
An Investigation into Autonomic
Middleware Control Services to

Support Distributed Self-Adaptive
Software

Nagwa Lotfy Badr

A thesis submitted in partial fulfilment of the requirements

of Liverpool John Moores University for the degree of

Doctor of Philosophy

of the

Liverpool John Moores University

School of Computing and Mathematical Science

November 2003

Tom Parents

11

Abstract

Over recent years, many researchers have advocated the vision of a new generation of

smart computing including networks services, which can function and/or manage its

and other systems' operation independently of human intervention or control. Such a

vision has presented many challenges to a range of research communities including;

intelligent systems, cybernetics and AI communities. Such new research aspects and

issues taking further to develop a system that has the ability to adapt and changes its

behaviour dynamically at run time considering the users' requirements and

environments.

DARPA has initiated a research program on self-adaptive software, which provides an

application level with self-adaptation. Such a body of work is more concerned with

system-level self-adaptation and less focused on the development of generative,

programming models and/or software engineering for developing autonomic software

and normative structures. More recently IBM has concentrated its efforts on supporting

autonomic concepts for developing and deploying enterprise server-level solutions with

self-managing, self-healing and self-protecting capabilities.

Extending existing work from the self-adaptive software and reflective middleware

communities, our research, grounded in distributed software engineering proposes and

develops a meta-control service and associated middleware services with its design

model and architecture for deliberative middleware and application services. This

contributes to the design of self-adaptive software and computing services with the

ability to coordinate and control systems adaptation in response to either conflicts or

inconsistencies.

Consequently, this approach acts as reference model or baseline architecture to

facilitate a normative self-governance model that supports the safe self-adaptation of
distributed applications for lifetime management Based on the sequence model of

monitoring, classifying, repairing, and adapting components, the proposed architecture
hierarchy encompasses a number of components that include; monitoring,
inconsistency, mismatch or conflict detection and diagnosis, solution selection, solution

checking, enactment and system reconfigurations In addition, this work defines a

111

software control (meta-control) service, which acts as a middleware service to support

self-managcment (i. e. autonomic) software with respect to the coordination issues

between the interacting applications services. In addition, because this control service is

itself distributed as mentioned earlier, it provides an immediate sharing of the
information, resources, selected tasks and systein coordination by using the concept of
distributed shared memory (provided by the Jini middleware). The main three services
in the proposed software control service or baseline architecture is the service manager,
system controller and JavaSpace. An extension to the Beliefs, Desires and Intension

(BDI) model referred there to Extendible BDI (EBDI), is also proposed and provides
the means and mechanism to underpin the software control of self-governing systems
where during system coordination processes, systeni controller controls and coordinated
its system by exchanging constraints about their goals, norms, actions and predefined

with respect to its beliefs that reported to the distributed shared space as well by the

service manager to facilitate the development of autonomic control middleware

services.

iv

Acknowledgements

Praise to ALLAH; The Cherisher and Sustainer of the Worlds; Most Gracious; Most
Merciful. Thanks to God who gave me the ability to do this work.

My deepest thanks and gratitude are to Professor A. Taleb-Bendiab of the School of
Computing and Mathematical Sciences, Liverpool John Moores University for his
valuable supervision, continuous help, significant feedback and criticism. His extensive
effort enabled me to complete this work successfully and collectively shaped this thesis.

I would like to express my appreciation and thanks to Professor Madjid Merabti,
Director of the School of Computing and Mathematical Sciences, Liverpool John
Moores University for making this work possible by introducing me to the department
and offering me all the necessary to complete this work.

My thanks as well to Dr. Carl Bamford, Mr. Andy Laws and Mr. Denis Reilly for their
crucial technical assistance, useful guidelines and numerous discussion that clarified
many aspects of this work.

I would like also to express many thanks to all colleagues, academic staff,
administration staff, technicians and research students in the School of Computing and
Mathematical Science, Liverpool John Moores University for their support.

I am also grateful to my father who has been a timeless source of inspiration and
influence throughout my life and to my mother for her unfailing support, constantly
prompting and motivating over years.

I would like to acknowledge my husband, Mostafa for his strong encouragement, as this
work would never be possible without his constructive assistance, helpful support, and
guidelines. My deepest thanks go to my children Mohamed and Hanna, who have been
great motivators by their sacrifices, patient, constant love and indirect encouragement.

Last but not least I would like to express my heartfelt thanks to all my family, Nahala,
Nevien, and Ahmed for their support in different ways during my studies.

V

Table of Contents
ABSTRACT .. III

ACKNOWLEDGEMENTS ...
V

LIST OF FIGURES ..
X

LIST OF TABLES ..
XIII

CHAPTER I ...
1

INTRODUCTION
..

1
1.1 Motivations: Software Autonomy ..

1
1.2 Challenges

..
2

1.3 Approach
..

4
1.4 Contributions

..
5

1.5 Scope
..

8
1.6 Thesis Organization

...
9

CHAPTER 2 ...
12

BACKGROUND ..
12

2.1 Introduction
..

12
2 2 Self-Ada tive Soft are 12

.. . p w
2.2.1 Self-Adaptive Software Compared to Control System

15
2.2.2 Self-Adaptive Software Research Directions ...

16
2.2.3 Example of Self-Adaptive Software Application ...

17
2.2.4 Self-Adaptive Software and Reflection ..

17
2.3 Autonomic Computing

..
18

2.3.1 Autonomic Computing Architecture Concepts ...
19

2.3.2 Relevance to Autonomic Computing ..
21

2.4 Summary ..
21

CHAPTER 3 ...
23

DISTRIBUTED COMPUTING MANAGEMENT ..
23

3.1 Introduction ..
23

3.2 Service-Oriented Develonment ..
23

3.3 Distributed Middleware ...
25

3.3.1 Categories of Middleware ...
26

3.3.1.1 CORBA Middleware Technology ...
27

3.3.1.2 Universal Plug and Play ...
30

3.3.1.3 Web Services Middleware ...
32

3.3.1.4 Jini Middleware Technology ...
34

3.3.1.4.1 JavaSpace Services ...
38

vi

3.4 Self-Management Requirements for Distributed Applications 39
3.5 Summary .. 40

CHAPTER 4 ... 42

LITERATURE REVIEW 42
... 4.1 Introduction ..

42
4.2 The Static Management of Distributed Systems ..

42
4.2.1 Conflict Resolution and Coordination Approaches

42
4.2.1.1 The Negotiation Method ..

43
4.2.1.2 The Arbitration Method ...

46
4.2.1.3 The Voting Method ..

46
4.2.1.4 Independence Method ..

47
4.2.2 Strategy and Plans Representation Approaches ..

47
4.2.3 The Exception-Handling Approaches ...

48
4.3 The Dynamic Management of Distributed System ..

50
4.3.1 The Deliberated Normative Model ...

50
1 BDI Extensions 4 3 1 51

.. . . . 4.3.1.2 The Epistemic Deontic Axiologic Model ..
51

4.3.2 Policy-Based Management ...
52

4.3.3 Event-Based Management ..
54

3 4 4 Architecture-Based Mana ement 56
.. . . g

4.3.5 Autonomic-Based Management ..
57

.... 4 Summar 4 59 y .. .

CHAPTER 5 ...
60

REQUIREMENTS ...
60

5.1 Introduction ..
60

5.2 The Autonomic Middleware Control Service's Requirements
61

5.2.1 Conflict Detection ...
62

5.2.2 Conflict Identification ...
65

5.2.3 Failure Classification ..
65

5.2.4 Conflict Resolution Strategies ..
68

5.2.5 Control Rules ..
69

5.2.6 System Reconfiguration ..
70

5.2.7 System Interpreter ...
72

5.3 Summary
..

73

CHAPTER 6 ...
74

AUTONOMIC MIDDLEWARE, CONTROL DESIGN .. 74
6.1 Introduction ..

74
6.2 The Control Service Architecture ..

75
6.3 Middleware Core Services Layer ...

76
6.3.1 Registration Service ..

76
6.3.2 Discovery Service ...

77
6.3.3 Distributed Shared Memory Service ...

78

vii

6.4 Autonomic Middleware Control Services Layer ...
78

6.4.1 Service Manager ...
80

6.4.1.1 Service Monitor ...
82

6.4.1.2 Service Diagnosis ...
83

6.4.1.3 Service Control Rules ..
83

6.4.1.4 Service Repair ..
83

6.4.1.5 Service Adaptor
...

86
6.4.2 System Controller ...

87
6.4.2.1 System Monitor ..

88
6.4.2.2 System Repair Strategies ...

89
6.4.2.3 System Reconfiguration ...

90
6.4.3 JavaSpace Service ...

92
6.5 User's Service Applications Layer ..

92
6.6 Summary ..

93

CHAPTER 7 ...
94

MANAGER SERVICE AND JAVASPACE IMPLEMENTATION 94
7.1 Introduction ..

94
7.2 The Implementation Requirements ..

95
7.2.1 The Java Environment ..

97
7.2.2 The Middleware Technology ..

97
7.2.2.1 The Choice of Jini Middleware Technology ...

98
7.2.2.2 Jini Services Requirements ..

99
7.3 The Service Manager Implementation ...

100
7.3.1 Service Manager Interactions ...

102
7.3.2 Service Control Rules ...

105
7.3.3 Service Monitor ..

106
7.3.4 Service Diagnosis ..

107
7.3.5 Service Self-Repair ...

107
7.4 JavaSpace Service Implementation ..

110
7.5 Summary ..

112

CHAPTER 8 ...
114

SYSTEM CONTROLLER IMPLEMENTATION AND APPLICATIONS 114
8.1 Introduction ..

114
8.2 The System Controller ...

114
8.2.1 System Monitor ...

115
8.2.2 System Repair Strategies ..

116
8.2.3 System ReconfigUration ..

119
8.3 Applications ...

120
8.3.1 Application 1: The GridPC Example ..

120
8.3.2 Application 2: The EmergeITS Example ..

124
8.3.2.1 3inl Phone Application ..

125
8.3.2.2 Web-Based Information Service ..

131
8.4 Summary ..

132

viii

CHAPTER 9 ... 134

EVALUATION .. 134
9.1 Introduction ..

134
9.2 Methodology ..

134
9.2.1 Objectives ...

134
9.2.2 Approach ...

135
9.2.3 Overall settings ...

136
9.2.3.1 Evaluation Requirement ...

136
9.2.3.2 User applications ..

137
9.2.3.3 Environment ...

138
9.3 The Quantitative Evaluation ..

138
9.3.1 The Sorting Algorithm Scenario ...

139
9.3.2 The Sorting Algorithm Experimental Results ...

143
9.3.3 The 3inl phone Scenario ..

153
9.3.4 The 3inl Phone Experimental Results ..

155
9.4 Qualitative Evaluation ...

158
9.5 Discussion ..

159
9.6 Summary ..

160

CHAPTER 10 ...
162

CONCLUSIONS ..
162

10.1 Motivations and Approach Summary ..
162

10.2 Contributions ..
164

10.3 Achievements ...
167

10.4 Thesis Summary ...
169

10.5 Discussion ..
172

10.6 Future Work ...
173

APPENDIX A ...
175

Distributed System Development ..
175

APPENDIX B ...
179

Distributed Middleware ...
180

APPENDIX C ...
181

Grid Technology ..
182

REFERENCES ...
185

ix

List of Figures

Figure 2.1: The Primary Meta-Object of Object [19] .. 18
Figure 2.2: The control loop architecture

20
Figure 2.3: The hierarchy pyramid of the autonomic computing technologies (20]..... 20
Figure 3.1: ADL Concepts Architecture [22]

24
Figure 3.2: Frameworks comparison for SOP support [22] ...

25
Figure 3.3: The OMG-CORBA Architecture [24] ... 28
Figure 3.4: A request passing from a client to an object implementation [25] 29
Figure 3.5: Interoperability using ORB-to-ORB Communications [25] 30
Figure 3.6: UPnP Function's Layer [29] ..

31
Figure 3.7: Web services protocols [31]

33
Figure 3.8: Jini Architecture Segmentation (33] ..

34
Figure 3.9: Lookup, Discovery and Join [34] ..

37
Figure 3.10: A JavaSpace Application [34] ...

39
Figure 4.1: A simple version of the Contract-Net protocol [41]

44
Figure 4.2: A high-level control mechanism architecture [46]

46
Figure 4.3: The decomposition of the generic exception management meta-

process[58] ... Figure 4.4: Summary of exception management approach [57]

49
50

Figure 4.5: Relations between beliefs, goals and intentions [63]
51

Figure 5.1: Informal examples of consistency rules [3 5]
61

Figure 5.2: Runtime autonomic management's requirements
62

Figure 5.2: The autonomic management process's requirements
62

Figure 5.2: The autonomic management process's requirements
62

Figure 5.3: The relationship between management and monitoring [35]
......................

63
Figure 5.4: Task monitor script's description

. ... Figure 5.5: Failure's classification in terms of failure types and their scope

64
68

Figure 5.6: Relation between Actions, Strategies, and Strategic Decision Making [112].

Figure 5.7: Control action operators Figure 5.8: The reconfiguration strategy sequence .. Figure 5.9: Conflict repair operator . .. Figure 6.1: The middleware control service architectural layers
...................................

68
69
71
72
75

Figure 6.2: Service object lookup registration [32]
. .. Figure 6.3: Client's discovery of the registered service [32]

... Figure 6.4: Illustration of a distributed shared memory based computation [43]
..........

77
77
78

Figure 6.5: The autonomic middleware control service architecture
80

Figure 6.6: Basic computational model with feedback control Figure 6.7: The service's manager Architecture
.. Figure 6.8: The sequence of the exception-handling model (adapted from [56])

.

81
82
85

Figure 6.9: An example of the event queue of BDI structure [7]
. Figure 6.10: The low-level autonomic middleware control service Figure 6.11: The control service's collaboration diagram . .. Figure 7.1: Jini network architecture . .. Figure 7.2: Client and sever communication through Jini proxy

1
Figure 7-3: The implementation interface of ServiceManagerProxy

............................
1

Figure 7.4: The implementation interface of SimpleServiceProxy
.

1
Figure 7.5: The implementation of the simple Service

..
1

88
88
91
95
02
03
03
04

X

Figure 7.6: The class implementation of the ServiceManager 105
Figure 7.7: The implementation of monitoring model functionality 106
Figure 7.8: Diagnosis model to classify conflict types 107
Figure 7.9: An example of notification between the ServiceManager and its service. I 10
Figure 7.10: The implementation of BasicEntry to implement the Entry Interface. ... 112
Figure 8.1: Thc interaction between the system controller and other services

115
Figure 8.2: The declaration of monitor the service state from the JavaSpace

116
Figure 83: An example of XML schema for our system repair strategies

118
Figure 8.4: The UML class diagram of the proposed control service 120
Figure 8.5: The Jini Stardervice Application ..

122
Figure 8.6: The GUI of the client service using control service

123
Figure 8.7: The GUI of the services provider Management

124
Figure 8.8: The Architectural view of the EmergeITS application

125
Figure 8.9: The XML document used to describe the repair strategy sequences 128
Figure 8.10: The 3inlphone control repair strategy ...

128
Figure 8.11: The GUI of the GSM Manager ..

129
Figure 8.12: The GUI of the 3inl phone Client ...

130
Figure 8.13: The GUI of the SysternController service ...

131
Figure 8.14: The Conflict Description GUI ...

131
Figure 9.1: The architecture of the autonomic middleware control service

136
Figure 9 2: Initialise the arra rocess size 140

. p .. y
Figure 9.3: Fill the specified size array with random integers

141
Figure 9.4: The main process for sorting using the three selected algorithms

141
Figure 9.5: Example of calculating the elapsed time for any algorithm

142
Figure 9.6: The process of an average latency calculation for the sorting algorithms

control service ..
143

Figure 9.7: The elapsed time using the bubble sort algorithm
145

Figure 9.8: The elapsed time using the selection algorithm
145

Figure 9.9: The elapsed time using the quick sort algorithm
146

Figure 9.10: Extracting the utility and intended attribute variables from the XML file.
147

*"*** Figure 9.11: Design of the Control rules corresponding to array-size and no - swaps.
148

****** Figure 9.12: The chart indicates the sorting of different arrays with the autonomic
control service

150
Figure 9.13: Comparison of the time performance profile of sorting algorithms with

control service and without control service
151

.................................. Figure 9.14: The average latency while running the control process of the sorting
algorithm example 152

. .. Figure 9.15: An example of the system without control service with and without
.................. conflicts 154

.. Figure 9.16: An example of the system with control service with and without conflicts
155 "*'** , ... Figure 9.17: Comparison of the elapsed time with and without the autonomic

middleware control service without conflict occurrence
156

. Figure 9.18: Comparison of the elapsed time with and without the autonomic
middleware control service with conflict occurrence

156
.................. Figure 9.19: The average latency while running the control process for the 3inl phone

example
158

Figure A. 1: The Distributed Application Development Process [13 7]
175

xi

Figure Cl: GRID Protocol Architecture [21] ... 182

X11

List of Tables
Table 1.1: Management categories of changes and effects .. 9

Table 9.1: Examples of the elapsed time for different sorting algorithms
144

Table 9.2: The autonomic middleware control service manages different array sizes
using the autonomic control service .. 149

X111

Chapter 1

Introduction

1.1 Motivations: Software Autonomy

Over the years, Information and Communication Technology (ICT) has gradually
become an integral part of our economic and social fabric, and their design and

management complexity has grown as rapidly as our requirements and dependence on

the systems. The prevailing design of most current large-scale distributed systems can
be characterised as reactive and centralised in nature, in that they are centrally

managed and controlled, and their functions are essentially dependant on direct end-

user interventions. There is a need in software design to shift from a centralised

client/server model to building n-tier decentralised systems, and hence developing

systems that are more dependable, scalable, robust and amenable to changing their

own behaviour with minimal intervention from users.

Recently, many researchers have advocated the vision of a new generation of smart

computing including networks services that should function and manage their

systems' operation independently of human intervention [1]. Such an aspiration has

provided many challenges to a range of research communities including; intelligent

systems, cybernetics and AI communities. Now, there is a renewed interest by both

academic and commercial communities in developing systems that adapt

autonomously to their users' requirements and environments; for instance, to recover
from an encountered/anticipated system failure, tune performance to fulfil a quality

guarantee, and/or accommodate changes with respect to the number of participants

and/or integration of new services. We are now at the point of the emergence of a

new class of large-scale decentralised and autonomic applications that can operate
independently or with minimal direct human control.

1

Taking this vision even further, IBM has characterized this as autonomic computing,
and is now actively promoting, developing and deploying enterprise server-levcl
solutions with self-managing, self-healing and self-protecting capabilities [1]. Prior to
IBM's autonomic computing initiative, DARPA funded a research program on self-

adaptive software [2], which applied control theory [3], AI planning and/or software

rcflection techniques to provide application-level self-adaptation mechanisms and/or
heuristics [4]. Though, this body of work was more concerned with a system's self-

adaptation level and focused on the development of generative, programming models

and/or software engineering supports for fine-grain, software dynamic and predictable

adaptation. Some of these issues are currently addressed within the DARPA-funded

Dynamic Assembly for System Adaptability, Dependability, and Assurance
(DASADA) initiative [5]. Here, work is underway to develop software engineering
tools and techniques to support the design of software assured dynamic adaptation

primarily using an architecture-driven approach coupled with probes and gauges to

enable software to interact with an executing system to collect a range of

measurement data. This is then translated into suitable metrics for system

performance tuning and/or error recovery through adaptation.

Consequently, there is an increasing research trend in the development and/or

application of self-adaptive software, autonomic software and reflective middleware
for adaptive software. Also, there is still a lack of fundamental understanding of

adjustable control models for autonomic behaviour to ensure and facilitate safe,

predictable and software self-adaptation that is crucial of the distributed self-adaptive

application's environment. However our research is build on the previous related

work and on ongoing work in software management autonomic computing. But rather

than simply looking at the static management at design time or complex dynamic

management that is embedded in the functionality of the base-level of the

applications, it provides a baseline architecture and a soflware meta-control model to

define the requirements for developing an autonomic meta-base/middleware-based

control service at runtime.

1.2 Challenges

While software autonomy represents an essential approach to delegating much of the

software maintenance and/or management activities to the software itself, it

2

engenders a range of technical challenges to be addressed and requires the

development of;

1. Reference models: software design patterns, baseline architecture and/or

middleware for developers to design, deploy and/or manage self-adaptive

software, thus enabling systems to monitor their behaviour and performance,
to reconfigure when required and detennine that any proposed software
composition is compliant with its design, requirements and guarantees.
Therefore we need to take into account and cope with the inherent uncertainty,

complexity and scalability issues related to such systems.

2. Mechanisms: which can be used for runtime software component and service

assembly to ensure safe and predictable software transformation that

guarantees the required and desired properties. To this end, other facilities and

utilities need to be developed and include;

How to access and reason about data coming from a variety of

software instrumentation for monitoring and analyzing targets

including the environment before deciding how or whether to react or

not.
How to support predictable and conditional triggers to facilitate

software change management based on detecting, filtering, and

prioritizing system events and generating and coordinating self-repair

change plans.
How to support negotiation to resolve conflicts emerging from a given

proposed self-adaptation plan prior to its enactment.
How to reconflgure distributed systems by dynamically enabling a

control service to adjust and control using its repair tactics and

strategies for custornisations and adaptation of the system itself.

What normative models can be used for instance to specify

management policies, enforce and adapt to support software self-

governance that may or may not permit any intended changes.

I Experiment/benchmarks: demonstrating that complex systems (and sub-

systems) can practically monitor and validate their runtime behaviour with

respect to critical system properties, requirements-and intended goals.

3

1.3 Approach

In this thesis, we aim to develop a meta-control model with baseline architecture and

associated autonomic control middleware services to support the development and
lifetime management of deliberative software. Such software could be composed
(assembled) of networked software services and provided with a range of deliberative

capabilities, such as self-governance, self-monitoring and self-repair to enable safe

predictable self-adaptation and guarantees the required functional and non-functional

properties are within specified tolerances.

Therefore the establishment of self-management, self-repair and self-adaptation,

requires the uses of flexible infrastructure to support a full range of adaptation

services, such as:

" The service manager service: which contain service control processes such as

the service monitoring model, diagnosis model, repair model, and adaptation

strategies.

" The system controller service: which include system control processes such as

the system monitoring model, system repair strategies model and system

reconfiguration model.

41 The control rule base: which is accessible by the manager and controller to

provide the domain and boundaries for specific application control strategies,

repair plans, etc.

For theoretical support, this work draws a number of research results emerging from

related fields including;

" Self-adaptive systems: using proposed models, requirements and

theories to enable software to use feedback and feedforward, real-time

monitoring and model-based control, such control theories are
intended to provide software with the ability to evaluate its behaviour

and environment against a given goal and revise behaviour in response
to the evaluation [2,4]. Further details will be provided in Chapter 2.

Advanced software engineering: using middleware services to bridge

the gap between the network layer and application layer, and using the

event notification concept to enhance the level of communication
between a server and its clients, using an exception handling model for

4

the safe ten-nination of the application in the event of failure as well as

classification exception type, and using the concepts of distributed

shared memory (e. g. JavaSpace service) for both remote system

coordination at run-time and for storage of the required information

for system coordination to achieve lifetime management.
Software agents: the work proposes the extension of the Beliefs,
Desires, and Intension (BDI) model is EBDI to underpin the software

control of self-governing systems. The system, using BDI concepts

compare its current behaviour (i. e. beliefs) against its goals (i. e.
desires) generates a decision (i. e. intension) that represents an actual

action.

In addition, this work follows an experimental research approach by

aiming to develop, build and test new models of software meta-control

and the associated baseline architecture and autonomic middleware

control services.

1.4 Contributions

This work makes a number of novel contributions, all of which have been or are
being submitted to relevant research publications [6-11]. There are summarised
below;

Baseline architecture and model: which is influenced by and grounded in a

range of current research on high-level software control, coordination,

autonomic computing, deliberative systems, normative systems and

adjustable autonomy. In particular, this work defines the requirements and

a software architectural model for a middleware-based control service,

which facilitate adjustable self-governance utility to support the safe self-

adaptation of distributed applications for lifetime management. Based on

the "monitoring-classifying -governing- adapting" model [12], the proposed

architecture encompasses a number of components that include;

monitoring, inconsistency, mismatch or conflict detection and diagnosis,

solution generation, solution model checking, enactment and system

reconfiguration (Chapter 6).

5

2. Software meta-control model: which represents how distributed

applications services interact with their associated middleware service

management and control services. The main elements are outlined below:

- The Service Manager is concerned with managing its service conflicts.
Hence for each service there is a manager that looks after that service. The

service manager has a hierarchy of control scripts/tasks that are:

9 The monitoring model uses a set of control rules to check

monitored behaviour and architectural configuration and hence

detects conflicts.
The diagnosis model involves the execution of control rules,

activated by conflicts that identify and classify the conflict types to

provide the basis for the selection of a conflict resolution operator.

The repair model is specified using contract-based assertions, pre-

conditions and typical operators to provide operations that resolve

a service's conflict. These operations are provided as primitive

operations integrated into the service manager. Three key

augmentations to a model are required to allow the appropriate
decision to be taken for the detected conflicts. These are

notification, repair operators, or thrown appropriate exception.

Whichever is chosen to resolve the conflict, at the end of conflict

resolution stage, the service state is stored in a shared space
(JavaSpace Service), which is again monitored by the System

Controller

" Adaptation Engine: in which the service manager has to adapt the

service according to proposed changes.

The System controller is responsible for establishing and managing the

coordination of the overall system's services and ensures that the
interrelated system services are maintained and coordinated. The controller

regularly checks the service state, stored previously by the service

manager in the distributed shared space. The system controller applies the

appropriate strategy according to the state; and contains three main models
for the control of the system. These are:

6

9A monitoring model that has the ability to collect and store the

information that is required to support and guide the resolution

strategies within the control process. This model starts by checking

the distributed shared space (e. g. JavaSpace, or T-Space). This is a

resource or service shared between the distributed systems over the

network. Each service manager stores its service state and this is

received later by the system monitoring model to check the

system's service states and starts the control process sequences

The system repair strategies model that determines when, where,

and how the repair or adaptation is required. The repair strategies

must consider the functions of the services/application, the

operating enviromnent and its attributes and properties. Our

resolution strategies are used to evaluate the effect of various

alternative solutions based on the BDI model of deliberative

systems [13].

The system reconfiguration model that applies the required

reconfiguration attached to the resolution strategy. This is

dynamically interpreted from an XML document to a run-time

executable model. For example, if the resolution strategy selects an

alternative service to a failed one, the reconfiguration system

should establish the required changes that result from the

resolution strategy dynamically at runtime. For example,

getNewManagero, notifyCliento and newConnecto,.

* The system associated interpreter model that is used to translate the

external fonnat (e. g. XML) of repair strategies or operators to a

lower-level and executable level that is used in the code, therefore

this model allows run-time changes within the code without the

need to recode or recompile the system again.

3. An autonomic control middleware service: which includes a programming

model to facilitate the development of adjustable-autonomic control

middleware services that would facilitate customisation of self-adaptation

control strategies and self-governance policies including norms and

7

authorities. Also, a control strategy markup language and associated
interpreter has been developed to achieve a level of software "separation of

concerns" and the externalisation of control models and knowledge from the

core controller logic (Chapter 7-8).

1.5 Scope

In this research we propose a new control service to enable next generation software

systems that can manage their own runtime structural or behavioural changes in

reaction to, for example, a set of unpredictable hardware and/or software failures. In

particular, this work focuses on:

"A new middleware control service, providing systems with a

required functionality and knowledge for dynamic autonomy. In

Table 1.1, we illustrate two main categories that focus on either

actions or attributes that could change values, or actions and

operations related to the services coordination and/or interactions

with each other. This also explains the effectiveness of these changes

on the system itself and its services.

"A generic capability for developing our control service, for

example, the XML format.

"A runtime demonstrator to test the theory and illustrate the

feasibility of the approach by detecting errors and inconsistencies

and taking corrective action without disrupting ongoing processes.

8

C atcgory Action/Change EfTect

Service Related Attributes Pcrforniancc/QoS

Execution Servicc Functionality

Lcasing/Contracts Clients Rcqucsts

Service Availability Dependence

F_O _ýerations
Application Events Handlers Pcrformancc/QoS

Services Listeners Execution Time

Management Process Execution Latency

Table 1.1: Management categories of changes and effects

Furthennore, we tested our approach capability on three application examples. These

are the GridPC example and the other two from an existing Jini application, namely
EmergeITS, which is intended to realize the concept of a 3inI phone service and web-
based information service in Intelligent Networked Vehicles. For example, the 3inl

phone scenario is as follows:

0 The demonstration has been applied to a 3inI phone service that allows a

mobile phone or Palm device to be used in one of three different modes,

subject to the requirements of the user and service provider availability.
a The service manager service monitors the application service and reports its

service status in the JavaSpace for the system controller service.
0 The system controller checks the system desires against current beliefs (i. e.

service manager report) and uses distributed shared memory (e. g.
JavaSpace) as a tool for achieving system coordination.

0 The negotiation and coordination of the overall system's services ensures
that system sequences are maintained, coordinated and reconfigured using
the appropriate strategy provided in an XML document.

1.6 Thesis Organization

The thesis is divided into ten chapters and is organised as follows:

9

Chapter I provides a general introduction to the work, challenges, contribution and a

structured thesis outline.
Chapters 2 and 3, introduce the relevant background theories, principles and/or
technology that are used or considered important to the understanding and
development of our proposed model, outlining the required features of a self-adaptive
autonomous based model. The survey covers several areas of distributed systems
including, Service-Oriented Programming (SOP), Distributed System Development

and Management, Middleware Technology and Computing Autonomy. Finally, the

main problem to be addressed is defined.
Chapter 4 provides a literature review of related work drawn from a range of fields

including; static distributed system management approaches and the dynamic

approaches used so far. The thesis provides a comprehensive survey of related
literature and details the various uses and understanding of both static management
approaches or computation model management and dynamic management

approaches. Static management approaches require human intervention during the

management process such as conflicts resolution and coordination approaches and,

strategy and plans representation approaches. On the other hand, the dynamic

management process requires no user intervention during, for example, policy-based
management, event-based management, architecture-based management or autonomic

management. Finally, we present the required approach to establish the lifetime

management processes of distributed software systems.
Chapter 5 presents the requirements of the proposed control service to support the

autonomic management of self-adaptive software.
Chapter 6 describes the architectural design of our approach. A range of related

research such as high-level software control, coordination, autonomic computing,
deliberative systems and normative systems that influenced this designed are

considered.
Chapters 7 and 8 provide an implementation approach using examples drawn from an

on-going research project by evolving three application examples, GridPC, a 3inI

phone service and a web-based application service.
Chapter 9 presents an evaluation of our proof of concept, given the assumptions of
the previous chapters and using two main applications, which are the 3inlphone

application and a sorting algorithms application.

10

Chapter 10 presents a summary, concluding remarks and proposed future work.

11

Chapter 2
Background

2.1 Introduction

Prior to the full description of the proposed and developed autonomic control

middleware service and associated functionality to support the design, deployment and
lifetime management of distributed self-adaptive applications. Therefore, this chapter

presents existing systems and techniques that are considered important to the

understanding and development of autonomic middleware control service to support
distributed self-adaptive software.

2.2 Self-Adaptive Software

R. Laddaga [2] gives a good definition for self-adaptive software as:

Self-adaptive software evaluates its own behaviour and changes
behaviour when the evaluation indicates that it is not accomplishing what the

software is intended to do, or when better functionality or performance is

possible... "

As noted by Laws et al. [14] the primary ambition of the self-adaptive software

approachis

to devolve some of the responsibility for evolutionary activity to the

software itself Essentially, this requires embedding equivalent elements of the

human software evolution process in the software itself, thus allowing

autonomous adaptation to local conditions during runtime. Effectively, such

software must be capable of detecting the needfor change, either to address

changing external conditions or for internal performance-related reasons,
determine which elements to change and how they should be changed,

12

planning and enacting the change andfinally verifying the effectiveness and

robustness of the resulting solution. "

Most notable progress towards achieving such a vision has followed three guiding
directions namely; control systems theory, dynamic planning systems and self-aware
systems.

The main three elements considered by control theory are (1) the external environment,
(2) the productive element of the system consisting of physical objects that are viewed

as a factory or plant interacting with and providing products or services for that

environment and, (3) A model-based self-control unit that ensures the plant meets the

policies and norms of the environment, as the main characteristic that can distinct the

structure of the plant is its physical makeup object is alive paralleled with the lifetime

of the control system. Therefore, research has concentrated on the flexibility of the

system's control element, in addition to the development of a hierarchy of even more

complex control models, each designed to provide increasing adaptive capability to the

control unit.

Consequently, plant management is achieved by integrating the control unit with both

the system's goal and plant's model. The feedback control process is used here to

monitor and evaluate the system performance in respect to its goals, and then the

control unit according to its control goal selects appropriate control actions. Such

approaches rely to some extend upon the plant's constancy and consistency and the

stability of both the goal and the environment.

Pararneterisation of both the controller and the plant model in an adaptive control

approach have been employed to adopt adapting changing goals caused by unexpected

envirom-nental disturbances, and estimating mechanisms are also provided to address

uncertainty in the plant model and subsequent control action. The integration of
databases of plant models, approaches and associated system controllers could increase

the flexibility of the changes in the system's structure allowing the appropriate model

and controller for any particular situation to be selected, thus facilitating a

reconfigurability stage of the whole system.

Such reconfigurability is directed towards the control elements of the system. Kokar et

al. [15] have addressed the adaptation of both the control elements and software plant
by incorporating both a high-level specification database and component database that

13

could make the reconfiguration of the control elements and software plant achievable
[15]. However, such an approach requires that the software be provided with a degree

of awareness of its goals, thus for evaluating the configuration of the system requires
both the current intention and the external environment [16,2]. However, the problem

of evaluating multi-part systems is still not yet fully solved and remains challenging as
there is a need to measure system components in order to determine normal and

abnormal behaviour and therefore by identify either a solution or a replacement for

such components.

Hence, the software system should be provided models of both its internal specification

and capability and the external environment. In addition, these should have a self-

adaptive capability thereby providing a degree of self-awareness to the system and
thereby allowing changes raised in either internal or external circumstances to be

identified [17]. Hence the system can perform the deliberative processes of

performance evaluation, reconfiguration and subsequent adaptation. In general, these

require systems to have the ability to decide which alternative is appropriate in response
to a negative evaluation [2]. Such a view is integrated with the notion of dynamic

planning and with that of the self-adaptive software area. Here, the system plans and

possibly the system itself could be require changes in cases, for example, where no
longer their plans are not suitable for new changes or external environments [16].

Of courses the attachment of such control systems to the operational software will add

much overhead and complexity to the executing software, as Robertson et al [2] note:

"Managing complexity is a key goal of self-adaptive software. If a program

must match the complexity of the environment in its own structure, it will be

very complex indeed! Somehow we need to be able to write software that is

less complex than the environment in which it is operating yet operate

robustly. ".

Avoidance of such complexity and overhead in the sclf-adaptive software system may

be addressed by presenting the system in a supporting architecture that is responsible

for model maintenance, performance monitoring and evaluation and action adaptation

[18,19], thereby freeing the operational units to pursue their respective objectives [2].

14

2.2.1 Self-Adaptive Software Compared to Control System
The task of developing self-adaptive software is comparable to a control system and

concerns new techniques of building a robust program with a control system in its

structure. Such ideas are borrowed from control system thereby and adapted to self

adaptive software [2].

An important problem for self-adaptive software is evaluation. Osterweil and Clarke

[20] see this as a continuous measurement of the gap between the software system

operation and its requirements, thereby providing the basis for self-improvement

efforts. They describe the transition of the responsibility for the testing and evaluation

of software from humans into automated tools and processes and suggest a process of

automated continuous self-evaluation.

Meng [3] makes explicit the relationship between control system theory and self-

adaptive software by developing a descriptive model of self-adaptation based on control

systems and borrows the feedforward and feedback control paradigm from control

theory. This considers that self-adaptive software consists of two components: the feed

forward element that provides the specification of the software and its predictability

and the feedback component that receives runtime feedback from its environment.
However, the general model of self-adaptive software can be viewed from many

different aspects, for example, a new programming paradigm, new architecture style,

new modelling paradigm, and new software engineering principle. Meng [3] addressed

the evaluation of self-adaptive software based on their different aspects, as follows:

a As a new programming paradigm, reflection programs could be modify

themselves at run time and change their behaviours and as such are close to

the concepts of self-adaptation. However, such programs cannot determine

when and what the program needs to modify itself at runtime. Self-adaptive

software generates evaluators at run time to check the deviation of the state

of the program from its goal, then the control regime computes the distance

between the current state and its goal state and adapts to maintain its

stability and robustness.

m As a new architectural style, self-adaptive software needs to fonnalize the

feed forward and feedback controller concepts and configuration, which are

system structural components that are part of the Architecture Description

Language (ACL). The "configuration" and "controller" architecture

15

description vocabulary in self-adaptive software maintains stability and

settling time when the system transfer from one configuration to another.
m As a new modelling paradigm, reconfiguration in terms of self-adaptive

software concepts uses adaptive control to allow the system to switch a

control regime based on the runtime situation. Self-adaptive software
transfers the feed forward process from the model to the executable and

synthesises, however the feedback process transfers from execution to

reconfiguration and hence to runtime re-synthesis.
a As a software engineering principle, a software system can be seen as a

control system incorporating adaptation and reconfiguration based on

adaptive control theory and, generalizes the control model as a concept of

algorithm selection in software engineering. The system is provided with
different algorithms and software adaptation becomes choosing a suitable

algorithm for a particular enviromment.

2.2.2 Self-Adaptive Software Research Directions
There are further research directions for self-adaptive software. The first technology
here is transient management, where self-adaptive software reconfigures itself to ensure

robust performance of the program. Reconfiguration means any modification or change
in systems parameters, however, although modifications may be more robust they may
be also demonstrate undesirable transient effects. G. Simon, T. Kovacshazy and G

Peceli [21] investigated the two important issues in transient management, which are
(a) management that depends on the suitable selection of a structure that features of the

transient properties. A more formal definition of reconfiguration transients is "the

difference between the measured value in the reconfigured system, and the idea value
in reference system. The reference system is a hypothetical system, which operates in

the new mode for a long time " [15], and (b) the runtime control to support the

transients management. The second technology is a model-based generative technology

called 'Model-Integrated Computing' [22], and is applied to self-adaptive software.
Transferring/Porting Model-integrated computing from design time to runtime helps in
the design and implementation of dynamic embedded systems and these embedded

models are independent and applicable to a reconfigurable architecture, which is an
essential constraint for self-adaptation.

16

2.2.3 Example of Self-Adaptive Software Application
The aim of self-adaptive software research is the provision of an integrated software
environment in which runtime data sets drive the organization and control of behaviour

of software systems. Realizing such an aim depends on developing technologies that

produce robust, fault-tolerant systems easily.

The Containment Unit supervisor "... which is an active entity designed to represent a
family of optimal contingency plans behaviour programs B-Pgms ... " [23] for tracking

a human subject was able to handle individual sensor faults as faults in the runtime
[23]. This work provides a Port-Based Adaptive Agents Architecture (PB3A) [23] to

facilitate the development and deployment of self-adaptive, distributed, multi-agent

systems. The architecture specifies an agent-to-agent communication scheme using
input and output ports and includes the necessary code for migration. It also provides

specifications of how a Port-Based Agent (PBA) should be structured to allow agents to

become self-adaptive. A PB3A module allows agent-to-agent communication testing to

be done in isolation, allowing the system to built rapidly.

2.2.4 Self-Adaptive Software and Reflection
Reflective architectures enable programs to access thier own structural, behavioural and
computational state to compensate for any changes in resources, context or
environment. Reflection provides the tools for writing such a program but does not
describe how it is done [4]. Self-adaptive software has a computation model to compare
what the current program with the intended program and modifies the semantics of the

current program to correct it. Shaul [24] argued for and described the use of reflection
to support self-adaptive software for a network computing environment: The quality of
self-adaptation, the degree of adaptation, robustness and the availability were explored
by developing two frameworks using Java reflection, namely the HADAS and FARGO

projects. These focused on intra and inter component adaptation mechanisms [24].

17

recon

kernel iii: MctaObject c-Composer
4

reconfigure(op, n) _I
crcate(m, n

+E----o
C

--o
C

Figure 2.1: The Primary Meta-Object of Object [25].

Figure 2.1, illustrates a sequence diagram for a required reconfiguration that is based on

computation reflection principles of the meta-level objects to undertake the monitoring

and managing of an objects base set. In this case, the meta-object enables the base

object to request a composer method for reconfiguration [25] , so a reflective software

architecture and meta-level protocol represent a partial solution for creating self-

adaptive software.

