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ABSTRACT

An investigation into process requirements for precision grinding was undertaken. The
work included a study of the technological requirements and their economic implications.
A high technology prototype grinding machine was used, known as the Suprema, to

establish the effects of grinding at high speed using a vitrified CBN wheel. Comparisons

were made with results from work carried out using conventional abrasives and vitrified
CBN at conventional speed on a standard CNC cylindrical grinding machine. The research

was based on two workpiece materials, namely, AISI 52100 an easy-to-grind bearing steel

and Inconel 718 a difficult-to-grind nickel based alloy.

The Suprema was designed to have high dynamic and static stiffness. Excitation tests
revealed that the dynamic characteristics of the machine were good. However, it was found
that the machine static stiffness was low. Despite this the performance of the machine was

not noticeably impaired in terms of workpiece surface roughness or roundness. This was

attributed to the good dynamic characteristics of the machine.

A two level experimental arrangement was used to establish the effects of process
parameters. Grinding with CBN at a high wheelspeed was found to lead to improved
workpiece quality, high G-ratio and long re-dress life. This had a significant effect on
reducing process costs. A cost model, sensitive to the effects of process parameters and
workpiece quality, was developed. Through this it was shown that high-speed grinding with

vitrified CBN provides a step change in the performance and economics of the grinding

process.

For both the easy and the difficult-to-grind workpiece material, significant advantages were
gained using vitrified CBN compared with using aluminium oxide at conventional speed on
a standard CNC cylindrical grinding machine. For the material AISI 52100, conventional
speed vitrified CBN was more effective than a sol gel abrasive. However, for both
workpiece materials high-speed grinding using a vitrified CBN wheel gave overwhelmingly
superior workpiece quality at significantly lower cost. Wheel costs were found to be

negligible and labour costs greatly reduced when grinding at high speed using vitrified
CBN.
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NOMENCLATURE

a Applied depth of cut

Ae The true depth of cut

aq Depth of dressing increment

Apmax Resonance amplitude

by Effective width of the dressing tool

b Wheel width

C Workpiece specific heat capacity

Cr Labour cost per unit time including an overhead contribution

C Labour cost per part including an overhead contribution

Cnm Machine cost per part

Cone The purchase cost of the machine tool

C; Wheel cost per part

C Total cost per part including machine tool purchase costs spread over the
payback period

Cwd Dressing cost per unit volume of material removed

Cwh Handling cost per unit volume of material removed

Cwi Labour cost per unit volume of material removed

Cuws Wheel cost per unit volume of material removed

d, Equivalent wheel diameter

d; Wheel diameter

ds Stand-off distance

dy Workpiece diameter

dsmax Maximum wheel diameter

Asmin Minimum wheel diameter

Auw Stock removed from workpiece diameter

e Specific energy

€cc Specific energy convected by the grinding chips

e.f Specific energy convected by the fluid

E Youngs modulus

F, Tangential grinding force
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krailslock

kw

k workhead

kwarkpiecep

Normal grinding force
Equivalent chip thickness
Maximum uncut chip thickness

Second moment of area
Contact stiffness
Grinding force coefficient
Dynamic stiffness
Effective stiffness
Machine stiffness

Wheel wear resistance

Wheelhead stiffness

Tailstock stiffness

Overall stiffness of workhead, workpiece and tailstock system
Workhead stiffness

Workpiece stiffness

Real contact length

Grain spacing

Number of dressing passes

Number of parts per dress

Number of parts per unit time

The number of parts produced during a specified payback perod
Grinding power

Heat dissipated to grinding chips

Heat dissipated to grinding fluid

Heat dissipated to grinding wheel

Total heat generated in the grinding zone
Heat dissipated to workpiece

Volumetric removal rate

Specific volumetric removal rate

Wear flat contact radius

Radial wheel wear per dress
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S H ;T

8 N DV &’ A

Dwell time

Dressing time

The cycle time per part
Infeed

Dressing overlap ratio
Dressing feedrate

Infeed rate

Rotary dresser surface speed
Wheel surface speed

Workpiece surface speed

Volume of wheel wear
Volume of material removed

Specific volume of material removed
Load

Displacement
Acceleration

Contact deflection
Machine deflection
Deflection of wheelhead
Payback period

Deflection of workpiece

Workpiece thermal contact coefficient = ( ko),
Radial amount of wheel wear

Radial amount of workpiece material removed
Workpiece ambient temperature

Workpiece thermal conductivity

Coefficient of thermal conductivity for abrasive
Density

Time for one revolution of workpiece.

