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ABSTRACT 

Liposomes, or bilayer lipid vesicles, are ideal models of cells and 
biomembranes. Furthermore, they are being used by the pharmaceutical, cosmetic 
and food industries as micro- and nano-carrier systems for the protection and 
delivery of bioactive agents. They are composed of one or more concentric lipid 

and/or phospholipid bilayers and can contain other molecules such as proteins or 
polymers in their structure. There are numerous lab-scale and a few large-scale 
techniques for liposome preparation. However, most of these techniques are not 
suitable for the encapsulation of sensitive substances because of their exposure 
either to mechanical stresses or potentially harmful chemicals during the 

preparation. The majority of liposome preparation techniques involve the application 

of volatile organic solvents (mainly chloroform, ether, or methanol), as a first step, to 
dissolve or solubilise the lipids. These solvents not only affect the chemical 
structure of the entrapped substance but will also remain in the final liposome 
formulation and contribute to toxicity and influence the stability of the vesicles. 

In this thesis a new method for the production of liposomes without the use 
of any hazardous chemical or process is described. This method involves the 
heating of the liposome components, in the presence of glycerol. Glycerol is a 

water-soluble and physiologically acceptable chemical with the ability to increase the 

stability of the lipid vesicles and does not need to be removed from the final 
liposomal product. Since heating is the main step in this methodology it is termed 
the 'Heating Method and the resultant liposomes are referred to as 'HM-liposomes. 

The 'Heating Method enabled preparation of stable liposomes with ease, 
good reproducibility and different size distributions. Physicochemical and biological 

characteristics of the HM-Iiposomes were compared with that of the conventional 
liposomes. Different types of liposomes (heterogenously sized multilamellar 
vesicles and unilamellar vesicles of 100nm and 400nm size) were prepared by 

conventional techniques (thin-layer hydration, bath sonication and extrusion 

methods) as well as the heating method. Liposomes produced were characterised 
in terms of their size, polydispersity, morphology and stability using light scattering 
instrument in addition to optical microscopy, Nikon eclipse microscopy, freeze 
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fracture scanning electron microscopy, transmission electron microscopy, scanning 
tunnelling microscopy and atomic force microscopy. Comparison of the change in 

the transition temperature of the vesicles was performed by differential scanning 

calorimetry. HM-liposomes were completely non-toxic when tested in a human lung 

epithelial cell line (HBE) using two different toxicity assays. The antineoplastic drug 

5-FU and the antioxidant agent GSH were encapsulated in the HM-liposomes with 

high entrapment efficiencies. HM-liposomes sustained the release of these drugs 

for prolonged periods and reduced the cytotoxicity of the 5-FU towards the HBE 

cells. 

A new non-viral, and non-cationic gene transfer vector was constructed by 

using the HM-liposomes. Incorporation of DNA to the HM-liposomes was achieved 

with high entrapment efficiency through a very mild procedure, which does not 
involve any potential harm to the DNA structure/function. Anionic HM-liposomes 

were complexed with plasmid DNA by the mediation of calcium ions at room 

temperature. High-resolution electron and scanning probe microscopic studies 

revealed either one huge vesicle or two to four aggregated/semi-fused vesicles for 

HM-liposomes of both multilamellar and unilamellar types as a result of their 

complexation with DNA and calcium. The HM-liposomes were detected to be able 

to protect the incorporated DNA from enzymatic degradation. Moreover, the vector 

was detected to be able to transfect cultured HBE cells, in the presence of serum, 

probably by a mechanism involving fusion of the ternary complex to the plasma 

membrane and/or the endosomal membrane. 
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5FU 5-fluorouracil 
AFM atomic force microscopy 
Ca 2+ calcium ion 

CHOL cholesterol 
°C degree Celsius 

DCP dicetylphosphate 
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DNase deoxyribonuclease enzyme 
DPPC dipalmitoylphosphatidylcholine 

DSC differential scanning calorimetry 

et al 'and others': et alii (masculine plural), et aliae (feminine 

plural), et alia (neutral plural); also means 'and elsewhere' 
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HBE human bronchial epithelial cells 
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LUV large unilamellar vesicles 
MLV multilamellar vesicles 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

nm nanometer 
NRU neutral red uptake assay 
PBS phosphate-buffered saline 
PC phosphatidylcholine 
SEM scanning electron microscopy 
STM scanning tunneling microscopy 
SUV small unilamellar vesicles 
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TEM transmission electron microscopy 
TLC thin layer chromatography 

vi' 



RELATED PUBLICATIONS AND PRESENTATIONS IN 

CONJUNCTION WITH THE RESEARCH PROGRAMME 

The present PhD study have resulted in nine peer-reviewed publications and one 

review article submitted with more papers in preparation in addition to one patent 

application, a complete list of which is provided at the end of this thesis. 
Furthermore, during this research programme I have attended conferences and 

symposia and presented my work as follows: 

1. Mozafari, M. R., Reed, C. J., Rostron, C., Martin, D. S., Kocum, C. & Piskin, E. (2004) 
Scanning probe microscopy investigations of nano and microscale bioactive carrier 
complexes. UKSPM 2004, UK Annual Scanning Probe Microscopy Meeting, 
Nottingham, England. 

2. Mozafari, M. R., Reed, C. J., Rostron, C., & Martin, D. S. (2003) Second Generation of 
Liposome/Ca2+/DNA Complexes: A Microstructural Study Using Atomic Force 
Microscopy. 6h International Conference, Liposome Advances, Progress in Drug and 
Vaccine Delivery, London, England, pp 114. 

3. Mozafari, M. R., Reed, C. J., Rostron, C., & Martin, D. S. (2003) Transfection of Human 
Airway Epithelial Cells Using a Lipid-Based Vector Prepared by the Heating Method. 
14th Drug Delivery to the Lungs Conference, London, England, pp 54-58. ISBN 0- 
0544567-1-8. 

4. Mozafari, M. R., Reed, C. J. & Rostron, C. (2003) 5-Fluorouracil Encapsulation in 
Colloidal Lipid Particles: Entrapment, Release and Cytotoxicity Evaluation in an Airway 
Cell Line. 14th Drug Delivery to the Lungs Conference, London, England, pp 180-183. 
ISBN 0-0544567-1-8. 

5. Mozafari, M. R., Reed, C. J., Rostron, C., Kocum, C. & Piskin, E. (2002) Pharmaceutical 
Applications of Nanotechnology- Implications in Drug Targeting and Gene Therapy. 
Proceedings of Pharmacy & Pharmacology, 9th Iranian Students Seminar in Europe 
(ISS-2002), Birmingham, England, pp 7. 

6. Mozafari, M. R., Reed, C. J., Rostron, C., Kocum, C. & Piskin, E. (2002) Formation and 
Characterisation of Non-Toxic Anionic Liposomes for Delivery of Therapeutic Agents to 
the Pulmonary Airways. 9. Liposomes. From Models to Applications, Poland. 

7. Mozafari, M. R., Reed, C. J. & Rostron, C. (2002) Safety and Efficacy of Anionic 
Liposome Mediated Gene Transfer to the Human Airway Epithelial Cells. Genes as 
Medicines, London, England. 

8. Mozafari, M. R., Reed, C. J. & Rostron, C. (2002) Cystic Fibrosis Gene Therapy by 
Liposomes: Prospects and Problems. The Ian Ward Members Papers Evening, The 
Association of Clinical Biochemists North West Region, Liverpool, England. 

9. Mozafari, M. R., Reed, C. J. & Rostron, C. (2001) Reduced Cytotoxicity of Anionic 
Liposome/Calcium/DNA Complexes Prepared by the Heating Method. British 
Pharmaceutical Conference Science Proceedings 2001, pp 100 (Pharmaceutical Press, 
London, UK). ISBN 0 85369 512 1. 

10. Mozafari, M. R., Reed, C. J. & Rostron, C. (2001) Non-Toxic Liposomal Formulations for 
Gene and Drug Delivery to the Lung. 8th Biomedical Science and Technology 
Symposium, Ankara, Turkey, pp 016. 

11. Mozafari, M. R., Reed, C. & Rostron, C. (2001) The Influence of the Preparation Method 
on the Toxicity of Anionic Liposomes. Proceedings of Pharmacy & Pharmacology, 8th 
Iranian Students Seminar in Europe (ISS-2001), UMIST, Manchester, England, pp 3. 

viii 



CONTENTS 

page 

ABSTRACT ii 

DECLARATION iv 

ACKNOWLEDGEMENTS V 

ABBREVIATIONS vii 

CHAPTER 1: 

GENERAL INTRODUCTION 1 

A historical perspective of liposomes 1 

Physicochemical properties of liposomes 3 

Chemical constituents 3 

Sterols 5 

Transition temperature (Tc) 7 

Surface charge 11 

Liposome preparation techniques 11 

Conventional methods 13 

Classification of liposomes 15 

Applications of lipid vesicles 16 

Fate of liposomes in vivo 18 

Long circulating vesicles 19 

Modes of liposomal drug delivery 20 

Passive targeting 20 

Active targeting 21 

Immunoliposomes 22 

Virosomes 22 

Liposomal drug delivery to the lungs 23 

Methods of administration 25 

Aims of this research work 26 

ix 



CHAPTER 2: 
A NEW TECHNIQUE FOR PREPARATION OF NON-TOXIC 

LIPOSOMES: THE HEATING METHOD 28 

Introduction 28 
Chemical composition of the HM-liposomes 31 

Characterisation of the liposomes 32 

Materials & Methods 33 

Chemicals 33 

Experimental methods 34 

Liposome preparation 34 

Preparation of conventional liposomes 34 

Preparation of liposomes by the 

heating method 36 

Thin layer chromatography 37 
Gel permeation chromatography 38 

Light scattering 38 

Optical microscopy 39 

Nikon eclipse microscopy 39 

Transmission electron microscopy 40 

Scanning tunneling microscopy 40 

Thermal analysis of liposomes 42 
Results 42 

Preparation of liposomes by the heating method 42 

Thin layer chromatography 43 

Gel permeation chromatography 44 

Light scattering 47 

The aging effect 48 

Optical microscopy 49 

Nikon eclipse microscopy 49 

Transmission electron microscopy 50 

Scanning tunneling microscopy 51 
Thermal analysis of liposomes 54 

Discussion 55 

Formation of liposomes by the heating method 55 

Morphological characterisation of liposomes 56 

X 



Scanning tunneling microscopy 57 

Size distribution of the liposomes 59 

Storage stability of the HM-liposomes 61 

Thermal analysis of the liposomes 61 

Conclusions 63 

CHAPTER 3: 
IN VITRO CYTOTOXICITY EVALUATION OF THE HM-LIPOSOMES 

TOWARDS HUMAN RESPIRATORY EPITHELIAL CELLS 64 

Introduction 64 

Liposome-cell interactions in vitro 66 

Phagocytosis/endocytosis 67 

Fusion 70 

Lipid exchange 72 

Adsorption 73 

Contact release 74 

Liposome toxicity 75 

Rationale for the use of 16HBE14o- cell line 75 

Human respiratory tract 76 

Importance of airway epithelial cell lines 79 

Materials & Methods 82 

Chemicals 82 

Experimental methods 83 

Liposome preparation 83 

Preparation of conventional liposomes 83 

Preparation of liposomes by the 
heating method 83 

Plasmid DNA 84 

Incorporation of DNA into liposomes 85 

Cells 85 

Toxicity assays 86 
Neutral red uptake (NRU) assay 87 

MTT assay 87 

Statistical analysis 88 

Results 88 

xi 



Discussion 99 
Conclusions 103 

CHAPTER 4: 
ENCAPSULATION OF 5-FLUOROURACIL IN HM-LIPOSOMES: 

CHARACTERISATION AND IN VITRO TOXICITY USING 

HUMAN AIRWAY EPITHELIAL CELLS 104 

Introduction 104 

Materials & Methods 107 

Chemicals 107 

Experimental methods 108 

Liposome preparation 108 

Preparation of conventional liposomes 108 

Preparation of liposomes by the 

heating method 109 

Thin layer chromatography 110 

Separation of liposomes from unentrapped drug 110 

Liposome 5-FU interaction assay 111 

Determination of entrapment efficiency 112 

Release of 5-FU from liposomes 112 

Cells 113 

Toxicity assays 113 
Statistical analysis 113 

Results 113 
Thin layer chromatography 113 
Interaction assay 114 
Entrapment efficiency 116 

Release of 5-FU from liposomes 117 
Cytotoxicity 120 

Discussion 121 
Conclusions 126 

X11 



CHAPTER 5: 
HM-LIPOSOMES AS GLUTATHIONE DELIVERY SYSTEMS 127 

Introduction 127 

Materials & Methods 131 

Chemicals 131 
Experimental methods 132 

Liposome preparation 132 

Preparation of conventional Iiposomes 132 

Preparation of liposomes by the 

heating method 132 

Thin layer chromatography 133 

Separation of liposomes from unentrapped GSH 133 

GSH determination 134 

Liposome GSH interaction assay 135 

Determination of entrapment efficiency 135 

Release of GSH from liposomes 136 

Results 136 

Thin layer chromatography 136 

Interaction assay 137 

Entrapment efficiency 138 

Release of GSH from liposomes 139 

Discussion 142 

Conclusions 146 

CHAPTER 6: 
CONSTRUCTION OF A GENE DELIVERY VECTOR USING 

HM-LIPOSOMES AND TRANSFECTION OF 

HUMAN RESPIRATORY EPITHELIAL CELLS 147 

Introduction 147 

Nucleic acids as therapeutics 147 

Nucleic acid transfer methods 151 

Liposomes as polynucleotide carriers 153 

Materials & Methods 157 

Chemicals 157 

Experimental methods 158 

Xlii 



Liposome preparation 158 

Plasmid DNA 158 

Incorporation of DNA into liposomes 158 

Agarose gel electrophoresis 159 

Light scattering 159 

Ethidium bromide intercalation assay 160 

DNase I protection assay 161 

Transmission electron microscopy 162 

Scanning tunnelling microscopy 162 

Atomic force microscopy 163 

Cells 163 

Gene transfer 164 

ß-galactosidase assay 164 

Results 165 

Plasmid DNA analysis 165 

Agarose gel electrophoresis 166 

Incorporation efficiency of DNA in HM-liposomes 168 

Light scattering measurements 170 

Ethidium bromide intercalation assay 171 

DNase I protection assay 182 

Transmission electron microscopy 183 

Scanning tunnelling microscopy 185 
Atomic force microscopy 185 

Gene transfer 190 

Discussion 192 

Conclusions 203 

CHAPTER 7: 
GENERAL DISCUSSION AND CONCLUDING REMARKS 205 

Introduction 205 

Summarising discussion 207 

Prospective work 211 

Conclusions 212 

xiv 



REFERENCES 

APPENDICES 

213 

APPENDIX I: Structural details of scanning tunnelling microscopy 258 

APPENDIX II: 5-FU calibration curve 

APPENDIX III: GSH calibration curve 

259 

260 

APPENDIX IV: Publication list of the author of this thesis 261 

xv 



1: GENERAL INTRODUCTION 

I. I. A Historical Perspective of Liposomes 

The simplest way to introduce liposomes may be to define them as "lipid 

vesicles enclosing aqueous space(s)" (New 1990). In another words liposomes are 

simplified forms of living cells (Figure 1.1. ). Their formation does not require the 

inclusion of surfactants or emulsifiers; they may be single- or multi-lamellar and 

vary according to lipid content, surface charge, size, and method of preparation. The 

properties of these vesicles have been investigated extensively, and ingenious ways 

have been found to manipulate them to impart behavioural characteristics such as 

sensitivity to light, heat, pH and magnetic field. Few other areas of research can 

routinely bring into realisation such a wide range of phenomena. The extensive and 

ever increasing literature covering the field of liposomology written by researchers 

with diverse interests is an indication of liposomes being a ubiquitous biochemical 

tool. Applications of liposomes in the areas of immuno-modulation, diagnosis, drug 

delivery, cosmetics, genetic engineering and investigations into the origin of life 

(Pozzi et al 1996; Nomura et al 2001) have been identified and developments are 

ongoing. In addition, the resemblance of liposomes to cell membranes have made 

them an ideal system for studying the characteristics of biological membranes. 

lipid bilayer 

water 

Figure I. I. Cross sectional view of a unilamellar liposome. 



The concept that lamellar structures composed of lipid and water systems 

might be useful as models for cell membranes has a long history (e. g. see Teitel 

Bernard 1945-47, also see Chapman and Arrondo 1981 for a review). However, it 

was in the early 1960s that much more emphasis was placed upon the study of the 

properties of lipid-water systems as model biomembranes. Initially named 
'Bangosomes', after being brought to the attention of the scientific world by A. D. 

Bangham (Bangham et al 1965), they were later termed 'Liposomes'. Bangham 

himself, however, proposed the name 'Amphisome (Bangham 1981) as a more 

appropriate term since membrane molecules are characteristically amphiphiles. 

Pioneers in the field of model biomembranes, Bangham, Chapman, 

Dervichian, and Luzzati, studied these systems from different view points. The study 

of the dynamic and sub-microscopic properties of these model membranes, such as 
fluidity (Chapman et al 1966), and change to other mesomorphic structures, and 

phase transitions, was for some time carried out distinctively and separately from the 

study of more macroscopic properties such as their ion trapping and release 

characteristics (Bangham et al 1965). Some of these investigations have been useful 
for providing insight into the dynamic structure of biomembranes, such as the 

fluidity of the lipid matrix and their diffusional properties (e. g. see Chapman 1975), 

whilst some others have led directly to a potential tool for drug delivery systems 

(Gregoriadis 1971). 

Investigations into the role of liposomes as transport vesicles for therapeutic 

agents have advanced considerably in recent years. Some areas that have attracted 

attention include the nature of interaction of solutes (proteins, drugs etc. ) with 
liposomes; the factors governing the rate and site of uptake of liposomes after in vivo 

administration; the mechanism of liposome uptake by cells; and the immunological 

properties of liposomes. Variations of lipid composition and net charge of liposomal 

membrane as well as size of liposomes have been recognised as important physical 

characteristics that may determine the behaviour of the liposome in vitro and in vivo. 
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1.2. Physico-chemical Properties of Liposomes 

1.2.1. Chemical Constituents 

The word liposome has been adopted generally to describe mesomorphic 

lipid-water structures. Chemical components of liposomes are lipids and/or 

phospholipids. Lipids are fatty acid derivatives with various head group moieties. 

They are widely occurring in nature and have been the subject of various chemical 

manipulations, for instance to prepare liposomes with certain physico-chemical 

characteristics (e. g. fluidity, shelf-life, blood circulation time, rate of drug release, 

etc. ). In vivo, they are subject to conversion by gastrointestinal lipases to their 

constituent fatty acids and head groups. Triglycerides are lipids made from three 

fatty acids and a glycerol molecule (a three-carbon alcohol with a hydroxyl [OH] 

group on each carbon atom). Mono- and diglycerides are glyceryl mono- and 

diesters of fatty acids. Phospholipids are similar to triglycerides except that the first 

hydroxyl of the glycerol molecule has a polar phosphate- containing group in place 

of the fatty acid. Phospholipids are amphipathic, being both hydrophylic and 

hydrophobic. The head group of a phospholipid is hydrophilic (water-loving) and its 

fatty acid tail is hydrophobic (water hating) (Figure 1.2. ). The phosphate moiety of 

the head group is negatively charged. In the related galactolipids, the phosphate 

group is replaced by galactose. These molecules are non-ionic (Bowtle 2000). 

Phospholipids are named according to the identity of the organic polar head 

group. For example, if the polar head group is choline, the phospholipid is called 

phosphatidylcholine. The term phosphatidylcholine actually refers to the family of 

phosphoglycerides (phospholipids) that contain choline as the polar head group. The 

fatty acid components may be specified in order to distinguish different 

phosphatidylcholines (also known as 'lecithin'). Lecithin can be derived from both 

natural and synthetic sources. Lecithin from natural sources is in fact a mixture of 

phosphatidylcholines, each with chains of different length and varying degrees of 

unsaturation (New 1990). 
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Figure 1.2. The hydrophilic and hydrophobic parts in the structure of a phospholipid 
molecule (from: http: //www. cbc. umn. edu/-mwd/cell_www/chapter2/membrane. html). 

Phosphatidic acid (Figure 1.3. ) serves as general intermediate in the 

biosynthesis of phospholipids (Kennedy 1961). It is a structurally simple molecule 

and probably was the first phospholipid which appeared in the course of evolution 

(Epps et al 1978). Under conditions similar to that of the primitive Earth, in a series 

of experiments, Oro and his team have synthesised mono- and dipalmitoyl 

glycerophosphates (phosphatidic acids) and subsequently phosphatidylcholine and 

phosphatidylethanolamine, two of the most important amphiphilic lipids which are 

used in the structure of liposomes and membranes (for a review see Oro 1994). 

Liposomes, as initial biomembranes, might have had vital functions not only to 

protect the first informative molecules (probably RNA) but also, in our opinion, to 

direct replication through specific interactions with these nucleic acids (Kahveci et al 

1994). 
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Figure 1.3. Chemical structure of L-a-Phosphatidic acid. 

Liposomes are formed when phospholipids such as lecithin are present in 

water and form a series of bilayers each separated by water molecules by input of 

energy. The underlying mechanism for the formation of liposomes is basically the 

hydrophilic-hydrophobic interaction between phospholipids and water molecules. 

The amphipathic phospholipid molecules form a closed bilayer sphere in an attempt 

to shield their hydrophobic group from the aqueous environment while still 

maintaining contact with the aqueous phase via the hydrophilic head group. In more 

general terms hydration of phospholipids in aqueous media results in the 

arrangement of phospholipid molecules in bilayers to form closed spherules known 

as liposomes. During this process liposomes can entrap hydrophilic solutes (or 

drugs) that are present in the hydration media. Lipophilic (fat loving) molecules or 

drugs (e. g. vitamin E, cyclosporin A, phenytoin, ... ) can also be incorporated into 

liposomal bilayers by dissolving these molecules together with the lipids. 

Alternatively lipid soluble molecules/drugs may be complexed with cyclodextrins 

and subsequently encapsulated within the liposome aqueous compartment 

(McCormack and Gregoriadis 1994). 

1.2.1.1. Sterols 

In addition to lipid and/or phospholipid molecules, liposomes may contain 

sterols in their structure. Sterols are important components of most natural 

membranes, and incorporation of sterols into liposome bilayers can bring about 

major changes in the properties of these membranes. The most widely utilised sterol 
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in the manufacture of the lipid vesicles is cholesterol. Cholesterol has an -OH group 

at position 3 of ring A (Figure 1.4. ), a CH3 at position 10 where rings A and B join, 

another CH3 at position 13 where rings C and D join and an eight membered 

hydrocarbon chain extending from the five membered ring D. Inside membranes 

cholesterol has its free OH group facing the aqueous environment while its rings 

occupy the spaces between the hydrophobic parts of the phospholipid molecules. 

Cholesterol does not by itself form bilayer structures, but it can be incorporated into 

phospholipid membranes in very high concentrations, up to 1: 1 or even 2: 1 molar 

ratios of cholesterol to phosphatidylcholine (New 1990). 

. -. I , 

HO""' 

Figure 1.4. The structure of cholesterol. 

Cholesterol is used, in liposomal formulations, to increase the stability of the 

lipid vesicles by modulating the fluidity of the lipid bilayer. In general, cholesterol 

modulates fluidity of phospholipid membranes by preventing crystallization of the 

acyl chains of phospholipids and providing steric hindrances to rapid movement. 

Stabilization of liposomes by cholesterol in general (New 1990), and in serum/blood 

in particular (Mayhew 1979; Hong 1997), is a well known phenomena. A schematic 

representation of the cholesterol effects on the structure of plasma membranes is 

demonstrated in Figure 1.5. 
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The amount of cholesterol to be used in the liposomal formulation depends 

mainly on the application area for which the liposomes are being manufactured. In 

previous work we have detected that both anionic and neutral liposomes can interact 

with model membrane systems (in the form of fusion/aggregation) when containing a 

10% molar ratio of cholesterol (Mozafari and Hasirci 1998). Anionic vesicles 

containing 10% cholesterol were also able to incorporate DNA molecules in the 

presence of Cat+. Increasing the cholesterol content of the anionic vesicles from 

10% to 40%, however, rendered them not only unable to undergo fusion/aggregation 

with model membranes but also unable to incorporate the DNA molecules. 
Consequently these liposomes containing 40% or more cholesterol can not be useful 
in gene and drug delivery applications. 

1txd 

1i r .raR 

(D =3 

47 3 
ý<eaipýr tw' 

Iricreisirij tholes erol ernichrrent 

Figure 1.5. A schematic model of the effects of cholesterol (" ) on plasma membrane 
structure (adapted from Tulenko et al 1998). 

1.2.2. Transition Temperature (Tc) 

Liposomes can be prepared from a variety of lipids (usually phospholipids) 

and lipid mixtures. They can also be formed from whole lipid extracts of cell 

membranes, e. g. erythrocyte ghosts (Bangham 1968). Formation of liposomes 

depends on certain intrinsic and extrinsic factors including the length of the acyl 

chains, pH and temperature. Amphipathic lipid molecules such as soaps and 
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phospholipids have an important characteristic, i. e. they can undergo a thermotropic 

phase transition at temperatures much lower than their final melting point. The 

detailed molecular nature of the major thermotropic phase transition of these long- 

chain amphiphilic molecules was defined first by infra-red spectroscopic studies 

(Chapman 1966). 

When water diffuses into the lipid bilayer it does so into the polar (ionic) 

region only when the temperature is reached at which the hydrocarbon chains "melt" 

(the TC transition temperature). If the temperature is higher than this there is a 

simultaneous dissociation of the ionic structure by the penetration of water and 

melting of the hydrocarbon chain region. The temperature of transition (Tc) depends 

upon the nature of the hydrocarbon chains, the polar region of the molecule, the 

amount of water molecules present and on any solutes dissolved in the water. Once 

the water has penetrated and the sample is then cooled to below the Tc, the 

hydrocarbon chains rearrange themselves into an orderly crystalline lattice, but the 

water is not necessarily expelled from the system (Chapman and Arrondo 1981). 

Each phospholipid series is characterised by a Tc below which its fatty acyl 

chains are in a quasi-crystalline array and above which the chains are in a more fluid 

state. Other changes accompanying chain melting are decreased bilayer thickness 

and increased area per molecule. These changes have been studied extensively by a 

variety of physical techniques including X-ray diffraction (Luzzati and Husson 

1962), differential scanning calorimetry (DSC) and fluorescence depolarisation 

(Chapman et al 1967). In general TC is lowered by decreased chain length, by 

unsaturation of the acyl chains, as well as presence of branched chains and bulky side 

groups (e. g. cyclopropane rings) (Szoka and Papahadjopoulos 1980). In 

phospholipids composed of the same acyl chain in both positions, Tc increases by 

about 14-17°C with every two-methylene unit addition to the chain. Most commonly 

used phospholipid molecules and their gel to liquid crystalline transition 

temperatures are presented in Table 1.1. Vesicles composed of phospholipids that 

are at temperatures below the transition temperatures of the phospholipids are known 

as "solid" or "gel" and those at temperatures above their Tc, as "fluid" liposomes 

(liquid crystalline vesicles). 
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In the study of model biomembranes, lecithin-water systems have received 

much attention because of the common occurrence of these lipids in animal cell 

membranes. The heat absorbed at TC for lecithin-water systems at high water 

content is seen to be chain-length dependent. For the series of fully saturated 
lecithins a difference of 2 kcal/mole occurs for a chain length difference of two 

methylene groups. 

An understanding of phase transitions and fluidity of phospholipid 

membranes is important both in the manufacture and exploitation of liposomes. This 

is due to the fact that the phase behaviour of a liposomal membrane determines such 

properties as permeability, fusion, aggregation and protein binding, all of which can 

markedly affect the stability of liposomes and their behaviour in biological systems 
(New 1990). Phase transition temperature of the lipid vesicles has also been reported 

to affect the pharmacokinetics of liposome-encapsulated drugs, such as doxorubicin 

(Gabizon et al 1993). 

When developing a new liposomal formulation or method, controlling the 

transition temperature of the lipid components is very useful. Choosing a lipid 

possessing high Tc (e. g. DPPC, see Table 1.1. ) where the lipid vesicle would be in 

the gel phase, at storage temperatures, would provide a non-leaky packaging system. 
Alternatively, a lipid with a transition temperature between the starting temperature 

and the ending temperature of the system would provide a means of releasing 

packaged material as the lipid passes through its phase transition temperature and the 

vesicle becomes leaky. These characteristics of liposomes can be utilised in drug 

delivery to tumour areas which, due to higher rate of metabolism, have higher 

temperatures compared with normal tissues. Also, one should consider how the 

transition temperature of the lipid could affect the processing steps. For instance, 

using a high transition lipid in liposome formulation, which causes the liposome to 

be rigid below its TC, could present some technical problems when filtration is 

necessary during the manufacture or sterilisation steps. 
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Table I. I. Most commonly used phospholipids in liposome preparations and their gel to 
liquid crystalline transition temperatures (adapted from Weiner 1990). 

Phospholipid Abbreviation Transition 
temperature (°C) 

Egg phosphatidylcholine PC -15 to -7 

Dilauryloyl phosphatidylcholine DLPC -1.8 

Dimyristoyl phosphatidylcholine DMPC 23 

Dipalmitoyl phosphatidylcholine DPPC 41 

Distearoyl phosphatidyicholine DSPC 55 

Dioleoyl phosphatidylcholine DOPC -22 

Dilauryloyl phosphatidyiglycerol DLPG 4 

Dimyristoyl phosphatidylglycerol DMPG 23 

Dipalmitoyl phosphatidyiglycerol DPPG 41 

Distearoyl phosphatidylglycerol DSPG 55 

Dioleoyl phosphatidyiglycerol DOPG -18 

Dimyristoyl phosphatidylethanolamine DMPE 50 

Dipalmitoyl phosphatidylethanolamine DPPE 66 

Phosphatidylserine PS 7 

Dimyristoyl phosphatidylserine DMPS 38 

Dipalmitoyl phosphatidylserine DPPS 51 

Dimyristoyl phosphatidic acid DMPA 51 (pH 6.0) 

Dipalmitoyl phosphatidic acid DPPA 67 (pH 6.5) 

Sphingomyelin SPH 32 

Dipalmitoyl sphingomyelin DPSPH 41 

Distearoyl sphingomyelin DSSPH 57 
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1.2.3. Surface Charge 

Besides the phase transition property of phospholipids, the surface charge of 
liposomes can also be varied. They could be neutral (with phospholipids such as 

phosphatidylcholine, or phosphatidylethanolamine), negative (with acidic 

phospholipids such as phosphatidylserine, phosphatidylglycerol, phosphatidic acid, 

or dicetylphosphate) or positive (by the use of lipids such as DOTAP (dioleoyl 

trimethylammonium propane), DOTMA (N-[ 1-(2,3-dioleoyloxy)propyl]-N, N, N- 

trimethylammonium chloride), or stearylamine) in physiological pH ranges. 
Liposomal charge is an important characteristic that may determine the fate of 
liposomes both in vitro and in vivo. In addition, the net charge of the liposomal 

membrane is an important parameter in terms of liposome interaction with drug 

molecules. From a toxicity point of view, liposome charge has been shown to have 

crucial roles. There are considerable number of reports on the toxicity of cationic 
liposomes (e. g. Campbell 1983; Filion and Phillips 1997,1998; Dokka et al 2000; 

Nagahiro et al 2000). On the other hand, anionic liposomes are reported to be less 

cytotoxic than cationic delivery systems (Chawla et al 1979; Campbell 1983; Welz et 

al 2000). It has been postulated that negatively charged liposomes, in general, 

associate more effectively and are taken up more readily by the cells compared with 

neutral liposomes (Heath et al 1985; Monkkonen et al 1994). Due to these reasons 

anionic liposomes were utilised in the studies reported in this thesis. 

1.3. Liposome Preparation Techniques 

There are several methods of liposome preparation giving rise to vesicles of 
different sizes ranging from 20nm to several microns in diameter and composed of 

one or more bilayers. Conventional liposome preparation techniques were discussed 

extensively by Gregoriadis (1984; 1993) and New (1990). More novel techniques 

are being introduced for liposome preparation, each with its own advantages and 

possible limitations. The key point to grasp in considering the manufacture of 

liposomes is that phospholipid membranes form as a result of unfavourable 
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interactions between phospholipids and water. Thus the emphasis in making 
liposomes is not towards assembling the membranes, but towards getting the 

membranes to form vesicles of the right size and structure, and to entrap materials 

with high efficiency and in such a way that these materials do not leak out of the 

liposome randomly. Other aspects of ideal liposome preparation procedures are 

discussed in chapter 2. 

The detailed mechanism of liposome formation by different techniques is out 

of the scope of this thesis. Almost for each liposome preparation method a different 

liposome formation mechanism can be suggested. Lasic (1988) for example 

proposed that liposomes form when hydrated bilayered phospholipid flakes (BPF) 

are generated and subsequently vesiculate into larger liposomes. Gould-Fogerite and 

Mannino (1993) proposed the involvement of structures called cochleate cylinders as 
intermediates in the formation of large unilamellar vesicles (LUV) by calcium-EDTA 

chelation, agarose plug diffusion and rotary dialysis techniques. Talsma et al 
(1994), for their bubble method, postulated that the continuous generation of 

gas/water interfacial areas might produce lipid monolayers at these interfaces that 

could be the starting material for further vesicle formation. 

The basic underlying principle for the formation of liposomes, regardless of 

the preparation methodology, is the hydrophilic/hydrophobic interactions between 

lipid-lipid and lipid-water molecules. Input of energy (e. g. in the form of sonication, 
homogenisation, shaking, heating, etc. ) results in the arrangement of the lipid 

molecules, in the form of bilayered vesicles, to achieve a thermodynamic equilibrium 
in the aqueous phase. Lasic et al (2001) have proposed that symmetric membranes 

prefer to be flat (spontaneous curvature =_ Co = 0) and energy is required to curve 

them. Whether spherical lipid membranes form in one stage (with curvatures 
initially as they form) or in two stages, as suggested by Lasic and co-workers for the 

above-mentioned case, it seems that energy in one form or another is a requirement 

for the production of liposomes. In the heating method, explained in this thesis, the 

main form of energy for the formation of liposomes is heating while stirring is used 

to facilitate homogeneous distribution of the ingredients. 
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1.3.1. Conventional Methods 

Conventional methods of making liposomes can be said to involve four basic 

stages: drying down of lipids from organic solvents, dispersion of the lipids in 

aqueous media, purification of the resultant liposomes, and analysis of the final 

product (New 1990). However, organic solvent residues, remaining in the lipid 

and/or aqueous phases of the liposomes during their preparation, could result in 

toxicity (Cortesi et al 1999). Recent developments in the field of liposome 

technology have made it possible to prepare liposomes without using any volatile 

organic solvent or detergent, examples of which are the polyol dilution method 

(Kikuchi et al 1994), the bubble method (Talsma et al 1994) and the heating method 

developed in our laboratory (Mozafari et al 2001,2002a, 2002b, 2002c) which is 

explained in this thesis. 

Table 1.2. shows the physical properties and entrapment efficiencies of some 

liposome formulations prepared by conventional methods. Only a few of the 

conventional liposome preparation procedures are capable of entrapping large 

quantities of water-soluble drugs (Vemuri and Rhodes 1995). Drug molecules can be 

entrapped in liposome vesicles by reverse-phase evaporation technique (Szoka and 

Papahadjopoulos 1978), ether injection technique (Deamer and Bangham 1976; 

Schieren et al 1978), and freeze-thaw method (Pick 1981), to name a few. These 

techniques yield large-unilamellar or multilamellar vesicles based on the selected 

method. Without an elaborate process scheme all the above methods produce 
heterogeneous mixture of liposomes. The original method of Bangham et al (1965) 

appears to be the simplest by comparison with the methods listed above. This 

method, however, has limited use because of its low encapsulation ability and 

impossibility to scale to larger batch sizes. 
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Table 1.2. Physical properties of conventional liposome formulations (adapted from Mayer 

ct al 1986). 

Vesicle Preparation Vesicle Entrapped Agent Entrapment 
Type Method Diameter (µm) Efficiency (%) 

SUV Sonication 0.02-0.04 Cytosine, Arabinoside, 1-5 
Methotrexate, CF 

SUV French press 0.02-0.05 CF, Inulin, Trypsin, BSA 5-25 

SUV Detergent 0.036-0.05 CF, Inulin 12 
removal 

LUV Detergent 0.1-10.0 Inulin, Cytochrome C, CF 12-42 
removal 

LUV Reverse phase 0.2-1.0 CF, Cytosine, Arabinoside, 28-45 
evaporation 25s RNA, DNA, Insulin, 

Albumin 

LUV Solvent 0.1-0.5 Chromate, Glucose, DNA 2-45 

vaporization 

LUV Extrusion 0.056-0.2 22Na, Inulin, Methotrexate, 15-60 
Cytosine, Arabinoside 

MLV Mechanical 0.4-3.5 22Na, CF, Glucose, 1-8.5 
mixing Albumin, DNA 

MLV Sonication- 0.17-0.26 Asparaginase 50-56 
freeze-thaw 

MLV Freeze-thaw 0.5-5.0 22Na, Inulin 35-88 

MLV Dehydration- 0.3-2.0 CF, Sucrose, Albumin, 27-54 
rehydration Factor VIII, ATP 

MLV Solvent- 0.3-2.0 Inulin, Streptomycin 6.3-38 
evaporation - sulfate, Chloramphenicol 

sonication oxytetracycline, 

SUV: small unilamellar vesicle, LUV: large unilamellar vesicle, MLV: multilamellar vesicle 
CF: carboxyfluorescein. 
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1.4. Classification of Liposomes 

According to the number of lamellae, size, and preparation method, 

phospholipid vesicles can be classified into the following groups (Hope et al 1985; 

Mayer et al 1986; Lichtenberg and Barenholz 1988; New 1990; MacDonald 1991; 

Vemuri and Rhodes 1995; Chatterjee and Banerjee 2002; Mozafari et al 2002a, 

2002c): 

EN: vesicles prepared by the ether injection method (ether injection vesicles; 20- 

200nm) 

FATMLV: frozen and thawed multilamellar vesicles 

FPV: vesicles prepared by the French press technique (French press vesicles; 50nm) 

GUV: giant unilamellar vesicles (cell size vesicles with diameters > 1µm) 

HM-liposomes: vesicles prepared by the heating method 

LUV: large unilamellar vesicles (>100nm) 

LUVET: large unilamellar vesicles prepared by extrusion technique 

MLV: multilamellar vesicles (0.1-10µm) 

MLV-REV: multilamellar vesicles made by the reverse-phase method 

MUL: medium-unilamellar vesicles (also called intermediate-sized unilamellar 

vesicles; > 100nm) 

MVL: multivesicular liposomes (or multivesicular vesicles) consists of several small 

vesicles enclosed in one large phospho/lipid vesicle 

OLV: oligolamellar vesicles 

REV: single or oligolamellar vesicles made by reverse-phase evaporation 

SPLV: stable plurilamellar vesicles 

SUV: small unilamellar vesicles (20-50nm) 

ULV: unilamellar vesicles (20-1000nm) 

VET: vesicles prepared by extrusion technique. 

When liposomes are described based on the number of bilayers they are 

termed unilamellar vesicles (ULV) or multilamellar vesicles (MLV). Descriptions 

based on the liposome size include small unilamellar vesicles (SUV), large 
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unilamellar vesicles (LUV), and giant unilamellar vesicles (GUV). Ether injection 

vesicles (EIV) and reverse-phase evaporation vesicles (REV) are examples of the 

descriptions based on method of preparation. The 'liquid crystalline vesicles' 

(liposomes) formed when dried lipids are suspended in excess of aqueous solution 

are multilamellar concentric vesicles, in which the lipid hilayers are separated by 

layers of aqueous medium. Small unilamellar vesicles are obtained generally frone 

sonicated multilamellar vesicle suspensions. Electron micrographs of' a freeze 

fractured multilamellar vesicle (MLV) and small unilamellar vesicles (SIJV) are 

demonstrated in Figure 1.6. The periodicity of phospholipid hilaycrs in the structure 

of MLV, and the single bilayer nature of SUV are clearly evident in the photographs. 