2.3 Autonomic Computing

Autonomic computing is an approach to self-managing computing systems with

minimum interference; these control key functions without conscious awareness or

involvement and increase productivity while hiding the complexity from users.

Autonomic computing systems have the ability to manage themselves; they

dynamically adapt to change in accordance with system policies and objectives. Self-

managing systems can perform management activities based on situations they observe

or sense in the envirorunent [26]. The main characteristics of an autonomic system are

detailed in [26] , as follows:

An autonomic computing system needs to "know itself'; its components must

also possess a system identity. It also detailed requires knowledge of its

components, current status, ultimate capacity and all connections to other

systems, to govern itself.

2 An autonomic computing system must configure and reconfigure itself under

varying (and in the future, even unpredictable) conditions.

18

n An autonomic computing system never settles for the status, it always looks for

ways to optimise its workings. It monitors its constituent parts and fine-tunes

workflow to achieve predetermined system goals

m An autonomic computing system must be able to recover from routine and

unusual events that might cause some of its parts to malfunction, and discover

problems, then find an alternate way of using resources or reconfiguring the

system to keep functioning smoothly.
w An autonomic computing system must be an expert in self-protection. Also it

must detect, identify and protect itself against various types of attacks to

maintain overall system security and integrity.

m An autonomic computing system must know its surrounding environment and

act accordingly. It will find and generate rules for how best to interact with

neighbouring systems. It should negotiate the use by other systems of its utilized

elements, changing both itself and its environment in the process of adapting.
While an autonomic computing system independent in its ability to manage
itself, it must function in a heterogeneous world as well.

m An autonomic computing system anticipates the optimised resources needed

while keeping its complexity hidden without involving the user in that
implementation.

So autonomic computing will lead to automated management of computing systems.
But that capability will provide the basis for much more, such as seamless e-sourcing
and grid computing [27] to dynamic e-business and the ability to translate business
decisions that managers make and policies that make those decisions a reality.

2.3.1 Autonomic Computing Architecture Concepts
A standard set of functions and interactions govem the management of the computing
system and its resources, including client, server, database manager or Web application

server. This is represented by a control loop (Fig. 2.2) that acts as a manager of the

resource through monitoring, analysis and taking action based on a set of policies and

rules [26].

19

Control

Decide Resource

P- aS-III-e,

Figure 2.2: The confrol loop architecture.

Thcsc control loops, or managers can communicate with cach other in a pecr-lo-pcer

context and with higher-level managers. For exampic, a database system neccis to work

with the server, storage subsystem, storage mamigenicilt software, the Web server and

other system elements to achieve a sclf-Illanaging IT environment.

! urtonon1c
L olutlons

Composite
Resources

Resource Elements

Figure 2.3: The hierarchy pyramid ofthe autonomic computing technologies 1261.

The previous pyramid (Fig. 2.3) represents the hierarchy in which autonomic

computimy teclinologics will operatc and Is explaincd as follows: I

III the lower laycr of' the pyramid consists of- the rcsource clemcnis of all

enterprise networks, sci-vci-s, storage devices, applications, middimarc and

personal computers. Autonomic computing begins in the resource element laycr,

by enhancing individual COIIII)011CIItS to COIII-IgUrc, optimise, Ileal and protect

themselves.

0 111 tile nlidd1c laYcr of tile pyramid, the resource elenicnts are grouped Into
COIIII)OSItC I-CSOLII-CCS, WhICII I)Cill n to communicate witil each othcr to create

sclf-managing systcnis. A pool of servers that work together to dynamically

ad ,
just workload and configuration to mcct certain perfionlimicc and availability

thresholds can represcnt this. It can also be represented by a combination of

20

heterogeneous devices (databases, Web servers and storage subsystems) that

work together to achieve perfortriance and availability targets.

n In the highest layer of the pyramid, composite resources are tied to autonomic

solutions, such as a customer care system or an electronic auction system. True

autonomic activity occurs at this level. The solution layer requires autonomic
solutions to comprehend the optimal state of business processes-based on

policies, schedules, service levels and so on, and drive the consequences of
process optimisation back down to the composite resources and even to
individual elements.

2.3.2 Relevance to Autonomic Computing
Autonomic computing requires some open standards for the managed elements' sensors

and effectors and for the knowledge to share between autonomic managers that

describe the interaction between the elements of an IT system. Some existing and

emerging standards relevant to autonomic computing include:

m Common Information Model

s Internet Engineering Taskforce (Policy, Simple Network Management Protocol)

m Organization for the Advancement of Structured Information Standards

(OASIS)

0 JavaTm Management Extensions Storage Networking Industry Association

a Open--Grid Service Architecture and Infrastructure (OGSA&I)

 Web Services Security

2.4 Summary

In the last decade, managing and changing systems required human support, but in

order to be practical, distributed applications must be able to adapt automatically, with

minimal human intervention. Adaptation in most applications so far has been
implemented in a fairly ad-hoc manner. The code that deals with adaptation is typically

embedded in the application/prograrn code. While this may be suitable for local

adaptation, it is not viable/possible for distributed networked systems, which may

require change in the application structure or need some kind of coordination, which is

still complicated from the implementation view of running systems, and new problem
solving tools and functionality.

LIVERPOOL JOHN MOORES UNIVERSITY 21
LEARNING & INFORMATION SERVICES

The management of distributed software components within a heterogeneous, multi-

organisational environment will be important for future distributed systems. However,

current management techniques and standards have emerged from the communications
world and are still focused towards the management of every hardware devices or

connections. For example, SNMP provides a very low-level, variable oriented approach
to management, which is analogous to remote debugging.

In this chapter we reviewed the background of the principles and definitions required in

our research beginning with the notion of self-adaptive software and its categories, and
its feature that can help us to develop our approach in the distributed system area. The

following section provides an overview of autonomic computing concepts and

requirements. Having identified the need for computing systems with self-management

and control, we then presented an overview of autonomic computing and its main

characteristics as a basis for such efforts as e-science and grid technology. This chapter

addressed the main relevant background theories and principles used in this work.

22

Chapter 3
Distributed Computing Management

3.1 Introduction

Chapter Two presented an overview of the fundamental requirements to support

runtime self-management of distributed applications especially in an unpredictable

environment. This highlighted the increasing demand to understand the research and

technological aspects relevant to supporting distributed application management and

self-management in particular. In addition, a brief discussion of how to use these

technologies as a platform for our study was presented and what types of extensions are

required to facilitate safe and dependable applications self-management.

This chapter provides an overview of the Service-Oriented Development and
Programming (SOP) approach, followed by a brief description of object-oriented

middleware technology with a focus on Jini middleware services. This has been used in

our proof of concept implementation of the proposed autonomic control middleware

services. This is followed by a discussion of the limitations of current middleware
technology specifically with regards to runtime change control for the safe and

predicable self-adaptation of distributed applications.

3.2 Service-Oriented Development

Many technologists contend that SOP is the next programming revolution since Object-
Oriented Programming (OOP) [28]. Since the introduction of JavaTm-based middleware

- Jini technologies, SOP has attracted increased popularity within the web services
community [29]. Based on the SOP model, the OpenwingSTm architecture has been

refining the SOP model, which enables a new generation of service-oriented computing
applications and adds the idea and the concept of modelling the programming problems
and how to solve these problems.

23

The Opcilwiligs"I SOP modcl 1281 slial-c's a flumbo- of' architcOllf-al elements With

c0l"Pollcilt-hascd software see Figure 3.1 below, namcly:

m Contracts: a Contractual 1111crillce that dehilics Interactions I)Ctwccll the

C()Illl)ollcllts, the Syntax and scillantics ol'a Single

0 Components: 3`1 party reusable, deployable Computing elciliclits, Which are

independent of' protocols, platilorms, and environments. There are scveral

architCCtUral aspects important to service oriented computing.
C'Ollllcctol's: encapsulates the details 1101- a specilled Contract. It Is ý111

individually dcploycd cicnient that Contains a liscr proxy and a providcr

proxy.

m Container: the service that enables components execution, in the nican tinic

managing their availability and the security of the code. F-xalllples of'

containers in other architectures Include E. IB Containers (e. g. Hiterprisc Java

Beans), Web Servers (e. g. contain servIcts) and Wch Browscrs (e. g. colit, "ll

app lets).

m Contexts: that cnabIcs a deployabic piLig and play component that dcscribcs

the details of' installation, security and lookup.

(oll le vel (II.

001.0i
.

Figure 3.1: ADL' Concepts Architecture 1281.

0 scl-vice: are Component capahl I itic's to Other compoliclits and Is dclincd by all

interflacc that provides a SellialltIC bCIhIVIOLII-, d SI)CCIfICclt]Oll 111d I SI)CCIIIC

syntax definition. Examples of' Intcri'tice Definition Languagcs (IDL) IIICILRIC
Common Objcct Requcst Broker ArcllitCCtLIl-C IDL WId MICI-OSOR IDL

(M 11) tj

I A"chilecture Description Language ADI- is service-oriented programming modelling language, which
contains all the aspccts ofcompownts, connectors, roles, and ports.

24

'HIC III-St 1111-CC I'Lilly 1`1111CUOM11 I'l-ammorks I'M- SoP arc Java"'I", and

Openwings"I" (Fig. 3.2). Some ofthe pattall for describing Sol, Illay he supported III ýI

Java"'m programming cimi-onnicnt only and it will bc vcry difficult to Implcment

Service-Oriented Programming III otliel' JIIigLMgCS LIIItIl tlICSC C, 11), Ii)llltlCS 11-C l)I-OVIdCd

to other programming langI. MgCS2

ava'ri
a rI ts

Jii Tro

L

D

Lookup

. i: -. Security (')EýrvIc
U'sel.

11 -1 te [I c: 1c: e
Tra Ion
C (-)(-) rd in ato rs

opellw ings
(-, C)III W. nlent
Connoc, ,

tol
C, c)ntllll_lý_l
--ý xI Gont
p c) IIc:
PI ov",
11.1-st-alk-I
tvl ---I ri I- i (I ý" rn I- II

Figure 3.2: Frameworks comparison for SOP support 1281.

An essential aspect in a service-oriented architecture is how Compo"c"Its locate

services. Service location information is normally hard coded in software componcrits,

or saved in a configuration filc that is read on start Up by the components. In rcality, a

networked system is dynamic; software and hardware components are replaced or

Upgraded, nodes enter and leave the network thereby creating a large management

problem for statically configured systems. These systems are simply not built to recover

from nctwork crrors or failed services.

Solvino this problem reqUircs the usc 0j, two colccl)ls, 11ý1111cly: 1) cliscovery scrvice and

service lookup, as components "discover" tile environment in which theY are
deployed and dynamically "lookLIJ)" the services tlicy nccd.

3.3 Distributed Middleware

Over tile past decade, tile adoption of Coliiiiici-clil-Ol'l'-'I'IIC-Sllcli, (('O'I'S) Illiddlewarc

products across the sot-tware Industry has gained lltl!, c attclitioll. 'I'lle two key reasons
1,

2 The middleware tcclinolopies are supported Im service-oriented architectures, iricludlllý Still's .
1,11,

Technology, the CORBA Trader Service, and Microsoft's Urm, ci-sal Pltig'ri'lllay arld the Ninja rescarch
1)"(). Icct under development at I JC Berkeley.

25

for this growth are Internet usages and the need to integrate heterogeneous legacy

systems to streamline business processes.

Distributed middleware plays a very important role by providing functions and API that

effectively bridge the gap between the network operating system and distributed

application components and services. Middleware is defined as a set of services

required for providing connectivity and management services in a distributed

computing environment. These services include database connectivity, messagingt

remote procedure calls, object request brokers, transaction services, timing services,

and naming services.

3.3.1 Categories of Middleware
The main categories of middleware are described as follows:

m Distributed Tuples middleware, distributed relational databases offers the
abstraction of distributed tuples, as its Structured Query Language (SQL) allows

programmers to manipulate sets of these tuples (a database) with intuitive

semantics and rigorous mathematical foundations based on set theory and

predicate calculus. Linda is a framework offering a distributed tuple abstraction

called TuPle Space (TS). Linda's API provides associative access to TS, but

without any relational semantics. It offers spatial decoupling by allowing
deposit and withdrawal processes to be unaware of each other's identities.

Temporal decoupling is also offered by allowing them to have non-overlapping
lifetimes.

m Remote Procedure Call middleware extends the familiar procedure to offer
the abstraction of being able to invoke a procedure whose body is elsewhere on

a network.

0 Object-Oriented middleware provides the abstraction of an object that is

remote yet whose methods can be invoked just like those of an object in the

same address space as the caller. Distributed objects incorporate all of the

software engineering benefits of normal object-oriented techniques such as

encapsulation, inheritance, and polymorphism and make these available to the
distributed application developer.

w Message-Oriented middleware (MOM) provides an abstraction of a message
queue that can be accessed across a network and a generalization of well-known

26

operating system constructs such as the mailbox. Many MOM products offer

queues with persistence, replication or real-time performance. MOM offers the

same kind of spatial and temporal decoupling that Linda does.

Web Service Middleware: that is a middleware that enables and simplifies web

application-to-application connectivity. Web services differ from other forins of

middleware as it is based on XML standards, a user understandable form.

This section provides an overview of some of the main object-oriented middleware and

web service middleware.

3.3.1.1 CORBA Middleware Technology
The Common Object Request Broker Architecture (CORBA), developed by OMG, is

an open and vendor-independent solution to enable distributed application networking.
Here, using the Internet Inter-Orb Protocol (110P), a CORBA-based program running

on distributed heterogeneous 3 hosts can interoperate with a CORBA-based program
from the same or another computer on almost any o ther computer, operating system,

programming language and network. CORBA protects applications from heterogeneous

platform dependencies. CORBA defines interfaces, not implementations. It simplifies
the development of automated distributed applications, by encapsulating the following

[30]:

Object location.

Connection and memory management.
Parameter de/marshalling.

Error handling and fault tolerance.

Object/server activation.

Concurrency.

High confidence.
CORBA Architecture.

As shown in Figure 3.3 below, CORBA specifications group objects into four

categories, namely [30]:

3 Running on any computer on almost any platform, operating system, programming language, and
network.

27

Application Mirtical Horizontal
Objects C OR BA Facil itl es C OR BA Facilities

qp,. T, or
"4

CORBA Servioes

Figure 3.3: The OMG-CORBA Architecture 1301.

n CORBA serviceSTM: which provide basic performing functionality for

distributed object applications. Such services may provide system library calls,
for example, larger services, transactions and securitY. This is included in the

naming service, object trader service and new persistent state service.
m The Horizontal CORBA facilities sit between the CORBA services and the

Application Objects (see below) and are facilities that are potentially useful

across business domains. There are four horizontal CORBA facilities: The

Printing Facility, the Secure Time Facility, the Internationalization Facility and
the Mobile Agent.

u The domain CORBA facilities: IDL allows a standard interface to be defined for

standard objects that every company in an industry can share.
w Application objects are provided in most parts of the CORBA architecture.

Since they are typically customized for each individual application and do not
require forinalization, this category identifies objects that are not affected by

OMG standardization efforts.

CORBA applications are composed of objects, which are individual pieces of running
software that combine functionality and data. For each object, an interface OMG IDL
[31] is defined. The interface is the syntax part of a contract that clients can invoke

when offered by the server object. Any client can invoke an operation it wants to

perform and to marshal the arguments that it sends. When the invocation reaches the

specified object, the same interface definition is used to unmarshall the arguments so
that the object can repeat the requested operation with them. The interface definition is

then used to marshal the return results, and to unmarshall them when they reach their
target [3 1].

28

The IDL interface definition is independent of any programming language, thus OMG

has standardized mappings from IDL to a range of programming languages including;

C, C++, Java, Smalltalk, COBOL, Ada, Lisp, Python and IDL script [3 1]. Clients can

access objects only through their IDL interface, invoking only those operations that the

object exposes through its IDL interface along with input and outputs parameters,

which are included in the invocation.

Cliet-A Obj p ct
Implemertdion

I ID

IL

-1-1
1

-AN, -1

Sti ib Sketton

L--f
-Request]--ý

01ý ect Request Broker

Figure 3.4: A request passing from a client to an object implementation [311.

When the IDL is compiled, both client stubs and object skeletons are automatically

generated. Because IDL defines interfaces, the stub on the client side operates with the

skeleton on the server side, even if the two are running on different ORBs or are

compiled from different programming languages (see Fig. 3.4 above). Every object
instance has one unique object reference that is used from the client side to direct their

invocations and identifying to the ORB the exact instance for invocation [32].

CORBA also supports a remote invocation protocol to facilitate remote object
invocation. As illustrated in Figure 3.5 below, this process works on two levels [3 1]:

1. The client knows the type of object it is invoking and the client stub and object

skeleton are generated from the same IDL. This means that the client should
know exactly which operations are required for invocations, what the input

parameters are, and where they have to go in the invocation. As soon the

invocation reaches the target, all the required data is to hand.

2. The client ORB and object ORB must agree on the same protocol to specify a
target object, operation, input and output parameters of every type that they will

use and how these are represented over the wire. OMG has defined the standard

protocol HOP.

29

Client II Object II Client II Obiect
14-11

"u, II
ORE 1

Hop
ORB 2

Protocol

Figure 3.5: Interoperability using ORB-to-ORB Communications 1311.

3.3.1.2 Universal Plug and Play
Universal Plug and Play (UPnP) is an architecture for peer-to-peer network

connectivity for PCs, intelligent devices and other networked devices. UPnP has been

generally targeted at home networking and is built on Internet protocols including;

TCPAP, HTTP and XML, enabling devices to automatically connect to each other and

work together. UPnP is independent of any particular operating system, programming
language or physical medium [33].

Network Address Translation (NAT) is an Internet Engineering Task Force (IETF)

standard used to allow multiple PCs or devices on a private LAN. This translates a

private IP address and port number to a public IP address and port number, tracking

those translations to keep individual sessions unimpaired.

Each application must use a public address and a unique port number for each session.
Large organizations have professional staff to handle their corporation applications
with NAT, unlike smaller organizations or people at home. So UPnP-NAT can
automatically solve many of the problems that occur with applications, making this an
ideal solution for small businesses and home appliances. Therefore, UPnP mainly
supports home appliance consumers and small businesses and organizations [33].

UPnP has common protocols and procedures to guarantee interoperability among
network-enabled PCs, appliances, and wireless devices [34].

UPnP defines a set of common protocols/services that devices can use to join a network

and describe themselves and their capabilities, enabling other devices and users to use it

without a complex set up or configuration. The six main layers of UPnP architecture, as

shown in Figure 3.6 below are [33].

30

CONTROL
I
EVEr'ATING

I
PRESU'ATATIor-i

2 DE30RIPTION

I IIISCOVERV

0 ADE-REEI)IN,: ý.

tjpnp*ý six layl, rs 1-olmst of IP
doicriptian of UR[s mid selvices: OI)tio", 11 (OlIt"Ol Of
OWN' UNIP d(, O(es: elvent nmsaging: ad presentation,
or the Web pagp (ot- the devico,. Layei's 0 ý) 2 eXISt ill 111
UNP-enatAM devi(es aml control points.

Figure 3.6: UPOI, Function's Layer 1351.

" Device addressing.

" Device discovery.

" Device dcscription.

" Action invocation.

" Fvciit messaging.

" Presentation, or liuman intuface.

For data transmission, UPO does not move byte codes or Use ActiveX controls. It has

an independent operating system bUt is based on various network standards, in

particular, peer-to-pcer or ad-hoc networking. Devices can use a Dynamic Host

Configuration Protocol (DIICII) server or Auto 113 (Internet Protocol) to auto"aticailY

select an IP addrcss From a range of'otlicr addresses [33].

As soon as the device connects to tile network or becomes oilline, tile device describes

itsel f using TCPIP flor network control point communication (tile conti, ol point cold(I
bc an Opcullol. 'S Stall . oil oi-jusl anollicr (IcOcc oil ilic lictwork.). Control points call
discover devices by searching through tile entire network. The device, using XMI.,

describes itself aild its service and call be In'tiated by rccc1v"l9 "lessages 1`1_0111 tile

control points. Devices send events to control points to subscribe to a device's event.
This is called "event messaging" and holds a report of-tic statLIS of each device. Also, it

31

sends the presentation or Web home page to the control point as a part of the device

description.

The main function and method provided by the UpnP-NAT are, for example, learning a

public IP address, enumerating existing port mappings, adding and removing port

mappings and assigning lease times to mappings. The real cases that UPnP Nat can use
include [35]:

" Multi-player gaming

" Peer-to-peer connections

" Real time communications

" Remote Assistance (a feature in Windows XP)

3.3.1.3 Web Services Middleware
Web service is middleware that enables and simplifies web application-to-application

connectivity. Web services differ from other forms of middleware by being based on
XML standards. In principle, these standards will create hub-and-spoke configurations,

rather than the so-called spaghetti code that results from point-to-point connectivity. In

addition, the computing services offer enabled web-service through the web and are

accessible from any enabled machine with Internet access.

Web services have very important characteristics that are essential to an e-business

environment such as:

Enable interoperability through a set of XML-based open standards.
Enable self-contained business functions that are written to strict specifications

to work with other similar kinds of components and with each other. Most of the

established functions at this stage are messaging, directories of business

capabilities and descriptions of technical services but there are other functions

as well.
Enable systems in different companies to interact easily with each other. In

businesses companies, close cooperation with suppliers and customers is

required, engaging in more joint risk and short-term marketing alliances,

pursuing opportunities of business, and facing the prospect of more mergers.
Companies need the capability to link up their systems quickly with other

companies.

32

m Enable companics with the capability to do niorc busincss electronically, with

more potcntlal business partncrs, in (h I'lcl-clit Ways and at suitable cost.

For example, a company can allow their supplier the ability to see all the products

levels the supplier provIcIcs. ConseclLICIltly, the Supplicl, Call rc-SLIpply Without the need

for separate purchasc orders. Suppliers could build on the basic I'Catffl-CS provided by

web services messaging and scrvicc-description functions flor this kind of' electronic

relationship and lience provide better services to the CLIstonier. Companies could extend

these capabilities to other trading partners.

The foundation of the Web services standard is XML. There are three critical legs of

Web set-vices, all of which are derived from XMI. namely-, Simple Object Access

Protocol (SOAP), Web Service Description Language (WSDL) and Universal

Description, Discovery and Integration (UDDI) [36] although all are still ill

dcvclopmcnt.

Businesses LISC the XML-based Web Services Description LangUage (WSDL) and Web

Services Flow Language (WSFL) to describe their Web services on tile Internet and list

them in an XML-based registry SLICII as the Univcrsal Description, Discovery, "Id

Integration (UDDI). 'mis allows available Web services to be I-ound (see Fig. 3.7

below). A client sends a reqLICSt for a service to tile registry, which tells tile client about

the registered services that SUIt tile Client rc(ILICSt. The Simple Object Access Protocol

(SOAP) IS then LISCd to communicate (LISIng IITTP and XML as the exchange

mechanism) between the applications running on difiCrent platf'ornis [36].

Web Services
Directoty

UDDI LTDDI
II

XVS DL

web Services
I

C. lient I
HT-FP,, '. "-ILfSOAll

Figure 3.7: Web services protocols 1371.

The relevance and importance of cach of' the 1,01lowing teclillicill bencl-Its will vary

greatly firom company to company, application to application and imple'lle"t, 10011 to

33

implementation. If all of these factors are considered together, good results may be

obtained from using the Web Services. The benefits may be considered as [36]:

w Software development automation.

m Streamlining middleware technology.

m Use of standards-based integration.

m Integration with applications and business process management.

m End of duplication of software code, leading to reusability.

3.3.1.4 Ani Middleware Technology
Jini is a Java-based middleware that provides an Application Programmer's Interface

(API) and programmers may write services and components that make use of its core

middleware services. A Jini system or federation is a collection of clients and services

that communicate using Jini protocols [38], where Jini applications are often written in

Java and communicate using the Java Remote Method Invocation (RMI) protocol.

Although Jini is written in pure Java, neither clients nor services are constrained to be

pure Java. They may include native code methods, act as wrappers around non-Java

objects or even be written in some other language altogether.

Infrastructure Programming Model Services

Java VNI Java APIs JNDI

Base RN-11 Javal3cans Enterprise Beans

Java Java Security ...
JTS,

Java Discovery/Join Leasing Printing

+ Distributed Security Trans3ctions Transaction Manager

Jin! Lookup Events javaSpaces Service

Figure 3.8: Jini Architecture Segmentation 1391.

Running a Jini system requires three main components (see Fig. 3.8 below), namely
[38]:

0A service, such as a computation or storage service, etc,

0A client that would like to make use of this service and,

34

A lookup service (service locator) that acts as a brokcr/locator between services

and clients [38].

A further major component is the network connecting all three of these and this is

generally implemented using TCP/IP. The dynamic nature of a Jini system enables

services to be added or removed from a federation at anytime according to demand,

need, or the changing requirements of the distributed applications. In addition, as

shown'in Figure 3.8 above, components of the Jini architecture may be considered in

three further categories [39] namely;

1. Infrastructure: The Jini infrastructure is the set of components that

enable the building of a Jini federation system and defines the minimal
Jini core. The infrastructure is composed of the Java RMI protocol [40],

which enables objects to communicate through Java RMI and a lookup

service (i. e. lookup provides a central registry for services). The local

representative of the remote entities that are involved in the invocation

process is a java RMI concept based proxy. Stubs are the client-side

proxies, while skeletons are the server-side proxies. A stub implements

the same remote interfaces as the remote object it is representing and

forwards the received method invocations from clients to the suitable

skeleton. Skeletons wait until they receive the remote method

invocations and then dispatch them to their remote objects. Stubs and

skeletons look after all the low-level details of communication between

clients and servers. Services are discovered and registered through the

lookup service, which enables the registration of proxies for them. In

particular, a lookup service maps the interfaces that indicate the

functionality provided by a service to sets of objects that implement that

service. In addition, descriptive attributes associated with a service allow

a convenient selection of services based on humanly understandable

properties.
2. Programming model: as defined in the Jini specification, this is a set of

interfaces that enable reliable service construction, including services

that are part of the infrastructure (e. g. the lookup service) and those that

join the federation. The programming model is based on three distinct

paradigms for distributed computing. These are event notification,

35

leases and transactions as detailed below [38]. The Event

Notification, which allows clients to register interest in being notified of

particular messages (i. e. the notification interface) and supports

asynchronous, one-way delivery of such notifications. If a particular

service wishes to support subscription on a notification event, it must

support the notification interface to manage these subscriptions. A

service that wishes to receive notification messages must implement the

notification interface, which is used to deliver a notification event. To

start notification from a particular service, one invokes the subscribe

operation on the notification source interface. The Lease Interface

extends the Java programming model by adding the notion of time for

holding a reference to a resource, enabling references to be reclaimed

safely in the face of partitions. For example, as registrations in the

lookup service are leased, a service must periodically renew its leasing

registration, otherwise its proxy is removed when the lease expires. The

Transaction interface introduces a simple object-oriented protocol

enabling Jini services to coordinate its state changes. The Jini transaction

protocol differs from existing transaction interfaces. The Jini transaction

specification has identified the basic components of a transaction, such

as transaction clients, transaction managers, and "participants". All

interactions between clients, transaction managers and participants are
based on the Java RMI protocol. Transaction clients start a transaction
by contacting a transaction manager through a proxy. The proxy is

obtained by requesting the lookup service for a service that implements

the manager interface. The transaction manager responds with a

transaction object, which will represent the transaction in subsequent

communications and contains information such as an identifier for the

transaction and a proxy for the transaction manager. Clients then start to

interact with participants by communicating with the object and the

operation requested such as commit/abort. The participants use the

semantic object to communicate with the transaction manager. The

transaction manager is responsible for the consistent execution of the

operations and ensures that all participants subsequently know if they

should commit or abort them.

36

3. Services: A Jini system consists of services that can be collected
together to perform a particular task. Services may allow the use of other

services and a client of one service may itself be the service of other

clients. The dynamic features of a Jini system enable services to be

added or removed from a federation at any time according to demand.

Jini systems provide mechanisms for service construction, lookup,

communication and use in a distributed system. Services in a Jini system

communicate with each other by using a service protocol, which is a set

of interfaces written in the Java programming language. In addition,
Jini-based systems define a small number of such protocols that

consequently define essential service interactions. We will focus on two

critical categories, identified by Newmarch [38] and used in this

research, Lookup and Discovery Services: The heart of the Jini

system is a group of three protocols called discovery, join and lookup

(see Fig. 3.9 below). The first two of these, discovery and join, occur

when a device is plugged in. Discovery occurs when a service searches
for a lookup service to register. Join occurs when a service has located a
lookup service and wishes to join it. Lookup then occurs when a client

or user needs to locate and invoke a service described by its interface or

attribute type.

A service provider registers a
service object (pioxy) ard its

service wributeswith
the lookup service

LopLap
SorTka

Service Object

Savice Attributes

Cifel II Sefvkv

, le
ptovider

Senice Object
ISC nice At tributes

Figure 3.9: Lookup, Discovery and Join [401.

From the service's client point of view, there is no distinction between services that are
implemented by objects on different distributed machines or on one machine, as
services are downloaded into the local address space. All of these services should
appear to be available on the Jini network as objects written in the Java programming

37

language and another could replace one kind of implementation could be replaced by

another without change or intervention by the client.

3.3.1.4.1 JavaSpace Services
JavaSpace services are a platform for the design and implementation of distributed

systems and provide tools for building distributed protocols. They are designed to work
with applications that can be modelled as flows of objects through one or more servers,
which can provide a reliable distributed storage system for the objects, as it is the

abstraction of distributed tuples called Tuple Space (TS). Linda's API provides
associative access to TS, but without any relational semantics. Linda offers spatial
decoupling by allowing depositing and withdrawing processes to be unaware of each
other's identities. It offers temporal decoupling by allowing them to have non-
overlapping lifetimes (see Appendix A).

JavaSPaces technology provides many benefits. If an application can be modelled in

this way, it provides a reliable storage strategy that guarantees that entries written to the

server will not be irrecoverably lost and could retrieved again. An implementation of

the distributed transaction mechanism is also provided.

A JavaSpace service holds entries; an entry is a typed group of objects expressed in

Java. There are a number of operations, namely: Write, Take, Read, and Notify, These

are detailed as follows (see Fig. 3.10 below) [40]:

0 Write: A write request creates a copy of that entry in the JavaSpace that can be

used in future lookup operations. Looking up an entry requires the use of

templates, which are entry objects that have some or all of the fields set to

specified values that must be matched exactly. Remaining fields are left as

wildcards. i. e. fields that are not used in the lookup.

Read: A read request to a space returns either an entry that matches the

template or an indication that no match was found.
Take: A take request operates like a read, but if a match is found, the matching

entry is removed from the space.
Notify: A JavaSpace Services notification occurs when an entry that matches a

specified template is written, this is done using the distributed event model.

38

I den Lucý;

A -L It

1t E-, - I It
Ctwilt

it
ca tch or

Ti ulsac tL Oil
ah. E

notif- - -, it =

jaNas Paces
ýICVVICO

i'l-'aspaces
ý-OLVICC

Figure 3.10: A JavaSpace Application 1401.

Clients perlorm operations that map entries or templates onto JavaSpaces set-vices, as

operations take place. A client can interact ývith as many spaces as it riceds and

identities are accessed from the security subsystem and passed as parameters to method

invocations. Event Notifications are sent to event catchers, which may be clients

themselves or proxies for a chent.

3.4 Self-Management Requirements for Distributed Applications

Modern distributcd systems are becomirig 111creas, 11,, ly collipicx; colitaining a large

number of rcmotc objects and 111LIst be capable ofnionitoring, f`aLIltS SCIf-detCCOOII, SCIF-

evolution and scif-managcnient to match changing requirements WItlIOUt SlIIIItIII9 dOWII

the complete systcril. However, middimare technologies used Ior remote object

invocation simplify the runtime management of-distributed application by bridging the

gap between the network opcrating systcni and distributed components and services.

The I-1.11111111C managcnici-it of'distributcd applications is l1owcvcr difficult bccausc ofthe

39

many different possibilities that may arise from the runtime environment, leading to
inconsistencies, conflicts and exceptions.

Addressing the problems of distributed application management requires enhancing

existing management approaches to enable the distributed application itself to find an

appropriate solution strategy and deploy the change description to the running system.
Some of prevalent needs of such distributed systems are listed below:

" Suitability for both distributed operation within an application and the use of

generic services across applications, by adding the capability to support

software developers, systems integrators and coordinators.

" Agreement and/or conformity, i. e. should consider the existing Internet

infrastructure as much as possible.
" Tolerance of failures, networks where nodes are very tightly coupled often

suffer catastrophic failure when one node goes down. This is a serious problem
for heterogeneous networks.

" Strong support for general software lifetime management tools for users.

3.5 Summary

Distributed applications development, deployment and management are taking place in

enterprises. Middleware products are developing robust feature sets and object-oriented

technologies are exhibiting increasing standards and features. As a result of these

changes, effective distributed applications management and control becomes ever more.
However such control should provide the distributed application with robust

performance and efficiency without disturbing running system

This chapter has addressed the major aspects that are required for the management of
distributed computing; in particular the aspects that are used as a basis for our approach
has been considered. Object-oriented middleware and Service-Oriented Programming
(SOP) have been introduced in this chapter as a foundation for robust and dependable
distributed application development and management. Although software patterns
availability and object mobility is reduced management time however, this may not be

the case in the future, there are many factors that cause problems for the management
of distributed application and must be taken in account. In such a networked system
environment, dynamic software and hardware components are replaced or upgraded,
nodes enter or leave the network that could cause run time problems. This generates the

40

need for new concepts that provide the system with two main facilities, i. e. i) discovery

service and ii) service lookup. So components could "discove? ' Their environment and
dynamically "lookup" the services they need. Distributed middleware technology has

added such features to aid the management of distributed computing as, CORBA,

UpnP, Web services, and Jini middleware technology. JiniTM, our chosen middleware

provides the additional advantage of the distributed middleware. Distributed shared

spaces (i. e. JavaSpace service), JavaSpace is a composite of a synchronization construct
and an object database, which allows transactions to be written, taken and read from a

shared space by the objects.

Although The technologies reviewed in this chapter are already in existence, a new

approach capable of integrating self-monitoring, self-detection, self-evaluation and self-

management is required to fully realize the autonomous management of distributed

computing, i. e. to match changing requirement without human intervention and without

at shutting down the system.. Such an approach should serve to minimize system

complexity for users as systems correct themselves in the event of failure by autonomic

management of computing systems.

41

Chapter 4

Literature Review

4.1 Introduction

Traditional software lifetime management, including software evolution activities have

been mostly conducted 4 at maintenance-time requiring the shutdown of a software

system (or a large part of it) to enable software engineers to undertake the required

maintenance, update and/or evolution of the considered software system.

Much research work exists that focuses and/or contribute to enhanced methods and

techniques to support the lifetime management and self-governance of distributed

applications, including; system monitoring, conflict detection, conflict identification,

solution generation and evolution, system adaptation and reconfiguration and

coordinating and managing the interdependencies among services.

This chapter provides a literature review of such work together with related research

work. The review will be structured into two main parts covering research relevant to;

(i) the static management of distributed systems, and (ii) the dynamic management of
distributed systems.

4.2 The Static Management of Distributed Systems

This section considers model-based approaches to systems management, namely:

conflict resolution and coordination approaches, strategy and plan-based representation

approaches and exception-handling approaches.

4.2.1 Conflict Resolution and Coordination Approaches
Conflict resolution can be characterised as an event-driven process, which is activated
as soon a conflict, error and/or a system's model inconsistency is detected. Where a

And remain so far a large proportion of today's complex software systems.

42

system's model inconsistency can be described as "... the situation in which two
descriptions do not satisfy some relationship that should hold between them... " [41].

From a requirements engineering perspective, Bashar et al. [42] described the

constituent processes of inconsistency management as encompassing four major steps:

monitoring for inconsistency, diagnosis, handling and monitoring the outcome. These

processes provide great flexibility for selecting appropriate inconsistency handling

actions and system coordination. In all this, coordination is used to ensure that every

actor [29] acts in accordance to a defined plan of action, thus preventing any delay,

deadlock and/or any other system performance degradation [43].

Other work focusing on high-level strategies for conflict resolution presented a set of

strategies such as; negotiation, arbitration, voting, and independence, each of which is

outlined in the following sub-sections.

4.2.1.1 The Negotiation Method
Negotiation is commonly used in multi-agent or any distributed systems to support

conflicts resolution processes and can be defined as;

"... the term used in distributed problem solving research to denote the

process by which autonomous nodes coordinate their views of the world and

act and interact to achieve their goal ... "[44]

During such a process, agents exchange constraints associated to their own intent

and/or performance requirements. For example, agents send their requests to other

agents and receive either confirmation or explanation of the constraints, including their

goals and intents, which can be used by the requestors agents to relax their constraints.
The process continues until both parties converge on a mutually acceptable request.
Cooper and Taleb-Bendiab [45] grouped negotiation mechanisms as follow:

0 Mathematical model-based systems: these are generally based on game theory

and economic behaviour. The majority of developed systems have used

quantitative models including; multi-criteria decision making, conflict analysis,

group decision theory, multi-objective linear programming and fuzzy arithmetic
in searching for an optimal solution based on the negotiation criteria and

preferences provided by the user [45].

43

0 Heuristics model-based systems: that have been developed using AI techniques
to support multi-agent negotiation behaviour. For instance, Sycara et al. [46]

reported on their proposed hybrid negotiation model, which combined case-

based reasoning and multi-attribute utility theory to generate solutions for a

given negotiation process. However, this approach did not consider the potential
impact of change and more specifically, subsequent conflicts emerging as a

consequence of the
Contractor Rote

conflict resolution process.
Subcontractor Rota

Create RFB
(Request For Bid)

selQct Bia

Receive Result

Send R. FB

S erd bid

Awaxd contract

Send zesult

Create Bid

Pe2fo2m Wcxrlc

Figure 4.1: A simple version of the Contract-Net protocol [471.

The negotiation approach has also been used to underpin the search process and process
delegation. For instance, Lander and Lesser [48] proposed a "negotiated search"

algorithm for multi-agent systems, which is, for instance, triggered by agents search for

a given resource, service provider and/or task brokerage. Klein el aL [471 described

their use of the Contract-NET protocol to support the negotiation process for distributed

control architecture. The Contract-NET protocol has often been used as a high-level

coordination protocol for multi-agent task brokerage and delegation. For instance, as

shown in Figure 4.1 above, an agent (contractor) identifies a task that it cannot do itself

and tries to search for another agent (sub-contractor) that can, For this, the agent
initiates a Request For Bids (RFB) describing its intended task. Sub-contractors

respond by sending a Bid and then the contractor selects the "best" bid and contracts
the task to the selected sub-contractor. The latter will undertake the task and return the

results in accordance with the contract specifications (Fig. 4.1). Different

implementations of the protocols exist either using a blackboard architecture [47] or
distributed shared space such as; Linda or JavaSpace (Sec. 3.3.1.4.1, [49]).

Other descriptive negotiation models have been proposed, including the Rosenschein

and Zlotkin [50] model, which provides a taxonomy of negotiation processes required

to support conflict resolution, namely [50]:

44

m Detect conflict: by using a service's constraints for comparing its goals (i. e.

what should be done) with what is actuallY done.

m Identification of exceptions and select the appropriate handier, in order to

handle exceptions that have been thrown.

m Negotiation team formation/reformation, to identify an agent/service required
for executing a selected plan.

m Solution Generation, which generates an ideal solution for arisen conflicts.
a Solution Evaluation, which evaluates a previously generated solution.

Negotiation Monitor, used to gather the required information to support the

decision made in the negotiation control phase.
Negotiation Management/Control is a management mechanism to resolve the
detected conflict.

Based on the previously required taxonomy of the negotiation process, Cooper and
Taleb [5 1] proposed and developed a computational framework to support a high-level

control mechanism for multi-agent systems, which was applied to supporting
distributed design negotiation. The computational framework used a mixed-mode
initiative approach to enable the delegation and adjustment of control authority between

agencies and human users -thus providing a model for adjustable autonomy. As shown
in Figure 4.2 below, a brief description of the control mechanism is as follow [52]:

n Human and computer interface: The interface provided for a user to input

control constraints and required infonnation easily.
0 Control Profiles: A system library of control information containing three sub-

libraries:

o Conflict resolution strategies: Which a set of strategies and plans for

resolution the conflict.

o Control gate: This observes and alters the plan when necessary.

o Control Preferences: Used to adjust the control profiles behaviour.

a Planning system: The most important module in the mechanism that executes

all the tasks in the control mode and contains a script interpreter, matching plan
list, plan sclection and control rcsourccs.

8 Control resources: where the plans/strategy are arranged as a system call
library, plan library, strategy library and profile library.

