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Abstract 

Abstract 

Computer technology continues to provide alternative, innovative approaches to 

the teaching and learning of mathematics at all levels, and this is encouraging the 

promotion of 'learning by doing', where interactivity replaces passivity. This 

research endeavours to show how/why constructivism (building knowledge 

through exploration) is a preferable methodology to instructivism (passive 

information transfer) when considering the effective use of technology to enhance 

visualisation skills. 

Students can generally demonstrate the ability to follow routines, but many find it 

difficult to visualise in mathematics. A key aim of this research is to evaluate 

enhanced student learning of mathematical concepts and to assess the extent of any 

skills development, via the constructivist use of computer-based visualisation. 

After a review and examination of the effectiveness of previous work, 

consideration is given to the best way to employ constructivism in teaching and 

learning with visualisation. This leads to the design of a piece of interactive 

software that motivates students to explore the relationship between visual and 

symbolic functional forms, and promotes flexible switching between 

representations. A case-study provides empirical evidence that quantifies the 

benefits of an approach integrating both constructivism and visualisation in terms 

of the development of visualisation and other higher order mathematical skills. 

As a direct result of the positive and practical outcomes of the case-study, a generic 

theoretical framework is formulated, which builds on existing theories of teaching 

and learning. The framework is applied to the process of problem solving and links 

subject and skills development together. Future mathematics education 

developments as a result of the findings of this thesis are suggested, both specific 

to the case-study and for mathematics education in general. 
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Visualisation in Mathematics Education: 

The Issues 

For those, like inc. who are not mathematicians, the computer can 
be a powerful friend to the imagination. Like mathematics it doesn 't 

only stretch the imagination, it also disciplines and controls it. 

RICHARD DAWKINS 



Visualisation in Mathematics Education: The Issues 

1.1. Introduction 

Currently within mathematics education. continually advancing computer 

technology is providing altcrnativc, innovative approaches to the teaching and 
learning of mathematics at all levels. There have been significant changes in the 

last two decades in the way in which mathematics has been taught, particularly 

concerning the involvement of the computer, with more emphasis based on 

practical and investigational work leading to a 'deeper' knowledge of the topic 

under study (Houston, 1998; Tall, 2000a, 2000b, 2000c; Ilabrc, 2001; Ahlandcr, 

2002; Challis et al., 2002; Connor, 2002; Leinbach ct al., 2002). 

The case with which the computer can now display fast, accurate, colourful images 

has led to a more visual approach to the teaching of mathematics, especially in 

visually attractive subject areas such as graph plotting, transformations, rotations, 

enlargements, etc. (Elliott ct al., 2000; Duatcpc and Ersoy, 2002; Kautschitsch, 

2002; Stehlikova, 2002). One of the most challenging issues for educators, 

however, is that of determining the most effective time to introduce such 

technologies, and how to use them, in the overall teaching and learning process 

which will maximise both educational and motivational value. 

Mathematical software and Computer Algebra Systems (CAS) such as 

AUTOGRAPH, CABRI-GEOMETRE, DERIVE, MAPLE, MATHENIATICA, 

etc. (see References for Internet addresses), coupled with advances in multimedia 

technology, have impacted significantly on both symbolic and visual aspects of 

mathematics teaching (Challis and Gretton, 2000; Mogctta, 2000; Ardahan and 

Ersoy, 2002; Blyth et al., 2002; Garcia et al., 2002), and attempts have been made 

to measure the benefits to the learning process (Noguera, 2001; Kidron and Zehavi, 

2002; Berry, 2002; Smith and Berry, 2002). Mathematics packages can be used 

either as tools during problem solving, or as vehicles for learning mathematics. 

Computer-based learning (CBL) software, such as CALMAT and MATIIWISE 

a 
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(scc itcfcrcnccs for Internet addresses), provides the opportunity for students to 

work at thcir own pace. 

It is not only mathematical software packages, such as those mentioned above, that 

have had an impact on mathematics education, but also advanced graphics 

calculators such as the TI-89 and Ti-92 (see References for Internet address), 

which arc readily available and considerably more affordable than a computer. The 

use of handheld technology in schools is now slowly becoming more widespread, 

and can provide an approach to teaching and learning, at all levels, based upon 

investigative work incorporating both pictorial and symbolic forms (however 

graphic calculators are banned in much of current A-level assessment). This 

teaching mode would appear to be particularly advantageous for the 16-19 years 

age range (A-level in the UK), as there is an apparent difference between the skills 

base that is expected, and required, for undergraduate study in mathematics, and 

that which the students actually possess on entry to university (London 

Mathematical Society (UMS), Institute of Mathematics and its Applications (IhiA), 

and Royal Statistical Society (RSS), 1995; Learning and Teaching Support 

Network (VISOR), Institute of Mathematics and its Applications (INIA), London 

Mathematical Society (MIS), and Engineering Council, 2000; Daskalogianni and 

Simpson, 2002; Hooper, 2002). Despite this reported shortfall, teaching methods 

incorporating technology of this nature have seldom been employed in schools 

(Ruthven, 1997). Ruthvcn's report for the UK Government contained findings on 

institutional availability, use and value of technology, and student access and 

ownership, and pointed to logistic issues of using technology in assessment. 

Additional to these issues, there is current debate concerning controversial 'non- 

calculator' assessment papers which do little to promote the advantages of 

technology in teaching. 

Teaching and learning using CAS at A-level can be regarded as an important case- 

study having strong implications for the preparation of students entering higher 

education (French, 1998). This type of technology can enable both algebraic and 
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graphical manipulation, not simply as a means of finding correct answers, but more 
importantly as a tool for exploring mathematical concepts. llowcvcr, tile 

importance of procedural expertise, for example the ability to differentiate, 

integrate, solve systems of equations, manipulate symbolic expressions, etc., must 

not be forgotten, but rather incorporated into a teaching, learning and assessment 

strategy. Mathematics educators need to be able to understand what amount of 

procedural facility is required by a student in order to understand concepts at a 
hierarchically higher level, and what can be left to the machine (the issues here are 

similar to those of the Whitc-I3ox/t3lack-Box Principle (Buchbcrgcr, 1989) which 
is described in detail in Section 2.4.3.1 of Chapter 2). A CAS needs to be used in a 

considered way. i. e. students need to know what they want it to do for them, 

whereas some keystroke capture work (Berry, 2002; Smith and Berry, 2002) 

suggests that usage is sometimes just random button pressing. 

Electronic learning and teaching materials arc continually becoming more popular 

in the classroom, at both school and university level, although a number of 

teachers remain apprehensive. Many mathematics teachers, however. are trying to 

move away from the traditional `handle turning' exercises of the past, to more 

enlightening exercises leading to conceptual understanding (Cochrane, 1996; Tall, 

1991,2000a, 2000b; 11abre, 2001; Mackie, 2002). Multimedia software and 

visualisation technology, employing the use of video and sound in order to enhance 

and enliven the presentation of mathematical ideas (Bishop, 1997; Al-Jumeily, 

2002; Pappas et al., 2002), provide the opportunity of transforming complex 

mathematical ideas into understandable, pictorially aesthetic forms. The following 

quotation encapsulates this belief: "Probably the single most powerful tool 

available for teaching mathematics is visualisation' (Cochrane, 1996). 

4 
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1.2. Problem Definition 

This scction dcscribcs the numerous problems that enhanced visualisation might 

overcome. The thesis attempts to address such problems. 

Teaching and learning styles adopted in schools do not necessarily lend themselves 

to the development of a dccp understanding of mathematics. Students are not 

encouraged to be active participants in the learning process. instead of 

experiencing passivity in the classroom, they need to be actively engaged, thus 

learning by building up knowledge structures based on their own experiences. 

Students can demonstrate the ability to follow routines and regurgitate factual 

information, but often struggle when required to utilise higher order skills such as 

the ability to interpret, conjecture and evaluate, or to apply existing knowledge in 

an alternative context. Students do not have a natural inclination to employ 

visualisation in their learning or application of mathematics. They have difficulty 

appreciating the link between symbolic and pictorial representations, as the 

representational norm that has predominated throughout their experiences is that of 

symbolism. The use of visualisation, coupled with the rigorous algebraic 

approaches with which they have become familiar. can help to integrate the 

different representational forms. It is conjectured by this author that the gap 

between what is expected at GCSE and that which is expected at A-level, and 

likewise between school and university study, can be bridged by incorporating 

more visual approaches into the teaching, learning and assessment of mathematics. 

Students lack conceptual understanding of mathematics, having spent much of 

their mathematical studies at school concentrating on procedural tasks and 

activities of a manipulative nature. The use of pictorial representations to enhance 

and reinforce the understanding of mathematical concepts is used to a certain 

extent at university level, but is not widespread in schools. 

5 
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Lack of motivation can be a barrier for many in studying mathematics. It is 

conjectured here that a more student-ccntrcd approach, coupled with materials 

designed for use in visually compelling computcr"bascd environments, can not 

only help to motivate individuals, but can actually serve to enhance the process of 
learning mathematics. 

1.3. Factors Involved 

This section serves to highlight the problems outlined above, and attempts to 

illustrate how visualisation ability is linked to the teaching, learning and 

assessment of mathematics. Visualisation is central to the four major factors 

discussed below, and is a key ingredient in the relationship between them. 

Consideration is given to the factors that influence the use of visualisation in 

student Teaming, and how visualisation can be employed to enhance conceptual 

understanding. Teaching and learning styles, in particular constructivism, are 

discussed (Section 1.3.1), and the skills that students possess (Section 1.3.2), 

together with those which are considered desirable for the understanding and 

application of mathematics, are taken into account. These two factors provide the 

foundation for considering how conceptual understanding can be developed by 

employing visualisation (Section 1.3.3), and how this influences software design 

incorporating imagery (Section 1.3.4). 

1.3.1. Constructivism: Teaching and Learning Styles 

Consideration is given here to the role of advanced technologies in active learning. 

lt has been described (Schank, 1994) how, as a child, we did not learn to walk by 

taking a walking class, but instead we learnt by 'doing'. From birth to becoming a 

small child we do not participate in any formal classes or lessons, but the progress 
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that we make during these gars is enormous. Schank bclicvcs that teachers must 
ther'efor` consider why pupils should endure a passive approach to learning in 

school. Wcll-dcsigncd educational software should support active participation, 
with the student being more in control of the learning process. 

It is currently a particularly exciting time in mathematics education. Continually 

advancing technology is providing educators with new opportunities to enhance 
the teaching and learning processes. Interactive technology can allow students to 
be more involved in the learning process, so that they arc not merely subjected to 

passive page-turning. However, even though all this technological capability is 

readily available. it is not a trivial matter to utilise it most effectively for 

educational benefit. 

In recent years, there has been considerable evidence of a change in learning 

activities, as described above (Brown, 1994a; Clements and Battista, 1994; 

Kutzlcr, 1996; Bishop, 1997; Abboud, 2002; Challis ct al., 2002). However, the 

educational benefits associated with this innovative change have been the subject 

of much debate (Jackson, 1997a; Jackson, 1997b; Cretchiey, 1998; Plannah, 1998), 

and this remains a contentious issue in mathematics education (Gil-Pcfrcz et al., 
2002). 

Educators, especially in the United States, are encouraging a constructivist, as 

opposed to an instructivist. approach to learning (Liao, 1993). In its simplest terms, 

a constructivist approach is one in which the student explores and experiments in 

order to learn, whereas an instructivist approach is one in which the student is 

taught in a traditional manner (a detailed discussion of instructivism and 

constructivism in the mathematics classroom is provided in Chapter 3). 

lt has been reported (Bailey and Chambers, 1996) that thcrc was a real nccd for 

change in science and mathematics education in the United States, and the focus of 

change was on the roles of interactive learning and technology. Bailey and 
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Chambers rcponcd a significant dcclinc of educational standards in scicncc and 

mathematics in the United States in spite of evidence that they had spent more on 

education in these areas than other countries such as England, Wales, Ireland, 

France, Spain and Canada. 

It is now believed that traditional teaching methods Involving the delivery or 
lectures and the use of textbooks do not have the desired motivating effect on 

students, but instead have a dampening effect (Bailey and Chambers, 1996). It is 

important. therefore, to increase motivation by utilising imaginative multimedia 

materials to capture attention, and increase interactivity by involving students 
directly in the learning process. It is conjectured that this active participation in 

understanding mathematical ideas and concepts, instead of rote learning, facilitates 

the long-term retention of knowledge. 

Piaget stated: "1m convinced that one could develop a marvellous method of 

participatory education giving a child the apparatus to do experiments and thus 

discover a lot of things by himself. For mne, education means making creators" 

(Liao. 1993). This is the basis of constructivist thinking. It is an educational 

philosophy in which the students learn to think for themselves. Liao believes that 

the teacher needs to be more of a 'guide on the side'. than a 'sage on the stage'. 

This approach to learning allows the students to rethink their initial ideas through 

interaction with the learning environment and fellow students. 

Students' learning experiences can be enriched by helping them to construct 

knowledge for themselves. Visually stimulating interactive software can provide 

students with the appropriate environment in which they can become immersed in 

their own knowledge construction (Pea, 1987; Malone and Upper. 1987; Phillips 

ct al., 1995; Stevenson, 2000; Chac and Tall, 2001; Olivcro, 2001; Kawski, 2002; 

McDill and Rash, 2002). 
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1.3.2. Students' Skills 

This section provides a discussion of the apparent lack of students' mathematical 
skills acquired at school, together with implications for further study in 

mathematics. The reasoning skills of students with differing abilities arc also 

addressed. 

1.3.2.1. Fundamental Problems 

One of the reasons for this research is that there is a real problem that needs 

addressing. Many students arc failing, or even avoiding taking, mathematics at 

AVS"level. A"level and undergraduate level (London Mathematical Society (Lr1S), 

Institute of Mathematics and its Applications (IMA), and Royal Statistical Society 

(RSS), 1995; Edwards, 1996; Ahmad et al., 2000; Learning and Teaching Support 

Network (NISOR), Institute of Mathematics and its Applications (MIA). London 

Mathematical Society (LIAS), and Engineering Council, 2000; Sani and Ernest, 

2000; Middleton, 2001). Graduates with mathematical skills arc in great demand 

by employers (NIathSkills Discipline Network, sec References for Internet address; 
Kopp and Higgins. 1997), and so positive steps need to be taken to rectify this 

disturbing situation. This research endeavours to illustrate how effective use of 

computer visualisation in teaching can increase the appeal of mathematics to those 

who have traditionally viewed the subject as an unattractive proposition. 

It is always possible to improve the quality of teaching, and this can be achieved 

more easily if teachers and lecturers arc willing to try new teaching methods. 
Teacher education programmes cannot provide potential teachers with the desired 

qualities (Hard, 1994). The mathematics knowledge that they acquire is far from 

satisfactory for school mathematics. let alone university level. llarel is convinced 
that there is a distinct lack of attention to the three crucial components of teachers' 
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knowledge: mathematics content, epistemology, and pedagogy, and that these 

components need to be effectively integrated into teacher education programmes in 

order to provide the grounding necessary to produce teachers of a suitable quality. 
Attempts are being made, however, to address this deficiency (Llinarcs, 2000; 
Bloch, 2002; Nogucra, 2002; Poblctc and Diaz, 2002). Teacher education 
programmes also need to train the potential teacher in the use of sophisticated 
technology (Baldin, 2002). It is no use handing new teachers a TI. 92, for example, 
and expecting them to utilise it in their lessons. They need instruction and 
guidance with respect to its potential. 

School leavers are increasingly ill-prepared for further study (London 

Mathematical Society (LIAS), Institute of Mathematics and its Applications (ih1A), 

and Royal Statistical Society (RSS), 1995; Learning and Teaching Support 

Network (VISOR), Institute of Mathematics and its Applications (INMA), London 

Mathematical Society (LNIS), and Engineering Council, 2000; Daskalogianni and 
Simpson, 2002). Virtually all science subjects include some mathematics, and the 

above reports highlight the fact that students do not have the necessary preparation 
for such a mathematical content. Various diagnostic and observational studies have 

highlighted undergraduate weaknesses in mathematics (Porkess, 1996; Ihejicto and 
Emenalo, 1996. Edwards, 1997; Hooper. 2002), and it is suggested that new 

undergraduates arc uncomfortable with the different style of learning (Steyn and 

Marro, 2002). i. e. more interaction as opposed to transmission, hence learning 

being more constructivist as opposed to instructivist. 

There is a noticeable 'gap' between the mathematical skills acquired at school, and 

those which are expected at university (Gill, 1998). School curricula on the whole 

concentrate on instrumental tasks, i. e. the routine use of procedures, whereas 

universities like to provide students with a variety of experiences in order to 

enhance their rclationurl skills (Skemp, 1976), i. e. the ability to generalise globally 
(Anderson, 1996; Smith ct al., 1996; llershkowitz et al., 2001). As a result, new 

undergraduates, even the bright ones. insist on carrying out procedural tasks in a 
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robot-like fashion. One solution is to make mathematics more practical (Ortncll, 

1997; Pappas ct al., 2002), and highlight its usefulness in the world. This is the 

philosophy of the new iVS-level 'Use of Mathematics' course of the Assessment 

and Qualifications Alliance (AQA, scc References for Internet address), introduced 

from 2003. The course has more emphasis on applying, understanding, reasoning 

and communication. It is practically oriented and promotes the application of 

mathematical principles to analyse real world problems, using information 

technology and real data sets. However, with this approach, there can be problems 

concerned with diluting both content and skills (sec discussion on page 129 of 
Chapter 3). 

Due to market forces. some schools switch to 'less demanding' examination 

boards so that their pupils can attain higher grades. This will result in the school 

featuring more prominently on national league tables, but yet perhaps may mask 

any issue of underdeveloped mathematical skills. 

Another problem is that a trend away from combining mathematics and science A- 

levels as a coherent course of study has developed. Students are now often 

encouraged to choose a broader course of study. containing subjects from both arts 

and sciences. However. seeking a broader education can create problems, for 

example the mutual support mathematics and physics traditionally provided for 

each other in terms of consolidation can no longer be assumed. Many students also 

enter Higher Education from different routes, for example from Access courses or 

with vocational qualifications, and as a result may not possess the rigorous 

mathematical background required for many Mathematics, Physics, or Engineering 

undergraduate degree courses. Mathematical skills and knowledge therefore vary 

considerably depending on the route taken (A-level or Access course) and other 

chosen subjects (sciences or arts). 

The fact that mathematics is considcrcd by many students to be a traditionally 

difficult subject has contributed to a continuous decline in the number of students 
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studying mathematics (Fujita ct al., 1996), which has continued into the twenty- 
first century (Porkcss, 2002). Students need to be attracted to study more 
mathematics by motivating them during their studies. Mathematical skills are in 
demand in a world increasingly dominated by sophisticated knowledge and 
technology. Computer technology can help to deliver these skills (Kahn, 1998). 
Another negative aspect (common to all subjects, not just mathematics) is the 

modular model, and its 'teach-test-teach-test' philosophy with little attention paid 
to synthesis of the material over different modules. 

To reverse the apparent decline in students' mathematical skills and numbers 

studying mathematics. educators must therefore strive toward the creation of 

alternative, more attractive approaches to the teaching and learning of 

mathematics. which will make studying mathematics at all levels an altogether 

more inviting prospect. It is the contention here that the appropriate use of 

computer visualisation will not only assist in this development, but will also 
increase student motivation to learn. 

1.3 2.11M1ore Able' and 'Less Able' Students 

The outcomes of this research are applicable to students with a wide range of 

perceived mathematical abilities, but one of the problems faced is that there is a 
difference in qualitative thinking between 'more able' and 'less able' mathematics 

students (Tall and Razali. 1993). It is of interest how 'more able' students 

approach mathematics, and the problems that 'less able' students face. Tall and 
Razali state that the more gifted student will think at a higher level, i. e. will be able 

to manipulate concepts, and will adopt a more flexible way of thinking. Those who 

arc 'less able' try to co-ordinate procedures rather than manipulate concepts. 

As an illustrative example. Tall and Razali consider the expression 2+3x. This 

represents both the process 'add two to the product of thrcc times x' and also the 
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result of the calculation, the expression '2+3x'. It can thus be seen how the 
dynamic process (the former) can be crystallised into a static concept (the latter). 
The flexible, crystallised concept can now be mentally manipulated and used for 
higher level thinking. For instance, 2+3x can be part of a more complex 

expression such as (2+3. r)2-15x(2+3x). The 'more able', faced with the 

problem of factorisation, may 'chunk' this sub-expression as a single entity and see 
the factorisation (2+ 3x -15x)(2 + 3. r) = (2 - 12x)(2 + 3x) . The 'less able', 
however, may only follow rules such as multiply out brackets, collect together like 

terns, etc. Therefore, the 'more able' arc manipulating mental objects whilst the 
'less able' arc having to co-ordinate the processes of algebra. Thus the 'more able' 

succeed because they arc performing qualitatively easier tasks, manipulating 

symbols, whilst the 'less able' arc attempting to perform harder tasks or co- 

ordinate processes. The relationship between the process and the concept, with the 

notion of their dual existence, is known as a 'procept' (Gray and Tall, 1994,2001). 

Any teaching strategies that involve the integrated use of computing technology, 

and focus on a constructivist rather than an instructivist approach to learning, must 

be applicable to all mathematical ability ranges. It is a requirement of the 

mathematical software developed and used in this research, as described in Chapter 

5, that it is to be useful for both 'more able' and 'less able' students (confirmation 

of this is provided). The software is concerned with the relationship between the 

symbolic and pictorial representations of functions. It uses visualisation in an 

attempt to enhance students' conceptual understanding of functions and graphs. 

The software can assist, via meaningful visualisations, 'more able' students who 

arc comfortable with the manipulation of symbols, but do not necessarily 

conceptually understand the consequences of these manipulations on graphical 
forms. The software is equally beneficial to 'less able' students who arc not 

comfortable symbolically. It invites them to conjecture the symbolic form of 

certain graphs, and offers a supporting mechanism by illustrating the effect of any 

symbolic manipulation on the graph. In this way, they can become more confident 

with algebraic manipulation and, at the same time, acquire a greater conceptual 
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undcrstanding of the rclationship between alternative for s of functional 

rcprescntation. The software also requires students to progress through various 

stages of difficulty (with as much or as little help as is necessary), and this 

successful completion of tasks inspires greater confidence. The experiment 
described in Chapter 5 attempts to prove, amongst other things, that a 

constructivist approach to teaching and learning which incorporates computer- 
based visualisation is appropriate for both 'more able' and 'less able' students. 
Further details and outcomes of the experiment are discussed in Chapter 5. 

1.3.3. Visualisation and Conceptual Understanding 

Visualisation is a very powerful educational tool for the understanding of 

mathematical concepts (Jones and Bills, 1998). Computer visualisation is vital for 

exploring some complex subject areas, for example chaos and fractals, and it holds 

the key to creating a generalised understanding of non-linear mathematics 

(Cochrane, 1996). 

As previously discussed, the school mathematics curriculum predominantly 

assesses procedural skills. Visualisation is not used significantly in either the 

teaching process or the assessment process, and so students can therefore be high 

achievers by simply being able to accurately perform the required processes 

(Etchells and Monaghan, 1994). Due to the manner in which mathematics is 

currently taught and assessed, good visualisers are seriously underrepresented 

amongst high mathematical achievers (Presmeg, 1986; Malabar and Pountncy, 

2000). The inclusion of visualisation in the teaching, learning and assessment 

process would help to develop more 'complete' mathematicians with a greater 

conceptual understanding, i. e. those that possess more interpretive and 

constructivc, as wcII as proccdural, skills. 
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Current computing technology. whether it he handhcld calculators, computer 

algebra systems (CAS) or bespoke teaching software, should enable more 

emphasis to be placed on the use of visualisation in teaching to enhance student 

understanding of mathematical concepts (as opposed to merely processes). 

Visualisation is very much a cognitive skill which can act as a vehicle for 

conceptual understanding. It is the ability to interpret symbols visually, and not 

simply a method of pictorial representation of something habitually symbolic. 
However, the shift from a more conventional pattern of teaching mathematical 

processes with perhaps the use of visualisation at the end of the process, to one 

where the visual aspects of a concept arc integrated into the teaching as a whole is 

not always straightforward. In the UK for example, pioneering work over a period 

of time on understanding via visualisation (Tall, 1986a, 1995,2000a) has led to the 

production of visualisation software available for the teaching of mathematical 

concepts in 16-19 year A-level mathematics and beyond, but software of this 

nature does not seem to be in widespread use in schools (the dynamic software 

AUTOGRAPH is used in some schools). Similar efforts to integrate symbolic and 

visual understanding using a CAS have been reported. For example (Leinbach ct 

al., 1997,2002), a CAS can assist students to become active participants in their 

learning of mathematics. Students can work with the CAS by experimenting and 

making conjectures. 

1.3.3.1. Enhancement of Visualisation Skills 

Educators need to attempt to enrich thinking and visualising whilst students are 

doing mathematics, as the presentation of mathematical material is becoming 

increasingly visual. For example, mathematics educators can take advantage of 

modern technologies to enable the graphs of functions to be plotted with relative 

case (Mason and Heal, 1995; Elliott et al.. 2000; Pesoncn, 2002; and see Chapter 
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5). This takes away the tedium of plotting, and in turn allows the student to 
concentrate on the interpretation and analysis of functions through their graphs. 

Mason and I Ical (1995) state that "the pictorial enables aesthetic appreciation and 
invokes holistic visual processing directly, ºº"hereas written symbols must be 

j; rocrsscd sequaitially. and rrquirc construction tja rich inner imagery tu 

achieve the same effect"' 

The computer can help in the building of more stable mental representations. After 

an experiment (Moreno and Sacristan, 1995) in which students experimented with 

mathematical software of a dynamic nature, one of the students responded that, "I 

feel that each time I am in contact with the computer, my mind becomes a 
blackboard on which I am doing something - in this case drawing, and I awake to a 

world where, although I cannot touch a square, I can sec it and construct it, even if 

only graphically". It is this mental image-making that needs to be developed via 

computer visualisations. 

The use of animation has shown itself to be a great motivator for often dreary 

subject matter (Aiilheim. 1993). It is not just a motivator however, but can be a 

significant factor within educational packages. It can be particularly useful when 

considering the mathematics of motion, for example using the CBL (Computer 

Based Laboratory) for interactive data capture (Gretton and Challis, 1996,1999). 

Consider, for example, the throwing of a ball. An animated sequence could show 

the path of the ball through the air and the resultant shape of the curve. This 

dynamic pictorial build-up could be alternatively presented as a still image with an 

accompanying textual description, but the dynamic data capture is more likely to 

lead to students making hypotheses and conjectures about the information that they 

`own,. 

Given the earlier debate in Section 1.3.2 regarding students' skills in general, it 

was of interest to discover the extent of any visual skills that students possessed on 

16 



Visualisation in Mathematics 1d cation: Thy Issues 

entry into undergraduate mathematics degree programmes, especially where these 
used a significant amount of computer technology. Results highlighted the fact that 
students arc generally poor at visualising, and so the strong graphical capabilities 
of the computer can be employed to cnhancc this skill. More details of this initial 

survey are provided in Charter 4. 

1.3.3.2. Improved Understanding of Concepts 

In mathematics, visualisation can be utiliscd in order to achieve conceptual 

understanding. To visualise a concept means to understand the concept in terns of 

a diagram or visual image (Zimmermann and Cunningham, 1991). Mathematical 

visualisation is the process of forming images, and using such images effectively 
for mathematical discovery and understanding. 

Mathematical visualisation gives depth and meaning to understanding, and can 
inspire creative discoveries. To achieve this kind of understanding, visualisation 

cannot be isolated, and must be linked to other forms of representation. Students 

must learn how ideas can be represented symbolically, numerically, and 

graphically, and to move back and forth among these different representations 
(Zimmermann and Cunningham, 1991). This way of thinking is stressed in Chapter 

5, where the bespoke software links algebraic and graphical forms. 

The computer incorporates a visual dimension into mathematics in ways that were 

not previously possible (Moreno and Sacristan, 1995; Tall, 2000b; Cha and Kent, 

2002). If we again consider the plotting of graphs, one great asset of the computer 
is that it can show how a process is actually generated over time, for example the 

path of a projectile. We can therefore appreciate the dynamic nature and the 
behaviour of the process as opposed to merely the result. 
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Although most mathematics teachers would agree that the understanding of 

mathematical concerts is ideally the key aitn, student experiences in schools, 

particularly at A"Icvel. arc far too procedure-based (French, 1991; Hubbard, 1997; 

Malabar and Pountncy, 2000; Daskalogianni and Simpson, 2002). For example, it 

is quite common for students to be able to differentiate complicated functions, but 

the same students will not necessarily be able to look at a fairly simple graph and 

explain the key features (e. g. turning points, asymptotes, etc. ). Thinking, rather 

than just doing, needs to be encouraged. 

This research has attempted to determine the truth or falsity of the hypothesis that 

the use of computer visualisation improves the understanding of mathematical 

concepts (as opposed to merely processes). This was achieved through the design 

and implementation of an experiment. The dynamic educational package 

concerned with the graphical representation of functions, developed for the 

experiment, is aimed at students studying A-level and first year undergraduate 

mathematics topics. This chosen domain of the graphical representation of 

functions, found in upper secondary and Higher Education syllabuses, has been 

selected as it is this type of subject matter on which our dynamic approach should 

have a more considerable impact. It is anticipated, however, that the conclusions 

reached relating to this approach to teaching and learning will show the approach 

to be beneficial and applicable to all age groups and levels of mathematical ability. 

A description of the teaching software and full details of the experiment arc 

presented in Chapter 5. 

13.33. Evaluation of Enhanced Learning 

The literature suggests that some work has been done to evaluate any educational 
benefits of a computer-based, visual approach to learning, however much of the 

evidence is anecdotal. It has been reported that there arge educational benefits of 
handheld technology in the classroom (Short, 1998; Gardiner ct al., 2000; Pope, 
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2002), that computers facilitate the construction of mathematical concerts 

(Clcmcnts and Battista, 1994; Tall, 2000j, 2000b; I labre, 2001; Mackie, 2002), 

that the learning experience is enhanced using interactive software (Dhillon, 1997; 

Stevenson, 2000; Olivcro, 2001; Kawski, 2002; Mcdill and Rash, 2002), and that 
learning is enhanced using a CAS to perform visualisations (Amnccin et al., 1997; 

Challis and Grctton, 2000; E31)1h ct al., 2002), but very few studies actually attempt 

to measure any benefits in a large controlled experiment. This thesis describes such 

an experiment (245 students). 

Feedback is an important part of the evaluation process, as it can help assess the 

quality and usefulness of a particular piece of educational material. Academic 

content, logical structure. and any limitations of the software arc other evaluation 

considerations (Levin, 1986). A questionnaire was given to all students who used 

the dedicated software in order to receive feedback on the learning experience and 

the usefulness of the software. An examination of the feedback is provided in 

Chapter 5, and future work as a result of the feedback is discussed in Chapter 7. 

Once the experiment had been designed, it then had to be implemented. This 

implementation stage included the statistical analysis and interpretation of results, 

leading to the re-examination of various theories of teaching and learning. A 

theoretical underpinning of the constructivist use of computer-based visualisation, 

as a result of the outcomes of the experiment, is presented in Chapter 6. 

1.3.4. Software Design Issues Incorporating Imagery 

This section discusses factors influencing the design of software incorporating 

imagery, and how these factors affect motivation. Consideration is given to 

students' cognitive development via the use of technology, the motivational 
benefits of multimedia, and the application of outcomes to future technological 

developments. 
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1.3.4.1. Cognitive Technologies 

Cognitive tcchnologics are simply tmls that help understanding, as they assist in 

the organisation of thinking outside the physical confines of the brain, and 
computers have the potential to be the most extraordinary and influential cognitive 
technology to date (Pea, 1987; Atogctta, 2000; Tall, 2000c). 

Pea (1987) describes how the dynamic nature of activities carried out with 

computer technology makes gaining an intuitive understanding of the relationship 
between pictorial and symbolic representations more accessible to the user. It is 

Pea's belief that some students will always be good mathematical thinkers, 

whereas others will not thrive without a richer environment for nurturing 

mathematical thinking. This statement is true, to a certain extent, however it is not 

just a particular category (the 'less able') that can benefit from a richer learning 

environment. Technology can act as a tool which all students, of all abilities, can 

utilise in order to achieve greater conceptual understanding. Even students who are 

always good mathematical thinkers can still benefit from innovative computing 

activities, as this can lead to the confirmation of existing ideas and the 

reinforcement of mathematical knowledge. 

The experiment described in Chapter 5 illustrates how students used the dedicated 

teaching software as a cognitive technology in their quest for knowledge pertaining 

to the relationship between s)Tnbolie and pictorial representations of functions. 

The student learning process can thus be analysed by examining the various steps 

involved in the solution of a problem, in terms of both thought processes and 
functionality of the software. It is the combination of technological capability, 

innovative teaching software. and an investigative approach, that assists in the 

students' cognitive development. 
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1.3.4.2. Advantages of I Iultimrdia 

Whilst using creative educational packages, the student also experiences 
'incidental Icaming' (Schank. 1994; Panoutsopoulos and Potari. 1995). This is the 

gaining of information whilst having fun and carrying out interesting tasks. The 

information is sub-consciously digested whilst the student revels in the change in 

learning activities. It is considered important (Lcppcr ct al., 1993) for students to 

control the environment in which they study. as this will bring out their natural 
inclination to learn. 

The use of multimedia is a complementary process (Kozma, 1991); activities are 

carried out sometimes by the user and sometimes by the medium. The powerful 

presentation capabilities can influence the structure of mental representations and 

cognitive processes (Kozma, 1991). Moving pictures should not just be seen as 

motivating factors (although this is important) but as additional instructional 

stimuli in their own right (Christel, 1994). Multimedia not only offers moving 

pictures, but also high quality sound reproduction. The presence of supposedly 

extraneous 'bells and whistles' in interfaces can result in the subject matter being 

considered as more active and more powerful (Christel. 1994) - visual attention 

may wander, but this attention can be recaptured by the use of appropriate audio 

cues. In many situations, simple diagrams are used for clarification purposes, and 

so the combination of moving pictures, audio accompaniment, and computing 

capability, could have huge potential in the understanding of a particular concept. 

Thcrc are a number of features concerning multimedia that could be of 

considerable educational importance (Phillips and Pcad, 1994). These features 

include: 

" Much of mathematics is highly gcncralisablc. Multimedia presentations focus 

on particular instances that are often vivid and cntcrtaining. Afterwards, these 

can be dcvcloped into more gcncral cascs. 
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" The facility to show real people (as opposed to graphic/cartoon figures) arrears 
to be important in offering role models, as students imitate those that they have 

seen on screen. 

" Superior audio-visual presentations generate intcrcst and involvement, which is 

helpful as compulsory mathematics in schools is often disliked by many 'less 

ablc' studcnts of all arcs (the issue of motivation is considcrcd in greater detail 

in Scction 2.5 of Chaptcr 2). 

Distinction bctwccn multimcdia and computcrs has blurred ovcr the past fcw ycars 
as multimedia facilities have become standard on many commuters (this was 

predicted by Phillips and Pcad (1994)). 

As multimedia technology continues to become more commonplace. it is important 

that developers of mathematical software, such as Computer Algebra Systems 

(CAS). attempt to incorporate features of multimedia into their design. The 

educational benefits of CAS have been reported (Townend, 1994; Kutzler, 1996, 

1999; Malabar ct at., 1998; Malabar and Pountncy, 2000; Challis and Grctton, 

2000; Ahlandcr, 2002; Leinbach et at., 2002; Zorn, 2002), and it is conjectured 

here that if they continue to be thoughtfully developed in terms of mathematical 

content and operational facility, and yet at the same time introduce elements of 

multimedia such as moving images and audio enhancements, then there will be an 

even greater impact on the student learning experience. 

1.3.4.3. Future Developments 

Educational practices will continue to adapt to incorporate both existing 

technologies, such as the Internet, and developing technologies, for example 
intelligent tutors and virtual reality. Successful implementation of highly 

intelligent mathematics education packages or the use of virtual reality to assist in 
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the teaching of mathematics arc both perhaps a little unrealistic at the present time, 
however teaching and assessment via the Internet (on the World Wide Wcb) arc 

already well established (Booth ct al., 2001; Gage ct al., 2002; Waldock ct al., 
2002). It enables us to move away from stand-alone educational packages to 
interactive modules on the World Wide Wcb (Miller and Abramson, 2002; 

Murphy ct al., 2002; Woods, 2002), which can provide a framework for the 
inclusion of text, images, and video (Marshall et al., 1994). Advantages of this 

approach include the following: 

" Students can makc mistakes without feeling embarrassed, as they might do in a 
classroom situation. The lack of human interaction could be overcome by an 
intelligent tutoring system which can detect a student's lack of understanding 

and can thus consider remedial action. 

" Students can progress at their own pace. A structure is needed, however. so that 

they can be given guidance if necessary (an intelligent tutoring system could 
help here). 

" Good practices can be shared. 

" It offers virtually unlimited access - students arc not restricted to library opening 
hours or the number of available copies of a Particular text. Students can work 
from wherever they choose - this is an obvious advantage for distance Icarning. 

Chapter 7 considers future developments in terms of specific experiment issues as 

a conscqucncc of the outcomes reported in Chapter 5, and also generic 
mathematics education issues as a result of outcomes of this research. 
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1.4. Aims of the Research 

Tic introduction to this chaptcr has discussed generally how the use of computer 
technology can provide alternative approaches to teaching and Icarning, and has 

considered the impact of Computer Algebra Systems (CAS), bespoke teaching 

software, and handheld technology on mathematics teaching. 

Many educators are promoting a change in student learning activities, as discussed 
in Section 1.3.1. from an instructivist (passive) approach to a constructivist 
(learning by doing) approach involving investigative work with computers, which 
has both educational and motivational value. 

The A"Ievel mathematics curriculum is not providing students with the necessary 
knowledge and skills in order to be prepared for further study in mathematics in 

higher Education, as explained in Section 1.3.2. It is important that an alternative 

method of teaching centred around the dedicated use of computers is applicable to 

both 'more able' and 'less able' students alike. There is also the danger with 

respect to assessment of removing the procedural clement ('comfort blanket') on 

which the 'less able' students might rely. 

It is conjectured in Section 1.3.3 that the shortage of desirable skills can be 

overcome by the thoughtful use of visualisation in aesthetically stimulating 
computer-bascd teaching scenarios. 

Cognitive technologies, which arc specifically designed to assist in the acquisition 

of conceptual knowledge, can act as tools which all students, of all abilities, can 

utilise in order to achieve grater understanding. Section 1.3.4 discussed how the 

computer is potentially the most influential cognitive technology to date. 
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This research attempts to show how the constructivist use of computcr"bascd 

visualisation can be adopted in order to address, and overcome, the problems 

outlined in Section 1.2. The thesis is adding to existing knowledge in relation to 

the key issues raised in this chapter by attempting to achieve the following aims: 

1.4.1. Key Ainis 

A main aim of this research is "to evaluate citlianced student learning of 

mathematical concepts, and to assess the extent of any skills develojmirnt, via the 

constructivist use of computer-based visualisation". This is examined by means of 

a case-study (Chapter 5) which endeavours to explore the impact of the 

constructivist use of technology on the cognitive aspects of visualisations created 

by learners and the motivational effects of such approaches to learning for students 

of all abilities. The case-study illustrates how greater conceptual understanding can 

be achieved via the enhancement of students' visualisation skills. The case-study 

aims to compare the performance of students after learning via either an 

instructivist or constructivist (incorporating computer-based visualisation) 

approach, in terms of both procedural and visual skills, as well as other higher 

order skills. It was conjectured a priori that the constructivist approach would lead 

to the development of a broader skills base, and would enhance problem solving 

skills in general. 

For use in the case-study, a piece of bespoke software was designed and developed 

linking visual and symbolic representations of functions (Chapter 5). Unlike a 

graphic calculator, the software forces the student to translate from graphic to 

symbolic forms, and therefore allows for the conjecture and rehearsal of more 

general relationships between representational forms. The software aims to 

enhance visualisation skills, which in turn help in the development of conceptual 

understanding, together with other desirable higher order skills. It aims to develop 

a more holistic view of mathematics, and to provide students with better strategies 
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for problem solving. It aims to develop an understanding that is independent of 

specific examples used, so that the conceptual knowledge acquired can be applied 
to any function, i. e. the knowledge gleaned from local tasks can be applied 

globally. 

A final key aim is to consider the most cffcctivc use of symbols, Pictures, and the 

computer in the move from procedural to conceptual knowledge by providing a 
theoretical framework for the constructivist use of computer-based visualisation in 

mathematics education (Chapter 6) as a result of the outcomes of the case-study. 

1.4.2. Secondary Aims 

Secondary aims of the research include: 

a Investigation of the effective use of computers and handheld technology in the 

teaching and learning of mathematics (Chapter 2). 

Consideration of the effect of constructivism, promoting strategic questionning 

and social interaction, on the learning process (Chapter 3). 

" Examination of which skills students demonstrate when assessment allows the 

use of a CAS (Chapter 4). 

" Analysis of specific performance comparisons in the case-study (Chapter 5): 

r Schools (Schools I. 2 and 3). 

r Sex (Male and Female). 

r Subject (Mechanics and Statistics). 

r GCSE Grade (A/M and ß1C). 
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" Assessment of the motivational cffccts, in terms of uscfulncss and cnjoymcnt, 
of a constructivist computer-based visual approach to learning (Charter 5). 

" Exploration of the impact of a constructivist conmputer-based visual teaching 
approach on cxisting teaching mcthods (Charter 7). 

" identification of further research as a result of the outcomes of this thesis 
(Chapter 7). 

1.5. Summary 

This thesis considers students' apparent inability to visualise, and it is of particular 
interest as to whether or not dedicated visual software can enhance conceptual 

understanding through constructivist visualisation exercises. It provides empirical 

evidence of the benefits of the dedicated use of such software, together with a 

theoretical underpinning, which could be useful to teachers when considering 
integration of such software into mathematics classrooms. 

In order to satisfy the aims outlined above. the thesis comprises the following: 

Chapter 1 has described the role of continually advancing technology in 

mathematics education. has defined problems that enhanced visualisation might 

overcome, has discussed the major factors of interest. and has stated the aims that 

attempt to address the problems. 

Chapter 2 provides a rcvicw of the effectiveness of previous work in relation to the 

major factors dcscribcd carlicr, and describes in dctail the rcmaining chaptcrs in 

terms of how they make a significant contribution to the literature. 
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Chapter 1 discusses the nurits of constructivism, as opposed to instructivism, 

when considering the use of visualisation in mathematics education, and illustrates 
how cducational tcchnology can act as a vehicle for supporting the constructivist 
philosophy. 

Chapter 4 proposcs a skills classification appropriate for the incorporation of 
technology in mathematics education, and shows how visualisation is key to 
bringing together various skills taxonomies. It illustrates how the constructivist use 
of visualisation can enhance higher order skills, and discusses the extent to which 

students demonstrate certain skills when technology is at their disposal in 

assessment. 

Charter 5 describes in detail the case-study which attempts to satisfy the key aims, 

a detailed rationale for the design of the bespoke software, and the experimental 
design for the case-study. An analysis of data collected from 245 students, on a 

variety of variables, leads to conclusions as to the effectiveness of the approach in 

terms of conceptual understanding, the development of skills, and motivation. 

Chapter 6 builds on existing theories of teaching and learning by providing a 
thcorctical framework for the constructivist use of computer-based visualisation in 

mathematics education as a direct result of the outcomes of the case-study. 

Chapter 7 suggests possible future research as a result of the findings of this thesis, 

specific to the case-study and for mathematics education in general. 

28 



Visualisa: ü)n in Mathematics &Iucation: A Rcricººw of Previous Work 

CII APTER. 2 

Visualisation in Mathematics Education: 

A Review of Previous Work 

Mathematics, rightly viewed, possesses not only tn, th, but supreme 
beauty -a beauty cold and austere, like that of sculpture. 

BERTRAND RUSSELL 

29 



%'isualis«NiOn in Mathematics I ilucatiow ri Review (! f Previous %Vork 

2.1. Introduction 

This chapter addresses the key issues highlighted in Chapter 1, upon which this 

thesis builds. Consideration is given to previous work in the integrated use of 

visualisation techniques in the mathematics classroom in order to aid conceptual 

understanding, together with the associated difficulties involved. It looks at the 

properties of visual information that influence image making, and the mental 
images created by learners as a result of both good and bad use of imagery. and 
how this relates to the teaching of mathematics. Features of learning environments 

combining the computer with visual effects arc discussed. It can be seen how the 

creative potential of the computer can make learning fun and maintain interest, and 

how dynamic environments and interactivity can increase retention levels. 

A review of the effectiveness of previous work in relation to the four major factors 

highlighted in Section 1.3 of Chapter 1 is provided as follows: 

Firstly. classroom experiences employing exploratory teaching and learning 

approaches which aim to show how the constructivist use of technology, such as 

CAS and handheld technology, can develop desirable transferable skills arc 

examined (transferable skills arc those higher order skills which can be exploited 

in other subject domains and problem solving scenarios). 

Sccondly, consideration is given to students' skills. Various skills taxonomics arc 
discussed, and the difficulties associated with the use of visualisation from a 

student pcrspectivc arc addressed. 

Thirdly, examples arc provided which highlight the motivational and educational 
benefits of the effective use of visualisation. together with a discussion of the types 

of mental images created by learners as a result of the use of visualisation. Various 
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theories of teaching and Icarning of mathcmatics are discussed in terms of the 
dcvclopmcnt of conceptual understanding. 

Finally, software design issues are addressed in terns of the educational and 

motivational benefits of the use of computer-based visualisation. This is aided by a 

case-study concemcd with graphical software which shows how it can enable 

students to concentrate more on the visual and holistic, and can change the 

emphasis from the physical creation of graphs to the appreciation of their global 
features. The specific case-study concerned with functions and their graphs was 

chosen as an example of understanding concepts via visualisation. 

The summary of this chapter highlights the key issues raised which are addressed 
in the remainder of the thesis. A description of the remaining chapters is provided 
in terms of how they make a significant contribution to the literature by building 

upon the previous work discussed throughout this chapter. 

2.2. Constructivism: Teaching and Learning Styles 

Teaching and learning approaches supporting the constructivist philosophy in order 

to develop desirable higher order skills are reported here. together with a 

discussion of experiences with technology in the mathematics classroom. 

?. 2.1. A Constructivist Approach to Teaching and 
Learning 

Computer environments can encourage and facilitate a constructivist approach. 
Anecdotal evidence suggests that an area in which the constructivist use of 

technology can help develop students' thinking is that of geometry (Clements and 
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Battista. 1994). hic objects on the commuter screen become manipulable 

representations of the students' thinking. The students can thus make conjectures, 

evaluate visualisations of those conjectures. and reformulate their thinking. 
Clements and Battista believe this to be essential for developing reasoning skills in 

geometry. Educators therefore need to appreciate the implications of 

constructivism when designing and using mathematical software. 

Pccr support can also be valuable whilst carrying out constructivist problcm- 

solving activities (Brown, 1994a). Brown describes how computer-supported 

workshops for first year undergraduates studying solid mechanics provided a rich 

learning environment in which a variety of Icaming activities could take place. 

Student interactions were an important component of learning processes in the 

workshops, and working in pairs led to very positive outcomes. The key findings 

were as follows: 

" Thcrc was a trcmcndous richness in the variety of tasks that could be offcrcd via 

IT, with great value put on visual representations. Visualisation offers the 

opportunity for different teaching and learning methods. 

" It was sccn by the students as requiring much more involvement as well as 

being much more interesting than lectures. 

" There was considerable evidence of peer support both within and between 

groups. 

Peer support was one of the most impressive aspects of how the workshops 

operated. This computcr"based constructivist approach promotes active learning, 

which in turn encourages discussion and reflection. Collaboration can help 

students become more skilful in the thinking required for problem solving. 
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Ruthvcn ( 1989) reported that there was little use of more c\l, lt, rat(, r\ ; Iphn, achrs in 

the teaching and learning tit advanced upper secondary lc%cl) to rthcnlalics. lind 
this still app airs to be he case m Ct .1 ticc. ulc later. ;A project as described 111,11 

implemented and c alluated In l\hll, r1tor\ teaching nu, dcl (a. opposed It, ;1 

conventional approach) in which students explored a visual approach to Ihr 

factorisation of polynomials. Despite positive findings in terms of student learning 

and motivation, there are still few signs of the exploratory model bring ad1tpled in 

sch(x)l%. The major difference b tween the conventional and exploratory 

approaches can hest be understood in terms tit two very simple models (if the 

sequencing of classroom prnx: e%%cs. shown in Fig. 2. (11 hehm. In the conventional 

approach. new ideas are introduced through teacher exposition. whereas in the 

exploratory approach teacher exposition is deterred, and drall s on prior student 

investigation. The exploratory model replaces teacher exposition %k ith student 

exploration and codification. In the codification phase. the teacher draws on 

evidence gathered by students in developing mathematical ideas, leading to a 

deeper understanding in the consolidation phase. 

11,11 loll 

IýJltl,, ill `Il 

('on1entiººna1 NI(KI CI I": \I)Ioratorý Model 

I" i g. 2.111. 
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These approaches map nicely onto the methodologies already discussed, whereby 

the convcntional and cxploratory models reflect instructivism and constructivism 

trspcctivcly. 

