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THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VII. THE HOST GALAXY LUMINOSITY
FUNCTION: PROBING THE RELATIONSHIP BETWEEN GRBs AND STAR FORMATION TO REDSHIFT ∼6
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ABSTRACT

Gamma-ray bursts (GRBs) offer a route to characterizing star-forming galaxies and quantifying high-z star
formation that is distinct from the approach of traditional galaxy surveys: GRB selection is independent of dust and
probes even the faintest galaxies which can evade detection in flux-limited surveys. However, the exact relation
between the GRB rate and the star formation rate (SFR) throughout all redshifts is controversial. The Optically
Unbiased GRB Host (TOUGH) survey includes observations of all GRB hosts (69) in an optically unbiased
sample of SwiftGRBs; we utilize these to constrain the evolution of the UV GRB-host-galaxy luminosity function
(LF) between z = 0 and z = 4.5, and compare this with LFs derived from both Lyman-break galaxy (LBG)
surveys and simulation modeling. At all redshifts we find the GRB hosts to be most consistent with an LF derived
from SFR weighted models incorporating GRB production via both metallicity-dependent and independent
channels with a relatively high level of bias toward low metallicity hosts. In the range < <z1 3 an SFR weighted
LBG derived (i.e., non-metallicity biased) LF is also a reasonable fit to the data. Between z ∼ 3 and z ∼ 6, we
observe an apparent lack of UV bright hosts in comparison with LBGs, though the significance of this shortfall is
limited by nine hosts of unknown redshift.

Key words: galaxies: evolution – galaxies: luminosity function, mass function – galaxies: star formation – gamma-
ray burst: general

1. INTRODUCTION

The past decade in extragalactic astronomy has been
characterized by a tremendous increase in the understanding
of the properties of high-z galaxies (for reviews see, e.g., Wolfe
et al. 2005; Shapley 2011; Carilli & Walter 2013), such as the
diversity and evolution of their star formation rate (SFR)
histories (Pettini et al. 2002; Hopkins 2004; Hopkins &
Beacom 2006; Bouwens et al. 2007, 2010a), the relation
between stellar mass and luminosity (Pettini et al. 2001;
Magdis et al. 2010; Schaerer et al. 2013), the relation between
mass and metallicity (e.g., Tremonti et al. 2004; Savaglio et al.
2005; Erb et al. 2006; Lee et al. 2006; Foster et al. 2012) and
the nature of extinction as a function of luminosity (Meurer
et al. 1999; Calzetti et al. 2000). This progress has been driven
by multi-band flux-limited surveys of ever-improving depth
and coverage permitting the study of galaxies at redshifts
ranging from z = 0–10 (e.g., Scoville et al. 2007; Bouwens
et al. 2014).

These surveys are, however, not suited to assessing the
contribution of the faintest galaxies to the cosmic star
formation history. Gamma-ray burst (GRB) selected galaxy
studies provide a complementary approach to constrain galaxy
evolution across the whole mass spectrum (Perley et al. 2009;
Krühler et al. 2011; Rossi et al. 2012) and from very low to
very high redshift (the most distant GRB with a spectroscopic
redshift known to date is GRB 090423 at z = 8.2, Tanvir et al.
2009; Salvaterra et al. 2009). The advantage of GRB-selected
galaxy studies is that GRB production requires (in its simplest
form) only a massive star (for a review see Woosley 2011 and
references therein), which makes their detection independent of
galaxy luminosity.
The exact relation between the GRB rate and the SFR is

controversial: while long-duration GRBs are produced by
massive stars and sample the entire range of known star-
forming galaxies from faint dwarfs up to luminous Lyman-
break galaxies (LBGs; Steidel et al. 1996) and sub-millimeter
galaxies (e.g., Christensen et al. 2004; Tanvir et al. 2004;
Fruchter et al. 2006; Michałowski et al. 2008; Savaglio
et al. 2009; Krühler et al. 2011; Rossi et al. 2012; Perley
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et al. 2013; Hunt et al. 2014; Schady et al. 2014; Kohn
et al. 2015), most of our knowledge is based on heterogeneous
samples. Several GRB luminosity function (LF) and redshift
distribution studies (e.g., Kistler et al. 2008; Jakobsson
et al. 2012; Robertson & Ellis 2012) have found that the
numbers of GRBs produced at high redshift imply that either
the global SFR density is greater at high redshift than that
found from LBG surveys, or that GRB production efficiency
increases with redshift. Other authors consider that this result
can be explained by continuing observational and redshift
biases in existing GRB surveys (e.g., Elliott et al. 2012). In this
work, we approach this question from the unique standpoint of
having observations of the properties of the individual hosts of
each burst in an observationally unbiased GRB sample, thus
providing a complementary approach to simulation studies.

“The Optically Unbiased GRB Host” (TOUGH) survey by
Hjorth et al. (2012) is the first such survey to make use of the
strategic advantage of Swift to realize the production of a GRB
host galaxy sample selected solely by accurate X-ray localiza-
tion and VLT observability and unbiased by optical criteria
such as afterglow detection or brightness. In this paper, we
compare the evolution of the UV LF of GRB host galaxies to
both those derived from LBG samples and those predicted from
stellar population synthesis models (Trenti et al. 2014) which
include both metallicity dependent and independent channels
for GRB production.

Throughout the paper, we assume a ΛCDM cosmology with
= - -H 71 km s Mpc0

1 1, W = 0.27m , and W =L 0.73 (Larson
et al. 2011). All reported magnitudes are given in the AB
system, and uncertainties are given at a s1 confidence level, if
not stated otherwise.

2. OBSERVATIONS AND DATA REDUCTION

2.1. The TOUGH Survey

The TOUGH survey targeted 69 GRBs in the R and Ks bands
with FORS2 and ISAAC reaching limiting magnitudes of R
(AB ) ∼ 27.3 mag and ~K (AB) 23.4s mag at a 3σ confidence
level. About 80% have a detected host galaxy (Hjorth
et al. 2012; see also D. Malesani et al. 2015, in preparation)
and thanks to ongoing spectroscopic follow-up observations
>87% now have a measured redshift (Jakobsson et al. 2012;
Krühler et al. 2012, 2015). In addition, the hosts between z = 2
and z = 4.5 were targets of a moderately deep spectroscopy
campaign to study Lyα in emission, and hosts at <z 1 were
part of a radio survey. These campaigns allowed the
investigation of several properties such as the -R K( )s color
and the offset distribution (Hjorth et al. 2012; D. Malesani et al.
2015, in preparation), the redshift distribution (P. Jakobsson
et al. 2012), the Lyα recovery rate (Milvang-Jensen
et al. 2012), and the unobscured SFR inferred from radio
observations for the hosts at <z 1 (Michałowsk et al. 2012).

