted regions, a global method is used to minimize the error by spreading it over the 

whole wrapped image until it is unwrapped. Then, unwrapped data of the corrupted 

region is added to the unwrapped data of the non-corrupted region, in essence, 

achieving a minimal error unwrapped phase image. 

In this work, a new local integration phase unwrapping method using artificial 

intelligence in the form of a hybrid genetic algorithm (HGA) is used to optimize the 

unwrapped phase by minimizing the total cut length in a wrapped phase map globally 

before unwrapping. Phase unwrapping in this proposed algorithm is presented in the 

form of the travelling salesman problem (TSP) with the exception of the `matching 

phenomena' instead of the `tour' concept. Therefore, most of the profound advances in 

solving the TSP will be used in favour of the branch-cut phase unwrapping problem. 

The newly developed genetic algorithm is then tested on simulated and real wrapped 

phase maps to verify its characteristics and the results are compared with three existent 

branch-cut phase unwrapping algorithms, which are: simulated annealing [Cusack et al. 

(1995)], reverse simulated annealing [Gutmann (1999)] and minimum-cost matching 

algorithms [Buckland et al. (1995)]. This proposed algorithm is designed to unwrap 

wrapped phase maps with contiguous object features. 

Also, a global integration phase unwrapping algorithm is proposed that uses a hybrid 

genetic algorithm to estimate the parameter coefficients of an n`h-order polynomial used 

to create the unwrapped phase solution that minimizes the L-norm error between the 

S 
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gradient of the solution and the gradient of the wrapped phase map. This method is 

similar in concept to least-square and LP-norm, phase unwrapping methods developed by 
Ghiglia et al. [Ghiglia and Pritt (1998)] except it does not rely directly on the wrapped 
phase data to construct the unwrapped solution. However, it uses a polynomial to 

construct the unwrapped surface solution. The wrapped and the unwrapped phase maps 

are not totally independent of each other as the difference between them is used to 

optimize the solution. The only relation between the wrapped and the unwrapped phase 

maps is the LP-norm error minimization. The other advantage of the proposed algorithm 
is that it generates noise-free unwrapped phase maps within a bandwidth or spatial 

extent as governed by the order of the polynomial and achieves a global smoothness 

constraint. This proposed algorithm is designed to unwrap wrapped phase maps with 

contiguous object features. 

Many of the phase unwrapping methods developed until now rely on exhaustive search 

and approximation. There is no knowledge up till now on why phase algorithms still 

fail, even the most robust of them. The evident disadvantage of up to date advances in 

phase unwrapping is that any phase unwrapping algorithm cannot be used to unwrap 

any kind of wrapped phase. They are specific to certain applications with a possibility 

of failing especially in the case of very complex, noisy or under-sampled wrapped 

images. Also, phase unwrapping can take huge amount of processing time to achieve 

somewhat acceptable results. However, demands on the phase unwrapping process are 

getting larger and larger by the fast progress of technology, such demands are: larger 

images, real time applications, unwrapping in the 3rd Dimension video data, need to 

unwrap very complex surfaces, medical applications that do not leave a 

margin for error (MRI and Cancer X-ray Therapy), need to more details is larger, 

precision in results, and the need to limit the human interaction in the unwrapping 

process to a minimum. 

Synthetic Aperture Radar phase unwrapping research was mostly driven into using 

exhaustive optimization but the performance and the quality of these techniques rely on 

weights which can be extracted from the data or provided as an additional data item 

from another source. These weights are more general than specific to the phase 

unwrapping problem. The weight factor has opened the research widely and brought 

phase unwrapping to square one. In essence, there exists no standard for defining the 

6 
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weight factor which would result into acceptable results [Gens (2003)]. \IRI phase 
unwrapping research has approached the problem by relying on certain features in the 
data but used also another set of data to assist in phase unwrapping. They also faced 

problems and failure of the unwrapping algorithm in certain cases which it is still 

ambiguous why it did fail. In metrology, phase unwrapping has faced great challenges 

especially when the data contains discontinuous and contiguous features at the same 
time. There exists no algorithm that can solve this problem even though less complex 
featured data rely extensively on weights to produce acceptable results. 

To this present time, researchers and engineers in the industrial and medical field 

complain of the failure or unacceptable performance of the existing phase unwrapping 

methods. Researchers have even attempted to use a collection of existing phase 

unwrapping algorithms to benefit from the capabilities of each method corresponding to 

a variety of applications [Gens (2003)]. This desperate move shows the reliance of 

researchers on exhaustive computations and approximations but reveals little about the 

cause of failure of the phase unwrapping process. 

Most phase unwrapping techniques attempt to identify or approximate the position of 

the residue ghost discontinuity lines (or branch-cuts) in the wrapped phase map to 

achieve a successful unwrapping. They rely on information such as quality maps, loops 

that are not neutral (these are set of pixels forming a closed loop where the summation 

of their corrected phase gradients does not equal to zero), areas that generate large 

discontinuities after a pre-unwrapping step, etc. However, there exists no exact 

knowledge on how to identify these ghost discontinuity lines except that they are 

located in the vicinities of high gradients. Unfortunately, residues and their ghost 

discontinuity lines are not the only sources that create high gradients. This work 

presents a discovery of the residue-vector lines embedded in the wrapped phase gradient 

maps in the horizontal and vertical directions. It was also found out that ghost 

discontinuity lines could take a form different from the high gradient information. This 

work demonstrates the residue-vector and proposes a residue-vector map that can be 

used as a weighting factor to many existing phase unwrapping algorithms. The 

performance of the residue-vector map is compared with other existing quality maps by 

implementing it as a weighting factor to Flynn's minimum discontinuity algorithm. 

7 
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In essence, a thorough investigation to the residue problem in phase unwrapping has led 

to what we named "residue-vector", which are gradient information features embedded 
in the wrapped phase maps that give all the necessary guidance on how to unwrap an 
image successfully no matter the amount of noise, under-sampling, and the complex 
features in the wrapped phase map. Early investigation has produced more accurate 
branch-cut by means of the residue-vector as it localises to the actual discontinuities 

present in the wrapped data unlike existing techniques. This investigation also provides 
insights to why phase unwrapping methods succeed or fail. It was found that failure of 

phase unwrapping algorithms was due to a special type of residue-vector which is 

named a "zero-vector". When this "zero-vector" exists in the data the unwrapping 

process gets disrupted and as a result non-robust existing phase unwrapping techniques 

fail and the robust ones make large number of approximations to an extent that the 

smoothness of the data is lost and large sections of the results are deleted, i. e., they 

loose large sections of good data. This discovery has pulled the weighting factor from 

being general to problem-specific because it provides the rules and standards onto how 

to extract weights and approach the phase unwrapping problem. The phase unwrapping 

technique that uses the proposed residue-vector information is likely to unwrap any 

wrapped phase map containing either contiguous or discontinuous object features or 

noise or under-sampling. 

1.1. Synopsis of the Thesis 

In chapter 2, an overview of the phase unwrapping problem is presented. In chapter 3, a 

brief study of some of the existing artificial intelligence algorithms is introduced with in 

depth presentation of the genetic algorithm and its hybrid form together with a review 

of up-to-date phase unwrapping methods using artificial intelligence. Chapter 4, 

presents a new phase unwrapping algorithm aided by artificial intelligence. This 

algorithm, based on the branch-cut method of solving the phase unwrapping problem, is 

introduced as a travelling salesman problem. A hybrid genetic algorithm which is well 

known in terms of its capability of solving the travelling salesman problem was 

developed to solve the branch-cut phase unwrapping problem. A detailed explanation of 

the hybrid genetic algorithm is presented that uses local and global methods in solving 

the problem. A demonstration of this algorithm's performances and results is presented 

in this chapter accompanied by a thorough discussion. Chapter 5 introduces a ne« 

global phase unwrapping method that also uses a hybrid genetic algorithm. This 

8 
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algorithm approaches the phase unwrapping as a global minimization problem by 

surface fitting. The algorithm is tested on real and simulated wrapped phases to 
demonstrate its performance. On the other hand, the phase unwrapping problem was 

studied deeply and thoroughly especially in relation to the problem of residues.. new 
theory is introduced and explained in chapter 6. It is tested and verified in this chapter 

with simulated and real wrapped phase maps to prove its validity and capabilities. 
Finally, the work accomplished is concluded in chapter 7 with comments regarding the 

significance of the work accomplished together with suggestions for future work. 

1.2. Contributions 

The contributions of this research are summarized as following: 

1. It demonstrates the equivalences between the branch-cut phase unwrapping 

problem and the travelling salesman problem. 

2. It has designed and developed a local integration phase unwrapping algorithm 

using a hybrid genetic algorithm. 

3. It has designed and developed a global integration phase unwrapping algorithm 

using a hybrid genetic algorithm. 

4. It has investigated the residue, branch-cut and quality map problems. 

5. The causes of failure or unacceptable results of phase unwrapping algorithms 

have been investigated. 

6. It has led to the discovery of the residue-vector information embedded in the 

wrapped phase map. 

7. It has proposed and implemented a residue-vector extraction method. 

8. The performance of residue-vector maps in comparison with other quality maps 

has been investigated. 

9. It presents a brief theory of the residue-vector and the methods of branch-cutting 

using residue-vector information. 

9 
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Chapter 2 

2. Phase Unwrapping 

2.1. Introduction 

Chapter 2 

Phase unwrapping has been a research area for more than two decades. Hundreds of 

papers have been published aimed at solving the phase unwrapping problem. Many 

phase unwrapping algorithms have been suggested and implemented. The reason for 

such interest in phase unwrapping is due to many applications in applied optics that 

require an unwrapping process. Many phase unwrapping algorithms has been developed 

only for data from a particular application. There is no universal phase unwrapping 

algorithm that can solve wrapped phase data from any application. Moreover, phase 

unwrapping algorithms are generally a trade off between accuracy of solution and 

computational requirements. Even so, even the most robust phase unwrapping algorithm 

cannot guarantee in giving successful or acceptable unwrapped results without a good 

set of weights. Existing quality or weighting maps are not problem-specific to phase 

unwrapping. They are general and do not specifically aid phase unwrapping all the time. 

Unfortunately, there is no standard objective method of defining weights that guarantee 

good phase unwrapping. 

In this section, the phase unwrapping process will be defined and explained in detail. 

Two phase unwrapping methods will be explained in detail; the path-following method 

and the minimum-norm method. In essence, this chapter will explain the residue 

problem specifying how to locate residues in the phase map. Residues are local 

inconsistencies that prevent straight-forward unwrapping. It will present the branch-cut 

technique used to localize the residue effect, thus preventing it from affecting the rest of 

the pixels in the phase map by not allowing unwrapping paths to cross the localized 

residue areas. Moreover, an overview of the existing path-following, minimum-norm 

phase unwrapping and hybrid methods are presented and discussed. The quality or 

weight maps are defined and methods of extraction are presented. This chapter will help 

in understanding the material presented in later chapters. 

2.2. Definition 

Phase unwrapping (PU) is a technique used on wrapped phase images to remove the 2; t 

discontinuities embedded within the phase map. It detects a ?n phase jump and adds or 

11 
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subtracts an integer offset of 27t to successive pixels following that phase jump based on 
a threshold mechanism. The threshold mechanism states that if the phase difference 

between two successive pixels in a path {P} is greater than --, z then, subtract a ? Tr offset 
to all successive pixels in the path. The phase difference can be calculated using Eq. 
(2.1): 

0(D(p; ) = (D(pº)-a)(p; 
-, 

) (2.1) 

where q )(p, ) is the wrapped phase at pixel p; in phase map. However, if the phase 

difference is less than -Tr, add a 2c offset to all successive pixels in the path. Then, by 

locating all discontinuities in the wrapped phase map, the phase at every pixel will 

change by an integer k multiples of 2g depending on the pixel position in the 

unwrapping path. This can be summarized by the wrapping operator in Eq. (2.2): 

W[`Y(pi)] = 2; zk (P; ) k(P, ) EZ (2.2) 

where - 'r <_ W [P(p; )] <_ +/T, T(p) is the unwrapped phase at pixel p; in phase map 

and Z is the set of integer numbers. The wrapping operator W[. ] could be modified to 

specify the corrected gradient phase difference 0i(pi) between two successive pixels 

in the unwrapping path as is stated in Eq. (2.3): 

'7c(Pi) =W [(D(P; ) - (D(P; 
-I 

)] (2.3) 

The phase unwrapping process is an integration process that could be performed by 

local pixel-to-pixel integration or by global integration or could even be performed in a 

hybrid form which employs both local and global integrations. The local integration 

technique could be termed the "path-following method". Whilst, the global integration 

technique is usually referred to as the "minimum-norm method". These integration 

techniques will be explained in the following sections. 

2.3. Path-Following Methods 

A simple local phase unwrapping method uses independent path integration between the 

starting point (p,, ) and the end point (pe) to retrieve the true unwrapped phase in the 

absence of residues in the wrapped phase map. It is a pixel-to-pixel integration 

technique that relics on local wrapped phase values along a chosen path to construct the 

12 
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correct true phase refered to as unwrapped phase. This can be summarised in the 
discrete form using Eq. (2.4) of an : N' pixels phase map: 

T(Pe) = (D(p0) + 0(D(p1) 
J=I 

(2.4) 

Thus, by using Eq. (2.4), Phase Unwrapping will be capable of retrieving the contiguous 
form of the phase map [Gutmann (1999)]. 

However, this is not always the case. Because of the presence of noise or corrupted 

areas in the wrapped phase map, the path of integration becomes dependent. If Eq. (2.4) 

is used by itself to retrieve the unwrapped phase map, it may result in the addition or 

subtraction of incorrect multiples of2, r, which will then propagate throughout the rest 

of the phase map. Restrictions must be used on the unwrapping path in the corrupted 

areas, which result in the path being dependent. To avoid this situation, corrupted areas, 

or residues, must be identified, balanced and isolated using barriers (branch-cuts) from 

the rest of the good pixels in the phase map. Once residues are isolated, phase 

unwrapping will take an independent path avoiding these branch-cuts, thus, retrieving 

the true phase. 

2.3.1. Residues 

Residues are defined to be local inconsistencies, which mark the beginning and end of 

271 discontinuities. These residues are identified when the value of `n' in Eq. (2.5) is 1 or 

-1 in a2x2 closed path, otherwise n=0, which indicates that no residue exists. 

27zn (2.5) 

Howevcr, residues have two forms of discontinuity. One is a positive polarity when n in 

Eq. (2.5) is +1; the other form is a negative polarity when n is -1. 

In the case of a residue is present; the result of Eq. (2.5) is always a +1 or -I because the 

2x2 closed path cannot encircle more than one residue. 

A summary of how to identify residues in the wrapped phase map is shown in Fig. 22.2. 

l, 
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(a) (b) 
Fig. 2.1. (a) Visualizing residue calculation and (b) an inter-pixel network with a 2x2 closed loop and 

marked inter-pixel residue. 

For (each pixel in the wrapped phase map) 

Sum the wrapped phase differences using Eq. (2.5) as shown in Fig. 2. I (a) 

& (b) 

If (the sum is 2n) then mark the inter-pixel as a positive residue 

if (the sum is -2ir) then mark the inter-pixel as a negative residue 

End 

Fig. 2.2. A Pseudo-code for Residue identification. 

2.3.2. Types of Residues 

Many different kinds of residues may exist in a wrapped phase map caused by phase 

noise, spatial under-sampling of phase, object discontinuity, etc. Moreover, residues can 

be of two forms: dipole residues and monopole residues. Dipole residues are those that 

exist in pairs of two opposite polarity states or charges and monopoles that are single 

value residues for which no corresponding opposite-sign partner exists in a wrapped 

phase map [Gutmann (1999)]. 

One specific type of residue is the so-called phase noise generated dipole residue. These 

are caused by the random fluctuation of phase due to noise, which results in the 

wrapped phase gradient exceeding 
Iý(DI > T. Each pair of dipole residues generated in 

Border Inter-Pixels Inter-Pixels 

Pixel ----> , 'ý 

Residue 
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this case often lay close to each other (generally one pixel apart). This kind of residue 

can be easily identified and isolated in the phase map. An example of phase noise dipole 

residues is shown in Figs. 2.3(a) and (b). 

The second kind of residue is the dipole residue which results from under-sampling of 

the phase distribution. These residues are generated by the violation of Shannon's 

sampling theory where the phase is not represented with sufficient spatial resolution to 

correctly represent the contiguous phase. This results in spatial under-sampling steps 

greater than +7r/- 7r. This type of residue is characterized by generating dipoles that tend 

to be well separated when Shannon's law is broken, which makes them hard to identify 

as shown in the example shown in Fig. 2.3(c). 

®- --- Positive residue 

t4Q, 
dh 

llcýw 

(a) 

®0 

(c) 

0 

0- --- Negative residue 

KA 0 
14Y 

(b) 

110h, 14Y 

(d) 

(e) 

Fig. 2.1. (a) One pixel apart dipole residues generated by phase noise, (b) dipole residues generated by 

phase noise several pixels apart, (c) dipole residues generated h\ discontinuous objects and under- 

sampling haN e the tendency of lying far apart from each other and (d) & (e) are monopole residues. 
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Another kind of residue is dipole residues caused by object discontinuittiy. Sometimes 

wrapped phase maps contain objects that are discontinuous by nature such as holes. 

sharp edges, cracks or fluids of varying refractive index [Huntley (2001). Buckland el 

al. (1995)]. These discontinuous objects often generate dipole residues that lie on the 
discontinuity edges. The existence of these dipole residues depends on the discontinuity 

size of the object. If the object discontinuity exceeds n when wrapped; then. this case 

will cause these residues. Object discontinuity dipole residues are characterized by 

generating dipoles that tend to be well separated depending on the nature of the 

discontinuity, which makes them hard to identify as shown in the example shown in 

Fig. 2.3(c). 

The number of opposite polarity residues in the image is not always equal, due to the 

existence of monopoles. This may occur for two reasons, leading to two distinct types 

of monopoles; dipole-split monopoles and real monopoles. Dipole-split monopoles only 

occur close to the borders of the image, the simple fact of their border location causing 

their opposite polarity residue to lie outside the field of measurement. However, real 

monopoles may lie anywhere within the image, although they are usually found deeper 

inside the image than dipole-split monopoles, far away from the border regions of the 

image. Real monopoles generally occur in regions of high phase gradient or areas where 

the phase map contains true object discontinuities [Gutmann (1999)]. However; it is 

difficult to locate a monopole in a wrapped phase map with a large number of residues. 

It is assumed that any residue has a high probability of being a monopole if the 

boundary lies closer than twice the distance between the residue and its closest opposite 

polarity residue. Figs. 2.3(d) and (e) show two cases of monopole residues. The theory 

for approximating the number of monopoles in a wrapped phase map is presented by 

Gutmann [Gutmann (1999)]. 

2.3.3. Branch-Cut Concept for Phase Unwrapping 

The branch-cut technique is a powerful method that has the potential of providing 

correct phase unwrapping without any solution approximations. This method relies on 

the fact that the summation of the gradient estimate of any closed path in the wrapped 

phase map must be equal to zero. This principle is defined in Eq. (2.6) for any closed 

loop path 1P} in the wrapped phase maps: 
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ýocD(P1) =0 (2.6) 

where (1)(p, ) is the wrapped phase value at pixel p; E ; P} 
, 

7b(p; ) is the wrapped phase 

gradient and M is the number of pixels in a path {P} 
. 

This principle is applicable to 

noise free wrapped phase maps. However, in the presence of noise in the wrapped phase 

map, this principle will be violated in areas, which mark the start and the end of a 27r 

discontinuity. 

The branch-cut algorithm must ensure that the condition of Eq. (2.6) is not violated to 

achieve successful phase unwrapping. However, the condition of Eq. (2.6), in the case 

of perfect data without noise and in which the field variable described by the phase is 

everywhere contiguous, is satisfied at every pixel in the image. However in dealing with 

most real data we often find that Eq. (2.6) is not respected at all points. This can occur 

due to real discontinuities in the underlying field variable or because of noise in the 

phase. Whatever causes the violation of Eq. (2.6); it must be identified and localized. 

Branch-cuts restrict the unwrapping path from passing through corrupted areas and 

achieve a balance between the phases of opposite residues to satisfy the condition of Eq. 

(2.6). 

Border Inter-Pixels 

Pixel - 

Positive - 
Residue Inter-pixel 

-------- Branch cut 

Negative 
Residue 

Fig. 2.4. An inter-pixel network with a branch-cut between dipoles residues of opposite polarity. 

Once branch-cuts are placed between all residues in a phase map as shown in the 

example of Fig. 2.4, the unwrapping path can take any independent path in the phase 

map that respects the branch cut barriers and this will result in a correct phase 
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unwrapping which is consistent with the condition laid down in Eq. (2.6) as shown in 

Fig. 2.5(a). 

However, the wrong phase unwrapping path is generated whenever the unwrapping path 

crosses the branch-cut barriers as shown in Fig. 2.5(b). This creates 27r discontinuities in 

the unwrapped phase map. 

Border Inter-Pixels Wrong Unwrapping 
Paths 

Inter-pixel 
Branch cut 

(a) (b) 

Inter-pixel 
Branch cut 

Fig. 2.5. (a) Correct phase unwrapping paths avoiding the branch-cuts (there is several combination of 

paths could be done on this figure but this is one of them) and (b) Wrong phase unwrapping paths cross 

over the branch-cuts. 

2.3.4. Flood Fill Method in Phase Unwrapping 

The path integration process required by path following phase unwrapping algorithms 

may performed by the flood-fill algorithm. The flood-fill algorithm is a general image 

processing algorithm that is modified to do path-integration for phase unwrapping 

[Ghiglia and Pritt (1998)]. 

This algorithm starts by selecting a starting pixel and its corresponding phase value is 

stored in a solution array. Then, the four neighbouring pixels are then unwrapped and 

their unwrapped values are stored in the solution array. An example of the unwrapped 

pixel and its four neighbouring pixels is shown in Fig. 2.6. These four unwrapped pixels 

are stored in a track list. Then, the algorithm proceeds by iteratively choosing a pixel 

from the track list and unwrapping the four neighbouring pixels, inserting their 

unwrapped values in the solution array and then inserting these pixels in the track list. 

18 
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In this algorithm, the unwrapping path should not cross a branch-cut as shown in Fig. 

2.5(b) and it must not unwrap unwrapped pixels [Ghiglia and Pritt (1998)]. 