Figure 1.6. Electron micrographs of: a) MLV; b) SUV (original magnification x140,000) 
(from Bangham 1992). 

1.5. Applications of Lipid Vesicles 

Liposomes are not a recent discovery, and there has been a spectacular 

progress in the field since Bangham's first publication on aqueous dispersions of 

liquid crystals of phospholipids which have permeability properties similar to those 

of biological membranes (Bangham et al 1965). Starting from the 1960's, liposomes 

became the most favourite model membrane system and provided the opportunity to 
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study the relation between structure and function of biological membranes such as 

permeability (Bangham et al 1965; Papahadjoupolos and Watkins 1967; Scarpa and 

De Gier 1971), transport phenomena via reconstituting membrane proteins into the 

bilayer (Bangham and Hill 1986; Anner et al 1988) and dynamics of membrane 

lipids (De Gier 1988). As a simplified model membrane system, liposomes are being 

used by many groups to study the formation and characteristics of the first living 

cells which emerged in the course of evolution (Kahveci et al 1994; Pozzi et al 1996; 

Oberholzer et al 1999; Monnard and Deamer 2001; Nomura et al 2001). 

During the 1970's, considerable interest and excitement was caused by the 

proposal of the use of liposomes as a carrier to treat lysosomal storage disorders 

(Sessa and Weismann, 1970). It was soon realised that liposomes might be used as 

delivery vehicles due to their ability to incorporate molecules in either their lipid 

bilayer portion or aqueous phase, their structural versatility in terms of size, 

composition, surface charge, bilayer fluidity and their biodegradability and 

biocompatability. Additional advantages of the phospholipid vesicles are that they 

are relatively easy to prepare in large amounts and in pharmaceutical quality. 

Liposomes are especially suitable for gene transfer in vitro and in vivo due to their 

potentially low level of toxicity and immunogenicity (Sporlein and Koop 1991; 

Singhal and Huang 1994; Hofland and Huang 1995; Piperno-Neumann et al 2003). 

Not only do liposomes serve as unique model membranes and nucleic acid 

delivery vehicles, but they have been also reported to be used as delivery systems of 

enzymes (Ohsawa et al 1985; Özden and Hasirci 1991), various drugs (Rahman et al 

1980; Kumai et al 1985; Ostro and Cullis 1989; Shah and Misra 2004), hormones 

and blood factors (Weiner et al 1985; Kato et al 1993), antigens (Alving et al 1986; 

Gregoriadis et al 1987), and also in the fields of diagnosis (Gregoriadis et al 1974; 

Williams et al 1986), vaccine production (Gregoriadis 1990), cosmetics (Perrier and 

Redzianiak 1989; Muller et al 2002) and medical imaging (Torchilin 1996). In 

addition, liposomes can be effective carriers for nutritionally valuable ingredients 

(Keller 2001). Figure 1.7. shows the schematic representation of liposome 

application in delivery of antibiotics to a macrophage through endocytosis. 
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Figure 1.7. Uptake of antibiotic loaded multilarnellar vesicle by a macrophage to enhance 
bacterial digestion (redrawn after Bangham 1992). 

1.6. Fate of Liposomes In Vivo 

The use of liposomes as drug delivery systems was originally hampered by 

the realisation that liposomes are rapidly cleared from the circulation and largely 

taken up by the liver macrophages (Gregoriadis and Ryman 1972). Macrophage 

uptake of liposomes by the liver and spleen (the reticuloendothelial system) affected 

their development as drug delivery systems for many years. However, some 

subsequent discoveries helped liposomes transfer from the bench to the clinic. One 

of them was the finding that the presence of liposome surface ligands, such as 

monosialoganglioside or polyoxyethylene, decreased liposome clearance by partially 

preventing liver and spleen uptake of intravenously injected liposomes (Klibanov et 

al 1990; Gabizon and Papahadjopoulos 1992). The realisation that liposornal 
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biodistribution could be altered in this way was facilitated by the results of similar 

studies with polystyrene nanoparticles coated with a polyoxyethylene polymer (Ilium 

and Davis 1984). The reduced liver and spleen uptake of liposomes is believed to be 

due to a reduced coating (opsonisation) of these liposomes by plasma proteins, thus 

enabling them to escape recognition by the liver and spleen (Senior et al 1991; Allen 

1994) and enjoy long circulation times. 

1.6.1. Long-Circulating Vesicles 

Much research has been devoted to developing carrier systems which can 

avoid phagocytosis and thus circulate longer: the so-called "Stealth" particles. This 

can be done by covering the surface of the drug delivery vehicle with hydrophilic 

chains which prevent opsonisation, as explained in the previous section. Grafting of 

poly(ethyleneglycol) (PEG) is the most effective method and has been applied to 

nanoparticles (Gref et al 1994) and liposomes (Woodle and Lasic 1992) to produce 

sterically stabilised vesicles. The sterically stabilised liposomes are involved in 

passive targeting (outlined below) of the drug they carry. When sterically stabilised 
liposomes are injected into an individual, who has either a solid tumour or an internal 

infection, the liposomes will migrate and aggregate in the tumorous or infected area. 

As the liposomes become degraded they will release their drugs into the surrounding 

area (Allen 1994). This is an example of passive targeting because the liposomes are 

left to their own devices and yet they migrate and treat the injured area. An 

important consideration when using sterically stabilized liposomes is the size of the 

coating polymer. If it is too large it may interfere with the ligand-receptor binding of 

the liposome and the target cell. 

Other methods of extending liposome blood circulation times include the 

incorporation into liposomes of cholesterol (Kirby and Gregoriadis 1983), polyvinyl- 

pyrrolidone polyacrylamide lipids (Torchilin et al 1994), glucoronic acid lipids 

(Namba et al 1990) or phospholipids with high phase transition temperatures such as 

distearoyl phosphatidylcholine (Forssen et al 1992). Liposome size also affects 

biodistribution and a size of between 70 and 200nm is necessary to achieve 
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prolonged circulation times with stealth liposomes (Litzinger et al 1994; Harashima 

et al 1995,1996). 

1.7. Modes of Liposomal Drug Delivery 

Liposomal drug delivery systems have been considered as ̀ magic bullets' for 

more than three decades. The engineered versions of liposomes offer potential for 

exquisite levels of specificity and drug targetability which are very important 

characteristics of the lipid vesicles. Liposomes can be employed for the delivery of 
drugs to selected organs and tissues by two main mechanisms known as 'passive' and 

'active' targeting as described in the following sections. 

1.7.1. Passive Targeting 

Passive targeting uses the natural course followed by the liposomes upon 

injection into the circulatory system as the method of delivering the drug. 

Liposomes with a mean diameter of 100nm for example, can selectively extravasate 

in tissues characterised by leaky vasculature such as solid tumors (Hobbs et al 1998; 

Hashizume et al 2000; McDonald and Baluk 2002), thus exhibiting target specificity 

with negligible adverse effects to normal tissues (Figure 1.8. ). Liposomes with 

larger diameters (generally zlpm) are taken up by the reticuloendothelial system 

(RES) in a passive manner. This is very useful in the targeting of various diseases 

associated with the RES such as candiasis, leishmaniasis and listeria. In these 

diseases the macrophages of the infected individual play a role in the disease, 

therefore if the macrophages are destroyed then will be the disease as well (Daemen 

et al 1995; Davis 1997). The liposome, once engulfed by the macrophage, will be 

degraded and the drug will be released within the macrophage. Therefore the drug 

will be delivered directly to the target area (see Figure 1.7. ). In this scenario the 

liposome is allowed to follow its natural course yet at the same time it is able to 

deliver the drug passively without any interference to its target. In an in vivo 

experiment, using hamsters and passively targeted liposomes, it has been observed 
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that the treatment of leishmaniasis with the liposomal encapsulated drug is 1000 

times more effective than with the free form of the drug (Lasic 1993). 
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Figure 1.8. Accumulation of liposomes within solid tumours - (right) liposome 
extravasation from the disorganised tumour vasculature and (left) liposomes in normal 

tissue. 

1.7.2. Active Targeting 

Active transport, in contrast to passive transport, involves the directed 

movement of the lipid vesicle to the given organ, tissue or cell before release of the 

drug occurs. Active transport generally ensures that a greater amount of the drug is 

delivered to the target cells. This can be achieved via appropriately engineered 

modifications to the liposomal structure. For active targeting of liposomes, 

thermolabile (Tynell et al 1976, Weinstein et al 1979), pH sensitive (Connor et al 

1984, Liu and Huang 1990), photo sensitive (Gürsel and Hasirci 1995), and 

antibody-coated vesicles (Sunamoto et al 1987) have been designed. Antibodies, 

lectins and sugar residues are examples of surface-coating groups which could be 

specifically recognised by cell-surface structures. It should be noted however that 

targeted carriers encounter the same biochemical and anatomical constraints as other 

carriers do (Allen and Moase 1996). There are two main types of liposomes used in 

active transport, namely immunoliposomes and virosomes. 
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1.7.2.1. Immunoliposomes 

The immunoliposomes (Huang et al 1981; Mizoue et al 2002) possess 

moieties such as antibodies, carbohydrates, and hormones on the outer surface of 

their membrane. The various ligands can be attached to the outer surface of the 

liposomes by either insertion into the membrane, adsorption to the surface, via a 

biotin avidin pair or through the most preferable method, covalent binding (Lasic 

1993). This ligand attached to the liposome has a complementary binding site on the 

target cell. Therefore when the liposome gets within the area of the target cell it will 
bind to this cell. Consequently the drug will be released into the surrounding region. 

In a recent study, immunoliposomes have been used for gene targeting to human 

brain cancer cells, which has resulted in a 70-80% inhibition in cancer cell growth 

(Zhang et al 2002). 

1.7.2.2. Virosomes 

Virosomes (Kara et al 1971; Almeida et al 1975), or artificial viruses, are 

another type of liposome used in active targeting and contain reconstituted viral 

proteins. Viruses have developed the ability to fuse with cells thus allowing for 

release of their contents directly into the cell. This is due to the presence of 

fusogenic proteins on the viral surface that facilitate this fusion. If these fusogenic 

viral proteins are reconstituted on the surface of a liposome then the liposome also 

acquires the ability to fuse with cells. This is an incredibly useful tool in active 

transport because it allows the direct release of the liposomal contents into the cell. 

As there is no diffusion of the drug involved it results in a more effective delivery. 

The most common viruses used in the construction of virosomes are the Sendai, 

Semliki Forest, influenza, herpes simplex, and vesicular stomatites viruses. The 

presence of a virus not only allows the liposome to target a particular cell but also 

allows it to fuse with the cell ensuring direct delivery of the drug (Lasic 1993). 
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1.8. Liposomal Drug Delivery to the Lungs 

Growing attention is being given to the potential of the pulmonary route as a 

non-invasive means for systemic delivery of therapeutic agents (Yu and Chien 1997; 

Newman 2001). This route is a highly attractive alternative to injection for many 

drugs, including nucleic acid based drugs, due to the fact that the lung provides a 
huge but thin absorptive mucosal membrane. Not only does the pulmonary route 

offer enormous potential for delivering biotherapeutic agents to the lung itself but to 

other body organs as well. The lung is a unique organ which can be accessed for 

drug delivery by direct inhalation of an appropriate drug formulation. Drug 

administration to the lungs may be advantageous for local treatments of diseases 

such as asthma or other related respiratory distress syndromes, or for systemic 

delivery of bioactive materials such as peptides and nucleic acids that are unstable in 

the gastrointestinal tract. The advantage of topical drug administration to the lung is 

the potential of delivering an adequate drug dose to the target site with reduced 

undesirable extrapulmonary side effects. 

A method that is commonly used in hospitals for delivery of drugs or 

surfactants to premature babies, is through a tube directly to the lower regions of the 

lungs (Figure 1.9. ). These babies require administration of a surfactant and also 

treatment with oxygen and mechanical ventilation. About 20-60% of premature 

babies develop chronic lung disease (Ivey et al 1977). The development of this 

condition has been related to an acute inflammatory response to oxygen-derived free 

radical generation (Juliano and McCullough 1980). In addition, the premature 

babies, as well as cystic fibrotic patients (Wagner and Gardner 1997), are deficient in 

an endogenous antioxidant glutathione. Inhaled or directly administered glutathione 

is rapidly cleared from the lungs. However, incorporation of glutathione in a 

controlled drug delivery system, such as liposomes, offers a method of prolonging 

the glutathione levels in the lungs (Kellaway and Farr 1990). Therefore, it is vital to 

develop and evaluate liposomal delivery systems that are suitable for lung 

administration of glutathione to patients with low pulmonary glutathione levels. 
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Figure 1.9. Delivery of lung surfactants (with or without liposornes) to premature babies. 

There are many distinct advantages of liposomes including biocompatibility, 

targetability, ideal specific gravity and the possibility of producing them in different 

size ranges which makes them particularly useful for drug administration to the lung. 

The attractiveness of using liposomes as a pulmonary drug delivery system also 

stems from the fact that phospholipids are naturally occurring components of lung 

surfactant and, therefore, should not pose a toxicological risk to this organ. The 

earliest reports of liposomal administration to the respiratory tract concerned the 

potential replacement of pulmonary surfactant in the treatment of' respiratory distress 

syndrome in new born babies (Ivey et al 1977). The advantages of liposomes for 

drug delivery to the lungs have also been related to their ability to contain the drug 

within the local regions of the lungs, thus reducing the extrapulmonary side-effects 

(Juliano and McCullough 1980), and also their ability to release the drug at a slower 

more controlled rate (Shek et al 1994). In addition, it is possible to manufacture 

liposomes to deliver drugs via the lungs for systemic activity (Boswell et al 1998). 

However, the main advantage of using liposomes is the fact that they are made of 

endogenous materials which are safe (Kellaway and Farr 1990) and allow flexibility 

in the formulation and design of the final product (New 1990). 

Liposomal delivery systems have been used to deliver various types of drugs 

to the lungs. These include: peptides (Griffiths et al 1998), antiasthmatics (Saari 
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1998), antitumor agents (Maruyama 1997), antimicrobial agents (Gangadharam et al 

1995), markers for imaging purposes (Vidgren et al 1995) and genes (Ma et al 2002). 

When liposomes are applied to the lungs, they are cleared slowly by the mucociliary 

process, via the lymphatic system (Oyarzun 1980), phagocytosis by alveolar 

macrophages (Stem et al 1986), and uptake by alveolar type II epithelial cells 

(Hallman et al 1981). These uptakes and clearances may be modified by the lipid 

composition of liposomes, the size of the vesicles and also their surface properties. 

The region where the inhaled particles deposit generally depends on their size 

and density. Deposition in the lower regions of the lungs, bronchioles and alveoli, 

requires an aerodynamic particle (vesicle) diameter of 5-6µm (Stahlhofen 1980). 

Therefore formulation of liposome delivery system for lung delivery requires careful 

particle size characterisation. Methods of particle size determination of liposomes 

are explained in chapter 2 of this thesis. 

1.8.1. Methods of Administration 

A major factor to consider in the delivery of liposomal products to the lung is 

their method of administration. Drugs are delivered to the lungs via compressed 

metered dose inhalers (MDI), nebulizers or dry powder inhalers. The MDI is not 

suitable for liposome delivery because the solvents that are used as aerosol propellant 

would damage the liposomes. Moreover, when using an MDI, only a small amount 

of the carrier system can be delivered per actuation. Nebulization has been the 

simplest means to deliver liposomes to the respiratory tract (Saari 1998). Dry 

powder inhalers are becoming very popular and numerous workers have reported the 

development of the new improved devices and designs (Taylor and Farr 1993). 

However, not much attention has been given to dry powder inhalers for liposomal 

delivery. Before any liposomal formulation could be utilised for pulmonary drug 

delivery some critical points should be addressed: toxicity of the liposomal 

formulation, stability of the liposomes, drug entrapment efficiency and size variation 

of the formulation (Mozafari et al 2002b). 
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1.9. Aims of this research work 

The primary aim of this thesis is to formulate and characterise a liposomal 

system appropriate for gene and drug delivery to the lung. A first task was to 

develop a methodology for manufacture of liposomes without employing toxic 

agents such as the organic solvents generally used to prepare liposomes, and without 

using any hazardous device such as probe sonication. Since one of the disadvantages 

of liposomal formulations is their production cost it was intended to minimise the 

number of steps and required chemicals and instruments in the developed 

methodology. Further objectives of this thesis have been: 

9 to prepare liposomes of different sizes utilising both conventional and the new 

technique developed in our laboratory; 

" to study the morphology, size range, polydispersity, thermal behaviour and 

stability of liposomes prepared by the new technique; 

" to assess the cytotoxicity of the new liposomal formulation with and without 

DNA using human bronchial epithelial cell line (16HBE14o) as a relevant 

pulmonary model in comparison with the cytotoxicity of liposomes prepared by 

the conventional methods; 

" to measure drug entrapment efficiency and release characteristics of the produced 

lipid vesicles using the anticancer agent 5-fluorouracil (5FU) as a water-soluble 

model drug; 

" to evaluate the cytotoxicity of 5FU as free (un-encapsulated) drug as well as 

encapsulated in the liposomes prepared by the new methodology in vitro using 

HBE cell culture; 
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" to measure drug entrapment efficiency and release characteristics of the new 
liposomal formulation using glutathione (GSH) as an antioxidant drug; 

" to construct a gene transfer vector employing the new liposomal formulation and 

measure its DNA entrapment efficiency as well as gene transfer efficiency using 

HBE cells. 
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2: A NEW TECHNIQUE FOR PREPARATION OF 

NON-TOXIC LIPOSOMES: 

THE HEATING METHOD 

2.1. Introduction 

In recent years liposomes have attracted great interest as ideal models for 

biological membranes as well as carriers for drugs, diagnostics and vaccines (Lasic 

and Papahadjopoulos 1998). While the use of liposomes as models for 

biomembranes is confined to the research laboratory, their successful application in 

drug delivery and/or genetic engineering will depend not only on a demonstration of 

the superiority of the liposome carrier for the intended purpose, but also upon 

technical and economic feasibility of the system in practice. For drug delivery 

applications liposomal formulations should have high drug-trapping efficiencies, 

narrow size distribution and the potential to include in their structure a wide range of 

lipid molecules, especially lipids that promote liposome stability. In addition to the 

above properties, for nucleic acid delivery, liposomes should also be able to protect 

the DNA from degradation by nucleases (Chonn and Cullis 1998). Despite the 

enormous effort in research and development on liposomes as drug carriers, only a 

small number of liposomal products have arrived on the market so far. This may be 

due to various reasons including: toxicity of some liposomal formulations, poor 

loading of drug compounds into liposomes, instability of the liposomal drug carriers, 

and high cost of liposomal products. 

There are numerous lab-scale and a few large-scale techniques for liposome 

preparation (e. g. see: Gregoriadis 1984,1993; Lichtenberg and Barenholz 1988; New 

1990; Basu and Basu 2002), some of which are mentioned in chapter one of this 

thesis. However, most of these techniques are not suitable for the encapsulation of 

sensitive substances because of their exposure either to mechanical stresses 
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(sonication, high-shear homogenisation, or high pressures) or potentially harmful 

chemicals (volatile organic solvents, detergents or low/high values of pH) during the 

preparation. The majority of liposome preparation techniques involve the application 

of volatile organic solvents (mainly chloroform, ether, or methanol), as a first step, to 

dissolve or solubilise the lipids. These solvents not only affect the chemical structure 

of the entrapped substance but will also remain in the final liposome formulation and 

contribute to toxicity and influence the stability of the vesicles (Deamer and Uster 

1983; Vemuri and Rhodes 1995; Cortesi et al 1999). In general, residual solvents in 

pharmaceuticals, known as organic volatile impurities (OVIs), have no therapeutic 

benefits but may be hazardous to human health as well as the environment (Dwivedi 

2002). In addition to the above mentioned disadvantages, application of volatile 

organic solvents or detergents necessitates performance of two additional steps in the 

liposome preparation: i) removal of these solvents/detergents, and ii) assessment of 

the level of residual organic solvents or detergents in the liposomal formulations 

(Barenholz and Amselem 1993; Vemuri and Rhodes 1995; Van Winden et al 1998b). 

Hence avoiding the utilisation of these solvents will potentially bring down the time 

and cost of liposome preparation. 

Several techniques have been suggested for the removal of detergent and 

solvent traces from liposomes which include gel filtration, vacuum and dialysis. It 

has been reported that even after removal of ether residues, by gel filtration, from 

liposomes prepared by the reverse phase evaporation method trace amounts of ether 

still remained in the formulation and this was responsible for REVs (vesicles made 

by reverse-phase evaporation method) being more leaky to entrapped solutes when 

compared with liposomes prepared in the absence of ether (Allen 1984). 

Additionally, Weder and Zumbuehl (1984) have reported, for liposomes prepared by 

the detergent dialysis method, that after dialysis 3 to 4% residual detergent was still 

present in the final preparation. Therefore, a method which would produce lipid 

vesicles avoiding the above-mentioned shortcomings will be very useful in gene and 

drug delivery applications. 
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An important point in the development of a liposomal dosage form and 

evaluation of a suitable preparation process is whether it is possible to prepare, 

isolate and characterise the particular liposomal system on an industrial scale with 

clearly defined and reproducible properties. Another crucial point in this regard is 

the stability of the produced lipid vesicles (Brandl et al 1993). In order to prepare 

liposomes on a large scale for clinical applications, it is necessary to employ 

techniques which will meet the requirements of the pharmaceutical industry. One of 

the most important steps in the manufacturing of liposomes is sterilisation. It has 

been argued that liposomes can only be sterilised by filtration and that any other 

method involving chemical or physical treatment, especially heating, would destroy 

the liposomal structure and consequently release the encapsulated drug (Friese 1984). 

However, most viruses can not be removed by filtration, so that intensive 

microbiological control is necessary, and furthermore, the filtering process is so time- 

consuming that it is preferably avoided when dealing with large batches of the 

liposomal dispersions. A promising breakthrough regarding liposome sterilisation 

came with the work of Kikuchi and coworkers (1991). This group reported that it is 

possible to apply an ordinary heat sterilisation (121°C, 20min) and obtain liposomes 

which retain their structural integrity with high encapsulation efficiency after the heat 

treatment. 

In this chapter a new method for the production of liposomes without the use 

of any hazardous chemical or process is described. This method involves the 

hydration of the liposome components in an aqueous medium followed by the 

heating of these components, in the presence of glycerol, up to c. 120°C. Glycerol is 

a water-soluble and physiologically acceptable chemical with the ability to increase 

the stability of the lipid vesicles (Kikuchi et al 1994) and does not need to be 

removed from the final liposomal product. Since heating is the main step in this 

methodology it is termed the 'Heating Method' and the resultant liposomes are 

referred to as HM-liposomes (Mozafari et al 2001,2002a, 2002b, 2002c). 

Employment of heat abolishes the need to carry out any further sterilisation 

procedure hence reducing the time and cost of liposome production by the heating 

method. Moreover, HM-liposomes possess the above-mentioned required 
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characteristics to be employed for both drug and nucleic acid delivery applications in 

addition to model membrane systems. A negatively charged, cholesterol containing, 

lipid composition was utilised throughout the present study. The rationale for 

employing this composition is provided in the next section. 

2.1.1. Chemical Composition of the HM-Iiposomes 

Physical and chemical stability as well as drug incorporation and leakage of 

liposomes are very much affected by their chemical composition (Lichtenberg and 

Barenholz 1988; New 1990). Chemical composition has also been postulated to be 

responsible for toxicity behaviour of some liposome formulations (Campbell 1983; 

Filion and Phillips 1997,1998; ' Dokka et al 2000; Nagahiro et al 2000). In the 

preparation of HM-liposomes, no hazardous chemical or process was involved. The 

main component of the HM-liposomes is DPPC (see Table 1.1. ), which naturally 

occurs as one of the main phospholipids in human lung surfactant (Banerjee and 

Bellare 2001). DPPC has also been detected to significantly reduce the toxicity of 

cationic liposomes towards macrophage cells in vitro (Filion and Phillips 1997). The 

other phospholipid constituent of the liposomes is DCP which was used to confer 

negative charges to the lipid vesicles. Due to several reports on the toxicity of 

cationic lipid vesicles (Campbell 1983; Filion and Phillips 1997,1998; Dokka et al 

2000; Nagahiro et al 2000) anionic liposomes were utilised in this study. It has been 

postulated that negatively charged liposomes, in general, associate more effectively 

and are taken up more readily by the cells compared with neutral liposomes (Heath et 

al 1985; Monkkonen et al 1994) and both neutral and cationic liposomes (Katragadda 

et al 2000). Application of DCP in the structure of liposomes has also been reported 

to stabilise the prepared vesicles possibly by interfering with aggregation/fusion of 

the vesicles (Talsma et al 1994). Cholesterol was used, in our formulation, to 

increase the stability of the liposomes by modulating the fluidity of the lipid bilayer. 

Stabilization of liposomes by cholesterol in general (New 1990; Mozafari and Hasirci 

1998), and in serum/blood in particular (Mayhew et al 1979; Ropert et al 1996; Hong 

et al 1997), is a well known phenomena. Glycerol, which was used in the preparation 
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of HM-liposomes, is a water-soluble and physiologically acceptable chemical, and 

increases the stability of the lipid vesicles (Kikuchi et al 1994). The long term 

stability of the HM-liposome formulation in this study is therefore believed to be due 

to the stabilising characteristics of the ingredients. 

Since a good amount of knowledge has been gathered in our previous studies 

regarding the liposomes with 7: 2: 1 molar ratio of PC (egg 

phosphatidylcholine): DCP: CHOL (Mozafari 1996; Zareie et al 1997; Mozafari and 

Hasirci 1998; Mozafari et al 1998a, 1998b) the same molar ratio was used during the 

works of this thesis. The only exception is that instead of PC a more homogeneous 

phospholipid (i. e. DPPC) was used in the HM-liposome formulation. Nevertheless, 

utilisation of DPPC, as a natural component of human lung, in the liposomal 

formulation would be more appropriate for pulmonary drug delivery applications. 

The other advantage of employing DPPC as a major liposome component is its 

transition temperature (Tc = 41°C) which is higher than that of egg 

phosphatidylcholine. This will cause the DPPC vesicles to be in gel phase, 

sufficiently stable and non-leaky (in respect to the entrapped material) at storage 

temperatures while PC vesicles will be in liquid crystalline phase. Liposomes, such 

as DPPC vesicles, with a high transition temperature can be utilised in targeted drug 

delivery to tumours as explained in chapter one (section 1.2.2. ). Alternatively, 

localised drug delivery through this type of liposomes can be achieved by employing 

ultrasonic hyperthermia (Tacker and Anderson 1982; Pitt 2003). 

2.1.2. Characterisation of the Liposomes 

Following preparation of liposomes, especially when using a new technique, 

characterisation is required to ensure adequate quality of the product. Methods of 

characterisation have to be meaningful and preferably rapid. Of particular 

importance will be the size and size distribution of the formulated liposomes (Rao 

1984; Goren et al 1990). Maintaining a constant size and/or size distribution for a 

prolonged period of time is an indication of liposome stability. Electron microscopic 
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methods are widely used in research work for establishing the morphology, size and 

stability of liposomes. With respect to a statistically meaningful analysis of size 

distribution of the lipid vesicles, methods such as light scattering, which measure the 

size of large number of vesicles in an aqueous medium, are more appropriate than 

microscopic techniques. Ideally these two techniques need to be employed along 

with other inexpensive and routine laboratory techniques, such as gel permeation 

chromatography, to provide a comprehensive and reliable characterisation of the 

liposomal formulations. 

The characteristics and stability of liposomes prepared by the heating method, 

employing the aforementioned lipid components, are studied using various 

techniques and results are presented in this chapter. 

2.2. Materials and Methods 

2.2.1. Chemicals 

Dipalmitoylphosphatidylcholine (DL-a-phosphatidylcholine, Dipalmitoyl, 

C=16: 0, DPPC), dicetylphosphate (dihexadecylphosphate, DCP), Cholesterol (5- 

Cholesten-3(3-ol, CHOL), glycerol and Sephadex G-50 were purchased from Sigma 

Chemical Co (Dorset, UK). Osmium tetraoxide (Os04) was purchased from Agar 

Scientific Ltd, Essex, UK. All solvents (chloroform, methanol, diethyl ether, 

cyclohexane, Analar grade) were obtained from Sigma Chemical Co (Dorset, UK). 

All other chemicals were of commercial analytical grade. Purity of the lipids (DPPC, 

DCP, and CHOL) was further confirmed by thin layer chromatography as explained 

in section 2.2.2.2. 

Phosphate-buffered saline (PBS) was prepared by dissolving 4.3mM 

NaH2PO4,1.47mM KH2PO4,2.68mM KCI, and 137mM NaCl in 11 distilled water 

and adjusting the pH to 7.4. 
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2.2.2. Experimental Methods 

2.2.2.1. Liposome Preparation 

2.2.2.1.1. Preparation of conventional liposomes 

Multilamellar vesicles (MLV) were prepared by the thin-film hydration 

method similar to the conventional technique of Bangham et al (1965). For this, a 

3m1 chloroform: methanol (2: 1, v/v) solution of DPPC/DCP/CHOL (7: 2: 1 molar 

ratio), containing 10mM of total lipid, was evaporated to dryness in a round- 

bottomed flask using a rotary evaporator (EYELA, New Rotary Vacuum Evaporator 

NE-1, Birmingham, UK), in a water bath at 50°C. To remove traces of the solvents 

the flask was flushed with nitrogen gas for 1 hour and also placed under vacuum for a 

time period of at least 1 hour. The lipid film was then hydrated with 2m1 sterile 

phosphate buffered saline (PBS, pH: 7.4), well above the phase transition 

temperature (Tc) of the main lipid component (i. e. DPPC, Tc = 41°C) at 50°C. 

Multilamellar vesicles (MLV) were formed either by hand-shaking the flask after 

adding glass beads of -1-2mm diameter into the flask or by vortex agitation. 

To obtain vesicles with smaller diameters the MLV suspension was extruded 

11 times, with an extruder (LiposoFastTM-Basic, Glen Creston Ltd, UK), above Tc 

through two-stacked polycarbonate filters of either 100 or 400nm pore size as 

described by MacDonald et al (1991). An odd number of passages through filters 

was performed to avoid contamination of the sample with the particles (e. g. large 

vesicles or unorganised lipid aggregates) which had not passed through the filter 

membranes. The liposomal suspension was left at room temperature for 1 hour under 

N2 to allow the stabilisation of the lipid vesicles. The liposomes were either prepared 

immediately prior to use or stored under N2 atmosphere at 2-8°C until use. Figure 

2.1. demonstrates schematically the preparation of liposomes by the above mentioned 

conventional technique. 
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Figure 2.1. Preparation of liposomes by the conventional technique. 
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2.2.2.1.2. Preparation of liposomes by the heating method 

HM-liposomes composed of DPPC/DCP/CHOL (7: 2: 1 molar ratio), 

containing 10mM of total lipid, were prepared as follows: the lipids DPPC, DCP, and 

CHOL, were hydrated each in 2m1 sterile PBS (pH: 7.4) for 1-2 hours under N2 at 

room temperature. The lipid dispersions were then mixed together, 0.3m1 glycerol 

added, and the volume made up to 10ml with PBS. The mixture was heated to c. 

120°C in a silicone oil bath while stirring until the lipids dissolved. Typically the 

heating step took up to 30min. 

The heating step was alternatively performed employing a 12-well carousel 

reaction instrument (Carousel Reaction StationTM, Rodleys Discovery Tech. Ltd., 

Essex, UK) fitted with a temperature controller (Carousel Temperature Controller 

RR98073) and magnetic stirrer. The reaction tube was connected to a nitrogen gas 

cylinder and the temperature of the lipid dispersion was monitored by inserting a 

thermometer into a next tube containing similar constituents except the lipids. Again 

the reaction proceeded while stirring at c. 120°C until the lipids dissolved. 

The above mentioned two steps (i. e. hydration and heating) were sufficient 

for successful preparation of liposomes in a reproducible manner as confirmed by 

light scattering and microscopic studies explained in the following sections. 

In order to reduce the sizes of the lipid vesicles obtained after the heating step 

the vesicles were either bath sonicated or extruded through filters as follows. The 

MLV suspension was sonicated with a bath type sonicator (Sonicor, Model Number 

SC-52, Sonicor Instrument Corporation, Copiague, N. Y. ) for 10min, to provide a 

more homogeneous population of liposomes with smaller diameters. The liposomal 

suspension was alternatively extruded, as described in the previous section, through 

two-stacked polycarbonate filters of either 100 or 400nm pore size. The HM- 

liposomes were either prepared immediately or stored under N2 atmosphere at 2-8°C 

until use. A schematic representation of liposome preparation by the heating method 

is provided in Figure 2.2. 
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Figure 2.2. Representative liposome preparation by the heating method. 

2.2.2.2. Thin Layer Chromatography 

The effect of heating on the lipids was checked by thin layer chromatography 

(TLC) utilising un-heated lipids as a control for comparison. Samples of DPPC, 
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DCP, and CHOL (10µl each, 20mg/ml, dissolved in chloroform: methanol, 2: 1 v/v) 

were spotted onto 0.25mm layers of silica gel on 20x2Ocm plates (2.5cm from the 

lower edge of the plate). The samples were run in an eluent of CHC13: CH3OH: H20 

(65: 25: 4, by volume) for phospholipids (i. e. DPPC and DCP) and diethyl 

ether: cyclohexane (1: 9, v/v) for cholesterol (Barenholz and Amselem 1993). The 

same samples were hydrated each in distilled water (dH2O) and heated, individually, 

to c. 120°C in a silicone oil bath until dissolved and applied to silica gel as explained 

above. The plates were removed from the TLC tanks when the solvent ascended to 

within 3-4cm of the top of the plates. The plates were then air-dried for 15min in a 

fume hood and developed with iodine vapour in an iodine tank for 5-10min. 

2.2.2.3. Gel Permeation Chromatography 

Gel permeation chromatography was performed to compare the elution 

characteristics, size distribution and homogeneity of the conventional liposomes and 

HM-liposomes. The column (Sephadex G-50,1cm x 25cm) was equilibrated and 

eluted at room temperature with phosphate-buffered saline (PBS, pH: 7.4). Two ml 

of the liposomal suspensions (MLV, vesicles prepared by 400nm filters and those 

prepared by 100nm filters employing the conventional method as well as the Heating 

Method as explained in section 2.2.2.1. and sub-sections within) were applied to the 

column and eluted with PBS. The fractions (1ml each) were collected by a fraction 

collector (Frac-100, Pharmacia, Sweden) with a flow rate of 20m1/hr. The 

absorbance of the eluents was detected at 410nm using a double-beam UV/VIS 

Spectrometer (Perkin Elmer, Lambda 40, USA). 

2.2.2.4. Light Scattering 

The mean particle size and polydispersity index of the conventional 

liposomes and HM-liposomes were determined by dynamic light scattering at c. 25°C 

with a Brookhaven ZetaPlus Particle Sizing instrument (BI-MAS Option, 
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Brookhaven Instruments Corporation, Holtsville, New York, USA), at the 

wavelength of 677nm, using a 15mW solid state laser as the light source and the 

MAS OPTION software supplied with the instrument. The scattered light was 

detected at a scattering angle of 90°. As a measure of particle size distribution of the 

dispersion, the system reports a polydispersity index. This index ranges from 0.0 for 

an entirely monodisperse system up to 1.0 for a polydisperse particle dispersion. In 

addition, the stability of the HM-liposomes was studied at time zero and also two, 

four and eight months after their preparation and storage under N2 atmosphere at 2- 

8°C. Liposomal samples for light scattering measurements were prepared in filtered 

distilled H2O using 0.221im filters (Millipore, S. A., France). The light scattering 

measurements were performed at least in triplicate. 

2.2.2.5. Optical Microscopy 

Multilamellar vesicles prepared by the conventional technique (MLV) and the 

heating method (HM-MLV), as explained in section 2.2.2.1., were examined using an 

optical microscope (Nikon Labophot-2, Japan), with oil immersion at 1000x 

magnification fitted with a camera (JVC, TK 1270, Japan). The images from the 

camera were captured to a PC using a Ulead Videostudio 3.0 SEDV software 

package (USA) as BITMAPS (. BMP). Repeatability of the images was ascertained 

by taking three or more pictures from the same sample; representative figures are 

presented. 

2.2.2.6. Nikon Eclipse Microscopy 

Five µl of 1% (w/v) OS04 was added to 2m1 of the liposomal suspension 

prepared by the heating method employing 400nm polycarbonate filters. The 

suspension was hand shaken and then centrifuged at 4°C, 100000g, for 60min in a 

Beckman L-80 refrigerated ultracentrifuge (USA). The supernatant was discarded 

and the pellet was suspended in 2m1 PBS (pH: 7.4). Liposomes were visualised by a 
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Nikon Eclipse E600 microscope (Tokyo, Japan), with 1000x magnification and 

standard brightfield illumination, using a Spot RT Slider camera and Spot software 

(Diagnostic instruments, Michigan, USA) which enabled further magnification of the 

images. 

2.2.2.7. Transmission Electron Microscopy 

Liposomes prepared by using 100nm polycarbonate filters were studied under 

transmission electron microscope (TEM). For this the standard osmic acid method of 

Lewis and Knight (Lewis and Knight 1972) was employed. Liposomes were stained 

with 1% Os04, as explained in the previous section, and embedded in Taab T028 

epoxy resin (Taab Embedding Materials, UK). The resin was polymerised in an oven 

at 60°C for 24h and ultra-thin pale gold sections (50-90nm) were obtained on a 

Reichet-Jung ultramicrotome (Wien, Austria) with triangular knives prepared on an 

LKB knife maker using a 5x25mm plate glass knife. 

The sections were examined using a Jeol JEM-1200 EX transmission electron 

microscope (Japan) operating at 80.0 kV. The TEM has its calibration checked every 

six months using a standard graticule of 2160 lines/mm. The diameter of liposomes 

was determined by a Digimatic caliper (Mitutoyo Ltd. England) using the scale bar 

on the electron micrographs. Reproducibility of the images was ascertained by 

taking three or more pictures from the same sample; representative TEM figures are 

presented. 

2.2.2.8. Scanning Tunnelling Microscopy 

The scanning tunnelling microscopy (STM) used in this study was 

constructed by Zareie (Zareie 1995) and used successfully for imaging of several 

biopolymers as well as liposomal preparations (Zareie et al 1996a, 1996b, 1997, 

1998; Mozafari et al 1998a, 1998b, 2002c). Structural details of this STM is 
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provided in Appendix 1. A simplified structure of a scanning tunnelling microscopy 

is depicted in Figure 2.3. 
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Figure 2.3. Schematic presentation of main components of a scanning tunnelling 
microscope. 

For STM studies, unilamellar vesicles were prepared using 100nm pore-size 

filters by the conventional method and the heating method as explained in section 

2.2.2.1. Typically a 20µl liposomal suspension was deposited on highly oriented 

pyrolytic graphite (HOPG) and was then dried at room temperature under 

atmospheric pressure in a clean room with a relatively slow drying rate. The STM 

was operated in air at atmospheric pressure with a tip-to-substrate bias of 800mV- 

1.5V (sample positive) and tunnelling current of 20-50 pA. Etched tips of Pt/Ir 

(80: 20) wires (0.5mm in diameter, Digital Instruments, Santa Barbara, CA) were 

used in constant current mode. The diameter of liposomes was determined by a 

Digimatic caliper (Mitutoyo Ltd. England) using the dimensions of the STM images. 
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2.2.2.9. Thermal Analysis of Liposomes 

Modulated temperature differential scanning calorimetry (MTDSC) was used 

to compare the thermal behaviour of the conventional liposomes and HM-liposomes. 