2.2. New Data and Their Reduction

The VLT R-band data build the foundation of this paper. We
complement this data set with HST observations via a dedicated
GRB host program (PI: A. J. Levan), which targeted nearly all
< <z3 4 hosts. At z  0.9 the TOUGH R-band data probe the

rest-frame optical, and for these hosts we obtained data in bluer
filters with TNG/LRS, Keck/LRIS, GTC/OSIRIS, and Gemini-
S/GMOS, or used archival data. A log of the data is shown in
Table 1. In addition, for the fields of GRBs 050803 and

050922B (two GRBs with uncertain redshifts), we succeeded
in obtaining multi-band data (Table 1) probing the spectral
energy distribution (SED) from the rest-frame UV to the near-
IR (NIR). Their Spitzer observations are described in detail in
Perley et al. (2015a, 2015b).
To secure the field calibration of GRB 060805A we used the

60 inch Palomar telescope, and for GRB 060729 we used the
Gamma-ray Optical/Near-infrared Detector (GROND; Greiner
et al. 2008) mounted at the MPG/ESO 2.2 m telescope.
Furthermore, we incorporated measurements reported in

the literature; specifically we used Perley et al. (2009) for
GRB 050416A, Chen et al. (2009) for 050820A, Hjorth et al.
(2012) for the Ks band photometry for GRBs 050803 and
050922B, Mangano et al. (2007) for 060614, Krühler et al.
(2011) for 070306, and Tanvir et al. (2012) for GRBs 050904,
060522, and 060927.
The ground-based data were reduced in a standard fashion

(bias subtraction, flat fielding, co-adding) with dedicated
software packages (Keck: customized IDL routine, Gemini:

Table 1
Log of GRB Host Observations

GRB Telescope Filter Date Exposure
Instrument Time (s)

050525A GTC/OSIRIS g′ 2012 Aug 22 24 × 240
050730 HST/ACS F775W 2010 Jun 10 7844
050803 GTC/OSIRIS g′ 2014 Jul 21 6 × 360
050803 Keck/LRIS g′ 2011 Aug 28 4 × 200
050803 Keck/LRIS R 2011 Aug 28 4 × 170
050803 Keck/ESI R 2005 Aug 04 2 × 180
050803 GTC/OSIRIS i′ 2014 Jul 21 15 × 120
050803 HST/WFC3 F160W 2011 Sep 03 906
050803 Spitzer/IRAC 3.6 μm 2013 Jan 31 54 × 100
050803 Spitzer/IRAC 4.5 μm 2013 Jan 31 54 × 100
050824 TNG/LRS B 2010 Oct 13 2 × 900
051016B Gemini-S/GMOS g′ 2014 Feb 07 4 × 100
051117B Gemini-S/GMOS u′ 2014 Jan 30 9 × 60
050904 HST/ACS F850LP 2005 Sep 26 4216
050908 HST/ACS F775W 2010 Oct 31 7892
050922B Keck/LRIS g′ 2008 Aug 03 2 × 360
050922B GTC/OSIRIS i′ 2014 Jul 22 20 × 120
050922B GTC/OSIRIS z′ 2014 Jul 22 30 × 60
050922B Spitzer/IRAC 3.6 μm 2013 Aug 30 54 × 100
050922B Spitzer/IRAC 4.5 μm 2013 Aug 30 54 × 100
060115 HST/ACS F814W 2010 Aug 27 7910
060218 SDSS u′ 2004 Sep 21 L
060522 HST/ACS F110W 2010 Oct 17 8395
060526 HST/ACS F775W 2009 Aug 09 7844
060605 HST/ACS F775W 2010 Oct 06 7862
060607A HST/ACS F775W 2010 Sep 17 7910
060729 Gemini-S/GMOS g′ 2008 Jan 29 15 × 180
060805A Keck/LRIS g′ 2008 Feb 12 1080
060912 TNG/LRS B 2010 Oct 13 2 × 150
060927 HST/WFC3 F110W 2010 Sep 25 13992
061021 Keck/LRIS g′ 2007 Dec 13 560
061110Aa Keck/LRIS V 2006 Nov 21 680
061110B HST/ACS F775W 2010 Sep 23 7862
070721B HST/ACS F775W 2010 Nov 13 7844

Note.
a The observation was performed 21 days after the GRB. The afterglow was
very faint so that only the accompanying GRB-SN could contaminate the host
measurement. However, GRB-SNe have a red spectrum and the observed
bandpass probed the rest-frame u′ band, which makes any contamination
unlikely.
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Gemini IRAF package GROND: customized pipeline (for
details see Krühler et al. 2008; Yoldaş et al. 2008), and all
other data with IRAF; Tody 1986). HST observations, after
standard “on-the-fly” processing, were subsequently cleaned
for bias striping, introduced due to the replacement
electronics after Servicing Mission 4 (2009 May 11–24),
and then drizzled with the multidrizzle software
(Koekemoer et al. 2003) into final science images. The
reduction of the Spitzer data is described in Perley et al.
(2015b).

3. METHODS

3.1. Photometry

The photometry for the ground-based images was performed
as described in D. Malesani et al. (2015, in preparation): if a
host was detected at s>5 confidence level, we chose a
sufficiently large aperture to measure the total flux. For hosts
detected at a lower confidence level, we reduced the radius to
the stellar FWHM and applied an aperture correction derived
from the brighter hosts in the sample.

Once an instrumental magnitude was established it was
photometrically calibrated against zeropoints (GRB 051117B),
against the brightness of a photometric standard star
(GRB 050525A), a number of field stars measured in a similar
way (GRBs 060729), or tied to the SDSS DR8 (the rest; Aihara
et al. 2011). In some cases, we converted the SDSS photometry
into the Bessel system using Lupton,15 if needed. These
measurements were finally corrected for Galactic extinction
using the extinction maps by Schlegel et al. (1998) and
transformed into the AB system using Blanton & Roweis
(2007) and Breeveld et al. (2011). These magnitudes are listed
in Table 2.

The R-band observation of the host galaxy of GRB 050502B
is affected by Lyα absorption in the host galaxy and in the
intergalactic medium (IGM). To quantify this attenuation, we
compared the observed to the expected -R I( ) color of the
afterglow. Afonso et al. (2011) reported that the X-ray-to-
optical SED of the afterglow can be described by a simple
power law, nµn

b-F , with a spectral index of β ∼ 0.9. For this
model, the expected -R I( )AB color is 0.22 mag, i.e., the
emission received in the R band is dimmed by 0.95 mag,
assuming no reddening at the GRB site. Throughout the paper
we assume that the host galaxy has the same attenuation. The
values reported in Table 2 include this correction.

For the HST images we measured the background-subtracted
flux within an aperture with a radius of 0″. 25. To quantify the
measurement error, we randomly distributed 40 apertures of the
same radius within 3″ from the optical afterglow. These
apertures had a minimum distance of 0″. 6 from any object to
avoid source contamination. After that, we computed the
standard deviation as a proxy for the photometric error. To
account for flux losses we applied aperture corrections that were
calculated from the encircled energy (Sirianni et al. 2005). If
no host was detected, we measured the 3σ limiting magnitude
via s= - - +n n( )( )m F F23.9 AP 2.5 log 3limit cor where
APcor is the aperture correction and nF is the formal flux
density in μJy measured at the position of the optical afterglow
with its 1σ error s n( )F .

At z ∼ 3, an angular size of 0″. 5 translates to a physical scale
of ∼4 kpc. This diameter is at the lower end of the observed
size distribution of LBGs (Hathi et al. 2008). Increasing the
aperture radius to 0″. 3, the average size of an LBG at z ∼ 3
leads to no significant increase in flux. On the contrary, the
measurement would have been affected by neighboring objects
if the radius exceeded 0″. 4.
The analysis of the Spitzer data is described in detail in

Perley et al. (2015b); in brief, after downloading the processed
PBCD images from the Spitzer Legacy Archive,16 we modeled
and subtracted nearby contaminating sources, and then
measured the flux of the host via aperture photometry and
used the IRAC handbook zeropoints to convert the instru-
mental to apparent magnitudes.17

3.2. Host Identification

D. Malesani et al. (2015, in preparation) describe in detail
how the hosts were identified in the deep VLT images. The
additional data obtained with ground-based telescopes have a
similar spatial resolution and do not exceed the limiting
magnitudes of the VLT images. In contrast the HST images
exceed the VLT images in spatial resolution and depth (see
Figure 1). This necessitates repeating the host identification. In
the following we can limit the discussion to the z = 3–4 hosts,
whereas the host identification of GRB 050820A is discussed
in Chen et al. (2009) and Chen (2012), and of GRBs 050904,
060522, and 060927 in Tanvir et al. (2012).
To identify the most likely host galaxy candidate, we chose

the probabilistic approach by Bloom et al. (2002) (For a
detailed discussion, see also Perley et al. 2009). This method is
based on the observed galaxy density from Hogg et al. (1997)
and quantifies the chance probability pch of finding a galaxy
with a certain magnitude and a certain distance from the GRBs.
This chance probability is given by

p s= - - ´ ´( )p r m1 exp ( )ch eff

where reff is the effective radius and s m( ) is the galaxy density
for a given observed magnitude m. The effective radius
depends on the half-light radius r1 2, the distance from the GRB
r0, and the localization accuracy. The localization accuracy is
defined by the error of aligning the Hubble Space Telescope
(HST) images to images of the optical afterglows, which is
between 0″. 033 and 0″. 061. The effective radius in Bloom et al.
(2002) can hence be re-written as =r r2eff 1 2 if <r r0 1 2 and