Angular frequency
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CHAPTER 1. INTRODUCTION

1.1 Background

One of the greatest challenges when seeking to advance the technical and scientific aspects
of a process is to overcome what has been termed the economic straight-jacket [1]. This has
been a difficulty in advancing the application of the CBN grinding process. While 1t 1s now
established as technically successful for some applications, it has not had the widespread

impact on grinding practice once envisaged. At present there are some industries using

CBN for specific applications. An example of this is the automotive industry where most
camshafts are now ground using vitrified CBN [2]. However, many industries such as the
bearing and aerospace industry have still to be convinced of the ability to produce the
required quality and reduce costs. To accomplish economic viability, wheel and labour
costs per part must be cut while maintaining or improving target quality. The process must
be judged using a ‘total cost accounting’ philosophy and not by initial costs alone which are

high. It is widely believed that high speed grinding is the key to technical and economic

success with vitrified CBN. This has implications for increased costs of the grinding wheel,
the machine tool and the delivery of coolant. To support a move to high-speed CBN
grinding a detailed understanding of process and system requirements is needed. Only by
gaining and applying such knowledge, can the vitrified CBN grinding process be tested and
its performance appraised objectively. There is therefore a need to establish economic
relationships between process parameters, grinding performance and system requirements.
The hypothesis was that high-speed CBN grinding allows total costs to be reduced while

maintaining or improving quality. In accordance with this, the following aims and

objectives were set.

1.2 Aim
To establish if high speed grinding using vitrified CBN offers the benefits predicted by

theory and leads to a reduction in process costs without losing target workpiece quality.



1.3 Objectives

a. To investigate the design, characteristics and performance of a purpose built high speed
grinding machine.
b. To investigate how dressing and cycle parameters affect performance when grinding an

easy-to-grind material with vitrified CBN.

c. To investigate how dressing and cycle parameters affect performance when grinding a

difficult-to-grind material with vitrified CBN.

d. To determine if high-speed grinding offers a cost benefit to justify the increased
complexity and cost of a suitable high-speed grinding machine.

e. Establish if step changes in the grinding process can be achieved when moving from:

i. Grinding with aluminium oxide wheels to grinding with vitrified CBN wheels

at conventional speeds.
ii. Grinding with vitrified CBN wheels at conventional speed to grinding with
vitrified CBN wheels at high speed.

f. To propose process requirements for cost effective precision grinding.

1.4 Scope
The first part of the thesis reviews previous work on CBN grinding, high-speed machine

tool design and optimisation of process parameters for high-speed grinding. Theory 1s then

presented defining the factors that affect process costs.

The experimental work was predominantly based on a purpose built high-speed preciston
grinding machine. The machine known as the Suprema, was designed and built as part of an
earlier investigation by Jones and Shipman together with RWTH Aachen and other
industrial collaborators. RWTH Aachen carried out an extensive study of the machine tool

static, dynamic and thermal characteristics. In this project, an investigation was carried out
to determine how the machine tool behaved from a performance and economic perspective.
Major structural and system problems were experienced which caused considerable initial
difficulty in using the machine. These problems were overcome and it was then possible to

carry out experiments and consider machine tool requirements in relation to grinding



performance. Conclusions are reached on the characteristics necessary for economic

success. Critical aspects of machine design were identified for high-speed performance 1n

precision grinding,

The main experimental work was carried out on two workpiece materials, namely, the

bearing steel AISI 52100 and the nickel based alloy Inconel 718. These workpiece materials
were selected, for their contrasting grinding characteristics. AISI 52100 is widely used for
manufacturing bearings and is considered an easy-to-grind material. In the bearing industry
this matenal is ground successfully using conventional abrasives at conventional speeds.
With regard to AISI 52100, the focus of this investigation was on determining if high speed
grinding with vitrified CBN offers significant advantages leading to a step change iIn
grinding development. This was judged in terms of performance and costs. Experimental

work during this part of the investigation allowed the Suprema to be tested and its design

assessed.