Ruthvcn was concerned that due to the nature of assessment, the adoption of an 

exploratory style may prejudice examination attainment, that is students taught in 

an exploratory style may underachieve in those aspects of mathematics which 

present examinations are designed to assess. The results, however, proved this not 

to be the case. Rigorous statistical evaluation showed that there was no difference 

in the attainments of students taught in exploratory and conventional styles, for all 

gender and previous experience groups, even though the assessment is heavily 

routine-based. Another finding of interest, from interviews and questionnaires, was 

that females preferred routine activity and greater teacher direction, which it is 

suggested can be explained in terms of gender stereotypes which emphasise the 

desirability of rule-following, rather than rule-challenging, behaviour in girls. This 

is unusual as there is evidence in the literature (Fcrrini-Mundy, 1987; Ruthvcn, 

1990; Tall, 1993), and in Chapter 5 of this thesis, that an exploratory, albeit 

computer-based, approach is more beneficial for females than for males. 

Empirical evidence has been produced to support the hypothesis that a teaching 

and learning approach using the computer can be more successful in overcoming 

obstacles to understanding algebra (Tall and Thomas, 1991). The computer 

approach adopted by Tall and Thomas was formulated such that global, holistic 

processing complemented local, sequential processing. They refer to their 

exploratory software, known as the algebraic maths machine, as a generic 

organiser because it offers typical, or generic, examples of algebraic processes, 

assisting the pupil in the difficult task of abstracting the more general concept that 

they represent. The software enables students to explore equivalent and non- 

equivalent expressions, as illustrated in Fig. 2.02 below: 
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2. Thcnc was an improvcmcnt in cncapsulation of proccsscs, shown by the ability 

of the cxpcrimcntal group to discuss proccsscs, without having to carry them 

out first. 

3. The experimental group pupils showed the ability to take a global view of a 
problem, rather than being pressed into processes implied by the operations 

present in the notation. 

These observations arc typical of those concerned with similar exploratory 
approaches described throughout this chapter. 

Tall and Thomas argue that the emphasis of their software is on conceptualisation 

and use of mental images rather than on skill acquisition, and that an environment 

encouraging the formation and manipulation of cognitive structures containing 

both images and symbols should be more likely to produce versatile thinking 

(thinking in which concepts can be represented by imagery as well as symbolically 

and verbally). This thesis argues, however, that the algebraic maths machine 

seems to concentrate solely on symbolic manipulation, with the pictorial aspect of 

the software merely being a display of the algebraic notation. A more beneficial 

use of visualisation, as with the software described in Chapter 5, would be to 

integrate pictorial representations into the software that serve to provide meaning 
for, or reinforce, the symbols. Clearly, much depends upon the nature of the chosen 

topic, and the extent to which it lends itself to a delivery incorporating 

visualisation. The software in Chapter 5 acts as a generic organiser in the same 

way as the algebraic maths machine, by developing the abstraction of concepts via 

student experiences, but significantly enhances the learning process by forcing a 

constructivist approach in which students arc required to conjecture the symbolic 

notation for given pictorial forms. In this manner, students develop versatile 

thinking skills, together with a deeper understanding of the relationship between 

different representations. 
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2.2.2. Classroom Experiences with Technology 

CAS are now being used more extensively at undergraduate level. A CAS can be 

used to perform visualisations, and to provide an important link between symbolic, 

numerical and pictorial information. Students can discover mathematical concepts 

by themselves, i. e. adopting a constructivist approach, which allows them to have a 

more active role in the learning process and lets them take control of the 

development of their own mathematical knowledge. An interactive learning 

environment, written with the aid of Mathematica, with integrated, powerful 

graphic capabilities was developed (Amrhein et al., 1997), which enabled students 

to devise their own examples of increasing complexity. The students may then 

learn the mathematical concepts through experiments, in which visualisation plays 

a crucial role. Amrhein et al. provide anecdotal evidence of enhanced learning via 

this approach. A `student plus manipulation tool' can be more successful in 

conceptual and computational tasks than a student working in a traditional manner. 

Investigative work integrating algebra and visualisation has been carried out with 

the computer algebra system DERIVE (Mathews, 1994; Malabar et al., 1998; 

Challis and Gretton, 2000). It has been reported how the dedicated use of DERIVE 

can provide students with conceptual understanding, and can lead students to the 

discovery of mathematical results which illustrate real world applications of 

mathematics. Exercises exploiting the power of visualisation can be constructed to 

actively engage students in their own learning, and in turn, students will find 

themselves doing and understanding mathematics. 

Townend describes the delivery of a mathematics workshop module using 

DERIVE (Townend, 1994). The module was designed to test students' ability to 

analyse, solve and experiment using DERIVE. Formal (by questionnaire) and 

informal evaluations of the module indicated that it was well received by all 

students. The main advantages were found to be as follows: 
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" removes mathematical 'drudgery'. 

" encourages a 'what if ... 7' approach. 

" permits a ready checking of answers. 

" offers easy visualisation of functions. 

The final bullet point, above, can be interpreted in two equally valid ways. 
DERIVE can be used to find out what a specific function looks like graphically, 
but can also be used to generate a number of related graphs in order to visualise 

families of functions in a generic sense. 

Townend believes that this approach to teaching mathematics has bolstered the 

confidence of the weaker students, and has encouraged the more able to be more 

mathematically investigative. 

In 1987, Berry et at. described the enormous potential for using computer algebra 

in teaching and learning mathematics (Berry et al., 1987). They found a remarkable 

change in attitude and motivation in students after using DERIVE to introduce the 

concepts and skills of differentiation of polynomials. Student learning was 

undertaken in an investigative manner, resulting in the following observations: 

" Students are better motivated towards mathematics. 

" Students approach mathematical tasks more confidently. 

" Students are able to do mathematics as well, if not better than before, because of 
their added confidence. 

" Students can solve more realistic problems using the power of DERIVE. 
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" The integrated use of graphics and algebra provides a solid conceptual base on 
which to build. 

The potential foreseen by Berry ct al. has indeed been realised. These observations 
have proven to be accurate, examples of which have been reported in recent years 
(Kutzler, 1999; Leinbach et al., 1997,2002; Ahlandcr, 2002). 

Studies have shown how the TI-92 can be an assistant in mathematical problem 

solving (Candlish, 1997). Candlish describes how the student has to do all the 

thinking, and set up the necessary calculations, and then the TI-92 can process 

them. It simply carries out the `number crunching' whilst the student concentrates 

on solving the problem. The value of the emphasis on conceptual as opposed to 

procedural understanding has also been highlighted at Napier University, where the 

TI-92 has been used as an integral part of a first year engineering course (Short, 

1998). Some of the essential points arising from the experience from the teacher's 

perspective are described. Short explains that it was encouraging that students who 

were normally not well motivated were concerned about the mathematics they 

were receiving, which was a novel reaction when compared to the usual `resigned 

acceptance' of whatever they were taught. Comments such as, "I know the 

mathematical manipulations are correct, and I can concentrate on the problem 

itself", and "I never realised equations had graphical meanings. It's much easier 

this way", were indications that this integrated use of technology was having a 

positive affect on student learning. 

A further example of students acquiring hands-on experience of exploring 

concepts for themselves is that of introducing differentiation through the gradient 

function, using the TI-92 (Francis, 1996). Francis explains how students can derive 

the gradient function for simple cubics, quartics, etc., and hence lead up to `the 

rules' for differentiating polynomials. A certain graph is drawn, followed by a 

tangent to the curve. Each time a tangent is drawn, its gradient is plotted as a dot 

on the screen, and when all tangents have been plotted, the dots will be joined up 
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to reveal the graph of the gradient function. The gradient function graph can then 
be inspected, and its equation deduced (this is, in itself, not a trivial task). 
Collected results enable patterns to be spotted and the 'rules' discovered by the 

students (it is this kind of pattern spotting and ensuing formalisation that the 

software described in Chapter 5 employs). 

Bandheld technologies such as graphical and symbolic calculators can both 

promote the acquisition of conventional mathematical expertise, and support 

mathematical innovation on the part of students (Ruthven, 1991; French, 1998). 

The performance of A-level students using a TI-92, the experimental group, was 

compared with that of a similar group of students without access to any technology 

(handheld or otherwise), the control group (Ruthven, 1990,1991). The attainment 

of the experimental group was substantially and significantly higher than that of 

the control group in recognising graphic forms and relating them to appropriate 

symbolic forms. The performance of the experimental group was superior in two 

respects. Firstly, they were more proficient at recognising a graph as being of a 

particular type (belonging to a certain family of graphs). Secondly, they were more 

successful at building up a precise symbolic description of the graph, by exploiting 

salient information, such as its orientation, and the position of its extreme values, 

zeroes and asymptotes, and knowledge of relationships between these features of a 

graph and its symbolisation. There was also a significant difference in the 

influence of the technology on gender. In the experimental group, female students 

outperformed male, while the reverse pattern was evident in the control group (an 

outcome which is also apparent in this thesis, with the dedicated software being 

more beneficial to female students). This would suggest that, without any 

additional visual stimuli, males are better visualisers, but females respond better to 

technology-based visual training. 

The interaction of graphical, algebraic and programming features of the TI-92 
increases its usefulness enormously (Short, 1998). Regular use of a graphic 

calculator is likely to reinforce specific relationships between particular symbolic 
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and graphical forms, as it is through such relationships that the calculator itself is 

operated (Ruthven, 1990). Despite the reported advantages, handheld technology is 

not used extensively in A"Ievel mathematics classes. One of the few pieces of 

mathematical software that seems to be used (or at least available) in many schools 
is AUTOGRAPH, which supports the dynamic exploration of mathematics. It is 

not clear, however, whether it is used in an exploratory manner, or merely as a 

plotting tool. 

2.3. Students' Skills 

This section considers various related skills taxonomies, and discusses 

visualisation in terms of student difficulties in interpreting visual information 

(linkages between the taxonomies and the prevalence of visualisation amongst 

them are discussed in greater detail in Chapter 4). 

2.3.1. Related Skills Taxonomies 

Skills requirements and their classification are considered, concentrating 

particularly at the A-level/University interface. Broadly speaking, the A-level 

curriculum focuses on candidates being able to demonstrate a high level of 

`technical expertise' with much less attention paid to the application of 

mathematics to the solution of real world problems (there are of course exceptions 

to this generalisation, notably Mathematics in Education and Industry (MEI), 

Assessment and Qualifications Alliance (AQA), and International Baccalaureate 

(IB), which contain more modelling and applied mathematics than other 

syllabuses). Students can often show success in one area but fail when the context 

or style of the problem is changed. There is evidence of the learning of 

mathematics as a set of disconnected skills in order to pass examinations (Gill, 
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1998). This produces cohorts of students who arc good at passing certain styles of 

examination regardless of content. 

The widening of the school mathematics curriculum has given students less 

opportunity to practice mathematical skills required for university mathematics 

courses (see the Group C skills of the MATH taxonomy in Section 2.3.1.3 of this 

chapter), because of the broad range of mathematical study required. At the same 

time, this increase in content may have left less time for the development of 

conceptual understanding (Etchells and Monaghan, 1994; Monaghan et at., 1998; 

Porkess, 2002). High performance at school level does not necessarily constitute 

an index for projecting into performance at university level (Ihejieto and Emenalo, 

1996; Porkess, 1996; Steyn and Maree, 2002). The modular approach is also an 

issue, as the `teach-test-teach-test' philosophy does not give time for reflection, 

which is when conceptual understanding might develop. 

2.3.1.1. NCVQ (National Council for Vocational Qualifications) 

Designers of undergraduate and postgraduate degree courses in Higher Education 

establishments, including those involving mathematics, are well aware that 

graduate employability is becoming increasingly important. Apart from the 

appropriate `technical expertise', employers additionally expect new graduates to 

have the confidence and ability to undertake a number of varied tasks. In short, 

there is an expectation that graduates will possess skills such as the six highlighted 

by the NCVQ (see References for Internet address): 

" Communication 

" Numeracy 

" Information Technology 

" Working as part of a team 
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" Improving own Warning pcrformancc (linked to Continual Professional 
Development, CPD) 

e Problcm solving 

In order for GNVQ (General National Vocational Qualification) candidates to be 

successful, they must demonstrate an ability to apply mathematics to the solution 

of real, vocational problems - success is not measured solely in terms of the ability 

to `do' mathematics (Corporate Author School Mathematics Project, 1996; 

Niolyneux-Hodgson and Sutherland, 1996,2002; Molyneux-Ilodgson et al., 1998; 

Butterfield et al., 2000). A further, incidental, benefit of this approach of applying 

mathematics is the enhancement of students' communication and other transferable 

skills. This approach is also exemplified by the AQA A/S-level `Use of 

Mathematics' course described in Section 1.3.2.1 of Chapter 1. 

2.3.1.2. Mathskills Discipline Network 

A survey to find out which mathematical skills are required by employers who 

employ mathematics graduates was carried out (Kopp and Higgins, 1997). The 

survey, conducted for the Mathskills Discipline Network (see References for 

Internet address), showed that while there was a small demand for highly qualified 

graduates with a deep and specialised knowledge (to provide tomorrow's 

researchers and university academic staff), the major demand was for graduates 

who arc assumed to be technically competent in their discipline but who also 

possessed problem solving skills, communication skills, team skills, etc. - in short 

a mathematics graduate in tune with the GNVQ philosophy. 

The challenge to the university sector remains to develop these skills in students 

while at the same time not diminishing the knowledge content of the degree 

courses. As Kahn (1998) says: "Undergraduate mathematics degrees need to offer 

students a distinctive and relevant profile of skills. The study of mathematics 
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enables students to formulate and solve complex logical and quantitative problems 
by thinking logically, modelling, analysing, synthesising, and communicating the 

solutions to others. The degree of complexity in undergraduate mathematics 

ensures that these skills can be highly developed in mathentatics graduates, 

equipping then: with skills that are in demand by employers". 

A look at the seven 'themes' of the Niathskills Discipline Network, below, 

indicates the Network's belief that the right calibre of graduate, with the 

appropriate skills, can be produced by introducing innovations in teaching and 

assessment, fully exploiting the use of IT in the presentation of courses and 

embedding problem solving activities (mathematical modelling) in undergraduate 

mathematics programmes. 

Theme 1 What employers want. 

Theme 2 Directory of expert mathematical modellers. 

Theme 3 Teaching innovations. 

Theme 4 Assessment methods. 

Theme 5 Methods for embedding core skills in the mathematics curriculum. 

Theme 6 Group work and peer tutoring. 

Theme 7 Use of technology, multimedia and distance learning in 

undergraduate mathematics courses. 

N. B. Themes 3,4,5 and 7 have scope for the use of visualisation explicitly. 

The hiathskills Discipline Network, and indeed the NCVQ, are primarily 

concerned with wider 'graduate skills'. Mathematical skills that particularly relate 

to many of the above seven themes can now be examined more closely. 
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2.3.1.3. MATH Taxonomy 

Whilst the Mathskills Discipline Network attempts to link the skills of 

mathematics graduates with generic skills sought by employers, a further 

taxonomy known as the MATH taxonomy (LIatlhcmatical Assessment Task 

Hierarchy) has been proposed (Smith ct al., 1996; Ball ct al., 1998) as a 
development of Bloom's taxonomy (Bloom ct al., 1956), as a means of structuring 

assessment tasks of students in terms of a skills set required to complete them. 

Mathematics questions differ considerably in terms of the skills required in order 

to complete them, even for questions relating to the same mathematical topic 
domain. Many questions require students to carry out certain steps (routine use of 

procedures) in order to arrive at a desired outcome, but less common are those that 

challenge students to use their interpretive and constructive skills in order to 

achieve success. Smith et at. have developed this taxonomy which classifies 

mathematics questions by the nature of the activity required for successful 

completion of the task, rather than in terms of difficulty. The MATH taxonomy 

describes a hierarchy of skills ranging from lower order skills (Group A/B), such 

as factual knowledge and the ability to follow procedures, to higher order skills 

(Group B/C), such as the ability to interpret, conjecture and evaluate, as 

represented in Fig. 2.03 below: 

Group A Group 11 Group C 
Factual Information transfer Justifying and 

knowledge interpreting 
Comprehension Application in new Implications, 

situations conjectures and 
comparisons 

Routine use of Evaluation 
procedures 

Fig. 2.03. 
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N. H. Mathematics A-Icvcl qucstions typically asscss Group A and B skills only, 
whereas an undcrgraduatc mathematics programme should also assess Group C 

skills significantly. 

2.3.1.4. Skills Studies by Galbraith and Haines 

In a similar fashion to the above, a test framework for developmental skills 

required in the application of mathematics has been considered (Galbraith and 

Haines, 1995,2000a, 2000b), which classifies questions into three distinct 

categories as follows: 

" Mechanical questions cue the students to respond with an answer that involves 

the systematic application of basic knowledge or procedures. 

" Interpretive questions require the students to select and put together 

information in order to reach a conceptually based conclusion. Concepts rather 

than procedures arc the basis here. 

Constructive questions involve the creation of links between concepts and 

procedures that must be generated by the student as part of the solution process. 

Galbraith and Haines argue that such a classification provides a means of 

establishing whether these important skills improve as students progress through 

their course of study. The three categories here map closely onto the three groups 

of the MATH taxonomy (linkages between the taxonomies are discussed in greater 

detail in Section 4.3 of Chapter 4). 
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2.3.2. Students' Difficulties in Developing Visualisation 

Skills 

Many students find it difficult to visualise in mathematics, which leads to lack of 

meaning (Tall, 1991), and one of the key aims of this research, as outlined in 

Chapter 1, is to attempt to enhance this skill. Only if educators can understand the 

difficulties that students experience, can they then enhance the teaching and 
learning processes in order to address the problem. 

A study of visualisation skills was carried out (Mariotti, 1995) which emphasised 

this shortcoming. The study involved 333 first year undergraduate Mathematics, 

Physics and Computer Science students. One of the questions asked was, "A plane 

intersects a sphere - what is the shape of the cross section? ". Just over half of the 

students answered incorrectly. This is a very large percentage of students that arc 

just not capable of visualising a geometrical situation. School children also took 

part in the study. They were shown a cube, and then the cube was hidden. They 

were then asked to count the number of faces, edges and vertices of that hidden 

cube. Again, poor answers were given as they found it very difficult to visualise 

mentally the cube and its properties. 

Students also find it difficult to appreciate the effective use of different types of 

diagrams. For example, there is an important difference between the role of 

diagrams in proofs and the role of diagrams in problem-solving (Zimmermann, 

1991). A problem diagram describes the special conditions of the problem, 

whereas a diagram associated with a proof must describe the general case under 

consideration. For example, the diagram in Fig. 2.04 below could be used as a 

problem diagram to find angle ACB. As AO and CO are both radii of the circle, 

and angle AOC is a right angle, then angle ACO must be 45 degrees. Similarly, 

angle BCO must also be 45 degrees, making angle ACB a right angle. 

47 



1'i. crurli. ccrýiýnr irr A1, rtilt 'rn(rriC. c I: (hi((rtiorr: ;1 Reº'ieºº of l'rrº ir, rr. º Work 

li 
n 

i 

Fig. 2.04. 

On the other hand. if the purpose of the diagram is to prove the general case that an 

angle inscribed in a semicircle is a right angle. then the diagram in fig. 2.04 above 

would clearly not suffice. Using a diagram to prove a general case presents an 

obvious diftirulty because any diagram. being a concrete entity, has its own special 

characteristics. Students find it difficult to understand which features of the 

diagram are incidental and which features are essential. Some of' the difficulties 

experienced by visualisers (Presmeg. 1986) in a situation such as this are as 

follows: 

" The one-case concreteness cif an image or diagram may tie thought to irrelevant 

details. 

9 An image of a standard figure may introduce inflexible thinking. which prevents 

the recognition of a concept in a non-standard diagram. 

" An uncontrollable image may persist, thereby preventing the opening up of 

more fruitful avenues of thought. 

" Especially if it is vague. imagery which is not coupled with rigorous analytical 

thought processes may he unhelpful. 
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One way around the problems associated with using a static diagram to illustrate a 

proof is to employ dynamic software such as CABRI-GEOMETRE or 

AUTOGRAPH, which allow students to explore geometric proofs such as the one 
highlighted above. Using the diagram in Fig. 2.04 as a starting point, students 

could drag point C to various points on the semicircle between A and E3, for 

example to point (C), and show that angle A(C)I3 is always a right angle. This 

dynamic visual approach helps students develop the ability to generalise. 

It appears that many students are reluctant to visualise when doing mathematics. 

Students exhibit a definite bias toward an algebraic approach instead, and tend to 

shy away from visual thinking (Eisenberg and Dreyfus, 1991). Three possible 

reasons for this reluctance are: 

" cognitive (visual is more difficult). 

9 sociological (visual is harder to teach). 

" mathematical beliefs (visual is not mathematical). 

The understanding of these reasons has informed the development of the teaching 

and learning strategies that promote visual thinking adopted in the case-study in 

Chapter 5. 

Empirical evidence shows that there is algebraic bias and an avoidance of visual 

considerations among calculus students (Vinner, 1989). Among those who succeed 

in mathematics, the algebraic mode is more common when solving routine 

problems. Vinner gives two possible reasons for algebraic bias or visual avoidance: 

" An algebraic proof is believed to be more mathematical and more general, and 
hence in an examination it is preferable to be 'on the safe side' by taking the 

algebraic option, despite the clarity, simplicity, immediacy, etc. of a visual 

'proof (examples of visual 'proofs' are discussed in Section 2.4.2 of this 

chapter). 

49 



Visualisation in Alatlrrmatics Education: A Review of Previous Work 

" Preparation for an examination is very often by rote Icarning. Students give up 
meaningful learning and prefer to memorise formulae and algebraic techniques, 

an cffcctivc prescription for succcss in standard tcsts. 

The second point, above, is possibly only true if the examination is proccdurc- 
biased (which most are). Thus it does not ncccssarily re lcct students' dcsires, but 

rather what they perceive to be necessary to succeed. 

Presmeg and Bcrgsten argue, however, that while there is research evidence that in 

classes of `non-visual' teachers even 'visual' students will suppress their preferred 

visual modes in favour of non-visual methods used by their teachers, data show 

that it is simplistic to claim that students are reluctant to visualise (Presmeg and 

Bergsten, 1995). They are not necessarily reluctant to visualise; they arc merely 

following the example set by their teacher. This is known as `teacher privileging' 

(Kendal and Stacey, 1999), although Kendal and Stacey discussed this in the 

context of the use of technology in the classroom. 

Currently within mathematics education, success is essentially measured by routine 

problems which do not require visual ability. The need for visual ability is usually 

minimal. Visual thinking is an important part of higher mathematical thinking, and 

so it should be taught and tested (Vinner, 1989). Graphical interpretations and 

considerations have a crucial role in understanding, and provide reinforcement of 

algebraic methods. Vinner explains how visual considerations are always 

illuminating even if not taken as a mathematical proof, and are indispensable in 

courses such as calculus. He emphasised, however, that changing cognitive 

structures and attitudes would be extremely difficult, and radical steps would need 

to be taken before a meaningful change could be expected. 

Visualisation is a key part of understanding, and students who operate with very 
few mental pictures arc not really learning mathematics (Hughes-Hallett, 1991). 

They work with a vast series of algorithms and a complicated cataloguing system 
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which tells them which procedure to use. and when. hushes-Ilallctt believes that 

such forms of teaching and learning merely perpetuate the idea that mathematics 
involves doing calculations rather than thinking. For example, there arc many 

students who can calculate derivatives of extremely 'messy' functions but who 

cannot look at a graph and identify where the derivative is positive and where it is 

negative. Unfortunately, it seems that educators have led students to believe that 

"real mathematics consists entirely of the skilful ntanipulation of x's" (Hughcs- 

fiallett, 1991). 

Zimmermann (1991) stated that most of the concepts of, and many problems in, 

calculus can be represented graphically, however geometrical reasoning had been 

used inconsistently at best, and the role of visual thinking had not been seriously 

addressed. Few of the examples or problems were designed to develop students' 

ability to represent or solve problems graphically. The growth of interactive 

computer graphics opened up new realms of possibilities for visualisation in 

calculus and other fields. Zimmermann described how symbol manipulation had 

been overemphasised, and in the process the `spirit' of calculus had been lost. 

Several Higher Education institutions in America have since designed a new 

calculus course emphasising a graphical approach. The designers believed that 

wherever possible, topics should be taught graphically and numerically, as well as 

analytically (Hughes-Hallett, 1991; Zimmermann, 1991). The object was to 

produce a course where these three points of view are balanced, and where 

students see each major idea from several angles. This attempts to build conceptual 

understanding rather than just manipulative skill. Creating a web of connections 

between different representations is an essential part of understanding. The kind of 

conceptual understanding that develops from seeing the connection between the 

algebraic and the graphical does not come easily to students, particularly since it 

has seldom been asked of them in the past. Nevertheless, educators must strive 

toward providing students with opportunities to develop this kind of understanding 

(the software employed in the case-study in Chapter 5 achieves this ideal, as it 
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focuses on precisely this development of conceptual understanding by exploring 

the relationship between graphical and symbolic representations). ilughes-llallett 

(1991) stated: "Getting students to think has to be our top priority. Thinking means 

being able to look at problems from several 1wints of view, one of which »tust be 

visual. Consequently, if we are to be successful in reviving calculus, we must move 

graphs from their supporting, extra-credit role to centre stage". This change in the 

approach to teaching calculus has been the subject of much debate (Jackson, 

1997a; Jackson, 1997b), but reports have shown that the adoption of such an 

approach has indeed been successful (de Alwis, 2002; McDill and Rash, 2002). 

Consideration is now given to the types of mental images that are created by 

learners whilst subjected to pictorial information. The following example 

illustrates that visual images arc interpreted abstractions rather than direct 

encodings of visual information. Fig. 2.05 below shows pictures presented by 

Slezal: (Dreyfus, 1995), which arc ambiguous in the sense that they are 

recognisable as one object in one orientation but as a different object when rotated 

by 90 degrees. 

%, 6 

Fig. 2.05. 

Students were shown the picture of the duckling and asked to memorise it. The 

picture was then taken away, and the students were asked to imagine rotating it 90 

degrees clockwise. They typically described it as a duckling on its back, whereas 

the `actual' rotated picture could clearly be interpreted as a rabbit. This shows us 
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that image reconstruction is extremely difficult, and that itirages are hound to a 

certain interpretation. 'l his could he a problem in certain aspect. (, t malhemnatics. 

tor example the interpretation of graphs (it' inverse I'unctions. Let uw, consider the 

graph,, of sin(. t) and arc. in(. %) (in Figs. 2.06 and 2.07. , in(. ) is depicted in blue, and 

arc`Int. C) is depicted in rect. The graph of aresin(. r) can he constructed in an 

instnlctivist manner by simply tinting the corresponding v-values t'ur various . %- 

values. It would be useful, hoýN%ev, er. t*or students to appreciate that the inverse 

function is a rotation and reflection of the original graph of sin(s). IJnt'urtunately. 

problems arise with this method of construction. A graph would he produced 

where each . r-value -1 <_ .%S1) maps to many v-values. i. e. nog longer a , %- 

ell-defined function, as in Fig. 2.06. The properties of the original graph of `in(. r) 

therefore do not carry over to the graph of aresin(. r). Instead, a ditterent 

interpretation must he applied involving the generic definition of a Function in 

order to maintain the original functional properties, thus arriving at the graph in 

Fig. 2.07 where each x-value maps to one v-value. 

Kanhzsa (Shire. 1992) considers some interesting diagrau» that require careful 

visual interpretation. The first diagram is Fig. 2.08 below: 
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Fig. 2.08. 

Why is the overlap of two convex shapes seen, rather than the adjacency of two 

symmetric shapes? Shire describes how there is always a strong tendency towards 

symmetry in thought, however in perception it can be shown to be weaker than 

both `continuity of direction' and `tendency to convexity'. In other words, there is 

a greater tendency in perception to find the convex hull of a set of points than there 

is to find a symmetric axis through those points. Symmetry is a useful concept in 

solving mathematics problems. Ideally, it would be desirable to spot both the 

horizontal and vertical symmetry of the two shapes above (viewed as non- 

intersecting shapes). However, most people would see only one line of symmetry, 

as described above, and as a result are not necessarily able to extract useful 

mathematical properties. Fig. 2.09 below shows two graphs. But, are they the 

graphs of y=x and y= -x, or are they the graphs of y=5. j and y= -j. ? 

Students should know when it is useful to interpret them as the intersection of 

y=x and y= -x, or alternatively as y= 1x and its reflection in the x-axis (a 

Group C skill, as defined in the MATH taxonomy earlier). 
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Fig. 2.09. 

Kanizsa (Schire. 1992) also provides Fig. 2.10 below which asks the viewer it'hr or 

she interprets the small figures inside the rectangles as squares or diamonds. 

ýý 

Fig. 2.10. 

The appearance of a figure depends upon its orientation with respect to the nearest 

frame of reference in this case the rectangles l when determining whether an object 

w III be seen as a square or a diamond. 

Shire explains that by looking at how people draw together various perceptual cues 

we may shed some light upon features and techniques that will assist in the 
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development of computer generated images. These images can then be used in the 
thoughtful production of educational software. 

2.4. Visualisation and Conceptual Understanding 

The previous section has considered the difficulties that students can encounter 

with visual information. This section is concerned with how students can 

overcome such difficulties. Consideration is given to visualisation as a powerful 

tool for generating mental images leading to conceptual understanding, and the 

types of mental images that are created from the use of both appropriate and 

inappropriate diagrams. 

2.4.1. Visualisation to Enhance Mental Image Making 

Although some teachers may supplement mathematics teaching with visual 

activities, visual imagery is not the dominant focus in school mathematics classes 

(Hershkowitz et al., 2001). Wheatley (1991) has stated: "Learning new ideas and 

solving non-routine problems are situations in which imagery can be particularly 

useful. Given the encouragement and the opportunity, most students have the 

ability to form mental images, and in tunt greatly increase their mathematical 

power". Wheatley believes that it is important to encourage students to build 

mental pictures and communicate their images by building models (drawing 

pictures and graphs), and design activities that promote the use of visualisation. 

The manipulation of mathematical concepts is facilitated considerably by the 

mental construction of appropriate images (Dörfler, 1991). 

It is important for students to recognise that a diagram may contain information 

needed for the solution of a problem and to develop the habit of looking to 
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diagrams as a source of such information. Technology can play an important role 
here. Computers can allow students to explore and experiment with graphics. 
However, guidance, feedback, and a synthesis of important results must be built 

into the process (Zimmermann, 1991). Students must be able to interpret 

computer-generated graphics with understanding, as they are subject to 

misinterpretation. For example, on a small enough scale, all smooth functions look 

linear. Additionally, educators must be aware of whether or not the student has 

`seen' the whole picture. For example, a graphic calculator plot of y=1 
x(2 - x) 

could well give the graph in Fig. 2.11 below, with vertical lines drawn at x=0 and 

x=2 as part of the graph. Many students would copy this without hesitation, and 

would therefore store this mental image in error, instead of more appropriately 

interpreting the superfluous lines as vertical asymptotes. 

r 

U 
x 

o s 

Fig. 2.11. 

Zimmermann (1991) explains that an important component of visual thinking is to 

recognise incorrect or misleading graphics, and to make an appropriate 
interpretation (Giraldo et al., 2002). Part of the challenge for the educator is to 

ensure that the students are receiving the intended message. 

It is no accident that when we understand something we often say that we `see' it. 

The visual side of the learning process is one that complements the symbolic 
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representation, and flexible graphical packages provide us with very powerful tools 

to enhance this much-neglected aspect (Tall, 1987). As a consequence of the visual 

capabilities of the computer, educators have developed interactive mathematical 

software that not only illustrates algebraic forms, but also uses visualisation as a 

vehicle for mathematical discovery. In this manner, students can conjecture 

mathematical facts through the process of visualisation prior to any algebraic 

manipulation, instead of merely following a mathematical proof with an 

appropriate illustration. Since Tall's reported work in 1987, many educators have 

taken steps to utilise computing capabilities in mathematics education, but it is still 

not clear how to optimise their usage with respect to learning. 

Pen-and-paper tasks normally require a fixed answer to a fixed question, whereas 

the computer can activate dynamic visual thinking. Sutherland (1995) presents a 

powerful example of this, in which she describes how two boys worked on the 

following problem: 

In Fig. 2.12 below, with point A fixed, where should point B be placed so that 

triangle ABO has the largest possible area? 

B 

A 

O 

Fig. 2.12. 

The boys thought for a short while, and then the teacher suggested that they 

construct the height BD of triangle ABO, as in Fig. 2.13 below: 
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B 

A 

D p 

II ig. 2.13. 

They then proceeded to drag point II around the circumference of the circle, and 

very quickly realised the solution (when ß0 is perpendicular to AO). 

The visual aspect here played an important role in the solution process. This is a 

good example of how visualisation: and interactive exploration can lead to the 

solution of a problem, and can lead to the realisation of mathematical concepts (in 

this case, the concept of maximum area given certain constraints). It is precisely 

this philosophy that this thesis adopts. 

The order of teaching via different representations is also of interest when 

considering the enhancement of mental image making. Traditionally, the learning 

of graphs of functions usually occurs after a long period of numerical and symbolic 

manipulations and is normally introduced as a final stage of the subject. 

Yerushalmy and Schwartz (1993) believe that it is likely that certain difficulties 

observed in the understanding of functions in various representations (numerical, 

visual and symbolic) might be grounded in this form of learning. It would seem 

that this sequential learning of the symbolic followed by the graphical does not 

promote a tendency on the part of the learner to move between alternate 

representations. Each of the representations presents a separate system for the 

learner, with no mutual and constructive interaction between them. It is important 

that the visual complements the symbolic, as one form in isolation is not enough 
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for students to conceptualise. Educators therefore need to encourage more visual 

methods of teaching, either in conjunction with symbolic methods or as a precursor 
to symbolic formalism, in order to improve students' visualisation skills (Tall, 
1991), which arc of great value in the pursuit of conceptual understanding. 

Graphical packages allow for a more innovative strategy whereby new concepts 

can be approached visually and intuitively before the need for symbolic analysis 

(Tall, 1987). The symbolic structures themselves, and the links to the visual 

representations still need to be established, but they can now be encountered in a 

context where the student has some overall idea as to what the new concept 

represents. The successful construction of concepts thus requires the co-ordination 

of different representations, and unsuitable construction will impede 

conceptualisation (Hitt, 1998a, 1998b). 

Tall has explained that his quest is to use the computer to visualise mathematical 

concepts in helpful ways. He carried out a study in which computer-based 

graphical techniques were employed to enhance students' ability to visualise (Tall, 

1995). The participants in the study were mathematics education students who 

were planning to be teachers. He explains that it wasn't expected that they would 

obtain greater facility with any formal aspects, but that they were more likely to be 

able to visualise and discuss the concepts. This proved to be the case, and the level 

of discussion was mature and insightful. Tall concludes by saying that the 

discussions indicated a level of visualisation and verbalisation far greater than had 

been traditionally expected in earlier courses, and this did not just apply to a 

minority of the students. 

A cognitive approach to the calculus has been described in which computer 

graphics are used to enhance learning (Tall, 1986b, 1995,2000a). Although the 

first of these reports was almost twenty years ago, the ideas presented are still 

important, and there is still little evidence that they have been incorporated into the 

school curriculum. Through experiences that enable the students to develop 
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suitable mental images of the mathematical concepts, Tall explains how students 

come to see specific examples (single entities) as generic examples 
(representatives of a class of examples), which in turn help in the abstraction of the 

general concept. For example, instead of beginning the theory of differentiation 

with a discussion on limits (formal approach), one may present the notion of the 

gradient of the graph (cognitive approach). This can be greatly assisted by using 

computer graphics to show a tangent moving over a curve, and at the same time 

plotting the gradient function. The learner can explore examples of mathematical 

processes and concepts. By manipulating a number of examples, their common 

characteristics may be abstracted to give the general concept that is embodied in 

the examples. Concepts can thus be built up from familiar examples. Tall has 

observed that, via this approach, students arc far more positive in their attitudes, 

and are significantly better at sketching gradients, recognising gradient functions, 

and discussing concepts. 

Materials have been developed for use with the TI-92, which arc aimed at 

promoting students' abilities to visualise the graphs of functions (Elliott, 1998). 

The study was carried out with a class of thirteen year twelve students (5 male, 8 

female). The exercises involved graphing functions, and exploring and identifying 

the effects of transformations, finding inverse functions, solving equations 

graphically and algebraically, and investigating trigonometric and logarithmic 

functions. Elliott explains how technology can assume a very powerful and 

influential role in stimulating and shaping students' powers of visualisation, and as 

such may prove to contribute significantly to the depth of students' understanding. 

A questionnaire revealed that students thought technology provided a quick and 

accurate means of strengthening their visualisation ability, and reinforcing their 

understanding of functions. Usage of the TI-92, reported by Elliott, is more limited 

than the software usage described in Chapter 5, as the direction of information 

transfer is primarily from the symbolic to the pictorial, whereas the software in 

Chapter 5 forces the transfer between representations in both directions. 
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Before the advent of computers, visualisation had been carried out with the use of 

sketches and drawings on a blackboard, and the static nature of prc-designed 

graphics in textbooks limits their usefulness in teaching. Animations, however, 

introduce a new dimension, and bring with them the possibility of presenting 

processes, such as a transformation, in a dynamic manner. It is also possible to 

illustrate a varying parameter or the construction of an object. Colour can improve 

the expressiveness of visualisations, and can also be used to distinguish different 

objects in the same picture. 

Dynamic mental imagery is concerned with how people manipulate images in the 

mind. It is clear that some people have the ability to move objects about in their 

heads, and some clearly do not (Goldenberg, 1995). However, Goldenberg believes 

that the people who do not have this ability could acquire the necessary skills if 

given appropriate experiences. He explains that some students can perform 

dynamic experiments mentally without prior experiences of similar experiments 

with their hands and eyes. Other students, however, might well learn to perform 

such experiments like these `mentally' if they had appropriate experiences of 

performing them first. Modern technology can now allow students to get a `feel' 

for the dynamics of experiments. An interactive computer environment, 

particularly when dynamic visual images (i. e. moving pictures) arc employed, can 

encourage and to some extent develop students' visualisation abilities (Bishop, 

1989). Research in the development of visualisation ability is considered to be 

extremely valuable (Goldenberg, 1995), and it is with this area of enhancement 

that this research is primarily concerned. 

A report of the Board on Mathematical Sciences, USA (National Research 

Council, 1990), identified a number of research accomplishments and related 

opportunities in mathematics. One of the areas cited was "Computer Visualisation 

as a Mathematical Tool. " According to this report, "In recent years computer 

graphics have played an increasingly important role in both core and applied 

mathematics, and the opportunities for utilisation are enonnous" (Zimmermann 
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and Cunningham, 1991). However. this report was produced over a decade ago, 

and although much has been reported throughout the literature on the incorporation 

of graphical technology in Higher Education, it is still not in widespread use in 

schools. 

Graphic images can also serve as an important link bctwccn mathematical models 

and the phenomena of the real world. The ability to interpret simple physical 

processes graphically is an important aspect of visual thinking (Zimmermann, 

1991). Zimmermann believes that dynamic computer visualisations have the 

potential to reveal change vividly and directly, and could thus have a major 

influence on the teaching and learning of calculus concepts for example. 

The use of a CAS allows the focus to be shifted from procedural skills to 

expressing a problem in a mathematical context (hiaeder et al., 1995). An area 

where these possibilities are especially welcome is that of differential equations. 

Whilst studying differential equations, emphasis is put on sophisticated solution 

approaches, and in textbooks they arc classified by their solution methods instead 

of their application fields. Reported work with the CAS Mathematica has shown 

how the focal point can be moved towards the application, whereas the solution 

and visualisation of the differential equation can be left to the computer (Niaeder et 

at, 1995; Garcia et al., 2002). 

The benefits of visualisation include the ability to focus on specific components of 

very complex problems, to show the dynamics of systems and processes, and to 

increase intuition and understanding of mathematical problems and processes 

(Cunningham, 1991). For example, a student could be faced with a complicated 

function in terms of its symbolic form, and it may be very difficult to locate roots, 

turning points, etc. algebraically. A computer-generated graph of the function, 

however, would provide a means of extracting such information. The use of 

facilities such as the `cursor position' and `zooming' in order to obtain 

approximations of these features could be a precursor to solving an integration 
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problem. The ability of computer algebra systems to combine symbolic and visual 

representations seems to offer computcr-based mathematics the best of both 

worlds. 

informal studies with students indicate that students respond much more strongly 

to dynamic images than to static ones (Cunningham, 1991). These may involve 

showing a display as it is computed, which can be done so that the order of 

development illustrates the mathematical processes shown. An example of this is 

the production of displacement-time and temperature-time graphs (Graham, 1996; 

Gretton and Challis, 1996,1999) via the CBL (Computer Based Laboratory), a 

product from TEXAS INSTRUMENTS (sec References for Internet address) that 

collects data and can be connected to sensors and to a graphics calculator for 

analysis. It is important that mathematics educators understand how to 

communicate mathematics visually (in-Service Education and Training (INSET) 

days could be developed to suit these needs). Cunningham (1991) states that an 

instructor using visualisation must: 

9 determine exactly the critical mathematical details to be presented in an image 

and show these either by highlighting them or by removing conflicting 

information. 

" determine the order in which material is to be demonstrated by the images and 

present this material in a logical and connected sequence. 

" offer students options in ways that expand their mathematical knowledge 

without confusing or overwhelming them. 

" look for opportunities to present dynamic or developing mathematical processes 

and give students appropriate opportunities to explore or control them. 
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" consider carefully how students will learn visually, how to evaluate such 
learning, and how to integrate this learning with other parts of their mathematics 

studies. 

A methodology is required that can support and nurture these issues, hence the 

need for constructivism. The constructivist philosophy acts as a vehicle for putting 

them into practice. The employment of visualisation in mathematics education 

from a constructivist perspective is discussed in greater detail in Chapter 3. 

2.4.2. Creating Mental Images for Students 

Mental images are very difficult to analyse since there is no direct access to them. 

The mental image cannot be measured without being disturbed. Attempts to 

measure a person's mental images are based on interaction with this person, and to 

magnify these measurement problems, mental images tend to be inherently vague 

(Dreyfus, 1995). You cannot express a vague image without making it precise; 

therefore the very nature of the mental image is destroyed in the measurement 

process. The best we can hope to do is assess the effectiveness of a person's mental 

images by measuring conceptual understanding after having subjected the student 

to some form of visual imagery, and see what effect these images have had on the 

learning process. The case-study in Chapter 5 confirms that visualisation exercises 

have indeed led to enhanced conceptual understanding. 

The diagram in Fig. 2.14 below is known as a `proof without words' (Eisenberg 

and Dreyfus, 1991). This diagram is not strictly considered to be a mathematical 

'proof, but it is an excellent visual device for illustrating that the limit of the series 

1/2 + 1/22 + 1/23 + ... + 1/? " + ... 
is 1. This diagram provides the student with a 

useful, meaningful visualisation of the concept of the limit of this, and other 

convergent, series. 
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" 
" 

" 

1/24 
1/2 

1/2 2 

Fig. 2.14. 

Visualisation can serve as a catalyst for understanding (Ben-Chaim et al., 1989), 

for example the generalisation for the sum of the first n odd numbers can be done 

visually and students can easily sec why I+3+5+... + (2n - 1) = n2 by 

considering Fig. 2.15 below: 

"SS"S 

"S"SS 

"SSSS 

"S"SS 

"SSII 

Fig. 2.15. 

Most students would be able to understand this "proof, whereas an algebraic 

proof, for example using knowledge of arithmetic series, would be beyond many. It 
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would be interesting, however, to sec whether or not students, given the picture, 

could conclude from it that 1+3+5+... + (2n - 1) = n2, i. e. use the visual device 

as a means of conjecturing symbolic results, rather than supporting earlier 

symbolic work. 

Although in many cases a visual proof is scen as being not as rigorous as an 

algebraic proof, it can be shown that it is possible to give perfectly valid proofs 

using visual representations (Barwise and Etchemendy, 1991). An example given 

by Barwisc and Etchemendy is that of the Pythagorean Theorem. One familiar 

`proof of this theorem involves a construction that first draws a square on the 

hypotenuse, and then replicates the original triangle three times as shown in Fig. 

2.16 below. 

BabC 

acacac 

bbAbD 

Fig. 2.16. 

Using the fact that the sum of the angles of a triangle is 1800 (i. e. a straight line), it 

can be easily seen (by most students) that ABCD is itself a square, one whose area 

can be computed in two different ways. On the one hand, its area is (a +b)2. On 

the other hand, it can be seen by inspection that its area is also c2 +4(ab/2). This 
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givcs the cquation (a+h)2 =c2 +2ab, which lads to the dcsircd cquation 

(12 +1,2 = c2 

It seems clear that this is a legitimate proof of the Pythagorean Theorem. Note, 

however, that the diagrams play a crucial role in the proof. I3arwisc and 

Etchemendy arc not saying that one could not give an analogous (and longer) proof 

without them, but rather that the proof as given makes crucial use of them. To see 

this, it only needs to be noted that without them, the proof given above appears to 

have no rationale. This proof is an interesting combination of both geometric 

manipulation of a diagram and algebraic manipulation of symbols. Barwise and 

Etchemendy stress that both symbolic and pictorial representations have their 

place. They do not advocate that logical proofs should be anything other than 

rigorous. Rather, they advocate a re-evaluation of the doctrine that diagrams and 

other forms of visual representation are unwelcome guests in rigorous proofs. 

Dynamic diagram build-up with the aid of a computer can lead to proofs that 

would otherwise be inaccessible and/or difficult to comprehend. An example of 

this is Langton's Ant (Stewart and Cohen, 1997). Stewart and Cohen describe how 

the ant lives on a grid of squares, which can be either black or white, and it obeys 

simple rules that determine the colour of each square. The rules arc: 

1. One pace forward. 

2. If square moved onto is white, turn right. 

3. If square moved onto is black, turn left. 

4. Change colour of square you have just come from. 

5. Go to step 2. 

For the first five hundred or so steps, the ant keeps returning to the central square, 

leaving behind it a series of symmetric patterns. For the next ten thousand or so 

steps, the picture becomes very chaotic. Then, suddenly, almost as if the ant has 

finally made up its mind what to do, it builds a 'highway'. It repeatedly follows a 
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1 mulrlr%, rrºori ºrr 11at1ºrrnirlºf %1 Jºr, alloll. A Re º irºº o/ ! 'rrrioººº WO/A 

. ryurttce tit' hrrii"CI\ 1111 %Icp% that rtiows it t\; o cells st ºutIm L",, I. and r�ntinuiI, 

Ihi" rrtd &'tirtitcI: i. t�rntinr a diagonal hand I'hr three distinct t . t, rgr. (Sirrrl, Iicity. 

(hjt '. and I nrcrgrnt Ordert in the dvn; rntrk', (, I Langton'' Am arc iIIti"tiatrd in 

Iii. 2.17 fklºm. Thew . tages incur in . pile. º, I the fait that the ant follow, the 

. anic rule throughout. 

Fig. 2.17. 

This Iarge-%c. IIc feature emerges from the Itm -Ire cl rules. It Whiles an apparent Iv 

irregular pattern although follo ; ing fixed rules. It cannot he random. h(ºwc er. 

because the rule is knoýý%n. It is not that there isn't a pattern toi begin with '%c just 

can't see it. Nobody ha,, e er been able to prose \%hý the ant ak%ays build" a 

'highma\'. e\en it the initial conditions are changed h\ scattering black squares 

around the grid before the ant starts. This is an example of how the computer can 

facilitate the dynamic build-uh ul a hrokc. s. lt has hno\ ided the opportLill It\ to shot 

a pattern. which %wuld have been almost impossible analytically. 

('ýýn%er. elý, therc are in. tancrs %%hcrc student,, can initially '. cc' patterns that are 

not sustained in more conºhle\ case.. An c\JnipIc (it' thi, Is the folitm ing pt//a 

ýuttinýý' c\crrkc: 
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l'i. cucrli%, r(ic, rr in , %fathrmatir. % ! duea/ion. ;1 Reº-ioº" co/ l'rrºiou. % Work 

What is the maximum numhcr o pieces into which a Circular pi//a Can he divided 

by ; Ippl II g straight cut het ce'11 11 (1111111 on the Circunllerencc? 

Initial Jxn-and-palxr trials give the tiOIlowing rrýults: 

etc. 

I point 2 points 3 points 
I piece 2 pieces 4 pieces 

Number 

c, t oints 

Number 

cif iCc« 
I 

4 
4 8 
5 16 

At this point. most students would 'see' a pattern emerging. i. e. it' number of points 

= n, then number of pieces = _'' 
'. However, continuing the table would produce 

the following unexpected results: 

6 31 (not 32) 
7 57 (not 64 ) 

This is the opposite situation to that of Langtons Ant, as initial results in the 

'pizza cutting' exercise point to a regular pattern, but ultimately result in 

irregularity. 

Visualisation should be given a much greater priority by mathematics teachers 

(Ben-Chaim et at.. I989), and it is this USC of Visualisation to cnhancc the learning 
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process on which this thesis concentrates. We must help the student to construct 

useful mental images. There is no point using diagrams, or dynamic imagery, just 

for the sake of it. It is important that the student is creating the right sort of images 

that can help in the understanding of mathematical concepts. It is essential that the 

student is provided with beneficial images that portray the concepts that we wish to 

get across. For example, we would not want to use the diagrams in Fig. 2.18 

below, presented by Tirosh (Dreyfus, 1995), to help explain the concept of a 

'third', as they. do not reflect the true structure of the mathematical concept that 

they represent. 

4 ALL 

Fig. 2.18. 