= +r r r( 4 )eff 0
2

1 2
2 1 2 if >r r0 1 2. The half-light radii were

measured with SExtractor v2.19.5 (Bertin & Arn-
outs 1996). To limit the number of candidates we set an upper
limit of 3″ on the GRB offset and required a chance probability
of <p 5%ch .
The final candidates are listed in Table 3 (not corrected for

Galactic reddening, whereas the unreddended magnitudes are
reported in Table 2). The host offsets are consistent with the
observed distribution for the TOUGH sample (D. Malesani
et al. 2015, in preparation). If no host candidate was detected,
we report the nominal flux and the 3σ limiting magnitude. The
host identifications of GRBs 060115 and 060605 are not
unique, where alternative candidates for each of these GRBs

15 http://www.sdss.org/dr5/algorithms/sdssUBVRITransform.html

16 http://sha.ipac.caltech.edu/applications/Spitzer/SHA/
17 http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/
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Table 2
UV Properties of the TOUGH Sample

m ÅM1600
b m ÅM1600

b

GRB Redshifta Filter (mag) bUV (mag) GRB Redshift Filter (mag) bUV (mag)

Hosts with Known Redshifts

050315 1.95 R 24.51 ± 0.15 −1.54 m 0.03 −20.08 ± 0.14 060707 3.42 R 25.01 ± 0.06 −1.62 m 0.01 −20.82 ± 0.06
050318 1.444 R >26.95 <-1.92 >-17.16 060708 1.92 ± 0.12 R 26.94 ± 0.28 −1.89 m 0.03 −17.75 ± 0.27
050401 2.898 R 26.19 ± 0.31 −1.79 m 0.04 −19.31 ± 0.31 060714 2.71 R 26.46 ± 0.28 - +

-1.82 0.04
0.03 −18.91 ± 0.28

050406 -
+2.7 0.41

0.29 R 26.76 ± 0.34 −1.86 m 0.04 −18.60 ± 0.34 060719 1.53 R 24.81 ± 0.12 −1.64 m 0.02 −19.27 ± 0.11

050416A 0.653 g′ 24.00 ± 0.03 −1.73 m 0.01 −18.26 ± 0.03 060729 0.54 g′ 25.30 ± 0.16 −1.92 m 0.02 −16.66 ± 0.15
050502Bc 5.2 ± 0.3 R >25.98 <-1.85 >-20.61 060805Ae 0.60 g′ 24.61 ± 0.07 −1.83 m 0.01 −17.53 ± 0.06
050525A 0.606 g′ >25.83 <-1.95 >-16.40 060805Ae 2.36 R 25.26 ± 0.14 −1.65 m 0.02 −19.79 ± 0.13
050714B 2.438 R 25.51 ± 0.20 −1.69 m 0.03 −19.61 ± 0.19 060814 1.92 R 22.96 ± 0.11 −1.19 m 0.03 −21.46 ± 0.10
050730 3.969 F775W >27.50 <-1.98 >-18.58 060908 1.88 R 25.66 ± 0.18 −1.74 m 0.03 −18.93 ± 0.17
050801 1.38 ± 0.07 R >26.74 <-1.91 >-17.26 060912A 0.94 B 22.59 ± 0.06 - +

-1.33 0.02
0.01 −20.39 ± 0.06

050819 2.504 R 23.99 ± 0.09 −1.39 m 0.02 −21.13 ± 0.09 060923Af
-
+2.47 0.52

0.33 R 26.12 ± 0.24 −1.78 m 0.03 −19.05 ± 0.23

050820A 2.615 F775W 26.30 ± 0.06 −1.80 m 0.01 −18.96 ± 0.06 060923B 1.51 R 24.15 ± 0.16 −1.53 m 0.03 −19.83 ± 0.14
050822 1.434 R 24.36 ± 0.08 −1.59 m 0.01 −19.54 ± 0.07 060927 5.46 F110W >28.23 <-2.10 >-18.39
050824 0.828 B 24.11 ± 0.16 −1.67 m 0.03 −18.71 ± 0.15 061007 1.26 R 24.56 ± 0.17 −1.65 m 0.03 −19.08 ± 0.15
050904 6.295 F850LP >26.27 <-1.95 >-20.58 061021 0.35 g′ 26.40 ± 0.16 −2.07 m 0.01 −14.65 ± 0.15
050908 3.347 F775W -

+27.55 0.24
0.30 −1.96 m 0.03 - -

+18.22 0.24
0.30 061110A 0.76 V 25.25 ± 0.10 −1.85 m 0.01 −17.41 ± 0.09

050915A 2.527 R 24.70 ± 0.16 −1.54 m 0.03 −20.47 ± 0.15 061110B 3.43 F775W -
+27.02 0.21

0.26 - +
-1.91 0.02

0.03 - -
+18.79 0.21

0.26

050922C 2.199 R >26.29 <-1.81 >-18.64 061121 1.32 R 22.84 ± 0.03 −1.31 m 0.01 −20.67 ± 0.03
051001 2.43 R 24.53 ± 0.13 −1.51 m 0.03 −20.55 ± 0.12 070103 2.62 R 24.21 ± 0.14 −1.43 m 0.03 - -

+21.03 0.14
0.13

051006 1.059 R 23.03 ± 0.07 −1.43 m 0.01 −20.03 ± 0.06 070110 2.35 R 25.19 ± 0.11 −1.64 m 0.02 −19.84 ± 0.11
051016B 0.936 g′ 23.13 ± 0.03 −1.46 m 0.01 −19.87 ± 0.03 070129 2.34 R 24.23 ± 0.12 −1.45 m 0.03 −20.75 ± 0.11
051117B 0.481 u′ 22.91 ± 0.19 −1.65 m 0.03 −18.67 ± 0.18 070224 1.99 R 26.02 ± 0.31 −1.78 m 0.04 - -

+18.71 0.29
0.30

060115 3.533 F814W -
+27.21 0.21

0.27 −1.94 m 0.03 −18.65 ± 0.27 070306 1.50 g′ 22.90 ± 0.09 −1.18 m 0.03 −21.21 ± 0.09

060218 0.034 u′ 20.61 ± 0.12 −2.02 m 0.01 −15.20 ± 0.11 070318 0.84 R 24.60 ± 0.11 −1.76 m 0.01 −18.18 ± 0.10
060306d 1.559 R 24.21 ± 0.08 −1.54 m 0.02 −19.86 ± 0.07 070328 2.06 R 24.55 ± 0.13 −1.54 m 0.03 −20.17 ± 0.12
060522 5.11 F110W >27.82 <-2.05 >-18.69 070419B 1.96 R 25.20 ± 0.20 −1.66 m 0.03 −19.44 ± 0.19
060526 3.221 F775W >27.52 <-1.95 >-18.18 070506 2.31 R 26.21 ± 0.22 −1.79 m 0.03 −18.83 ± 0.21
060604 2.136 R 25.62 ± 0.18 −1.71 m 0.03 −19.23 ± 0.17 070611 2.04 R >27.27 <-1.92 >-17.55
060605 3.773 F775W -

+27.48 0.29
0.40 −1.97 m 0.03 - -

+18.50 0.29
0.40 070721B 3.63 F W775 -

+27.69 0.33
0.47 - +

-1.99 0.03
0.04 - -

+18.22 0.33
0.47

060607A 3.075 R >28.05 <-1.99 >-17.57 070802 2.45 R 25.25 ± 0.21 −1.64 m 0.04 −19.88 ± 0.20
060614 0.125 u 24.71 ± 0.30 −2.10 m 0.01 −14.06 ± 0.29