45

w- ýe

<ý: F> <x>

to
cu,

<X>

CONTROL PROFILE

0? ýFLICT RESOLrJTI0i41
s rR A Tsüy

1C
ID MM f) L 0,4 2ý

iý ö ý4 rizö L
PR E FE ik ENcEs1

$88

-cl, =

P LA rd N IN GSV ST E IM

CONTROL RESOURC ES

PROFILE
LIBRARY

PL A ýi
LI BRARY

SYý Z? 4CALL
LIBRA RY

I

sc rl I PIT
W TER PIZ AT 0 IREuff]5ý

......

CA 11 EA R 11 111 11 E 11 1 IC 11

MECBAN 1514 M0 1) EL

Figure 4.2: A high-level control mechanism architecture 1521.

4.2.1.2 The Arbitration Method

Rosensclicin and Zlotkin [50] have dcl-mcd the arbitration method as ii proccss it, Which

con flicts arc arbitrated by a third party (arbitrator), who has no direct powcr to modify

the conflict behaviour. The arbitration decision must be agreed by dic colifficting

service/agents. However the arbitrator bcing equipped with the authority and SOILItIoll-

search capabilities has more knowledge than any other agcnts involved in tile conflict.

'rhis authorization Should permitted by the agents in the organization StI'IICtUI-C [50].

4.2.1.3 The Voting Method
Voting is a conflict rcsolution nictliod adaptcd from the human organization rescal-cl,

field, and views authority as being distributed in a society. Groull Mcnibership

Problems (GMP) applied this approach In a distribUtCd SyStCIII crivironnic"t to elect the

new agent/service to asSLIIIIC managerial duties \VlICII tile I)I'CVIOLIS manager loses its

Functions and caLISC C011flICtS [53] . Ephrati and Rosensclicin [54] used voting to

develop maximum social welfare, where a voting for prellercriccs and IMIXIML1111

candidatcs serves to maximize total satisfaction. This approach was used as a basis Im-

incrementally constructing a plan that brings the society ol'agcilts to achicve a maximal

social welfare states [55].

46

4.2.1.4 Independence Method
Independence is a strategy used when a conflict is detected between independent

members (or parties), which are not required to interact with each other to solve their

conflicts [56]. This is a simple and effective strategy that provides systems with a self-

modification feature. For instance, Chang et al. [57] described the method using the

example of a multi-robot system, where the collision between two robots results in a

robot path plan conflict that requires each robots to initiate independently, the self-
modification of its path plan such that they both avoid the conflict -- collision. Lander

[58] considered conflict as a driving force in the control of distributed-search among
heterogeneous agents used this to implement the multi-agent framework TEAM [58].

This enables the delegation of given problem-solving tasks to independent agents with
individual domain expertise and through a distributed search approach, enables the

generation of individual solutions for each of the assigned agents' tasks. These are then
integrated into an overall solution to the considered problem. In addition, TEAM

enables agents to communicate and coordinate with each other through a shared

memory. The idea of the shared memory is similar to our distributed shared space and

used for the same purpose, namely, the coordination process.

4.2.2 Strategy and Plans Representation Approaches
As defined by Barber et al. "A strategy is an abstraction that the agent can use to

encapsulate the coordination mechanism usedfor any of the core problem-solving tasks

... " [59]. For instance, a strategy can be employed by an agent to select the "best"

actions for solving a given problem, and/or achieving its desired goals. Barber et al.
[59] proposed a representation model for conflict resolution strategies. Their

representation model is informed by the general conflict resolution requirements [601 ,
including;

0 The strategy requirements: " strategies may make use of different parts, or may

also place constraints on the reasoning capabilities".
0 The strategy execution cost: the execution of each strategy differs according to

difference resources that have been used. For example, "some strategies maY

require a larger number of messages or a longer time. It is important to

consider thisfactor when dealing with deadlines or limited resources".
0 The solution quality: possibility of multiple solutions and therefore each

solution has different qualities depending on the use of different strategies.

47

Domain requirements: applications domains should also be considered and

satisfied by the proposed solution strategy.

4.2.3 The Exception-Handling Approaches
Klein el A [6 1] have defined an exception as:

any deviation from an ideal collaborative process that uses the available
resources to achieve the task requirements in an optimal way. "

Static exception-handling constructs such as; catch, try and dispatch mechanism have

long been developed and are adopted in many high-level programming languages [611.

However, over the last decade there has been renewed interest in exception-handling to

support open systems, workflow management systems and self-adaptive software with

modifying code behaviour. Recent work has focused on the development of dynamic

dispatch as well as the use of externalised dynamic exception-handling via external

exception-handling repositories or knowledge-base systems [61]. For instance, Visser

[62] proposed an exception-handling framework, which adopts a meta-level system
design to monitor a system' execution information model and trigger an exception-
handling process when a model inconsistency is detected. In such a framework, the

exception-handling component makes use of a number of models namely [62] ;

N Monitoring model: which represents any mismatch between the system's

nominal or required system state with the current system state.
0 Classification model: which contains exceptions signature with their associated

class or type.

N Verification and recovery model: which is inspection about a certain feature to

recover the system again.

Klein et aL [63] addressed the management of the exception-handling process, by

providing a category of exceptions and a mapping to remedial actions (Le-how to
handle such an exception). This process was called "exception management meta-

process" anf shown in Figure 4.3: and 4.4 below [64].

48

ion
Nicta-

Find
Exceptions

Fix
Exccptions

Collect
Lcarnings

ID Target Detcrinine Enact Select Detemline
Exceptions Exception Exception Exception Exception

Finding Finding Instances to Fixing
PrOPCSSCS Processes Fix Processes

exception finding exception exception
types processes instances instances

Enact
Exception
Fixing
Processes

fixing
proccsscs

Figure 4.3: The decomposition of the generic exception management meta-

process[641.

Figure 4.3 above, outlines the "exception management meta-process". This is a high-

level exception-handling framework applied to workflow processes, where the

workflow process model is checked at design-time using process taxonomy exception
information. When an exception is detected then the workflow designer, checks with

"sentinels" for actual manifestations of the detected exceptions [61]. The notified

workflow participant then classifies and handles the exception type using a handbook's

knowledge base and associated exception handler processes respectively to uncover the

cause of the problem and hence select the appropriate handler. Then the user starts the

workflow process modification as proposed by the handler, allowing the process to

continue again. A summary of the exception handling process is shown in Figure 4.4

below.

49

workflow design time workflow cnactment time

rcsolution -*-select stratcgy

peifonn
st, 01-Aflow
chan es

idenfifyfaihire
original inodes and augmented enact workflow -e. veeptiol, workflow u-01-Aflon, model detection model

processes

cxccption typc
4

diagnose
I

nianifcstations
4

deiect
excel) I JOW

-. 1b, proccss
stattis

Figure 4.4: Summary of exception management approach [631.

4.3 The Dynamic Management of Distributed System

The autonomic computing vision is based around the notion of systems self-goverriance

and management and requires individual applications and/or infrastructures including

middleware, to support runtime and on-demand self-monitoring, self-diagnosing, self-

managing and self-adaptation.

Much research in adaptive systems and reflective middleware has generally addressed

many aspects pertaining to runtime management, adaptation and reconfiguration [65].

However, many of these did not consider the assurance, predictability and/or the impact

of any proposed system adaptation on the system as a whole. This could potentially

lead to undesirable systems' states such as runtime errors and inconsistencies.

Over recent years, many researchers have addressed approaches to support the dynamic

management of distributed systems, which include policy-based management, event-
based management, architecture-based management and autonomic-based management.
A review of such approaches is presented in the following sub-sections.

4.3.1 The Deliberated Normative Model
Recently, an extensive literature relating to theoretical and empirical models of

software agent and multi-agent systems has been developed[13,66]. One of the most

notable models for a deliberative agent architecture is the Beliefs, Desires and

50

Intentions (BDI) [67] model, first proposed by Bratman et al. [68], which demonstrate

the representations of aims, beliefs and desire about its environment to give suitable

responses to be autonomously determined, planned and executed (69]. In addition, the

BDI model incorporates a number of essential data structures to determine a plan

library and a subgroup of the agent's beliefs, desires and intentions, where each of

which can be used as constraints and/or pre-condition for an associated set of

intentions. As shown, in Figure 4.5 below, "... the belief operator B denotes possible

plans, the goal operator G denotes relevant plans, and the intention operator I denotes

plans the agent is committed to. " [66].

B G-I

Figure 4.5: Relations between beliefs, goals and intentions [661.

4.3.1.1 BDI Extensions
Many extensions to the BDI model were proposed. For instance, Bratman et al [691,

proposed an Intelligent Resource-Bounded Machine Architecture (IRMA), which is an

extension of the BDI model [13]. IRMA incorporates a plan library addressing a

composition of the agent's beliefs, desires and intentions. In addition, the architecture

includes a process for reasoning about the environment; a means-ends analysis process

to decide which strategy may be used to achieve the agent's intentions. An analysis

process represents the environment and offers options in response to make any changes.

A filtering process responsible for determining the subset of means-ends analysis and

analysis proposals that are consistent with certain plans; and a deliberation process that

considers the recommended options that survive the filtering process and produces

intentions that are incorporated into the agent's plans.

4.3.1.2 The Epistemic Deonfle Axiologic Model
However, the BDI model has many shortcomings, including; the lack of support for

revised beliefs, desires and intention sets [70], and the lack of support for situated and
normative intentions [71]. In the latter case, the BDI model does not represent any

51

specific norms, policies or rules for system attitudes or reasoning associated with a set

of intentions, which have to be considered to select the correct decision. This is

particularly crucial in an autonomic distributed computing environment or open system

, which in the worst case, can be characteriscd by evolving and unpredicted behaviour

[71].

Laws et al [14], proposed a model architecture for self-adaptive software, based on both

the IRMA [69] and the cybernetic Viable System Model (VSM) [72], where a

normative system component has been proposed to compensate for one of the BDI

deficiencies, i. e. the "blind intention". Many improvements to the BDI model have

been proposed, including the Epistemic Deontic Axiologic (EDA) model, which is a

normative-based model for multi-agents systems that incorporate agents' social

activities including; associated obligations and norms[70] (i. e. Norms " ... are simply
built-in constraints in the agents architecture or rules and protocols the agents

necessarily applies ... " [71]). The EDA agent consists of three main components [701:

"A cognitive, epistemic component to adopt the degrees of belief or disbeliefs,

fortnalising their plans and procedural abilities.

"A behavioural, deontic component that predisposes the agent to respond with

actions and plans to social obligations.
An evaluative axiologic component that contains the order of the agents'

preferences when considering its norms.

The main feature of the EDA model is that the deontic component is represented as

generalised goals and plans and is viewed as either social obligations or (self-

obligations) individual goals. So, deontic norms determine and evaluate the agent's
behaviour based on the epistemic state by considering axiologic norms for resolving

arisen conflicts.

4.3.2 Policy-Based Management
For the dynamic management of large distributed systems, much research has

addressed the use of policies [73]. Moffett et al. [73] stated the necessity of
representing and manipulating the policy management of distributed systems, where
policy can be defined as "... the plans of an organization to achieve its objectives

... "[73]. In policy management, action policies are represented as a policy hierarchy,

where each policy in the hierarchy represents a plan that meet a specified objective.

52

However, the separation of policy management from the policy interpreter (i. e.

managers) facilitates both the dynamic change in the distributed system management

process and the reuse of managers in different processes [74].

However, there is a need for approaches to program network components and policies

specifications. Sloman and Lupu [75] studied authorisation and obligation policies'

specification for programmable networks, which, for example, can respectively specify
those "... permitted to access programmable network resources or services" [751, and
64... event triggered rules which can perform actions on network components ... " [28].

Such policies are interpreted to facilitate runtime activation, de-activation and/or their

modification without having to shut down the network node or system. This can lead to

possible conflicts and/or system's inconsistency. For example, '6... an obligation policy

may define an activity which isforbidden by a negative authorization policy; there may
be two authorization policies which permit and forbid an activity or two policies

permitting the same manager to sign checks and approve payments " [76].

Conceptually, policies conflicts management is an essential concern requiring rigorous

policy specifications and conflict resolution mechanisms [77]. Policies could be

grouped to refer to the same subject domain and to propagate to the assigned managers
[78]. It is reported in [79] that the Ponder language [79] provides a utility for specifying

a set of policy types including; authentication policy, obligation policy, policy groups,

roles and domain [79].

Other approaches to policy-based management have used condition-action rules to

support a static policy configuration-based solution, in which human intervention is

required for system reconfiguration and policy deployment. However, Moffett et al.

[80] have proposed a framework for supporting automated policy deployment and

flexible event triggers to permit dynamic policy configuration, focusing on solutions for

dynamic adaptation of policy in response to changes within the managed environment.
They are concerned with two types of policy adaptation namely;

1. Dynamically changing policy parameters to set new attribute values of the

managed object at runtime and,
2. Reconfiguring the policy objects, by selecting, enabling, disabling or load

predefined QoS policy that is stored on a simple policy database. An

administrator has the flexibility to add or change the database for dynamic

adaptation at run time without recompiling or recoding the application again.

53

Furthermore, other research efforts are focusing on policy specification and

enforcement for dynamic service management. For instance, the IETF Policy Working

Group [66] is developing a QoS network management framework using the X. 500

directory schema[81]. IETF policies are encoded as If-Then conditions and stored in

directories. So, the component polices mapping is done by interface roles. However

also the IETF policy group has focused on the network layer and not the application
layer. Verma and Jennings [82] have proposed a policy-based management system for

Service Level Agreements (SLA) management in DiffServ networks by using a tabular

specification. Here, a table contains entries for mapping traffic aggregates into classes

of service. Hence, the proposed system is not capable of dynamic reconfiguration at

runtime. However, policy failures could be possible and should be expected in any

programmable environment, so a validation process is still required to support such

adaptive management frameworks.

Yoshihara et al. [83] have proposed another framework that adapts policy parameters
for network monitoring. Here, a management script is expressed using the IETF Policy

Working Group proposed representation encompassing; policy specifications, policy

management life-cycle, system's notification related to QoS threshold violations and

prototyped using the differentiated services. Similarly, Brunner et al. [841 have

addressed system design for managing QoS in Multi-Protocol Label Switching (MPLS)

networks by extending the Common Information Model (CIM) policy model with
MPLS specific classes. In this work, Bearden et al. [85] have extended the IETF's

Policy Core Information Model (PCIM) for supporting goal by using monitoring data to

evaluate whether the specified goals are satisfied or not. Such goals are specified as in

[80] in terms of obligation policy rules.

4.3.3 Event-Based Management
Large-scale distributed systems many benefit from event-based publish/subscribe
interaction protocol as a new scalable communication mechanism, which either publish

new events or subscribe to events. There are a number of developed publish/subscribe
or event-based systems [86-89], in which events are the basic communication

mechanism. It starts by event subscribers, where a client is registering an interest of

receiving particular event 's notification, then event publishers responding to the

previous subscription by publishing those subscribed events to all event subscribers.

54

Therefore this model solves the communication problem between publishers and

subscribers.

There are a number of ongoing research efforts related to event-based and

publish/subscribe management such as Cambridge Event Architecture (CEA) [90,911 -
This provides an event source that publishes events; event sinks that subscribe to

particular events. and event mediators who distinguish sources from sinks.

A publish/subscribe system advanced by type-based publish/subscribe is described in

[92,93] Here an integration of the type model of an object-oriented programming
language deals with the event as first-class objects and events are classified according
to their type. Subscribers specify their interest by subscribing to the type of object

classes they interested in. This approach allows holding arbitrary methods for calling
the event object to provide a filtering condition, but on the other hand, it is hard to

optimise or distribute since it requires efficient implementation. Siena [94,95] is a
distributed publish/subscribe content-based system, consisting of network event brokers

and focuses on a global broadcast operation for advertising and disseminating through

the network. However, it does not support event type notions and is static so it cannot
deal with failures. JEDI [86,96,89] is another Java-based event service framework

composed of active objects, since these objects have similar behaviour to event sources

and sinks, dispatcher and broker. However its routing algorithm acts as a dynamic event
dissemination tree after electing a group leader, who is responsible for perforining a

global broadcast to all event dispatchers that have previous knowledge of the group
leader. JEDI focuses on disconnect and re-connect operation only and does not consider

other middleware services like fault-tolerance. Herald [97] is a global, event-based,

notification framework for a publish/subscribe service architecture using publishers,

subscribers and rendezvous points on the Internet. This gives the framework the

scalability to deal with more client than nonnal event-based notification (Le.

publisb/subscribe) and the ability to explore dynamic system reconfiguration. Another

two projects, Bayeux [98] and Scribe [99], are topic-bascd event using rendezvous

nodes that are created by routing a message to the identified topic. However,

rendezvous nodes can be replicated for fault-tolerance. and all the events must still be

sent via the rendezvous node which can become a limitation. Hennes [100] is a
distributed event-based middleware that to address most of shortcomings attributes to

type-based and attribute-based publish/subscribe model by focusing on event types and

55

then filtering within the event attributes. Pietzuch et A (101] introduced a framework

based on Hennes [100] for general composite event detection(i. e. composite events

represent complex models of actions from distributed sources.), to be added to the

existing features of the existing middleware architectures. That framework, based on a

finite state extended with a model, could decompose the composite event detection and
be distributed for system integration. Another feature that could be added to the event
by using event calculus is the fluent [102],. A fluent is a situation within the system that

is initiated, Le. triggered by the event with time duration. Friday el aL (103] have

proposed system-wide flexible adaptation polices using an event calculus for system

adaptation and coordination according to client requests [103]. Furthermore, generic

models (i. e. not human-generated model) are applied to publish-subscribe systems as a

semi-automatic method to get input ftom the user and reason about the components and

the runtime environment [104].

4.3.4 Architecture-Based Management
Recent research in software architecture and description languages' has provided a
foundation for research funded by DARPA under the DASADA initiative. This is

centred around work in software architecture modelling and analysis and reasoning, to

support runtime software management including; adaptation and evolution [105]. In

this sub-section, the review is focused on research concerns relevant to

runtime/dynamic architecture-based management for unplanned architectural model

changes of runtime systems. Changing the system runtime architecture could also play

a crucial role in the system runtime reconfiguration, since it enables the
developer/designer to design the most appropriate changes in an application at runtime,
based on the application specific policies and requirements as addressed by [651.

Therefore, architecture-based management requires allowing an external, reusable

mechanism to be added to the system infrastructure.

Software architecture could be described as a graph for software architecture
formalization [106]. In graph term, nodes represent the individual agents while edges
define their interconnection. Individual agents can communicate only along the links

specified by the architecture.

5 Since software architecture can be seen ftom various ways, which defines as components composed
structure and rules characterizing the interaction of these components.

56

The independent dynamic evolution of architecture is defined by a "coordinator". For

each architectural style, there is a class of architectures specified by a graph grammar.
The class formalizes a set of architectures sharing common communication models and

rules, the rules of the coordinator are checked to ensure that constraints are preserved
by the architectural style. Modelling architectures through categorical diagrams and
dynamic reconfiguration could be realized by algebraic graph rewriting [107] and
describing architectures and operating changes over a configuration, such as adding,

removing or substituting components or interconnections. Moreover, it emphasises

obtaining an integrated language that covers the main thrce-architecture aspects
description, constraints and modification.

Garlan at aL [108], generalize the previous approaches by making the architectural

style and its supporting infrastructure a parameter in the control/repair framework to

issue both the interested characteristics (i. e. performance or QoS), and the available

operators for runtime adaptation [12,104]. RAACR [18] extends the capability of

adaptive software to the architecture domain; in which the architecture of the adaptive

program is modelled toward the architecture of an adaptive controller by adapting the

software requirements changes through feedback integration. Oriezy [19] extends the

previous adaptive software architecture by addressing the fundamental role of self-

adaptive software architecture and the required technology to achieve these

fundamentals. These include adaptation management, monitor observation, plan

changes and deploy change descriptions to provide a separation of software

management concerns. Thereby, achieving separation between computation and

coordination concerns as a way of providing a higher level of self-adaptability through

system reconfiguration [109]. Similarly, an architecture-based approach to resource

management will play a crucial role in the eventual success of the grid. There are three

different models of an architecture-based management for grid computing, namely, the

hierarchical model, the abstract owner model and the computational economy model
[I 10]. The use of grid computing in mission-critical situations can also benefits from

the application of autonomic computing [111].

4.3.5 Autonomic-Based Management

The distributed system community need to design and build computing systems capable

of running themselves, adjusting to unpredictable changes and handling resources

efficiently [112]. The two main elements of autonomic management are the functional

57

unit that performs the main operation and is provided by elements such as web services

or databases, etc and the management unit responsible for system resources and

operational performance and hence the rcconfiguration of resources according to

adaptive changes [113] . Autonomic systems have been defined by IBM [26] as system
that have:

"... The ability to manage themselves and dynamically adapts to change it?

accordance with policies and objectives, which are seý(-diagnosing and sey, -
healing system, so these systems have the abilities to detect QoS and

performance [1], and allow users to accomplish what they request rather than

try to handle and repair these computing systems

Intel research explores new computing system that provides the issue like the

autonomic computing called proactive computing, but may be the difference is that

autonomic computing focus on managing the computing system complexity but the

proactive computing adds the need to monitor and build complex real-world
interactions [114]. Since autonomic computing systems have the ability to monitor,
diagnose and healing themselves, this requires that the system has the ability to

dynamically insert and remove code in real-time systems, a technique known as "hot

swap". Hot swapping is proposed as a means to [I IS] enable the autonomic software

systems. This is performed by either interposition or replacement of the code.

Interposition involves inserting a new component between two existing ones. For

example, inserting one monitoring component when a failure is detected at run time

that reduces the performance of the running system. However while replacement allows

an old component "swapped" with a different implementation while the system is

running. The new component then continues the management of resources. The

interposition and replacement methods of the hot swapping technique effectively

support autonomic computing as it becomes possible to monitor, diagnose and manage

the computing system. This is especially of an object-oriented system where each

resource is a different instance of an object [115]. Nevertheless, successful autonomic

systems not only need to self-detect, self-diagnose, self-heal, but also to self-protect to

allow autonomic management in a secure environment [113].

58

4.4 Summary

In this chapter, we describe related research in terms of two research categories; the

static management of distributed systems, and the dynamic management of distributed

systems. We discussed related research and how this attempts to achieve control and

management of the system. The approaches are now initially considered. .
Considerable research has been undertaken in the area of dynamic control and

adaptation in the running system. However, those systems have focused on user-

mediated management, whereas our research is mainly concerned with automated/self

management and adaptation/reconfiguration [15]. There has been some closely related

work on self-adaptive software [19] and reflective middleware [116] but these give less

emphasis to the coordination and control of systems adaptation to respond to either
failure and/or other inconsistencies. Our research extends this by showing how to turn

"control at design time" into "control at runtimc" [15]. Some other efforts in this area

have investigated formal foundations for this in terms of protocols, but have not carried

the results through to implementation.

To accomplish this, we must propose some new mechanisms to allow external,

reusable, namely, a autonomy, deliberative, life-time middleware control service that

can be added to the management of distributed systems in a flexible manner. Our

contribution extends the ideas described previously in these developments by

integrating the autonomic control service within a middleware service. To address these

issues, we must determine the requirements and design of the architecture of an

autonomic middleware control service. These are which are fully explained in Chapter

5 and Chapter 6 respectively. The architecture and design are then tested by

implementation and evaluated by case studies, the details of which are found in

Chapters 7-9 respectively.

59

Chapter 5
Requirements

5.1 Introduction

From a service-oriented architecture viewpoint, a distributed software application can

be seen as a federation of distributed software services, interacting over the network

through well-defined interaction and control models. Over the past two decades, much

research has focussed on a range of concerns related to adaptive systems design,

development and management, including; reflective middleware, conflict detection and

resolution and system coordination. However, as described in Chapter 4, much work is

still required to study and develop a middleware governance model and associated

control services to support the development, deployment and lifetime management of

self-adaptive applications.

In this chapter, we present the essential and crucial requirements only that are required

for evolving the meta-control software model, which are responsible for developing

autonomic lifetime management of application services. The requirements addressed
here are categorised along different autonomic concerns, including the following:

1. Conflict self-detection, where the monitoring model in our control service is

responsible for conflict detection in either a decentralized fashion as in a

service-monitoring model, or centralized as in a system -monitoring model.

2. Conflict self-diagnosis, which includes; (a) conflict identification and, (b) a

conflict classification that provides the basis for the solution and repair

strategies that trigger the appropriate action for such conflicts.

3. Conflict resolution and self-repair strategies, which address dynamic and

generic selection, execution and evaluation phases.
4. System dynamic adaptation, reconfiguration and coordination among the

services in the distributed computing environment.

60

A detailed description of the requirements is detailed in the following sections.

5.2 The Autonomic Middleware Control Service's Requirements

The requirements for managing distributed computing start by providing the system the

with ability to detect, classify, fix and reconfigure itself at runtime without any
disturbance and/or system shutdown. Runtime conflicts and systems errors are typically
difficult to predict, detect and rectify at runtime without introducing a new approach
that dynamically rectifies the inconsistencies or failures.

Inconsistency can be denoted as "... any situation in which two descriptions do not

obey some relationship that is prescribed to hold between them" [41], in other words
the system consistency rules are broken or unsatisfied. Consistency or control rules we

expressed to describe the relationship against which checking can occur (i. e. the

generation of control rules is not our concern in this research). Examples of such
inconsistencies/failures are runtime faults and stakeholder conflicts. Figure 5.1, shows

an example of consistency rules.

d ns de'cýný'ýd in a'separate NO j], Lit flqýiý 16ý'diaýý, ia ni, if a pioce a diagram, then I Ip
into II, fie parent pr&eýý ni'us't be'll'ie same am into elfild data 111ý inpýi flo,

R ul e'2 Fbia'partic ularý Lib ra ry -" Sýsteiiiý tile Concept of operati ates that ', bscr" and 0 is docunwnt SU
B 'r" ii6nyiiis: I lence. 'tile I ist of user act ioi I is des Orrowe are sy cribed in the lielp manuals must', -

cor L r ond to th-e list of borroweractiom in te re wroments s ecific3tioll

Codin', ', ' s"lio, idd not be - pi unfil the Systems Requirciiieni Spk irca k) ý-en's ia iiM o rf by' Rule 3 113ý b"
Piqj&t R'eview B'on''rd' ti, 11' S the I kiice, lhý ii cod;! re itory sliould be empty up I IC SR prograi Ns,

I Bw sItItus , app(g% by,)R, ed

Figure 5.1: Informal examples of consistency rules [411.

Additionally, system monitoring is used to detect any conflict and so helps to focus

attention on problem areas. This and may be used as tool for learning or as Validation

and Verification (V&V) tools for analysis and diagnosis and therefore facilitate the

generation of appropriate solutions.

Figure 5.2 below, illustrates the general building blocks, processes and sequence

required during a conflict/failure resolution. Here the control service analyses
information provided by the monitoring model, either generated from checking against
the control rules or from a feedback process and notifies the diagnosis model. Then the

diagnosis model notifies the repair model with the conflict type to facilitate the

61

selection, execution and evaluation of a repair strategy, as the repair strategies invokes

the required reconfiguration operators. In turn, the reconfiguration model establishes
the required changes to adapt and coordinate the system in consideration of the new

solution (i. e. changes), which may cause further conflicts that activate a feedback

process [41] to start the control sequence again and establish the appropriate decision.

Essentially, the autonomic middleware control service allows a distributed system to

act as a self-detecting, self-diagnosing, self-repairing, and self-rcconfiguration system
to facilitate the prescribed operation of autonomic behaviour.

--------- -------------------- ----------------- I ------ --------------- I

feedback

Diagnosing Failure Solving Failure

ý iicli Se

UQ a= -, -- E=* =ý -0
Reiýv

C onnectj
L

read
had Control DUMB

Shan 16mcrf DM Reptir Bourdaries

---------- -------------------- ----------------------- ---------------

Figure 5.2: The autonomic management process's requirements

The details of each model shown in Figure 5.2 are covered in the follwing sections.

5.2.1 Conflict Detection

Our conflict resolution management process starts with the detection of conflicts or
inconsistencies, or any abnormal behaviour of the'monitorcd system. This is achieved
by utilizing a set of heuristic rules to self-detect and self-identify the conflicts that arise

at run-time, giving the rules a crucial mission in the management process. Thus, there is

a need for a precise definition and specification of such rules prior to starting the

consistency monitoring system.

62

Rules could be derived from a number of sources such as; useful information relating to

performance, Quality of Service (QoS), behaviour of application and domain-specific

constraints. Our rules require a definition of scope, so action/behaviour can be checked

against those rules [41]. In a distributed system, the services and its rules are distributed

over the network among several servers, so the use of a service-oriented middleware
invocation methods is recommended for retrieving the rules and a querying service to

evaluate their executed action. The sources of consistency rules are many, including

[41]:

m The notation's definition that exist in the development process. For example,

each variable in a programming language should be consistent with its

declaration.

m The method's development that consisting of a set of notations with some

guidelines. Such as a method for designing distributed systems to communicate,

two subsystems are defined consistently within each interface of those

subsystems.

The model of the development procedure that defines evolutionary steps, the

entry and exit conditions for those steps and the product's constraints of each

step.
The possible occurrence of a consistency relationship between instances of two

objects, even if this has not been determined before on either notation or method

model.
n The domain of the problem and the specific domain for the constraints that are

not related to either the notation or method model. Such as discovering,

specifying and refining rules in the development procedure.

Controlling
System 1113 Ing

Monitoring 9ý

Figure 5.3: The relationship between management and monitoring 1411.

In this section, the monitoring process is considered to gather information for post-

mission performance characterisation. If the observed information is defined within

63

specified bounds, this should facilities the process of conflict detection is facilitated by

determining the specific part that should be monitored, in order to start the management

process. The control decision depends on such information gathered from the

monitoring process as shown below in (Fig. 5.4), i. e. the relationship between the

monitoring process and the management process.

Whenever inconsistencies are detected, a diagnosis process is initiated to locate and
identify the conflict type. As the pre-determination of a full set of rules covering all

possible actions on the large project and at runtime is not possible, it is necessary to

develop a dynamic, external document format such as XML documents for specifying

rules that are proper for each individual behaviour, where they can be matched

correctly.

START_ENTITY Monitor_task
// Monitoring of the services operation by checking if the services attributes is within its bounds
and notify the associated system controller. //

e monitor-rule: list of detect-condition;
" System-notify: notification;
" System_control: control-action

END;

START_ENTITY Detect_condition
A condition applied for measuring service parameters and attributes at runtime.

1, Service_parameters: parameters-initialization;

" Measurment-interval: [nominal-values-non_nominal-values];

" Duration: execution/runtime;
START_ENTITY Notification
An immediate notification in the case of the occurrence of a problem detected.

END;

START_ENTITY Boundary

" Acceptable Range of each service parameters.

" Operator: for example<=, >, equals () orl
END;

Figure 5.4: Task monitor script's description.

Conflict detection using management rules can be performed dynamically for a set of

policies, boundaries or rules at runtime. A runtime detection mechanism acts as filter

preventing the activities that must not be performed or are not pennitted [73], on the

other hard it is required to detect actual conflicts rather than potential conflicts, may be

performed statically (compile-time) [77].

64

The definition of bounds for the measured feature will create two 1 -dimensional feature

spaces, one defining the nominal feedback, the other the non-nominal feedback. After

the detection of an exception, the monitor system has to know how to notify the rest of
the system about this situation (notification description). Figure 5.4 above
illustrates the moni tor task actions to provide the system with the monitoring

utility.

5.2.2 Conflict Identification
The identification process starts whenever an inconsistency is detected. The diagnosis

process includes the following [41]:

m Locating the failure, by identifying an inconsistency event and notifying the

controller by sending a triple containing the event description, source system

and ID of the violated consistency rule (e, s, rid).

m Determine the cause of failure by analysing the triple (e, s, rid); the failure

event has broken a rule like, missing information, time out or security
failure, etc. The order or history of such events aids in identifing to identify

the root cause of the failure. For example, failure detection instrumentation

may follow a timing failure event, which indicates that the server has

recovered and the root of that failure is a timing failure. Alternatively, a

timing failure may occur first, followed by several subsequent omission

failures, which represents an indefinite timing failure. So, in this case we

deduce that the root failure is an omission failure. The ordering of these

messages is significant and it represents a failure pattern that can be used to

classify the type of the failure.

0 Classification of the type of failure; by providing the basis for the selection of

a conflict resolution strategy. For example, the failure from the type of rule
broken, or type of action that causes the failure.

5.2.3 Failure Classification
In this section, we define a classification of system's failures that provides an

understanding of the effect of the failure. and aids in the selection of appropriate

resolution strategies. As shown in Figure 5.5 below, the main types of failures as

classified by Hadzilacos and Toueg [117] are:

65

1. Omission failures: These refer to cases where, for instance, a component or a

communication channel fails to perform actions that it is supposed to do.

Typically, a component omission failure occurs when a component crashes or
fails to respond (fail-stop) and a channel omission failure may occur when a

message is sent, but never received. In a distributed application, omission
failures occur when either a client or server component crashes or fails to

respond because it is busy or has stopped. For instance, to monitor a server's
availability, a heartbeat instrument (monitor) is attached, which send a heartbeat

pulse - message at regular intervals. If the heartbeat monitor failed to receive

some of the pulses (messages), the failure detection monitor assumes that the

client-server communication channel has suffered an omission failure and
notifies the resolution strategy unit to select a suitable solution for that omission
failure.

2. Timing failures: may occur in synchronous communications when components
fail to execute steps within specified time limits or when messages arrive too

early or too late because of problems in components or their communication

channels. The timing failure may be regarded as a special case of an omission
failure, namely, one for which a message is delayed indefinitely. Therefore, the

treatment of timing failures is based on similar ideas to those used for omission
failures. So the approach used for timing failures may be regarded as a super

class to that used for omission failures, which encapsulates the omission failure

semantics. Timing failures normally occur in synchronous communications and

are particularly relevant to multimedia applications that may involve audio or

video streaming. They may also occur due to clock drifts in either the client or

server or congestion in communication channels. The detection of timing

failures does place some essential requirements on client and server

components, in that they are required to be equipped with capabilities to

acknowledge that a message has not been sent or received within some time-
interval. To this end, we assume that either a client or server will throw some
form of timeout exception when the time-interval is exceeded. As mentioned

earlier, timing failure detection is an extension of omission failure detection; its

entry point is that of a "supposed" omission failure. When an omission type

failure occurs, a failure detection checks for client or server exceptions. If the

66

client/server is still alive, it means it is late in responding, so the failure

detection assumes either the server or the client-server communication channel
has suffered a timing failure.

3. Byzantine failures: represent the most complex failure semantics in which any

type of error may occur. Typically, a Byzantine component failure is one in

which the component arbitrarily omits to send a message(s) or sends an

unintended message(s). Along similar lines, Byzantine channel failures may

occur when messages become corrupted, or arbitrary messages are sent or

arbitrary results received. Such failures are rare, as software techniques may be

used to detect them, however, they cannot be discounted. The Byzantine failures

that can be detected are those due to messages sent or results received out, of

sequence, unexpected or repeated messages and corrupted messages. The

detection of Byzantine failures is based on the introduction of a new detection

message (dm,), which records a summary of application messages sent and

results received since a previous detection message (dni,. j). The failure

detection appends all application-level messages with the timestamp of the

previous detection message dm,.,. The detection message dm, has the same
fields as an application-level message except for the data contents field, which

stores the timestamps of the messages sent since the previous detection message
dm,, -,. The failure detection then checks the contents of din,, and dm,.,, before

the application-level message is used in a method invocation and again after a

result is returned. Comparisons between these checks may then be used to find

any breaks in the time sequences between dm,, and dm,, -,. for messages sent by

clients and results returned by servers. If any of the above checks are positive,
the failure detection monitor recognizes that either the client or server or client-

server communication channel has suffered a Byzantine failure that may be

identified by the nature in which the check proved positive.

67

c»ni.. iozt]

[F 1-tcp_J

-

Ca1L rscziu am1c]

amia. lcrn

r cmptititiit
vrik lim ig

I

13y=ntTiti"-o

Figure 5.5: Failure's classification in terms of failure types and their scope.

5.2.4 Conflict Resolution Strategies
The resolution strategy area distinction is made between identification and

classification of the failure and the process of updating and verifying the environment

model. Also the strategies set for the system recovery stage is a mix of heuristics,

planning functions and activities, where a repair strategy can help to fix the

environment by selecting and triggering selected recovery actions (see Fig. 5.6 below).

Prablem

Strategic Decision Making

t atogy
Stratogy Solection

rz. t
'00 -9-y-ý

Vctlons Action Selection

Actlol

0 S So U Ion
Action Execution

ou ion
Figure 5.6: Relation between Actions, Strategies, and Strategic Decision Making

[1181.

The rigorous selection of recovery strategies is vital for achieving a reasonable success

rate and avoiding further system's inconsistencies. Such a selection process takes into

account a number of considerations including;

The classification of conflicts such as conflicts that may occur during

the plan generation phase, or in any of the other phases as indicated

above.

68

s The maintenance of the application, application services and their

dependencies, including; software components' dependency, execution

and interaction.

n The maintenance of a service's preferences including; QoS and service
level guarantees.

Following the script-based knowledge representation approach, repair strategies are
defined and structured as a sequence of plans that are valid for a specified scenario with

a defined scope (context) of applicability and/or influence. In other words, the

strategies are specified as a situated and bounded plan set - when and where a plan is

applicable. For instance, the evaluation of the plan's bounds will usually involve the

examination of various properties of the service to detect, identify any plan execution

conflicts and determine the capability of it being applied. If the applicability exists, the

plan executes a repair plan or the task that is written as an encoded program using

specific, designed operators.

Evidently, the precision and robustness of conflicts identification has a vital effect on

the selection of an appropriate resolution strategy and the outcome of a considered
failure recovery process. In addition, when selecting a repair strategy there is often

more than one matching strategy, thus requiring the inclusion of a utility-based rule

selection mechanism [52] (see Fig. 5.7 below).

START_ENTITY Control' action
Operator: for example: add (), remove (), or connect ();

Exception: represents the Information necessary to classify the abnormal situation or
the unexpected events with the service.

END;

Figure 5.7: Control action operators.

5.2.5 Control Rules
A control rule is generated based on the comparison of two main parts. These are the

expected beliefs (i. e. current states) and the desired action. For example, if a client

cannot discover and invoke its desired service, the control rule will lead to requesting

another service lookup process and notification of the client with the alternative service.

There are two types of control rules required for establishing any control service or

process, namely:

69

1. External control rules: which are not attached to any particular strategy, but are

used for continuous monitoring purposes such as; repair task/execution progress

monitoring and coordination. In the event of a conflict during the execution of

control process itself, then a conflict is detected and by using the feedback

process, the system will start another control thread (process). For example if

the average latency of the control process is taken over the maximum allowed
latency, then the control rule detects and fires an execution failure.

2. Internal control rules: which are embedded within a resolution strategy to

monitor the recursion of a strategy's actions or attributes (i. e. partials solution).
For example, check that the number of connected users does not exceed the

maximum number permitted by the service provider.

5.2.6 System Reconfiguration
This section describes the requirements of a reasoning mechanism for selecting repair

strategies and the control rules to coordinate and validate an automated application

reconfiguration. Consequently, a coordination component is required to manage the

various forms of task coordination that naturally occur whenever the services have

inter-linked objectives or share a common environment and/or when they negotiate

their intents and/or constraints to achieve their common goals.

A negotiation utility is required to facilitate the control and coordination of distributed

computational aspects of distributed applications to enable distributed actors and

services to cooperate through their services brokerage as in the Contract-Net model[47]
(Sec. 4.2.1.1). Therefore, there is a requirement in our study to incorporate a

coordination utility that should be;

" Shared and accessible by all services or parties.

"A centralised service to send/receive or request/respond to satisfy the

coordination aspect.
" Able to provide a reliable distributed database or storage for storing their

coordination requests, strategies or history.

" Able to communicate between itself and system services (e. g. communication
by using notification aspect).
Persistent and exist at all times.

70

One of the main requirements for reconfiguration is to establish coordination as a

simple unified mechanism providing dynamic communication, management, and the

sharing of objects between network resources like clients and servers. In a distributed

application, distributed shared memory such as; Linda space, JavaSpace or T-space can
be used to act as a virtual space between providers and requestors of network resources
or objects.

START_ENTITY Reconfiguration_Strategy

//The strategy guidelines on how conflict has to be solved, considering a possibility of
different coordinated services IssueH.

Establish required communication between services
Apply: conflict-repair_operator (Fig. 5.10).

Exclude: failure_source (OPTIONAL).

END;

Figure 5.8: The reconfiguration strategy sequence.

Each reconfiguration strategy (see Fig. 5.8 above) is assumed to be effective for some

set of conflicts (i. e. the successful execution of a strategy may give facts and ideas

about the reason for the conflict, which could be declared by a set of exchided failure

sources in the future).

A reconfiguration strategy must indicate reasonable actions to take in the event of a

specific conflict situation. This means that the strategy has to indicate new choices for

the planning functions that are able to generate a new or modified sequence of actions.