Pixel - 

Border Inter-Pixels 

MEN 

lw 

------------- 

Fig. 2.6. Unwrapped pixel and its neighbouring pixels. 

Fig. 2.7. Isolated regions created by encircling branch-cuts. 

The Flood-fill algorithm is summarized in Figs. 2.8 and 2.9. 

Isolated Region 

_ 
Inter-pixel 
Branch cut 
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Repeat 

Select a starting pixel 
Store its phase value in the solution array 
Mark the pixel unwrapped 
Update the track list (see below) 

While ( the track list is not empty) 
Fetch any pixel from the track list 

Update the track list (see below) 

End 

Until (all pixels in the wrapped phase map have been unwrapped) 

Fig. 2.8. A Pseudo-code of the flood-fill algorithm [Ghiglia and Pritt (1998)]. 

For (each of the four neighboring pixels) 
If (the pixel is not on the track list and not unwrapped) 

If (the pixel is not crossing a branch-cut) 

Unwrap the pixel and store its value in the solution array 

Insert the pixel in the track list 

Mark the pixel unwrapped 

End 

End 

End 

Fig. 2.9. A Pseudo-code of the algorithm that update the track list (Update the track list) [Ghiglia and 

Pritt (1998)]. 

In the case of the track list being empty, it is either because all the pixels in the wrapped 

phase map has been unwrapped or there is a region in the phase map has been encircled 

by branch-cuts isolating that region from the rest of the phase map. Fig. 2.7 shows an 

isolated region created by encircling branch-cuts. In the case of the isolated regions due 

to encircled branch-cuts, the flood-fill is repeated by choosing a starting pixel within the 

chosen region and repeating the previously mentioned process [Ghiglia and Pritt 

(1998)]. 
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2.3.5. Branch-Cut Methods 

Chapter 

Several methods have been developed to implement the branch-cut placement in a phase 
map such as: tree, dipole, mask quality guided and minimum cost flow (or cost guided 

minimum discontinuity) branch-cut placement methods. 

The tree branch-cut placement method is one of the earliest branch-cut methods 
introduced by Goldstein et al. in 1988 who was first to propose the branch-cut 

technique[Goldstein et al. (1988)]. This method creates trees that connect a number of 

nearest neighbour residues where the net charge of every tree should be zero. Also, if 

there exists a tree which not neutral and is closer to the border than any neutralizing 

residue, then this tree is neutralized by connecting it to the nearest border pixel. This 

method is very fast but it tends to isolate areas with dense residues because branch-cuts 

in such areas often close on themselves. The weakness of this method is the lack of a 

weighting factor. A modification of this method is the minimum spanning tree method, 

which introduced a weighting factor to the tree method and also used a new minimum 

Sterner tree. This method was introduced by Chen and Zebker [Chen and Zebker 

(2000)]. It uses Dijkstra's shortest path algorithm for searching for the nearest charge to 

the tree. In this method, the cuts are associated with the phase differences, which 

guarantees that the tree does not close on itself [Chen and Zebker (2000)]. 

The dipole branch-cut method was first introduced by Huntley [Huntley (1989)]. This 

method uses the nearest neighbour heuristic search to find the nearest opposite polarity 

residue for every residue in the phase map. It connects the nearest possible pair of 

opposite polarity residues in a single branch-cut. It similarly does the same procedure to 

the rest of the residues until there exist no residue pairs to branch-cut. In the case of a 

residue having the border closer than any balancing residue; the residue is branch-cut 

with the nearest border pixel. One of the disadvantages of this branch-cut method is that 

it often ends up with very long branch-cuts. The method was improved by using more 

sophisticated search strategies such as: improved nearest neighbour, simulated annealing, 

minimum-cost matching, stable marriages and reverse simulated annealing that try to 

find the corresponding dipoles with the minimum total connection length [Cusack et al. 

(1995), Buckland et al. (1995), Gutmann (1999)]. An advantage of these dipole methods 

over the tree method is that they are less likely to create branch-cuts that isolate noisy 

regions in the phase map. The major disadvantage of the tree and the dipole branch-cut 
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methods is that they use straight line branch-cuts which leads to unrealistic 
discontinuities distorting the unwrapped phase map even though they attempt to balance 

the overall charge of resides in the unwrapped phase map. 

A different approach to the branch-cut method was introduced by Flynn [Flynn (1996)]. 

This method uses the quality map to guide the placement of every branch-cut segment. It 

starts from a residue and follows the pixels with lowest quality until it finds another 

residue. It stops when it neutralizes the branch-cut growing tree. It repeats the same 

procedure until all the residues in the phase map are balanced by branch-cuts. Then, a 

post-processing procedure is used to thin the branch-cuts created in order to unwrap 
larger areas in the wrapped phase map. This method, like the tree map, tends to create 

isolated regions in the phase map. Also, the quality of the unwrapped phase map relies 

totally on the quality map used. In essence, different quality maps lead to different 

results and unfortunately no method has been found to identify the "best" quality map 

automatically in all cases [Ghiglia and Pritt (1998)]. A major disadvantage of this 

method is that it is not intelligent in the way the branch-cuts are placed this can lead to a 

somewhat unpredictable and random arrangement of branch cuts which is contrary to an 

intuitive view of where the branch cuts should lie [Ghiglia and Pritt (1998)]. 

The latest most efficient method of branch-cut placement is the minimum cost flow 

(MCF) or the cost guided minimum discontinuity method. This method was first 

introduced by Costantini [Costantini (1998)]. It uses a network of flows which defines 

the placement of every segment of the branch-cut guided by a cost factor and a global 

minimization strategy defined by Eqs. (2.7) and (2.8). This method minimizes the global 

sum of integer multiples of +/- 271 added to the original gradient estimate at every pixel 

before integration. Costs define where the branch-cuts are likely (low cost), or unlikely 

(high cost) to be placed [Costantini (1998)]. In essence, finding the best possible branch- 

cut placement aids the minimization criteria to achieve a global minimum value. Costs in 

this method are weighting factors, which if they are constant then the minimum cost flow 

minimizes the total length of branch-cuts. However, costs in this method are usually 

defined by either user defined weights or quality maps on the local interferogram such 

as: coherence, correlation coefficient, pseudo-correlation, phase gradient variance, 

maximum gradient, residue density, flatness or smoothness of the unwrapped phase. 
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This method is solved by network flow algorithms (a technique from graph theory and 

network programming) and has received wide interest in recent years. So far, this 

method is applied using a general package software. Thus, it suffers from a disadvantage 

in requiring huge computational and memory resources and also, the non-existence of 

the perfect or optimum distribution weighting factors which these algorithms need 

[Costantini (1998)]. 

MN 

min E=Ly cl kl + 
ij 

MN 

ci, j 
kl, 

j 
ij 

(2.7) 

Subject to 

k7 
j+l - 

ký 
j- 

k1+x k' 11 i+j= 

[(D 

j+l -ý 
,j- 

+l, 
j 

+ 
+>>J J 2; T 

(2.8) 

Where min E is the total number of minimum errors (discontinuities) in the unwrapped 

phase map, 
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[Costantini (1998)]. 
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A similar method to minimum cost flow is minimum discontinuity developed by Flynn 

[Flynn (1997)]. This method is a special case of the minimum cost flow algorithm. It 

relies on finding the unwrapped solution with a minimum number of discontinuities by 

tracing paths of discontinuities in the wrapped phase map then detecting paths that form 

loops where Eq. (2.7) is not satisfied. It then minimizes these discontinuities by adding a 

multiple of 2n to the phase values enclosed by the loops. This algorithm creates a mask 

that will act as a branch-cut mask which then requires a local path-integration method 

like the flood-fill method to unwrap the phase map. This method works with or without 

weighting factors or quality map. However, in the case of wrapped phase maps 

containing objects of discontinuous nature, this algorithm requires a quality map as it is 

the case for all algorithms for this kind of object. The lack of a good quality map or 

weighting factor means that this algorithm does not guarantee successful results all the 

time even though it is one of the most robust phase unwrapping methods. Another 

disadvantage of this algorithm is that it requires high memory and computational 

requirements. 

Another phase unwrapping algorithm that does not use straight branch-cuts is pole- 

guided-cutline phase unwrapping [Chavez (2002)]. This algorithm tries to identify 

fringe-lines generated by the existence of two opposite polarity residues. It uses the 

wrapped phase map to extract these fringe-lines by generating a score map that is a form 

of differential phase gradient map that only highlights phase gradients caused by 

residues. The algorithm performs a region growing process; which starts from one 

residue and stops when a balancing residue is reached. The region growing relies on 

following all possible fringe-lines from one residue to another [Chavez (2002)]. Then, a 

post processing mask-thinning algorithm is used to thin the cuts [Ghiglia and Pritt 

(1998)]. 

A general summary of any branch-cut phase unwrapping algorithm techniques is 

presented in the following steps in Fig. 2.10: 
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" (Optional) Calculate the summation of the gradient estimate of a2x2 closed 
loop at every pixel in the wrapped phase map using Eq. (2.5), 

o Identify positive and negative polarity residues using two 

conditions, 

0 (Optional) Extract a quality or a weighting factor from the wrapped phase map 
or insert user supplied weights, 

" Use any branch-cut algorithm to: 

" Group residues into dipoles of opposite polarity residues or group 

residues into a tree form with a net charge of zero, 

  Place branch-cuts between the dipoles or tree branches, 

" Create a branch-cut mask, 

" Unwrap all the pixels in the wrapped phase map using flood-fill algorithm and 

avoid crossing branch cut barriers in the inter-pixel network. 

Fig. 2.10. A general summary of any branch-cut phase unwrapping algorithm. 

2.3.6. Quality Guided or Reliability Ordering Methods 

Quality-guided methods are region growing methods that start from a pixel of highest 

quality or weighting factor then moves to unwrap all pixels in a descending quality 

order until they end with the lowest quality pixel [Ghiglia and Pritt (1998)]. These 

methods do not find residues or create branch-cuts. The success of the unwrapping 

process relies on how good the quality or weight map is. 

Meanwhile, reliability ordering methods are similar to quality-guided methods but they 

rely on sorting all the pixels in the wrapped phase map with respect to their quality and 

then unwrapping the wrapped phase map [Herra'ez et al. (2002)]. These methods' 

success also relies on how good the quality or weight map is. 

It is important to point out that if the quality mask (i. e., thresholded quality map) is used 

then these methods will be equivalent to the branch-cut placement methods. Moreover, 

if the quality map used is extracted from the phase gradient information in the wrapped 

phase map, then, these methods will be gradient-following methods [Ghiglia and Pritt 

(1998)]. In essence, these methods' results vary completely from one quality map to 
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another and the quality map itself defines the nature of these methods, for example. 
gradient-following methods [Lim, Xu and Huang (1995)] for maximum gradient quality 
map and maximum correlation path methods [Xu and Cumming (1996)] for correlation 
coefficient quality maps. 

The advantage of these methods is that they have low memory overheads and they are 

relatively simple to implement. If the phase unwrapping application contains contiguous 
data and the application is not critical or important then these algorithm may be useful. 
The disadvantage of these methods is that they rely completely on the quality or weight 

map without any intelligent or problem specific approach to the phase unwrapping 

problem. In essence, most quality or weight maps are extracted from the wrapped phase 

map using general image processing techniques without any knowledge of the cause 

preventing straightforward unwrapping. These weights guide the way unwrapping is 

done on the wrapped phase map with a high probability of phase unwrapping failure 

especially at high levels of noise and the existence of under-sampling and object 

discontinuity features in the wrapped phase map. These quality-guided processes don't 

consider the residue-vector which this thesis shows to be critical in understanding the 

causes of failure of unwrapping. Moreover, a thresholded quality map can be equivalent 

to the branch cut method depending on the threshold. 

2.4. Minimum Norm Methods 

Minimum-norm methods are completely different than path-following methods. They 

are divided into three different types: unweighted least-squares, weighted least-squares 

and LP-norm methods. These methods in general minimize up to a certain degree (least- 

square to the 2 degree order and LP-norm raised to the p degree order) the difference 

between the gradients of the wrapped and the gradient of the unwrapped solution in 

both x and y direction. However, these methods do still indirectly deal with the residue 

problem because their solution is obtained by integrating over the residues to minimize 

the gradient differences [Ghiglia and Pritt (1998)]. Minimum-norm methods have the 

advantage that they are more noise tolerant and they achieve the global smoothness of 

the unwrapped solution. Minimum-norm approaches are mainly applied to single 

contiguous phase distributions (albeit with gaps and noise). 
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2.4.1. Unweighted Least-Squares Method 

This method is the first minimum-norm method to be developed for phase unwrapping. 
Its mathematical formulation was developed by Hunt [Zebker and Lu (1998)] where he 

developed a matrix formulation suitable for general phase reconstruction problems. The 

unweighted least-squares method minimizes the distance between the phase gradient 

estimate (unwrapped phase) and the true gradient in the least-square sense as presented 
in Eq. (2.9) [Ghiglia and Romero (1994)]: 
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(2.9) 

Therefore, the solution that minimizes Eq. (2.9) is the unweighted least-squares 

solution. This equation can be further modified to the form presented in Eq. (2.10) 

[Ghiglia and Romero (1994)]: 
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Eq. (2.10) can be further modified to the following partial differential equations in the 

form presented in Eq. (2.1 1) [Ghiglia and Pritt (1998)]: 
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(2.11) 

Eq. (2.11) is a discretization of Poisson's equation on a rectangular grid presented in Eq. 

(2.12) [Ghiglia and Romero (1994)]: 

d 
I'(X, 1') +d P(X" v') = P(x, v) 

dx` dv" 
(2.12) 

Eq. (2.1 1) can be transformed into matrix vector form to transform the problem into a 

linear sytem as in Eq. (2.13) [Ghiglia and Romero (1994)]: 

Q`P=p (?. l 3) 

Where Q is a matrix that performs the discrete Laplacian operation on the vector `+' as 

shown on the left hand side of Eq. (2.11), Y' is a column vector containing the 
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unwrapped phase values which is the solution and p is a column vector containing the 

discrete Laplacian operation on the wrapped phase differences as shownin Eq. (-. 11) 

[Ghiglia and Romero (1994)]. 

The unweighted least-squares method is well defined mathematicly. However, these 

methods generate a very large number of linear equations to be solved equivvalant to the 

total number of pixels in the phase map. There are many methods developed to solve 

the linear system in Eq. (2.13). In essence, such methods are directly based on the fast 

Fourier transform (FFT) or discrete cosine transform (DCT) or the unweighted mutigrid 

algorithm by Ghigilia [Ghiglia and Romero (1994)]. The FFT and DCT are non- 

iterative methods, however, the unweighted multigrid method applies Gauss-Seidel 

relaxation on different grid sizes where each solution serves as an initial solution to the 

next grid size solution. 

Unfortunately, if the wrapped phase map contains residues, this will prevent successful 

phase unwrapping using the unweighted least-squares method. Because the unweighted 

least-square algorithms will tend to solve through the residues not around them. The 

error presented by residues is then spread all over the phase map leading to a solution 

that is not congruent to the wrapped phase data. 

2.4.2. Weighted Least-Squares Method 

The weighted least-squares method requires weights to achieve better results than the 

unweighted counterpart. These weights are user defined weights generated from quality- 

maps used to isolate corrupted areas with residues by masking them out of the wrapped 

phase data to diminish their effect on the unwrapped solution. The weighted least- 

squares method is a modification of the unweighted one where Eq. (2.9) is modified to 

the equation presented in Eq. (2.14) [Ghiglia and Romero (1994)] : 
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where weights are defined as following in Eq. (2.15) [Ghiglia and Romero 

(1994)]: 
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wj = min(w, 1j, w), 11iýýý = 171in(Wi 
j+1' 1t'1 jý 

(2.15 

where 0<_ w; 1, w,, "ý <_1. 

The weights are squared because of the matrix operation (W T W) of the weighted least- 

squares method. This can be seen when the matrix representation of the unweighted 
least-squares method presented in Eq. (2.13) is modified to the weighted form shown in 

Eq. (2.16) [Ghiglia and Romero (1994)]: 

WTWQ'P=WTWp 

where W is a matrix of weight values of every pixel in the phase map. 

(2.16) 

Furthermore, due to the weighting matrix included to the linear equations in Eq. (2.13) 

that are used to solve the unweighted least-squares problem makes it impossible for FFT 

and DCT algorithms to solve directly the weighted least-squares problem. In essence, 

iterative methods have been developed to solve the weighted least-squares problem 

presented in Eq. (2.16). Such iterative methods are the Picard iteration method, the 

preconditioned conjugate gradient (PCG) and the weighted multigrid algorithms by 

Ghiglia et al.. [ Ghiglia and Romero (1994)]. The three algorithms require zero-weights 

or quality masks explained in section 2.6. However, the Picard iteration method has the 

disadvantage that it does not guarantee to always converge to a solution. PCG produces 

solutions that are not congruent (unwrapped data are not phase matched to the wrapped 

data, it is defined in chapter 5 section 5.7) to the wrapped phase map, so a 

postprocessing operation need to be accomplished similar to the phase matching 

technique in chapter 5. On the other hand, the weighted multigrid is superior to PCG in 

giving better results and converges much faster. Recently, a new method has been 

developed to solve the weighted least-squares problem. This method is the biorthogonal 

wavelet transform (BWT) which is used to transfer the original linear system in Eq. 

(2.16) into the new equivalent system in the wavelet domain with the low-frequency 

and high-frequency portion decomposed [Kim (2005)]. This method converges more 

quickly and even produces better results than the weighted multigrid method [Kim 

(2005)]. 
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A drawback with these methods is if some residues are not masked out, they will cause 
the unwrapped phase to be severely corrupted depending on the density of the 

unmasked residues. 

2.4.3. Minimum LP-Norm Method 

A more advance method developed by Ghiglia [Ghiglia and Romero (1996)] is 

minimum LP-norm method which uses similar techniques to the two previous least- 

squares methods to solve the phase unwrapping problem. However, this method does 

not compute the minimum L2-norm but the general minimum LP-norm. In essence, by 

computing the minimum Lp-norm where p#2; this method can generate data dependent 

weights unlike the weighted least-square method. 

Eq. (2.11) can be further modified to the following non-linear partial differential 

equations in the form presented in Eq. (2.17) [Ghiglia and Romero (1996)]: 
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U(i, j) and V(i, j) are data dependent weights defined in Eqs. (2.18) and 

(2.19). 

The data-dependent weights can eliminate, iteratively, the presence of the residues in 

the unwrapped solution. These weights are defined in Eqs. (2.18) and (2.19) [Ghiglia 

and Romero (1996)]: 
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Where r is the degree at which the solution gradients match the measured gradients 

and pý'. 
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This method can also optionally use weights provided by quality maps that can be 

combined with the data-dependant weights. Eq. (2.17) can be represented in a matrix 
form similar to the weighted least-squares Eq. (2.16). This method solves non-linear 

partial differential equations (Eq. (2.17)) using iterative schemes similar to those used in 

the weighted least-squares method [Ghiglia and Romero (1996)]. This method is more 

robust than the previous mentioned least-squares methods but, unforunately, it is more 

computationally intensive. Moreover, another disadvantage of this method that it only 
finds solutions that are locally minimum. 

2.4.4. Other Global Integration Methods 

A global integration two-dimensional phase unwrapping method using Green's 

formulation was developed by Fornaro et al. [Fornaro et al. (1997), Fornaro et al. 

(1996), Ghiglia and Romero (1994)]. This method uses Green's first identity in its two- 

dimensional form. It was proved that Green's formulation method is mathematically 

equivalent to the least-square solution. This method is a direct solution for a global 

phase unwrapping problem once the phase at the image boundary has been estimated 

which can be achieved by solving a Fredholm equation of the second kind. It uses FFT 

techniques within this method which makes it computationally efficient. A discrete 

version of the Green's formulation method for phase unwrapping was later introduced 

in 2002 [Marano et al. (2002)]. 

Another global integration method for phase unwrapping estimates the parameters of a 

polynomial that best-fit the suface (unwrapped) solution to the wrapped phase data 

using regression [Slocumb and Kitchen (1994)]. This method was introduced first on 

one-dimensional phase unwrapping and then was later developed to two-dimensional 

phase unwrapping. The early two-dimensional method estimates the parameters of 

fringe lines in order to unwrap the wrapped phase map [Lin et al. (1994)]. Then, a more 

complex method was later developed by Schwarz in 1999 which is mentioned in section 

2.5.3 [Schwarz (2004)]. 

2.5 Hybrid Methods 

The former two methods have their own advantages and disadvantages, therefore, a 

hybrid model was introduced to use their merits and exclude their demerits. In essence, 

research had shown that there is a connection between methods using local and global 
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integration. In other words, the least-squares solution (global method) at a given point is 

the average of all the solutions obtained by simple path-following (local method) radial 

paths from the point to the boundary [Ghiglia and Pritt (1998)]. 

It was also found that in some cases, the global and the local ones were finding the same 

solution by minimizing the same error measure even though using completely different 

methods. 

Moreover, another link is when Goldstein's branch cut algorithm minimizes the branch 

cut lengths in the local method; it is actually equivalent to minimizing the number of 
discontinuities in the global method [Ghiglia and Pritt (1998)]. Therefore, one way to 

achieve the merits of both methods is by using a joint method. Several hybrid methods 
have been suggested; however, in this section only two hybrid algorithms will be 

presented which are the synthesis algorithm and the hybrid phase unwrapping with 

overlapping windows. 

2.5.1. Synthesis Algorithm 

Weighted least-square algorithms suffer from a drawback, if some residues are not 

masked out, they will cause the unwrapped phase to be severely corrupted depending on 

the density of the unmasked residues. Hence, Zebker [Zebker and Lu (1998)] proposed 

a hybrid algorithm that uses a local path-following branch-cut algorithm to generate a 

mask that contains branch-cuts that balance all the residues in the wrapped phase map. 

This mask is zero-weighted and also a zero-weighted quality map was added to this 

mask. In this way, all residues are balanced and masked out and also all corrupted 

regions are masked out. Then, this mask is provided as zero-weights to a global 

weighted least-squares algorithm. In essence, better results were achieved than the 

previous weightings of the weighted least-square algorithm [Zebker and Lu (1998)]. 