Inconel 718 is a very different material to AISI 52100 and is used throughout the aerospace
industry. Inconel 718 is considered to be a difficult-to-grind material. Its mechanical
properties allow it to remain creep resistant at high temperatures making it ideal for turbine
blades. Inconel 718 is difficult to grind due to the formation of long continuous grinding
chips that tend to load the wheel. Therefore, process requirements for grinding this material
at conventional speed using conventional abrasives are included in this part of the
investigation. A Jones and Shipman Series 10 machine was used to carry out research at
conventional wheelspeeds, that is, up to 45m/s. Three aluminium oxide wheels were used
during the investigation. These wheels were only tested on the Series 10 machine. Vitrified
CBN was tested on both the Series 10 and Suprema, thus covering conventional and high
speed grinding. The CBN wheels used for this part of the work were of higher porosity than
usual. This was the result of work carried out in parallel with this research, where the

effects of wheel porosity on grinding performance were investigated.



An economic analysis of the CBN grinding process was carried out and it was found that
the economic success of the process is predominantly dependent on a balance between re-

dress life and cycle time. Conditions were defined for success in the high-speed CBN

grinding process.



CHAPTER 2. REVIEW OF PREVIOUS WORK

2.1 History and Background to Precision Grinding
The brief historical overview presented in this section shows how the grinding process has

and continues to evolve. It highlights the motivating forces behind this progress and gives

some focus to current and future developments required of the process.

Despite being one of the oldest processes known to man, the development of the grinding
machine was slower than other common machine tools. The lathe, milling machine, planer
and shaper were all in use in the early nineteenth century. Woodbury (1959) [3] attributes
this delay to the lack of suitable materials to develop the grinding wheel in line with the
machine tool. The first patent for a surface grinding machine was issued in 1831. A
primitive universal grinding machine was proposed in 1834, the design of which was based
on the lathe. However, it was not until 1875 that Browne and Sharp produced the first
universal grinding machine capable of precision grinding metal components. This machine

was similar to the modern universal grinding machine and is regarded as a milestone in the

development of precision grinding. The machine had a swivelling wheelhead and an
attachment for internal grinding. The headstock, tailstock, lead screws, structure and
precision of the bed were all based on other machine tools such as the lathe. In this sense it
has been stated [3] that the grinding machine did not undergo the same metamorphosis as
other machine tools. The motivation for the grinding machines original development was to
improve the quality of its product rather than to increase the rate of production. At the
beginning of the twentieth century advances in grinding wheel technology made rapid

production possible. Early man-made grinding wheels were made of emery, 1.e. aluminium

oxide, iron oxide and silica, bonded with either glue, baked clay, vulcanised rubber or
vitrified silicate. It was soon realised that using naturally occurring stones, such as emery,
would not suffice to exploit the possibilities of the grinding machine and process. It was not
until the 1890’s that synthetic abrasives were manufactured. In 1891, Acheson produced
synthetic silicon carbide and in 1897, Jacobs produced a synthetic form of aluminium oxide
[3,4,5,6]. This was another milestone in the development of the grinding process and the

beginning of modern precision grinding. During the early twentieth century grinding wheels



were produced using vitrified, rubber, shellac and oxychloride bonds. In 1923 a resin bond
was developed, adding to the abrasive and bond combinations available. With the growth in
manufacturing and in particular mass manufacturing, that occurred in the early twentieth

century, the grinding process became more widespread and essential for achieving the
required precision. Instrumental in continuing the development of the grinding process was

the automotive industry. This was largely due to the continual demand for reduced costs in
the automotive industry. This demand provided the impetus for Charles Norton to

demonstrate grinding machine capability, not only for precision, but also for rapid and

economic metal removal. Norton achieved this by developing a Plain Grinder. The Plain
Grinder was a simpler and more powerful machine than the Universal Grinder. Guest
(1915) [7] states that compared with the Universal Grinder designed for the same size
workpieces, the Plain Grinder had wider wheels, usually of greater diameter, a more
copious supply of coolant and faster infeeds. The simpler construction also led to increased
stiffness as there was no requirement for swivel arrangements on the table, workhead or

wheelhead. Colvin and Stanley (1908) [8] record that Nortons Plain Grinder could do in
fifteen minutes what had previously taken five hours of turning, filing and polishing. The
process itself was regarded as one of the most difficult precision operations in making a car
engine. Norton, however, proved that dimensional accuracy and surface finish standards

could be achieved using a single operation, namely, plunge grinding.