Firstly, the diagram on the left (above) is meant to show the unshaded area to be a 

third of the shaded area. The student, however, is much more likely to view the 

unshaded area as a quarter of the whole. Secondly, the diagram on the right shows 

the large triangle to be a third of the total number of triangles. The student, 

however, may well feel that the difference in the areas of the triangles is 

significant; the area of the large triangle is certainly not a third of the total area. 

It is also difficult to know whether or not a particular diagram will be understood. 

For example, Jahnke (Dreyfus, 1995) came across unexpected difficulties when the 

diagram in Fig. 2.19 below was used to help teach a learning disabled child 

subtraction. It was used to help illustrate '6 -4= 2'. 
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00 

Fig. 2.19. 

However, years later, during a discussion with his therapist, the child explained 
how he still did not understand why the teacher halved the cakes! This example 

surely indicates the importance of recognising the target audience during the 

creation of diagrams that arc intended to assist the learning process (and care needs 

to be taken by the teacher). Again, the problem here is that the student has not 

received (or the picture has not delivered) the message that the teacher wanted to 

send. 

The next example shows how the unintentional misuse of graphing technology can 

be a hindrance to the development of understanding (Aioschkovich et al., 1993). 

Students used a graphing program to graph y= 2x + 1, y= 3x + 1, and y= 4x + 1, 

and then stated what they observed. Instead of observing that the lines were 

increasingly steeper and all passed through (0,1), they commented on the fact that 

some of the lines were more jagged than others! Moschkovich et al. explain that 

each graph is composed of a series of pixels on the screen. This results in the lines 

not being perfectly smooth, and as a result the greater the coefficient, the greater 

the 'jaggedness' (dependant on scale settings). This observation is an interesting 

example of how students can use a piece of technology in such a way as to cause 

them to see things that were not intended, e. g. jaggedness, and not see things that 

were intended, e. g. steepness and point of intersection. Hence the technology needs 

to be used with understanding. 

The problems associated with the creation of `appropriate' mental images can now 
be appreciated, and must be taken into account during the design of educational 
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diagrams and imagery. It is essential that the diagrams will Icad to unambiguous 
mental images. 

It is important to understand the precise role of diagrams in learning mathematical 

concepts at different levels of ability and age, and we need to know in what kind of 
learning situations visual imagery can be helpful. Powerful patterns of 

mathematical reasoning can be based on diagrams and visual imagery (Dreyfus, 

1995: Abbott, 2001), and this pictorial approach helps students learn and 

understand mathematics. The careful linking of both symbolic and pictorial 

representations (as with the software described in Chapter 5) can lead to students 

appreciating both forms, and feeling comfortable switching between them. 

2.4.3. Theories of Teaching and Learning in Mathematics 

This section describes various theories of teaching and learning, which arc relevant 

to the discussion about visualisation and its impact, from renowned authors 

throughout the literature. It provides the basis for the theoretical rationale for the 

software design in Chapter 5, and informs the theoretical framework in Chapter 6. 

2.4.3.1. White-BoxlBlack-Box (tiN'BBB) Principle [Buchberger] 

The White-Box/Black-Box (WBBB) Principle (Buchberger, 1989) is a teacher- 

oriented didactic model for the use of a computer algebra system (CAS) in the 

mathematics classroom. Drijvers (1995) summarises the philosophy of the Wßßß 

Principle as follows. While learning a new mathematical concept or technique, it is 

important for the student to do the relevant operations `by hand'. A CAS should 

not be used for those manipulations because the student has not yet mastered them. 

The learning process is described by the White Box phase, and there is a danger in 
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using a CAS at this level as the student may lose control and understanding. In the 

second phase, once the new subject has been mastcrcd, computer algebra can be 

used to carry out the work that is now trivial. This can be useful while exploring 

the visual aspects of the concepts on a hierarchically higher level, as the CAS is 

then used as a Black Box that takes care of the lower level tasks. The student can 

now concentrate fully on more sophisticated aspects of the topic, such as the 

relationship between symbolic and pictorial forms, without being distracted by 

details that are already known (mastered in the White Box phase). This is known 

as the Black Box use of the CAS. The CAS here plays more or less the role of a 

servant (Drijvers, 1995). 

A variation of the \VBBB Principle can also be considered, in which the sequence 

of phases is inverted. The Black-BoxAVhite-Box (BBWB) approach employs a 

CAS as a generator of both pictorial and symbolic examples and as an explorative 

tool that confronts the student with new situations. This exploration of pictures and 

symbols (the Black Box phase) can lead to interesting discoveries and forms the 

basis of what is known as the explanation phase. In the latter phase, the results of 

the explorations will be sorted out, and thus will lead to the development of new 

concepts (the White Box phase). Instead of being the servant, the CAS is now like 

a master (Drijvers, 1995). 

Visualisation plays an important role in this teaching and learning principle by 

establishing relationships between symbolic and pictorial forms during the Black 

Box exploration phase. The exploration of visual forms followed by an explanation 

of how they relate to the symbolic formalism will lead to a deeper conceptual 

understanding. 
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2.4.3.2. Communication Model [Laturillard] 

This section considers the 'communication model' of teaching and learning 

(Laurillard, 1990), which shows how control can be given to the learner. Laurillard 

describes a familiar model, the 'didactic model', whereby descriptions of the world 
have been constructed for the student by the teacher. In this scenario, the teacher's 

role is to transmit this constructed knowledge to the student. The teacher has total 

control over both the material to be taught and the manner in which it is taught. By 

contrast, within the communication model, knowledge is not a given body of facts 

and theories, and is not regarded as something static and unchanging. Knowledge 

is not therefore something that can be given from one person to another. The 

student constructs their own descriptions of the world and the teacher's aim is to 

facilitate the student's development of their own perspective on the subject (as per 

the discussions on constructivism in Chapter 3). Students can therefore take more 

responsibility for what they learn and how they learn it. 

In the communication model, visualisation helps students to explore mathematics 

as they construct concepts from their own individual perspectives. Dialogue 

between student and teacher is facilitated by visual representations. 

2.4.3.3. Construction of Conceptual Understanding [Ilitt] 

Understanding a concept implies coherent articulation of the different 

representations which come into play during problem solving (Hitt, 1998b). Hitt's 

research identifies the following levels in the student's construction of a concept, 

in particular the concept of function: 

Level I Imprecise Was about a concept (incoherent mixture of different 

representations of the concept). 

Level 2 Identification of different representations of a concept. 
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Identification of systcmti of rcprcscntation. 
Level 3 Translation with preservation of meaning from one system of 

representation to anothcr. 
Level 4 Coherent articulation between two systcros of representation. 
Level 5 Coherent articulation of different systems of representation in the 

solution of a problcm. 

Visualisation features strongly here in all levels, and becomes more prominent as a 

student progresses through the levels of concept construction. 

2.4.3.4. lstental Processes [Dreyfus] 

This section looks at work by Dreyfus on thinking and processes, and stresses the 

point that understanding must be the important goal (Dreyfus, 1991). 

Understanding is based upon a long sequence of learning activities, involving a 

great variety of mental processes. The component mental processes required for 

understanding are therefore extremely difficult to analyse. To define and exemplify 

is not enough; students must construct properties of the concept for themselves 

(see discussions in Chapter 3), and reflect about mathematical experiences. 

Mathematical and psychological processes can rarely be separated. For example, 

on considering the building of a graph, the mathematical process corresponds to 

following the rules of plotting (or sketching via key features such as roots, turning 

points, asymptotes, etc. ), and the psychological process corresponds to the 

generation of the mental image of the graph in a holistic sense. 

Students' mental representations of a particular concept may be vastly different 

from each other. Educators therefore need to `force' the mental image making 

process via the appropriate use of visual imagery. Visualisation has played a key 

role for eminent mathematicians - they think in terms of pictures, not words and 
language (Dreyfus, 1991). Mental representations are created on the basis of 
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concrctc represcntations, for example visual r prescntations. A rich mental 

representation contains linked aspects of the concept. Students therefore need to 

dc%-clop the ability to switch bctwccn representations when appropriatc. 

Generalising involves moving from particulars and conjecturing to a general case. 

Synthesising involves combining or merging parts to form a whole, a single 

picture. Dreyfus describes how the ability to relate different topics, for example, is 

sorely lacking in students. Abstracting is taking the concrete and moving it to an 

abstract notion (this is very much linked to generalisation). The process of 

abstraction makes the heaviest cognitive demands on students. It is a different 

mental process to generalising and synthesising. Rather than thinking about objects 

themselves, it is concerned with concentrating on properties and relationships. If 

examples are too complex, then abstraction can be difficult, as the crux of the 

process is to ignore all the detail. 

Dreyfus states that the learning process involves an ordering of stages such as: 

I. a single representation. 

2. more than one representation in parallel. 

3. links between parallel representations. 

4. integrating representations, and flexible switching. 

These four stages arc involved hierarchically as learning develops. Once this 

process has been completed, an abstract notion of a given concept has been 

formed, and an individual then has control over the use of alternative 

representations. Stages 2,3 and 4 (and possibly 1) involve visualisation, with 

conceptual understanding coming from an appreciation of the relationship between 

the visual and the syymbolic, and more importantly the ability to transfer 

information effectively between the representations. 

77 



Visualisation in Mathematics Education: A Review of Previous Work 

Discovcry is an cffcctivc way of Icarning. The psychological aspects arc that it has 

personal involvement, intensity of attention, and fccling of achievement and 
success. The checking of 'solutions' can offer alternative procedures leading to 
increased security. Again, as with discovery, this means transferring more of the 

responsibility for learning from teacher to student. Student activities need to be 
designed to include these activities. 

2.4.3.5. Concept Definition and Concept Image [Vinner] 

Pedagogy is the science of teaching, and must be structured in such a way as to 

result in students increasing their levels of understanding in some way. 

Mathematics is deductive in that it starts with primary notions, and everything else 

is built on these foundations. Textbooks in particular follow this notion of starting 

with the basics and progressing to more complex ideas. This may, however, be 

pedagogically wrong as it does not take into account psychological processes of 

concept acquisition and reasoning which may well be different from student to 

student (Vinner, 1991), or different student learning styles (Berry, 2002; Smith and 

Berry, 2002). 

Vinner defines a concept image as something non-verbal associated in students' 

minds with the concept name. It could be a visual representation (which is usually 

the case), which can be verbalised if required, but this verbalisation is not the first 

thing that is evoked in the students' memories. Concept images arc individual and 

very personal by nature, and may well be a different image in a different situation. 

To acquire a concept is to form a concept image for it, and not just to know a 
definition. This concept image helps to construct examples that can be used in 

problem solving. Definitions arc useful, however, as they can help form a concept 
image, and once formed the definition becomes dispensable, i. e. the `scaffolding' 

can be taken away. A concept image, on the other hand, might set traps if 
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incorrectly formed or ambiguous (Graham and Rowlands, 2000; Giraldo ct al., 
2002). The definition can prevent this from happening. 

In order to present Vinner's ideas by means of diagrams, the existence of two cells 

in a person's cognitive structure needs to be assumed. One cell is for the definition 

of the concept and the other is for the concept image. The concept image cell is 

considered to be empty as long as no meaning is associated with the concept 

definition. This could happen, for example, where the definition is memorised in a 

meaningless way. Fig. 2.20 shows the interplay between concept image and 

concept definition. This is a two-way process because the information in each cell 

supports and reinforces the information in the other. The concept image cell is 

empty at first, but after several examples and explanations it is gradually filled. 

Conceptdcfinition III Conceit image 4 

Fig. 2.20. 

The concept image can be either static or dynamic, depending on the nature of the 

concept definition and the type of understanding that the educator wishes to 

convey. For example, when considering the displacement-time graph of a bungec- 

jumper (Gretton and Challis, 1996,1999), it would be desirable for students to 

appreciate the dynamics of the process as well as merely the resultant curve. 

Fig. 2.20 therefore refers to the long-term process of concept formation as a result 

of the interplay between the cells. Many teachers, however, expect a one way 

process for the cognitive growth of a concept, as shown in Fig. 2.21, namely that 
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they expect a concept image will be formed by means of the concept definition 

alone. 

ConLcM ckßnition Ccntrpl imapc 

Fig. 2.21. 

In addition to the process of concept formation, there arc also the processes of task 

performance. When a cognitive task is posed, the concept image and concept 

definition cells arc activated. The processes involved with the performance of a 

task are expressed by one of the following three diagrams. Fig. 2.22 illustrates the 

interplay between definition and image: 

tAn 
imelkctual 

peu behaviour 
(an answer) 

CorccFxdcfinition Concept image 

A cogniti%v task 
Input (kienificationor 

construcwn) 

Fig. 2.22. 

Fig. 2.23 illustrates a purely formal deduction, where no reference is made to the 

concept image. Either a concept image has not been formed (i. e. thcrc is no 
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conceptual understanding of the situation) or it has been dccmcd unnecessary to 

consult the concept image during the performance of the task. 

Oupl 

Corxxcptdcfinition Conocpt in>ape 

Input 

Fig. 2.23. 

Fig. 2.24 illustrates a deduction following intuitive thought, where the concept 

image is consulted in the first place to provide a conceptual understanding of the 

task, and to provide meaning for the concept definition. 

Fig. 2.24. 

The common feature of all the processes illustrated in Figs. 2.22,2.23 and 2.24, is 

that no matter how a person reacts when a problem is posed, a solution should not 
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be formulated before consulting the concept definition. This is desirable (as the 

concept definition can prevent misconceptions as a result of an incorrectly formed 

or ambiguous concept image), but often does not harnen in practice. Fig. 2.25 
illustrates a deduction following intuitive thought, as with fig. 2.2 3, but this time it 
is a more appropriate model for the processes that normally occur in practice: 

otgptt 

Concept dcfinition Com cpi image 

Input 

Fig. 2.25. 

In this situation, the concept definition cell is not consulted during the process of 

task performance. The `everyday' thought habits take over and the respondent is 

unaware of the need to consult the formal definition. In most cases, reference only 

to the concept image will be successful. This fact, therefore. does not encourage 

people to refer to the concept definition cell. Only unfamiliar problems, in which 

incomplete concept images might be misleading, can encourage people to refer to 

the concept definition. Vinner has observed that students therefore consider such 

problems as unfair. 

It is very difficult, if not impossible, to learn about a person's concept image, and 

so the correctness of its construction is vital as the learning stage is the only thing 

over which educators have any degree of control. Students can build up incorrect 

concept images, and even when new definitions are taken on board the old images 

may still be retained, confusing the issue (for examples of misconceptions with the 
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use of visualisation in mathematics, sec work reported earlier in this chapter by 

Moschkovich ct al., 1993, and Dreyfus. 1995). Educators need to attempt to 

change the thought habits of students from 'everyday' to 'technical' in order to aid 
the correct construction of concept images. 

2.4.3.6. Conceptual Entities [Harcl and Kaput] 

This section considers conceptual entities and their symbols in building concepts 

(Ilarel and Kaput, 1991). Mathematical thinking employs mental objects. 

Reflective abstraction is a physical or mental action that is reconstructed and 

reorganised on a higher plane of thought and so comes to be understood. A 

conceptual entity is a cognitive object for which the mental system has procedures 

that can take that object as an argument, as in input. It is the awareness of acting on 

a process as a whole, as a totality (not point by point), that constitutes the 

conception of that process as an object. For example, when considering the effect 

of the constant, c, on the graph of f (x) in expressions such as f (x+c) , 
f(x)+c, and cf (x) , the function f (x) can be regarded as an object, and 

therefore all three expressions are merely variations of that object, as opposed to 

three separate, unrelated functions. 

The vertical growth of conceptual understanding describes the development of 

conceptual entities that can be further operated on. The horizontal growth of 

conceptual understanding is complemented by vertical growth, and is associated 

with the interplay between different representations. 

Conceptual entities alleviate working memory (as discussed in Section 1.3.2.2 of 
Chapter 1), or processing load, facilitate comprehension, and assist with the focus 

of attention. Hare) and Kaput believe that computer-based activities can facilitate 

the construction of conceptual entities, which in turn assist in the vertical growth 

of mathematical ideas. 
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The power of conceptual entities is closely related to the role of mathematical 

symbolism. Mattic matical notation plays an important role in the development of 

conceptual entities (in a similar fashion to the role of the concept definition in 

helping to form the concept image, as discussed in the previous section). Using 

mathematical notations, complex ideas can be grouped together and thus 

represented by physical notations that can be manipulated to generate new ideas. 

2.4.3.7. Reflective Abstraction [Dubinsky] 

Consideration of how a student constructs knowledge is important for the 

development of mathematical thought (Dubinsky, 1991). Dubinsky states that 

reflective abstraction is the construction of mathematical structures by an 

individual during the stages of cognitive development (similarly described by 

Narel and Kaput in the previous section). The process of reflective abstraction is 

facilitated by constructivism (see Chapter 3). It is essentially the construction of 

mental objects. Reflective abstraction leads to mathematical thinking in which 

processes are separate from content, and that ultimately processes arc converted to 

objects. Dubinsky defines the following different methods of construction in 

reflective abstraction that are important for advanced mathematical thinking. 

" Interiorisation is the translation of a succession of material actions into a 

system of interiorised operations. It is the construction of internal processes as a 

way of making sense out of perceived phenomena. 

" Coordination is the composition of two or more processes to construct a new 

one. 

" Encapsulation is perhaps the most important and most difficult for 

mathematics students. It is the conversion of a process into an object. Actions 
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can thcrcforc become cntitics that can then be used in higher levels of 

mathematical thinking. 

" Generalisation is the application by an individual of an existing concept to a 

wider subject area. The individual has therefore bccomc aware that the concept 

remains the same but now has a wider applicability, or has encapsulated a 

process into an object. 

Reversal is the switching between an original process and a new process. It is 

where the individual thinks of an internalised process in reverse. not necessarily 

in the sense of undoing it. but as a means of constructing a new process that 

consists of reversing the original process. 

Working with examples serves to reinforce concepts, but may not help very much 

with the actual construction of concepts. During meaningful learning, such as 

using the software described in Chapter 5, understanding the mathematical 

concepts comes from the construction aspects of reflective abstraction (how this is 

achieved, by considering the five methods of construction in terms of software 

usage, is described in Section 5.3.3.2 of Chapter 5). In order to construct a 

mathematical idea, it is necessary for the student to be mentally active. Educators 

need to be concerned about the nature of these mental constructions, and need to 

develop activities that encourage their appropriate development via reflective 

abstraction. Some insight into the nature of students' conceptual structures 

(concept images) can be achieved by observing students as they learn (Berry, 2002; 

Smith and Berry, 2002), ascertaining how students have arrived at a certain 

solution (correct or incorrect), or how that solution can be justified (an analysis of 

student solution processes is provided in Chapter 5). 
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2.4.3.8. Relational and Instrumental Understanding [Skemp] 

This section discusses why it is preferable for students to develop relational 

understanding as opposed to, the more common, instrumental understanding 

(Skemp, 1976). Relational understanding, knowing not only what method works 

but why, enables pupils to relate the method to the problem, and possibly to adapt 

the method to new problems. Instrumental understanding is simply 'rules without 

reasons', where understanding is taken to be the possession of a rule, and the 

ability to use it. It necessitates memorising which problems a method works for 

and which not, and also learning a different method for each new class of 

problems. Knowing how rules arc interrelated enables one to remember them as 

parts of a connected whole, which is easier. There is more to learn (the connections 

as well as the separate rules), but the result, once learnt, is more lasting. Skcmp 

believes that there is less re-learning to do, and long-term the time taken may well 

be less altogether. 

Skemp provides examples of instrumental understanding such as 'turn it upside 

down and multiply' for division by a fraction, and 'take it over to the other side 

and change the sign'. If the teacher asks a question that does not quite fit the rule, 

then the students will get it wrong. For example, while a certain student on 

teaching practice was teaching the topic of area, he became suspicious that the 

children did not really understand what they were doing. So he asked them, 'What 

is the area of a field 20cros by 15 metres? ' The reply was, `300 square 

centimetres'. He asked, 'Why not 300 square metres? ' They answered, `Because 

area is always in square centimetres'. 

To prevent errors like the above (assuming only instrumental understanding), the 

pupils need another rule that both dimensions must be in the same unit. This would 

not be necessary, however, if the children had relational understanding. 

Instrumental understanding usually involves a multiplicity of rules rather than 

fewer principles of more general application. 
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Although we will sec the benefits of teaching for relational understanding in 
Chapter 5, there arc various reasons why this approach may not be adopted in the 

classroom. An individual teacher might make the choice to teach for instrumental 

understanding on one or more of the following grounds: 

1. That relational understanding would take too long to achieve, and to be able to 

use a particular technique is all that these pupils arc likely to nccd. 
2. That relational understanding of a particular topic is too difficult, but the pupils 

still need to study the topic for examination reasons. 
3. That a skill is nccdcd for use in another subject before it can be understood 

relationally. 

4. That he is a junior teacher in a school where all the other mathematics teaching 
is instrumental. 

2.5. Software Design Issues Incorporating Imagery 

This section concentrates on factors that influence the design of educational 

software that incorporates imagery. Consideration is given to various strategies for 

increasing motivation in students, factors that have a positive effect on retention 

level, and a case-study concerned with the learning of functions and graphs 

specifically. 

2.5.1. Increasing Motivation 

Three factors that influence motivation to learn are considered here. Firstly, 

visually stimulating environments can offer an approach to learning that is an 

alternative to instructivism. Secondly, educational software can be designed in the 
form of mathematical games that can make learning fun. Finally, various 
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characteristics can be built into the design of educational software in order to help 

maintain intcrest. 

2.5.1.1. An Alternative Approach to Learning 

Environments can be created that help to motivate students to think mathematically 
by providing mathematics activities whose purposes go beyond just learning 

mathematics 'for mathematics sake' (Pea, 1987). Examples of such environments 
include recreational mathematics websites containing computer simulations of the 

national lottery, puzzles, magic squares, etc. Other activities include the 

mathematics of computer games, forecasting of the stock market, sporting odds, 

etc. The application of mathematics to the solution of a real problem, i. e. 

mathematical modelling, can be used as a teaching vehicle in this way (Houston, 

1997; Houston et al., 1997; for further publications with an emphasis on the 

applications of mathematics and mathematical modelling, sec Teaching 

Mathematics and its Applications: An International Journal of the INIA). The 

student thus sees mathematics used in a problem solving context, and can 

appreciate that the mathematics has a point, and has been used for a specific 

purpose. The fact that this is an alternative approach to learning mathematics 

(compared to an instructivist approach) can be motivational in itself. 

This application-led approach is closely related to problem-based learning, or PBL 

(Stepien and Gallagher, 1993; Woods, 1994), which consists of carefully designed 

problems that require students not only to demonstrate acquired knowledge and 

problem solving proficiency, but also self-directed learning strategies and team 

participation skills. The process replicates the approach to solving problems in the 

real world, often with insufficient information, instead of having neat solutions to 

contrived problems. 
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Environments can be intrinsically motivating, i. e. people can be motivated to learn 

in the absence of obvious external rewards or punishments (Malone and Upper, 

1987). Malone and Upper have studied how to make learning more interesting and 

enjoyable by considering computer games. They considered the difference between 

toys and tools. Toys arc objects that arc used for their own sake with no external 

goal, whereas tools arc objects that arc used as a means to achieve some external 

goal. Unnecessary difficulty with a tool can prove frustrating, whereas toys arc 

often made intentionally difficult to use in order to enhance their challenge. Many 

people find that difficulty enhances challenge, which in turn enhances pleasure 

(Malone and Lepper, 1987). The level of difficulty, i. e. degree of challenge, of 

educational software must therefore be regarded as an important aspect. 

It is certainly not the case that all motivating environments arc games, or that all 

educational problems can be solved using games. However. games do provide 

particularly striking examples of highly motivating activities (Malone, 1980; 

Malone and Lepper, 1987; Soloway, 1991; Upper and Ilcnderlong, 2000; note that 

although the first reference dates back to over twenty years ago, nearly all reported 

work since is based on the original material by key authors Malone and Upper). 

They show how the computer is used to create motivating environments, which arc 

a source of insight for designing motivating educational software. There arc strong 

links between the features that make a package fun and those that make it 

educational. For example, environments that vary the level of difficulty increase 

both challenge and the potential for learning, and environments that evoke 

curiosity and then satisfy it can be both captivating and educational. 

"Tute puritanical attitude that the mind is a muscle to be exercised through 

mechanical repetition is giving way to a richer view of the creative, exploring 

mind, which can be nurtured and guided to discover and lean: through meaningful 

problem-solving activities" (Pea, 1987). Multimedia technology with its rich 

effects is showing great potential for creating fascinating educational environments 

(Al-Jumeily. 2002; Pappas et al., 2002). Great potential, however, does not 
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guarantee wise use - consider for example the television! lt is most important to 
find a happy medium between educational content and entertainment. 

2.5.1.2. Making Learning Fun 

Consideration is given here to a number of activities designed to make learning 
fun, carried out with students of a variety of age ranges. 

A study was carried out in which a group of 6-7 year old children experimented 

with a variety of mathematics based learning environments (Panoutsopoulos and 

Potari, 1995). The designers attempted to exploit the creative potential of the 

computer by using colour, animation, graphics and sound to stimulate situations 

that may be challenging to children. The aim was that the children would find this 

approach to learning mathematics more stimulating than the traditional 'chalk and 

talk' techniques. Panoutsopoulos and Potari describe how this proved to be the 

case, as the children enjoyed using the software. The package encouraged group 

discussion about mathematics, and the class teacher commented that the programs 

were received with enthusiasm by all the children, regardless of their 

malhematical ability. 

Mathematical games, which were designed to make learning more fun, have also 

been developed (Phillips et at., 1995). Whilst playing these mathematical games, 

the students show interest and excitement, and express a willingness to continue 

far beyond their usual concentration span. Screen imagery can often be emotionally 

loaded - it has the power to involve its audience and captivate their imagination. If 

the mathematics questions can be presented interestingly enough, then the students 

will explore, and in turn acquire new thinking skills. However, some mathematics 

educators, described by Phillips et al., deny that computer software can be 

motivating in itself, and argue that it is the mathematical activities themselves 

which motivate the students. Phillips et al. point out the fact that they have 
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watched student. ' reaction'. and it would scctn Ikv(, nd doubt that the particularly 

i. ual itI of presentation ha% a %Irong effect on "tuRlrnt"' inirrr"t and 

%%illingnr. s to cngagc in mathematical actiNitir.. It is not Increly the use of the 

computer it. clf that . er-. c% to ºnoti%ate student.. but also the case with which they 

can , %%itch between (lit trrrnt rrhrc cntaticýns. thus building a deeper conceptual 

understanding of mathrniatic%. It is conjectured here that phi, t hscr% stioºn applic' 

to all ages and Ikv-cl,, of ability. 

The design and case of u%c cif advanced graphics calculator,,. , uch as the Texas 

Instruments range. make them reminiscent of many handheld computer games such 

as Nintendo GameBov and Sega Gamc(icar. but it is pxossihlc to meet some serious 

mathematical ideas and to have fun at the same time (Grctton and Challis. I9%. 

1999). Gretton and Challis describe classroom experience` %%-here they have 

combined the TI-82 with the CBL (Computer Based Laboratory). Physical 

quantities can he mea'ured using the ('HI.. and then the information can he 

transferred onto the Tl-82 for discussion and analysis. For example. heart-rate can 

he measured and the graph can he observed on the screen. as in Fig. 2.20. and the 

temperature of a cup of tea can he measured as it cools down. and again the graph 

can he observed on screen, as in Fig. 2.27. 

RATE = 54 BPM 
PRESS [ENTER] 

TO STOP 

Fig. 2 . 26. Fig. 2.27. 

A coke can and a piece of elastic can even he u. cd toi imitate hunger jumping. as in 

Fig. 2.28. Gretton and Challis describe how the mathematically sophisticated ideas 

of p rio dic behaviour and decay arise naturally here. 
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I°i1.2.2 X. 

Via this 'tudlrnt' call Untr111h't r, iý1iý nt.. rte . in W1111" (if it . 11 %wild 

, 11)JI11 , ition.. %iithout nccessarilý Iia ing knoº%%Icdg& of the s mholic notation 

for the graphs. Ilener the higher Ie%ei , Lill of intrrlrri"t. ition can he 

1o11o%\cd hý the reinforcement of these ideas hý linking the concepts in the 

pictures to the symbolic foºrmalisnm. These examples clearly illustrate ho%% 

i uJlt"ation plays an important igle in the conceptualisation o1' the mathematical 

ideas, and they exemplify the ronstnirtivist philosophy. %%-herrhv students are 

actively involved in the learning process by having on%nership cif the task. 

Innovative teaching and learning with the CBL has been successfully demonstrated 

with students at the University of Plymouth (Graham. 1996). Student,, are 

challenged to reproduce a graph by behaving in the correct manner in front of a 

motion detector. As they move in front of the motion detector, a displacement-tine 

graph appears on the screen of the graphics calculator. Graham describe, how this 

has proved to he very effective, as it requires the students to really understand the 

nature of the different aspects of the graph. This is a similar teaching and learning 

strategy to that adopted in the case-study in Chapter 5. %%-here students attempt to 

provide the algebraic notation for a given function graph. 

Ina similar fashion. Sharp ciescrihcs the use of the TI-KZ to help consolidate 

student. ' understanding of the straight line graph (Sharp. 1997). The student is 

presented with a straight line graph, and is prompted to supply values for the slope 

and intercept. In this way, the student can observe the effect of the input on the 
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graph. This pro css rontinucs until the correct %alucs are provided for the gi%en 

graph. This idea (, t c\hl�ring the rrl; ºtionship hci cen s\nºhý, IIc and LralAhical 

forms is the central theme of the dedicated teaching arc tirscrihed in ('halter 

5. The %ottwarr. however. has a nunilxr of additu nal advantageous features. 

%%hich arc di'. ctvocd in detail. 

An appreciation for the beauty of mathematics is ap ossihle and desirable outcome 

of visual thinking and a legitimate educational objective (Zinºnºrrnºann, 1991 ). 

The aesthetics of visual mathematics should he used to full effect to motivate and 

inspire student. ' interest in the subject. The ('. scher sketches in Fig. 2.29 (see 

Reference,, for Internet address) illustrate the 'art' of mathenmatics. 1F. schrr built ill) 

his dra%%ings on it mathematical grid that gives rise to translatitmal , ýniiu try along 

the gridlines. 

Fig. 2.29. 

ºIlu. trJi? 1 ºn f ºý. ý.. ý11 
. ºr. " put of .ºI. º.. in. ºlin, nt; ºtltýnt; ºliýtI ýli. ýý, ýýrý 

known as the Mandelbrot set (see Reference,, for Internet a(Idress). which is an 

C\ample of a rich class of Ohjert. knO%kn i's fi'actal,,. ('sets could click on it part of 
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the tractal on a computer %crecn ; ind iux, ni in to investigate it Dorther. Fractals 

rOuld hr explored mpxatcdlly in thi% manner ddur to their infinite nitrier. 

I" ig. 2.. su. 

It i,, a positive step to encourage students to appreciate the beauty of' mathematical 

graphic.. Then. at least in some cases. "tudent% can he drawn into a deeper 

appreciation for the logical or practical dimensions of mathematics (Zimmermann. 

1991). It is not nece,, Narv to understand the mathematic that produces these 

images in order to enjoy their heauhv. but knowledge of' the underlying principle` 

enhances the appreciation. 

2.5.1.3. Maintaining Interest 

Hlel-c tie IOU1' 111.1111 111011\, Illoll, lI Iic( fs \\illLIl I1ccd lip he taken 11110 ICC()llllI 

whilst developing educational sotmare .o that the u'er'% interest will he 

maintained (Lcpp r et al.. 1993): 

01 he material needs to he challenging. 

"l he package must holier the user's self-confidence. 

" It must evoke curiosity. 

0 It must alto; the user to he in control. 
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Upper ct al. consider cach in turn: 

The material within an educational package needs to be challenging so that the 

user will be motivated to use it. If the material is trivially easy or extremely 
difficult, then it will be of little interest and it will generate boredom rather than 

serve to motivate. This stresses the need to 'model' a student's ability so that a 

piece of software can be of the required 'level of difficulty', and moreover can be 

introduced at the correct point on the student's learning curve. The package also 

needs to provide goals which can be attained - an activity is challenging if it tests 

some sort of ability that is valued, and provides tests in which success is desirable 

(but is not certain). 

Interactive packages must always attempt to bolster the user's self-confidence. 

This can be achieved by praising the user's correct answers, but more importantly 

by avoiding direct negative feedback. Instead, the user would prefer to see useful 

hints or other indirect forms of feedback. An example of this is 'assessment 

software'. The software can be written so as to praise the user's correct answers, or 

to encourage the user after incorrect answers by offering helpful hints or alternative 

strategies. In this manner, the user should arrive at the correct answers, at his or her 

own pace, and these correct answers should then help to motivate the student to 

progress further. 

If the package evokes curiosity, it is likely that the user will be more attentive and 

will have a more active and deeper involvement. Lcpper et al. suggest that 

curiosity is aroused when people encounter information that implies that their 

current knowledge is incomplete. 

Like curiosity, control is also likely to encourage a more active and deeper 

involvement in the activity. In addition. the concept of personal control is a source 

of motivation because many people like to be responsible for their own actions and 

choices. 

95 



Visualisation in Mathematics &hicalion: A Review of Previous Work 

The design of the educational package that tackles the learning of functions and 

graphs via a constructivist, visual approach (described in Chapter 5) has been 

influenced by the reported work on motivation throughout this section, and a 

number of the desirable features discussed arc evident in the software. It adopts a 

constructivist approach by using problems in which students arc encouraged to 

explore the conceptual links between graphical and symbolic forms in a visually 

stimulating environment. Key features of the software arc the case with which 

students can plot and compare graphs, and the effectiveness of illustrating the 

relationship between alternative functional forms. Students have fun using the 

software, and its use promotes discussion with both teacher and peers. As with 

problem-based learning (PBL), the problems are designed for the development of 

not only conceptual understanding, but also higher order skills. Finally, the design 

takes into account the four main motivating factors concerned with the 

maintenance of interest described by Upper et al. 

2.5.2. Increasing Retention Level 

Students can often motivate themselves to perform well in a traditional 

examination, but often forget what they learnt a short while later. They may well 

score highly in the examination, but it is not very useful for practical purposes. A 

learning environment needs to be created which incorporates a different style of 

learning, so that the students can increase the length of time that they are able to 

maintain mastery of a particular topic - or at least can recall topics quickly and 

with little effort. 

Well-designed educational packages have an advantage over books. You are free 

to turn the page of a book, thinking that you understand the contents therein, but 

the truth of the matter might be that you do not really understand as much as you 

think. An educational package, on the other hand, may have a small test at the end 

of a certain topic to check that the user fully understands the contents (e. g. 
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CALMAT, MATIIWISC, etc. ). It could quite easily be programmed so that the 

user cannot proceed until he or she has reached a desired level of understanding. In 

this manner, unlike with a book. the user cannot easily proceed to topics for which 
he or she is not properly equipped. Intelligent tutors can supply the user with more 

material of the same level of difficulty or can direct the user to a higher level of 

study. Alternative strategies can be provided in situations where the user did not 

understand at the 'first time of asking'. 

Finally, there is the consideration of the effect of active participation on increasing 

retention level. Evidence suggests that learnt information is retained longer if the 

student is an active participant in the learning process, rather than just a passive 

listener (Rickel, 1989). This evidence fully supports the constructivist philosophy. 

Rickel also explains how information is retained longer if the presentation involves 

several of the student's senses, and so multimedia must have a significant 

advantage over books with its audio-visual creative powers. Experts in diverse 

fields suggest that true understanding of knowledge gained from formal training 

comes when the student later combines that knowledge with actual experience and 

application. Educators must therefore endeavour to reduce the passive role of the 

student and encourage constructivism and interactivity. 

The features for increasing retention level reported in this section are incorporated 

in the software in Chapter 5. Users cannot proceed to the next problem until they 

have reached the required level of understanding, i. e. successfully completed the 

problem to hand. The users have ownership of the problems, and the solutions 

depend entirely on their actions (with support from the teacher). Therefore usage of 

the software, necessitating interactivity and active participation, clearly 

exemplifies the constructivist ideal. 
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2.5.3. Case-Study of Functions and Graphs 

Wcll-dcsigncd graphical software can help students overcome mathematical 

weaknesses. Tlurc arc numerous software packages available that encourage the 

exploration of the graphical representation of functions, and innovative 'visual' 

programming languages allow the production of tailored mathematics software to a 

near-professional standard (Edwards, 1995). 

A report describes various computer programs that have been developed with the 

main aim of assisting students in the learning of mathematics (Nyondo, 1993). One 

of the packages is a piece of graph-plotting software called Algebra Graf(x). It 

enables the teacher to demonstrate numerous functions and their graphs in a way 

that cannot be achieved by merely using a chalkboard or a piece of paper. The 

students were able to plot many related graphs and observe the visual effects of 

changing certain parameters in the algebraic notation. With AUTOGRAPH, 

pictorial representations can be 'dragged', and the resultant symbolic changes 

observed. This is a straightforward task using a computer, and yet it can give a 

deep insight into the relationship between functions and their graphs. Usage of 

Algebra Graf(x) allows for 'symbols to pictures' transfer, and usage of 

AUTOGRAPH allows for transfer in both directions. However, the software 

described in Chapter 5 additionally forces the user to transfer from 'pictures to 

symbols' initially, thus promoting a constructivist approach, and encourages 

flexible switching between representations via the evaluation and justification of 

conjectures. 

Function-plotting tools have facilitated the movcmcnt away from a focus on 

calculating values and plotting points, toward a more global emphasis on the 

behaviour of entire functions, and even families of functions (Dugdale, 1993; 

Ycrushalmy and Schwartz, 1993). In the past, graphs were rarely taught with an 

eye toward viewing their global features. They were used most often as another 

way of representing a relationship that was initially depicted in algebraic form. A 
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study is described which illustrates this shifting of emphasis (Kieran. 1993). The 

students in the study felt that their experience with graphs went far beyond that 

usually gained by the traditional concentration on the creation of graphs of simple 

equations. The real thrust of the use of graphical software is that the students 

themselves can see the benefits. They felt that the computer aided in their 

conceptual understanding by refocusing their attention in three ways: 

1. The computer relieved them of some of the manipulative aspects of calculus. 

2. It gave them confidence in the results on which they based their reasoning. 

3. It helped them focus attention on more global aspects of problem solving. 

Computer technology has allowed educators to fashion new software tools that 

enable a user to manipulate the graphical representation itself (for example, 

'stretch' or 'squeeze' graphs) and to view the impacts on the numerical and 

symbolic representations that result from this manipulation (Ycrushalmy and 

Schwartz, 1993). An essential feature of this kind of environment is that different 

representations are linked. 

A graph represents a specific function, whereas a symbolic representation often 

lends itself more readily to generalising to families of functions (Ycrushalmy and 

Schwartz, 1993). Mathematical phenomena that are observed in visual settings can 

then be profitably explored within symbolic representations. Yerushalmy and 

Schwartz have found, through their research, that important ingredients of graph 

plotting software (all of which have been incorporated into the software described 

in Chapter 5) are: 

" Plotting - the exposure of the learner to many graphs is assumed to catalysc the 

ability of conceiving the graph as an entity by itself, without the necessity of 

seeing the graph as a collection of plotted numerical data. 
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" Scaling - the share of a graph is determined to a large extent by the choice of 

scale in the co-ordinate system. This exposes learners to various pictures of the 

same function, but with different scales. However, this could raise problems as 
to whether or not the student has the 'whole picture' (sec Fig. 2.11 earlier, 

which illustrates the danger of the 'connected asymptotes'). 

" Modifying expressions - this allows users to cxplorc the graphical role of each 

of the numerical parameters that appears in the symbolic representation of the 

function. The user can generate a family of functions by incrementing or 

decrementing a parameter. 't'his allows the user to investigate the properties of 

the family of functions that has been created by this parametric variation. 

With the aid of computer"bascd graphing techniques, students can obtain accurate 

graphs quickly, and it can be seen how visualisation can be used to solve equations 

(Demana et al., 1993). Without technology, it is not efficient to solve equations 

graphically because of the time required for most students to draw the graph by 

hand. With technology, however, students can easily obtain the graph, and 

conjecture the x-intercepts. Comparing these with the algebraic and/or numerical 

solutions to J(r) =0 helps establish the connection between solutions of f(x) =0 

and . r-intercepts of the graph of y= f(x). This is a further example of the effective 

linking of algebraic and pictorial representations of functions. 

A number of the desirable features of graphing software reported in this section 

have influenced the design of the software in Chapter 5. The `visual' authoring 

language TOOLBOOK (see References for Internet address) was used to develop 

the software so that it could be tailored to support a constructivist approach. Many 

related graphs can be plotted with case in order for students to appreciate how 

pictorial and symbolic forms reinforce one another. Use of the software encourages 

discussion, resulting in students being able to verbalise the concepts more 

confidently. The software provides students with opportunities to view graphs as 

conceptual entities, emphasising global features, and helps students to generalise 
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from specific cases to families of functions. Finally, the important ingrcdicnts of 

graph plotting software described by Ycrushalmy and Schwartz, concerned with 

plotting, scaling, and modifying expressions, have all been incorporated in the 
dcsi¬n. 

2.6. Summary 

The purpose of this summary is to illustrate the extent to which the previous work 

reported in this chapter addresses the aims outlined in Chapter 1, and to discuss the 

contents of the remainder of the thesis in light of any shortfalls and limitations. 

Having given a brief overview of the thesis at the end of Chapter 1. a more detailed 

description of the remaining chapters can now be provided. 

Chapter 3 

The merits of constructivism (as opposed to instructivism) in the teaching and 

learning of mathematics have been reported, and it has been seen how a 

constructivist approach can be particularly useful in the acquisition of conceptual 

knowledge. Chapter 3 builds on this work by considering the theoretical aspects of 

the development of cognitive structures (which have been reported in a general 

sense), and discusses them in terms of how they apply to the teaching and learning 

of mathematics, concentrating on how constructivism supports the use of 

visualisation in particular. 

Different perspectives of constructivism are discussed, and in order to further 

existing work these arc assessed in terms of the extent to which they support the 

use of computer-based visualisation and social interaction in mathematics 

education. 
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It has been reported how educational technology can be cmploycd to provide 

environments in which students can explore mathematics. By exploring the visual 

aspects of mathematics, and then carrying out the symbolic formalisations at a later 

stage, a more accessible pedagogic path from concreteness to abstraction can be 

established. In this manner. Chapter 3 describes how the employment of 

appropriate software can act as a vehicle for supporting the constructivist 

philosophy. 

Chapter 4 

Having considered various related skills taxonomies concerned with both the 

learning and assessment of 'pen-and-paper' mathematics, Chapter 4 adds to the 

literature by proposing a skills classification, called DEVISe, which is more 

appropriate for the incorporation of computer-based visualisation in mathematics 

education. 

The earlier work on skills classification is enhanced by showing how visualisation 

emerges as a common theme. This is an interesting observation which supports the 

proposal of this thesis, that visualisation is a key ingredient in the conceptual 

understanding of mathematics, and encourages the mature, insightful discussion 

and verbalisation of mathematics. The fact that students exhibit difficulties in 

visualising, howw"ever, means that they need to be subjected to appropriate 

experiences such as those described in Chapter 5. 

Chapter 4 adds to the discussion of skills by showing, via alternative scenarios, 
how a different set of skills is developed depending on the teaching and learning 

approach adopted. It illustrates how the constructivist use of visualisation is a 

powerful facility for enhancing higher order skills. 

Work has been carried out on the development of students' skills via the 

appropriate use of technology, but Chapter 4 discusscs the extent to which students 
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actually demonstrate certain skills when technology is at their disposal in 

assessment, having experienced a traditional instructivist approach to learning. 

This preliminary investigation provides useful information on students' skills prior 
to the case-study in Chapter 5, which analyses the skills students demonstrate after 
having experienced the constructivist use of computer-based visualisation. 

Chapter 5 

The case-study is dcscribcd in detail, which attempts to satisfy the key aims by 

enhancing visualisation skills as a stepping stone to the acquisition of conceptual 

understanding and the development of higher order skills. 

It has been reported how the appropriate use of visualisation can be used not only 

to clarify something expressed in symbolic notation, but can act as a vehicle for the 

acquisition of conceptual understanding. It can give the student an overall 'feel' for 

the situation, which is often not possible via symbols alone. This philosophy has 

been adopted in the case"study, which employs a bespoke interactive package that 

links graphical and symbolic representations. The graphical software allows the 

student to concentrate on the visual and holistic, and changes the emphasis to more 

global features of graphs. The bespoke software allows students to observe the 

effect of changing certain parameters, which can be a powerful way of appreciating 

the interrelationships between different representations (this is a key feature of the 

software). The subject domain of functions and graphs was chosen as this is of a 

particularly visual nature, but the visual skills required to interpret and then 

conjecture arc generic to many other areas in mathematics. 

Effective previous work has highlighted various important factors affecting 

mathematical software design, including the requirement of an explicit goal, visual 

effectiveness, the importance of interactivity and exploration, enhancement of 

conceptual understanding, motivation considerations, and the linking of different 
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rcprcscntntions. All of thcsc features have thus been incorporated into the design of 

the bespoke software. 

A detailed rationale for the design of the bespoke software is provided, which is 

based on the reported merits of constructivism. There has been evidence provided 

that the employment of computer-based visualisation can enhance conceptual 

understanding and promote the ability to switch between representations. The 

bespoke software takes this further by forcing a constructivist approach, which 

brings with it the reported additional benefits. 

Numerous examples have been reported illustrating the positive effect of symbolic 

manipulation software and handheld technology on student learning. However, 

when considering the graphical representation of functions (as in the case-study) 

software such as CAS and graphic calculators merely allow the student to observe 

what the graph of a given function looks like. The bespoke software, on the other 

hand, allows the student to interpret a given graph, conjecture its algebraic form, 

and then plot the conjectured expression, thus encouraging the student to switch 

between symbolic and pictorial forms in both directions, instead of merely always 

moving from the symbolic to the pictorial. This assists in the understanding of the 

relationship between different forms. 

'liiere have been a number of pieces of anecdotal evidence to suggest enhanced 

learning via innovative teaching methods but little evidence of actual measurement 

or evaluation of these approaches. Work has been done to measure the educational 

benefits of visualisation and constructivism in isolation, but this research goes one 

step further by providing empirical evidence, by means of a controlled experiment, 

that quantifies the benefits of an approach integrating both visualisation and 

constructivism. An analysis of data collected from 245 students, on a variety of 

variables, leads to conclusions as to the effectiveness of the approach in terms of 

conceptual understanding, the development of skills, and motivation. 
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Chapter 6 

There arc many reports that highlight the effective use of the computer in 

combining symbols and images in the build up of conceptual knowledge, but little 

evidence of any theoretical underpinning linking subject and skills development 

together. It has been stated in previous work that "research must be done on 

structured testing and evaluation of visual learning and we must build working 

models of such evaluation, so the agencies which use these evaluation tools will be 

able to consider visual learning prof erl" (Cunningham, 1991), and "better 

theories of learning appropriate for practical teaching" (Tall, 1992) need to be 

established. The structured testing and evaluation is dealt with in Chapter 5, and 

Chapter 6 responds to these pleas for research by concentrating on the application 

of a theoretical framework to model the constructivist use of computer-based 

visualisation in mathematics education. 

This theoretical underpinning of the teaching and learning process is formulated as 

a direct result of the outcomes of the case-study. and builds on existing theories of 

teaching and learning. As the case-study concentrates on a localised subject 

domain, it was considered more useful to apply a generic framework to the process 

of problem solving using symbols and visualisation. 

Chapter 7 

Possible future research as a result of the findings of this thesis is suggested, both 

specific to the case-study and for mathematics education in general. 

It has been seen how different types of mathematics questions can now be asked 

with the aid of technology, containing elements of interactivity, and placing the 

emphasis on visualisation and exploration, which can help in the development of 
desirable transferable skills. Chapter 7 considers the impact of this on mathematics 

education, in particular the A-level curriculum. 
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Future development of teaching and learning stratcgics in mathematics education is 

considcrcd, taking into account dcvcloping computcr tcchnologics such as 
Artificial Intelligence and Virtual Reality. 

106 



Cwtslructivism: A Theory of Learning 

CFIMTER. 3 

Constructivism: A Theory of Learning 

The mind is not a vessel to be filled but afire to be kindled. 

PLUTARCH 
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3.1. Introduction 

This chapter sets the scene for how the constructivist use of computer-based 

visualisation can be employed in the teaching and learning process. The integration 

of constructivism and visualisation, coupled with strategic questioning, can 

encourage the reformulation of conceptual structures and the development of 

higher order skills, such as the ability to interpret, conjecture, and evaluate. A 

discussion of instructivism and constructivism in the mathematics classroom is 

provided, which endeavours to show why the latter is a preferable methodology, in 

particular when optimising learning via visualisation. This philosophy is then 

studied further by taking into account both Piagctian and Vygotskian perspectives 

on constructivism in order to determine which is the more appropriate philosophy 

for learning via computer-based visualisation. Finally, consideration is given to the 

best way to employ constructivism in teaching and learning with computer-based 

visualisation. 

Higher mental functions, such as visualisation, originate from the interaction 

between human beings, or some other external stimuli, but the functions 

themselves can transcend the context from which they originate (Rowlands et al., 

1996). For example, visualisation can be nurtured in a particular setting, but then 

used elsewhere. A student's understanding of mathematics may not be evolving as 

you would wish, such that the understanding is still specific to the examples given 

and the way the subject is taught. A filly evolved understanding of mathematics, at 

any level, ought to be independent of the specific examples used, and the approach 

taken, by the teacher. For example, the software described in Chapter 5 looks at 

translations specific to certain functions, but the newly acquired conceptual 

structures can be applied to any fi(x), i. e. not dependant on specific functions. The 

software uses examples as generic organisers (Tall and Thomas, 1991) in order to 

help with the abstraction of concepts. 
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Visually stimulating computer environments can allow students to become 

immersed in their own knowledge construction. 1 iowcver, it is not a trivial matter 

to utilise this considerable technological capability most effectively for educational 
benefit, emphasising the importance of a teaching and learning methodology that 

can provide a link to other factors influencing the use of visualisation. 