However, Zebker had another problem even though with his synthesis algorithm all 

residues are balanced and masked out the algorithm will generate errors if the branch- 

cuts defining the zero weights are placed in error [Zebker and Lu (1998)]. In other 

words, if the branch-cuts were placed incorrectly even though the branch-cuts balance 

all the residues in the wrapped phase map; it will create 2frphase error in the unwrapped 

phase map. As result of the weighted least-squares solution. this phase error will be 
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smoothed out all over the unwrapped phase map, thus, spreading the error over the 

whole unwrapped phase map. 

Zebker made the following statement about this phase unwrapping problem: 
"Unfortunately, no completely reliable algorithm for placing the weights has Yet been 

demonstrated. Simply balancing the number of positive and negative residues along the 

cuts is an ambiguous method of cut identification. The search for improved methods of 

cut definition will have to continue if algorithms such as those presented here are to be 

assuredly effective" [Zebker and Lu (1998)]. 

2.5.2. Hybrid Phase Unwrapping with Overlapping Windows 

This hybrid algorithm uses both local and global integration methods. This algorithm 
divides the wrapped phase map into overlapped windows. The algorithm uses a 

polynomial approximation to estimate the unwrapped phase by using complex parabolic 

polynomials. 

The polynomial approximation is considered the main method of phase estimation 

which is used to process every window in the phase map. If the quality of the results in 

a particular window is poor especially in the areas of discontinuity; a second method is 

performed which utilizes a two-dimensional discrete Fourier transformation [Schwarz 

(2004)]. An example of the regions where the Fourier transform method is likely to be 

used by this algorithm is shown in Fig. 2.11. 

The polynomial approximation method is used first because it is faster and uses less 

memory than the Fourier transform method but the second method guarantees to 

converge at all times. Also, on every window, a local integration method is performed 

using the minimum-cost-matching branch-cut algorithm developed by Huntley 

[Buckland et al. (1995), Collaro et al. (1997), Schwarz (2004)]. 

Then, after processing all the windows in the wrapped phase map; these unwrapped 

overlapping windows are joined globally using a region growing strategy followed by a 

fast global spline approximation used to match all the overlapping windows in one 

contiguous smooth result. This algorithm also uses phase matching or congruency 

because of the use of the global integration method in order to force the unwrapped 
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phase map to be congruent to the wrapped phase map. This is a good algorithm but it 

still suffers from the same problem as the synthesis algorithm which is the problem of 
the branch-cut placement [Schwarz (2004)]. 

The rest of the phase map is 

--performed using polynomial 
approximation using 

:. `. .. 
overlapping windows 

71 

.I.. il"2 11 ""1 , II 41 tf 
-i - 41 

1 -i 1- 

ýý 
_. T.... 4 ............... ...... ........... ... ...... 

1-4 
- 

--The Fourier Transform is 
performed in the red 
overlapping windows 

Regions of discontiguous 

nature 

Fig. 2.1 1. A quality map with overlapping windows in regions of discontinuous nature marking where 

the Fourier Transform method is likely to be used by the hybrid algorithm. 

2.6. Quality Maps or Weighting Factors and Masks 

In a wrapped phase map, there exists information other than phase derivates (gradients) 

and residues, such information can be extracted from the wrapped phase by means of 

general image processing techniques adapted for the phase unwrapping problem. This 

additional information is quality maps or weighting factors. This information provides a 

weight or measure of quality of how good a particular pixel is in the wrapped phase 

map. In essence, a quality map is a map of all the quality values for all the pixels in a 

phase map. Quality map is an essential factor in generating good unwrapped solutions 

and the performance of the unwrapping algorithms rely on how good the quality map is 

or the weight extraction method is. Thresholding the quality map will provide a new 

form of data called a quality mask. Quality masks are masks that contain binary data, 

for instance a zero in the quality mask represents low quality data or pixel and a one 
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represents a high quality data or pixel. These zero-weight masks can be used to exclude 

certain regions from the unwrapping process. 

Moreover, researchers have recognized the importance of quality maps in phase 

unwrapping, especially, after the introduction of the minimum cost flow network 

algorithm. They have developed different kinds of quality maps or weight extraction 

methods. However, there exists no standard that defines the weighting factors which 

would lead to acceptable phase unwrapping results [Gens (2003)]. In essence, different 

existing quality maps generate different unwrapped results and there is no universal 

procedure of generating a unique quality map that could provide a unique solution that 

is successful in phase unwrapping. 

Several existing quality or weight extraction methods are discussed and explained in the 

following sections: 

2.6.1. Pseudo-Correlation 

The pseudo-correlation measures the correlation of phase and considers phase with 

uniform magnitude. It estimates the quality map from the phase data itself without the 

need for an extra set of data. 

The 2D pseudo-correlation quality map defines the goodness of each pixel using the 

Equation: 

'7 m ,n 

cos((D; 
>j 

)] 2+ [sin(Ijj)]2 

(2.20) 
k2 

Where q,,., is the quality of the pixel (m, n), 

cÄ,,, n 
is the wrapped phase value of the pixel (m, n), 

k is the window size (odd number). 

The quality of every pixel in the wrapped phase map is calculated in the kxk 

neighbourhood of each pixel (m, n) in the phase map. In essence, a kxk window is 

centred at pixel (m, n). Fig. 2.12 shows a 3x3 window centred at pixel (m, n). 
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The summation in Eq. (2.20) is carried out over the pixels in the window. 

Pixel - 

Fig. 2.12. A 3x3 window centred at pixel (m, n). 

2.6.2. Phase Derivative Variance 

The phase derivative variance measures the statistical local variance of the wrapped 

phase derivatives. It is the most reliable quality map extracted from the wrapped phase 

itself. Actually, phase derivative variance indicates the badness rather than the goodness 

of the phase data. 

The 2D phase derivative quality map defines the goodness of each pixel using Eq. 

(2.21) below: 

qm, 
n Bm, 

n 

Where q,,,,,, is the quality of the pixel (m, n). 

(2.21) 

B,,, 
n 

is the badness of the phase derivative variance of pixel (m, n), which is 

given by the Eq. (2.22): 
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Where 0C; is the wrapped phase gradients in the horizontal direction, 

V(D V is the wrapped phase gradients in the vertical direction, 

k is the window size (odd number), 

Vom, is the mean value of V (D' in kxk window, 

V(Pr is the mean value of V(D, '.; in k xk window. 
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2.6.3. Maximum Phase Gradient 

The maximum phase gradient measures the magnitude of the largest phase gradient i. e.. 
partial derivative or wrapped phase difference in a kxk window. Like phase derivative 

variance quality map, maximum gradient indicates the badness rather than the goodness 

of the phase data. 

The measure of badness for each pixel is given by the Eq. (2.23): 

max 
Bm 

n= max 
in kxk window 

max 
in kxk window 

(2.23) 

The good data in the phase map can be achieved by using the reciprocal of badness as 

define in Eq. (2.21). 

2.6.4. Second Phase Difference 

Another quality map extraction method is the second difference quality map [Herra'ez 

el al. (2002)]. This quality map measures the badness of each pixel in a kxk window 

using Eq. (2.24): 
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h(i, j) and v(i, j) are the horizontal and vertical second differences, respectively. 

After determining the badness of each pixel, the quality of each pixel q,,,,,, can be easily 

calculated using Eq. (2.21). 

2.6.5. Quality Map Extraction Using Weighted Window 

All the quality map extraction methods described previously use fixed windows around 

each pixel to extract quality information. However, in this method, an adaptive 

weighted window is used to sharpen the shape of the extracted quality map and to 
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minimize the influence of noise [Cho (2004)]. This extraction method is summarized as 
following: 

1. Extract the quality map B� using phase derivative variance method 

described in section 2.6.2. 

2. Design a kxk weighted window using Eqs. (2.25) and (2.26) [Cho (2004)]: 

w(i, j) = Aoae-`ý, -(k-1)/2<i, j <(k-1)/2 (2.: 5) 

a=K 
I 

Where t is the distance from the centre pixel, 

I is the quality map in the kxk window, 

I is the average value of I, 

6l is the standard deviation of I, 

AO is the normalised constant, 

(2.26) 

K is the damping factor, where this parameter is determined by 

the quality value B� calculated by in the previous step at 

pixel 
(m, n). 

3. The modified weighted quality map is then extracted using Eq. (2.27) but 

restricted with weights as in Eq. (2.25): 
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4. Proceed to step 2 unless the available execution time is exhausted or the 

difference between the present and previous solution is very small [Cho 

(2004)]. 

The good data in the phase map can be identified by using the reciprocal of badness as 

defined in Eq. (2 . 
21). This quality map extraction is intelligent but it is not problem- 

specific to phase unwrapping. It is still a general image processing technique that is 

robust and intelligent, but unfortunately computationally exhaustive. 
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2.6.6. Other Quality Map Sources 

There exist other quality or weighting map sources such as: correlation coefficient (only 
for SAR application), residue density, flatness of the unwrapped phase. smoothness of 
the unwrapped phase (generated by the sum of absolute values of the phase gradient) 

and statistically derived values (this method introduced for the MCF algorithms) [Chen 

and Zekber (2000)]. 

2.7. Other Forms of Phase Unwrapping 

There are other forms of phase unwrapping such as 3D-phase unwrapping and Multi- 

wavelength/ Temporal phase unwrapping. 

Three-dimensional phase unwrapping is still a new area of research and only a few 

algorithms have been proposed. In 2001, Huntley proposed a three-dimensional noise 

immune phase unwrapping algorithm that extended the two-dimensional residue- 

balancing method into three dimensions [Huntley (2001)]. Cusack et al. proposed 

another robust three-dimensional phase unwrapping algorithm that was used to unwrap 

MRI data [Cusack and Papadakis (202)]. This algorithm uses a quality measurement to 

guide the final unwrapping path. Two novel three-dimensional phase unwrapping 

algorithms were proposed by [Abdul-Rahman (2007)]. The first algorithm attempts to 

find the best unwrapping path in the three-dimensional wrapped-phase volume. The 

second algorithm follows a best path approach to unwrap the phase volume, but takes 

into account the effect of singularity loops. Singularity loops are defined here as the 

source of noise that must be avoided during unwrapping. 

Multi-wavelength/ Temporal phase unwrapping requires a projection and acquisition of 

a sequence of fringe maps [Huntley and Saldner (1993)]. In this phase unwrapping 

method, the phase at each pixel is measured as a function of time. Unwrapping is then 

carried out along the time axis for each pixel independently of the others. Thus 

boundaries and regions with poor signal-to-noise ratios do not adversely influence good 

data points [Huntley and Saldner (1993)]. 

2.8. Conclusion 

This chapter has presented all the major theory of the phase unwrapping problem. A 

definition of the problem has been presented and the phase unwrapping integration 
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methods have been explained with a review of some of the most popular existing phase 
unwrapping algorithms to date. 

Moreover, this chapter has defined the quality map technique and presented a review of 
the major existing quality maps or weighting factors. 

The problems that face many phase unwrapping algorithms have been briefly described. 

The major problem for all phase unwrapping algorithms is the residue problem and its 

corresponding ghost discontinuity lines. Many statements by researchers in phase 

unwrapping have pointed to this issue. Researchers have tried to solve the residue 

problem either directly or indirectly. 

The optimum phase unwrapping algorithm has to rely on three major techniques to 

achieve optimum results. The first technique needs to deal with the residue problem 
directly. The second one needs to find an optimum weighting factor or quality map. 
Finally, it is necessary to create the masks or branch-cuts that balance residues of 

opposite polarity and mask out residues and their corresponding ghost discontinuity 

lines. The third point is the most important point which relies on identifying the residue 

ghost discontinuity lines. Without the third point, any phase unwrapping result is not 

robust. 

In summary, none of the previous methods address the underlying causes of unwrapping 

failure. Such causes are specifically addressed in this thesis through the development of 

the residue vector approach. 
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Chapter 3 

3. Artificial Intelligence 

3.1. Introduction 

Chapter 3 

Many Artificial Intelligence (AI) methods have been created and a lot of research has 

been invested in developing its techniques. 

Artificial Intelligence has been used for the last two decades in many areas of science 

and technology especially image processing. In image processing, Al has been used for 

shape detection, feature extraction, object and pattern recognition. filtering, calibration, 

phase recovery, visual signature and optimization. It has proved to be efficient, robust, 

noise tolerant and intelligent. Al has found many image processing applications in the 

real world especially in MRI, optical metrology, system calibration, computer vision, 

virtual reality, etc.. 

These are some of the reasons why there is interest in Al technology for the benefit of 

phase unwrapping research. This chapter presents a brief description of some of the 

most important Al algorithms to date especially the stochastic search algorithms such as 

Simulated Annealing (SA), Neural Networks (NN) and Genetic Algorithms (GA). The 

Al stochastic search is a technique that uses probabilistic methods to solve hard 

combinatorial problems. Stochastic search algorithms rely on randomized decisions 

while searching for solutions to a given problem. These algorithms will be the basis of 

the work presented in later chapters. Moreover, this chapter presents some of the 

existing Al methods developed for phase unwrapping. 

3.2. Artificial Intelligence Algorithms 

3.2.1. Simulated Annealing 

Simulated Annealing is a global stochastic search algorithm that is capable of solving 

NP-hard problems in polynomial time [Cusack et al. (1995)]. It is easy to implement 

and can have many general applications. This algorithm relies on a random search using 

a Monte-Carlo method of acceptance to the modification of the existent solution 

controlled by a temperature mechanism. It is not a local search algorithm, but a global 

search algorithm that uses some problem specific local search algorithms. However, the 
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annealing process of the solution means very long slow cooling, which if speeded up 
will probably lock the solution into a local minimum. The reason for this slow cooling 
is that it relies on one solution. Although it seems memory efficient, it lacks the 
knowledge of different possible solutions at every iteration it executes. Therefore. the 

possibility of fast convergence of one solution to the global optimum is very small due 

to this lack of knowledge. 

SA is a method that minimizes a cost function and defines a corresponding probability 
distribution then proceeds by sampling the probability distribution as the temperature is 

reduced to zero [Stramaglia et al. (1999)]. A simulated annealing algorithm is 

summarized by the following steps in Fig. 3.1. 

Set an initial starting temperature; TSta,. f 
Generate an initial solution, s; 
Set a temperature reduction function, a 
Evaluate the quality of the initial solution, E; f(s; ) 

Repeat 
Repeat 

Generate a new solution, s; +1 
Evaluate the quality of the initial solution, E; + j f(s; + j) 
Evaluate, OED. = E; 

+, - 
E; 

If ( AEA <0), then, s; = s; +1; 
Else 

Generate a random number, pc [0,1] ; 

If p< exp(->A T) , then, s, = s; +l; 
EndElse 
k=k+1 

Until k=number of repetitions 
T= a(T) 

Until stopping condition (T=Trop) 

Fig. 3.1. A simple Simulated Annealing Algorithm. 

SA consists of the following techniques: 

" Cost function is used to evaluate the quality of the solution, 

" Solution generation is a mechanism used to generate new solutions, 

" Acceptance criterion is used to decide whether new solutions arc accepted, 
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0 Temperature control parameter is used to control the speed of the temperature 
cooling process, 

0 Temperature schedule is used to lower the temperature, 

" Stopping Criterion is used to decide whether the algorithm has reached the 
optimum solution. 

3.2.2. Reversed Simulated Annealing 

A more advanced SA method is reverse simulated annealing (RSA) [Gutmann (1999)]. 

Unlike the very slow convergence of simulated annealing in converging from a 

randomly created solution that is far from the global optimum, RSA starts from an 
initial solution that is close to the global optimum using a local search method. If the 

cooling mechanism starts from this initial solution, it might trap the solution in a local 

minimum, thus, the initial solution is heated to a certain point and cooled back again to 

the reach global optimum. Even though RSA is about three times faster than SA, it was 
found that it is still slow compared to a local search algorithm. 

3.2.3. Genetic Algorithms 

A Genetic Algorithm is an artificial intelligence method that mimics the evolution of 

genes throughout human generations, leading to better ones. A Genetic Algorithm is a 

stochastic search technique that uses a global random or problem-specific search 

controlled by a set of different operators [Fornaro et al. (1997)]. It relies on a 

probabilistic search mechanism and it uses self-adapting strategies for searching based 

on random exploration of the solution space coupled with a memory component. This 

enables the algorithm to learn the optimal search path from experience [Steeb (2002)]. 

Genetic algorithms are specifically designed to solve non-deterministic polynomial 

problems called NP-hard problems which involve large search spaces containing 

multiple local minima [Steeb (2002)]. It has also been applied to many combinational 

optimisation problems and has proved its robustness and speed. It has one advantage 

over NN that it is an unsupervised Al. this means that it does not need training. Also, 

the GA strategy reduces the possibility of falling in a local optimum. One disadvantage 

of this method is that it needs well-chosen setting parameters in order to achieve a 

satisfactory result and to increase convergence speed [Cuevasa et al. (2002)]. 
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Genetic algorithm iterations consist of a set of chromosomes where every chromosome 
represents a candidate solution for the problem to be solved. Chromosomes consist of a 
number of genes that can be considered as variables to the problem. Manipulating these 
genes (variables) will result in creating new solutions. To evaluate how much the 

solution has been improved, a fitness function (evaluation function) is tailored to the 

problem. 

Such a method uses three natural techniques: 

" Natural selection, which allows the best genes (e. g., healthy in human terms) to 
be selected thus giving them more possibility of moving on to the next 

generation, 

" Crossover, which is responsible for producing new chromosomes (offsprings) 

from the original chromosomes (parents), 

" Mutation, applies deliberate changes to a gene at random, to maintain variation 
in the genes and increase the probability of not falling into a local minimum 

solution. It involves exploring the search space for new better solutions. 

Genetic algorithms can be summarized as following in Fig. 3.2: 

Randomly generate initial population, size Pop, 
Evaluate the fitness of every chromosome, 

Do 
For chromosome =1 to Pop/2 

Use selection operator to select to chromosomes, 
If rand_no. < P,, 

Apply the crossover operator, 
If rand 

_no. 
< Pn, 

Apply the mutation operator, 
End 
Replace the new population with the old population, 
Evaluate the fitness of all new chromosomes, 
Preserve the most-fit chromosomes so far and copy into the new 
population, 

Repeat while not converged or not at maximum iteration. 

Fig. 3.2. A simple genetic algorithm, where Px and Pm are the probabilities of performing crossover and 

mutation, respectively. 
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3.2.4. Hybrid Genetic Algorithms 

Hybrid genetic algorithms (HGA) use both local search heuristics and genetic algorithm 

global search methods. This is of great interest in combinational theory especially in 

solving NP-hard or NP-complete problems like the Travelling Salesman problem. It has 

out performed other Al methods. Many journal papers have been published in this 

subject especially in developing new operators such as the selection, crossover and 

mutation operators. It is much faster than any other Al method and it can achieve results 

that have never been achieved with other graph theory or Al methods within a 

reasonable time. 

This artificial intelligent method relies on both problem-specific and general search 

methods to achieve global optimum results. 

Hybrid Genetic algorithms can be summarized as following in Fig. 3.3: 

Generate initial population, size Pop, using a local search method like nearest 
neighbour, 
Evaluate the fitness of every chromosome, 

Do 
For chromosome =1 to Pop/2 

Use advanced selection operator to select to chromosomes, 
If rand_no. < P,, 

Apply problem-specific crossover operator, 
If rand 

_no. 
<Pm 

Apply the mutation operator based on a local search 
method like nearest neighbour, 

End 
Replace the new population with the old population, 
Evaluate the fitness of all new chromosomes, 
Preserve the most-fit chromosomes so far and copy into the new 
population, 

Repeat while not converged or not at maximum iteration. 

Fi`g. 3.3. A simple hybrid genetic algorithm, where P,, and Pm are the probabilites of performing crossover 

and mutation, respectively. 
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3.2.5. Neural Networks 

Neural Networks (NN) are a huge subject in modern science, they have been 

implemented in many areas of technology and especially in image processing, pattern 

recognition and phase unwrapping. There are different kinds of NN's. It can be defined 

as a network of neurons (a computational unit), which mimics the thinking and 
intelligence of human brain cells. This network is trained by different sets of training 

pattern where the error between the actual and the desired output of the network is used 

to update the weights of the neurons. 

3.2.6. Fuzzy Logic 

Fuzzy Logic (FL) is an Al method that has been used intensively in control engineering 

and it has some application in image processing. It is used in image processing for 

clustering and classification [Hui and Chai (2001)]. It is more efficient when used 

alongside other Al methods because it is very good in decision making. This method 

can be defined as a way that mimics human logic for decision-making. Unlike the 

decision making performed by computers which uses only a true or false cases, it uses a 

degree of how much a parameter is true or false. A drawback is that it cannot be an 

algorithm by itself - i. e. it must be used in conjunction with other techniques. 

3.2.7. Mean-Field Annealing 

Mean-Field Annealing (MFA) is a technique derived from statistical physics for the 

study of phase transitions [Stramaglia et al. (1999)]. It is very similar to SA; in fact, it 

uses the same steps as those used by SA. Instead of sampling the probability 

distribution, MFA attempts to approximate the mean of the probability distribution 

while the driving temperature mechanism is decreased [Stramaglia et al. (1999)]. 

3.3 Artificial Intelligence for Phase Unwrapping 

3.3.1. Introduction 

Due to the recent advances in artificial intelligence (Al) techniques and their ability to 

solve problems, Al is finding more and more applications, which gives an impetus to 

use these advances in the case of the phase unwrapping problem. PU has been 

implemented using Al techniques such as. neural networks, genetic algorithms. 

simulated annealing, mean-field annealing, Bayesian approaches, Markovian 
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approaches Monte-Carlo Metropolis and hybrid forms made up of a combination of 
these systems. 

Even though Al has been used to solve the phase unwrapping problem, these algorithms 
have not been assessed or challenged by the variety of vexing phase unwrapping 
situations occurring in actual data analysis which more conventional algorithms have 

confronted [Zebker and Lu (1998)]. Meanwhile, the science of Al is evolving fast. New 

more efficient techniques have been developed and implemented. Besides, various 
sectors of this technology which have not been looked at previously in the context of 
PU, or did not have so much interest, are now well developed sciences which cannot be 
ignored. Such is the case with genetic programming, genetic algorithms, fuzzy logic and 
hybrid models. 