Between 1900 and 1930 the automotive industry was the largest single customer of the
machine tool industry [3]. This had a significant impact on the development of the grinding
machine. A list of some of the machines developed commercially around this time gives an
indication of the scope of application, i.e. Pratt & Whitney Ball Bearing Grinder (1899),
Norton Crankpin Grinder (1905), Pratt & Whitney Gun Mount Grinder (1906), Landis Roll
Grinder (1908-1910), Landis Crankshaft Grinder (1906), Heald Piston Ring Grinder (1904),
Heald Cylinder (Planetary) Grinder (1905), Bryant Chucking Grinder (1908), Pratt &
Whitney Automatic Sizing Grinder (1908). By the 1920’s most of the previously mentioned
machines were available in automatic form, e.g. Landis Automatic Crankpin Grinder

(1923). In 1922 The Cincinnati Milling Machine Company introduced the first



commercially available centreless grinding machine. Car engine parts such as push rods and
valve tappets were 1deally suited for the centreless grinding process. By 1933 the Heald

Company developed the internal Centreless Grinder. This was developed to solve the

problems of eccentricity between external diameters and bores and found usage in the

automotive and bearing industries.

Throughout the twentieth century developments in abrasive technology have continued.
This has led to a number of different types of aluminium oxide abrasive and two types of
silicon carbide abrasive. The defining characteristics of each type are hardness and
friability. Toughness is another important parameter with tougher abrasives tending to wear
rather than fracture. Increased friability indicates a lower toughness, yielding abrasives that

tend to fracture and splinter rather than wear. This leads to sharp new cutting edges being

produced, which give it a self-sharpening ability.

Continuing research into developing abrasives has seen the introduction of new products
known as ‘sol gel’ and ‘Altos’ abrasives. The sol gel abrasive is an aluminium oxide grain
produced by sintering rather than fusing [9]. Common aluminium oxide grains are produced
by fusing, where the raw materials are melted together, cooled and then crushed. The
resulting crystal structure is large and each grain comprises one to three crystals. By
comparison a sol gel abrasive grain contains many sub-micron aluminium oxide crystals.
Each of the sub-micron crystals is pore free and unusually tough. The resulting abrasive
grain has the characteristics of high toughness and high friability. This seemingly
contradictory characteristic is due to individual grains shedding worn sub-micron crystals
allowing sharp new crystals to engage in the grinding process. Thus, the abrasive grain does
not wear or fracture in the typical way of common aluminium oxide abrasives. It has been
reported that, providing the grinding force is sufficient to maintain a re-sharpening process,
increased wheel life and removal rates can be achieved using sol gel abrasives [9,10,11].
Jackson and Mills (2000) [12] state that sol gel wheels bridge the gap between conventional
aluminium oxide wheels and CBN wheels. They also state that an advantage of sol gel over

CBN is that cost reductions can be achieved without a new or modified machine tool.



More recently the emphasis on grinding wheel development has moved to grinding wheel

structure. Controlled and uniform wheel porosity is difficult to achieve in practice without
the use of artificial pore inducers. However, this can lead to increased bond contact and
reduced numbers of cutting points. To overcome this, elongated aluminium oxide grains
have been developed [13]. The shape of the grains allows a wheel to be manufactured that
has increased and uniform porosity. A disadvantage with increasing porosity is that the
grain 1s supported by less bond. This results in weaker bond bridges and consequently a
weaker wheel structure. With elongated grains this problem is overcome. The shape of the
grain leads to a natural loose pack density with sufficient abrasive/bond bridging to provide
a strong wheel structure. Recent developments in this wheel design have led to the Altos
abrasive. Aspect ratios of abrasive grains are usually around one, the Altos abrasive grain
has a length to diameter aspect ratio of eight. Jackson (2001) [14] reports that performance
tests on the Altos abrasive have shown that wheel wear was reduced, power consumption

was less and greater material removal rates could be achieved, when compared to other

abrasives.

The abrasive form of CBN has been commercially available since the late 1960’s. Its
development was a later outcome of the successful research into developing synthetic
diamonds [6]. The stimulus for this research was largely due to the high cost of using
natural diamond, which made it prohibitive in many cases. The development of CBN
provided a superabrasive which, unlike diamond, could be used on ferrous materials. The
first natural diamond wheels were developed in the 1930’s. This was largely to sat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>