3.2. Instructivism versus Constructivisin 

Instructivist and constructivist approaches to teaching and Icarning arc discussed, 

focusing on the use of visualisation in mathematics. The impact on teaching 

practice is considered, taking into account the role of the teacher in each 

philosophy. 

Instructivism as a mode of teaching indicates that a particular set of representations 

is employed with the aim of mediating mathematical instruction (O'Reilly ct al., 

1997). Instructivism reflects the traditional hierarchical view of mathematical 

study, where instructive representations are finely tuned to a particular purpose, 

making limited use of visual approaches. O'Reilly ct al. describe how this is 

perhaps not appropriate for a whole range of situations. Students who are subjected 

to this instructivist approach need to be able to discriminate between contexts in 

order to appreciate when one finely tuned representation is needed as opposed to 

another. This is clearly a non-trivial process. An example of where this might 

occur is in the teaching of sets, logic, and boolcan algebra as three distinctly 

separate topics. It would be more pedagogically sound, from a constructivist 

perspective, to teach the topics simultaneously, highlighting the clear links 

between the disciplines. In set theory, concepts arc represented visually in the form 

of Venn diagrams. However, these diagrams can also be used to support the other 

two topics. For example, in logic, the universal set maps over to true, and the 
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Construrtivism: it Thcory of Learning 

Instructivism assumes that listening to explanations from teachers, or engaging in 

experiences and observations will result in complete learning. Learners are viewed 

as passive, and educators spend their time developing a sequenced, well"structurcd 

curriculum and determining how they will assess. motivate, and evaluate the 

learner. The learner is expected to progress in a continuous, sequential fashion as 
long as clear communication and appropriate reinforcement are provided. Via this 

approach, progress by learners is assessed by measuring observable outcomes, i. e. 

'behaviours' on predetermined tasks (normally symbolic). Iosnot describes how 

much of the current teaching practice follows this instructivist psychology, 

regardless of the age of the learners or the mathematical topic under study. This 

approach tends to explain change in procedural ability wwell, but it offers little in 

the way of explaining change in conceptual understanding. 

Schifter sums up the instructivist way of thinking as follows: "The teacher shows 

the students procedures for getting right answers and then monitors them as they 

reproduce those procedures. To ask a question without having previously showfit 

how to answer it is actually considered 'unfair'. People acquire concepts by 

receiving in formation front other people ºº"ho knots, more, that if students listen to 

what their teachers say, they will lean: it-hat their teachers knots; and that the 

presence of other students is incidental to learning" (Schifter, 1996). 

As a result of schools (and often universities) adopting an instructivist approach to 

teaching, it has been reported that students arc unable to solve problems 

successfully in the real world (üoncbcin et al., 1993; Smith. 1998; Corfield, 2001; 

Davis, 2001; Nyman and Berry, 2002). They cannot generally apply their 

knowledge to unfamiliar problem solving situations. 

A different type of learning activity is required for the development of problem 

solving skills, i. e. constructivism. Here the concern is not mastery in a test of 

procedural skills, but rather the ability to function successfully in unfamiliar 

problem solving situations, often requiring a balance between symbolic and 
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pictorial competence. For example, an instructivist question concerning functions 

might be to find turning points, asymptotes, etc., and then, almost as an 

afterthought, to plot the graph. An example of a constructive question, however, 

could be to consider some function, Jtx), and then determine what happens when a 

particular symbol within the expression is alicrcd: the students would then be 

encouraged to explore and investigate. The constructivist philosophy thus invites 

students to find answers for themselves (Group A skills of the MATH taxonomy 

being displaced in favour of Group C skills). 

The focus with constructivism is to be able to take the knowledge gleaned from 

local tasks and apply it globally (iioncbcin et al., 1993). The learning activity has a 

purpose that goes beyond simply demonstrating mastery of the local tasks; the 

purpose for a learning activity is driven by the global underlying concepts. This 

includes the ability to notice when particular skills and information are called for, 

to be able to recall or find that information, and to be able to apply those skills and 

that knowledge to solve a real problem (Chapter 4 investigates the types of skills 

that students choose to apply in problem solving situations). It is therefore not the 

ability to recall information that educators should be interested in, but instead the 

ability to apply knowledge and skills in different problem based environments. The 

constructivist approach, which supports the construction of appropriate mental 

images, concentrates on a holistic view of learning mathematics, and focuses on 

deep understanding and strategies, rather than facts and rote memorisation 

(Honebcin et al., 1993; Fosnot, 1996a; Bowles et al., 2002). 

Following on from extensive work by Piagct and Vygotsky, constructivism has 

emerged as a leading psychological theory in teaching and learning. In Higher 

Education mathematics programmes, it is having a considerable effect on the goals 

teachers set for leamcrs, the instructional strategics teachers employ in working 

toward these goals, and the methods of assessment to document genuine learning. 

These methods include assessment that incorporates the use of technology in 

which a combination of visual ability and symbolic dexterity can be examined. 
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Assessment of this nature allows for the testing of not only higher order skills 
themselves, but also the appropriateness of their application. Implicit in 

constructivism is the idea that human beings have no access to an objective reality 
since we arc constructing our version of it, while at the same time transforming it 

and ourselves (Fosnot, 1996a). 

Widespread interest in constructivism has recently led to a debate between those 

who place more emphasis on the individual cognitive structuring process (the 

radical constructivists) and those who emphasise the sociocultural effects on 

learning (the social constructivists). Rowlands ct al. (1996) consider that the 

central issue of the constructivist controversy seems to be 'what is knowledge and 

how is it constructed? ' however, Fosnot (1996a) believes that a more important 

question to be asked is not whether individual cognition or social effects should be 

given priority in an analysis of learning, but what the interplay is between them, as 

they are both important factors in a student's cognitive development. 

Constructivism focuses exclusively on the processes by which individual students 

actively construct their own mathematical understanding (Lerman, 1996b). It 

enables the teacher to view students' perspectives, which is not appropriate with 

instructivist teaching. Learners are viewed as active meaning-makers, interpreting 

experiences with their existing cognitive structures. Individuals approach novel 

situations by interpreting them in the light of their own established structures of 

understanding. That is, new concepts are constructed when those established 

understandings do not allow satisfactory accommodation of the novel 

circumstance. Constructivism provides a means for building on existing cognitive 

structures hierarchically, whereas instructivism leads to the placing of new 

understanding adjacent to existing structures. For example, a student may have an 

initial belief that finding the area between a curve and the x-axis merely involves 

integrating the expression and inputting the limits. If the student has only 

encountered contrived examples where the area is completely above the x-axis, 

then a problem will arise when he or she computes a negative area. The established 

113 



Constructivism: A Theory of Lear, si,,, S' 

understanding of the process does not allow satisfactory accommodation of the 

negative solution. It is only through further exploration, normally by means of 

visual representations and social interaction, that the student will begin to 

understand the implications of integrating curves that exist below the x-axis. As a 

result of this constructivist process. the next time a negative solution is 

encountered, the student will be able to accommodate it into his or her 

rcfornwlatcd cognitive structure. 

Another example of building cognitive structures hierarchically is the studying of 

the process of differentiation only after having explored the properties of curves, 

such as gradient, continuity, etc. In this constructivist manner, students have a 

greater ability to handle the types of misconceptions described as theoretical- 

computational conflicts by Giraldo et al. (2002). These computer-generated 

images, observed through local magnification, appear to contradict the associated 

theory. If theoretical-computational conflicts arc emphasised, rather than avoided, 

they can be used to enrich concept images. This constructivist approach leads 

students through the problem, rather than merely providing a 'recipe' for getting 

around it. Giraldo ct al. invited students to explore the differentiability of the 

function h(x) = 
Fir' +1 and the corresponding graph for (x, y) e [-100,10012, as 

in Fig. 3.03. 

The conflict is between the appearance of the graph at the origin (which seems to 

have a 'comer') and the differentiable expression. The appropriate use of 

technology allows the student to zoom in to the 'comer'. producing the graph in 

Fig. 3.04, in order to build a deeper understanding of the local function behaviour. 

Iahe constructivist approach encourages the student to switch between symbolic 

and visual representations. 
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need to pose problems such as those from calculus described above. which 

encourage students to explore mathematical concepts. In turn. students need to feel 
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provides an organising role and a pur se for learning (Schitier, I990). When 

students are faced \%ith contradictions to their tmn conjectures, it is uh to them 

with appropriate guidance) to find resolution, leading to a deeper grasp of the 
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concept. Social constructivism can lead to resolution through dialogue with 

teachers or other students. Mathematics should therefore be an activity of 

exploration and debate, rather than as a finished body of knowledge to be accepted, 

accumulated and reproduced. Instead of concentrating on technique and strategy, 

the new pedagogy means developing an attitude of inquiry toward the learning of 

mathematics. The constructivist approach requires students to be prepared to 

reassemble their cognitive structures, whereas the instructivist approach 
deliberately avoids potential conflicts. 

More emphasis needs to be placed on students' ability to visualise. A constructivist 

approach that encourages the use of imagery promotes visual thinking and in turn 

enhances conceptual understanding. Let us consider how the development of 

visualisation ability can give students a better conceptual understanding of a 

mathematical situation. For example, when faced with the problem 

fsin(x)dx 
-R 

many students prefer (or rather without stopping to think) to perform the 

integration and input the limits to arrive at the answer (Malabar et al., 1998). 

Students with visualisation ability, however, will be able to 'see' the graph and 

deduce straight away that the answer must be zero. They know the answer, but 

more importantly their mental image provides them with the desirable conceptual 

understanding of the situation. Is it just the 'bright' students who sec the answer 

quickly, or is it that students atze more trustful of an answer obtained by symbolic 

manipulation? A similar situation arises when, having been taught integration by 

parts, many students will not hesitate to use that method to show that 

I 
jcos(x)dr 
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is also zero, without any consideration of graphing the integrand. A constructivist 
teaching strategy promotes the development of the necessary higher level skills 
required to tackle such problems more efficiently, whereas the more familiar 
instructivist approach limits students to the acquisition of lower level, procedural 

skills. Exploring the implications of integration in terms of positive and negative 

areas, as described earlier, would provide a useful precursor to the above problems. 

Students, regardless of their ability, arc not simply empty vessels that require 
filling with knowledge, but instead, some foram of construction of knowledge needs 

to tale place in order for students to learn effectively. Knowledge is not passively 

received either through the senses or by way of communication; knowledge is 

actively built up by the individual (von Glascrsfeld, 1990). 

Constructivism, by its very nature, is a theory about learning, not a description of 

teaching. The teaching style governs the typc of learning that takes place, and 

therefore needs to be appropriate in order to support constructivism. Fosnot 

(1996a) provides some general principles of learning derived from constructivism 

that may be helpful as educational practices arc rethought and reformed: 

" Learning is not the result of development; learning is development. Teachers 

need to allow learners to raise their own questions, generate their own 

hypotheses and models as possibilities, and test them for viability. 

[There could, however, be practical difficulties for teachers, as it is more 

challenging to create and maintain this kind of environment than to teach in an 

instructivist manner]. 

" Challenging, open-ended investigations need to be offered, thus allowing 
learners to explore and generate many possibilities, both affirming and 

contradictory. Contradictions, in particular, need to be illuminated, explored, 

and discussed. 
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[This can be achieved by exploring misconceptions associatcd with pictorial 
information, such as the theoretical-computational conflicts discussed earlier 
(Giraldo ct al., 2002)). 

" Reflective abstraction is the driving force of learning. As meaning-makers, 
humans scck to organist and gcncralisc across cxpcricnccs in a rcprcscntational 
form. 

[These representational forms can be symbolic or pictorial, or more powerfully, 

a combination of the two, which can reinforce understanding). 

" Dialogue engenders further thinking. Learners arc responsible for defending. 

proving, justifying, and communicating their ideas to the classroom community. 

[The appropriate use of visualisation can aid this dialogue]. 

" Learning proceeds toward the development of structures. As learners struggle to 

make meaning, progressive structural shifts in perspective are constructed. 

These often require the undoing or reorganising of earlier conceptions. 

[An example of this is the difficulty with calculus at A-level. Students build up 

conceptions regarding differentiation, but then they have to reorganise their 

cognitive structures when further study involves the consideration of issues 

such as differentiability and continuity]. 

These general principles have indeed been useful for this thesis, and have been 

assimilated into the teaching philosophy adopted for the case-study in Chapter 5. 

They have helped to structure the teaching in order to support and encourage 

constructivist learning. The dialogue between student and teacher (in Section 

5.3.3.3 of Chapter 5). which describes the learning process of a particular student 
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whilst using the dedicated software, provides a striking example of how the 

general principles have been incorporated into the overall teaching style. 

Interaction is the process of an individual dealing with previously constructed 

perceptual and conceptual structures (von Glasersfcld, 1996). Too often, teaching 

strategies arc developed from the assumption that what mathematics educators 

perceive and infer from their perceptions is there, ready-made, for the students to 

pick up, if only they had the inclination. This, explains von Glascrsfcld, overlooks 

the basic point that the way we organise our experiences, and the way we relate the 

various component parts, is an essentially subjective matter. In a practical setting, a 

teacher cannot possibly know the make-up of individuals' cognitive structures. 

This is a serious problem in the teaching of mathematics due to its hierarchical 

nature. Knowledge is an individual (subjective) construction that describes or 

refers to an individual's experiences, and does not describe or refer to the real 

world (von Glasersfeld, 1984,1995,1996). Hence, when teachers intend to 

stimulate and enhance a student's learning, they cannot afford to forget that 

knowledge does not exist outside a person's mind. 

Students may perceive their environment in ways that arc very different from those 

intended by educators. A teacher can hope to induce changes in their ways of 

thinking only if he or she has some idea of the experience, and the conceptual 

understanding the students possess at any given time. The fundamental principle of 

constructivism is that learning is very much a constructive activity that the students 

themselves have to carry out. From this point of view, then, the task of the 

educator is not to dispense knowledge but to provide students with opportunities 

and incentives to build it up. 

Understanding is therefore embedded in the experience of the individual. 

`Experience', as described by Elonebein et al. (1993), includes both the physical 

context in which a person works and the tasks, both cognitive and physical, that a 

person engages in whilst in that environment. That is, both the physical context for 
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learning and the activities of the learner determine how something is understood, 

i. e. what is learnt. If the physical context is of a visual nature, and the learner is 

engaged in activities that necessitate the use of visualisation, then the creation of 

meaningful concept images can be positively influenced. 

Finally in this section, there is the consideration of the 'zone of proximal 

development' (Scardamalia and Bcrcitcr, 1991; Lernfan, 1996a). This is defined as 

the area in which the student can perform tasks successfully, but only with some 

assistance. The student therefore works in a constructivist manner, inside an 

instructional domain. The zone of proximal development is the gap between what 

students can do on their own and what they can do with input from, for example, a 

teacher. The learning activity constitutes the zone of proximal development; it is 

actually the difference in activity between 'with or without' the teacher. As the 

student and the teacher work together in the zone of proximal development, there 

is therefore the question of who has ownership of the task (Scardamalia and 

Bereiter, 1991). Students can benefit from owning the task without being totally on 

their own. The teacher is there to guide, and to share in evaluating their progress. 

However, by placing the student in control, the emphasis is on self-directed 

learning, which supports the constructivist philosophy. 

An example of this scenario is the way in which a teacher can guide a student 

whilst using CABRI-GEOMETRE for the dynamic exploration of Euclidian 

geometry. Take for instance a situation where the student is exploring the 

implications of bisecting angles and sides of triangles. In CABRI-GEOMETRE, 

the student can perform angle bisections and observe that the point of intersection 

is the centre of an inscribed circle, and similarly can perform perpendicular 

bisections of the sides and observe that the point of intersection is the centre of a 

circumcircle. The dynamic software then allows the student to drag vertices of the 

triangle to illustrate that this is the case for any triangles. The student is therefore 

in control of the environment, in terms of the functionality of manipulating shapes, 

etc., and can conjecture proofs, and devise appropriate strategies. The teacher's 
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role is to simply steer the student in a fruitful direction, and to provide guidance if 

he or she deviates. The aim is to guide students through visual explorations that 

will enhance their skills set. The teacher can achieve this by asking probing 

questions such as: 

" Do the angle bisectors meet at a point? 

" Do the perpendicular bisectors of the sides meet at a point? 

" If so, do they always meet inside the triangle? 

" Arc the properties of these points of any interest? 

" Arc the altitudes of any newly constructed triangles of any interest? 

" Are your findings true for any shape or size of triangle? 

" Is there any relationship between any line segments? 

" Is there any relationship between the area of the triangle and the area of the 

circle? 

" Is there any relationship between the areas of inscribed and circumscribed 

circles? 

0 CtC. 

Questions of this type encourage students to interpret and evaluate their findings, 

make comparisons, discuss any implications, and conjecture and justify proofs 
(desirable Group C skills of the MATH taxonomy). 

The zone of proximal development is exemplified by the softwarc usage described 

in Chapter 5, where assistance in understanding the relationship between graphical 

and symbolic forms is provided whilst students use the dedicated teaching 

software. Clearly the aim here is to intentionally increase the size of the zone (the 

dialogue in Section 5.3.3.3 of Chapter 5 illustrates the role of the teacher). 
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3.3. Piagetian and Vygotskian Perspectives on 

Constructivism 

This section discusses the radical constructivist perspective of Piaget, and the 

social constructivist perspective of Vygotsky. Ideas within both theories arc 

considered (Marin ct al.. 2000) in order to determine which is the more appropriate 

philosophy for learning via computer-based visualisation. 

There arc many people in the academic community who arc sceptical about 

constructivism. The resistance to this theme, first met in the eighteenth century by 

Silvio Ceccato, and in the twentieth recently by Jean Piaget, is not so much due to 

inconsistencies in their arguments as to suspicion that constructivism tends to 

undermine too large a part of the traditional view of the world (von Glascrsfcld, 

1996). 

Piaget's constructivist perspective is that the individual is responsible for his 

thinking and his knowledge. Our knowledge can never be interpreted as a picture 

or representation of the real world (von Glascrsfcld, 1996), but only as a key that 

unlocks possible paths for us. The Piagetian viewpoint is that all understanding is a 

matter of interpretive construction on the part of the experiencing subject. 

The epistemological problem is how we acquire knowledge of reality, and how 

reliable and ̀ true' that knowledge might be. The basic principle of the Piagetian 

epistemology is that the experiential world constitutes the testing ground for our 

cognitive structures. In the light of further experience. theories either prove 

themselves reliable or they do not. Our knowledge is useful and relevant if it 

stands up to experience. Ideas and theories are structures that are constantly 

exposed to our experiential world, and either they hold up or they do not. In 

mathematics, theories can be conjectured, and they arc either proved or disproved 

in light of further specific examples. In a similar fashion, mathematical modelling 
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applies mathematics to rcal"world situations, not only in light of existing data, but 

also for further data. The real-world scenario, however, gives more confidence that 
the hypotheses are correct. 

The Piagctian view, thcrcfore, is that constructivism breaks with convention and 
develops a theory of knowledge in which knowledge does not reflect an ̀ objective' 

reality, but exclusively an ordering and organisation of a world constituted by our 
experience. 

If knowledge is to be a description or image of the world as such, we need a 

criterion that might enable us to judge when our descriptions or images are 'right' 

or 'true'. The unanswerable question as to whether, or to what extent, any picture 

our senses convey might correspond to the `objective' reality is still today the crux 

of the entire theory of knowledge. The question is unanswerable because, no 

matter what we do, we can check our perceptions only by means of other 

perceptions (von Glascrsfcld, 1996). 

In traditional theories of knowledge, the activity of 'knowing' is taken as a matter 

of course, an activity that requires no justification and which functions as an initial 

constituent. With constructivism, however, knowledge cannot be the result of a 

passive receiving, and must originate as the product of an individual's activity. 

Learners gradually build up their cognitive structures. 

A person evaluates his experiences, and because he evaluates them, he tends to 

repeat certain ones and to avoid others. The products of conscious cognitive 

activity, therefore, always have a purpose and are assessed according to how well 

they serve that purpose. 

Knowledge is something that a person builds up in an attempt to order the flow of 

experience by establishing repeatable experiences and relatively reliable relations 
between them (von Glascrsfcld, 1996). The possibilities of constructing such an 
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order arc dctcnnincd by the preceding steps in the construction. Constructivism 

must not be interpreted as a picture or description of any absolute reality, but as a 

possible model of knowing and the acquisition of knowledge in people that arc 

capable of constructing for themselves, on the basis of their own experience. a 

more or Icss reliable world. 

Piagct firmly believed that knowledge, no matter how it be defined, is in the minds 

of persons, and that the thinking subject has no alternative but to construct what he 

or she knows on the basis of his or her own experience. The problem with this, 

from a teaching perspective, is that students will construct knowledge at different 

rates from one another. Visualisation can perhaps play an important role here, by 

speeding up the cognitive structuring process for students who are weaker 

algebraically. 

Knowledge is constructed by means of the physical and mental actions of the 

subject; the individual is primary, and is the central clement in mcaning making 

(Lerman, 1996b; Rowlands et al., 1996). The construction of knowledge is totally 

individual because any social/external interaction is interpreted individually 

anyway (Lerman, 1994). With this perspective, the subject cannot go beyond the 

limits of individual experience. This condition, however, by no means eliminates 

the influence and the shaping effects of social interaction. The Piagctian notion of 

constructivism is that through social interaction individuals attempt to shape their 

images and theories. 

Piaget was the pioneer of the constructivist approach to cognition in the twentieth 

century. It was his aini to produce as coherent a model as possible, of human 

cognition and its development (von Glascrsfcld, 1995). Piagct believed that the 

human was a developing organism, not only in a physical, biological sense, but 

also in a cognitive sense. The main body of his work centred on illuminating the 

progressive cognitive structuring of individuals; knowledge develops from 

successive constructions (Fosnot. 1996a). Cognitive structures, when disturbed, 

124 



Constnictivism: A Thrvey of Lrurriing 

generate new possibilitics - possibilities of new actions or explanations. fosnot 

describes how these possibilities are cxplorcd, and correspondences and/or patterns 

are constructed because of the human's self-organising tendency. Subsequent 

reflection on these correspondences brings about a structural change - an 

accommodation that transforms the original cognitive structure, and that explains 

why the pattern occurs, thus enabling generalisation beyond the specific 

experience. Piagct terms this process 'reflective abstraction'. 

Both assimilation and accommodation arc key terms in Piaget's theory (von 

Glasersfcld, 1995). Assimilation is treating new material as an instance of 

something known. Any experienced behaviour is always grafted onto previous 

schemes, and therefore amounts to assimilating new elements to already 

constructed structures. Cognitive assimilation comes about when a cognising 

individual fits an experience into a conceptual structure it already possesses. If an 

individual is unable to assimilate, there will be a perturbation. If the unexpected 

outcome was disappointing, one or more of the newly noticed characteristics may 

effect a change in the recognition pattern and thus in the conditions that will trigger 

the activity in the future. Alternatively, if the unexpected outcome was pleasant or 

interesting, a new recognition pattern may be formed to include the new 

characteristic. In both cases there would be an act of learning, which is known as 

an `accommodation' (this is a more detailed description of the final buliet"point of 

general principles of learning provided by Fosnot (1996a) in the previous section, 

which considers the undoing or reorganising of earlier conceptions in the 

development of cognitive structures). An example of this process is where a 

student is faced with the problem 

f-tfr. 
_, x 

The student tackles the problem in the 'tried and tested' manner, by integrating the 

expression and inputting the limits, and finds that the area is -2. A perturbation 
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could occur here in one of two wa I rrýth the "tudent might he . r\\; rrr that the 

graph rxi%t% entirely above the %-ari.. and %0 cannot as'itttilate the negative area 

into hi% or her existing cognitive stnicturc. Secondly. it the student plots the graph 

)unaware of its nature) in order to confirm the result, as in Fig. 3.05 below. it 

perturbation will occur, as the student cannot assimilate the existence ot the graph 

above the . r-axis with the negative area. 

V 

.1 

4 
"1 

ý .1 
1 

I 

Fig. 3.0.5. 

Ihr %i. u. ºI rehrc"rnt. itIt III hcIp-, the student to rCskll%c the Ikrturhatioýn by 

illustrating that the area is infinite due to the existence of a vertical asymptote at 

x=0. This new information rc. ult,, in a restructuring of the student'N existing 

cognitive stnicture so that an accommodation can take place. 

The learning theory that emerges from Piaget'. work can be summarised by saving 

that cognitive change and learning take place when a scheme, instead o( producing 

the expected result (assimilation). lead% to perturbation, and perturbation, in turn. 

to an accommodation (von Glasenfeld, 1995). 

The Vvgot. kian f r,, lxrti\r on constructiVi'. nt is now considered. `'\gotskv 

attempted to develop a tull\' cultural psychology, pl k'irtg runtntunicatn n and 
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social life at the centre of meaning-making (Lerman, 1996b). lie placed great 

importance on external influences during the building up of cognitive structures; 

knowledge is an individual construction in response to experiences in social 

contexts (Ernest. 1994). The individual constructs knowledge facilitated by a 

teacher or more able peers. If the mental functions of the student as a 

developmental process are to be explained, then the completion of a task that the 

student cannot do unaided must be facilitated (Rowlands et al., 1996). This can be 

described as a relationship between the private and the social, which, according to 

Vygotsky, cannot be separated (Rowlands et al., 1996). In this way, as a result of 

how a student responds to this mediation, a student's ability can be determined as 

it matures (the zone of proximal development, discussed earlier), rather than 

simply measuring the student's ability that has already developed, in the case of the 

student who can complete the task unaided. 

Students can acquire strategies and modes of thinking that were first observed with 

the teacher while solving a problem jointly. Learning takes place in the zone of 

proximal development as a result of interaction with more knowledgeable peers or 

teachers (Lerman, 1996a). From this point of view, teaching and learning cannot be 

discussed separately - which is the viewpoint of this thesis. 

The teacher can take on the role of facilitator in the construction of knowledge 

(rather than a giver of knowledge) by providing props and hints to develop 

students' cognitive framework. The teacher aids the learner in accomplishing the 

activity, not by doing the task for the learner or giving the learner the correct 

answers, but by providing guidance that require learners to formulate their own 

solution to the problem (Honebcin ct al., 1993). Probing questions are used as a 

catalyst to get students to reach the desired goal, without taking away the 

ownership of the task. In this manner, students can eventually arrive at a required 

level of understanding for themselves, which is not only advantageous in terms of 

the learning process, but also increases satisfaction and boosts confidence. 
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Strategic questioning, known as the Socratic method, can be used to facilitate the 

construction of a target concept, working within the students' zone of proximal 
development (Rowlands et al., 1997). Students have misconceptions of 

mathematics that arc resilient to change. If a student realises that his or her 

intuitive ideas arc inadequate, then change is possible. Rowlands ct al. explain that 

this method of strategic questioning challenges (and hopefully removes) 

misconceptions, and facilitates the construction of knowledge. The key is to ask 

qualitative questions that lead the student to reach the target concept without it 

actually being given by the teacher. Consistent with the Vygotskian perspective, 

these questions provide hurdles to be overcome in order to develop cognitive 

growth, yet which also serve as props or hints to facilitate the process. The teacher 

must use questions that challenge students to think according to the properties of 

the target concept. Rowlands et al. discuss how intuitive concepts stand at one end 

of the zone of proximal development, and the target concept stands at the other - 

strategic questions stand in between and facilitate the progression from the former 

to the latter. 

The Socratic method of strategic questioning is precisely the approach adopted in 

the case-study described in Chapter 5. One of the aims of the case-study is to 

assess changes in knowledge states, and hence the development of higher order 

skills (Group C skills of the MATH taxonomy), not merely the ability to gather 

more factual knowledge (Group A skill of the MATH taxonomy). The scenario in 

Section 5.3.3.3 of Chapter 5 describes a dialogue between student and teacher 

whilst the student attempts one of the questions during the case-study. It illustrates 

an attempt to assess the student's ability to accommodate a different style of 

learning. The teacher asks probing questions in an attempt to assess the student's 

ability to respond appropriately, rather than regurgitate information. The 

relationship between symbolic and pictorial forms plays an important role in 

unifying the responses. 
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There are potential problems, however, associated with this approach. Lcmcrisc 

(1993) reported on a constructivist approach to learning using LOGO. Important 
differences in the level of involvement were noticed. The students with strong 
characters benefited more - they were full of ideas, and also reacted very positively 
to the interventions of the teacher. In contrast, the less able rapidly reached a 

ceiling in their interest, initiative, and ideas. A resistance to interventions by the 

teacher suggestive of new approaches or techniques was also observed. 

The Vygotskian perspective supports the teaching of decontextualised concepts, 

enabling cognitive growth and development, leading to the ability to reason 

(Rowlands ct al., 1996). Visualisation skills, together with other higher order 

skills, can therefore be developed in a particular setting, but can transcend the 

context from which they originate. Educators should not concentrate too much on 

specific contexts in the way that they teach. Instead, a more conceptual, global 

approach to teaching and learning mathematics needs to be encouraged. There are 

serious implications for contcxtualising too much. Rowlands ct al. (1996) believe 

that attempts to make the mathematics curriculum more relevant to everyday life 

has simply diluted both content and the development of skills. Putting everything 

in context is more time-consuming, and therefore the range of topics has to be 

diluted as a result. Additionally, if all topics are presented in a specific context, 

then the students will not develop the ability to generalise globally. For example, 

real-world applications can help students to manage learning, i. e. they provide an 

'anchor', but if everything is contextualised, this will dilute the development of 

desirable skills such as the ability to apply, reason, etc. If the students cannot 

divorce the concepts from their contexts, then the props become a `barrier' to 

generalisation (this problem is analogous to the restrictive properties of diagrams 

reported by Presmeg (1986) in Section 2.3.2 of Chapter 2). As a consequence of 

the content of the curriculum and the instructivist way in which it is taught, the 

standard of mathematics in the UK is poor compared with other countries, despite 

continual improvements in GCSE and A-level results (London Mathematical 

Society (LIAS), Institute of Mathematics and its Applications (INIA), and Royal 
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Statistical Socicty (RSS), 1995; Rowlands ct al., 1996; Learning and Tcaching 

Support Network (AMSOR), Institute of Mathcmatics and its Applications (IMMA), 

London Mathematical Society (LAMS), and Engineering Council, 2000) 

Vygotsky, like Piagct, assigned great importance to the development of cognitive 

skills (Group C skills of the MATH taxonomy) along with the more routine 

learning of mathematics such as algorithmic approaches and algebraic techniques. 

lt is through the learning of concepts separate from the immediate and the concrete 

that cognitive structures arc built (Vygotsky, 1962). For example, in mathematics 

for sport science, teaching the modelling of the flight of balls generally, to include 

impact, spin and aerodynamic concepts, will lead to students being able to apply 

the concepts to any ball sport (Group B skill of the MATH taxonomy). The 

understanding of concepts leads to the development of mental structures, which in 

turn provide a platform for the development of further conceptual understanding. 

Vygotsky differentiated between what he called 'spontaneous' and 'scientific' 

concepts (Fosnot, 1996a). He defined spontaneous concepts as those that a learner 

develops naturally in the process of construction emerging from the learner's own 

reflections on everyday experience. He proposed that scientific concepts, on the 

other hand, originate in the structured activity of classroom instruction, and impose 

on the learner more formal abstractions and more logically defined concepts than 

those constructed spontaneously. Having made this distinction, one of Vygotsky's 

main questions became: What facilitates the learning that moves the learner from 

spontaneous concepts to scientific concepts? 

Vygotsky argued that scientific concepts do not come to the learner in a ready- 

made form. They undergo substantial development, dcpcnding on the existing level 

of the learner's ability to understand the teacher. The case-study in Chapter 5 

illustrates how the use of visualisation significantly enhances this development 

process. As mentioned earlier, Vygotsky's zone of proximal development 

describes the position at which a learner's spontaneous concepts encounter teacher 
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reasoning. This zone varies from learner to learner and reflects the ability of the 
learner to understand the logic of the scientific concert. For this reason, Vygotsky 

viewed tests that only looked at the learner's individual problem solving capability 

as inadequate, arguing instead that the progress in concept formation achieved by 

the learner in co-operation with a teacher was a much more viable way to look at 

the capabilities of learners (l osnot, 1996a). 

To summarise, Vygotsky was interested in the role of the teacher and the learners' 

peers as they conversed, questioned, explained, and negotiated meaning. lie argued 

that "the most effective learning occurs isizen the teacher draws the learner out to 

the jointly constructed 'potential' level of performance" (Fosnot, 1996a). 

Interactions among students arc recognised as much by Piaget as by Vygotsky as 

an important source of learning and development (Lcmcrise, 1993). For Piaget, 

social interaction is favourable as it can lead to a cognitive conflict, which calls for 

the reorganisation of cognitive structures. For Vygotsky, social interaction allows a 

student working with another 'more able' student to generate actions that he or she 

could not do alone, and thus allows the student to enter into his or her zone of 

proximal development. 

From a Vygotskian viewpoint, social interaction provides more direct means for 

the sharing of knowledge. Followers of the Piagctian philosophy, however, would 

ask how such sharing of knowledge can take place when the individual is 

responsible for meaning-making. Both Piaget and Vygotsky place the individual 

and society at the centre of their theories. The difference in viewpoint, however, is 

encapsulated in their identification of the source of meaning - Piaget identifying 

the cognising individual, and Vygotsky identifying society and discursive practices 
(Leaman, 1996b). 

The social constructivist perspective of Vygotsky is the more appropriate 
philosophy for the case-study in Chapter 5. The cast-study places great importance 
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on social interaction during the building up of cognitive structures. It exemplifies 

the zone of proximal development, as a student's ability is determined as it 

matures in response to mediation. ('robing questions arc employed to assess the 

ability to respond appropriately. The individual constructs knowledge of 

dccontcxtualised concepts facilitated by the teacher. Visualisation skills are 

developed in a particular setting, but can be further employed in different contexts. 

The case-study identifies social interaction as a key source of meaning, as per the 

Vygotskian perspective, whereas the Piagetian perspective identifies it merely as a 

means of shaping an individual's already formed cognitive structures. 

3.4. Constructivism in Relation to Educational 

Technology 

Chapters 1 and 2 have illustrated the power of technology in the teaching and 

learning of mathematics in terms of its ability to incorporate visualisation, and the 

resultant effect on achievement and motivation. This section now considers the 

design of computer-based learning environments from a constructivist perspective 

(Dalgarno, 2001; Malabar and Pountney, 2002). The use of technology allows us to 

create teaching and learning materials that provide a visually compelling learning 

environment in which students can construct knowledge for themselves. Educators 

need to allow for investigation and experimentation in student learning and 

development (Fosnot, 1996b). They need to approach curricula in a learner-centred 

fashion with the emphasis on investigation, reflection and discourse. The teacher 

should act as a facilitator in the process, providing support and guidance, and 

allowing for further investigation and deeper understanding through questioning 

and probing. Educators must critically evaluate the teaching and learning process, 

and design teaching activities to promote learner construction. Students need to be 

allowed to investigate, and to raise their own questions. The constructivist use of 
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technology offers the opportunity to change the nature of the material to be taught 

and Icarnt from routinc-bascd to discovcry-bascd activitics. 

As discussed in the previous section, knowledge is built up from personal 

experiences, and making these experiences more dynamic will assist in the 

development of cognitive structures (Tall, 2000a, 2000c). Computer-based 

attractive environments with visually compelling displays, together with facilities 

for interaction, can provide the setting for more dynamic, powerful experiences. 

These environments should be filled with stimuli which encourage rich 

constructions by students (Nelson, 2000). Graphic representations, coupled with 

social interactions, arc seen as leading to both the development of an individual's 

knowledge, and the adaptation of concepts (von Glascrsfcld, 1992; Smith, 1998; 

Pesonen, 2002). 

Many students, at all levels, find it difficult to answer questions about concepts 

that have been placed in contexts separate from their immediate concrete 

experiences (Honebcin et al., 1993). As earlier sections of this chapter point out, 

the constructivist use of computer-based visualisation offers a more powerful 

means of providing the student with vivid experiences in order to convert the 

concrete into the abstract more successfully. This can in turn provide students with 

the appropriate mental structures that can be called upon to utilise conceptual 

knowledge in unfamiliar situations. (lonebein et al. (1993) state that it is only 

through the richness of prior experience that the learner will be able to assemble 

the appropriate concepts and strategies to guide performance in a new situation. 

They believe that the types of activities that can be carried out in a computer 

environment (exploration, interaction, visualisation, etc. ) provide meaningful 

experiences for learners that help them transfer skills and knowledge to other 

problem solving activities and subject domains. 

It is important that students construct correct knowledge, which highlights the 

importance of the quality of any mathematical software used. Students' existing 

133 



Constnurth sin: A llu'ory of Learning 

knowledge can be incorrect, and this, together with poor experiences, can simply 

reinforce their misconceptions, and interfere with the learning of new (or further) 

concepts (Zculi, 1986; Giraldo et al., 2002). Well designed software, together with 

working in the zone of proximal development, can minimise the creation of 

incorrect information, and maximise the development of conceptual understanding. 

The balance between student-centred and teacher-lcd work is vital for optimising 

learning, because the student must feel in control, but the teacher must guide the 

discovery process. This vital balance is reflected in the design of the software in 

Chapter 5. 

Imagery plays a significant role in mathematical reasoning (Wheatley and Brown, 

1994). When students arc engaged in the conceptual and relational understanding 

of mathematics, rather than procedural tasks, it is quite likely they will be using 

some form of imagery. Wheatley and Brown consider the construction and 're- 

presentation' of images. While engaged in mathematical activity, students 

construct images. When they re-present their image at a later date, they arc 

operating from the image that they originally constructed. The nature and quality of 

the image will influence the re-presentation, hence the importance of quality 

mathematical software for image generation. This act of re-presentation is a 

complex one. Piaget has shown that the image constructed may undergo change 

over time without any intervention - the original image-making process supported 

by appropriate software is therefore vital. Wheatley and Brown believe that 

activities that encourage the construction of meaningful images can greatly 

enhance mathematics learning (e. g. the activities described in Chapter 5). 

Furthermore, good visualisers are particularly successful in constructing and re- 

presenting images; students who naturally use images in their thinking easily make 

sense of novel mathematical tasks while students who are not good visualisers 

often do not (Wheatley and Brown, 1994; Ilabre, 2001). It is therefore desirable to 

develop learning activities that promote the development of image-making skills 

for all students. 
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Powerful multiple representation software can be used to encourage the learner to 

construct meaning for different representations and how they arc related. Multiple 

representation software can demonstrate these links explicitly (O'Reilly ct al., 

1997). Within such software, constructive changes in one representation trigger 

automatic changes in another. For example, a change in algebraic representation of 

a function will immediately promote a corresponding change in the graph of the 

function. A learning tool cannot be used in a constructivist manner, however, 

unless the students are genuinely in control. Thus, the pedagogy associated with 

this mode of use needs to be open and challenging. The dedicated teaching 

software described in Chapter 5 offers an important educational advantage over 

standard graph-plotting software. The student has control over where the relational 

links arc made (symbols to picture, or vice versa), which is very much an example 

of a constructivist representation. 

The software described in Chapter 5 has a Piagctian approach in so far as the 

student constructs knowledge that emerges from an individual's experiences, but 

has a Vygotskian approach as the teacher prompts and makes hints as to possible 

solution strategies, i. e. the importance of social interaction. No matter how the 

students actually construct their knowledge in terms of constructivist orientation, 

the key issue is whether or not they have actually learnt anything. The extent of 

learning is analysed in Chapter 5. 

One particular cognitive activity that should be promoted in the design of learning 

environments is the ability to generate and evaluate alternative perspectives 

(Honebein et al., 1993). Students need to be made aware of the value of trying to 

see a problem from different perspectives. Consideration of those perspectives can 

then be used to help develop and refine one's own understanding. This is 

particularly beneficial for understanding problems of existence in mathematics, for 

example using visualisation (as an alternative perspective to symbolism) to 

illustrate that there arc no real roots of f (x) = x2 + 4, or that no solution exists for 

simultancous lincar cquations rcprescnting lints that are parallcl. Collaborativc 
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Icarning, either with peers or a teacher, is one strategy for helping to develop the 

skills of generating and evaluating alternative perspectives. Collaboration is more 
likely to yield different, yet equally viable. approaches to problem solving. It is 

restrictive for students to view all situations or tasks from a single perspective (e. g. 

symbolic or pictorial prcfercnces), or always try to use the same strategy to solve a 

problem. 

Both Piagetian and Vygotskian perspectives highly value the creation of rich 

environments capable of inciting student action and involvement. It is necessary to 

promote a verbal interaction capable of maintaining the initial stimulation 

(Lemcrisc, 1993), as these verbal interactions are very important in the learning 

and development processes. The approach adopted in Chapter 5 allows for social 

interactions between students, and between students and tutor - it provides a 

vehicle for constructing knowledge in the zone of proximal development. 

The provision of activities to encourage a constructivist process can be achieved 

readily nowadays by employing visually compelling mathematical software such as 
AUTOGRAPH, CABRI-GEONIETRE, or a Computer Algebra System such as 

DERIVE, with which students can explore mathematics. These packages have 

various features that facilitate a constructivist approach to learning mathematics. 

AUTOGRAPH allows the user to 'grab and move' graphs, lines, and points on 

screen whilst observing changes in parameters, and vice versa. CABRI- 

GEOIIETRE encourages the user to drag points around the screen whilst 

observing the effects of such changes on geometric shapes. DERIVE, with its 

multiple representation capabilities, allows the user to switch easily between 

numeric, symbolic and visual representations of information. These examples of 

software that can enhance constructivist learning can be used effectively to 

encourage ̀ what if situations for students to explore, and to assist the learner to 

hypothesise mathematical facts prior to attempts at a proof. Enhanced 

understanding is likely if students can happily move from visual to symbolic 
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rcprcscntations. and vice vcrsa (as with the software dcscribcd in Charter 5), when 

cxprcssing their mathematical bclicf about a situation. 

Additional to the commercially available software described above, bespoke 

software based on a constructivist approach has been developed (Sahin, 2003). An 

example of this is the development of an interactive problem-solving system for 

rotational dynamics (Dhillon, 1997), which allows students to be the initiators and 

controllers of their own learning. Evidence of the package's influence on student 

learning was obtained merely by means of questionnaires and interviews. The case- 

study described in this thesis employed questionnaires purely to gauge motivation 

and subject content, whereas the issue of enhanced conceptual understanding and 

the development of skills was dealt with by a controlled trial. 

3.5. Summary 

The constructivist philosophy is one that offers a theoretical basis for the 

development of imaginative teaching methods. In order to adopt the constructivist 

way of thinking, some of the key concepts underlying educational practice have to 

be refashioned (von Glasersfeld, 1995). The notions concerning the processes of 

communication and learning, the nature of information and knowledge, the 

interaction with others, and motivation, all change when they arc seen from the 

constructivist perspective. Instructivism offers very little - what matters above all 

is that students learn to think. Traditional assessments in mathematics often require 

students to do little more than remember what the teacher or the textbook has said; 

they test memory and rote learning, not understanding. 

A variety of reinforcements, such as praise, rewards, and grades, arc typically used 
in education. All of these are examples of extrinsic motivators. Thcrc is no 

qucstion that the proccdurc works, in as much as it produccs the repetition of the 
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reinforced behaviour. The problem is that extrinsic motivators do not motivate an 

effort to 'understand' (von Glascrsfcld, 1995). Whatever students are given as 

reward for a good performance becomes the reason for performing. This creates a 

temporary motivation to repeat the successful efforts, but it does not create the 

desire to learn more, or to seek solutions to novel problems for themselves. The 

insight 'why' a result is right gives the student a feeling of ability and competence 

that is far more empowering than any external reinforcement. 

Problem solving is undoubtedly a powerful educational tool (and a necessary 

graduate skill), and its power greatly increases if the students come to sec it as 

enjoyable and worthwhile. The choice of task is also crucial and requires the 

teacher to use imagination rather than routine. Teachers can motivate students by 

displaying honest enthusiasm for the topic and its problems. Teachers who feel that 

their authority lies in knowing all the answers have little chance of awakening 

genuine curiosity in their students. This raises the issue of how to `sell' these ideas 

to teachers who are reluctant to relinquish 'control' of the class. Constructivism 

suggests that the art of teaching has little to do with the transfer of knowledge - its 

fundamental purpose must be to foster the art of learning. Concepts arc mental 

structures that cannot be passed from one mind to another. They have to be built up 

individually by each learner, Sect teachers have the task of guiding the students' 

constructive process. When students are driven by their own interest to investigate 

a situation, the conceptual changes they arc making during the process of reflection 

will be far more solid than if they were imposed by a teacher. Teachers must not 

overlook opportunities to explore rich student ideas. 

All too often, teachers seem to be convinced that the abstract concepts they arc 

trying to convey are plainly visible in the material they are displaying. This is very 

often not the case. From the constructivist perspective. concepts are not inherent in 

things but have to be individually built up by reflective abstraction. Individual 

students often make abstractions from the presented material that arc quite 
different from those the teacher intends, to whom the material seems unambiguous. 
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hence it sccros essential to provide a class with a variety of situations that can all 
be sccn as cxamplcs of the conccptual construction the tcachcr wants to convcy 
(von Glascrsfcld, 1995). 

Whilst challenging students' conceptions, if the teacher reacts by saying that their 

ideas are wrong and tells them what is considered 'right', the reason why it is 

considered better may not be understood. It would seem more efficient to present 

the students with situations where the theory they have been using does not work. 

The motive to look for a more successful theory may then arise from their own 

perspective. 

The next chapter considers the types of skills students should possess, and which 

skills can be enhanced via the constructivist use of visual software. This leads to 

the experiment detailed in Chapter 5 which employs visualisation in a 

constructivist computer-based environment with the aim of enhancing conceptual 

understanding of functions and graphs, and at the same time developing higher 

order skills. 
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-APTER. ", 

Mathematical Skills and the 

Role of Visualisation 

Give:: the volume and complexity of scientific data, visualisation in 

the physical sciences has become a necessity in the modern 

scientific world. 

ROBERT WOLFF 
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4.1. Introduction 

The focus in this charter is on the need to develop mathematical skills as well as 

subject specific knowledge. In particular, consideration is given to how the 

integrated use of visualisation can help to develop higher order skills. Earlier 

chapters have highlighted the fact that visualisation can be a very powerful 

educational tool for the understanding of mathematical concepts, but due to the 

manner in which mathematics is currently taught. curricula make limited use of 

visual representations. Educators therefore need to design activities that develop 

students' visualisation skills. Students need these skills, as the presentation of 

mathematical material is becoming increasingly visual. 

As the result of an instructivist approach, students do not necessarily have the 

required higher order skills in order to be able to apply their knowledge to solve 

unfamiliar problems. A constructivist approach employing visualisation, however, 

concentrates on a holistic view of learning mathematics, and focuses on deep 

understanding and the development of skills, rather than facts and routines. This 

chapter shows how a constructivist approach needs to be adopted in order for 

higher order skills to be developed. 

This chapter proposes a skills classification appropriate for the incorporation of 

technology in mathematics education. With the aid of this classification, an initial 

survey of mathematical skills is carried out which gives consideration to the types 

of skills students possess, and which skills can be enhanced via the constructivist 

use of visual software. Consideration is given to how the various skills taxonomies 

discussed in Section 2.3.1 of Chapter 2 arc related, and how visualisation emerges 

as a common theme, underpinning these necessary skills. It is believed here that 

visualisation is an important factor for guiding concept development, and should 

be used explicitly as a tool for developing other higher order skills. A comparison 

of instructivist and constructivist approaches is provided, detailing the extent of 
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visualisation used in cacti case, and the resultant skills developed. Finally, the 

extent to which students demonstrate certain skills (as opposed to knowledge), 

%%-hcn technology is at their disposal in assessment, is discussed. This discussion is 

aided by a small investigation that takes a series of traditional examination 

questions and considers the possible use of a Computer Algebra System (CAS) in 

attempting to tackle them. This investigation provides useful information regarding 

the lack of visualisation ability and higher order skills in students, hence the larger 

case-study in the next chapter which aims to develop such skills via the 

constructivist use of visualisation. 

4.2. DEVISe Skills Classification 

All the skills taxonomies discussed in Section 2.3.1 of Chapter 2 are useful starting 

points in the classification of mathematics questions in terms of skills attainment. 

A more appropriate set of categories needed to be devised here, however, in order 

to allow for the introduction of computer-based visualisation as a learning and 

assessing medium. A skills classification was formulated containing the following 

five distinct categories: 

" the ability to Detect mistakes. 

" the ability to Explore. 

" the ability to Visualise. 

" the ability to interpret. 

the ability to Select the best method for solution. 

This classification is diffcrcnt from the other taxonomies as it is more seared 
towards computer-based, visual skills coupled with a constructivist approach to 
learning, whereas the others are concerned with pen-and-paper mathematics. It 
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describes (tic tyres of skills gained through the invcstigativc use of mathcmatical 

software that cmploys both symbolic and visual represcntations. 

4.3. Linkages Between the Taxonomies 

Visualisation is explicitly mcntioncd as a skill in the DEVISc classification, but as 

we shall sec, all the attempts at skills classification discussed in Section 2.3.1 of 

Chapter 2 have a number of linkages, and visualisation is in fact a common, albeit 

implicit, skill feature. 