Hosts with Unknown Redshiftsg

050726 3.5 R >26.19 <-1.81 >-19.68 061004 3.5 R >25.84 <-1.76 >-20.03
050803 3.5 i′ 26.29 ± 0.50 - +

-1.83 0.07
0.06 −19.55 ± 0.50 070330 3.5 R >26.19 <-1.81 >-19.67

050922B 3.5 i′ 25.20 ± 0.15 −1.67 m 0.03 −20.63 ± 0.15 070621 3.5 R 25.85 ± 0.23 - +
-1.77 0.04

0.03 −20.02 ± 0.23

060919 3.5 R 25.80 ± 0.26 −1.76 m 0.04 −20.07 ± 0.26 070808 3.5 R 26.85 ± 0.33 −1.90 ± 0.04 −19.01 ± 0.33
060923C 3.5 R 25.49 ± 0.18 −1.71 m 0.03 −20.38 ± 0.18

New Photometric Redshiftsh

050803 3.5 ± 0.5 i′ 26.29 ± 0.5 - +
-1.83 0.07

0.06 −19.55 ± 0.50 050922B 4.5 ± 0.5 i′ 25.20 ± 0.15 −1.69 m 0.03 −21.13 ± 0.15
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Notes. All magnitudes are corrected for Galactic extinction and were converted into the AB system. For the non-detections we report the 3σ limiting magnitudes. Redshifts were taken from Hjorth et al. (2012), Perley
et al. (2013), and Krühler et al. (2015).
a For hosts with photometric redshifts, we report the values at the nominal redshifts.
b The absolute magnitude was computed through ÅM1600 = b- - +( )m zDM( ) 2.5 2UV l+ Å( )zlog (1 )1600 obs + + z2.5 log (1 ) where DM is the distance modulus for the assumed cosmology.
c Luminosity includes a correction for IGM and Lyα absorption.
d The Hα emission line is double peaked with the centers of the peaks at z = 1.5585 and z = 1.5597. Without loss of generality we assume z = 1.559.
e The host identification is not unique.
f The redshift range of 060923A was constructed by combining limits from Jakobsson et al. (2012) and Perley et al. (2013).
g For hosts with redshift limits, we report the UV properties at z = 3.5. For the hosts of GRBs 060919, 060923C, 070621, and 070808, the luminosities are strictly speaking upper limits. Note, the redshift of 060923C is
between z = 0.86 and z = 3.5. For GRBs 050726 ( <z 5.5), 050803 ( <z 6.1), 050922B ( <z 6.1), 061004 ( <z 10), and 070330 ( <z 5.5) we report their luminosities at z = 3.5 to avoid corrections for IGM and Lyα
absorption.
h Listed are the two hosts for which new redshift constraints were obtained through SED fitting. As discussed in Section 3.3 a broad range of physical galaxy parameters and redshifts fits the data within their
uncertainties. The likely redshift of GRB 050803 is z ∼ 3.5 and of GRB 050922B z ∼ 4.5.
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have the same magnitudes within 2σ. For simplicity, we used
their weighted means in the further analysis.

3.3. Photometric Redshifts

Although the TOUGH sample has a current redshift
completeness of 87%, nine hosts remain without precise
redshift information (Table 2). We succeeded in obtaining

multi-band data for GRBs 050803 and 050922B from 4000 to
42000 Å (Table 1) to model their SEDs and obtain photometric
redshifts.
The field of GRB 050803 was observed in the same filters

but with a different telescope (Table 2). We built super-stacks
for each band by resampling these data to the grid of the Keck/
LRIS images (which has the highest spatial resolution) while

Figure 1. Poststamps of the fields recently observed with HST/ACS. Each cutout has a size of  ´ 5 5 , corresponding to ~ ´37.3 37.3 kpc2 at z = 3.5. The blue
crosshairs mark the positions of optical afterglow. About 1″ east of the afterglow of GRB 070721B is a galaxy with ~m F W( 775 ) 24.4 mag ( ~p 2%ch ). In Schulze
et al. (2012), we showed that this galaxy is in fact the galaxy counterpart of the intervening DLA at z = 3.0939 reported in Fynbo et al. (2009). For presentation
purposes all images were smoothed with a Gaussian kernel with a width of 0″. 05.

Table 3
Properties of the z = 3–4 Host Galaxies Observed With HST

GRB α, δ r1 2 r0 Band nF Brightness pch

(J2000) (″) (″) (nJy) (mag)

050730 L L L F775W 7 ± 7 >27.6 L
050908 01:21:50.727, 0.05 0.02 F W775 29 ± 7 -

+27.60 0.24
0.30 0.002

−12:57:17.31
060115 03:36:08.314, 0.09 0.28 F W814 38 ± 7 -

+27.27 0.18
0.22 0.020

+17:20:42.80
03:36:08.351, 0.08 0.44 F814W 26 ± 7 -

+27.68 0.26
0.34 0.052

+17:20:42.86
060526 L L L F775W 5 ± 7 >27.66 L
060605 21:28:37.312, 0.09 0.06 F775W 30 ± 9 -

+27.55 0.28
0.38 0.007

−06:03:30.96
21:28:37.321, 0.06 0.47 F775W 28 ± 9 -

+27.63 0.30
0.42 0.054

−06:03:30.56
060607a L L L F775W 13 ± 8 >27.48 L
061110B 21:35:40.396, 0.12 0.05 F775W 45 ± 10 -

+27.10 0.21
0.26 0.008

+06:52:34.30
070721B 02:12:32.935, 0.08 0.20 F775W 25 ± 9 -

+27.76 0.33
0.47 0.018

−02:11:40.63

Note. For each galaxy we list its half-light radius r1 2, its projected distance to the GRB r0, its flux density nF , and the apparent magnitude. If no host candidate was
detected, we report the nominal flux density at the afterglow position and the corresponding 3σ limiting magnitude. All magnitudes (but not the flux densities) include
an aperture correction but no correction for Galactic reddening. The uncertainty in the reported coordinates is ~ 0. 4 (comprising the astrometry error of the optical
afterglow images and the alignment error of the VLT and HST images). See Section 3.2 for details.
a There is in fact a host candidate with a chance probability of =p 0.04ch 0″. 29 from the afterglow. However, it is only detected in a very small aperture with a radius

of 0″. 2. The coordinates of the object are R.A., decl.(J2000) = 21:58:50.388, −22:29:46.68 ± 0″. 4. Its magnitude is = -
+m F W( 775 ) 28.28 0.35

0.53 mag.
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conserving the flux and weighting the images by their limiting
magnitudes. The final extinction-corrected magnitudes of the
two hosts are reported in Table 4.

We modeled the SED with Le Phare (Arnouts et al. 1999;
Ilbert et al. 2006),18 using a grid of galaxy templates based on
Bruzual & Charlot (2003) stellar population-synthesis models
with the Chabrier IMF and a Calzetti dust attenuation curve
(Calzetti et al. 2000). For a description of the galaxy templates,
physical parameters of the galaxy fitting, and their error
estimation, we refer to Krühler et al. (2011). To account for
zeropoint offsets in the cross calibration and absolute flux
scale, a systematic error contribution of 0.05 mag was added in
quadrature to the uncertainty introduced by photon noise.
Figure 2 displays the observed host SEDs and their best fits.

Considering the brightness of the two galaxies ( >R 26
mag) and their measurement errors, this fitting does not yield a
unique redshift solution for either of the two galaxies. A broad
range of physical galaxy parameters and redshifts fit the data
within their uncertainties. Of particular interest in our case is
the possibility that the galaxies are at >z 3. A high redshift
does in fact provide a good description of the photometry in
both cases. The SED of the host of GRB 050922B has
significant ¢ - ¢g r and ¢ - ¢r i colors which are reasonably well
explained by the Lyα and Lyman-limit breaks at z ∼ 4.5.
Similarly, the red ¢ - ¢g r and blue ¢ - ¢r i colors of the galaxy
hosting GRB 050803 is indicative of a redshift of z ∼ 3.5.
Lower redshift solutions ( <z 1) exist as well in both cases, but
based on the available photometry, it is at least plausible that
both GRBs originated at >z 3.