The initial sequence of system desires should be stored in a distributed shared space,

accessible by all that are considered to be in a considered distributed application

services' federation and the middleware services associated to the application lifetime

management including; instrumentation, service monitors and controllers.

In the case that more than one resolution strategy is suitable for a given intercepted

conflict, a unification algorithm with backtracking is required to support strategy/plans

selection for a given situation guided by a utility and/or uncertainty measure 6. For

example, in the case where a number of alternative strategies can be applied, the

reconfigurator selects one based on the following sequences (see Fig. 5.9 below):

6A rescheduling of strategies in this situation may be the right strategy or a heuristics rule base selection
such as FIFO.

71

0 Retry: sometimes if a solution fails to solve the failure it is initially better to

attempt several connection retries, followed by consecutive pauses. If the

retries are unsuccessful, the strategy then searches for another choice for that

failure.

m Search: for an alternative that considered as alternative solution of choices if

all of the pennitted trials fail. This way detennine an alternative resolution,

which should consider an architectural reconfiguration.

0 Connect: the client connects to the desirable action that achieves its request,

otherwise connect to the alternative without disturbing the whole system or
throwing an exception behaviour.

Handle exception: that is activated as a consequence of any exceptional
behaviour thrown when a control rule executes because of a conflict that

cannot be resolved. Exceptions are dealt with according to priority, which

may be low, intermediate or high to accommodate varying degrees of fault

tolerance. For example, the invocation of the connecto method may result in

a Remo teConnec ti onExcepti on due to the unavailability of a

communication service provider.

START_ENTITY Conflict_repair_operator

"A scenario of the configuration that has to be made in the original plan, to reach to

the satisfied status by apply one of the following functions for the proper solution:

" connect: connection();

retry: retry();

search: search();
handle: throw-exceptiono

END;

Figure 5.9: Conilict repair operator.

5.2.7 System Interpreter
To facilitate flexibility and runtime extensibility of the control rules and repair

strategies, an extemalised rule-based system is required to enable a separation of

concerns, including; middleware services logic from middleware meta-control and

application control heuristics from application services' management rules. Therefore,

there is a need to translate the dynamic strategies, described using a dynamic forinat

such as a markup description language. The system-associated interpreter is one of the

72

main requirements for developing such an approach as a lightweight interpreter. This is

used to parse and map between the markup description language (e. g. XML) format and

executable code to facilitate the autonomic, dynamic and executable concepts required
in the proposed approach.

5.3 Summary

In the past two decades, distributed software system management can be seen as a

group of dependent services distributed, communicating and coordinated over the

network. This requires full-time management particularly runtime management.

In this chapter, we have addressed the issues related to an autonomic middleware

control service. These are (a) conflict detection, using a set of control rules against

which behaviour is monitored to detect conflicts, (b) conflict identification and

classification that is activated whenever a conflict is detected as a result of the

execution of the control rules which locate, identify, and classify the failure, (c)

failure/conflicts resolution strategies, which selects the proper strategy for the identified

failure, (d) system reconflguration provides the capability for our approach to reason

about the current state and re/conflguration of an application, in order to keep the

validity of an coordination/configuration strategy, (e) a system interpreter, responsible

for translating the markup system strategy format an the executable fori-nat and

recoding the control operations at run-time, and (f) the control rules which examine the

control services process either internally or externally.

The control service uses its control rules and the information gathered by the service

monitor together with services coordination relationships, to detect, identify, classify,
interpret and repair/correct any exceptional behaviour or conflict. Then, maintaining

system coordination is achieved using a system reconfiguration process for which the

application's services coordination and interaction must remain satisfied

73

Chapter 6

Autonomic Middleware Control Design

6.1 Introduction

An essential feature of any middleware services is its capabilities to dynamically

control and adapt in response to runtime changes. The design of such dynamic control

capabilities are often derived from the software architecture model that describes the

software components and their interactions, the properties and policies that regulate the

composition of the components and limit the allowable range of control operations.

Much research undertaken by the self-adaptive software community hinged around

adapting mechanisms from control engineering and intelligent systems. For instance,

Osterweil and Clarke [20] argued for the need of a continuous self-evaluation

mechanism to facilitate the delegation of software's continuous testing and evaluation
from humans to the software itself. In support of their claim, they described a proof of

concept controller architecture that employs feedforward and feedback loops to monitor

and regulate a controlled system's operation in accordance with its specified control

model.

Other research in reflective middleware [116] and policy-based distributed systems

management [74] has focused on the use of managerial or meta-level protocols to attain

reactive adaptive behaviour. However, reflective and policy-based management

approaches alone cannot address all of the needs of self-adaptive software because of

their inability to maintain a faithful autonomic and self-adaptive runtime model of the

system.

This chapter considers the design of the proposed autonomic middleware control

service for distributed self-adaptive software that combines three main services namely;

the Service Manager, the JavaSpace Service and the System Controller. In

particular, this chapter describes the three-layered design model adopted, namely (Fig.

74

6.1); (1) tile middleware core services (Sec. 6.3), (11) the autonomic middlewarc control

service (Sec. 6.4), (111) and user applications services (Scc. 6.5). This archilechirc is

based on a control service model that follows a cycle of' monitoring the assiglicd targIct

application, detecting undesirable behaviours, identifying conflicts/cri-ors, prcscrihnig

remedial action plans and enact change 1)1,111S through I-CCO111W1.1111011.

C
0

.1 -0

Bi

Bi

B4

BJ

----- ---- ------------------- ---- ------------ ------

LD

73 k4

(3 -A op "I

1 ra
m

40

.0

82

'E -5
C
IF

E t:
Awý

C

LL

so Co

Service Mana ger System C ontroller
L----- ------------ -------------

V

ý3-
73
9ý

Figure 6.1: The middleware control service architectural layers.

6.2 The Control Service Architecture

This study considcrs the clevc1opment of' a control scl-vice 111,1t Illollitors itself', and

maintains a fattliful autonomic model of thc runtinic systcni. As shown in Figurc (). I

above, the control service layer encompasses:

0 The First layer: containing all nuddleware core Services Such as, a rcgistratiOll

service, discovery service and space service (Sec. 6.3). Thc middlovare coliti-Ol

servicc can establish the rcquired communication via its rcgistratioll servicc, as

tile application services register with a Illid(liewarc service locator (C., L'. ill . 11111 11

75

service locator is ServiceRegistrar and the registration method is register
Therefore, clients can easily discover any registered service or sharc services
through the JavaSpace service (see Sec. 6.5).

m The second layer: containing the proposed autonomic middleware control
services encompassing meta-services such as; the service manager, system

controller and the distributed shared space. The latter plays several roles

namely; a distributed shared memory and a persistent system environment
service for examining the system beliefs (i. e. the services current states) and

system desires (see Sec. 6.4).

m The third layer: containing the user application services providing services that

could be requested by clients (see Sec. 6.5), and managed by the autonomic

middleware control services, which repairs any occurrence of application

conflicts or inconsistencies.

The workflow of our control service begins by a monitoring or feedback process, then
determining the control inputs [20], checking the parameters of the model, classifying a
discovered conflict, selecting the conflict resolution law, allowing adaptations and
system reconfiguration. Thus, the proposed control services architecture achieves
autonomic control by a continuous cycle of detection, identification, categorisation and

resolution of emerging runtime conflicts. In addition, a feedback loop is used to

continuously monitor the control service itself providing middleware fault-tolerance.

6.3 Middleware Core Services Layer

The middleware core services support our approach with the basic level of services.
These contain three basic services that enable the registration service (see Sec 6.3.1),

service discovery service (see See 6.3.2) and distributed shared memory (see See 6.3.3).

These are described in some detail below.

6.3.1 Registration Service
The registration acts "... as a proxy object to control the state maintained about the
exported service object stored on the lookup service ... " [38]. This service is

responsible for registering the application service's object, which is the visible part of
the service and will be downloaded to clients over the network (e. g. Jini lookup's

registration) by "listening" on a port for registration requests. When a request is

received, a dialogue between the application services is established and a copy of the

76

service proxy is moved and stored over the specified network's port. For example, in

Jini middleware the service's object could be registered with the Jini lookup service
(see Fig. 6.2 below), whenever the lookup service receives a request on a port, it scrids

a lookup service object (i. e. registrar) back to the server. This acts as a proxy to a
lookup service and executes on the service's Java Virtual Machine (JVM). Any

service's request submitted through such a registration uses any suitable protocol to

establish this request (i. e. HTTP protocol).

Lookup Service Service Provider

Service
Object

I

Service
Object

II

Figure 6.2: Service object lookup registration [381.

6.3.2 Discovery Service
When a service has been published, clients can discover it by querying the lookup

service. The clients establish a request using a template, which is compared with the

service proxies that are currently stored over the network. If a matching process is
found, then a copy of the matched service proxy is moved from the network to the

client machine.

Figure 6.3: Client's discovery of the registered service [381.

For example, a client is trying to get a copy of the service object to its own JVM, so it

discovers the registrar from the lookup service and requests a service object copy to be

delivered to the client machine (see Fig. 6.3 above).

77

Client Lookup Service

6.3.3 Distributed Shared Memory Service

This is based on a persistent object model used to store, exchange and coordinate the
activities of interacting distributed processes. Here processes communicate indirectly

by exchanging objects via the shared spaces. In addition, shared spaces have many

important properties [49] including (see Fig. 6.4 below):

" Spaces are sharable, where remote processes can interact concurrently.

" Spaces are persistent, where an object stays permanently is and stored in the

space untill it is removed.

" Spaces are associative; the object can be accessed with no known name-using

template.

" Spaces are based on a transaction service to ensure that operations on spaces are

atomic and single.

" Spaces take a copy of objects and change their fields and attributes.

uke

svace
(D C

G

Ce

4D
J*cts

vvnto nte 0
06JOCts

ObJ*M v'

CC'

Obj*cu

cc ad ad tA 2 take rwxi W. W"G

Figure 6.4: Illustration of a distributed shared memory based computation 1491.

JavaSpace is an example of a distributed shared memory developed by Sun

Microsystems [119] and is included as a core Jini service. JavaSpace provides a high-

level means of creating collaborative and distributed applications, the process can write
new objects into the space, take objects from the space or read (make a copy 00 objects
from the space.

6.4 Autonomic Middleware Control Services Layer

As soon as the basic middleware is started and established using the registration service
to register services with the same middleware network, and the discovery service for

78

discovering the registered service. The control service is able to start its autonomic

control of environmental behaviour. The control service includes three main parts, these

are: the service manager, JavaSpace and the system controller (see Fig. 6.5 below).

Figure 6.5 outlines the sequence of the control process using the design of our

autonomic middleware control service, as described below:

1. Each service has an assigned service manager that is activated when the client

requests a service; this looks after its service and reports the service status to the

system controller either directly (e. g. by remote event) or indirectly (e. g. by the

distributed shared space).

2. The service manager posts both a service state and a leasing for its service to the

shared space that is used in the case of a "not alive" message being received by

the dependent service managers or the system controller; for example, the

service status may either be alive or dead, on or off etc.

3. The system controller monitors (observes) the shared space at specified, regular
intervals, checking workflow and conflict in service states that is reported by its

manager.

4. The system controller detects and repairs conflicts and then reconfigures the

system and responds to the service manager with the repair decision.

5. An externalised dynamic document for the repair strategy (e. g. an XML

document) is provided to address the intended resolution for a conflict.

6. A system associated interpreter that translates the external format of the

strategies document to an executable format.

7. A reconfiguration. processes that adapt and reconfigures the whole system

according to the new repair strategy.

The next section, will describe each of the three main services (i. e. service manager.
system controller and the JavaSpace service) of our autonomic middleware control

service.

79

r---

System Controller notify

S,
System Rcpair Strategies

S ysc", ccorif"ýL",, t,

4 C,
7

les

ystem Recoil figUration

R st ra II oil

Systern Interpreter

Services State

mL

I-x i

Beliefs

--

Figure 6.5: The autonomic middleware control service architecture.

6.4.1 Service Manager
Service controller or managei- concepts have i-ccently , amcd populai-ity amon-st the

1: 1 In I Lý
self-adaptive software community as typified by [201. In this work, tile controller is

used to adapt tile structural components and dynamic behavioul- of' its service.

Structural components can evaluate their behaviour and cilvironnicnt against tlicii-

specified goals with capabilities to revise their structure and bc1lavioui- accoi'dingly

[20]. Service managers make use of well-known regulatory models using; filc(lhack

loops enabling a target application to monitor and regulate its own opci-ation according

to its given control model (see Fig. 6.6 below:

tribtl(cd Service%

S3
S3,

80

Operating Fnvironnients

Feedbacli

()L, t,)t,, sT I llll)LltS
Computational nxxicl

Figure 6.6: Basic computational model with feedback control.

Our choice of using a service manager lor each separate servicc provides the 111,111i

separation of concerns to our control service by adding this 1'eaturc of' distributed

control and management to the service. This separation into distirict service managers

eases their management by decentralizing the control of each separatc service. Service

managers look after their service and monitor its bchaviours, via information provided

by instrumentation services [120].

A service manager is able to seýf-(Ietect and seýf-i(lcntýfv conflicts and sc4-'r(, j)air its

service by formulating remedial action in the form of repair operators. Since conflicts

are identified and categorized before repair operators are Used tO IIIIIIIIIII/C UIC

conflict's resolution time. A monitor clement also coil, ill 111 1cates with the lCeilback

process.

A service manager has a sequence of processes (see Fig. 6.7 bclow), which provide

easy and efficient control of tile internal workflow of-cach service manager. The service

manager has four main units that are detailed below. These are the service monitm- (see

Sec. 6.4.1.1), service diagnosis (see Sec. 6.4.1.2), control rjilc. s (see Sec. 6.4.1.3),

service repair (see Sec. 6.4.1.4), and service adaptor (see Sec. 6.4.1.5).

81

------------------------- --

Services servIcc Mon strumcniatioll Ills
Provider I Service

I F
Service

Scl, I, I'll
Registration
Scir" vice

b

I
\, 11,11oll 11.111,11L. 1 I [[III\ 111m, Vi II'm lpý 11.

Client tow,

-wl wc Adaptol

I JavaSpace
Service

I-

Figure 6.7: The service's manager Architecture.

6.4.1.1 Service Monitor
Ail essential Litility of system sclf-managenici-it and adaptation is its abilltv to 1110111101-

its environment behaviour and translatc that int'ormation into a high-level systc, " statc.

In our approach, this is rcquired for monitoring the targct systcm/application to dc(cct

and analysc runtinic behaviour crisuring it is within acceptabIc 111(1/01- SI)CCI I ICLI I)OLIMIS.

Otherwise, a connict resolution task is initiated till-OLIglIOLIt WhICII a CoIltllltl()IIS

monitoring process is used to prevent any mismatch betwcen the desircd sYstclil

behaviour and the actual system behaviour

The proposed service monitoring relics Oil ongoing research at I, lvCl-pOOl .
101111 moorcs

University on a Dynamic Instrumentation Framework FOr DjStl-jbLItCd SYStClIlS [1201,

which enables the system to listen, analyse the Ill 1,01-Illat loll that Is received fl-olil the

Instrumentation service. ConseqLICIltly OLII- 111011itOl-iiiL, process provides tile syste", Witil

a high-level representation and properties of the running system. SLICII 111601-111atioll is

essential lor the diagnosis and repair processes to i-cprcscnt the current state 0I , tile

system, or to display all alert dialog about a conflict. Moreover, the iniol-Illatioll ()I'tl)C

monitoring process must be meaningfUl Ill S0111C COIltCXt to tile dIIgIlOSIS I)I-OCCSS. For

example, when the monitoring procCSS I-CCCiVeS JOW VII-tUal memory detectioll, It Is

translated as a parameter ftillUre. Another cxamplc is I connect () method invocatiOll

fMILII-C, which reSLIltS in a Reiiiole('01111('(. Iiolll. -V(ýt'l)liolI 1-1111LIl-C Or Inctliod 1,1111(irc.

82

6.4.1.2 Service Diagnosis
The identification of a fildUre type is essential to accurately targct the root causc of

errors and to initiate the appropriate remedial plalls WhIlst 1)1-c%, Clltlllg ally ful-tha

system errors. The service diagnosis Includes:

m Locating the part of the control rule that gcilcratcs the conflict.

a ldcnlýfication of' the cause ol' the conflict through exam iliat loll Of 111C Ilicssagc's,

intacepted by the instrumentation services wlicrc services atti-lbutcs oi- inctliods

of the offending object may be acquired using Java's i-cilection AN.

m Classýficalion of conflict types, which provides a basis 1101- sclecting a Conflict

rcpair opcrator.

6.4.1.3 Service Control Rules
The purpose of the control rules is to mcasure the service parameters bcl'6rc sclecting

the resolution or repair operators that arc activated by the rcpair proccss or allow ally

required alterations.

Most service constraints or niles arc embedded (i. e. intunal) within a service mana-gu.

Some of the service control rLIICS may not be attachcd (I. c. external) to any particular

point witlun ail action or strategy, but arc usedior checking througliout the execution 0I'

every action or strategy while it forms part of a service repair process 112 11. For

example, if there is a failure in the repair process itself, tile service control ruics detcct

that conflict occurred in tile repair process itself.

A service constranits or control rules combine the cxpcctcd sci-vice state and the service
desired action. These control rules include two main levels, namely, loll-Icl, cl

paranicters like the size of a service (e. g. Kbytes) oi- the IILIIIII)Cl- 01'CIICIItS thilt iiCCCSS 11

service (e. g. 750/o of the Lise of a service ocCUrs on Monday and Fi-iday betwccil 9,1111-

5pm) or control rules that measure high-Ici, el parailictas such as i-emotc inctliods

invoked by a client or remote events.

6.4.1.4 Service Repair
The rcsolutlon and repair process was specilic(l Lising a contract-based dcsigil, pl-c-

conditions or typical operators. Examples oftliesc are shown in ('11,1picr 7. The servicc

repair is developed to provide operators to resolve conflict. As these operators proV, dc

83

primitive operations they are integrated into the service manager particularly in its

service repair.

Three key tools or actions fir self-repair are required to make them useful for taking the

appropriate decision for detected conflicts:

1. The Notification service [122]: to enable clients to register interest in

particular messages or events and a one-way response to such notifications. If

a particular service wants to subscribe or register interest in particular

notification messages or events, it must implement a source of the

notification interface to manage the subscriptions or registrations of such

notifications [122]. Therefore, to start the notification of a requester service,

the subscribed operation or method on the interface is invoked; notification

messages then flow from the source to the requester. An evcnt-based

mechanism [119] is used, either to receive events from the service diagnosis

or send notification to clients and/or servers, whenever a conflict resolution

or repair operator becomes available. We use remote event notification in our

repair process because there are times when either services or clients want to

know directly when services start/stop or are added/removed to provide fast,

direct communication and connection. For example, the editor can be notified
from the disk service manager that the disk service has started so it is ready

for use in saving a file.

2. Repair Operators: As mentioned earlier, the result of runtime constraint is

checked; self-repair selects the required operators and operations that support
dynamic changes to the service during its lifetime. Thus, instead of breaking

a running system or performing unacccptabe behaviour, systems

automatically adapt and change behaviour by defining a set of operators that

identify the means used in such a repair. Ohcrwise another set of exception

classes are invoked to establish the safe termination of a system that has

failed. Operators provide a set of primitive operations for adding and

removing components and connections; nevertheless, certain processes can

provide operators with a higher level of abstraction. Such operators have

been used before in an architectural style model [108] that described

architectural configuration changing; although similar in many aspects to our

approach we applied some sets of natural operators at runtime for

84

unpredictable behaviours such as adding, removing clients/servers as way of

solving the arisen service conflicts. There is two main factors used to

determine the selection of the operator for specific conflicts, first the

service's attributes and parameters satisfaction and the second factor is the

availability of carrying out the operator in consideration of the run time

operation changing and without exception.

2. The exception Handler: a mixture of heuristics, planning functions and

activities is indicated, each representing the classification of a failure and the

assumptions that can be made about such a failure. This uses Java's

exception handling [37] facilities to catch exceptions. These are thrown when
the operator cannot respond to a control rule that is executed because of a

conflict in the service repair. Exceptions are dealt with according to priority.
These may be low, intermediate or high to accommodate varying degrees of
fault-tolerance by three main sequences including (see Fig. 6.8 below):

Monitoring Model: which compares the nominal or required system

state with the current system state.

Classification Model: which distinguishes between the exception kind

or class and the exception occurred.

* Verification and Recovery Model: which inspects certain features and

recovers the system again.

MoritoringModet

Exception handling Model

Classification Model RecoveryModel

I 2ate Checking I &ception's I
Class

I Ecception Handling
Recovery

Figure 6.8: The sequence of the exception-handling model (adapted from [621).

85

6.4.1.5 Service Adaptor
Adaptation management plays a crucial role in our approach. Although the service

manager controls conflicts based on runtime changes, appropriate adaptation strategies

are required to be defined and constructed.

Although a major characteristic of self-adaptive software operating in an uncertain

environment the self-repair process alone is not enough to satisfy system adaptation

needs [15). An effective adaptation strategy is also required where the parameters and

attributes are managed and controlled by:

mA predefined limitation of the service parameters, a range of variation of the

possible adaptation.

0 To prevent more changes arising by reducing the computational process

required for planning or strategies.

There is a general approach to create that adaptation process which depends on the

following aspects [123]:

n Pre-condition, the required event type, representing the limitation or other

constraints on input parameters that are required for the function to perform
adaptation.

0 Post-condition, the observer/operator of the generated event types.

Our approach provides a dynamic service adaptation in which the adaptation process is

based on the use of a parametric adaptation loop construct. Here, the service adaptor

receives messages or notification from the service manager, in such a case, the service
adaptor can easily determine the changeable parameters and attributes of the service for

updating/changing during the system lifetime. For example, removing/adding

client/service requires changes to the predefined attributes or parameters needed for the

change in meanwhile the monitor process continues to monitor the existing adapted

service to guarantee that relevant information can be extracted and that the changes are

robust in the running system.

Conceptually, the feedback loop provides the service adaptation with a return loop,

which will send the adaptation result back to the service monitoring to determine the

success of the selected repair operator and continue the system workflow again.

86

6.4.2 System Controller
The control service should be enabled to dynamically resolve and coordinate the whole

system where the service manager reports a service failure or a service manager lease

expires. Therefore, the system controller selects an appropriate strategy in order to

coordinate their inter-related coordinated services. As such control and coordination is

moved from being a design time activity to a runtime selection in order to meet their

required circumstances.

Resolution strategies are used to represent the effect of various alternatives solution
based on the Beliefs Desires, Intension (BDI) model of deliberative systeMS7 [68]. We

adopted the BDI model to underpin our autonomic approah by attaching a utility
function to the repair process that evaluates the intended strategy to avoid unexpected
behaviour coming from an open environment. BDI concepts and example (Fig. 6.9) are
defined below[68]:

M Beliefs correspond to a specific service and/or environmental state

information accessed from the current envirom-nent; such information

comes from either different sources or the Beliefs of other services.
0 DesireS represent the state of affairs (i. e. in an ideal world) that the

system wishes to reach as a high-level goal.

a Intentions represent desires that the system has committed to

achieving as a low level service goal, which can be immediately

transformed into action.
In this section (Sec 6.4.2), we present the design of the system controller service to

establish system self-control, interpretation, coordination and reconfiguration, taking

into account the system control rules (Fig. 6.10). The system controller is responsible
for control of the whole system (i. e. a distributed application service) as central control

processor. A such, the system controller has a higher level of control compared to the

service manager (see Sec 6.4.1), which has the capabilities to coordinate and integrate

between application services with the assistance of the JavaSpace service (see
Sec. 6.4.3). The system controller service contains three main components, namely; (a)

a system monitor, (b) a system repair strategy process, and (c) a system reconfiguration
process, which are shown in Figure 6.10 and explained in details below

7 Bratman [62] argued the merits of the DDI architecture for providing a foundation for the design of a
flexible reasoning process for intentional systems.

87

BDI-interpreter

initialise-stateo;

repeat

options := option-generator(event-queue);

selected-options := deliberate(options);

u pd ate- intention s(selected-optio ns);

execute ();

get-new-external-eventso;

drop-successful-attitudeso;

drop-impossible-attitudeso;

end repeat

Figure 6.9: An example of the event queue oflIDI structure 1131.

-- ---
lit System Controller

Service Manager

sel %ice Nlollilol F- T

SýS(Clll Rep ir Strategil

Ser% ice Diagm F-
System Recent

Registered Service Service Repair

System Interpreter So, i, c('wit ... I Rul.

XML Document

11,41

, ervices maw

ýe.

............

mrvices -ýtjtc lhmdluuý --- - I

Registration Seri
1-", 17 ReSolun ... t

believe.

SWI %ice Ad

------------------- --- -
Houn, hin o/ .I i4rom ,mI fj., W!, (',, w-l , -, ý i, c

Figure 6.10: The low-level autonomic middleware control service.

6.4.2.1 System Monitor
The system monitor has the ability to collect or receive information that is recluired to

support and gulde tile resoll-Ition strategies Within tile Control process. In tile large, (TCH

88

and dynamic nature of distributed services, the system controller cannot choose suitable

strategies and execute appropriate actions without continuous monitoring of its

application services. Such system monitoring (i. e. self-detection) is a continuous

process and is fundamental for supporting the control and coordination process (i. e.

self-repair and self-adaption).

The system monitoring starts either by (a) checking the distributed sharcd space (e. g.
JavaSpace or T-Space Scc 6.4.3). (b) Or by using well-spccified control functions with
fccdback loops to monitor and regulate a target application in accordance with its given

control process.

6.4.2.2 System Repair Strategies
Repair strategies are also an essential aspect of self-adaptive software. Self-adaptation

requires distinct forms of strategies, which are resolution actions; it determines when,

where and how the repair and adaptation is required. Repair strategies must consider

the functions of the services/application, its operating environment and its attributes

and properties. Our approach relies on a predefined solution even in a dynamic

solution approach (such as XML), by developing an associated interpreter that

translates the resolution strategies described in a dynamic document/text like XML, to

be used in the system repair strategies as an executable model.

Consequently, this interprets from the design model to the executable model and adds
the dynamic and generic feature of our control service at run time without recoding the

system again. This reduces the time for adaptation, reduces the number of possibilities,
and moreover, increases the efficiency by reducing the computational process required.

Our resolution strategies are used to represent the effect of various alternatives solution
based on BDI concepts (Beliefs Desires, Intension) that represent the Beliefs, Desires

and Intension, namely (13]:

a Desires: represent a set of actions and/or desired aims needs to achieve at a

specific time.

0 Beliefs: are represented by two structures. A model of the external world and

another of the current internal status of the system.
0 Intention: is determined by a process of deliberation, which translates desires

with respect to the current beliefs about both the environment and the 'stance'.

For example, intend to replace one component with another, the component

89

specification and beliefs should be satisfied and desired with one being

replaced along with its interface.

Each repair strategy is a sequence of executable actions. Each plan is examined by pre-

condition or constraints as described below:

" Examine parameters, properties and rules of each service.

" Determine the applicable plan or strategy to resolve the conflict. Strategy or

plans are formed out of a lower level of actions or operators based on the

Beliefs, Desire and Intentions (BDI) design (i. e. explained above). The

strategy consists of an identifying number and name. The system control

rules determines whether or not this strategy matches system desires and

selects the appropriate intension when the system's desires are compared

with its current beliefs.

" Selecting one valid strategy in a situation where several may be applicable

should be decided according to policy, which could be heuristic (such as

control rules) or may be sequential like First in First out (FIFO), or other

specific constraint and translates such strategy into executable actions.

" Reconfiguration of the whole system after selecting the appropriate solution
is the essential phase. The system repair strategy should notify the

reconfiguration process of the required reconfiguration needed to establish

and provide a faithful "up-to-date" representation of the application

component and service configuration at runtime.

6.4.2.3 System Reconflguration

Determining whether the applicable strategies have updated the system appropriately is

essential, as sometimes the result can be catastrophic or bring instability to the whole

system [19].

Reconfigurability is an important requirement for distributed application systems, as it

allows the system to cope with changes. In addition, the optimal configuration may
depend on specific system and situation, as self-adaptive software should reconfigure
itself to maintain its optimal configuration.

Therefore, self-adaptive software should itself be reconfigurable. This implies that the

very structure of the system can be modified, even when the system is running. This

90

concept is quite new, compared to traditional concepts of reconfiguration. Normally,

the reconfiguration phase uses some calculation on system properties, for example, QoS

performance, etc, but the system reconfiguration applies the required rcconfiguration

via the resolution strategy, which is translated from an XML document using our

associated interpreter to translate the repair and reconfiguration operators or strategies

from the text format to the executable format. This is achieved without rccompiling the

whole system again, as the translation and execution of each action is reported and

stored in the JavaSpace service and used to notify the system controller to activatc the

other actions or alternative as show in Figure 6.11 below. This described the autonomic

control service behaviours and interactions amongst the interacting services.

2: TanageServicel ()

1: requestServicel() Z. 4: Wa

C IiEnt
142.5: notify(: 2.1: monitoro

lservicewrintettuý deoendants 2.2: repalro

2.6: reportFailure --13ervicel nterface
,
jamospacaservirp IT 2"2-: repairResulto

: accepto 3.2: getRepo'rio
4.1: notification(-0

: reqAlternative(ý 3.1: monitorSystemo
ISer\icervlanRe: r2D T

: SystemControl()
3.1, i: translateStrategyo

_"f3.3:
reqRepairStrategyo

II htammwL ý--; EE, -t HHTnT EPIdl o=c -
4: manageService2() 3.6: getTranslationo 3.4: ge tRe pa irStra te g y(

Figure 6.11: The control service's collaboration diagrant.

For example, if the resolution strategy select an alternative service instead of a failcd

one, so the reconfiguration system should establish a required changes come with the

resolution strategy such as; getNewManagero, notifyClicnto, and newConnecto,
dynamically at runtime 8.

g We have used Java Reflection API j ava. lang. ref lect to invoke methods dynamically from
XML, more detail of the implementation can be found in Chapter 8.

91

6.4.3 JavaSpace Service
The JavaSpace service is a persistent service that provides the autonomic middlcware

control service with a distributed shared memory/space that is used to coordinate the

relationship of shared resources or services in the distributed application over the

network. In addition it has the capability to store required information. The JavaSpacc

Service works closely with both the Service manager (see See 6.4.1.1) and the system

controller service (see Sec 6.4.2.1), by allowing the service manager to store both the

service state and the value of the manager's expired time in the space. This is regularly

checked by the system monitoring to determine if the manager still "alive". If the

manager's lease time has expired, the system controller will detect the failure of the

manager itself and begin the self-repair and self-reconfiguration sequences. The

system-monitoring unit could also be notified bythe JavaSpace (i. e. through remote

event notification) when the service manager stores the service state and the value of its

expired time in the shared space entry.

JavaSapce is not only used by the system monitor unit, but also by the system

reconfiguration to check the successful execution of the rcconfiguration strategy action

and either continue or detect a further execution failure and start to select another repair

strategy.

6.5 User's Service Applications Layer

The user's service application (third layer) regards the application as a Meration of

services distributed over a network. A service represents a logical concept, such as a

printer or chat service. Services are discovered dynamically by clients and used

according to a mutual contract of use. This service-oricnted abstraction provided a
higher-level or end-user service that should benefit from an autonomic middlcware

control service, especially in conflict circumstances. These, that may include
Commercial Off The Shelf (COTS) services, which are assembled, configured,
instrumented, managed and controlled at runtime by the second layer services (i. e. an
example of a user service application that used our control service is detailed in Chapter

8).

8 The application service could be variations of soflware, hardware or a
hardware/software combination:

LIVERPOOLJOHN MOORES UNIVERSITY
LEARNING & INFORMATION SERVICES 92

m Hardware: services accessed through a standard protocol using a software
driver. For example, a printer or scanner.
Software services: services consisting of software generally accessed by Java

RMI and TCP/IP. For example, databases or a chat-room.

Hardware/Software combination: services accessed through a private

protocol. For example, a central lock or alarm clock.

6.6 Summary

The dynamics inherent in distributed applications make it is difficult to understand their
behaviour. Furthermore, the possibility of different component technologies and
different network protocols can give rise to conflicts and inconsistencies.

The conventional engineering services of service manager, adaptation and system

controller can be combined to overcome these difficulties and assist in the runtime

management of distributed applications.

The main strength of the proposed design stems from its ability to simplify the overall

process of self-control and self-adaptation by factoring out the managerial and

adaptation code from application components into distinct autonomic middleware

control services.

The design of the decentralized and centralized control and management that are

represented by the service manager and the system controller respectively provides a

separation of concerns that reduces complexity and integrates application services. In

addition, the JavaSpace service, which supports such coordination between distributed

services, is used as database service (i. e. different from a relational database) to store

service information provided by the service manager or the associated system
interpreter for later access by the system controller, also JavaSpace service can also
directly notify the service manager or the system controller through the use of the

remote event model.

93

Chapter 7

Manager Service and JavaSpace
Implementation

7.1 Introduction

As our challenge is to optimise the management of distributed sclf-adaptive software

and seen as crucial to the enhanced performance of distributed applications, there is

also a need to optimise the flexibility and efficiency of end-user application-level

services (or components). Such services, which feature significantly throughout this

thesis, may either provide services (servers) or use services (clients) or a combination

of the two. These services may have been developed using heterogeneous technologies

and may be hosted by a variety of different hardware platforms, ranging from powerful

computer-servers to small PDA devices. Furthermore, with the increased interest in

wireless networks, the level of network connectivity, or more particularly its variation

must also be considered in current and future models of autonomic applications.

In this work the software prototype is implemented using the Java programming
language and Jini9[119], which provides a set of APIs and network protocols that

facilitate the development and management of distributed systems. In Jini these are

regarded as a federation of services. Jini essentially establishes a soflware infrastructure

through which all the devices of a Jini network may communicate, irrespective of their

operating system or interface constraints. Each device is said to provide a service,

which it does by publishing its own interfaces. Other devices can then find or lookup

these interfaces to communicate with the device and thereby access its service. Figure

7.1 below, shows how Jini implements the connection technology below the network

application layer and builds on Java technology. Through this architecture, Jini can

9A Java-based middlewarc technology developed by Sun Microsystems [119].

94

accommodate a variety of deviccs, including portabic (Icvlccs, clecti-mm, C()Ilsillllcl

appliances and devices not normally l'ound in a coniputcr nctwork.

t, () Okup

Discovery

Figure 7.1: Jini network architecture.

As tile main aim of this work is to provide an aUtO1101111C IIII(IdIeNval-C Coliti-01 SCI-X'I'CC (of-

simply a control service), to facilitate tile lifetinle Management of' appi Icat 1011- ICvcl

components without having to include large 11110LIMS OfadditiOnal adal)IM1011 %ý Ithill 01C

components, a programming modcl was developcd throuo, 11 which application services

need only implement certain interfaces to provide access to thC11- SIRIC(LII-ill i1nd

behavioural properties. This programming modcl Code is I-cfel-Cliccd and LISC(I (1111-ing

the control process. Overall, the approach provides a practical and eflective S01101011

that can be used, in conjunction with core middimare services, to facilitate the runtinic

support of distributed self-adaptlvc software.

Both this and tile Following chapter (Cllýlp- 8) Will I)I-OVRIC ý1 LIC1,111Cd (ICSCHI)t1011 01'HIC

implementation of tile proposed aUtO1101111C IlliddleNvare control services, namely, tile

Scrvice Alanagcr, tile Java, ýpace service, an(I the Svstcln controllcr scrvicc. This will

be followed by a description of tile intcractloll Illodcl hCt\vCCjl 111C till-cc scl-\, I, Ccs

throughout the givcn middleware 111cilitated Control CyCIC of' a sol'tware app I lCat loll' s

self-Ilealing process. Ill particli kir, tills Chaptcr \vIll 1)1-cscllt detall", oC the scri-ICC

manager (see Sec. 7.3) and tile JavaSpace service (see Scc. 7.4).

7.2 The Implementation Requirements

Implementations of-sollware services illallagc1liclit In a distriblitt: d application al-C scll'-

contamcd binary i nip lenielitat I oils, Consisting 01, One Or Illore 011.1ca". 'I'licsc ()I). Iccts

occur as instances of the classes that make up a component. Components communicatc:

with each other through connectors that are implemented via software interfaces and
distributed applications are often described using a component-connector abstraction.

In addition, components also require and provide application services to other

components and/or users. These services form, the basis of an alternative service-

oriented abstraction of a distributed application. In this abstraction, an application is

considered as a federation of services distributed over a network. A service represents a
logical concept such as; a printer or chat service that can be discovered dynamically by

clients and used according to a mutual contract of use. This service-oriented abstraction
forms the basis of our developed autonomic control service and provides a set of

services that can be used to automatically detect, diagnose, control, adapt and

reconfigure the application services to support the distributed self-adaptive software.

Distributed applications are difficult to implement or manage because of their inherent

dynamics and the heterogeneity of their implementation, topology, deployment and

network requirements. Middleware technology has come to the rescue by casing and
facilitating the development and interoperation of distributed applications. Howcvcr, it

is still required for middleware technologies to control dynamic behaviour with runtime

self-management of distributed applications or in other words an autonomic

middleware control service.

In this chapter, we describe the implementation of such an autonomic middleware

control service that supports distributed self-adaptive software. Our chosen
implementation is based on a Java environment [124] and middleware technology (see
Sec. 7.2). This implementation is illustrated through the use of two applications of the

control services to support three experimental scenarios namely; the GridPC and
3inlPhone and a web-based information service. The GridPC application is used to
demonstrate the idea of distributed application coordination using distributed shared
memory concepts (Sec. 7.4). The second scenario, the 3in1phone application, was also
built using Jini services in general and particularly the Lookup service and JavaSpace

service to emphasis the same idea from the first application. Some additional
functionality was illustrated through the use of both the service manager and system

controller with respect to the distributed system workflow and the coordination of
services for self-governance of the distributed application services over the Jini network
(i. e. further detail of the system controller implementation is contained in Chapter 8).

96

7.2.1 The Java Environment
The choice of the implementation language of Java was based on the following

" The mechanisms provided in Java such as object serialization, Remote

Method Invocation (RMI), remote object activation and Java API allow

suitable flexibility for lifetime management at runtime.

"A variety of standard and extension libraries facilitate the prototype's
implementation.

" The wide deployment of Java JVM is appropriate for experimental and

evaluation purposes.
The safe shutdown/interrupt using exception-handling that facilitates

catching and throwing exceptions. These which are thrown when a control

rule detects a failure. Exceptions are prioritised as low, intermediate or high

to accommodate varying degrees of fault-tolcrance.

7.2.2 The Middleware Technology

Middleware is "... connectivity software that consists of a set of enabling services that

allow multiple processes running on one or more machines to interact across a

network. " [125,126] and is essential for sending distributed applications to

client/server applications and providing communication across heterogeneous

platforms. In particular, middleware services provide operating system functionality;

network services and provide the distributed application with:

" Communication and interaction between an application and/or service with

each other across the network.

"A programming model that hides network programming and host operating

systems complexity and heterogeneity.

" Reliability and availability.
m Capacity scalability without losing functionality.

Distributed applications may be spread across a range of computing platforms
connected through fixed networks and/or mobile wireless networks. The

interconnectivity between different computers is likely to vary according to end-user

needs and the requirements of the computation. Such dynamic behaviour must be

monitored and managed effectively, to provide reliable services. We describe the

97

requirements of a distributed application development and management system (i. c.
such as the use of the middleware technology), as follows [127]:

0 Dynamic system reconfiguration when system inconsistencies arc detected on

the network (hardware and software).

0 Dynamic system adaptation in the case of adding or rcmoving nctwork
computing resources.

0 Strategy and patterns for resolving a detected failure at runtime.
Provision of the required infrastructure and tools to measure, monitor and

scale.
According to distributed application requirements, using middleware technology helps

to achieve many of these application development requirements. This section provides

a quick review of the importance of using middleware technology as a basis for

developing the autonomic middleware control service (i. e. for simplicity called the

control service). More particularly, by considering the proposed approach as a control

middleware service for self-adaptive software, where middleware means raising the

level of abstraction of programming distributed applications.

7.2.2.1 The Choice of Jini Middleware Technology
JjnjTMis a Java-based middleware technology developed by Sun Microsystems (12419

which extends Java RMI to provide middleware services and allows clients to
dynamically access services and resources across the network.

JiniTM technology provides a protocol and system architecture whereby devices and
services can be added to the network automatically and organized into federations. Jini

groups and organizes the application service, which is accessed through Jini protocols

and core services. In this section, we will explain the protocols and core services that
have been used in the proposed autonomic middlcware control service implementation.
These are:

Protocols

- Discover/Join: discover a Jini lookup service(s) by the clients/scrviccs.

- Lookup: finds the application service proxy based on its name and/or
type as a result of a client request.