The five taxonomies considered in this thesis have effectively arisen independently 

from one another and yet it is of interest to compare them in detail in order to 

appreciate how they arc linked, and how visualisation is prominent. For example, 

reading from the left. Fig. 4.01 below links the DEVISe categories to the six 

NCVQ key skills, and links the six NCVQ key skills to the objectives of the 

Alathskills Discipline Network, and hence to the DEVISe classification. Similarly, 

the DEVISe classification is linked to the descriptions of the three types of skills 

questions used by Galbraith and Ilaines (2000b). and these would seem to indicate 

that they map closely onto the MATH taxonomy, and hence link directly to the 

DEVISe classification. The visualisation links and influences arc highlighted in 

red. 

4.4. Visualisation as a Developing Skill 

Although the five initiatives originated frone different perspectives, the above 

section highlights the fact that they overlap significantly in identifying core skills. 
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It is interesting to note that both Smith ct al. (1996) and Galbraith and Ilaincs 

(2000b) make similar comments about students entering undergraduate courses, 

namely that they are experienced and skilled in the mechanical tasks 

(comprehension of factual knowledge, routine use of procedures) but are limited in 

the interpretive and constructive skills (justifying, conjectures. evaluation). These 

latter skills arc precisely those that need to be developed significantly at 

undergraduate level. 

A similar pattern of ability exists with visualisation. For example, students being 

assessed at A-level appear generally capable when asked to perform mechanical, 

visual tasks such as curve sketching (usually as the final task alter determining 

turning points, asymptotes, etc. ) but have difficulty when asked to interpret or 

construct visually (Chapter 5 examines this situation). Thus it would seem that 

visualisation skills of students are likely to be weak on entry to undergraduate 

courses, and that the desired development of interpretive and constructive skills 

should explicitly include their application to, and interaction with, visual 

representations (this belief is reinforced in Chapter 5). 

Students' difficulties with visualisation relate to the process of forming images 

(mentally, or with pen-and"papcr, or with the aid of technology) as well as using 

them in solving mathematical problems. 

4.5. Visualisation to Enhance Skills 

As a specific subject example, this section compares instructivist and constructivist 

approaches to the teaching of function translations, and evaluates each approach 
in terms of the development of skills. In each case, the extent of the use of 

visualisation is discussed, and the effect this has on skills development. Examples 

of the nature of the skills developed with each approach arc provided, classified by 
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the descriptors of the MATH taxonomy. This taxonomy is appropriate for this 

purpose as it describes the nature of mathematical activities in terms of a hierarchy 

of skills. It has been observed that there is clearly an overlap in some of the skill 

descriptors depending on the nature of the task, and the understanding required 

(Leinbach ct al., 2002). 

Instructik"ist Approach: 

Instructions are given as to how any function can be plotted by finding 

corresponding y-values for a range of. r-valucs, and sketching the curve, or straight 

line, through the plotted points (there are potential problems immediately here, 

with the appropriate selection of x-values that serve to illustrate the key features of 

the graph). This can be followed with an explanation of 'families' of functions. A 

comprehensive and prescriptive set of rules can now be delivered in order to show 

the effect of the constant, c, in the expressions f (x) +c, f (x +c) , and cf (x) , for 

positive and negative values of c. As a result of this instructivist approach, the 

following skills are attainable: 

An understanding of the shapes of specific graphs can be achieved, and from 

which families they come (Factual knowledge, Group A). For example, given the 

graph of f (x) = 2x2 -3x+1, students should recognise that it is a parabola, which 

is a member of the family of quadratic functions. 

An understanding of the effect of changing individual parameters on any f (x) can 

be achieved (Comprehension, Group A). For example, in the expression 

f (x) = 3(x - 2) 2+1, students should be able to understand the effects of the 3, -2, 

and 1, on the graph. 

Students should be able to carry out the steps involved with graphical construction 

(Routine use of procedures, Group A). For example, students should be able to 
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plot a given function, and should be able to substitute different values of a, b, and 

c, into the expression f (. r) = a(. r+G)' +c, and plot (or by now, skctch) the 

corresponding graphs. 

Students should be able to express a symbolic expression as a graph (Information 

transfer, Group I3), but it is not as likely that they would be able to transfer 

information in the opposite direction. Additionally. students should be able to 

provide an explanation of the shapes and properties of graphs in non-technical 

terms, for example verbalise the effects of parameters, and the location and nature 

of turning points, asymptotes, etc. 

Students should be able to pick out a rule that will act as a template for solution, 

i. e. make the problem fit the prescribed rule (Application in new situations, 

Group I3). For example, when provided with an unfamiliar graph, i. e. any f (x) in 

visual form, students should be able to appreciate any translations or 

transformations, given the rules. It is likely. however, that students will be limited 

in the ability to apply their knowledge to the modelling of real-life situations, as 

this requires the type of higher order skills developed via the following 

constructivist approach. 

Constructivist Approach: 

Using appropriate graph plotting software, students arc invited to explore the effect 

of the constant, c, in the expression f (x) = (x+c)2, for any f (x) of their choice, 

and for positive and negative values of c, to appreciate horizontal translations. 

Similar explorations follow for the expression f (x) = x2 +c, to appreciate vertical 

translations. Expressions of the form f (x) _ (x+u)2 +b are then considered, to 

take account of both actions simultaneously. Students hypothesise rules based on 

their investigations, and plot appropriate graphs in order to `prove' their 

hypotheses. Hence the examples are used as generic organisers (Tall and Thomas, 
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1991) to abstract the concept of translation. When given an expression such as 

f (x) = x2 +2x+3 to explore, and provided that they have sufficiently explored 

earlier expressions, students will notice that it is merely a translation, both 

horizontally and vertically, of the graph of f (x) = x2 (the expression is girrn to 

the students to facilitate the constructivist process). They can thus conjecture, as a 

result of their explorations, that the given quadratic expression is expressible in the 

more desirable form that they used in earlier explorations, i. e. f(x) = (. r+a)2 +b, 

in this case f (X) = (x+ 1)2 + 2. In this manner, students can concentrate on the 

concepts of translations, rather than the procedures involved. The formal aspects of 

completing the square, the steps involved with the construction of graphs, and the 

facility of sketching via key features, can be dealt with once the desirable 

conceptual structures have been established (knowledge of completing the square 

would have to be a prerequisite for the instructivist approach). This approach can 

clearly be adopted for other families of functions, as well as other transformational 

properties such as scaling. 

The constructivist approach provides students with the necessary Group A and B 

skills (as with the instructivist approach), but develops them further. For example, 

the constructivist approach helps students to view graph-, as conceptual entities, 

which encompass the global features, rather than point-by-point representations of 

symbolic expressions. Students should therefore be able to select an appropriate 

range of x-values that will illustrate the key features of the graph, thus eliminating 

the potential problems encountered with the instructivist approach to graphical 

construction. 

Visualisation has been employed from the outset as students have switched 

between graphical and symbolic representations in both directions. As a result, 

students will feel comfortable providing the algebraic notation for a given graph 

(unlike with the instructivist approach), thus demonstrating the ability to transfer 

information in both directions (Information transfer, Group 13). 
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Students will not only be able to pick out a rule that will act as a template for 

solution, but will understand the reason for the rule. They will understand how and 

why their knowledge can be applied in new applications (Application In new 
situations, Group B). 

Students should be able to discuss translations in a generic sense, and provide 

appropriate justification in the forms of examples that illustrate the relationship 
between the pictorial and the symbolic (Justifying, Group Q. They should also 
be able to discuss what the graph of a given symbolic expression will look like, 

and additionally, describe the location of a graph in terms of the corresponding 

symbolic notation, and the key features such as local extrcma, asymptotes, etc. 

(Interpreting, Group Q. Students can reinforce their interpretations with 

examples and counter-examples as a form of justification. Additionally, students 

can interpret information in an alternative, more appropriate, form in order to 

tackle a certain problem. For example, students can appreciate that the form 

f (x) = a(x+b)2 +c is a more appropriate form than f (x) = crr2 +ßr+ y in order 

to tackle a problem concerned with translations and transformations, but less 

appropriate for finding the roots of a quadratic. Students can thus choose an 

interpretation appropriate for the problem (this example is clearly linked to the 

Group 13 skills of Information transfer and Application in new situations). 

Mathematical models of real situations need to be interpreted, for example when 

modelling the path of projectiles (under gravity only), students must interpret the 

positive root of the quadratic equation as the position where the projectile hits the 

ground. 

Having formalised their explorations in an algebraic context, students should be 

able to change the shape and location of a graph and describe what implications 

these changes have on particular components of the symbolic notation 

(Implications, Group Q. During the exploration stage, students constantly 

conjecture the form of the graph from the symbolic expression, and vice versa, and 

ultimately have to conjecture a more appropriate form of the symbolic notation in 
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order to proceed (Conjectures, Group Q. Students develop the ability to compare 
translations of different families of functions, for example the effect of the 

constant, c, in f (x) = (x +02, f (x) = sin(x +c) , or j(x) = e". In this nmanncr, 

students build up a generic understanding of translations, which is independent of 

specific cases (Comparisons, Group Q. 

Students should be able to evaluate their cxplorations in terms of the best mcthod, 

or optimum stratc¬y, for the solution of a problem (Evaluation, Group Q. This 

cvaluation should include the appropriatcncss of the use of visualisation. 

Visualisation can not only provide an additional perspective, for example 

confirming graphically the existence, or non-existence, of algebraic solutions to 

equations, but can act as a vehicle for mathematical discovery. The instructivist 

approach uses visualisation merely as the product of following rules, for example 

plotting a graph, whereas the constructivist approach integrates visualisation from 

the outset, using it as a key ingredient in the exploration of concepts. Visualisation 

" acts as a support, rather than an alternative, to symbolism. It would be very 

difficult to conjecture facts regarding the relationship between functional forms 

without the visual support. 

Both of these approaches are fairly extreme cases; in reality teachers would 

probably wish to choose an approach somewhere in between. The two cases have 

been provided to illustrate that although the actual subject knowledge attained 

would probably be similar with each approach (in terms of preparation for national 

assessment, given its nature), an approach including more of the constructivist 

activities is preferable as it can help in the development of higher order skills. 
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4.6. Preliminary Investigation of Mathematical 

Skills in a Computer-Based Environment 

The previous section has illustrated how the constructivist use of visualisation can 

enhance skills development. This section now considers the extent to which 

students demonstrate visualisation ability or higher order skills when appropriate 

technology that supports the use of visualisation, in this case a Computer Algebra 

System, is at their disposal in assessment (Malabar and Pountncy, 2000). 

Consideration is given as to whether or not students' skills arc being tested 

properly given that computer technology is available. This investigation provides 

useful information on students' skills prior to the more extensive case-study in the 

next chapter. 

Consideration is given to the possible use of a CAS with algebraic and graphical 

display capability in attempting to tackle a series of questions, at the same time 

taking into account which skills arc being both assessed and developed. As the 

MATH taxonomy deals with the structuring of assessment tasks in terms of the 

skills required to complete them, this will be used as a framework for a discussion 

of how traditional examination questions fare in the presence of a CAS when 

considering skills development. 

The outcomes are described, and possible implications for the development of 

assessment, which incorporates technology to facilitate the assessment of a wider 

range of skills, are discussed. A group of undergraduate mathematics students, who 

were familiar with using a CAS in examinations, tackled an assortment of 

questions from public examination papers where a CAS is not allowed. 
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4.6.1. Background to the investigation 

"Should a CAS be used in formal written examinations, and if so, how should 
traditional examination questions change (if at all)? ", is a question debated 

amongst teachers and students of mathematics at all levels as technology advances 
and handheld 'calculators' with algebraic and graphical functionality become more 

available and affordable to schools and students. Issues relating to the appropriate 

use of a CAS in teaching, learning and assessment arc not new. For example, the 

issue of symbolic mathematics systems in mathematics education was addressed at 

ICNIE 5 (International Congress for Mathematical Education, Adelaide, 1984). In a 

paper entitled 'Should Students Learn Integration Rules? ', Buchbergcr (1989) 

formulated his White-Box/Black-Box principle (see Section 2.4.3.1 of Chapter 2) 

to describe an approach to govern the use of symbolic computation for both 

students of mathematics and for non-specialist mathematics users such as 

engineers and scientists. Pedagogical issues and assessment issues relating to 

handheld technologies were raised, for example, by Etchells and Monaghan 

(1994), and more recently by a variety of authors (Kutzlcr, 1999; Gardiner ct al., 

2000; Connors and Snook. 2001; Forster and Mueller, 2002). This issue is now 

being looked at again on the basis of testing mathematical skills rather than just 

subject knowledge and procedures. 

Ruthven (1997) produced a report surveying the availability and use of CAS in A- 

level mathematics and compared this with usage internationally. The report 

continued with a review of published research into the use of CAS in mathematics 

education up to that point and concluded with a considered view on how 

assessment policy with regard to CAS might develop nationally. Amongst other 

considerations, Ruthven commented that: 

"The central issue is to ensure that examination questions and 
marking procedures take appropriate account of whatever 
technology ALL students have available. This nicans not only 
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avoiding items that can be answered more or less directly through 

routine use of the technology, but devising new types of item which 

test the capacity of students both to use the technology effectively 

and to demonstrate understanding of relevant concepts. " 

The 'routineness' of A"levcl mathematics papers has been reported (Monaghan et 

al., 1998; Malabar and Pountncy, 2000), which highlighted the fact that lower 

attaining students obtain proportionally more marks on routine parts of questions. 
Yet a CAS can often reduce such routine, procedural parts of questions to mere 
button pressing. Clearly, if a CAS is allowed in such examinations, any replacing 

of 'routine' questions (or changing the marks allocated to such questions) must be 

well thought through. The presence of a CAS in an examination has the potential 

to allow the examiner to test higher mathematical skills and more conceptual 

understanding than previously, at the expense of time spent on routine procedures 

and mental manipulations. The challenge to examiners, as Ruthvcn suggested, is to 

set appropriate questions, possibly of a totally different nature from those 

traditionally set. 

4.6.2. Testing Mathematical Knowledge and Skills 

Smith et al. (1996) suggest that "assessment drives what students learn. It controls 

their approach to learning by directing them to take either a surface approach or a 

deep approach to learning. " They also stress the point that any classification has to 

be subject to the knowledge of the students' prior learning history, i. e. has to be put 

into context. For example, a proof question could be a Group C task if previously 

unseen by students but perhaps a Group A task otherwise. This emphasis on skills 

classification is similar to earlier work by Nagy ct al. (1991). 

It seems a reasonable expectation that students progressing from A-level 

mathematics to undergraduate studies and beyond should progress from a majority 
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of Group A tasks at A-lcvcl to a majority of Group C tasks by graduation, 
irrespective of the particular mathematical topics studied. A cursory investigation 

of recent A-level papers does suggest a concentration of Group A assessment tasks 

along the lines of Monaghan's findings and others (sec for example I3oalcr, 1997). 

A similar study of final year undergraduate degree assessments, across different 

universities and different combinations of mathematical subject areas, would be of 
interest to sec if the higher order skills are assessed in a significant way. As the 

Atathskills Discipline Network found, many prospective graduate employers seem 

to recognise and require such skills rather than specific mathematical subject 

knowledge (as discussed in Section 2.3.1.2 of Chapter 2). 

The use of CAS can obviously influence this skills transition, but does it do so in a 

positive manner? i3uchbcrger's black boxes arc in effect Group A tasks but they 

have only become so after the white box phase that may incorporate tasks from 

Groups A, B, and C. But where does the white box end and the black box start? It is 

conjectured here that the use of a CAS can promote more Group C tasks perhaps at 

A-level or earlier, and not just for 'clever' students. 

4.6.3. Skills Investigation 

As a preliminary study, a group of 20 undergraduate students were set a number of 

examination questions for which they would not normally have access to a CAS. 

The students (a mixture of first year and final year students for comparison 

purposes) were all undertaking a degree in Mathematics. Statistics and Computing 

at Liverpool John Moores University. Throughout this course they arc accustomed 

to using a CAS (in this case DERIVE) both in coursew"orks and timed written 

examinations as the appropriate use of technology is one of the principal aims of 

the course. 
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The four questions arc described in detail in the following section and range from 

traditional A-Icvcl questions to Mathematical Olympiad standard. The first two are 

from subject areas familiar to the students on the course, the latter two were of a 

nature beyond their experience (but not necessarily beyond their capability). The 

four questions were chosen to dctcrminc whether the nature of a question affects 

the extent to which students use visualisation and other higher order skills. With 

the aim of gaining insight into the types of skills that students choose to 

demonstrate, qualitative data was gathered to begin to answer such questions as: 

" Would students show a bias towards algebraic methods of solution even when a 

graphical/visual approach was possible (with or without a CAS)? 

" If the students could solve the problem without using the graphical capabilities 

of a CAS, would they do so even if the solution took longer to achieve? 

" Would students use a CAS at all times, even for `simple' algebra and calculus 

problems? 

" Would students recognise when a CAS was of little apparent use? 

" Would a topic apparently new to the students influence their use of a CAS? 

" Would students provide `unexpected' (i. e. valid, but not expected by the 

examiner) solutions? 

The students were also given the MATH taxonomy of Smith et al., and asked to 

classify each part of each question. They were also asked to comment on the 

allocation of marks in Question I in relation to the task to be completed. 
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4.6.4. Outcomes 

Question 1. This yucstion is taken from the report by Monaghan ct at. (1998). 

The gradient of a curve is given by fly = 3x2 - 8x +5. 

The curve passcs through the point (0,3). 

(i) Find the equation of the curve. 

Col 
(ii) Find the coordinates of the two stationary points on the curve. State, with a 

reason, the nature of each stationary point. 

[61 
(iii) State the range of values of k for which the curve has three distinct 

intersections with the line y=k. 

[2l 
(iv) State the range of values of x for which the curve has a negative gradient. 

Find the x-coordinate of the point within this range where the curve is 

steepest. 

[31 

Student Responses: 

All students from both groups attempted the first two parts of this question without 

using a CAS at all, commenting that it would take longer to key in expressions 

than to write down the answer. 30% suggested that they would have used a CAS if 

the expression for the gradient had been more complicated, and a similar figure 

suggested a CAS use to confirm their answers given time. 
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For parts (iii) and (iv), the solution strategy varied. 40% could 'sec' a mental 

picture of the curve and solve the parts without using a CAS. Another 40% used 

the CAS to plot their answer in part (i) and used the graph to read off the answers. 
The rest tried to answer these parts using algebra and came unstuck, for example 

one student attempted to solve a cubic for three real and distinct roots in part (iii). 

All students classified parts (i), (ii) and (iv) as Group A tasks and part (iii) as a 
Group ß task. All students felt that parts (i) and (ii) had too many marks at the 

cxpcnsc of part (iii) and possibly part (iv). 

Author Commentary: 

For this given gradient expression. one would expect students to be able to (wish 

to) integrate without a CAS in part (i). Obviously, for more complicated 

expressions a CAS would be more appropriate without affecting the conceptual 

context of the question. The ideas of indefinite integration and the fixing of the 

arbitrary constant must be understood, especially using a CAS where the arbitrary 

constant of integration is often omitted. Thcsc arc Group A skills. 

For part (ii), students need to know (factual knowledge, Group A) the definition of 

a stationary point. Routine use of procedures suffice for a pcn-and-paper solution. 

A student with a CAS having graphical display capabilities (or indeed just a 

graphical calculator) might plot the curve and read off the stationary points (zoom 

in, zoom out, cross-hairs, etc. ) justifying their nature by interpreting (Group C) the 

shape of the graph (see Fig. 4.02 below). 

For part (iii), the visualisation and interpretation is more evidently a higher order 

skill. Yet only 2 out of 1S marks arc awarded. Similar comments apply to part (iv). 

[Anecdotally, the same sort of imbalance occurs in A"level Mechanics questions. 

The mark scheme reveals that an often significant minority of marks is available 
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gave them an opixirtunity to demonstrate higher order %kill., rather than having to 

mentally 'sec' the solution, to part. (iii) and (i\*). 

In summar\-. this type of question would appear to gi%c no direct advantage to a 

student %%ith a CAS in terror of answering the question completely. but the use of a 

CAS does add to the possibility of a successful solution. A major debating point 

here is the allocation of marks for apparent application of routine procedures rather 

than mathematical insight. Although this issue pre%ailed long before the advent of 

a CAS. the presence of a ('AS has ser cd to highlight it e en more. 
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Question 2. This question is taken from an A-level rurthcr Mathematics specimen 

paper. 

The suspension system of a beach buggy has a spring with a shock absorber to 

damp the vibrations. The vertical height y of the chassis, t seconds after a wheel 
hits a bump, is given by 

2. v _-120y-40 -t 

Show that this can be represented by the two simultaneous first order differential 

equations: 

dt =v and 
dt= 

-0.08vv - 024y 

If y=0 and 
s= 

10 when t=0, sketch a graph of y against t. 

Student Responses: 

Most (>90% from both groups of students) thought this the most straightforward 

question of the four (once they could recall the method to obtain the simultaneous 

differential equations) and classified it as a Group A task. All students commented 

that they would have used DERIVE's utility command to first attempt a solution to 

the given second-order differential equation if the reduction to a pair of first order 

differential equations hadn't been asked for. Similarly. all used DERIVE to 

'sketch' the graph. 
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Question 3. This question is taken from the Student Problems page in the 

Mathematical Gazette, Vol. 82, No. 495, Nov. 1998, pp. 512-513, and is a regular 
feature of this journal. Students up to the age of 19 are invited to enter and prizes 

arc awarded 'for the most impressive solutions'. The journal publishes solutions 

and commentary on the entries received. 

Find all the integers it for which it" - 4n 1+ l4n2 -20n + 10 is a perfect square. 

Student Responses: 

No student got the correct answer but all made some attempt at a start. 25% (with 

the majority of these being final year students) tried to factorise the given quartic 

expression using DERIVE but then were dismayed to sec factors involving 

complex numbers and gave up. One student asked DERIVE to output the square 

root of the given expression and then gave up. 30% used the CAS to substitute 

integer values for n into the expression and suggested that DERIVE could be 

programmed to pursue this further to find all solutions. All students commented 

that this was a 'hard' algebra question and linked it to Group C tasks. 

Author Commentary: 

The conditions of entry to this journal problem do not state explicitly whether a 

CAS can be used in the solution or not, or indeed whether a CAS is any use or not. 

'An impressive solution' is an interesting phrase to use to select a winner but a 

cursory glance through other Problem Pages suggest that not many solutions using 

a CAS are deemed to be impressive! 

The pen-and-paper solution quoted starts with this as its first line: 

Now n4 -4n'+14n2-20n+10=(n-1)`+8(,: -1)2+1 
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=[(n-I)2+4)2-15=k2 (say). 

The strategy is to try and complete the square and then use the difference of two 

squares and consider possible factorisations. The difficulty here is essentially one 

of knowing where to start (why powers of (n" I) for example in the first line? ). 

Once some sort of problem solving strategy has been conjectured (Group C task), 

the algebra and integer factorisation considerations arc relatively straightforward. 

Of course, one solution strategy. suggested by some students, is simply to try many 

integer values of n and observe those that yield a perfect square. This could be 

done by pen-and-paper but soon becomes tedious. A CAS could be programmed to 

do this fairly easily but the question of securing all possible answers arises. 

The use of a CAS here does offer a 'trial and error' type of starting strategy. One 

possible starting point is to write the problem as: 

Solve for integer n the equation 

n` -4n' +14n2 -20n+10-»i2 =0 (m, integer), 

and then try to FACTOR the left hand side with respect to n. DERIVE gives output 

as per Fig. 4.04 below. 

4322 
Vi: n -4-n +14"n - 20-n +10-n 

82: FACTOR(n 
4- 

4-n 
3" 

14-n 
2- 

20"n " 16 - a2. Complex, n) 
22 

83: (n -I+ i"J(J(n + 15) + 4))"(n -1- i"J(J(a + IS) + 4)) 

22 
- (n +« 4(n " 15) - 4) - 1)-(n - J(-I(" " 15) - 4) - 1) 

Fig. 4.04. 
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An examination of the last two factors and the discriminants (remember in, it both 

integers) suggests that use + 15 must be a perfect square. For any chance of 

achieving integer it solutions, m2 can only have values 0, I, 4,9.16,25,36,49, 

64,81 . ....... and hence the only possibilities for In' + 15 to be a perfect square are 

1112 =I and 49 since the difference between successive squares is then greater than 

15.1icnce integer values for is are found to be -1.1 and 3. 

It is arguabic that the CAS hcrc has hclpcd to provide a more obvious starting 

point leading to a more logical solution process. rather than 'seeing' how to 

proceed using brain power alone. The CAS on its own cannot solve the problem 

entirely and human reasoning (Group C task) is still required. It is open to debate 

whether the above solution is 'an impressive one' - beauty being in the eye of the 

beholder! 

As with Question 1, this question would seem to give little advantage to students 

with a CAS, other than perhaps to obtain some credit for demonstrating some 

initial problem solving strategies with a CAS. This question is perhaps typical of 

those set to differentiate the good students from the weaker ones and clearly 

requires Group C skills. 

Question 4. This question is taken from the 38th international Mathematical 

Olympiad 1997, set by a mathematician from Iran, and is reported in the 

Mathematical Gazette, Vol. 81, No. 492, Nov. 1997, p. 480. 

An it x it matrix whose entries come from the set S= (1,2, ... , 2,: - I) is called a 

silver matrix if, for each i=1. ... , it the ith row and ith column together contain all 

the elements of S. Show that 

(a) there is no silver matrix for it = 1997; 

(b) silver matrices exist for infinitely many values of it. 
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Student Responses: 

"I don't know how to start this problem but I'm sure DERIVE would be useful 
here because it is good with matrices", was a disappointing but perhaps 

understandable response from over 90% of the first year students. The final year 

students again showed some mathematical experience by writing down cases for n 

= 2,3,4 and then conjecturing (Group C skill) that "perhaps silver matrices only 

work when n is a prime number? " One student suggested she would use DERIVE 

to check whether 1997 was a prime number, but not one student could prove their 

conjecture. 

Some students suggested that a question like this was unfair as "you could not tell 

which part of the syllabus it had come from. " Again, as in Question 3, students 

equated ̀ difficulty' to Group C skills. 

Author Conunentary: 

This looks at first glance as if a CAS could be used to advantage. It soon becomes 

apparent that a CAS is of little use here even in helping with a starting point as in 

the last example. Investigations with small size matrices initially (pen-and-paper) 

and trying to spot 'the big picture' and then conjecture a 'proof' (Group C task) 

seems the best way forward. These type of questions seem ideal for an Olympiad 

of this type where higher order mathematical skills arc tested, whether or not a 

CAS might be allowed in the future. 

4.6.5. Conclusions 

Tentative conclusions about the use of a CAS from the investigation arc given. 
However, these conclusions would benefit from a wider, more quantitative study 

across a range of institutions and students. 
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" Thosc students experienced in using a CAS via their teaching and Icarning diel 

begin to use a CAS appropriately when allowed to in an asscssmcnt. The 

weaker students appeared to have more confidence to succeed in the presence 

of a CAS. Ilowcvcr, the brighter first year undergraduates still preferred to use 

'pcn-and"papcr' solutions with the belief that they were 'safer' in terns of 

gaining marks (probably only because of the way they had been nurtured at 

school). 

9 There was some cvidcnce to suggest that even final year students still select an 

algebraic solution to a problem rather than a potentially quicker graphical one. 
It is not clear whether the use of a CAS with the ability to place algebra and 

graphics on the same scrccn changes this preference or not. 

" Final year students were more inclined to use the CAS as an investigational 

tool when a problem-solving strategy was not obvious to them. This may well 

be because of their greater `experience', or inherent development of skills 

during their undergraduate studies. 

" Students tended to equate an 'easy' problem with Group A skills and a 'hard' 

problem with Group C skills, although the authors of the taxonomy did not 

suggest a change in difficulty as one moved across the Groups. Students also 

felt that the allocation of marks should be biased towards evidence of Group C 

skills. 

In questions I and 2, many students (mainly first )-ear) chose not to use 

visualisation during the solution process, instead opting for a more familiar 

algebraic approach. Questions 3 and 4, which contained no obvious visualisation 

elements, were included because they assessed higher order skills. They illustrate 

that there are some skills and topics with which visualisation cannot help 

explicitly. Although the ideas cannot be represented visually, they arc still not 

`handle-turning' types, but instead require the types of higher order skills (Group 
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C) that can be dcvclopcd via visualisation (as discusscd in Scction 4.5 of this 

charter). Students were unsuccessful at these questions, thus demonstrating an 
inability to use higher order skills to generate solution strategics in problem 

solving. 

Students that have not been subjected to visualisation during the learning process 
do not choose to use visual tcchniqucs to tackle problems, and strugglc with 

problems that require higher order skills that can be developed via visualisation. 

This preliminary investigation has provided useful information on students' skills 

prior to the case-study in Chapter 5, which analyses the skills (both visual and 

higher order) that students demonstrate after having experienced a learning process 

that integrates computer-based visualisation in a constructivist environment. 

Teaching, learning and assessment are currently heavily biased towards algebraic 

approaches, however the constructivist use of the software in the case-study forces 

a visual approach that promotes the development of higher order skills. 

4.6.6. Discussion 

The decision whether or not to allow the use of a CAS or indeed any other tool 

such as a graphing calculator, formulae sheet, etc. in an examination is obviously 

linked to the purpose of the assessment as perceived by the examiner. Thus for 

example, if the purpose is solely to test mental manipulation skills and factual 

knowledge recall of mathematical methods then a CAS is probably not appropriate 

and should not be allowed. The balance of skills being assessed in an examination 

again depends on the purpose of that examination. An Olympiad question such as 

Question 4 is aimed at the most able mathematics students and is testing problem- 

solving skills explicitly whereas Question I leads the student through the problem 

to a large extent and would be too straightforward for a competition or an 
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Olympiad. If asscssmcnt is intcndcd to test what has been taught and the teaching 

and learning involves the use of a CAS, then the assessment should do also. 

The use of a mathematical skills taxonomy has been found to be helpful in 

determining if the intended purpose of formal examination questions is matched by 

the skills being tested. Once the purpose of a question or questions is clearer to the 

examiner. reasons for any restriction on the use of a CAS, or any other 

technological aid, should be more apparent. This is only another way of saying that 

the learning outcomes specified for a course or module. properly expressed in 

terms of acquired skills, should be clearly and transparently assessed, and that the 

aims should specifically address the role of a CAS in terms of skills attainment. 

If. for example, the purpose of a question is to assess some higher order skills and 

a CAS makes the solution of the question routine, then either the CAS has to be 

excluded or the question changed. This is exemplified in Question 2 where the 

solution of a differential equation would be routine using a CAS and yet the 

student is asked to remember and reproduce a specific method of solution. What 

specifically was the examiner testing? An investigation into the effects of changing 

the numerical values of the parameters of the differential equation on the buggy's 

suspension characteristics, using a CAS to produce the solutions quickly, would 

have tested more Group C skills. 

It may generally be felt that the use of a CAS can only trivialise a problem. 

However as illustrated by the examples above, this is not the case. In Question 1, 

the use of a CAS, albeit the graphical part, appeared to help the student who had 

difficulty `seeing' the graph mentally. Of course, it would be ideal if more students 

could create their own correct mental images in mathematics, but is this the 

purpose of this question? If the question had been posed with the graph of the 

curve given and not an algebraic expression for its gradient then the potential is 

there for more interpretive (Group C) type questions and the use of a CAS is 
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potentially diminished. If the gradient expression had been (say) xsin(x2) then the 

use of a CAS to pcrforni the integration might be more appropriate. 

The use of a CAS, as in Question 3, might allow some students to succeed by 

offering a starting point that might not have been within their capability otherwise, 

and hence an opportunity to show higher order skills in the rest of the solution. If 

problem-solving skills can be improved for a wider range of student abilities by 

using a CAS to advantage, then a CAS is appropriate. 

There arc many questions that can be set where the advantage of a CAS is perhaps 

not immediately apparent. as in Question 4. IIowwever, these questions arc often 

seen as 'hard' (as evidenced by the students in this assessment investigation) as 

they test the higher order skills. The lower order skills must not be excluded 

entirely. The assessment strategy should include a balance of questions to suit the 

range of abilities of suitable candidates and the danger that the use of a CAS in 

examinations leads to 'harder' questions is a real one. The use of a CAS in 

examinations could make them even more challenging for the weaker students in 

the sense that the amount of procedural questions (on which weaker students rely - 

their 'comfort blanket') could be diminished. It is interesting to conjecture that an 

examination question that starts with Group A skills and ends with Group C skills 

offers more chance of success to more students than one that starts with Group C 

skills and has Group A skills within it but later on. 

So, some traditional examination questions can fare well in the presence of a CAS 

but equally some traditional questions would benefit from a ̀ face-lift' if examiners 

wish to test a wider range of mathematical skills. As technology advances and a 
CAS and other tools become more readily available, it is apparent that setting 

assessments will require even more care and planning to ensure appropriate testing 

of relevant skills and abilities. 
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4.7. Summary 

Consideration has been given to various skills taxonomies and the numerous 
linkages between them. Graduate employability is increasingly important, 

exemplified by the transferable skills detailed in the NCVQ key skills and the 

objectives of the Miathskills Discipline Network. Attempts at the classification of 

mathematics questions in terms of the skills required in order to tackle them have 

also been reported, such as the MATH taxonomy and the classification by 

Galbraith and Ilaines. The author's DEVISc classification is more geared towards 
IT-based, visual skills coupled with a constructivist approach to learning. 

Visualisation emerged as a common theme of the various taxonomies. It can be an 

important factor for guiding concept development, and should be used explicitly as 

a tool for developing other higher order skills. Although visualisation is an 

important skill in terms of having the potential to enhance a global view and 

understanding of mathematics, students still choose mechanical as opposed to 

pictorial methods for solving mathematical problems. 

Students arc generally capable and experienced at algorithmic approaches, but arc 

very limited in the skills required to tackle more interpretive and constructive 

tasks. Visualisation offers a major support for these Group C skills, and hence its 

development is seen to be important. Its inclusion will impact not only on teaching 

and learning, but also on the assessment of any revised curriculum. 

Educators need to create a more diverse set of experiences for students in order to 

develop a range of skills. Students can pass examinations with merely surface 

knowledge - teachers must however encourage the acquisition of a deeper 

knowledge by asking the right types of questions. Changes need to be made to 

teaching with assessment in mind, as the prime motivation for students is to pass. 
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The preliminary investigation, which considered the extent to which students 

demonstrated mathematical skills when a CAS was at their disposal in assessntent, 

produced the following observations. The use of a CAS gave 'weaker' students 

confidence as they attempted to solve problems, however many students still opted 

for pen-and-raper solutions even when the use of technology was appropriate and 

advantageous. Even students who were experienced in using a CAS selected 

algebraic solution processes, rather than opting for more efficient visual ones. 

Students generally felt that 'difficult' questions are those that assess Group C 

skills. It is conjectured here that they are not necessarily more difficult, it is that the 

students have not adequately nurtured the appropriate skills in order to tackle them 

successfully. 

The effective use of technology on skills and the importance of visualisation as a 

tool for enhancing conceptual understanding arc concentrated on in the next 

chapter in a case-study which employs a constructivist approach to learning. 

Chapter 3, which considered the benefits of constructivism, and this chapter, which 

has looked at the importance of visualisation and its prevalence within related 

skills taxonomies, have provided the necessary background to the following 

chapter, which describes how these two factors arc successfully combined to assess 

the development of visualisation skills leading to enhanced conceptual 

understanding of functions and graphs. A constructivist approach to teaching and 

learning can lead to better visualisation skills. 

Chapter 5 illustrates how the encouragement to develop visual images and to 

promote a general visualisation awareness is very attainable. The structured use of 

interactive materials can help to encourage the creation of mental images and thus 

the visualisation process itself. The interactive computer environment described 

encourages and develops students' visualisation skills, and the relationship 
between both symbolic and visual abilities. 
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CHAPTER 5 

Students' Ability to Visualise: 

A Case-Study 

Vie art of asking the right questions in mathematics is more 

important than the act of solving them. 

GEORGE CANTOR 
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5.1. Introduction 

"Since visualisation ability is an important factor, more research needs to be 

carried out on methods to improve an indirf(lual's visualisation ability' (Sein ct 

al., 1993). This is precisely what the approach described in this chapter sets out to 

do, using a practical case-study. 

The standard view of visualisation is that it transforms the symbolic representation 

into the pictorial form, and can enrich the discovery process. For an educational 

scenario the latter is certainly true, however an alternative way of exploiting 

visualisation for educational purposes is to start with the visualisation of the 

symbols and encourage the student to arrive at the symbols that have brought about 

that visualised entity. The software used in this chapter effectively visualises 

mathematical patterns for the user to explore, and therefore employs visualisation 

creatively as a tool for understanding. "This is the essence of mathematical 

visualisation" (Zimmermann and Cunningham, 1991). 

Earlier chapters have reviewed and examined the effectiveness of previous work 

using visualisation, coupled with a coherent learning and teaching methodology to 

enhance mathematical skills. Consideration is given in this chapter to employing 

constructivism in teaching and learning with computer based visualisation in 

order to develop not only visualisation skills but also the higher order 

mathematical skills outlined in Chapter 4. 

In order to establish any practical evidence of enhanced mathematical skills of 

students, a controlled experiment was carried out to assess the effectiveness of the 

constructivist employment of computer-based visualisation. The experiment looks 

at using appropriate technology that assists in the integration of a constructivist 

approach to learning and computer-based visualisation in order to enhance 

students' conceptual understanding of functions and graphs. 
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The experiment is described in this chapter under the following headings: 

Aims: 

The experiment aims to provide students with a better understanding of the links 

between algebraic and graphical representations, and at the same time attempts to 

enhance higher order skills, such as those described in the MATH taxonomy in 

Section 2.3.1.3 of Chapter 2. Key and secondary aims stated in Section 1.4 of 

Chapter 1 are addresscd. 

Methods: 

A rationale is provided for the choice of topic, functions and graphs, and the 

bespoke software is described, highlighting the positive features and the factors 

affecting the design. A theoretical rationale is also provided, which takes into 

account the various theories of teaching and learning discussed in Section 2.4.3 of 

Chapter 2. An actual dialogue between student and teacher, captured during the 

case-study, illustrates kcy features of the learning process, such as the 

constructivist use of visualisation and the role of strategic questioning. The 

logistics of the experiment are provided, including the experimental design and a 

study of the test questions in terms of the range of skills that they assess. 

Results: 

A detailed statistical analysis of the data is used to evaluate the effectiveness of 

this constructivist visual approach, and consideration is given to what the students 

actually thought of the process via feedback from questionnaires. 

Conclusions: 

Concluding remarks about the whole process focus on students' experiences in 

terms of the enhancement of mathematical skills. 
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5.2. Aims 

The case-Study achicvcs the following kcy and secondary aims: 

5.2.1. Key Aims 

" Evaluation of enhanced student Icarning of mathematical concepts, and 

assessment of the extent of any skills development. via the constructivist use of 

computer-based visualisation. 

" Comparison of the performance of students after learning via either an 

instructivist or constructivist (incorporating computer-based visualisation) 

approach, in terms of both procedural and visual skills, as well as other higher 

order skills. 

" The software in the case-study aims to enhance student visualisation skills, 

which in turn help in the development of conceptual understanding, together 

with other desirable higher order skills. It aims to develop a more holistic view 

of mathematics, and to provide students with better strategies for problem 

solving. It aims to develop an understanding that is independent of specific 

examples used, so that the conceptual knowledge acquired can be applied to 

any function, i. e. the knowledge gleaned from local tasks can be applied 

globally. 

5.2.2. Secondary Aims 

" Analysis of specific comparisons in the case-study: 

r Schools (Schools A, B and C). 
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r Scx (]Aale and Female). 

Subject (Mechanics and Statistics). 

GCSE Gradc (A*/A and E3/C). 

(a rationale for the specific comparisons is provided in Section 5.3.4.1 of this 

chaptcr). 

" Assessment of the motivational effects, in terms of usefulness and enjoyment, 

of a constructivist computer-based visual approach to learning. 

5.3. Methods 

A rationale for both the choice of topic and the design of the bespoke software is 

provided, together with a dialogue between student and teacher illustrating the 

teaching and learning styles adopted. The logistics of the experiment arc described, 

including the experimental design and a study of the test questions. 

5.3.1. Rationale for the Chosen Topic 

An investigation of the mathematical difficulties experienced by undergraduates 

has revealed that many of these difficulties relate to the understanding of graphs 

(Gill, 1998). The most significant area of skills and knowledge in terms of 

predicting success in university mathematics examinations concerned graphs, 

including the interpretation of shape, the verbal interpretation of graphs, and the 

symbolic representation of graphs. 

Traditionally, the typical instructional path through the representations of functions 

has been from algebraic expressions to graphs (Williams, 1993), and any linking 
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that occurred among the representations tended to follow this path. This has given 

rise to students' beliefs that graphs were something extra, something appended to 
functions but not a fundamental representation of the function. Advances in 

technology have meant that either representation can be thought of as a starting 

point for translation among r presentations. The ability to begin with a graphical, 

as opposed to a symbolic, representation may encourage a view of function as an 

object, rather than as a process. 

Many students appear to have little knowledge regarding the relationship between 

the algebraic notations of a function and the geometric implications of the 

function's graph (Myers, 1997). According to Joseph Lagrange, "As long as 

algebra and geometry travelled separate paths, their advance was slon- and their 

applications limited. But wizen these Iwo sciences joined company, they drew front 

each other fresh vitality and thenceforth marched on at a rapid face toward 

perfection" (Moritz, 1914). Joining the two disciplines can add considerable power 

to each. The failure to relate algebraic and pictorial representations results in 

students lacking the ability to view a graph as a visualisation of a function. A graph 

is a powerful tool for relaying information about a function. The software 

described in this chapter has been designed to help students appreciate the 

relationships that exist between the algebraic notation and its corresponding 

graphical form. 

The concept of function is one of the most powerful and useful notions in 

mathematics. Nevertheless, the learning and teaching of functions arc sometimes 

neglected in comparison to other areas of mathematical instruction (Romberg et 

al., 1993). For many years, students have been taught both how to construct 

different representations of functions and how to interpret them. however, it is 

often the algebraic representations and the subsequent methods of manipulating 

those representations that have been emphasised in most traditional mathematics 

courses. 
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The impact of technology on the way mathematical functions can be represented 

and manipulated is forcing educators to reconsider the way functions arc taught, 

with the algebraic emphasis being challenged. Tcchnology makes it possible to 
deal with functions in new ways and to explore new ideas in curriculum and 

classroom practice. In the past, graphs were often difficult and cumbersome for 

teachers and students to create or manipulate. Nowadays, with the available 

technology, the expectation is that emphasising graphical r presentations will 

make functions easier to learn for most students. 't'his chapter attempts to confirm 

this expectation. 

An informal survey of some local Merseyside mathematics teachers has shown that 

questions involving functions and their graphs are the most commonly quoted 

example at A"level of 'visual difficulties'. Almost all traditional teaching practices 

and textbooks treat functions symbolically rather than graphically in the first 

instance. Graphical material is also poorly connected to the symbolic treatment of 

functions, with graphs being treated as a secondary topic. and not as a primary 

means of accessing functional information. Many mathematics questions present a 

function in algebraic form, and the student is then required to plot its graph (with 

or without a graphics calculator) or describe in some way the key features of its 

graph. The question would be more 'visual', however, if the student were given a 

graph, and then asked what type of function, i. e. what algebraic form, the graph 

represents. It is this learning methodology on which the interactive package, 

constructed using the generic authoring package TOOLBOOK (described in 

Section 5.3.3 of this chapter), is based. Whilst using the software. the user attempts 

to provide the symbolic notation corresponding to the given graph and, using this 

symbolic form, attempts to reproduce the given graph. 

Previous work, discussed in Chapter 2, has described how graphics and symbolic 

calculators, such as the TI-92 and Voyage 200 (sec References for Internet 

addresses), promote the relationship between different functional fonns. This is 

also true of the bespoke graphical software, but additionally the latter has the 
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advantage of giving students the opportunity to provide the appropriate symbolic 

form for a given graph, which, it is conjectured. is an even more powerful facility 

for the development of higher order skills. Algebraic and graphical forms of 

functions each reinforce understanding of the other. This transfer between 

representations can help the transition of reasoning from the concrete to the 

abstract. The purpose of the software, by providing multiple-linked 

representations, is to encourage the production of a concept image (Vinncr, 1991) 

of function that is more flexible, more powerful, and more compelling than by 

other means. It is hoped that in this manner students can build the bridge between 

the concrete and the abstract more effectively. 

5.3.3. The Interactive Software 

To develop students' conceptual understanding of the relationship between visual 

and symbolic representations of functions. a piece of bespoke mathematical 

software was written entitled 'Graphs of Functions: A Constructivist Approach'. 

Users of the software must attempt to provide the algebraic notation for a given 

function graph. Note that this dedicated software had to be specially written, as no 

available software could be found that would handle the transition from the visual 

to the symbolic. For example, this is not possible directly on a graphics calculator. 

A graphics calculator can only produce a graph from a given function expression 

it cannot produce the function expression of a given graph. This is not as helpful in 

the acquisition of conceptual understanding. In the 'CTI Mathematics and 

Statistics Guide to Software for Teaching' (1995), there are many types of graph- 

plotting software available, but all follow the pathway from symbolic notation to 

graph, which further supports the need for specialist software. The software 

described here is unique in that it reverses this structure and concentrates on 

finding the symbolic notation from the graphical representation. This is an 

alternative format, which lends itself to a more constructivist approach to learning, 

as per the discussions provided in Chapters 3 and 4. 
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allows them to benefit from the thoughtful manipulation of the graph as an cntity. 

It encourages them to construct meaning for different representation% and how they 

are related, as well as helping to build the idea of a function nut just as a process. 

but as an object. 

The M 'ttware provides an environment that encourage.. tudent% to conjecture, 

make comparisons, observe patterns. reflect on finding., and generalise. The 
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students therefore build up their conceptual undcrstanding of the links between 

algebraic and pictorial representations as a result of both successful and 

unsuccessful conjectures and evaluations (again, this is illustrated in Section 

5.3.3.3). 

The software contains exercises that consist of a scrics of function graphs of 

polynomials. trigonometric functions, cxponcntials, etc., as well as combinations 

of these basic functions (the full set of software screens can be seen in Appendix 

A). Issues relating to how many attempts the user has, and the level of mastery 

achieved, arc discussed in Charter 7 as possible future developments of the 

software. 

The diagram in Fig. 5.03, informed by the computer learning process (Sein ct al., 

1993), summarises the learning process that students experience whilst using the 

dedicated software. The diagram illustrates how the learning environment, together 

with the teaching and learning approach adopted, can develop learner 

characteristics. The form of learning influences the type of mental images that 

students create, and these in turn determine student performance and attitudes. 

These learning outcomes can then inform the design of future teaching and 

learning scenarios. 

5.3.3.1. Factors Affecting the Design of the Software 

Various design issues for effective educational graphing software (Goldenberg, 

1991) have been taken into account during the design of the interactive software. 

The educational value of a piece of software is in the generalisations students can 

abstract from particular instances, which is certainly the case with the software 

discussed here. It must be easy to modify functions, i. e. the interface must make it 

convenient for students to explore by modifying a single parameter in one form in 

order to study the effect on another. 
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Students need to be able to modify graphs easily by editing the corresponding 

symbolic notation. It must be easy to compare functions in order to make 

comparisons of different forms, such as the opportunity to view graphs in multiple 

windows. The emphasis needs to be on abstracting features of several graphs. All 

these features arc clearly illustrated in the interactive software. 

The wording of the problem influences the solution, for example the way the hints 

arc worded influences how the students tackle the problem, and forces them to 

view the problem in a certain light. The wording forces the students to work with a 

specific algebraic structure that focuses on specific aspects of transformations, for 

example using y= a(x+b)2 +c instead of y =are +ßr+ y, i. e. they arc 

'nudged' in the right direction for appreciating specific links between the symbolic 

and the pictorial. The preferred expression is still only a general form of a 

quadratic function, but it now reveals the transformation properties of interest. 

When graph plotting with technology in general, students often experience 

problems with scale. The difference between changing the view (i. e. changing 

scale or zooming) of a graph and changing the composition of the function itself is 

a source of much confusion among students (Kaput, 1993). When the same graph 

is presented with different scales, i. c. different views of the same function, students 

see different shapes and therefore assume that they arc different functions. The fact 

that the numeric values on the scales arc different is normally insufficient to 

convince students that the functions are in fact the same. Consequently the issue of 

scale has been dealt with explicitly in the software. The facility to change scale is 

essential. For example, whilst using the software a student might plot a graph and 

think that nothing has happened, whereas the graph has merely been plotted 

outside the current range of the plot window. Scale is therefore an important 

ingredient in exploring the relationship between the symbolic and graphical form 

of a function. With both symbolic and graphical representations linked, there is the 

opportunity to clarify the difference between changing the scale and changing the 

function composition. This is especially the case with this software. which 
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accordingly (the derision not to pros ide informal um regarding intercepts. co - 

or, iinates. etc.. as an intentional design feature, is discussed further on page 270 of 

( Darter 7). 

In addition to (ioldcntkrg'% deign k'LIC 
, the four main nuotivati(mal factor� 
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thcoric,, of teaching and learning discu%kcd in Section 2.4.3 of Chapter 2. It 

illustrates how conceptual understanding can he built up via coýnstnictI' ist 

s~, % itching between representations. Traditional teaching approaches. unlike the 

approach supported here. are very linear, as illustrated in Fig. 5.04 Mow. 