Calorimetric scans were performed on a DSC 2920 Modulated DSC (TA Instruments 

Inc., USA). The MTDSC was calibrated for baseline using empty pans of matched 

mass. Indium (99.999%, Aldrich, Gillingham, Dorset, UK) was used to calibrate the 

temperature reading and the instrument was weight calibrated according to the 

manufacturer's instructions. Twenty µl of the liposomal suspensions was put into an 

aluminium pan which was then hermetically sealed. Empty sealed aluminium pans 

were used as references. The heating rate for the calorimeter runs was 5°C/min. 

Preparations were repeated and further aliquots scanned to check reproducibility. 

2.3. Results 

2.3.1. Preparation of Liposomes by the Heating Method 

In the context of introducing new liposome preparation techniques one of the 

fundamental questions will be whether it is possible to produce and characterise the 

liposomal formulation on a large scale with clearly defined and reproducible 

properties. In this chapter the physico-chemical characteristics of liposomes 

produced by a novel method, termed the heating method, are presented. Four 

different microscopies in addition to other analytical techniques confirmed successful 

formation of closed continuous lipid bilayers (i. e. liposomes) in a reproducible 

manner. The methodology has the potential to be scaled up for example by using a 

larger version of the simultaneous heating and stirring reactor simplified in Figure 

2.4. 
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Figure 2.4. Cross section of the simultaneous heating and stirring reactor for the 
preparation of the HM-liposomes. a) stopper, b) valve, c) inlet/outlet for vacuum and gas, d) 

gas tight cap, e) reaction tube, f) magnetic stirring bar, g) stirring hotplate. 

Another important question in the development of a liposomal formulation is 

the stability of the product. In this respect, the effect of aging on the morphology and 

size of the HM-liposomes was evaluated by direct microscopic observations and 

indirect light scattering measurements as explained in the following sections. 

2.3.2. Thin Layer Chromatography 

The effect of heating on the lipid molecules was checked by thin-layer 

chromatography (TLC). Figure 2.5. is a typical example of the chromatograms 

obtained for the heated and un-heated lipids. TLC confirmed that the lipids used in 

this study were pure and the high temperature employed during the preparation of the 

HM-liposomes did not cause degradation of these lipids. The average of three R, 1 

values for unheated (control) and heated lipids respectively are as follows: DCP: 

0.16 and 0.18; DPPC: 0.21 and 0.22; and CHOL: 0.36 and 0.39. 
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Figure 2.5. TLC of un-heated and heated lipids. a) DCP, h) DPPC, c) CHOL, (1) heated 
DCP, e) heated DPPC, f) heated CHOL. 

2.3.3. Gel Permeation Chromatography 

Gel permeation chromatography (GPC), or gel filtration chromatography, is a 

very informative assay that does not involve expensive sophisticated instrumentation 

(Barenholz and Amselem 1993). GPC was performed in order to compare the 

elution characteristics, size distribution and homogeneity of the conventional 

liposomes and HM-liposomes. The absorbance of liposomal fractions was monitored 

at 410nm. It is known that the absorbance obtained at 410nm is due to turbidity 

caused by the lipoidal vesicles in their intact form (Sessa and Weissmann 1970). 

The elution curves of the conventional liposomes and HM-liposomes are 

shown in Figure 2.6. It can be observed that multilamellar vesicles (both 

conventional MLV and HM-MLV) exhibit a wider size distribution (Figure 2.6. a) 

compared with vesicles extruded through 400nm filters (Figure 2.6. b) and 100nm 

filters (Figure 2.6. c). The small amount of particles (probably very small vesicles), 

coming after the liposomal fractions in the fraction numbers 13-16, was detected to 

be slightly less for the HM-liposomes compared to the conventional liposomes. 
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The overall elution profile of the six types of liposomes is demonstrated in 

Figure 2.6. d. From this figure it can be observed that the elution profile and size 

distribution of the liposomes prepared by the heating method is similar to that of the 

conventional liposomes. 
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Figure 2.6. Gel permeation chromatography of conventional liposomes and HM-liposomes. 

a) multilamellar vesicles prepared by the conventional (MLV) and the heating method (HM- 
MLV); b) unilamellar vesicles prepared by the conventional (LUV) and the heating method 

(HM-LUV). Numbers in parenthesis are the filter sizes through which the vesicles were 
extruded. 
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Figure 2.6. (continued) Gel permeation chromatography of liposomes and HM-liposomes. 

c) unilamellar vesicles prepared using 100nm filters by the conventional (LUV) and the 
heating method (HM-LUV); d) overall elution profile of the lipid vesicles. Numbers in 

parenthesis are the filter sizes through which the vesicles were extruded. 
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2.3.4. Light Scattering 

Liposome sizes were determined by the light scattering technique before and 

after the extrusion through 100nm and 400nm pore size filters. Mean particle size of 

MLV as well as mean particle size of liposomes prepared by employing 100nm pore 

size filters and those prepared using 400nm filters by the conventional technique and 

the heating method are depicted in Table 2.1. Liposomes prepared by the 

conventional technique (MLV and LUV types) are slightly smaller than those 

prepared by the heating method. However, all liposome types, especially those 

extruded through 100nm filters, are relatively monodisperse (Table 2.1. ). 

Table 2.1. Mean particle size of multilamellar vesicles (MLV) and large unilamellar 
vesicles (LUV) prepared by the conventional technique and heating method (see text for 
details). Data are expressed as mean ± S. D. of three to six experiments. 

Liposome Preparation Method Mean Particle Size Polydispersity 

Type (nm) 

MLV conventional technique 552.9 ± 25.1 0.240 ± 0.143 

MLV heating method 600.0 ± 10.7 0.351 ± 0.024 

LUV conventional technique 452.4 ± 18.4 0.240±0.141 

using 400 nm filters 

LUV heating method 514.6 ± 15.3 0.366 ± 0.019 

using 400 nm filters 

LUV conventional technique 152.4 ± 8.4 0.159 ± 0.080 

using 100 nm filters 

LUV heating method 156.8 ± 5.9 0.136 ± 0.040 

using 100 nm filters 
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2.3.5. The Aging Effect 

Effect of aging on the size of HM-liposomes was also studied by the light 

scattering method (Figure 2.7. ). The diameters of HM-liposomes were measured 

initially as well as after two, four and eight months storage under N2 atmosphere at 2- 

8°C. The heating method resulted in the formation of stable liposomes for at least 

eight months at least. Figure 2.7. indicates a slight but insignificant size enlargement 

after eight months compared with the initial measurements (4.0% for MLV, 2.6% for 

400nm filtered and 8.1% for 100nm filtered vesicles) for the HM-liposomes upon 

storage at the above mentioned conditions. 

Time (month) zero two four eight 

Liposome type 

MLV 600 ±7.1 600 ±13.3 601 ±10.7 624 ±11.5 

LUV (400) 508 ±8.4 517 ±7.2 515 ±8.5 521 ±9.7 

LUV (100) 148 ±5.4 153±6.0 160±6.6 160 ±7.6 

Liposome Size Variation in Time 

700 
--MLV 

600 -'= - --a- LUV (400nm filtered) 
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500, 
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300 
Ut 

200 

100 
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0 2 46 8 10 

Time (month) 

Figure 2.7. Time stability of HM-liposomes stored at 2-8°C under N, atmosphere. Average 
liposome sizes are provided above the graph. Data are expressed as mean ± S. D. of three to 

four experiments. 
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2.3.6. Optical Microscopy 

Vesicles in micrometer size ranges (multilamellar vesicles produced before 

the extrusion step) were imaged by optical microscopy. Multilamellar vesicles 

prepared by the conventional method are shown in Figure 2.8. a and those prepared by 

the heating method are shown in Figure 2.8. b. Both figures suggest presence of 

liposomes with similar shape and size distributions. The closed spherical 

multilamellar vesicles (MLV) can be clearly seen in these photographs. No other 

lipidic structure (e. g. micelle, hexagonal (H11) phase or lamellar La phase) was 

detected in the optical microscopy pictures. 

b 

Figure 2.8. a) Multilamellar vesicles prepared by the conventional technique, b) 

multilamellar vesicles prepared by the heating method. Bars represent Ipm each. 

2.3.7. Nikon Eclipse Microscopy 

Figure 2.9. demonstrates HM-liposomes extruded through 400nm sized filters 

visualised by Nikon Eclipse microscopy. A total number of 28 vesicles can be 

observed in Figure 2.9. which have a mean diameter of 375.4nm (± 94.2). This 

figure shows the presence of spherical vesicles which possess homogenous size 
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distribution. Again, as with the MLV explained in the previous section, no other 

lipidic structure was detected through Nikon Eclipse microscopy. 

Figure 2.9. Representative Nikon Eclipse microscopy image of liposomes prepared by the 
heating method. Bar represents 1µm. 

2.3.8. Transmission Electron Microscopy 

Vesicles in nanometer size ranges (after extrusion through 100nm pore size 

filters) were observed by TEM. Representative TEM images of liposomes are 

demonstrated in Figure 2.10. Vesicles prepared by the conventional technique 

(Figure 2.10. a) and the heating method (Figure 2.10. b) have diameters of 97.4nm and 

84.2nm respectively. TEM images reveal that the extruded vesicles, prepared by the 

conventional technique and the heating method, are in the form of large unilamellar 

vesicles (LUV). 
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Figure 2.10. Transmission electron micrographs of a) liposomes prepared by the 

conventional technique; b) liposomes prepared by the heating method. Bar represents 
100nm and is valid for both images. 

2.3.9. Scanning Tunnelling Microscopy 

The ultrastructure of the liposomes extruded through 100nm filters was 

studied by high-resolution scanning tunnelling microscopy (STM). Figure 2.11. 

shows the effect of storage on the morphology of the HM-liposomes. Figures 2.11 . a, 

2.11. b and 2.11. c demonstrate vesicles after two, six and eight months of their 

preparation and storage under N2 at 2-8°C respectively. Two months old HM- 

liposomes in Figure 2.11 
.a 

have diameters of 38.0,48.6 and 49.4nm. Diameters of 

six months old vesicles in Figure 2.11. b are 42.1,83.5 and 92.3nm, and diameters of 

eight months old vesicles in Figure 2.11. c are 60.1 and 71.2nm. Liposomes possess 

similar mean bilayer thickness of around 10nm in average as calculated from the 

height-distance curves (line profiles) represented in Figure 2.12. The reason for the 

differences in size measurements performed using light scattering and microscopic 

techniques will be explained in section 2.4.3. 
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Figure 2.11. Two and three-dimensional scanning tunnelling micrographs of a) two months 

old HM-liposomes indicated by arrows; b) six months old HM-liposomes 

eight months old HM-liposomes inside circles. 
inside circles; c) 
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a 

low, 

b 

C 

Figure 2.12. Representative profiles of the surface corrugations taken along lines on the 
bilayers of the vesicles shown in Figure 2.11. a to c respectively. The horizontal scales are 
arbitrary units proportional to the lines selected on each of the corresponding top diagrams. 
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2.3.10. Thermal Analysis of Liposomes 

The thermal behaviours of conventional liposomes and IIM-liposomcs 

obtained from modulated temperature differential scanning calorimet y are presented 

in Figure 2.13. Both types of liposomes are composed of DPPC, DCP and ClIOL. 

The conventional liposomes were prepared using chloroform and methanol and the 

HM-liposomes were prepared in the absence of these solvents. However, in the 

preparation of HM-liposomes 3% v/v glycerol was utilised. The inlet in Figure 2.13. 

is the thermal behaviour of the two liposome types with two varying parameters (i. e. 

presence/absence of chloroform and methanol and presence/absence of glycerol). In 

order to bring the number of these parameters down to one 3%%% v/v glycerol was 

added to the conventional liposomes after their preparation. It can he seen in Figure 

2.13. that HM-liposomes exhibit slightly different thermal behaviour to the 

conventional liposomes. It seems that the presence of glycerol in both liposome 

types has reduced the difference in the thermal behaviour of the vesicles. 

c 

LL 
s 

E-ank 
0 .1Lp: a tY n! , 

Figure 2.13. Modulated temperature differential scanning calorimetry of liposomes 

prepared by the heating method (HM) and conventional liposornes after addition of glycerol 
to the conventional liposomes (see text for details). Inlet shows the DSC scan of the vesicles 

before addition of glycerol to the conventional liposomes. 

54 



2.4. Discussion 

2.4.1. Formation of Liposomes by the Heating Method 

A novel technique for the preparation of liposomes without the use of volatile 

organic solvents, detergents, or high shear forces is described. In this heating 

method, liposomes are formed simply by heating the hydrated lipid molecules in the 

presence of glycerol (Mozafari et al 2001,2002a, 2002b, 2002c). This resulted in the 

production of stable bilayered lipid vesicles which possess relatively monodisperse 

size distributions as confirmed by different analyses. 

Multilamellar vesicles are prepared by the heating method in two stages: i) 

hydration of the liposomal components, ii) heating these components in the presence 

of glycerol (3% v/v). Omission of the hydration step resulted in the formation of a 

white coloured precipitate paste when the heated lipid suspension was cooled. In 

addition, the hydration step provided a better dispersion of the lipids in the glycerol 

solution. Thin layer chromatography confirmed that heating the lipids at the 

temperatures employed in the heating method (i. e. up to c. 120°C) did not cause 

degradation of these molecules. Kikuchi et al (1994) have also reported that heating 

the lipids used in their study, including DCP and CHOL which are also employed in 

the present study, up to 150°C did not result in the degradation of these molecules. 

2.4.2. Morphological Characterisation of the Liposomes 

Four different microscopies were used to study the shape and size of the lipid 

vesicles. This removes the possibility of the observed figures being non-liposomal 

structures or artifacts. In order to confirm successful preparation of liposomes by the 

heating method before the extrusion step, optical microscopy examinations were 

performed. Formation of spherical multilamellar vesicles and absence of other 
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structures, such as hexagonal (HII) or lamellar La phase, was detected (Figure 2.8. ). 

The multilamellar vesicles obtained by the heating method were similar in shape and 

size distribution to the conventional liposomes. 

The multilamellar vesicles were extruded using 100nm and 400nm filters. 

The term 'liposome extrusion' has become synonymous with the process whereby 

multilamellar vesicles are forced through filters with defined pore size (Hope et al 

1993). The extrusion step was performed in order to produce unilamellar vesicles 

with a homogeneous size distribution. Nikon Eclipse microscopy confirmed that the 

HM-liposomes extruded through 400nm filters are monodispersed spherical particles 

(Figure 2.9. ). Liposomes extruded through 100nm filters were examined by TEM 

and STM. Transmission electron micrographs revealed that the heating method is 

capable of producing spherical unilamellar liposomes similar to those obtained by the 

conventional technique (Figure 2.10. ). STM investigations are discussed in the next 

section. 

2.4.2.1. Scanning Tunnelling Microscopy 

Scanning tunnelling microscopy (STM) is a relatively new but fast growing 

surface analysis and imaging technique. Since its invention by Binnig et al (1982a, 

1982b), which led to a Nobel prize award later in 1986 because of this invention, 

STM has been gradually increasing in popularity in the imaging of micro- and mostly 

nano-structures. Compared with other forms of microscopy, STM has unparalleled 

capabilities which include: (1) ultra-high resolution down to atomic dimensions; (2) 

three-dimensional images, especially with a very high sensitivity in the vertical 
direction; (3) a variety of operating conditions, such as vacuum, air and even liquids; 

(4) observation range from 10-6 to 10"10 m; and (5) the ability to do tunnelling 

spectroscopy (Feng et al 1989). . 

Sample preparation for STM, explained in section 2.2.2.8. for an in-air- 

operated STM, is very mild and easy and does not involve treatments such as 
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vacuum, freeze fracture, fixation, embedding and staining. The first report of STM 

images of a biological substance, DNA, appeared in 1983 (Binnig and Rohrer 1983), 

introducing the possible application of STM in biology. This was followed by 

further imagings of DNA and many other biological samples and molecules (Baro et 

al 1985,1986; Feng et al 1988,1989; Leggett et al 1993; Mozafari 1996; Zareie et al 

1996b, 1997,1998; Mozafari et al 1998a, 1998b; Wang et al 2001) including lipid 

films (Horber et al 1988), lipid bilayers (Smith et al 1987) and liposomes (Fowler et 

al 1992; Zareie et al 1996a; Mozafari 1996; Mozafari et al 1998a, 1998b, 2002c). 

Similar to many (if not all) other newly introduced instruments there arose some 

concerns regarding the STM analysis (Lindsay 1993). The vast number of 

publications on biological and other applications of STM, however, has substantially 

reduced the amount of doubts concerning the validity of STM images. Besides, in 

our previous studies (Mozafari 1996; Mozafari et al 1998b) and the present one 

(partially published in Mozafari et al 2002c), the data obtained through different 

types of microscopies were all in accordance with the morphological data obtained 

through STM. 

It is believed that regularly packed structures (such as liposomes) are much 

easier to image and distinguish and the resolution is higher compared to individual or 

randomly distributed molecules (Feng et al 1989). We were the very first group who 

imaged a liposome/DNA system, as a gene delivery vector, by STM (Zareie et al 

1997) introducing a new application area (i. e. gene therapy) for this device. A 

representative STM image of liposome/DNA complexes from that study is shown in 

Figure 2.14. In addition to enabling liposome diameter measurements, STM is very 

useful in determining the bilayer thickness of the liposomes by its analytical ability in 

the vertical axis. This and the three-dimensional image analysis in general, are not 

feasible by the other microscopies described in the present chapter. The calculated 

average bilayer thickness of the HM-LUV (large unilamellar vesicles obtained by the 

heating method) is approximately 10nm which is less than bilayer thickness of the 

small unilamellar vesicles (i. e. around 13nm) which were produced by a conventional 

technique (Zareie et al 1997). Among the factors which could be responsible for this 

bilayer thickness variation are difference in liposomal components (i. e. replacement 
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of PC with DPPC), liposome type (LUV and SUV), phase (gel or liquid-crystalline 

state) or preparation method. However, STM images obtained in the present study 

attest that the HM-liposomes are similar in shape to the conventional liposomes and 

are stable for at least eight months. 

Figure 2.14. Scanning tunnelling micrograph of a liposome/Ca`+/DNA complex (From: 
Zareie et at 1997). Arrows indicate possible locations of DNA molecules. 

2.4.3. Size Distribution of the Liposomes 

Determination of liposome size distribution is an obligatory quality control 

assay due to the following reasons: (1) The size distribution of liposomal 

formulations is an important parameter with respect to the physical properties and 

stability (Lichtenberg and Barenholz 1988; Goren et al 1990); (2) size distribution, 

when combined with composition, defines plasma pharmacokinetics, organ 

biodistribution and stability of liposomes and their associated/entrapped substances 

in plasma and other organs (Blume and Cevc 1990; Goren et al 1990; Gabizon et al 

1993); (3) for injectables, there is a regulatory requirement to quantify the 

concentration of large particles (Barenholz and Amselem 1993); (4) liposome size is 

a major factor in their permeation through tumor microvessels and their local 
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residence in tumor tissue (Nagayasu et al 1999); (5) in pulmonary applications the 

deposition region of the liposomes depends mainly on density, shape and size of the 

lipid vesicles. 

Each of the currently used liposome size determination techniques has its own 

advantages and limitations. The advantage of light scattering, for example, is that it 

provides cumulative average information of the size of a large number of vesicles at 

the same time. However, it does not provide any idea of the shape of the lipidic 

system (e. g. oval, spherical, hexagonal (Ha) or lamellar) and it assumes any 

aggregation of more than one vesicle as one single particle. Microscopic techniques, 

on the other hand, make direct observation of the vesicles possible, hence provide 

information on the shape of the vesicles as well as presence/absence of any 

aggregation, provided they have the right resolution for the particle size under 

investigation. The drawback of the microscopic investigations is that the number of 

particles which can be studied at any particular time is limited. The general approach 

for the determination of size distribution of liposomal formulations should hence be 

to use as many different techniques as possible (also recommended by Barenholz and 

Amselem 1993). Based on this, four different microscopies as well as gel permeation 

chromatography and light scattering techniques were employed to determine 

liposome sizes/size distributions in this study. For all liposome formulations, the 

first stage in the size analysis should be light microscopy. This method does not 

require any pretreatment or fixation of the liposomes. In addition, most of the 

liposome preparation techniques initially result in the formation of micrometer sized 

vesicles which can be observed by optical microscopies. 

The monodispersity of the extruded vesicles was confirmed through GPC 

elution curves and light scattering investigations. In terms of monodispersity the data 

obtained through light scattering are in agreement with those obtained through the 

microscopic studies. However, the mean particle size values obtained through light 

scattering for the extruded vesicles are bigger than the sizes obtained by the 

microscopic studies. It should be noted, as explained above, that light scattering 

technique provides data concerning a larger number of particles when compared with 
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microscopic studies. Variations between particle sizes obtained by light scattering 

and microscopic techniques have been encountered in our previous works as well 

(Zareie et al 1997; Mozafari and Hasirci 1998; Mozafari et al 1998b). Nevertheless, 

these two methodologies have different sample preparation requirements and 

sensitivities. No signs of liposome aggregation was detected for both liposome types 

as confirmed by the microscopic examinations. Lack of aggregation (and/or fusion), 

which is expected for similarly charged vesicles due to electrostatic repulsion and 

also detected before for anionic vesicles (Mozafari and Hasirci 1998), indicates that 

the big vesicle size values obtained through light scattering were not due to 

aggregation of the vesicles. Moreover, observation that DPPC-containing vesicles 

are larger than the filter pores through which they were extruded has also been 

reported by other groups (Nayar et al 1989; MacDonald et al 1991). The explanation 

of how vesicles which are solid at ambient temperatures can pass through pore sizes 

smaller than their diameters relies on the fact that the extrusion process was carried 

out at temperatures above the Tc of the lipid constituents, when liposomes are 

flexible, while liposome sizes were measured at room temperature. 

2.4.4. Storage Stability of the HM-liposomes 

In order to have a useful liposomal formulation, the physical stability issue 

has to be addressed during the developmental stages of the formulation. This issue is 

even more important for the commercial development and utilisation of a liposomal 

product as a drug delivery system. Therefore, any liposomal formulation designed 

for clinical use will need to be tested initially for adequate storage stability with 

regard to changes in size, vesicle aggregation and vesicle fusion. 

The light scattering method revealed that HM-liposomes, in the form of 

multilamellar vesicles or unilamellar vesicles obtained by extrusion through 400 and 

100nm filters, retain their physical stability for at least eight months. STM 

observations also confirmed the same result for HM-liposomes prepared by using 

l00nm filters. A slight size enlargement (up to 8.1%) observed for the vesicles after 
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eight months storage under N2 at 2-8°C may be due to the swelling of the vesicles. 

This can not be due to vesicle aggregation or fusion as these should result in 

liposome size enlargements of bigger magnitudes. In addition, STM studies of the 

two, six and eight months old vesicles also show absence of liposomal aggregates. 

As explained in the previous section the electrostatic repulsion forces between the 

anionic HM-liposomes is the main factor in preventing their aggregation. This is a 

desirable characteristic for liposomes in gene and drug delivery particularly in 

aerosol formulations. 

2.4.5. Thermal Analysis of the Liposomes 

The thermal behaviour of HM-liposomes was compared with that of 

liposomes prepared by the conventional technique. For this purpose a modulated 

temperature differential scanning calorimetry (MTDSC) was employed. With 

conventional DSC, the sample is subjected to a constant heating rate. The registered 
heat flow to increase the sample temperature may be divided into two components, 

one depending on the heat capacity of the sample and the other depending on 

thermally activated or kinetically driven process occurring in the sample. Only the 

first component which is related to the heat capacity depends proportionally on the 

heating rate. This difference is exploited in MTDSC (Van Winden et al 1998a). 

Modulated temperature DSC employs a periodic heating rate oscillation in 

place of a conventional linear temperature program in order to gain additional 
information about the thermal properties of materials (Reading et al 1994). The 

signal from the instrument is separated into two components -a thermally reversing 
heat flow that is a function of temperature and heating rate, and a non-reversing heat 

flow that is a function of temperature and time. The former parameter is most readily 

identified with the heat capacity of the sample whereas the non-reversing heat flow 

includes contributions from irreversible processes such as crystallisation, chemical 

reactions and loss of volatile materials. The important advantages of MTDSC over 

conventional DSC include higher resolution without loss of sensitivity, improved 
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signal to noise ratio, reduced baseline curvature, the possibility of measuring heat 

capacities in a single run and the separation of overlapping thermal events. 

Both liposome types are composed of similar lipid components with same 

molar ratio. HM-liposomes contained 3% v/v glycerol while conventional liposomes 

did not contain glycerol. The main component of the liposomes is DPPC which 

typically possesses a pretransition at c. 32°C and main transition at c. 41°C 

(Papahadjopoulos et al 1973; Kikuchi et al 1994). It is well known that the thermal 

behaviour of DPPC is affected by the co-existence of cholesterol and charged lipids 

in the membrane according to the added ratio or the alkyl-chain length (Kikuchi et al 

1994). It was confirmed from MTDSC studies that, once glycerol is present in equal 

amounts in both liposome types, HM-liposomes demonstrate similar thermal 

behaviour to the conventional liposomes. Hence the methodology, including 

application of heating, did not change the thermal properties of the HM-liposomes. 

The slight difference between the thermal behaviour of conventional liposomes and 

HM-liposomes in Figure 2.13. is probably due to the presence of trace amounts of 

chloroform and methanol as this is the only variable between the two liposome types 

in this figure. 

2.5. Conclusions 

A new liposome preparation method is introduced in this chapter in which no 

hazardous chemical (e. g. volatile organic solvents or detergents) or methodology (e. g. 

sonication or high pressures) is required. Liposomes prepared by this heating method 

(HM-liposomes) exhibited long term stability, narrow size distribution and spherical 

bilayered morphologies. Another important point is that due to the employment of 

heat (and filtration when smaller sized vesicles required), in the manufacture of HM- 

liposomes, there is no need to carry out further sterilisation steps which consequently 

reduces the time and cost of liposome production by the heating method. From the 

liposomologist point of view the heating method is ideal because she/he is not 

subject to any harmful chemical or process during preparation of the HM-liposomes. 
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In general, the heating method is an easy methodology, capable of producing 

sterile and stable lipid vesicles in only two steps. The heating method also possesses 

the potential for mass production of non-toxic liposomes to be utilised in gene and 

drug delivery applications. 

63 



3: IN VITRO CYTOTOXICITY EVALUATION OF 

THE HM-LIPOSOMES TOWARDS HUMAN 

RESPIRATORY EPITHELIAL CELLS 

3.1. Introduction 

Liposome science and technology is one of the fastest growing scientific 

fields contributing to areas such as drug delivery, cosmetics, structure and function of 

biological membranes and investigations of the origin of life to name a few. This is 

due to several advantageous characteristics of liposomes such as ability to 

incorporate not only water soluble but also lipid soluble agents, specific targeting to 

the required site in the body and versatility in terms of fluidity, size, charge and 

number of lamellae. Despite the enormous research and development works on 

liposomes, only a small number of liposomal products have been approved for 

human use so far. A major drawback in the clinical utilisation of liposomes is the 

toxicity associated with some of these lipid vesicles. For instance there are many 

reports on the toxicity of cationic liposomes (Panzner and Jansons 1979; Chawla et al 

1979; Campbell 1983; Filion and Phillips 1997,1998; Dokka et al 2000; Nagahiro et 

al 2000) with the exact mechanism of toxicity remaining unclear. One reason for the 

cationic liposome toxicity is believed to be the interaction of the cationic lipids with 

cell organelle membranes, specifically the anionic lipids making up these membranes 

(Xu and Szoka 1996). For example, in mitochondrial membranes, cardiolipin is the 

major anionic lipid, and interaction of this lipid with cationic species would be 

detrimental to the basic energy reactions of the cell (for a review see Dass et al 1997). 

Another postulated mechanism, for cationic lipid-mediated toxicity in the lung, is the 

involvement of reactive oxygen intermediates (Dokka et al 2000). On the other hand, 

volatile organic solvents employed in the manufacture of liposomes, including 

chloroform and methanol, may remain in the, final liposome preparation and 

contribute to potential toxicity and influence the stability of the vesicles (Vemuri and 
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Rhodes 1995; Cortesi et al 1999). Residual solvents in pharmaceuticals, generally 

known as organic volatile impurities (OVIs), not only have no therapeutic benefits 

but may also be hazardous to the environment and human health (Dwivedi 2002). It 

has been suggested that organic solvents can exert toxicity towards cells via two 

types of mechanism: a) at the molecular level, or b) at the phase level. Molecular 

toxicity represents the effects caused by organic solvents that are dissolved within the 

aqueous phase and include enzyme inhibition, protein denaturation and membrane 

modifications such as membrane expansion, structure disorders and permeability 

changes. Phase toxicity effects include the extraction of nutrients, disruption of the 

cell wall (extraction of outer cellular components), and the limited access to nutrients 

caused by cell attraction to interfaces, the formation of emulsions and the coating of 

cells (Bar 1987; Hocknull and Lilly 1990). 

Although there are measures to remove the OVIs from liposome formulations 

(see chapter two), these are practically very difficult and time consuming procedures. 

In addition, the level of OVIs in the final liposomal products must be assessed to 

ensure the clinical suitability of the liposomes. Consequently it would be much 

preferable to avoid utilisation of these solvents in the manufacture of the lipid 

vesicles. There are a number of liposome preparation techniques, such as the polyol 

dilution method (Kikuchi et al 1994) and the bubble method (Talsma et al 1994), in 

which no volatile organic solvent or detergent is being used. However, in terms of 

toxicity, the vesicles produced by these methods have not been characterised. 

In the previous chapter a new method for the preparation of liposomes 

without employment of volatile organic solvents, detergents, sonication or 

homogenisers was introduced. Following the physico-chemical characterisation of 

the liposomes produced by this heating method, the possibility of toxicity of these 

vesicles needed to be addressed. Here we report a comparison of the cytotoxicity of 

two liposome preparations, one prepared using chloroform and methanol by a 

conventional method, and the, other prepared by the heating method. A human 

bronchial epithelial cell line (16HBE14o) was utilised in the cytotoxicity studies as a 

relevant in vitro model for pulmonary applications of liposomes as explained in 
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section 3.1.3. below. Cell viability was evaluated using two well known cytotoxicity 

tests, the neutral red uptake (NRU) and 3-(4,5-dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide (MTT) assays, in the presence of serum. The NRU 

assay is based on the uptake of neutral red dye which accumulates in the lysosomes 

of uninjured cells and the MTT assay is an indicator of mitochondrial metabolic 

activity. The effect of incorporation of plasmid DNA, with the aid of Cat+, on the 

toxicity of the liposomes was also evaluated. This had the aim of evaluating the 

cytotoxicty of HM-liposome/Ca2+/DNA complex (vesicles of which were prepared 

by the heating method) when used as a gene transfer vector, in comparison with the 

cytotoxicity of the same complex prepared by the conventional technique. In order to 

understand the liposomal cytotoxicity issue it would be helpful to review the in vitro 

fate of liposomes which is provided in the next section. 

3.1.1. Liposome-cell interactions in vitro 

Various mechanisms have been postulated for the interaction of liposomes 

with cells, some of which are illustrated in Figure 3.1. The interaction of the lipid 

vesicles with cultured cells could involve the following non-exclusive mechanisms: 

1) Incorporation of intact vesicles by endocytosis; 

2) Fusion of vesicles with the plasma membrane; 

3) Exchange of phospholipids (and probably proteins) between the liposomal 

and the plasma membranes; 

4) Adsorption of liposomes or fragments of liposomal membrane to the cell 

surface without true incorporation; 

5) Contact-mediated release of the material incorporated in the lipidic and/or 

the aqueous phases of the liposome without any need for internalisation of the 

liposome; and 

6) Any combination of the above mechanisms (Campbell 1980; New et al 

1990; Lasic 1998). 
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Investigations into the liposome interaction with cells have started some 35 

years ago shortly after liposomes were first proposed and tested by Gregoriadis 

(1976) as a drug delivery system. The mode of liposome interaction with the target 

cell membrane seems to be partly determined by the liposome physical characteristics 

(membrane fluidity, charge and size), and the nature of the target cell. Juliano and 

stamp (1975) observed a difference in rate of serum clearance for large multilamellar 

liposomes and small unilamellar ones. They concluded that large multilamellar 

liposomes were more rapidly cleared from the circulation than small unilamellar 

vesicles. Serum has been reported to affect the stability of liposomes and their ability 

to interact with cells (Bonte and Juliano 1986) in addition to suppressing the 

transfection efficiency of cationic liposomes (reviewed by Oku et al 2001). Deol and 

Khuller (1997) reported that serum proteins have more affinity to positively charged 

liposomes and observed higher leakage in cationic liposomes compared with the 

anionic liposomes. In order to obtain a more realistic understanding of liposome 

behaviour towards cells, therefore, in vitro experiments should be conducted in the 

presence of serum. 

3.1.1.1. Phagocytosis/endocytosis 

Cells with phagocytic activity take liposomes up into endosomes. These 

endosomes fuse with lysosomes where cellular digestion takes place. Lysosomal 

enzymes disintegrate liposomes and the liposomal phospholipids become hydrolysed 

to fatty acids, which can then be incorporated into host phospholipids (New et al 

1990). During the process of liposome breakdown in lysosomes, the contents of the 

liposomal aqueous and/or lipidic compartment(s) are released, after which they will 

either remain sequestered in the lysosomes until exocytosis (particularly if they are 

highly charged at low pH), or they will slowly leak out of the lysosome and gain 

access to the rest of the cell (Campbell 1980). It should be noted that, the low pH 

and enzymes of the lysosomes are able to inactivate the liposomal encapsulated 

agent(s) (Lasic 1998). 
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Figure 3.1. Schematic representation of the main modes of liposome interaction with cells. 
A: Fusion of the outermost bilayer of a multilamellar vesicle (MLV) - or a multivesicular 
liposome (MVL) - with the cell membrane and release of the inner vesicle(s) as well as the 

entrapped drug into the cytoplasm. B: Fusion of a unilamellar vesicle and concomitant 
release of the contents. C: Endocytosis/phagocytosis of liposomes followed by lysosomal 

(L) digestion and possible release of the entrapped material. D: Adsorption of liposomes on 
the cell membrane without uptake and with complete retention of aqueous and lipid contents 
within the liposome, separate from the cell. E: Contact-release of the material incorporated 

in the liposomal lipidic or aqueous phases without liposome internalisation. F: Li id 

transfer mechanism through which lipid molecules are exchanged between the liposomal 

and cell membranes. Secondary intracellular processes may concentrate the liposomal 

materials within cell organelles such as golgi bodies (G), lysosomes (L) or endoplasmic 
reticulum (ER). 

68 



The kinetics of liposome uptake by mouse peritoneal macrophages via 

phagocytosis were evaluated by Mattenberger-Kreber and co workers (1976). 

Saturable uptake of sonicated phosphatidylcholine liposomes labelled with trace 

amounts of either ['4C]-PC or [3H] -cholesterol by increasing liposome concentrations 

was confirmed. Morphologically intact liposomes, as well as liposomal debris, were 

evident in peripheral cytoplasmic vacuoles for up to two hours post incubation as 

demonstrated by radioautography. 

In addition to phagocytosis, liposomes may also be taken up by receptor- 

mediated endocytosis. If liposomes are coated with low density lipoproteins (LDL) 

or transferrin, they will bind to the cells via surface recepors for these moieties, and 

will then be internalised via coated pits with subsequent ligand degradation, or 

recycling respectively (New et al 1990). Evidence suggesting that lipid vesicles can 

be incorporated into the cells by endocytosis has come from experiments showing 

that inhibitors of endocytosis reduce the cell associated vesicle population, and the 

extent of reduction varies depending on vesicle composition (Poste and 

Papahadjopoulos 1976). This group found that inhibition of endocytosis in BALB/c 

mouse 3T3 cells by treatment with metabolic inhibitors [deoxyglucose (a glycolysis 

inhibitor) and sodium azide (a respiratory inhibitor)] or cytochalasin B (a phagocytic 

inhibitor) produced a marked reduction (>90%) in the uptake of negatively charged 

small unilamellar vesicles and large multilamellar vesicles that were solid at 37°C 

(PS: DPPC: DSPC). The same treatments were much less effective in reducing the 

cell associated vesicle population (<35%) for vesicles of similar charge (anionic) and 

size composed of fluid phospholipids (PS: PC), indicating that fluid liposomes may 

interact with cells via non-endocytic mechanism(s). Similar findings showing that 

endocytosis is not a major pathway in the interaction of charged fluid vesicles with 

cells have also been reported in studies with anionic fluid vesicles in which the 

negative charge is conferred by dicetylphosphate (Weissman et al 1977). 

Endocytosis has also been postulated as a main mechanism of the interaction 

of liposome-DNA complexes with cells. After the lipid-DNA complex gains entry 

into cells by endocytosis (Zabner et al 1995), it destabilises the endosomal lipidic 
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layer components. In the case of cationic liposome systems, it has been proposed 

that endosomal anionic lipids laterally diffuse into the lipid-DNA complex and form 

a charge neutral ion pair with the liposomal cationic lipids (Xu and Szoka 1996). 

This results in displacement of the DNA from the cationic lipid and release of the 

DNA into cytosol. 

3.1.1.2. Fusion 

Close approach of the liposomal and cell membranes can lead to fusion of the 

two (Bangham 1992) resulting in mixing of liposomal lipids with those of the plasma 

membrane of the cell. By this mechanism, drugs entrapped within the aqueous 

milieu of the liposome are injected directly into the cytoplasm, whereas drugs trapped 

within the hydrophobic space are delivered into the bilayer membrane of the cell 

(Dass et al 1997). Fusion may be brought about quite readily by incorporation of 

fusogens, such as lysolecithin, surfactants and detergents, into the liposome 

composition. However, these materials possess the risk of being quite toxic to cells, 

presumably because they continue to manifest their non-specific membrane 

perturbing effects after incorporation within the cell (New et al 1990). 

In addition to composition, the preparation method of liposomes is an 

important parameter influencing their interaction with cells via fusion and/or other 

mechanisms. This is because the preparation method, and more precisely the 

procedures and instruments used during liposome preparation, determine, among 

other characteristics, the stability and release properties of the lipid vesicles. It has 

been suggested that unilamellar vesicles of DPPC produced by sonication are leaky, 

indirect evidence for which is provided by the work of Grant and McConnell (1973). 

They documented the loss of solute into the surrounding medium from liposomes 

during the process of fusion. Other groups have reported that some unilamellar 

liposomes fuse their membranes with those of the target cell and introduce their 

contents directly into the cytosol (Pagano and Huang 1975; Poste and 
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Papahadjopoulos 1976). Pagano and Huang (1975) determined that the kinetics of 

uptake of unilamellar liposomes were independent of the liposome charge. 

A combination of both fusion and endocytosis for multilamellar vesicles 

(MLV) has been reported by Batzri and Korn (1975). It has been suggested that the 

fusion with the membrane of the target cell, leads to introduction of a multilamellar 

liposome without its outermost bilayer (Weissmann et al 1977). Internalisation of 

MLV in mouse spinal cells has been directly observed through electron microscopy 

(Azzazy et al 1995). Sessa and Weissmann (1968) reported that the outermost 

aqueous compartment, which accounted for about 10% of the total trapped volume of 

the MLV in their studies, merged its contents immediately with the cytosol, while the 

remaining aqeous compartment remained lipid bound. The intracytoplasmic 

liposome minus its outer bilayer may either be generally degraded in situ or may 

undergo a secondary fusion event with membrane organelles such as the lysosomes. 

Once liposomes are inside the cell cytoplasm (e. g. following fusion of a MLV with 

the plasma membrane) there is the possibility of the interaction of proteins with the 

lipid vesicles. Utsumi et al (1981) have found that cytoskeletal proteins such as 

actin, a-actin and tubulin have a strong tendency to associate with liposomes. 

