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Abstract 

Absolute Distance Contouring and a Phase Unwrapping Algorithm 

for Phase Maps with Discontinuities 

Xinjun Xie Doctor of Philosophy 

This thesis describes a new technique, absolute distance contouring, and a phase 
unwrapping algorithm for phase maps with discontinuities. 

Absolute distance contouring, which is based on the shadow moire method, using the 
rotation of a grating, is a technique which can be used for the measurement of absolute 
distance from the grating to the object and the determination of an object's height. By 
the selection of suitable rotation angles, images are captured at different positions of the 
grating to obtain the required data. The technique is divided into three different 
methods, according to the number of images required for each measurement and the 
rotation angles. These are known as: the absolute distance contouring method, the four- 
image method, and the three-image method. 

Using these methods, the three-dimensional shape of the object can be obtained directly 
and it is not necessary to determine the absolute moire fringe order nor to judge the hills 
and valleys of the object's surface. Some of the problems of the previous shadow moire 
methods can be solved and some inconvenience can be overcome by the proposed 
methods. The techniques have been verified by experimental work which was carried out 
on a specially designed system. The results show that the methods are fast and the 
accuracy is better than 10µm. The maximum measurable range is related to the 
geometry of the optical system and the rotation angles. 

The phase unwrapping algorithm is a technique to obtain the correct phase distribution 
for a phase map with discontinuities. A crossed grating , which has two sets of lines in 
two different directions, is projected onto the surface to be measured. The modulated 
grating image, which is equal to the superposition of two separate modulated images, is 
captured and Fourier transformed. The two images are separated in the Fourier domain. 
After filtering and frequency shifting, they are inverse transformed to obtain two phase 
maps with different precisions. Phase unwrapping at each pixel is carried out 
independently and the correct phase values can be obtained in the presence of 
discontinuities caused by a surface with steps or noise. This fast algorithm has been 
verified experimentally by measuring the shapes of objects with height steps, and it 
only requires a single image for each measurement. 

The methods of absolute distance contouring and the new phase unwrapping algorithm 
are new techniques for the measurement of three-dimensional object profile, which will 
find application in many areas. 

June 1997 
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Chapter 1 Introduction 

1.1 Introduction 

The measurement of absolute distance and three-dimensional profiles are very 

important in many application areas including metrology, automated manufacturing, 

component quality control, medical diagnosis, and robotics. Among the various types of 

techniques, optical methods are very popular [Sciammarella 1979; Strand 1985; 

Atkinson and Lalor 1986], because of their non-contact nature. Optical methods 

which include moire, speckle [Butters and Leendertz 1971; Ennos 1975; Nakadate 

1983 and 1985], and holography [Butters 1970; Sommargren 1977; Nakadate 1981; 

Sciammarella 1982; Hariharan 1983], for the measurement of distance and three- 

dimensional object profile, are widely studied. Moire techniques are particularly suitable 

for mapping the absolute shape of a given surface or the difference between that surface 

and a master surface or accidental shape changes [Sciammarella 1982; Post 1982 and 

1991; Reid 1984; Kafri and Glatt 1989; Walker 1994]. These methods are characterized 

by their simplicity and the fact that only readily available and unsophisticated equipment 

is required. 

In this chapter, shadow moire contouring techniques, including the determination 

of the fringe order, hills, and valleys, automatic data processing, phase shifting, and 

their applications, are reviewed in section 1.2. Projection moire techniques including 

phase shifting, Fourier transform, and phase unwrapping are reviewed in section 1.3. 

A proposed new technique, absolute distance contouring, which is used to improve 

the previous shadow moire methods, is described in section 1.4. Section 1.5 is a newly 

proposed phase unwrapping algorithm for use on phase maps with discontinuities. 

1.2 Shadow Moire Contouring 

The moire phenomenon, noted over 100 years ago by Lord Rayleigh [Rayleigh 1874], is 

associated with the visible fringe system caused by superposing two similar grid 

structures. The word moire derives from the French name for a silk fabric imported from 

ancient china, in which the threads form patterns that give to the fabric its peculiar 
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Chapter 1 Introduction 

appearance. The fringes, called moire fringes, are clearly seen when grids are nearly 

parallel and their frequency space, (or their multiples), are about the same. Although the 

phenomenon was further treated by some authors, interest in the field seemed to 

diminish until the end of the Second World War, despite the many advantages the effect 

offers in metrology [Durelli and Parks 1970]. 

The moire technique can be divided into shadow moire and projection moire, which are 

widely studied and used in different application areas. Since the techniques differ in their 

applications, it is customary to make a distinction between shadow moire and projection 

moire. In the former method, the projection of a grating onto the object is obtained very 

simply by placing the grating as close as possible to the object's surface and by casting 

its shadow onto this surface by means of collimated or diverging light beams, the moire 

pattern being observed through the grating itself. In the latter method, use is made of 

a projection lens to image a master grating onto the object's surface [Pirodda 1982], 

and viewed through a reference grating. Apart from the above feature, which is, of 

course, of considerable practical importance, the two methods can be considered 

theoretically similar and studied in a unified approach. 

In this section, the shadow moire technique, or shadow moire contouring, will be 

explained in more detail. One great characteristic of the shadow moire contouring 

technique is its extreme simplicity. In order to perform an elementary experiment, one 

only requires a point or line source and a grating placed in front of the object. Such an 

experiment could have been conceived and performed in Galileo's time, at least in cases 

where a coarse grating is needed. It is perhaps surprising that the principle and 

implementation of so humble a method only emerged at the same time as more complex 

techniques such as holographic and speckle interferometry. 

The shadow moire method was used in the first scientific application of moire. Work in 

this area goes back to 1925 [Mulot 1925]. The method was later reintroduced by a 

number of authors [Weller and Shephard 1948; Kaezer and Kroupa 1952; Theocaris 

1964]. All of these authors were concerned with the formation of moire patterns by the 

projection of the shadow of a grating onto an object's surface with collimated or 
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Chapter 1 Introduction 

diverging light beams and observing the grating and its shadow so that the viewing 

point was effectively at infinity. 

Later, a group of authors generalized the conditions of the observation and illumination 

[Pirodda 1969; Meadow 1970; Takasaki 1970]. In their systems, they utilised gratings 

which were illuminated and observed from points at an infinite distance. In these 

arrangements, the fringes do not have a simple interpretation, the fringe order is a 

function of the distance from the object surface to the reference plane and a one- 

dimensional description is sufficient to provide the answer to the problem. The fringes 

give lines of equal deflection in a direction normal to the plane of the grating. If the 

observation and illumination sources are at finite distances, the above interpretation is no 

longer valid. The analysis of the fringe formation in the above cases has followed two 

approaches that the literature calls the communication theory [Meadow 1970], and the 

ray-tracing method [Chiang 1969 and 1975; Takasaki 1970]. The communication 

theory approach is an application of the treatment introduced by Sciammarella 

[Sciammarella 1965], to the shadow moire method, whereas the ray-tracing method is a 

generalization of the geometrical optics approach to moire fringes. A unification of both 

theories has been attempted by Heiniger and Tschudi [Heiniger and Tschudi 1979], and 

the results include the possibility of introducing layers of different diffraction indices 

between the surface and the grating. The optical law of moire fringes [Sciammarella 

1965], is utilised by Roger [Roger 1979], to provide an alternative derivation of some 

of the equations obtained by previous authors. The results show that the optical law of 

moire patterns and the ray-tracing method lead to identical results in terms of the 

interpretation applied to the fi inges. 

One limitation of the shadow moire method results from the shadow cast by the 

features of the object surface. This limitation could be overcome by utilizing two-point 

light sources [Meadow 1970; Takasaki 1970]. In this case, the observation point must 

be half way between the two illumination points to obtain optimum fringe contrast. An 

alternative method to the two-source technique is to project two gratings onto the 

object. In this case, the fringes are visible on the surface of the object, thus making 

observation easier. However, the contrast of the fringes is poor and this is an 
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Chapter 1 Introduction 

inconvenience [Hovanesian and Hung 1971; Bryngdahl 1976; Yoshino and Takasaki 

1976; Lim 1989]. 

In order to obtain good quality moire patterns and high accuracy measurements using 

the shadow moire method, many authors have attempted to use different 

techniques. An averaging process can be used to remove the grating lines during 

photographic recording of moire topograms by moving the grating [Allen and Meadow 

1971]. Using this method, four exposures are made on the film with the grid in four 

different positions, each position separated by a distance of a quarter of the grating's 

period. The resulting picture will have no unwanted terms or non-contour patterns. 

Another way of achieving the same result is to average a number of video frames 

recorded during the translation of the grating at a specified speed [Dirckx 1990]. A 

fringe-scanning method using a general function instead of an arctangent function, is 

used for shadow moire. The general function is analysed by the numerical analysis to 

obtain high resolution and accuracy [Arai 1995]. 

Since the grating is very important in shadow moire techniques, the possibility of using 

a different grating in shadow moire has been studied by different authors. Kafri and 

Livant proposed the tunable grating, which is formed by placing one grating upon 

another with a varying angle between them, to obtain optimal resolution and to help 

distinguish between hills and valleys [Kafri and Livant 1979]. A curved grating can be 

used to improve the accuracy of the measurement [Marasco 1975; Wegdam 1992]. 

Krumm and Shafer developed a model of a sampled-grating moire system and 

compared it with a crossed-grating system [Krumm and Shafer 1991]. A three-way 

grating and three-dimensional grating for moire method are studied by Patorski and 

Kujawinska [Patoski and Kujawinska 1985], and Ibrahim [Ibrahim 1982], respectively. 

1.2.1 Determination of Fringe Order, Hills, and Valleys 

When the observation and projection points are at finite distances, the displacements, (or 

the distance from the grating to the object's surface), are functions of the fringe order. 
Consequently, the fringe order must be known. There have been several methods that 
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Chapter 1 Introduction 

determine the absolute order of shadow moire fringes. Takasaki proposed a method - 

which adds a vertical line to the grating to obtain the absolute order of a moire fringe 

[Takasaki 1973]. However, the absolute order of a fringe can be obtained only after 

measuring the photograph and performing some calculations. The application of two- 

frequency gratings in front of the object rather than the usual single frequency grating 

was suggested by Ibrahim [Ibrahim and Takasaki 1985]. Three interesting techniques 

have been proposed to solve the problem of the determination of the absolute order of a 

moire fringe. Respectively, these use a photometric model to connect the image 

brightness values with the surface orientation of the object [Ding and Pekelsky 1987 and 

Pekelsky 1987], periodic color structures generated by superimposing two moire 

patterns with different colors [Yuk 1994], and a moving-light-source method with the 

Fast Fourier Transform [Lim 1989]. 

Another problem of shadow moire contouring is that the observation of shadow moire 

contours does not allow a direct determination of whether a contour showing 

concentric fringes is a hill or a valley. This judgment can only be made if one knows the 

object's shape. This type of determination cannot be applied to an unknown object or in 

automatic processing. There are several solutions including the stereo pair method, 

where a stereo picture pair is taken of an object on which the contour pattern is 

localized, and a two light source method where a second source is placed a very short 

distance from the camera, to produce a coarse moire fringe pattern. This is added to a 

fine contour pattern produced by the other light source. If the coarse fringe pattern is 

broadened to cover the depth of interest, the hill will be bright or dark centered 

[Takasaki 1973 and 1979]. In the double-exposure and color-difference method, after 

the first exposure, the object is translated normal to the grating by a certain distance and 

a color filter is placed in front of the camera lens prior to the second exposure. The 

order of the color sequence in each contour line definitely determines the slope direction 

[Livant 1980]. The misalignment method, the mismatch method and the grid-shifting 

procedure were also introduced to solve the same problem [Murakami 1978]. 
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Chapter 1 Introduction 

1.2.2 Automatic Data Processing 

The shadow moire technique has many important applications in different areas. For 

example, it can be used to establish the shape of an object after manufacture, or to 

compare an object to a reference specimen. However, a successful application requires 

some form of automation of the data processing. 

When an initial reference grating is introduced by electronic means [Ideawa 1977], the 

moire fringes can be displayed alone by electronically removing the carrier and reference 

gratings. Image-processing techniques are introduced to generate color contours to 

separate the hills and valleys and to obtain absolute fringe orders. Automatic data 

processing was introduced by Perrin and Thomas [Perrin and Thomas 1979], where an 

optoelectronic technique is used to measure the moire fringe phase and sign. The 

method is based on the two reference beam method of holographic interferometry 

proposed by the same authors. This method leads to the phase measurement by 

heterodyning. 

Digital image processing was introduced to the moire technique by Yatagai [Yatagai 

1982] and Gasvik [Gasvik 1983], amongst others, which made real-time measurements 

of object contour possible. Cline proposed that the computer-aided technique uses a 

digitized 2-D fringe image that is analyzed to calculate contours between the fringes 

[Cline 1982 and 1984]. The method of analyzing the moire contour pattern in terms of 

the phase rather than the intensity of the fringes was studied by Reid [Reid 1986]. 

Recently, different image processing methods for the moire pattern analysis are also 

studied by other authors [Ning and Peng 1988; Jin and Tang 1989; Ivnitsky and 

Voloshin 1990; Liao and Voloshin 1993]. 

1.2.3 Phase Shifting 

In the case of projection moire, the phase-shifting method can be easily applied because 

two gratings are arranged with a separation and one of the gratings can be moved to 

produce a mutual phase difference between them. However, for the shadow moire 
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technique, where only one grating is used, the mutual phase difference between the 

reference grating and the deformed grating image cannot be produced by a moving 

grating. Allen and Meadow used this fact to develop their grating translation technique 

to obtain moire pictures with high contrast fringes [Allen and Meadow 1971]. In 

Dirckx's method, the phase shift between different moire topograms is obtained by a 

slight variation of the object-to-grating distance[Dirckx and Decraemer 1988,1989 and 

1990]. As the phase of the grating does not influence the location of the moire fringes 

on the object, the projected grating lines can be averaged out during the exposure by 

moving the grating in its own plane [Takasaki 1982]. At the same time, the convexity 

and concavity of the surface are automatically determined. Yoshizawa studied phase- 

shifting of the shadow moire method by moving both the grating and light source to 

achieve the required phase shift [Yoshizawa 1993]. A complete analysis of the shadow 

moire phase-shifting method, showing the influence of different parameters, was 

presented by Mauvoisin [Mauvoisin 1994]. 

1.2.4 Applications of Shadow Moire 

The shadow moire method, in its all different varieties, is an extremely valuable tool, 

not only in the area of experimental mechanics, but also as a means of measuring and 

controlling shapes. Since the first scientific application in 1925, the shadow moire 

technique has found applications in many different areas. It has been used in the 

aeronautical industry [Dykes 1970], the study of the impact of thin plates by blunt 

projectiles [Beynet 1971; Andrews 1982], surface inspection [Redner 1990], metrology 

[Reid 1984; Gasvik 1987], vibration studies [Hung 1977; Kafri 1985], and machine 

vision [Gasvik and Hovde 1989]. In the area of medicine, shadow moire has been 

applied to obstetrics, orthopedics and biostereometrics, obtaining surface contour 

information on patients receiving radiotherapy [Takasaki 1974 and 1979; Chu 1981; 

Pirodda 1982; Ivnitsky 1990]. Other applications of shadow moire techniques in 

different areas have also been reported [Redner 1985; Walker 1994]. 

For the various shadow moire methods mentioned above, even though they have been 

used in many different applications, there are still limitations and problems in practical 
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uses [ Cline 1984; Graham 1990; Wykes 1995; Yasuhiko 1995]. There are difficulties 

that occur in complex shapes where the surfaces are not single valued and 

reconstruction is not unique. The surface to be measured cannot be too steeply sloped 
because the density of fringes cannot exceed the resolution of the video system. Actual 

surfaces may not be uniform in reflectivity and will not yield clean fringe patterns. 