Core Services

- Lookup/Service Locator: used for application service registration.

98

Distributed events: notify services about any changes in their states

when it registers interest in particular events.

- JavaSpace: provides accessibility of using shared memory/space for

networked JVMs, it may be persistent or transient. JavaSpaccs may be

accessed using several primitive operations: read, write, notify and take,

which is very powerful in large, complex, parallel-distributcd

applications or computations.

The choice of JiniTMmiddleware for the implementation part of this work is based on

some of JiniTMstrengths in supporting dynamic and spontaneous networking, such as
[127];

N Addresses the fundamental issue of how services connect and register

with the network.

m Knows when services leave orjoin the network.
M Facilitates user accessibility to the services at anytime, while allowing

the network user location (or service) to change.
0 Provides tools for developer and programming models that allow the

robust and stable development of distributed systems.
0 Allows non-Jini devices to join a Jini network through its surrogate

architecture [128], which provides a surrogate host to devices that do

not have the capabilities to support a full Java virtual machine.
0 Providcs a scrvicc-oricntcd abstraction.

7.2.2.2 Ani Services Requirements
Jini services require two things:

oA Java Virtual Machine (JVM)

oA TCP/IP connection (stack)

Non-Jini services may still be used through a Jini surrogate host.

Clients use stubs or proxies, implemented as Java interfaces to invoke application
service methods, specified by the proxies and rclying on Java's RMI to route the

invocations over a network.

Jini applications consist of a federation of application services, middlcware services
(e. g. lookup) and a series of clients. The lower levels of the application service
description are component-connector abstractions, where components consist of a

99

collection of Java objects defined in multiple class files and packaged into a Java

Archive (JAR) file. These files can be retrieved through a URL, which is published by

the HTTP Server. This value of the URL can be assigned to the system property
Uava. rm i. server. codebase) of the application server. For example,
java. rmL server codebase=http., -IlClientWebHostlclassesý. files. Also, the security polices

should be assigned to the system property 6ava -Dj ava. security. policy). For example, java -
Djava. secu rity. policy=pol icy. all client. ClassFiles [129]).

In a Jini system, clients communicate with servers through proxies (implcmentcd as

standard Java interfaces) using the Java RMI protocol. Based on Java RMI, Jini"' API

enables distributed applications to be developed as a series of clients interacting with

specified application services.

Although JiniTMwas chosen as a middleware technology for the implementation of the

proposed model of autonomic middleware control services, the design is generic and

independent of the language and middleware used. In [130], a Web services based

middleware was used to replicate the implementation of the proposed autonomic

middlcware control service.

7.3 The Service Manager Implementation

The service manager is the most transparent part of the service development and is

developed to look after its provision of the control service. In general, a service

manager play three essentials roles (a) can be used as a proxy between its service and
the client; (b) also each service has a one-to-one relationship with each individual

service manager and additionally, (c) the service manager can access its service
indirectly by using Service Interface (Proxy), or directly using the remote event

notification by implementing the RemoteEventListener interface, and (d) the service

manager communicates both with system controller service and other dependent service

managers.

The service management process allows the manager of each service to control its

service by self-detecting and self-diagnosing any inconsistencies/conflict, and either

recovering the service from that failure or throwing an appropriate exception.

Traditionally, service management approaches involved ei ther the insertion of

additional software constructs at design-time via compiler directives, or when the

100

system was off-line, during maintenance to manage specific events and/or control

certain parameters. Manual management can be used with distributed applications, but

only with limited success because of the disturbance and possible shut down of the

whole system. For this reason, dynamic automatic management, applied at runtime, has

recently attracted the attention of researchers concerned with distributed application
development and management [13 1].

Based on the previous description of the service manager that is attached to each

service at runtime to control the service behaviour and based on receiving a client

request for a service [132], the proposed control service should be automatically

activated.

The service manager consists of three main processes to control service behaviour, or to

report the notification of failure to both the system controller to find an appropriate

alternative and to other dependent service managers. These processes arc:

9A Service Monitor that is used to receive messages/events about
failure/conflict from the instrumentation service (which is responsible for

monitoring service performance and process the measurement) and
indicating the service behaviour or failure state or by remote event to

activate the diagnosis model.
The Service Diagnosis that accepts and analyses the received message from

the service monitor to classify the type of failure/conflict by the three
following sequential steps:

> Locating by determining which parts of the service constraint

are broken/ failed.

> Identifying the cause of the conflict by the examination of
messages intercepted by instrumentation services from which
the attributes and methods of the offending object may be

acquired using Java's reflection API.
> Classifying the type of failure, thereby providing the basis to

facilitate the selection of a repair operator.

9A Service Self-Repair specified to use a set of repair operators to control the

conflict. These operators are specific to the functionality of the service,

since the functionality provides the primitive operators for both the service

and its client. In terms of our scenario, we defined three main operators,

101

namely: notifyo, remove_Cliento and add_Cliento. Each of these operators
is bounded with a control rule to examine the validation of the operators.

Application Service Application Service

Lookup Service

Service Service
Pf OXY Service

L

Pro)w
Pracy

Server C tent

Figure 7.2: Client and sever communication through Jini proxy.

In a Jini system, clients communicate with servers through proxies (implemcnted as

standard Java interfaces) using Java's RMI protocol (Fig 7.2). Clients may locate the

service they wish to use through a Jini lookup service, which acts as a tradcr/brokcr

between the client and server. When a client discovers the service, it downloads or

marshals a copy of the service's proxy to be stored locally within the client. Hence the

client should able to use the service by invoking the methods specified in the proxy and

these invocations are routed back to the server via Java RMI. This model of client-

server communication is illustrated in Figure 7.2 above for a simple Jini system, where

the block arrows represent the marshalling of proxies between server, lookup service

and client.

7.3.1 Service Manager Interactions
The service manager communicates with its services and its environment by

implementing their proxies (see Fig. 7.3,7.4 below), where the manager (e. g.
ServiceManager. class) can control its service by sending and receiving events of tile

method invocations made on the service (e. g. Simple Service. class) via the service

proxy (e. g. SimpleServiceProxy. class). The classes ServiceManagerclass and
Simple Service. class are extensions of the UnicastRemote Object class. The created

stubs ServiceManager Stub and SimpleService_Stub are invisible to the

progammer.

Praq

102

A Service M anaperProx y definition

public interface ServiceManget-Proxy implements Rcinotc, Remotel-wifflAsmicr

public void getSimpleService() throws Reniotel, xception,
public void service Di scovery()throws RernoteExccption;

public EventRegistration addRemote Event Listener
(RenloteEventListenerlistener, MarshallcdObject handback) throws RcinotcExcclition,

public void notify (RemoteEvent event) throws LJiikilowiil-'vetitiý'xceptioli,
RernoteException;

Figure 7.3: The implementation interface of ServiceNlanagerProxy.

A SimpleService Interface definition

public interface SirnpleServiceProxy implements Remote
public void connect() throws RernoteException;
public void disconnect() throws RemoteF, xception;
public int getServiceArgs() throws RernoteException;

Figure 7.4: The implementation interface of SimpleServicellroxy.

We will illustrate the required sequences/subsequcilce of linpiclilentat loll stcps diat

allow the communication between the service manager and its sci-vicc, illid bet\vccil the

service manager and both client and system controller (i. e. dic clicilt c, 111 colillnUllICatc

to the service through Its service manager and the system controllel- coninitinicitc \vitli

the service manager for a report of its service state) as follows (sce Fig. 7.5, and Fig.

7.6 below):

ServiceManager generates its ServiceManager Stub by usc oftlic rmic

Compiler.

2. ServiceManager implements the Remote Interface 111()\vlllg tile Illetliods oI

tile ServiceManager ((Ietaile(l below) to be calial froin its PI'OXV, and tlicsc

methods could be invoked remotely.

3. ServiceManager either inlicrits from the UnicastRemote Object allowilig
RMI to export the Stub, which rcquIres Its colistructor tog'cnci*atc and cxpol-t

a proxy or stub object that hides IllLlcll 01, tile (1clall all(l

complexity away from tile PrOW"111111ler, Or calls tile

UnicastRemote Object. experto lllctlloLl as all ýIltel-llýltl\'C Of
UnicastRemote Object Inheritance.

103

4. ServiceManager contains the getSimple Serviceo nicthod, winci, simulki

retrieve simpleservice as a rcgistercd service with (lie lookup service, using

registrar. Lookup (template), where SimpleServiceProxy is as a icinplatc

for matching and casting In the scarch proccss.

ServiceManager communicatcs witli its scl-vicc ils SOOII ils 111C cliclit

establishes its request. On the otlicr hand, the SeiviceManayer gos the

service proxy by implenicilting its service intert ace to estahlish hoth dit-cction

sides of the connection over the network.

A SinipleService definition

public class SinipleService implements SimpleServicellroxy
public void connect () throws RernoteException J,

Hservice connection constrains
Service! --- null;
binding= Binding. Frec;
Service. nurn__ connections < servicc. niax-comicctions
// call connecto methods
binding-- Service. connect

public void disconnect throws RernoteException J,
//.... code to disconnect client

public int getServiceArgs() throws RenioteException:
code to get service parameters value and store It III variable service args

return service_args;

Figure 7.5: The implementation of' the simple Service.

'I'lici-et'orc, our impicnientation Lises tile previously Illustrated C011111111111cat loll bowecil

the service manager and its servicc, chent, other (ICI)CII(IC, lt Service iliMiligel* and Systclil

controller for comIllUnication or sendmg/receivm, ý rcniotc events betwmi them. We

have used such communication fi-om the Ilili Rcnlote event (l. c. sllljplýl RcmotcFvcnt)

to facilitate the communication efficiency betwccii the scrvice manaocr and the ollicr

mentioned services.

104

A Service Ma nner definition

public class ServiceManager extends UnicastRemoteObject implements ServiccManget-Proxy

Serv iceTe nip late template --- null;
SinipleServiceProxy ssp = null;
public void getSinipleService throws RernoteException
try J,

Class[] classes = new Class[SiiiipleSci-viccl)i-oxy. class, ý;
template = new ServiceTeniplate (null, classes, null);
ssp ý (SimpleServiceProxy) regi strar. look up(te niplate);

I catcho ava. rini. Remote Exception e)
cAll. printStackTraceo;
SYstem. exit(l);

I
catclioava. lang. Exceptioil lang) t

lang. printStack'Fraceo;
Systern. exit(I

public EventRegistration addRernoteEvent Liste tier (RernoteEventListener listener, Marshallcd()hwct
handback) throws RemoteException),
try

listeners. put(listener, liandback);

return new EventRegistration (long eventlD, java. lang. Oýject source, Lease lcas(% Imw sc(INtim)
I I

catch(Exception e)
e. printStackTFace(
return null;

ý
'k

The method nianagernionitoro
The method fiFcNotIfy(long eventil), Lornh seqNurn)

//The method notify(RernoteEvent event)

Figure 7.6: The class implementation of' tile Servict-, N1,111ager.

7.3.2 Service CoWroll Rules

The ServiceManager has its own control rules c1clinc(I ill terills of' the Service

Constraints and parametric control-loop (see Sec. 6.4.1.5), which Cýlll be LISC(I Ill tile

service monitor, service diagnosis and service self-i-cpair. NcN,, crtlielcs,,,, the cmitrol

rules may not be attached to any particukir 110111t bUt USCLI tlll_OLl. iýllOLlt tile CXCCIIII'()Il

steps for checking [41].

Tile control service contains several types of' Control 1-111cs or Constraints accordill" lo
I-

the design or Functionality. For example, Control I-Liles to check. the \. alldatioll of tile

service's parameters. Similarly to [41], our I 1111) Icnicil tat loll is C()Ilccl-llc(i with two tVpCs

of control rLdes, namely;

The low-level control RIICS: derived From services attribute ý,, Irlahlcs

gencrated during a c1cclaration. These variables havc a dcfincd boundary

range. For example, the number of' Clients accessing tile scrvicc should not

105

exceed the maxinium number of' clients and could bc (Icscrihed its

service. nu m_connections < sevice. max_connections.

Tlie high-lcvel control rUICS: gencratcd as it rcsult of' invokmlý inethod(s), to

examine the niessages/events coming to/from the invokc(l incthods. l, 'ol-

example, examining in event coming from it rcinote mcIllod that was

invokcd by a client.

7.3.3 Service Monitor
The nionitor of a service manager col"1111111111catcs with 111c u/m, 111011011 WJ I Wt, \

[120] in a similar way to SimpleService (Sec. 7.3.2) via the ServiceManagerStub

'File nionitor detects Linexpected behavIOUr, by examining ii-if'orniation provided cithcr

by ail Instrumentation service or by the f'cedback loop that continuously nionitot-ing Ilic

service's behavIOUr at run tIIlIC Using a set of' control IIIICS (Sec. 7.3.3) against which

behaviour is monitors to detect any conflicts or inconsistencies.

The service nionitor starts by invoking tile manager monitoro nicthod, which create

ail object of tile SinipleService interface(SimpleServiceProxy ssp) to get tile service

attributes by invoking the method ssp. GetServiceAttrso. Thi" returns the

SimpleService parameters.

Tile-Service Monitor Declaration
pUblic int manager

-
monitor() throws RernoteException:

int firstparameterA;
trY I

lirstparameter -- ssp. getserviceAtti-so
k catch(ReinoteException e)

e. prlntStackTrace(
finally 4,

//return the control to Achilin

retrun Cirst_parameter;

Figure 7.7: The implementation ofnionitoring model I'mictionalify.

For example, as in Figure 7.7 above, to monitor tile valuc of the scl-\, Icc parameters, tile

value should be checked by the control I-Liles to Compare I)Ct\\ Cell tile CL11.1-clit vallic 1111d
tile desired value. Finally, the model reports \Vllctllcl- the Current ', Cl-\, Icc statc Is llomillill

or not. In the unnorrinial case, tile prOCCSS C011tilILICS 1111-01hýll tile dl3gIlOSIS Mid I-Cl), 111'

models.

100

7.3.4 Service Diagnosis
Once the service monitor has completed the conflict (Ictcomi, t1m, , 111cssaLw

or event is sent to the sel-vice diagnosis to locate and Classify Conflict". 'I 11C , ci-%, Icc

diagnosis identifies and categorlses the conflicts to IIIIIIIIIII/C and filcilitatc I. cs()Itltl()Il

(i. e. the service repair). Conflicts can be catc-golucd lising a 1111111hel. of' (111,1, cl, cllt

dimensions, such as the type of rule that was brokcii, the type ol'action thm causcd the

Fal I urcs/con flicts and the importanCC 01'111C 11111LII-CIC0111110 1411. In our impicnicnialion,

we selected two types of conflicts. Thcse are:

m ConAicts that arise from the ruIcs that were broken. For example, the sci-\-Icc

attribute IS Outside out of its acceptable boundary, so tile Control rule was
broken and thus a service auributes conflict 11,1s ý11-jsejj.

0 Conflicts that ansc from the type ol-action Causing the coliffict, For cXallip1c,

conflict that arise fi-om cvcrit or action triggcr (C. g. 1-, 'xccl)ti()Il) Called
RemoteConnect ionExcept 1 oil, so that a colillict ariscs I'l-0111 calling the

method connecto, thus a method invocation conflict rcsults.

Figure 7.8, outlines how the managerdiagnosing() method impIcnicnts the scrvict,
diagnosis and the conditional triggaing Of the appropriate type of' Conflict f-csollitiOll

strategy (actions).

The Service Diagnosis Declaration

public void managerdiagnosing() throws RemoteF xception
Boolean conflict-detected = null,
ConflictType conflictype= null;

try I
If (sei-vicc-iiLiiil_coililcctioiis service. max-connect ions)

Conflict detected = true;
con 11 ictType. serv lceA ttrsCon 11 let(

catcli(ReiiioteCoiiiiectioiiiý'xceptioti exp)
exp. prititStack, ri-ace();
//then try tile appropriate solution etc.

Figure 7.8: Diagnosis model it) classify conflic(lypes.

7.3.5 Service Self-Repair
Conceptually, by using the previous service num A tor aiul diiq,,, iwsis, iIw sci% wc

should be able to estabhsh the required solution to readve a detectcd conflict. This can
be effectcd eithet- by set-vice sefrMah- operators which usc primitive Operators such

107

as: notify (), add_Client(), remove -
Client() (see Fig. 7.9 below) or by using an

exception-handling that throws the appropriate exception. For example, the strategy for

solving the RemoteCon nection Exception type failure may either be removing one

client who has a low priority or to wait for a predefined time according to the control

rules. The self-repair primitive operators are:

1. Service Self -Repair operators, which arc triggcrcd by the

Service control rules to choose the appropriate operators and perforrn the

required changes for the self-repair process or to catch the proper exception

(as in case 2) in the case of failure to repair. The repair model operators are

described as follows:

notify (RemoteEvent event), which notifies the listener who has

registered an interest in a particular remote event. The client uses a

method called addRemoteEventListenero to register interest in

listening to a particular event (e. g. using listeners. put(listener,

handback). The result of that registration is to return a new

EventRegistration (long eventlD, java. lang. Object source,

Lease lease, long seqNum) with the parameters; eventID,
Source, lease and seqNum. On the other hand, the method
fireNotifyo notifies a service of the triggered event (which is

registered by the addRemoteEventListener methods) immediately.

Thus, the listener (SimpleService) can be informed by the event

generator calling fireNotifyo, which then executes the notify

method for each listener.

x add_Client() adds a new user to the list of clients that are using

the service as soon as the service's constraint/rules are checked. For

example, service. nu m-con nectio ns<sevice. max-con nection s,

where num connections is the current number of connected

clients and max connections is the maximum number of

connected clients.

remove_Client selects one client to be removed or to end its

connection to particular service by considering the rules for

removing or disconnecting any service. In our implementation

invoking the method remove_cliento is invoked, if the number of

108

connected clients is larger than or equal to the maximum numbcr of

connected clients. For example, removing a client who has a low

priority or has been connected for more than 30 minutes. If thc scif-

repair process successfully removes an old client, a ncw client is

given the opportunity to connect, otherwise an cxccption is thrown

(As in case 2).

2. Exception -Handling, which can be generated from the network-

centric nature of Jini [38]. For instance, an exception could occur when the

services link disappears, the server machine has crashed, the service provider

has died or a problem has occurred with the HTTP server that delivers the

service. Many of these exceptions specify their own exception types, such as

Looku pU nmarshal Exception (which can occur when unmarshalling

objects). Also, a large number of exceptions are simply a

Remote Exception, which has a detail field for the wrapped exception [38].

The exception-handler adapts to these exceptions, for example, (i) to catch

them. (ii) To ask if the program can continue. For instance, the

ServiceRegistrarlookup() can fail to indicate some network error in the

connection with a particular service locator [38]. (iii) To terminate safely, for

example when the program states have been corrupted but not irrecoverably.

For instance, the LookupDiscovery constructor can fail to indicate a critical

network failure rendering the program unable to repair such a failure, thus

terminating with an error value [38], and (iv) To exit when the program state

has been irrecoverably damaged. If one part of the program can exit with a

non-zero or an abnon-nal/error value, then a successful exit should signal its

success with its zero exit value. If this is not done, then the exit value

becomes indeterminate and of no value to other processes which may wish to

establish whether the program exited successfully or not. The methods

invocation of the conflict repair operators like connect () , may result in a

special type of exception such as a RemoteConnectionExcept ion,

due to the unavailability or failure of the service. Our service repair model, in

the ServiceManager, uses Java's exception handling facilities to catch

exceptions that are thrown when a control rulc/constraints triggers as the

result of a conflict that cannot be solved. Exceptions arc dealt with according

109

to priority thereby accommodating varying degrees of fault tolerancc.

Whenever an exception is caught, these results throw a suitable exccption
type. For example, if the remote event failed to reach the listener, an

exception will be thrown in the first catch block, e. g. an IOExccption

exception to catch UnknownEventExcept ion in the first catch block or

ClassNotFoundException in the second catch block.

The Notification declaration

protected void fireNotify(long eventlD, long seqNum)
if (listener == null)

return;

RemoteEvent remoteEvent = new RemoteEvent(this, eventlD, seqNum, null);
listener. notify(remoteEvent);

public void notify(RemoteEvent event)throws UnknownEventException, RemotcException
try I
switch ((int)event. getID
case 0:

System. out. println("Event ID 0");
ssp. add -

client(
break;

case 1:
Systemout. println("Event ID I");
ssp. remove_client(
break;

default:
System out. println("Unknown Event ID");
break;

catch(IOException e)
I

throw new UnknownEventException("IOException: + e. gctMessage

catch(ClassNotFoundException e 1)

tluow new UnknownEventException("ClassNotFoundException: "+cI. gctMessage

Figure 7.9: An example of notification between the ServiceNlauager and Its

service.

7.4 JavaSpace Service Implementation

Distributed systems are hard to build. They require careful regard of problcms that do

not occur in local computation. This section describes the architecture of the JavaSpacc

110

service, which is designed to help to solve two related problems, namely; (i) distributcd

persistence service and (ii) distributed applications coordination.

JavaSpace is essentially an optimised Java version of the original tuplc spaces [133],

and thus, unlike Linda tuple spaces [49] it runs on many platforms. JavaSpacc services

use RMI and the serialization feature of the Java programming language to accomplish
these goals [134]. In addition, a JavaSpace service holds entries that arc a spccificd,
typed group of objects. These arc expressed in a class for the Java platform that
implements the interface net. jini. core. entry. Entry. Use of these entries supports some

methods/operations that let clients/developcrs use entry objects. JavaSpaccs provides
three types of operations:

" write operations- that store one or more entries, usually for future

matches/uses.

" read operations-operations that search for entries matching one or more
templates.

" take operations-operations that return one or more entries.

" not ify operations-used when an entry that matches a speci ricd template is

written. This is done using the distributed event model contained in the

package net. jini. core. event.

It is possible for a single method/function to provide more than one of the opcration
types. For example, if the matched template is returned in a given method. Such a

method can be divided into two operation types (read and take). Matching the

template uses entry objects of a given type, whose fields can either be wildcards (i. e.

null references) or have values (i. e. references to objects). if we consider T is a
template for matching against entry E, so a field with values in T should have the same

values in E. Wildcards (null values/references) in T, match any value in the same field

of E.

The chosen implementation of JavaSpaces technology provides a mechanism for

system coordination by storing a group of related objects and retrieving them based on

a value-matching lookup for specified fields. This allows a JavaSpacc service to be

used for storing and retrieving objects (entries) on a remote system. We implement a
BasicEntry class, which is used as a factory for creating the required entry and
implements the Entry interface. Each entry has two attributes for providing the service

III

manager with the ability to store both the service state and the service manager leasing

time (see Fig. 7.10 below).

public class BasicEntry implements Entry(
public String name;
public Integer value;

public BasicEntry(String ServiceState)
this. narne = name;
I

public PlanEntry(String ServiceState, int leasingTime)
this. name = name;
this. value = new Integer(value);

public Integer incremento
value = new Integer(value. intValueo + 1);
return value;

public Integer decremento f
value = new Integer(value. intValue() - 1);
return value;

Figure 7.10: The implementation of BasicEntry to implement the Entry Interface.

JavaSpace provides our approach with a number of features, such as, (a) it simplifies

the dynamic communication, coordination and sharing of objects between network

resources, (b) it acts as a virtual space between providers/scrvers, and rcquestcrs/clicnts

of network services and finally, (c) it allows participants in a distributed solution to

negotiate or exchange tasks, requests and information in the form of Java objects.

7.5 Summary

This chapter discussed the approach used for the service manager and JavaSpace

service (i. e. two main services in our control service) implementation. The system

architecture of the current implementation is integrated with tile Jini software

architecture and based on a Java environment. We explained how our approach is used
to automatically detect, manage and coordinate distributed application services. In

particular, the implementation description and details of two main services in our

control service, namely the service manager and JavaSpace service arc provided.

The service manager supports self-detection, self-diagnosis and scif-managcmcnt
during the runtime of its service. In particular, the service manager dynamically

"manages" its service using a service monitor and diagnosis to detect, idcntify and

classify a failure once it occurs in the service. As soon as the service manager detects

112

and diagnoses any failure or inconsistency, the service self-rcpair unit is activated to

begin repair by using the repair operators (e. g. notify (), add_Clicnt (), rcmovc-Clicnt

0, and catch (Exception e)).

The second main service is a JavaSpace service that is notificd from the service

manager with the service state, which may be either be available or not (i. e. zero or

one) and writes its service state as a JavaSpace entry for sharing and facilitating access

or read from the JavaSpace service by the system controller (i. e. the system controller is

the third service in the autonomic middleware control service and its implementation is

detailed in Chap. 8) . The system controller is responsible for the system control

processes used when its service manager does not resolve a conflict.

113

Chapter 8

System Controller Implementation and
Applications

8.1 Introduction

This chapter completes the implementation aspects of the systcm controllcrio, which is

the third main service of the proposed autonomic middleware control service. In

addition, three illustrative examples namely, GridPC, 3inlphone and a wcb-bascd

information service are used (see Sec. 8.3) to present the implementation details of the

proposed autonomic middleware control service, and the programming and interaction

model to support such application services and the three main control services namely;

service manager (Chap. 7) and JavaSpace services (Chap. 7), and system controller

(Sec. 8.2).

8.2 The System Controller

As the control service facilitates the management of the distributed application services

at the middleware level, the cooperation and coordination of components or service is a

crucial aspect considered in our control service. Such system coordination is provided
by the system controller service (see Fig. 8.1 below). The system controller service

provides runtime self-control to govern applications' self-adaptation. This is achieved

primarily through direct communication and supervision of an associated JavaSpacc

(Sec. 7.4) to ensure coordination between the application services. The system

controller service provides a set of tasks including; system self-monitoring for detecting

runtime changes in its services states, dynamic software system management that

allows a developer to dynamically maintain, control and reconfigure services with

10 The other two main services namely, the service manager and JavaSpace service are dctailed in Sec.
7.3 and Sec. 7.4 respectively.

114

respect to services coordination and Integration, and sci-viccs sharing rcsom-ccs imd

common environments.

-- - -- --
Sýým Controll-r Service Manager

Chip

S yste In f4mutca

F- Sev ke bloniiDr

:8 S5mtemRep Strabepeý I

:E Sav ice FAwwi,

! ýa System c

Serv ice Repair He6sopmd Sew ice

System Interpreter

Docknilelit

-at7
IF IF Ser%,, Cls Slale

beheves
PIF

Smv ice Adlap tor

--- --- ---------------------
IF Bc4mlry cehzcwýw AldInI, ve wvw

JimosIxwx servioe I (W1411/) S '1 t4q

Figure 8.1 : The interaction beh-veen the system controller and other services.

8.2.1 System Monitor
The system monitor checks a given app] icat loll's I-Lintillic bcha\ 10111. by ex. 1111111111"", it,,,

current state (belidý) against its (Icsh-cs, both of which arc storcd In an Instance of 111c

JavaSpacc service. There are two possible ways to , 11clillate Interaction I)ct\\Ccll the

system controller and the JavaSpace service, nanicly,

Indirect interaction: thrOLIgh a system controller proxy' 1 to retrieve rcoularly a scrvice's

beliefs (i. e. services CUrrcrit state) that have bcCII ScIlt/\\I-IttC1I to/III a Javaspacc by its

service manager. 'File service manager illitialy trics to solve its scl-vice coil 11 IC1,11,111]III-C,

il' tills is not possible then the manager writes scrvicc's clin-clit stItc Including, hch 's

and execution status ill tile associated Javaspace, providing awal-ClIcss I'll formation such

as the execution and workt1ow statLIS. SLICII III 101-Illat loll is 1110111tol-Cd hv 111C colltrollcr

service using its dedicated instrurricrit/sclisol, - relcri-ed to 11CI-C ils 111C System 111millor

(see Fig. 8.2 below). The latter ImpicillCIAS I Set 01'OpCI-atOrS, IIIClLIdllIg SCIISC, ýIMIIVSC

'' Iniplenmitcd hcrc by the SysteniControl le ril roxy. c lass.

115

and actuate, which are achieved by rcading the JavaSpacc, aimlysilig the spcCitic(I

model and acting/notifying the Controller Service ofccrtain cvcnIs (see Fig. 8.2 below),

Direct intcraction: through a remote cvclIt' the Javaspacc service notifics thc SystcIll

controller service directly, wberiever it receives tile service bCIlcI'S (i. e. SCI-vices Statc)

posted by the service manager. This uses .
11111 remote C\, Cllt not I ficat loll 1'61- liolif , ý'Ing 111C

system monitor with the event of rcgistercd interest .

A monitoi-ServiceStatco declartion

public void monitorServiceState throws RemoteException 1,

String str = null;

BasIcEntry service_state =null,

BasicEntry serviceTemplate = new BasicEntryo,

JavaSPace space = SpaceAccessor. getSpaceo;

BasicEntry myService = new BasicEntry (str, O)-,

try 1

service_state = (BasicEntry) space. read(telliplate, 111111, I'mig lllIXVIlllc)ý

ýcatch (remote Except ion rem_cxp) 11

rem-exp. printStackTraceo;

Figure 8.2: The cleclaration of monitor tile SCI-N-ice st. 'lle from tile lavaspace.

8.2.2 System Repair Strategies
The proposed control service is used to rqýllkltC ýIlld COOI-dlillatC I-LllltllllC

change including; architectural transformation an(I rcconi-iguration using boti, oic I-cpall,

strategies and the requirements model of tile application service Illider coils ldcrat loll.

The system repair strategies module 1111plelliclitat loll is hascd Oil a proposed cxtcIls, 1hIc

Beliefs, Desires and Intension (EI31)1) I'lodel. As described in Section 7.4.1.1, the BI)I

model was first proposed by Bratnian [6,81 as a (ICSWII t, ()I- dcIlhcl-, ljlvc sol'twarc agents,

Various extensions to the BDI niodd werc proposed to ý, (Jdrcss sonic of' its documented

weaknesses, Including; revised 131A and normative BDI. The proposed FBDI 1)1-()%'i(ICS a

I P)

highly suitable arcliaccture (or the design of' sltuatcd ilitclilloilal sol'twarc that

C011011LIOUSly monitors and/or obscrvcs tliclt- clix, 11,011111clit and acts to cllallgc III

accordance with their situated BDI, groundcd In 1101-Illativc scuings, I ICI-C,

m Bciicfs; correspond to scrvicc I ii florniat loll dcl-IvCd and/ol. acccSscd froill a

range of sources, including; donialli, ClIVII-011111clit or hCIlcl, s ()I, Otllci- scl-viccs.

0 Desires; represent the state of' alTairs (i. e. III all ideal world), which ()I'ICII

maximise the service's own goals. By comparimý a systcm bdict's so

(observed system states) against its dcsircs, the system may (Ictects a

mismatch ail d triggers (instantiate a set of' intentioi is) 168 1.

0 SItUated intentions; representing action sets Ilur the system to undertake in a

given situation to achleve its specificd (Icsil-cs and/ol. to addrcss the fill"Illatch

between tile system environnictit (belict's) and the system's desircs (goal").

Normative intention; representing a set of' actions to he undertaken to ciisurc

a specified set of norms IIICILI(Iill_g obligation and responsibility rules are

observed before a given intention is enacted alid/Or 'ItTective I-111CS cilicl-ging

as a reSUlt of an enacted intentions set.

0 Utility intention; repi-csents a set of system actions to optIIIIIsc its goal-

oriciitcd intentions.

In this implementation and in accordance with [135,13], the beliefs, (Icsire, goal and

intention can be described as being colIcctions of Coll stral 11 ts, Cilch of' which represents

distinct pieces of beliefs, desire or goal and so 011. These constraints ill-C gencrated using

service beliefs and desires. In this i mplCillentat 1011, beliefs are it runtinic scf-%, Icc, s States

such, as a service is available I-or client requests or not. Intensions arc the system

actions (cxecution), which arc, Im- instance, triggered because ofa mismatch hetwCC11

the systern beliefs and system desires sets using its 11orills.

., cl. % tlic sýlstcjjj 'ro ensure fault-tolerance ofthe proposed controller 111(1 scjj'-, -cpý, ij- ,
belief's and desires are here stored in a . 1avaSpacc until flic (Iccision mid normativc

intended repair plan is completed and enacted. Such ii-cliltectili-c liis the Imiclit ol

providing a siniplc coordination Mechanism lor distributcd compLitition (Chap. 7), and

an awareness module storing aservicc's belict's and (Icsircs, rcpýjlj- pjýjjj md \\oikllm\ý

In the case of detecting service fallure, thC llltClItIOll SCt 1)1,111) iS C\LVUtCd 1)ý'

applying the appropriatc rcsolution stratcgy and 11"'Ing the System scif-repall, stratqlgics.

117

These are implemented in Java and integrated with the control scl-vicc 1`61- rililtillic

execution. In line with system self-repair strategies the CXCCLltlOll rCprCSCl1tlt loll IS

structured as follows:

The strategies are a high-level model and contain a lower-levcl callcd /)hIn or 'Iclioll.
Each plan is formed from another lower level oCj)I'OP(TIiCS 1pp11Cd IRCI- SUCCCSSI'LlIly

examining and checking a list of control rules/constraints.

Each strategy has a specified scope or context of application. They can also be 111)(latc(l

and/or added to at runtinic. Thus, an extcrnalised strategies rcpository was gcncratcd,

where strategies are encoded in XML and validated Lising ail XMI, sclicnia (FIg. 8.3)

that supports the dynamic context externalisation of the application's strategies

generation at runtirne.
<? xml version="1.0" ?>

- <I--

At; 'I'ONOMI('_NIIDI)LEWRE_('ON'I'ROI,
-Sý,

IZVI('ý, '. Xl%ll,

<Schema
<BIQ. M_eDITY_Pýý "property" contentý, 1ý mixed''

model= "closed" ýmany" />

- <ElementTypejianie -''Properties" _gQLlt(, i it ý "mixed"

-model
"closed" c)t(],, i many">

<element ýypc- "property" iiiiii0ccurs "1'' mýixQccurS="*"

</ElementTypQ>

- <ElementTVDe nan
-I-ý,. -"Action" co-nten-t= "mixed" mo-dek- ''closed'

orde_r="seq">
<element type 7 "Properties"- i, ninOCCLIN- "I" n_)axQccur5=,, *,,

<elemen typ property "Jilan-Occurs 1- mcixoccur

</ElementType>
<ElementTypellarne- "Strategy" (ontent -. "mixed"

model= "closed" or_(Jt, r--`seq">
<elemen t "Action" rmnOccur ="I" max0c uib`*" /> ypcý- L-S
<eler-nenttyp(---- "Properties" minOccLjr,; ="V max0ccur

<element type:::: "property" minOccursý-"V' mix0ccurs-"*"

</ElementType>
</Schema>

Figure 8.3: Ain example of XMI, schenia for our SN'stvill repair Strategies.

A basic interprctcr is Liscd to ni. ip uld bind rcpair s*ti*, ItL, Ics I (clicokic(I III \\]I) to

Java executions including; middleware and application services 1, ll\-ocat lolls. This is

Implemented using the Java rcflcctioii API [37] to invoke the extracted Incillods of-

operation from the XML document.

I Is,

In the case of more than one matching self-repair strategies being found, the scicction

algorithm selects one strategy from the search space according to a predefined conflict

resolution mechanism, taking into account resolution policy, First In First Out (FIFO),

and utility functions.

8.2.3 System Reconflguration
Reconfiguration of a software application is an essential phase in a self-healing process,
in that, the control service after generating a repair course of action (repair strategy (see

Sec. 8.2.2)), instantiates a validation process before the generated repair plan is enacted.

In addition, to achieve "optimal" reconfiguration, the controller takes into account a

number of considerations to avoid any further downstream inconsistencies, including;

performance degradation and/or failures. For instance, this includes some calculation of

the system properties (e. g. QoS performance and/or guarantees).

Similarly to [108], we defined a set of reconfiguration operators required to undertake

an application software architectural transformation and encoded in XML (see Fig. 8.8

below). These include;

e connecto: used to connect the client either with the requested service or with an

alternative (i. e. in the case of a failure to connect to the requested service)

through a new service manager.

getServiceManagero: used to establish communications between the client and
the service manager or the service manager of the new alternate service.

getCliento: used to establish a communication between the new service

manager and the client that requested the service. For instance, in the case of

failure to connect the client with the requested service manager.

notifyCliento: used to notify the client of the occurrence of a particular event,

such as notifying the client of the availability of an alternative service.

119

<<Interface- <<nterfaft>
Entry Remote EventListencr

(from 60

< <In I@ rfac a>> <<111terfac is v as PAC a in terra Ca SyswmContricillcirbitcrface

-notify()
-addo +notify() -COPY0
to move() +discovero

SystemControllctService
JavaSpace Service

lookup : LookupLocator
-template: PlanEntry template : ServiceTemplate
- space: JavaSpace reg : ServiceRegistration

registrar : ServiceRegistrar
+add(O evntreg : EventRegistration
+COPYO doc : Document
+temoveo

if
ItemElement : Element

+not yO

+nionitoro
interpreter +notify(O

+discovero

+desireso
+interpreto

+interpreto
+filters

-Intef face>>
Remote

I

'r* Interfac"3,
S. Mc'eManoserinterface

+notify()
+add Remote Rv on ILIstentro
+gctSimplcScrvcie()

I ServiceManagerService I

lookup : LookupLocator
template : ServiceTemplate

- reg : Seftriceltegistration
registrar: ServiceRegistrar
evntreg : Event Registration

+getsimplcwvice()
+&ddRcmotcEvcntListenerO
+notify()
+addcliento
+rcmovecliento

434taf")p

-Wlulo

SimpleService

. "Ousers: integer
-MaxConnect integer

+connecq)
+disconnect()
+SetServiceArSIO

Figure 8.4: The UML class diagram of the proposed control service

8.3 Applications

In the following sections, we will describe the three applications that were implemented

using Jini middleware extended with the developed, autonomic middlewarc control

service (Chap. 7). These prototypes are used to illustrate, test and evaluate the various
features of the developed middleware 12

- The applications were developed using Java

JDK 1.4 and Jini 1.1 and tested on a Windows 2000 platfon-n. Figure 8.4 above,

outlines a simplified UML class diagram of the autonomic middlcware control scrvicc.

8.3.1 Application 1: The GridPC Example
This application is a basic example of our initial implementation of the control service.
Here the GridPC scenario is used to show the use of a shared space to coordinate and

manage use of distributed resources.

The GridPC example application (or also referred to in this thesis as PCNET) provides
a networked facility for requesting, accessing and upgrading a client environment with

12 A more detailed evaluation of the work is presented in Chapter 9.

120

required server-side software and hardware services (136]. In this scenario, it is

assumed that the clients have a minimal configuration. For instance, the clients have no
local disc drives and use remote file storage. Some of them have very little memory;

processors may be not more than 286s. Thus, the client automatically reconfigures its

desktop, but sometimes services may be in use, offline or not currently available. The

GridPC example tries to address such types of conflicts and uses the autonomic

middleware control service to resolve these. In the current implementation, the GridPC

application uses three main services, namely;

*A services provider, which provides services and deten-nines the availability of

a requested service, as it may already be in use by other users. To

reserve/request services, a set of primitives operators have been defined and
implemented, such as; add 0, delete 0, or list ().

*A service manager, which enables the management of an associated set of

services. Also, in the case where a conflict is detected because of a client

request, the control service manages the conflict resolution without returning to

the manager or interrupting the system. The resource brokerage and availability

is, in this example, managed and coordinated through JavaSpace.

*A JavaSpace service, which provides a distributed space or memory to enable

easy access to all other distributed services or resources; a JavaSpace's entry

could be added, taken, or read to/from the space using write (), take () and read
0 methods respectively. However, coordination between these services is still

required and realized using the autonomic middleware control service. The
"Request For Software-RFS" entry is an example of a JavaSpace entry. This is

extends the abstract class called BasicEntry to allow the use of the previous

operation.

121

I-
In] Xi

i Mercury Norm TransientSpace I FrontEndSpace !
Transientjiddler AcWdtable-Fiddler Mdhalo- NiNdwillei

Template Run
,

RMID WebServer Reggie Lookul)Diow%ei

Start RMID Stop RMID

Start WebServer Stop WebSeivei

Start Reggie Stop Reggie

Start LookupDrowser Stop LookupUtoww. r
Start Transient-Fiddler Stop Transient-I Willer

Start Acthtatable-Fiddler Stop Activatdblej iddler

Start MahalojxnManager Stop Mdhdlo-TxnMdndgei

Start Mercury stop Mercury

Start Norm St op Noi in
Start TransientSpace Stop TransicntSpdce

Start FrontEndSpace Stop Fi ontElldSPdCO

Figure 8.5: The Jini StartService Application.

The control service is invoked and activated in the following maililer;

1. Run the Jim core middleware services including, RMID, WebServer, Rcggic,

FrontEndSpace services (see Fig. 8.5 below).