In experiments with the phagocytic soil bacterium, Acanthamoeba castellanii, 

Batzri and Korn (1975) have observed that the phospholipid composition of the 

liposome determines whether uptake by phagocytosis or fusion predominates. At 

28°C, egg phosphatidylcholine liposomes and DMPC 

(dimyristoylphosphatidylcholine) liposomes favour uptake via phagocytosis while 

DPPC (dipalmitoylphosphatidylcholine) and DSPC (distearoylphosphatidylcholine) 

liposomes favour uptake by fusion. Positively charged egg phosphatidylcholine 

liposomes were more avidly taken up than neutral or negatively charged liposomes, 

but positively charged DPPC vesicles displayed only slightly preferential stimulus for 

uptake as compared to neutral or negatively charged DPPC liposomes. Phagocytic 

uptake was inhibited by either 4°C incubation or 2,4-dinitrophenol. The uptake by A. 

castellanii of unilamellar DPPC liposomes, presumably by fusion, resulted in the loss 

of 60% of the aqeous contents (D-[3H]-glucose) of the vesicles. This observation 
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agrees with the findings of Grant et al (1973) who observed a 96% loss of entrapped 

solute upon fusion of unilamellar DPPC liposomes with Acholeplasma Laidlawii. 

The finding that the prokaryotic cells take up cationic vesicles more readily is 

contrary to the results obtained for the eukaryotic cells which were observed to take 

up anionic vesicles more avidly (Heath et al 1985; Monkkonen et al 1994; 

Katragadda et a! 2000). These works emphasis the importance of the type and nature 

of the cell on the mechanism of liposome-cell interactions. 

3.1.1.3. Lipid exchange 

In addition to fusion and endocytosis, another possibility - i. e. lipid exchange 

- has been proposed as a mechanism for liposome-cell interaction. Lipid exchange is 

along-range interaction that involves the exchange of liposomal lipids for the lipids 

of various cell membranes. It depends on the mechanical stability of the liposomal 

bilayer and can be reduced by 'alloying' the liposomal membrane with cholesterol 

(which gives rise to greatly improved mechanical properties, such as an increased 

stretching elastic modulus, resulting in stronger membranes and reduced 

permeability) (Lasic 1998). 

Scherphof et al (1978) provided evidence for egg phosphatidylcholine 

exchange between liposomes (irrespective of size) and high density lipoproteins and 

consequent leakage of an aqueous compartment marker into surrounding medium. 

Black and Gregoriadis (1976) observed cholesterol exchange between liposomes and 

serum components. Hellings et al (1974) reported the purification of a protein from 

beef heart that catalyses phospholipid exchange between liposomes. Similar 

proteins, which transfer lipid molecules from one membrane to another, have been 

found in other organs including liver and lung (Zilversmit 1984) as well. It has been 

demonstrated that phospholipids transfer between two vesicle populations, not by 

collisional processes, but, rather, as monomers (or multimers) diffusing through 

aqueous solution (Roseman and Thompson 1980; Nichols and Pagano 1981). 

However, although the process occurs via diffusion, the physical characteristics of 
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both the donor and the acceptor vesicles determine the net rate of transfer. This is 

due to the fact that the vesicle physical properties determine both the rate of 

association and the rate of dissociation of the monomer from the bilayer membrane. 

Pagano and co workers (1974,1975) carried out in vitro experiments with 

cells that do not normally engage in phagocytosis (Chinese hamster lung cells). They 

have shown that uni- and multilamellar vesicles exchange membrane lipids and 

trapped solutes with cells via vesicle-cell fusion and vesicle-cell lipid exchange. At 

37°C, the vesicle-cell fusion interaction predominates, but at 2°C, or when recipient 

cells are depleted of energy stores, vesicle-cell lipid exchange becomes significant. 

The fusion event was depicted by the cellular association of both the aqueous 

compartment, containing [3H]-inulin, and the phospholipid component labelled with 

[14C]-PC, in exactly the same proportions as exists within liposomes. In contrast, 

under conditions favouring lipid exchange, the phospholipid marker became cell 

associated while the aqueous compartment marker did not. 

3.1.1.4. Adsorption 

Another major liposome-cell interaction mechanism is adsorption of 

liposomes to the cell membrane. It can often occur with little or no internalisation of 

either aqueous or lipid components of liposomes (New et al 1990). In adsorption, 

liposomes attach to cell surfaces when the attractive forces (e. g. electrostatic, 

electrodynamic, van der Waals, hydrophobic insertion, hydrogen bonding, specific 

'lock-and-key', etc. ) exceed the repulsive forces (e. g. electrostatic, steric, hydration, 

protrusion, ondulation, etc. ) (Lasic 1998). 

Magee and co workers (1974) suggested that positively charged liposomes 

initially interact with negatively charged cells via adsorption and are subsequently 

internalised by fusion or endocytosis. The interaction of charged liposomes with the 

cell membrane, presumably by electrostatic attraction (Magee et al 1974) appears to 

be altered by a-globulin (a serum component) possibly by alteration of the liposome 
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charge. Black and Gregoriadis (1976) have shown that some serum components 

interact with liposomes in such a way as to alter the charge on the liposomes. 

Adsorption may also take place as a result of binding by specific receptors to 

ligands on the vesicle membrane. It is thought that physical adsorption of liposomes 

may occur through binding to a specific cell surface protein (Pagano and Takeichi 

1977). Adsorption is a prerequisite for ingestion of the liposome by cells, but it is 

not fully understood what factors determine whether or not a liposome is consumed 

thereafter by pinocytosis or phagocytosis. Leserman et al (1981) have shown that 

attachment of liposomes to cell membranes via certain surface proteins, but not 

others, can result in rapid uptake into the cell. In some cases, the liposomes may 

remain passively adsorbed on cell surface indefinitely (New et al 1990). 

3.1.1.5. Contact release 

Contact-release of aqueous contents of liposomes occurs by a poorly 

understood mechanism in which contact with the cell causes an increase in 

permeability of the liposome membrane. This leads to release of water-soluble 

solutes in high concentration in the closed vicinity of the cell membrane, through 

which these solutes may, under certain circumstances, then pass. Cell-induced 

leakage of solutes has been observed to be greater in membranes with cholesterol 

concentrations above 30 mol % (Van Renswoude and Hoekstra 1981). This 

phenomenon can provide a very effective means for introducing materials into 

specific cells without the need for ingestion of the whole liposome, and would be of 

particular value for cells which are not effectively phagocytic. The method will work 

best under conditions where flow and turbulence of the medium surrounding the cells 

is reduced, and where physical interactions between liposomes and cells are 

strengthened by means of receptor-ligand binding between the two membranes. 

Whether this process takes place to a significant extent may depend upon membrane 

composition as well as the nature of the compounds themselves (New et al 1990). 
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3.1.2. Liposome toxicity 

Liposomes, generally being composed of ingredients from natural sources, are 

accepted as being biocompatible and relatively non-toxic (Van Rooijen and 

Nieuwmegen 1983; Stewart et al 1992; Storm et al 1993; Mercadal et al 1995; Cheng 

and Scheule 1998). Due to this reason, probably, the number of reports on the 

toxicity evaluation of liposomes (without drug) is limited and works are mainly 

devoted to compare the toxicity of free drug with that of liposome incorporated drug. 

Some examples of the drugs the toxicity of which have been studied in comparison 

with the liposome incorporated form of the same drugs are valinomycin (Daoud and 

Juliano 1986), amphotericin B (Juliano et al 1987), doxorubicin (Mayer et al 1989; 

Gabizon 1992), anamycin (Zou et al 1995), isoniazid and rifampicin (Deol and 

Khuller 1997) and paclitaxel (taxol) (Ceruti et al 2000). It was reported that the 

liposome encapsulated forms of the above mentioned drugs were less toxic than the 

free forms of the drugs. 

However, there is also a need to evaluate the toxicity of the liposomes 

themselves to ensure the clinical suitability of these leading nanocarrier systems. 

Towards this end, the cytotoxicity of two types of lipid vesicles, namely conventional 

liposomes and HM-liposomes, each of two different sizes, with and without DNA 

and Cat+, as well as the cytotoxicity of their ingredients was evaluated in the human 

bronchial epithelial cell line 16HBE14o-. The reasons for using this cell line are 

outlined in the next section. 

3.1.3. Rationale for the use of 16HBE14o- cell line 

Inhalation to the lung is an increasingly important route for drug delivery. In 

1998, more than 20% of the drug delivery products sold worldwide were aimed at the 

central regions of the lung, for the treatment of asthma, chronic obstructive 

pulmonary disease and other bronchial-related disease (Forbes 2000). In addition, 

there are pharmaceuticals in development for delivery to the peripheral lung 
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primarily for systemic absorption rather than local delivery. Direct targeting of the 

lung results in an immediate onset of drug action and reduced side effects. The 

permeability of the lung to a variety of drugs, including peptides and proteins, has 

also been recognised for some time (Enna and Schanker 1972; Patton and Platz 

1992). Gene therapy is another rapidly emerging area, and several inherited and 

acquired lung diseases are potentially treatable through the delivery of therapeutic 

genes to the respiratory epithelium (Curiel et al 1996). An overview of human lung 

structure, given below, will help us in the choice of an appropriate in vitro model for 

pulmonary drug application studies. 

3.1.3.1. Human respiratory tract 

The respiratory tract is usually considered as two distinct regions; the central 

conducting airways and peripheral alveolar regions (Table 3.1. ). Deposition of 

pharmaceutical aerosols occurs primarily via impaction at airway bifurcations, 

gravitational sedimentation within the airway tubules and diffusion within the 

alveoli. The alveolar epithelium is extremely thin and has an extensive surface area 

which is patrolled by alveolar macrophages. The airway epithelium is 

pseudostratified, features leakier tight junctions and a smaller surface area than the 

alveolar epithelium, and is protected by a mucociliary clearance mechanism. The 

human airway epithelium is composed of at least six distinct epithelial cell types: 

ciliated cells, mucous goblet cells, Clara cells, serous cells, basal cells and dense 

core-granulated cells (Harkema et al 1991; Gruenert et al 1995). The cellular 

composition of the epithelium varies substantially between species and at different 

levels of the lung between the trachea and the terminal bronchioles (Harkema et al 

1991). Ciliated cells, mucous goblet cells and Clara cells make up almost the entire 

surface of the epithelium. Basal cells and dense core-granulated cells do not form 

part of the epithelial surface under normal conditions, and the other cell types, 

including serous cells, represent <5% of the epithelial cells (Gruenert et al 1995). 

76 



Table 3.1. The airways and alveolar region of the pulmonary tract (adapted from Forbes 
2000). 

Airways 

Tracheobronchial tubes 

Trachea 

Structure of 
the lung Large bronchi 

Airway generation 
is shown in brackets 

Small bronchi 
and bronchioles 

Primary Transport of air to the 
function gas-exchange regions 

Mechanisms Impaction and 
of aerosol sedimentation 
deposition (particles 3-10 µm) 

Epithelium Pseudostratified, ciliated, 
mucus-secreting 
epithelium 

Alveolar region 

Acinus 

Respiratory 
bronchioles 

Alveolar ducts 

Alveolar sacs 

Gas exchange 

Sedimentation and 
diffusion 
(particles <3 µm) 

Squamous epithelium 

The human airway epithelial surface principally consists of ciliated cells, 

which are the most abundant cell at all levels of the airways (Sturgess 1989; Gruenert 

et al 1995). In the higher airways, the ciliated cells are interspersed by secretory 
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cells, mainly mucus-secreting goblet cells. At lower levels the ciliated cells are 
interspersed mainly by Clara cells. Considering this distribution of epithelial cells, 

the ciliated cell is clearly the most appropriate single cell-type for modelling of the 

airway epithelium. Diagrammatic representations of the typical epithelium in the 

higher airways, at the bronchiolar level and in the alveolar region are illustrated in 

Figure 3.2. 

(a) 

(b) 

il 
"-ý44 

(c) 

1\ 
dWU 

Figure 3.2. Typical lung epithelia showing the main cell types: a) the bronchial epithelium 
showing the pseudostratified nature of the columnar epithelium, principally consisted of 
ciliated cells, interspersed with goblet cells and the basal cells (designated as c, g and b 

respectively); b) the bronchial epithelium representing the cuboidal nature of the epithelium 
mainly composed of ciliated cells and interspersed with Clara cells (c and cl respectively); 
c) the alveolar epithelium showing the squamous nature of the epithelium, comprised of the 

extremely thin type I cells (I), which accounts for approximately 95% of the epithelial 
surface and the cuboidal type II cells (II) (from Forbes 2000). 

3.1.3.2. Importance of airway epithelial cell lines 

For the treatment of lung diseases, pharmaceutical aerosols are a well 

established means of localised drug delivery. The most frequently used aerosols 
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include small amounts of bronchodilator or steroid delivered directly to the lung to 

treat obstructive airway diseases. The major site of deposition in the lung from 

current pharmaceutical aerosol devices is the airways, where the epithelium is both 

the principal barrier to drug absorption and the first cellular metabolic barrier 

encountered by inhaled compounds. Recent improvements in delivery device 

technology have created much optimism over using inhalation to the deep lung for 

the delivery of drugs with poor oral absorption to the systemic circulation (Service 

1997; Patton 1998). Despite the popularity of inhalation as a drug delivery route, 

assessing the fate of inhaled compounds is difficult because of the inaccessibility, 

delicate nature and complex structure of the lung. The interpretation of results 

obtained in animal and tissue models is complicated by inter-species variation, 

imprecise delivery of drug to the lung and concerns over preparation viability. 

Airway cell lines are more convenient models in which to assess absorption 

mechanisms and cytotoxicity issues, compared with intact lung models which are not 

usually capable of discerning such properties. In general, the pharmaceutical industry 

relies on appropriate in vitro models for the evaluation of absorption, metabolism and 

toxicity of drugs. The advantages of using cell culture models include: 

" Small amounts of compounds are required for experiments, 

" Easier and more economical than in vivo experiments and reduces animal usage, 

" Rapid, with a high throughput capacity, 

" Provides mechanistic information about epithelial transport, 

" Environmental conditions, such as temperature and pH, can be controlled, 

" Drug analysis is simplified by the use of aqueous buffer solutions (Forbes 2000). 

The value of epithelial cell culture is best illustrated by reference to the well 

characterised Caco-2 cell line, the foremost cell culture model of intestinal drug 

absorption (Artursson and Borchardt 1997; Mainprize and Grady 1998). Caco-2 cell 

monolayers are used to study drug transport mechanisms, assess absorption 

enhancement strategies, and predict oral bioavailability (Brayden 1997; Polli and 

Ginski 1998). Caco-2 cell monolayers are also used in high throughput screening 

programmes and to generate data for regulatory purposes. Compared with the 
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development of the intestinal cell culture models, interest in the use of cell lines to 

model the respiratory epithelium is comparatively recent. At present there is no Tung 

equivalent of the Caco-2 cell line to serve as a well-established in vitro model of the 

respiratory epithelium (Forbes 2000; Forbes et al 2003). A summary of the general 

applications of epithelial cell culture models, outlined in Box 3.1., illustrates their 

potential value in the development of dosage forms. 

Box 3.1. Summary of the applications of epithelial cell culture models in the design and 
development of drugs (Forbes 2000). 

" Estimation of permeability characteristics of drug candidates, 

9 Deduction of drug transport pathways, 

9 Determination of structure-activity relationships for active transport and 

efflux processes, 

" Determination of optimal physicochemical characteristics for passive 

absorption, 

" Assessment of chemical strategies for absorption enhancement, 

" Elucidation of drug metabolism, 

" Rapid assessment of potential toxic effects of drug candidates or 

formulations. 

To usefully predict the fate of compounds delivered to the lung, a model of 

the airway epithelium should reflect the drug transport characteristics and metabolic 

activity encountered in vivo. Primary cultures of mixed populations of human airway 

epithelial cells provide the closest in vitro representation of the airway epithelium. 

However, the lack of availability of normal human airway tissue, the limited amount 

of cells generated by primary cell culture, and donor variation are major limitations. 

lt has been detected that cultured human surface airway epithelial cells have a limited 

life span and senesce or terminally differentiate (Lechner and Laveck 1985; Gruenert 

et al 1990). Despite the optimisation of culture conditions, the mucociliary 
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differentiation of primary cultures becomes significantly impaired after two to three 

passages (Gray et al 1996). Major factors that promote the differentiation of airway 

epithelial cells in culture are the extracellular matrix (such as collagen gel), the 

composition of the growth medium (such as inclusion of retinoic acid) and culture at 

an air-liquid interface (Gruenert et al 1995). 

Cell lines have the advantage of providing a much more convenient and 

reproducible model than primary cell cultures. Airway cell lines derived from human 

airway epithelium are beginning to find use as drug transport models (Mathias et al 

1996; Cavet 1997; Forbes and Lansley 1998; Rao et al 1998; Forbes et al 2003). 

Three airway-derived cell lines in particular have shown promise as in vitro models 

of the airway epithelium; BEAS-2B, 16HBE14o- and Calu-3. The 16HBE14o- cell 

line, used in this study, was developed by transformation of cultured bronchial- 

surface epithelial cells from a one-year-old male heart-lung patient (Cozens et al 

1994). This cell line was developed to study the chloride channel activity of the 

cystic fibrosis transmembrane conductance regulator (CFTR) in normal airway 

epithelial cells (Cozens et al 1994). Early studies concentrated on the ability of 

airway-derived cell lines to model the physiological processes of the airway 

epithelium particularly ion transport, and characterisation of their cell biology (Van- 

Scott et al 1991). There has also been considerable interest in their use for 

pathophysiological studies, such as the response of the epithelium to injury and 

inflammatory mediators. 

16HBE14o- and Calu-3 cell lines both form polarised cell layers and have 

been identified as two of the better differentiated airway-derived cell lines (Gruenert 

et al 1995) with potential as drug absorption models (Mathhias et al 1996). Both 

16HBE14o- and Calu-3 cells were shown to express the proteins of the major 

intracellular junctions: functional tight junctions, desmosomes and zonulae 

adherentes (Forbes 2000). The Calu-3 cell line has tight junctions; the 16HBE14o- 

cell line has a similar morphology to native airway epithelia, including cilia and tight 

junctions (Mobley and Hochhaus 2001). The 16HBE14o- cells maintain, in addition 

to many differentiated epithelial morphological features, functional characteristics 
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including ability to generate transepithelial resistance across a confluent cell 

monolayer. Freeze-fracture electron microscopy of cultured 16HBE14o- cells has 

revealed extensive and well-formed tight junctional belts (Godfrey and Jeffrey 1998). 

Recently, polarised 16HBE14o- cell layers have been used to study drug transport 

(Forbes and Lansley 1998; Rao et al 1998; Forbes et al 2003) and gene delivery 

(Stem et al 1998). Furthermore, 16HBE14o- cells have been found to be a suitable 

cell line for in vitro respiratory toxicity evaluations (Westmoreland et al 1999) due to 

their aforementioned characteristics. 

3.2. Materials and Methods 

3.2.1. Chemicals 

Dipalmitoylphosphatidylcholine (DPPC), dicetylphosphate (DCP), 

Cholesterol (CHOL), glycerol, 0.25% trypsin-EDTA solution, neutral red solution 

(NR, 3-amino-7-dimethylamino-2-methyl phenazine hydrochloride (3.3g/1)), and 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) were purchased 

from Sigma Chemical Co. (Dorset, UK). Minimum essential medium (EAGLE) 

containing Glutamax-1, fetal calf serum, and penicillin/streptomycin (10000 U/mL, 

10000 pg/mL) were obtained from GibcoBRL® Life Technologies Ltd (Paisley, UK). 

The plasmid (pcDNA3.1/His B/lacZ, 8578 nucleotides) was supplied by Invitrogen 

(Nederlands). All solvents (chloroform, methanol, Analar grade) were obtained from 

Sigma Chemical Co. (Dorset, UK) All other chemicals were of commercial 

analytical grade. 

Phosphate-buffered saline (PBS) was prepared by dissolving 4.3mM 

NaH2PO4,1.47mM KH2PO4,2.68mM KCI, and 137mM NaCI in distilled water and 

adjusting the pH to 7.4. 
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3.2.2. Experimental methods 

3.2.2.1. Liposome preparation 

3.2.2.1.1. Preparation of conventional liposomes 

Conventional liposomes were prepared by the thin-film hydration method as 
follows: a chloroform/methanol (2: 1, v/v) solution of DPPC/DCP/CHOL (7: 2: 1 

molar ratio), containing 10mM total lipid, was evaporated to dryness in a round 
bottomed flask connected to a rotary evaporator (EYELA, New Rotary Vacuum 

Evaporator NE-1, Birmingham, UK), in a water bath at 50°C. To remove traces of 

the solvents the flask was flushed with nitrogen gas for 1 hour and also placed under 

vacuum for a time period of at least 1 hour. The lipid film was then hydrated, above 

the phase transition temperature (Ta) of the lipids, with 2ml sterile (autoclaved) 

phosphate buffered saline (PBS, pH: 7.4), and multilamellar vesicles (MLV) formed 

by vortex agitation or by hand-shaking the flask after adding glass beads of -1-2mm 
diameter into the flask. The liposome suspension was extruded 11 times, with an 

extruder (LiposoFastTM-Basic, Glen Creston Ltd, UK), above Tc through two-stacked 

polycarbonate filters of either 100 or 400nm pore size. The liposomes were either 

utilised immediately after preparation or stored under N2 at 2-8°C until use. 

3.2.2.1.2. Preparation of liposomes by the heating method 

HM-liposomes with the same composition as the conventional liposomes 

were prepared as follows: DPPC, DCP and CHOL were hydrated in PBS and then 

heated up to 120°C in the presence of glycerol (3% v/v) in a silicone oil bath. 

Alternatively the heating step was performed employing a 12-well carousel reaction 

instrument (Carousel Reaction StationT', Rodleys Discovery Tech. Ltd., Essex, UK). 

The carousel instrument was fitted with a temperature controller (Carousel 

Temperature Controller RR98073) and magnetic stirrer. The carousel tube was 

connected to a nitrogen gas cylinder during the process. Formation of MLV at the 
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end of the heating stage was confirmed by light scattering and microscopic 

examinations and results are presented in chapter two. The effect of heating on the 

lipids has been checked by thin-layer chromatography and no degradation was 

detected as explained in chapter two (Mozafari et a! 2002c). 

In order to provide a more homogeneous population of liposomes with 

smaller diameters the liposomal suspension was extruded, as described in the 

previous section, through two-stacked polycarbonate filters of either 100 or 400nm 

pore size. The HM-liposomes were utilised shortly after preparation or stored under 

N2 at 2-8°C until use. 

3.2.2.2. Plasmid DNA 

The plasmid pcDNA3.1/His B/lacZ (8578 nucleotides) (Invitrogen) grown in 

competent Escherichia coli DH5a cells, prepared by alkaline lysis, and purified by 

CsCI-EtBr density gradient ultracentrifugation (Sambrook et al 1989) was kindly 

provided by Mr A. R. Evans (Liverpool John Moores University, England, UK). The 

purity of plasmid preparations was determined by agarose gel electrophoresis and 

optical density (the OD2601280 ratio was between 1.8 and 1.9). Plasmid concentration 

was measured by UV absorption at 260nm, by multiplying the absorbance of the 

sample by a factor of 50 (Muller et al 1993). The plasmid samples were stored at 

-20°C until use. 

3.2.2.3. Incorporation of DNA to liposomes 

The ternary complexes of liposome/Ca2+/DNA (vesicles of which were 

prepared by the conventional technique) or HM-liposome/Ca2+/DNA (vesicles of 

which were prepared by the heating method) were constructed by introducing 

plasmid (15µg / 285µg liposome) and then calcium (50mM) to the liposomal 

suspensions followed by incubation of the mixture for 30min under N2 at room 
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temperature. Formation of similar complexes has been confirmed and well 

documented in our previous studies by light scattering, UV spectrophotometry, 

spectrofluorometry and different microscopic techniques (Mozafari 1996; Zareie et 

al 1997; Mozafari and Hasirci 1998; Mozafari et al 1998a, 1998b). 

3.2.2.4. Cells 

Immortal human respiratory epithelial cells (16HBE14o-), kindly donated by 

Dr A. R. Evans (Liverpool John Moores University, England, UK), were maintained 

at 37°C, 5% CO2 and 95% humidity in T75 tissue culture flasks (Starstedt, Leicester, 

UK). Complete growth media (cMEM) consisted of 89% (v/v) minimum essential 

medium (MEM, EAGLE) with Glutamax-1 supplemented with fetal calf serum (10% 

v/v) and 1% (v/v) penicillin/streptomycin (10000 U/ml, 10000 pg/ml). One T75 

flask of cells was routinely sub-cultured (passaged) into two new flasks when the 

cells were almost 90% confluent. In order to passage the cells, the cMEM was 

removed from the flasks and the cells were washed twice with 20m1 PBS. The 

adherent cells were removed from the flasks by trypsinisation. For this trypsin- 

EDTA solution (0.25%, 5m1) was added and the cells incubated for 10min (at 37°C, 

5% CO2 and 95% humidity), by which time the cells could be loosened by gentle 

tapping of the flask. Cell dissociation from the flask surface was confirmed by 

observation through light microscopy. The activity of trypsin was neutralised by 

addition of 10m1 cMEM. The clusters of aggregated cells were broken up by 

pipetting several times using a 10ml disposable pipette to obtain an homogenous cell 

suspension. Two new T75 flasks were then seeded by the addition of cell suspension 

(5m1) and cMEM (7.5ml) to each flask. After day one and day four the culture 

medium was removed and replaced with 12.5ml cMEM per flask. These cells were 

usually almost 90% confluent after 6 days by which time they were either passaged 

into new flasks or seeded into 96-well plates (BDH, Leicester, UK). The cells were 

sub-cultured (passaged) no more than 50 times. When the cells were required to be 

seeded in 96-well plates (for toxicity tests) a flask grown to almost 90% confluence 

was trypsinised and neutralised and then diluted with cMEM to a total volume of 
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45m1. This volume of cells (approximately 50000 cells/ml) was enough to seed two 

96-well plates containing 200µ1 medium/sample solution per well. 

3.2.2.5. Toxicity assays 

HBE cells were plated in 96-well plates (BDH, Leicester, UK) and used for 

toxicity tests at 50-60% confluency (approximately 50000 cells/ml). The cells were 

treated with the reagents, diluted with cMEM to provide the required concentration, 

and incubated for 24 hour prior to toxicity assessment. In vitro cytotoxicity was 

evaluated using the Neutral Red Uptake (NRU) method of Borenfreund and Puerner 

(1985) and the MTT method of Mosmann (1983) except that both methods were 

performed simultaneously in the same microplate and the incubation time with NR 

and MTT was 2 hours. This 'parallel NRU/MTT assay' was developed recently by 

Evans (2003) in our laboratory. Six of the 96-well plate columns were allocated to 

the NRU and the other six to the MTT assay as explained in the following sections. 

Cytotoxicity of all the ingredients of the liposomes individually (i. e. DPPC, DCP, 

and CHOL each dissolved in corn oil by vortex mixing), liposomes prepared by 

conventional method and HM-liposomes (each of two sizes of 100 and 400nm) with 

and without calcium and plasmid, as well as the cytotoxicity of Ca2+ was evaluated as 

explained above. The concentration range used for each reagent except calcium was 

from zero to 87.5 tg/ml which covers liposome concentrations used in most of the 

gene transfer studies. The concentration range for calcium was from zero to 250mM, 

well above the 50mM concentration used in the gene transfer formulation. Triton X- 

100 (78 ppm) was used as positive control as recommended by Evans (2003). 

Viability was expressed as a percentage of the control untreated cells. All toxicity 

experiments were repeated on a minimum of three independent occasions. 
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3.2.2.5.1. Neutral Red Uptake (NRU) assay 

Neutral Red (NR) is a weak, cationic, water-soluble dye that is taken up by 

viable, uninjured cells and accumulates in the lysosomes. It can be detected and 

quantified spectrophotometrically upon lysis of the cells (Borenfreund and Puerner 

1985). NR solution was diluted in cMEM to give a working solution of 50 tg/ml and 

then incubated for 24 hours at 37°C. Any NR crystals that may have formed during 

this incubation period were filtered out using a 0.2µm syringe filter prior to the assay. 

After removal of medium from those wells of the 96-well plate allocated to the NRU 

assay, 100111 of the NR-cMEM mix was added to each well and the plate incubated 

(at 37°C, 5% CO2 and 95% humidity) for two hours to allow the NR to be taken up 
by the cells. After this incubation period, the NR-cMEM mix was removed from 

each well and the cells were washed with PBS (200pl/well) to remove any excess 

NR. After adding NR destain (1% glacial acetic acid in 50% ethanol, 100µl/well) the 

96-well plate was shaken on an orbital shaker for 15min to achieve a homogenous 

colour in each well. Absorbance of each well of the plate was determined at 540nm 

using the microplate reader (Titertek Multiskan® MCC/340 MKII Labsystems, 

Finland). Absorbance readings from wells treated with the agents were compared to 

the readings of control wells (untreated cells). Results are expressed as percentages 

of control wells. 

3.2.2.5.2. MIT assay 

This procedure is basically that of Mosmann (1983) and utilises the fact that 

MTT, a yellow soluble tetrazolium salt, is taken up into cells and reduced by 

mitochondrial succinate dehydrogenase to an insoluble blue formazan product. This 

product accumulates in the cell, as it can not pass through the plasma membrane and 

can be detected and quantified spectrophotometrically upon lysis of the cells. 

A stock solution of 5mg/ml MT"T in PBS was prepared and stored at 4°C 

protected from light. This solution was diluted ten times in cMEM before each 
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application. After removal of medium from the wells allocated to the MTT assay, 

10Oµ1 of MTT-cMEM mix was added to each well and the cells were incubated for 

two hours (at 37°C, 5% C02 and 95% humidity) to allow for reduction of the MTT. 

The MTT-cMEM mix was removed from each well and then isopropanol 

(100pUwell) was added as a destain. The 96-well plate was shaken on an orbital 

shaker for 15min to achieve a homogenous colour in each well. Absorbance reading 

from each well of the plate was determined at 540nm using the microplate reader 

(Titertek Multiskan® MCC/340 MKII Labsystems, Finland). Absorbance readings 

from wells treated with the agents were compared to the readings of control wells 

(untreated cells). Results are expressed as percentages of control wells. 

3.2.2.6. Statistical analysis 

Data are expressed as mean ± standard deviation of the mean from three or 

more experiments (performed on separate occasions and each time six wells were 

devoted to each sample). A two way analysis of variance of the viability data, taking 

account of liposome concentration and method of preparation was performed. A two 

sample t-test taking account only of the method of liposome preparation was also 

performed. All analyses were carried out using the Minitab statistical package (v 

13.1, MINITAB Inc. PA, USA). AP value of less than 0.05 was considered to 

indicate a significant difference. 

3.3. Results 

Cytotoxicities of two liposomal formulations as well as two liposomal gene 

transfer vectors and their constituents were evaluated using a cell culture model of 

the human bronchial epithelial cells. Figure 3.3. is a microscopic image of a 

monolayer of the 16HBE14o- cells used in this study. The "cobblestone" appearance 

of these cells, as described by the originators of this cell line (Cozens et al 1994), can 

be seen in this Figure. 

88 



Figure 3.3. Microscopic image of the human lung epithelial cells (16HBEI4o-) in T75 
tissue culture flasks. 

The cytotoxicity evaluation of the liposomal constituents DPPC, DCP and 

CHOL are depicted in Figures 3.4., 3.5. and 3.6. respectively. The overall data 

indicate that the liposomal constituents are well tolerated by the HBE cells as attested 

by both NRU (part a in each Figure) and MTT (part b in each Figure) assays. DPPC 

was found to cause a very slight loss in cell viability - i. e. -2% according to NRU 

and -4% according to MTT assay - at 0.5µg/ml while no cell death was detected at 

other concentrations (Figure 3.4. ). 

The negatively charged phospholipid DCP caused only 1-7%, as evaluated by 

the NRU, and 1-5%, as evaluated by the MTT assay, decrease in cell viability (Figure 

3.5. ). Cholesterol, on the other hand, was found to cause a slightly larger loss in cell 

viability - i. e. 0-10% according to NRU and 4-12% according to MTT assay - in the 

concentration range tested (Figure 3.6. ). 
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Figure 3.4. Cytotoxicity evaluation of DPPC in the HBE cells. Cell viability was 
determined after 24 hr by (a) neutral red, and (b) MTT assays. Triton X-100 (78 ppm) was 

used as positive control. Results represent means + S. D. of data obtained from at least three 
independent experiments. 
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Figure 3.5. Cytotoxicity evaluation of DCP in the HBE cells. Cell viability was determined 

after 24 hr by (a) neutral red, and (b) MTT assays. Triton X-100 (78 ppm) was used as 
positive control. Results represent means + S. D. of data obtained from at least three 

independent experiments. 
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Figure 3.6. Cytotoxicity evaluation of CHOL in the HBE cells. Cell viability was 
determined after 24 hr by (a) neutral red, and (b) MTT assays. Triton X-100 (78 ppm) was 

used as positive control. Results represent means + S. D. of data obtained from at least three 
independent experiments. 
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The cytotoxicity evaluation of the two populations of liposomes prepared 

using 100nm filters is shown in Figure 3.7. While the conventional liposomes 

decreased cell viability by 5-17%, vesicles made by the heating method were 

completely non-toxic irrespective of the doses used. Both NRU (Figure 3.7. a) and 

MTT (Figure 3.7. b) assays indicate that the liposomes prepared by the conventional 

technique exhibit statistically significant (P<0.001) levels of toxicity when compared 

with the liposomes prepared by the heating method. 
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Figure 3.7. Cytotoxicity of liposomes according to their preparation method. Liposomes 

were prepared by extrusion through 100nm filters. Cell viability was determined after 24 lur 
by (a) neutral red, and (b) MTT assays. Normal bars: liposomes prepared by the 

conventional method; slashed bars: liposomes prepared by the heating method. Triton X- 

100 (78 ppm) was used as positive control. Results represent means + S. D. of data obtained 
from at least three independent experiments and the two liposome types differed 

significantly (P<0.001). 
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Figure 3.8. demonstrates cell viability studies of the cultured cells incubated 

with the conventional liposomes and HM-liposomes prepared using 400nm filters. 

Again both NRU (Figure 3.8. a) and MTT (Figure 3.8. h) assays attest that the 

conventional liposomes display statistically significant (P<0.00I) levels of toxicity 

when compared with the HM-liposomes. 
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Figure 3.8. Cytotoxicity of liposomes according to their preparation method. Liposomes 

were prepared by extrusion through 400nm filters. Cell viability was determined after 24 hr 
by (a) neutral red, and (b) MTT assays. Normal bars: liposomes prepared by the 

conventional method: slashed bars: liposomes prepared by the heating method. Triton X- 
100 (78 ppm) was used as positive control. Results represent means + S. D. of data obtained 

frone at least three independent experiments and the two liposome types differed 
significantly (P<0.001). 
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The effect of the incorporation of plasmid DNA into the anionic liposomes on 

their toxicity towards the HBE cells was also evaluated. For the incorporation of 

DNA molecules into the anionic liposomes calcium ions were employed. Table 3.2. 

shows the cytotoxicity of different concentrations of Ca2+ ions determined by NRU 

and MTT assays. Both assays confirm that 50mM calcium (the amount used in the 

liposome/Ca2'/DNA complex) is well tolerated by the HBE cells. 

Table 3.2. Cell viability (%) of HBE cells in the presence of calcium ions. NRU and MTT 
assays performed in 96-well plates after 24 hr incubation of cells with the indicated amounts 
of calcium. Data are expressed as mean ± S. D. of three or more independent experiments. 

Ca 2+ concentration Percent viability Percent viability 
(mm) NRU assay MITT assay 

5 99.7±3.2 98.7±2.6 

10 97.3 ± 4.4 97.1 ± 2.7 

25 97.2 ± 0.8 94.8±2.4 

50 94.4 ± 2.8 93.3±2.4 

100 89.9 ± 7.1 90.6±8.2 

150 43.2 ± 2.0 56.7±3.9 

200 23.6 ± 2.5 43.2 ± 2.8 

250 21.3±2.1 23.6±2.6 

Results indicated that incorporation of plasmid, by the mediation of Cat+, into 

the two populations of liposomes used in this study did not significantly change their 

cytotoxicity. This was the same for 100nm (Figure 3.9. ) and 400nm (Figure 3.10. ) 

lipid vesicles as confirmed by both NRU (Figure 3.9. a and 3.10. a) and MTT (Figure 

3.9. b and 3.10. b). 
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Figure 3.9. Cytotoxicity of liposome/Ca2 /DNA complexes according to their preparation 

method. Liposomes were prepared by extrusion through 100nm filters. Cell viability was 
determined after 24 hr by (a) neutral red, and (b) MTT assays. Normal bars: liposomes 

prepared by the conventional method; slashed bars: liposomes prepared by the heating 

method. Triton X-100 (78 ppm) was used as positive control. Results represent means + 
S. D. of data obtained from at least three independent experiments and the two liposome 

types differed significantly (P<0.001). 
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Figure 3.10. Cytotoxicity of liposome/Ca2 /DNA complexes according to their preparation 
method. Liposomes were prepared by extrusion through 400nm filters. Cell viability was 

determined after 24 hr by (a) neutral red, and (b) MTT assays. Normal bars: Iiposomes 

prepared by the conventional method; slashed bars: liposomes prepared by the heating 

method. Triton X-100 (78 ppm) was used as positive control. Results represent means + 
S. D. of data obtained from at least three independent experiments and the two liposome 

types differed significantly (P<0.001). 
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3.4. Discussion 

In chapter two of this thesis the characteristics of HM-liposomes in terms of 

their morphology, stability, size distribution and thermal behaviour were presented. 

To further assess the suitability of these liposomes for clinical applications their 

cytotoxicity was evaluated with and without DNA, in comparison with 

conventionally produced liposomes, in the cultured HBE cells. The HBE cell line 

was used as a promising predictive in vitro model of the human airway cells (Forbes 

et al 2003) the importance of which is explained thoroughly in section 3.1.3. 

Due to several reports on the toxicity (Panzner and Jansons 1979; Chawla et 

al 1979; Campbell 1983; Filion and Phillips 1997,1998; Dokka et al 2000; Nagahiro 

et al 2000) and other limitations (Litzinger 1997; Fischer et al 1999; Fahr et al 2002) 

of cationic lipid vesicles, anionic liposomes were utilised in this study. Among the 

limitations in the clinical applications of cationic liposomes are serum instability 

(Litzinger 1997), rapid uptake by phagocytes and unspecific interactions with the 

biological microenvironment (Fischer et al 1999; Fahr et al 2002). Furthermore, it 

has been postulated that negatively charged liposomes, in general, associate more 

effectively and are taken up more readily by the cells compared with neutral 

liposomes (Heath et al 1985; Monkkonen et al 1994) and both neutral and cationic 

liposomes (Katragadda et al 2000). In pulmonary application assays using mouse 

models Dokka and co workers (2000) discovered that while cationic liposomes were 

toxic neutral and negative liposomes did not exhibit lung toxicity. This group 

proposed that reactive oxygen intermediates are responsible for cationic liposome- 

mediated toxicity in the lung. There are other suggested mechanisms for the toxicity 

of cationic lipids/liposomes which have not yet been completely proven. In addition 

to alterations of the net charge of cell membranes, adverse effects on the activity of 

ion channels, membrane receptors and enzymes have been postulated as possible 

mechanisms of cationic lipid toxicity (Feigner et al 1994). 
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The effect of liposomes on the HBE cells was evaluated using two 

cytotoxicity assays instead of just one. This is because certain chemicals have been 

reported to give divergent results in different toxicity tests including the NRU and 

MTT assays (Olivier et al 1995; Chiba et al 1998). Besides, Evans et al (2001) have 

recently found that in some cases one of the NRU or MTT assays can be more 

sensitive in detecting the toxicity of non-viral transfection reagents. Although not 

much difference in the sensitivity of these two assays was observed in this study, 

using two different viability tests bestows the results with more certainty. Both 

cytotoxicity assays showed that HM-liposomes, extruded through 100nm or 400nm 

filters, were completely non-toxic in the HBE cell line. However, liposomes 

prepared by the conventional technique, using chloroform and methanol, decreased 

cell viability by 5-17% (vesicles extruded through 100nm filters) and 4-17% (vesicles 

extruded through 400nm filters). This is despite the fact that not only one but two 

common measures (i. e. N2 flushing and vacuum) were employed to remove the OVIs 

(organic volatile impurities) from the conventional liposomes. In most of the 

liposome manufacture methods, in which volatile organic solvents are used, only one 

of these procedures is carried out to remove the OVIs. 