Techniques such as painting the surface matt white may be needed for shiny metallic 

surfaces. The determination of the absolute fringe order and the ability to distinguish 

between the hills and valleys of the object's surface can be made by some of the 

previous methods, but it is not convenient. Only the object's relative height rather than 

the absolute distance between the grating and the object's surface can be measured. So 

it is necessary to improve the shadow moire technique. 

1.3 Projection Moire 

Projection moire topography is a well known and popular method for non-contact 

profilometric measurement of diffuse objects and intensively studied by many 

researchers [Idesawa 1977; Srinivasan 1984; Chang 1991]. Using this technique, the 

optical fringes which are projected onto an object can be grating lines [Halioua 1983; 

Reid 1984; Srinivasan 1985; Gasvik 1986], or interference fringes generated by a 

conventional interferometer [Chang 1991; Gruber 1992; Peng 1995]. Once a straight 

line grating with sinusoidal or square wave intensity distribution is projected onto an 

object, the surface height distribution is translated into a phase distribution of the 

deformed grating or interference fringes, and thus the techniques of phase measuring can 

be used for the quantitative analysis of the surface topography. The basic experiments 

for the projection grating method and the method of projected fringes are shown in 

figure 1.1. 

In figure 1.1(a), a source projects a plane equispaced master grating onto the object 

whilst an image of the object is formed in the plane of a reference grating, which is 

assumed to be the image of the projection of the grating. Interference between the 

grating image and the reference grating causes a number of moire fringes to appear 
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Camera 
Proiector 

Projection 
grating 

Object 

(a) system with projection and reference gratings 

Projected grating 
or fri 

e 

Object 

(b) projection system with a single grating or interference fringes 

Figure 1.1 Schematic Diagrams of Projection Moire Topography 
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superimposed upon the surface of the object. Such fringes can be readily interpreted in 

terms of the shadow moire principles [Pirodda 1982]. Figure 1.1(b) is a schematic 

diagram of a projection system in which one grating or set of interference fringes is 

projected and the image of the projection of the grating or interference fringes is 

observed directly rather than through the reference grating. The projection grating may 

be of a sinusoidal or square wave intensity distribution [Su 1992]. 

The deformed grating image or the observed fringe pattern contains information about 

the object's height distribution which is in the form of a phase distribution. It is 

necessary to calculate the phase distribution of the fringe pattern to obtain the object's 

height distribution. Several methods can be used in order to achieve this. In particular, 

the phase shifting method and the Fourier transform technique will be discussed in the 

following sections. 

1.3.1 Phase Shifting 

To obtain the object's height distribution, one must obtain the phase distribution of the 

deformed grating pattern. There are several methods used for this purpose, including 

phase shifting, the Fourier transform method, and spatial phase detection [Toyooka 

1986]. Different methods require a different number of images. Phase shifting and the 

Fourier transform technique are two of the most popular methods. Both are based on 

an almost identical analysis, the main difference being that the phase shifting algorithms 

perform computations in the spatial domain, while the computations for the Fourier 

transform method are performed in the frequency domain. In this section, the phase 

shifting methods are examined, which require more than two images to extract the 

phase information. 

Phase shifting interferometry, (PSI), which is now used widely in many application areas 

is a general automatic phase measurement technique. The basic idea of PSI is to 

introduce three or four discrete phase steps into the interferogram, measuring the light 

intensity distribution across the pupil for each phase shift, thus measuring the phase of 

the interferogram. It has been used in optical metrology, holographic interferometry, 
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speckle interferometry, and in both shadow moire and projection moire methods 
[Chang 1985; Creath 1985; Dirckx 1988; Mauvoisn 1994; Perry 1993]. 

Moire patterns contain inherent noise due to the original gratings, which is especially 

noticeable when coarse gratings are used. Topographical fringes, in addition, are often 

plagued by spurious moire in the regions of large slopes. It has been shown that, in a 

shadow moire arrangement, these artifacts can be eliminated by a grating translation 

technique [Takasaki 1970; Allen 1971]. In the case of the projection grating being 

observed through the reference grating, (figure 1.1(a)), simultaneous translation of the 

reference and projection gratings at a certain speed can generate high definition contour 

fringes without any of the noise problems associated with standard moire [Halioua 

1983]. 

If there are two gratings in the projection system, phase shifting is accomplished by 

moving the projection grating a certain distance between each image. The first image 

is obtained with the grating in its original position. If the projection grating's period is 

Pp, the grating is moved through a distance Pplk. The phase of the projection grating is 

thus moved through an angle of 27t/k, where k is an integer number and k>2. This 

process is repeated until the projection grating has moved through (k-1) equal steps and 

a total of k images have been captured, so that k intensity levels have been stored at 

each pixel location [Reid 1984]. 

If there is only one grating in the projection system, the deformed image is observed 

directly by the camera and phase shifting is realized by moving the projection grating N 

steps, with one image being captured at each position. The number of images required 

could be three, four, five, or more [Srinivasan 1985; Poon 1993]. The five-image 

algorithm, which is most popular in commercial interferometers, is an extension of the 

four-image algorithm, in the sense that the first image is replaced by the average of the 

first and fifth image, corresponding to phase shifts of 0 and 2ir. It has been shown to be 

less sensitive to miscalibration [Hariharan 1987]. A similar extension of the N-image 

algorithm, retaining both the insensitivity to phase-shift miscalibration and the possibility 
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of using many frames to improve the signal-noise ratio is studied by Surret [Surret 

1993]. A profilometry sensor that combines phase shifting with a Talbot self-image of a 

sinusoidal grating as the illumination part of the sensor is also proposed [Oreb 1994]. 

Since precise movement of the grating is required to obtain accurate images at each 

step in the projection grating methods, the grating could be replaced by interference 

fringes to improve the accuracy and the sensitivity of the method. When a sinusoidal 

intensity distribution generated by an interference pattern between two coherent plane 

wave fronts is projected onto the surface of a three-dimensional diffuse object, the 

mathematical representation is similar to that of the deformed grating image intensity 

distribution encountered in the conventional projection grating method. Srinivasan 

used a laser illuminated shearing polarization interferometer as a means of replacing 

the projection grating. By rotating the polarizer, the sinusoidal intensity distribution of 

the interference pattern can be modulated [Srinivasan 1984]. Similar research has also 

been carried out by the use of interference patterns to solve the problems of the "hills 

and valleys" interpretation between fringes by using digital image processing techniques 

[Gasvik 1986; Chang 1991]. Sinusoidal fringes with precise shifts generated by the 

astigmatic imaging of a binary transmission pattern and an optical fibre based moire 

interferometer are studied [Gruber 1992; Valera 1993]. Phase and amplitude 

information obtained from phase-shifting interferometry may be combined to obtain a 

complex-valued phasor for every pixel in the image. This provides a simple yet effective 

concept for filtering, visualization, masking, and unwrapping interferometric phase maps 

[Strobel 1996]. 

1.3.2 Fourier Transform 

The phase shifting methods discussed in section 1.3.1, all require at least 3 images to 

generate a phase map. An important aspect of the PSI analysis is that the phase of the 

wavefront under study is determined independently at each point, without the need to 

consider data at other points in the image. This means that arbitrary discontinuities in the 

fringe pattern will be correctly interpreted and the `sense' of the wavefront will be 
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automatically and unambiguously resolved. The alternative method is the well-known 
Fourier transform. The Fourier transform has the advantage of requiring only one 
interferogram for the analysis. This makes it particularly attractive for dynamic 

applications, or instances where vibrations make interferometric measurement difficult. 

However, difficulties arise with this method near edges and in the presence of fringe 

pattern discontinuities. 

The basic Fourier fringe pattern analysis algorithm proposed by Takeda [Takeda 1982], 

was based on a one-dimensional Fourier transform. This one-dimensional technique adds 

to the phase information in an interferogram, a phase which is a linear function of the 

coordinates, for example, by tilting one of the mirrors in the interferometer. This 

heterodyning process separates, in the frequency space, the positive and negative 

frequency components of the sinusoidal intensity from each other and from some of the 

spurious intensity contributions. By filtering to retain only the positive frequency 

components, the underlying phase can be retrieved. This technique was extended by 

Macy [Macy 1983], to handle 2-D data. This extension, however, is still essentially a 

1-D analysis of slices of the data. The technique was refined by employing a two- 

dimensional Fourier transform [Bone 1986]. This technique gives better separation of 

the desired information from unwanted components. This is achieved without incurring 

any penalties in processing time, as the more selective filtering afforded by the 2-D 

transform removes the need for later smoothing of the phase. Several other refinements 

to the technique are also introduced. These include an improved method for removal of 

the heterodyning and a technique for reducing the large phase errors at the boundary 

associated with the use of a numerical data window. In addition, improved estimates of 

the band limits are proposed which permit optimization of the interferogram using 

parameters easily measured from a test interferogram. In the large fringe shift limit, 

these band limits lead to a rule of thumb which makes it possible to ensure that the 

information components are isolated in the transform plane. 

In the last ten years, the Fourier transform techniques have been widely studied and 

used for the analysis of interferograms. For example, it has been used for mapping the 

complex fringe visibility in several types of interferogram by Roddier [Roddier 1987], 
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for automatic measurement of three-dimensional object shapes in which the technique 

has a much higher sensitivity than the conventional moire method and is capable of fully 

automatic distinction between a depression and an elevation on the object's surface. 
There is no requirement for assigning fringe orders and interpolating data in the regions 
between contour fringes [Takeda 1983; Li 1990; Lin 1995]. The application of the 

Fourier transform method in the analysis of speckle, shadow moire, and phase shifting 

interferometry to obtain the three-dimensional profile of diffuse objects, has been 

reported [Suganuma 1991; Takeda 1994; Lim 1989; Morimoto 1994]. 

1.3.3 Phase Unwrapping 

A major aim in interferometric fringe analysis is to automate the process. The extent to 

which this can be achieved is a matter of some debate. It has been proposed that expert 

systems be employed as an aid to automatic methods [Judge 1994]. Automatic methods 

aim to eliminate the need for expert knowledge in the interpretation of fringe patterns 

and thereby allow it to be used more widely. Automatic techniques are essential if 

systems are to be used unsupervised, for example, in quality assurance on the production 

line. However, a general automated approach to the phase unwrapping problem in fringe 

analysis has been elusive. 

Two generally applicable phase encoding/decoding techniques have been involved which 

are of great assistance in the resolution of directional ambiguity. These are phase shifting 

and the Fourier transform techniques [Srinivasan 1985; Reid 1986/7]. Both these 

techniques yield a phase map which is referred to as a wrapped phase map. The basic 

technique for analyzing these wrapped phase maps is known as fringe counting or fringe 

scanning. This involves traversing the scan lines of the digitally processed field to search 

for the phase roll over points at the fringe edges, where the phase changes abruptly 

between 2n and zero, or vice versa. Since noise in the wrapped phase map can cause a 

problem of disrupting the fringe edges, upon which the technique relies, this makes 

phase unwrapping a potentially difficult exercise. 

However, phase unwrapping techniques have recently been developed which are 
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tolerant of spike noise. Ghiglia describes the discovery of a cellular automaton which 

can unwrap consistent phase data in n dimensions in a path-independent manner and 

which can automatically accommodate noise-induced, point like, inconsistencies 

[Ghiglia 1987]. The technique requires a large number of iterations to converge. 

Algorithms based on cuts which are also tolerant of such noise and computationally 

efficient are described by Goldstein [Goldstein 1988], and Huntley [Huntley 1989]. 

Bone has described a fast flood fill algorithm which improves the speed of the cut 

algorithms [Bone 1991]. Takeda has recently proposed a phase unwrapping strategy 

using a neural network, which also employs cut lines [Takeda 1993]. Noise-tolerant 

algorithms, based on minimizing phase changes between pixels via minimum spanning 

trees, have been are described [Judge 1992]. 

Although robust for consistent phase data, these procedures do not cope with fringe 

fields that contain large scale phase disturbances, such as those which contain noise 

spikes significantly larger than pixel size, and which may not be detected by a local pixel 

level inspection. Large scale discontinuities can occur for a variety of reasons. Shadows 

can cause large discontinuities, as can spaces between objects or their parts. Such spaces 

are especially problematic when they occur with a spatial frequency of the same order as 

the fringe spacing, since their size means that they may not be filtered out. 

Several approaches have been taken to those types of problem. Judge's minimum 

spanning tree algorithm incorporates region level processing [Judge 1992]. The 

dimensions of the pixel tiles employed are related to the size of the discontinuities to be 

detected; pixel order tiles enable the unwrapping of consistent phase maps containing 

spike noise, whereas larger tiles allow larger local features of inconsistency to be 

identified. 

Gierloff has proposed a method which also confronts the problem posed by large scale 

discontinuities [Gierloff 1987]. This method segments the fringe field into areas of 

apparent consistency and attempts to intelligently relate these areas to each other. Green 

and Walker have described a phase unwrapping algorithm that eliminates discontinuities 

based on the expected frequency band limits of a fringe field [Green 1988]. The 
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interferogram represents a slowly varying function and should not, therefore, contain 

high frequency components. High frequency components are due to the step changes at 

roll over points and noise. The algorithm attempts to eliminate the step changes by 

examining the spectrum of the unwrapped phase. 

For phase unwrapping in the presence of discontinuities, an algorithm called multi- 

channel Fourier fringe analysis, which is used for the problem of automatic phase 

unwrapping in the presence of surface discontinuities, is proposed by Burton [Burton 

1994]. The algorithm requires the presence of more than one fringe pattern on the 

surface. Bhat proposed a method based on the computation of the phase obtained 

directly from the wrapped phase maps [Bhat 1994]. By this method, the phase 

discontinuities are eliminated by converting the wrapped phase map into a continuous 

fringe pattern and the phase derivative is obtained using a differentiator in the Fourier 

space. A phase unwrapping algorithm, using two phase images with different precisions, 

is proposed by Zhao and can produce an approximately correct unwrapped image in the 

presence of discontinuities [Zhao 1994]. Using this method, two phase images are 

obtained by the phase shifting technique with different grating periods, so that a total of 

eight images are required for each measurement. An algorithm based on the 

identification of discontinuity sources that mark the start or end of a 2n phase 

discontinuity is studied by Cusack [Cusack 1995]. In this method, branch cuts between 

sources act as barriers to unwrapping, resulting in a unique phase map that is 

independent of the unwrapping route. Quiroga proposed a stable-marriage algorithm 

for processing phase maps with discontinuity sources, which is implemented as a 

recursive procedure [Quiroga 1995]. 

1.4 Absolute Distance Contouring 

To improve shadow moire contouring techniques, a new technique called absolute 

distance contouring, is proposed. It is based on the shadow moire method and the 

rotation of a grating, and can be used for the measurement of the absolute distance 

from the grating to the object and the object's height. Using this technique, the three- 
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dimensional shape of the object can be obtained directly and it is not necessary to 
determine the absolute moire fringe order, nor to judge the hills and valleys of the 

object's surface. Some of the problems of the previous shadow moire methods can be 

solved and some inconvenience can be overcome by the proposed new technique. 

In the new shadow moire system, the period of a grating is varied by rotating it, so that 

the phase of the moire pattern is changed as well. By the selection of suitable rotation 

angles, images are captured at different positions of the grating to obtain the absolute 

distance from the object to the grating, as well as the object's height. The absolute 

distance contouring technique is divided into three different methods: absolute distance 

contouring method, four-image contouring method, and three-image contouring 

method, according the number of the images required for each measurement and the 

rotation angles. In the first method, the number of images for each measurement is not 

fixed and depends on the distance to be measured and the resolution required. Only one 

maximum rotation angle needs to be chosen and the steps to be rotated by the grating 

from zero to the selected maximum angle is decided by the image number. For the four- 

image method, the number of images is four, there are two angles to be chosen and 

this determines the remaining two angles according to a fixed relationship. In the three- 

image method, only one angle is to be chosen, the other two being decided by the 

relevant equations. Each of the methods has its own particular features. 