3.4. The Obscured UV Luminosity

Although we have at least one measurement of the rest-frame
UV continuum between 1216 and 4000 Å for each host galaxy
in our sample, these data probe different parts of the UV
continuum; on average they probe the rest-frame at 2140 Å.
UV LFs of LBG samples are typically reported at 1500–1700 Å
(e.g., Arnouts et al. 2005; Reddy & Steidel 2009; Oesch
et al. 2010; Bouwens et al. 2014). To shift the UV luminosities
of the TOUGH sample to the common rest-frame at 1600 Å, a
K-correction was applied assuming the UV continuum to be
power-law shaped ( lµl

b-F UV). However, LBG surveys have
also shown that the spectral slope is luminosity and redshift

dependent (e.g., Bouwens et al. 2009, 2010b). To account for
that we make use of the parameterization by Trenti et al. (2014)
that is based on the findings for LBGs by (Bouwens et al. 2012,
and references therein). Since the slope depends on the
unknown observed UV luminosity, we solve the inverse
problem: we compute the expected apparent magnitudes for a
range of UV luminosities (- < < -M30 mag 8 mag) at the
redshift of each GRB and select the luminosity that minimizes
the difference between the observed and the expected apparent
magnitudes. In Table 2 we summarize the best-fit slopes and
luminosities.
We note that the UV luminosities in the FUV are highly

sensitive to any reddening correction. In LBG surveys it is a
common practice to build the LF from the obscured UV
luminosities, and therefore without any loss of generality or
limitation in the comparison with LBG surveys, we omit any
reddening correction.

3.5. The Impact of the UV Slope on the K-correction

The exact shape of the unobscured UV continuum is
determined by the age of the young stellar population and
metallicity. Savaglio et al. (2009, and the update in the GHostS
database) and Perley et al. (2013) showed that the observed
age distribution extends from a few tens of megayears to two
billion years. Though this result is based on heterogeneous
samples, the maximum age is consistent with limits we
extracted from the TOUGH sample (D. Malesani et al. 2015,

Table 4
Broad-band Photometry of 050803 and 050922B

GRB 050803 GRB 050922B

Brightness Brightness
Band (mag) Band (mag)

g′ >27.45 g′ 27.50 ± 0.50
R 26.29 ± 0.22 R 26.52 ± 0.22
i′ 26.45 ± 0.50 i′ 25.18 ± 0.14
F160W 25.74 ± 0.18 z′ 25.01 ± 0.34
Ks >23.30 Ks >24.00
3.6 μm >24.67 3.6 μm 24.77 ± 0.36
4.5 μm >25.00 4.5 μm 24.60 ± 0.46

Note. All magnitudes are corrected for Galactic reddening. Non-detections are
reported at 3σ confidence level. The K-band photometry was taken from Hjorth
et al. (2012).

Figure 2. Spectral energy distributions (SEDs) of GRBs 050803 and 050922B
and their fits. The solid line displays a fit of the SED with Le Phare. The green
open squares are the model predicted magnitudes. Given the sampling and the
measurement errors, a broad range of physical galaxy parameters and redshifts
fits the data within their uncertainties. Assuming the two galaxies to be star-
forming, the most likely redshift of GRB 050803 is between z = 3 and 4 and of
GRB 050922B between z = 4 and 5. See Section 3.3 for details.

18 http://www.cfht.hawaii.edu/∼arnouts/LEPHARE
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in preparation). To check whether the slopes used in our
analysis are consistent with these ages, we fit the UV
continuum of single-age stellar population models from
Bruzual & Charlot (2003) between 1350 and 3600 Åwith
power-law models. We find that the slopes vary between
b ~ -2.8UV and ∼3.5 for ages between 0.005 and 2.5 Gyr, in
agreement with the values derived in Section 3.4.

We next assess how the assumption about the luminosity and
redshift dependence affects our results. We first assume the
slope to be luminosity independent. We constrain the redshift
evolution using results from Schiminovich et al. (2005),
Finkelstein et al. (2012), and Hathi et al. (2013). Between
z = 0 and z = 8, the UV slope could be parameterized as

b = -  + -  ´z z( ) ( 1.62 0.04) ( 0.07 0.01) (1)UV

for luminosities between ~ L0.1 and ~ L1.5 . Figure 3 (top
panel) displays the difference in the observed luminosity for
the different parameterizations of the UV slope. The median
difference is 0.01 mag and in most cases negligible. The largest
differences of 0.26 mag are observed at z ∼ 1 where the R-band
data have the largest distance from the common rest frame at
1600 Å.

Next we drop the redshift dependency and assume a very
young stellar population with a characteristic spectral slope of
b = -2.5UV for all hosts. The luminosity will increase for all
hosts (Figure 3, bottom panel). The largest shift of 0.82 mag is
observed at z ∼ 1. However, it is very unlikely that the majority
of GRB hosts have such blue UV continua. Several low-
redshift hosts are known to have evolved young stellar
populations, e.g., GRB 970228 (z = 0.695): age = 1.7 Gyr;
GRB 990712 (z = 0.433): =age 1.1 Gyr; and GRB 011121
(z = 0.362): age= 2.3 Gyr (Savaglio et al. 2009). In
conclusion, though individual hosts may be more or less
luminous than inferred from our ansatz, we do not consider our
UV slope assumptions to have any systematic effect on the
ensemble above z ∼ 1.

4. RESULTS

4.1. GRB Host Luminosity Distribution

Figure 4 (left panel) plots the absolute magnitudes at
1600 Å (detections and upper limits) of the sample GRB hosts
versus redshift. The absolute magnitudes of the detected hosts
span a wide range in magnitude from −14 to −21.4 mag. The
majority of the upper limits on non-detected hosts are as deep
as, and deeper than, any of the host detections, particularly at
high redshift ( >z 3). All upper limits, except for one host at
z = 6.295, are well below the median magnitude of the detected
sample.
It is interesting to note that the brightest hosts, i.e., those

above the median absolute magnitude, span a quite limited
redshift range between z ∼ 1 and z 3. Conversely the
dimmest 50% of hosts (detections and upper limits) span the
entire redshift range of the sample. This evolution is similar to
that of the UV-inferred global star formation rate density (e.g.,
Daddi et al. 2007; Noeske et al. 2007; Rodighiero et al. 2010;
Elbaz et al. 2011; Bouwens et al. 2014), which also peaks
at z = 2–3.
Above >z 3, there is a conspicuous absence of any host

detection above the median magnitude, except for the single
bright = -ÅM 20.81600 mag host (GRB 060707) at z = 3.424,
though the host of GRB050922B could have similar luminosity
(for details see Section 3.3). At the other end of the redshift
scale, below z ∼ 1, there are once again no hosts above the
median magnitude. Our unbiased host sample seems to suggest
that GRBs favor lower luminosity hosts throughout the entire
redshift range in which they are detected and are only found in
UV brighter hosts in the range between < <z1 3, though we
note (as discussed below) that some of the hosts with unknown
redshifts may in reality exist in the higher redshift range.
Figure 5 plots the rate density (number per unit comoving

volume per year) of TOUGH GRBs occurring in hosts above
and below the overall survey median luminosity (dotted line
left panel Figure 4) versus redshift. Although the overall
numbers are small, the volume density of the brighter host
fraction is lower than that of the fainter fraction at all redshifts
except < <z1 3 where bright hosts reverse this trend to
become 2.5–3 times more common than those below the global
median. We caution that the relatively low numbers in each
large and somewhat arbitrary redshift bin prevent any firmer
statistical conclusion from being drawn from the binned data.
Further analysis of the cumulative distribution function (CDF)
of the TOUGH hosts compared to model LFs derived from

Figure 3. Impact of the approximations on the rest-frame UV continuum on the
observed UV luminosity at 1600 Å. The continuum is assumed to be power-
law shaped with lµl

b-F UV, where the slope can be luminosity and redshift
dependent. Top panel: luminosity- and redshift-dependent slope vs. luminosity-
independent but redshift-dependent slope. Bottom panel: luminosity- and
redshift-dependent slope vs. uniform slope. Detected hosts are displayed as
filled circles and non-detected hosts as open circles. For clarity, we only show
the hosts with known redshifts. We omit the host of GRB 050502B because of
its uncertain IGM correction. The size of the average error is shown in the top
panel.
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LBG populations in Section 4.3 investigates these preliminary
observations in greater detail.