There are different kinds of Al technique, some of which have been mentioned 

previously, which can be summarized in terms of their application to the phase 

unwrapping problem as follows: 

3.3.2. Neural Network 

Back-propagation NN was investigated on PU and the outcome was it detected phase 

wraps in %95 of the occasions in one-dimensional PU and in two dimensions 

unwrapping using NN have taken several hours to unwrap even simple images [Tipper 

et al. (1996), Hamzah et al. (1997)]. Also, Hopfield and Kohonen NNs have been 

experimented with and detected phase wraps on approximately 50% of the occasions 

[Hamzah et al. (1997)]. Due to the limited success with BP NN in one dimension, and 

their characteristic of being fast alongside their trait of having the ability to generalize 

input data and ignore noise, it was then applied to 2D PU and achieved 90% success in 

identifying phase wraps [Schwartzkopf et al. (2002)]. General regression and radial 

basis NN's have been explored, but with very minimal success. One disadvantage of 

NN's is that they require intensive training on a considerable number of wrapped phase 

maps. 

3.3.3. Genetic Algorithms 

This intelligent method was applied to PU as a local integration path-following 

technique and showed very promising results. This GA method is designed to find an 
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optimum path with the least number of discontinuities. It was mentioned by Fornaro 
that unwrapping using this GA method would result in some under sampled phase 
values [Collaro et al. (1997), Collaro et al. (1998)]. But it is very different from any 
other local or global integration method as the error remains strictly confined to the 
under sampled area. It does not allow the propagation of error out of the corrupted 
regions and that is achieved without fences and/or blanking weights [Collaro et al. 
(1997), Collaro et al. (1998)]. However, this method suffers from two main 
disadvantages. The first is that it uses a normal genetic algorithm which is very costly in 

terms of computation time. The second is this method attempts to locate an integration 

path with a minimum number of discontinuities from a very large number of possible 

paths. It is even worst with the increase of image size. This method has a very high 

computational cost and given that most of the iterations are meaningless if there is no 

residues present in the phase map its general efficiency is questionable. 

3.3.4. Simulated Annealing 

Several simulated annealing algorithms have been developed for solving the phase 

unwrapping problem. One of these algorithms uses a local phase unwrapping 
integration method which identifies residues, then, groups these residues in branch-cuts 

with minimum total length. The simulated annealing was used in the residue grouping 

phase such that it achieves the minimum total length of branch-cuts. It has proved to be 

robust but inefficient. Even for a phase unwrapping problem with few residues this 

algorithm still consumes excessive time [Cusack (1995)]. 

The other SA algorithm developed for phase unwrapping is based on global integration. 

This method fits a surface (unwrapped solution) to the wrapped phase data by 

minimizing an energy function that is the sum of two functions using SA. The first 

function measures the discrepancy between the surface (unwrapped solution) and the 

wrapped phase map and the second function is a "membrane model" that measures the 

departure from a contiguous surface. Moreover, this SA unwrapping method is still 

computationally exhaustive and the method itself what require further development in 

order to be practical. [Ghiglia and Pritt (1998)]. 

A more advanced phase unwrapping- method was developed that uses simulated 

annealing with a constraint technique. In this method phase unwrapping is formulated as 
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a constraint minimization problem with a vector field of integers similar to the tiiCF 

and Flynn's algorithms in section 2.3.5. This method reduces the number of 27 
discontinuity errors between the gradient of the estimated unwrapped solution and the 

wrapped gradient of the wrapped phase map [Guerriero (1998)]. The minimization 

problem is solved using simulated annealing with a constraint technique [Guerriero 

(1998)]. It would seem to be a sound approach to the phase unwrapping algorithm 

though it lacks weighting factors. It can give good results, but using simulated annealing 

causes this method to be time consuming and computationally intensive. 

3.3.5. Mean-Field Annealing 

Mean-Field Annealing (MFA) has been applied on the same basis as the phase 

unwrapping method described in section 3.3.4 that formulates phase unwrapping as a 

constraint minimization problem with a vector field of integers [Stramaglia et al. 

(1999)]. In essence, a mean-field annealing algorithm was used instead of a simulated 

annealing algorithm. This method uses a cost function based on the second-order 

differences and it can be applied for any other cost function similar to simulated 

annealing [Stramagliaet al. (1999)]. It is also a very good technique to be used as a 

phase unwrapping algorithm but again it lacks weighting factors. It achieves similar 

results to that of the simulated annealing algorithm; however, it consumes less 

computational time than the simulated annealing algorithm described in section 3.3.4. 

3.3.6. Reverse Simulated Annealing 

This artificial intelligent method has been used to solve the branch-cut minimization 

problem in phase unwrapping. It can be considered as a hybrid simulated annealing 

method that uses two local search heuristics and a global search method. The first local 

search heuristic uses a nearest-neighbour branch-cut solution as an initial starting 

solution to save the computational burden required by a normal simulated algorithm 

when starting with a random initial solution. The second heuristic is a clustering method 

used to cluster residues in groups where each group is solved separately using the 

reversed simulated annealing in order to lower the computational burden on the 

algorithm. The global search method is the simulated annealing algorithm used to find 

the global optimum minimum cut length solution. Unfortunately. this algorithm is very 

expensive in terms of calculation time if the number of residues is high but it is 

generally about three times faster than a normal SA algorithm [Gutmann (1999)]. 
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3.3.7. Fuzzy Logic 

Chapter 3 

Fuzzy logic has been used in phase unwrapping for clustering purposes. As can be seen 
many phase unwrapping algorithms have been developed and each algorithm is suitable 
for specific features in wrapped phase map, however there is no universal phase 

unwrapping algorithm that could unwrap all kinds of wrapped phase maps. Thus this 
fuzzy logic clustering method was designed to decide which phase unwrapping 

algorithm suitable for a certain cluster in the wrapped phase map [Hui and Chai (2001)]. 

3.4. Conclusion 

In this chapter, we have presented a brief description of the major artificial intelligence 

methods and some of the applications of the artificial intelligence methods in phase 

unwrapping. The brief review presented the interest of researchers in solving the phase 

unwrapping problem using artificial intelligence. Some of the phase unwrapping 

methods presented in this chapter are efficient in producing good results but they 

require extensive computation and still they lack the sets of weights that help in 

achieving the optimum unwrapping solution. On the other hand, artificial intelligence 

for phase unwrapping is a promising field of research that has to be explored. In the 

next two chapters, two phase unwrapping algorithms will be presented that use an 

artificial intelligent method, namely a hybrid genetic algorithm. 
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4. Hybrid Genetic Algorithm for Branch-Cut Phase Unwrapping 

4.1. Introduction 

4.1.1. Existing Dipole Branch-Cut Phase Unwrapping Methods 
The branch-cut phase unwrapping method has been implemented using many different 
techniques to achieve the global optimum in minimizing the total cut length. Such 
techniques that use the dipole branch-cut method include: the nearest-neighbour 
algorithm [Cusack et al. (1995)], the modified nearest-neighbour algorithm [Cusack et 
al. (1995)], the simulated annealing algorithm [Cusack et al. (1995)], the minimum-cost 

matching algorithm [Buckland et al. (1995)] and reverse simulated annealing algorithm 

aided with a clustering technique [Gutmann (1999)]. 

Nearest-neighbour and modified nearest-neighbour algorithms are local heuristic search 
techniques that use a set of nearest neighbour heuristics suitable for the branch-cut 

phase unwrapping problem [Cusack et al. (1995)]. Although these algorithms are fast, 

they might end up with large branch-cuts embedded in the phase map, thus, causing the 

unwrapped phase map to lose its smoothness. 

A more advanced graph theory algorithm called `minimum-cost matching' (MCM), 

developed by Buckland et al. uses the Hungarian algorithm to find the minimum total 

cut length of branch-cuts [Buckland et al. (1995)]. This algorithm finds the minimum of 

the total cut length for the branch-cuts within a time approximately proportional to the 

square of the number of residues. This algorithm is a powerful one in finding an 

optimum solution, but it suffers from several disadvantages. It requires a matched 

number of opposite polarity residue sources in the phase map. Also, it needs a 

reconstructed graph of all possible branch-cuts between nearest-neighbours. It can be 

hard to find the optimal graph to solve the problem from the first run of the algorithm. 

In other words, the optimum number of edges (branch-cuts) in a graph that will lead the 

minimum-cost matching algorithm to the global optimum, without needing to add 

excessive numbers of border pixels to the problem (yet more edges) is hard to find, and 

more border pixels mean a slower and more complicated problem. 
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Another forms of search are by means of artificial intelligence in the form of simulated 
annealing (SA) [Buckland et al. (1995)] and reverse simulated annealing (RSA) 
[Gutmann (1999)]. These two methods have been explained in chapter 3. 

4.1.2. Branch-Cut Phase Unwrapping Problem and the Travelling Salesman 
Problem 

The travelling salesman problem is a graph-theoretical combinational optimization 
problem. It is a very famous problem and a well-known profound research subject. The 

problem can be summarized as following: "A travelling salesman has to visit an N, 

number of cities, C= {c1, c2, C3... cNc} covering the shortest route passing through all 
the cities only once and returning back to the starting city"; 

Total Dist = ýd(c;, c; +1) where c; c1+1. (4.1) 

where d(., 
.) 

is a method that calculates the distance between two points. 

An example of the travelling salesman tour is shown in Fig. 4.1. This problem cannot be 

solved in polynomial time execution as the number of cities increase, since the 

complexity of the problem increases exponentially. If it is required to explore all 

possible solutions, the number of iterations is infinite or very large depending on the 

size of the problem. In essence, if N-cities exist, it will take N,! iterations to explore 

every solution. This problem belongs to a class of non-deterministic polynomial time 

problems called NP-hard or NP-complete. No polynomial time algorithm exists to solve 

this problem. Moreover, an algorithm that can solve an NP-hard problem can solve any 

class of problems [Jung and Moon (2002)]. In order to develop an algorithm to sole e 

this problem, the algorithm must be intrinsically non-linear as it only generates a series 

of approximate guesses at a possible solution. 

The TSP can be defined as a Graph G= (V, E, W), which consists of a set of vertices 

`V' corresponding to the cities in the TSP, a set of edges `E' representing the trip 

covered from one city to another and `W' a set of edge weights specifying the distance 

of the trip between two cities. [Nagata and Kobayashi (1999)]. 

54 



Two-Dimensional Phase Unwrapping 
Chapter 4 

al 

jNýk 
r0- ýýý 

tiJ 
_ 

ý- 

- 
: K' -- - 

,_ 

ýr 

ti 5,4. e-. 

. el-- -- 40 

_Y 7 

'ý 

i 

-- 32 

r ti 

J1: 
t 

5' 

Fig. 4.1. An example of a travelling salesman tour, where the circles represent the cities the travelling 

salesman has to visit and the dashed lines are the trip from one city to another and on the dashed lines 

there is a set of weights corresponding to the distance covered. The start and the end city are marked by a 

star. 

To achieve an efficient unwrapping, the cut length between residues has to be 

minimized. Also, for a global optimization of the unwrapping algorithm, the total cut 

length between all the residues and boundary pixels, if there are any, has to be 

minimized. The minimization of the total cut length can be achieved by graph theory in 

the form of TSP. The TSP is a method that has been used to formulate many problems 

and applications. Thus, once the problem in question is formulated into a TSP form, it 

can use the knowledge and advances used for solving TSP to be optimized. One 

problem that can be formulated into the TSP is the branch-cut problem. The branch cut 

problem cannot be considered as finding a minimum weight spanning tree (MWST) as 
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there is no connectivity between the vertices, hence the efficient algorithms for finding 
MWSTs are not applicable here. 

It is found that the branch-cut problem (BCP) is equivalent to the TSP. In essence, 
residues R= {r1, r2, r3... rNc} are considered to be the cities in the TSP and the nodes or 
vertices in a Graph. The branch-cuts B= {b1, b2, b3... bNc_1 } are the trips from one city 
to another in the TSP and the edges in a Graph. The cut length between two residues, 
L(r;, rj) where r; and r must be positive and negative residues respectively, is the 
distance of the trip between two cites and the edge weight in the Graph. Hence, the main 
objective is to reduce the total distance covered by the salesman in the TSP, which can 
be implemented in phase unwrapping as the reduction of the total cut length between all 
residues. In other words, the algorithm achieves a global minimum optimum solution of 
cuts before unwrapping. The only difference between the BCP and the TSP is that BCP 
is a matching problem, where its nodes have to be matched and connected in pairs, and 
TSP is a tour construction problem, where nodes have to be connected sequentially. The 

similarities between TSP and BCP are summarized in Fig. 4.2. 

Graph TSP BCP 

Complexity NP-Hard NP-Hard 

Weights Tour of the salesman Branch-cut Length 

Vertices Cities Residues 

Edge Trip from one city to 

another 

Branch-cut 

Fig. 4.2. Similarities between the Travelling salesman problem and the branch-cut problem and their 

relation to a typical graph. 

A vast number of algorithms have been used to solve the TSP. One method of solving 

the TSP involves the use of heuristics, which are local search algorithms that can be 

characterized as linear. The simplest heuristic algorithm for solving the TSP is the 

nearest-neighbour heuristic. This algorithm is a local search algorithm that finds the 

nearest-neighbour city by calculating the distance separating two cities [Nagata and 

Kobavashi (1999)]. Once the nearest city is found, it is joined in the tour and the search 
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for a new city commences until returning to the starting city. Heuristics are widel,, used 
even though they produce sub-optimal solutions because they converge in polynomial 
time. They have interesting properties such as exploring all the possible nodes or cities 
close to the current city and they are also greedy because heuristics always choose 

solutions that are best at the moment. These algorithms are fast but they often have the 

potential of not converging to an optimum solution [Tsai et al. (2004)]. 

On the other hand, another method for solving the TSP is non-linear utilizing artificial 
intelligence. Artificial intelligence algorithms include simulated annealing and genetic 

algorithms [Jayalaksmi et al. (2001)]. These algorithms are global search methods that 

are robust but often converge more slowly than local search techniques. A powerful 

artificial intelligence algorithm is the genetic algorithm. This algorithm searches for a 

global optimum solution. It uses a global search with methods that are general and not 

problem specific, unlike heuristics. GAs do not utilize the knowledge of how to search 

for the solution [Mansour et al. (2004)], thus, a certain percentage of GAs iterations are 

not needed because they do not lead to any improvement to the solution. Hence, GAs 

require longer periods of time to converge to an optimal solution. 

A compromise was made to use the advantages of both global and local search methods 

and this has resulted in a new algorithm called a hybrid genetic algorithm. The HGA 

produces very efficient solutions to the TSP in a promising period of time and it is the 

most researched method for solving the TSP. The hybrid approach possesses both the 

global optimality of the genetic algorithm as well as the convergence of a local search. 

The latest advances in HGAs offer much better results for TSP. These methods rely on 

creating problem-specific genetic operators that make use of every iteration by the 

genetic algorithm to produce a better new solution. This results in speeding up the 

algorithm. Moreover, problem-specific operators are more intelligent methods than 

general operators. Also, heuristics have a share in improving or introducing new 

solutions in HGA. The use of problem-specific operators in HGAs will lead to 

searching more possible good solutions in the solution search space. 

Therefore, HGA seems to be a very suitable method for solving the branch-cut phase 

unwrapping problem, because of their capabilities in solving the TSP. Moreover, any 

operator developed for solving the TSP can solve the branch-cut problem. This 
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advantage will provide the branch-cut problem with better optimum solutions, leading 
to improved phase unwrapping results. 

4.1.3. HGA for Solving the Dipole Branch-Cut Phase Unwrapping Problem 
In this chapter, a hybrid genetic algorithm (HGA) is used to optimize the total cut length 
in a phase map globally before unwrapping. Phase unwrapping in this proposed 
algorithm is presented in the form of the travelling salesman problem (TSP) with the 
exception of the matching concept instead of the tour concept. Therefore, most of the 

advances in solving the TSP will be used to the benefit of the branch-cut phase 
unwrapping problem. The newly developed genetic algorithm is then tested on 
simulated and real wrapped phase maps to verify its characteristics and the results are 

compared with three existent branch-cut phase unwrapping algorithms, which are: 

simulated annealing, reverse simulated annealing and the minimum-cost matching 

algorithms. 

4.2. Coding the Phase Unwrapping Problem in GA Syntax Form 

Any optimization problem using a GA requires the problem to be coded into GA syntax 

form, which is the chromosome form. The chromosome can be used to represent a 

graph or an equation or a system. Moreover, every chromosome will consist of a 

number of genes corresponding to nodes in a graph, variables to an equation, or control 

parameters in a system. In essence, coding a problem plays a major role in the 

performance of the genetic algorithm. Inefficient coding will result in achieving a poor 

solution or the algorithm being trapped in local minima. However, good coding will 

push the GA to have a high tendency to achieve global optimum results but with one 

drawback, which is the fact that the time needed to execute the algorithm will be very 

long. Thus, to achieve good results at high speed, the problem has to be studied in many 

forms and a set of limits has to be deduced to achieve an efficient coding that will fulfil 

the requirements of the problem. On this basis, two coding schemes were developed to 

code the branch-cut phase unwrapping problem as a genetic algorithm. One coding 

scheme used was the all residues and all corresponding boundaries (AR4CB) coding, 

which is simple to implement but will result in unnecessary added complexity to the 

genetic algorithm and hence slow convergence. A compromise on a certain probability 

stated by Gutmann [Gutmann (1999)] was made, based on the understanding of the 

problem and this resulted in another coding scheme, which is all residue,, and minimum 
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corresponding boundaries (ARMCB) coding. This coding scheme reduces the 
complexity of the problem, which results in speeding up the convergence and reducing 
memory usage. 

4.2.1. ARACB Coding 

This coding scheme calculates all the residues in the wrapped phase map and using the 

nearest-neighbour algorithm, for every residue it finds its corresponding boundary pixel, 

which will be considered as a fictitious opposite polarity residue to its corresponding 

real residue. This problem setting can be clearly seen in the example illustrated in Fig. 

4.3. 

3B 

2B 

5B 

8B iB 

7J3 

4B 

6B 

Fig. 4.3. The residues and their corresponding opposite polarity residue boundary pixels in the masked 

image 

This coding scheme represents the whole branch-cut phase unwrapping problem but 

adds many boundary pixels, which might not be needed to reach a global optimum 

solution. It results in chromosomes whose length is twice the number of residue sources. 

in essence, twice the complexity. 

The coding scheme can be summarized in the following steps: 

" Calculate residues in the wrapped phase image by integration of the gradient of a 

2x2 closed loop path. 
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" Insert the Indexes of residues calculated from the wrapped phase map in two 
arrays: 

1. Positive polarity residue Array 

2. Negative polarity residue Array 

" Create the initial chromosome by inserting the indexes of all residues and their 
corresponding opposite polarity residue boundary pixels in two opposite polarity 
chromosomes in the order seen in Fig. 4.4. 

Positive chromosome array: I+ 2+ 3+ 4+ 5B 
T6B 

7s 8B 

Negative chromosome array: 1B 2B 3B 4B 5 6- 7- 8- 

Fig. 4.4. The two opposite polarity chromosomes configured using . ARACB coding. 

The positive chromosome array will be fixed through the alteration of the genetic 

algorithm (throughout all generations; it will act as a reference chromosome). However, 

the negative chromosome will be used to create the initial population and it will be 

altered in every generation. In other words, the aim is to match the order of genes in the 

negative chromosome with its positive chromosome counter parts. 

4.2.2. ARMCB Coding 

Due to the excessive amount of boundaries in the chromosomes, complexity becomes a 
big factor in slowing down the above algorithm. Thus, a major reduction of boundary 

pixels in the chromosomes must be achieved in a way that hopefully will not affect the 

convergence of the GA to the global optimum solution. 

One way to reduce boundary pixels is achieved by only considering boundary pixels 

that have less than twice the distance of the closest opposite polarity residue. This 

concept of choosing boundary pixels was implemented before in Gutmann [Gutmann 

(1999)]. An example of this configuration is shown in Fig. 4.5. 

The two opposite polarity chromosomes configured usin`( this method for the example 

in Fig. 4.5 arc shown in Fig. 4.6. It is important to note that the size of the chromosomes 
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and their genes will not change throughout the iterations of the algorithm. The only 
changes to the chromosome that are permitted are the order of genes in the negative 
chromosome array. 

3B 

2B 

5B 

7- 

5- 

4+ 

6- " 

8- 
ý I+ 

2+ 

8B 1B 

7B 

4B 

6B 

Fig. 4.5. The residues and their corresponding opposite polarity residue boundary pixels in the masked 
image with an emphasis on boundary calculation. 

Positive chromosome array 

Negative chromosome array: 

l+ 2+ 3+ 45B 6B 

8- "'B 7- 4B 5- 6- 

Fig. 4.6. The two opposite polarity chromosomes configured using ARMCB coding. 

4.3. Creating the Initial Population 

A GA requires an initial population of chromosomes where each chromosome 

represents a possible solution. From this initial population, the GA starts using a 

stochastic search to achieve the global optimum solution. The method that is used to 

create the initial population will determine the speed of convergence to an optimum 

solution, as well as the size of the population (the number of chromosomes in the 

population). In essence, the size of the population depends greatly on the method used 

to create the initial population. Moreover, as the size of the population increases, the 
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complexity and memory usage increase, but on the other hand, the tendency to conv, er`(e 
to a global optimum solution increases as well. 

Thus, it is required to have an initial population that has the necessary information and 

gene possibilities for the GA to converge, without the huge amount of chromosomes in 

a population. The way chromosomes are ordered in a typical population can be seen in 

the example shown in Fig. 4.7, where the positive chromosome is not part of the 

population. 

Positive chromosome array: 1+ 2+ 3+ 4+ 5B 6B 7B 8B 

Negative chromosome array 1: 1B 2B 3B 4B 5- 6- 7- 
1 

8- 

Negative chromosome array 2: IB 4B 8- 6- 2B 3B 7- 
E: 

l 
Negative chromosome array 3: s- 8- 1B 4B 3B 6- 7- 2B 

Negative chromosome array 4: 2B 3B 6- 4B s- IB 7- 8 

5- 4B 7- 6- 1B 2B 3B 8- 
Negative chromosome array 5: 

Fig. 4.7. An example of an initial population consisting of 5 negative chromosomes, where each 

chromosome represents a solution for the branch-cut phase unwrapping problem. 