The three different absolute distance contouring methods proposed have been verified 

by experiment carried out by a specially designed experimental system. The results 

show that the methods are fast and the accuracy is better than 10µm. The maximum 

measurable range is related to the parameters of the experimental arrangement and the 

rotation angles. 

The theoretical analysis of the three different absolute distance contouring methods is 

given in chapters two to four respectively. Chapter five describes the experimental 

system which was used to verify the theoretical analysis of each of the proposed 

methods. The experimental results and the features of the three different methods are 

analyzed and compared in chapter six. 
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1.5 Proposed Phase Unwrapping Algorithm 

Although there have been many different algorithms for phase unwrapping in the 

presence of discontinuities, caused by an object having holes or steps, none of them 

seem to deal completely with the problem. The algorithm proposed here is a phase 

unwrapping algorithm to obtain a correct three-dimensional profile of an object with 
discrete height steps, by using a crossed grating. 

A crossed grating, which has two sets of lines in different directions, is projected onto 

the object surface to be measured. The deformed crossed grating image which is equal 

to the sum of the two deformed conventional grating images, is captured and Fourier 

transformed. The two images are separated in the Fourier domain. After filtering the 

unwanted frequency components in the frequency space, they are inverse transformed 

to obtain two phase maps. These two phase maps have different phase distributions 

because the two sets of grating lines are in different directions so that their equivalent 

periods are different. If a suitable angle between the two sets of lines is chosen, the 

two phase images will have different precisions. Phase unwrapping of each pixel is 

carried out independently and the correct phase values for each pixel can be obtained in 

the presence of discontinuities. The theoretical analysis of the phase unwrapping 

algorithm is presented and the algorithm has been verified experimentally. The process 

only requires a single image and the results show that the algorithm is fast and can be 

used to measure the objects' surfaces. 

In chapter seven, the theoretical analysis of the proposed phase unwrapping algorithm 

is described, and the simulated results are presented. The experiments used to verify 

the technique, and the corresponding results are given in chapter eight. 
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Chapter 2 

Theory of Absolute Distance Contouring 
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2.1 Introduction 

Moire contouring is very well documented and much work has been performed 

using this technique. However, there are some disadvantages for the previously 

mentioned shadow moire techniques. For example, only the relative object height or 
distance can be measured and some extra information is needed to determine the 

absolute moire fringe order and discriminate between the hills and valleys. Some 

methods have been proposed to provide improvements, but they are still not convenient. 

In this chapter, the theory of absolute distance contouring is described. It is based on 

the shadow moire contouring principle and the rotation of a grating. It can be used to 

measure the absolute distance from the grating to an object's surface, as well as the 

object's topography. It starts from a basic mathematical analysis of the method, 

including an analysis for a variation in the grating's period, including the case where 

sinusoidal and square wave intensity gratings have been used. This is followed by a 

signal analysis, the relationships of the parameters of the experimental arrangement, 

the grating's period, and the angle, which the grating is rotated, with the measured 

absolute distance from the grating to the object's surface. The proposed method 

for signal processing gives an idea of how to obtain the absolute distance and the 

object height from the captured images. The last two sections describe an analysis 

of the errors of the measurement and the conclusions for this section of the work. 

2.2 Variation of a Grating's Period 

Figure 2.1 shows the typical shadow moire contouring arrangement. The shadow of 

a grating is cast onto the object's surface. It is viewed back through the grating, the 

moire pattern observed, being a contour map of the object. It is assumed that 

the object is viewed normal to the grating, using parallel projection. The contour 

depth is given by: 

Oh= 
P 

tan a 
(2-1) 

21 



Chapter 2 Theory of Absolute Distance Contouring 

where a is the angle of incidence and P is the period of the grating. 

Light 
T 

G rating 

Figure 2.1 Typical Shadow Moire Contouring Arrangement 

In order to vary the contour depth A h, it is necessary to vary P or a. The 

most practical of these alternatives is to vary P from infinity to some finite 

value P0. P is defined as the period of the grating measured perpendicular to the 

plane defined by the illumination, observation and object points. Variation of P and 

therefore Ah is achieved by rotating the grating in its own plane about any axis 

normal to it. When this is done, moire fringes are seen to move over the 

object's surface. Figure 2.2 is a schematic diagram of the proposed absolute distance 

contouring arrangement. Figure 2.3 shows how P varies with the angle of 

rotation, 6. 

If the grating is rotated at a constant angular velocity, o, the measured period 

of the grating changes such that: 

P= 
Po 

where 0= cot (2-2) 
sin 0 

Therefore, when 0=0, P= oo and when 0= n/2, P= Po. Where Po is the 

grating's original period. 
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Figure 2.4 shows a simple absolute distance contouring arrangement for the basic 

experiment. The grating is mounted on a bearing, such that it can be rotated about 

an axis normal to the plane of the rulings. The object is located behind the grating 

and illuminated by a light source which need not be coherent. The shadow of the 

grating is cast onto the object's surface through an angle a. Hence the shadow on 

the object is shifted in the y direction by a distance z(x, y)tana relative to the 

grating. Light from this scene passes through the grating and a lens, forming an 
image in the region of the CCD camera. The light source and the lens are the same 

perpendicular distance, zo, from the grating. Together with the object point at z, they 

define a plane. The intersection of this plane with the grating defines a line along which 

the period, P, of the grating is measured. This line also serves as the datum for the 

rotation of the grating. When the rulings are parallel to it, the angle 0 is zero. 

Figure 2.4 A Simple Absolute Distance Contouring Arrangement 

The bearing, upon which the grating is mounted, is driven by a motor at a 

constant velocity, w. The object and grating are imaged together by suitably 

stopping down the aperture of the lens. Figure 2.5 shows a view of the bearing, 

grating and object from the position of the CCD camera. Figure 2.6 shows the 

expected time varying output from a single pixel of the CCD camera, for one 

24 



Chapter 2 Theory of Absolute Distance Contouring 

revolution of the grating. Under certain conditions, the representation shown is 

found to be true experimentally. 
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Figure 2.5 View of Bearing, Grating and Object From the CCD Camera 
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Figure 2.6 The Expected Time Varying Output 
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2.3 Theoretical Analysis 

It is assumed that T(y) is the transmission function of the grating, the grating is 

illuminated by a light source of intensity, Io, and at an incidence angle, a, as 

shown in figure 2.2. The intensity falling on the object's surface, O(y), will be: 

O(y) = IoT(y -z tan a) (2-3) 

When the object is viewed through the grating, the moire pattern 
M(y) can be written as 

M(y) = RO(y)T(y) =I oRT(y)T(y -z tan a) (2-4) 

where R is the reflectivity of the object's surface. 

2.3.1 Sinusoidal Wave Intensity Grating 

For a sinusoidal wave grating, the transmission function, as shown in figure 2.7, can 

be written as: 

T(y) =1+1 sin 
2ý 

(2-5) 
22P 

where P is the period of the grating. 

From equation (2-4), the moire pattern of the sinusoidal grating is given as: 

M(y) =I oR 
1+1 

sin 
2)7y 1+1 

sin 
2; r(y -z tan a) 

22P 

)) (22P 

I oR (ý)ýry 27r(y -z tan a) (271y) 27(y -z tan a) 
=41+ sin Il + sin p+ sin p sin p 

(2-6) 
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Figure 2.7 Transmittance of a Sinusoidal Wave Intensity Grating 

From figure 2.2, it can be shown that: 

tan a= 
YS 

z+zo 

Therefore, equation (2-6) becomes 

IoR 2I'll) 
2ý y 

M(y) =41+ sin + sin 
( 

(p 
j 

IoR 
l+ sin 

2''Y+ 
sin 

4P 

{22Y 
- 

--co 2I 

ZyS 

Z+Zo 2ý, 2ý y 
J+sinl 

p sin p 

27ry - z+zS o 
P 

zys 
12 z+zo z+zo J+-coS 
2P 

Zys 

Z+ zo 

(2-7) 

(2-8) 
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27i 
zys 

The last term in equation (2-8), 1oR 
cos -z+ z° 

8P 

yields the contour line on the object's surface. The above contour term, by using 

equation (2-2), can be rewritten as: 

M, _ 
IoR 

Co 
2=ys sin wt (2-9) 

8 (z + zo)Po 

This equation represents an extended cosine wave with respect to time. Each 

peak of the output trace corresponds to an integer fringe number, n. These 

integer values of n occur at values of 6n at which the contour depth of the 

system is the nth fraction of z. This is defined in equation (2-10). 

nPo 
sin On = (z + zo) zys 

, 
depends solely on z and 

(2-10) 

The distance, z, from the grating to the object, can be found from equation (2-11). 

Z= 
zonPo (2-11) 

ys sin(a) - nPo 

It is clear that zo, yS, and Po are known values of the optical arrangement. To 

calculate z from the CCD camera's output, a suitable value of n is chosen 

and the value of 0 at which n occurs, is measured. 

2.3.2 Square Wave Intensity Grating 

For a Ronchi, or square wave intensity grating, the transmittance is shown in figure 

2.8 and the transmission function can be written as: 
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T(y) _1+2 
°° sin((2n + 1)ky) 

2 7c O 2n+1 

where k= 
2; r 

,P 
is the period of the grating, and n=0,1,2,3, ........ P 

T 
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0 

Figure 2.8 Transmittance of a Ronchi Grating 

Y 

From equation (2-4), the moire pattern of the Ronchi grating is written as a 

function of time: 

sin (2n + 1)y 
27r 

sin prat 
M(y, t) =I oR 

1+? Po 

2 7r 0 (2n + 1) 

sin (2n + 1)(y -z tan a) 
27r 

sin wt 1 
+? 

Po (2-13) 
2 ;r0 (2n + 1) 

(2-12) 
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Writing A= 
27ry 

sin cot and B= 
2; r (y -z tan a) sin wt , the above equation becomes Po Po 

M(y, t) = IoR 
1 

T(y, t)+ 
1 

T(y-ztana, t) 22 

1+4 sin(2n + 1)A sin(2n + 1)B 
+- 

4720 (2n + 1)2 

+4 sin(2L + 1)A ' sin(2n + 1)B 

'z L=o (2L + 1) 
�_o 

(2n + 1) 

where n#L in the last term. 

The moire difference contouring term in equation (2-14) can be written as 

4 sin[(2n + 1) A] sin[(2n + 1)B] 
_ 

7c 20 (2n + 1) 2 

2 cos(2n + 1)A 
(2n + 1) 2 7c 2 0 

o cos(2n + 1)(A + B) 

0 (2n+1)2 

(2-14) 

(2-15) 

where A= 
27r 

z tan a sin wt. Po 

The right hand side of equation (2-14) also contains the primary grating terms 

and the moire sum terms. If the unwanted terms are removed, the contour term can 

be written as: 

4IoR 
M'(y, t)= 2 71r 0 

co (2n + 1) 
2- 

z tan a sin cri 
Po 

(2n + 1)2 
(2-16) 
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Equation (2-16) is a triangular wave with respect to sinnt. The only unknown in 

equation (2-16) is the absolute distance, z. From equation (2-16), similar to the 

analysis of the sinusoidal grating, each peak of the trace corresponds to an integer 

fringe number, n. These integer values of n occur at values of 6n at which the 

contour depth Az of the system is the nth fraction of z. Therefore, similar 

expressions to equations (2-10) and (2-11) can be obtained. 

2.4 Signal Analysis 

2.4.1 The Features of the Signal 

From the above theoretical analysis, it is seen that for the square wave grating, 

the moire pattern expression, equation (2-13) 
, 

is complicated although in 

theory it is possible to "wash out" the unwanted terms. There are several methods of 

removing the unwanted higher frequency fringes from the output signal, but it is 

very difficult to realize in a real system. It has been verified by experimental work 

that the square wave grating with a period of less than 1.0mm, as described in a 

chapter five, can be treated in the same way as a sinusoidal grating by defocusing the 

image and using a low pass filter function. 

Compared with a square wave grating, the output signal for a sinusoidal grating, 

(equation (2-8)), is simple. For convenience replacing P, in equation (2-8), by 

Po/sinwt, results in equation (2-17). 

IoR 27zysinýrýt 
12y 

M(y, t) =41+ sin P+ sin 
0 

I 
co 

{27r2Y 
- 

2 

Po 

Z_ 
sin rat2,, z's 

sin wt z+zo 

J+1 
co z+zo 

- Po 2 Po 

ZYs 
sin ovt 

z+zo 

(2-17) 
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The whole signal contains four time-varying terms with different frequencies. For 

convenience, rewrite equation ( 2-17) as: 

M(y, t) = Ao + Ai + A2+ A3+ A4 

where 

Ao =I 
oR 
4 

A= 
IoR 

sin 
2; ry sin w 

4 Po 

A2 = 
IoR 

sin 

2; ry 

4 Po 

A3= -IoRcoI2(2y_ 8 Po 

2, zyS 
sin o)t 

Aa - 
IoR 

COS z+ zo 
8 Po 

(2-18) 

A1, A2, A3, and A4 have different frequencies with respect to time. Assuming 

that zo = 450mm, y8 =100mm, Po = 1mm, z= 3mm, y= 5mm and 0= cot varies 

from 0° to 90°, M(y, t), Al, A2, A3, and A4 are shown in figure 2.9. 

From figure 2.9 it can be seen that the contour term A4 has a slower variation 

with respect to time than the non-contour terms, Al, A2 and A3. This means that 

the moire contour frequency is lower than those of all non-contour terms. 

Therefore, it is possible to eliminate the unwanted non-contour terms from the 

signal by defocusing the image and using a low-pass filter. 

ZYs 
sin cat 

z+zo 

Zys )sina)t 

z+zo 
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Figure 2.9 Theoretical Curves of Output Signal From CCD Camera 

where zo = 450mm, ys = 100mm, Po = 1mm, z= 3mm and y= 5mm 

(a) Al, A2, A3 and A4, cot varying from 00 to 90° 

° (b) M(y, t) and A4, cot varying from 00 to 180. 

From figure 2.2, if a=4, equation (2-10) reduces to: 

sin ,_ 
nPo 

z 
(2-19) 
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and equation (2-9) becomes 

1oR 2= 
M' = co sin 8 

8 Po (2-20) 

To find z, it is necessary to assign a value of 0 to an easily recognizable and precise 

value of n. Integer values of n are easy to recognize particularly when 6=7/4. In 

practice, however, where 0 approaches n/2, it becomes more difficult. 

It is desirable to work in this region since preliminary calculations show that if any of the 

signal peaks lie there, it is possible to measure z accurately. Differences in po 
as 

small as 0.001 will give differences of about 3° in 0,,, under optimum conditions. 

Figure 2.10 shows plots of M' verses 0 for po 
= 1,1.001,1.01 and 1.1. 

When the output is a maximum, the values of 0 are 90°, 87.4°, 81.9° and 65.4° for 

z=1,1.001,1.01,1.1, 
respectively. Po 
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2 

a 
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Figure 2.10 Plots of Theoretical Output vs 0 for P-Z 
o=1,1.001,1.01, 

and 1.1 

Corresponding to 1,2,3, and 4 respectively 
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2.4.2 Sensitivity 

From equation (2-19), consider that the value of z is changed by Az, from z, to z2, then 

9i1 and 6,, 2 will change as follows: 

sin a12 = sin 01( 1- 
2 

(2-21) 
z 

and if 0., = 90) 

6ti2 = sin-' I1- a 
(2-22) 

z 

If a grating of period 500µm is used, and z has an initial value of 1254m (so that 

On=o. 25 is 900 ), then increasing the value of z by 0.1 µm would cause On=o. 25 to 

change to 87.7. This means that the technique is very sensitive if n is chosen such 

that 8n approaches 90 . 