2. Run the client service application. This is used by the client to quci-y oi, i-cqucst

a services/resources. The client application (see Fig. 8.6 beloxv) has dirce main

sections from running from top to button:

A text field that allows a client to specify the service name, which is

used by the service manager as in entry tcniplate I'm i-eading or takilit,

an entry from a space (i. e. a tcrnplatc Im- query flic space abotit the chent

requested service). Blank fields are template wildcards-, non-blank ficids

are values that must be matched.

A set of buttons for sending the client's requests to the service mallILWI-,

as requested in a previous text field. I'llis buttoll activates the scrvicc

monitor to check whether the client request result III any Illcollsistclicics.

A text area for displaying the result OfthC SCI-VICC 1110111tOr 1)1-()CCSS.

There are five buttons Takc and Noiyj, ill tile sofmarc pmicl, ciacr

tiction in the hardware panel, i-who bution and second NofýýV 11i tile

operating systern panel, which is detailled next. Fach hutton triggers, tile

122

services self-repair process to activatc thC ()I)Cl', I(()I-S, SIIL'11 IS

notify or take.

0 The Kike button acts as a scrvicc repan, operator I'or taking valtics

optionally wildcards (enipty field) 11'om the text fields, or, to create il

template that is sent to the service nimiagcr 1,01- conflict checking during

tile process of responding to tile cimit rcqucst. 11' the service immagcr
detects a connict or inconsistency III the client request, it activates

another repair operator according to tile repair strategy. For example, it'

the client requests an editor (e. g. 1DE'), %Vll]Cll is not av, 111,11fle or III Use

by another client. The service 111,111, IgCl- W'01.11d tIlCIl SCICCt tIlC apprOpl-latc

repair strategy for solving that connict (c. g. providc ým alteni'lliVc
Editor).

The Notify, button, which acts as service repair opcrator I or registcrim-

interest in event notification based on teniplatcs. Wlicnevcr the

interested service's template is added to a space, a listeilci- is noti I wd. As

zero or more clicnts COUld share the same spacc.

ýJlmj -? ýj

E-d I t-Or Storag lace

IIDE 3 TupleSpace

JavaSpace

Notify ActiVata Notify Notify

Monitoring Area

Lditur ctoragespa(e.
P, lotification requeýA V-1,1111t allorl
Client SUCCeSSTUlly Took . IDE Client successfully tc-, Dk 2.4 (,, 1 1-11h, "t-t,
Notification request :: Notification recluc-, t
1'. 1c. 11firatirn IDL ýýAfjorj In Atl"ýr) 2 '. , A. 1.1-1 11,

Figure 8.6: The GUI ofthe client service using, conji, ol service.

3. The service provider application, Nvlllcll Is LISCLI to add (I. C. \vl-ltc() ClItnes Into a

JavaSpacc) services to the space. This application has three maill scolons (,, cc Fit'.

8.7 below):

0 Three text fields are used to definc an clitry, Nvilic], us storcd in flic spacc.
For example, tile three field labels arc 1"(11tol., St(), -,,,, C, 111(1 S,), ICC, \ý 111cl,

123

submit values for the RFE, RFS, and RFSS services (i. e. cliti-ics)

respectively.

The button's action activates operators such as, 'I'lic Add butioli to

submit (i. e. write) text field values to I space, the i-cwl buttoil to read

existing services from a space and the c1cm- button to clear 111C 1-1cids.

Therefore when any client registers interest In a part ic LI Ill- SCI-vice, whell

a service is either added or removed from thc space, the buttoti

Immediately notifies the interested listener.

A text area for displaying the result.

ServiceProvider 1131 X1
Editor ý IDE added
! Storage : 2.4 rernovedl
I
, Space JavaSpace notified
ýEclitor ý IDE removed
Gtorage : 2.4 added
I

I F(II(of IDE

Storage- 12 4 GB

Space Javaspace

List Add Clear

Figure 8.7: The GUI of the services provider Management.

8.3.2 Application 2: The EmergeITS Example

The second application example of tile proposed control scrvice implementation has

been tested oil an existing Jini-based application, namely FinergcITS, 11371. This

rcpresents an example of an intelligent networked vellicle, developed and prototyped in

collaboration with the Merseyside Emergency Fire Services. Essentially, F, mcrgel]'S

allows emergency fire service personnel to access a variety of distributed serviccs, fI, ()HI

centralized corporate systems thrOLIgh to rernote in-vehicle computers, PDA aiid nioNIC

phone devices. As shown in Figure 8.8 delow, the Fniergel'I'S 11-chitco tire cmisists ofa

collection of services providing components and a Service Managm- 1-esponsililc I'm,

124

registering application components and managing their services. Services Ire

discovered and used accordingly by in-vellicle client computers.

Figure 8.8: The Architectural view of the ErnergelTS application.

Two case studies were Implemented, tile first one considered the use of the 3 in I pholic

service and the second was concerned with the use a web-based IS (iril'orniation Service

(IS); each case study is described below.

8.3.2.1 3in] Phone Application
The 31nlphone service allows a mobile phone or PDA device to be used in one of' till-cc

different modes, for either voice communication or to receive illuitillic(lia colitcllt,

subject to the requirements of the user and availability of' a commit 111cat i oil ser\, Ice

provider.

The chosen 3inlphone implementation added a key feature to the first example (i. e. flic

first example addressed the sarne management and coordination aspccts of' the

distributed services), which is the ability to create applications composed of' reusable

(published) components and services to support the governance of-scil-adaptation. 'I'llis

implementation is based on two key abstractions, namely;

1. Middleware core services, which describes how the proposed coiltrol scr\, ice

allows the components of typical platt'orms, available to tile network, to

perform as services. The core services that are provided are a) the Ja\-a

I call pro\, Lie asyncilrollous (1, environment (i. e. JDK 1.3) which I IrCCI

125

connectors such as RMI and b) Jini middleware services, which provides

service lookup technology, such as discovering a Lookup service and the

javaSpace service.
2. Autonomic middleware control service implementation, providing the

management of services for self-control of applications and services. The

control service makes it possible to autonomically manage distributed

application services using system constraints, operations, and services

attributes or parameters. These provide a standard way to add management

plug-ins, such as:

0 Providing support for remote management to control the distributed

application services via Remote Methods Invocation (RMI),

0 Enabling use of ubiquitous technologies such as eXtensible Markup

Language (XML) and Hyper Text Transfer Protocol (HTTP) to enable
the dynamic and exterrialising of the repair strategies actions or plans,

and to facilitate the abstraction that provides a reusable autonomic

control service instead of recoding the system again.

0 Supporting the ability to register for notification of events using remote

event to facilitate direct communications between the services. This

event could be added, removed or changed using Remote Events

Models.
Allowing indirect communication and invocation of the control service

operations to be performed remotely at runtime on services by using the

Interface, as remote manager interface describes the operators supported

by the service manager for indirect remote management of the

distributed application services.

Throwing exceptions, which is used for the safe termination of all the

processes that are provided by the control service without shutting down

the whole system or resulting in a termination error.
A sharing space specification that allows the shared services

coordination beyond the space, considering the required core services to

form a space. In addition, services that are sharing the space can be used

anywhere in the space (i. e. the chosen space service for this

implementation is the JavaSpace service).

126

The 3inlphone application service is hosted by an in-vehicle computer, which also acts

as a gateway. But if the local service deployment should fail, then a backup service can

be deployed from the control centre computer, thereby providing a degree of fault

tolerance During the study, another project for monitoring called instrumentation (120,

132], and the proposed control services should be attached dynamically to the

instrumentation service to monitor client requests on the 3inl Phone service and control

the use of the services.

The system monitors the method invocations made by clients, such as; connect () or

disconnect (), and send () or receive () methods and informs the control serVices to

activate its norms/rules and process as a consequence of any exceptional behaviour.

Following such exceptional behaviour, control service rules trigger a monitor service to

initiate a conflict resolution process and reconfiguration as appropriate. For example,

the current state of the 3inlphone service may indicate a request to use the GSM

service and the invocation of the connecto method on the GSM service, may result in a

RernoteConnectionException due to the unavailability of a GSM service. This

exception is then checked by a control service rule, resulting in the activation of a

suitable conflict resolution strategy. The repair strategy first attempts a specified

number of connections retries. If the retries are unsuccessful, the strategy then searches

for an alternative GSM service provider or connects to another service such as WAP.

Figure 8.9 below, shows an example of the conflict repair strategy (see Fig. 8.10 below)

encoded in XML format.

127

<? x mI version=* 1.0"
. <! --Simple

Description of 3 in I phone Strategies-->

<! DOCTYPE strategy (View Sourceforfull doctype ...)>
<Strategies>

<Strategy id="I" type="deslre">
<Action idý"V type="plan" name="Connectlon">

<Properties>
<property id="I* name="host">cmsnbadr</property>
<property id="2" name-"L ocatio n">G PS_Ioc</p rope rty>
<property id-"3" name-"Max con n ected">rn axNo</property>
<property id="4" name="MetWod">connect</property>

</Properties>
</Action>

</Strategy>
-<Strategy id-"2" type="intenslon">

-Action id="I" typc="plan" name-"Retry">
- <Properties>

<property id-"I" namc="No -
trlaI">two</property>

<property id-"2" namc-"serviceStatus">not null---/property>
<property id="3" namc="Method">connect</property>

</Properties>
</Action>

-<Action id-"2" type="plan* name="Alternative">
<Properties>

<property id="l " nam Whost">cm pn bad r</property>
<property id=*2" name-"New Manager ">ManagerProxy</property>
<property id="3" name-"Client Interface"> C lien tP roxy</property>
<property id-"4" namc-"get Client ">getC lien t</property>
<property id-"S" name-"Location">GPS -

loc<ipropCTty>
<property id="6"name="Max connected ">m axN o</property>
<property id-"7" name="I%IetiTod">connect</property>

</Properties>
</Action>

</Strategy>
</Strategies>

Figure 8.9: The XML document used to describe the repair strategy sequences.

Strategies
3inlConnection

Rule
Service state: s not NULL

7 Alternative-state :a not NULL
B: Binding: = Binding. FREE

Actions
Retry, Alternative, Connection

Strategy

host Ih I= localhost
host-2 h2 = localhost
mc&d m: connect
s: = Retry(hl, m) or
a: = Altemative(h2, m) then
b : =Connection (a)

Action Retry

do(
Service state :s= not NULL
No-triJ: n=2

Loop

b: = Connection(s)
until

(Nq_trial =2) or (B: Binding: =
Binding. Conncction)

Action Altcmative

Max_conncctcd: a. Max <=MaxNo
a. Manager mg: not NULL
s. clicnt c not NULL
do (
b: = Conncction(a)

Action Conncction

Max_connccted: S. Max <=MaxNo
B: Binding: = Binding. FREE
do (
B: =s. connccto
rctum b

Figure 8.10: The 3in1phone control repair strategy

The implementation's sequences in the 3inlphone example are explained below:

128

I. RLIII tile JIM service as explained in Scction 8.3.1, I`itýurc 8.5.

2. Run the main application services, namely, Sci-viccMallay, ci-xiass (sCC

Fig. 8.11 below), SysteniControllcr. class and the JavaSpacc scrvicc. . 1,11C

application of our 31nlplione example is inipicniciltcd in Java using Swing

components and can run as a stand-alotic al)plication (sec Fig. 8.12 lickm),

FiI

Discover LUS Servers

-_Iml Xi

No
f2

Proxies

ACLI(iii : Cf-lljlle: CZ: C! d WILh G'-*. Il Clictit,
Action : (: C, Iltt: O-l PLOCedure started

Conflict Detectation & Classification

Monitor

Detect (-ý I: II? TIt(I

Diagnose

Service Suppliers

C-onnidDetails

connict Resolution Strategy

Remuvei-- lient
-:
7J Marl agef Operator Dulalltý

Throws Exc eption Connection

Figure 8.11: The GUI ofthe GSNJ INItu. 1ger.

3. When a client requests a service, It Own establislics 111C I-CLitilicki

C0111111LInIcation between tile services, which enabics the scii(ling and

receiving of remote events and messai,, es (i. c. more details ('hill). 7) Imwecii

the service and its managcr bel-Orc mly notificatiOn Or rlicssligc is Scill III
response to tile client reqLICSt.

121)

I ri I rr 1z:

I Ii.. I I,. II,

I, ý If IuII Ic "Otiur I

vw",

C. F'Fi L--- ýý 11 --t.

I 14ftttafy

Elm

iLJI "I

m . -,
I

___________ II

Figure 8.12: The GUI of lite 3in I phone clie, 11.

4. By using tile established communicat loll, the scl-vicc Ill"Ill'it-m HIL"I"HIC" A

services attributes automatically to monitor and (Ictccl aliv 1,1111111-C of- Conflict

that may occur at rwhirne and begin applying a suitaldc rcpair MrAcgy (A.

further in next section). The selected repair operator is activated by the

scrvice manager by selecting one option from a scl-()II (jo%ýjj 111CIIII (c. g.

'notify (), add_Client(), remove_Client()'). lio\%c%, cl-, it-tilc j*,, jjjj-c collitl

not be solved, the service manager retill-l's control to the Sys(cinControllcr,

as the service manager stores the service's state III tilc lavaspýjcc SCI-%'ICC J-ot.

easy and sharable access.

5. Wlicnevcr the SysteniController servicc reads ()I- lll,)Illto, - ýl scrý Icc's State
from tile space and detects a 11111ure, the system coliti-olicl- ilticillpts to IIII(I ill,

appropriatc rcpair stratcgy, SLICII as comicct with the WAP as an

to the GSM service (Fig. 8.13).

130

sy, -Aef'fý Mori itor

Failure Detected in GSM Service

System Co ntr ol Ie rP rofi Ie

Plans

-tratelpy 2: Intension

Action 2: coraiect to Alternative:
Propertie. 3: 1

Host: lol-allicist.
New Manager: llwiager Proxy.
Client Interface: Clienrl, roxy.
Ilethrid: gel: Client ().
Max-corinected: MaxN0.

connection: connecto.

Figure 8.13: The GUI of the Systell, ('01111-oller service.

6. Two application are provided 1'() r tile (' () II 111 c(I)CtýIII ýs
ManagerOperatorDetails, shown III II-LýLII'CS S. 14a, S. 141), i-csl)ccti%-elv.

client; Pcm..), ed Cully
Addi'll

dd P-

and

I "Ice 1-t i, te, i,,.,, ri i., t
C-EII. L Wt-L. d
SOLVICE ACLLM"Lao cunrii-m
C.. r I-, he- ., I ., I

P- --i w. r.. r
F=rll- M"", "I
"'. 1ce All, rii-

(a) ManagcrOpcratorDctails GUI (h) Con flict Detal Is (111

Figtj re 8.14: The Conflict I)escl-il)l i(Ill

8.3.2.2 Web-Bascd Information Set-vice

Web-bascd 111110"Ilation Scl-vice (IS) application is used to acccss flic Inobi II slit Ion
1ý Infomiation. Sinifladly to the 31nipliolic SCI-\, Icc, tlC Is
I)CIAACC is Ilostc(l 1)\' tIlc III-

vehicle computer.

This study was performed to demonstratc how to Lisc sc)j-týý, jlj. c 1 ll. st, *11 111cl) tilt I ()Il

g flic SWIla, " al-C lot . Cc ý itor flic IS. When a failurc is detectill I 'cd. III,: mon, I

service managa will notify the controller ofthe cvci1t, initiýItilig

131

this implementation, the repair strategy requests a "hot-swap" to an alternate IS node by

initiating a discovery and the selected service's invocation processes. 14crc, the IS

application service is developed as a web service using Jakarta Tomcat and providcd as

a Jini Service

In the case of the occurrence of any failure or conflict in the client rcqucst to tlic

Information Service (IS), the autonomic middleware control service activates the

service monitor and diagnosis to detect, identify and classify the conflict. This triggers

the service self-repair operator and the result from the repair process which may either

successfully resolve the conflict or throw an exception for another failure. In the latter

case, the service manager sends a message or event to the JavaSpace service to register

the service state. The JavaSpace service then either notify the system controller service

or directly notify the system controller itself Then the system controller begins by

detecting the failure message, thereafter the system self-repair strategies are activated

and start selecting and firing the appropriate strategies to reconfigure the systcm

according to the new changes. For example, connecting the client with an alternate IS

service provided by another host and notifying the client of such changes, establishing

the associated changes required and feed back to the system monitor through the

rccon iguration process.

8.4 Summary

This chapter is divided into two main sections; the first section discusses the

implementation of the third and final service in the autonomic middlcware control

service, which is an essential service for the system self-control process considering the

coordination aspect. The second section confinned our implementation explanation by

using the GridPC, 3inlphone, and finally the IS applications.

The system architecture of the current implementation is integrated with a Jini so ftwarc

architecture and based on a Java envirom-nent. We explained how the proposed

approach is used to automatically manage and coordinate distributed application

services. The autonomic middleware control service providing self-detcction and self-

diagnosis was implemented with interfaces to provide access to their structural and

behavioural properties thereby establishing self-management and self-reconfiguration

in the implementations of the three application examples. Overall, the chapter providcs

a practical and effective solution that can be used, in conjunction with any core

132

middleware services or web-servers to facilitate the runtime managcmcnt and
adaptation of distributed systems applications.

133

Chapte
Evaluation

9.1 Introduction

- This chapter presents an evaluation of the developed autonomic control middleware

service. This has been designed primarily to provide support for distributed

applications' lifetime management and self-governance throughout a required on-

demand runtime change or adaptation.

Evidently, the evaluation of such a model and associated middleware service is a
difficult task, because there is no straightforward way of evaluating a self-managing

and self-adapting software infrastructure, nor are there any clear metrics or accepted

benchmarks.

9.2 Methodology

Consequently, this evaluation has been designed to demonstrate the use, and effect of

the controller on the overall system's behaviour when facilitating the lifetime

nianagement of a given distributed application from both qualitative and quantitativc

perspectives. In other words, we analysed the effect of the control services on flic

software, and the runtime system overhead incurred by the control service in tcn-ns of

processing time.

9.2.1 Objectives

iFor the purpose of this evaluation, we have developed two case studies namely; sorting

algorithms and the 3inl phone. The latter has been detailed in Chapter 8. In each case

study, we compare the software system with and without the autonomic middlcwarc

control service. For example, we use elapsed time to undertake a sorting process as a

cluantitative metric to indicate the applications performance profile with and without the

134

autonomic control middleware scrvicc. Finally, we dcscdbe the valuation from a
qualitative perspective too.

In addition, we apply a set of evaluation metrics oftcn uscd for control systems to

provide a general guide for evaluating our autonomic middlcwarc control scrvicc
including;

Stability: This is one of the most important nictrics of control systcms. The

system is said to be stable if its responsiveness to its control rules is in a
desirable interval. In our study, the system is stable if its controllcd variables

are within an allowable range of values and response tinic [1381.

a Robustness: This is a metric on the controller itself For control systems, it

may not be sufficient to be nominally stable. Thcy have to rcmain stabic cvcn
if the process is different from the intended procas model yet remaining

stable.
0 Time Perfon-nance Profile: This measures the amount of time it takes for a

system to achieve the whole process, and whcrc the value of flic control

variable is within the desirable values.

6 Average Latency: This measures the average timc required for the controller
to begin its control cycle.

9.2.2 Approach

Although, this evaluation is not intended to be a formal performance evaluation of our
developed autonomic controller service, here we will use clapscd time as an indicator to
be used by the middleware controllcr to ensure sarc and/or cfricicnt opcrating
conditions of a given user application. This may trigger an application change proccss
leading for instance to self-tuning or self-licaling of the considered application. In both

of the case studies a range of preliminary cxpcrimcnts have been conducted including-,

0 Running a numbcr of trials to nicasurc and dctcmiine the cfficicnt opcrating

range, tolcrance and control rules, for instance, applicable to the sorting

algorithms.

0 Defining an uppcr and lowcr pcrfonnance limits for a givcn application,

which will provide conditional triggers and control rulcs, for instance, to

guide the controller to swap sorting algorithms to maintain a spccificd ovcrall

system performance - this is a kind of scif-tuning.

135

mcastirc the Controller IItcIIcv (1111c, which Is used licre "1% a tillic

tolcrance mcasurc. Furthcr detalls wIII hC pvc1l In Call Case Study

9.2.3 Overall settings

,, \s dcjjllIcd in Chaptcrs 7 and S, our appI Icat lolls 1111', hccll 1111111t. 111'. 11l'-d 11 . 111- 'Ind

cxtctl(llll-i,, -11111 Illiddloval-C, such that flic autonomic Control Illiddlewale Scl-vicc. "

providc -Support 1,01- sonic self-111,11W. Lwille"t bY doccling conflict and or ickluired

bchavioul-al C11,1119cs, and establishing appropriatc I-cilic(lial actions say 14, rcsokc .1

dctcctL: (l conflict and/01* dcVKltl0ll Irom a scrvicc normal opci-atlonal modd. In

autonomic Control particular, Jim middlewarc is here cxtclldCd by the dCvCjopCd 4

middlovarc sci-vice to provitic a runtime control mechanism hct\%ccn flic application

servicc laycr and the nilddlcwarc scrvicc laycr iviih numnium intcrvcnoon I'toin the

uscrs and It'I'1/10111 SyStClIl dlStLll-bancc (scc Fig. 9.1 bclo\%-). A (Ictal Icd (Icscl-1111 joll ol tilc

(Icsign and IIIII)ICIlIciltatioll of' dic autonomic middlewarc SCIWICC CMI I)c found 11)

Chapters 6,7 and 8.

FeedbaiJ,.

Autonomic Middlewas e Control Semce

lirvaspece seffvlce Cc

J11,11 MI-1-Upwale ,: elviceo

, .1". 01 -, "s

Fig [I re 9.1 : 'I'll ca rchit cc III re of Iht. 1111ollo III ic III idd1v %%. I re co 1111.4 11 %cr% ive.

9.2.3.1 I'valuation Re(lidrellicill

In ordt: r to Start dw C\ýIILIIIIIOII It I. " 11CCC11ý"11% I(Il C. k il ý, I, c kikl,
requircments that will bc dynamically rcquired 1,01, tlIc atitol)(MIR, ('011tiol iniddlo%aic

scrvice Oava classes). Such coll(1,01 I'CLIIIII'CIIICIItS cnconipasscs a raiwc of applicanow,

and'or domain knowledgc including;

0 Control I-Liles Xv Ith a houndarv rant"C to I U11111m. And to

clicck \ý lictlicr the systcni is stahlc or not.

13()

Data
Application's Services

Resolution strategies whose main operation is to achleve system vabllit)-.

Utility function to underpin the system dccision-making proccsscs wlIcn
evaluating different adaptation plans. For instance to scicct a rcpair
strategy (repair plans) from a large search space of possible rcpair plans.

Beliefs Dcsircs and Intentions knowledge source, which is an associativc
knowledge between sets of systems' or environment beliefs staics and
desires, which if in conflict/discrcpancy, can trigger a set of associated
intentions (actions).

After initialising and starting the Jini core services, the autonomic middlcwarc control

service is activated and published when the client requests a scrvicc from its scrvicc

manager. The service manager begins the service management processes and notifies
the system controller and sends a waiting message to the othcr dcpcndcnt scrvicc

managers to wait untill the system controller complctcs the sclr-rcpair and scir

configuration processes.

9.2.3.2 User applications
This chapter bases its evaluation experiments on two user applications, which arc
sorting algorithms and the 3inI phone. The sorting algorithms example is based on
three main sorting algorithms, which are bubble, selection and quick algorithms.
However, the 3inlphone is one device that can be used in three different modes ..
GSM, PDA and WAP. The use and interaction model between the application' services
can be outlined as follows (see Fig. 9.1 above):

1. Each user application (and/or instance oo is associated with to an fcdcration
(assembly) of application services, cach of which has a unique scrvicc

manager, which monitor and manages its application's spccificd normal
bchavioural model (Sec. 7.3). This is achievcd through the use or
externalised control strategies (Sec. 7.3.5).

2. The application service scnds the client's request to its service managcr cithcr
by RMI or Java remote event.

3. The service manager adds its service state including scrvicc boliefs to an

allocatcd JavaSpacc (Scc. 7.4).

137

4. The system desires are added to the JavaSpacc. Tile systcm dosiras aro
stored in an external repository as XML documents dcscribcd in a proposcd
EBDI markup language (Chap. 8).

S. At a specified frequency the system control Icr rcads the JavaSpacc to monitor
its service status and/or detect any conflict or failurc.

6. The system controller compares the associated systcm's beliefs (i. e. stop 2)

against the system's desires (i. e. step 3) gcncrating ir rcquircd the systcm
intensions using its control rulcs.

9.2.3.3 Environment
The evaluation is perfonned using an X86 Authcntic -1.5 GH proccssor with 261 NIB

of memory, running MS Windows 2000 and conncctcd via Ethernet 802.3. The

applications and the autonomic middleware control services were impicnicntcd using
the Java programming language (JDK 1.4) and Jini 1.1 middlcwarc.

9.3 The Quantitative Evaluation

The sequence of actions carried out for both of the following case studics arc as
follows:

m For each service there is a service manager that is rcsponsiblc for

examining the service control rules and constraints by checking the values
of its service attributes. These values arrivc as input or fccdback.

So the service manager performs a control action whcn an inconsistcncy is
detected, and sends to the client, a remote evcnt notification to wait for a
specificd timc while a solution for the conflict is idcntificd.

0 In the meantime, the service assumes both a mcdiator/proxy role bctwccn

the client and the service manager. The scrvicc managcr also acts as a
proxy between the service and tile system controller in the case or a
conflict occurrcncc, as in this situation.

m JavaSpace is uscd as a distributcd sharcd mcmory hosting/displaying

messages from service managers conccming their services status. licncc,

the system controller monitors tile service status (beliefs) from the sharcd
memory at a specified frcqucncy.

138

a The system controller searches for an appropdate stratcgy (i. c. Intension)

that is described using our proposcd control stratcgy markup languagc

encoded in XML (Sec. 8.2.2).

a The system controllcr interprets XML cncodcd intcntions into Java

executions, which often lead to user application changcs and/or

reconfiguration - runtime service discovery and binding. 11iis is achicvcd
by a translation of XML intentions (pcrformativcs) to class namcs (string),

and then using the Java rcflcction API [139], tile namcd class will be

reflected to automatically discover the appropriate mcthod nanic to be

invoked through an RMI process (see Chapter 8 for morc dctail).

0 When the system controller finds an appropriate solution, the rcsults arc

re-submittcd to start the fccdback process that cvaluatcs the control

process. For example, if the maximum average latency for the control

service process is 0.4 millisecond (i. e. approximately) and if the

average_latency > maximum_latency, then the system will

detect a conflict or throw an exception (i. c. start the control proccss again).

n The elapsed time for each control service proccss is mcasurcd and

compared with the previous measurements (i. e. all results to ensure that arc
in the acceptable range). The metric unit uscd to evaluate autonomic

middlcware control service efficicricy was time in milliseconds. A test run
finishes when the system's rules arc triggered cithcr successfully or not

and either with a conflict occurrence or not.

m Measures the elapsed time for the control process only and uscs the

elapscd time values as an average latency range for the control service

process itself. The average latency is also uscd in the fccdback proccss to

monitor the control service or the system performance.

9.3.1 The Sorting Algorithm Scenario
We propose using sorting algorithms, as they arc an important benchmark in scicntific

and commercial applications. This scenario presents a variation on traditional sorting

algorithms [140] by adding an autonomic middlcware control scrvicc, which cnabics a
"kind" of autonomic sclf-organisation, tuning and/or scif-licaling of the sorting

application, in response to unpredictable system behaviour.

139

For this cxperinicnt, thi-co: sorting Agovidinis arc uscd. naincly. lit, I)wc, Scicchim. and

Quick algorithms 114 1]. As mcnilmicd cal-licl" Our study was (ICSIPIC(I 1()

adapting, SC117-111,111a alitolloillic hChaviour. Tims. to cvallilatc th s goal. it) 111C Ilr%l ging 01, ,I

step of tills CXpCl-ilIlcllt a Calibration c. xci-cisc %%, as condticicd. n 11im. ific control pioccv'

was run for cach sorting algorillim 20 times with 20 randoinly gcnermcd ; irrays ()I

varying sizes. The sorting time for cach sort process is Own rccorded. In par-oculm-, I'or

cach dynamic datasct, we spccified an initial array size and mi increnicia. For c\ampIc.
if we want to sort arrays ol'sizcs 1000,1500,2000,

... , 5()()(). the ininal sl/c wotild lic

1000 and the incl-clucilt would lie 500. For cach of' thc 20 array si/cs, the (Iccompowd

cx1mimcntal StCj)S al-C (ICSCI-IbCd I)CIO%V:

1. Illitiallse the array size (see Fig. 9.2 below) using a dc%-clopcd application ror

dyn'11111C 1111tiallsation, which is callcd by the getlnitSize() method, as the

Initial array sizc for cach sorting algol-1111111 Can hC (lyflanilcally Changed AIS() its

Sl10\VII III FIgUI-C 9.3, the getIncrementSize() nictliod rcccivcN dic inct-cincill

variable, which defirics the "I/C of' 111C next gencratcd art-ay

public int getlnitSize ()(

int init= 0;

try{

init = Integer. parseint (frame. jTextField2. getText(

catch (Exception e)

Hthrow exception

return init;

I

Figure 9.2: Initialisc dic arra) %i/v procc%%.

2. Gencratc an array ofa spcc III cd SI/c, MIIk. I I\\ III hk: a ki Io II). it I ca Iý!, 'C I Ic Ili I C, I by

a Specially developed random array gcncrator (Fig. 9.3 hc1o\%)I lie gcncratcd

array will bc populatcd by randonfly oldc1c(I 1111cýlL. I\, chw, (-11 11(1111 111k. P) h)

Array(Si/01 intcrval.

3. Creatc a Sorting obicct by loading the Sorting Mudi cn. thic the contwi1c,

to dynamically invok-C a choscil sorting nicthod such &s. bubbleSorl().

selectionSorto, and/or quickSotfo. 1. iIcj, of Much 1111picinctits fitibb1c. SCICL-11m).

141o till s end it iandom array ýe tic mtor has been tic N-clopcd foi t I, I% cxpermic tit

140

selectionSofto, and/or quickSorto. Fach of' Which IIIII)ICIllcills Buhh1c. SCICCII(ill.

MId QUick algontlinis rcspcctlvcly. Figure 9.4 11111stratcs Ilic plok. cvL-,

I'Or sorting with Ilicsc a1gorldims.

public init_Rand_array(

Hcall initial array size

getInit ();
// array Size Increment

getlncrementSize ();

for (int i=0; i< NUM_ARRAYS; i++)

int testSize = initialSize +i* sizeIncrement;

int testArr[randomArray(testSizo)ý
I)

Figure 9.3: Fill flie specilied size an.. lý %% kil g. ýill(14iiii illfeurt %.

public class Sorting f

public void bubbleSort (int array[
for (int i =0; array. length >=O; --i)

for (int j=0: j<i; j++) (

if (arrayU] > arrayU+11
temp = arrayU];
arrayb] = arrayU+11;
arrayU+11 = temp;

public void selectionSort (int array[
for (int i 0; i< array. length - 1; i++)

int index i;
for (int j= i+ 1; j< array. length; j++)
it (arrayU] < array[index]
index = j;)
Hcall the swap method

swap(array, i, index):

public void quickSort (int array[1, int first, int last)

Hcall the partition method

part = partition(array, first, last):

quickSort(array, first, part- I):

quickSort(array, part+ 1, last);

Fillure 9.4: The main proms for Sorting lisilig the Illurt. %cleclud 1111111%. 0..

141

4. Rcturn the clapsed tillic III 1111111scconds takcri by cach sorwill 1)1()ccs,,,. mlicl,

calculatcd by taking the (11 1'fCrcncc bctNvccn tile Initial tillicl I alld tile 1111111 ImIc

111CýISWC LISHIg 1,11C SýyStVfll
- C11 1-rvii ID tit cl Ii/It so tuctlio(I I)cI-oj-c 111(1 . 111c, tile

sorthig process rcspcctivcly. This diflerciice uses im iI nwgcr tiot I

long as hcf'orc Ohc difTerciicc will 11c small ciiou-0i to storc its im mo I iý,. urc

9.5 below shows aii cxampIc of' the elapsed timc im%výurcmcw f"M

algorithm.

Long startTime = System. currentTimeMilliso;
Hcall the chosen sorting algorithm,

sorti n g. selection Sorto;

Long endTime = System. currentTimeMilliso-.
Int elapsedTime = (int) (enclTime - starffirne)ý

Figure 9.5: Example ofcalculatilig tile Clap%ed fillic fol. all) '11gol-ifillf).

5. The clapsed tinic rcsult is uscd to gcnclalc 111t: houndary rangc '111d

intervals. This is rCLI Uired to glicr, (11 c pill n I/ wn-We ruh,. ý I' chilic . 11C Ot II I'

nianagcilicilt of' the system's behaviour. For cach algorithm, tile nicasurcd

elapsed time can indicate tile tinic performance prollic an(I tillis 111c c1,11cicilcN.

boundary of' each algorithill. So tile ilicasurcilicill of the elapsed tinic is used as

il 11MISUrcilicill Illctric to generate the tinic limitation I'm cach sortmi.,, pioccss

As soon is the systcm rcaclics this limitation tile Control proccss kJOCCIS thc

11111111-C and starts the Control process.

Although from the exl)cl*llllclltill I-C'sult O. e. Step 5) wc defilic 111C Start point 161,

the Control process to dctcct 1*111111"c, it is still possible I'Or anotlici I'Jilurc to . atisc
From the control prowess itself' requil-Ing 1110111cl. docctioll. Fm. tills 1C. -IsOll We

I11CiISLII-Cd file l! ItCI1CV 01'111C C011trol proccss Itself' 1,01. cach sm-1111i, 411goiIIIIIII, and

(ICIIIIC(i the Illaxililum latclicy for the sorting alpriduns (see Fig. 1). () I)clt)%%)

This average latency valtic will he liscd III the sysicill fccolback process ((I detect

ally Further Conflict that Illay arise during the control proccss tinic.

14 As the number returned is relatively large a long variable was used instcad ol int

142

Long startTime = System. currentTimeMilliso;
//define the appropriate control rules for detection,

lf(arraySize >= max_bubbleSize) (

lf(no_swaps) >= max-Bubbleswaps

//start control

Class c=C lass. forN ame(classN am e),
Class partypeso=null

Method meth=c. getMettiod(methodnaiiie, l)iirtyl)(! %),
NotifyClientol

I)

Long enclTime = Systern. cu rrentTimeM ill iso,

Int latency = (int) (end'I'mic - start'I'mic).

Figure 9.6: The proces-s of an average latency calculatifill hir III(- sortilig

algorithills Cf)lltl-()l %CI-N ice.

9.3.2 The Sorting Algorithm Experimental Results
'Fhe main rcSUhS Lkawn Rom our experimciit arc ti,, cd as t ha"i" im ýIci - IIIIIIII, t1k kA, 1111, ýl

ruIcs Ior our control service as follows:

" The number of' elements bcing sorted arld the process ends %% ith the tlat., III

sorted order.

" The sortim, by any particular algorithill is Cast c1lough alld th'. 11111c I,

rcýIsOllllblc.

" The average hacncy Ar the consol process does not cxcccd the m. mmum
latency (111, lxillllllll latency Comes from the expaillicillal I-CS111t),

To glicrate the service Control I-111cs and Constraints by Collsidaing, tile prcý lous

I'licilskilVilicilt aspects, wC analysed (lie effect of' the Chaill. "Cs In tile nuillim. of ClIch

algorithin datisct Input oil tile Sý, stcm time performance profile. III other %%otds, %%c

measure how many milliseconds it takcs f'or each datasct N%ith cach sorting algorilhill

(i. e. our experiment Liscs thrcc sorting algorithms, namely that are bubble sort,

se7ection sort and quick sort). I lie results (showi III tile tAbIcs hchm)

demonstrate that the processing tinic incivascs and the system starts to slo%% thmn IN

tile IILIIIIbCI- 01' tile C1CIIICIItS III tile arrav 111CI-Cascs, but tile 11111111-111olls oI' such an

Increase are not known. So we ran each algorithin run to find tile idcal chowc of*

1.1 "

array size flor each algontlim. Front the test 1-cstilts, wc discm-cf-Cd that NOICII art-av sl/c, ý

arc too small no uscf1d I it I'Ormat loll is elicited (such its /Cl'O M* it vCI-v Small flutilher)
With too large array SVCS, the algol-ithill (04- a very Imig to niti. III cmi"ItIct-Illýg 111C

C0111I)LItcr's processor speed, we should pick diffacnt sets ofarray s /cs that %%m-k wcIll
.14

with the proccssor SPCCd and arc not /Cro or too lolllý as In tllc f'Ollim 1"IbIc

9.1:

BLIbbIc Sort Selection Sort QIIIck soit

algouil hin algorithm

Array 1111C Array I 1111C 1111C
(Size) (ills) (S i7e) (ills) (SI/O (ills)

500 10 5300 70 30ow I

1000 10 6600 100 60000 20

1500 20 7900 1 ý0 (AWOO 30

2000 50 9200 201 120000 1 60

2500 70 10500 260 1 IS0000 70

3000 100 11800 330 1 IS0000 90

3500 140 13100 420 210000 100

4000 171 14400 501 240000

4500
I

220 15700

-
601

-

270000 1 1-11
i

5000 281 17000 69-, ý ---
.
100WO f

II ý() -

5500 350 18300 SI I 3. wooo

6000 401

d

19600 932 300000 ISI

6500 47 , 20900 1051 390000 201

7000 550 22200 1 192 420000 220

7500 621 23500 1332 450WO 238

8000 711 24800 1482 4-NOOOO 25o

8500 801 20100 1612 510000 269

9000 902 27400 1793 540000 1 2ho

9500 1011 28700 1973
.
121)

10000 30000

Table 9.1: FIxamples of, tile clapsed tillic I'ol- dil'I't-l-vill %ol-tiwo"

For each algol-Ithill datasct, \\'C I-cl)l. csclltcil a 1111C. 11 "calt. Im the 11111", PCI h 11 111.111k k

profilc as a function of-the arrav si/c Ovhcrc dic x-axls is the array si/c land thc Y a\is

is the tinic ill 111111isccolids) ýls shoWli in Figurcs 9.7-9.9 bc1ow:

144

1200

1000

u 800

600

E
400

200

0- -- I
0 2000 4000 6000 8000 10000 12000

Array Size

Figure 9.7: The elapsed finic using the huhble sorl alý! orilhin.

2500

2000

1500

E
41 1000 E

500

0
0

.
.

.
.

5000 10000 15000 20000 25000 30000

Array Size

Figure 9.8: The clapsed fillit. using file selectioll Agm-iIIIIII.

35000

14 N

35(

30(

251

201

151 E

101

5(

o
0 100000 200000 300000 400000 500000 600000 700000

ArraySize

Figure 9.9: The elapsed tillic using the quick sorl algorithm.

In tile test, it was noticeable that the nicasurcd tinic incrcascs as the si/, c of the array

increases for each separatc algontlim. For example, \\itll the huhh1c sort '11gol-1111111

when the size ofthe array reaches 10000 elements, the systcIII SIO\\S down and it \ý"Is

very difficult to capture the ciapsed time for tlic sortill", prock: s& ()It the 0111cr hand,

With tile LIMA sort and art array of less than 30000 clenicilts, the clapscd tinic \\as lcro

LIIItIl it reached the array size 30000. Then It started at 10 milliscconds and kept

measuring cfficicntly until ail array size is 600000 clenicilts was rcached, so the quick

sort operates very efficiently for a very large numhcr ofelenicnis.

14()

public void getbeliefsVaro(
try(

DocumentlBuilderFactory
factory= Docu mentlB ui IderFactory. new In stance(
factory. setVal idati n g(true);
DocumentBuilder builder=factory. newDocumeritBuildero;
Document doc=builder. parse("http: //Iocalhost-. 8080/beliefsVar. xml");
I istof Item =doc. getElementsByTagName("var 1

if (I istof Item. getLength ()! =0){
Node Item =Iistof Item. item (0);

Intended Attribute =
Item. getC h ild N odeso. item (0). getNodeVa I ueo

I istof Item =d oc. get E lem en ts ByTag Name("var2");
if (I istof Item. getLeng th ()! =0){

Node Item =Iistof Item. item(O);
Utility_Attribute =

Item. getC h ild Nodeso. item (0). getNodeVa I ueo;

catch Oava. rm i. Remote Exception exception){
//thrown exception

I

Figure 9.10: Extracting the utility and intended . 1111-ibille variables froill the VNII,

t'i I e.