Because it is an NP-hard problem, a global solution cannot be assured, however, it has 

as high a probability of achieving a global solution as any existing algorithm. Moreover, 

this algorithm starts searching from a good initial solution and it has an elitism operator 

that ensures only a better solution, if found, is to be considered as a final solution. So, in 

the worst case, the proposed algorithm will return back the good initial solution, if no 

better solution is found. Three different ways were used to create the initial solution, 

which are presented as following: 

4.3.1. Random Initialization (RI) 

This method randomizes the genes of the initial negative chromosome to create a new 

chromosome. This method can be implemented using a uniform random number 

generator or a Gaussian random number generator with variable seed number. This 
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method will provide the GA with a starting position, generating chromosomes randomly 
without using an initial solution to create other chromosomes. Thus, it will take the G. A 

a long period of time to reach convergence, i. e., global optimum. 

4.3.2. Nearest Neighbour and Random Initialization (NA"RI) 

This method uses the nearest-neighbour algorithm to generate a good initial solution for 

the Branch-cut phase unwrapping. In this manner edges will be ordered with respect to 

the reference positive chromosome to create a negative chromosome that represents the 

nearest-neighbour solution. Starting the nearest neighbour algorithm from a different 

starting residue creates another nearest neighbour solution. Several nearest neighbour 

solutions are used to create a number of chromosomes, then, the rest of the initial 

population is generated using a random initialization RI. This method of initialization is 

quite powerful and gives the GA a good start to reach convergence. It is more intelligent 

and problem-specific than RI and it also gives the GA the option of fewer chromosomes 

in a population than that required using the RI method. Moreover, it speeds up the 

convergence of the GA to an optimal solution. 

4.3.3. Nearest Neighbour and Random 2-opt Initialization (NNR2OPTI) 

A faster and more efficient way to create an initial population is by using the nearest 

neighbour algorithm to create the first chromosome in the population in the same way 

as that performed in NNRJ. However, generating the rest of the chromosomes in the 

initial population is carried out in a different manner, using a Random 2-opt Heuristic. 

This heuristic is applied to the first nearest-neighbour chromosome a random number of 

times not exceeding the total number of genes in the chromosome in order to create a 

new chromosome. 

The Random 2-opt Heuristic can be summarized as follows: 

" Choose two genes (i. e., negative residues) in the first negative chromosome 

randomly. 

" Calculate the summed cut lengths of the corresponding edges and store in du. 

" Swap the two genes (i. e., negative residues). 

" Recalculate the summed cut lengths of the corresponding new edges and store in 

dh. 

" if da < dh. swap the genes back to their old configuration. 
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This method can be seen in the example illustrated in Fig. 4.8. 

Positive chromosome array: 

Negative chromosome array 1: 

T Gene 1T Gene 3 

If db < dQ 
, then a new chromosome is generated 

Negative chromosome array n: 6 2B 7- 4B 5- 1B 3B= 
T 

Gene 1T Gene 3 

Fig. 4.8. The 2-opt heuristic method. 

4.4. Chromosome Fitness Evaluation (Total Sum of Cut Distances) 

To find the global optimum solution to the branch-cut phase unwrapping problem, the 

quality of the solution must be evaluated at every generation in order to inform the 

genetic algorithm of how good its current solution is at each stage. The evaluation will 

increase the knowledge of the quality level of the solution. This can be achieved by 

using a problem-specific fitness function. The fitness function corresponding to the 

problem of branch-cut phase unwrapping must calculate the total cut length of branch- 

cuts in the wrapped phase map. Thus, a distance measure must be employed. The 

Euclidian distance was employed to evaluate the distance of every edge at every gene in 

the chromosome. Then, the total distance presented in Eq. (4.2) is calculated by 

summing the distance of all edges in the chromosome. 

1 
2 N 

Fitness = 
[(x, 

- x; + 
ýy; 

- y; (4.2) 

where x, and v; are the horizontal and vertical index of positive gene i, x, and l', 

are the horizontal and vertical index of negative gene i, respectively. 

This total distance represents the total cut length in the wrapped phase image. There are 

three rules that must be obeyed while calculating the fitness of a chromosome: 

1. If the genes in the nth edge are positive residue and negative residue genes; then 

calculate the distance of the edge. 
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2. If the genes in the nth edge are positive residue and boundary genes or negative 
residue and boundary genes; then calculate the distance of the edge. 

3. However, if the genes in the nth edge are both border genes; then do not calculate 
the distance of the edge. 

Positive chromosome array: 

Negative chromosome array: 

dl d2 d3 d4 d5 d6 d- 

1+ 2+ 3+ 4+ 5B 6B B SB 

1B 2B 7- 4B 5- 6- 1B f R- 

Fitness = d1 + d2 + d3 + d4 + d5 + d6 + d7= Total sum of cut distances. 

Fig. 4.9. The selection of edges used to calculate the fitness of the negative chromosome where the 

positive chromosome is a reference chromosome. 

An example of fitness evaluation can be seen in Fig. 4.9. The reason why border genes 

and other border genes are not evaluated is because they will not be joined together in a 

cut. In another words, joining boundary and boundary genes together will not improve 

the branch-cut solution. 

4.5. Selection Operator 

The selection operator is an important step in a genetic algorithm. This reproduction 

operator selects the fittest chromosomes from the current population and copies them to 

the new chromosomes in the next generation. It applies the natural concept of evolution, 

which states that: "the most fit individual survives to the next generation". 

Selected parent chromosomes must be suitable for crossover (mating) to generate new 

child chromosomes, i. e., new solutions that have a high tendency to be better (more fit) 

than their parent chromosomes [Tsai et al. (2003)]. 

The selection operator is required to be intelligent and problem-specific in order to 

speed convergence and to avoid trapping the solution in local minima. It is required that 

the selection operator avoids causing a loss of population diversity and also avoids the 

ineffective execution of crossover operation [Goldstein et al. (1988)]. 
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Current Population 

Fig. 4.10. The main steps of the selection operator. 

The selection operator used in this proposed algorithm can be summarized as fo11oýý ing 

and a flowchart for this operator is presented in Fig. 4.10: 

1. Sort all chromosomes of the current population with respect to their fitness (total 

branch-cut length). 
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2 

3. 

Search for chromosomes that have an equal fitness or have an approximately 
equal fitness within a very small error margin, such that: fn - fk<e. Repeated or 
equivalent chromosomes (after a gene similarity check is made) are then deleted. 
Generate new chromosomes using the NNR2OPTI method to replace repeated or 
equivalent chromosomes. As mentioned before, this function takes in a good 

chromosome and generates another. Thus, NNR2OPT1 will be given the best-fit 

chromosome to create new chromosomes. The number of chromosomes created 

equals the number of chromosomes deleted. 

4. Calculate the fitness of the new generated chromosomes. 

5. Repeat steps 1,2,3 and 4 until there are no repeated or equivalent 

chromosomes. 

6. Pick the good-fit chromosomes in descending order of their fitness and 

randomly pick another chromosome from this modified current population. 

7. Check if the chosen chromosomes are the same. If this is the case repeat step 6. 

8. Copy both chromosomes to the new generation, which then may be fed to the 

crossover and mutation operators depending upon the probability factor. 

An example of this selection method can be seen in Fig. 4.11 where a population of 8 

chromosomes is used. 

Current 
Potation 

Chromosome I 

Chromosome 2 

Chromosome 3: 

Chromosome 4 

Chromosome 5: 

Chromosome 6 

Chromosome 7 

Chromosome 8: 

Value of fitness 

7000 

14500 

17000 

5300 

I 1000 

12900 

6400 

I 1000 

Sorted 
Population 

ZL 

Chromosome 1: 

Chromosome 3 

Chromosome 7 

Chromosome 4 

Chromosome 2 

Chromosome 6 

Chromosome 8 

Chromosome 5 

Value of fitness 

7000 

7000 

6400 

5300 

4500 

12900 

1000 

1000 

New Sorted 
Population 

Chromosome 3 

Chromosome 1 

Chromosome 7 

Chromosome 4: 

Chromosome 2 

Chromosome 8 

Chromosome 6 

Chromosome 5 

Value of fitness 

8500 

7000 

16400 

5300 

4500 

14000 

2'900 

1000 

Fig. 4.1 1. An example of the main steps of the selection operator on an 8-chromosome population. 
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The proposed selection operator gives a chance for `poor fitness chromosomes' to 
propagate to the next generation, but also ensures that `good fitness chromosomes' are 
propagating to the next generation. However, in terms of avoiding premature 
convergence in the GA iterations, the proposed selection operator creates new 
chromosomes instead of identical chromosomes 

convergence. 

4.6. Smallest Edge Crossover (SCX) Operator 

in order to avoid premature 

This crossover is a problem-specific operator, which was designed specifically for the 

phase unwrapping problem. It preserves good edges from both parent solutions, as well 

as creating new edges in the solution search space [Tsai et at. (2004)]. This operator 

uses a local search method, which chooses a candidate edge that has the smallest cut- 
length distance. This may sound critical in terms of creating a local optimal solution, 
however, the percentage chance of leading a created child solution to a local optimal 

solution is minimal. The reason for this is due to the fact that the variety of genes in 

different parent solutions in the same population along with the conditional statement at 

the end of the crossover algorithm may not allow the child solution to be in the next 

population unless it is more fit than one of the parent solution [Nagata et al. (1999)]. 

Positive chromosome array: 

Negative Parent chromosome array 2: 

Negative Parent chromosome array 4 

Negative Child chromosome array 1: 

Missing genes: 

Negative Child chromosome array 1 

1+ 24 3+ 44 5B oB ?Bf, E3 

S- h 1B 4B ?B 6- 7- 
F 

El 
-- 

II 5- 5- 6- 4B 3B 6 7- h 

ý4 
Using LK algorithm 2B IB 

IB 5- 6- 4B 3B ýB 7- h 

Fig. 4.12. An example of SCX crossover operator developed for the HGA. 

This crossover was tested before including it in this phase unwrapping algorithm. It 

showed very promising results against several well known TSP crossovers. It was found 
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that using this crossover could cause the genetic algorithm to reach the global optimal 
solution more rapidly and intelligently than any other crossover operators used for TSP. 
It has an exponential reduction of the best solution's fitness throughout each generation. 
It was also found that this operator is very efficient and fast in reaching an optima] 
solution even without an initial solution. An example of SCX operations is shown in 
Fig. 4.12. 

This crossover can be described as follows: 

I. Choose two parent chromosome solutions from the current population. 
2. Generate an intermediate solution by: 

9 Choosing two edges that have the same positive reference gene from 

each parent, 

" Comparing both edges with respect to their distances, 

" Choosing the edge with the smaller distance, 

" Putting the new edge in the child chromosome. 

3. The new child chromosome may have a set of repeated edges, thus the crossover 

is responsible for creating new edges not in both parent chromosomes and 

ensuring no repeated edges in the child solution. 

" Find repeated edges in the child chromosome and flag these edges in the 

repeated edges flag array. 

" Find the missing edges, i. e., negative residues in the child chromosome 

and flag these edges in the missing edges flag array. 

" Use the Lin-Kernighan (LX) algorithm to arrange the missing edges in 

more convenient repeated edges [Tsai et al. (2004)]. LK will be 

explained in the section dealing with mutation operators. 

4.7. Mutation Operator 

This operator is used to explore different solutions in the solution search space to avoid 

the algorithm from converging to local minima. A powerful mutation operator leads the 

GA to better solutions. In this algorithm, a local search method is used as the mutation 

operator, called the Lin-Kernighan (LA) algorithm [Tsai et al. (2004), Baraglia et a!. 

(2001)]. This algorithm is very efficient and powerful in preser-ýing good edges and 

introducing new ones to the solution. It has also proved its capabilities in solving the 
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travelling salesman problem. It uses the concept of exchanging edges only if the 

generated solution is better than the current solution [Tsai et al. (2004)]. 

The algorithm can be summarized as following: 

l. Select randomly L number of edges to exchange (mutate), where L is a variable 

number varying between {2, N�b} and Ng is the total number of negative genes 
(it was chosen by trial and error). 

2. Calculate the total summed distance of the selected edges, d1. 

3. Swap the corresponding negative genes to generate a new arrangement of 

edges as shown in Fig. 4.13. 

4. Calculate the total summed distance of the new generated edges, d-'. 

5. Compare the current and the new total distances. 

6. If dl<d2 then, swap the negative genes back to the original positions in the 

chromosome and repeat steps 3,4 and 5. 

7. Repeat step 6 until d2<dl or until execute until the number of executions equals 

k. 

An example to this algorithm can be seen in Fig. 4.13. 

Positive chromosome array: 
1+ 2+ 3+ 4+ 5B 6B 7B 8B Fitness 

Negative chromosome array n: 

Negative chromosome array n: 

Negative chromosome array n: 

Negative chromosome array n: 

Fig. 4.13. The LK- mutation operator on an 8 genes chromosome performing 3 gene mutations. 

4.8. Results and Discussion 

30 

44 

30 

20 

The proposed HGA was implemented for the phase unwrapping application, in order to 

solve the branch-cut problem. Two sets of wrapped phase maps were used to verify the 
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performance of the proposed algorithm; i. e., simulated and real wrapped phase maps. 
The results were also compared with three existing branch-cut algorithms: i. e., 
simulated annealing, reverse simulated annealing and minimum-cost matching. The 
results of all these stated algorithms were executed on a Pentium IV- 3.0 GHz 
computer. The hybrid genetic setting was chosen by trial and error. 

4.8.1 Verification of Performance of the Developed HGA on a TSP 

To verify the capabilities of the proposed algorithm, the algorithm was tested on a 
typical 50 cities travelling salesman problem. The capability of the algorithm in solving 
this problem indicated that all the HGA operators and selection methods used were 

ready to be applied to the branch-cut problem. In essence, the proposed HGA will be 

tested to verify its capability in achieving global optimum solutions. The 50 cities 

positions were chosen at random. Then, the proposed HGA was executed. In the initial 

generation, the chromosome with best fitness is shown in Fig. 4.14(a). The chromosome 

with the best fitness solutions at several algorithm convergences are shown in Fig. 

4.14(b), (c) and (d). It can be seen that the algorithm is capable of creating different 

solutions and is further capable of converging to what could be said a better solution. In 

Fig. 4.14(e), the optimal solution is shown where the algorithm converges to the best 

tour with a minimal travelling distance. 

4.8.2 Verification of Performance of the Developed HGA on a Simulated BCP 

After the proposed algorithm was tested on a TSP and it has showed its capabilities in 

achieving the global optimal solution. The algorithm was modified to solve a branch-cut 

problem. To verify the proposed algorithm in solving the BCP, a simulated BCP has 

been created on a mask map with 100 positive and 100 negative residues generated at 

random. Then, the algorithm was executed. The initial solution created by the algorithm 

is shown in Fig. 4.15(a). It can be seen from the figure that the algorithm creates the 

initial solution by connecting all the existing residues to the border in branch-cuts. 

Moreover, several algorithm convergences are shown in Figs. 4.15(b) and (c). In Fig. 

4.15(d), the global optimum solution is displayed where the `global minimal branch-cuts 

length is achieved. This simulated example demonstrated the algorithms capability to 

solve the BCP. 
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(a) 

(c) 

(e) 

(b) 

(d) 

Fig. 4.14. Travelling salesman tour of 50 cities generated at random solved b) the proposed HGA (a) 

initial solution; (b), (c) & (d) several convergences of the hybrid genetic algorithm leading to (e) the 

optimum solution. 
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a 

Irj! 1f1I1 

I'm 

/7Pý, ý, - (c) (d) 
Fig. 4.15. A mask image with 100 positive and 100 negative residues generated at random; (a) initial 

solution; (b), (c) & (d) several convergences of the genetic algorithm leading to the optimum solution. 

4.8.3. Real Phase Unwrapping Problem and the Algorithm Performance Graphs 

After the success of the proposed algorithm in the two previous stages, the proposed 

algorithm is tested on a real BCP. This problem is used to verify the algorithm's 

capability in solving the actual branch-cut phase unwrapping problem. This section will 

test the algorithm and explain the algorithm's behaviour through out the generations 

while solving the BCP. This will be shown in GA performance graphs. 
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(a) 

(c) 

f ti, 

(b) 

Fig. 4.16. (a) Wrapped phase image of an MRI scan [Ghiglia and Pritt (1998)] (b) branch-cuts and (c) 

unwrapped phase image. 

The algorithm was tested on an MRI wrapped phase map scan in Fig. 4.16(a) [Ghiglia 

and Pritt (1998)]. The optimum solution with minimal branch-cut length that the hybrid 

genetic algorithm has converged on is shown in Fig. 4.16(b) and its corresponding 

unwrapped phase map is shown in Fig. 4.16(c). With this real example the algorithm 

demonstrated its capabilities to solve the actual branch-cut phase unwrapping problem, 

achieving a optimum solution and also generating successful phase unwrapping result. 

Figs. 4.1 7(a) and (b) are the performance graphs of the algorithm. Fig. 4.17(a) shows 

the fitness of the best solution at each generation. The fitness decreases sharply for the 

first 16`f' generations. Then, it starts to slow down until it reaches the convergence level. 

The reason for this behaviour is explained in Fig. 4.17(b) where it shows the number of 

similar genes in all the chromosomes in each generation. 
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Fig. 4.17. (a) The reduction of the minimum total Cut Distances and (b) the number of similar genes in 

the population. 

The sharp decrease in the fitness of the best solution is due to sharp increase of similar 

genes in all the chromosomes in the first 16 generations. This indicates that the 

algorithm is saving and generating good genes, in other words, good solutions. As the 
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algorithm exceeds the 16th generation, it starts searching for the optimum solution out of 

the good solutions that it has created so far reaching the convergence point at the global 

optimum solution in the last few generations. 

4.8.4. Computer Simulation Results 

A simulated wrapped phase map with 2501 residues was used to evaluate the 

performance of the proposed algorithm. The wrapped phase map and its corresponding 

residue map are shown in Figs. 4.18(a) and (b) respectively. 

AN: Act 1 

,:, L -.. ' 
. 

'z 'ý 
-j 

(a) (b) 
Fig. 4.18. (a) A 256x256 noisy simulated wrapped phase map, (b) its corresponding residue map 

containing 2501 residues; 1255 positive residues and 1246 negative residues. 

Due to the nature of the distribution of residues in the phase map, a nearest-neighbour 

algorithm can achieve the global optimum solution. On the other hand, the RSA and 
HGA algorithms use a nearest-neighbour initial solution, thus, both algorithms do not 

change the solution because it is already a global optimum. The performance of the 

HGA is then compared with the performance of the SA algorithm on the basis of no 
initial solution. Since in this case, both algorithms do not use an initial solution, the 

performance of HGA with respect to SA can be clearly seen in Fig. 4.20. HGA achieves 

the global optimum in only one tenth of the time required by SA. The proposed HGA 

(without an initial solution) was implemented on the wrapped phase map shown in Fig. 

4.18(a) and the resultant branch-cut distribution has a total cut length of 1345.32. 

However, the minimum-cost-matching algorithm achieved a total cut length of 1346.97. 

The corresponding unwrapped phase maps for the phase map in Fig. 4.18(a) are shown 
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in Figs. 4.19(a), (b), (c) and (d) for SA, RSA, minimum-cost-matching and HGA 
(without initial solution) respectively. 

(a) 

(c) (d) 

(b) 

Fig. 4.19. The unwrapped phase map for the simulated wrapped phase map in Fig. 14(a) achieved using 

(a) SA, (b) RSA (without heating), (c) minimum-cost-matching algorithm and (d) HGA (without an initial 

solution) 

The HGA result in Fig. 4.19 (d) was achieved using a population of 100 chromosomes, 

P, = 0.9, Pm= 0.01 and in 20 generations. The HGA algorithm uses RI to create the 

initial population based on ARMCB coding. It can be seen that the HGA is a very 

robust algorithm for phase unwrapping, with a very competitive execution time in 

comparison to the SA algorithm. Execution time results of the HGA and other phase 

unwrapping algorithms are shown in Fig. 4.20. 
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Algorithm Time (sec) Total Cut Distance Unweighted L°- 

Measure 

SA 1870 1346.31 0.021199 

HGA (RI) 159 1345.32 0.021199 

RSA 2 1345.32 0.021167 

MCM 1 1346.97 0.021167 

HGA (NNR20PTI) 2 1345.32 0.021167 

Fig. 4.20. A comparison of the HGA execution time, Total cut-length distance and unweighted L°- 

measure with other algorithms for the noisy wrapped phase map. 

4.8.5. Experimental Results 

The proposed HGA was also implemented on a real wrapped phase map generated from 

Interferometric Synthetic Aperture Radar (IFSAR) data [Ghiglia and Pritt (1998)]. The 

IFSAR wrapped phase map and its corresponding residue distribution are shown in 

Figs. 4.21 (a) and (b) respectively. This wrapped phase map contains 5877 residues 

located in noisy patches. 

(a) (b) 

Fig. 4.21. (a) A 512x512 noisy IFSAR wrapped phase map obtained from [Ghiglia and Pritt (1998)] and 

(b) its corresponding residue map containing 5877 residues; 2940 positive residues and 2937 negative 

residues. 

78 



Two-Dimensional Phase Unwrapping Chapter 4 

The HGA algorithm uses NNR2OPT1 to create the initial population and 100 
chromosomes with a crossover probability PX and mutation probability Pm set to the 
values 0.9 and 0.01 respectively. The chromosomes are coded using ARMCB coding 
method. For the presented experimental results, only four nearest neighbour solutions 
were inserted into the initial population. 
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Fig. 4.22. The distribution of Branch-cuts in the residue phase map achieved using (a) SA, (b) RSA (with 

heating), (c) minimum-cost-matching algorithm and (d) HGA (with an initial solution). 

The HGA was implemented on the IFSAR wrapped phase map. The branch-cut 

distributions of the SA, RSA, minimum-cost-matching and HGA are shown in Figs. 

4.22(a), (b), (c) and (d) respectively. Both SA and RSA algorithms were altered by 
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adding a mutation operator used in the HGA to speed up their execution time. The 

corresponding unwrapped phase maps for the SA, RSA, Minimum-cost-matching and 

HGA are shown in Figs. 4.23(a), (b), (c) and (d) respectively. The execution time results 

of the HGA and other phase unwrapping algorithms are shown in Fig. 4.24. 

(a) (b) 

(c) (d) 

Fig. 4.23. The unwrapped phase map for the noisy IFSAR wrapped phase map in Fig. 17(a) achieved 

using (a) SA, (b) RSA (with heating), (c) minimum-cost-matching algorithm and (d) HGA (with an initial 

solution). 