2.5 Relationship between the Absolute Distance and the Parameters 

From equation (2-11), it can be seen that z, the absolute distance from the grating 

to the object is directly proportional to the fringe number, n, the period of the 

grating, Po, and the distance from the reference plane, (grating surface), to the 

camera, zo, and inversely proportional to the distance from the camera to the light 

source, y$, and the sinusoidal value of the rotation angle, sinOn. All of these 

relationships are shown in figure 2.11. Figure 2.11(a) shows the relationship of 

the calculated absolute distance, z, for different grating periods of 0.5mm, 1.0mm, 

and 1.5mm, when the fringe number is varied from 1 to 15. Figure 2.11(b) shows the 

relationship between z and the distance from the camera to the grating, when 

zo = 350mm, 450mm, and 550mm. Figure 2.11(c) shows the relationship between z 

and the distance from the camera to the light source, when yg = 50mm, 100mm, and 
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200mm. Figure 2.11(d) shows the relationship between z and the different rotation 

angles, when 0= 15°, 300,60°, and 90°. The relationships of the absolute distance, z, 

and rotation angle, 0, and y., are shown in figure 2.12, when 0 is continuously varied 

from a very small value to 90°, and ys is varied from a very small value to about 

200mm. 
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Figure 2.11 Relationship Between z and n for Different Po, zo, ys and 0 

(a) zo = 450mm, ye = 100mm, 0 = 30°, Po = 0.5mm, lmm, 1.5mm 

(b) ys = 100mm, Po = lmm, 0= 30°, zo = 350mm, 450mm, 550mm 

(c) zo = 450mm, Po = lmm, 0= 30°, ys = 50mm, 100mm, 200mm 

(d) zo = 450mm, Po = lmm, y, = 100mm, 0= 15 °, 30°, 60°, 90° 
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From figures 2.11 and 2.12, it was found that because of the relationships between 

z, the period of grating, the rotation angle, and other parameters, this technique can 

be used to measure the absolute distance with different ranges and accuracies by 

choosing different gratings, or rotation angles, or other parameters relating to the 

geometry of the system. The resolution and accuracy will be discussed in detail in 

chapter five. 
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N 

50 
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N 

100 

20 40 60 80 100 
rotating angle--0 

0ý 
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oý 0 50 

(a) 

(b) 

100 
Ys-mm 

150 200 

Figure 2.12 z Varies with (a) 0 and (b) y,. 

2.6 Proposed Method for Signal Processing 

From the analysis in sections 2.3 and 2.4, it was shown that for a given 

experimental arrangement and grating, if a suitable integer value, n, is chosen, and 

the number of the peaks measured from the output signal, and the value of On at 

which that peak value is measured, then the absolute distance, z, could be calculated 

by equation (2-11). In practice this is not so easy to do. 

From equation (2-9) and the typical time varying output shown in figure 2.6, it can 

be seen that the output signal is a cosine function with a varying frequency 
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determined by the sinusoidal value of the rotation angle. If the grating is rotated step 
by step, for a certain value of 0, the phase changes between each position of the 

grating can be obtained for each sample point. Then the total phase value obtained, 

when the grating is continuously rotated from zero to 0 degrees, is the sum of the 

individual phase changes. Therefore, the total fringe number, as well as the absolute 
distance, z, can be calculated by equation (2-11). 

The signal processing procedure is to first choose an angle, 0, and to then decide the 

number of steps, N, through which the grating should be rotated. Therefore, the angle 

rotated through each step will be: 

ee= e 
N 

(2-23) 

If a single image is captured at each step, a total of N+1 images will be recorded. 

For each sample point or pixel, there are N+1 data values which represents the 

intensity variation at each pixel as the grating is rotated. After the background signal 

is removed and the maximum and minimum values are found from the N+1 data 

points, the phases at each position for all N+1 steps, at the sample point (i, j), 

can be calculated by equation (2-24). 

ýººº(i, j) = cos-' 
8M' m(j, j) (2-24) 

I oR 

where m=1 to N+ 1. 

The absolute value of the phase varied from position m-1 to m is 

Oq6. m-i _l g6 - qº� _ ,l (2-25) 

and the total phase variation achieved when the grating is rotated N steps is. 
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N 

A(p = EAp? + 1,, (2-26) 
q-1 

The fringe number for sample point (i, j) is given by 

e n= ýp 
2p 

(2-27) 

where n may not necessarily be an integer value. 

The absolute distance, z, can be calculated by substituting the values of the 

fringe number, obtained from equation (2-27), into equation (2-11). The object height 

can be obtained by subtracting the absolute distance from the maximum absolute 
distance of the whole measured area. This was verified by experiment as a effective 

method. The details of the signal processing procedure and the design of the program 

used for signal processing are described in chapter five. 

2.7 Error Analysis 

There may be errors in results obtained by the method described in section 2.6. 

The errors may come from a number of sources such as errors in the parameters of 

the experimental arrangement, zo, y$, grating period, Po, rotation angle, 0, and the 

nonlinear response of the camera. 

From equation (2-11), if the camera's non-linearity is ignored, then Az, the error of 

the measured absolute distance, z, caused by errors, Azo, Ay., APo and 06,,, can be 

expressed as follows: 

nPo Dz = 
yssinA -nPo 

Azo - 
zonPo sin 9, 

Ay, + zon + zone Po 
APo 

(yssin6lß-nPo)2 

[yssin-nPo 

(y3sina-nPo)2 

zoysnPocosa Aa (ysSfla-nP0)2 
(2-28) 
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There are different relationships for absolute error, Az, and the errors of the four 

parameters. In order to analyse this error, equation (2-28) is rewritten in a relative 
form as follows: 

Az 1 sin6b 1n ysCos On - 
z zo 

Ozo - ys sin 0, - nPo 
Ay, +- Po+yssin 

OPo -yssinO, 
-nPo06ý, 

(2-29) 
ý, -nPo 

From this equation, it can be seen that except for the first term, caused by the error 

of zo, all terms are dependent upon the fringe number. To obtain practical values 

from each term, assume n=1.0, zo = 450mm, y8 = 100mm, Po = 1.0mm, and 6� = 30°. 

Thus, z, calculated from equation (2-11), is 9.1836mm. From this, equation (2-29) 

becomes 

Az = 0.0202Azo - 0.0937Ays + 9.3709APo -16.231100, (2-30) 

Therefore, a 0.1 mm error in the measurements of zo and ys, will result in errors of 

2µm and 9.4µm respectively for z. It is necessary to reduce the errors from zo, 

ye, Po, and 0n by appropriate calibration, in order to increase the accuracy of the 

measurement. What is of concern is the error caused by the measurement in the 

rotation angle. For the above values of zo, y8, and Po, the errors, Az, caused by a given 

error A0� = 0.01°, for a varying fringe number, n, and for fixed fringe number, n=1, 

with varying values of On, are shown in Figure 2.13. When the error in the rotation 

angle is fixed, (0.01° accuracy of rotation angle could be achieved by the stepper 

motor), the error in z is directly proportional to the fringe number and inversely 

proportional to the rotation angle. To achieve a minimum error from the rotation angle, 

for a given z, a small number of fringes or a large rotation angle should be chosen. 

However, from equation (2-11), when the rotation angle is large, the fringe number 

will also be large for a given z. Therefore, a suitable rotation angle should be chosen to 

ensure as high an accuracy as possible. 
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Figure 2.13 The Errors, Az, Caused by the Rotation Angle Error AO, =O. 01° 

(a) for varying fringe number (b) for different rotation angles On when n=1 

2.8 Summary 

In this chapter, the theoretical analysis of the absolute distance contouring method has 

been presented. The theoretical analysis has verified that the proposed method can be 

used for the measurement of absolute distance as well as object height. A method for 

signal processing is proposed. The formulae for the calculation of the absolute 

distance and the absolute and relative error have been obtained. If suitable 

parameters of geometry and rotation angle are chosen, the measurement of the absolute 

distance or the object height, are relatively accurate. 
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Chapter 3 

Theory of Four-Image Absolute Distance Contouring 
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3.1 Introduction 

The absolute distance and three-dimensional profile measurement method, proposed 

and analyzed in chapter two, requires many images for each measurement to ensure 

good resolution and accuracy. This means that more computer memory is needed and 

that the time required for signal processing is large. It is possible to reduce the number 

of images so that, like phase stepping in the fringe projection technique, only three or 

four images are required. A four-image absolute distance contouring method is 

proposed. It is based on the theoretical analysis given in chapter two. It is different 

from the technique of phase shifting used in the projection moire system in that the 

phase change for each step is not constant, but chosen at certain rotation angles. For 

each measurement, only four images are required. The maximum measurable range is 

determined by the geometry of the experimental arrangement, the period of the grating, 

and the chosen rotation angles. Compared with the method described in chapter two, it 

is fast and requires fewer computing resources. The mathematical analysis of the 

method and the relationships between the experimental parameters, grating period, 

rotation angles, and maximum measurable range, as well as errors caused by the 

uncertainty in rotation angles, are given in sections 3.2 to 3.4. 

3.2 Four-Image Absolute Distance Contouring 

From the analysis given in chapter two, it is known that for the sinusoidal grating 

used in the system shown in figure 2.2, the contour term can be written as: 

R lo 
co 

27r zyS 
sing 

8 Po (z + zo) 
(3-1) 

Therefore, if the grating is rotated to different positions, different moire patterns and 

different contour terms will result, which are related to the values of the rotation angles. 

If an image is captured at each of the grating positions, 61,02,03, and 04, the four 

contour terms obtained can be written as follows: 
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M'l _ 
Rlo 

co 
21r rys 

sin 9ý 
3.2 8 Po (z + zo) ) 

M'2 = 
R[o 

Co 
2/7 zy3 

sin 92 
8 Po (z + zo) (3-3) 

M'3 = 
Rlo 

Co 
27r 23vs 

sin03 8 Po (z + zo) (3-4) 

M'a = 
Rlo 

Co 
21r zyS 

sin ea (3-5) 8 Po (z + zo) 

For convenience, let A= sin 01. B= sin 02, C= sin 03, D= sin 04 and 

= 
27r zys (3-6) 
Po (z + zo) 

Then the relationship of the four contour terms can be written as: 

M'l - M'2 
M'3 - M'4 

sin 
A+B4) 

sin 
A- B(D 

cos(A(D) - cos(B(D) 22 
(3-7) cos(C(D) - cos(D(D) 

sin 
C+ D) 

sin 
C-D 

(D) 
22 

Assume that the sinusoidal values of the four different angles satisfying the following 

conditions: 

A+B= 2(C+D) (3-8) 

A-B=C-D (3-9) 

44 



Chapter 3 Theory of Four-Image Absolute Distance Contouring 

Then 

C= 4 (3A - B) (3-10) 

D= 
1 

(3B- A) (3-11) 4 

Substituting equations (3-10) and (3-11) into equation (3-7), results in equation (3-12). 

M''-M'2 
= 2co 

A+B 
M'3 - M'a 4 (3-12) 

0 can be determined as a function of the intensity of the four captured images as 
follows: 

M" 
=4 cos-' 0.5 * 

M'l -M=4 cos-1 (H) (3-13) 
A+B M13-M12 4 A+B 

where 

M'1-M'2 
H=0.5* 

M'3 - M'4 (3-14) 

After the value of 1 has been obtained, the absolute distance can be calculated 
from equation (3-6). 

zoPo(D zoPo cos-'(H) 
z= _ 27tys - Poc 0.57r(A + B)ys - Po cos-'(H) 

Ml - M'2 
zoPo cos-' 0.5 

M'3 - M'4 
M'l - M'z 0.57r(A + B)ys - cos-' 0.5 
M'3 - M'4 

(3-15) 
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If the absolute distance z, compared with z0, is very small, which is a valid agreement 
for most situations, the above equation can be simplified to: 

Pozo 
z= 

2irys 
2zoPo 

cos (H) 
irys(A + B) 

2zoPo 1 M'i - M'2 
= cos 0.5 

%Zys(A+B) M'3-M'4 
(3-16) 

In equation (3-15) or (3-16), Po, zo and ys are known values of the geometry and 

grating, the only unknown is the value of (D. To calculate z, it is required to choose 

appropriate values of A(01) and B(02), then decide the values of C(03) and D(04) 

using equations (3-10) and (3-11). If four images are captured at the given positions, 

then the absolute distance from the grating to the object, as well as the object's height, 

can be determined by using equation (3-15). 

3.3 Relationship of the Parameters 

From equations (3-13) and (3-14), it was found that H and t are periodic functions 

of z, and that the calculated absolute distance by using equation (3-15) is also a 

periodic function. The theoretical relationships, when 01 = 900,02 = 60°, zo = 450mm, 

y, = 100mm, Po = 1.0mm, and z varies from zero to 30mm, are shown in figures 3.1 (a), 

(b), and (c), which show the relationship of H, c and the calculated absolute distance 

with the simulated distance, z, respectively. Figure 3.1(d) shows the error between the 

calculated absolute distance and the simulated distance. 

From the above simulation, it can be seen that the calculated absolute distance is 

incorrect except for the first part, because it is a periodic function. Therefore, only the 

first part, where z varies from zero to its maximum value, z., can be used for 

practical measurements. The maximum value of the calculated absolute distance is 

determined by the maximum value of 1 in equation (3-13), which is given as: 
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Figure 3.1 The Relationship of H, 0, Calculated Absolute Distance and the Error 

Between the Calculated and Simulated z, when 61=90°, 02=60°, z0=450mm, 

y, =100mm, Po=1. Omm, and z is Varied From Zero to 30mm. 
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(D max = 
47r 

A+B (3-17) 

Therefore, the maximum value of the absolute distance, z., which is also the maximum 
measurable range of the method using equation (3-15), would be: 

2Pozo 
zmax--, z 

ys(A+B)-2Po 
(3-18) 

From the above analysis, it can seen that the four-image contouring method cannot be 

applied directly to the measurement of the absolute distance unless the maximum 

absolute distance is less than or equal to z.. This is because when cos 1(H) varies from 

zero to it, there is a linear relationship between the simulated distance, z, and the 

calculated distance. Figure 3.2 shows the simulation results of the calculated distance 

from 0 to z., aX and the errors in the range, for parameters of zo=450mm, y8 100mm, 
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Figure 3.2 The Calculated Absolute Distance from 0 to z. and the Error in the 

Range when zo=450mm, ys=100mm, Po=1. Omm, 01=45° and 02=30° 
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Po = 1.0mm, 01 = 450 and 02 = 30°. It can be seen that the simulated results are accurate 

since the error is in the order of 10"3µm. Therefore, this method can be used for 

distance measurement over a certain limited range. 
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Figure 3.3 The Relationship of the Maximum Measurable Range and Rotation Angle 

and ye (a) 61=45°, 62=30° and y8 from 5mm to 300mm (b) ye 100mm, 02=30° and 

81 from a small value to 90° 

The maximum measurable range, z, is directly proportional to the grating's period, 

Po, and the distance from the grating to the camera, zo. It is inversely proportional to the 

distance between the light source and the camera, ys, and the sum of the sinusoidal 

values of the rotation angles 01 and 02. Therefore, it is possible to adjust the measurable 

range by choosing appropriate values of Po, zo, y8 and 0. For a fixed experimental 

arrangement, it is easier to vary the rotation angles to adjust the maximum measurable 

range. For example, if Po = 1.0mm, zo = 450mm, y, = 100mm, 01 = 45° and 02 = 30°, 

then zR, is 7.581mm. If the angles are changed to 01 = 90° and 02 = 60°, z. is 
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decreased to 4.875mm. The relationship between the maximum measurable range and 
the rotation angles, and the distance between the camera and the light source, are given 
in figure 3.3, where diagram (a) is when 01 = 45° and 02 = 30°, whilst y, is varied 
from 5mm to 300mm, and diagram (b) is when ya = 100mm and 02 = 30°, whilst 01 is 

varied from a very small value to 90°. It can be concluded that for large distance 

measurements, small values of 01 and 02 should be chosen to guarantee that the 

maximum measurable range is greater than the required distance to be measured. 

3.4 Error Analysis 

Obviously, any errors in the measurement of the period of the grating, Po 
, the distance 

from the camera to the grating, zo, and the distance between the camera and the light 

source, ys, and the rotation angles, will cause an error in the measured absolute distance. 