The chemical composition of the conventional liposomes and HM-liposomes 

in this study is same and the difference between them, apart from the 

presence/absence of the organic solvents, is the employment of glycerol in the 

manufacture of HM-liposomes. Glycerol is a water-soluble and physiologically 

acceptable chemical with the ability to increase the stability of the lipid vesicles 

(Kikuchi et al 1994). On the other hand, chloroform and methanol are well known 

toxic agents (Timbrell 2000; Dwivedi 2002) which exert cytotoxicity through 

different mechanisms including destabilisation of membrane proteins (Ivanov 2001). 

The toxicity observed for the liposomes prepared by the conventional technique is 

possibly caused by the presence of chloroform and/or methanol employed in their 

manufacture. While it is arguable that the OVIs in the liposomal products may 

eventually be brought down to an acceptable level in terms of affecting such 

properties as stability, permeability and toxicity, the situation is less obscure when 

such agents are not present at all. It has been shown that trace amounts of these 
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potentially toxic agents remain in the liposomal formulation, no matter how much 

effort is undertaken to remove them (Deamer & Uster 1983, Cortesi et al 1999). Due 

to this reason, mainly, application of organic solvents such as chloroform, methanol 

or methylene chloride to solubilise and mix lipids is not recommended (US 

regulations allow 50 ppm of chloroform and 500 ppm of methylene chloride in the 

formulation) (Lasic 1998). We propose that as a result of liposome interaction with 

cells, small amounts of the volatile organic solvents, entrapped in the lipid vesicles, 

can be released into the cells and cause cytotoxicity. It is possible that even if these 

liposomes are not taken up by the cells (through endocytosis or fusion) the organic 

solvents present in their structure, and initially those present in their lipid phase, can 

interact with the cells after being released from the liposomes for example by the 

mechanism of lipid exchange (Figure 3.11. ). 
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Figure 3.11. Different modes of liposome interaction with cell through which trace 

amounts of the organic solvents (") present in the lipid and/or aqueous phases of the 
liposome can be released to the cell and cause cytotoxicity. 
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Another finding was that the presence of DNA as a plasmid vector does not 

affect the toxicity of the anionic liposomes although Filion and Phillips (1997) 

reported that incorporation of DNA marginally reduced the toxicity of cationic 

liposomes in their study. It seems that binding a poly-anionic agent (e. g. DNA) to 

cationic vesicles has the potential to reduce the toxicity, possibly by decreasing the 

amount of positive charges on the surface of these vesicles. Since the amount of 

DNA used in the cationic liposome vectors is not to an extent to completely 

neutralise the positive charges, these vectors remain predominantly cationic hence 

potentially toxic. In agreement with this, there are reports of in vitro and in vivo 

toxicity of several cationic liposome-DNA complexes. For instance, some DNA- 

cationic lipid complexes have been found to cause toxicity and cell injury in dog 

airway epithelial cells (Fasbender et al 1995) as well as high level of toxicity towards 

mouse macrophages (Filion and Phillips 1998). In addition Nagahiro and co workers 

(2000) have reported toxicity of DNA-cationic lipid complexes in rat lung in vivo. 

For the two types of liposome/DNA complexes, as found for the unloaded 

liposomes, it seems that the toxicity effects are similar for 100nm and 400nm 

vesicles. This is in accordance with the findings of Panzner and Jansons (1979) who 

observed no differences between the cytotoxicity of unilamellar and multilamellar 

anionic, neutral and cationic vesicles. Our observation that HM-liposomes (with and 

without plasmid) are completely non-toxic towards the cultured HBE cells is 

potentially explained by the fact that no hazardous chemical or process is involved in 

their preparation. Although some groups, including Adams et al (1977) and 

Campbell (1983), detected toxicity for some anionic liposomes (to a lesser degree 

than the cationic vesicles they studied) they overlooked the application of the organic 

solvents in their liposome preparations and ignored the contribution of these solvents 

to the toxicities they observed. This should be noted in the future toxicity 

evaluations of liposomal formulations. 

At this stage it is clear that HM-liposomes possess long-term stability and 

significant advantages over conventional liposomes including absence of the residual 
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organic solvents and detergents and lack of toxicity. As gene transfer vehicles HM- 

liposomes also proved to be non-toxic vectors and further characterisation of the 

HM-liposome/DNA complexes, including their DNA incorporation by the mediation 

of Ca2+ ions and transfection efficiencies, are reported in chapter six. 

3.5. Conclusions 

Results of this study indicate that liposomes prepared by the heating method, 

complexed or not complexed with plasmid DNA, are completely non-toxic to HBE 

cells, while liposomes prepared by the conventional method using volatile organic 

solvents are significantly toxic towards the same cells and hence should be utilised 

with caution. These results were verified by not one but two different cytotoxicity 

assays. The two sizes of vesicles tested exhibited similar toxicity profiles. In general 

terms, the heating method is proposed as a rapid liposome preparation technique, 

with the potential for mass production of non-toxic liposomes to be utilised in gene 

and drug delivery applications. 
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4: ENCAPSULATION OF 5-FLUOROURACIL IN 

HM-LIPOSOMES: CHARACTERISATION 

AND IN VITRO TOXICITY USING 

HUMAN AIRWAY EPITHELIAL CELLS 

4.1. Introduction 

The major aim in drug therapy of tumors is the selective killing of tumor cells 

while avoiding any harm to the normal cells. One potential approach to improve 

therapeutic efficacy in chronic and difficult to treat disorders including cancer is to 

increase the targeted dose by regional therapy (Sharma et al 2001). In addition to 

enhancing the drug exposure to the tumor, the regional chemotherapy approach also 

minimises the systemic side effects of the cytotoxic agents. Regional chemotherapy 

has been used in selected situations for treating colon cancer, carcinomatous 

meningitis, melanoma, superficial bladder cancer and intraperitoneal ovarian cancer 

(Ghussen and Kruger 1989; Markman 1996; Kemeny et al 1999; Markman 1999). 

Using this regional therapy approach, Wattenberg and co workers demonstrated that 

lower doses by nasal aerosol administration of the drug budesonide was as potent as a 

high dose (which was more than four times higher than the low dose) by oral 

administration in preventing pulmonary tumor formation in mice (Wattenberg et al 

1997,2000). 

In the treatment of chronic diseases such as lung tumors, besides local drug 

delivery, repeated dosing (usually at high frequencies) is commonly required. 

However, such dosing is associated with peaks at which the drug could be toxic and 

troughs at which the drug could be ineffective. A sustained release system can 

prolong the release of drugs at the site of action and reduce the fluctuations in drug 

levels, thereby rendering chronically administered drugs more safe, effective, and 

reliable. Colloidal drug delivery systems, such as liposomes and polymeric particles, 
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have been used to sustain drug delivery at various sites in the body including the 

respiratory tract (Lai et al 1993; Suarez et al 2001; Konduri et al 2003). An attractive 

attribute of liposomes for regional cancer therapy applications is that vesicles with a 

mean diameter around 100nm seem to be effective in blood-to-tumor drug transfer 

and possess longer retention times in tumor tissue (reviewed by Nagayasu et al 

1999). These characteristics are due to the tumor vessel leakiness (McDonald and 

Baluk 2002) and do not require employment of any targeting strategy in the structure 

of liposomes. 

The antineoplastic agent 5-fluorouracil (5-FU) was used in this study as a 

water-soluble model anticancer drug. This drug has been employed in the therapy of 

different solid tumors such as breast cancer and cancer of the gastointestinal tract 

(stomach, colon, rectum) for more than four decades. Although 5-FU is one of the 

oldest anticancer drugs, it remains the standard therapy of advanced colorectal cancer 

and is also one of the major drugs in the treatment of head and neck cancer and breast 

cancer (Curreri at al 1985; Chang et al 1989; Dine et al 1999). In addition, this drug 

is under investigation for the chemotherapy of non-small cell lung cancer (Muller 

2002; Focan et al 2003), the leading cause of cancer deaths in human. 

The chemical structure of 5-FU is depicted in Figure 4.1. It is a pyrimidine- 

base analogue that acts as an antimetabolite to block the synthesis of 

deoxythymidylic acid and to disrupt normal RNA function (Heidelberger et al 1957; 

Bosch et al 1958). Its mode of action involves incorporation of the 5-FU anabolite 5- 

fluorouridine-5'-triphosphate into RNA which effects both the processing and 

function of RNA and also interferes with DNA synthesis by inhibition of the enzyme 

thymidylate synthetase via the 5-FU anabolite 5-fluoro-2'-deoxyuridine-5'- 

monophosphate (Heidelberger 1981). It has been suggested that the relative 

contribution of RNA-directed and DNA-directed mechanisms of 5-FU cytotoxicity 

depends on both the concentration of 5-FU and the duration of exposure (van 

Kuilenburg 2004). Sobrero and co workers (1997) have reported that short-term 

exposure to high concentrations of 5-FU induce RNA-directed 5-FU toxicity, 

whereas longer exposures to lower concentrations induce DNA-directed effects. 
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Figure 4.1. Chemical structure of 5-fluorouracil (5-FU). 

Because 5-FU has a short plasma half-life of 10-20min, high doses (e. g. 400- 

600mg/m2 weekly) have to be administered to reach therapeutic drug levels (Peters et 

al 1993; Holland et al 1997). The oral absorption of this drug is incomplete and 

unpredictable and when administered parenterally it manifests a short biological half- 

life due to fast metabolism (Namdeo and Jain 1999). Moreover, the clinical use of 5- 

FU is limited by its toxic effects not only on the tumor but on the healthy tissues as 

well. It has been reported that due to non-specific distribution in tumor and healthy 

tissues 5-FU was responsible for toxic side effects on bone marrow and the 

gastrointestinal tract (Chabner 1982; Hardman and Limbird 1996). Similar toxic 

effects of the drug have been encountered by other groups as well. Fraile et al (1980) 

detected gastrointestinal toxicity (stomatitis) and myelotoxicity while Au and 

Gunnarsson (1989) have reported high levels of 5-FU toxicity in the intestinal 

mucosa. In addition, Tuchman and co workers (1985) have detected a severe 

neurotoxicity reaction in the brain caused by this drug. Therefore it is essential to 

find means for localisation of 5-FU in the required site to enhance bioavailability, 

decrease the required dose and protect healthy tissues from toxic effects. 
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Several efforts have been made to increase the efficacy of 5-FU and reduce its 

side effects by encapsulation in liposomes (Mazumder 1981; Ozer 1992; Elorza et al 

1993; Fresta et al 1993; El Maghraby et a12001; Kaiser et al 2003). However, when 

using conventional liposome preparation methods the trapping efficiency of 5-FU is 

low (Kaiser et al. 2003). This is because 5-FU has low water solubility at neutral pH 

values and does not interact with the lipid bilayers nor adsorb to them (Tsukada et al 

1984; Fresta et al 1993). This effect particularly applies to small liposomes due to 

the small ratio of the internal to external aqueous volume (Kaiser et al 2003). The 

reported 5-FU trapping efficiencies for liposomal carriers is 2-10%, depending on the 

lipid composition (Ozer 1992; Fresta et al 1993; El Maghraby 2001). Kaiser and 

colleagues (2003) reported higher entrapment efficiencies for the drug, in vesicular 

phospholipid gels, but at non-physiological pH (e. g. pH: 8.0 and 8.6). Hence for 

efficient anticancer treatments there is a requirement for carriers which in the first 

place are not toxic themselves and possess high entrapment efficiencies as well as 

appropriate controlled release properties. 

In this chapter, the main in vitro characteristics, i. e. entrapment efficiency, 

release kinetics and cytotoxicity, of 5-FU encapsulated in the conventional liposomes 

as well as the HM-liposomes are presented. For in vitro toxicity evaluations the 

human epithelial cell line, described in chapter 3, was employed as an ideal model for 

pulmonary drug delivery applications. Cell viability was evaluated using two widely 

used cytotoxicity tests namely the neutral red uptake (NRU) and 3-(4,5- 

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. 

4.2. Materials and Methods 

4.2.1. Chemicals 

Dipalmitoylphosphatidylcholine (DPPC), dicetylphosphate (DCP), 

Cholesterol (CHOL), glycerol, Sephadex G-50,0.25% trypsin-EDTA solution, 

neutral red solution (NR, 4-amino-7-dimethylamino-2-methyl phenazine 
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hydrochloride (4.4g/1)), and MTT (4-(4,5-dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide) were purchased from Sigma Chemical Co. (Dorset, 

UK). Minimum essential medium (EAGLE) containing Glutamax-1, fetal calf 

serum, and penicillin/streptomycin (10000 U/mL, 10000 µg/mL) were obtained from 

GibcoBRL® Life Technologies Ltd (Paisley, UK). All solvents (chloroform, 

methanol, Analar grade) were obtained from Sigma Chemical Co. (Dorset, UK). All 

other chemicals were of commercial analytical grade. 

5-fluorouracil [5-fluoropyrimidine-2,4(1H, 3H)-dione] was a product of Sigma 

Chemical Co. (Dorset, UK) with the following characteristics: 

Molecular weight: 

Empirical formula: 

Solubility: 

Melting point: 

pKa: 

130.08 

C4H3FN202 

10mg/ml in H2O 

280-282°C 

8.15,13.0 

Phosphate-buffered saline (PBS) was prepared by dissolving 4.4mM 

NaH2PO4,1.47mM KH2PO4,2.68mM KCI, and 147mM NaCI in 11 distilled water 

and adjusting to pH 7.4. 

4.2.2. Experimental methods 

4.2.2.1. Liposome preparation 

4.2.2.1.1. Preparation of conventional liposomes 

Conventional liposomes were prepared by the thin-film hydration method as 

follows: a chloroform/methanol (2: 1, v/v) solution of DPPC/DCP/CHOL (7: 2: 1 

molar ratio), containing 10mM total lipid, was evaporated to dryness in a round 
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bottomed flask connected to a rotary evaporator (EYELA, New Rotary Vacuum 

Evaporator NE-1, Birmingham, UK), in a water bath at 50°C. To remove traces of 

the solvents the flask was flushed with nitrogen gas for 1 hour and also placed under 

vacuum for a time period of at least 1 hour. The lipid film was then hydrated, above 

the phase transition temperature (Tc) of the lipids at 50°C, with 2ml sterile PBS 

(autoclaved) containing 10-500mM 5-FU and multilamellar vesicles (MLV) formed 

by vortex agitation. The liposome suspension was extruded above TC through two- 

stacked polycarbonate filters of 100nm pore size mounted in an extruder 

(LiposoFastTM-Basic, Glen Creston Ltd, UK) fitted with two 0.1ml glass syringes. 

An odd number of passages (i. e. 11 times) was performed to avoid contamination of 

the sample by large vesicles or aggregates which might not have passed through the 

filter. The liposome suspension was left undisturbed at room temperature under N2 

for at least 30min to equilibrate. 

4.2.2.1.2. Preparation of liposomes by the heating method 

HM-liposomes with the same composition as the conventional liposomes 

were prepared as follows: DPPC, DCP and CHOL were hydrated each in PBS (pH: 

7.4) and then mixed together and heated up to 120°C in the presence of glycerol (3% 

v/v) in a silicone oil bath. Loading of 5-FU into the HM-liposomes was achieved at 

two different temperatures of 120°C and 60°C. For loading at 120°C 5-FU (10- 

500mM in PBS, pH: 7.4) was added to the lipid suspension before the heating step. 

For loading at 60°C the drug (10-500mM in PBS, pH: 7.4) was introduced to the 

lipid suspension when the temperature dropped to 60°C. 

In order to provide a more homogeneous population of liposomes with 

smaller diameters the liposomal suspension was extruded, as described in the 

previous section, through two-stacked polycarbonate filters of l00nm pore size. The 

HM-liposome suspension was left undisturbed at room temperature under N2 for at 

least 30min for equilibration. 
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4.2.2.2. Thin layer chromatography 

The effect of heating on 5-FU was checked by thin layer chromatography 

(TLC) in comparison with un-heated drug as a control. A 20µl sample of 5-FU (5mg 

in 50m1 PBS, pH: 7.4) heated to 120°C in a silicone oil bath and a 20µl sample of 

control unheated 5-FU (5mg dissolved in 50m1 methanol) were spotted on 0.25mm 

layers of silica gel on 20x20cm plates (2.5cm from the lower edge of the plate). The 

samples were run in an eluent of ethyl acetate, methanol and ammonium hydroxide 

(75: 25: 1) (Hawrylshyn et al 1964). The plates were removed from the TLC tanks 

when the solvent ascended to within 3-4cm of the top of the plates. The plates were 

then air-dried for approximately 5min in a fume hood and viewed under shortwave 

ultraviolet light (254nm). The TLC assay was performed in triplicate. 

4.2.2.3. Separation of liposomes from unentrapped drug 

Separation of the unentrapped (free) drug from liposomal 5-FU was 

performed using the mini-column centrifugation method (Fry et al 1978; New 1990; 

El Maghraby et al 2001) as follows. Sephadex G-50 (10g) was swollen in 120m1 

sterile PBS (pH: 7.4) at room temperature for at least 5h and stored at 4°C until use. 

To prepare the mini-columns, Whatman GF/B filter pads were inserted in the bottom 

of the barrels of 2.5m1 disposable plastic syringes which were then filled with the 

hydrated gel. Excess buffer was centrifuged at 3000rpm for 3min using a Labofuge 

400R centrifuge (Heraeus Instruments, Germany) and discarded. Then 500µl of the 

liposome suspension was added drop-wise to the centre of the top of the gel column, 

followed by centrifugation as above. To the mini-column, 625µl PBS (pH: 7.4) was 

added and centrifugation repeated. Liposomes (depending on their type and size) can 

be recovered from the first or the first and second stages of the centrifugation (New 

1990). Both liposome types utilised in the present study required two centrifugation 

stages for complete recovery. This method was able to separate all the free drug as 

evidenced by the absence of any drug in the centrifugate in the initial two stages 

when performing the separation process after application of drug solution (without 
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liposomes). The eluants collected after third to tenth centrifugation rounds were 

pooled together as unentrapped drug sample. A major advantage of this technique is 

that the liposomes can be recovered with no dilution (Fry et al 1978; New 1990; 

Dipali et al 1996), since the excess void fluid has already been drained off in the 

previous spin before sample collection. The recovered liposomes were pooled 

together and applied to fresh mini-columns again, as above, to ensure complete 

removal of free drug. However, no unentrapped drug was detected after this step. 

Absence of 5-FU attached to the outer surface of liposomes was further checked by 

an interaction assay explained below. 

4.2.2.4. Liposome 5-FU interaction assay 

Before evaluation of the liposome interaction with 5-FU the ?. m of 5-FU was 

determined using a double-beam UV/VIS Spectrometer (Perkin Elmer, Lambda 40, 

USA) to be 266nm at three independent measurements. Liposomes were prepared by 

the conventional technique and the heating method as explained in section 4.2.2.1. 

with no drug. To these empty liposomes 400mM 5-FU was added and the mixtures 

were incubated at room temperature under N2 for time periods of 1,2,3 and 4h after 

a brief hand-shaking. At the end of these time periods samples were applied to the 

mini-columns as explained in the previous section. The absorbance of the collected 

drug (eluants of third to tenth centrifugation rounds pooled together) were measured 

at 266nm using a double-beam UV/VIS Spectrometer (Perkin Elmer, Lambda 40, 

USA). A sample of 5-FU (400mM) without the liposomes was employed as control. 

The concentration of 5-FU was calculated from the calibration curves constructed at 

266nm for each assay. An example of such calibration curves are represented in 

Appendix 2. 
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4.2.2.5. Determination of entrapment efficiency 

Entrapment efficiency (EE) of 5-fluorouracil into conventional liposomes and 

HM-liposomes was calculated at the evaluated X, m,, (i. e. 266nm, section 4.2.2.4. ) 

using PBS (pH: 7.4) as blank. The concentration of 5-FU was calculated from the 

calibration curves constructed at 266nm for each assay. EE was calculated as a 

percentage of the initial drug added, after correction for the dilution factor, by using 

the following equation: 

EE (%)= 100x(c;,,; t-cam)/c; n; c 

where cu,;, is the concentration of the initial 5-FU added, and cf is the concentration 

of free (unentrapped) 5-FU. 

4.2.2.6. Release of 5-FU from liposomes 

Release kinetics of the liposomes prepared with 400mM initial concentration 

of 5-FU was investigated in phosphate buffered saline (pH: 7.4) at room temperature. 

Two millilitres of the liposomal suspension was placed in a dialysis tube (Size 10, Inf 

Dia 1 1/4", 31.7mm, Mol. Wt cut-off 12000-14000, Medicell International Ltd, 

London, England) which was closed with plastic clips and suspended in 100ml of 

PBS which was constantly stirred on a magnetic stirrer. At certain time intervals (15, 

30 and 45min; 1,2,3,4,5,6,7,8,10,12 and 14h) 0.5m1 aliquots were withdrawn. 

The release medium was replenished after each sample removal in order to have sink 

conditions. The amount of drug released was measured spectrophotometrically at 

266nm using a double-beam UV/VIS Spectrometer (Perkin Elmer, Lambda 40, USA) 

and PBS as blank. The release assays were performed in triplicate. 
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4.2.2.7. Cells 

Immortal human respiratory epithelial cells (16HBE14o-), kindly donated by 

Dr A. R. Evans (Liverpool John Moores University, England, UK), were grown and 

maintained at standard cell culture conditions as described previously in Chapter 

three (section 3.2.2.4. ). 

4.2.2.8. Toxicity assays 

The cytotoxicity of non-encapsulated (free) 5-FU as well as 5-FU 

encapsulated in the HM-liposomes was evaluated by the NRU and MTT assays as 

explained in Chapter three (section 3.2.2.5. and subsections within). Both non- 

encapsulated and encapsulated drug forms were assessed in the concentration range 

of 10-500mM. 

4.2.2.9. Statistical analysis 

Data are expressed as mean ± standard deviation of the mean from three or 

more experiments. A two way analysis of variance of the data was performed. All 

analyses were carried out using the Minitab statistical package (v 14.1, MINITAB 

Inc. PA, USA). AP value of less than 0.05 was considered to indicate a significant 

difference. 

4.3. Results 

4.3.1. Thin layer chromatography 

The effect of heating (120°C) on the chemical structure of 5-FU was studied 

in comparison with un-heated drug sample using thin-layer chromatography (TLC, 
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Figure 4.2. ). Both samples produced single spots indicating the purity of the 5-FU 

sample utilised in this study as well as stability of the drug under the conditions of 

the preparation of the liposomal formulation. The average R/ values (11=3) for 

unheated and heated 5-FU samples were 0.48 and 0.46 respectively. 

A h 

Figure 4.2. Thin layer chromatography of 5-fluorouracil (5-FU) on silica gel. (a) unheated 
5-FU; and (b) 5-FU heated at 120°C. 

4.3.2. Interaction assay 

To find out the Xmax for 5-FU the absorbance of the drug was scanned at three 

different occasions one of which is indicated in Figure 4.3. It was detected that 5-FU 

has its highest absorbance at the wavelength of 266nm. This wavelength was used 

for quantifications of 5-FU throughout the present study. 
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Figure 4.3. Spectrophotometric spectrum of 5-fluorouracil (0.04 mM) in PBS (pH: 7.4). 

In order to find out if 5-FU interacts with the external surface of the 

liposomes an interaction experiment was carried out, results of which are presented 

in Table 4.1. This table clearly indicates that there is no difference between the 

amount of control sample (i. e. 5-FU without liposomes) recovered after mini-column 

centrifugation compared with 5-FU samples brought into interaction with liposomes 

from one to four hour time periods. Both liposome types (i. e. those prepared by the 

conventional technique and those prepared by the heating method) exhibited same 

results. Hence it seems that 5-FU does not interact with the preformed lipid vesicles. 
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Table 4.1. Evaluation of liposome interaction with 5-FU. Data are expressed as mean ± 
S. D. of three or more experiments. Initial 5-FU concentration in all experiments was 
400mM. 

Sample Incubation Recovered 5-111 
Contents 

No. Period (hour) Conccntraion (mNil 

1 5-FU (control) 0 391 ± 2.5 

2 5-FU + conventional liposomes 1 388 ± 2.1 

3 5-FU + conventional liposomes 2 385 ± 3.1 

4 5-FU + conventional liposomes 3 390 ± 4.4 

5 5-FU + conventional liposomes 4 387 ± 2.6 

6 5-FU + HM-liposomes 1 391 ± 2.6 

7 5-FU + HM-liposomes 2 387 ± 3.2 

8 5-FU + HM-liposornes 3 387 ± 2.6 

9 5-FU + HM-liposomes 4 386 ± 3.5 

4.3.3. Entrapment efficiency 

The entrapment efficiency of liposomes was determined 

spectrophotometrical Iy and calculated from the calibration curves constructed at 

266nm each time separately for each assay. Only curves possessing trend lines with 

R2 higher than 0.99 were utilised in these calculations. Some examples of the 

calibration curves used for 5-FU quantifications are represented in Appendix 2. 

Results of entrapment efficiency assays are given in Table 4.2. It appears that 

liposomes prepared by the heating method (HM-liposomes) have higher entrapment 

efficiencies compared to the conventionally made liposomes at both drug loading 
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temperatures of 60 and 120°C. In addition drug loading at 120°C resulted in higher 

entrapment efficiencies when compared with drug loading at 60°C. 

Table 4.2. Entrapment efficiency of 5-FU in lipo`omes prepared by the conventional 
technique and the heating methd (at 60 or 120°C'). Data are expressed as mean ± S. D. of 
three or more experiments. 

4.3.4. Release of 5-FU from liposomes 

The release behaviour of the 5-FU loaded HM-liposomes is depicted in 

Figure 4.4. a. Almost 47.5% of the drug on average was released within the first 14 

hours. The Higuchi plot (cumulative release vs. square root of time) of the release 

data is approximately linear indicating that 5-FU is entrapped within the liposomes 

(Figure 4.4. h. ). Figure 4.5. a. and 4.5. b. demonstrate the release characteristics and 

the Higuchi plot of the 5-FU loaded conventional liposomes, respectively. Almost 

46.1 % of the drug on average was released within the first 14 hours. 
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Figure 4.4. a) Release characteristics of 5-fluorouracil (400 mM) from the HM-liposomes 
in PBS (pH: 7.4). b) Higuchi plot for 5-FU release from the HM-liposomes. 
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Figure 4.5. a) Release characteristics of 5-fluorouracil (400 mM) from the conventional 
liposomes in PBS (pH: 7.4). b) Higuchi plot for 5-FU release from the conventional 

liposomes. 
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4.3.5. Cytotoxicity 

The cytotoxicity of 5-FU encapsulated in the E-IM-lihosomes and non- 

encapsulated (free) 5-FU was evaluated by two generally used toxicity markers (i. e. 

NRU and MTT). Figure 4.6. demonstrates the cytotoxicity data obtained by the NRI. 

assay and Figure 4.7. demonstrates the cytotoxicity data obtained by the MT'I' assay. 

As expected liposomes decreased the cytotoxicity of 5-FU by preventing its 

immediate contact with the cells. 

Toxicity of encapsulated and free 5FU 
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Figure 4.6. Cytotoxicity evaluation of free and liposome-encapsulated 5-FU in the HBE 
cells using the NRU assay. Data are averages of three or more experiments. 
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Figure 4.7. Cytotoxicity evaluation of free and liposome-encapsulated 5-FU in the EIBE 
cells using the MTT assay. Data are averages of three or more experiments. 

4.4. Discussion 

Behaviour of drugs in vivo can often be modified by coupling them to carrier 

moieties. Plasma clearance kinetics, tissue distribution, metabolism and cellular 

interaction of drugs will be influenced by the behaviour of the carrier systems. In 

some cases manipulation of these pharmacodynamic attributes can lead to a higher 

therapeutic index of the drug. There is now considerable data available on the 

benefits of liposomal encapsulation for a variety of anticancer drugs (Abra et al 2002; 

Cullis 2003). In this study we have utilised negatively charged liposomes as carrier 

systems, since positively charged or neutral liposomes are less efficient for drug 
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delivery as well as having lower in vivo antitumor activity (Straubinger et al 1983; 

Crommelin 1984; Heath et al 1985; Fresta et al 1993). 5-FU was chosen for its 

remarkable antitumor activity and the need to reduce the side effects of this agent. 

The anionic lipid DCP which was used to impart negative charge to the vesicles have 

also been used recently in niosomal 5-FU formulations (Namdeo and Jain 1999) as 

well as niosomal and liposomal rifampicin formulations (Kamath et al 2000) due to 

the above mentioned hurdles of the cationic and neutral vesicles. 

Quantitative measurements of 5-FU were carried out spectrophotometrically. 

There are several different Amyx values mentioned in the literature for 5-FU and there 

was no single consensus Xm,, to be employed in the present work. The Xm. values 

reported in the literature include 254nm (Tsukada et al 1984), 260nm (Sawai et al 

1997,1998), 265nm (Kaiser et al 2003), 266nm (Namdeo and Jain 1999; Denkbas et 

al 1999,2000), 266.2nm (Ciftci et al 1994,1996), 270nm (Dine et al 1999) and 

275nm (House et al 1998). Hence it was decided to determine the ?, max of the drug 

under the experimental conditions of the present study. This was found to be 266nm 

which is in agreement with three previous reports (Namdeo and Jain 1999; Denkbas 

et al 1999,2000) and is very close to the 266.2nm used by Ciftci and co workers 

(1994,1996). 

In order to find out if there is any interaction between 5-FU and preformed 

liposomes and whether the drug will be associated with the surface of the vesicles an 

interaction assay was carried out. The tendency of a drug to interact by various 

means, such as polar and non-polar forces and/or electrostatic interactions with the 

bilayer, determines whether it would be incorporated into the aqueous compartments 

or into the bilayer structures or whether it would be firmly associated with the polar 

head groups of the bilayers via electrostatic interactions (Kulkarni et al 1995). It has 

been reported that 5-FU does not associate with the surface of bilayers (Tsukada et al 

1984; Fresta et al 1993; Namdeo and Jain 1999; Kaiser et al 2003). This was also 

confirmed by the results of the interaction assay (see section 4.3.2. ). Consequently 5- 

FU will mostly be entrapped within the aqueous compartments and this depends on 

the encapsulated volume and the solubility of the drug. 
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The liposomes prepared by both the conventional technique and the heating 

method were in the form of large unilamellar vesicles (LUV) which have a large 

internal aqueous volume surrounded by one lipid bilayer. LUV liposomes are 

suitable for incorporation of drugs such as 5-FU which can mainly be entrapped 

within their aqueous phase. For incorporation of materials to liposomes, in general, 

the material should either be water soluble (for incorporation into the liposomal 

aqueous spaces) or lipid soluble (for incorporation into liposomal lipid regions). In 

conventional liposome preparation methods practically there are no means of 

increasing the solubility of the drug material except employing high or low pH which 

will decrease the stability of the vesicles and render the final formulation not suitable 

for clinical use. In the heating method, however, heating serves, in addition to 

sterilisation of the formulation, to increase the solubility and entrapment within 

liposomes of the drugs with low/limited solubilities. 

Liposomes prepared by the heating method exhibited much higher 5-FU 

entrapment efficiencies (up to almost two-fold) than the vesicles made by the 

conventional technique. The difference may presumably be due to the higher 

temperatures employed in the heating method which will increase the solubility of 5- 

FU in the aqueous medium. Preparation of the conventional liposomes and drug 

incorporation into them was carried out at 50°C which resulted in a 5-FU entrapment 

efficiency of 19.7%. Drug loading to the HM-liposomes was performed at two 

temperatures of 60°C and 120°C and resulted in 5-FU entrapment efficiencies of 

29.2% and 38.4% respectively. It is evident that employing higher temperatures 

results in higher 5-FU entrapment efficiencies. Results of the TLC assays confirmed 

the heat stability of 5-FU at the above-mentioned temperatures in agreement with the 

recent findings of Kaiser and co-workers (2003). 

The reported liposomal 5-FU entrapment efficiencies are 2-6% (Ozer 1992), 

up to 10% (Fresta et al 1993; El Maghraby et al 2001), 18.5% (Kaiser et al 2003) and 

21% (Tsukada et al 1984). Namdeo and Jain (1999) have reported up to 22.7% 5-FU 

encapsulation efficiencies in 12 different niosomal formulations. All these values are 
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less than the encapsulation efficiencies obtained for the HM-liposomes in the present 

study. In a recent work, Kaiser and colleagues (2003) have reported up to 39.6% 5- 

FU entrapment efficiency in vesicular phospholipid gels (i. e. concentrated liposomes) 

which was achieved at pH: 8.6. However, at pH: 8.0 the 5-FU entrapment efficiency 

of their formulation was 33.3% and at pH: 7.4 it was only 18.5%. Hence at 

physiological pH values, HM-liposomes are superior to the vesicles reported in the 

literature in terms of 5-FU entrapment efficiency. The interesting finding is that, 

even at 60°C, high drug entrapment efficiency was obtained for the HM-liposomes in 

comparison with the works of other groups. This is very promising in entrapment of 

drugs which are sensitive to higher temperatures to the HM-liposomes. 

The release of 5-FU was sustained following encapsulation in HM-liposomes 

and after 14 hours the vesicles showed release of 47.5% at pH: 7.4 (Figure 4.4. ). 

Efflux of 5-FU from HM-liposomes was biphasic, with an initial faster release for 2- 

3 hours, followed by a period of slow release. This biphasic release pattern of water 

soluble drugs seems to be a characteristic of bilayered vesicles and have been 

reported for liposomes (Betageri and Parsons 1992) as well as niosomes (Baillie et al 

1985; Namdeo and Jain 1999). The initial faster release of 5-FU could be partially 

due to the release of the drug present in the lipid phase of the vesicles. Tsukada and 

co-workers (1984) have reported that up to about 15% of the liposome-entrapped 5- 

FU could be encapsulated in the membrane matrix. Indeed results of the present 

work show that approximately 14.3% (Figure 4.4. ) of the drug was released in the 

first hour. In general the release of 5-FU, at pH: 7.4, could be described as matrix- 

controlled diffusion with kinetics of up to 8 hours according to the square-root of 

time law (Higuchi 1960). 

The sustained release characteristics of the HM-liposomes and absence of any 
burst effect indicate that the anionic HM-liposome formulation used in this study is 

stable. The high level of stability could be due to the presence of cholesterol in the 

structure of the HM-liposomes. This is in accordance with the microscopic studies 

which revealed that HM-liposomes are able to retain their structural stabilities for at 

least 8 months (see Chapter 2 of this thesis, also Mozafari et a! 2002c). 
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The cytotoxicity of 5-FU encapsulated in the HM-liposomes and non- 

encapsulated (free) 5-FU was evaluated in the HBE cells by two generally used 

toxicity markers - namely NRU and MTT (Mozafari et a! 2003). Two toxicity assays 

rather than one were used to increase the validity of the data. Both toxicity tests 

revealed a dose-dependent cytotoxicity for free and encapsulated 5-FU (Figures 4.7. 

and 4.8. ). This verifies the fact that 5-FU is a potent cytotoxic agent. HM-liposomes 

decreased the cytotoxicity of 5-FU by reducing the release of drug when they come 

into contact with the cells, as was also reported for a liposomal paclitaxel formulation 

(Crosasso et al 2000). Arndt and colleagues (2001) have also observed a decrease in 

pulmonary toxicity of bleomycin when encapsulated in liposomes in vivo. The 

decrease in the cytotoxicity of 5-FU when entrapped into HM-liposomes is in 

accordance with the results of the release experiments in that HM-liposomes were 

successful in sustaining the release of the drug and also indicates their stability in the 

cultured cell medium for a 24 hour period. In chapter three of this thesis it was found 

that HM-liposomes were completely non-toxic towards the same cell line used in this 

chapter. Consequently the dose-dependent cytotoxicity observed for the HM- 

liposome encapsulated 5-FU formulation can be said to be caused by the drug only. 

It can be perceived from the cytotoxicity results that the HM-liposomes are able to 

deliver drugs to cells in an efficient and controlled fashion. 

Once an appropriate targeting ligand is employed in the structure of the HM- 

liposomes they can deliver their therapeutic load to the target cell/tissue while 

avoiding release (and damage) to other cells/tissues. HM-liposomes are still 

applicable without employing any targeting strategy for local drug administrations - 

e. g. to the lungs in the treatment of small cell lung cancer (Moreira et at 2001) and 

non-small cell lung cancer which is the leading cause of cancer deaths in humans 

(Muller 2002; Focan et at 2003). Local administration of liposome encapsulated 

drug formulations have many advantages including reducing the required drug doses, 

less frequent dosing intervals (e. g. when compared with un-encapsulated 5-FU 

therapy), sustained release and increasing the bioavailability of the therapeutic 

agents. 
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4.5. Conclusions 

A liposomal 5-FU formulation is introduced in this chapter which possesses 

high drug entrapment efficiency and sustained release properties. Results also 

indicated the stability of the drug loaded HM-liposomes in buffer at pH: 7.4 as well 

as when in contact with cultured cells. The formulation was detected to be able to 

release the anticancer drug to the cultured human lung epithelial cells in a controlled 

manner efficiently. This formulation has the potential to improve the 

pharmacological and pharmacokinetic profiles of antineoplastic agents, particularly 
in the lung. 
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5: HM-LIPOSOMES AS GLUTATHIONE 

DELIVERY SYSTEMS 

5.1. Introduction 

Glutathione (GSH) is among the most important low-molecular weight 

compounds functioning in cells to protect against chemically induced toxicity. It is 

the most abundant non-protein thiol in living organisms and plays a crucial role in 

intracellular protection against radiation and toxic compounds, such as heavy metals. 

GSH also provides protection against reactive oxygen species and other free radicals 

(Sies and Wendel 1978; Suntres 2002). Glutathione is involved in protein and 

nucleic acid synthesis, DNA repair, protection of enzymes, immune function, cellular 

differentiation and aging. It is a tripeptide composed of glutamate, cysteine and 

glycine in which the y-carboxyl of glutamate is linked to the a-amino group of 

cysteine (Figure 5.1. ). This substitution of the a-amino group of cysteine decreases 

the reactivity of the thiol group while the iso-peptide linkage renders the compound 

resistant to proteases and peptidases. Thus, GSH turnover can be controlled 

separately from protein metabolism, and the reactivity of the relatively stable thiol of 

GSH can be controlled by enzymes (Jones et al 1995). 
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HO-C C CH2CH2- 

HN H0 II 
HSCI C-C 

NH 
O 1 II 
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Figure 5.1. Chemical structure of glutathione (GSH). 
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GSH reacts non-enzymatically with reactive electrophilic compounds and 

also directly reduces some biomolecules (such as dehydroascorbate). Such reactions 

may be of great importance in extracellular compartments even if GSH-dependent 

enzymes are not present. Intracellularly, most GSH-dependent reactions are enzyme 

catalysed. GSH is used for rather specific detoxification reactions, such as 

formaldehyde removal by the formaldehyde dehydrogenase system (Koivusalo et al 

1989) and also for removal of classes of compounds such as organic peroxides and 

electrophiles by enzymes with rather broad substrate specificities (DeLeve and 

Kaplowitz 1991). Each of these systems is ultimately dependent upon the 

concentration of GSH. The factors that affect this concentration, such as availability 

of amino acid precursors, activity of the rate-limiting enzyme for synthesis (y- 

glutamylcysteine synthetase), rate of NADPH supply for glutathione disulfide 

(GSSG) reduction, and rates of removal of GSH from the cell, can determine the rate 

of detoxication of many reactive chemicals. A typical example of enzymatic 

detoxication reactions is the removal of hydrogen peroxide (H202) by the enzyme 

glutathione peroxidase (GSH-Px) while catalysing oxidation of GSH to GSSG 

(Figure 5.2. ), providing the major line of defence against endogenous peroxides 

(Vani and Rawal 1996; Hurst et al 2001). 