As can be seen from Fig. 4.24, HGA achieves better total cut distance and L°-measure 

results than SA and RSA. However, it did not find a better solution than that of the 

Minimum-cost matching algorithm. This is due to the low number of chromosomes with 

80 



Two-Dimensional Phase Unwrapping Chapter 4 

respect to the number of genes present. On the other hand. the low number of 
chromosomes was used to achieve an optimum solution using the HGA in a ven' short 
period of time as demonstrated in table 2. HGA has the shortest execution time of all the 
algorithms tested. 

Algorithm Time (sec) Total Cut Unweighted L°- 

Distance measure 

SA 1128 7042.87 0.028843 

RSA 60 6831.32 0.028219 

MCM 859 6611.61 0.027170 

HGA 42 6704.39 0.027654 

(NNR2OPT1) 

Fig. 4.24. A comparison of the HGA execution time, total cut-length distance and unweighted L°- 

measure with other algorithms for the IFSAR wrapped phase map. 

4.9. Conclusion 

In conclusion, it can be seen from the experiments presented that the developed HGA as 

an artificial intelligent method is more robust and faster than the SA and RSA Al 

methods. This is due to the memory factor (chromosomes) in the form of solving more 

than one solution at a time that HGA has. However, SA and RSA lack this memory 

factor instead they solve only using one solution. The memory factor is efficient in 

achieving better results than other Al methods in a shorter execution time that is ý, vhat 

makes HGA a better method for solving the phase unwrapping problem than any other 

best to date Al method like SA and RSA even the GA method. 

On the other hand, it was also found that the proposed HGA is faster in reaching a 

global optimum solution than the most robust graph theory algorithm such as MCM 

algorithm. This is due to the stochastic search that HGA uses and due to the hybridism 

between the local and global searches used by this proposed algorithm. 
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Chapter 6 

5. Hybrid Genetic Algorithm using a Parametric Method to Solve the 
Two- Dimensional Phase Unwrapping Problem 

5.1. Introduction 

In this chapter, a global phase unwrapping algorithm is proposed that uses a genetic 

algorithm (GA) to estimate the parameter coefficients of an nth-order polynomial used to 

create the unwrapped phase solution that minimizes the LP-norm error between the 

gradient of the solution and the gradient of the wrapped phase map. This method is 

similar in concept to least-squares and LP-norm phase unwrapping methods developed 

by Ghiglia [Ghiglia and Pritt (1998)] except it does not rely directly on the wrapped 

phase data to construct the unwrapped solution. Instead, it uses a polynomial to 

construct the unwrapped surface solution. The reason for this is that in this method we 

approach the wrapped and the unwrapped phase maps as if completely independent 

from each other, such that the only relation between them being the LP-norm error 

minimization. The other advantage of the proposed algorithm is that it generates a 

noise-free unwrapped phase map and achieves a global smoothness constraint. 

The proposed algorithm as mentioned previously relies on estimating the parameters of 

an nth order-polynomial to approximate the unwrapped surface solution from the 

wrapped phase data. The proposed algorithm uses a genetic algorithm to obtain the 

coefficients of the polynomial that best unwrap the wrapped phase map. However, by 

providing the genetic algorithm with an initial population created by randomly choosing 

a number between two limits will cause the algorithm to take a very long time to 

converge to the global optimum solution. A faster way was achieved by obtaining an 

initial solution that is used to create the initial population. 

In this proposed algorithm, the complexity of the problem relies on the order of the 

polynomial used to reconstruct the unwrapped surface solution. By increasing the order 

of the polynomial, more precision and a lower minimum LP-norm error are achieN cdi. 

The number of coefficients of the polynomial also increases with the order of the 

polynomial. This proposed algorithm is mainly applicable to contiguous phase 

distributions (albeit with gaps). 
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The proposed algorithm is summarised in Fig. 5.1: 

Chapter 6 

" Calculate the quality map of the wrapped phase map using maximum phase 
gradient quality map, 

" Unwrap the wrapped phase using quality guided algorithm [Ghiglia and Pritt 

(1998)], 

" Surface-fit the unwrapped solution with a polynomial using weighted least- 

square multiple regression controlled by the quality map weights. 

" Coefficients of the surface-fitted polynomial are given to the genetic algorithm 

as an initial solution to lower execution time, 

" Genetic Algorithm minimizes the LP-norm error between the gradient of the 

polynomial unwrapped surface solution and the gradient of the original wrapped 

phase map. 

Fig. 5.1. A summary of the proposed parameter estimation genetic algorithm. 

5.1.1. Polynomial Surface-fitting Weighted Least-Square Multiple Regression 

Surface-fitting using polynomials is a very well established subject used to best fit a 

polynomial to set of data. One way to surface fit a polynomial to a set of data is by 

weighted least-square multiple regression. This method of regression minimzes the sum 

of residuals (least square error or L2-norm) controlled by a set of weights. It involves 

smoothing of the data or identifying an apparent trend in the data. The weights used 

define how good the data to be fitted is and how much they can contribute to the fitting 

of the polynomial to the data. The number of coefficients of the polynomial specifies 

the size of the matrices used to solve the least-square problem. 

The best fitted polynomial surface has the minimum weighted least square error defined 

in Eq. (5.1): 
Z (. S 1) 

where i1-; is the weight at at pixel i. 

:; is the unwrapped data pixel to be fitted, 

is the pixel value evaluated using the polynomial in Eq. (5.1) at the 

coordinates v, &v in the x and v direction respectively. 
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The coeficients of the nth-order polynomial are the unknowns which need to be 

evaluated to construct the surface. However, the known parameters are the data to be 

fitted z; and the two control points defined by the x; &i coordinates of the 

polynomial surface in the x and y directions. To obtain the weighted least-square error, 

the unknown polynomial coeficients must yield zero first derivatives. 
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By expanding Eq. (5.2) will result in the set of linear equations presented in Eq. (5.3): 
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Eq. (5.3) can be expressed in the matrix form in Eq. (5.4): 

(5.3) 
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Eq. (5.4) can be simplified to the following matrix form in Eq. (5.5): 

XA=Z 

where A is the matrix representing the polynomial coefficients, 
Xis the matrix representing the left side of Eq. (5.4), 

Z is the matrix representing the right side of Eq. (5.4). 

By reordering the matrices, the coeficient matrix can be evaluated from Eq. (5.6): 

A=X-'Z 

(:. 4 ) 

(ýýý) 

(5.6) 

This can be solved by Gaussian Elimination to calculated the values of the coefficient of 

the best fit polynomial surface that can minimises the weighted least-square error. Then, 

the coefficients are optimized by the hybrid genetic algorithm. 

5.2. Coding the Phase Unwrapping problem in GA Syntax Form 

Any optimisation problem using a GA requires the problem to be coded into GA syntax 

form, which is the chromosome form. In this problem, the chromosome consists of a 

number of genes where every gene corresponds to a coefficient in the n`h-order surface 

fitting polynomial as described int Eq. (5.7) and Fig. 5.2. 

fýýý ýý = ao +aix+Q, 1'+a3X1) +a4. l1'+ay 2 +... ~-C7m1' (5.7) 

where a1o., n11 are the parameter coefficients that will be estimated by the genetic 

algorithm to approximate the unwrapped phase that can achieve the minimum L2-norm, 
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x and y are indices of the pixel location in the image respectively, m is the number of 
coefficients. 

ao a a2 a3 ad as ----a 
m 

Fig. 5.2. Coding scheme of the coefficients of the n'- order surface fitting pol} nomial into the 
chromosome syntax form. 

5.3. Initial Population 

A GA requires an initial population of chromosomes where each chromosome 

represents a possible solution. The method that is used to create the initial population 

will determine the speed of convergence to an optimum solution, as well as the size of 
the population (the number of chromosomes in the population). 

5.3.1. Initial Solution 

The initial population is generated by creating an initial solution using one of the simple 

phase unwrapping algorithms such as `Quality guided phase unwrapping algorithm' 

[Ghiglia and Pritt (1998)]. The initial solution is approximated using a `polynomial 

Surface-fitting weighted least-square multiple regression' method presented in section 

5.1.1. The number of coefficients required to represent a surface relies on the 

polynomial order which can be estimated by solving the regression with an increasing 

polynomial order such that the polynomial order with the minimum L2-norm error (not 

exceeding a user defined error threshold) is used in the genetic algorithm. In essence, 

using the multiple regression method, the initial coeficients of the polynomial will be 

generated. These coefficients are, then, inserted into the first chromosome of the genetic 

algorithm initial population. This method for creating an initial solution gives the GA a 

good start to reach convergence. It is more intelligent and problem-specific than random 

initialization of polynomial coeficients. 

5.3.2. Generating an Initial Population Based on the Initial Solution 

Once the initial solution coefficients are calculated, the coefficients of the initial 

solution are inserted in the first chromosome in the initial population. The rest of the 

population is generated using the following method: for every gene in each 

chromosome in the population, a small number, depending on the precision of the gene. 

is added or subtracted to the value of the gene as in Eq. (5.8): 
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ak = ak + 
(± 1){I Q[log(ak )+rand ] 

where ak is the coefficient parameter stored in gene `k', rand is a random number 
generated between the values rand E [0,17]. This is because the random numbers are 
represented in the computer using double precision which has 17 decimal points. 

5.4. Fitness Evaluation 

To find the global optimum solution to the parameter estimation L2-norm phase 
unwrapping problem, the quality of the solution must be evaluated at every generation 
in order to inform the genetic algorithm of how good its current solution is at each 
stage. The evaluation will increase the knowledge of the GA of the quality level of the 
solution. The genes of a chosen chromosomes are substituted as coeficients in Eq. (5.71) 
to evaluate the approximated phase value at coordinate (x, v). Then, the obtained 
unwrapped phase solution is phase matched with wrapped phase to force the unwrapped 
surface to be congruent to wrapped phase using Eq. (5.9). The phase matched 
unwrapped solution is substituted in Eq. (2.14) to evaluate the error in the L--norm 

sense. 

5.5. Greedy 2-Point Crossover 

The crossover is a natural operator used to generate new chromosomes from original 

chromosomes. It is an important operator in genetic algorithms because it introduces 

diversity into chromosomes. It is capable of combining schemas (important genes) 
located in the original chromosomes. It avoids destroying the schemas in the original 

chromosomes, in essence, good schemas are conserved and propagated into the new 

chromosomes. Thus, it has a tendency to create a better chromosome rather than weaker 

one. A greedy method was also used in this crossover operator to ensure only best fit 

chromosomes are allowed to propagate into the new generation. 

The greedy 2-point crossover is summarized as follows: 

0 Choose two chromosomes from the initial population for mating with a 

crossover probability; P, 

" Choose randomly two crossover points, 

" Swap the genes lying between these two points of one the chromosomes NN ith the 

genes lying between the same points in the other chromosome; and visa versa. 
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" Evaluate the fitness of both new generated chromosomes, 

" Compare the fitness of the new generated chromosomes with that of the original 
chromosomes, 

" Choose the two best fit chromosomes from the original and the new 
chromosomes to be added into the new population. 

Fitness 

Parent Chromosome 1: 
Wo 

Parent Chromosome 2: 

Crossover point 

a0 a, 
I 

a, a; a4 a< 4 

bL, bi bz b3 ba b bh 

A LA L 

Child Chromosome 1: 

Child Chromosome 2: 

New Chromosome 1: 

New Chromosome 2 

ao ai Viz, a a, 70 

a, a, a, b5 bo 
200 

ao a, a2 a, a4 ac a,, X00 

a,. a b2 lb3 ba a< a, 

Fig. 5.3. The basic steps in the greedy 2-point crossover. 

70 

5.6. Mutation Operator 

Mutation operator applies deliberate changes to a gene at random, to keep variation in 

genes and to increase the probability of not falling into a local minimum solution. It 

involves exploring the search space for new better solutions. This proposed operator 

uses a greedy technique which ensures only the best fit chromosome is allowed to 

propagate to the next generation. 

This operator can be summarized as follows: 

" Choose a chromosome from the current population at a probability; Pm, 

" For every gene in the chromosome a random number is added to the value of the 

gene as in Eq. (5.8). 
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5.7. Phase Matching 

This method matches the phase of the wrapped phase with approximated unwrapped 
phase to establish the best representation of the unwrapped phase. The phase matching 
step extracts the small details embedded in the wrapped phase data which are lost in the 
global phase unwrapping [Schwarz (2004)]. This step is performed using Eq. (5.9). 

(D,, j + 27z (Dr, J 5) .9 2ý ý 

Where ý (p) is the phase matched unwrapped phase, p is the pixel position in the phase 

map, (1),, j 
is the given wrapped phase, 'P; J is the approximated unwrapped phase, ', [] is 

a rounding function defined by p [t ]= Lt 
+2] for r >_ o and , [t]= Lt 

_J 
for <o and 'i, 22 

j' are the pixel positions in x and y directions, respectively. 

5.8. Results and Discussion 

The proposed algorithm is tested using simulated and real wrapped phase maps to verify 

the performance of the proposed algorithm. The results were also compared with a very 

well known global phase unwrapping algorithm developed by Ghiglia et al. called `Lv- 

norm two-dimensional phase unwrapping algorithm' [Ghiglia and Pritt (1998)]. 

5.8.1. Grid Method Computer Simulated Results 

The proposed algorithm was first developed based on an initial generation obtained 

from grid line fitting to the surface of the initial solution in the horizontal and vertical 

directions. In this method, every grid line polynomial coefficients are inserted as a 

chromosome in the initial generation. To demonstrate this technique, 32x32 grid line 

coefficients estimated from the surface of the initial solution of the 128x 128 simulated 

wrapped phase map were generated spaced by 4 pixels in each grid line direction. This 

technique was first developed to generate the initial generation of the HGA. The 

proposed HGA has estimated the unwrapped surface solution in a very efficient wav 

such that its rewrapped result best matches the wrapped phase map unlike the LP-norm 

algorithm and the polynomial surface-fitting weighted least-square algorithm as shown 

in Figs. (a), (b), (c) and (d). 
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Fig. 5.4. The simulated noisy object 128x 128 (a) wrapped phase map, rewrapped phase map using (b) 
LP-norm algorithm, (c) polynomial surface-fitting weighted least-square algorithm, (d) polynomial 
surface-fitting using HGA. 

(a) (b) (c) 
Fig. 5.5. The simulated noisy object 128x 128 unwrapped phase map using (a) Lr-norm algorithm, (b) 

polynomial surface-fitting weighted least-square algorithm, (c) polynomial surface-fitting using HGA. 

Also, Figs. 5.5(a), (b) and (c) show the unwrapped solution of the LP-norm algorithm, 
the polynomial surface-fitting weighted least-square algorithm and the polynomial 

surface-fitting using HGA, respectively. Moreover, Figs. 5.6(a), (b), (c) and (d) show 

the original surface before wrapping, the unwrapped LP-norm surface, the unwrapped 

polynomial surface-fitting weighted least-square surface and the unwrapped polynomial 

surface-fitting using HGA surface, respectively. It can be seen from the unwrapped 

surface results that the proposed algorithm has the best matching unwrapped surface. 

However, the grid method technique used to develop the HGA initial generation cannot 

be applied on complex surfaces but only simple surfaces. Using this method will cost 

the HGA an extensive amount of time to estimate and optimise unwrapped phase 

solutions. Thus, the grid method can only be used on simple and small wrapped phase 

maps using the proposed HGA. Thus, this has lead to the technique of direct surface 

estimation using weighted least-square regression to generate the initial solution of the 

proposed HGA and the results of using this method are presented and discussed in the 

next two sections. 
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Fig. 5.6. The simulated noisy object 128x 128 (a) original 3D-unwrapped phase map using (b) U-norm 

algorithm, (c) polynomial surface-fitting weighted least-square algorithm, (d) polynomial surface-fitting 

using HGA. 

5.8.2. Computer Simulated Results 

The proposed algorithm was tested on computer simulated object with high noise and 

the result was compared with that of the LP-norm algorithm. The order of the 

polynomial used to estimate the unwrapped surface was the 9th order. The wrapped 

phase map and the rewrapped results of the LP-norm algorithm and the proposed 

algorithm before and after phase matching are shown in Figs. 5.7(a), (b), (c) and (d), 

respectively. The proposed algorithm best matches the original wrapped phase with an 

advantage of smoothing the noise embedded in the wrapped phase map if the algorithm 

was used without phase matching. 
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The original surface and the unwrapped LP-norm surface and the proposed algorithm 
unwrapped surface are presented in Figs. 5.8(a), (b) and (c), respectively. The 

unwrapped surface of the proposed algorithm with phase matching best matches the 
original object surface. 

TY7TT 

t 

(a) (hl 

(c) (d) 

Fig. 5.7. The simulated noisy object 256X256 (a) wrapped phase map, rewrapped phase map using (b) 

L'-norm algorithm and the proposed algorithm (c) before and (d) after phase matching. 

This demonstrates the capabilities of using the weighted least-square surface-fitting 

regression to provide the coefficients of the initial solution to the HGA for complex 

object wrapped phase maps. In essence, this surface regression method is better than the 

grid method which was incapable of estimating the coefficients of more complex 

surfaces. Thus, the initial generation was easily generated and the HGA was left the task 

of optimizing the unwrapped solution that minimizes the L2-norm error measure. 
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Fig. 5.8. Simulated noisy object 256x256 (a) original 3d-suface, unwrapped phase map using (b) L2- 

norm algorithm and (c) the proposed algorithm. 

The L2-norm error achieved by the proposed method on the wrapped phase map in Fig. 

5.7(a) was 7.90992e+006. However, the L2-norm error achieved by the LP-norm method 

on the same wrapped phase map in Fig. 5.7(a) was 7.91294e+006. 

5.8.3. Experimental Results 

The proposed algorithm was also implemented on a real wrapped phase map generated 

from Interferometric Synthetic Aperture Radar (IFSAR) data [Ghiglia and Pritt (1998)]. 

The IFSAR wrapped phase map and the rewrapped results of the LI-norm algorithm and 

the proposed algorithm are presented in Figs. 5.9(a), (b) and (c), respectively. 

The proposed algorithm proved to be very robust in unwrapping the wrapped phase 

map. It achieves a solution that is the best matching rewrapped phase map with that of 

the original wrapped phase map. However, the LP-norm algorithm did not retrieve as 

much of the original wrapped phase when its solution was rewrapped. The unwrapped 

surface solutions of both the LI-norm algorithm and the proposed algorithm are shown 

in Figs. 5.10(a) and (b), respectively. 

The L`-norm error achieved by the proposed method on the wrapped phase map in Fig. 

5.9(a) was 1.72796e+007. However, the L`-norm error achieved by the U-norm method 

on the same wrapped phase map in Fig. 5.9(a) was 2.79040e+007. 
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(b) 

(c) 

Fig. 5.9. (a) A 512x512 noisy 1FSAR wrapped phase and the rewrapped phase map using (b) LL-norm 

algorithm and (c) the propsoed algorithm with phase matching 
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(a) 

(b) 

Fig. 5.10.3D-surface of the unwrapped phase map for the noisy IFSAR wrapped phase map in Fig. 

5.9(a) achieved using (a) L'-norm and (b) the proposed algorithm with phase matching. 

5.9 Conclusion 

In the case of complex object wrapped phase maps, the coefficients generated by the 

regression method as an initial solution for HGA are very small resulting to a very large 

search space for the HGA to find the optimum solution. In this proposed method, as the 

polynomial order increases and the object surface become more complex, the 

polynomial coefficients become more smaller as the polynomial order increase. In 

essence, the difference between coefficients in the polynomial is big thus creating a 

large search space. In conclusion, the proposed algorithm is robust and efficient but it 

has high computation time burden. This could be improved by using overlapping 

windows that divide the wrapped phase map into regions that can be processed 

separately by the proposed algorithm. 
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6. Branch-Cut Placement in Phase Unwrapping Using Residue-Vector 
6.1. Introduction 
A new method for branch-cut placement is proposed which relies on information 
provided by what we will term the residue-vector. This method is expected to lower the 
computation complexity while at the same time improving the quality of the unwrapped 
phase map. Moreover, it will speed up phase unwrapping algorithms such as the 
minimum cost flow. It also could be considered as a weighting factor generator for a 
different range of existing phase unwrapping algorithms such as those outlined in Fing. 
6.1. 

Local Phase Unwrapping Methods 

Important in aiding 
performance of all 
unwrapping metho< 

Branch-cut Algorithms, Quality-guided or 
reliability, Mask-cut or guided-cut-line, 
minimum discontinuity and minimum-cost 
flow. 

Global Phase Unwrapping Methods 

Residue- 
vector map 

Unweighted and weighted least-squares, 
Green's method, LP-norm. 

Hybrid Phase Unwrapping Methods 

Synthesis algorithm, Polynomial Fourier 
transform algorithm, 

Fig. 6.1. A diagram illustrating that the proposed residue-vector map will be an aid to all existing phase 

unwrapping algorithms to create an optimum unwrapped solution. 

The residue-vector can be used as a weighting factor to optimize the results of algorithm' 

employing local, global and hybrid phase unwrapping methods. It can optimize the 

results of the phase unwrapping to a degree never previously achic\ ed by existing 

weighting quality map methods such as: phase variance, maximum gradient, pscudo- 

correlation, correlation, ctc. This residue-vector map created by residue-' ector extraction 

is more problem-specific to the phase unwrapping problem. It combines both the 

concepts of quality maps and the knowledge of the residues and their branch-cuts based 
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on the fact that residues are the cause of the problems of the phase unwrapping, in the 
first place.. 

It can also be a post-processing technique to algorithms such as minimum discontinuit\ 

and minimum cost flow. This post-processing technique is called residue-% ector 
matching. By post-processing, it will further optimize generated solutions to include 

more details embedded in the wrapped phase map. 

6.2. The Residue-Vector 

6.2.1. Definition 

Residues in a wrapped phase map generate a vector which can be viewed by calculating 

and displaying the first derivative in x and y directions (i. e., dx and dy). This residue- 

vector can be seen in the dx and dy corrected gradient phase maps in Figs. 6.2(c) and (d), 

respectively extracted form the wrapped phase map in Fig. 6.2(a) of the simulated spiral 

object shown in Fig. 6.2(e) and its residue distribution is shown in Fig. 6.2(b). Figs. 

6.2(c) and (d) show the behaviour of the residue-vector in the x and y directions. In Fig. 