For simplification, only the error of the absolute distance, which is caused by errors 

in the rotation angles, is analysed. Assuming that the errors of the four rotation angles 

are A01,062, A03, and A04 respectively, the error, Az, of the absolute distance 

measured from equation (3-15), can be expressed as follows: 

zoPo Oz - 
27tys - Po(D 

where 

+ zoPo2 A(I) 
(2, zys - Po(1)2 

2 sin((DA) AA e(D--Ccose' 1- A+B 
cos((DA) - cos((DB) 

2 uv 
(cos((DC) - cos((DD)) 1- 0.5 

cos((DC) - cos(CDD) 

(3-19) 
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- 
cos 82 

1+2 sin((DB) A02 
A+B 

cos((DA) - cos((DB) 2 
(cos((DC) - cos((DD)) 1- 0.5 

cos(d)C) - cos((DD) 

20(cos(? A) - cos((DB))(sin(OC) cos 83083 - sin((DD) cos 94A9a) 

(A + B)(cos(q)C) - cos((DD))2 
cos((DA) - cos((DB) 2 

1- 0.5 
cos((DC) - cos((DD) 
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Figure 3.4 The Relationship of the Measured Absolute Distance With and Without 

Errors of Rotation Angles when 01 is Varied From 20° to 90°, zo = 450mm, y, = 100mm, 

Po = 1.0mm, and 02 = 30°. (a) 1-the measured distance without rotation angle error; and 

2-the measured distance with error in the rotation angles, (b) errors of the measured 

distance, caused by the errors in the rotation angles (0.01 °) 

If it is assumed that the errors of the four angles are A01 = 002 = A03 = 00a = 0.010, 

and the experimental parameters are zo = 450mm, Po = 1. Omm, Y. = l00mm, z= 5mm, 

0, is varied from 20° to 90° when 02 = 18°, the simulated absolute distance and the 
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errors, Az, are shown in figure 3.4. Figure 3.4(a) shows the relationship of the 

calculated absolute distance and the value of 01, where diagram (1) is that without error 
in the rotation angles and diagram (2) is that with 0.010 error in every angle. Figure 

3.4(b) shows the difference caused by the errors in the four angles. It is clear that the 

error is small and related to the values of the angle 01 when the other three angles are 

constants. Therefore, an appropriate value of 01 should be chosen to reduce the 

measurement error. If 01 is fixed and 02 is varied over a certain range, the result will be 

similar to that described above. 
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Figure 3.5 Errors of the Measured Distance, Caused by Errors in Rotation Angles for 

Different Values of Distance, when zo = 450mm, ye = 100mm, Po = 1.0mm, 01 = 40°, 

02 = 300, Z is Varied from 1mm to 7mm. (a) the errors when four angles have the same 

error (0.01 °) (b) the errors when 01 has an error of 0.01 0 and the others are correct. 

For the same parameters given above, but assuming 91=40°, 02=30°, the errors of the 

four angles remain 0. O 1 °, and z is varied from 1 mm to 7mm, the simulated results are 

shown in figure 3.5. Diagram (a) shows the error of the measured absolute distance 
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when all four angles have the same error (0.01°), and diagram (b) shows the error 

when only one angle, 01, has an error and the others are correct. It was found from the 

results that the error in this case, depends upon the values of the distance. The errors are 
larger when z is small, or is close to the value of the maximum measurable range, (here 

z,,. = 8.106mm). The results also show that the errors are approximately of the same 

order when all four angles have the same errors or only one has an error and the others 

are correct. In order to obtain more accurate results, the mid-range should be chosen 
by selecting suitable geometric parameters or rotation angles, to achieve a certain 

maximum measurable range for a given range of distance to be measured. 

3.5 Summary 

The four-image absolute distance contouring method proposed is described in this 

chapter. The theoretical analysis of this method shows that it is possible to use this 

method for the measurement of absolute distance and object height. It requires fewer 

images than the method described in chapter two, and as a result, it is faster. The 

maximum measurable range is directly proportional to the distance between the grating 

and the camera, and the grating period. It is inversely proportional to the distance from 

the camera to the light source, and the sum of the sinusoidal values of the first two 

rotation angles, 01 and 02. It can be adjusted by choosing different parameters of the 

system and rotation angles to suit various ranges to be measured. The error in absolute 

distance caused by errors in the rotation angles is small, and depends on the values of 

the rotation angles themselves, and the actual distance to be measured. The simulation 

results have verified this analysis. If suitable parameters are chosen, accurate results of 

absolute distance and object height can be obtained. 
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Chapter 4 

Theory of Three-Image Absolute Distance Contouring 
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4.1 Introduction 

It is possible to use a three image system to measure absolute distance and object 
height similar to those methods described in chapters two and three. The theoretical 

analysis of the method is based on that described in chapter two. Only three images are 

required for each measurement, so that it is faster than the previous methods and 

computationally less intensive. Like the four-image method, the calculated distance is 

a periodic function and the maximum measurable range, which depends on the rotation 

angle and the parameters of the experimental geometry, is limited. The mathematical 

analysis for this method as well as the relationship between the maximum measurable 

range, the geometric parameters and the rotation angles, are given in sections 4.2 and 

4.3. An analysis of errors caused by errors in the rotation angles is depicted in the 

followed sections. The method is verified by the results of simulation, as a accurate and 

fast technique. 

4.2 Three-Image Absolute Distance Contouring 

The three-image absolute distance contouring method is based on the method 

previously described in chapter two, but different from that described in chapter three. 

For convenience, it is still assumed that the grating used in the absolute distance 

contouring system shown in figure 2.2, is a sinusoidal wave intensity grating. Therefore, 

the contour term can be rewritten as follows: 

me= 
Rlo 

co 
2z zyS 

sin 9' 
8 Po (z + zo) 

(4-1) 

When the grating is rotated to three different positions, three images with different 

intensity distributions are obtained, which depend upon the absolute distance and the 

rotation angles, as well as the experimental parameters of the system. The three 

corresponding contour terms are given by equations (4-2), (4-3), and (4-4) 

respectively. 
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Rio 27r Zs 
sin Moll =8 co 

Po (z + zo) 
e'i (4-2) 

M"2 = 
Rlo 

co 
21r zyS 

sin 9'2 (4-3) 
8 Po (z + zo) 

M"3 = 
Rlo 

Co 
27r zys 

sin 8'3 (4-4) 
8 Po (z + zo) 

Let A'=sinO'i , B'= sin8'2, C'= sin8'3 and 

(D' = 
21r zys (4-5) 
Po (z + zo) 

Using a similar analysis to the four-image method, then 

M"I- M"2 cos(A' (D') - cos(B' (D' ) 
M"2 -M"3 cos(B'(D') - cos(C'(D') 

sin 
(A'+B' 

W' sin 
A'-B' 

( 

=22 (4-6) 

sinB'+ 2 
C' B'- 

2 
co 

( V' sin 

If the sinusoidal values of the three angles satisfy the following conditions: 

A'+B'= 2(B'+C') (4-7) 

A'- B'= B'- C' (4-8) 

then 

A' = 5C (4-9) 
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and 

B'= 3C (4-10) 

Equation (4-11) results by substituting equations (4-9) and (4-10) into equation (4-6). 

M"1- MI12 
= 2cos(0.4A'(D') 4-11 M"2 - M"3 () 

For convenience, let 

Hl= 0.5* I- 
MI 12 

(4-12) 
M' ý2 _ MI'3 

From equations (4-11) and (4-12), t' can be determined as a function of H'. 

0.4Aý 
cos-' (H') (4-13) 

The absolute distance can be determined from equations (4-5) and (4-13) as follow: 

z 
zoPoc' 

_ 
zoPo cos-'(H') 

= 2 nys - Pow' 0.8irA' ys - Po cos-'(H') 

M""1 _ M""2 
zoPo cos-' 0.5 

M"2 _ M"3 
_ (4-14) 

0.87rA' yS - Po cos-' 0.5 
M"I- M"2 

M''2_M"3 

If zo » z, then equation (4-14) can be simplified to equation (4-15). 

_ 
zoPo (D'_ zoPo 

cos-' (H') - 
zoPo 

cos-' 0.5 
M"1- M"2 

(4-15) 
ZyS - o. 8; r. 4' y3 0.8M' y3 M"2-M ' 
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In equation (4-14) or (4-15), Po, zo, ya are known values of the experimental 

arrangement. If the value of A' (8'i) is chosen, then the values of B' (9'2) and C (63) 

can be determined by equations (4-9) and (4-10). Three images are captured at the 

positions determined by the values of the three rotation angles. The absolute distance, z, 

and the object's height, can be calculated from equation (4-14). 

4.3 Relationships of the Parameters and Rotation Angles 

From the analysis in the above section, it can be seen that H' and 1' are periodic 

functions, so that the calculated absolute distance from equation (4-14) would also be a 

periodic function. The relationship of H', V, the calculated absolute distance and the 

simulated value of z, are shown in figures 4.1(a) to 4.1(c), when zo = 450mm, 

ye = 100mm, Po = 1.0mm, 0'1 = 90°, and z is varied from zero to 30mm. Figure 4.1(d) 

shows the error between the simulated and the calculated absolute distance. 

The figures show that because H, 1' and the calculated distance are periodic 

functions of the simulated distance, z, similar to that discussed in four-image analysis, 

following the first half cycle the error between the calculated distance and the simulated 

distance is increased dramatically such that the results obtained by equation (4-14) 

would be incorrect from the second half cycle onwards. Therefore, this method can 

only be effectively used to measure a limited range of distance and object height. The 

maximum measurable range is the maximum value of the calculated absolute distance. 

This is called z' max , 
in order to distinguish it from the maximum measurable range 

obtained using the four-image method. The maximum value of the calculated absolute 

distance is achieved when the conditions imposed by equation (4-16) are satisfied. 

ý'=ý'max= 
2.57i 

A' 
(4-16) 
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Figure 4.1 The Relationship of H', (D', the Calculated Absolute Distance and the 

Simulated Distance, z, and the Error Between the Simulated and Calculated z. when 

z4 =4 50mm, y, = 100mm, Po = 1.0mm, 0't = 90° and Z is Varied from zero to 3 0mm. 
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The maximum value of the calculated absolute distance, z' mu , which is the maximum 
measurable range obtained from equation (4-14), is given by equation (4-17). 

Zmax - 
2.5zoPo 

2A'ys-2.5Po (4-17) 

From this analysis, it can be concluded that the three-image contouring method can be 

used to measure absolute distance values less than or equal to z' ., x. This is a limitation 

of the method, but when used within the maximum measurable range, it provides 

accurate results. When zo = 450mm, y8 = 100mm, Po = 1.0mm, and 0'1 = 90°, the 

simulated results of the calculated absolute distance, and the error between the 

simulated distance, z, and the calculated absolute distance, are shown in Figure 4.2. 
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x10" 2 

E1 

-1 0 123456 
(b) z-mm 

Figure 4.2 The Calculated Absolute Distance from 0 to z' max (here z' mm =5.696mm) 

and Error Between the Calculated and Simulated Distance, zo = 450mm, ys =l 00mm, 

Po=1. Omm and 8'1 =90°. 

From this diagram, it was found that the calculated absolute distance is very close to 

the value of the simulated absolute distance, the difference between them being less 

than 0.1 nm. This verified that the three-image absolute distance contouring method 

3456 
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can be applied for the measurement of absolute distance and object height, over some 
limited range, with good accuracy. 
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Figure 4.3 Variation of the Maximum Measurable Range, Whilst Varying y8 from 5mm 

to 300mm and 0'1 from 10° to 90°, where zo = 45 0mm and Po = 1.0mm (a) 8', = 90° 

(b) ys =I 00mm. 

The maximum measurable range, z' max , 
is related to the parameters of the experimental 

geometry and the rotation angle, 0'1. It is directly proportional to the distance 

from the camera to the grating, zo, and the period of the grating, Po. It is inversely 

proportional to the distance between the camera and the light source, y., and the 

sinusoidal value of the angle, 0'1 
. 

Therefore, it is possible to change the maximum 

measurable range by varying the values of the parameters of the system and the 

rotation angle, 0'1. In this case, it is easier to change the rotation angle than to vary 

any of the other parameters. Consider the ease, when so = 410mm, y, - I oomm, 

Po = 1.0mm, 9', = 90°, z',, " = 5.696mm. If 9'1 is changed to 30°, then z' max changes 

to 11.538mm. When zo=450mm and Po=1.0mm, figure 4.3 shows the maximum 

measurable range when the distance from the camera to the light source is varied 

from 5mm to 300mm when 0'1 =90°; and when y8 100mm when 0'1 is varied from 

40 
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10° to 90°. For a large distance to be measured, small values of y8 and 9', should be 

used to ensure the maximum measurable range is greater than the distance to be 

measured. 

4.4 Error Analysis 

Any errors in the measurement of the absolute distance obtained by the three-image 

method, depend on the errors of the parameters of the system geometry and the 

rotation angles. To simplify the mathematical analysis, only differences caused by errors 
in the rotation angles, will be discussed. If the errors in the three angles are 
At ? i, A042 , 

A013 respectively, then the error in the measured absolute distance, Az, can 
be expressed as: 

= 
zoPo zoPo2 (Do 

27rys - Po(D' + (27rys - Po(D') 2 

Cos Oll 
0(D' _- A' 

c' 1- 

(4-18) 

1.25 sin((D' A' ) 
ee'i 2 

(cos(' B') -cos(' C' )) 1- 
(0.5 cos(c'A') - cos( 'B') 

cos((D' B') - cos((D' C' ) 

1 I) c DON - a_tf%'rI cos('' A') - cos((D' B' )1 
Cos((DB )- COS( C) 

A O^ 
uv ý. 

cos(' A') - cos(' B) 2 
A' (cos((D' B') - cos((D' C' )) 1- 0.5 

cos(D' B') - cos((b' C' ) 

+ 
1.25(D' sin( ' C') cos 9'3(cos((' A') - cos((D' B' )) 

A003 4-19 2() 

cos((D' A') - cos(t' B' 
A' (cos((D' B') - cos(' Cl )) Z 1- 0.5 

I CO) cos(' B') - cos((D 

If the errors in the three rotation angles are e t? i =A 042 = At? 3=0.01', and the 

values of the parameters of the system are zo = 450mm, y, = 100mm, Po = 1.0mm, 

z=5.0mm, and the first angle, 0', is varied from 200 to 90°, then the simulated absolute 
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distance and the differences caused by the these angle errors, are shown in figure 4.4. 
Figure 4.4(a) shows the absolute distance obtained from equation (4-14), where (1) 

shows that without errors in the rotation angles, and (2) shows that when each angle 
has the same error of 0.01°. Figure 4.4(b) shows the differences caused by the errors 
in the three angles. This shows that the error in the measured absolute distance, is 

dependent on the value of angle 9'1. It can be seen that the error is large when 01, is 

greater than 60°, but is less than 3µm when 8'1 is in the range of 20° to 60°. 

Therefore, an appropriate value of 0', should be chosen to reduce the measurement 

error caused by the rotation angles. 
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Figure 4.4 The Measured Absolute Distance and Error Caused by the Rotation Angles 

when 9'1 is varied from 20° to 90°, zo= 450mm, y8 100mm, Po=1. Omm, z=5. Omm and 

0 B'I =0 9'z =A B'3 =0.01 °. (a) the measured absolute distance (1)without and (2)with 

errors. (b) the differences caused by errors in rotation angles 
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Using the parameters as above, but varying z from 1.0mm to 8.0mm, whilst 01, =400, 
the error in the measured absolute distance, caused by the rotation angle errors, are 

shown in figure 4.5. Diagram (a) shows the error when AB'1= At'2 = AO'3 = 0.010, the 

value of the error being dependent on the value of the measured distance. When the 

distance is less than 7.5mm, the error reduces to less than 10µm. When the measured 
distance is larger than 7.5mm and tends to the maximum measurable range, z' max , 

(here 

z' max = 8.924mm), the error becomes significant. Figure 4.5(b) shows the error when 

A01, = 0.01° but A642 = 08'3 = 0. In this case, the overall error is smaller than 5µm when 

the absolute distance is less than 7.5mm, but increases when the distance is greater 

than 7.5mm. Figure 4.5(c) shows the errors for the condition when A01i =09'3= 0 and 

002 = 0.010. In this case, the error is large when the distance is large or small. The 

error caused by 09'3= 0.01° but A61=A0'2= 0 is shown in figure 4.5(d). It is less 

than 10µm when the distance is less than 7.5mm, but increases when the distance is 

greater than this value. 