GSH-Px 
2 GSH + H202 GSSG +2 H2O 

Figure 5.2. Involvement of GSH (reduced form of glutathione) in the breakdown of 
hydrogen peroxides (H202) by the enzymatic action of glutathione peroxidase (GSH-Px). 

GSSG is the oxidised form of glutathione. 

Studies have suggested that GSH serves additional antioxidant functions by 

reducing oxidised forms of ascorbate (semidehydroascorbate and dehydroascorbate) 
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back to the reduced and functional form (Brown 1994; Brown and Jones 1995). 

Because ascorbate reduces the ct-chromanoxyl radical (1-e oxidised form of a- 

tocopherol) back to a-tocopherol, GSH functions to maintain tissue concentrations of 

the free radical scavengers, ascorbate and a-tocopherol (Buettner 1993). 

A large number of xenobiotics either generate reactive oxygen species or are 

activated to electrophiles that can deplete cellular GSH, inactivate cell proteins 

and/or introduce mutations into DNA (Dahm and Jones 1995). In principle, 

simultaneous exposure to combinations of such chemicals can result in more severe 

GSH depletion than would occur from a single exposure and thus render tissues more 

likely to achieve a concentration of GSH which is insufficient to protect against 

injury (Jones et al 1995). Nagai and co-workers (2002) have suggested that GSH 

depletion by some toxic agents is responsible for apoptosis and cell susceptibility to 

tumor necrosis factor-induced cell death. Deficiency in endogenous glutathione has 

been reported for premature babies and patients with cystic fibrosis (Wagner and 

Gardner 1997; Hudson 2001) as well as idiopathic pulmonary fibrosis patients 

(Borok et al 1991). 

Attempts to utilise the protective or therapeutic potential of glutathione have 

been hindered by its short circulating half-life (1.5h, Wendel and Cikryt 1980) and its 

inability to cross cell membranes (Puri and Meister 1983). Exogenously supplied 

glutathione is hydrolysed rapidly in the kidneys into its constituent amino acids 

which are then redistributed and resynthesised to the tripeptide in the liver (Hahn et 

al 1978; Griffith and Meister 1979). Thus, in order for glutathione to retain its 

efficacy at a specific target site, the rapid hydrolysis must be prevented or at least 

delayed. Liposome encapsulation may provide a means of achieving this and, 

indeed, had been shown to significantly improve the hepatoprotective effect of 

intravenously administered glutathione against acetaminophen-induced liver toxicity 

(Wendel and Jaeschke 1982). 

Liposomes have also been employed for GSH delivery to the lungs (Jurima- 

Romet et al 1990; Jurima-Romet and Shek 1991; Jurima-Romet et al 1992; Suntres 
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and Shek 1994,1995,1996; Suntres 2002) because lung tissues are highly 

susceptible to toxic, oxidative environmental insults (Bend et at 1985; Menzel and 

Amdur 1986). Since pulmonary glutathione serves as an endogenous protective 

agent against lung injury (Boyd et at 1982), its augmentation by exogenously 

administered glutathione may provide additional protection. Inhaled or directly 

applied GSH is rapidly cleared from the lungs. However, incorporation of GSH in a 

carrier system, such as liposome, offers a method of protection for GSH and 

prolonging its levels in the lungs (Kellaway and Farr 1990). Furthermore, it is 

known that liposomes aid in the transfer of macromolecules, normally impermeable 

to cell membranes, to the cell interior (Jurima-Romet et at 1990; Suntres and Shek 

1995,1996). While in vitro and in vivo studies on liposomal delivery of glutathione 

have a history of more than two decades (e. g. see Wendel et at 1982) there is no 

liposomal glutathione formulation approved for human use on the market yet. The 

main reasons for this include concerns for the safety of the liposomal formulations 

for human use, relative high cost of preparation of these formulations and low drug 

entrapment efficiencies. Therefore, it is vital to develop and evaluate liposomal 

delivery systems that are suitable for pulmonary administration of glutathione to 

patients with low pulmonary glutathione levels. 

A major advantage of liposomes for pulmonary applications is that their main 

constituents, i. e. phospholipids, are endogenous to the lung (Baxter et al 1969). 

Hence liposomes composed of naturally occuring phospholipids at an appropriate 

dose, should not pose a toxicological risk to the lungs. However, application of 

potentially toxic chemicals, including volatile organic solvents or some of the 

cationic lipids, in the preparation of liposomes, will affect their safety and stability 

and hence pose hazards in their clinical utilisations. Also employment of procedures, 

such as sonication or high shear-force homogenisation, which can harm the structure 

of the drug to be incorporated to the liposomes, are among the draw-backs to be 

taken into account when formulating liposomal drug delivery systems as explained in 

chapter 2 of this thesis. In order to overcome the above-mentioned disadvantages a 

liposomal GSH formulation was developed without using any harmful chemical or 

process, by the heating method (HM). DPPC was used as the main ingredient of the 
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liposomes since it is the major phospholipid component of the lung (Frosolono et al 

1970; Jurima-Romet and Shek 1991). The physicochemical characteristics of this 

new formulation are presented in this chapter. 

5.2. Materials and Methods 

5.2.1. Chemicals 

Dipalmitoylphosphatidylcholine (DPPC), dicetylphosphate (DCP), 

Cholesterol (CHOL), EDTA (ethylenediaminetetraacetic acid), DTNB [5', 5'- 

dithiobis-(2-nitorbenzoic acid)], and glycerol were purchased from Sigma Chemical 

Co. (Dorset, UK). Tri-sodium citrate was purchased from BDH (VWR International, 

Lutterworth, Leicester, UK). All solvents (chloroform, methanol, Analar grade) were 

obtained from Sigma Chemical Co. (Dorset, UK). All other chemicals were of 

commercial analytical grade. 

Glutathione (GSH) tripeptide (y-Glu-Cys-Gly) was a product of Sigma 

Chemical Co. (Dorset, UK) with the following characteristics: 

Molecular weight: 307.3 

Empirical formula: CjoH17N306S 

Solubility: 0.1 M in H2O 

Melting point: 192-195°C 

Phosphate-buffered saline (PBS) was prepared by dissolving 4.4mM 

NaH2PO4,1.47mM KH2PO4,2.68mM KCI, and 147mM NaCl in 11 distilled water 

and adjusted to pH 7.4. 
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5.2.2. Experimental methods 

5.2.2.1. Liposome preparation 

5.2.2.1.1. Preparation of conventional liposomes 

Liposomes were prepared by the conventional thin-film hydration method as 

follows: a chloroform/methanol (2: 1, v/v) solution of DPPC/DCP/CHOL (7: 2: 1 

molar ratio), containing 10mM total lipid, was prepared. The lipid solution was 

evaporated to dryness in a round bottomed flask employing a rotary evaporator 

(EYELA, New Rotary Vacuum Evaporator NE-1, Birmingham, UK) and a water bath 

adjusted at 50°C. To remove traces of the solvents the flask was flushed with 

nitrogen gas for 1 hour and also placed under vacuum for a time period of at least 1 

hour. The lipid film was then hydrated, above the phase transition temperature (Ta) 

of the lipids (i. e. at 50°C), with 2ml PBS containing 400mM GSH and multilamellar 

vesicles (MLV) formed by vortex agitation. The liposome suspension was extruded 

11 times through two-stacked polycarbonate filters of 100nm pore size mounted in an 

extruder (LiposoFastTM-Basic, Glen Creston Ltd, UK) fitted with two 0. lml glass 

syringes above T, The liposomal GSH suspension was left undisturbed at room 

temperature under N2 for at least 30min to equilibrate. 

5.2.2.1.2. Preparation of liposomes by the heating method 

HM-liposomes with the same composition as the conventional liposomes 

were prepared as follows: DPPC, DCP and CHOL were hydrated each in PBS (pH: 

7.4), under N2 atmosphere to prevent oxidation of the lipids, and then mixed together 

and heated up to 120°C in the presence of glycerol (3% v/v) in a silicone oil bath. 

Loading of GSH (400mM) into the HM-liposomes was achieved by adding it to the 

lipid suspension before the heating step. 
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In order to provide a more homogeneous population of liposomes with 

smaller diameters the liposomal suspension was extruded, as described in the 

previous section, through two-stacked polycarbonate filters of 100nm pore size. The 

HM-liposome-GSH suspension was left undisturbed at room temperature under N2 

for at least 30min for equilibration. 

5.2.2.2. Thin layer chromatography 

The effect of heating on GSH was checked by thin layer chromatography 

(TLC) in comparison with control un-heated GSH. A 20µ1 sample of GSH (5mg in 

50ml PBS, pH: 7.4) heated to 120°C in a silicone oil bath and a 20µ1 sample of 

control unheated GSH (5mg dissolved in 50m1 PBS) were spotted on 0.25mm layers 

of silica gel on 20x20cm plates (2.5cm from the lower edge of the plate). The 

samples were run in an eluent of butyl alcohol, acetic acid and distilled water 

(80: 20: 20). The plates were removed from the TLC tanks when the solvent ascended 

to within 3-4cm of the top of the plates. The plates were then air-dried for 15min in a 

fume hood and developed with iodine vapour in an iodine tank for 5-10min. 

5.2.2.3. Separation of liposomes from unentrapped GSH 

Separation of unentrapped (free) GSH from liposomal GSH was carried out in 

a manner similar to the procedure reported in the literature for separation of GSH 

from 400nm filtered LUV liposomes (Jurima-Romet et al 1990; Jurima-Romet and 

Shek 1991; Jurima-Romet et al 1992; Suntres and Shek 1994). For this, liposomes 

were washed twice in PBS buffer (pH: 7.4) and ultra-centrifuged at 110x103 g for 1 

hour at 4°C using a BECKMAN L-80 refrigerated ultracentrifuge (Beckman 

Instruments, Palo Alto, CA, USA). 
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5.2.2.4. GSH determination 

GSH was measured with 5', 5'-dithiobis-(2-nitrobenzoic acid) (DTNB or 

Ellman's reagent) as described by Beutler and co workers (1963). This is a simple 

spectrophotometric assay in which DTNB gives a coloured product (measured at 

412nm) when bound to non-protein sulphydryls (Figure 5.3. ). 

RSH + NO2 
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NO2 
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Figure 5.3. The principle reactions involved in the spectrophotometric determination of 
glutathione (GSH). 
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For quantification of GSH, 0.5 ml samples of GSH separated from the 

liposomes (see section 5.2.2.3. ) were mixed each with a solution of DTNB (0.5 ml of 

0.04% (w/v) DTNB in 1% (w/v) trisodium citrate). After 5 minutes the absorbance 

of the mixture was measured at 412nm using a double-beam UV/VIS Spectrometer 

(Perkin Elmer, Lambda 40, USA). GSH amounts were calculated by reference to 

calibration curves constructed for each assay separately. Appendix 3. represents one 

of such calibration curves. 

5.2.2.5. Liposome GSH interaction assay 

Liposomes were prepared by the conventional technique and the heating 

method as explained in section 5.2.2.1. but with no GSH. To these empty liposomes 

400mM GSH was added and the mixtures were incubated at room temperature under 

N2 for time periods of 1,2,3 and 4h after a brief hand-shaking. At the end of these 

time periods samples were centrifuged as explained in section 5.2.2.3. The 

absorbance of the collected GSH in the supernatants were measured as explained in 

the previous section. A sample of GSH (400mM) without the liposomes was 

employed as control. 

5.2.2.6. Determination of entrapment efficiency 

Entrapment efficiency (EE) of GSH in the conventional liposomes and HM- 

liposomes was determined spectrophotometrically as explained in section 5.2.2.4. 

The concentration of GSH was calculated from the calibration curves constructed for 

each assay. EE was calculated as a percentage of the initial drug added, after 

correction for the dilution factor, by using the following equation: 

EE (%) = 100 x (cmit - cam) / Cmit 
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where c;,,; t is the concentration of the initial GSH added, and cf is the concentration 

of free (unentrapped) GSH. 

5.2.2.7. Release of GSH from liposomes 

Release kinetics of the liposomes prepared with 400mM initial concentration 

of GSH was investigated in phosphate buffered saline at pH value of 7.4 at room 

temperature. Two millilitres of the liposomal suspension was placed in a dialysis 

tube (Size 10, Inf Dia 1 1/4", 31.7mm, Mol. Wt cut-off 12000-14000, Medicell 

International Ltd, London, England) which was closed with plastic clips and 

suspended in 100ml of PBS which was constantly stirred on a magnetic stirrer. At 

certain time intervals (15,30 and 45min; 1,2,3,4,5,6,7,8,10,12 and 14h) 0.5m1 

aliquots were withdrawn. The release medium was replenished after each sample 

removal in order to have sink conditions. The amount of drug released was measured 

spectrophotometrically at 412nm, as explained in section 5.2.2.4., using a double- 

beam UV/VIS Spectrometer (Perkin Elmer, Lambda 40, USA). 

5.3. Results 

5.3.1. Thin layer chromatography 

The effect of heating (120°C) on the chemical structure of GSH was studied 

in comparison with un-heated GSH sample using thin-layer chromatography (TLC, 

Figure 5.4. ). Both samples produced single spots indicating the purity of the GSH 

sample utilised in this study as well as stability of the drug under the conditions of 

the preparation of the liposomal formulation. The average Rf values (n=4) for 

unheated and heated GSH samples were 0.39 and 0.40 respectively. 
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a b 

Figure 5.4. Thin layer chromatography of unheated (a) and heated (h) glutathionc (GSH). 

5.3.2. Interaction assay 

In order to find out if GSH interacts with the external surface of the 

liposomes an interaction experiment was carried out, results of' which are presented 

in Table 5.1. This table clearly indicates that there is no difference between the 

amount of control sample (i. e. GSH without liposomes) recovered after 

centrifugation compared with GSH samples brought into interaction with liposomes 

from one to four hour time periods. Both liposome types (i. e. those prepared by the 

conventional technique and those prepared by the heating method) exhibited the 

same results. Hence it seems that GSH does not interact with the preformed lipid 

vesicles. 
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Table 5.1. Evaluation of liposome interaction with GSI1. Data are expressed as mean +: 
S. D. of three or more experiments. Initial GSH concentration in all experiments was 
400mM. 

Sample Contents Incubation Recovered GS11 

No. Period (hour) ('oncentraion (m 1) 

1 GSH (control) 0 393 ± 3.3 

2 GSH + conventional liposomes 1 392 ± 2.6 

3 GSH + conventional liposomes 2 388 ± 3.3 

4 GSH + conventional liposomes 3 389 ± 2.7 

5 GSH + conventional liposomes 4 389 ± 3.6 

6 GSH + HM-liposomes 1 394 ± 3.4 

7 GSH + HM-liposomes 2 390 ± 3.7 

8 GSH + HM-liposomes 3 389 ± 2.1 

9 GSH + HM-liposomes 4 391 ± 3.1 

5.3.3. Entrapment efficiency 

The entrapment efficiency of liposonles was determined 

spectrophotometrically and calculated from the calibration curves constructed at 

412nm each time separately for each assay. Only curves possessing trend lines with 

R2 higher than 0.99 were utilised in these calculations. Some examples of the 

calibration curves used for GSH quantifications are represented in Appendix 3. 

Results of entrapment efficiency assays are given in Table 5.2. It appears that 

liposomes prepared by the heating method (HM-liposonles) have slightly, but not 
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significantly, less GSH entrapment efficiencies compared to the conventimially made 

liposomes. 

Table 5.2. Entrapment efficiency of GSH in liposomes prepared by the conventional 
technique and the heating method. Data are expressed as mean ± S. D. of three or more 

experiments. 

5.3.4. Release of GSH from liposomes 

The release behaviour of the GSH loaded HM-liposomes is depicted in Figure 

5.5. a. Almost 34.7% of the drug on average was released within the first 14 hours. 

The Higuchi plot (cumulative release vs. square root of time) of the release data is 

shown in Figure 5.5. b. Figure 5.6. a and b demonstrate the release characteristics and 

the Higuchi plot of the GSH loaded conventional liposomes respectively. Almost 

31.1 % of the drug on average was released within the first 14 hours. 

It is evident that both types of liposome have similar release characteristics. 

The Higuchi plots of the release data for both liposome types are approximately 

linear indicating that GSH is entrapped within the liposornes. 
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Figure 5.5. a) Release characteristics of GSH (400 mM) from the HM-Iiposomes in PBS 
(pH: 7.4). b) Higuchi plot for GSH release from the HM-Iiposomes. 
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Figure 5.6. a) Release characteristics of GSH (400 mM) from the conventional liposomes 
in PBS (pH: 7.4). b) Higuchi plot for GSH release from the conventional liposomes. 
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5.4. Discussion 

Glutathione is one of the most important water-soluble antioxidants that 

protects cells fom oxidative stress, and its depletion causes apoptosis, induced by 

various agents (Beaver and Waring 1995; Ochiai et al 2004). The failure of 

glutathione, and some other agents with antioxidant activity, to seriously modify 

certain toxicities in humans and animals has been attributed mostly to their inability 

to cross cell membrane barriers and/or to their rapid clearance from cells (Suntres 

2002). Liposomes are able to facilitate intracellular delivery and prolong the 

retention time of entrapped agents inside body organs and cells (Allen 1998; Langer 

and Kral 1999). Liposome-encapsulated glutathione is a useful therapeutic agent for 

protecting the lung against certain types of chemical and oxidative toxicity. Studies 

have demonstrated that liposome entrapment of superoxide dismutase and catalase 

protected animals against pulmonary toxicity induced by hyperoxia (Turrens et al 

1984; Padmanbhan et al 1985). Delivery of liposome-encapsulated glutathione to the 

lung likewise has been reported to augment the cellular antioxidant defence 

mechanisms and provide enhanced protection against free radical-mediated oxidative 

injury. In a series of works in rodents, Suntres and colleagues (Suntres and Shek 

1994,1995,1996; Suntres 2002) have demonstrated that liposome-associated 

antioxidants, including GSH, can protect the lung against an oxidant challenge and 

the extent of protection appears to be related to the characteristics of the antioxidant 

formulation. 

In this chapter a new liposomal glutathione formulation is introduced which is 

manufactured by a new method, without employing any harmful chemical or 

procedure. The physicochemical characteristics of liposomes prepared by this 

heating method are presented in chapter 2. Using a human lung epithelial cell line 

and two cytotoxicity markers it has been detected that HM-liposomes are completely 

non-toxic while conventional liposomes exhibited some degree of toxicity (chapter 

3). Preparation of HM-liposomes involves heating the ingredients in order to 

dissolve the lipid molecules in the absence of the volatile organic solvents. Because 

of the presence of cholesterol in the liposomal formulation the temperature needed to 
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be as high as 120°C in order to solubilise cholesterol. This temperature did not harm 

the chemical structure of GSH as indicated by the TLC assay. The stability of GSH 

at elevated temperatures has also been confirmed by Jurima-Romet and co workers 

(1992) by determining that no loss of sulfhydryl group reactivity occurred during 

heating of GSH solution at 100°C for 1 hour. This is expected due to the high 

melting temperature of GSH which is above 190°C. Entrapment of drugs, that are 

sensitive to high temperatures, into liposomes prepared by the heating method can be 

achieved by adding the drug to the reaction medium when the temperature has 

decreased to 60°C or 70°C for example. Indeed, in the previous chapter it was shown 

that entrapment of 5-fluorouracil to HM-liposomes was achieved, with high 

efficiencies, both at 60°C and 120°C. 

Cholesterol was used in our formulation to modulate the fluidity and release 

characteristics of the liposomes and increase their stabilities. In the design of 

liposomes for drug delivery, to increase drug retention, the rigidity of the liposome 

bilayer membrane can be increased by using lipids containing longer, more saturated 

fatty-acid chains with a higher phase transition temperature (Tc). This becomes more 

important when encapsulating relatively small drugs such as glutathione. Cholesterol 

can either decrease or increase the permeability of a lipid membrane, depending on 

the Tc of the lipid and also the environmental temperature. When lipid bilayers are 

in the liquid-crystalline (fluid) state, permeability is decreased by cholesterol as the 

fatty-acid chains undergo tighter packing (Chapman and Penkett 1966). Membranes 

in their gel-state (i. e. below Tc) are fluidised by cholesterol, which increases the 

distance between the lipid polar head groups, thereby allowing greater mobility of the 

fatty-acid chains. The main ingredient of the liposomes prepared in this study is 

DPPC which is a natural lung surfactant. Also it has been shown that DPPC 

liposomes are a better choice for encapsulation and release of relatively small, water- 

soluble compounds including GSH (Jurima-Romet et al 1992). The phase transition 

temperature of DPPC is 41°C and hence under the conditions of experiments and 

storage at or below room temperature, or even at normal body temperature, DPPC 

vesicles are in a gel state. Without cholesterol, these structures will be rigid and as a 

result lacking the required fluidity characteristics for efficient drug release and 
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interaction with cells. Consequently there was a need for employment of cholesterol 

in the liposomal formulation of the present study. 

For the determination of GSH there are several procedures (e. g. see Griffith 

1980; Anderson 1985; Farris and Reed 1987) in addition to commercially available 

kits such as Calbiochem®'s Glutathione Assay Kit (Calbiochem-Novabiochem Ltd, 

Nottingham, UK). This kit was used for GSH quantification at the initial stages of 

the present work. However, due to some problems such as obtaining non- 

reproducible and unusual results (i. e. higher amount of GSH was being quantified at 

the end of the assay compared to the initial amount of GSH used), application of this 

kit was abandoned. A spectrophotometric assay, developed by Beutler and co 

workers (1963), was utilised later on for GSH quantification. This assay which was 

found to be simple and reproducible has also been used by other groups for 

glutathione determination (Chamberlain 1998; Chamberlain et al 1998). 

Results of the interaction assay indicated that GSH does not bind to 

liposomes externally. Consequently, the entrapment efficiency values obtained are 

for the GSH entrapped inside the aqueous phase of the lipid vesicles. Both 

conventional liposomes and HM-liposomes exhibited higher GSH entrapment 

efficiencies compared with the values reported in the literature. The reported 

liposomal GSH entrapment efficiencies are up to 21.0% (Jurima-Romet and Shek 

1991) and 10.3-21.0% (Jurima-Romet et at 1992). These values are less than the 

encapsulation efficiencies obtained for the liposomes in the present study (i. e. 33.8% 

for HM-liposomes and 36.4% for conventional liposomes). A reason for high GSH 

entrapment efficiencies obtained for both liposomes in the present study, regardless 

of their preparation techniques, might be the composition and the ratio of the lipids 

used in their manufacture. Employing a lipid with high Tc (i. e. DPPC) as the main 

constituent of the liposomes (with 70% molar ratio) and cholesterol (with 10% molar 

ratio) as a membrane stabiliser seems to be a good proportion of the correct lipids for 

stable and efficient entrapment of GSH. Furthermore, presence of the negatively 

charged lipid DCP (with 20% molar ratio) prevents the aggregation and 

sedimentation of the liposomes by providing electrostatic repulsion between the 

144 



vesicles. In addition, liposomes prepared in the present study both by the 

conventional technique and heating method are in the form of large unilamellar 

vesicles (LUV) which are suitable for high entrapment of water-soluble agents, as 

discussed in chapter 4. 

The importance of the effect of liposomal chemical composition on drug 

entrapment efficiency can be illustrated by findings of Jurima-Romet and colleagues 

(1992). This group have found that liposomes prepared from DMPC (dimyristoyl 

phosphatidylcholine) have a GSH entrapment efficiency of only about 3%. However, 

when they incorporated cholesterol at 30 mol% to these liposomes, entrapment 

efficiency of GSH increased to about 16% (i. e. more than five fold). Furthermore, 

Vyas and co-workers (2004) have recently reported that among four different 

phosphatidylcholine-based liposomes employed in their study, the formulation 

containing cholesterol and DCP had the highest entrapment efficiency for the drug 

rifampicin. These and similar studies clearly indicate the importance of liposomal 

chemical structure in different characteristics of the vesicles including stability and 

drug incorporation efficiency. The liposome composition selected in the present 

study was based, in addition to the fact that DPPC (the main ingredient of the HM- 

liposomes) is a natural lung component, on the previous data published in the 

literature (Papahadjopoulos et al 1977; Jurima-Romet et al 1992; Kahveci et al 1994; 

Borucu et al 1995; Zareie et al 1996a; Mozafari 1996; Filion and Phillips 1997; 

Zareie et al 1997; Mozafari and Hasirci 1998; Mozafari et al 1998a; Mozafari et al 

1998b; Banerjee and Bellare 2001). 

The release of GSH was sustained upon encapsulation in conventional 

liposomes and HM-liposomes and after 14 hours vesicles prepared by the 

conventional technique and heating method showed release of 31.1% (Figure 5.5. ) 

and 34.7% (Figure 5.6. ) respectively. The release of GSH from liposomes is very 

similar to the release observed for 5-FU (chapter 4). Efflux of GSH from HM- 

liposomes was biphasic, with an initial faster release for 2-3 hours, followed by a 

period of slow release. This biphasic release pattern of water soluble drugs seems to 

be a characteristic of bilayered vesicles and have been reported for liposomes 
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(Betageri and Parsons 1992) as well as niosomes (Baillie et al 1985; Namdeo and 

Jain 1999). In general the release of GSH could be described as matrix-controlled 

diffusion with kinetics of up to 8 hours according to the square-root of time law 

(Higuchi 1960). 

5.5. Conclusions 

Overall, the results of this investigation suggest that HM-liposomes may be of 

potential benefit for pulmonary delivery of GSH by prolonging retention of the 

encapsulated agent in the lung and facilitating its intracellular delivery. HM- 

liposomes were found out to be superior to previous liposomal GSH formulations in 

respect to drug entrapment efficiency. It is conceivable that HM-liposome 

encapsulation may enhance the therapeutic efficacy of pulmonary drugs by producing 

a local pharmacologic response within the target organ and minimising 

extrapulmonary adverse effects. 
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6: CONSTRUCTION OF A GENE DELIVERY 

VECTOR USING HM-LIPOSOMES AND 

TRANSFECTION OF HUMAN RESPIRATORY 

EPITHELIAL CELLS 

6.1. Introduction 

6.1.1. Nucleic acids as therapeutics 

Inadequacy of conventional dosage forms in the treatment of existing health 

problems and the new challenges including AIDS and severe acute respiratory 

syndrome (SARS) makes the requirement for efficient formulations a matter of 

urgency. A new class of bioactive therapeutic agents are based on nucleic acid 

molecules. These nucleic acid drugs have the potential to offer healing of human 

(and animal) diseases at their cause rather than merely treating their symptoms. 

Based on their target site and mechanism of action, nucleic acid drugs can be 

subdivided into five classes: i) aptamers, ii) antigene compounds, iii) catalytic or 

ribozyme nucleic acids, iv) antisense compounds, and v) functional genes (Table 

6.1. ), explained in the following paragraphs. 

i') Aptamers (from the latin aptus: to fit) are single-stranded or double- 

stranded nucleic acids which are capable of binding proteins or other small molecules 

(Ellington and Szostak 1990; Ess et al 1994). In another words aptamers are double- 

stranded DNA or single-stranded RNA molecules that bind specific molecular targets 

(Bock et al 1992). Aptamers, as therapeutic agents, would most likely bind proteins 

involved in the regulation and expression of genes (i. e. transcription factors). They 

have potential application in neoplastic and viral diseases. An aptamer approach to 

prevent HIV-1 replication by sequestering the tat protein of the virus has been 
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reported by Sullenger and co-workers (1990). Recently RNA aptamers have been 

used successfully to enhance tumor immunity in mice (Sandra-Marotta ct al 2003). 

Table 6.1. Nucleic acid drug classification (partially adapted from Stull and Sioka 1995). 

Nucleic Drug 
Target Mechanism Site of Action 

Acid Type 

DNA/ 
Aptamer Protein 

RNA 

DNA/ 
Antigene Duplex DNA 

RNA 

Ribozyme 

(Catalytic) 

Antisense 

Functional Chromosome 

Gene (ds* DNA) 

mRNA RNA 

DNA/ 
mRNA 

RNA 

*ds DNA: double stranded DNA 

DNA 

binding: interferes with intra- and/or 

biological function cxtracellular 

triplex formation: 
nucleus blocks transcription 

hybrid assembly: 
nucleus and/or 

cleavage and 
cytoplasm 

destruction of target 

hybrid assembly: 
nucleus and/or 

translation arrest and/or 
cytoplasm RNase H activation 

repair of a defective 

gene or replacing a nucleus 

missing one 

JC!; ` ! ý"Oý- 'ES'^dlýýFfýSITY 

ri- 

TITHO""A N STR2ET 
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it) Nucleic acids targeted to genomic DNA are called antigene nucleic acids 

(Helene and Toulme 1990; Orson et al 1991; Torigoe et a! 2003). Antigene nucleic 

acids are designed to bind to single-stranded or double-stranded DNA and thereby 

interfere with replication or transcription. McShan and co-workers (1992) reported 

HIV-1 inhibition by two different triplex forming (antigene) oligonucleotides. In 

addition there are several reports of inhibition of cancer cell proliferation by antigene 

compounds (for a review see Stull and Szoka 1995). 

iii) Ribozymes are RNA molecules which catalytically cleave covalent bonds 

in a target RNA (Chang et al 1990; Cech 1992). They possess an enzymatic, self- 

cleaving activity and catalytically cleave phosphodiester bonds in the target RNA 

strand. Other groups define ribozymes as a class of RNA molecules that can perform 

phosphodiester cleavage of nucleic acids in the absence of protein (Symons 1992). 

They can hybridise to and cleave target RNA molecules independent of cellular 

enzymes. These site-specific RNase properties of ribozymes have been applied to the 

treatment of HIV infection and cancer (Sarver et al 1990; Poeschla et al 1994). 

Ribozymes targeted in vivo for therapeutic applications are chemically synthesised or 

can be transcribed from a DNA template. Since the catalytic RNA is not consumed 

during the cleavage reaction, a large number of substrate molecules can be processed. 

These ribozymes have a turnover greater than one and are not modified during the 

reaction (Symons 1992). Several groups have shown that ribozymes are able to 

suppress foci formation, tumor cell growth and the tumorigenicity of the cells when 

injected into mice (Koizumi et al 1992,1993; Kashani-Sabet et al 1994). 

iv) Another group of nucleic acid drugs are antisense compounds (Uhlmann 

and Peyman 1990; Akhtar et al 1991). These nucleic acids have the ability to inhibit 

individual gene expression in the potential treatment of cancer and viral diseases 

(Wickstrom 1991). Antisense drugs utilise the ability of single-stranded 

oligonucleotides to hybridise with the target sequence in mRNA. In principle, this 

provides selective drug action only on the target, if the oligodeoxynucleotide (ODN) 

consists of about 15 or more nucleotides (Jaaskelainen and Urtti 2002). 

Hybridisation results in the arrest of translation due to steric blocking or by 
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recruitment of the enzyme RNase H to the binding site. Currently, a number of 

clinical trials are ongoing for treatment of various diseases (e. g. Crohn's disease, non- 

Hodgkin's lymphoma, HIV and cytomegalovirus infections) with antisense ODN's 

and the FDA has approved Vitravene (fomivirsen sodium) for the treatment of 

cytomegalovirus retinitis in AIDS patients (Jaaskelainen and Urtti 2002). Single 

stranded oligodeoxynucleotides are sensitive to extracellular and intracellular 

nucleases and rapid degradation in vivo restricts their use in most cases. Their 

stability can be increased by some modifications such as replacement of one of the 

non-bridging oxygen atoms in the phosphate with sulphur which leads to 

phosphorothioate oligonucleotides. Phosphorothioates (PS) shown in Figure 6.1. are 

one of the oligonucleotide chemical analogues now being studied most actively for 

use as therapeutic agents (Woodle and Leserman 1998). Other chemical analogues 

include phosphorodithioates (PDS) and methylphosphonates (MP) both shown in 

Figure 6.1. as well. 
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Figure 6.1. The chemical structure of common chemical analogues of 
oligodeoxynucleotides with each of the four common bases found in the DNA (From: 

Woodle and Leserman 1998). 
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v) Treatment of human genetic disorders requires intact functional genes to 

repair the defective genes in situ or to be added elsewhere in the genome (Hug and 

sleight 1991). Major causes of death and disease today are of genetic origin or have 

major genetic components. More than 4900 genetic disorders of man result from a 

defect in a single gene (McKusick 1990), and many more are probably caused by 

multiple defects (Hug and Sleight 1991). Gene replacement therapy can be used to 

overcome diseases such as cystic fibrosis (CF), al-antitrypsin deficiency, 

Huntington's disease, severe combined immunodeficiency (SCID), sickle cell disease, 

severe thalasemias, Gaucher's disease, and Lesch-Nyhan syndrome (Thompson and 

Thompson 1986; Hug and Sleight 1991; Cheng and Scheule 1998; Davies et al 

2001). 

In addition to the above-mentioned nucleic acids another class of 

polynucleotide therapeutic agents is DNA vaccines which, for instance, can be in the 

form of antigen-encoding plasmid DNA (Greogoriadis et al 1997; Perrie et al 2002) 

or synthetic oligodeoxynucleotides containing immunostimulatory sequences (Joseph 

et a! 2002). 

Two major obstacles to the creation of effective nucleic acid drugs are their 

relatively high molecular weight (>3300 dalton) and their sensitivity to degradation. 

These obstacles have created a significant delivery problem which needs to be solved 

if nucleic acid drugs are to become effective therapeutics (Stull and Szoka 1995). 

6.1.2. Nucleic acid transfer methods 

In general, a polynucleotide can not be inserted into a person's cell in vivo. It 

must be delivered to the cell using a carrier known as a 'vector. There are currently 

several methods of DNA/RNA transfer under investigation which utilise physical, 

chemical, colloidal or biological means for nucleic acid transfer. In the case of gene 

therapy one approach is to introduce genes into the somatic cells of subjects to 

correct inherited or acquired diseases through synthesis of a missing or defective 
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gene product. Several criteria must be met to provide effective gene therapy. The 

defective gene must be identified and its contribution to the pathophysiology of the 

disorder characterised. An animal model of the disease should be available and 

measurable parameters for an adequate therapeutic effect defined. The gene must 

also be delivered to either the ' affected tissue or provide a systemic effect from 

another tissue to alleviate the disease. Finally, the process of gene transfer or 

subsequent expression of the introduced gene should cause no adverse effects and 

ideally should be regulatable. 

A variety of techniques have been used to introduce polynucleotides into cells 

both in vitro and in vivo. Generally nucleic acid transfer techniques are classified in 

two main groups: viral and non-viral vectors. Viral vectors include adenovirus (the 

most widely used viral vector), adeno-associated virus (AAV), retrovirus and sendai 

virus (Davies et al 2001). Viral vectors, in general, are believed to provoke 

mutagenesis and carcinogenesis (Bhattacharya and Huang 1998; Liu and Huang 

2002). Zuckermann et al (1999), for instance, observed influenza-like symptoms and 

a cell-mediated immune response against the adenovirus vector administered into 

lung segments of cystic fibrosis subjects. In addition some (if not all) viral vectors 

(e. g. AAV) have another drawback which is their small size (Davies et al 2001). 

This makes insertion of large pieces of DNA, such as the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene, problematic. 

Non-viral vectors include calcium phosphate precipitation (Graham and Van 

der Erb 1973; Chen and Okayama 1987), microinjection (Anderson et al 1980), 

electroporation (Neumann et at 1982; Potter et al 1984), DEAE-dextran (Sussman 

and Milman 1984), particle bombardment by microprojectiles (Klein et al 1987), 

polymers such as branched (Boussif et at 1995; Fischer et al 1999) and linear 

(Chemin et al 1998) polyethylenimine (PEI), microspheres (Capan et al 1999) and 

liposomes (Hoffman et al 1978; Turner et al 2002) which are discussed in the next 

section. 
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6.1.2.1. Liposomes as polynucleotide carriers 

In a paper published in 1978 Hoffman and colleagues showed that liposomes 

made of the zwitterionic lipid egg lecithin can efficiently incorporate DNA molecules 

(Hoffman et al 1978). Since then the number of works using liposomes as a gene 

transfer method has been increasing extensively. At present liposomes are accepted 

as one of the main standard gene transfer vectors and many companies compare the 

efficiency of their new gene delivery products with that of liposomes. Among the 

polynucleotide transfer methods liposomes are one of the most attractive vectors due 

to their biocompatibility, non-immunogenicity (unless needed to be immunogenic), 

ease of preparation, capability to accommodate large pieces of nucleic acids, 

targetability and ability to mediate cytoplasmic/nucleus delivery (e. g. see Tanner et al 

1997; Bhattacharya and Huang 1998; Barron et al 1999; Bailey and Sullivan 2000; 

Oku et al 2001; Hofland et al 2002; Piperno-Neumann et al 2003 and references 

therein). Furthermore, unlike some other polynucleotide transfer methods (e. g. 

microprojectiles), their administration to the body is mild and non-invasive. 

On some occasions it is required to complex DNA molecules with proteins or 

polycations to enhance the transfection efficiency. Importantly, the use of liposomes 

affords the flexibility to undertake these approaches, whereas some other 

polynucleotide delivery methods (e. g. calcium phosphate and polycations) do not 

(Fraley et al 1980). Liposomes are also being considered for delivery of nucleic acids 

to the human airways. Successful formulations of dry liposome-DNA powder 

aerosols as well as nebulised cationic liposome-DNA complexes have been reported 

(Schreier 1998). In aerosol formulations liposomes are not only required for 

protecting the polynucleotides from enzymatic degradation and targeting them to the 

site of action, they are also needed to protect the fragile polynucleotide structures 

from shearing caused by the aerosolisation process. Eastman et al (1997) found that 

naked DNA was rapidly degraded when aerosolised while coating with lipids 

effectively protected DNA from shearing. 
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The majority of liposomes employed in nucleic acid delivery are cationic in 

nature and have been used for delivery of different polynucleotides, including 

plasmid DNA and antisense nucleotides, into various cells (Feigner et al 1987; 

Feigner and Ringold 1989; Gao and Huang 1991; Farhood et al 1992; Farhood 1995; 

Takeuchi et al 1996; Lesage et al 2002). However, the net positive charge of these 

vectors promotes unspecific interactions with the biological milieu, opsonisation, 

destabilisation and rapid uptake by phagocytes (Fahr et al 2002). A further drawback 

of cationic liposomes is their toxicity (Panzner and Jansons 1979; Chawla et al 1979; 

Campbell 1983; Filion and Phillips 1997,1998; Dokka et al 2000; Nagahiro et al 

2000; Tousignant et al 2000) which, along with the other limitations, leads to low 

transfection efficiencies. Neutral liposomes also suffer from insufficient transfection 

efficiencies mainly due to low DNA/RNA entrapment, especially in small vesicles. 

Bailey and Sullivan (2000) have recently reported high plasmid trapping efficiencies 

(up to %80.0) for neutral liposomes of 200nm average size, however, their 

methodology is very lengthy (more than 24h) and involves application of ethanol, 

which is a cytotoxic agent (Triglia et al 1991a, 1991b), for plasmid entrapment to the 

liposomes. 

Hence, the only possible liposome type which remains to be considered for 

polynucleotide delivery is the anionic type, unless the above-mentioned problems 

with the cationic and neutral vesicles could be rectified. Initially there seems to be 

two main problems with considering anionic vesicles as a vector: 

i) cellular uptake of anionic entities is generally believed to be low (if not 
impossible), 

ii) incorporation of negatively charged nucleic acids to similarly charged 

vesicles seems to be infeasible. 

Perhaps due to these reasons the interest in employing anionic lipids/liposomes in 

nucleic acid delivery has been very low compared to cationic ones. However, works 

of some groups have been encouraging for the reconsideration of anionic liposomes. 