6.2(f), an enlarged single residue-vector is shown to illustrate how the residue-vector 

appears in the gradient phase map. Usually residue-vector orientation follows edges. 

shadows, areas with under-sampling and phase noise. 

A residue-vector is a vector generated by a residue in the phase map that has a certain 

orientation pointing out to the balancing residue of opposite polarity. 

In essence, residues have vector fields that are very directional in nature. This directional 

vector field can only point to the balancing opposite polarity residue. These vector fields 

are very visible in the case of noise and under-sampling. With the increase of phase 

noise, the residue vector grows smaller but it stays strong at the residue. At very high 

noise, residues will get closer until they become dipoles of one sample ap. trt. I he 

behaviour of the residue-vector in the wrapped phase map under different conditions c: +n 

give useful information on how to solve the branch-cut problem. 

99 



Two-Dimensional Phase Unwrapping Chapter 6 
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Residue 
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(e) f) 

Fig. 6.2. (a) A 257X257 simulated spiral wrapped phase map(computer simulated object from Ghiglia 

and Pritt [Ghiglia and Pritt (1998)]), (b) its corresponding residue map, a wrapped phase gradient in the 

(c) x direction, (d) y direction sense; (e) original 3D surface of the spiral and (f) a magnified version of 

the residue-vector of a single residue. 
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6.2.2. A Method to Differentiate between Negative and Positive Residues from the 
Residue-Vector 

In all types of wrapped phase maps, it is possible to differentiate between negative and 
positive resides from the residue-vector in the gradient phase map. Positiv e and negatiN e 
residues have a unique residue-vector behaviour in the gradient phase depending on 
their polarity and their residue-vector direction in the horizontal and vertical senses. 

In the case of a positive residue having a horizontal residue vector, its residue-rector wýwill 

go from low (left) to high (right) at the positive residue as demonstrated in Fi`ý. 6.3(a) 

and visa versa for the negative residue in the horizontal residue-vector sense also shown 
in Fig. 6.3(b). However, if the residue-vector is vertical, it will go from low (top) to high 

(down) at the positive residue and visa versa for the negative residue again shown in Fig. 

6.3(c) and (d), respectively. In the case of the horizontal residue vector, the positive and 

negative residues have no pattern in the dx gradient phase map and visa % crs i for the 

case of the vertical residue vector as presented in Fig. 6.3(a), (b), (c) and (d). 

A diagonally orientated residue-vector has a pattern on both dx and dy gradient phase 

maps. A right diagonal residue-vector of a positive residue has both horizontal and 

vertical patterns in dy and dx gradient phase maps as explained previously in addition it 

also has different or opposite orientation in both dx and dy gradient phase map as seen in 

Fig. 6.3(e) and visa versa for a right diagonal residue-vector of a negative residue shown 

in Fig. 6.3(f). Moreover, a left diagonal residue-vector of a positive residue has both 

horizontal and vertical patterns in dy and dx gradient phase maps as explained previously 

in addition it also has similar orientation in both dx and dy gradient phase map as seen in 

Fig. 6.3(g) and visa versa for a left diagonal residue-vector of a negative residue show ii 

Fig. 6.3(h). 

The residue-vector also takes different forms depending on the kind of residue causing it. 

These vector forms are summarized as follows: 

6.2.3. Phase Noise Dipole Residue-Vector 

The residue vector in this kind of dipole is very localized and small. Fiep. 6.4(a) sho"s 

residue-vector extending crticall` , while in Fig. 6.4(b) the 
two such dipoles \, vith the 

same arrangement is shown somewhat more clearly in a diagrammatic for mat. 
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®- --- Positive residue - -------- High `gradient residue-sector 

- -' -' - Negative residue -------. Low gradient residue-\ ector 

Direction 
of vector 

Horizontal 

Vertical 

Right 
diagonal 

Left 
diagonal 

Fig. 6.3. An illustration in how to distinguish between positive and negative residues for residue-vector 

direction (a) horizontal positive residue-vector, (b) horizontal negative residue-vector, (c) vertical positive 

residue-vector, (d) vertical negative residue-vector, (e) right diagonal positive residue-vector, (f) right 

diagonal negative residue-vector, (g) left diagonal positive residue-vector and (h) left diagonal negative 

residue-vector. 

In Figs. 6.4(c) and (d), the position of both positive (white pixel) and negative (black: 

pixel) residues are presented. The residue-vector in this case generated by phase noise is 

local to the dipole. It does not need to extend further than the dipole because the residues 

are close to each other. 
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®- ----- Positive residue 

0-- -' - Negative residue 

dx Gradient phase map 

(a) 

.............. 

Residues 

a 

Residue-vector 

(b) 

High gradient residue-sector 

Low gradient residue-% ector 

ý: ýý. 
  

(c) (d) 

Fig. 6.4. Residue-vector of a pair of two opposite polarity dipole residues caused by high level of phase 
noise, this image is created from the IFSAR wrapped phase map in Ghiglia and Pritt [Ghiglia and Pritt 
(1998)]; (a) dx gradient phase map, (b) an emphasis of how the residue-vector in the dx gradient phase 

map, (c) residue distribution map of the same dx gradient phase map and (d) an emphasis of the pair of 
dipoles in the residue distribution. 

6.2.4. Under-Sampling Dipole Residue-Vector 

The under-sampling dipole residue-vector is similar in form to the discontinuous object 
dipole residue-vector described in the next section. To emphasize the behaviour of an 

under-sampling dipole residue-vector, Figs. 6.5(a) and (b) show a simulated quarter 

pyramid with a square hole in the middle and its wrapped phase map; respectively. This 

wrapped phase map is down-sampled 20 pixels in x and y directions and the result is 

presented in Fig. 6.5(c). Moreover, Fig. 6.5(d) shows a sketch that emphasizes the 

behaviour of the residue-vector in a down-sampled wrapped phase map, which 

summarizes the residue-vector in each of Figs. 6.5(e) dx and 6.5(f) dy gradient phase 

map of the wrapped phase map of Fig. 6.5(c), respectively. It can be seen from Fig. 

6.5(d) that the residue-vector at the residue is strong and its power decreases in steps 

until it reaches the balancing vector of its counter part balancing dipole residue. Even 

with the large amount of discontinuity that exists in the down-sampled wrapped phase 

map of Fig. 6.5(c), it is still evident from the under-sampling dipole residue-vector how 

to branch cut successfully this wrapped phase map prior to un rapping. 
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(e) 

_ Residues 

(d 

(fl 

Fig. 6.5. (a) Original 3D simulated object of a quarter pyramid with a square hole in the middle. (h) its 

wrapped phase map, (c) its down-sampled wrapped phase, (d) an illustrative emphasis of the behaviour of 

the residue-vector in the (e) dx and (f) dy gradient phase map. 
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This presents a considerable advantage to the phase unwrapping problem by relying on 
residue-vector it is possible to distinguish discontinuities caused by down-sampling 
(down-sampling is caused by providing incomplete data intentionally to study the 
concept behaviour in the case of under-sampling) and discontinuities caused by under- 
sampling residues (under-sampling is caused by incomplete data to represent a feature or 
an information). 

6.2.5. Discontinuous Object Dipole Residue-Vector 

Residues in this case generate a residue-vector that is very large due to the tendency of 
these dipole residues to lie far apart from each other, as described previously. If the 

residue-vector is not disrupted with other dipoles along the same edge or discontinuity, 

the dipoles would share the constant residue-vector between them as in the example in 

Figs. 6.6(a) and (b) and illustrated in Fig. 6.7(b). 

Residues Residues 
r -----------y 

Wig. 

(a) (b) 
Fig. 6.6. Residue-vector between dipole residues taken from Fig. 6.2(d) shows a constant vector charge 

shared between the residues of the dipole (a) and (b) present the residue-vector charge varying with the 

nature of discontinuity whether descending or ascending. 

However, once the residue-vector is disrupted by a residue or a dipole lying betNveen 

them and having the same residue vector direction, it will not have the necessary power 

to overcome the vector of the local residue or the dipole lying between it and the 

balancing residue. This case is called the zero-vector or null or neutral-vector and is 

illustrated in Fig. 6.7(c). This zero-vector makes it difficult to extract the original 

contiguous vector of the first dipoles. This case can be seen in Figs. 6.7(a), (d) and (c). 

6.2.6. Object Discontinuity and Phase Noise 

Residue-vectors generated by dipoles of object discontinuity are not greatly affected by 

phase noise as shown in the dy gradient phase map of Fig. 6.8(c) extracted from the 

wrapped phase map in Fig. 6.8(b) of a simulated object shown in Fig. 6.8(a). where it 

stays clear of noise and undisturbed. However at very high level of phase noise that 
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does not exceed the level that creates phase noise residues, as demonstrated in Fig. 
6.8(d), the residue-vector is disrupted to an extent that the vector becomes localized at 
the residue. Even in this case, the object discontinuity residue-vector can be still 
traceable in the gradient phase map. 

®- --- Positive residue High gradient residue-vector 

--"-- Negative residue -------- Low gradient residue-vector 

1" set of Dipole Residues 

----------- ----------- 

(b) 
Zero residue-vector 

f 
%. ýý 

1 ýt 

_`Iý _ýi 

:ý 
ý'ti 

`ý. 

- ----ý- 

2"" set of Dipole Residues 
10 

Same residue-vector direction 

(d) Z-CFO-VecLul (e) 

Fig. 6.7. (a) The overlapped wrapped phase gradient of dx and dy calculated from the wrapped phase 

map in Fig. 6.5(b), (b) a schematic showing a constant vector charge shared between the residues of the 

dipole, (c) a schematic showing how the zero-vector is created, (d) residue-% ector orientation of the four 

upper right corner residues in Fig. 6.7(a). (e) a schematic of the residue-\ cc for orientation of the four 

upper right corner residues. 

106 

(a) 

�ý . r w. _-_--_------------- 



Two-Dimensional Phase Unwrapping 
Chapter 0 

(a) (b) 

(c) 

ý: ý" 

(d) 

MINN.. » MINNOW 

i. j. ~: ýa. rr I, 

Fig. 6.8. (a) Original 3D simulated object, (b) its wrapped phase map, a section of dy wrapped phase 

gradient map of Fig. 6.8(b) marked by a box is used to show the (c) residue vector behaviour at low phase 

noise and the (d) residue-vector behaviour at very high phase noise. 

6.2.7. Monopole Residue-Vector 

Residue-vectors generated by monopoles extend from the monopole residue to the 

border. The size of the residue-vector depends on the position of the monopole in the 

phase map and on the nature of the discontinuity extending from the monopole residue to 

the border. Hence, if the monopole lies deep in the phase map, then, the residue-\ ector is 

very large as seen in the example of Figs. 6.9(a) and (b). 

In Figs. 6.9(a) and (b), the monopole residue-vector decreases as it approaches the border 

due to the distance covered in the phase map to reach the border and due to the phase 

noise and the nature of the discontinuity. Figs. 6.9(c) and (d) shows the onginal fairy's 
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image (the fairy is a complex statue that contains sharp cd0c, and : 0nt, nnuit 

employed as a challenging test piece in this work) and its corresponding wrapped phase 

map, respectively, to illustrate the position of the fairy's hand with the monopole residue. 

The importance of Fig. 6.9(b) is the monopole residue in the middle of the image. This is 

because the monopole residue is lying far away from the border that it should be linked 

to and not to the close borders that are not related to this monopole residue. This 

information was not known prior to the discovery of the residue-vector. 

,, - 
ýýý, < 

Monopole Residue 

ý=- - (dl 
(C) white line). 

Fig. 6.9. (a) A monopole residue-vector extending from the monopole residue to the border ýýe 

on final 

image but with increased contrast to make the residue-vector more visible. (c) 

d (d) its 

3e illustrating the position of the fairy's hand with the monopole residue an 

fairys image g 

corresponding wrapped phase map. 
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6.3. Residue-Vector, High Gradients and the Effect of Under-Sampling 

It should be noted that extracting information from the magnitude of the phase gradient 
as described by Chavez et al. [Chavez et al. (2002)] and Salfity et a!. [Salfit`- CI al. 
(2006)] cannot distinguish the difference between high phase gradient magnitudes 

generated by phase noise and edges; and high phase gradient magnitudes generated by, 

residues in the form of residue-vectors. So, it is improper to rely on the magnitude of the 

phase gradient alone to generate branch-cuts as stated by Chavez et al. [Chavez et al. 
(2002)]and Salfity et al. [Salfity et al. (2006)]. Phase gradient magnitude does not reveal 
information about the causes of residue discontinuities as is the case with the residue- 

vector. The difference between relying on the magnitude of the phase gradient or on the 

original phase gradient dx and dy is evident in Figs. 6.10(a) and (b). 

Residue-vector information cannot be distinguished 
from other high gradient sources 

(a) 

Phase 
noise 

Residue-vector information 

r. ý ýý, ý' [tý =r1`ß t{-. _"T 
I. 4' 

aa 
kt- 

n Ps l 

'ý ''['. "-, y"-.. 
" 
_;. - t4::,, ß.. ' ... "i 

Edge 

(h) 

Fig. 6.10. (a) Magnitude of the wrapped phase gradient of the wrapped phase map in Fig. 6.8(b) and (b) 

combined wrapped phase gradient map of Fig. 6.8(b)(middle section of the image) using the maximum of 

both the dx and dy wrapped phase gradient (for illustration only). 

In Fig. 6.10(a), the residue-vector information cannot be distinguished from other high 

gradient sources like edges and phase noise. However, in Fig. 6.10(b), it is clearly 

distinguishable from the residue-vector information whether high gradient phase 

originates from an edge or phase noise. In essence, more information is present in the 
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original dx and dy phase gradients than just their magnitude %% ()u1ýi lca C L,, to 
understand. 

The residue-vector is not affected by under-sampling and it can still provide all the 
necessarily information for the best placement of the branch-cuts. It can be 
distinguished from other high gradients caused by under-sampling or phase noise. Thus. 

perfect phase unwrapping can still be achieved from the information provided only by 

the wrapped phase map based on the residue-vector. This is contradictory to the 

assertion made by Salfity et al. stating that "any criterion based on the wrapped phase 

gradient alone would fail to decide the best placement of the branch-cut" [Salfity et al. 
(2006)]. While this statement is true if only the magnitude of the gradient phase map is 

considered, the use of the residue-vector brings new information into play. This proves 

the importance of relying on information provided by original dx and dy phase gradient 
in the form of residue-vector over the non-efficient information provided by the 

magnitude of the wrapped phase gradient. 

(a) 
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(b) 

Fig. 6.1 1. Combined wrapped phase gradient map of the middle section of the wrapped phase map in Fig. 

6.8(b) using the maximum of both the dx and dy wrapped phase gradient for illustration only scaled down 

by (a) 3x3 pixels and (a) 5x5 pixels. 

Figs. 6.11(a) and (b) show clearly that even with down-sampling of 3x3 pixels and 5x5 

pixels to generate different under-sampling resolutions, respectively; the residue-vector 

information is still present in the combined wrapped phase gradient map which is enough 

to adequately guide the optimum phase unwrapping. 
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6.4. Residue-Vector Branch-Cut 

In the previous section, we have shown the existence of a residue-vector, the nature of 
which is characteristic of different types of dipoles and monopoles and which is 
detectable even in the presence of considerable phase noise. We will now move on to 
consider how this residue-vector can be used as a criterion for the placement of branch 

cuts. A neutral unwrapped phase map is defined by having all residues in the phase map 
neutralized by branch-cuts based on Eq. (2.6). 

This can be defined in Eq. (6.1): 

Nbc Nbp 

1: 1: v(D (b, p) =0 
bp 

(6.1) 

Where '(D(b, p is the sum of gradient estimate in a 2x2 closed loop at pixel `p' of 

branch-cut `b', 

Nb, is the number of optimal branch-cuts in a wrapped phase map, 

Nbp is the number of optimal branch-cut pixels in a branch-cut V. 

The formula in Eq. (6.1) does not necessarily indicate that this set of branch-cuts will 

result in the correct phase estimate in the unwrapped phase. 

This leads to a new concept which specifies that for a set of branch-cuts in a phase map 

to achieve the minimum error between the estimated gradient of the unwrapped phase 

solution and the gradient of the wrapped phase map; branch-cuts should follow the 

maximum number of residue-vector pixels separating each pair of opposite polarity 

residues in a branch-cut and the minimum number of pixels branch-cut in the phase map. 

This concept is summarized in Eq. (6.2): 

If and only if max N, - 
min E (6.2) min Nbr 

Nrj is the total number of residue-vector pixels overlapped by branch-cut in the phase 

map, 

Nb, is the total number of branch-cut pixels in the phase map. 
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where E is the total number of errors (discontinuities) in the unwrapped phac map 
[Costantini (1998)]. 

In other words, the minimum cost flow [Costantini (1998)] and the Flynn minimum 

discontinuity [Flynn (1997)] algorithms attempt to identify the lines of di1coýntinum 

representing the branch-cuts between residues; however, they are effectively tr. 'in-, to 
identify the residue-vectors that result in such discontinuities - without explicitly bcing 

aware of their existence. This theorem is further explained using experimental result, in 

section 6.5.2. Moreover, due to the mentioned algorithms complete reliance on the 

weights provided; they try to approximate the position of the residue-vector to branch- 

cut in the phase map. In essence, they do not have problem-specific knowle&, e of what 
is causing the discontinuity they are trying to identify. We can rectify this shortcoming 

by using the residue-vector to orientate the dipole branch-cuts. This method is a general 

form of branch-cut which could form a cut or a tree of cuts, which could make it very, 

suitable to nearly all types and variants of branch-cut phase unwrapping algorithms. 

The residue-vector Branch-cut method using dipole strategy can be summarized as 

following: 

" Calculate the phase gradient in the x and y directions. 

" Identify positive and negative residues in the wrapped phase map. 

" Start from a random residue in the phase map. 

o Identify the residue-vector by locating consecutive pixels with high and 

low gradient values in the x and y phase gradient maps. respectively. 

o Follow the residue-vector on both sides of the residue until a balancing 

residue of opposite polarity is found or until the residue-vector reaches a 

zero-vector. If a zero-vector is found: 

  Identify the nearest residue-vector of another residue and include 

pixels of the highest and lowest gradient located between the two 

vectors. 
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  Iteratively locate the nearest residue-vector of another residue 
closer to the last residue-vector until a balancing residue of 
opposite polarity of the starting residue is found. 

o Branch-cut all the included pixels of this pair of residues. 
9 Repeat the same procedure until all the residues are balanced by branch-cuts 

created by this method. 

The residue-vector map can then be inserted as weights in different phase unwrapping 
algorithms such as Flynn and minimum cost flow or it may be optimized to satisfy the 

condition of Eq. (6.2) by minimizing the number of branch-cut pixels ensuring the 

maximum number of residue-vector pixels included and all residues are balanced. The 

successful branch cut placement should obey the residue-vector orientation in the 

gradient phase map to balance two dipole residues. 

To demonstrate this fact, an example that shows the incorrect and correct branch-cut 

placement is displayed in Figs. 6.12(a), (b) and (c). Fig. 6.12(a) shows the dipole 

residue-vector with the residues positions and their polarity indicated by arrows. It can 

be seen from the figure that the residue-vector follows a curved path. Hence, it is 

incorrect to place a straight branch-cut as in Fig. 6.12(b) that only takes in consideration 

the distance of the branch-cut between the dipole residues and does not recognizes the 

residue-vector. On the other hand, Fig. 6.12(c) shows the correct branch-cut placement 

that completely follows the residue-vector lying between the two dipole residues with the 

minimum number of branch-cut pixels. Moreover, consider the case of Figs. 6.9(a) and 

(b), a monopole residue, which has a large visible vector connecting it to a border pixel. 

The residue-vector follows the edge of the fairy's hand until it reaches the nearest border 

pixel along that edge. This is an advantage to phase unwrapping because it specifies how 

the correct branch-cut should be placed. 

Fig. 6.13 shows the optimum branch cut in this circumstance and therefore leads to the 

best possible unwrapped phase solution with the minimum possible discontinuity, which 

is compatible with the original data. It should be noted that a different branch-cut 

placement to the example stated above would distort the unwrapped phase map even 

though the residue is balanced by another residue of opposite polarity or it is balanced 

113 



Two-Dimensional Phase Unwrapping 
Chap!, f, 

with nearest border pixel. Residue-vector information lowers the search and guess 
complexity that was used by other algorithms to identify the monopole residue. 

Incorrect 
Diverting from 

residue branch-cut -- `"-º ý. vector 
placement 

(b) 

Correct 
branch-cut 
placement 

(c) 

Branch-cut 
follow 
residue-vector 

Fig. 6.12. Branch-cut placement methods used to connect two residues; (a) original dy gradient map taken 

from Fig. 6.2(d), (b) incorrect branch-cut placement using straight line cuts and (c) correct branch-cut 

placement obeying the residue-vector rule. 

Branch-cut 

Correct 
branch-cut 

ý"" zJ 

follows 
residue-vector 

Fig. 6.13. Monopole residue correct branch-cut placement implemented on the dy wrapped phase gradient 

map of the wrapped phase map in 6.9(d). 
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Residue-vector gives all the information necessary to know how to place a branch-cut in 
order to balance the discontinuity in the residue. The information provided by the residue 
vector includes; direction, pixels to be branch-cut, and destination to an opposite polarity 
pixel or a border pixel. 

6.5. Results 

Branch-cut placement should obey the residue-vector orientation in order not to disturb 
the results of the unwrapped phase. Two sets of wrapped phase maps were used to justify 

this theorem; i. e., simulated and real wrapped phase maps. This investigation is to verify 
that a branch-cut between two residues should follow the residue-vector. This is 
illustrated in Figs. 6.12 and 6.13. 

6.5.1. Computer Simulation Results 

A simulated wrapped phase map with residues was used to verify the residue-vector 

concept. The wrapped phase map is a spiral, which was taken from Ghiglia and Pntt 

[Ghiglia and Pritt (1998)]. The wrapped phase map and its corresponding residue map 

are shown in Figs. 6.2(a) and (b) respectively. By examining the residue-vector 

distribution in Figs. 6.2(c) and (d) of the spiral's phase gradient maps, it is shown in 

Fig. 6.14 (a), (b), (c), (d), (e) and (f) the masks of the quality maps generated using the 

following extraction methods: phase derivative variance, residue vector, maximum 

phase gradient, pseudo-correlation, weighted phase variance and second difference, 

respectively. It can be deduced that the mask generated by the residue-vector map is 

more localized at the residue-vector unlike the mask of the rest of the quality maps. The 

data in Fig. 6.14(b) was found by manually choosing the residue-vector pixels with 

respect to the theory presented about the residue-vector. 