From the above analysis, it can be concluded that if there are errors in the rotation 

angles, there will be an error in the measured absolute distance. There are different 

relationships between the errors in the measured absolute distance and those in the 

rotation angles. The total error in the measured absolute distance depends on the values 

of 9'1 
, the errors in the three angles, and the values of the absolute distance itself. For 

a given distance to be measured, the error can be very small if a suitable value of 0'1 is 

chosen. The geometry of the system and measurement of its parameters must be 

carefully undertaken to minimise all other possible error sources. 
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Figure 4.5 The Errors in the Measured Absolute Distance, Caused by Errors in the 

Rotation Angles, when zo=450mm, y8 100mm, Po=1. Omm, z is Varied from 1.0mm to 
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4.5 Summary 

A new three-image absolute distance contouring system has been proposed. The analysis 
is based on that given in chapters two and three. However, it only requires three 

images for each measurement, therefore being less computationally intensive and 

offering a reduced signal processing time. The theoretical analysis has confirmed that 

the proposed method can be used for measurement of absolute distance and object 

height with good accuracy, provided that appropriate parameters and rotation angles 

are chosen. In the same way as the four-image contouring method, the maximum 

measurable range depends upon the parameters of the system and the rotation angle, 

0',. The simulation results have confirmed the above conclusions. 
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Chapter 5 

Experiments and Results of Absolute Distance Contouring 

67 



Chapter 5 Experiments and Results of Absolute Distance Contouring 

5.1 Introduction 

The proposed three absolute distance contouring methods described in chapters two, 

three, and four, have been shown by experiment to be accurate and fast contouring 

techniques. An accuracy of better than 10µm has been achieved. These methods could 

be used for the measurement of absolute distance and surface topography in many 

applications. This chapter describes the experiments carried out and the results 

obtained for each method. Firstly, the experimental system, used to verify each of the 

methods, is discussed in section 5.2. The instruments and test objects used in the system 

are outlined in section 5.2. In section 5.3, the details of the signal processing 

procedures for each method are given. The experiments, results, and discussions about 

the factors which affect the accuracy of the measurement, are described in section 5.4. 

Sections 5.5 and 5.6 outline the experiments and results of the four-image and 

three-image contouring methods. 

5.2 Experimental System 

Following the theoretical analysis of each of the contouring methods, it is necessary 

to verify the conclusions obtained, by experiment. Figure 5.1 shows a diagram of the 

absolute distance contouring system which was used in the experiments for each of 

the three different methods. 

In these experiments, the grating used is a sinusoidal wave intensity grating which is 

mounted on a bearing such that it can rotated about an axis normal to the plane of the 

rulings. The test object is located behind the grating and illuminated by a light source 

which need not be coherent. The distance from the grating to the object can be adjusted 

by the micrometer. The bearing is driven by a stepper motor which is controlled by a 

computer equipped with a VFG frame grabber. The images of the moire patterns, 

obtained when the grating is rotated to different positions, are captured by a CCD 

camera. The image data is sent to the computer for processing. The whole 

experimental process is controlled by specially designed software. 
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ý 

ward 

Figure 5.1 Absolute Distance Contouring System 

The instruments and components used in the experimental system are as follow: 

(1) Light Source -a white light source from AG Electro-Optics Ltd, model IL 410 

illumination system. 

(2) CCD Camera - Model CCIR monochrome CCD camera, COHU INC. 

(3) Computer - IBM PC 486DX2 66MHZ 16M RAM. 

(4) Frame Grabber - ITEX variable-scan frame grabber, model VFG 1.0, Imaging 

Technology Inc.. 

(5) Stepper Motor - four-phase 7.5° stepper motor, RS Components. 

(6) Stepper Motor Control Board - Programmable Single Axis Stepping Motor 

Controller with On-Board Motor Driver, RS Components, step rate variable between 

48 - 3072 steps per revolution. 
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(7) Sinusoidal wave intensity gratings - Manufactured using a photographic 

enlargement process. The high quality commercially available square wave intensity 

grating, with a small period, is used as a master and its image is enlarged. The 
holographic plate, (Holotest plates - 8F75HD, Laza Holograms Limited), is placed in 

the image plane. By varying the distance between the master and the image plane, 
different periods of grating can be obtained. If the image of the square wave grating is 

appropriately defocused, gratings with an approximate sinusoidal intensity distribution 

can be obtained. The periods of the sinusoidal gratings used in these experiments, 

ranged from 0.5mm to 1.36mm. 

(8) Test objects - The objects used in the experiments are made of wax or metal. The 

surface is painted matt white in order to increase the reflectivity and reduce the noise. 

The objects' shapes are concave, convex, concave-convex, groove, and other profiles. 

The concave objects have different dimensions, with heights ranging from 1.858mm to 

7.600mm. The convex objects' heights are in the range of 1.470mm to 3.017mm. 

5.3 Experimental Procedure and Signal Processing 

The experiments for each of the contouring methods are carried out using the system 

shown in figure 5.1. All the captured images are in a 64x64 pixel format. The 

programs used to control the experiment and signal processing are written in 

Microsoft C version 6.0. The signal from the CCD camera is digitized and stored in 

the frame memory for processing. There are different procedures and signal processing 

methods for each of the contouring systems. 

5.3.1 Absolute Distance Contouring 

For the absolute distance contouring method described in chapter two, the measured 

distance and accuracy depend on the parameters of the experimental system and the 

rotation angle. For a given distance or object height to be measured, the appropriate 

parameters and rotation angles should be selected to ensure the highest accuracy. The 

experimental procedure for this method firstly requires a choice in the parameters of 

the system geometry, such as the distance from the grating to the object , zo, the 
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distance between the light source and the camera, y,, and the grating's period, Po. It is 

then required to determine the value of the rotation angle, On, and the required steps 

through which the grating will be rotated from zero to On, or the number of required 
images to be captured through the grating's rotation. If the grating is rotated from zero 

to On in N steps, the number of the images will be N+1. After these parameters are 

entered into the computer, the first image is captured when 0=0, and the image data is 

read to an array in the computer's memory. The grating is rotated step by step by an 

interval of OJN. Following each step, another image is captured and the data is read to 

memory. In these experiments, the grating was rotated from zero to On in 20 steps, 

acquiring a total of 21 images for each measurement. The rotation angles, On, used are 

15°, 30°, 600, and 90°, giving a rotation angle interval of each step of 0.750,1.50,3.0°, 

and 4.5° respectively, for each of the four different rotation angles. 

After 21 images are captured, the values of the image intensity at pixel (i, j) for all 21 

images, are read to an array having 21 elements. If the maximum and minimum values 

in the array are MM(i, j) and M; t, (i, j), then the background signal can be removed 

and the phase value for these 21 positions at pixel (i, j) can be calculated from 

equation (5-1). 

M 
max(l, 

A+M 
min(l, 

A 

). (i, j) = arcco 1%Imax(l, j) - Mmin(l, %) 
ý5-1) 

2 

where m=0 to 20, and i, j vary from 1 to 64. 

The absolute value of the phase change from position m to m+1 is 

eqºn + 1, m(i, j) -1 qý" + 1(1,. x) q, º(i, j)I (5-2) 

The total phase variation seen at pixel (i, j) when the grating is rotated from zero to 6� is 

the sum of the 20 phase differences: 
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20 

A(p(l, j) _ eP + 1, m(1, A) (5-3 o 

Therefore, the fringe number for pixel (i, j) can be obtained from equation (5-4). 

n(j, J) = 
Aý(I, J) 

2r (5-4) 

In this case, n(i, j) may not necessarily be an integer value. The absolute distance can 

now be obtained by substituting the values of zo, y8, Po, 9n and n(i, j) into equation 
(2-11). If the maximum distance is found, then the object's height can be achieved by 

subtracting the value of the distance from the value of the maximum distance. Figure 

5.2 shows a flow diagram of the whole experimental procedure. 

Note that the value of n(i, j) must be greater than or at least equal to 0.5. This is because 

the phase at each position is calculated by equation (5-1), where the maximum and 

minimum values are the maximum and minimum values of the cosine function. 

Therefore, if n(i, j)<O. 5, the minimum value is not the actual minimum value of the cosine 
function, and this would lead to incorrect results. 

5.3.2 Four-Image Absolute Distance Contouring 

The experimental procedure for four-image contouring method is relatively simple 

compared with that described in section 5.3.1. Using this method, only four images are 

required for each measurement so that the grating is only rotated to four different 

positions rather than 21 as above. It requires less memory to store the image data and 
less time to process the signal. 

The procedure is similar to that for the absolute distance contouring method. Firstly, 

the parameters, zo, y8, and Po, are determined according to the maximum distance to be 

measured. The maximum measurable distance, z.. , 
for the given parameters must be 

larger than the distance to be measured. Therefore, the appropriate rotation angles, 91 
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and 02, should be chosen to ensure the above condition. After 01 and 02 have been 

chosen, the values of 03 and 04 are obtained from equations (3-10) and (3-11). Four 
images are captured at each of the four different grating positions. 

Start 

Select zo, y8, Po 

Determine the rotation angle and number of steps 

I Initialise the VFG and set arrays for the data 

Capture the image at 0=0 read the data to the array 

The grating is rotated one step and one image is captured 
the image data is read to the array 

m> 20? 

Yes 

The image data at pixel (ij) from 21 images are read to the array 

Find the max and min values and remove the background signal 

Calculate the phase changes from 0=0 to selected angle I 

i>60&j>60 

Yes 

Calculate z(x, y) and the object's height 

Save the results to data files and display 
the absolute distance or object height 

End 

Figure 5.2 Flow Diagram of the Experimental Procedure 

for the Absolute Distance Contouring Method 
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Start 

Select zo, y8, Po 

Determine the four rotation angles 

Initialise the VFG and set arrays for the data 

Grating is rotated to four different positions 
and one image is captured at each position 

Read image data to the arrays 

Calculate the value of 4 by using 
the image data 

Calculate absolute distance and object height 

Save the results to data files and display 
the absolute distance or object height 

nd CE ] :) 

Figure 5.3 Flow Diagram of the Experimental Procedure for the 

Four-Image Absolute Distance Contouring Method 

The value of t can be calculated by using the data from the four captured images, 

and by using equation (3-13). Note that if it is assumed that each image has the same 

background signal, this will be removed when the data from the four images is 

substituted into equation (3-13). The absolute distance can be obtained by substituting 

the values of (D into equation (3-15). The object's height can be achieved using the 

same method as that described in 5.3.1, where the object height is equal to the 

difference between the maximum absolute distance and the actual absolute distance. 

The whole experimental procedure is shown in figure 5.3. 
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5.3.3 Three-Image Absolute Distance Contouring 

The experimental procedure for the three-image contouring method is similar to that 

for the four-image contouring method. The advantage that the three-image system 

offers, is that it is only required to choose the value of the rotation angle, 0'1, after the 

other parameters of the experimental system have been determined. The other two 

angles, 0'2 and 9'3 
, are determined by equations (4-9) and (4-10). In a similar fashion 

to the four-image method, the maximum measurable range, z' max , 
determined by 

equation (4-17), is to be considered when determining the parameters of the system 

and the rotation angle for a given accuracy and distance to be measured. After the data 

from each of the three images has been captured, the value of C' is calculated from 

equation (4-13). By substituting the values of the parameters, rotation angle and c', 

the absolute distance can be obtained from equation (4-14). The object's height also can 

be calculated in the same way as that used for the four-image method. 

5.4 Experiments and Results of Absolute Distance Contouring 

The experiments carried out for the absolute distance contouring method are based on 

the experimental system and procedures described in sections 5.2 and 5.3. AC 

program was designed to control the system and handle signal processing routines. 

5.4.1 Experiments of Absolute Distance Contouring 

In these experiments, the distance, zo, from the grating to the camera, is set at 320mm, 

370mm, 420mm and 470mm. The distance, y8, between the camera and light source, is 

100mm. Both sinusoidal and square wave intensity gratings are used in the experiments. 

The periods of the gratings, Po, measured using a co-ordinate measuring machine, ( SIP 

MU-214B, Switzerland), are: 

sinusoidal wave intensity grating - 0.763mm, 0.985mm, 1.360mm and 1.80mm; 

square wave intensity gratings - 0.508mm, 0.980mm, 1.386mm and 1.800mm. 
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The rotation angles, On, used are 15°, 30°, 600 and 90°. The measured dimensions and 

areas of the objects, for different values of zo, are shown in figure 5.4 and table 5.1. 

A 

B 

Figure 5.4 The Measured Area 

Table 5.1 The Measured Dimensions and Areas 

Zo(mm) A(mm) B(mm) S=AxB(mm2) 

320 24 20 480 

370 30 25 750 

420 36 30 1080 

470 42 36 1512 

The objects used for this method are prepared as that described in section 5.2. The 

maximum heights of the objects, as measured by the contact gauge (Three-Axis 

Measuring Machine, SIP 414M, Switzerland), are listed in table 5.2. 

Table 5.2 Object Shape and Maximum Height as Measured by Contact Gauge 

Object Shape Maximum Heights (mm) 

Convexl 1.470 

Convex2 3.017 

Concavel 1.858 

Concave2 3.102 

Concave3 3.417 

Concave4 5.210 

Concave5 7.600 

Groove 2.661 

Concave&Convex 1.421/1.690 
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All images are defocused (this is explained in section 5.4.3(i)) and in a 64x64 pixel 
format. However, only a 60x60 pixels image is used in the signal processing. In all of 
the experiments, 21 images are used for each measurement. In these experiments, the 

measured distance or the object height is displayed on the screen and saved in data 

files. The data is condensed into 30x30 and 15x15 arrays for convenience. 

5.4.2 Experimental Results 

Figure 5.5 shows the focused and defocused images of the object called concave3, 

when the grating is at a position of 15°. Figure 5.6 shows the measured results for this 

object when z° = 420mm, y8 = 100mm, P° = 0.763 mm and 0t, = 30°. In figure 5.6, (a) 

is a 3-D plot of the measured absolute distance from the grating to the object's surface 

for the measured area; (b) is a 3-D plot of the object's height, whilst (c) and (d) are the 

side views of the 3-D plots when the data is in a 30x30 and 60x60 pixel format 

respectively. Figure 5.7 shows the three-dimensional plots from the measured results, 

of the other tested objects listed in table 5.2, when zo = 420mm, y, = 100mm, 

P° = 0.763mm and 0,, = 30°. The data is in a 30x30 pixel format. In figure 5.7, from (a) 

to (h), the objects are convexl, convex2, concavel, concave2, concave4, concave5, 

groove and concave&convex, respectively. 

The maximum heights of the objects, measured by the contouring method, are listed in 

table 5.3. The heights measured by the contact method are shown for comparison 

purposes. 

From the results given in table 5.3, it can be seen that the contouring method is 

accurate, the difference being typically less than 10µm. Each measurement takes 

approximately 16 seconds. 