As mentioncd before, the cxpcrImental results provide tile guidelines for gencratill, ý,, 111c

system boundaries for tile control service rLdCS to achieve SyStClII StilhIllty 111d

robustness by using finic measurement. Two main variables ire used licro: to gcncratc

the control rules for cach algorithm. These are gencric val-lahIcs III Our Code, hut are

specified using the XML 1-11C, tile SyStCI11 tl1CI1 LISCS tile .
1, lVa rel1cction AN [I "'i I to

get tile class and nicthod name (i. e. which ire specificd ill the XML file), and hence

invokcs the method name (i. e. more dctall about that I IliplCillentat loll III Chap, 8). The

two variables extractcd fi-om the XMI, file I'm- the sorting algm-ithill example are

array-size for testing system stability (e. g. all Intended attribute) and Im sjl)(Ips

(e. g. Litility attribute) for examining system robusnicss. The sl/e ol'ciich array is used t()

determine the approximate range 1,01- cach algol-Ithill and the 110--simips variable is OIL.

number of' swaps that have been im-1,01-mcd III the sorting process. Illitlalk" file

controller cxammes the array size, 1f it within tile algontlim range, dicii no-suiups is

examincd. If this is larger than tile algorithm 1111111ber of' swilps hillit, it assigns tile

appropriate algorithill Instead. This directs the system to choose the appr()priatc

algorithm. I lerc are exampics of' the 1111gUlStIC ValLICS 1101- tile OrrOySI . ze or (I IItcIIdo: d

attribLitcs) vanable for selection sort. These are 14)1*011*? l selectl'orimuflq(" mid

147

out-selectionRange valucs. Thc vducs I'm the no swups vari; llflc . 11-c

above-average and below a ue rage. E'xamplcs of conti-ol vii1c,, ýiic 11(mll III

FigUl-CS 9.10 MId 9.1 L

boolean Belief Constraints = false;
String lntended_Attribute= null;
String Utility_Attribute= null;

public boolean check_beliefs ()(
If (Intended_Attribute <= within_selection Range &&

Utility_Attribute <= below-average)
f

Return Bel ief-C on strain ts = true;

Else If (intended
-

Attribute >=with in_selection Range &&
no_swaps >= above-average)

Return Belief-C on strain ts = false;
I
public void filtero(
boolean flag = Beliefso;

if (flag 1= false){
try{

desires
flinvocation of the desire method, e. g. selection Sort(testArray)

)catch Oava. rm i. Remote Exception remotexception)(
//thrown remote exception

else(
try{
intentions
Hinvocation of the intension method, e. g. quickSort(testArray);
)catch 0 ava. rm i. Remote Exception remotexcept)(

/Ahrown remote exception
I)
public void execute()throws RemoteException

getbeliefsVaro
filtero;

Figure 9.11: Design of the Control rules corresponding to iirrýiN, sl'/(,

llo swilps.

148

Array

(Size)

Time

(ms)

Selcctcd

sort algorithm
500 10 Bubble
7500 550 Bubble

14500 521 Selection

21500 10 Selection
28500 20 Quick
35500 25 Quick
42500 33 Quick
49500 40 Quick
56500 47 Quick
63500 58 Quick

Table 9.2: The autonomic middlcwarc control service manages different array
sizes using the autonomic control service.

When the value of the array size is withirLRange, the system will use the selection

sort to achieve system stability, but in the meantime the controller detects that the value

-p variable is abovQ of the nQ_ swa _average.
This means the number of swaps

performed by the selection sort with the previous array was above average and the

system is not able to achieve robustness. Hence, the system controller will self-control

the system again and assigns this process to the quick sort instead to achieve

robustness.

We examined the control rules of the control service on 10 different datascts cach of a
different array size (Table. 9.2 above) and allowed the autonomic middlcware control

service to force the sYstem to the most appropriate solution. Without the autonomic

control service the system would not be able to sort the arrays of a higher size in

particular or may crash.

149

800

700

600

500

4uu

300

200

100

0

Processl
Process2
Process3

A

Algorithms

Figure 9.12: The chart indicates III t. Sorting of' a it*f*(., -Cll Ia I-ravs %%i III III cau Io Iloillic

Control Service.

As shown in Figure 9.12 above, we l'ound that 11, \vC I'all tile sy""tcIll with the "111(mimllic

middimarc control service morc than Once, it was clear that tile SCrN, ICC Controls its

behaviour according 10 tile I111141111C ClIV11*011111CIII, IS tile aL1101101111C CO1ltR)1 SCITICC

detected and managed system ruil-tinic inconsistency. For example, III Figurc 9.12

above, when the system received an array of'sizc 14500 elements, the sv. stcm controller

assigned this array to tile selection sort algOI-101111 11)StCad Of tile bUbbIC

algorithm. Sincc tile bubb1c sort is not Suitable I, ()[- that si/C ()I, tllc '11-1-av as dchllcd bY its

time pci-f-ormancc profile.

It is vcry c1car licre that tl1C SyStC111 Using ilic 'ItItO1101111C ('01111*01 scrvicc Is smble

bccaLISC it is responsivcness to the control sci-N, Icc is still III desirabic boundarics and its

control variables are within a ralige 01'(Icsll-ill)lc values, III addition the Control S(: I-\ Icc Is
PI-OVIdC 01C SyStCIll WIth thC COIltliIILIOLIS 11101111101- ýIIILJ CjIpýIj)jJItIC. s, \\IIICII IS 1114,1111

t1lC SyStCIll I. C111,1111 SUINC 01- Ill Ot1lCI- 11MIll I-ObLISt.

I()

services lurned (? ff. The same experiments were input to the noil-colill-ol scl-vicc sysicin

with the same valucs Im- the autonomic control sci-vicc turm, d Oti all(I 111c Iltimbel- ()I

milliseconds for each algorithm was calCUlatcd.

It s
2000

1800

1600

, 1400

1200

1000
4,
E 800

600

400

200

0

-* Bubblesoll It
- "fickSoil

ScIeTtioll Soll I.,
Soiling with Control

ir I- --a

0 50000 100000 150000 200000 250000
Array Size

Figure 9.13: Comparison ofthe time I)ellorillance profile ofsorting alLol-itilills

with control service and without conti-ol st-l-N, ice

In Figure 9.13 above, the clapsed tinic 1'01- Sorting cach datasct with Ilic approphatc

algoritlim with and without the control scl-\, Icc I's presclitc(l. The 1101-imlital axis

corrcsponds to the range of' the array SiZC SUIL1111C I'm cach algorillim. To makc the

comparison clear, we present two cases:

Oric casc without the control service that is I-cl)l*csclltc(l III separate lilie's 1,01,

each individual algoi-ithm, wlici-c the dashed line i-cpi-cscilts tile scicclion

sort algontlim, the dotted line i-cpi-csclits the bubble Sort algol-Ithill and tile

segmented line i-epi-csents tlic qUick sort algonthin. As tlict-c is no conti, ol

servicc In tills Situation, thc systcril pel-1,01-111,111ce citlicl. slows down \ý1111 thc

inci-casing array slzc or it takcs a very long tillic 1,01. CIch process and could lwt

continue after a ccrtain point.

2. Oil the Otlicr hand, III the casc Of the Control Scl-vice existclicc, I'cpI. cScI1Icd hy

the solid line, flic systcm contimics processi1w with 110 disturbance C%'CII It, the

151

array size becomes too large for one algorithm, by adapting system bcliaviour at

0.6

0.5

-0.4 w E
0.3

(D

0.2

0.1

0

run time at the point the degradation of the time performance began.

-+- Processes Latency for Control

0234
Processes

Figure 9.14: The average latency while running the control process of the sorting

algorithm example.

In addition, in continuously measuring the system performance to prevent any further

conflict arising during the control service process itself, we measured the average

latency for every control action in each sorting process (Fig. 9.6). According to the

measured average latency, a latency interval is defined (e. g. maximum latency). Once

the control service takes more than the allowable maximum latency (i. e. the average
latency is input to the control service using the feedback process), then a conflict arises

and the control service begins the control process again to trigger the appropriate

solution strategy.

In Figure 9.14 above, we show the approximate average latency of the system with the

control service for the sorting algorithm example. We experimented on eight array sizes

and found a maximum average latency of 0.4 (ms). If the maximum latency is more
than 0.4 (ms) a conflict or inconsistency is detected and the control process finds an

alternative sorting algorithm (i. e. resolution strategy).

The values of the previous experimented average latency is used here to provide the

system with the maximum latency values which is used for monitoring and evaluating

the autonomic control service itself, also it provided the system with the runtime

continuous monitoring capabilities (i. e. feedback process).

152

9.3.3 The 3inI phone Scenario

As mentioned previously in Chapter 8, a 3inI phone allows a mobile phone or palm
device to be used in three different modes, either for voice communication or to receive

multimedia content, subject to the requirements of the user and the availability of a

communication service provider. This section evaluates the 3inI phone example that is

detailed in Chapter 8, and evaluated the system efficiency and time performance profile
using the same methodology as that used for the sorting algorithm study (Sec. 9.2). The

system's performance was also compared, with and without the autonomic middlcwarc
control service (i. e. or simply control service) of the system.

The main advantage of the autonomic middleware control service is a resolution of
detected conflict at runtime without the shutdown of the whole system (i. e. as

emphasised by the sorting algorithm case study). Also the control service provides a
dynamic runtime self-control that allows the control service to work ctTiciently for the

lifetime management of any system that requires runtime self-control with minimum

intervention from the system developers (i. e. as will be demonstrated by the 3inI phone

case study). The specific service's attributes and methods should be in the XML

document and the control service reflects those values to invoke the specific services

functionality in the control process.

The 3inI phone case study is used to emphasis the previously identified advantages of

our control service in the following system situation:

" Without conflict occurrence and without control services

" With conflict occurrence and without control services

" Without conflict occurrence and with control services

" With conflict occurrence and with control services

In this evaluation, the architecture is distributed over three machines, in that, one is

used for the 3inl phone client to request services, the second is for the service manager
to look after its service and the third is responsible for controlling the whole system.
Through JavaSpace the service managers add their service states and the period of time

granted. This information being used by the controller to monitor, control, coordinate

and regulate the application's behaviour.

The two main steps of this experimental scenario are explained briefly below
(anddctailed further in Chapter 8):

153

Calling ApplicationScrvicc. class starts the 3ml phonc ý, ppjic., jiojj jill(I 111cli 111c

is aUtOlliatically instailtKitcd as a llulflagcl of 111C

requested service.

The system controller begins by calling and

continuously monitors the JavaSpacc to dctcct any runtinic conflict ill the

application scrviccs.

The cxpcrimcntal service attributc villLICS WC j)1-0j)0SCd Mid Ircd 14) dclccl IIIC

failtire/conflict in this evaluation arc as follows:

The service GPS location as a first attribute, wc proposcd a valid vallic and it

is in an acceptable boundary range.

The number of connected clients as a second attribute, This is rcccivc(I as ;i

rcinote event notification from the service provider to the scrvicc nj., jjýjt, Cj,.

We asSLIIIIC that the VaILIC Of this attI-IbLItC (IOCS 110t SItISI'V Its alloWable

boundary and a conflict is raised.

The experiment is impicniented twice, once %xith the control so-vice (sec Fig.

9.15 below) and once without (see Fig. 9.16 below).

public service_with_control
try[

if(GPSLocation <= GSM_Range
&&no-Clients <=max-clients)

GSM. connecto;
else{

Class c= Class. forName("ApplicationService");
Class partypeso = null;
Method meth= c. getmethod("WAP_connect", partypes);
notify (event);

)catch Oava. rmi. RemotException e)
{throw Exception)

Figure 9.15: A it example ofthe system w it h oil I III e Co I) I I-01 Sen. ice and %ýi 111 : 111 (1

without conflicts.

1
ýý4

public service-with_control
try{

if(GPSLocation <= GSM
-

Range
&&no-Clients <=max_clients)

GSM. connecto;
elsef

System. exit(O);
)catch Oava. rmi. RemotException e)
fthrow Exception)

I

Figure 9.16: An example ofthe system Nvith Ihe C()Illl-()l ser%, ice and will) '111d
Without Conflicts

9.3.4 The 3inl Phoitie ExperimeWal Results

To evaluate the autonornic control service ofthe distributed SC111,1(kiptivC Software, \\'C
quantitatively evaluate tile time elapsed as all exampic Incasill-Clucill of file L*()I)ll-()l
mcchanisms efficiency in response to a I-Lill time system conflict. In order to aC1IlCVC MII'

aim, we compared the time ovcrhcad of the software system with the alitolloillic

middleware control service against tile elapsed time of I software system without tile

autonomic middleware control service (i. e. tile Same methodolop, is III tile sortilqg

algorithm case study). This means we have perl'ornied the comparl soil oil the saine set

of experimental values with the control service turned on micc and off once.
Additionally, the comparlson is pci-forriled with and without conflict occurrciicc.

I ýs

50

45 With Control Service
00 qw

40 Without Control Service 10
00 35

V 30

0,25 00 ww
E do 20

15

10

5

0

0123456

Number of Services

7

Figure 9.17: Comparison ofthe clapsed time with and without the autonomic

middleivare control service without conflict occuri-cnce.

100

90

80

70

W 60

50

40

30

20

10

0

With Control Service
Without Control Service

012345 Number of Services

789

Figure 9.18: Comparison of' I lie clapsed (i lite w It I1 . 111 d WiL h()W III C ; III I ono III ic

middleware control service and w1 t-h conflict occurrence.

The cxPerimental arc restilt sliown Ili Figure 9.17 abovc, wherc the x-, Ixls Is flic miniha

of' services and flie y-axis is the elapsed 11111C Ill SCCOII(IS. 'HIC solid 1111C I-CpI-CsClIts dic

system with t11C MItO1101111C 1111(ldlMare control scrvicc \v1ii1c the dottcd Ime i-cpt-cscill, "

the system without flie aLitononlic nI1dd1c\\, aI-C control service. 'HIC grapli s1lows ()IIC

CUrve close to tile other becaLISC both I-CpI-CSCIlt tile S, 1111C IILIIIII)Cl- 01' SCINICCS W1111 tllC

same service attribute values, but without any conflict occurrence.

150

Therefore the system in the case of no conflict it still stable and as wcll robust cithcr

with the control service processes or without the control service processes, because it

achieves its goals and desires with no evolvement of conflicts.

As shown in Figure 9.18 above, where the x-axis is the number of services and the y-

axis is the elapsed time in seconds, the solid line represents the system with the

autonomic middleware control service. The dotted lined represents the system without

the autonomic middleware control service, the results arc explained as follows:

1. The results show that the system with the control service is still stable within it s
desirable intervals even if it consumes more time in a conflict occurrence

situation. However, it is possible to manage the actual waiting time by adding

checking the average latency of autonomic middleware control services, but it

is difficult to eliminate the waiting time without the control mechanism
2. The cost performance should be relatively high in the case of failure modes,

since the annual cost of the software application is the summation of its

operating annual cost in its operating model. In addition, the annual initial cost

of the component is divided by the active run time in years [142).

3. The experimental results show that the difference between the calculated time of

the software system with and without the control service is still reasonable. A

large overhead is not added to the running system, as the time increases, as the

number of services is increased with and without the control service.
4. This evaluation is also an initial step in the correct way to identify appropriate

autonomic middleware control services for distributed software systems. This
includes dynamic issues such as; generic control rules, dynamic measurement of

runtime changes and the use of generic standard based Jini middleware in a
distributed system.
The comparison between the system with and without the autonomic

middleware control service shows the system's continuous processing within its

desirable boundaries even in the event of conflict or inconsistency by

continuous monitoring and managing itself at runtime. Thus, ensuring self-

stability and robustness at all time. Without such a control or supervisory

mechanism, in the event of malfunction the system can crash and requires

shutdown to undertake necessary maintenance work and restart.

LiVERPOOLJOHN MOORES UNIVERSITY 157
LEARNING & INFORMATION SERVICES

Conceptually, to measure the effectiveness of our approach, we examined the average

latency (i. e. the elapsed time it takes for the control process to operate) of the system

with the control service, and how much time the system is delayed because of the

control service use.

50 - -w...... w-. w .aw0
45-

P L t f C t l 40 - rocesses a ency or on ro
35 -
30 -
25

20

15

. 10 1
5-

0
02 345 6

Processes

Figure 9.19: The average latency while running the control process for the NO

phone example.

Figure 9.19 above shows the average latency for the control process in the 3inI phone

example. We experimented five times and found the average latency to be between 10

seconds and 15 seconds. As explained in the previous example, this average latency is

used as feedback to monitor the control service itself. We assume that the maximum

average latency experienced is not more than 15 seconds otherwise another conflict or
inconsistency is detected during the control process.

9.4 Qualitative Evaluation

This section describes a general software evaluation of the autonomic middleware

control service, which was conducted to test and evaluate the general functional

specifications of the prototyped autonomic middleware control services and the

associated programming and control model.

To this end, a number of scenarios were examined, including; GridPC, sorting

algorithms, EmergeITS, 3inlphone and a web-bascd information service to assess the

middleware using a set of qualitative metrics, such as;

iss

0 Functionality, by enabling the distributed application service with the

required functionality to self-detect, self-rcpair and self rcconfigurc itself at

run ime

0 Generality, by designing a general structure capability that is not bounded or
limited to any specific system or case study without essential changes to the

code, such as using XML fonnat.

0 Flexibility, by reducing most of the complexity that could be embedded to

any running system for self-managing itself by using the flexible

infrastructure to support a full range of service management and adaptation.

m Extensibility, by referring a control middleware design pattern for a softwarc
developer to design and manage distributed application services taking into

account the uncertainty and complexity issues related to such systems.

9.5 Discussion

It is a challenge to produce conclusive evidence of the benefits, merits, effectiveness,

correctness and completeness of the proposed control middleware. However, both the

qualitative and quantitative evaluations indicated that the proposed autonomic

middleware control service and the associated programming model seem to fulfil the
defined requirements and are generic and flexible enough to support the rapid
development of a range of applications. In particular, in this evaluation, the control

services succeeded in self-detecting, self-repairing, and self-configuring in the case

studies, dynamically and at runtime without any essential changes to the code,
indicating stability and robustness of the middleware. The main points arc summariscd
below:

9 The proposed approach provides stability and robustness to the distributed

system and respond to uncertainty by using system repair strategies, to select

and evaluate the selected decision based on the Belief, Desires and Intention

(BDI) model. In particular, the robustness of the system satisfied by supporting

our extendable BDI (EBDI), which provides the system with the ability to

change its selected repair strategy at runtime if it does not achieve the

continuous stability in the running system. In the case of simultaneous requests,

159

requests are stored in a queue and the system controller takes information from

the queue and starts the control process sequentially for each client.

Also, the reasonable time performance of the running system with the control

service was evaluated during the quantitative evaluation. After tem

expwriments, it was found that no large overhead is added to the system by

using the control service. This supports the cost performance comparison with

the cost performance in the case of failure modes as the latter involves relatively

high cost. In particular, the continuous measurement of the runtime changes to

the software service using a feedback process, where the measured maximum

latency is used as a checkpoint allows for monitoring the control service

performance itself. For example, if the control process for sorting any array size

using one of the selected sorting algorithms (e. g. bubble, selection, and quick

sorting algorithm) is over 0.4 (ms) the system will stop or detect any further

conflicts.

The ability to generically manage a distributed software system without the need

to rebuild/recode the whole system by using the control service. The system is

then able to control its behaviour in the case of unexpected runtime changes.

The flexibility to apply the same control service to any system (i. e. application

services), with the same results by a reasonable degree of "separation of

concern" between the middleware control meta-service and both the core

middleware service and the user application service. This separation of concerns
between the system controller, the service managers and the JavaSpace service

reduces complexity as the service manager assists the system controller in tile

system control process.

9.6 Summary

This chapter presents the evaluation results of our approach where the main goal is to

delineate the required functionality of an autonomic control service for the existing

middleware of a distributed software system. In meeting our aim, we analysed the

relation between a well-known control theory approach and that of self-adaptive

software and how the latter could be used to consider the evaluation issues in a self-

adaptive software environment.

160

A

The measurement results indicated that the performance profile of the systcm with the

autonomic middleware control service is more efficient than the system without the

autonomic middleware control service. Although the elapsed time to control the systcm
increased in some proportion to the number of services in the system, it nevertheless

remained flexible and efficient. Furthermore, the elapsed time in the case of resolving

conflict with the control service is higher than the elapsed time without the control

service. Nevertheless, it guarantees that the system will perform its tasks without

shutdown, disturbance of the whole system, or incurring huge costs in the case of

outright failure. In addition measurement of the average latency of the control scrvicc
to monitor the performance of the control service itself and stop any conflict during the

process time.

161

Chapter 10

Conclusions

10.1 Motivations and Approach Summary

Over the recent years, the notion of software autonomy and self-adaptation has

generated a flurry of research interests focusing on design, analysis and/or management

related theories, models, middleware and/or tools to support runtime software dynamic

adaptation and self-healing.

IBM[26] has promoted a characterization of autonomic computing in which systems are

intended to have in-built capabilities for self-management, self-healing and/or self-

protecting. Prior to the IBM autonomic computing initiative, DARPA-funded initiative

on self-adaptive software has explored these issues through the application of control

theory, Al planning and software reflection providing mechanisms for developing self-

adaptive application; with a specific focus on the generation of generic software

programming and control models for runtime self-adaptation. Other large initiatives

such as, DARPA-funded Dynamic Assembly for system Adaptability, Dependability,

and Assurance (DASADA) is exploring advanced software engineering concerns

related to dynamic and self-healing software systems.

Whilst, much research works are focusing on the design, analysis and/or management

of self-adaptive, autonomic software, and reflective middleware for adaptive software

systems, this research project sets out to investigate the generic requirements to support
the develop of software self-governance through meta-control services to provide a
foundation for what can be termed as "adjustable autonomy" capabilities, through

which for instance software systems can manage their operation and self-governance in

accordance with their respective users' requirements, goals, norms and environments

and self-adapting to detected inconsistencies (changes) in a guaranteed, predictable and

safe manner.

162

In order to achieve this goal a number of technical challenges have to be addressed
including;

m Reference model: the development of a baseline architecture and/or software dcsign

pattern for designing, deploying, and managing self-adaptive software which can

self-monitor and analyse their own behaviour and self-adapt in the event of any

detected change. Further considerations needs to be addressed such as:

Supporting predictable and normative triggers to facilitate lifctime

management by detecting, filtering and repair system behaviour.

Supporting coordination aspects for solving conflicts emerging form self-

repair strategy prior to its enactment.

9 Supporting dynamic configuration to enable the autonomic control service

to customize and adapt the repair strategies according to a considercd

system's requirements, environment and domains.

* Supporting a usage of normative model to specify the management 'norms

and policies that self-governs the intended repair decision itself

m Experimental model: the practical demonstration of the systems and its subsystems,

which monitor, repair, and reconfigure runtime behaviour considering the system

properties, requirements and intended decision.

In line with the above indicated motivations and associated challenges, this thesis

detailed a proposed meta-control model with its associated baseline architecture and

autonomic middleware services to support software applications lifetime management
through a deliberative self-adaptation.

m For theoretical support the research visited a number of fields including;

1. Self-adaptive software: using the feedback and feedforward mechanisms to

providing continuous runtime monitoring and evaluation of system's behaviour

against its goal and desires to select the appropriate decision.

2. Advanced Software engineering: using distributed middleware to facilitate the

communication and the coordination between both base scrviccs (users

application service) and the meta-services (autonomic middlewarc: control

services), and to bridge the gap between network layer and the application laycr.

163

In addition using event-based notification mechanism to support direct

communication between base and/or meta-level services. Also applying the

exception handling concepts for safe shutdown and termination, and using the

concepts of distributed shared space for developing distributed shared service

that provides remote system coordination distributed database for storing the

required information for control and coordination process.

3. Software Agent: extending the BDI (EBDI) model (Sec. 8.2.2) to filter the

intended decision in the case of unpredictable enviromnent changes, and acting

to changes in accordance to their situated BDI grounded in normative settings.

In particular, this work provided by representing both practical and theoretical support
for distributed application self management, namcly:

1. The practical support is providing the essential and required infrastructure for

developing an the computational and programmable model for autonomic

middleware control service, such as

2. Service management, which is responsible about the service control and it

control sequence process considering service monitor, service diagnosis, service

repair operator and service adaptor strategies

3. System management, which is responsible for the control, coordination and the

reconfiguration of the whole system to guarantees that the interacted service are

still coordinated maintained.

4. Distributed shared space, which allow all system' service to be shared over the

network and store any other infonnation required for the control process (i. e. it

act as database service but it is different from the relational database).

5. Control rule base, which is accessible by other services to define to define and
determine the system ranges and intervals for each specific application and its

repair and reconfiguration strategies.

10.2 Contributions

One of the main contribution of this work is defining the generic requirements and
designing a baseline architecture that is essential for providing developers with a

references model to design, deploy and manage distributed self-adaptive software

164

system by encompassing components such as; monitor, repair, and system cnactnicnt

and reconfiguration in the case of any conflicts or inconsistencies in such unccrtain

system environment.

In addition, the work provided an insight into the design of a deliberative mechanism
for runtime software components and services fcdcrations' self-govcmance to ensure

safe and predictable software control and reconfiguration. This mechanism was based

on a proposed extension to the Beliefs, Desires, and Intension (BDI) model, which is

referred to here as the Extensible BDI (EBDI) model (Sec. 8.2.2). In particular, the
EBDI model provides means and mechanisms to underpin the software coordination,

supervision and governance during for instance either the self-managemcnt or self-
healing processes.

In this work a proof-of-concept was implemented were the middlewarc control services
was designed using the EBDI model in that:

Beliefs; correspond to service information derived and/or accessed from a range

of sources, including; domain, environment or beliefs of other services.

41 Desires; represent the state of affairs (i. e. in an ideal world), which often

maximise the service's own goals. By comparing a system beliefs set (observcd

system states) against its desires, the system may detect a mismatch and triggers
(instantiate a set of intentions) [66].

Situated intentions; representing action sets for the system to undertake in a

given situation to achieve its specified desires and/or to address the mismatch
between the system environment (beliefs) and the system's desires (goals).
Normative intention; representing a set of actions to be undertaken to ensure a

specified set of norms including obligation and responsibility rules are observed
before a given intention is enacted and/or affective rules emerging as a result of

an enacted intentions set.
Utility intention; represents a set of system actions to optimise its goal-oricnted
intentions.

Also, the development of software meta-control model is considered one of the main

strength and contribution of this research, which provides a mechanism of how

distributed applications services act and interact with their associated middleware

165

management and control service. The main elements of the soilware mcta-control are

summarized below:

The Service Manager is concerned with managing its service conflicts. IIcncc

for each service there is a manager that looks after that service. The service

manager has a hierarchy of control scripts/tasks that are:

" The monitoring model uses a set of control rules to check

monitored behaviour and architectural configuration and hcnce

detects conflicts.

" The diagnosis model involves the execution of control rules,

activated by conflicts that identify and classify the conflict types

to provide the basis for the selection of a conflict resolution

operator.
The repair model is specified using contract-bascd assertions,

pre-conditions and typical operators to provide operations that

resolve a service's conflict. These operations are represented as

primitive operations integrated into the service manager, such as

notify operator, repair operators, or thrown appropriate exception

operator. The service manager after that store its service state in

a shared space (JavaSpace Service) for monitoring by the system

controller.
Adaptation Engine: in which the service manager has to adapt

the service according to proposed changes.

e The system controller is responsible for establishing and managing tile

coordination of the overall system application services and ensures that the
interrelated system services are maintained and coordinated. The system

controller regularly checks the service state that stored previously by the service

manager in the distributed shared space (i. e. JavaSpace), whenever the system

controller detect any failure in and of its system's service. Then it applies tile

appropriate resolution strategy; the main models that are included in the system

controller are:

n The system monitor, which has the ability to collect and
feedback the information that is required to select and apply the

resolution strategies in the case on any con fli ct/inconsi stencics.

166

The system repair strategies, which determines when, where, and
how the repair/resolution or adaptation should be. Our

repair/resolution strategies are formatted in an external markup
language (i. e. XML format) and used to evaluate the effect of

various alternative solutions based on the proposed EBDI model

that mentioned earlier.

The system reconfiguration, which applies the required

reconfiguration. operators that are attached to the resolution

strategy. For example, if the resolution strategy selects an

alternative service to a failed service, the reconfiguration system

should establish the required changes that result from the

resolution strategy dynamically at runtime. For example,

getNewManagero, notifyCliento and ýieivConnecto

reconfiguration operators.

N The system associated interpreter that is used to dynamically

translate the external format (e. g. XML) of repair strategies

actions or operators to a lower-levcl and executable level that is

used in the code, therefore this model allows run-time changes

within the code without the need to recode or recompile the

system again.

o The JavaSpace service, which provides a mechanism to coordinate the

relationship of shared resources or services in the distributed application over

the network. In addition, it has the ability to store the required infonnation (Sec

7.4).

10.3 Achievements

The main achievements of this research of autonomic lifetime management have

focused on the following aspects:

The separation of concern between the management services (meta-scrvice) and thc

application service (base-service) for developing a dynamic, adjustable, flexible, and

generic control service. This required addressing the main requirements for

autonomic control service including; conflict detection that examine the currcnt

167

behaviour against which behaviour is monitored using a set of control rules, conflict

identification and classification, that activated as a result of the execution of the

control rules in the case of conflict detection to identify, and classify the conflict,

which is used as a basis for selecting the appropriate repair strategy, and then

interpreted with associated system interpreter.

0 Based on the research requirements, the main strength of the proposed approach is

that it can support both decentralized and centralized control supported by

middleware applications' service manager and the system controller respectively. In

other words, the service manager facilitates decentralized control and management

of the service, which provides a separation of concerns and reducing the complexity
from the system controller (i. e. the system central control unit). While the system

controller facilitates centralized management of the interrelated application services,

which provide the control service with the ability to coordinate and integrate the

interrelated distributed application services, and therefore rcconfigurcs the whole

system according to the selected repair and reconfiguration strategies considcring

such coordination aspects.

In addition the usage of the distributed shared space (i. e. JavaSpace service)

supports the design of the proposed approach with flexible, accessible, and
distributed space for assisting the system controller to monitor, repair, coordinate

and reconfigurc the application services against the detcctcd

conflicts/inconsistencies, also the JavaSpace service used as database service for

storing the information required in the control process to be clieckcd or notified to

the interested parts.

The developed model and architecture was implemented and evaluated using a

number of case studiesli to provide a proof-of-conccpt or evidence of potcntial
benefits of such autonomic middleware control services (meta-control model) and

associated baseline architecture to distributed application life-time management and

self-a aptation.

15 Namely; GridPC, 3inlphone, web-based infomiation service, and sorting algorithms.

168
NI Vt---RS I TY

10.4 Thesis Summary

This thesis has offered a new vision of lifetime management of distributed application

services grounded in a number of related disciplines such as; self-adaptivc soflwarc,

software agent, and advanced software engineering. The detailed description of

background theories, methods and the achievement of this project are presented as
follows;

Chapter I introduced the motivations and technical challenges, and outlined the

proposed approach, and main contribution to the work.

Chapter 2 introduced the required background principles, theoretical models and

definitions including; (1) self-adaptive software's definition, directions, categories, and

examples. (2) autonomic computing that controls computing system's key functions

without conscious awareness or user intervention and, increase the productivity while

reduce complexity from users [26]. We define the autonomic computing architecture

and requirement that adapts and generates the dynamic changes.

Chapter 3 discussed the essential technologies for designing and managing distributed

object-oriented systems such as; Service-Oriented Programming (SOP) and object-

oriented middleware. These technologies provide a new generation of distributed

computing applications development and management, which has the capabilities to

reduce management time and integration of obtained packages and components for

running system. However, this is not enough either for lifetime management of systems
that may exist in unpredictable and unexpected environment, or for establishing the

required changing in requirements with less human intervention and minimize

complexity for usage.

Chapter 4 reviewed the state-of-the-art and related work relevant to the control and

management aspects. This review was structured a long static managcmcnt of
distributed system, dynamic management of distributed system. Most of such research

works have been focused on user-based intervention and management. Though, there

are on-going some research works relevant to self-managcment and sclf-adaptation

aspects including; those focused on policy-based management, architccturc-based

management, and context, resource and QoS-aware soflware.

169

Chapter 5 highlighted the requirements and design aspects of meta-level control

service, which also outlined the main elements required to allow distributed application

services to interact with their middleware to solve runtime arisen conflicts or
inconsistencies, and reconfigure to enact a prescribed repair plan. The requirements for

solving the conflict of self-adaptive software are (i) conflict detection, which uses of a

set of control rules against which behaviour is monitored to detect conflicts, (ii) conflict
identification and classification, that activated as result of the execution of the control

rules which locate, identify, and classify the failure, (iii) conflicts resolution strategies,

which selects the proper strategy for the identified failure, and (iv) system

reconfiguration provides capability for our approach to reason about the current state

and re/. configuration of an application in order to assess the validity of an

coordination/configuration strategy, (v) system interpreter as the reconfiguration model
is dynamically attached with system associated interpreter, which is responsible for

translating the repair operators from text fortnat to executable format.

Chapter 6 detailed the baseline architecture and design presented in context with a

range of current research on software architecture models, such as coordination,

autonomic computing, deliberative systems, normative systems and adjustable

autonomy. The design of the autonomic middleware control service considered three

main service layers, which are middleware core services layer, autonomic middleware

control layer (meta-service), and user's application layer (base-service). The

Autonomic middleware service (meta-service) includes three main services that are
Service Manager, JavaSpace Service, and System Controller for runtime self-
control conflicts.

Chapters 7 and 8, presented the three main parts of prototypical system implementation

based on Java API's and Jini network. Three applications are namely, GridPc,

3inlPhone, and web-server applications were used to illustrate the implementation of
the main three services of our autonomic middleware service (meta-service) that are,
Service Manager, JavaSpace service, and System controller service. service

manager dynamically looks after its service by applying sequences processes, which are

monitoring, diagnosing, repairing and adapting processes (e. g. the repair operator such

as notify 0, add_Client 0, remove_Client (), and catch (Exception e)). The system

controller is responsible for the system control process in the case of conflict in any of
its system's service by applying the required resolution and reconfiguration strategy,

which dynamically interpreted from XML document to run-time executable model

using its associated interpreter, while the JavaSpace service is used for providing the

control service with a distributed shared space which is used for system sharing

resources/services, coordination, and used as well as a storage or database for the

service information to be available or to be notified to the system controller in the

occurrence of conflicts.

Chapter 9 presented a qualitative and quantitative evaluation of the main functionality

of the autonomic control services extending current Jini middlcwarc . Our starting point

is by applying well-known control theory based metrics to support the evaluation of

self-adaptive software. Both the quantitative and qualitative evaluation's results have

indicated that the performance profile of the distributed, running software system with

the autonomic middleware control service is more efficient than the same sof1warc

system issues but without the autonomic middleware control service. Though, as shown
in the quantitative experiments the additional autonomic middleware control services

add further computational overheads' 6, which can be balanced against the bcnerits of

software safe self-adaptation including lifetime evolution capabilities without requiring

total system shutdown, disturbance of the whole system, or incurring huge costs in the

case of outright failure. In addition, the qualitative evaluation has used a set of metrics

such as functionality, generality, flexibility, extensibility to assess the autonomic

middleware control service throughout the developed case studies namely; GridPC,

3inlPhone, web-server application, and sorting algorithms. This evaluation indicated

the following main points; (1) the autonomic control service facilitates self-control

mechanism of distributed software system without the need to rccod tile whole system

at run-time. (2) The dynamic, generic and autonomic features that are provided by such

control service has been facilitated the control of any distributed software system such

as developing associated interpreted to translate the text format resolution strategies to

on-demand executable strategies at runtime. (3) The separation of concerns between tile

service manager and both application service and the system controller reduces the

complexity. (4) The continuous evaluation of the control service itself by applying both

continuous monitoring and feedback processes to detected any failure could generated
in the control process itself (5) The generic and standard technology that used to

" In addition we evaluated the control service itself by measuring the average latency of the modcls that
supports

support the development of our control process by using abstract core middlcwarc

services (e. g. JavaSpace service).

Chapter 10 provided the thesis summary, and suggestions for the future works

10.5 Discussion

This Thesis focused on the design and development of control scrvicc to support

distributed self-adaptive software, in which the main contributions can be summariscd

as follows:

Design and development of mcta-control model to enable safe and

adjustable autonomy of distributed applications.

Development of a meta-level control service that includes thrcc main

services that required for self-controlling and self-govcmance the base-

services. The control services are service manager entities that look aftcr
its services, system controller for controlling and reconfiguring the whole

system to accommodates with repair changes, and the associated
distributed shared space and in addition control rules or constraint.

Proposal of autonomic middleware control service, which includes a

programming model to facilitate the development of autonomic control

middleware services that would facilitate lifetime management of
distributed application service over the network by detecting, recover any
runtime conflicts through applying its control repair strategies, policies
and norms.

Use of a shared distributed space to provide a coordination and awareness

medium for system's operation management and meta-levcl services

communication and interaction.

Develop of a control strategy markup language and associated interpreter

to achieve a level of separation of concerns, and cxtcmalisation of control
functionality of software and knowledge allowing runtime changcs
without middleware software system rccoding and/or shutdown.

172

10.6 Future Work

This work proposed and detailed a middleware extension to provide adjustable

autonomic software. However, there a number of further works and extensions to be

explored including;

The need to extended the control service with the ability of self-

protection, as the security and privacy functions arc csscntial
for self-protecting the meta-control functionality, and tile

system infort-nation especially in tile untrustworthy

environment. The data are one of the main points that could be

a target for any attack or failures, so it is essential to provide the

system with the ability to protect itself, which could be safcly

established by backup these data and storcd automatically.
Backup could be done regularly aflcr certain time or proactivcly

when received interested event, such as detecting an elementary
disk failure [1]. There are other self-protection ways of

protection, such as randomness attack could be protcctcd by

digital signature, password, and signature verification [1].

0 Further work are also needed to provided the present model

with the machine learning service providing the control service

access to history and knowledge related to the previous failures

cases to avoid and repair strategies.

Further work is required to test and evaluate the scalability of this

model on large scale or open system, as our approach has been tested

on relatively small-scale applications and case studies. The scalability

challenges will emerge not only from the number of applications

services and meta-services to deploy and manage thus afCecting the

overall systems response and robustness, but also due to

organisational. and architectural complexity of having to use as in the

multi-domain environment "super-controllcr" to coordinate the lifc-

cycle management of local "sub-controllers", which in their turn

173

govern. the life-cycle management of their assigned application
federation.

174

Appendix A

Distributed Systein Development

Introdlictioll

Distributed system can he dclincd ils: "a collccllml ()I' '1111(mollhill" k) J, 111.11 llý

conncctcd thrOLIgh a computer network Nvith cach host cxccuting conwoncilts alld

operating a distributed middimarc to enabic components to coordinatc their activilics

giving the impression of a singic, intcgrated COIIIJ)LIWILý Iacilityl 1391

Thc distributed application devc1opilicilt is hascd Oil depcildclicy I-dationships I)Cl\\CCI)

the stages in process shown belowl 139].

6 411114f Dlooly'"n

PAWN DIMIdUl

()LJl. tl IIi% I

IIr, iii I

(IuI%(ItHII(Ifl I

flqiIuvii. tn I

C0011,11111,1010111 N

N...

t Pill flu

Figure A. I: The Distributed Application Dc% clopilivill 111-occ%% 11391.

DistribUtcd systcni tCChII0l0gy IWS IIILICII III COIIIJIIOII \N, Itli alld IS Of . ICII "ClAcd b\ ohiccl

technology and Sol-twarc collipoliclits. There arc IlMliv points ol'syncl g. v I)Ct%%CCII Ilicsc
tecIIII010, gICS, HICILKIIIIg I I'OCLIs ()II 1-(2ý11 world moddling, its well is a kwtv, oil

IS

simplicity, reusability, extensibility, and productivity. Distributed dcvclopmcnt is based

on several key elements shared with the object technology:

" Concurrent development of packages and components.

" Reuse of software components similar to polymorphism.

" Cyclical and incremental development.

" Release strategy.

Object Technology

Object technology provides significant potential value in three arcas, all closcly relatcd:
productivity, maintainability, and paradigm consistency [140].

Object technology can be remarkably effective in allowing tile structure of the

application to be consistent throughout its development and maintenance phases, where
development is object oriented through all phases, it is much easier to do rapid

prototyping, to maintain consistency across the life cycle, and even to reuse

components. For instance if an object, is represented consistently at cach phase, it can
be reused. But if its run-time implementation is spread across the application's running

code, it is very difficult to reuse it in another application.

Service-Oriented Programming

The most remarkable revolution in programming since Object-Oriented Programming

(OOP) is the Service-Oriented Programming (SOP), which cnable a ncw gcncration of

service-oriented computing applications. It adds the idea and the concept that

programming problems can be model as services and could be use. The programming
problems can be seen as independently deployablc black box clicnt/scrvcrs
independence defined component models, which communicate with each other through

contracts.