In the following sections, we investigate how GRB hosts
trace the SFR history, in particular whether they follow the
model proposed by Fynbo et al. (2002, see also Jakobsson
et al. 2005) of GRBs selecting galaxies from a general
population according to their SFR or whether an additional
dependency must be invoked, such as metallicity (Stanek
et al. 2006; Modjaz et al. 2008; Levesque et al. 2010).

We note that the redshifts of nine hosts are uncertain
(Table 2) within defined limits (for details see Jakobsson

et al. 2012), one host identification (GRB 060805A) is non-
unique, and the IGM correction for one host (GRB 050502B)
is uncertain. In the right panel of Figure 4 we plot their possible
positions in the ÅM1600 –z plane (gray lines for hosts of
uncertain z, green data points for the host with uncertain IGM
correction, and blue data points for the non-unique host
identification), where it can be seen that the plausible
distribution of these uncertain hosts shows no discrepancy
from the firm detections/limits. We discuss further the effects
of these unknown redshift hosts on our results in Section 5.1.

4.2. The Evolution of the Median UV Luminosity

As a first diagnostic to investigate whether GRBs are biased
or unbiased tracers of star formation, we investigate the
evolution of the median obscured UV luminosity of the hosts.
Recently Trenti et al. (2014) presented tracks for the evolution
of the median observed UV luminosity of GRB host galaxies
for various levels of GRB production bias with respect to host
metallicity, characterized by a parameter p which represents a
minimum, metal-independent plateau for the efficiency of
forming a GRB. Thus a low value of p characterizes a high
level of bias toward low metallicity hosts (p = 0 representing a
stringent metallicity cutoff), whereas  ¥p characterizes no
metallicity bias.
Figure 6 shows the evolution of the median UV luminosity in

unit redshift bins of our sample in comparison to these models.
The luminosity depth of our observations is a function of
redshift (Figure 4), and we hence recalculated the median values
given in Trenti et al. (2014) for the observed luminosity limits
in each redshift bin. The faint limit was set to s-M M3 ( )
in each magnitude bin; specifically we compute the median
UV luminosity between - -⩽ ⩽M22.5 13.2 at <z 1,
- -⩽ ⩽M22.5 16.7 at <⩽ z1 3, - -⩽ ⩽M22.5 17.2 at

<⩽ z3 4.5. Observed medians and their errors were estimated
via a bootstrap method (30,000 samples), where each detected
host was represented as a Gaussian centered on the measured

Figure 4. Absolute magnitudes of our GRB host galaxy sample plotted vs. redshift. Left: host with known redshifts of detected (•) and non-detected hosts (▿). The
horizontal dashed line indicates the median luminosity of detected hosts (being −19.2 mag) and the dotted line of all including the non-detected hosts (the median
value being −18.9 mag). Right: location of the hosts with uncertain redshifts (curved lines), GRB 060805A, which does not have a unique host identification, and
GRB 050502B, which has an uncertain IGM correction. To illustrate the impact of the IGM correction, the parameter space ranging from no IGM correction to the
conservative IGM correction discussed in Section 2.2 is shown. As in the left panel, the dashed line indicates the median luminosity of detected hosts (being
−19.3 mag) and the dotted line of all hosts (being −19.1 mag), where we assumed hosts without redshift information to be at z = 3.5 according to Table 2. For
GRBs 050803 and 050922B, the likely redshift ranges from the SED modeling are highlighted. (see Section 3.3 for details). Because of the ambiguity of the redshift
ranges, we also show their tracks if they are at lower redshifts.

Figure 5. GRB rate density (normalized to the TOUGH period of 2.5 years;
Hjorth et al. 2012) in hosts below and above the median UV luminosity of the
TOUGH sample. For simplicity only hosts with known redshifts are shown.
GRBs occur in faint hosts at <z 1 about a factor of five times more frequently,
while at z = 1–3, bright hosts are factor of 2.5–3 times more common than faint
hosts. Error bars represent Poisson errors on each bin. For details see
Section 4.1.

9

The Astrophysical Journal, 808:73 (15pp), 2015 July 20 Schulze et al.



luminosity with a width given by the measurement uncertainty.
Non-detected hosts were drawn from a uniform distribution
between a fiducial magnitude cut and the 3σ limiting detection.

Though we have only four data points with significant
uncertainty, the data appear to favor models of GRB production
incorporating significant levels of bias toward low metallicity
hosts (as suggested by Vergani et al. 2014; Cucchiara
et al. 2015). In particular, the inclusion of any of the hosts of
unknown redshift in individual redshift bins always lowers the
median magnitude in that bin. Note that these models of
metallicity bias for GRB production, which include metallicity-
dependent (single star collapsars) and independent channels
(binary progenitor)19 do not imply a fixed fraction of GRB
production via each channel, but rather an evolving fraction
with redshift, with the metallicity-dependent (collapsar type)
channel always being dominant at high redshift (see Trenti
et al. 2014 for full details).

4.3. The UV Luminosity Function

In order to go further than just analyzing the median properties
of the TOUGH hosts, we construct LFs for GRB hosts from
z = 0 to z = 4.5 in appropriate redshift and luminosity bins to
compare both with those from LBG surveys and those predicted
by the models of Trenti et al. (2014). We select those hosts from
our sample that fall in the redshift ranges of the three LBGs
surveys in Table 5, and in the range < <z0 1.

Figure 7 shows which part of the ÅM1600 –z parameter space
is probed by LBG surveys. The evolution of M implies that
GRB hosts probe the full luminosity range of LBGs between
z = 1 and 3, whereas at lower and higher redshifts, GRBs rather
probe the faint-end of the observed LBG LF. We note that the
luminosity range of GRB host galaxies extends to much fainter
galaxies between z = 1 and z = 3 than probed by the LBG
surveys in Table 5. However, recent observations by Alavi

et al. (2014) found no evidence for a change in the LBG LF
parameters at z ∼ 2 down to = -M 151500 mag, which
reassures us in extrapolating the LFs in Table 5 to lower
luminosities.
Figure 8 displays the GRB host galaxy cumulative

distributions for the four redshift intervals. Since GRBs are
produced by the collapse of very massive stars, it has been
suggested that GRBs should select galaxies according to their
SFR. In the simplest model, Fynbo et al. (2002) proposed
that the UV GRB-host LF should be similar to that of
LBG samples weighted by their SFR, where the SFR is
proportional to the unobscured UV luminosity, which can be
expressed as µ ´ LSFR 10 A M0.4 ( )

obs
V obs . Following Trenti et al.