Students * , 'lhi/i(%' to 1'iciuiliso . '1 ('c' ' Sludv 

The preferred non-linear approach, supported by the appropriate use of the 

so(lwarc, illustrated in Fig. 5.05 below. is much more dynamic. the sofiwarc 

encourages a constructivist approach to learning, and facilitates the important 

interactions between student and teacher, and between symbols and pictures. the 

human interaction is facilitated by the Socratic method of strategic questioning (sec 

Chapter 3), and the computer is employed as a vehicle for generating scenarios in 

which the interaction between symbols and pictures can take place. Both of these 

forms of interaction are important for the progression from instrumental to 

relational understanding. 

Preferred non-linear approach 

Conceptual understanding (ach, e%cd) 

ConputcrgcnrrAtc. tcNiscd p tune 

Student cmw. turr, sýmhok 

Computer gcncrrtcs picturrs 

Student with no c'pcricn; c of subject natter 

Fig. 5.05. 

`tudcni it ihml. 

I IT) lit) 

The Black-Box \Vhitc-13o\ (13B\VEH) and White-Bo\ Black-l3o\ (Wlilili) 

approaches (Buchberger, 1989) are both adopted to some extent, thus the soflwarc 

use cannot be summarised by an all encompassing model. The use of the sotlware 

is neither the beginning nor the end of the learning process - the intermediate 
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'results' provide the user with new questions. The interaction is taking place on 

two levels - sometimes the software does 'lowwer level' tasks, such as plotting the 

graphs, while at other times the software raises questions for the user. It stimulates 

the user to investigate, to conjecture, to explore, and to justify, using a mixture of 

graphical and algebraic techniques, performed by either the software or the user. 

The ßßWß approach is adopted, as emphasis is placed on explorations and 

investigations into the effect of symbolic changes to expressions on a graph. 

Another example of this investigative approach (I [erring. 1995) involves the use of 

DERIVE as a tool in the specialisation stage so that insight can be quickly gained 

in order that a generalisation of the solution may be obtained. Both in this work 

and in Herring's, constant use is made of the processes of specialisation and 

generalisation, two fundamental processes of mathematical thinking (Mason, 

1984). 

The \Vßßß Principle is exemplified by letting the software carry out all the graph 

plotting while the user works at a hierarchically higher level, namely determining 

the effect of changing parameters within an expression. Kutzler (1996) has 

illustrated this principle by comparing the teaching and learning of mathematics to 

building a house. Teaching starts with the first storey of a house (the first level of 

knowledge), the second storey requires a solid first storey, and so on. In this 

manner, each level of knowledge can be built on existing levels, or foundations. 

Unfortunately, mistakes can be made at a higher level by those who have not yet 

fully developed the lower level skill. Learning the next topic would be like trying 

to erect a new storey on top of one that was still incomplete. The software here can 

overcome this problem. The first skill, the plotting of graphs, can be taught in the 

traditional way, but when the second, higher order, skill is taught, e. g. the 

interpretation of function translations, the computer can be allowed to take care of 

all the tasks that require the first skill. Thus the computer serves as a scaffolding 

between the two storeys. The software eliminates the possibility of mistakes as a 

result of carrying out the lower level task incorrectly. The student can now 
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concentrate fully on the highcr lcvcl task at hand. This approach cnables students 
to procced with mors advanccd topics without handicap if they arc poor at the 
lower Icv-cl skill. 

Although the use of the software does not fit neatly into either the \VB1313 or 

13BWB models, the sorts of operations described are essential in any mathematical 

software usage. The most interesting and valuable aspect of the software is the 

interaction between user and software. which does not fit into the I3uchbcrgcr 

model. This two-way communication stimulates the student, and thus enhances the 

learning process. The use of the software can therefore not be fully explained by 

either model, as they are too rigid in their hierarchical view of mathematics. 

Quoting J. F. Cloutier, "the model is like lasagne, but mathematics is like 

spaghetti' (Drijvcrs, 1995). In order to maximise understanding and, perhaps more 

importantly, to assist in the retention of knowledge, a mixture of the two 

approaches is required. 

As per the communication model (Laurillard, 1990). during software usage control 

is given to the user who takes responsibility for any learning that takes place. The 

student constructs knowledge while the teacher facilitates the process. This is quite 

different to the use of more instructivist computer-based teaching (CIT) packages, 

such as AMATIIWISE. Usage of such packages does not allow for the 

accommodation of interaction, which is required in order for it to constitute a 

communication model. Note that not all CUT software is instructivist in nature - 
hypermedia materials allow students to interact with other materials, and promote 

interaction with teachers and peers. CUT packages, such as NIATIIWISE. have 

assisted in the development of distance learning activities, but with this, 

unfortunately, the direct communication between teacher and student decreases. 

The value of the communication model is that it puts greater emphasis on the 

student's view of the world. When teachers play only an indirect or absent role in 

the teaching process. as they do with more instructivist packages, they relinquish 

the opportunity for the kind of negotiation that face-to-face communication 
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provides. Educational material such as this would appear, therefore, to operate 

within Iaurillard's didactic model. A preferable scenario is that described by the 

software usage described here, where communication, in the form of strategic 

questioning, plays a key role in the teaching and learning process. The power of the 

computer should be harnessed to provide a closer approximation to the 

communication model. The software illustrates that computer-based educational 

materials can be significantly less didactic, and more constructivist than they have 

been in the past. 

Coherent articulation of different representations is important for the construction 

of conceptual understanding. Through dedicated software usage, students pass 

through the five levels identified by ilitt (1998b) by building up the relationship 

between these representations, as well as effectively switching between them, thus 

leading to the construction of concepts. They progress in a similar fashion through 

the four stages in the learning process identified by Dreyfus (1991). 

The software was designed in order to help in the development of understanding, 

not just processes, which is the key to success in mathematics. Students can 

construct properties of the concept for themselves, and reflect upon what they have 

learnt. The software is not just concerned with the final product, but has been 

specifically designed to promote discovery-based learning activities involving 

multiple representations. Visualisation is used to force the mental image making 

process (Dreyfus, 1991), which assists in the process of generalising, where 

students can move from the particular to a more general case. As with Laurillard's 

communication model, the responsibility for learning is transferred from teacher to 

student. 

The interplay between the symbolic expression and the graph acts as a scaffolding 

as students construct their personalised 'correct' concept images (Vinner. 1991). In 

this case, the symbolic expression acts as Vinner's concept definition, which helps 

to form, reinforce, or redefine the concept image. The concept image is not formed 
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by the symbolic cxprcssion alone, but instead via constructivist explorations with 

the software, facilitating interactions between the two forms. 

Students conic to view the graph as a conceptual entity (l larcl and Kaput, 1991). 

When considering the translation of a function graph, it is much more efficient to 

consider the function graph as an entity, and not as a series of pointwise 

operations, i. e. processes acting on individual elements of the domain. Effective 

use of the software requires the encapsulation of function as an entity. This helps 

with the focus of attention. For example, let us consider the function f (x +a). If 

students can view f (x) as an entity, then they can focus on the effect of a. i. e. 

view a as a shift operator taking f (x) 'as an argument'. This enables students to 

focus on the property of the function that is most relevant to the solution of the 

particular problem, namely the effect of the introduction of a into the symbolic 

notation. 

In terms of the horizontal and vertical growth discussed by ITarel and Kaput 

(1991), horizontal growth is supported by the interaction between the different 

representations, and the constructed conceptual entities can be transferred to new 

situations where they can be operated on further, thus assisting in vertical growth. 

Meaningful learning takes place as the students are mentally active. The different 

methods of construction in reflective abstraction (Dubinsky, 1991) arc now 

discussed in terms of this software usage. Interiorisation is the translation of a 

series of plots, linking symbols and pictures, towards the creation of mental 

images. The interiorised concept has been constructed by making sense out of the 

perceived phenomena. Coordination is the symbol manipulation and plotting of 

graphs, i. e. the coordination of the different representations. in order to construct a 

concept image. Encapsulation is the conversion of the constructive processes that 

result in viewing the function as a static object, i. e. a conceptual entity. In this 

manner, the actions become entities which can be utilised in the further vertical 

growth of ideas. Generalisation refers to the situation in which, after having 
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completed the first few examples in the software. the student can apply newly 

acquired knowledge to functions of an unfamiliar type. The constructive processes 
have been encapsulated into an object. Reversal is switching between the 

traditional process of 'symbols to graph' and the innovative process of 'graph to 

symbols'. The familiar process has thus been revcrsed. 'ihic new process has to be 

constructed by reversing the start and end points of the traditional one. 

When functions arc considered in the software, it is necessary to be able to think of 

the functions as objects, so that they can be treated as conceptual entities. Users of 

the software must therefore perform an encapsulation in order to consider the 

functions as objects instead of just processes. The user needs to alternate between 

thinking about the same entity as a process and as an object. Encapsulation also 

involves taking specific concrete situations and using the resulting observations to 

stimulate the development of further general properties. For many students, the 

concept of function is all about a process, and therefore the connection with the 

function graph has no meaning. The student needs to be able to coordinate a 

function's process and the properties of its graph. The student can then relate to the 

power of the relationship between the function as process and the function as 

object. The function needs not only to be an interiorised process, but as a result of 

encapsulation this process can be treated as an object. The graphical form can help 

with this encapsulation. In the example of the addition of two functions, the 

student must view this as an operation which takes two objects and transforms 

them into a third object. In order to do this, the original two objects must be 

viewed as processes. These processes can then be coordinated and the resulting 

process encapsulated into an object, i. e. the new function as the result of the 

addition of the two original ones. The cognitive interpretation of function therefore 

necessarily switches between process and object. 

The activities with the software thcrcforc foster reflective abstractions. Via the 

software. the student intcrioriscs a process. As that sane process can then be 

treated by the software as an object on Which operations can be performed, the 
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student is likely to encapsulate the process. It therefore provides the opportunities 
for rcflcctivc abstraction ncccssary for the construction of concerts. 

It is conjectured that the software facilitates the acquisition of relational 

understanding (Skcmp, 1976), as opposed to merely instrumental understanding, 

which can be adapted to new problem solving situations. 

5.3.3.3. Dialogue to Illustrate the Learning Process 

Having described the functionality of the software, together with a detailed 

rationale for its design, this section provides an example of how the software is 

actually used, which illustrates the interactive processes that occur in the zone of 

proximal development (as discussed in Chapter 3). 

The following is a typical dialogue between student and teacher whilst the student 

attempts one of the questions from the software (Fig. 5.06) during the case-study. It 

shows how a student's ability can be determined as it matures, as a result of how a 

student responds to mediation, rather than simply measuring the student's factual 

knowledge. It illustrates the role of the teacher whilst the student constructs 

knowledge in the zone of proximal development. 

The teaching style adopted is the Socratic method of strategic questioning, as 

described in Chapter 3 (Rowlands et at., 1997). Working within the students' zone 

of proximal development, props and hints are used to challenge misconceptions 

and lead the student to the construction of the target concept. Probing questions arc 

used in an attempt to assess the student's ability to accommodate a different style 

of learning. The student's ability to respond appropriately is of interest, rather than 

the ability to regurgitate information. The intentional aini is to increase the size of 

the zone. 
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Student: [ureka!! 

Teacher: Great, well done. 

A window appears congratulating the student on her effort.. as in Fig. 5. I1). 
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Fig. 5.19. 
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The teacher then led a short conversation to confirm all the stages of the 

exploration in terms of amplitude, phase difference, and mean position. 
[Formalisation phase of `IBMVB'] 

Further probing also took place regarding how the student thought she would 

handle frequency, i. e. the number of repetitions in relation to the size of the 

interval. The student commented that she would need to multiply the x by a certain 

number. The teacher suggested that the student should try some plots to confirm, 

or otherwise, her conjectures in order to evaluate them. 

[`Coordination' of different representations] 

She found that the coefficient of x represents the number of repetitions in relation 

to the size of the interval. 

['Interiorisation' of perceived phenomena] 

The teacher again formalised the process by explaining that this is what is known 

as frequency, and mentioned that the phase difference must now be divided by the 

frequency. 

[Formalisation phase of `BBWVB'J 

The teacher then challenged the student to match the given graph again, but this 

time starting with a sine curve, in order to appreciate the relationship between the 

sine and cosine functions. 

[Creation of a ̀ Concept Image'] 

The student very quickly found that there is merely a phase difference between 

them. 
[`Vertical Growth' of understanding] 

The student now felt a real sense of satisfaction and achievement. The student felt 

that she had owned the problem, resolved it, and was now confident to tackle the 
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next one. The student clicked on toi the next page, and ýýas greeted with (lie 

Irirndly' srrcen in fig. 5.20 hcforc continuing. 

ra,, " i' �i :i 

If yaw head in't AM ovcil. ti p. 
try this prnjdtimate graph. 

('bck the right crow button to 

proceed to Question 9 

I torn to (oNrnt, I'. t ýý" 
!ij 41 

-L) 

Fig. 5.20. 

5.3.4. Evaluation Process 

Educational software can only he evaluated in terms of the development of 

understanding or skills, or preferably both. The activity in which knowledge is 

developed i,, not separable from cognition, it is an integral part of what is learnt 

(Squires and McDougall. 1996). The learning enNironment helps to develop 

knowledge through activity. Knowledge is constructed in the context of activity by 

interacting with the environment. and it i,, this knowledge that is evaluated. All the 

components of the learning environment interact and contribute to the learning 

process, the evaluation takes into account the interaction. between the students, the 

teacher. and the software. 

This section looks at the logistics of the experiment, which consider, the 

experimental design and the questions used to assess enhancement 0f student 

understanding and skills. 
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5.3.4.1. Experimental Design 

After the software had been designed and developed, experimental trials to attempt 

to quantify improved conceptual understanding and enhanced skills via 

visualisation were planned. The controlled study involved 245 16-19 year old 

students. This particular set of students was chosen as the A-level curriculum 

mainly focuses on algebraic skills and algorithms. The students did not use 

computer software during their mathematics studies, thus limiting the opportunity 

to demonstrate visualisation skills. It was felt that the case-study would be more 

significant with A-level students, in view of the difficult transition, in terms of 

skills expectancy, from school to university. A-level mathematics classes tend to 

conform to an instructivist pedagogy, whereas many university educators are trying 

to incorporate more constructivist activities into their mathematics classes. The 

chosen age range was therefore appropriate for testing students' skills at the 

school/university interface. 

A written test was prepared for evaluation purposes (see Section 5.3.4.2), which 

assessed a student's ability to switch between algebraic and pictorial 

representations of functions, as well as testing procedural skills. The test was given 

to upper-sixth (year 13) mathematics students who had done a considerable 

amount of work with functions during the first year of their A-level course (they 

did not use the interactive software). Lower-sixth (year 12) mathematics students, 

who had done very little work with functions, used the constructivist visual 

software. The upper-sixth students therefore acted as the control group (136 

students) who had been taught `functions and graphs' by traditional instructivist 

methods, without any software use, and the lower-sixth students acted as the 

experimental group (109 students) who had learnt 'functions and graphs' via the 

interactive software (issues concerning the experimental design are discussed 

further in Section 7.2.2 of Chapter 7). After having used the software, the 

experimental group was given a summary sheet covering the key issues dealt with 

in the session (see Appendix B) in order to formalise their explorations. They also 
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sat the same written test. The usefulness of the software could thus be quantified in 

terms of mathematical skills (those of the MATH taxonomy), compared with 

traditional teaching techniques. 

Students from three schools (referred to as Schools A, B, and C) took part in the 

case-study, in order to compare different sets of students in terms of the different 

combinations of A-level subjects studied. Most of the School A and School C 

mathematics students follow a very traditional course of study, i. e. three science 

subjects, whereas School B students study a wide variety of subjects. Male and 

female students are compared to see whether either of the teaching approaches 

favours one particular gender. Students studying `Mathematics with Mechanics' 

and students studying `Mathematics with Statistics' are compared to observe the 

effect of certain disciplines. Students achieving an A* or A grade compared to aB 

or C grade at GCSE are considered to compare students in terms of prior 

performance. 

5.3.4.2. Test Questions 

Each group was tested using a traditional pen-and-paper multiple choice test, but 

with pictorial information included in both the questions and the responses (the test 

questions, together with a description of the skills that they assess, based on the 

MATH taxonomy, are provided later in this section). The test consisted of 10 

questions of a procedural type, i. e. questions that cued the students to respond with 

an answer that involved the systematic application of basic knowledge or 

procedures, and 10 questions of a visual type that sought a more interpretive and 

constructive understanding, requiring the students to successfully switch between 

algebraic and pictorial representations of functions (certain questions were taken 

from Galbraith and Haines (1995), as they assessed particular skills of interest 

here). The order of information transfer is significant - some questions tested a 

symbolic to visual transition, some visual to symbolic, and some tested the ability 
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to transfer information in both directions. The visual questions were more 

demanding in terms of higher order skills. Any differences in ability in answering 

the two types of questions would thus be detected. Also, some insight would be 

gained into the effect of the interactive software on student learning. Of primary 

interest was any enhancement of visualisation ability after having used the 

dedicated software. 

A factor of interest is the importance of `another point of view' in confirming the 

outcome of any mathematical exercise and thus developing the students' 

mathematical expertise. In practice, visualisation may fulfil this role for many 

procedural exercises. The set of procedural questions, therefore, contained no duals 

of the visual questions, and thus the two sets of questions were independent. 

The standard of individual questions within each set (procedural or visual) was not 

necessarily the same, but it was intended that both sets of questions were of equal 

difficulty overall. 

The test questions are provided below, together with a description of the skills that 

each question assesses (see Section 2.3.1.3 of Chapter 2 for the skills categories). 

1. x2 - ax + 12 =0 represents a family of equations. Four members of the 
family are obtained by giving a the values 5,6,7 and 8. For what values of 
a can the equation be solved by factorising the left-hand side? 

A none B5 only C6 and 7 
D8 only E7 and 8 

Skills assessed: 

Comprehension of the generic form of the equation that has four possible specific 

forms (Group A), and routine use of procedures by factorising each case (Group 

A). 
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V 

X 

The straight line graph ahovc is represented algebraically by the equation 

A =2-2. v Kv =2. %-2 U' _2%+_2 
UV= -2-v -2E none cif the c 

Skills assessed: 

Information transfer from the pictorial to the s\vnuholir (Group 13). and 

interpreting the graph in terms cif slope and intercept (Group C). 

3. Given the equation (. v - 2)2(x + 2)2 = 0, which of' the following ways of 
rewriting this equation is incorrect'' 

(2 -. t) (2 +. r)- = l) 

(x--4)-=O 
iý. all of them arc correct 

4. r+4)(x'+4. r+4)=O 
1) 

. i' - 8.1, + 16 =0 

Skills assessed: 

Routine use of procedures to expand each expression (Group A). 
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4. Consider the family of graphs with equation v=(. r - (1)+ h. 'Ilk' in 
tlhe diagram has ar =2 and h=I On the same diagram draw the graph for 

ýý 111C II il =I and b=-?. 

Y 

x 

Skill,, rise,, cd: 

Information transfer from the ý, vnnholic to the pictorial (Group B). interpreting 

the effect of the parameters in the expression (Group C), making comparisons (it' 

the two 'raphs in terms of their algebraic structure (Group C), and understanding 

the implications of altering the symbolic expression in terms of the effect can the 

graph (Group C). 

;. The two points (-l, 3) and (5,12) lie on the graph who`e equation is 

v= nix + c". The values of in and c are 

A in=3. c"=`) lt rºi=9. c'=3 
(' in = 3/2. c= ')/-' 1) iPr = 9/2.3/2 
F, none cif tthe aho\ c arc correct 

Skills atitic ed: 

Factual knººmfledge of the formula for calculating the gradient (Group A). and 

routine use of procedures to tend the gradient and use substitution to find the 

intercept (Group : \). Alternatively, routine use of procedures to plot the point,, 

draw the line, and measure the gradient and read oil the intcFCept (Group A). 
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6. 

J2 

x 

Graph G1 has the equation N" = 2. r2. Which of the equation, below might 
des ribe graph G2? 

A v=(x-3)-+, 

E 11O11< of tn«t 

V 

13 3)2+2 
I) %. =(. r-3)`/4+2 

Skills assessed: 

Information transfer from the symbolic to the Pictorial and vice versa (Group 13), 

interpreting the graphs in terms Of the pauRºnietcrs in the expression` (Group ('). 

nº. ºI: ing comparisons of the two graph,, in terms of their algebraic structure (Group 

C). and under,, tanding, the implications of altering one functional I'01-111 in terns of 

the effect on the other (Group C). 

7. The `raph with equation v=2. v2 - h. r; cuts the x-axis at .r=4. 
The value cif h iS 

A4 11 2UO 1) 112 
F: none of these 

Skills assessed: 

Comprehension of the scenario (Group A), and routine use of' procedures Irv 

u1in2 , uhaitution (Group A). 
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S. 
Y 

X 

The graph in the diagram has equation v (l. rI- If the graph is translated 3 
units to the Iett and I unit upwards. sketch the resulting graph on the same 
axes giving its equation and the value cif any constants used. 

Skills asse cd: 

Information transfer from the pictorial try the svnuhýýlir and Vice versa (Grou)p ß), 

interpreting the graph in terms Of the parameters in the rxfpre'sion (Graut, ('). 

nlakin`i comparisons of the t\koo graphs In terms of their algebraic structure ((irouü 

C), and undirrsta11din2 the implications of altering one functional form in terms of' 

the effect on the other (Group C). 

9. Write the expression ? uh - bad + 2h' - 6/id as a product of* factors. 

Skills assessed: 

Conjectures of possible factors Group C). routine use of procedures to carry out 

the factori. ation (Group A). and justif: Ning hý multipI\111 out the hiackct'. ((ºroup 

C). 

Although Question 9 does not relate to functions sh«ifiCZIIIy', it has been included 

as a non-visual question that assesses higher order skill`. I 
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I 11. 

V 

X 

Graph G1h is the equatiýýn = ON). and graph (; 2 ha'. the 

; v=-. /"(. r) -R I'=-/'(. r) (' : 
I) ý' =f( r) 1; none of these 

Skills assessed: 

Information transfer t-rom the pictorial to a generic symbolic form and vice versa 

((ii up B). interpreting the 
`graphs 

in terms of the parameter,, in the expressions 

(Group C). inakin,, comparisons of the two graph, in term. of their generic 

al`eehrair structure 1(irt'ulp C). and understanding the implications of altering one 

functional form in terms cif the effect on the other (Group ('). 

1 1. Divide x= + 4. r' - 17x + 28 by x, - 3x + 4. and thus provide one of the 
roots of the equation x+ 4xß - 17. v + 28 = 0. 

Skill` assessed: 

Routine use of procedures tee carry Out the division (Group A). and 

comprehension of what the rc>ult of the division means in relation toi the root,, of 

the equation (Group A). 
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12. 
Y 

X 

Tic dia`: ranu sho vs tWo ; graphs, GI and (i2. of the form irr, '. For (; I. a=2 
and h=1. The values of a and h for (2 might he 

A a= 1.1)=2 It a= I. 17=0.5 Ca_2. h=O. 5 
I) aa=0.5. h= IEa =O. 5. h=, 

Skills assessed: 

Information transfer from the svntholic to the pictorial and vice versa (Group m. 

interpreting the graphs in terms of the parameters in the expression', (Group C). 

making comparisons of the two graphs in terms of' their algebraic structure ((; coup 

C). and understanding the implications o1' altering one functional torn'i in terms of 

the effect on the other (Group C). 

13. The straight line with equation r=e-2. r cuts the . t-axis at x= -4. 
The value of c is 

-% B -4 U ti I) -ti 1: none cif these 

Skills assessed: 

Comprehension of the scenario (Group A). and routine use of procedures hN 

using substitution (Group A). 
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14. 

Y 

X 
3 -' 

X 

Ifthe graph GI has the equation v=/to. then the graph (; 2 has the 
equation 

CO 
D 

Skill,, a,,,, c,,, scd: 

Informatimn transfer from the Pictorial to a generic . ý-nºholic I, ornu and v ice versa 

(Group B). interpreting the graphs in terms of the parameters in the expression. 

(Group (), making comparisons of the t\\ 0ý ; ýrahhs in term. of their generic 

algebraic structure (Group C ). and just ih ing that both are indeed the same 

function, just on a different scale (Group ('t. 

1 ý. Which cif the following i. the correct way cri rewriting the polynomial 
A +x3 -5. r'+ lax-6: 

A (. r- - ?. r + 3)(. r- + 3. r - 2) 
C (. r- + 2x + 3)(x' - 3x - 
E all of them are correct 

Y 

13 1º'-2x- 3)(x-+3. º+2) 
1) ýk'+2x-3)(. r'-3. r+_2) 

Skill a. sessed: 

Routine use of procedures to expand each expre. 1ion (Group A). 
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1h. 

Y 

x 
-2 

The diagram above shows the graph of (Sin(h. r) where a=I and h=2. 
Draw oil the same axes the graph o asin(l ) where a=2 and h=1. 

Skill,, assessed: 

Information transfer from the symbolic to the pictorial (Group Ii). interpreting 

the effect of the parameters in the expression (Group C). MakiiII-1 C0111111). 116.1-0111s Of 

the two graphs in terns of their algebraic structure (Group C). and HIRICI "1,11)(11 M-' 

the implications of' ltering the symbolic expression In terms of the effect on the 

graph (Group C). 

17. Give a quadratic equation. containing no fractions. which has the roots 
x= 2/3 and v= 3/4. 

Skills assessed: 
Factual knowledge of the rclatlontihl(-) between the root,, of a quadratic and its 

t*aLtorI. ed torsi (Group A). and routine use of procedures to carry OLIt the 

expansion (Group A). 
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, 1Ilrch 

1x. 
Y 

R 

x 
-2 

\\'hich ILIIlCtIOIl (IOCS the ahove `graph represent'' 

v= sino) Kv_ co, ý(. r - 7T12) CY= sin(. % + It it) 
1) all Of these are cOITCCt E nOmc of thew are correct 

Skills assessed: 

Information transfer from the symholic to the Pictorial (Group B). interpreting 

the effect of the parameters in the expressions (Group C). making comparisons of 

the three expressions in terms cif their graphical town (Group CI. utid "r. t: lnding the 

implications of altering the symbolic expressions in terns cat the effect on the 

justif ing that the\ are indeed all rc1'ic. cnted by the . ante graph (Group C), and 

graph (Group C). Alternamelx'. mercy factual know ledge ýýýnccrningy hhaw 

difference (Group A). 

19. The graph of v= .v+I cuts the graph of v= (x - 2)- +3 at two points. 
The co-ordinates of these two points are: 

X (0. I)and(I. 2) It ( I. 2)and(2.3) 
(' (2.3) and (3.4) I) (3,4) and (4. I none Of these 

Skills assessed: 

Comprehension of the scenario (Group A). and routine use of procedures to find 

. oIutionT that Will sintultaneously satisfy both equation' t(; roup .\1. 
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. -1hilil1 1,, 1 'INilahN(.. 1 ('a ' , 1'Iºnh, 

Y 

2 /rS, 
I 

2 

-2n ýn 
x 

-11n 

'I'hc ahoy graph is a graphical reprrsrntation of which (it' the 1,0l1iwing 
functions? 

Av=,, in(x) +c"t'Bv= sin(s) +c 1$ 1' (' 1" _ "in(r) c') It 

U t' _ sin(. v) e i; all of the abo v 

Skill,, a., csscc1: 

Information transfer from the wmholic to ttie pictorial ((ºrouh U 1. inIcrl)rCting 

the effect ot-romhining functions (Group C). and evaluation vt' ea: li c\pic wn in 

the form of a graph (Group C). Alternatively. merrl\ factual kno fledg 

concerning combinations cif sine and exponential function. (Group A). 

An analysis of student performance oil the above questions. in terms of success in 

relation to skills assessed. is discussed in the next section. 

5.4. Results 

ýýllý ýýl'lllýll 1l 1() \ Ilic" ;ldllilI. 'Li"titl, Ic ll : Ilia! \' I' ()I Ilic litt,. \\ tllý'll 

satiýfying the key and secondary aims outlined in section 5.2 earlier. This analysis 

is aided by scatter plots and hoxplots. which serve toi illustrate the I"indlin",. 'l he 

statistical analysis was carried out using the statistical analysis software MINITAB 

216 



Students' Ability to Visualise: A Case-Study 

and SPSS (see References for Internet addresses). Finally, student feedback 

relating to the experimental session is considered. 

5.4.1. Statistical Analysis of the Data 

An analysis of variance has been carried out for each dependent variable by several 

factors of interest. The factor variables divide the population into groups. Using 

this procedure, null hypotheses about the effects of other variables on the means of 

various groupings of a single dependent variable are tested, so that information 

regarding student performance, including specific comparisons of the factors of 

interest, can be obtained. All comparisons arc tested at the 5% level of significance 

(unless otherwise stated), i. e. a significant difference is evident if the 

corresponding p-value is less than 0.05. The full experimental data can be seen in 

Appendix E. 

Fig. 5.21 provides a table of mean scores (out of 10) for both procedural and visual 

questions, for each of the various factors across the control and experimental 

groups. The numbers in brackets are the sample sizes for each sub-group. 245 

students took part in the case-study. 

To aid the discussion of the analysis, scatter plots provide a graphical overview of 

the experimental data, giving a global picture for each factor of interest. Each plot 

is split into four `compartments', as shown in Fig. 5.22. The grid lines have been 

drawn to help in the interpretation. An `x' in the scatter plots denotes a single 

observation, whereas a `4', for example, denotes 4 observations sharing that 

particular score. The boxplots in the analysis provide quantitative illustrations. To 

assist with their interpretation, the factors of interest, together with their 

appropriate coding, are shown in Fig. 5.23. 
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Stuck'nls ' Ahilii' lo I istuulise:: A Cast-. Sud v 

Control Group 

Procedural Visual 

Experimental Group 

Procedural Visual 

1 (x. 03 (39) 4.72 (39) 5.23 (44) 5.5O (44) 

School 2 4.61 (72) 4.40 (72) 3.76 (45) 4.87 (45) 

3 5.68 (25) 4.52 (25) 3.70 (20) 5.20(20) 

Sex 
Male 5.64 (73) 4.75 (73) 4.35 (63) 4.94 (63) 

Female 4.71 (63) 4.24 (63) 4.33 (46) 5.52 (46) 

bject S 
Mechanics 5.67 (64) 4.95 (64) 4.14 (58) 5.31 (58) 

u 
Statistics 4.81 (72) 4.13 (72) 4.57 (51) 5.04 (51) 

GCSE 
A*/A 5.67 (103) 4.86 (103) 5.08 (75) 5.61 (75) 

B/C 3.79 (33) 3.42 (33) 2.71 (34) 4.24(34) 

Fig. 5.21. 

is c 

Good visually. Good v isrialy. 

e 0. 
Poor p, ocebnally. Good procedurally - 

V6V. 

140. 

Pow Visually Poor %isully 

2 o. Poor procedurally. Good proceduralk 

Cl 0. 

007C! 1V6C0C.. 

Pm edural 

Fig. 5.22. 

Factor 
Group School Sex Subject GCSE 

I Control A Male Mechanics A/A* 

Coding 2 Experimental B Female Statistics B/C 
3 C 

Fig. 5.23. 
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Firstly, the comparison of the performance of the control and experimental groups 

is of prime interest. For the procedural scores, there is strong evidence that the 

control group scored better than the experimental group (p 0.001), which is to be 

expected as they were a year further through their A-level course. For the visual 

scores, there is strong evidence that the experimental group scored better than the 

control group (p = 0.004), even though they were less experienced mathematically. 

For the difference in scores (procedural - visual), in order to determine whether 

students are better at either type of question, there is strong evidence of a 

difference between groups (p < 0.0001). The control group clearly scored better on 

procedural questions, and the experimental group clearly scored better on visual 

questions. 

Fig. 5.24 shows the overall pattern of scores for both groups. 
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zz2 2433xz pz za4F 

" 
u 
a 7 o. 223 42zx 2 0. ax 

1 - "- 
zxx 2z3 u- x z 

C C. C. 

i0 t. 0 60P .'0 
CtC FCan 1ý 

Cont rol Group Procedural L]per 

(a) (b) 

Fig. 5.24. 

Of the 136 control group students overall, in Fig. 5.24(a), 32 students were good at 

both disciplines, and 32 students were poor at both. More interestingly, however, 

there was a considerable number, 25 students, who scored well on procedural 

questions and scored poorly on visual questions, but much less, only 9 students, the 

other way round (the remaining 38 students were borderline, i. e. on the gridlines). 
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There is strong evidence (p < 0.0001) that the traditional approach leads to better 

procedural skills as opposed to visual skills. 

When considering the experimental group students overall, in Fig. 5.24(h), the 

scatter plot is somewhat different. Now there are many more, 22 students, 

compared to 9 above, who scored well on visual questions and scored poorly on 

procedural questions, with only 7 students, compared to 25 above, the other way 

round. This pattern of scores was to be expected in the experimental group, as they 

have received visual training but are one year behind the control group in terms of 

practising procedural skills. 

There is a shift in scores across the two groups. The better visual scores in the 

experimental group, compared with the control group, therefore provide evidence 

(p = 0.004) that the learning style encouraged by the software has indeed enhanced 

visualisation skills more than the traditional approach. 

The next three scatter plots (Figs. 5.25,5.26, and 5.27) and the boxplots (Fig. 5.28) 

look at the three different schools in the case-study. 
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The School A control group (39 students) scored far better (p 0.006) on 

procedural questions than visual questions (see Fig. 5.28), with 10 students scoring 

well on procedural questions and scoring poorly on visual questions, but none the 

other way round (see Fig. 5.25(a)). 

The School A experimental group (44 students) showed a slight improvement (p 

0.066, significant at the 10% level, although not at the 5% level) in visual scores 

compared with the control group (see Fig. 5.28), with 5 students scoring well on 

visual questions and scoring poorly on procedural questions, compared to none 

above, and only 3 students better procedurally than visually, compared to 10 above 

(see Fig. 5.25(b)). 
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Fig. 5.26. 

The School C results were similar to the School A results in that the control group 

(25 students) scored better (p = 0.029) on procedural questions than visual 

questions (see Figs. 5.28 and 5.26(a)), whereas there was no significant difference 

(p = 0.265) between the experimental group (20 students) and the control group at 

visual questions (see Fig. 5.28), even though they were very poor procedurally (see 

Fig. 5.26(b)). 
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Fig. 5.27. 

The School B control group (72 students) was not significantly better (p = 0.576) 

at either type of question (see Figs. 5.28 and 5.27(a)). 

The School B experimental group (45 students) scored better on visual questions 

than procedural ones after the visual training (see Fig. 5.28), with 10 students 

scoring well on visual questions and scoring poorly on procedural questions, but 

only 4 students better procedurally than visually (see Fig. 5.27(b)). 

The visual scores for the two groups in this school are not significantly different (p 

= 0.222), regardless of the teaching and learning approach adopted (see Fig. 5.28). 

It is noteworthy that the School A scatter plot for the control group (See Fig. 

5.25(a)), and to a certain extent that of School C (see fig. 5.26(a)), arc very 

different to that of School B (see Fig. 5.27(a)). 
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OR )I if, 

There is evidence of a difference in performance (p = ). (1)8) between School A 

and B pupils and School C pupils. A possible reason was mentioned in Section 

5.3.4.1. namely that most School A and School C mathematics students follow a 

very traditional course of study. i. e. three science 'Subjects, Whereas School B 

students study all sorts of combinations of subjects (the former will therefore study 

Mechanics, and the latter Statistics - this comparison is discussed in greater detail 

later in this section, and further in Chapter 6). As expected in the School A and 

School C scatter plots. there are a number of students who are either poor at both 

disciplines or good at both disciplines. However, a number of School A and School 

C pupils are good procedurally and poor Visually, and yet there are very t*rw who 

are good visually and poor procedurally, whereas students' scores from School B 

are scattered fairly evenly across the plot. It is conjectured that: 
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" the 'all-round' education offered by School B provides a more balanced diet of' 

procedural and visual nurturing. 

" those students studying a traditional set of A-level subjects need more 

visualisation training (too left-brained at present). 

" the variety of A-level subjects perhaps provides a better balance of right and 

left-brained stimuli. 

These conjectures are supported by an international study which considered 

preferences for visual or non-visual methods (Presmeg and Bergsten, 1995), in 

which Swedish students studying at a Science and Technology school achieved 

much lower visual scores than students frone South African and American schools 

which offered a wider range of subjects. 

The next two scatter plots (Figs. 5.29 and 5.30) and the boxplots (Fig. 5.31) look at 

male and female performance in the case-study. 
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The male control group (73 students) scored better (p = 0.012) on procedural 

questions than visual ones (see Fig. 5.31), with 14 students better procedurally than 

visually, but only 4 students better visually than procedurally (sec Fig. 5.29(a)). 

They were significantly better procedurally (p = 0.027) than the female control 

group, but there was no significant difference (p = 0.386) in visual scores. 

With the male experimental group (63 students), there was no significant 

difference (p = 0.584) in visual scores compared with the control group (see Fig. 

5.31). They did, however, exhibit a different pattern of scores, with 10 students 

scoring better visually than procedurally, compared to 4 above, and only 4 better 

procedurally than visually, compared to 14 above (see Fig. 5.29(b)). 
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Fig. 5.30. 

With the female control group (63 students), there was no significant difference (p 

= 0.212) in procedural and visual scores (see Figs. 5.31 and 5.30(a)). 

The female experimental group (46 students) scored very well visually, but not too 

well procedurally, with 12 students scoring better visually than procedurally, but 

only 3 students scoring better procedurally than visually (see Fig 5.30(h)). This 

was expected with the entire experimental group, given their lack of experience 
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promiuralIv. The fcmalc cxpcrinicntal group scored nºtºch heller visually (1) = 

0.0)I ) than their control group counterparts. and also sct rcd signitic intIy better 

visually (p = 0.041) than the male expciinºrntal group (see 11g. 5.31 ). 
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Fig. 5.31. 

The next two scatter plots (Figs. 5.32 and 5.33) and the hoxpk is (Fig. 5.34) look at 

students studying Mechanics and Statistics in the case-study. 

The Mechanics students control group (64 students) scored better (p = 0.046) 

procedurally than visually (see Fig. 5.34). with 12 students scoring better 

isually. but only 2 students better v i. ually than procedurally v procedurally than 

(see Fig. 5.32(a)). 
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Fig. 5.32. 

With the Mechanics experimental group (58 students), there was no significant 

difference (p = 0.338) in visual scores compared with the control group (sec Fig. 

5.34). They did, however, exhibit a different pattern of scores, with 13 students 

scoring better visually than procedurally, compared to 2 above, and only 2 better 

procedurally than visually, compared to 12 above (see Fig. 5.32(b)). 
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The Statistics Control group (72 auclrnts) scored sIiF htIv heiter (p = 0.0(3. 

significant at the IOYý level. although not at the 5'7 level) on procedural qur,, tio, ns 

than on visual questions (see Fig. 5.34). with 13 student,, better procedurally than 

visually. but only 7 students better visual than procedurally (see Fig. 5.33(a)). 

The Statistics experimental group (5 1 students) scored much better (p = (). (X)7) on 

visual questions than the control `group (see Fig. 5.34), with 9 students scoring well 

on visual questions and scoring poorly on procedural questions. compared toi 7 

above above, and only 5 students better procedurally than visually. compared toi 13 

(see Fig. 5.33(h)). 
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The Mechanics experimental group scored better visually (p 0.05, significant at 

the 10% level, although not quite at the 5% level) than the Statistics experimental 

group (see Fig. 5.34). 

It is interesting to note that both the Mechanics and Statistics control groups were 

more successful at the procedural questions than the visual questions, even though 

most Mechanics and Statistics questions involve pictorial representation (a 

discussion of the skills required to tackle both Mechanics and Statistics questions 

is provided in Chapter 6). 

The next two scatter plots (Figs. 5.35 and 5.36) and the boxplots (Fig. 5.37) look at 

students in the case-study who had achieved grade A*/A and B/C at GCSE level. 
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Fig. 5.35. 

The GCSE A/A* control group (103 students) were much better (p = 0.006) 

procedurally than visually (see Fig. 5.37), with 18 students scoring better 

procedurally than visually, but only 7 students better visually than procedurally 

(see Fig. 5.35(a)). 
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The GCSE A/A* experimental group (75 students) scored much better (p 0.011) 

on visual questions than the control group (see Fig. 5.37), with 13 students scoring 

well on visual questions and scoring poorly on procedural questions, compared to 

7 above, and only 7 students better procedurally than visually, compared to 18 

above (see Fig. 5.35(b)). 
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Fig. 5.36. 

With the GCSE B/C control group (33 students), there was no significant 

difference (p = 0.436) in procedural and visual scores (see Fig. 5.37), however 7 

students scored better procedurally than visually, but only 2 students scored better 

visually than procedurally (see Fig. 5.36(a)). 

The GCSE B/C experimental group (34 students) scored slightly better (p = 0.059, 

significant at the 10% level, although not at the 5% level) on visual questions than 

the control group (see Fig. 5.37), even though they were very poor procedurally 

(see Fig. 5.36(b)), with 9 students scoring well on visual questions and scoring 

poorly on procedural questions, compared to 2 above, and none better procedurally 

than visually, compared to 7 above (see Fig. 5.36(b)). 
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For both the control and experimental gn)1Ips. the G('SI: A*/A group outscored Ilic 

(; ('sf: E3/(' group on procedural questions (h = O. (N)l and h<O. (XX)I respectively) 

and visual questions (p = 0. (x)2 and p=O. (X)I respectively). 
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The statistical analysis of the data has shown that the constructivist visual approach 

has been more beneficial for the experimental group. School A students, females, 

Statistics student,, and GCSE A*/A students. This Would suggest that a sub-group 

of students matching all these criteria would achieve far superior visual scores than 

a corresponding control group. This was indeed true, with the experimental sub- 

group achieving a 40% higher mean visual score than the control sub-group. 

The analysis has shown that after the appropriate training, the exlxrimental group. 

even though less experienced procedurally. managed to sCOre Well On the visual 
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questions. This was not the case with the control group, with the majority of 

students scoring better on the procedural questions. This would suggest that 

students generally cannot do questions that assess higher order skills, arc not 

familiar with them, or have not been provided with the appropriate learning 

opportunities in order to tackle them. The latter is probably the most likely, as (for 

all the wrong reasons) students are trained in school to pass public examinations, 

and teachers will continue to concentrate on procedures as long as this remains the 

focus of such assessment. 

Having described the questions in Section 5.3.4.2 earlier, together with which 

skills they assess, an analysis of the performance on individual questions is now 

provided. 

The control group achieved an average of 52.1% of procedural questions answered 

correctly, compared to 45.2% of visual questions answered correctly. Students 

experiencing a traditional approach to teaching and learning would therefore 

appear to be more successful in tackling questions that assess Group A skills. The 

experimental group achieved an average of 52.0% of visual questions answered 

correctly, compared to 45.2% by the control group. Students experiencing a 

constructivist approach to teaching and learning employing visualisation would 

therefore appear to be more successful in tackling visual questions that assess 

Group C skills than students experiencing a traditional approach. 

All the procedural questions (odd numbered) assess Group A skills. They all assess 

the routine use of procedures and some additionally assess factual knowledge and 

comprehension. Only Question 9 of the procedural questions assesses Group C 

skills (Conjectures and Justifying), and is therefore more like one of the visual 

questions (even numbered) in terms of the skills required to complete it 

successfully. Hence it was expected that Question 9 would be answered less 

successfully than the other procedural questions. In both the control and 

experimental groups, it was the third most unsuccessfully answered procedural 
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question, with only 33.8% of control group students answering it correctly 

(compared to a control group average of 52.1% for procedural questions), and only 
29.4% of experimental group students answering it correctly (compared to an 

experimental group average of 43.3% for procedural questions). Although the 

experimental group had developed higher order skills via software use, it appears 

that they did not have the necessary procedural knowledge base to interact with the 

acquired skills. 

Question 18 was the most demanding question of all in terms of the nature and 

quantity of skills assessed. In both the control and experimental groups, it was the 

second most unsuccessfully answered visual question, with only 22.1% of control 

group students answering it correctly (compared to a control group average of 

45.2% for visual questions), and only 29.4% of experimental group students 

answering it correctly (compared to an experimental group average of 52.0% for 

visual questions). 

Both control and experimental groups found Question 11 to be the most difficult 

procedural question, with only 22.1% of control group students answering it 

correctly, and only 13.8% of experimental group students answering it correctly. 

The control group had a better success rate than the experimental group, which was 

to be expected given their extra year of mathematical development. The high 

failure rate would appear to be due to the fact that the routine use of procedures 

required are of a more complex nature than in other questions. 

The control group found Question 7 to be the easiest procedural question, with 

76.5% of control group students answering it correctly. Unlike Question 11, the 

routines required are of a simpler nature, so although Questions 7 and 11 assess the 

same skills, it would appear that there are different levels of difficulty within each 

skill. 

233 



Students' Ability to Visualise: A Carr-Study 

The experimental group found Question 5 to be the easiest procedural question, 

with 66.1% of experimental group students answering it correctly. It would appear 

that this was simply the most familiar topic for their stage of mathematical 
development (gradient and intercept of a straight line). 

In both groups, the same general pattern of success and failure emerged. 

Regardless of their stage of mathematical development, both groups similarly 
found certain questions difficult, certain questions moderately difficult, and certain 

questions easy. 

Both control and experimental groups found Question 8 to be the most difficult 

visual question, with only 11.0% of control group students answering it correctly, 

and only 28.4% of experimental group students answering it correctly. The 

experimental group had a better success rate than the control group, as they 

appeared to be better at switching between representations in both directions, and 

had developed more Group C skills experience. 

Both control and experimental groups found Question 2 to be the easiest visual 

question, with 88.2% of control group students answering it correctly, and 89.9% 

of experimental group students answering it correctly. As earlier, this was probably 

due to the fact that it was the simplest topic (gradient and intercept of a straight 

line). 

Questions 4,6,8,10,12, and 16 all assess the same skills, however neither group 

answered this set of questions similarly. As mentioned earlier, this perhaps 

illustrates the different levels of difficulty within the same skill groupings. 

Questions 4 and 16 not only assess the same skills, but also the direction of 
information transfer is the same. Similar success rates would therefore be 

expected. For the control group, a 95% confidence interval for the difference 

between the means for each question is (-12.20,42.67). This includes zero, and 
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therefore there is no evidence of a difference in performance on the two questions. 

The individual confidence intervals for each question overlap significantly. For the 

experimental group, a 95% confidence interval for the difference between the 

means for each question is (1.33,57.41). This does not include zero (just), and 

therefore there is evidence of a difference in performance on the two questions. 

The individual confidence intervals for each question do not overlap significantly. 

The experimental group found Question 4 easier than Question 16, even though 

both questions assess the same skills and direction of information transfer. It would 

appear that they were simply more comfortable with quadratics than trigonometric 

functions given their experience, whereas the control group were familiar with 

both types of function and therefore scored similarly on both questions. 

The full analysis, which provides a detailed breakdown of performance in the 

individual questions, can be found in Appendix D. 

5.4.2. Student Feedback 

Feedback was sought in order to gauge student opinion on the usefulness of the 

software, and to assess psychological factors such as motivation and enjoyment 

after experiencing a constructivist visual approach. The feedback obtained from all 

the experimental group students provides an overall `feel' for what the students 

thought of the software and the teaching and learning approach. The following 

takes each question from the feedback questionnaire (Appendix C) and provides a 

bar chart of responses. 
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Question 1. Did you find the session helpful? 

A. Yes, extremely helpful. 
B. Yes, quite helpful. 
C. Neither helpful nor unhelpful. 
D. No, not very helpful. 
E. No, most unhelpful. 
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Fig. 5.38. 

Question 2. Did you enjoy using the package? 

A. Yes, very much. 
B. Yes, a little. 
C. I didn't like it nor dislike it. 
D. No, I didn't really like it. 
E. No, I hated it. 
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Fig. 5.39. 
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Question 3. Having used this software, would you he motivated to use 
software concerned with other mathematical topics? 

A. Yes, very much so. 
B. Yes, probably. 
C. Maybe, maybe not. 
D. No, probably not. 
E. No, definitely not. 
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Fig. 5.40. 

Question 4. How did this 2-hour computer session compare with 2 hours of 
traditional mathematics classroom activities? 

A. I would much rather learn via the computer. 
B. I would probably prefer to learn via the computer. 
C. I have no preference. 
D. I would probably prefer to do traditional mathematics classroom activities. 
E. I would much rather do traditional mathematics classroom activities. 
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All the above bar charts clearly illustrate that the session was a success in terms of 

usefulness, enjoyment and motivation. As a result of an informal discussion with 

the students, it became clear that they appreciated that the software facilitated a 

constructivist style of learning, and that they had made useful mathematical 

discoveries. There was very little resistance to the experimental approach. General 

comments (those offered in Question 5) concerning how to improve the package 

are discussed as considerations for future developments in Section 7.2.1 of Chapter 

7. 

5.5. Conclusions 

It was conjectured that the constructivist use of visualisation had enabled students 

to develop more Group C skills, whereas students undergoing the instructivist 

treatment were mainly limited in skills to those of Group A. There was strong 

evidence that the experimental group scored better than the control group (p = 
0.004) at visual questions (requiring the application of higher order skills), and 

there was strong evidence (p < 0.0001) that the traditional approach led to better 

procedural skills as opposed to visual skills. This evidence, from the statistical 

analysis earlier, affirmed that the initial conjecture was indeed the case, but 

moreover there was evidence to suggest that linkages between the skill groups 

were more pronounced, creating a more holistic view of mathematics. This is best 

summarised by considering responses to Question 20 in particular, as shown in 

Fig. 5.42 (although only one example, it is indicative of the findings in general). 