Moreover, the residue-vector map includes the zero-vector pixels in the mask unlike the 

rest of the quality maps that is not problem-specific to phase unwrapping. 

Flynn's algorithm with phase variance quality map approximates the position of the 

residue-vector including the position of the zero-vector pixels and solves the problem of 

balancing the residues with minimum discontinuity or minimum branch-cut pixels as 

seen in Fig. 6.15(a). However, when Flynn's algorithm uses the residue-vector map, it 
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only solves the problem of balancing the residues with the minimum amount of discontinuities or branch-cut pixels as seen in Fig. 6.15(b). 

However, Flynn's algorithm using the mask of the maximum gradient quality map 
approximates the position of the residue vector as seen in Fig. 6.15(c). Moreover. 
Flynn's algorithm fails in achieving the minimum total of branch-cut pixels. This failure 
is due to zero-vector pixels being not masked, thus creating a different solution than that 
of 6.15(a). 

On the other hand, Figs. 6.15 (d) and (e) show the branch-cuts achieved by Flynn's 

algorithm using the masks of both pseudo-correlation and weighted phase variance 
quality maps, respectively. Both figures show the failure of Flynn's algorithm in 
locating the residue vector lines and in achieving minimum total of branch-cut pixels. 
Failure can be seen where branch-cuts cut the arms of the spiral in Fig. 6.15 (d) and (e). 

Finally, the branch-cut result produced by Flynn's algorithm using the mask of the 

second difference quality map is quite similar to the results produced by Figs. 6.15(a) 

and (b) except for one branch-cut crossing the arm of the spiral causing a local failure of 

the algorithm. 

By examining the unwrapped results of the spiral using the masks of the quality maps 

mentioned previously, it is clear from Fig. 6.16(a) that Flynn's algorithm with phase 

variance quality map cannot unwrap the spiral edges properly because of the random 

discontinuities or branch-cuts generated by the method to overlap the residue-vector 

even though it succeeds in unwrapping the spiral. On the other hand, Flynn's algorithm 

with residue-vector map, as seen in Fig. 6.16(b), produces successful unwrapped result 

with high precision in unwrapping at the spiral edges. This is because in this case it is 

able to solve the problem without random discontinuities or branch-cuts. 

In the case of the unwrapped result by the Flynn's algorithm using the mask of the 

minimum gradient quality map shown in Fig. 6.16(c), the algorithm fails in unwrapping 

the spiral successfully because the algorithm did not branch-cut zero-vector pixels 

located in the wrapped phase map. 
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Fig. 6.14 

(ff 

\\ /1 
-ý: 

Oooo 

000*100 

Zero-weighted 
(a) 

k of the wrapped phase map in 6.2(a) using (a) phase variance quality map 

-- . L,. .... c. fInn (1f 

zero-vector) and (b) residue-Vector map snowing Div ww"""w"" -- 
llaº º OWN PUºººI dt >l, º:, c UI LI IL II Vll iiau.... ". -"--- 

iTW 
(d) 

the extracted residue-vector pixels in the gradient phase map. (c) maximum phase gradient quality Q. 

Pseudo-correlation quality map, (e) weighted phase variance quality map and (f) second difference quality 

map. 

117 

(c) (d) 



Two-Dimensional Phase Unwrapping 
r, 111, ,.. -L ----fIi%. Iýp 

a 

.... ............... .......... . ... 

C 

(ý i`l 
Li\11/Jf 

d 

ýý 
\i 

Or 

'100, 

(e) (0 
Fig. 6.15. Branch-cuts produced by Flynn's algorithm [Flynn (1 Ur I] ýv ith zero-weights provided by the 

mask of the (a) minimum phase variance quality map (b) residue-vector map. (c) maximum phase gradient 

quality map, (d) pseudo-correlation quality map, (e) weighted phase Variance quality map and (1) second 

difference quality map. 
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Fig. 6.16. Unwrapped phase map produced by Flynn's algorithm [Flynn (1997/1 "ith ic"" `'! ht- 

provided by the mask of the (a) minimum phase variance quality map. (b) residue-vector map. (c) 

maximum phase gradient quality map. (d) pseudo-correlation quality map. (e) weighted phase variance 

quality map and (f) second difference quality map. 
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Moreover, the unwrapped results by Flynn's algorithm using the mask of both pseudo- 
correlation and weighted phase variance quality maps, respectively are shown in Figs. 
6.16(d) and (e). The algorithm completely fails in unwrapping the spiral due to the same 
reasons as the results produced by the mask of the maximum gradient quality map. 

On the other hand, the unwrapped result produced by Flynn's algorithm using the mask 
of the second difference quality map is partially successful except for the local failure 
due to a 27r discontinuity introduce by a misplaced branch-cut from the spiral arm to the 
border. But generally, this quality map produces a result similar to that of the phase 
derivative variance quality map. 

An improved precision can be even achieved if the branch-cut map produced by Flynn's 

algorithm with zero-weights provided by the mask of the residue-vector map prior to 

unwrapping is matched with the mask of the residue-vector map. This will produce a 

prefect solution in unwrapping the spiral edges. 

6.5.2. Experimental Results 

The mask-cut method developed by Ghiglia and Pritt was implemented on the fairy 

image in Fig. 6.9(c) [Flynn (1996)]. 

The resulting branch-cut map is shown in Fig. 6.17(a) and its corresponding unwrapped 

phase map is shown in Fig. 6.17(b). Even though it uses the maximum gradient quality 

map, this method of branch-cut placement does not follow the residue-vector as a result 

the unwrapped phase map is distorted by the residue-vector. This can be seen in the 3D- 

surface of the unwrapped phase as in Fig. 6.17(c). The phase distortion is clearly seen on 

the 3D-surface causing a 27r discontinuity cut on the surface, thus, destroying the 

smoothness of the unwrapped surface. 

On the other hand, Flynn's algorithm with zero-weights provided by all the quality maps 

mentioned in the previous section except the residue-vector map results in the failure of 

the algorithm in unwrapping the fairy properly. Flynn's algorithm using the mask of 

these quality maps generated branch-cuts that go across the unwrapped phase map as 

, multiples of 2; r 
seen in Figs. 6.18 (a), (b), (c), (d) and (e), thus, introducing 

discontinuities in the locations of the wrong branch-cuts. 
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Fig. 6.17. Implementation of the branch-cut placement of the mask-cut method [Flynn (1996)] using the 

wrapped map of Fig. 10(d) shows (a) an incorrect placement of branch-cut, (b) the phase distortion in the 

unwrapped phase map and (c) the 3D-surface of the unwrapped phase with phase distortion. 

However, when Flynn's algorithm was provided with the zero-weights from the 

residue-vector map; a successful and much improved result was achieved as in Fig. 

6.18(f). 

The set of branch-cuts generated by Flynn's algonthm when provided by the mask of 

the residue-vector map was as predicted by the author. It can be seen in Figs. 6.18 (f) 

that the branch-cuts that follow the residue-vectors also follow precisely the object 

edges in the wrapped phase map. The unwrapped results of the fairy shown in Figs. 6.19 

(a), (b), (c), (d) and (e) were generated by Flynn's algorithm . %-hen proN-ided by all the 

quality maps except the residue-vector map are approximately the same. 
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phase map produced by Flynn's algorithm [Flynn (1997)] with zero-weights 

provided by the mask of the (a) minimum phase vanance quality map. (b) maximum phase gradient quality 

map, (c) pseudo-correlation quality map, (d) weighted phase variance qualitY map. (e) second difference 

quality map and (f) residue-vector map. 
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They also make the same unwrapping mistakes. In essence, due to branch-cuts placed 
across the fairy's hands, the unwrapped fairy results lose the fairy's uniform shape as a 
result of introducing multiples of 27r discontinuities in the locations of the wrong Z4 branch-cuts. 

This is due to the lack of appropriate weights at the hand edges of the fairy. Therefore. 
residues were balanced on the basis of minimum branch-cut length only not either the 
residue-vector presence or taking in consideration the object edges. 

On the other hand, Fig. 6.19 (f) shows a very good unwrapped fairy result. This is due 
to the use of the residue-vector map by Flynn's algorithm. In Fig. 6.19(f), it is clear that 
Flynn's algorithm using the residue-vector map does not violate object shape instead it 

preserves its characteristics. In essence, it produces unwrapped results with minimal 
discontinuity errors. 

The experimental results presented demonstrate the validity of the theorem summarized 
in Eq. (6.2). This can be demonstrated in Flynn's optimization technique which relies 

on minimizing the total discontinuity error by minimizing the number of branch-cut 

pixels according to an optimum set of weights. Thus, if the algorithm lacks the optimum 

set of weights; then the algorithm is solving for the total minimum number of branch- 

cut pixels in the phase map to minimize the discontinuity error measure as shown in 

Figs. 6.20(a), (c) and (e) which shows the weights provided by the maximum phase 

gradient quality map and its resulting branch-cuts and unwrapped phase at the elbow of 

the fairy, respectively. 

Thus, the minimization of the discontinuity error measure relies on minimizing the total 

minimum number of branch-cuts depending on maximizing the probability of the 

branch-cuts overlapping the residue-vector pixels. Moreover, the optimum set of 

weights for a given phase unwrapping solution is just the residue-vector itself as 

demonstrated in the results of Figs. 6.20(b), (d) and (f) which shows the weights 

provided by the residue-vector map and its resulting branch-cuts and unwrapped phase 

at the elbow of the fairy, respectively. This theorem was not realized by researchers who 

developed the minimization of discontinuity error for phase unwrapping. Their research 

has stopped at the lack of optimum weights for the phase umvrapplng methods [6cris 
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(2003)]. The residue-vector information and this theorem in Eq. (6-2) ansNvers the 
questions that most recent phase unwrapping researchers ask. 

(a) 

i 
1 

(c) (d) 

(e) (1) 
Fig. 6.20 (a) Mask of the maximum phase gradient quality map of the fairy's elbow, (b) Mask of the 

residue-vector rnap of the fairy's elbow, (c) the branch-cuts made at the elbow by Flynn's algorithm using 

the maximum phase gradient quality map, (d) the branch-cuts made at the elbow by Flynn's algorithm 

using the residue-vector rnap, (e) the unwrapped phase at the elbow by Flynn's algorithm using the 

rnaxirnurn phase gradient quality map and (f) the unwrapped phase at the elbow by Flynn',, zilgorithm 

using the residue-vector map. 

A better result can be achieved by a better residue-vector extraction method and'or by 

residue-vector matching with the branch-cuts produced by Flynn's aloorithni prior to tý 

unwrapping. 

6.6. Conclusion 

In conclusion, the newly developed theory of the residue-\ ector \ýa-, j)rk:, CI11CJ III till, 

chapter. It extends the phase unwrapping residue theory into a new perspecti%'e and lays 

the basis of future successful phase unwrapping technique. 

(b) 

1 
1 
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The cause of failure of many unwrapping algorithms was presented in the examples 
introduced in this chapter. Especially, the presence of the zero-vector In the phase map 
which will work against robust phase unwrapping algorithms. Moreover, it N%'as shown 
that existing quality maps not always produce successful results even the best of them, 
this is because they are not problem-specific to phase unwrapping unlike the residue- 
vector map that showed great potential in producing successful unwrapped results no 
matter the application. 

From the results presented, it can be concluded that the residue-vector does not just give 
information on how to balance a set of residues; it also takes in consideration object 

edges and shapes. Thus, residue-vectors never violate object shape but follow object 

edges. In essence, a quality map based on the residue-vector information will always 

preserve object shape and in the mean time balanced residue effects in the phase map. 

An improved precision can be even achieved if the branch-cut map produced by Flynn's 

algorithm or any other branch-cut phase unwrapping algorithm with zero-weights 

provided by the mask of the residue-vector map prior to unwrapping is matched with 

the mask of the residue-vector map after unwrapping. This will produce an optimum 

unwrapping solution. 
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7. Conclusion and Future Works 

7.1. Conclusion 

In conclusion to the thesis, a general review to the phase unwrapp"12 problem Nvas 
presented. Most of the methods that solve the phase unwrapping problem %vere 
explained and evaluated. Several quality map extraction techniques were also explained. 
Moreover, the importance of artificial intelligence techniques in modem applications is 
increasing and phase unwrapping is one problem that has been approached by soh-Ing it 
in artificial intelligence. However, most attempts are still immature. Thus, artificial 
intelligence techniques and their application to solve phase unwrapping ývcre also 

presented in this thesis. The thesis presented two proposed nc%\- phase un%vrappillO 

methods using hybrid genetic algorithms. Furthennore, also presented the neýý- 
discovery of the residue-vector information existing in wrapped phase maps. The ncývlý 
developed theory of the residue-vector was explained. It extends the phase unwrappillo 

residue theory into a new prospective and lays the basis of future successt'Lil phase 

unwrapping techniques. 

A hybrid genetic algorithm for branch-cut phase unwrapping has been proposed. The 

proposed algorithm has been demonstrated to be very robust and computationally 

efficient. The branch-cut problem was formulated as a travelling salesman problem in 

order to benefit from all the advances in the TSP field of research using a hybrid gciietic 

algorithm. It is now possible to solve large branch-cut problems ý, vith thousand', of' 

residues using genetic algorithms. The speed of convergence to the -, Iobal optimum of 

the HGA was found to be comparable to that of local search algonthms. 

The proposed algorithm was tested on both simulated and real wrapped phasc inap. s. 

was found that it is capable of achieving a global optimum solution for the branch-cut 

problem in a very short time. The results of the proposed algorithm ýý cre al "o conipared 

to other branch-cut phase unwrapping algorithms. It is deduced that it sa beticr 

artificial intelligence algorithm than SA, GA and RSA in temis of speed of convý: T-gence 
It, 

- 

and quality of results. 
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The HGA is more robust than the SA and RSA artificial intelligence algorithms. 
because of the memory factor (using several sets of solution stored in chromosomes as a 
population). Moreover, HGA also benefits from both the crossover and the mutation 
operators in creating and highlighting possible good solutions 

HGA is faster than graph theory methods in achieving an optimum solution, since it is a 
stochastic search algorithm (i. e., generally it is a random search algorithm, although it 
has problem-specific operators). In other words, it does not rely on a step-by-step 

calculation and search like the graph theory minimum-cost matching algonthm and 

other local search algorithms. 

It is important to point out that HGA is very fast and efficient in unwrapping wrapped 

phase maps with up to a certain number of residues. The complexity of the algorithm 

increases with the increase of the number of residues. This is due to the increase of the 

size of the chromosome, which requires a larger population size. 

Even though the method of branch cutting used in this paper could limit the HGA 

algorithm from successfully unwrapping discontinuous objects, this algorithm has 

proved to be very robust in unwrapping contiguous objects. In chapter 4, the HGA was 

tested on a discontinuous wrapped object and produced acceptable results only because 

of the location of the dipole residues in the phase map being close to each other. Future 

modification of this algorithm will enable it to deal with both contiguous and 

discontinuous objects. 

Another hybrid genetic algorithm using a parametric method to solve the two- 

dimensional phase unwrapping problem has been also proposed. This algorithm uses a 

genetic algorithm to estimate the coefficients of an nh-order polynomial that best 

approximates the unwrapped phase map which minimizes the difference between the 

unwrapped phase gradient and the wrapped phase gradient. The genetic algorithm In 

this proposed method uses an initial solution to speed convergence. The initial solution 

is achieved by unwrapping using a simple unwrapping algorithm and estimating the 

parameters of the polynomial using weighted least squares multiple regression. 
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The algorithm was then tested on simulated and experimental data and it proved to be 
efficient and robust. The comparison of performance of this algorithm was made with 
powerful established phase unwrapping algorithms such as the LP-norm. Based on the 
rewrapping of the solution, the newly proposed method gave improved results that best 
matched the original wrapped phase map. However, the complexity of the object surface 
in the wrapped phase map result in very small polynomial coefficients that causes a 
large burden on the algorithm and result in expensive execution time. This complexitv 
could be lowered by using overlapping windows that divide the wrapped phase map into 
regions that could be processed separately by the proposed algorithm. 

The problem of phase unwrapping that was presented and explained in the previous 
chapters can be summarized by the problem of residues and their branch-cuts. The 
residue and branch-cut problem has been approached by many researchers. Many 

algorithms have been also developed to solve this problem. Researchers such as Chavez 

et al. and Salfity et al. have identified and linked the problem of high wrapped phase 
gradient to the cause of discontinuity formed by residues which is identified as branch- 

cuts [Huntley (2001), Huntley (1989)]. However, they were not able to distinguish high 

wrapped phase gradient causing these branch-cuts from other sources of high wrapped 

phase gradient. Other good and computationally exhaustive algorithms, like Flynn and 

minimum cost flow, approximated the position of the perfect branch-cuts provided by a 

good zero-weight quality map. 

It was found by the author that the discontinuity lines presented as branch-cuts are 

caused by a residue-vector. The residue-vector was defined as a vector generated by a 

residue in the wrapped phase map that has an orientation pointing out to the balancing 

residue of opposite polarity. Different kinds of residue-vectors were presented, studied 

and their causes were illustrated. Moreover, with the new knowledge of the residue- 

vector, branch-cut placement techniques were presented to demonstrate the method of 

achieving an optimum unwrapping. 

It was found out that the residue-vector gives all the information on how to place a 

branch-cut to balance the discontinuity In the residue. Information ranges from direction, 

pixels to be branch-cut, and destination of an opposite polarity pixel or a border pixel. In 

the minimum cost flow technique [Ghiglia and Romero 0 996), Goldstein et al. 0 988)] 
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placing a branch-cut between two residues results in a network with a set of nodes and 
flows representing possible branch-cuts where there exits one optimal branch-cut. The 
time necessary to identify this optimal branch-cut is saved in the residue-vector method 
of branch-cut placement because it identifies the optimal branch-cut directlY ftom the 
vector. 

The residue-vector technique also identifies the possible residues that could be used to 
balance a residue unlike the minimum cost flow that has to solve the network flows until 
it identifies the optimum balancing residue, i. e., all residues in the network are possible 
balancing residues which adds to the complexity of the problem. The same holds true 

with Flynn's algorithm that has to identify the minimum discontinuity measure to 

achieve good unwrapping. 

It is important to note that the quality guided and reliability phase unwrapping methods 

will definitely fail if there exists a zero-vector in the wrapped phase map. Further it was 

shown that the occurrence of such zero-vectors can be common if the phase noise level 

is high. 

It was found that the residue-vector information can provide the best weighting factors to 

a different range of phase unwrapping algorithms as demonstrated in the previous 

section, where it was implemented with Flynn's algorithm where unwrapping with the 

zero-weight residue-vector mask resulted in perfect precision to unwrap object details. 

Moreover, the optimum set of weights for a given phase unwrapping solution is just the 

residue-vector itself The theorem summarized in Eq. (6-2) was not realized by 

researchers who developed the minimization of discontinuity error for phase 

unwrapping. Their research has stopped at the lack of optimum weights for the phase 

unwrapping methods [Gens (2003)]. The residue-vector information and this theorem in 

Eq. (6.2) answers a number of important and topical questions in phase unwrapping. 

Using image processing and phase unwrapping knowledge, an optimum algorithm has to 

be developed to extract the residue-vector as it can be done by human eye. Once the 

optimum residue-vector extraction algorithm is achieved using the study that has been 

made by this thesis on residue-vectors, the problem of actually unwrapping the phase 

itself becomes trivial. 
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In summary, the advantages of using residue-vector inforrnation for solving the phase 
unwrapping problem are as follows: 

9 Problem-specific. 

Faster than any other efficient phase unwrapping method. 
It can unwrap any contiguous and discontinuous wrapped phase objects or 
features. 

e It can unwrap successfully independent of the level of under-sampling present in 
the wrapped phase map. 
It is powerful in the presence of noise. 
Image size is not an issue. 

Unwrapping application is not an issue. 

This technology demonstrates that the phase unwrapping problem is not an NP- 
hard problem. 

9 Most important, it can provide very high precision in unwrapping especially 

unwrapping small details. This is not achieved by the most robust phase 

unwrapping algorithms. 

7.2. Future Work and Suggestions 

It is proposed for future work to develop the theory and to formulate the newly 

discovered 'residue-vector' for phase unwrapping. Also, this theory can be extend to be 

the basis of creating the necessary tools for the residue-vector extraction from the 

wrapped phase images and to develop its corresponding phase unwrapping method. 

To achieve a universal phase unwrapping technique that can solve any kind of wrapped 

phase map; first, it is important to study the residue-vector behaviour in different types 

of wrapped phase maps. Then, theory and formulation will accompany this study. By 

means of enough knowledge of the residue-vector method, a method of extraction 

should be developed and implemented. An unwrapping method has to be de. ýeloped 

based on the extracted residue-vector map, which consists of identifying the minimum 

amount of discontinuity that could lead to an optimum phase unwrapping solution by 

problem- specific residue-vector optimization. In essence, instead of providing the 

residue-vector map to a general phase unwrapping optimization algorithm which is time 

consuming, a problem-specific algorithm could save time to make this method 
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appropriate to high speed real time processing. Finally, the developed algorithm will be 
tested on many applications and on different known phase unwrapping problems. 

This consideration of the residue-vector in phase unwrapping and future work and 
suggestion made by this thesis can be summarized in the following points: 

1. To investigate the residue-vector deeply and to ftniher develop its theory and 
formulations. 

2. To develop an extraction method that can extract both the high-gradient residue- 

vector and the zero-vector. It is expected to employ both image processing and 

artificial intelligence. 

3. To develop an optimization method based on the extracted residue-vector map in 

order to speed the unwrapping process by having an unwrapping algorithm 

adapted to the residue-vector theory. 

4. To investigate the residue-vector behaviour and theory in 3D wrapped phase 

maps for volume unwrapping and to expand the 2D extraction and optimization 

technologies achieved to 3D. 

5. To demonstrate in both theory and practice the residue-vector technology in 

number of application areas where current technologies would either fail or 

produce unsatisfactory results. 

6. To produce a compact residue-vector phase unwrapping algorithm that could 

serve systems that requires unwrapping procedure no matter what the 

applications is. 
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