(2014), we use s b= + +bA 4.43 0.79 log(10) 1.99V
2

UVUV

where s =b 0.34UV . The cumulative distributions of the SFR-
weighted LBG LFs from Table 5 are overlaid in the same plot.
At low and high redshift, the observed distribution differs

significantly from the no metallicity bias (or equivalently, LBG
derived) model LFs. In the < <z3 4.5 region, for example,
we can reject the null hypothesis of the data being drawn from
the SFR weighted LBG LF at a level of 0.01% via a
Kolmogorov–Smirnov (KS) test. In the medium redshift ranges

Figure 6. Evolution of the median obscured UV luminosity (in bins of unit
redshift) with known redshift (black markers). Their errors were assessed
through bootstrapping. At z = 3–4 the sample is characterized by a significant
number of non-detections. Overlaid are model tracks for different strengths of a
possible metallicity bias (Trenti et al. 2014). The hosts with unknown redshift
were also put at < <z1 2 and < <z2 3 to assess their impact on the median
value (displayed by lighter blue bars). The blue bar shows the median UV
luminosity if GRBs 050803 and 050922B are put at z = 3.5 and z = 4.5,
respectively (Section 3.3). See Section 4.2 for details.

Table 5
Parameters of LBG Luminosity Functions

Redshift Luminosity ÅM1600 , Faint-end

Interval
Interval
(mag) (mag) Slope α References

⩽ ⩽z1.0 1.5 −21.50
to −17.83

−20.08
± 0.36

−1.84
± 0.15

(1)

⩽ ⩽z1.9 2.7 −22.83
to −17.83

−20.70
± 0.11

−1.73
± 0.07

(2)

⩽ ⩽z3.0 4.5 −22.69
to −15.94

−21.07
± 0.08

−1.64
± 0.04

(3)

Note. Values of LBG LFs in the Schechter parameterization for different redshift
intervals. The redshift column shows the interval for which the LFs were applied to.
References. (1) Oesch et al. (2010), (2) Reddy & Steidel (2009) (3) Bouwens
et al. (2014).

Figure 7. Observed luminosity evolution of GRB host galaxies and the
evolution of ÅM1600 , of LBGs (light-blue shaded area; Arnouts et al. 2005;
Reddy & Steidel 2009; Oesch et al. 2010; Bouwens et al. 2014). Overlaid are
the redshift and luminosity ranges probed by the LBG surveys in Table 5 at
>z 1 and the predicted LBG LF for <z 1 by Trenti et al. (2014), which are

used to construct the UV GRB-host luminosity function. The color coding is
identical to Figure 4.

19 Cantiello et al. (2007) argue that the binary channel may prefer low-
metallicity environments as well, i.e., being metal dependent.
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( < <z1 1.5 and < <z1.9 2.7) the data are insufficient to
distinguish reliably between any of the models, particularly due
to some non-detections and the possibility of some of the hosts

of unknown redshift being within these bins as discussed in the
next section.

5. DISCUSSION

5.1. The Impact of Hosts with Unknown Redshifts

There are nine hosts in our sample with redshifts unknown
within certain limits. As discussed in Jakobsson et al. (2012), a
conservative upper limit of <z 3.5 can be placed on four of the
bursts associated with these hosts via their measured excess
(above Galactic) X-ray absorption following the method of
Grupe et al. (2007). The remaining five bursts can be at higher
redshifts (see Table 2 for details).
In this paper we set a formal redshift limit of <z 3.5 to

avoid corrections for IGM and Lyα absorption. These
unknown redshift hosts can therefore exist anywhere along
the gray tracks plotted in the right-hand panel of Figure 4. The
maximum plausible redshift of z = 3.5 is approximately
coincident with the midpoint of our highest redshift LBG
comparison sample, and in Figure 8 we also show the effect of
placing all the unknown hosts at the midpoint of each LBG
comparison range in turn (hatched regions). As can be seen
from the bottom panel in this plot, if all unknown redshift
hosts are actually at their highest plausible redshift, which
may be a likely scenario (see Figure 11 in Hjorth et al. 2012),
and all upper limits are treated as detections, then the
likelihood (KS probability) of the TOUGH cumulative
distribution being consistent with the SFR weighted LBG
model rises to 1.0%. Note that this value represents our most
conservative limit compared to the more flexible simulation
discussed below.
To quantify how many of the TOUGH hosts with unknown

redshift would be required to be within the range ⩽ ⩽z3 3.5
in order to make the TOUGH host LF consistent with the SFR-
weighted LBG LF, we performed a Monte-Carlo simulation as
follows. One of the nine hosts with unknown redshift was
chosen at random and assigned a random redshift between

⩽ ⩽z3 3.5. The appropriate host luminosity was then drawn
from a normal distribution centered around the observation
value with a width (1σ) of the detection error for detected
hosts, and a uniform distribution between the upper limit and
the luminosity of the faintest host in the TOUGH ⩽ ⩽z3 4.5
sample for those hosts with an upper limit only. This host is
added to the TOUGH CDF, and a KS value computed between
the new CDF and the SFR weighted LBG-LF. The process is
repeated 30,000 times and a mean and median KS value
obtained. We then successively add hosts of unknown redshift
and repeat the procedure until all nine hosts are included in the
CDF. Figure 9 shows how the measured KS value varies with
the number of added hosts of unknown redshift.
As can be seen from Figure 9, at least 3 unknown hosts are

required for the TOUGH distribution to fall below the 3σ
equivalent rejection probability level of <0.3% chance of
consistency with being drawn from the SFR-weighted LBG (no
metallicity bias) LF model. Even when all unknown redshift
hosts are included in the simulation, the median KS probability
of the distributions being consistent is only 0.8%. The gap may
be closed further if some of the unknown hosts are at higher
redshifts still ( < <z3.5 4.5) since their R-band observations
then would have been significantly affected by IGM and Lyα
absorption. Nevertheless, the metallicity dependent models of

Figure 8. Observed cumulative distribution (CDF) of the TOUGH sample at
different redshifts. The shaded areas display the 1σ uncertainties in the UV
luminosity of the GRB host galaxies. The hatched regions show the parameter
space between the two extreme cases of including/not including all hosts of
unknown redshift in the respective redshift interval. The black curves display the
CDFs of an SFR-weighted LBG luminosity function for the given redshift
interval and their 1σ envelopes in gray. In color are shown the luminosity
functions for various levels of metallicity bias predicted by Trenti et al. (2014).
The limiting magnitudes of the LBG surveys are displayed by the dashed vertical
lines and the dotted vertical lines indicate the magnitude of the faintest observed
host in each sample, where the CDFs are formally normalized in each respective
panel. The parameters of the LBG luminosity functions are listed in Table 5.
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Trenti et al. (2014) appear a better fit to the data, with critical
KS rejection levels much lower.

We emphasize again that these models do not represent a
fixed fraction of GRB production via metal-dependent and
independent channels, but are derived from stellar population
syntheses combined with a GRB production efficiency model
with respect to metallicity controlled by the value of p. Lower
(but non-zero) p values represent a stronger level of bias
toward low metallicity hosts, as expected from the collapsar
model. We note that the p = 0 model (blue lines) which
represents a stringent metallicity plateau for GRB production is
effectively ruled out by observations of some high metallicity
GRB hosts (e.g., Levesque et al. 2010; Elliott et al. 2013;
Schulze et al. 2014), and are plotted as convenient limits for
comparison only.

5.2. Influence of Selection Effects
on Previous GRB Host Samples

The TOUGH sample is independent of the brightness of the
optical afterglow, but the properties of the prompt emission
could still bias the sample toward a certain GRB population
and hence a certain host galaxy population. We find no
correlation between the host properties and energy released at
γ-ray energies, Eiso (values taken from Butler et al. 2007), or
the peak flux photon flux (taken from Sakamoto et al. 2008) at
any redshift. At low redshift (where we are sampling the
greatest proportion of the GRB γ-ray LF itself) there is also no
tendency for brighter bursts to favor dimmer hosts, and we
therefore do not believe any flux-limited observational bias of
the bursts themselves significantly affects any of our conclu-
sions regarding the hosts.