The question below assesses whether or not the students have been able to take the 

knowledge gained from local tasks and apply it globally. 
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Fig. 5.42. 

When faced with a graph which wa,, the result of a combination of function`. the 

control group struggled to find the correct solution (32.41? answered correctly). 

whereas the experimental group used their knowledge relating to other families of 

graphs to arrive at the correct function (52.3(-1( answered correctlv). The 

experimental group had a more holistic view of the topic and were therefore not 

deterred by the nature of the task. and were able to employ their conceptual 

knowledge of combining familiar. specific function-, (and the effect on the graph) 

to an unfamiliar (but similar) situation. The control group's sequential stele, 

however, hindered their progress as they could not see any other way around their 

limited, linear methods. 

The experimental group students were more successful as they, had the ability to 

combine functions and understand the effect this would have on the graph. 

irrespective of the specific functions studied. Their whole approach to learning 

equipped them with better strategies for problem solving. The richness of global 
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thinking proved beneficial as they checked their answers by more than one 

approach. 

The control group had not studied combinations of functions explicitly, and were 

struggling to match this question to any prior experience. They did not have a 

`recipe' or `template' to solve such problems, and therefore had a very limited 

solution strategy. The problem could be solved in an instructivist manner, e. g. to 

methodically eliminate possible answers by considering values of x where the 

graph cuts the x-axis, then considering the substitution of different values of x into 

ex and e-x, etc., but the control group did not seem to have the necessary problem 

solving skills to tackle it, even in an instructivist way. 

It would appear that the experimental group had a greater mathematical skills set 

with more flexibility in moving between the different skills when applying them. 

Results of the visual questions would suggest that they were better at problems that 

required more versatile thinking, and could apply the generic concepts to specific 

examples. The control group tended to follow rules that had been explicitly taught. 

This example illustrates that understanding needs to be independent of the specific 

examples used; relational as opposed to instrumental understanding needs to be 

encouraged. For example, the bespoke teaching software looked at investigations 

specific to certain functions, but the newly acquired conceptual structures could be 

applied to any function. 

It would have been expected for males and females to perform with the same 

degree of success on visual questions after software use, as the control group 

results indicated that there was no significant difference in visualisation ability. 

This, however, was not the case. The experimental group results showed that after 

learning via the software, females scored better on the visual questions than their 

male counterparts. The considerable improvement in female scores after having 

used the dedicated teaching software would perhaps suggest that females respond 
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more positively to this form of visual training, which was not expected on the basis 

of the control group results. 

These findings concerning male and female visualisation abilities concur with 

those of other studies in the literature. For example, Ferrini-Mundy (1987) found 

that females generally perform better at calculus, but males generally perform 

better at spatial visualisation tasks. It was believed, however, that spatial training 

may benefit performance in certain areas of calculus for females more than for 

males. Ferrini-Mundy suggests that females are more likely to respond better to 

visual stimuli than males, even though they are generally weaker visually. 

There is perhaps a case, therefore, that educators need to determine the abilities 

and learning preferences of the learners, for example their visualisation abilities, 

and then tailor the learning environment and activities to fit the learner 

characteristics. However, even the males in the experimental group scored just as 

well on the visual questions as the males in the control group. So, although females 

excelled with this form of training, males were certainly not disadvantaged. 

Perhaps the key is to find a form of training that will lead to the males excelling, 

and to offer different forms of activities depending on the sex of the learner. This 

way, individual differences could be accommodated in the teaching and learning 

methods (research on learning styles is currently being carried out at the University 

of Plymouth (Berry, 2002; Smith and Berry, 2002)). 

The results of the experimental group showed that the performance of the female 

students was superior to that of their male counterparts, contrary to the results of 

the control group. This observation is perhaps not surprising when compared with 

research carried out by Ruthven (1990). His experiment looked at comparing the 

mathematical performance of upper secondary school mathematics students for 

whom a graphic calculator is a standard mathematical tool, with that of students 

without access to graphing technology. Although the conditions and testing 

procedure were quite different to the case-study described in this chapter, there 
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were some common findings in terms of the ability to translate from graphic to 

symbolic forms. The technology had an important influence on both the 

approaches employed by students and on mathematical attainment. The group that 

used the graphic calculators achieved markedly superior scores, with female 

students achieving higher scores relative to males. Ruthvcn offers a possible 

explanation for these results (the explanation is appropriate for both Rutiven's 

experiment and the case-study described in this chapter). He explains how males 

tend to display less anxiety under conditions of uncertainty, and tend to outperform 
females on tasks that require visual abilities. Appropriate training with dedicated 

softwareltechnology, including feedback, leading to increased confidence and 

competence can reduce uncertainty and thus diminish anxiety. This is particularly 

likely to improve the performance of female students. 

5.6. Summary 

This experiment has considered a specific teaching and learning approach, using a 

specific software package, for a specific subject domain. Nevertheless, taking into 

account its limited application, it does offer strong evidence that the employment 

of computer-based visualisation coupled with a constructivist approach can have a 

positive effect on student achievement. As a result, students adopt a more holistic 

approach to problem solving, and develop a broader skills base. 

A summary of the outcomes of the case-study is provided below. 

Comparison of control and experimental groups: 

" The control group scored better procedurally than the experimental group, as 

expected, but was poor visually. The traditional approach limited students to 

Group A skills. 
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" The experimental group scored better visually than the control group, and in 

turn demonstrated higher order (Group C) skills, even though they were 

relatively poor procedurally. The constructivist visual approach enhanced 

visualisation ability, and in turn higher order skills. It not only developed a 
broader skills base, but provided more flexibility in moving between the skills 

groups when applying them. 

" Visualisation influences learning outcomes and helps in the application of 

knowledge to other subject domains. 

" The experimental group developed a more holistic view of mathematics, and 

better strategies for problem solving. They demonstrated global thinking, and 

could check answers by more than one approach. The control group did not 

seem to have the necessary problem solving skills, even in an instructivist 

manner (the skills required for successful problem solving arc discussed in 

Chapter 6). 

9 The experimental group could take knowledge gleaned from local tasks and 

apply it globally. Their understanding was independent of specific functions 

studied, so that the conceptual knowledge acquired could be applied to any 

function, i. e. the knowledge gleaned from local tasks could be applied globally. 

Their knowledge was therefore relational as opposed to instrumental. The 

control group's sequential style hindered progress as they had no recipe or 

template for the solution. 

" The experimental group could apply generic concepts to specific examples, 

whereas the control group could only follow rules without any critical 

evaluation. 

" The experimental group demonstrated better linking between visual and 

symbolic representations. 

243 



Students' Ability to Visualise: A Case-Study 

" The experimental group was motivated, and enjoyed the constructivist visual 

approach. 

" The constructivist visual approach proved beneficial for alI abilities. 

"A Vygotskian perspective of constructivism incorporating strategic questioning, 

and promoting social interaction, has a positive effect on the learning process. 

" It was observed in Chapter 4 that assessment which allows the use of a CAS 

should enable students to demonstrate higher order skills, but students still 

choose to perform procedural skills as a result of the nature of their learning 

experiences. However, students do demonstrate higher order skills when 

assessed after learning via a constructivist computer-based approach. 

" The software supports a constructivist approach, and in turn develops students' 

skills. It allows for the conjecture and rehearsal of general relationships. 

Feedback regarding software use, in terms of usefulness, enjoyment and 

motivation, was very positive. 

Other specific comparisons: 

School: 

" The control group results suggested that schools that encourage the studying of 

3 science subjects score better procedurally than visually. Schools that 

encourage the studying of a variety of different subjects exhibit no difference in 

procedural and visual ability. 

" Based on the comparison of control and experimental visual scores, the 

constructivist visual approach was more beneficial for School A. 
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Sex: 

" For the control group: Males scored better procedurally than visually. Males 

scored better procedurally than females. Females demonstrated no difference in 

performance procedurally and visually. 

" For the experimental group: Males were better visually than procedurally. 

Females were very good visually (much better than procedurally), were much 

better than the control group, and were much better visually than the 

experimental group males. 

" Based on the comparison of control and experimental visual scores, the 

constructivist visual approach was more beneficial for females than for males. 

Subject: 

" For the control group: Mechanics students were better procedurally than 

visually. Statistics students were slightly better procedurally than visually. 

" For the experimental group: Mechanics students were much better visually than 

procedurally. Mechanics students scored slightly better visually than the 

Statistics students. Statistics students scored better visually than procedurally. 

and much better visually than the control group. 

" Both Mechanics and Statistics control groups scored better procedurally than 

visually, despite the visual nature of Mechanics and Statistics questions in 

general. 

" Based on the comparison of control and experimental visual scores, the 

constructivist visual approach was more beneficial for Statistics students than 

for Mechanics students. 
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GCSE Grade: 

" For the control group: A/A* students were much better procedurally than 

visually. B/C students demonstrated no difference in performance procedurally 

and visually. 

" For the experimental group: A/A* students were much better visually than the 

control group. B/C students were better visually than procedurally, and were 

slightly better visually than the control group, even though extremely poor 

procedurally. A/A* students were much better than E3/C students on both types 

of question, across both groups. 

" Based on the comparison of control and experimental visual scores, the 

constructivist visual approach was slightly more beneficial for A*/A students 

than for B/C students. 

The remainder of the thesis is concerned with a theoretical framework and future 

developments. Chapter 6 considers a teaching and learning framework to underpin 

and co-ordinate aspects of mathematics education with visualisation considered 

thus far. This framework builds on existing theories of teaching and learning in 

mathematics education. Chapter 7 offers some potential opportunities for future 

research as a result of the outcomes of the case-study. 

246 



Visualisation and Constructivism: their Roles in Mathematical Cognition 

CHAPT1R 611 

Visualisation and Constructivism: 

their Roles in Mathematical Cognition 

Mathematicians are like Frenchmen: whatever you say to theni they 

translate it into their own language, and forthwith it is something 

entirely different. 

GOETHE 
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6.1. Introduction 

The learning investigation reported in the previous chapter has shown evidence to 

support the view that a coherent combination of a constructivist approach to 

learning and teaching, together with increased emphasis on visualisation, not only 

enhances students' conceptual understanding of the mathematical topic under 

study, but can also enhance the students in their acquisition of higher order 

mathematical skills. 

Clearly the case-study in Chapter 5 is based on a limited study of students at a 

particular stage in their mathematical development, and is restricted to one 

mathematical topic. More generally, questions of interest are: 

" Are such (apparent) benefits to learning equally applicable to all stages of 

mathematical development, i. e. from primary school mathematics onwards, or 

are the main benefits to be found at later stages of development once a 

foundation of subject knowledge has been established? 

" Are such (apparent) benefits to learning applicable to all subject areas within 

mathematics? For example, can constructivism and visualisation play a 

significant role in the development of students' ability with proof construction? 

" Are there any learning and teaching 'blockages' in today's educational system 

that might prevent a constructivist and visual approach to learning taking 

place? For example, does the form of student assessment mitigate against such 

approaches? 

In this chapter, a framework is proposed to link together and explain fully how 

constructivism and visualisation contribute to mathematical skills development, as 

well as conceptual understanding. The mathematical skills groupings described 
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initially in Chapter 2 are assumed here to be desirable (by teachers) and achievable 

(by students) to some degree across the mathematics curriculum. Elements of 

existing learning theories, such as those described in Chapter 2, are used to 

develop this framework, but the emphasis here is on the benefits of visualisation 

and constructivism and the development of skills in particular. not just the 

development of conceptual understanding which features in many cognitive 

theories. Thus the framework proposed here is purposely meant to be of benefit to 

a student and/or a teacher in understanding and managing the learning process. 

6.2. The Role of Visualisation in Mathematical 

Cognition 

As Hitt (1998a, 1998b) and Duval (1995,1999) have indicated, there arc many 

forms of representation that a student of mathematics can experience. Broadly 

speaking, these forms can be described as: 

9 Discursive (sometimes referred to as `symbolic', 'algebraic', etc. ) forms such 

as the use of natural language in presenting definitions ctc., and syntactical 
language such as algebra, logic, etc. to represent equations and formulae. 

" Visual (sometimes referred to as ̀ pictorial', 'diagrammatic', etc. ) forms such 

as graphs, geometrical figures, flow charts, etc. to represent actual physical 

objects such as 3-dimensional solids or mathematical objects such as a 

graphical representation of a complex number. 

The skill of visualisation, or visual thinking, in a mathematical sense stretches 

beyond that of merely being able to identify aspects of a given picture, but should 

include being able to identify relationships between sub-components and/or 

geometrical transformations of the picture, identify strategies for sclccting 
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information from the picture that allows for the possibility of advancing towards a 

solution to a problem, and be able to link the visual representation with existing 

mathematical knowledge in whatever representational form it is in. In this respect, 

visualisation in mathematics is a more demanding skill than merely adding to 

knowledge by storing pictorial information (i. e. a Group A skill). Visual thinking 

leads to the creation of mental images as described by Dreyfus (1991) in Chapter 2. 

All representations can support enhanced understanding of mathematical concepts, 

and can be utilised to increase mathematical skills, i. e. there is no superior 

representation in general. For some concepts and mathematical subjects it may be 

that the student does not have to switch from one form to another, or indeed has a 

choice of representations to choose from to solve a particular problem. The 

strategy of choosing appropriate representations in an optimum way is the 

important skill. 

For a given problem there is likely to be an optimum solution strategy that may 

involve discursive forms, visual forms or a combination of both. What is important 

is that a learner is free to consider different representation strategies before 

choosing an optimum, and is not cognitively constrained or forced into a particular 

choice of representation that may not help find a solution. 

The outcomes of Chapter 5 suggest that it is the switching between representations, 

particularly from the visual to the symbolic, that students find most difficult. It 

is also evident that, for a particular mathematical topic, different thought processes 

or higher order mathematical skills may be required for the `symbolic to visual' 

transformation as opposed to the `visual to symbolic' reverse transformation. For 

example, representing an equation as a graph may only need the process of 

obtaining an array of x and y values and knowledge of how to plot coordinates to 

achieve the conversion. Given the graph of the equation, knowledge of turning 

points, coordinate values of x and y intercepts, etc., and a strategy for 

assimilating such information, may all be necessary to complete the conversion 
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to symbolic form. In other words, in some cases it may be possible for a student to 

change representations merely by following a known (to the student) algorithmic 

process; in other cases, and it would seem more likely in the visual to symbolic 

conversion, this algorithmic process may not exist and some higher order strategy 

is needed. 

The evidence of Chapter 5 suggests that visual thinking, and the students' ability to 

switch naturally between representations of mathematical objects when 

appropriate, must be a key feature of any learning framework. 

6.3. Problem Solving and the Role of Visualisation 

As a student progresses towards the solution of a problem, this strategy of 

switching between representational forms can be influenced in a number of ways. 

For example, if asked to solve a pair of linear simultaneous equations expressed in 

algebraic form and given that there is a unique solution, students are likely to 

stay in the given discursive form, solve the problem analytically, and present the 

results without recourse to a graph, even to check their analytical work. If the same 

problem had been posed instructing the students to graph the equations and then 

solve the problem, then students have to be able to switch between representations 

and convert the algebraic form to a visual (graphical) forni and then interpret their 

graphs. If no information about a unique solution had been given initially, then 

students may well be expected to switch first to a graphical form to gain pictorial 

information relating to the number of solutions. The solution may then be obtained 

by working in either representation form. 

As another example, 2-dimensional geometry problems often start with a visual 

representation of the problem to be solved. The solution may utilise geometry 
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theorems (often presented in natural language) that can convert the problem to one 

of algebra. Alternatively, the solution may be possible by manipulating the given 

figure to produce another figure that is easier to interpret, a solution process that is 

now increasingly likely with the use of appropriate computer software. This latter 

solution does not involve a switch outside visual representational form. 

The ability to solve a particular mathematical problem requires at least one of two 

processes to take place. From the given starting point, an advancement has to be 

made to enable the final goal of the problem to be reached. Along the way, this 

advancement may require a conversion (or conversions) from one representational 

form to another, as discussed in the examples above. For a given problem, a 

solution strategy must encompass a strategy for advancement. If this strategy does 

not require a change in representation then a conversion strategy is not needed. In 

general, one or more conversions may be required. 

A schematic problem solving `flow chart', designed to illustrate the processes 

involved and their interaction, is given below in Fig. 6.01. In the `start' phase, the 

student forms a perception of the problem, based on their existing knowledge base, 

and also seeks to confirm the goals or objectives of the problem. Ideally, the next 

stage should be the `conversion' phase, where the student considers appropriate 

representational forms and switches between them if necessary to produce choices 

of possible problem representations, i. e. begins to develop possible strategies for 

advancement (this is a more encompassing version of Vinner's work on concept 

definition and concept image, as discussed earlier in Chapter 2). 

In the `advancement' phase, these different strategies arc inherently given a 

ranking and tested one-by-one. In the event of failure with one strategy, 

alternatives may include trying to solve a simpler problem first and then 

generalising the solution later, and/or solving an analogous problem that may 

indicate a refinement of an existing strategy. Hence, hopefully, the solution process 

is advanced. 
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The final stage is one of 'reflection' (this supports Dubinsky's work on reflective 

abstraction, Chapter 2). Here the student should attempt to answer such questions 

as: 

" Is the solution correct? 

" Is the solution process the optimum? 

9 Does the solution generalise in any way? 

Having completed these phases, the learning experience should add to the student's 
knowledge base so that problems of this type are now known to the student. 

The results of Chapter 5 strongly suggest that in general, when given a problem to 

solve, students opt for the following strategy: 

" Stay in the symbolic representational form throughout if possible - especially if 

this is the form in which the problem is posed. 

If the problem is posed in pictorial form, change the representation of the 

question to symbolic form if at all possible. 

" Look for a known (to the student) algorithmic process that might be suitable 
for the advancement of the problem. This advancement strategy could be 

considered as `templating' - when the given problem fits into a class of 

problems for which the student has a template for solution. 

Thus, problems posed in a visual form are likely to pose a dilemma to many 

students with weak or no visualisation skills, for example: 

" their visualisation skills may be such that they cannot ̀ sec' the linkages in the 

pictorial information to their own established mathematical knowledge base to 

enable them to proceed with a solution process without changing 
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representational form, i. e. they cannot assimilate such information to add to 

their existing cognitive structure. 

" their desire to move from a visual representation to a symbolic form may add 

another possible source of student error and confusion, and is not necessarily 

seen as advancing the problem towards a solution. 

" the move to a symbolic form may produce a problem representation that does 

not fit into a student's known template for a solution process, i. c. a 

perturbation to the established cognitive structure, and hence again the 

student is not advancing towards a solution. 

9 if the posed problem asks for some interpretation or conjecture which is most 

easily made in visual form, then the switching of representations from a 

symbolic back to a visual form may introduce even more error. 

In essence, students with weak visualisation skills are potentially limiting the 

number of alternative strategies that they can generate in the advancement phase 

because of a poor conversion phase. They have not developed the necessary higher 

order skills to be able to generate alternative solution strategies, and therefore if 

they cannot `fit' the problem into a familiar template, then they will not be able to 

advance (i. e. they will be stuck in the loop of the advancement phase). Equally, the 

reflection phase may be limited for such students, which will mean their 

knowledge base will not expand significantly. 

Additionally, there is the apparent perception by many students (and maybe 

teachers as well) that reasoning and problem solving can ONLY be done in 

symbolic and/or numerical form `as it is more accurate (and will cam more marks 

in an examination)'. Hence a visual approach `is not to be favoured as it only 

illustrates something, but does not prove anything'. 
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The case study in Chapter 5 showed clearly that the favoured problem (from an 

instructivist teaching perspective) was one that was posed in symbolic form, 

required an answer in symbolic form (and hence no representation switching was 

needed) and for which there was a well-known and well-practiced template. 

Reflecting on the answer, for example discussing its implications or generalisation, 

was not liked. Ability to `do' such problems is also seen generally as showing good 

mathematical ability, and having significant rewards in public examinations, at 

least up to A-level. 

6.4. Mathematical Skills and Visualisation Revisited 

The evidence from the case-study in Chapter 5 reinforces the view held by many 

(Etchells and Monaghan, 1994; Monaghan et al., 1998; Porkess, 2002) that the 

majority of mathematics students entering university have mainly Group A skills, 

and perhaps some Group B skills relating to knowledge transfer to other 

applications. It has been discussed in Chapter 4 that visualisation as a skill in its 

own right pervades and reinforces most of the Group A, B and C skills. 

In the problem solving process considered above, the conversion skill of being able 

to move smoothly when appropriate from one mathematical representation to 

another is at least a Group B skill. The advancement process requiring the 

generation of alternative strategies and accepting/rejecting them certainly involves 

Group B and C skills. The point of emphasis here is that at this stage in the 

students' mathematical development their solution strategy is one of trying to 

reduce every problem to one that can be solved using Group A skills alone. A 

weaker student with only Group A skills anyway is not likely to be able to achieve 

this reduction process and hence has to rely on his or her knowledge of a template 

for the given problem. 
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Thus any cognitive framework should emphasise the point that a mathematical 

knowledge base containing facts, formulae, definitions, subject knowledge, etc. is 

not sufficient on its own. Rather, mathematical expertise consists of an expanding 

knowledge base, incorporating the student's own personal set of mental images (in 

accordance with Dreyfus's work on mental processes and t lard and Kaput's work 

on conceptual entities, Chapter 2), plus a developing set of mathematical skills that 

interact effectively with the knowledge base. A schematic diagram illustrating this 

iterative development in the learning process is given in Fig. 6.02. Once again, the 

conversion between both discursive and visual forms of representation is shown 

explicitly within the constructivist teaching and learning process to emphasise its 

role in the development of expertise (the importance of the conversion process, 

which links representations, is stressed by both Dreyfus and Mitt, Chapter 2). The 

student's existing expertise may be limited, particularly in terms of both mental 

images and range of skills. The constructivist teaching and learning process, which 

encourages communication (Laurillard discusses the benefits of a communication 

model, Chapter 2), develops the higher order skills that are required in order to 

move successfully through the advancement phase of the problem solving flow- 

chart earlier. In this manner, the student's expertise is reformulated, as it not only 

has stronger conceptual links between subject knowledge and mental images, thus 

promoting relational as opposed to instrumental understanding (in accordance with 

Skemp's work, Chapter 2), but now has a more developed skills base so that the 

knowledge base can be applied successfully in problem solving. 

In an iterative fashion, the newly acquired expertise becomes the foundation (i. e. 

new starting point) for further constructivist activity (this is analogous to 

Buchberger's White-Box/Black-Box principle, Chapter 2). An instructivist 

approach would not focus on the conversion process, and would thus not develop 

the higher order skills required for successful problem solving. 
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This can help to explain some of the outcomes of Chapter 5. It is perhaps not 

surprising that A-level students having studied Statistics should show some 

ability to be able to transfer from one representation to another. Almost the first 

task that data analysis demands is to plot the data in some form such as a scatter 

plot, histogram, etc. and to conjecture, on the nature of the data, any outliers, etc. 

The move back to the symbolic/numeric form usually involves calculation of a set 

of measures of location and spread such as mean, standard deviation, regression 

line, etc. Once these measures are calculated, there is often an analysis phase, 

which may involve re-plotting manipulated data, etc. When the underlying data is 

taken from a particular experimental application, there is likely to be an 

interpretation phase relating back to this application. In short, the movement 

between representations is natural and although some students favour the 

calculation phase, there would appear to be every opportunity to practice 

movement in both directions between the representations. The use of different data 

sets may help to reduce the `templating' opportunities for the solution process. 

A-level students having studied Mechanics also have had opportunity to develop 

such transfer skills, although maybe to a limited extent. Typically, mechanics 

problems are presented in word form and the first step for a student is to represent 

this discursive information into visual form. Once the diagrammatic representation 

of the problem (often a force diagram) is complete, the symbolic phase follows 

when the physical laws of mechanics are applied to the visual information to 

produce equations of motion, equilibrium, etc. Students invariably find difficulty 

in the change of representation phases. Given the system of equations to solve, 

many could proceed to the correct solution. Unfortunately, many have difficulty 

formulating a correct visual representation of the given word form of the problem 

and cannot proceed to the procedural part of the problem. Once again, students can 

learn a process to follow for such problems in the hope that their given problem 

matches the template formed by their prior experiences. 
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As seen in this thesis, students of pure mathematics up to A-level can often rely on 

the symbolic/numerical representation to solve problems and would appear to want 

to do so. In many examples quoted in this thesis, the visual nature of mathematics 

is seen as a support rather than an integrated enhancement to conceptual 

understanding. The movement from the symbolic to the visual, for example when 

plotting an equation on a Cartesian graph, is often an algorithmic process (Group A 

skill) that students can cope with. The movement from a visual representation to a 

symbolic one is often not algorithmic, requires Group B or C skills, and is found to 

be difficult by students. 

6.5. Visualisation Skills and Constructivism 

The case for the development of visualisation skills has been made above, 

particularly in terms of development of mathematical expertise. The teaching and 

learning process has been seen to influence strongly the development of this 

expertise also. The iterative development of this expertise, depicted in Fig. 6.02. 

would appear to depend very much on the linkages between the skills, the subject 

knowledge, the mental images, etc. at any one time, so that new skills, facts, 

images, etc. and the linkages between them can be easily assimilated by the 

learner. 

The evidence from Chapters 3 and 5 suggests that an instructivist approach to 

teaching and learning tends to promote these items of expertise as essentially 

separate ideas with the links between them often lacking. A student may learn a 

mathematical definition but have no pictorial representation, either externally or 

internally as a mental image, to reinforce this definition with meaning and possible 

application (in Fig. 6.02, the conceptualisation link between subject knowledge 

and mental images would be missing, as would the conversion process and the 

resultant skills development). A mathematical process may be familiar to a student, 
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but if the connections between, and generalisations of, similar processes do not 

exist within the student's expertise, then the knowledge base may reduce to a 

potentially large set of such processes which become increasingly difficult to 

commit to, or retrieve from, memory. To some extent, using the terminology of 

Buchberger, as discussed in Chapter 2, this means that the student is seeing 

learning as a collection of `white boxes' and cannot necessarily consolidate 

knowledge into the `black box' phase. 

A constructivist approach to teaching and learning, if applied properly along the 

lines described in Chapter 3 and exemplified in Chapter 5, attempts to promote 

these linkages explicitly, primarily by self-discovery. This style of learning should 

train students to seek linkages between pieces of information when they believe 

they are missing, construct more appropriate mental images to aid understanding of 

concepts, conjecture results and generalisations of particular cases, and hence 

develop mathematical skills. In this way, for example, the white-box/black-box 

principle of Buchberger is possible for a student to attain in the way their learning 

develops. 

Of course, visualisation and constructivism are not directly connected. An 

instructivist approach can include drill practice for students in the conversion from 

one representational form to another so that a student may acquire some 

visualisation skills. Equally, a constructivist approach may still focus on a more 

symbolic form of problem solution so that the learner's solution strategies are still 

potentially limited. However, visualisation skills and a constructivist approach to 

learning are complementary in that, on the basis of the evidence from Chapter 5, 

both add more naturally to the development of mathematical expertise. 
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6.6. Teaching, Learning and Assessment `Blockabe' 

Issues 

In this section, factors that may inhibit the potential for the dcvclopmcnt of 

visualisation skills and/or a constructivist approach to tcaching and learning 

described above, are considered. 

6.6.1. Teaching 

The teaching acts as a role model for the learning process and in particular the 

problem solving process. Visualisation skills will not develop in students if the 

teacher has devised a style of teaching that excludes the need for conversion 

practice. There may be many plausible reasons why this takes place, for example: 

" the teacher's own mathematical training has not led to the development of 

visual skills and hence the teacher feels more secure using symbolic forms. 

9 the teacher does not see the benefit of such visual skills - the syllabus is not 

likely to specify this skill as a core requirement or learning objective, and his or 

her student pass rates may be sufficiently good. 

9 the teacher is under pressure to get through a prescribed syllabus and achieve 

acceptable pass rates - in which case the `safest' process might be to train 

students to perform a number of methods capable of solving particular 

problems. 
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" the teacher wants to control the Teaming process, and finds such control 

difficult when trying to teach visualisation skills because there isn't a single 
instructional process that will cater for problems involving conversion. 

Some of the above are also reasons cited for teachers adopting an instructivist 

rather than a constructivist approach to teaching and learning. However, another 

important factor inhibiting the use of a constructivist approach is again that of 

time. The evidence of the case-study in Chapter 5 suggested that the teacher has 

little time to investigate whether students have developed correct mental images, 

representational linkages, etc., especially on an individual student basis. A 

constructivist approach may well widen the time needed between `more able' and 

'less able' students to achieve similar skills development, even if motivation to 

learn is increased. 

6.6.2. Learning 

It has been shown that, when solving problems, learners of mathematics 

undergoing an instructivist teaching style: 

9 prefer to remain within the one representational form if possible (usually a 

symbolic one). 

prefer the symbolic discursive form rather than the visual form if given a 

choice of representations to solve a problem. 

have difficulty moving from one representational form to another and in 

particular more difficulty moving from the visual form to the discursive forni. 
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The first preference is a natural one. Many problems are 'well-posed' and have a 

neat, closed solution and, more significantly, students expect such questions, begin 

to doubt their answers if they look 'untidy' (such as non-integer answers for 

solutions of linear equations with integer coefficients), and expect that the form of 

the question is indicative of the best form in which to proceed unless they have 

already met and practiced similar questions to the contrary. 

The second preference is more strategic. As already discussed in this chapter, 

moving from one representation to another, particularly from the visual to the 

symbolic, can introduce error without necessarily being seen to advance towards a 

solution (and hence earning marks). Also, it is more likely that a problem posed in 

symbolic form will have an algorithmic `template' for solution that the student 

recognises and can apply. Even if symbolic manipulation errors arc made, students 

can still be rewarded with marks for method. 

The difficulty of switching from one representation to another is more a matter of 

cognition. Students need sufficient practice to develop this skill of making 

strategic decisions as to when to utilise a certain representation. This is an 

important problem solving skill and should not be practiced on problems involving 

new (to the student) mathematical knowledge and concepts until this new material 

is fully consolidated into the student's cognitive structure. Otherwise, it is highly 

likely that a student will struggle to differentiate between lack of understanding of 

knowledge or lack of a capable problem solving strategy when faced with 

difficulties. 

The other major obstacle would appear to be that of time. Increasingly in these 

days of modularity, learning has to be done in `bite-size chunks', giving learners 

little time to reflect and assimilate learning before they are assessed on their 

knowledge, and also the feeling that once learning has been assessed it can then be 

forgotten. A task-driven approach to learning may mean that students prioritise 

their learning developments in a different way to those anticipated by the teacher. 
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6.6.3. Assessment 

In recent years, many teachers, at least in the UK, have faced the prospect of their 

teaching performance being judged by the performance of their students in public 

examinations. Students are also under increasing pressure to obtain high grades, 

particularly for example A-level grades to aspire to select universities. Success or 

otherwise of government education policy has been often measured by national 

pass rates alone, with higher pass rates usually accompanied by cries of lowering 

of standards. Thus, there is plenty of support for the notion that, in schools at least, 

assessment drives the teaching and learning process and hence any attempt to 

influence teaching and learning performance must consider assessment first. 

Given the statement above, that students will attempt to solve problems by 

reducing a given problem to a set of Group A tasks, it would seem highly desirable 

that assessment tasks should be set so that: 

(i) such a reduction is only a relatively minor part of a larger problem and that a 

demonstration of Group B and/or Group C skills is needed for a complete 

solution. 

(ii) the demonstration of conversion skills within the advancement of a problem 

solution is recognised and rewarded sufficiently to motivate students and 

teachers to reflect on the need to develop such a skill. 

(iii) the reflection phase of the problem solving process described earlier, 
including the ability to generalise, has more significance. 

Such a move would require careful judgement, particularly in public examinations. 

The main difficulty would be to ensure that the assessment considers not just that 

the mathematical topics studied are covered, but also an appropriate spread of 

skills ability is assessed. There must be sufficient spread of Group A, B and C 
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skills, including visualisation skills, to cnsurc that gifted studcnts can continuc to 

score well and yet weaker students have adequate opportunity to achieve at least a 

pass grade. 

lt may well be that written, timed examinations are not the most suitable form for 

such an assessment and that more prominence should be given to course work to 

assess the Group B and C skills. A number of A-level Examining Boards have 

adopted this approach in their assessment of Statistics. 

6.6.4. The Role of Computer Technology 

Perhaps the one single influence that could change the current situation is the 

desire by many, particularly in government, to utilise computer technology 

effectively in schools. In Chapter 5, it was the use of software, designed and 

implemented with a particular teaching and learning function in mind, that had the 

most impact on students' motivation and desire to learn, and to take responsibility 

for their own learning. 

Graphic calculators, and more generally computer algebra systems (CAS), are 

prime examples of a technology where both the symbolic and visual 

representational forms are readily available to a student. The use of software that 

encourages the conversion process to arise naturally in the learner's development 

of mathematical expertise should be encouraged. The difficulty to overcome would 

seem to be that a CAS can generally do many of the Group A tasks well and is seen 

as a threat by those students whose expertise is limited to performing such tasks 

themselves, usually in pen-and-paper mode. Using a CAS when attempting Group 

B and C tasks usually means that the user must have these skills developed, as a 

CAS by itself does not have much `intelligence'. Hence we have a situation where 

the technology has the potential to widen the skills gap between the 'more able' 

and `less able' student. 
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6.7. Other Opportunities for Visual Skills 

Development 

The above has concentrated on learning, teaching and assessment given the 

curriculum as it currently stands. Opportunities for more practice of transfer from 

one mathematical representation to another within mathematics syllabuses arc 

discussed here. 

An obvious strategy is to include more aspects of geometry -a subject that has 

seen a decline over recent decades. However, mathematics educators are now 

supporting moves to reverse this trend. Geometry is clearly visual and requires a 

clear understanding of the pictorial information needed in a diagram and its links 

to mathematical knowledge. For example, given a diagram involving circles, the 

links to knowledge such as properties of radii, tangents, areas, etc. should be made 

immediately and a strategy devised as to what information will be most useful for a 

given problem. Geometry problems also offer opportunities for a solution without 

moving to the symbolic form, for example by mentally or physically rearranging 

parts of the given diagram to transform shapes, or when considering similarity or 

perspective. Of course, geometry problems still allow for symbol ic/numcric 

manipulations and the notions of proof. 

Another topic that can enrich the development of mathematical skills and 

expertise, by requiring adaptability in the different forms of representation, is that 

of mathematical modelling. If the typical `template' for the modelling process is 

examined (see Fig. 6.03 below, from the Open University Course MST204 

Mathematical Models and Methods), it can be seen how visualisation skills can be 

incorporated in all of the aspects. The real world application can start with visual 

as well as numeric data, and can drive a requirement that the analysis and 

outcomes be similarly described in a visual as well as a symbolic form. The 

mathematical solution part might be purely symbolic, or a mixture of symbolic and 
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visual in a manncr similar to that described above. Of Course. the modelling 

application can only really draw upon a student's expected niathe milt ical subject 

kno v ledge and the suitability for a given student cohort would need to he Carefully 

thought through. There is the possibility that sconmrthing of this type, in liniitrýf 

form, will feature in the A/S-level 'Use of' Mathematics' proposed by the AQA 

examining hoard for 2(X)3 start. It is interesting to note however that this . vvIlahus 
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tor those not pursilllg a t, uII A-level in mathrlilatk's. 
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I. Fornxilate the 2. Aomlllpt kill-, it) Formulate the 
'real tiorhl' he Wade in the nnthrnrruial 
prnhIcm nx)deI model 

6. Validate the 5. Interpret the 3. S0I%r the 
model Solution ntithentitical 

rnmhlem 

7. Report on 
findings (explain, 

predict.... ) 

Nig. 6.03. 

It is generally recognised that course , ork is a more appropriate townl Of 

assessment here than written. timed examinations and that aspects of asseý. ment 

such as oral presentations can play a powerful role in developing , tudents' `kill.. 

Educators seeking to develop a wider range of mathematical skills in more audent` 

may need to reflect on the inclusion of mathematical topics that more evidently 

encourage and allow for the development of such learning skills, perhaps at the 

same time reviewing (with the aim of reducing) the breadth of topics now 

prevalent. particularly on A-level syllabuses. Such a reduction could he achieved 
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by taking into account those elements of mathematical knowledge that can easily 

be regenerated and assimilated by students using computer technology effectively. 

6.8. Summary 

Having experienced instructivism, many students choose to apply algorithmic 

approaches to solve problems, even when a visual approach would be more 

appropriate, and struggle to form appropriate strategies for problem solving as they 

do not possess the necessary skills base. A constructivist visual approach, however, 

requires students to switch between representations, and it is this conversion 

process that helps with the advancement of a solution. 

The proposed cognitive framework shows how a student's expertise can be 

enhanced in an iterative manner via the constructivist conversion process. The 

reformulated expertise has stronger conceptual links between subject knowledge 

and mental images, but more significantly has a more developed skills base. 

A discussion of the issues relating to learning, teaching and assessment has shown 

that the transition to a more constructivist visual approach is not straightforward. 

The integration of technology into mathematics classrooms is a positive step, as it 

encourages the conversion process, however usage often requires the application of 

higher order skills that may well not be developed in students. 

Alternative topics, such as geometry and mathematical modelling, can support the 

transfer between representations, and can encourage students to develop higher 

order skills, as it is not easy for students to convert such tasks into ones that require 

the demonstration for Group A skills only. 
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CHAPTER 7 

Future Developments 

Mathematics is the only infinite human activity. It is conceivable 

that humanity could eventually learn ever thing in physics or 

biology. But humanity certainly won't ever be able to find out 

everything in mathematics, because the subject is infinite. Numbers 

themselves are infinite. 

PAUL ERDOS 
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7.1. Introduction 

The foundations were laid in Chapters 1 and 2 by setting the scene regarding 

current thinking within mathematics education, highlighting the main areas of 

concern for both current and future research issues, and reviewing the effectiveness 

of previous work. Chapter 3 considered alternative methodologies for the learning 

of mathematics, and made a case for constructivism by discussing the benefits to 

students of adopting this approach. Chapter 4 considered the types of skills that 

students possess and those that mathematics educators consider more desirable, i. c. 

higher order skills such as the ability to conjecture and evaluate, not just lower 

order skills such as the ability to follow procedures. These first four chapters 

included the necessary background for the learning case-study described in Chapter 

5, which demonstrated that a constructivist approach to learning mathematics 

which employs computer-based visualisation can result in students developing an 

enhanced skills set. These positive findings were then formalised into a generalised 

learning framework proposed in Chapter 6. 

This final chapter considers future research that could be undertaken to extend the 

work of this thesis, and is split into two main sections. First, consideration is given 

to further developments concerning the case-study, and secondly, possible future 

research considerations for mathematics education in general are discussed as a 

direct result of the findings of this thesis. 

7.2. Further Developments Concerning the Case- 

Study 

This section considers further developments as a direct result of the casc-study in 

Chapter 5. 
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Such developments include software enhancements, taking into account student 

feedback, and improvements concerning the execution of the case-study. 

7.2.1. Software Enhancements 

Ideas are suggested on how to improve the learning and teaching properties of the 

software, supported by comments from students, and a justification of current 

features is provided where necessary as a response to student feedback. 

Student comment: "Maybe it could be made so that you are able to choose 

your skill level and then be able to proceed to harder 

questions when you feel ready to. " 

Presumably students feel that 'harder questions' are ones that are not recognisable 

(in terms of using a template for solution), and thus require the application of 

higher order skills. The above suggestion is a good one, however perhaps a better 

solution for future software would be to have a built-in level checker, i. e. 

diagnostic test, which only lets users proceed when they have reached mastery of 

that particular concept, as students may feel they are ready to continue when 

actually they are not. Students should only be allowed to move on when they have 

demo, istrated that they have mastered the stage in question. This will require 

careful testing via questions that are novel to students. 

Due to differences in ability, students clearly wanted different things from the 

software. A number of students wanted questions relating to more basic graphs to 

start with, but at the same time, a number wanted questions on more difficult 

graphs. If the software were to be used as part of students' school study, then there 

would need to be a wider variety of graphs in order to cater for diverse needs, and 

to provide additional practice. This difference in needs and desires will always 

exist with differing abilities. This is where the diagnostic test, as suggested above, 
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comes to the fore, in order to start students at their appropriate levels. In this 

manner, there could be many more easier and harder questions (in terms of 

complexity of function) to cater for everybody, including perhaps a revision of, or 

introduction to, basic functions. 

The software was designed primarily to be used in a case-study to assess the extent 

to which students developed visualisation skills, particularly the conversion from 

pictorial to symbolic representations, as well as other higher order skills. If it were 

to be integrated into the A-level curriculum, then some sort of diagnostic testing 

would certainly be appropriate in order to cater for diverse abilities by determining 

appropriate starting points for student explorations. 

The following comments have been grouped together as they all refer to the nature 

of the software in the same vein (many students expressed these views): 

Student comment: "The summary sheet may have been helpful at the start, 

before using the software. " 

"More hints should be given. " 

"It needs a lot more explanation about how the different 

numbers change the graph, etc. (instead of it being a trial 

and error method). " 

"More explanation of how to go about writing the equations 

rather than just playing around with numbers, i. e. what 

happens when you put certain numbers in. " 

"More explanation of what changing the numbers actually 

does in a general sense whilst using the package. " 

"Explain and show examples of different equations before 

questions. " 

"Some information on how altering the various changing 

factors can affect the shape of the graph. " 

"Maybe a bit more explanation in the 'hint' section. " 
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"A quick run through the way to work out the answers. " 

"More Instructions and help. " 

These comments give us some insight into how the students prefer to study, i. e. to 

be given the facts and instructions, and then 'turn the handle'. Many students 

perceive a useful 'hint' as one that leads to the answer, whereas from a 

constructivist perspective, the teacher perceives a useful `hint' as one that aids the 

exploration process, thus leading to enhanced learning. As suggested in Chapter 6, 

many of the students prefer to be explicitly told the procedure and follow it to the 

letter, rather than explore in order to discover mathematical ideas. This reflects the 

way they have been taught at school, so they have come to accept it as the 

preferred method. This very prescriptive approach clearly would have undermined 

the constructivist philosophy that the case-study supported, and therefore the above 

suggestions regarding more instruction would not be incorporated into future 

designs. The whole idea of the case-study was to change the emphasis entirely by 

encouraging students to learn via exploration. It is this constructivist exploration 

that is so productive in the whole learning process; it is a good example of 

incidental learning. After this exploration stage came the reflection process, where 

the ideas could be brought together, reinforced, and formalised with the aid of the 

summary sheet. 

Student comment: "More detailed instructions on how to use the software. " 

The instructions section was purposely kept fairly brief to instil an exploratory 

mode in the students from the outset. Those who were unsure thus have to ask, 

thereby initiating the interaction process. This is a positive consequence, as the 

learning process clearly benefits from social interaction (as discussed in Chapter 

3). On this basis, no additions to the instructions would therefore be made - it 

would merely delay the building of a relationship between student and teacher. 

Student comment: "More explanations of what the basic graphs looked like, " 
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It is difficult to understand this comment. All the students had to do was plot the 

basic graphs to see what they looked like. However, a possible explanation is that 

students were used to an instructivist style, and therefore did not even know where 

to begin, as they had not been told what to do explicitly. They did not equate the 

plotting of the basic graphs with the first stage of the exploratory process. Clearly 

no further explanations would be offered in future software, but it would be useful 

to explain more fully the way in which students would be expected to explore from 

the outset, and that they would be supported fully in their explorations. The fact 

that some students had not even met the basic graphs makes the superior 

visualisation scores of the experimental group, compared with those of the control 

group, even more impressive (see Chapter 5). 

Student comment: "If the student has no idea, even with hints, show the 

answer so that the student can take it `on board' for the 

next question. " 

The event of this happening is very rare, as the students are encouraged to converse 

with the tutor to initiate the strategic questioning process, and will therefore 

hopefully arrive at the answer via this constructivist help. A few students 

commented that a summary after each section/question, not just at the end, in order 

to take the concepts ̀ on board' for the next section/question, would be useful. This 

is possibly due to their desire to use this newly acquired information as a template 

for the remaining exercises. Students could then merely routinely apply the 

appropriate rule instead of the more desirable learning process of encountering 

perturbations, which when resolved lead to an accommodation into reformulated 

conceptual structures. It is therefore not a good idea to provide summaries at such 

regular intervals, but instead it would be useful in future designs to provide them 

after sufficient constructivist activity has taken place (perhaps after each family of 

functions, rather than right at the end), as a means of formalising their 

explorations. 
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Student comment: "It would have been helpful to have more numbers on the 

axes. " 

This lack of detail was an intentional design feature, so that students could 

concentrate on the `big picture', i. e. view the whole graph as a conceptual entity 

(see Section 2.4.3.6 of Chapter 2) instead of focusing too much on detail, for 

example the coordinates of certain points. The above student comment illustrates a 

desire for explicit information to be provided. It would be preferable for students to 

make decisions as to the relevance of given information. Future software would 

adopt the same minimalist style, and students would be encouraged to ask for 

detailed information that they think is necessary and relevant, rather than the 

software or the teacher providing such information. 

Student comment: "I feel that the harder examples towards the end were a 
little too hard. " 

Students have a tendency to associate ̀ unfamiliar' with `hard'. As discussed in 

Chapters 5 and 6, if students have not been shown explicitly how to do something, 

then they struggle to apply their existing knowledge to these unfamiliar scenarios. 

The control group would appear to struggle more in their instructivist 

environments. This lack of necessary skills to tackle such problems can be a source 

of decreased motivation. The constructivist approach (adopted by the experimental 

group) lends itself to this type of scenario, i. e. building on existing knowledge and 

being more disposed to apply newly acquired knowledge to other situations. The 

understanding that has been built up is therefore both conceptual and relational, 

and success will lead to more success. In future designs, diagnostic testing, as 

described earlier, would provide the students who have not had the chance to build 

up higher order skills (due to instructivism) with more remedial examples of an 

appropriate level in order to equip them with the necessary skills to tackle the 

`harder' examples towards the end. 
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Student comment: "A mixture of computer and traditional methods would be 
ideal. " 

This student has `hit the nail on the head' with the above comment. This thesis 

wholly supports the idea that the computer should complement traditional 

approaches rather than act as a replacement. Mathematical technique is important, 

and the computer should not be used as a black-box if a level of procedural 

mastery has not already been achieved. The problem with more traditional 

methods, normally instructivist in nature, is that they concentrate mainly on tile 

development of Group A skills, resulting in students always having a desire to 

transform problems into those that require the demonstration of Group A skills (as 

per the discussion in Chapter 6). The power of appropriate software is that it 

facilitates a constructivist approach for the development of higher order skills, so 

that when traditional approaches deal with subject knowledge and procedural 

mastery, students will know when and how to apply such techniques in problem 

solving. Future case-studies will continue with the philosophy that a computer- 

based approach is by no means a replacement for traditional methods, but one 

which offers the opportunity to develop higher order skills which will assist in the 

understanding and application of techniques developed via more instructivist 

approaches. 

Student comment: "The package could have built-in assessment. " 

It is suggested here that the learning and assessment could be in the same compact 

package, where instant feedback on achievements can be received. Future software 

could incorporate such assessment at the start and at the end of software usage, as a 

motivating tactic, in order to help the students feel confident that they have learnt 

something. It is an instant way of checking whether or not they have actually 

understood, i. e. if the software has done what it set out to do. Monitoring of such 

assessment will also ensure intervention with the student, thus helping to establish 

the relationship between student and teacher. 
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Student comment: "Points should be awarded for euch attempt and bonus 

points should be given for getting the question right first 

time. You should receive a breakdown of your scores at the 

end. " 

The use of instant assessment in this manner, to motivate and challenge students, is 

very interesting. It might make them think a little harder and conjecture before 

making an attempt, i. e. the application of higher order skills, rather than trying 

anything and seeing what happens. This would be a useful addition to future 

software. The use of randomisation to ensure that questions are different cach time 

a student uses the software could enable students to have another attempt and try to 

beat their score. This could promote healthy competition. On the other side of the 

coin, however, it could have a negative effect on poorer students who get very low 

scores. Therefore there would need to be sufficient questions in the test that assess 

Group A skills in order for the poorer students to pass. Additionally, if monitoring 

of results took place, as described above, then this intervention would provide the 

necessary support. 

Student comment: "The graphs' axes could have changed automatically. " 

This comment, it is assumed, refers to scale. It is useful for students to experiment 

with scale, as the concept of scale is important. Altering the `look' of a graph by 

changing the scale is clearly not the same as altering the `look' by changing the 

functional notation (as per the discussion in Section 5.3.3.1 of Chapter 5). This is 

something the students can explore to good effect. Additionally, students could 

plot a graph that is outside the `plot area', so some adjustment of scale is necessary 

in order to proceed. This is clearly a useful tool that provides students with the 

opportunity to clarify the difference between changing the scale and changing the 

function composition, which would certainly be incorporated into any future 

designs. 
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Student comment: "If your graph was very wrong more hints could be given. " 

In future software, something needs to be in place for those who arc not 

progressing at all. This could be achieved by offering additional, easier examples 

to start with, as suggested earlier. It was hoped, however, that students would ask 

the tutor and strategic questioning could be put into operation. Some students arc 

reluctant to ask for help, perhaps because they are just shy, or perhaps for fear of 

embarrassment. This hurdle needs to be overcome so that tutor, computer and 

student can work together in harmony. The tutor must stress the importance of 

asking for help, as this way the students will get the most out of the session. In this 

manner, they can take advantage of the usefulness of the software and benefit from 

the knowledge and experience of the tutor. In future case-studies, the tutor must 

explain to the students the rationale for the Socratic dialogue, stress that it is 

actually useful to make mistakes as their remediation will lead to a deeper 

understanding, and stress that they will be fully supported in their explorations. 