The results obtained using different parameters of the system and different rotation 

angles are similar to that described above, but there are some differences when different 

parameters and rotation angles are used in the experiments. This will be discussed in 

section 5.4.3. 
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(a) focused 

(b) defocused 

Figure 5.5 The Images of Object Concave3 when the Grating is at 15° 
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Table 5.3 Comparison of the Maximum Heights of the Objects 
Measured by Two Different Methods 

shape of objects height(mm) 
(contact method) 

height(mm) 
(contour method) 

Difference 
(mm) 

convex l 1.470 1.461 +0.009 

convex2 3.017 3.010 +0.007 

concave l 1.858 1.865 -0.007 
concave2 3.102 3.101 +0.001 

concave3 3.417 3.421 -0.004 
concave4 5.210 5.206 +0.004 

concaves 7.600 7.578 +0.002 

groove 2.661 2.668 -0.007 
concave&convex 1.421/1.690 1.412/1.698 0.000/-0.008 

5.4.3 Discussions 

The experimental results for the different parameters of the system and the rotation 

angles, as mentioned above, are similar for all objects used in these experiments. 
However, there are a few factors which could affect the resolution and the accuracy of 

the measurement, which are discussed below. 

(i) period and profile of the grating 

From the theoretical analysis of the absolute distance contouring method, it is known 

that the data of the captured image contains a dc and high frequency components, as 

well as the required terms. The dc component can be easily removed from the signal as 

described in section 5.3.1, but the high frequency components will affect the results. 

Therefore, they should be removed as much as possible. The technique used to 

minimise the high frequency terms is to defocus the image before it is captured, and 

low-pass filter it after the image is stored in the VFG memory. Figure 5.5 shows two 

typical images of focused and defocused samples. 
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From equation (2-8), for the sinusoidal grating, there are three terms which are 
unwanted, with frequencies higher than that of the contour term. The unwanted terms 
could be removed using the method just described. For a sinusoidal grating, if the period 
of the grating is not too large, say less than 1.5mm, it is effective for minimizing the high 
frequency terms in this experiment. It is not easy to achieve when the period of the 

grating is larger than about 1.5mm. Test results have confirmed this conclusion, when a 
grating with a period of 1.8mm was used 

However, for the square wave grating, it is difficult to remove the unwanted terms from 

the whole signal. It can be seen, from equation (2-14), that the signal contains an 
infinite number of terms. Experience shows that, if the period of the square wave 

grating is small, say less than 1.0mm, it could be treated as a sinusoidal grating. The 

unwanted terms can be removed in the same way as that used for the sinusoidal grating. 
For square wave gratings with periods of 1.386mm and 1.800mm, the unwanted terms 

are difficult to remove. Although theoretically, if a square or circular aperture of certain 
dimensions is used with the square wave grating, the visibility of the primary fringes 

would be zero for certain values of 0 and the unwanted modulation is zero, but it is not 

easy to achieve. 

The period of the grating also has an effect on the resolution and accuracy of the 

measurement, which is related to the analysis of the minimum absolute distance given 

above. From equation (2-11), it can be seen that for a given absolute distance, 

geometrical parameters, and rotation angles, the fringe number is inversely proportional 

to the grating's period. For a given fringe number, the absolute distance is directly 

proportional to the grating's period. Table 5.4 lists the measured absolute distance 

values when different grating periods and values of zo are used, where ys=100mm, 

0� = 15°, and fringe number n=1. 

The fringe number for different absolute distance and grating periods when 0n =3 0°, 

zo = 420mm and ys =l 00mm is given in table 5.5. 
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Table 5.4 The Measured Absolute Distance with Different zo and Po (unit-mm) 

Zo/Po 0.508 0.763 0.985 1.360 
320 6.407 9.720 12.660 17.747 
370 7.407 11.239 14.638 20.520 
420 8.400 12.758 16.616 23.293 

470 9.400 14.277 18.595 26.066 

Table 5.5 The fringe number for different z and Po (unit-mm) 

Z/Po 0.508 0.763 0.985 1.360 

2.0 0.4665 0.3106 0.2458 0.1742 

4.0 0.9285 0.6182 0.4789 0.3468 

6.0 1.3863 0.9229 0.7149 0.5178 

8.0 1.8397 1.2249 0.9488 0.6782 

10.0 2.8890 1.5239 1.1805 0.8550 

20.0 4.4738 2.9786 2.3073 1.6711 

(ii) rotation angles 

The measured absolute distance is inversely proportional to the rotation angle, On, as 

analyzed in chapter two. For a given absolute distance and system parameters, the 

fringe number is directly proportional to the sinusoidal value of the rotation angle. When 

zo=420mm, yS=100mm, and fringe number, n=1, the measured absolute distance for 

different grating periods and rotation angles are listed in table 5.6. As described in 

section 5.3.1, the parameters and rotation angles should be carefully chosen for a given 

absolute distance to ensure that the fringe number, n(ij), is greater than 0.5 in order to 

obtain correct results. If zo=420mm, ys 100mm and n=0.5, the minimum absolute 

distance, which can be measured, is the half of those values listed in table 5.6. 
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Table 5.6 The Measured Absolute Distance with Different 6� and Po (unit-mm) 

9�/P0 0.508 0.763 0.985 1.360 
15° 8.400 12.758 16.616 23.293 
30° 4.311 6.508 8.440 11.743 
60° 2.478 3.733 4.830 6.699 

90° 2.142 3.229 4.178 5.792 

(iii) the number of images 

The total phase variation for pixel (i, j) is the sum of the individual phase differences 

obtained between steps, when the grating is rotated from zero to the selected rotation 

angle, O. The accuracy of the complete measurement depends upon the accuracy 

obtained at each step. The phase difference between steps is determined by the 

parameters of the system, rotation angle and the absolute distance to be measured. Table 

5.7 shows the fringe number, n, total phase variation, A p, and average phase change at 

each step, A (p,, when zo = 420mm, ys = 100mm, Po = 1.0mm, z= 10mm and the image 

number is 21 for different rotation angles. If the phase difference between steps is too 

large, errors will result. For example, it may miss the maximum or minimum value of 

the cosine function. For this reason, the image number should be as large as possible. 

However, when the number of images is large, more computer memory is required to 

store the image data, and more time is needed for processing. The average phase change 

at each step, when the image number is 21, gives that zo = 420mm, ys = 100mm, 

0� = 30°, for different gratings and absolute distance values, is listed in table 5.8. 

Table 5.7 Fringe Number, Total Variation and Average Phase Change for Each Step 

en Tl 0(P O(Pm 

15° 0.6019 216.68° 10.83° 

30° 1.1628 418.60° 20.93° 

60° 2.0140 725.04° 3 6.2 5° 

90° 2.3256 837.21 ° 41.86° 
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Table 5.8 The Average Phase Change for Different Po and z (unit-mm) 

Z/Po 0.508 0.763 0.985 1.360 
2.0 

4.0 

8.400 

16.71 ° 

5.590 

11.13° 

4.42° 

8.62° 

3.14° 

6.21° 

6.0 

8.0 

24.59° 

33.11° 

16.61° 

22.05° 

12.83° 

17.08° 

9.32° 

12.37" 

10.0 52.00° 27.430 21.25° 15.39° 

20.0 80.53° 53.61° 41.53° 30.08° 

(iv) accuracy 

It is known that the error of the measured absolute distance can be caused by 

inaccuracies in the parameters of the system and the rotation angle, as analyzed in 

chapter two. From these experiments, it was also found that, an imperfect grating and 

the remaining unwanted terms in the signal can also cause errors in the measured 

distance. All of these facts will affect the accuracy of the overall results. 

In these experiments, the accuracy of the measured distance or the object height is 

better than 10µm, when compared with measurement made by the contact method. The 

maximum height of the objects, measured by the absolute distance contouring method 

and contact method, are listed in table 5.3. The height distribution along one central line 

of object concave3 and their difference measured by two methods are shown in figure 

5.8. 

From the above discussions, it can be concluded that the technique of absolute distance 

contouring, is an accurate method of measurement. To ensure the greatest accuracy, 

appropriate parameters of the system, rotation angle and image number should be 

chosen. For a given absolute distance and system parameters, a small rotation angle 

can reduce the fringe number and a large image number can reduce the average phase 

change between steps, such that the error of the measurement can be minimised. 
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Figure 5.8 The Height Distribution Along One Central Line of Object Concave3 

Measured by Two Methods and Their Difference (a) the height distributions obtained 

by contact method(+) and absolute distance contouring method (b) difference between 

contact and contour method 

5.5 Experiments and Results of the Four-Image Contouring Method 

In the experiments of the four-image contouring method, the grating used is a sinusoidal 

grating, its period being 0.763mm. The objects used in the experiments are concavel, 

concave3, convexl and convex2. The distance from the grating to the camera, zo, is 

450mm and the distance between the camera and the light source, ys, is 100mm. The 

four captured images are defocused and in a 64x64 pixel format. A 60x60 pixel format 

is used in the signal processing. The rotation angles used are 01= 90°, 60°, 45" and 3 0°, 

02= 60°, 45°, 30° and 20° respectively. Angles 03 and 04 are determined by equations 
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(3-10) and (3-11), and the corresponding maximum measurable ranges calculated by 

equation (3-18), are listed in table 5.9. 

Table 5.9 Rotation Angles and Measurable Ranges of the Four-Image Method 

01 02 03 0d zmax(mm) 

90.00° 60.00° 32.24° 23.55° 3.710 

60.00° 45.00° 28.21 ° 18.29° 4.408 

45.00° 30.00° 23.91° 11.43° 5.762 

30.00° 20.00° 16.83° 7.56° 8.306 

(a) 

(c) 

(b) 

(d) 

Figure 5.9 Images from Four-Image Absolute Distance Contouring 

when the grating is at (a) 90°, (b) 60°, (c) 32.24°, and (d) 23.55° 
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Figure 5.9 shows the four images captured when the grating is rotated to four different 

positions, determined by the values of the four rotation angles, where 6, =90°, 02=60°, 

03=32.24° and 04=23.55°. The maximum heights of four objects measured by this 

method are concavel - 1.858mm, concave3 - 3.417mm, convexl - 1.472mm and 

convex2 - 3.019mm. The height distributions along one central line of object convex2, 

measured using the contact method(+) and four-image contouring method are shown 

in figure 5.10(a). Figure 5.10(b) shows the height difference between them. The results 

show that the difference between the height distributions and the maximum heights of 

the objects, obtained by the contact method and the four-image method, are within 

10 µm of each other. 
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Figure 5.10 Height Distribution Along One Central Line of Object Convex2 

(a) measured by contact method(+) and four-image methods 

(b) the difference between the two methods 
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5.6 Experiments and Results of the Three-Image Contouring Method 

The parameters of the experimental system for the three-image contouring method are 

set as, zo=450mm, yg 100mm, Po=0.763mm. The objects used are concave], 

concave3, concave4, convexl and convex2. The rotation angles are set to 6', =90°, 600, 

450,300 and 200. The rotation angles, 9'2 and B'3 
, as determined by equations (4-9) and 

(4-10). The maximum measurable ranges, z' m. , obtained from equation (4-17) for 

different values of 0'1 
, are listed in table 5.10. 

Table 5.10 Rotation Angles and Measurable Ranges of the Three-Image Method 

09 1 012 093 Z1 max (mm) 

90.00° 36.87° 11.54° 4.333 

60.00° 31.31 ° 9.97° 5.011 

45.00° 25.10° 8.13° 6.153 

30.00° 17.46° 5.74° 8.751 

20.00° 11.84° 3.92° 12.909 

Figure 5.11 shows three images of object concave3 when the grating has been rotated 

to 0'1 =45°, 012=2 5.10' and 0'3 =8.13° respectively. The height distribution along one 

central line of object concave3, measured by the contact method and the three-image 

contouring method, and their differences, are shown in figure 5.12. The maximum 

heights of the objects used in this experiment are concavel=1.862mm, 

concave3=3.421mm, concave4=5.215mm, convexl=1.469mm and convex2=3.019mm. 

Each measurement takes about three seconds. 
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(a) 

(b) 

(c) 

Figure 5.11 Images from Three-Image Absolute Contouring 

when the grating is at (a) 45.00° (b) 25.10° (c) 8.13° 
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Figure 5.12 The Height Distribution Along One Central Line of Object Concave3, 

Measured by Contact(+) and Three-Image Methods and Their Difference 

5.7 Summary 

The experimental results of the three absolute distance contouring methods, as well as 

the factors which affect their accuracy, have been described in this chapter. All 

experiments were carried out using the same basic experimental system. The whole 

process is automated and controlled by specially designed software. Each method 

requires a different number of images for each measurement, resulting in a significant 

difference in the time needed for capturing images, data processing and computer 

storage. The absolute distance contouring method requires more images and takes 

significantly longer to process results than the four-image and three-image methods, but 

there is no maximum measurable limit. The period and profile of the grating and the 

rotation angles have an effect on the accuracy of the measurements obtained using each 

of the methods. The results from the three contouring methods show that the 
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difference between the maximum heights or height distributions along a central line of 

the object, obtained by the contact method and each of the three contouring methods, is 

less than 10µm. It can be concluded that these three new contouring methods are 

accurate and fast, and can be used for non-contact topographic measurement of 

engineering components in many applications. 
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6.1 Introduction 

The three different absolute distance contouring methods, as analysed in chapters two 

to four and reported in chapter five, are all based on the shadow moire technique and the 

rotation of the grating. The three different absolute distance contouring methods have 

different features and individual requirements. This chapter will analyse and compare the 

contouring methods in terms of the relationships between the absolute distance and the 

parameters of the system, the rotation angles, maximum measurable ranges and the 

factors which affect the accuracy of each measurement. 

6.2 Comparison Between the Three Absolute Distance Contouring 

Methods 

Three absolute distance contouring methods are all based on the rotation of the grating 

such that its equivalent period is varied as a function of the rotation angle. Different 

relationships exist between the absolute distance, the parameters of the system, and 

rotation angles, resulting in different measurable ranges, for each method. Each is 

analysed and compared in terms of their common features and major differences. 

6.2.1 Relationship between the Absolute Distance and the Parameters 

of the System 

From the theoretical analysis of each of the contouring methods, three equations 

describe the relationship between the absolute distance to be measured and the distance 

from the grating to the camera, zo, the distance between the light source and the 

camera, ys, and the grating's period, Po. They are expressed by equations (2-11), (3-15), 

and (4-14) respectively. The distance measured by each of the contouring methods, is 

directly proportional to zo and Po, and inversely proportional to ys. 

However, the distance measured using the absolute distance contouring method also 
depends on the fringe number, which represents the total phase variation at the given 

measuring point when the grating is rotated through the rotation angle, On. For the 
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four-image and three-image methods, the measured distance depends on the values of 

and I' respectively. The equivalent fringe number given in equations (3-15) and 
(4-14) for each of these methods are I /2it and V/27t respectively. The measured 
distance for specified parameters of zo, yg and Po, is directly proportional to the fringe 

number, (or equivalent fringe number), for all three methods. However, the fringe 

number for a specified distance, as measured by the absolute distance contouring 

method, is directly proportional to sin6,,, and the equivalent fringe number for the 

four-image and three-image methods are fixed values for a given absolute distance. 

6.2.2 Rotation Angles 

The three different contouring methods all depend upon the rotation of the grating to 

vary the phase distribution of the images. However, the relationships between the 

measured absolute distance and the rotation angles in each case, are different 

Using absolute distance contouring method, only one rotation angle is required to be 

chosen and the angle to be rotated in each step is decided by this chosen angle, On, and 

the number of the images required for each measurement. It does not matter whether 

the angles rotated at each step are equal or not. In the four-image method, there are 

two angles to be chosen, the other two angles are determined by equations (3-10) and 

(3-11). There is only one angle to be chosen for the three-image method, the other two 

angles being determined by equations (4-9) and (4-10). This means that for the four- 

image and three-image methods, the grating must respectively be rotated to four and 

three exact positions. In the absolute distance contouring method, the only requirement 

is that the grating is rotated to the chosen angle exactly through N steps. 