Previous GRB host surveys have tended to be biased toward
bursts with optically brighter afterglows and/or hosts, whereas
the TOUGH sample (as stressed throughout this work) is
independent of the optical properties of bursts or hosts. To
examine whether these previous observational biases are

significant or not, we investigate whether the same conclusions
could be drawn from a previous heterogeneous sample. To
address this question we retrieved all host measurements that
probe the rest-frame UV continuum from the GHostS database
(Savaglio 2006). Until 2012 January (before the first results
from the TOUGH survey were published), the database
comprised observations for over 120 hosts. As an example,
we build the UV luminosity distributions for this sample and
divide them into the same redshift and luminosity bins as the
TOUGH sample.
The observed cumulative distributions are shown in the

lower panels of Figure 10, along with those of the TOUGH
sample in the upper panels. At all redshifts, except perhaps for
< <z1 1.5, we see an overabundance of luminous galaxies in

the GHostS sample compared to TOUGH. This clearly shows
that selection effects from GRB afterglow observations must be
carefully taken into account before attempting to extract any
ensemble properties. The limiting magnitudes in the GHostS
sample are in general also significantly shallower than ours. To
be able to extract any meaningful results, GRB-selected galaxy
samples need to be carried out to the magnitude limits of LBG
surveys, i.e., reaching at least R ∼ 28 mag.

5.3. Origin of the Redshift Evolution of the
Luminosity Function

Our findings let us draw the following picture. GRBs probe
the full luminosity range (and below) of LBG surveys at all
comparable redshifts. Furthermore, throughout the entire redshift
range of our sample, GRB hosts appear consistent with models
of GRBs being produced by a combination of a metal-dependent
(single star collapsar) channel and an independent (binary
progenitor) channel with a relatively high level of bias (low, but
non-zero value of p) toward low metallicity hosts (Trenti
et al. 2014), though we cannot completely rule out the unbiased
models in the range < <z1 3. This behavior may also lend
support to the model of the starvation of infalling pristine gas at z
∼ 1–1.5 proposed by Perley et al. (2013), moving the GRB host
population away from LBG galaxies as a whole to low-mass UV
faint galaxies as redshift decreases.
At >z 3, we observe a lack of UV luminous GRB hosts. All

detected hosts (except one) are at least 3 mag fainter than L
galaxies. If GRB hosts were truly similar to LBGs, we may
expect this connection to improve at higher redshifts, where
any potential metallicity bias becomes less important in
comparison to the overall galaxy population. Indeed the
presence of a reasonable fraction of the nine hosts of unknown
redshift in this range would reduce this lack of bright hosts,
though not entirely to the level of consistency with an SFR
weighted LBG LF.
Thus it would seem that at both high and low redshift,

TOUGH supports the idea that GRBs are preferentially found
in low-metallicity, relatively UV faint hosts compared to the
overall galaxy population, and therefore their relationship to the
cosmic SFR density history as measured by UV flux limited
surveys is not simple. Several previous studies have pointed to
the numbers of GRBs observed at high redshift indicating a
large amount of hidden (massive) star formation in galaxies
that are too faint to be detected in current LBG surveys (Fynbo
et al. 1999; Haehnelt et al. 2000; Fynbo et al. 2002; Le Floc’h
et al. 2003; Jakobsson et al. 2005, 2012; Kistler et al. 2008;
Schmidt 2009).

Figure 9. Kolmogorov–Smirnov test between the observed TOUGH hosts and
the various luminosity functions between z = 3.0 and z = 4.5 as the number of
hosts with unknown redshift is increased. The color-shaded regions represent
the 16 and 84 percentiles of the MC simulations. With the null hypothesis that
the data may be drawn from the respective model LF, the white area of the plot
represents rejection of this null hypothesis with a probability level of it being
correct of <0.3% (3σ equivalent). Within the gray shaded region, the dashed
and dotted lines display the 5% (2σ equivalent) and 32% (1σ equivalent)
rejection levels respectively. See Section 5.1 for details.
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Alternatively others have suggested that GRB production
efficiency with respect to star formation may increase with
redshift (Kistler et al. 2009; Butler et al. 2010; Robertson &
Ellis 2012; Salvaterra et al. 2012). If this latter alternative of
increased GRB efficiency were the sole reason for the change,
however, one might expect to still see some bright hosts at high
redshift. However, highly star-forming galaxies may well also
contain a large amount of dust, both obscuring their intrinsic
SFR and making it more difficult to obtain spectroscopic
redshifts. Despite targeted and deep searches, no GRB host has
yet been detected beyond z ∼ 5, which lends support to the lack
of bright hosts at high redshift not being an artifact of our
survey. Obviously since high-z GRBs are rare, the influence of
small number statistics cannot be avoided. We suggest
however, that though an increase in GRB production efficiency
with respect to the UV measured cosmic SFR density at high
redshift may be a useful calculational tool in simulation studies,
it does not represent the detailed picture regarding individual
GRB host galaxies, and more unbiased GRB host data are
required.

During the review process of this paper, other workers have
submitted investigations of the properties of GRB host
galaxies. Greiner et al. (2015) presented discussions of the
properties of a heterogeneous sample of GRB hosts at z ∼ 3,
and Perley et al. (2015b) presented findings on the NIR
luminosity distribution z = 0 to z = 5 from the optically
unbiased SwiftGamma-Ray Burst Host Galaxy Legacy Survey
(SHOALS; Perley et al. 2015a). While the former study

concludes that GRBs are unbiased tracers of star formation
(compare our Section 5.2 and Figure 10), the latter study
comes to a similar conclusion to that presented in this paper:
GRB hosts in general appear fainter than a model that solely
depends on SFR would predict, with a particularly pronounced
lack of NIR luminous galaxies at <z 1. In all three samples,
the number of events at >z 4 is relatively small, illustrating
the need for a more concerted observational effort targeting this
regime.

6. CONCLUSION

We have used the optically unbiased TOUGH sample to
examine the UV GRB host galaxy LF from z = 0 to z = 6.3.
We find the TOUGH host LF to be most compatible at all
redshifts with an SFR weighted LF derived from a model
containing both a metal-independent (binary progenitor) and
metal-dependent (single star collapsar) channels with a
relatively high level of bias toward low-metallicity hosts as
suggested in Kocevski & West (2011), Graham & Fruchter
(2013), Perley et al. (2013), Trenti et al. (2014), Vergani et al.
(2014), and Cucchiara et al. (2015). This is particularly the
case at low ( < <z0 1) and high ( < <z3 4.5) redshifts,
though we cannot rule out an unbiased LF at medium redshifts
( < <z1 3) as observed in more heterogeneous samples with
unknown observational biases.
At high redshifts ( < <z3 4) in particular, the lack of

detected UV luminous host galaxies combined with the

Figure 10. Observed CDFs of the heterogeneous GHostS (bottom) sample in comparison to the optically unbiased TOUGH (top) sample at different redshifts. There
are clear differences between the two host samples, particularly at high z (see text for discussion). The hatched regions show the parameter space between the two
extreme cases of including/not including all hosts of unknown redshift in the respective redshift interval. The black curves display the CDFs of an SFR-weighted LBG
luminosity function for the given redshift interval and their 1σ envelopes in gray. In color are shown the luminosity functions for various levels of metallicity bias
predicted by Trenti et al. (2014). The plot boundaries were adjusted to the luminosity range of the respective LBG survey and Trenti et al. (2014). The thick line
shown in light blue in the ⩽ ⩽z3 4.5 panel indicates the luminosity function, if all hosts with unknown redshift would be at z = 3.5, and GRBs 050805 and 050922B
at z = 3.5 and z = 4.5, respectively. The limiting magnitudes of the LBG surveys are displayed by the dashed vertical lines and the dotted vertical lines indicate the
magnitude of the faintest observed host in each sample, where the CDFs are formally normalized in each respective panel. The parameters of the LBG luminosity
functions are listed in Table 5.
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likelihood that several (if not all) of the nine hosts of unknown
redshifts may be in this range show that a deep spectroscopic
survey with an optical+NIR spectrograph such as the ESO
X-shooter UV–NIR echellete spectrograph is needed to fully
constrain the GRB host LF and elucidate more fully the
relationship between GRBs and the cosmic SFR density
history.
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