Regarding cell uptake of these liposomes, results obtained by different groups 

including Heath et al (1985), Monkkonen et al (1994) and Katragadda and co 

154 



workers (2000) indicated that anionic liposomes associate more effectively and are 

taken up more readily by the cells compared with neutral and even cationic 

liposomes. 

In respect of the incorporation of nucleic acids into anionic liposomes one 

possible solution came from the works of Zhdanov and colleagues (Kahveci et at 

1994; Zhdanov et at 1994), showing that it is possible to incorporate polynucleotides 

to anionic (and zwitterionic) vesicles by the mediation of divalent metal cations such 

as Mg2+ and Cat+. The idea, which probably stemmed from earlier works such as a 

study of DNA interaction with mitochondrial and model membranes in the presence 

of divalent cations (Bichenkov et at 1978), was successively utilised in the 

formulation and construction of anionic liposomal vectors (Mozafari 1996; Zareie et 

at 1997; Mozafari and Hasirci 1998; Mozafari et at 1998a, 1998b, 2001,2002a, 

2002b, 2002c). The polynucleotide carrier formulation is composed of triple 

complex of liposome-Ca2+-DNA (or other nucleic acids), as shown in Figure 6.2. 

One of the advantages of this liposomal vector is the mild approach used in 

the incorporation of DNA molecules into the liposomes, in contrast to harsh methods 

of DNA incorporation into liposomes, such as sonication, reported in the literature 

(Fraley et al 1980). Evidence for the presence of DNA and other polynucleotides in 

these anionic complexes came from studies using different techniques including 

spectrofluorimetry, turbidity measurements, light scattering and direct visualisation 

by fluorescence microscopy and scanning tunnelling microscopy (Mozafari 1996; 

Zareie et al 1997; Mozafari and Hasirci 1998; Mozafari et al 1998a, 1998b). Based 

on these investigations a mechanism for polynucleotide interaction with anionic and 

zwitterionic lipid vesicles was proposed (Mozafari and Hasirci 1998). These 

formulations have subsequently been adopted and/or adapted by other research 

groups employing neutral (Kharakoz et al 1999; Bailey and Sullivan 2000) and 

anionic (Fillion et al 2001) vesicles. 
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Figure 6.2. Enlargement of a section of the bilayer of a liposome-Ca2 -DNA complex to 

show a possible mechanism of phospholipid (PL) association with DNA by the mediation of 
Ca2+ ions. The lipid vesicle may or may not contain cholesterol (CHOL). 

A concern in the clinical application of the above-mentioned triple complex 

vectors was the involvement of volatile organic solvents, such as chloroform or 

methanol, in their preparation. In this study similar complexes were prepared by the 

heating method (HM) introduced in chapter two of this thesis thus avoiding any 

harmful chemical or methodology. The physical features of the ternary complex of 

HM-liposome-Ca2+-DNA were investigated using atomic force microscopy, 
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transmission electron microscopy, light scattering, electrophoresis and an ethidium 

bromide intercalation assay. The transfection efficiency of the ternary complex was 

assessed using a human bronchial epithelial cell line (16HBE14o-) in the presence of 

serum (10%). This cell-line was chosen as a pertinent model of pulmonary gene 

therapy challenges such as CF and al-antitrypsin deficiency, two common single- 

gene disorders whose genetic basis is known and for which current treatments are 

unsuccessful. 

6.2. Materials and Methods 

6.2.1. Chemicals 

Dipalmitoylphosphatidylcholine (DPPC), dicetylphosphate (DCP), 

Cholesterol (CHOL), glycerol, ethidium bromide, EDTA (ethylenediaminetetraacetic 

acid), agarose and 0.25% trypsin-EDTA solution were purchased from Sigma 

Chemical Co. (Dorset, UK). Minimum essential medium (EAGLE) containing 

Glutamax-1, fetal calf serum, and penicillin/streptomycin (10000 U/mL, 10000 

pg/mL) were obtained from GibcoBRL® Life Technologies Ltd (Paisley, UK). DNA 

ladder marker (1kb) was obtained from Promega (Madison, USA). DOTAP (N-[1- 

(2,3-dioleoyloxy)propylj-N, N, N-trimethylammonium methylsulphate) was purchased 

from Roche Diagnostics Ltd (Southampton, UK) at a concentration of 1 mg/ml and 

used as supplied. Deoxyribonuclease I (DNase I) was obtained from Invitrogen 

(Groningen, Netherlands). All solvents (chloroform, methanol, Analar grade) were 

obtained from Sigma Chemical Co. (Dorset, UK). All other chemicals were of 

commercial analytical grade. 

Phosphate-buffered saline (PBS) was prepared as explained in section 2.2.1 

and adjusted to pH 7.4. 
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6.2.2. Experimental methods 

6.2.2.1. Liposome preparation 

Anionic liposomes were prepared by the heating method as explained in 

section 2.2.2.1. Sizing of the liposomes was performed by using polycarbonate 

filters of 100nm or 400nm pore size. For gene transfer and other experiments the 

final concentration of liposomes was adjusted to provide the liposome/DNA ratios of 

the complexes as explained in each relevant section. In all other cases the liposomal 

samples were prepared containing 10mM total lipid. 

6.2.2.2. Plasmid DNA 

The plasmid pcDNA3.1/His B/lacZ (8578 nucleotides) (Invitrogen, 

Groningen, Netherlands), containing ß-glactosidase reporter gene, grown in 

competent Escherichia coli DH5ct cells, prepared by alkaline lysis, and purified by 

CsCI-EtBr density gradient ultracentrifugation (Sambrook et al 1989) was kindly 

provided by Dr A. R. Evans (Liverpool John Moores University, England, UK). The 

purity of plasmid preparations was determined by agarose gel electrophoresis and 

optical density (the OD260/280 ratio was between 1.8 and 1.9). Concentrations of the 

plasmid samples were measured by UV absorption at 260nm, by multiplying the 

sample's absorbance by a factor of 50 (Muller et al 1993). The plasmid samples were 

stored at -20°C until use. 

6.2.2.3. Incorporation of DNA to liposomes 

The ternary complexes of HM-liposome-Ca2+-DNA (vesicles of which were 

prepared by the heating method) were constructed by introducing plasmid DNA and 

then calcium (50mM CaC12) to the liposomal suspensions followed by incubation of 

the mixture for 30min under N2 at room temperature. For gene transfer studies 
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complexes were made containing liposome/DNA ratios of 4: 1,5: 1,6: 1,7: 1 and 8: 1 

(lipid: DNA, w/w). For other assays, complexes were composed of liposome/DNA 

ratio of 7: 1. Separation of free DNA was carried out by centrifugation twice at 

100x103 g for 30min at 4°C. DNA concentration was measured 

spectrophotometrically, by multiplying the absorbance at 260nm as explained in the 

previous section. Quantification of plasmid DNA was also performed by agarose gel 

electrophoresis as outlined below. 

6.2.2.4. Agarose gel electrophoresis 

Agarose gels were made of 0.8% (w/v) molecular biology grade agarose in 

TAE buffer (40mM Tris-acetate, 1mM EDTA, pH: 7.7). Samples for electrophoresis 

(20gl) were first mixed with 5µi loading buffer (0.01% (w/v) bromophenol blue, 

20% (v/v) glycerol in distilled water) before loading onto the gels. For comparison, 

1kb (kilo base) DNA ladder of molecular weight markers was also loaded on the 

gels. Electrophoresis was carried out at 70 volts for 2.5 hours using TAE as a 

running buffer. The DNA bands in the gel were stained with ethidium bromide 

(0.5pg/ml) in water for 20 minutes and then destained in water for 30 minutes to 

remove excess ethidium bromide from the gel. DNA bands were visualised using 

UV light on a transilluminator, and the gels photographed with a Kodak DC 120 

camera and photo system (Kodak digital sciences, New York, USA). The amount of 

DNA was analysed using the electrophoresis documentation and analysis system 

fitted with 1D Image Analysis Software (Kodak digital sciences, New York, USA) 

based on the calibration made utilising known amounts of DNA. 

6.2.2.5. Light scattering 

The mean particle size and polydispersity index of the HM-liposomes alone, 

HM-liposome-Ca2+-DNA complexes and HM-liposome-Ca2+ (control), were 

determined by dynamic light scattering as explained in section 2.2.2.4. Calcium 
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concentration in the ternary complexes as well as the HM-liposome-Ca2+ samples 

was 50mM. The light scattering measurements were performed at least in triplicate. 

6.2.2.6. Ethidium bromide intercalation assay 

The accessibility of ethidium bromide (EtBr) to the DNA or DNA associated 

with the HM-liposomes was monitored at room temperature in a Perkin Elmer 

Luminescence Spectrometer (LS 50B, UK). The fluorescence was read at excitation 

and emission wavelengths of 500 and 610nm respectively, using 2.5mm excitation 

and 5.0mm emission slits. The sample chamber was equipped with a magnetic 

stirring device. The value of fluorescence obtained upon addition of 5 tg/ml DNA 

and 0.2 tg/ml EtBr simultaneously was set as 100%. The difference between the 

fluorescence intensity reading at each stage and that of EtBr-DNA was designated 

AF. I. Each AF. I. value was determined as follows: 

AF. I. =100-[(Fa)100)/FED] 

where Fa is the fluorescence intensity reading at each stage and FED is the 

fluorescence intensity of EtBr-DNA complex. The Fa and FED are average values 

from three or more experiments. The pattern of the ethidium bromide assay, by 

adding the reagents in different orders, is presented in Table 6.2. 
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Table 6.2. Experimental plan of the ethidium bromide intercalation assay. 

Assay Material added at 

No. 0 sec. 280 sec. 420 sec. 520 sec. 760 sec. 

1 EtBr + DNA 
_ 

Ca2t 

2 EtBr + DNA 
_ 

Mg2+ 

3 EtBr + DNA LUV* + Ca2+ 
_ 

MLV** 
_ 

4 EtBr + DNA LUV 
_ 

Ca2+ MLV 

5 EtBr + DNA Ca2+ 
_ 

LUV MLV 

6 EtBr + DNA LUV 
_ 

e. 

Ca2+ LUV 

7 EtBr + DNA Ca`, MLV 

8 LUV-Ca2+-DNA _ 
EtBr 

9 LUV-Ca2+-DNA _ 
EtBr + MLV 

10 LUV-Ca2+-DNA EtBr 
_ 

DNA 
_ 

* LUV: large unilamellar vesicle. 
** MLV: multilamellar vesicle. 

6.2.2.7. DNase I protection assay 

The procedure used for assessing the resistance of the ternary complexes to 

nuclease degradation was similar to the method of Faneca et al (2002) using 

electrophoresis and spectrofluorimetry. Complexes were submitted to DNase I 

action (5 units DNase Uµg of DNA) at 37°C for 30 min, followed by inactivation of 

the enzyme with 0.5M EDTA (1 µl/unit of DNase 1). The liposomal complexes were 

precipitated by centrifugation (100x103 g, 30min) and the pellets were resuspended 
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in PBS. After addition of 61.22mM EDTA the samples were incubated at room 

temperature for 30min in order to release the liposome-associated DNA molecules. 

Another round of centrifugation was carried out as above and samples from the 

supernatant were applied to the electrophoresis gels as explained in the previous 

section. Samples of plasmid DNA without liposomes and Ca2' were also subjected 

to DNase I treatment under similar experimental conditions (control). 

For spectrofluorimetric measurements, following treatment of the complexes 

with DNase I, the same experimental procedures as described for the EtBr 

intercalation assay (section 6.2.2.6. ) were carried out. The extent of DNA 

degradation was determined according to the following equation: 

DNA degradation (%) = (F1- Fa) / (Fl® - Fo) x 100 (Faneca et a12002) 

where F; is the fluorescence value emitted by EtBr in the presence of the complexes 

treated with the inactive enzyme (Dnase I inactivated by chelation with 0.5M EDTA 

as explained above), F. is the fluorescence value emitted by EtBr in the presence of 

the complexes treated with the active enzyme, Fjoo is the fluorescence value emitted 

by EtBr in the presence of 5 tg/ml DNA and FO is the residual fluorescence of EtBr 

(i. e. fluorescence intensity of 0.2pg/ml EtBr). 

6.2.2.8. Transmission Electron Microscopy 

The triple complex of HM-liposome-Ca2+-DNA was studied under 

transmission electron microscope (TEM) as explained in section 2.2.2.7. 

6.2.2.9. Scanning tunnelling microscopy 

For visualisation with scanning tunnelling microscopy (STM) a 200 

suspension of HM-liposome-Ca2+-DNA complex was deposited on highly oriented 
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pyrolytic graphite (HOPG). The sample was then dried at room temperature under 

atmospheric pressure in a clean room with a relatively slow drying rate. The STM 

was operated in air as outlined in section 2.2.2.8. The diameter of liposomes was 

determined by a Digimatic caliper (Mitutoyo Ltd. England) using the dimensions of 

the STM images. 

6.2.2.10. Atomic force microscopy 

In addition to STM another scanning probe microscope, that is atomic force 

microscopy (AFM), was used to study the ultrastructures of the liposomal vectors. 

Visualisations were performed using an atomic force microscope model NanoScope 

lila (Digital Instruments Inc., Santa Barbara, California, USA) connected to an 

Optizoom microscope (0.8 X-2.0 X). The images were transferred to a computer via 

a camera (Sony CCD, Japan). The HM-liposome-Ca2+-DNA samples were deposited 

on stainless steel discs and dried in air after absorbing excess solution using a filter 

paper. The AFM was operated in the tapping mode at room temperature using 

standard silicone nitride probes of 120µm lengths with a spring constant of 0.38 N/m. 

Data were analysed using NanoScope IIIa analysis software (Version 4.23r3, Digital 

Instruments Inc., USA). 

6.2.2.11. Cells 

Immortal human respiratory epithelial cells (16HBE14o-), kindly donated by 

Dr A. R. Evans (Liverpool John Moores University, England, UK), were grown and 

maintained as described previously in Chapter three (section 3.2.2.4. ). 
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6.2.2.12. Gene transfer 

For gene transfer experiments HBE cells (approximately 50,000 cells/ml) 

were grown in 24-well plates to almost 50% confluence. The medium was removed 

from each well and 500µl of the control reagents or liposomal vectors in complete 

medium (cMEM) was added per well. Cells in each well were transfected with 

different lipid/DNA ratios of 4: 1,5: 1,6: 1,7: 1 and 8: 1 (w/w). The liposomal vectors 

were prepared as explained in sections 6.2.2.1. and 6.2.2.3. Free DNA and DOTAP 

(with a 6: 1 w/w ratio of DOTAP: DNA) were used as control. A constant amount of 

plasmid DNA (i. e. 1.25µg) was used in a total volume of 500µl/well. The cells were 

incubated with the transfection reagents for 24 hours at 37°C, 5% CO2 and 95% 

humidity, after which the transfection medium was removed and replaced with 

cMEM (1ml/well). The cells were incubated for another 24 hours to allow time for 

the expression of the transgene product before analysis (i. e. 48 hours post- 

transfection). 

6.2.2.13. (3-galactosidase assay 

After the transfection period the medium was removed and the wells were 

washed twice with PBS (lml/well). To each well 125µl of low detergent lysis buffer 

(0.05% v/v Triton X-100,2mM EDTA, 50mM HEPES, 2mM DTT, pH: 7.5) was 

added. The 24-well plate was frozen to -80°C for 1 hour following by rapid thawing 

in a water bath at 37°C. This freeze-thaw cycle was performed twice before analysis 

of the cell extracts. Three aliquots (20µl each) from each well of the 24-well plate 

were transferred to wells of a 96-well plate which was used for ß-galactosidase 

analysis, whilst 40µ1 from each well of the 24-well plate was kept aside for 

quantification of cellular protein. 

For quantification of the (3-galactosidase activity in each 200 aliquot of cell 

extract, an equal volume of 2x ß-galactosidase assay buffer (200mM sodium 

phosphate buffer with pH: 7.3,100mM (3-mercaptoethanol, 2mM MgC12,4mg/ml 
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ONPG) was added. The samples were incubated at 37°C for 2 hours, during which 

time the ß-galactosidase enzyme present in the samples hydrolyse the ONPG 

substrate to o-nitrophenol, which has a yellow colour. This reaction was terminated 

by the addition of 40gl sodium carbonate (1M) and the absorbance was determined at 

414nm on a spectrophotometric 96-well plate reader (BioRad Microplate Reader 

Benchmark). The (3-galactosidase was quantified on each occasion, by reference to 

standard curve of purified enzyme (0-160 mU) diluted in low detergent lysis buffer. 

The level of (3-galactosidase in each sample needed to be related to the size of 

cell population that expressed the enzyme and so was normalysed to the cellular 

protein content in each sample. For this, l00µ1 of ice-cold 10% (w/v) trichloroacetic 

acid was added to each of the 40µ1 samples, which were assigned for the protein 

assay, and the protein content of each sample was precipitated on ice for 10 minute. 

The precipitated protein was pelleted by centrifugation (13000 rpm, 10 minutes). 

The supernatant, which included the lysis buffer, was removed and the protein pellet 

was resuspended in 400 NaOH (1M). The protein samples were heated to 60°C in a 

water bath for 1.5 hour and vortexed regularly to ensure complete solubilisation. 

Protein was quantified using the BioRad DC Protein Assay (Bio-Rad Laboratories, 

CA, USA) according to the manufacturers instructions. Protein concentration was 

established by reference to standard curve of bovine serum albumin (BSA, 0-lmg) in 

NaOH (1M). 

6.3. Results 

6.3.1. Plasmid DNA analysis 

The qualitative (i. e. purity, presence/absence of proteins/RNA) and 

quantitative (concentration) analysis of the plasmid DNA samples used in this study 

were determined spectrophotometrically as well as by gel electrophoresis. The 

absorption spectrum of the plasmid samples was established between 200 and 
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340nm. A typical example of this scan is demonstrated in Figure 6.3. The purity eºt 

the plasmid samples was determined by taking the ratio between the optical densities 

at 260 and 280nm. The plasmid DNA samples utilised throughout this work had 

OD2601250 ratios between 1.8 and 1.9, indicating the purity of the samples (e. g. sec 

Sambrook et al 1989). 

UV spectrum of pcDNA3.1/His/LacZ 
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Figure 6.3. The absorption spectrum of the purified plasmid DNA pcDNA3. I/His B/luuZ. 

6.3.2. Agarose gel electrophoresis 

Complexes of HM-liposome-Ca2+-DNA (7: 1 lipid: DNA w/w ratio) and 

samples of plasmid DNA alone were subjected to agarose gel electrophoresis (Figure 

6.4. ). This figure represents a typical electrophoresis gel of more than ten similar 
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gels performed during this study. Lane 1 contained DNA ladder as a marker for 

comparison. The next five lanes were loaded with plasmid samples of known 

quantities (0.25,0.5,1.0,1.5 and 2.0µg) as a calibration for plasmid quantification. 

As expected, the majority of the DNA was in the form of supcrcoiled structures, 

observed in the band of DNA which had migrated furthest from the sample well. 

Smaller bands formed from linear plasmid DNA followed behind the supercoiled 

plasmids. 

Lane seven was loaded with the HM-liposome-Ca2+-DNA complex which 

entirely remained in the sample well with no evidence of migration indicating that 

almost all DNA molecules are bound to liposomes hence unable to move in the gel. 

It is interesting to note that the liposome/DNA ratio of the complex in lane seven was 

7: 1 (lipid: DNA, w/w) which was the ratio that was found to be the most effective for 

transfection. Lane eight was loaded with the un-entrapped DNA separated from the 

complexes by centrifugation. Lane nine was loaded with the plasmid DNA extracted 

from the ternary complex by EDTA. The amount of DNA in this lane, quantified 

using the electrophoresis analysis system (section 6.2.2.4. ), accounts for 65.0% of the 

total amount of DNA used in the preparation of the complexes. Lane ten was loaded 

with the plasmid DNA extracted from the complex which was treated with DNase I. 

The amount of DNA in this lane accounts for 61.0% of the total amount of DNA 

used in the preparation of the complexes. The sample in lane ten is comparable 

quantitatively and qualitatively to the sample in lane nine which was not treated with 

the enzyme. This indicates that the ternary complex is able to protect DNA 

molecules from the enzymatic degradation. To check the functionality of the enzyme 

a sample of free plasmid DNA was subjected to DNase I treatment and was found to 

be completely degraded by the enzymatic action (lane eleven). 
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Figure 6.4. An agarose electrophoresis gel of the plasmid DNA and HM-lipo,, ome-('a-'- 
DNA complex. The contents of each lane are as follows: I. Ladder with sizc 111.11ker-s 

written next to each band (in base pairs), 2. Plasmid (2.0 pg). 3. Plasmid (I. 5 pg), 4. 
Plasmid (1.0 pg). 5. Plasmid (0.5 pg). 6. Plasmid (0.25 pg), 7. HM-lipo/Ca''/DNA (7: 1 

Iipid: DNA w/w), 8. Un-entrapped DNA, 9. DNA extracted from HM-Iipo/Ca''/DNA, 
10. DNA extracted from HM-lipo/Ca'+/DNA (7: 1 Iipid: DNA after treatment with 

DNase 1,11. Plasmid DNA treated with DNase 1. 

6.3.3. Incorporation efficiency of DNA in HM-liposomes 

A variety of different methods have been used fur the 

incorporation/encapsulation of nucleic acids in carrier systems including 

phospholipid vesicles (Chonn and Cullis 1998, Brown et al 2001). While these 

methods have succeeded in entrapping nucleic acids in liposomes, they suffer from 

several disadvantages including: 1) low entrapment efficiency, 2) the requirement 
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for large amounts of polynucleotides, 3) the limitation of the procedure to one type 

of phospholipid and 4) involving potentially harsh procedures such as sonication. 

These deficiencies become important considerations when attempting to incorporate 

small quantities of valuable DNA or when examining the influence of vesicle lipid 

composition on cellular delivery. 

In this respect, the method explained for the preparation of HM-liposome- 

based vectors (section 6.2.2.3. ) appears well suited for the incorporation of nucleic 

acids into liposomes. Incorporation of the DNA molecules to the HM-liposomcs is 

achieved merely by incubation of the components (i. e. HM-liposome, plasmid and 

Cat+) at room temperature without employing treatments such as vortexing or 

sonication. In addition, HM-liposomes can potentially be made from almost all 

phospholipids or lipid mixtures and the procedure not only can be scaled up for 

industrial purposes but also can be scaled down for using small aqueous volumes 

(few millilitres) when sample availability is limited. The 50mM concentration of 

calcium was chosen on the basis of previously published results (Mozafari et al 

1998a) indicating that this concentration allowed the highest amount of DNA to be 

incorporated to the anionic liposomes. 

The entrapment efficiency of plasmid molecules was measured both by 

spectrophotometric measurements as well as using an electrophoresis analysis system 

as explained in sections 6.2.2.3. and 6.2.2.4. One example of an electrophoresis gel 

used for the quantification of the plasmid molecules can be seen in Figure 6.4. above. 

Each quantification assay was performed at least in triplicate and the average (± S. D. ) 

DNA entrapment efficiencies obtained by spectrophotometry and gel electrophoresis 

were 70.3% (± 1.5) and 67.7% (± 3.8) respectively (Table 6.3. ). 
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Table 6.3. Entrapment efficiency of DNA in HM-lipo omen evaluated h' t IV 

spectrophotometry and gel electrophoresis techniques. Average data are exprc'sed ; i,, mcmi 
± S. D. of three experiments. 

6.3.4. Light scattering measurements 

The mean particle size and polydispersity index of the HM-liposonnes alone, 

HM-liposome-Ca 2+-DNA (7: 1 lipid: DNA w/w) complexes and HM-Iiposonme-('a'', 

were determined by a dynamic light scattering technique (Table (. 4. ). HM-liposomes 

were prepared either as multilamellar vesicles (MLV) or sized by using IOUnnm or 

400nm pore-size filters. Upon addition of DNA and calcium. vesicle sizes increased 

by almost two to four times indicating the presence of two to four vesicles in the 

ternary complexes. Addition of calcium alone (with no plasmid DNA) did not confer 

any significant increase in the mean particle sizes of' the liposomes. This is an 

indication of the presence of DNA in the complexes. 

170 



Table 6.4. Mean particle size of HM-liposomes with and without DNA and/or Ca" owe 
text for details). Data are expressed as mean ± S. D. cif three or more experiment,. 

Sample Mean Size 

Particle Size Increase* 

HM-Iiposome I5'-). (, t 2.. i 

(prepared using 100nm filters) 

HM-liposome-Ca2+-DNA 317.5 ± 19.3 1.9O 

(prepared using 100ern filters) 

HM-Iiposome-Ca'+ 174.9+4.8 1. Iu 

(prepared using 100nm filters) 

HM-liposome 5I0.4 ± 15.8 

(prepared using 400nm filters) 

HM-liposome-Ca-+-DNA 1658.3 ± 56.9 

(prepared using 400nm filters) 

HM-liposome-Ca-+ 523.9 ± 24. q I'M 

(prepared using 400nin filters) 

HM-Iiposome 605.2 ± 3.4 

(MLV) 

HM-liposome-Ca ̀ +-DNA 2245.6 ± 55.3 z. 71 

(MLV) 

HM-liposome-Ca`+ 611.2 ± 13.4 1.11 

(MLV) 

*size enlargement values are relative to the sizes of corresponding empty 

6.3.5. Ethidium bromide intercalation assay 

Ethidium bromide (EtBr) is a monovalent DNA intercalatinýý a, ýcnt ýýhý»r 

fluorescence is dramatically enhanced upon binding to DNA and quenched when 

displaced by higher affinity compounds or by condensation of the DNA structure 
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(Faneca et al 2002). Therefore, this chemical probe was used to examine the ability 

of the anionic liposomes prepared by the heating method (HM-liposomes) to protect 

DNA as well as to study the ability of the liposomal vector to release the DNA upon 

encountering a model membrane system. The model membrane system used was in 

the form of anionic micrometer sized multilamellar vesicles (MLV) which can be a 

model for both the cell membrane and the endosomal membrane. 

Figure 6.5. a. shows a typical graph of the effect of calcium ions (50mM) on 

the fluorescence intensity of EtBr-DNA complex. EtBr-DNA complex exhibited a 

stable fluorescence intensity during a 420 second period and all AF. I. 's reported here 

are relative to the fluorescence intensity of EtBr-DNA complex. Upon addition of 

Ca2+ ions (arrow at T= 420 s) the fluorescence of the EtBr-DNA complex decreased 

(OF. I. = 40.0) instantaneously, indicating the dissociation of the EtBr from the 

plasmid DNA. This observation could be explained by the fact that Ca2+ has two 

positive charges, twice as much as EtBr, while smaller in size. Consequently Ca2+ 

has more positive charge density than EtBr hence having more affinity for negatively 

charged DNA molecules and thus it causes the detachment of EtBr from DNA 

resulting in the fluorescence quenching. Another divalent cation (i. e. Mgt+, 50mM) 

exhibited a similar effect to Ca2+ on the fluorescence of the EtBr-DNA complex 

(Figure 6.5. b. ) but with a slightly higher AF. I. (i. e. 43.8). 
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Figure 6.5. a) effect of calcium (50mM) and b) magnesium (50mM) on the fluorescence 
intensity of EtBr-DNA complex (see text for details). 
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When anionic HM-liposomes (in the form of LUV) were added together with 

Ca2+ to the EtBr-DNA complex (Figure 6.6. ), dissociation of the EtBr from the 

plasmid DNA occurred to a higher extent (OF. I. = 68.4) compared with the 

dissociation occurred upon addition of the divalent cations alone. This indicates that 

HM-liposomes, although being anionic, when combined with Cat' have high affinity 

to bind DNA and are able to repel the EtBr from the DNA hence causing 

fluorescence quenching. The high affinity of anionic liposomes for binding DNA in 

the presence of Ca2' and the formation of supramolecular structures of anionic 

liposome-Ca2+-DNA complexes have been detected previously through various 

techniques (Zareie et al 1997; Mozafari and Hasirci 1998; Mozafari et at 1998a, 

1998b). When anionic MLV, as a model membrane system, were added to the 

reaction medium the fluorescence increased (AF. I. = 10.6, see section 6.2.2.6. ). This 

phenomenon, which was reported by Xu and Szoka (1996) for a cationic liposomal 

vector, indicates the ability of the anionic HM-liposome vectors to release their 

incorporated DNA upon encountering cell or lysosomal membranes. Xu and Szoka 

(1996) postulated that the mechanism underlying the release of DNA is the exchange 

of lipids between the liposomal vector and the cell/lysosomal membrane which 

results in the destabilisation of the liposome-DNA system and release of the DNA. 

In the case of anionic HM-liposome-Ca2+-DNA utilised in the present study the 

following mechanism can be proposed: when the ternary complex (i. e. HM- 

liposome-Ca2+-DNA) encounters an anionic membraneous system initially the 

electrostatic repulsion between the DNA and/or the HM-liposomes and the anionic 

model membrane causes the displacement of the DNA from the ternary complex and 
its release into the medium. This released DNA is now susceptible to EtBr 

intercalation hence the observed increase in the fluorescence intensity. Once the 

DNA is released from the ternary complex the anionic HM-liposome of the ternary 

complex can interact with the model membrane in the form of fusion or aggregation 
by the mediation of the Ca2+ ions. Several groups have reported that Cat and other 
divalent cations can trigger aggregation and/or fusion of phospholipid vesicles (e. g. 

Lansman and Haynes 1975; Wilschut et at 1980,1981,1985; Holland et at 1996; 

Mozafari and Hasirci 1998). 
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Figure 6.6. Effect of LUV and Ca 2+ (injected at T=280s) and MLV (injected at T=520x), 
on the fluorescence intensity of EtBr-DNA complex. 

Figure 6.7. a. shows that anionic HM-liposomes can also decrease the 

fluorescence of the EtBr-DNA complex on their own (AF. I. = 22.0), but to a much 

lower extent than in the presence of Cat+, probably by destabilising the EtBr-DNA 

complexes and/or interaction with EtBr. Interaction of the liposomal phospholipids 

with EtBr has been detected through a UV spectrophotometric assay (Mozafari 

1996). Upon addition of Ca`+, a further quenching of the fluorescence was detected 

(AF. I. = 72.7) which was almost to the same extent of that of HM-liposomes and 

Cat together. Fluorescence quenching again indicates the incorporation of DNA 

molecules into the HM-liposomes. The ternary complex formed by the action of the 

Ca 2+ was able to release the DNA when encountering the model membrane system to 

a similar extent (AF. I. = 12.2) as previously observed. This observation is in 

agreement with the work of Xu and Szoka (1996) and their finding that anionic 

liposomes exhibit a strong ability to displace bound DNA. This could be as a result 

of electrostatic repulsion between negatively charged liposomes and DNA. The 
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overall process was not dependent on the sequence of introducinV ('ab and IIM 

liposomes to the reaction medium (Figure 6.7. b. ). 
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Figure 6.7. a) effect of LUV (injected at T=280s), Ca'' (injected at T=520s) and MLV 
(injected at T=760s), and b) effect of Ca`' (injected at T=280s), LUV (injected at 7=520x) 

and MLV (injected at T=760s) on the fluorescence intensity of EtBr-DNA complex. 
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Figure 6.8. a. demonstrates a similar assay to that of Figure 6.7. a. except that 

the model membrane system was in the form of anionic unilamellar HM-liposomes 

(LUV) prepared by using 100nm filters instead of MLV. It seems that the smaller 

sized model membrane vesicles were not as efficient as MLV in displacing the DNA 

molecules from the ternary complex (OF. I. = 17.8). This can be explained by the fact 

that smaller sized spherical lipid vesicles, with higher curvatures compared to MLV, 

can exert less electrostatic repulsion to repel DNA molecules from the complex. 

In order to find out whether the phenomena observed above (formation of the 

triple complex by incorporation of DNA and release of DNA upon contact with 

model membrane) is the combined effect of HM-liposomes and Ca2+ and not Ca2' 

alone the experiment represented in Figure 6.8. b. was carried out. In the first step 

introduction of Ca2+ to the EtBr-DNA complex resulted in the fluorescence 

quenching (OF. I. = 40.6) very similar to that observed before (Figure 6.5. a. and the 

initial part of Figure 6.7. b. ). In the second step MLV was added to the reaction 

medium and resulted in further fluorescence quenching (AF. I. = 82.0). This is 

opposite to the effect observed when MLV was added to the mixture containing HM- 

liposomes and Ca2+ (Figures 6.6., 6.7. a. and 6.7. b. ) and similar to the effect observed 

when HM-liposomes were added to the reaction medium containing Ca2+ (Figure 

6.7. b. ). In another words, upon addition of MLV to the reaction medium containing 

Cat+, these MLV incorporate DNA-Ca2+ complexes as well as some of the DNA 

from the EtBr-DNA complexes (hence further decreasing the fluorescence) to form 

MLV-Ca2+-DNA structures similar to the HM-liposome-Ca2+-DNA complexes. 

Consequently the effects observed in Figures 6.6., 6.7. a. and 6.7. b. were that of both 

the HM-liposomes and Ca2+ and not Ca2+ alone. 
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Figure 6.8. a) Effect of LUV (injected at T=280s), Ca 2+ (injected at T=520s) and LUV 
(injected at T=760s) and b) effect of Cat (injected at T=280s) and MLV (injected at 

T=520s) on the fluorescence intensity of EtBr-DNA complex (see text for details). 
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Figure 6.9. shows the fluorescence intensity of the HM-liposomc-Ca2 -DNA 

complexes initially in the absence of EtBr. As expected the mixture exhibited no 

fluorescence intensity (OF. I. = 94.2) compared to that of the EtBr-DNA complex. 

Addition of EtBr increases the fluorescence very slightly (AF. I. = 87.5) indicating 

that almost no free DNA is available to interact with EtBr and all of the DNA is 

incorporated to the HM-liposomes. Since the ternary complex was not centrifuged to 

separate any possible free/un-entrapped DNA, the fact that a very small amount of 

free DNA was available for EtBr intercalation is an indication of very high DNA 

encapsulation efficiency. Figure 6.9. also shows that the fluorescence intensity did 

not change for the next 10 minutes after addition of EtBr which indicates the stability 

of the ternary complex. 
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Figure 6.9. Effect of EtBr (injected at T=420s) on the fluorescence intensity of HM- 
liposome-Ca2'-DNA complex. 
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In another assay EtBr was added simultaneously with MLV to the UM- 

liposome-Ca2+-DNA complexes (Figure 6.10. a. ). This resulted in sharp fluorescence 

increase (iF. I. = 18.7) due to release of DNA from the complexes as a result of 

electrostatic effect of MLV. In addition to the electrostatic effect, Xu and Szoka 

(1996) also considered a hydrophobic factor for the release of DNA from their 

cationic liposome-DNA complexes upon contact with model membranes. 

Figure 6.10. b. demonstrates the fluorescence intensity of the LIM-liposome- 

Ca2+-DNA complexes initially in the absence of EtBr. Upon addition of EtBr the 

fluorescence increases very slightly (AF. I. = 86.9) comparable in magnitude to the 

observation in Figure 6.9. When additional DNA molecules are introduced to the 

mixture the fluorescence increased instantaneously (AF. I. = 24.7) as a result of EtBr 

intercalation into the DNA molecules. The fact that the fluorescence increase was 

almost 25% less than that of EtBr-DNA complexes is likely due to incorporation of 

some of the added DNA, or EtBr, to the ternary complexes. 
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Figure 6.10. a) effect of EtBr and MLV (injected at T=420s), and b) effect of EtBr 

(injected at T=280s) and plasmid DNA (injected at T=520s) on the fluorescence intensity of 
HM-liposome-Ca 2 

-DNA complex. 
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6.3.6. DNase I protection assay 

The access of EtBr to the plasmid DNA following its treatment by l)Nase I 

was evaluated by spectrofluorimetry. Assuming that a complete DNA degradation 

corresponds to 0% EtBr fluorescence and that intact DNA (obtained upon incubation 

with inactive DNase I) corresponds to I00%, fluorescence, it was po ihIe to 

quantitate the degree of DNA protection conferred by the triple complex of IIM 

liposome-Ca2'-DNA. Results of DNA degradation for different Iiposoýnic: DNA ratio 

vectors are presented in Table 6.5. It seems that by increasing the aino tint of lipid 

used in the complex more DNA is protected from the enzymatic action. 

Table 6.5. Percent of DNA degradation for Iiposomal vectors treated "ith Maw I. Data 

are expressed as mean ± S. D. of three or more experiments. 

Sample 
No. 

Lipid : DNA ratio (w/w) llNA degradation (% ) 

1 4: 1 11.2 ±U. 4 

2 5: 1 8.7 ± 1.6 

3 6: 1 0.3+ 1.0 

4 7: 1 3.6 ± 0.4 

5 8: 1 1.9±O_7 
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6.3.7. Transmission Electron Microscopy 

Figure 6.11. demonstrates three vesicles prepared by the heating method alter 

incubation with plasmid DNA and Ca2+ which seem to be in an aggregated state. I he 

individual diameter of each of these vesicles is 90.3nm, 86.0nni and 10.1.01111). 

Figure 6.12. represents four liposomal vesicles in an aggregated/scnii-fuseºI state 

upon interaction with DNA and Cat+. The individual diameter of each of these 

vesicles is calculated to be 62.1 nm, 66.4nm, 85.3nm and 95.7nm. 

Figure 6.11. Transmission electron micrograph of H\1 lipoýonºr ('a ' I)N ý c�nºhlcv. 13: ßr 
represents 50nm. 
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Figure 6.12. Transmission electron micrograph of HM-liposome-C'a''-DNA complex. Bar 
represents 100nm. 
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6.3.8. Scanning tunnelling microscopy 

The ultrastructure of the liposomes extruded through 100nm filters was 

studied by high-resolution scanning tunnelling microscopy (STM), the importance of 

which was discussed in chapter two of this thesis. Figure 6.13. shows a STM image 

of HM-liposome-Ca 2 
-DNA complexes. Three vesicles can be observed on the left 

hand side of the photograph which are located in close vicinity to each other, 

probably aggregated by the mediation of calcium and DNA molecules, and one single 

vesicle can be seen below the liposomal aggregate. The average diameter of vesicles 

in this figure is calculated to be 193. Onm (±23.3) which is 3.2 times bigger than the 

average diameter of HM-liposomes with no calcium and DNA (see Figure 2.13. ). 

Figure 6.13. Two and three-dimensional scanning tunnelling micrographs of HM-liposome- 
Ca2 -DNA complexes. 

6.3.9. Atomic force microscopy 

To gain direct insight into the triple complex structures, they were imaged, in 

addition to STM (previous section), by AFM as well. Since its introduction in 1986. 
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the potential of AFM for investigating biological samples on a scale ranging from 

living cells to single molecules has been recognised (Binning et al 1986). In contrast 

to conventional biological imaging methods, specimens investigated by AFM can be 

in a native, unlabeled state and investigated in their native environment for several 

hours without damage (Muller and Anderson 2002). AFM has been used for many 

biological specimens such as DNA, proteins, membranes and cells (Lawrie et al 

1999; Kasemo 2002) in addition to microcapsules (Zimmermann et al 2003) and 

liposomes (Kawaura et at 1998; Maeda et al 2002; Vermette et al 2002; Almofti etal 

2003). However, there has been no report for anionic liposome"Ca2+-DNA 

complexes. Excellent AFM images of these complexes were obtained and the sizes 

of the liposomes were measured by AFM. AFM is able to measure the particle sizes 

(diameters) of individual vesicles with diameters from 10nm to 10µm. The 

sensitivity of the AFM used in this study was in the micrometer size ranges, hence 

for AFM observations MLV liposomes were prepared. 

Visualisation of a HM-liposome, which was prepared by the heating method 

in the form of multilamellar vesicle (HM-MLV), is depicted in Figure 6.14. 