This will help to change the attitudes of students so that they feel entirely 

comfortable interacting with the tutor, which is probably more difficult to achieve 

in schools than in universities. The relationship between students and tutor is 

vitally important so that this process can run smoothly. 

Student comment: "Why not give the program the ability to retain the old 

graph, maybe in a different colour, to show exactly what 

has changed, and if the graphs got cluttered by lines, you 

could have a `graph clear button'. This would make even 

more obvious the effect of specific function changes. " 

This is an excellent idea, which would significantly improve the software. Better 

still, the given graph could be plotted, and then the students' attempts could be 

overlaid in the same window. The incorporation of the two smaller plot windows 

into one larger, more useful one is a better format for purposes of comparison. This 

is something that is possible in CAS such as DERIVE. Future designs would 
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combine the important features of the software with the plotting capabilities of 

DERIVE. 

The following comments refer to the nature of the hints: 

Student comment: "The hints provided are at times too leading und too 

specific, and perhaps a more graduated hint system, 

gradually leading towards the answer, would be better. " 

"A more detailed 'hint' section, which gradually gives 

bigger hints the more times you use it, would be better. " 

These comments were not common, as more students preferred even more hints 

and explanations than were actually given. This point could be incorporated into 

future software by offering very little advice at first (merely encouragement to 

explore), then a little more direction each time, until finally providing the current 

hints. This would perhaps further encourage exploration by strategically 'nudging' 

them little by little in the right direction in the same manner that the tutor would. 

Ideally, the students could explore with the smallest amount of help possible in 

order to succeed. Care would need to be taken, however, not to make the process 

too prescriptive, which is totally against the constructivist philosophy. 

Student comment: "Something that told me if I was getting closer or further 

away from the answer. " 

This could be a positive addition to future software for motivational purposes. This 

should, however, be fairly obvious depending on what the graph looks like 

compared with the given graph. In order to determine how 'close' a student is to 

the correct function would require artificial intelligence, which would be an 

interesting area for future research. 
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Positive feedback included students' comments such as, "Great package", "Gcxxl 

and informative", and "It was extremely good". 

As well as the ideas on how to improve the software as a result of student 
feedback, the following ideas have also emerged as a result of carrying out the 

case-study: 

It would be useful if the user had the ability to obtain the co-ordinates of a point by 

clicking on it with the mouse. The user could then click on a part of the graph that 

needed further scrutiny, and zoom in to examine it more closely. The user could 

click on screen to determine the y-intercept, roots, etc., and then derive the 

equation from the key features of the graph. The user could directly modify a graph 

by dragging it up, down, left, right, squashing it, stretching it, or inverting it with 

the mouse, and observe the resultant changing elements within the symbolic form. 

It would also be interesting to have the ability to draw a graph, and ask the 

computer to provide the symbolic expression that it represents to assist in the 

development of conversion skills from the pictorial to the symbolic (not merely 

from the symbolic to the pictorial, as with currently available graph plotting 

software). This perhaps could be possible further into the future of graphing 

technology. 

Special features of the graph, for example the vertex of a parabola, or y-intcrccpt, 

could be highlighted in order to track transformations. This could, however, detract 

from students focusing on the graph as a conceptual entity. 

Perhaps of most interest would be to understand how students tackle certain 

problems in terms of their thought processes. This could be achieved, to a limited 

extent, by recording button clicks (or keystrokes) to try to determine their cognitive 

development as they progress through a problem. Research on keystroke capture 

work with graphic calculators is currently being carried out in order to gain insight 

into student learning styles (Berry, 2002; Smith and Berry. 2002), and this could be 
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extended to incorporate the constructivist use of visualisation, in particular the 

transfer from pictorial to symbolic forms. The types of questions about student 

learning that this could help to answer are: 

" Which graphs do they plot, and in which order do they plot them? 

" Do they use the hints? and if so, at what stage? 

" How many attempts do they have? 

" Do they attempt to come up with the correct expression first time? 

" Do they try to gradually build up the expression starting with a basic graph? 

" Do they learn from their mistakes? 

The software would perhaps be more enticing with the addition of aesthetic 

multimedia enhancements, such as touchscreen capability and audio features. This 

could in turn improve motivation. The use of audio capability, such as sound 

effects or music, however, would be extremely annoying if it were used in a 

laboratory situation - it would only be useful for an individual using it alone. 

Soundbites, in the form of wave files, were taken out of the code for this reason. 

As mentioned earlier, the package was designed as a vehicle for an experiment and 

was not intended to be a polished piece of marketable software. Minor `glitches' 

could be ironed out if released for commercial use. A few students complained 

about the notation for the expressions being unfamiliar, for example the use of `*' 

for multiplication, `/' for division, `pi' for 2r, etc., and it would have been slightly 

more user-friendly, for example, if the user could have used the 'enter' key as an 

alternative to the `plot' button. They were all minor issues, however, and certainly 

did not detract from the usefulness of the package in any way. 
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7.2.2. Issues Concerning the Experimental Design 

The case-study produced some positive and practical findings. However, 

experiments abound with potential biases, and, as with many practical 

experiments, there are issues associated with the experimental design. These 

problems are addressed specifically in this section. 

There are additional factors that need to be considered concerning the analysis of 

the data: 

1. For the results of the experimental group, there are two `human factor' 

effects, and each is confounded with the other. 

" The first is that for a class of pupils there is the 'novelty' effect of being 

involved in a `non-routine' activity which thus attracts their attention more than 

`routine' work might do (but this is one of the specific attractions of this type of 

approach). This could result in the experimental group achieving inflated visual 

scores in comparison with the control group. 

. The second is referred to as the `Hawthorne' effect after the name of the 

Western Electric Company's Chicago factory where it was first demonstrated. It 

is that a group who feel that they are being treated specially as participants in 

the evaluation of some new activity do their very best to please. The Hawthorne 

investigation (Mayo, 1933) was conducted over a period of five years (1927- 

1932), and it considered the importance of groups in affecting the behaviour of 

individuals at work. A series of experiments was carried out to determine the 

effect of illumination on production. The control groups worked under constant 

illumination whereas illumination in the experimental groups was varied 

(increased and decreased). The result was that production increased not only in 

the test groups, but also, at comparable rates, in the control groups; this held 

true not only when illumination was increased, but also when it was decreased. 
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It became clear that the increase in production was not caused by the changes in 

illumination, but apparently by the increased attention the workers received 

from management. This unplanned effect on the 'untreated' control group is 

called the `Hawthorne' effect. In the case-study in Chapter 5, the experimental 

group students feel that they are being treated specially as participants in the 

evaluation of the software, and thus their performance could increase (leading to 

improved visual scores). 

2. The control group is one year ahead of the experimental group. 

" As a consequence of ongoing practice, the control group may be expected to 

perform better than the experimental group on the procedural questions. On the 

other hand, if visualisation of the type required for the exercises had not been 

practised for twelve months, mental rust may have set in and thus the control 

group may be expected to perform worse than the experimental group on the 

visual questions. Both of these factors would contribute to a decrease in the 

`difference' (procedural - visual) scores for the experimental group as compared 

with the control group, irrespective of the mode of presentation of the 

visualisation material. 

. It would be of interest to revisit the experimental group after a lapse of time 

(ideally twelve months, although this of course may not be practicable), present 

them with the same test, and then compare these second batch scores with those 

obtained by the control group twelve months previously. For further discussion, 

see Section 7.2.5 later, which considers retention level. 

7.2.3. Experimental Techniques 

In order to gain a more complete understanding of the cognitive processes involved 

in learning functions and graphs via the software described in Chapter 5, careful 
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analysis of both student behaviour and the process of developing understanding arc 

required (this is likely to vary from student to student due to knowledge structures 

being built up from their own personal experiential world, as per the discussions in 

Chapter 3). The practical study of the development of knowledge structures is 

sparse in the literature. It would be of great theoretical and practical interest to 

analyse behaviours of students as they interpret visual information and convert to 

symbolic form such as when studying graphs in relation to their respective 

algebraic forms, how students develop understanding over time, and what type of 

information they call upon in order to make mathematics meaningful to them. This 

is certainly an avenue of research that could help considerably in the design of 

computer-based learning materials to be used in a constructivist way. 

Although some interesting feedback has been obtained, the information-seeking 

process could perhaps be improved with the introduction of video. This could be 

used to explore the effectiveness of the Socratic method of strategic questioning, to 

record students' questions, and tutors' answers, and to observe the resulting 

strategy by students. The questions could be tackled in groups, and the discussions 

recorded on video tape (in a non-threatening environment). This technique would 

be useful in helping to establish how students attempt to solve mathematics 

questions, and this could lead to an appreciation of the mental operations that are 

involved whilst tackling such questions. It would serve to confirm, or otherwise, 

the problem solving processes discussed in Chapter 6, which considered how 

students build and select solution strategies. This would remove individuality to a 

certain extent, but it would give a clearer picture of the students' thinking. It would 

provide insight into how students think during mathematical exploration. 

Alternatively, students' oral responses to the use of the interactive software could 

be obtained. This would enable the students to informally elaborate on their mental 

operations, which would perhaps be more informative than a written statement. 
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7.2.4. Alternative Topics for Treatment 

The topic of `graphs of functions' is just one example of many potential packages 

that could assist in the nurturing of visualisation skills. Consideration is given here 

to additional and more advanced topics that could be taught in a similar fashion, 

together with an explanation as to how and why they were chosen. 

A natural progression from the work involving two-dimensional graphs is to 

consider an educational package involving three-dimensional graphs. Ilere, the 

user can be shown a three-dimensional graph and, as before, asked to determine the 

correct mathematical expression for the function via an investigative approach. 

The plotting of three-dimensional graphs is a fairly straightforward routine for 

packages such as DERIVE and MATLAB, and even some graphics calculators. 

Such a study could help to answer questions such as: 

9 Do the outcomes of the case-study concerned with two-dimensional graphs 

carry over to three-dimensional work? 

9 Is the conversion process from the pictorial to the symbolic more difficult, or 

just different, in three dimensions? 

Another topic for consideration is that of transformation matrices. Three- 

dimensional shapes can be shown to the user and the user will be able to alter a 

shape's orientation via the use of transformation matrices. In an exploratory 

manner, the user will be able to change various elements within the matrices and 

observe the effect of these changes on the image. Starting with the image, students 

could conjecture the symbolic form of the rotation matrix, reflection matrix, etc. 

This topic is highly `visual', and therefore attractive computer generated 

visualisations are ideal for such an approach to learning. 
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7.2.5. Measurement of Retention Level 

Concern cannot simply be given to how quickly students grasp) a particular 

mathematical concept. How long they are able to retain such information is 

particularly relevant to mathematical development. In a study concerned with the 

effects of technology on student learning (Baker and Gloster, 1994), not only did 

college students using technology learn faster, six months after completing their 

studies they tested better on the subject than their peers who had been taught in 

traditional settings. 

The case-study has illustrated that a constructivist visual approach is preferable for 

the acquisition of knowledge and skills. It is conjectured that a constructivist 

approach to learning is also preferable for increasing retention level. For example, 

it is the belief that a student is much more likely to remember the picture of a 

function, in the form of a graph, than its symbolic notation. In a similar manner to 

Baker and Gloster, tests need to be carried out on the knowledge and skills 

retention of students learning via such a constructivist approach. As mentioned 

earlier under issues concerning the experimental design, this would be possible by 

re-testing the experimental group after a period of twelve months and then 

comparing these scores with those obtained by the control group twelve months 

previously. 

It is also conjectured that a constructivist visual approach is beneficial to all age 

ranges, however the above scenario would still only provide information specific 

to the chosen age range of students (16-19 years). Any results regarding the 

suitability of teaching approaches, in terms of the development and retention of 

knowledge and skills, would need to be compared with similar studies at primary, 

secondary and tertiary levels in order to draw generic conclusions. 
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7.2.6. Summary of Issues Concerning a Constructivist 

Approach 

As a result of the case-study, the following important questions have surfaced that 

require further research: 

" Can any generic conclusions be derived? 

> As mentioned above, are the outcomes limited to certain age groups? 

For example, is an instructivist approach necessary before a 

constructivist approach takes over? 

> Are the outcomes limited to particular subject domains? For example, 

will a constructivist approach to teaching develop better ideas of formal 

proof? (Alcock and Simpson, 2001). 

> Does a constructivist approach assist in the mathematical development 

of all students of all abilities? 

Do traditional assessment methods favour an instructivist approach and hence 

limit constructivist activities? 

> Which methods of assessment effectively document genuine learning? 

> Should technology be allowed to be used in examinations, when 

appropriate, to measure abilities in conceptual understanding? 

How are psychological and motivational factors taken into account when using 

a constructivist approach? 

¢ Is learning via a constructivist approach more `fun' and does it lead to 

increased motivation for all students? 

Consideration also needs to be given to the effective switching between 

knowledge/subject domains. Once skills have been built up, they need to be 

transferable between domains. It is conjectured here that the software described in 
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Chapter 5 facilitates domain-general problem solving, but further research on the 

application of students' skills in other mathematical topics is required to 

substantiate this claim. 

7.3. More General Future Mathematics Education 

Research 

Building on the issues discussed in Chapter 6, consideration is given to further 

research into learning styles of students, mental imagery, the integration of 

innovative approaches into the school curriculum in terms of teaching, learning 

and assessment, and the future of mathematics education in relation to developing 

computer technologies. 

7.3.1. Holistic and Serialistic Learning Styles 

One of the outcomes of the case-study in Chapter 5 was that the control group and 

the experimental group demonstrated a different skills set after experiencing 

different teaching approaches, and hence different learning styles. Chapter 6 

highlighted conflicts between the types of skills that students require to solve 

problems, and those that they actually possess following instructivist methods. 

Moreover, Chapter 6 described how students, as a result of their learning style, try 

to convert problems that require the application of Group C skills into ones in 

which Group A skills can be employed via a template. 

Constructivism, including the use of computers in learning mathematics, has been 

discussed, together with the associated benefits, but so far different student 

learning styles and the effect that these might have on the teaching approach 

adopted have not been fully considered. 
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In order to optimise learning effectiveness, students' preferred learning styles 

should be taken into account. For example, in Higher Education there could be 

implications for teaching mathematics to mathematics students compared to 

`service' students, e. g. engineers, sports scientists, etc. Students who act 
holistically, having experienced a constructivist approach, tend to adopt a global 

approach to learning, concentrating first on building a broad conceptual overview 

into which detail can subsequently be fitted (Ford, 1995). Typically they address 

several aspects of the learning matter at the same time, and make use of a rich 

variety of stimuli. Ford explains that serialists, having experienced an instructivist 

approach, tend to use a predominantly local learning approach, concentrating on 

one thing at a time. They tend to relate new concepts to previously learnt ones 

using simple logical links, building up their understanding on a relatively narrow 

front. They proceed on the basis of thoroughly mastering one component of the 

subject matter before proceeding to the next, in a very linear fashion. Relative to 

the holistic approach, the broad conceptual overview of the subject matter thus 

emerges later in the learning process, if at all. 

These learning styles are, however, relatively difficult to measure in an individual, 

which compounds the complexity of the choice of approach. The test questions 

used in the case-study were useful for assessing students' skills, but were rather 

limited in terms of determining students' preferred learning styles as they had 

multiple-choice answers. Future research should seek responses that illustrate how 

students actually tackle the questions, in terms of solution strategy and application 

of a range of skills. 

Educators must strive to develop educational materials that are appropriate for all 

types of learners, not just those well suited to the constructivist approach. 

Consideration must be given to which teaching and learning strategies are 

appropriate in the light of individual learning style preferences. There is the 

argument, therefore, that we should perhaps teach holists in a constructivist 

manner, and serialists in an instructivist manner. It is more likely, however, that 
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learning styles will adapt to the chosen teaching style. In this manner, students 

would unfortunately be forced to learn in a particular way, regardless of their 

preferred learning style. It is important, therefore, that a range of teaching and 

learning materials should be made available to cater for all learning styles. 

Students prior to a case-study could fill out a learning styles questionnaire, and on 

the basis of responses they could be split into two groups, holists and serialists. It 

could then be seen whether or not constructivist and instructivist teaching 

approaches do in fact mould students' learning styles accordingly. Additionally, 

comparisons could be made between results from serialists experiencing an 

instructivist approach and holists experiencing a constructivist approach to sec if a 

certain approach is more appropriate for a certain favoured learning style. 

7.3.2. Mental Imagery 

The interlay between pictorial and symbolic forms, i. e. conversion, and the 

problems that students have in switching between these representations during 

problem solving, i. e. advancement, have been discussed in Chapter 6. The 

constructivist use of visualisation directly influences the mental images created by 

learners, and in turn conceptualisation. Knowing more about the nature of 

students' mental images would help educators design software that uses 

visualisation as a means of enhancing them. 

There seems very little information in the literature on how to actually evaluate a 

person's set of mental images, how they are used, whether they are `correct', etc. 

Mental images are different from person to person, and are clearly extremely 

difficult to assess due to their personalised nature. Such fundamental differences in 

image making could have important implications in terms of teaching and learning, 

yet attempts to measure this complex factor in terms of educational significance 

have been relatively unsuccessful (Thompson, 1990), and there have been no 
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significant additions to the literature since this report. Increased awareness of the 

issue of mental imagery could lead to more flexible teaching methods which take 

greater account of a student's individual style of thought and its interaction with 

the nature of the learning task. This appears a rather daunting avenue to explore. 

but one which would be of significant interest in terms of designing educational 

materials based on visualisation. 

Mental imagery is implicitly linked to visualisation ability. It would be interesting 

to study the process of how visualisation ability is utilised to form `correct' mental 

images, and to see how a learner progresses from a novice state to an expert state 

in terms of their mental images. As indicated in Chapter 2, there has been some 

work reported in the literature (Presmeg and Bergsten, 1995) considering students' 

preferences for visual or non-visual methods, but a number of questions remain 

unanswered, such as: 

" Which students prefer visual techniques, if any? 

" Can students visualise, but just choose not to? 

" If so, why do they choose not to? 

" Or can they just not visualise? 

It would be of value to see whether or not a student's `artistic' ability is influential 

in favouring a visual approach to mathematics. A controlled trial could be set up in 

which students are segregated on the basis of whether or not they have good 

qualifications in Art or related subjects. Results in visual exercises, together with 

how the students chose to tackle the problems, would illustrate whether or not 

there is a significant link. Visualisation ability could also simply be linked to 

personality, which would clearly make any relationship more difficult to assess. 

In Section 3.3 of Chapter 3, problems with students having different rates of 

knowledge construction were considered from a teaching perspective. It is 

conjectured here that visualisation can play an important role in providing remedial 
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action for the poorer students to enhance their powers of mental imagery, which in 

turn will speed up the cognitive structuring process. 

7.3.3. Integration into the School Curriculum 

There are difficulties involved with integrating a more constructivist, visual 

approach to mathematics into the school curriculum, as discussed in Chapter 6. 

Curricular implications of such an approach in terms of teaching, learning and 

assessment are discussed further. 

7.3.3.1. Teaching and Learning Issues 

It was reported a decade ago that the wide availability of useful mathematical 

software, together with changes in approaches to teaching and learning, has 

important curricular implications at A-level (Philipp et at., 1993). This is still the 

case today, as little has been done in terms of updating the A-level curriculum to 

encompass change in technology. Technology and more constructivist approaches 

need to play a more prominent role and shape the future of mathematics teaching. 

They reduce the pre-requisite of extensively developed manipulative skills, so that 

students can spend more time actually solving problems and developing more 

desirable higher order skills. 

The introduction of computers into the mathematics classroom changes the 

distribution of responsibilities for teaching and learning (Squires and McDougall, 

1996). Learning environments need to be encouraged in which students assume 

more responsibility. Teachers need to become less concerned with control and 

more involved in facilitating student-centred learning. Cooperation between peers 

is often a feature of classrooms in which software is being used, generating more 
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discussion. With such enhanced discussion, students learn from each other. The 

need to be sensitive to peer group learning may lead to changes in the role of the 

teacher, requiring emphasis on reacting to student initiatives rather than planning 

and overseeing a pre-determined teaching plan. The specific effects of student- 

teacher interactions have not been measured in this thesis, and little is known about 

their real impact. It would be interesting to explore the impact of such interactions. 

This could be achieved by offering students different levels of interaction in a 

controlled trial, and observing the effect on student learning. 

The professional development of teachers in their use of technology is obviously 

important as the teachers must feel competent with the technology before using it 

in the classroom. This development should also include some form of peer support 

and review, promoting reflection amongst both teachers and students (Brown, 

1994b). Successful applications of the use of technology in teaching and learning 

may serve to inspire teachers to commit themselves to the change process. 

However, there are possible barriers, such as lack of institutional support and 

commitment of resources, even if teacher attitudes are favourable. 

Research needs to be more proleptic (Kaput, 1993), i. e. anticipate the future. 

Research being planned in the early part of this century will be conducted and 

reported midway through the first decade, and then will have its impact on 

curriculum design in the following two or three years. The actual classroom impact 

will not occur until towards 2010. The total time elapsed is about 8 to 10 years. By 

this time, technology and attitudes towards best teaching practices may well have 

moved on. Educators therefore need to try to anticipate what the future holds in 

terms of technological capability so that in 8 to 10 years time the technology will 

be at the right stage of development. More proleptic research, however, could well 

require expensive technology, institutional support, and imagination, and the 

researchers will need to resist pressures to provide quick `payback'. 
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This situation may well change, however, as technology is rapidly becoming easier 

to integrate. Vast numbers of people find computers part of their daily lives, 

because as computers become more powerful, they become easier to use. Perhaps 

in the future, technological capability will not be a key issue for researchers, as it 

will be an accepted norm. Instead, the major issue will be how to exploit this 

technological capability for the purpose of enhancing both teaching and learning in 

the classroom. 

7.3.3.2. Assessment Issues 

One of the main obstacles blocking increased utilisation of software that supports 

visualisation is the degree to which assessment incorporates the use of technology 

(Philipp et al., 1993). Obviously if a visual approach is used in teaching, then 

assessment will need to respond accordingly. Computer-based visualisation cannot 

be fully employed in the classroom if the assessment does not allow appropriate 

software. 

The employment of technology clearly has important implications for mathematics 

curricula and how they are taught. Given the availability of CAS and powerful 

handheld technology, the key issue now is the art of asking the 'right questions'. 

Comprehension tasks (Houston, 1996) are a positive step, as they require students 

to explain, to justify, and to produce a mathematical argument, rather than merely 

carry out procedures. Any assessment that incorporates the use of technology must 

be appropriate for all ranges of ability. 

Assessment must therefore move with the times. Traditional questions which ask 

students to sketch rational functions, for example, are now trivialised by the 

available technology, and are no longer a valid exercise (Hope, 1994). Curriculum 

topics must reflect the technology available, otherwise they will merely become 

exercises in outdated techniques. 
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Finally, consideration is given to the role of assessment in determining the nature 

of students' cognitive structures. In Section 3.2 of Chapter 3, a discussion was 

provided which explained that the way students build their cognitive structures is 

essentially subjective. A teacher therefore cannot possibly know the make-up of 

individuals' cognitive structures, which is a serious problem in the teaching of 

mathematics due to its hierarchical nature. A possible solution to this is the 

introduction of formative assessment (rather than summative), with the aim of 

gaining insight into students' existing cognitive structures. On the basis of this 

information, individual pre-requisites could be determined for a given topic, thus 

moving towards more individualised teaching and learning. Note that the 

summative assessment at the end of the case-study in Chapter 5 was used as the 

best way to measure an individual's cognitive structure at any one time. 

7.3.4. Application of Outcomes to Developing Computer 

Technologies 

It is difficult to estimate the extent of the effect of developing technologies on 

mathematics education, as there is little general theory in the literature concerning 

the effects of innovative technology on improved learning. Difficulties in 

speculation on the effects of technology, and research employing technology, is 

compounded by the speed with which it advances. Educators face the problem of 

attempting to design something that is constantly changing. This section considers 

various advances in technology and their possible impact on mathematics 

education. 

An exciting progression could be the introduction of virtual reality. As well as 

being widely used in the field of computer games, virtual reality has serious 

applications that far exceed standard visualisation techniques. It is a medium for 

direct experience, as for example in a flight simulator. Virtual reality also offers 
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significant potential as a mathematical tool, and for many it enhances the left-right 

brain connection so vital to understanding (Cochrane, 1996). Inside a virtual world, 

a user could `manually' change the shape of a function's graph, for example, by 

being immersed in two-dimensional or three-dimensional images. This may mean 

that students could gain direct understanding of functions, for example, by viewing 

and manipulating them `hands-on'. The activities that virtual reality can support 

are discussed in terms of the issues outlined in Chapter 6: 

" The direct, dynamic interaction could assist in the conversion process between 

visual and algebraic representations. 

" As a result of enhanced skill in switching between representations, students 

may be less inclined to convert problems into those that merely require Group 

A skills. 

. Students would be `physically' handling the conversion process by being 

immersed in the environment, which could help them to see the linkages more 

clearly. 

New ways of teaching mathematics with the help of multimedia tools need to be 

explored, as children now come from a culture of hi-tech computer games. Putting 

mathematics into that same framework could have a hugely positive effect on the 

speed of the learning process. Future technology will bring with it an increasingly 

visual, interactive and virtual world in which radical changes in the teaching and 

learning of mathematics (and many other subjects) can be explored. 

Finally, there is the consideration of mathematics via the Internet. Working groups 

have discussed the benefits of using the Internet for teaching mathematics 

(Edwards et al., 2000; Butler et al., 2000), and practical examples of web-based 

systems for enhancing mathematics teaching and learning are beginning to emerge 

(Mavrikis and Macciocia, 2002; Oevel et al., 2002). An enormous amount of 
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information is available on the Internet, it is easy to use, and is accessible from just 

about anywhere. The Internet could therefore be used as a resource for 

disseminating software, such as that described in Chapter 5, in order to satisfy the 

growing trend for distance learning. Although this would allow for self-pacing, the 

problem with using the software as a distance learning tool is that the outcomes of 

the case-study are not entirely applicable due to the limited opportunity for peer or 

teacher interaction. Without the facility for integrating software use with the 

Socratic method of strategic questioning (Chapter 3), the software alone would not 

fully support a constructivist approach. There arc clearly implications here for the 

design of web-based materials for 'e-learning' of this nature. Preliminary attempts 

at a constructivist approach to software design on the Internet, which support and 

encourage dialogue, have been reported (Gabbard, 2000; Scott, 2001). From a 

constructivist perspective, the Internet could be used in a classroom situation for 

the exploration of visual information, of which there is a colossal amount. Students 

are often less inhibited in an electronic environment, and arc more likely to interact 

in a group situation, thus developing desirable key skills (Houston, 2001). The use 

of the Internet would allow for the sharing of information and the promotion of 

collaboration. There appears to be little, if any. research reported on collaborative 

working across such a medium in the mathematics classroom. Such activity would 

encourage peer interaction and debate. 

7.4. Summary 

This final chapter has considered future developments in the forni of cnhanccmcnts 

to both the software and the case-study, taking into account student fccdback, and 

possible future research considerations for mathematics education in general. 

Integrating the constructivist use of computer-bascd visualisation into school 

curricula, to aid the development of conceptual and relational understanding, will 

298 



Future Developments 

serve to bridge the gap between what is cxpccted at A-lcvcl and what is expected 

at degree level mathematics. As technology continues to advance, cducators nccd 

to continually re-assess what is important in the curriculum. 

Students are more likely to be successful in mathematics if they have knowledge in 

different contexts, for example symbolic and graphical. It can provide different 

ways of thinking around problems, and can offer alternative solution strategics 

depending on the viewpoint. In this manner, students can check their answers via 

alternative approaches, for example the checking of an algebraic solution by means 

of a graph. Powerful environments link together different representational forms, 

and allow the user to switch between representations. This makes the concepts 

easier to handle, and aids in the acquisition of a more flexible and holistic 

understanding. However, a number of questions still need to be answered: 

" Should all topics be taught this way? 

" Is there an ideal `mix' of symbols and pictures in the learning process? 

" Does it vary depending on the individual? 

" Should certain topics be introduced visually or symbolically? 

" For a visual start, at what stage should symbols be introduced (if at all) and vice 

versa? 

9 Is either treatment unsuitable for certain topics? 

" Are symbols better for more accuracy, more dimensions, generic cases? 

By adopting the computer-based constructivist approach to learning described in 

this thesis, students will have a greater understanding of the underlying concepts, 

will be able to apply them to other problem solving situations at a later date, and 

will be able to demonstrate the ability to transfer knowledge across different 

subject domains. Constructivism shifts the focus of attention from the product of 

mathematical activity, i. e. the solution, to the cognitive processes of that activity, 

i. e. how we arrive at the solution. Visually compelling graphical software can 

enrich these cognitive processes. 
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Visual software can provide an environment in which students can develop 

relational understanding, and can develop a more versatile way of thinking about 

mathematics, without having a detrimental effect on their symbolic manipulation 

skills. Moreover, these symbolic manipulation skills can be developed in more 

meaningful contexts. 

The computer can be used to carry out routine processes (act as a black box) while 

the student concentrates at a higher conceptual level, and via constructivist 

activities, the student can process a number of pieces of information as a single 

conceptual entity. 

Students need to be engaged in activities that will result in the creation of 

meaningful mental constructions that are necessary for conceptual and relational 

understanding. Powerful and appropriate images help students to create quality 

mental images that can be re-presented and utilised in mathematical thinking. 

These mental images need to be `correct' and meaningful. The computer can assist 

greatly in this image-making process. 

The thesis has produced some positive and practical findings, however this chapter 

has illustrated that there is still much work to be done. 

It is vitally important for technological tools to be seen and treated as exactly that - 

tools, and not as divine bearers of knowledge. Comments such as, 'Well that's 

what the computer told me', are not uncommon. Students have never thought that 

blackboards have been able to do mathematics, but many tend to think that 

computers can. 

The nature of the virtual world that we are increasingly forced to live in often 

means that the power of interacting with peers and teachers, and all the educational 

benefits that ensue, can be lost. Educators need to pause for breath and take a step 

back - it is easy to get carried away with advances in technology. Technology must 
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not be used for the sake of it, but instead there must be sound educational reasons 

for employing appropriate technology in the classroom. It is vital that cfIcctivc, 

traditional practices are not replaced, and that the use of technology is seen as an 

integrated resource. Technology must only be used if it enhances the learning 

prospects of students. It is not desirable to move towards a 'virtual university', 

losing in the process all the rich sources of interaction so important for students' 

academic and social development. 
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Summary Sheet - Some Useful flints 
on the Shape and Position of Graphs 

1. Linear Functions 

The equation of a straight line may he expressed as v= ax +h 
the slope of the line and b represents the intercept (the 
corresponding to x= 0). To summarise, we have the following: 

Y 

x 

a>0 
b>0 

Y 

x 

a<0 
b>0 

Y 

-X 

a>0 
b<0 

2. Quadratic Functions 

where a represents 
rut can the %--axis 

Y 

X 

a<0 
b<0 

Let us consider the function v= a(. r + b)2 + c, where a describes how stccp or 
shallow the graph is, b describes movement in the horizontal direction, and c 
describes movement in the vertical direction. 

If a is negative, the parabola (this is the name given to the shape of a quadratic 
curve) will be reflected in the x-axis, i. e. upside down. If a increases in magnitude 
the slope of the graph becomes steeper, and if a decreases in magnitude the slope 
of the graph becomes shallower. 

If b is positive the vertex of the graph will he b units to the left of the origin, and it 
b is negative the vertex of the graph will he b units to the right of the origin. 

If c is positive the vertex of the graph will he c units above the . v-axis, and if c is 
negative the vertex of the graph will he c units below the . v-axis. 

3. Exponential Functions 

Let us consider the function N, = ae b` [or v=a exp(b. v) I where a determine,, the 
intercept of the graph and b affects the gradient of the curve. The following sIim% 
a fixed at the value 1. while we investigate the effect of varying b: 

b=3 
b=2 

b=1 a=1 

b=-3 -If 
we make a negative, the graph becomes a reflection in the . v-axis. 
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4. Trigonometric Functions 

Let us consider the function y= Asin(W. I) +c in the following diagram: 

Y 7dw 27rJw 

11 
lamp. 

A 
I1 /1 

1 

I 

2 xfw 

The above function has amplitude A. wavelength 27t/w. and frequency w. which 
takes place about the mean position v=c. The function A`In(%-t + 0) +C ha. the 

same properties as the above, but also has a phase difference oI o/w. 

The same properties apply for the function Acos(wt + 0) + c. 

5. Functions in General 

Certain general properties of functions and `graphs are as follows: 

Consider some function f(z). 

If we alter the function to f(x + a), then its graph will shift horizontally. If a iý 

positive the graph will shift a units to the left, and if a is negative the graph will 
shift a units to the right. 

If we alter the function to f(x) + a, then its graph will shift vertically. It- a is 
positive the graph will shift a units up, and if a is negative the graph will shift a 
units down. 

If we alter the function to -f(x), then its graph will become a retlection in the . r- 
axis. 

And combining these three situations. we therefore know that by altering the 
function to -f(x + a) - b, the graph will he reflected in the .. -axis (ix. flipped 

upside down), shifted a units to the left, and shifted b units down. 
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Interactive Mathematical Software Questionnaire 

1. Did you find the session helpful? 

A. Yes, extremely helpful. 
B. Yes, quite helpful. 
C. Neither helpful nor unhelpful. 
D. No, not very helpful. 
E. No, most unhelpful. 

2. Did you enjoy using the package? 

A. Yes, very much. 
B. Yes, a little. 
C. I didn't like it nor dislike it. 
D. No, I didn't really like it. 
E. No, I hated it. 

3. Having used this software, would you he motivated to use software 
concerned with other mathematical topics? 

A. Yes, very much so. 
B. Yes, probably. 
C. Maybe, maybe not. 
D. No, probably not. 
E. No, definitely not. 

4. How did this 2-hour computer session compare with 2 hours of 
traditional mathematics classroom activities? 

A. I would much rather learn via the computer. 
B. I would probably prefer to learn via the computer. 
C. I have no preference. 
D. I would probably prefer to do traditional mathematics classroom activities. 
E. I would much rather do traditional mathematics classroom activities. 

5. Do you think anything could have been included in the package in 
order to improve it? If so, please comment. 

Thank you very much for your time and assistance with this research. 
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School A Control (39 students) School A Experimental xtudenti) 
Question 
Number 

Number answered 
correctly 

% answered 
correctly 

Question 
Number 

Number answered 
correct) 

% answered 
correct) 

Proc. Vis. Proc. Vis. Pmc. Vis, {'Mc. Vin, 
1 29 74.4 1 33 75.0 
2 36 92.3 2 40 9t1.9 
3 15 38.5 3 12 27.1 
4 24 61.5 4 40 ýNº. 9 
5 29 74.4 5 33 750 
6 12 30.8 6 18 40.9 
7 34 87.2 7 32 72.7 
8 7 17.9 8 20 43,5 
9 19 48.7 9 16 36.4 
10 13 33.3 10 15 34.1 
11 12 30.8 11 10 22.7 
12 24 61.5 12 27 61.4 
13 28 71.8 13 29 65.9 
14 18 46.2 14 23 52.3 
15 27 69.2 15 28 63.6 
16 22 56.4 16 22 50.0 
17 18 46.2 17 16 36.4 
18 14 35.9 18 16 36.4 
19 24 61.5 19 20 45,5 
20 14 35.9 20 22 in o 

Average 60.3 47.2 Average 52.1 53.2 

School B Control (72 students) School B f: x rimcntal d5 stutkcnt< 
Question 
Number 

Number answered 
correctly 

% answered 
comectl 

Question 
Number 

Number answered 
rnmectl 

% answered 
correct) 

Prot. Vis. Proc. Vis. Proc. Vis. PrC. Vet. 

1 53 73.6 1 23 51.1 
2 64 88.9 2 40 88.9 
3 18 25.0 3 6 13.3 
4 50 69.4 4 31 68.9 
5 44 61.1 5 28 62.2 
6 25 34.7 6 20 44.4 
7 48 66.7 7 21 46.7 
8 3 4.2 8 4 8.9 
9 19 26.4 9 16 35.6 
10 31 43.1 10 22 48.9 
It 9 12.5 11 3 6.7 
12 39 54.2 12 24 53.3 
13 52 72.2 13 19 42.2 
14 31 43.1 14 22 48.9 

15 35 48.6 15 22 48.9 
16 38 52.8 16 21 46.7 
17 25 34.7 17 9 20.0 
18 13 18.1 18 10 22.2 
19 28 38.9 19 22 48.9 
20 24 33.3 20 26 57.8 

Average 46.0 44.2 Average 37.6 48.9 
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School C Control (25 students) School C I. s rimcntal ( 20 studcnt+ 
Question 
Number 

Number answered 
correctly 

% answered 
correctf 

Question 
Number 

Number answrred 
correct) 

% answered 
comrI 

Proc. Vis. Proc. Vis. Proc. Vii. I'm . Vi. i, 
1 13 52.0 1 15 73.0 
2 20 80.0 2 18 90 0 
3 4 16.0 3 4 200 
4 20 80.0 4 13 65.0 
5 19 76.0 5 11 5,5.0 
6 12 48.0 6 12 WO 
7 22 88.0 7 12 60.0 
8 5 20.0 8 7 33.0 
9 8 32.0 9 0 00 
10 2 8.0 10 6 31). 0 

9 36.0 11 2 10.0 
17 68.0 12 1i 65.0 

20 80.0 13 11 55.0 
14 56.0 14 12 600 

19 76.0 15 8 40.0 

$ 

14 56.0 16 8 40.0 
13 52.0 17 5 25.0 

3 12.0 18 6 30.0 
15 60.0 19 6 30.0 

6 24.0 20 9 43 0 
Avera 56.8 45.2 Average 37.0 52.0 

Control All (136 students) Experimental All 109 student-) 
Question 
Number 

Number answered 
correct) 

% answered 
correct) 

Question 
Number 

Number answered 
ttxmctl 

% answered 
ccxrrctl 

proc, Vis. Proc. Vis. Proc. Vis. Prot. Vic. 
1 95 69.9 1 71 65.1 
2 120 88.2 2 98 89.9 
3 37 27.2 3 22 20.2 
4 94 69.1 4 84 77.1 
5 92 67.6 5 72 66.1 
6 49 36.0 6 50 45.9 
7 104 76.5 7 65 59.6 

8 15 11.0 8 31 29.4 
9 46 33.8 9 32 29.4 
10 46 33.8 10 43 39.4 
11 30 22.1 11 15 13.8 
12 80 58.8 12 64 3R. 7 
13 100 73.5 13 59 54.1 
14 63 46.3 14 57 52.3 
15 81 59.6 IS 58 53.2 
16 74 54.4 16 51 46.8 
17 56 41.2 17 30 27.5 
18 30 22.1 18 32 29.4 
19 67 49.3 19 48 44.0 
20 44 32.4 20 57 52.3 

Average 52.1 45.2 Average 43.3 12.0 
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Factor 
Group School Sex Subject GCSE 

1 Control A Male Mechanics A/A* 
Coding 2 Experimental B Female Statistics B/C 

3C 

Each row below represents one student. For example, the first row represents a 

student who scored 4 out of 10 on the procedural questions, scored I out of 10 on 

the visual questions, is a member of the control group, studies at School A, is 

male, studies Mathematics with Mechanics, and has an A* or A grade at GCSE 

Mathematics. 

Proc vis group school sex subject gcse proc-vis 
4 1 1 1 1 1 1 3 
7 8 1 1 1 1 1 -1 
8 6 1 1 1 1 1 2 
8 4 1 1 1 1 1 4 
7 3 1 1 1 1 1 4 
8 7 1 1 1 1 1 1 
6 5 1 1 1 1 1 1 
9 3 1 1 1 1 1 6 
5 6 1 1 1 1 1 -1 
7 4 1 1 1 1 1 3 

10 7 1 1 1 1 1 3 

5 4 1 1 1 1 1 1 

6 7 1 1 1 1 1 -1 
6 4 1 1 1 1 1 2 

6 6 1 1 1 1 1 0 
9 6 1 1 1 2 1 3 

7 6 1 1 1 2 1 1 
2 3 1 1 1 2 1 -1 
7 4 1 1 1 2 1 3 
8 8 1 1 1 2 1 0 
7 5 1 1 1 2 1 2 
7 7 1 1 1 2 1 0 
7 6 1 1 1 2 1 1 
6 6 1 1 2 1 0 
6 5 1 1 2 1 1 
6 2 1 1 2 1 4 
6 1 1 1 1 2 1 5 

8 7 1 1 1 2 1 1 
2 4 1 1 1 2 -2 
6 7 1 1 1 1 2 -1 
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5 4 1 1 1 2 2 1 
4 3 1 1 1 2 2 1 5 
2 

6 
2 

1 
1 

1 
1 

2 
2 

1 
1 

1 
1 

.1 
0 

8 6 1 1 2 2 1 2 
6 4 1 1 2 2 1 2 
6 1 1 1 2 1 2 5 
2 4 1 1 2 2 2 -2 1 2 1 1 2 2 2 .1 8 3 1 2 1 1 1 5 2 4 1 2 1 1 1 -2 4 5 1 2 1 1 1 -1 7 5 1 2 1 1 1 2- 
3 4 1 2 1 1 1 "1 4 5 1 2 1 1 1 -1 4 2 1 2 1 1 1 2 
6 5 1 2 1 1 1 1 
7 8 1 2 1 1 1 -1 6 8 1 2 1 1 1 -2 4 6 1 2 1 1 1 -2 10 5 1 2 1 1 1 5 
6 7 1 2 1 1 1 -1 7 7 1 2 1 1 1 0 
8 10 1 2 1 1 1 -2 3 2 1 2 1 1 1 1 6 4 1 2 1 1 1 2 
6 6 1 2 1 1 1 0 
10 6 1 2 1 1 1 4 
5 4 1 2 1 1 1 1 
4 6 1 2 1 2 1 "2 3 2 1 2 1 2 1 1 
1 6 1 2 1 2 1 .5 8 5 1 2 1 2 1 3 
3 5 1 2 1 2 1 -2 4 2 1 2 1 2 1 2 
9 4 1 2 1 2 1 5 
3 1 1 2 1 2 1 2 
8 7 1 2 1 2 1 1 
3 3 1 2 1 2 1 0 
6 3 1 2 1 1 2 3 
1 4 1 2 1 1 2 -3 4 2 1 2 1 1 2 2 
4 5 1 2 1 1 2 .1 6 4 1 2 1 2 2 2 
4 5 1 2 1 2 2 -1 8 2 1 2 1 2 2 6 
4 4 1 2 1 2 2 0 
5 3 1 2 1 2 2 2 
1 2 1 2 1 2 2 -1 
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2 7 2 1 2 2 .5 6 5 1 2 2 1 1 1 4 3 1 2 2 1 1 
6 8 1 2 2 1 1 -2 6 5 1 2 2 1 1 1 
6 7 1 2 2 1 1 -1 7 4 2 2 1 3 
7 4 1 2 2 2 1 3 
1 4 2 2 2 1 .3 7 2 1 2 2 2 1 5 2 5 1 2 2 2 -3 2 6 1 2 2 2 1 .4 1 3 1 2 2 2 1 -2 3 6 1 2 2 2 1 -3 3 5 2 2 2 "2 3 4 1 2 2 2 -1 1 1 1 2 2 2 1 0 
8 6 1 2 2 2 2 
5 5 1 2 2 2 0 
9 6 1 2 2 2 1 3 
3 5 1 2 2 2 1 -2 2 4 1 2 2 1 2 -2 6 7 2 2 1 2 .1 0 3 1 2 2 2 2 -3 0 6 1 2 2 2 2 -6 3 5 1 2 2 2 2 -2 6 1 1 2 2 2 2 5 
4 1 1 2 2 2 2 3 
4 2 1 2 2 2 2 2 
2 2 1 2 2 2 2 0 
2 1 1 2 2 2 2 1 
6 3 1 2 2 2 2 3 
3 2 1 3 2 1 1 1 
7 3 1 3 2 1 1 4 
5 3 1 3 2 1 1 2 
5 5 1 3 2 1 1 0 
5 4 1 3 2 1 1 1 
7 10 1 3 2 1 1 -3 4 5 1 3 2 1 1 -1 6 5 1 3 2 1 1 1 
4 6 1 3 2 1 1 "2 6 2 1 3 2 1 1 4 
9 8 1 3 2 1 1 1 
5 6 1 3 2 1 1 -1 8 6 1 3 2 2 1 2 
6 5 1 3 2 2 1 1 
7 3 1 3 2 2 1 4 
4 5 1 3 2 2 1 -1 8 5 1 3 2 2 1 3 
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4 6 1 3 2 2 1 -2 8 6 1 3 2 2 1 2 
7 5 1 3 2 2 1 2 
5 1 1 3 2 2 1 4 
6 3 1 3 2 2 2 3 3 3 1 3 2 2 2 0 
5 3 1 3 2 2 2 2 
5 3 1 3 2 2 2 2 
3 7 2 1 1 1 1 .q 4 3 2 1 1 1 1 1 
6 6 2 1 1 1 1 0 
6 5 2 1 1 1 1 1 
5 9 2 1 1 1 .q 4 4 2 1 1 1 1 0 
7 5 2 1 1 1 2 
8 6 2 1 1 1 2 
6 8 2 1 1 1 -2 8 5 2 1 1 1 1 3 
5 7 2 1 1 1 1 -2 4 6 2 1 1 1 1 -2 3 5 2 1 1 1 1 .2 1 4 2 1 1 2 1 -3 7 8 2 1 2 1 -1 7 5 2 1 2 1 2 
6 5 2 1 1 2 1 1 
6 3 2 1 1 2 1 3 
7 6 2 1 1 2 1 1 
8 3 2 1 1 2 1 5 
9 6 2 1 1 2 1 3 
2 6 2 1 1 2 1 -4 6 5 2 1 1 2 1 1 
4 3 2 1 1 2 1 1 
8 8 2 1 1 2 1 0 
1 4 2 1 1 1 2 .3 1 3 2 1 1 1 2 -2 4 6 2 1 1 1 2 -2 4 3 2 1 1 2 2 1 
1 4 2 1 1 2 2 -3 4 3 2 1 1 2 2 1 
3 5 2 1 1 2 2 -2 5 2 2 1 1 2 2 3 
7 6 2 1 2 1 1 1 
6 8 2 1 2 1 1 "2 8 4 2 1 2 1 1 4 
7 6 2 1 2 2 1 1 
7 9 2 1 2 2 1 -2 6 5 2 1 2 2 1 1 
5 5 2 1 2 2 1 0 5 8 2 1 2 2 1 -3 
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6 8 2 1 2 2 1 -2 6 8 2 1 2 2 1 -2 4 7 2 1 2 2 -3 3 4 2 2 1 1 -1 4 9 2 2 1 1 -5 8 8 2 2 1 1 1 0 
7 6 2 2 1 1 1 1 
3 5 2 2 1 1 1 -2 4 2 2 2 1 1 1 2 
3 3 2 2 1 1 1 0 
5 5 2 2 1 1 0 
7 8 2 2 1 -1 7 4 2 2 1 3 
2 5 2 2 1 1 1 -3 3 3 2 2 1 1 1 0 
3 7 2 2 1 2 -4 6 4 2 2 1 2 1 2 
6 5 2 2 1 2 1 1 
5 3 2 2 1 2 1 2 
3 7 2 2 1 2 1 -4 3 6 2 2 1 1 2 -3 6 5 2 2 1 2 1 
2 5 2 2 1 1 2 "3 2 5 2 2 1 1 2 -3 2 2 2 2 1 1 2 0 
5 1 2 2 1 1 2 4 
1 4 2 2 1 1 2 -3 1 7 2 2 1 1 2 -6 0 3 2 2 1 1 2 -3 4 3 2 2 1 1 2 1 
1 8 2 2 1 1 2 -7 1 1 2 2 1 1 2 0 
4 5 2 2 1 1 2 -1 3 6 2 2 2 1 1 -3 6 8 2 2 2 1 1 -2 5 8 2 2 2 1 1 -3 5 4 2 2 2 1 1 1 
5 6 2 2 2 1 1 -1 7 4 2 2 2 2 1 3 
2 2 2 2 2 2 1 0 
5 4 2 2 2 2 1 1 
7 4 2 2 2 2 1 3 
2 6 2 2 2 2 1 -4 4 7 2 2 2 2 1 -3 0 6 2 2 2 1 2 -6 2 2 2 2 2 2 2 0 
3 5 2 2 2 2 2 -2 2 4 2 2 2 2 2 -2 9 10 2 3 2 1 1 -1 
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4 6 2 3 2 1 1 -2 2 2 2 3 2 1 1 0 
4 7 2 3 2 1 1 -3 6 8 2 3 2 2 1 -2 2 3 2 3 2 2 -1 2 6 2 3 2 2 1 -4 4 4 2 3 2 2 1 0 
3 5 2 3 2 2 1 -2 4 5 2 3 2 2 1 -1 3 6 2 3 2 2 -3 5 7 2 3 2 2 -2 2 6 2 3 2 1 2 -4 4 5 2 3 2 1 2 -1 3 3 2 3 2 1 2 0 
3 6 2 3 2 2 2 -3 5 3 2 3 2 2 2 2 
4 3 2 3 2 2 2 1 
2 6 2 3 2 2 2 -4 3 3 2 3 2 2 2 0 
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