An essential aspect in a servicc-oriented architecture is how components locate

services. Service location information is normally hard coded in software components,
or saved in a configuration file that reads on start-up by the components. In reality,
networked system is dynamic. Software and hardware components arc replaced or
upgraded, nodes enter and leave the network, which is creating a large management
problem for systems configured statically. These systems arc simply not built to recover
from network errors or failed services, which require partial solution consists of two

concepts should considered a) discovery service and b) service look-up. Components

176

"discover" the environment in which they arc deployed and "lookup" services they

need dynamically, which provided by a fully functional frameworks like the JavaThl,

and some middleware.

The distributed middleware, plays a very important role by providing APIs and support

functions that effectively bridge the gap between network operating system and
distributed application components and services. Middleware is dcrined as a set of

services required for providing connectivity and management services in a distributed

computing environment. These services include database connectivity, messaging,

remote procedure calls, object request brokers, transaction services, timing services,

and naming services.

The main features has been provided by distributed middlcware arc:

0 Improve, Productivity

x Improve Efficiency

Improve Customer Service

Reduce Costs

The two main categories of distributed middlewarc, which is csscntial to describe in

here, are [141]:

Distributed Object Middleware: Distributed object middlcwarc provides the

abstraction of an object that is remote yet whose methods can be invoked just

like those of an object in the same address space as the caller. Distributed

objects make all the software engineering benefits of object-oricntcd
techniques - encapsulation, inheritance, and polymorphism availablc to the

distributed application developer. Jini and Corba are examples of tile
distributed object middleware.
Distributed Tuples: A distributed relational database offers the abstraction
of distributed tuples. Its Structured Query Language (SQL) allows

programmers to manipulate sets of these tuples (a database) with intuitive

semantics and rigorous mathematical foundations based on set theory and

predicate calculus. Linda is a framework offering a distributed tuplc

abstraction called Tuple Space (TS). Linda's API provides associative access
to TS, but without any relational semantics. Linda offers spatial dccoupling
by allowing depositing and withdrawing processes to be unaware of each

177

other's identities. It offers temporal decoupling by allowing them to have

non-overlapping lifetimes. Jini is a Java framework for intelligent devices,

especially in the home. Jini is built on top of JavaSpaces, which is vcry

closely related to Linda's TS.

The main purpose of middleware services is to help solve many application

connectivity and interoperability problems. However, middleware services are not a

panacea:

0 There is a gap between principles and practice. Many popular middlcwarc

services use proprietary implementations (making applications depcndent on

a single vendor's product).

0 The whole number of middleware services is a barrier to using them. To kccp

their computing environment manageably simple, developers have to select a

small number of services that meet their needs for functionality and platform

coverage.

M While middleware services raise the level of abstraction of programming

distributed applications, they still leave the application developer with hard

design choices. For example, the developer must still decide what
functionality to put on the client and server sides of a distributed application
[115,141].

To overcoming these three problems is to fully understand both the application problcm

and the value of middlcware services that can enable the distributed application. To

determine the types of middleware services required, the dcvclopcr must identify the

functions required, which fall into another problems. So the middleware technology is

not enough to solve the distributed problem discussed before but it needs somc kind of

development to solve that partial of the technical problems such as middleware

management services to be continuously monitored and changcd to cnsure optimum

performance of the distributed environment.

178

Appendix B

Distributed Middleware

Distributed Middleware

Distributed middleware, plays a very important role by providing and support APIs

with functions that effectively bridge the gap between network operating system and

distributed application components and services. Middlcware is defined as a set of

services required for providing connectivity and management services in a distributed

computing environment. These services include database connectivity, messaging,

remote procedure calls, object request brokers, transaction services, timing services,

and naming services.

Programming with Middleware
Programmers do not have to learn a new programming language to program

middleware. Rather, they use an existing one they are familiar with, such as C++ or

Java. There are three main ways in which middleware can be programmed with existing
languages.

0 The first way is where the middleware system provides a library of functions

to be called and utilize the middlcwarc; as distributed database systcrns and
Linda do this.

0 The second way is through an external interfacc dcfinition languagc, as the
IDL file describes the interface to the rcmote component, and a mapping
from the IDL to the programming language is used for the programmer to

code it.

0 The third way is for the language and runtime system to support distribution

natively; for example, Java's Remote Method Invocation (RMI).

179

The main purpose of middleware services is to help solve many application

connectivity and interoperability problems. However, middlewarc services are not a

panacea[145]:

There is a gap between principles and practice. Many popular middlcwarc

services use proprietary implementations (making applications dcVcndcnt on

a single vendor's product).
The whole number of middleware services is barrier to using thcm. To kccp

their computing environment manageably simple, developcrs have to se1cct a

small number of services that meet their needs of functionality and platform

coverage.
While middleware services raise the level of abstraction of programming
distributed applications, they still leave the application developer with hard

design choices. For example, the developer still must decide what

functionality to put on the client and server sides of a distributed application

[145].

The key for overcoming these three problems is to fully understand both the application

problem and the value of middleware services that can enable the distributed

application. To determine the types of middleware services required, tile developer

must identify the functions required, which fall into one of three problems [145]:

1. Distributed system that include critical communications, program-to-

program, and data management services. This type of service includes

RPCs, MOMs and ORBs.

2. Application enabling services, which give applications access to

distributed services and the underlying network. This type of services
includes transaction monitors and database services such as Structured

Query Language (SQL).

3. Middleware managcment serviccs, which cnable applications and

system functions to be continuously monitored to cnsurc optimum

perfonnance of the distributed environment [145]

So the existing middleware services are not enough to solve and control the distributed

problem discussed before but it needs some kind of management to solve that practical

and technical problem.

180

Appendix C
Grid Computing

Grid Technology

Grid computing is a form of distributed computing that involves coordinating and

sharing computing, application, data, storage, or nctwork resources across dynamic and

geographically dispersed organizations [110]. Grid Computing enables the

virtualisation of distributed computing resources such as processing networks

bandwidth and storage capacity to create a single system's logical view, and when

applications need access to distributed computing resources. Just like an Internet user

who views a unified instance of content via the Wcb, a Grid user essentially sees a

single, large virtual computer.

Grid computing infrastructures [146] offer a wide rang of distributed resources to

applications. However, the heterogeneity of both the network and computing resources,

and the dynamic load conditions make adaptation an important requirement for grid

applications. For example, the applications must be able to adapt themselves at runtime
to handle such things as resource variability (e. g. network bandwidth, server

availability, etc.), and system faults (e. g. servers and networks going down, failure of

external components, etc.). So if the system is not adaptive, it will provide poor

performance. The principals benefits that the Grid will bring are [146]:

0 Enabling more effective and seamless collaboration of dispcrscd

communities, both scientific and commercial.
0 Enabling large-scale applications comprising of 10,000 computers, large-

scale pipelines etc.

M Transparent access to "high-end" resources from your desktop.

0 Provide a unifonn "look & feel" to a wide range of resources.
0 Location independence of computation resources as well as data.

181

Grid Architecture Description
The cstiII)IIS11111clit, milliagcIlIcIll, and ex plol tilt lon ()I, dvilanlic, closs. oll"aill/illimi'll

sharing rclationships rcquirc ncw teclillology. tills tcClIllology Is (ind al-clIlIcclutc . 111d

supporting sollwarc protocols and III ()I. (; I. l(l al-cluiccturc, stm-Is I'l-oln the

pcrspcctivc that effcctive operation requircs to cStablish slit
anypolential participants. In a nctworkcd clivirolinicifl, intcropcrahi I ily nicans common

Protocols. 11clice, 111cir GrId arch"CCtIll-C IS /! I_, SI ; 111(1 101"C'MOSI

with protocols defining tile basic mcchalusills by which users and I-Csour-C-CS f1cpIl I"II (-',

establish, manage, and exploit sharing relationships I 11 ()1. This (ICSCI-11)11()Il ()I' (Irld

architecture ldcntlfics requirements 6or gcricral classes of' component and tile I'Cslllt Is'

an extensible, open architectural stl-LlCtIll-C WIIICII can bc placed solutions to kcy tiscr

requirements. The architecture is organized into Compoliclit layers is shown below,

components within each layer share common characteristics but call build on

capabilities and bellavlours provided by any lower layer. The architcOural description

is high level and places few constraints on design and I IIII)IC111clitat loll, as the layercd

Grid architecture and its relationship to the Internet protocol architcoure shown below

[27], and follows a brief dcscriptioii I'Or more (ICIall ahOLlt CaCh C0111I)MICIlt:

Application

Applicabon

R te '! ISOLjt*ce

Transport
Connectivity

n jt7 Inter

Fabric

Figure C. I: GRID Protocol ýrchitecture 1271.

Fahl-ic: Interfaces to local Control, tile grld fabric layer Contains dic

resources that arc shared. This could include computational pkmcr, data

storage, sensors ctc. This sharing is controlled by grid protoc(fls bill tile

resource could include local networks. Ill this case the local protocols take

Over at tills pollit. 'HIC grld SysICIII Is jLlSt COIICCHIC(I With ; ICCCSS JhOVC tIll-S

point. Systems call be impicnicrited at tile I'ahric ICvCI to support l'CsollrCC
scheduling and other higher opcratiolls

I's-)

- Connectivity: communicating easily and securely, the connectivity layer

contains the communication and authentication protocols required for grid-

specific network transactions. Communication protocols enable the

exchange of data between different fabric layer resources. Authentication

protocols build on communication services to provide secure mechanisms
for verifying the identity of users and resources.
Resource: sharing single resources, the resource layer uses the

communication and security protocols of the connectivity layer for secure

control, negotiation, initiation, monitoring, control, accounting, and payment

of sharing operations on individual resources. Resource layer protocols call
Fabric layer functions to access and control local resources. Resource layer

protocols are concerned entirely with individual resources. There arc two

classes of Resource layer protocols: (i) Information protocols - used to

obtain information about the structure and state of a resource, for example,
its configuration, current load, and usage policy such as (ii) Management

protocols - used to negotiate access to a shared resource, specifying, for

example, resource requirements and the operations to be performed.

- Collective: coordinating multiple resources, while the resource layer is

focused on interactions with a single resource, the collcctivc laycr contains

protocols and services that are global in nature and capture interactions

across collections of resources such as.

9 Monitoring and diagnostics services support the monitoring resources
for failure.

9 Data replication services

* Grid-enabled programming systems enable familiar programming

models to be used in Grid environments.
Workload management systems and collaboration frameworks arc
known as problem solving environments.
Soflware discovery services discover and select the best software
implcmentation and cxccution platform bascd on the paramctcrs of
the problem being solved.

9 Community authorization servers.

183

* Community accounting and payment scrviccs.

- Applications: The final layer in the grid architccturc compriscs of the uscr

. applications. Applications are constructed in terms of scrviccs dcrincd at cach

layer in the grid structure. At each layer well-defined protocols provide access

to some useful service such as resource managcmcnt, data acccss, rcsourcc
discovery, and so forth. At each layer protocols and services are used to

perform desired actions. Application Program Interfaces are implemented by

Software Development Kits (SDKs), which in tum use Grid protocols to

interact with network services that provide capabilities to the end uscr. Higher-

level SDKs can provide functionality that is not directly mapped to a spcciric

protocol, but may combine protocol operations with calls to additional

applications as well as implement local functionality.

184

REFERENCES

1.113M. "Autonomic Computing Concepts". accesscd May. 2003, hth1: //www-
3. ibin. com/autonomic/pdfs/AC Conccj2tL. Vdf.

2. P. Robertson, R. laddaga and H. Shrobe. "Introduction: the First Intcrnational
Workshop On Self-Adaptive Software". in Proceeding ofProcccdings First
International Workshop on Set(-Adaptive Software (IIVSAS2000). 2000.

3. A. Meng. "On Evaluation Sclf-Adaptive Soflwarc". in Proceeding ofFirst
International Workshop on Seý(-Adaptive Software (IIVSAS2000). 2000.

4. P. Robertson. "An Architecture for Self-Adaptive and its Application to Aerial
Image Understanding". in Proceeding ofFirst International Workshop oil Sey'-
Adaptive Software (IWSAS2000). 2000.

5. D. L. Wells and J. Nagy. "Gauges to Dynamically Deduce Componcntwarc
Configurations". in Proceeding of. 2002: DARPA (Program Sponsor)
http: //schafercorp-ballston. com/dasad, -L/proicctlist. htnil..

6. N. Badr, D. Reilly and A. Taleb-Bcndiab. "A Conflict Resolution Control
Architecture for Self-Adaptive". in Proceeding ofProcecdings ofInternational
Workshop on Architecting Dependable Systems TVADS 2002 (ICSE 2002). May
2002. Orlando, Florida.

7. M. Allen, N. Badr, E. Grishikashvili, and A. Talcb-Bendiab. "Adaptation Engine:
an Agent-Based Framework for ad-hoc Service Life-Cycle Management for
Meta-Computing". in Proceeding ofProcessing ofAISP symposium oil (IA and
Grid Computing). 2002. Imperial college London.

8. E. Grishikashvili, N. Badr, D. Reilly, M. Allen, M. Yu, and A. Talcb-Bendiab.
"Autonomic computing: A Scrvice-Oriented Framework to Support the
Development and Management of Distributed Applications". in Proceeding of
in Processing of3rd Annual Postgraduate Symposium oil The Convergence of
Telecommunications, Networking & Broadcasting (PGNet2002). 2002. U. K.

9. E. Grishikashvili, N. Badr, D. Reilly, and A. Taleb. "From Component-Based to
Service-Based Distributed Applications Assembly and Management". in
Proceeding ofProceedings 291h EVROMICRO CONFERENCE. 2003. Turkey.

10. D. Reilly, N. Badr, E. Grishikashvili, and A. Taleb-Bcndiab. "Service-Oricntcd
Approach for Distributed Application Assembly and Management". in
Proceeding ofProcessing of 41h Annual Postgraduate Symposium oil The
Convergence of Telecommunications, Networking & Broadcasting
(PGNet2003). 2003. U. K.

11. D. Reilly, N. Badr, A-Taleb-Bendiab, and A. Laws. "An Instrumentation and
Control-based Approach for Distributed Application Management and
Adaptation". in Proceeding ofProceedings ofA CM SIGSOFT Workshop oil
Setr-Healing Systems (WOSS'02). 2002. Charleston, USA.

12. S. Cheng, D. Gralan, B. schmerl, J. Sousa, B. Spitzngel, and P. Stccnkistc. "Using
Architectural Style as a Basis for System Self-rcpair". acccssed
littp: HwwNv. cs. cmu. edu/afs/cs/tiroject/abic/fII2/wicsa3-arcli/WICSA-
submitted. pff.

13. S. Rao and P. Georgeff, "BDI agents: From theory to practice". the First
International Conference oil Multi-Agents Systems (ICMAS-95), 1995(MIT
Press): p. 312-319.

185

14. A. Laws, A. Taleb-Bendiab, S. Wade, and D. Reilly. "From Wctware to Software:
A Cybernetic Perspective of Self-Adaptive Soflware". in Proceeding ofSel(-
Adaptive Software: Applications, Second Inteniational Workshop oil Self,
daptive Software. 2003: R. Laddaga, P. Robertson, and H. Shrobc, Editors.

15. M. Kokar, K. Baslawski and Y. Eracar, "Control Theory-Bascd Foundation of
Self- Controlling Soflware". IEEE Intelligent Systeins, 1999: p. 37-45.

16. R. Laddaga. "Active Software". in Proceeding ofProcccdings First International
Workshop on Self-Adaptive Software (IJYSAS2000). 2000.

17. G. Karsai and J. Sztipanovits, "A Model-Based Approach to Sclf-Adaptivc
Software". IEEE Intelligent Systems & their Applications, 1999.14(3): p. 46-53.

18. Y. Eracar and M. Kokar, "An Architecture for Soflware that Adapts to Changes
in Requirements". Journal ofSysteins and Software, 2000.50: p. 209-219.

19. P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Mcdvidovic,
A. Quilici, D. Roscnblum, and A. Wolf, "An Architccturc-Bascd Approach to
Self-Adaptive". IEEE Intelligent Systems, 1999.14: p. 54-62.

20. L. J. Osterweil and L. A. Clarke. "Continuous Self-Evaluation for the Self-
Improvement of Software". in Proceeding offirst International Morkshop oil
Sel('-Adaptive Software (IWSAS2000). 2000.

21. G. Simon, T. Kovacshazy and G. Peceli. "Transient Management in
Reconfirgurable Systems". in Proceeding offirst International Morkshop oil
Self. Adaptive Software (IWSAS2000). 2000.

22. A. LedecZi, A. Bakay and M. Maroti. "Modcl-Integratcd Embedded Systems". in
Proceeding of First International Workshop oil Selr-Adaptive Software,
(IWSAS2000). 2000.

23. D. Karuppiah, E. Araujo, Y. Yang, G. Holness, Z. Zhu, B. Lcmer, and G. Riscman.
"Software Mode Change for Continuous Motion Tracking". in Proceeding of
First International Workshop oil Self-Adaptive Software, (IIVSAS2000.2000.

24. I. Shaul. "Dynamic Self-Adaptation in Distributed systems". in Proceeding of
First International Workshop oil Sey'-Adaptive Software (IIVSAS2000). 2000.

25. A. Oliva, I. Garcia and L. Buzato. "The Reflective Architecture of Guarana". in
Proceeding of. 1998 HTTP: //www. dcc. tinicainn. br/-oliva/iiiarana..

26. IBM. "Autonomic Computing". accessed May. 2003,
httl2: //www. research-ibm. coin/atitonomic.

27. I. Foster, C. Kesselman, J. Nick, and S. Tueckc, "Grid Services for Distributed
System Integration". Coniputer, 2002.35(6).

28. G. Bieber and L. Architect. "Service-Oriented Program mi ng". acc csscd
August. 2003,
httl2: //wwkv. cs. wustl. cdu/-nlkl/AdHocNetworkinWstibniissiotis/GtiyBicl)cr. D(Ir.

29. G. Bieber and L. Architect. "A Scrvice-Oriented Componcnt Architecture for
Sclf-Forming, Self-Healing, Nctwork-Centric Systcms". acccssed August. 2003,
littl2: //NvwNv. opciiwings. org/downIoad/specs/openwin, Rswl2. Rdf.

30. Object Management Group. "Introduction to OMG's Specirication". acccsscd
August. 2003, littp: //www. omt-r. orý,, /gettinýistarted/sVccintro. htnlgCORBA.

31. OMG. "CORBAO BASICS". accessed August. 2003,
http: //www. omg. org/gettiiigstartc(l/corbafaq. liti-nl.

32. OMG, "Agent Technology Green Paper". Agent Morking Group, 2000.9 1.
33. UPnPTm Forum. "Welcome to the UPnPTm Forum". accesscd August. 2003,

http: //www. unnp. org/.
34. E. Steinfeld, "Devices that play together, work together". Autoniata International

Marketing, 2001.9/13.

186

35. UPnP Function's". accessed March-2003, bttn: //www. c-insite. iict.
36. O'Reilly. "A Web Services Primer". accessed August. 2003,

http: //webservices. xnll. coi, n/ptib/, l/ws/2001/04/04/webserviccs/.
37. JavaEnvironment. "July. 2003, littp: //i,, iva. stin. coni.
38. J. Newmarch. "Jan Newmarch's Guide to JINI Tcchnologics". acccsscd

littp: //iaii. netconip. inonash. cdu. au/iava/iini/tLitorial. 1.03/Ani. xmi.
39. Sun MicroS ystem. " October. 2003,

http: //wwws. suii. com/software/iiiii/specs/iinil 2.12df.
40. JiniCommunity. "Augest. 2003,

http: //wwws. stin. com/software/jini/specs/iiiiil. llitnii/is-spcc. htnil.
41. B. Nuseibeh, S. Easterbrook and A. Russo, "Making Inconsistency Respectable in

Software Development". Journal ofSystenis and Software, 2001.56(11).
42. B. Nuseibeh, J. Kramcr and A. Finkclstein, "A Framework for Expressing tile

Relationships Between Multiple Views in Requirements Specification". IEEE
Transactions on Software Engineering, 1994.20(l 0): p. 760-773.

43. C. Castelfranchi. "Conflict Ontology". in Proceeding ofECAI96 Morkshop on
Modelling conflicts in AL 1996. Budapest.

44. S. Lander and R. Lesscr. "Understanding the role of negotiation in distributed
search among heterogeneous agents. " in Proceeding of the Thirtmah
International Joint Conference on Artificial Intelligence. 1993. Chamb6ry,
France.

45. S. Cooper and A. Taleb-Bendiab. "CONCENSUS: Supporting Conflict
Resolution Through Multi-Parties Negotiation in Concurrent Enginecring
Design". in Proceeding ofthefourth ISPE International conference oil
Concurrent Engineering: Research and Application (CE97). 1997.

46. K. Sycara, "Cooperative Negotiation in Concurrent Engineering Design".
Computer-Aided Cooperative Product Development, 199 1: p. 269-297.

47. M. Klein. "An Experimental Evaluation ofDomain-Indepcndent Fault Handling
Services in Open Multi-Agent systems". in Proceeding of The International
Conference on Multi- Agent System (ICMAS). 2000.

48. S. Lander and V. Lesser. "Customizing Distributed Search Among Agents with
Heterogeneous Knowledge". in Proceeding ofProcecdings of the First
International Conference on Information and Knowledge Afanagcnictit. 1992.

49. E. Freeman and S. Hupfer. "Make room for JavaSpaces Part I (Ease the
development of distributed apps with JavaSpaces)". accesscd July. 2003,
littp: HwNvNv. iavaworld. com/iavaworld/jw-11-1999/iw-11-iinioloi,. tm , Y. h 1.

50. J. Rosenschein and G. Zlotkin, "Rules of Encounter: Designing Convcntions for
automated Negotiation Among Computers". Canibridge Massachusetts 77je AUT
press, 1994.

51. S. Cooper and A. Taleb-Bendiab. "A High Level Control Mechanisin For
Managing Conflict Resolution In Concurrent Product Design". in Proceeding of
In Proceedings of thefourth ISPE International conference oil Concurrent
Engineering : Research and Application (CE97). 1997.

52. E. Ephrati and S. Rosenschein. "The Clarke tax as a consensus mcchanism
among automated agents". in Proceeding of the proceeding of the ninth
conference on Artificial Intelligent. 199 1.

53. E. Ephrati and S. Rosenschein. " Multi-Agents Planning as a Dynamic Scarch for
social Consensus". in Proceeding of the] 3th international Joint conferences oil
Artificail Intelligence. 1993.

54. M. Adler, B. Davis, R. Wcihmaycr, and W. Worrcst. "Conflict- Resolution
Strategies for Nonhicrarchical Distributed Agents". in Proceeding ofIll
Distributed Artificial Intelligent 11.1989. London.

55. C. Chang, M. Chung and 13.1ce, "Collision Avoidance of two general Robot
Manipulators by minimum delay time". IEEE Transaction oil system, 1994: p.
517-522.

56. V. Lesser and S. Landcr. "Customizing Distributed Search Among Agents with
Heterogeneous knowledge". in Proceeding of5th int. Synip. Oil AlApplicatioll
in Manufacturing and Robotics. 199 1. Cancun Mexico.

57. K. Barber, T. liu and D. Han. "Strategic Dccision-Making for Conflict resolution
in Dynamic Organized Multi-Agcnt Systems". in Proceeding of GDN 2000
PROGRAM. 2000.

58. K. Barber, H. Liu and C. Han. "Strategy Sclcction-Bascd Mcta-Lcvc1 Reasoning".
in Proceeding ofAgent Oriented So/tivare Engineering. 2000. Limerick
England.

59. M. Klien, J. Rodriguez-Aguliar and C. Dcliarocas, "Using Domain-Indcpcndcnt
Exception Handling Services to Enable Robust Open Multi-Agcnt Systems".
The Case ofAgent Death Journalfor A utonomous Agents and Multi-Agent
Systems, 2003.7.

60. A. Visser, "An exception -handling framework". International Journal of
computer Integral Manufacturing, 1996(Special Issues on CIM Taxonomies).

61. M. klein., "A Knowlcdge-Based Approach to Handling Exceptions in Workflow
Systems". Journal of Computer-Supported Collaborative Mork, 2000.9
3/4(Special Issue on Adaptive Workflow Systems).

62. M. Klein and C. Dellarocas. "Towards a Systematic Repository of Knowledge
About Managing Collaborative Design Conflicts". in Proceeding of
Proceedings ofthe International Conferencc oil Al in Design. 2000. Boston.

63. P. Orcizy and R. Taylor, "On the role of soflwarc architectures in runtimc system
reconfiguration". IEEProceedings-So/tivare, 1998.145.

64. M. Dastani, J. Hulstijn and L. van der Torre. "BDI and QDT: a comparison based
on classical decision theory". in Proceeding ofProcccdings ofAAA1 Spring
Symposium GTDT'01.2000.

65. A. Rao and M. Georgeff. "Modeling Rational Agents Within a BDI-
Architecture. " in Proceeding ofKnowledge Representation and
Reasoning(KR&-R91). 199 1. San Matteo: Morgan Kaufman publishers.

66. M. Bratman, "Intentions, Plans, and Practical Reason". Harvard University
Press, 1987.

67. M. E. Bratman, D. J. Irsrael and M. E. Pollack, "Plans and rcsourcc-Boundcd
Practical Reasoning". ComputationalIntelligence, 1988.4(4): p. 349-355.

68. J. Filipe. "A Normative and Intentional Agent Model for Organisation
Modelling". in Proceeding of 77iirdInternational Morkshop in Engineering
Societies in the Agents World. 2002. Madrid Spain.

69. C. Castelfranchi, F. Dignum, C. Jonkcr, and J. Trcur. "Deliberate Nonnativc
Agents: Principles and Architectures". in Proceeding ofA TAL-99.1999.
Orlando USA.

70. R. Espejo and R. Hamden, "The Viable Systems Model. Interpretations and
Applications of Stafford Beer's VSM", ed. John Wiley & Sons. 1989, Chiccstcr.

71. J. Moffctt and M. Sloman, "Policy Hierarchies for Distributed Systems
Management". IEEE Journal on Selected Areas in Communications, 1993.11:

I Q'ý

p. 1404-1414 littp: //www-(Isc. doc. ic.,, ic. uk/dsc-
papers/nianagement/pol i cylii era rch y. ps. Z.

72. M. Sloman, "Policy Driven Management for Distributed Systems". Journal of
Network and Systems Management, 1994.2 fip: Hdsc. doc. ic. acj1k/(1sc-
papers/manaý,, cmcilt/ýýdnian. ps. .

73. M. Sloman and E. Lupu. "Policy Specification for Programmable Networks". !n
Proceeding ofFirst International Working Conference on A ctive Networks
(IWAN'99). 1999. Berlin.

74. E. Lupu and M. Sloman, "Conflicts in Policy-bascd Distributed Systems
Management". IEEE Transactions on Softivare Engineering, 1999.25(Spccial
Issue on Inconsistency Management): p. 852-869.

75. E. Lupu and M. Sloman. "Conflict Analysis for Management Policies". in
Proceeding of Fifth IFIXIEEE International Symposium on Integrated Network
Management IM'97.1997. San-Diego: Chapman & Hall ht1p: //www::
dse. doc. ic. ac. uk/dse-papers/niaiia. p, enient/IM97.12s. Z..

76. E. Lupu, D. Marriott, M. Sloman, and N. Yialclis. "A Policy Bascd Role
Framework for Access Control". in Proceeding offirst A CAtINIST Workshop
on Role-Based Access Control. 1995. Maryland USA: ACM
flp: //(Ise. doc. ic. ac. uk/dse-12apcrs/niatiai,, ciiicnt/rbac95. ps. Z..

77. N. Damianou, N. Dulay, E. Lupu, and M. Sloman, "Pondcr: A Language for
Specifying Security and Management Policies for Distributed Systems",
Imperial College Research Report DoC 2001.

78. L. Lymberopoulos, E. Lupu and M. Sloman. "An Adaptive Policy Based
Management Framework for Differentiated Services Networks". in Proceeding
of Proc. 3rd IEEE [Vorkshop on Policiesfor Distributed Systems and Networks
(Policy 2002). June 2002. Monterey, California.

79. K. Barber, T. Liu, H. Goel, and C. Martin. "Conflict Representation and
Classification in a Domainlndcpcndcnt Conflict Management Framework". in
Proceeding ofthe Third International Conference on Autonomous Agents. 1999.
Seattle WA.

80. D. Vcrma and R. Jennings. "Policy Based SLA, Managcment in Enterprise
Networks". in Proceeding ofProc. Policy 2001, International Morkshop on
Policiesfor Distributed Systems and Networks. 200 1. Bristol UK.

81. K. Yoshihara, M. Isomura and H. Horiuchi. "Distributed Policy-bascd
Management Enabling Policy Adaptation on Monitoring using Active Network
Technology". in Proceeding of 12th IFIPIIEEE International Morkshop oil
Distributed Systems: Operations and Management. 200 1. Nancy France.

82. M. Brunner and J. Quittek. "MPLS Management using Policies". in Procectling
ofProc. IM 2001: 2001 IEEEIIFIP International Symposium on Intergrated
Network Management. 200 1. Seattle USA.

83. M. Bearden, S. Garg and W. Lee. "Integrating Goal Spccification in Policy-Bascd
Management". in Proceeding ofProc. Policy 2001: International Workshop on
Policiesfor Distributed Systems and Networks. 200 1. Bristol, UK.

84. G. Cugola, E. Nitto and A. Fuggetta, "The JEDI Evcnt-Based Infrastructure and
its Applications to the Development of the OPSS WFMS". IEEE Trans. on
Software Engineering, 1998.27(9): p. 827-850.

85. G. Banavar, T. Chandra, B. Mukhedcc, J. Nagarajarao, R. Strom, and D. Sturman.
"An Efficient Multicast Protocol for Content-Bascd Publish-Subscribe
Systems". in Proceeding qfICDCS. 1999.

189

86. B. Segall and D. Arnold. "Elvin has left the Building: Publish/Subscribe
Notification Service with Quenching". in Proceeding ofA UUG Technical
Conference '97.1997. Brisbane Australia.

87. A. Carzaniga, D. Rosenblum and A. Wolf, "Design and Evaluation of a Wide-
Area Event Noti cation Service". A CM. Trans. oil Computer Systems, 200 1.
19(3): p. 332-383.

88. J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and
M. Spiteri, "Generic Support for Distributed Applications". IEEE Computer
Society Press, 2000: p. 68-77.

89. C. Ma and J. Bacon. "CORBA: A CORBA-Based Event Architecurc". in
Proceeding ofthe 4th USENIX Conf. On 0-0 tech. And Systems. 1998. santa
Fe USA.

90. P. Eugster, R. Guerraoui and J. Sventek. "Type-Based Publish/Subscribc". in
Proceeding of Technical report EPFL. 2000. Lausanne Switzerland.

91. P. Eugster and R. Guerraoui. "Content-Based Publish/Subscribe with Strucutural
Reflection". in Proceeding ofProceedings ofthe 6th USENIX Collf. oil Object-
Oriented Technologies and Systems (COOTS01). 200 1. Texas USA.

92. A. Carzaniga, J. Deng and A. Wolf "Fast Forwarding for Contcnt-Bascd
Networking". in Proceeding of Technical report, Dept. of Computer Science.
2001. University of Colorado.

93. A. Carzaniga, D. Rosenblum, and A. Wolf, "Design and Evaluation of a Wide-
Area Event Noti cation Service. " A CM. Trans. on Computer Systems, 2001.
19(3): p. 332-383.

94. G. Cugola and E. Nitto. "Using a Publish/Subscribe Middleware to Support
Mobile Computing". in Proceeding ofMiddiewarefor Mobile Computing
Workshop. 2001. Heidelberg Germany.

95. L. Cabrera, M. Jones and M. Theimer. "Herald: Achieving a Global Event
Notification Service. " in Proceeding ofln Proc. Of the 81h Workshop oil Hot
Topics in OS (HotOS- VIII). 200 1.

96. S. Zhuang, B. Zhao and A. Joseph. "Bayeux: An Architecture for Scalable and
Fault-tolerant Wide-area Data Dissemination". in Proceeding of the 11th Int.
Workshop on Network and OS Supportfor Digital Audio and Video (NOSS-
DA V01). 200 1.

97. A. Rowstron, A. Kermarrec, M. Castro, and P. Drusche. "Scribe: The Design of a
Large-Scale Event Notification Infrastructure". in Proceeding of the 3rd Int.
Workshop on Networked Group Communication (NGC2001). 2001.

98. P. Pietzuch and J. Bacon. "Hennes: A distributed cvent-Based Middleware
Architecture". in Proceeding ofProceedings of the Ist International workshops
on Distributed Event-Based Systems (DEBS'02). 2002.

99. P. Pietzuch, B. Shand and J. Bacon. "A Framework for Event Composition in
Distributed Systems". in Proceeding of A CM1IMPIUSENIXInt. Middleware
Conference. 2003.

100. M. Shanahan, "The event calculus explained". Artificial Intelligence Today,
1999.1600: p. 409-430.

101. C. Efstratiou, A. Friday, N. Davies, and K. Cheverst. "A Platform Supporting
Coordinated Adaptation in Mobile Systems". in Proceeding offourth IEEE
Workshop on Mobile Computing Systems and Applications. 2002. Callicoon
New Yorl.

102. D. Garlan, S. Khcrsonsky and j. Soo Kim, "Model Checking Publish-Subscribe
Systems". SPIN, 2003: p. 166-180.

190

103. K. Jones. "The Maturing of software architecture". in Proceeding ofsoftware
engineering symposium software Engineering Institute. 1993. Pittsburgh.

104. D. LeM6tayer, "Describing Software Architecture Styles Using Graph
Grammars". IEEE Transactions on Software Engineering. 24: p. 521-533.

105. M. Wen-nelinger, A. Lopes and J. Fiadeiro. "A Graph Based Architectural (Re)

configuration Language". in Proceeding ofthe Joint 8th European Software
Engineering Conference and the 9th A CM SIGSOFT Symposium on the
Foundations ofSo/tware Engineering. 200 1. Vienna Austria.

106. D. Garlan and R. Stratton. "Architecture-based Adaptation of Complex
Systems". accessed March. 2003, httV: Hschafcrcoa2-
ballston. com/dasada/proiectlist. iitin].

107. L. Andrade and J. Fiadeiro. "An architectural approach to auto-adaptive
systems". in Proceeding of1h Proc. ICDCS 2002 Workshops. 2002: IEEE
Computer Society Press.

108. R. Buyya, S. Chapin and D. DiNucci. "Architectural models for resource
management in the Grid. " in Proceeding of Ist IEEEIA CM International
Workyhop on Grid Computing. 2000. Bangalore India,.

109. I. Foster, C. Kesselman and S. Tuecke, "The anatomy of the Grid: Enabling
scalable virtual organisations". International Journal of Supercomputer
Applications, 2001.15.

110. P. Horn, "Autonomic Computing: IBM's Perspective on the State of Information
Technology". IBM Corporation, 2001
http: //ww, ýv. research. ibni. com/autonomic/inanifesto/autoiiomic computing. pff.

Ill. D. Chess, C. Palmer and S. White, "Security an autonomic computing
environment". IBM SYSTEMS JOURNAL, 2003.42.

112. R. Want, T. Pering and D. Tennenhouse, "Comparing autonomic and proactive
computing". IBM SYSTEMS JOURNAL, 2003.42.

113. J. Appavoo, K. Hui, C. Soules, R. Wisniewski, D. Da Silva, O. Krieger,
M. Auslander, D. Edelsohn, B. Gamsa, G. Ganger, P. McKenney, M. Ostrowski,
B. Rosenburg, M. Stumm, and J. Xenidis, "Enabling autonomic behavior in
systems software with hot swapping, ". IBM SYSTEMS JOURNAL, 2003.42.

114. N. K. Diakov, H. J. Batteram, H. Zandbelt, and M. J. Sinderen. "Monitoring of
Distributed Component Interactions". in Proceeding ofRM'2000 Workshop on
Reflective Middleware. 2000. New York.

115. T. Chandra and S. Toueg, "Unreliable Failure Detectors for Reliable Distributed
Systems". Journal of the A CM, 1996.43: p. 225-267.

116. K. S. Barber, T. H. liu and D. C. Han. "Strategic Decision-Making for Conflict
resolution in Dynamic Organized Multi-Agent Systems". in Proceeding of GDN
2000 PROGRAM. 2000.

117. Jini Community. "Jini Specification". accessed August-2003,
littp: //wwws. stin. com/software/jini/specs/iini 1.1 html/js-spec. htnil.

118. D. Reilly, A. Taleb-Bendiab, A. Laws, and N. Badr. "An Instrumentation and
Control-Based Approach for Distributed Application Management and
Adaptation". in Proceeding of Workshop on Sel(-Healing Systems (WOSS'02).
2002. Charleston SC USA.

119. S. Krishnana, P. Wagstrom and G. V. Laszewski. "GSFL: A Workflow Framework
for Grid S ervic es". accessed July. 2003,
www. cs. indiana. edu/-srikrisli/t, ilks/gsfl. mt.

191

120. D. pautler, S. Woods and A. Quilici. "exploiting domain-specific Knowledge to
refinc Simulation specification". in Proceeding ofProc. 121h conf Auto-inated
Software Eng. IEEE CS Press. 1997.

121. Java Environment, http: H wwww. sun. com.
122. Middlcwarc. "http: //wcb. syr. cdu/-jshwang/iMint/imint. htmi.
123. Middleware". accessed http: //wcb. syr. cdu/-jshwang/iMint/inlint. html.
124. JavaOne, "Designing and Building Distributed Scrvicc-Bascd Architectures

with JiniTM Network Technology: a Panel Discussion". Technical Session,
2001 http: //scrvlet. java. sun. com/javaonc/conf/scssions/2506/googic-sf2001jsp.

125. Jini Community, "Jini Surrogate Architecture Overview".
http: //surrogate. jini. org/ovcrview. pdf.

126. Jini URL, http: //jini. org/.
127. M. Yu, A. Taleb-Bendiab, D. Rcilly, and W. Omar. "Ubiquitous Service

Interoperation through Polyarchical Middleware". it? Proceeding ofProceedings
Web Intelligence (WI 2003). 2003. Halifax Canada.

128. D. Garlan and R. Stratton. "Architecture-based Adaptation of Complex Systems".
in Proceeding of. accessed January 2002 http: Hschafercorp-
ballston. com/dasada/projectlist. html.

129. D. Reilly and A. Taleb-Bendiab. "Dynamic Software Instrumentation for Jini
Applications". in Proceeding ofProceedings of the 3rd International Workshop
on Software Engineering Middleware SEM 2002 (ICSE 2002). 2002. Orlando
Florida USA.

130. Tuple Space, http: //www. infolets. conVIO06361585/.
131. Jini Community. "Augest. 2003,

http: //wwws. sun. com/software/Jýini/specs/Jýinil. lhtml/js-spec. html.
132. S. Sen and H. Durfee. "Unsupervised surrogate agents and search bias change in

flexible distributed scheduling". in Proceeding of the First International
Conference on Multi-Agent System (ICMAS-95). 1995.

133. Alphaworks. "Thin-Client Framework". accessed September. 2003,
http: //www. alphaworks. ibm. com/tech/tcf

134. D. Reilly and A. Taleb-Bendiab. "A Service-Based Architecture for In-Vehicle
Telematics Systems". in Proceeding of]EEE Proceedings ofthe 22nd
International Conference on Distributed Computing Systems (ICDCS 2002).
2002. Vienna Austria.

135. IBM Research. "Applications of Multi-Agents Learning in E-Commerce and
Autonomic Computing". accessed October. 2003,
http: //www. cs. rutgers. edu/-mlittman/topics/nips02/nipsO2/kephart. ppt.

136. Sun-Microsystems. "Trail: The Reflection API". accessed October. 2003,
Http: //j ava. sun. com/docs/books/tutorial/reflect/.

137. D. Helman, D. Bader and J. JSJ6. "Parallel Algorithms for Personalized
Communication and Sorting With an Experimental Study. " in Proceeding ofthe
Eighth Annual A CM Symposium on Parallel Algorithms and Architectures.
1996. Padua, Italy.

138. Jose Renato Santos G. (John) Janakiraman, and Yoshio Turner,. "Automated
Multi-Tier System Design for Service Availability, ". in Proceeding ofHPL-
2003-109 Technical report. 2003.

139. Distributed Application Development Process ". accessed October-2003,
http: //www. gantthead. com.

140. B. Meyer, "Object-Oriented Software Construction". 1997.2nd ed Prentice Hall
New Jersey.

192

141. D-Bakken, I'Middleware". Encyclopedia ofDistributed Computing Khaver
Academic Press, 2001.

142. S. Cheng, D. Garlan and B. Schmerl. I'Software Architccture-bascd Adaptive for
Grid Computing". in Proceeding ofProceedings Thellih JEEE Conference on
High performance Distributed Computing (HPDC'02). 2002. Edinburgh
Scotland.

193