Horizontal long axis size (diameter) of the vesicle is 1.961 µm (Figure 6.14. a. ) and 

vertical (height) size of this vesicle on the same axis is 0.268 µm. The horizontal 

size of the vesicle on the short axis (perpendicular to the long axis used in the 

previous image) is 1.368 pm (Figure 6.14. b. ) and the vertical (height) size of the 

vesicle on the short axis is 0.316 µm. A three dimensional image of the vesicle is 

demonstrated in Figure 6.15. 
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Figure 6.14. Atomic force microscopy image of a multilamellar vesicle prepared by the 
heating method after interaction with calcium and DNA. Horizonal distance analysis of the 

vesicle on the long (a) and short (b) axis are presented. 
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Figure 6.15. Three dimensional image of the HM-liposome shown in Figure 6.14. 

Figure 6.16. represents a complex of HM-MLV-Ca2+-DNA on a stainless 

steel disc. Horizontal long axis sizes (diameters) of the vesicles are 0.809 µm, 0.726 

. tm and 0.536 tm making the total length of the complex to be 2.071 pm. Vertical 

(height) sizes of these vesicles on the same axis are 0.093 pin, 0.067 pm and 0.090 

µm. A three dimensional images of the complex are presented in Figures 6.17. 
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Figure 6.16. Two-dimensional AFM image of a triple complex on stainless steel disc. Scan 
area2.5x2.5 tm. 
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Figure 6.17. Three dimensional image of the triple complex demonstrated in Figure 6.16.. 
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6.3.10. Gene transfer 

HM-liposomes were used to protect and deliver the P-galact(»id a'c" rc11(lftei 

gene (pcDNA3.1/His/LacZ) to the HBE cells. The complex was used over a ranec of 

differing lipid: DNA ratios with the amount of DNA remaining constant at 2.5 ltg/nmI. 

The transfection efficiency of the complex was determined from the ji-galactosidase 

activity of transfected cell lysates and expressed as milli units (ml I) of' en/vine, 

which was normalised to the cellular protein (tug) present in those lysates. figure 

6.18. represents transfection efficiency of the complexes with varying lipid: l)NA 

ratios while DNA with no liposome was used as a control. Although the amount of 

plasmid DNA, and Ca 2+ is same in all formulations, it seems that lipid anuOunt has a 

crucial role to play not only in the protection of the fragile genetic material but also 

in its intracellular delivery. The DNase I protection assay showed that even the 

complex with 4: 1 ratio was able to protect almost 90%7c of its DNA content ('fahle 

6.5. ) while its transfection efficiency (7.5 mU/mg) was much less than the one with 

7: 1 ratio (11.9 mU/mg) which exhibited the highest transfection efficiency. 1lence it 

appears that an optimum amount of lipid is required in order to efficiently protect the 

DNA as well as to deliver it intracellularly. 
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Figure 6.18. Gene transfer efficiency of HM-liposome-DNA-Ca' complexes with varying 
lipid: DNA ratios. As a control plasmid DNA was used with no liposomr or Cat` (0: I ratio) 

(n=4). 
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Figure 6.19. demonstrates a comparison of the transfection efficiency of the 

ternary complex with the highest transfection efficiency, containing 7: 1 Iipid: DNA 

ratio, to that of the generally used commercially available cationic lipid DOTAP. It 

seems that DOTAP was able to transfect the HBE cells more efficiently than the 

ternary complex (20.8 mU/mg vs. 11.9 mU/mg). 

Comparative Transfection Efficiency 

25 

20 

m 15 

10 

5 

0 

Samples 

Figure 6.19. Comparison of the transfection efficiency of HM-Iiposome-DNA-Ca2' 
complex with 7: 1 lipid: DNA ratio with that of DOTAP (n=4). 
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6.4. Discussion 

Viral-based carriers of DNA are presently the most common method of gene 

delivery. However, non-viral methods are rapidly emerging as alternative carriers, 

because of their relative ease of production, the absence of viral genes to cause 

disease and the nonimmunogenicity due to a lack of exposed proteins. Another 

principal advantage of non-viral vectors is the potential to transfer and express 

(transfect) large pieces of DNA into cells while viral vectors have a maximum gene- 

carrying capacity of 40 kilo base pairs (Friedmann 1997). 

Since the initial landmark studies by Feigner et al (1987) the entire field of 

non-viral gene therapy has undergone a renaissance (Chesnoy and Huang 2000). 

Feigner and colleagues (1987) discovered that cationic liposomes, when mixed with 

DNA to form cationic lipid-DNA complexes with an overall positive charge, enhance 

transfection. They hypothesised that this was because cationic lipid-DNA complexes 

adsorbed more effectively to the anionic plasma membrane of mammalian cells via 

electrostatic interactions. However, due to growing number of concerns regarding 

the clinical utilisation of cationic liposomes (Panzner and Jansons 1979; Chawla et at 

1979; Campbell 1983; Filion and Phillips 1997,1998; Dokka et at 2000; Nagahiro et 

al 2000; Tousignant et al 2000; Fahr et al 2002), anionic lipid complexes were used 

in the present study. 

Despite huge number of in vitro and in vivo studies employing lipid-DNA 

complexes compared with other delivery systems, the mechanisms of transfection via 

these carriers remain poorly understood and are actively being investigated. Much 

less attention has been given to the anionic liposomal systems in this regard. At 

present, hundreds of plasmid DNA molecules are required for successful gene 

transfer and expression. The enhancement of transfection efficiencies using lipid- 

based methods requires a full understanding of the supramolecular structures of lipid- 

DNA complexes, their interactions with cell membranes, and of events leading to the 

release of DNA and its delivery to the nucleus. The precise nature of the 

supramolecular structures of lipid-DNA complexes in different lipid membrane 
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systems is beginning to be understood (Koltover et al 1999; Safinya 2001). The 

transfection efficiencies of non-viral delivery methods may be improved through 

insights into transfection-related mechanisms at the molecular and self-assembled 

levels. Therefore, together with gene transfer studies, the supramolecular structure 

and the mechanism of DNA release from the HM-liposome-Ca2'-DNA triple 

complex, upon contact with model membranes, was also evaluated in this work. 

In order to correctly interpret the structural/morphological data regarding the 

triple complex, a brief literature review of similar work would be useful. DNA 

chains dissolved in solution are known to give rise to a variety of condensed and 

liquid-crystalline phases. Studies show regular condensed DNA morphologies 

induced by multivalent cations (Bloomfield 1991) and liquid-crystalline phases at 

high concentrations of DNA (Livolant and Leforestier 1996). Moreover, there has 

been a flurry of experimental and theoretical work on DNA chains mixed with lipids. 

Oligolamellar structures has been reported in cryo-transmission electron microscopy 

studies of cationic liposomes and DNA by Gustafsson et al (1995). A freeze-fracture 

electron microscopy study by Sternberg and co-workers (1994) revealed two types of 

structures for cationic lipid-plasmid DNA complexes. They observed fibril-like 

images depicting isolated DNA molecules coated by a cationic lipid bilayer and/or 

monolayer in addition to semi-fused liposomes composed of 2-3 vesicles drawn 

together by the fusogenic action of DNA. A combination of the two structures was 

also reported in which tubule-like lipid-coated plasmid molecules were connected to 

the liposomes, a complex which they called spaghetti-meatball-complex or assembly 

(Sternberg et al 1994; Sternberg 1998). 

The type of lipids used in the liposome-DNA formulations may, in some 

cases, affect the structure of the complexes. A commonly used charge-neutral lipid 

in cationic lipid-DNA mixtures is di-oleoyl phosphatidylethanolamine (DOPE). A 

recent X-ray diffraction (XRD) investigation have shown that DOPE containing 

complexes may give rise to an inverted hexagonal Hn liquid-crystalline structure 

(Koltover et al 1998) as illustrated in Figure 6.20. 

193 



Figure 6.20. Schematic of the inverted hexagonal H11 phase composed of DNA molecules 
coated with lipid monolayers in the form of cylinders arranged on a hexagonal lattice 

(redrawn after Safinya 2001). 

Studies have revealed that one of the commonly occurring supramolecular 

assemblies, which forms spontaneously when DNA is complexed with cationic 

lipids, is a multilayer assembly of DNA sandwiched between bilayer membranes 

(Raedler et al 1997; Lasic et al 1997; Koltover et al 1999; Safinya 2001). Similar 

structures have been reported for cationic liposome-DNA complexes in the presence 

of divalent cations (Koltover et al 2000) or a tumor targeting ligand transferrin (Xu et 

al 2002). In their seminal paper Felgner et al (1987) pictured the DNA strand 

decorated with distinctly attached cationic liposomes and proposed the 'bead-on- 

string' structure. However, the precise structure of the cationic lipid-DNA complexes 

elucidated by high-resolution synchrotron small-angle X-ray scattering (SAXS) 

revealed that the structure is different from the hypothesised model (Raedler et al 

1997; Salditt et al 1997; Safinya 2001). The SAXS data lead to a model in which the 

cationic liposome and DNA condense into a multilayer structure, denoted Lj, with 
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DNA sandwiched between the bilayers (Figure 6.21. ). In the absence of DNA, 

however, the lamellar La, phase of membranes composed of DOPC (di-olcoyl 

phosphatidylcholine) and cationic DOTAP (1: 1), exhibits strong long-range 

interlayer electrostatic repulsions that overwhelm the van der Waals attraction (Roux 

and Safinya 1988). In the presence of divalent cations, such as Cat+, cationic 

liposome-DNA complexes were detected to form LaC structures, similar to that 

shown in Figure 6.18., with varying DNA spacings, i. e. more compact DNA packing 

upon increasing ion concentration (Koltover et at 2000). This finding may provide 

insight into the structural nature of the multilamellar anionic HM-liposome-Ca2+- 

DNA complexes utilised in the present study. 
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Figure 6.21. Schematic drawing of the collapse of DNA and cationic liposomes into dense 

multilamellar aggregates. The condensation is driven by the release of bound counterions 
initially covering the liposomes and DNA molecules. Enlarged section depicts the local 

structure of the self-assembled DNA-lipid complexes. The semiflexible DNA double- 
helices are illustrated by cylinders embedded in bilayer lipid membranes. This represents 
the lamellar L(xc phase of lipid-DNA complexes with alternating lipid hilayers and DNA 

monolayers. The scheme is redrawn after Radler et al (1998). 
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The supramolecular structures of anionic liposome-Ca2+-DNA complexes 

studied by fluorescence microscopy (Mozafari et al 1998b) and high-resolution STM 

(Zareie et al 1997; Mozafari et al 1998a), containing linear double stranded DNA. 

were different from the spaghetti-meatball-complex, hexagonal Hii( structures or 

the 'bead-on-string' model mentioned above. For liposomes of both MLV and SUV 

types two or three aggregated/semi-fused vesicles were observed as a result of their 

complexation with DNA by the mediation of Cat+, as shown in Figure 6.22. DNA- 

like structures were detected both on the surface of liposomes and between 

aggregated liposomes (Zareie et al 1997; Mozafari et al 1998a, 1998h). 

,:,.. ätaaw:: s,: a3.: 'aýo 

Figure 6.22. A fluorescece microscopy image of the Iiposome-Ca2'-DNA complexes (from 
Mozafari et at 1998). 
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Similar structures were observed in the present work for LUV type liposomes, 

studied by TEM (Figure 6.11. and 6.12. ) and STM (Figure 6.13. ), and for MLV 

liposomes studied by AFM (Figures 6.14. to 6.17. ). Three and four aggregated/semi- 

fused liposomes were detected by TEM. In the STM image three closely located 

vesicles, possibly in an aggregated state, and one single vesicle are evident while in 

the AFM images four vesicles in an aggregated/semi-fused state and one single 

vesicle can be seen. Whether the individual vesicles contain DNA molecules or not 

is not clear at this stage. The huge size of the single vesicle observed through AFM, 

both horizontally and vertically (Figure 6.14. ), compared to the vesicles in the 

aggregate (Figure 6.16. ), however, may imply that it contains layer(s) of DNA 

molecules between the lipid bilayers as is the case with LC structures. Although it 

was not possible to detect any plasmid DNA molecule, probably due to their small 

sizes, it is interesting that quite similar complexes were observed through three 

different microscopies. This aggregated/semi-fused structures are similar to our 

previous observations by fluorescence microscopy and STM (Zareie et al 1997; 

Mozafari et al 1998a, 1998b). 

Neither Ca2+ nor DNA on their own can bring interaction between the anionic 

liposomes resulting in the observed complexes (Mozafari and Hasirci 1998). 

Although for cationic liposomes presence of DNA was enough to lead into formation 

of the liposome-DNA complexes, in the case of anionic vesicles presence of both 

DNA and divalent cation is required. It is well established that at a certain level of 

charge neutralisation, DNA molecules collapse into packed forms (Manning 1980, 

1981). The collapsed DNA structures, whose exposed surface is substantially 

smaller than that of the fully extended forms, can be encapsulated efficiently by 

liposomes (Gershon et al 1993). The charge neutralisation of DNA molecules can be 

brought about by divalent cations such as Cat+. It seems that Ca2+ can facilitate DNA 

incorporation to anionic liposomes by two main mechanisms: i) encapsulation of 

DNA molecules within the lipid vesicles following charge neutralisation and collapse 

of DNA, ii) attachment of the DNA molecules to the surface of the vesicles by 

electrostatic attraction. While both of these scenarios can happen to, and produce 

one single liposome, the second case, more possibly, can lead to the formation of the 
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observed aggregated/semi-fused liposome complexes. These are consistent with the 

data obtained through the microscopic studies (i. e. observation of both individual and 

aggregated vesicles) and the EtBr intercalation assay (i. e. fast release of DNA from 

the complexes upon contact with the model membrane indicates presence of some 

DNA molecules on the surface of the vesicles as discussed under section 6.3.5. ). 

A major goal of research on liposome-DNA complexes is to elucidate the key 

parameters resulting in the different complex structures and to establish the 

correlation between these structures and transfection efficiency. Interestingly studies 

on the nucleic acid-lipid interactions inherently have the potential to increase our 

understanding of many other phenomena in addition to transfection, including 

bacterial conjugation, nuclear membrane trafficking, viral infection and origin of life. 

One example of a correlation between the self-assembled structures of cationic 

liposome-DNA complexes and the transfection efficiency of these vectors came from 

the work of Lin et al (2000). This group observed that the transfection efficiency of 

HnC structures of cationic liposome-DNA vectors was higher than the LaC 

structures in mouse fibroblast L-cells. It is postulated that the reason for varying 

transfection efficiency in these two structures is that the lipids of the II11 complexes 

have the ability of fusion with the cell membranes (e. g. endosomal and plasma 

membranes) whereas Lac complexes remain stable inside cells (Lin et al 2000; 

Safinya 2001). In the case of the anionic liposomal vectors utilised in this study there 

are indications of the presence of DNA on the surface of the vesicles, as discussed 

above. It is known that both DNA and Ca2+ can induce fusion of phospholipid 

vesicles (Lansman and Haynes 1975; Wilschut et al 1980,1981,1985; Holland et al 
1996; Mozafari and Hasirci 1998). In fact the observed aggregated/semi-fused 

vesicles are believed to be due to the fusogenic action of DNA/Ca2+ since in the 

absence of DNA and Ca2+ only individual non-aggregated vesicles were detected 

through the microscopic studies (Figures 2.10. -2.14. ). One advantage of the vector 
introduced in this chapter is that due to the presence of DNA and Ca2+ in the complex 

there is no need to use any other fusogenic or endosomolytic agent. This is in 

comparison with some cases where application of fusogenic or endosomolytic agents 

in the transfection vector was found to be mandatory (Uduehi et al 1996; Pouton et al 
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1998). Even if the surface attached DNA molecules, involved in the fusion event, are 

not delivered to the nucleus the remaining DNA molecules entrapped inside the lipid 

bilayers can be utilised in the transfection of the cell. 

According to a recent report by Lesage and colleagues (2002) for DNA 

transfer into cells, several important conditions must be fulfilled. The efficiency of 

the carrier to transport DNA must be high. The DNA has to be protected against 

enzymes in the extracellular medium. The DNA-carrier complex must be 

internalised into the cell and the functionality of DNA has to be preserved for the 

expression of the gene in the cell. Finally, the carrier must not be cytotoxic (Lcsagc 

et al 2002). Even if all of the above mentioned criteria are met there is no guarantee 

for successful transfection. Several researchers and recently Evans (2003) have 

detected the presence of gene transfer complexes inside the cells but no or little 

expression of the gene. One reason for this can be that if the complexes are taken up 

by cells through endocytosis they will be subject to the lysosomal degradation 

(Brisson and Huang 1999). Hence another important criteria for transfection is the 

entry of the functional DNA to the nucleus where the transcription machinery is 

present. The data obtained through the course of this thesis attest that our gene 

transfer complex meets all the above criteria. The complex was found to be non- 

toxic as evaluated by two toxicity assays (i. e. NRU and MTT, section 3.3. ). 

Relatively high DNA entrapment efficiency values were found for the complex (i. e. 

c. 70%, section 6.3.3. ). Entrapment efficiencies of c. 49% and c. 44% have recently 

been reported for plasmid DNA and antisense oligonucleotides incorporated to 

anionic liposomes (Fillion et al 2001). Bailey and Sullivan (2000) have reported 
DNA encapsulation efficiencies up to 80% in the neutral liposomes. However, the 

transfection efficiency of these neutral vesicles have not been evaluated in that study 

or thereafter to the best of my knowledge. For cationic liposomes, on the other hand, 

values up to 99% have been reported for DNA entrapment efficiency while again the 

cationic system was found to exhibit cytotoxicity (Tang and Hughes 1999). The 

ternary complex was able to efficiently protect its DNA load from DNase I activity 

(section 6.3.6. ). By detecting the products of the reporter gene, transfection studies 

indicated that the ternary complex was able to transfect the cells (section 6.3.10. ). 
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This means that the complex was internalised into the cell and the structure and 

function of the DNA was preserved. 

Studies have suggested that the ratio of DNA to lipid is an important variable 

that determines the efficiency of transfection and the cellular toxicity (Feigner et al 

1994). Furthermore, the lipid: DNA ratio needs to be optimised in order to avoid 

excess of non-complexed DNA in the formulation (Schreier 1998). To evaluate the 

effect of varying the ratio of lipid to DNA, HBE cells were transfectcd with a 

constant amount of plasmid DNA complexed with a variable amount of lipid. The 

optimum Iipid: DNA ratio for gene transfer to the cultured HBE cells was found to be 

7: 1 (Figure 6.18. ). Although the complex with 8: 1 lipid: DNA ratio possesses the 

highest value for DNA protection (Table 6.5. ), its transfection efficiency was not the 

maximum observed. This could be as a result of high amount of lipid in the 

formulation providing more covering for the DNA, hence less available DNA for 

transfection, or presence of more empty liposomes which compete with DNA-loaded 

vesicles for entry to the cell. Another possible reason is that high lipid concentration 

may result in bigger complexes which can not enter the cells efficiently. The 

transfection efficiency of DNA carrier complexes vary with the cell type used. 

Therefore transfection abilities of different complexes can be more meaningful when 

compared directly with those using the same cell type and even same reporter gene. 

Based on this fact the transfection efficiency of the ternary complex with 7: 1 

lipid: DNA ratio when compared with data obtained for the same gene and cell line is 

equal or higher than those obtained for the polymeric reagents polylysine and 

transferrin-polylysine (Pouton et al 1998) as well as commercially available lipid- 

based reagents Transfectam (Pouton et al 1998), Perfect Lipids (pFx-1 to pFx-8) and 

GenePORTER (Evans 2003). The transfection efficiency of GenePORTER in 

another human bronchial epithelial cells (i. e. 1B3.1) evaluated by De Semir and co 

workers (2002) was also lower than that of the triple complexes. Compared with 

transfection results obtained using the same reporter gene but in two other human 

lung cell lines (i. e. A549 and H441 cells) the ternary complexes, even the one with 

4: 1 lipid: DNA ratio possessing the lowest transfection efficiency, are superior to the 

cationic lipid-based complexes, EDMPC (1,2-dimyristoyl-sn-glycero-3- 
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ethylphosphocholine, chloride salt): cholesterol and EDMPC: DOPE studied by 

Gorman et al (1997). However, the transfection efficiency of the complex with 7: 1 

lipid: DNA ratio is lower than the transfection efficiency of DOTAP obtained in the 

present study (Figure 6.19. ) and by other groups using the same cell line and reporter 

gene (Pouton et al 1998; Evans 2003). The reason DOTAP was used as a control is 

due to its being one of the most applied commercially available lipid-based gene 

transfer vectors and it has been used for transfection of the HBE cells (Pouton ct at 

1998; Evans 2003) in vitro, and has been applied to the airways of mice (Dokka ct al 

2000; Vaysse et al 2002) and human nasal epithelium (Porteous et al 1997) in vivo. 

It seems that our liposomal formulation is comparable or better than 14 gene transfer 

systems mentioned above while inferior to DOTAP in terms of transfection. A recent 

report on the oligonucleotide delivery to 1133.1 cells, a human airway epithelial cell 

line relevant to the HBE cells used in this study, may provide a possible explanation 

for lower transfection efficiency of our formulation when compared with DOTAP. 

Using laser scanning confocal microscopy it was found that almost 100% of the 

oligonucleotides were delivered to the cells while majority of them could not reach 

the nucleus and retained in the cytoplasm (De Semir et at 2002). It may be that lack 

of sufficient nuclear delivery is responsible for the lower transfection ability of the 

ternary complex compared with DOTAP. However, recently it has been shown that 

at the dose used to achieve maximum transfection, i. e. 2.25 X LRD (manufacturer's 

lowest recommended dose), DOTAP caused almost 14% cell death when tested in 

the 16HBE14o- cells (Evans et al 2001; Evans 2003). In addition, Filion and Phillips 

(1997,1998) have reported up to approximately 85% toxicity for DOTAP containing 

liposomes toward mouse macrophage cells at the lowest concentration tested (i. e. 

lOnmol/ml). DOTAP containing liposomes were also found to be cytotoxic in other 

cells including Chinese hamster ovary (CHO) cells (Tang and Hughes 1999). By 

comparison almost no cell death was detected for the HM-liposomes even at 

concentrations up to five times higher than that in the complex exhibiting maximum 

transfection (see section 3.3. ). Considering the fact that the transfection 

complexes/reagents would have to be administered repeatedly over the lifetime of a 

patient with a genetic defect (such as cystic fibrosis), the chronic toxicity issue need 
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to be addressed seriously (Cheng and Scheule 1998). The non-toxic nature of our 

gene transfer formulation is a big advantage in this respect. 

The 16HBE14o- cells are known to be refractory to transfection, probably due 

to the presence of tight junctions which reduce the area of exposed plasma membrane 

for DNA entry (Evans 2003). Therefore it is possible that the 1IM-liposome-Ca2 - 

DNA complex will have higher transfections efficiencies in other cell types. 

Transfection has often been reported as being more efficient when carried out on 

cells in serum free medium (Nchinda et al 2002). In general it has been reported that 

the transfection by liposomes is sensitive to the presence of serum or blood 

components (Yi et al 2000; Kim et al 2003). Many cationic lipid based transfection 

systems are inactivated in as low as 5-10% serum (thou et al 1991; Lewis et al 1996; 

Vitiello et al 1996). This drawback should be considered particularly if the 

liposomal system is to be employed in vivo. Consequently, the transfection 

efficiency of the HM-liposomes was assessed in the serum containing medium. 

Presence of Ca2+ in our formulation not only facilitates the incorporation of DNA to 

the anionic vesicles but also improves the transfection. It is known that Ca2' 

increases the permeability of lipid bilayers (Mandersloot et al 1981) and also helps to 

overcome the transfection-inhibiting effect of serum (Haberland et al 2000). In 

summary these studies using an in vitro model of airway epithelia may help guide 

attempts to develop in vivo gene transfer for airway diseases such as CF and 

potentially for other diseases of the pulmonary epithelium including surfactant 

protein B deficiency and ai -antitrypsin deficiency (Fasbender et al 1995). 

6.5. Conclusions 

A non-toxic lipid-based gene transfer vector is introduced which possesses 

high DNA entrapment efficiency and ability to protect the incorporated DNA from 

enzymatic degradation. Incorporation of DNA to the liposomes prepared by the 

heating method is through a very mild procedure which does not involve any 

potential harm to the DNA structure/function. The methodology of preparing the 
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HM-liposome-based nucleic acid delivery systems not only can be scaled up for 

industrial applications but also can be scaled down when sample availability is 

limited. Moreover, the vector was detected to be able to transfect cultured human 

lung epithelial cells, in the presence of serum, probably by a mechanism involving 

fusion of the ternary complex to the plasma membrane and/or the endosomal 

membrane. 
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7: GENERAL DISCUSSION AND CONCLUDING 

REMARKS 

7.1. Introduction 

Liposomes are closed, continuous bilayered structures made primarily of 

lipids/phospholipids. Pulmonary application of liposomes has generated promising 

results with respect to both prolonged and targeted delivery to the lung and reduced 

systemic toxicities, resulting in enhanced therapeutic efficacies. However, only 

recently has the field matured to the clinical level although preformulation and 

formulation, and later preclinical studies, have been conducted and reported in the 

literature on a regular basis since the mid-1980's. The major activities in the field 

have been in the following three categories: 1) infectious diseases (antibiotics), 2) 

asthma (corticosteroids) and 3) lung injury (antioxidants). In addition to these 

classic areas a fourth has emerged recently which is genetic diseases of the lung (e. g. 

cystic fibrosis, (xl-antitrypsin deficiency) and their treatment by gene therapy using 

liposomes (Davies et al 2001). Progress in the field has been documented in a series 

of review articles beginning with Mihalko and colleagues (1988), continuing with 

Kellaway and Farr (1990), Schreier et al (1993), Gonzalez-Rothi and Schreier (1995), 

Schreier and Sawyer (1996) and Brown et al (2001) who reviewed the status of 

liposomes for cystic fibrosis gene therapy. In addition, a more recent review article 

by Stecenko and Brigham (2003) compares liposomal vectors with adeno-associated 

viral vectors in the gene therapy of al-antitrypsin deficiency. 

As to the technological advances in the field, milestones have been the series 

of papers on the physical characterisation of liposome aerosols by Taylor and co- 

workers (1990), Niven and Schreier (1990) and Niven et at (1991,1992). These 

were followed by development of dry liposome powder aerosols by Schreier and 

colleagues (1994) as well as dry liposome: DNA powder aerosols (Alton et at 1997) 

and the development and characterisation of nebulised cationic liposome: DNA 
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complexes by Schwarz and co-workers (1996), Eastman et al (1997) and Gagne and 

Schreier (1997). The majority of in vivo pulmonary liposomal gene and drug 

delivery have been performed directly to the lung by instillation, nebulisation or 

aerosol inhalation (Schreier 1998). Interestingly, gene delivery to the lung has also 

been reported to be achieved by intravenous administration of a cationic lipid-DNA 

complex (lipoplex) (Barron et al 1999). 

Preclinical studies established the innocuousness of inhaled liposomes by a 

number of measures including macrophage function and lung histology in mice 

(Gonzalez-Rothi et al 1991; Myers et al 1993) and lung function studies in sheep 

(Schreier et al 1992). Pharmacokinetic and deposition studies in rats (Vyas ct al 

2004), sheep (Schreier et al 1992), dogs (Bennett et al 1994) and in human volunteers 

(Farr et al 1985; Walldrep et al 1997) showed that liposomes are retained in the lungs 

for prolonged periods of time and could potentially serve as sustained release 

carriers. Normal lung function and no toxic side effects were documented in some 

studies employing human volunteers (Gilbert et al 1988; Thomas et al 1991). 

However, many reports on the toxicity and other complications associated with some 

liposomes in lung and other cells/tissues also exist (Panzner and Jansons 1979; 

Chawla et al 1979; Campbell 1983; Filion and Phillips 1997,1998; Dokka et al 2000; 

Nagahiro et al 2000). Despite the intensive work in the field of liposomal drug 

delivery to the pulmonary system, which have been conducted for more than two 

decades, there are no liposomal products approved for application to human or 

animal airways as yet. It seems that issues including safety, stability, cost and 

efficiency are responsible for this shortcoming. 

In the foregoing circumstances, the primary aim of this thesis was to develop 

liposomal formulations suitable for efficient gene and drug incorporation, protection 

and delivery. Particular attention was given to the lungs as an ideal route for both 

local and systemic delivery of the therapeutic agents. Areas of lung injury, cancer 

and nucleic acid therapy have been addressed by incorporation of glutathione, 5- 

fluorouracil and DNA into the liposomes respectively. 
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7.2. Summarising Discussion 

This study has focused on addressing some major problems in the 

manufacture of liposomes in a pharmaceutically acceptable manner. These problems 

include safety issues, efficiency in stable incorporation and release of the entrapped 

agents, as well as length of the time required to produce the lipid vesicles. Safety 

concerns are mainly due to the application of harmful solvents or potentially toxic 

ingredients in the preparation of liposomes. An initial objective was to explore ways 

of making liposomes without application of the potentially toxic solvents. If it would 

be possible to omit application of harmful solvents, the requirement for performing 

additional steps to remove these solvents from the liposomal preparation would be 

eliminated as well. This in turn would decrease the time and consequently cost of 

liposome preparation as well as removing the safety concerns both for the producer 

and the consumer of the liposomal products. 

As a result of intensive investigations in an attempt to overcome the above- 

mentioned problems, a new method has been developed which employs heating and 

small amount of a physiologically acceptable solvent (i. e. glycerol) to prepare the 

lipid vesicles. By this "Heating Method", liposomes can be produced within few 

hours in a reproducible and efficient way. Liposomes prepared by the heating 

method are designated as HM-liposomes. Application of glycerol in the preparation 

of the HM-liposomes have the following advantages: 

" Glycerol is a bioacceptable, non-toxic agent already in use in many 

pharmaceutical products and can serve as an isotonising agent in the liposomal 

preparations. 

" Unlike the volatile organic solvents employed in the manufacture of conventional 

liposomes, there is no need for the removal of glycerol from the final preparation. 
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" It serves as dispersant and prevents coagulation or sedimentation of the vesicles 

thereby enhancing the stability of the liposome preparations. 

" It also improves the stability of the liposome preparations against freezing, 

thawing etc. Therefore, HM-liposomes are also ideal for freeze-drying e. g. in the 

preparation of dry powder inhalation products. 

The initial part of this thesis provides a concise overview of the history and 

general properties of liposomes (chapter 1). Preparation of IM-liposomes, in both 

micrometric and nanometric size distributions, and their physicochcmical 

characterisation by various techniques are explained thoroughly (chapter 2). The 

cytotoxicity profiles of the HM-liposomes, with and without DNA, evaluated by 

using two different toxicity assays are presented in comparison with that of the 

liposomes prepared by a conventional technique (chapter 3). In addition, the 

characteristics of HM-liposomes containing 5-FU as a model anticancer drug 

(chapter 4), GSH as an antioxidant agent (chapter 5) and plasmid DNA as a genetic 

material (chapter 6) are also explained. The biological and pharmaceutical 

characterisation of the HM-liposomes were carried out employing a human lung 

epithelial cell line (HBE cells) as an ideal relevant in vitro model of the human 

airways. Using this cell line, the effect of encapsulation into the HM-liposomes on 

the cytotoxicity of 5-FU (chapter 4) as well as the transfection efficiency of a gene 

transfer vector constructed using the HM-liposomes (chapter 6) were studied. 

In order for the results obtained in different chapters to be comparable, a 

single liposomal composition was used throughout this thesis. Liposomes prepared, 

both by the heating method and a conventional technique, were composed of 

DPPC: DCP: CHOL (7: 2: 1 molar ratio). However, it should be noted that the heating 

method is not confined to this lipid composition. The liposome composition selected 

in the present study was based partially on the fact that DPPC (the main ingredient of 

the HM-liposomes prepared in this study) is a natural lung component. This 

selection was also based on the results obtained by different groups previously 
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(Papahadjopoulos et at 1977; Jurima-Romet et at 1992; Kahvcci et at 1994; Borucu 

et at 1995; Zareie et al 1996a; Mozafari 1996; Filion and Phillips 1997; Zarcie et at 

1997; Mozafari and Hasirci 1998; Mozafari et at 1998a; Mozafari et at 1998b; 

Banerjee and Bellare 2001). In accordance with the findings of these literature 

reports, results obtained in the present work attest that HM-liposomcs composed of 

DPPC: DCP: CHOL are stable for many months after their preparation (chapter 2) and 

possess high drug and DNA encapsulation efficiencies as well as permeability and 

release properties (chapters 4 to 6). The stability of the 1IM-liposomes relies on the 

fact that DPPC has a relatively high phase transition temperature (i. e. 41°C). 

Presence of glycerol further augments this stability while presence of cholesterol also 

provides ideal permeability and release properties. Additionally, employment of the 

negatively charged lipid DCP into the HM-liposome structure prevents liposomal 

aggregation and sedimentation by providing electrostatic repulsion between the 

vesicles. The reason for using a negatively charged lipid, and not cationic lipid(s), in 

the formulation of the HM-liposomes, is the toxicity and other complications 

reported for the cationic lipids (chapter 3). In terms of safety issues the u M- 

liposome formulation was detected to be superior to the liposomes prepared by 

conventional techniques using volatile organic solvents. Cytotoxicity studies 

revealed that HM-liposomes are completely non-toxic towards the HBE cells while 

conventional liposomes exhibited significant levels of toxicity (chapter 3). This was 

confirmed by employing two generally used cytotoxicity tests, namely NRU and 

MTT assays. It was found that presence of calcium and DNA do not affect the 

cytotoxicity results. 

Incorporation of drugs into the HM-liposomes can be achieved by several 

routes: i) adding the drug to the reaction medium along with the liposomal 

ingredients and glycerol; ii) adding the drug to the reaction medium when 

temperature has dropped to a point not lower than the transition temperature (Ta) of 

the lipids; iii) adding the drug to the HM-liposomes after they are prepared e. g. at 

room temperature (incorporation of DNA to the HM-liposomes was performed by 

this route as explained in chapter 6). It is known that formation of liposomes 

requires heating the liposomal components at temperatures not lower than the Tc of 
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the lipids. This is because below Tc lipids are in the gel state and can not usually 

form bilayered structures. When cholesterol (or any other sterol) is used as a 

liposomal component (as was the case in the present study), liposomes are prepared 

successfully at 120°C (chapter 2). Since the majority of the phospholipid molecules 

employed as liposomal constituents have transition temperatures below 60°C, in the 

absence of cholesterol (or other sterols) HM-liposomes can be prepared for example 

at 60-70°C. The antineoplastic drug 5-FU was incorporated to the HM-liposomes 

efficiently at two temperatures of 60°C and 120°C (chapter 4). This indicates that, 

even in the presence of sterols, incorporation of drugs sensitive to high temperatures 

to the HM-liposomes can be achieved with high efficiencies by adding the drug to the 

reaction medium when the temperature has decreased to 60°C or 70°C for example. 

It seems that once sterols are dissolved at high temperatures, at a lower temperature 

(i. e. 60°C which is above the Tc of the lipids) liposomes are either still not formed or 

are highly dynamic and able to incorporate drug molecules efficiently. 

Incorporation of plasmid DNA molecules, which are highly sensitive to high 

temperatures, to the HM-liposomes was carried out at room temperature by 

incubation of DNA with the empty HM-liposomes. Since both DNA molecules and 

the HM-liposomes prepared in this study are anionic, incorporation of DNA to the 

HM-liposomes was performed in the presence of calcium. Morphological studies 

revealed either one huge vesicle or two to four aggregated/semi-fused vesicles for 

liposomes of both MLV and LUV types as a result of their complexation with DNA 

by the mediation of Ca2+ (chapter 6). It was detected that HM-liposomes have a high 

DNA encapsulation efficiency and are able to protect the incorporated DNA 

molecules from the enzymatic action of DNase I. Furthermore, it was observed that 

HM-liposomes are able to release the incorporated DNA upon encountering a model 

membrane system. It was established that the optimum lipid: DNA ratio for the 

transfection of the HBE cells is 7: 1. However, the transfection efficiency of the HM- 

liposomes was less than that of the commercially available cationic lipid DOTAP. 
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7.3. Prospective Work 

A distinct feature of the heating method compared with the conventional 

techniques of liposome preparation is the absence of potentially toxic detergents and 

organic solvents. It was suspected that the presence of trace amounts of the volatile 

organic solvents, employed in the manufacture of the conventional liposomcs, is 

responsible for their toxicities. This needs to be further confirmed by employing 

sensitive analytical instruments such as mass spectrometry. 

In future, animal studies are necessary to determine the efficacy of the 

developed system as a means of obtaining information on the in vivo characteristics 

of the HM-liposomes intended for delivery of therapeutic agents. Investigation of 

approaches to prevent the opsonisation and increase the circulation time of the HM- 

liposomes, e. g. by insertion of polymers such as poly(hydroxyethyl L-asparagine) 

(PHEA) (Metselaar 2003) or poly(ethylene glycol) (PEG). Additionally, employment 

of targeting strategies to increase localisation of the drug at the target site in the body 

and avoid harm to healthy tissues are among the prospective points to be considered. 

The transfection efficiency of the HM-liposomes needs to be established in 

other cell types in vitro as well as in animal models in vivo. Means of improving the 

transfection efficiency of the HM-liposomes, for example by optimising the 

concentration and type of the divalent cation and/or the lipids used in the 

formulation, needs to be explored. Furthermore, optimum ways of delivering HM- 

liposomes, containing DNA or other drugs, to the airways should be established e. g. 

by investigating the physicochemical and pharmaceutical characteristics of 

nebulised/aerosolised formulations in vivo. 
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7.4. Conclusions 

A novel method for producing liposomes, without employing any toxic chemical or 

hazardous process, was developed during the course of this thesis. This 'heating 

method' enabled preparation of stable liposomes with ease, good reproducibility and 

different size distributions. Liposomes manufactured by the new method (ui*M- 

liposomes) were completely non-toxic when tested in a human lung epithelial cell 

line. The antineoplastic drug 5-FU and the antioxidant agent GSH were encapsulated 

in the HM-liposomes with high efficiencies. HM-liposomes sustained the release of 

these drugs for prolonged periods and reduced the cytotoxicity of the 5-FU in vitro. 

A new non-viral, and non-cationic gene transfer vector was constructed by using the 

HM-liposomes. Incorporation of DNA to the HM-liposomes was achieved with high 

efficiency through a very mild procedure, which does not involve any potential harm 

to the DNA structure/function. High-resolution electron and scanning probe 

microscopic studies revealed either one huge vesicle or two to four aggregated/semi- 

fused vesicles for HM-liposomes of both MLV and LUV types as a result of their 

complexation with DNA and calcium. The HM-liposomes were detected to be able 

to protect the incorporated DNA from enzymatic degradation. Moreover, the vector 

was detected to be able to transfect cultured human lung epithelial cells, in the 

presence of serum, probably by a mechanism involving fusion of the ternary complex 

to the plasma membrane and/or the endosomal membrane. 
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Appendix 1. 

Structural details of Scanning Tunnelling 

Microscopy 

Mechanically, scanning tunnelling microscopy (STM) consists of two main modules, 

a scanner and a coarse positioner. These modules can be separated to perform 

distinct measurements, performance tests and experiments. Even different modules 

for coarse positioning can be installed to the scanner module. The scanner part is 

constructed with a piezo tube (PZT) (EBL #3 PZT-5H, Staveley Sensors INC, CT) 

glued to an aluminium body. Electrical connection of PZT are through a special 

connector. The tip holder is as well glued to the interior of the PZT tube but isolated 

electrically. Rough approach unit is a magnetically driven slider which is fastened to 

the scanner using two screws and the whole system is mounted on a vibration- 

isolation stage. Electrical connections to the system is through a printed circuit 

board that is placed near the vibration-isolation stage. Very thin wires are used 

between the STM and this board to reduce the vibrational coupling between them. 
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Appendix 2. 

Example of 5-Fluorouracil Calibration Curve 

y=0.0011x-0.0002 
R2 = 0.9995 5-FU Cal. Curve n=3 
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Appendix 3. 

Example of Glutathione Calibration Curve 

Glutathione Calibration Curve 

In 
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