6.2.3 Measurable Ranges 

The measurable ranges of each of the three different contouring methods are related to 

the optical arrangement of the system and the rotation angles. Theoretically, there is no 

measurable range limit for the absolute distance contouring method. This is because for 
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the given parameters, zo, ys, and Po, the measured distance is directly proportional to the 
fringe number and inversely proportional to sinO,. Therefore, for a given distance to be 

measured, if the image number is large, a large rotation angle can be used. This will 

result in a large fringe number and corresponding small phase difference between steps, 
tending to limit the overall measurement error. If the number of images is limited, a 

small rotation angle should be chosen to limit the fringe number, the total phase 

variation, and the phase difference between steps. In this way, any errors caused by 

missing the maximum or minimum values of the consine function, as analysed in section 
5.4.3, can be avoided. It should also be noted that the fringe number must be equal to 

or greater than 0.5. 

There are measurable range limits for each of the four-image and three-image 

contouring methods. This is due to the relationship between the calculated absolute 
distance, the parameters of the experimental system, and the rotation angle(s) 

expressed by equations (3-15) and (4-14). As seen in the simulated results, the 

measured distance is a periodic function of the simulated absolute distance. As 

expressed in equations (3-18) and (4-17), the maximum measurable ranges are the 

values of the calculated absolute distance when I is at its maximum value given by 

equation (3-17) for the four-image method, and 1' is at its maximum value given by 

equation (4-16) for the three-image method, respectively. The maximum measurable 

ranges for both methods are directly proportional to zo and Po, and inversely 

proportional to ys. The maximum measurable range is inversely proportional to the sum 

of the sinusoidal values of the first two rotation angles for the four-image method, and 

to the sinusoidal value of the first angle for the three-image method. If the first angle is 

given for the four-image method, the maximum measurable range for specified values of 

zo, ys and Po, is decided by the value of the second angle. For the same value of the first 

angle, which method provides the maximum measurable range, depends upon the value 

of the second angle in the four- image method. For example, if zo = 450mm, ys = 

100mm, Po = 1.0mm, 01 = 9'i = 900,02 = 30°, then zmax = 6.081mm and z' max = 

5.696mm. However, when 02= 45°, z, a. = 5.335mm. Figure 6.1(a) shows the maximum 

measurable ranges of the two methods when the first angle of each of the methods is 

varied from 20° to 90°, and the second angle for the four-image method is 30°, based 
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on the above parameters. When the first angle is 90° and the second angle is varied from 

20° to 90°, the maximum measurable range using the four-image method is shown in 

figure 6.1(b). 
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Figure 6.1 Variation of the Maximum Measurable Ranges of the Four-Image and 

Three-Image Methods with the Rotation Angle(s), when zo = 450mm, ys = 100mm, 

Po = 1.0mm. (a) 1- four-image method when 02= 30° 2- three-image method 

(b) four-image method when 01=90° 

6.2.4 Factors Which Affect Measurement Accuracy 

It should be noted that the measurement accuracy offered by all three methods, 

depends upon the accuracy of the system's parameters and the rotation angles. Similar 

relationships exist describing the accuracy of the measurement to the accuracy of the 

parameters, zo, ys and P0. However, they are different for the rotation angles. 

Only one sinusoidal function of the rotation angle, 6n, given in equation (2-11), is used 

by the absolute distance contouring method. The difference in the measurement caused 
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by the error in the rotation angle, 9n, is expressed by equation (2-28). In this method, 
the grating is rotated N steps from zero to the selected angle, and N+1 images are 
captured for each measurement. However, any errors in the angles at each successive 
step do not have any effect on the accuracy of the measurement. Calculation of the 

absolute distance is dependent on the grey level recorded at each pixel in the image. 

The inverse cosine function is used, so the absolute distance to be measured must be 

greater than that represented by half a fringe, as explained in section 5.4.3, otherwise 

significant errors will result. The number of images used in this method is a very 
important factor to ensure high accuracy. This is because for a given distance to be 

measured, system parameters, and rotation angle, the total phase difference is fixed, so 

that the average phase change between steps is inversely proportional to the image 

number. If the image number is small, the average phase change must be large, so that 

some of the peak values of the cosine function may be missed, resulting in errors. In 

essence, the greater the number of images used, then the better will be the accuracy. 

The four-image method differs from the absolute distance contouring method by the 

relationship between the accuracy of the measurement and the rotation angles. As the 

image number is fixed, two of the four rotation angles are chosen, the other two being 

determined by equations (3-10) and (3-11). The corresponding four images are 

captured when the grating is rotated to these four positions. The measured distance is 

directly dependent on the grey levels at each pixel in the image. Any inaccuracy in 

angles will cause an error in distance measurement. The error analysis of the four- 

image method, given in section 3.4, showed that for the stated parameters of the 

system, the error in the measured absolute distance for the given angle inaccuracy is 

different for each of the first two rotation angles. Appropriate rotation angles should be 

chosen to reduce the error in the measurement. 

The three-image contouring method is similar to that of the four-image method 

regarding the relationship between the measurement accuracy and the accuracy of the 

rotation angles. In this case, the image number is fixed at three. The first angle is chosen, 

the other two being determined by equations (4-9) and (4-10). Like the four-image 

method, calculation of the absolute distance relies on the values of the images' grey 
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level, and any inaccuracy in the three positions will produce an error in the result. This 
error will be different for different rotation angles for any given system parameters. 
Choosing suitable rotation angles, the error in the measurement can be minimised. 

In addition, if the grating used in the system is not perfect, the images' intensity 

distributions will be affected. If the illumination of the system and the aperture of the 

camera are not correctly adjusted, for example, if the intensity of the illumination is too 

strong or too weak or the camera aperture is too large or too small, then the transmitted 
intensity through the sinusoidal grating, will be a distorted version, leading to an 
incorrect image intensity distribution. These facts would affect all contouring systems. 

Table 6.1 Comparisons of Three Different Absolute Distance Contouring Methods 

absolute method four-image method three-image method 

no limit limited limited 
oc ZO Po n oc ZO Po a ZO Po 

maximum 1 1 1 
measurable range °C - 

YS 
°C - 

YS 
°C - 

YS 
1 1 1 

oc oc 
sin(, ) sin(8i) + sin(82) 

ac 
sin(9'i) 

number of images it is not fixed 4 3 
more better 

memory needed large(331KB) small(234KB) smaller(226KB) 

measuring speed slow(16 seconds) fast(4 seconds) faster(3 seconds) 
factors which affect AZo APO Ay, AZo APO Ay, AZo Al o Ays 

the accuracy A Del A02 A03 Deo A0'1 AO'2 AO'3 

accuracy 5µm 5µm 5µm 

6.3 Summary 

From the above analysis and comparisons, it can seen that each of the methods, has 

different relationships between the absolute distance and the parameters of the system, 
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the rotation angles, different maximum measurable ranges, and different accuracy 
effects based on errors in the rotation angles. Each method requires a different number 
of images so that the time taken for signal processing and data storage are different. 
The relationships between the measured absolute distance, the parameters of the system, 
and the rotation angles are listed in table 6.1. 

Each of the contouring methods has its own advantages and disadvantages and can be 

used for different applications. Different methods and parameters can be chosen to 

ensure the highest accuracy and speed of measurement. 

The characteristics of the three different contouring methods have been analysed and 

compared in this chapter. All three methods are based on the shadow moire technique 

and the rotation of the grating to vary the images' intensity distribution and used to 

measure the absolute distance. Similar relationships exist between the absolute distance 

and the parameters, zo, ys, Po, of the system for each of the three methods. However, 

the relationships between the absolute distance and the rotation angles, as well as the 

number of images required for each measurement, the maximum measurable ranges, and 

the factors which affect the accuracy of the measurement, are different in each case. 

Each method offers its own specific features and can be used to advantage in many 

situations. 
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Chapter 7 

Phase Unwrapping in the Presence of Discontinuities 
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7.1 Introduction 

in the Presence of Discontinuities 

Phase unwrapping is an important step in three-dimensional measurement using Fourier 

transform or phase shifting techniques, especially when there are discontinuities in the 

phase map. As described in chapter one, none of previous techniques seems to offer a 

perfect solution for the problem of discontinuities in the phase map. To solve this 
issue, it is proposed to use a phase unwrapping algorithm with the use of a crossed 

grating in the projection system. The crossed grating has two sets of lines in different 

directions so that two phase maps can be obtained, each with different precision. By 

using these phase maps, the correct object height distribution can be obtained , even in 

the presence of height steps. Only one image is required for each measurement using 

this technique, rather than those of four or more images required by other methods. 
The proposed algorithm has been verified by simulation and experiment as a fast 

algorithm which could be used for the measurement of object profiles with height steps, 

or phase maps with discontinuities caused by other reasons. 

In the following section of this chapter, the basic principle of the Fourier transform 

method and phase unwrapping will be described. The crossed grating is described in 

section 7.3 and the details of the proposed phase unwrapping algorithm in the presence 

of discontinuities is explained in section 7.4. Section 7.5 details the simulation of the 

algorithm and the corresponding results obtained. Section 7.6 provides a summary of 

the chapter. 

7.2 Principle of the Fourier Transform and Phase Unwrapping 

7.2.1 Fourier Transform 

In the fringe projection system, when a sinusoidal intensity grating or fringe pattern is 

projected onto an object's surface, the shadow of the grating deformed by the surface, 

can be expressed in the general form as follows: 
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I (x, y) = a(x, y) + b(x, y) cos[2 ox + (D(x,. v)] (7-1 ý 

where a(x, y) and b(x, y) represent unwanted irradiance variations arising from the 

non-uniform light reflection or transmission by a test object; in most cases a(x,. i-), 
b(x, y) and (D(x, y) vary slowly compared with the variation introduced by the spatial- 

carrier frequency fo. The phase function q)(x, y) characterizes the fringe deformation 

and is related to the object's shape z= h(x, y) . 

The fringe pattern can be rewritten as: 

I (x, y) = a(x, y) + c(x, y) exp(2TCif ox) +c * (x, y) exp(-2)rif ox) (7-2) 

where c(x, y) =1 b(x, Y) exp[i (x, Y)] 2 
(7-3) 

Equation (7-2) is Fourier transformed with respect to x by the use of the Fast-Fourier- 

Transform (FFT) algorithm resulting in equation (7-4). 

I (f 
, y) =A (f 

, Y) + C(. f - .fo, Y) +C*(. f + 
.fo, . 

Y) (7-4) 

where A(f 
, y) is the transform of a(x, y), and C(f -fo, y) and C* (f +fo, y) are 

the positive and negative frequency spectra of the modulated carrier fringes. As the 

spatial variations of a(x, y) , 
b(x, y) , and (D(x, y) are slow compared with Jo, the 

function Iff 
, y) will be a trimodal function with peaks at -fo, fo and the origin. The 

function C(f -fo, y) can be isolated using a filter centered at Jo. The carrier 

frequency can be removed by shifting C(f -fo, y) by fo to the origin to give ('(J, ti) 

From the inverse Fourier transform of C(f, y) with respect to f, the phase distribution, 

(D(x, y) , can be obtained. 

Assuming that the phase of the reference plane is '"(x, y) , then the phase distribution, 
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ct'o(x, y) , produced by the object's shape, h(x, y) , can be expressed as: 

(Do(x, y) = c(x, y) - (D, (x, Y) 

7.2.2 Phase Unwrapping 

(7-5) 

The phases obtained from equation (7-5) are indeterminate to a factor of 2n because 

the inverse tangent function is defined over a range from -7t to Ti. The full phase is given 

by. 

cp(x, y) = (Do(x, y) + 2n(x, y); T (7-6) 

where n(x, y) is an integer which may be positive or negative. 

Wrapped 
phase 

(radians) 

Unwrapped 
phase 

(radians) 

Pixel Coordinate in Phase Fringe Image 

Figure 7.1 Wrapped and Unwrapped Phase 

The whole purpose of phase unwrapping is to determine the value of n(x, i') by 

comparing the phase values between adjacent pixels. Since the variation of the phase is 

slow compared with the sampling interval, the absolute value of the phase difference 
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between two adjacent pixels is much less than 27t, at points where the phase distribution 
is continuous. Therefore, it becomes almost 2n at points where the 2it phase jump 

occurs, as shown in figure 7.1. Hence, by setting an appropriate criterion for the 

absolute difference, all the points at which the 27t phase jump takes place and also the 
direction of each phase jump, positive or negative, can be specified. 

Object 
height 

X 
0 

Figure 7.2 Object with a Height Step 

The phase unwrapping routine described above can only specify the phase jump modulo 

2n, when the phase distribution is discontinuous. If the phase jump is greater than 271, 

correct phase unwrapping could not be obtained using this method. For example, if there 

are height steps to be measured on the object's surface as shown in figure 7.2, the 

corresponding phase jump may be 2nic for a certain period of grating used, where n is 

an integer greater than one. This means that it is not possible to determine how many 

fringes have been moved from the top of the step height relative to the bottom. 

Therefore, only adding 2it to the phase at that point is not sufficient to give the correct 

phase. Another problem is that as the phase value obtained using the inverse tangent 

function is in the range from -n to 7t, it cannot be used to give the correct result for the 

cases given in figure 7.3. These show two images of the object with height steps, where 

figure 7.3(a) is when the phase jump between the two parts of the surface is less than it, 

it does not require phase unwrapping and the correct result can be achieved, as shown 

in figure 7.3 (c). However, in the case of figure 7.3 (b), the phase jump is bigger than 
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but smaller than 2n, the correct phase value can still not be obtained. For example, if the 

phase jump in this case is from 0 to 1.27c, the phase jump calculated by the inverse 

tangent function is from 0 to -0.871. One may set the appropriate criterion for the 

absolute phase difference to add 2n to the phase at the point of measurement to obtain 

the phase value of 1.2m, but it may not always be correct since it is not known what 

the exact phase jumps should be for different height steps. 
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Figure 7.3 Fringe Patterns on an Object's Surface with Height Steps and the 

Corresponding Calculated Phase Distributions Along One Line 

7.3 Phase Unwrapping in the Presence of Discontinuities 

A method is needed to solve the problems previously described. From equation 

it is seen that the value of phase cp(x, y) is related to the object height distribution, 

(b) 1.2n 
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h(x, y) . 
This means that the relationship between the phase distribution and object 

height distribution can be expressed as: 

h(x, y) = kcp(x, y) 

where k is a constant which depends on the geometry of the optical system. 

(7-7) 

The values of phase at different points are dependent upon the object's height at each 

point and the period of the grating used. If different grating periods are used in the 

projection system, different phase maps with different precisions can be obtained. If 

two projection gratings are used, which have periods Po and P1, then the 

corresponding phase maps obtained are gpo(x, y) and qoi(x, y) respectively. Therefore, 

h(x, y) = kocpo(x, y) = kiýpi(x, y) (7-8) 

where both ka and kl are constants depending upon the parameters of the optical 

system. 

It is required to determine the relationship between the constants, k0 and k,, and the 

parameters of the optical system. Figure 7.4 shows the optical geometry for a general 

projection system. The distance from the CCD camera to the reference plane is L, and 

that between the projector and the camera is d. The object's height relative to the 

reference plane is h(x, y) and the period of the grating is Po. The grating lines projected 

onto the object or the reference plane are normal to the plane of the figure. 

The difference in phase values between points C and D, (pro, observed by the same 

camera, can be related to the geometric distance AC as follows: 

AC=Po TD 21r 
(7-9) 
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x 

Figure 7.4 Optical Geometry of a General Projection System 

From the relationship between the triangles, ACD and IDP, the object's height can be 

expressed as: 

AC 
L (7 10) h(x, Y) =d 

AAC 
L 

AC 

d(1- 
d) 

Since for most cases, d >>AC, equation (7-10) can be simplified to: 

AC 
L_ 

PoL 
(PCD (7-11) 

d 2, 
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From equation (7-9), coefficients, ko and k,, are determined as: 

ko =PoL 27rd (7-12) 

PiL 
k' =2 (7-13) 

Substituting equations (7-12) and (7-13) into equation (7-8), the phase values at the 

same point for different grating periods, results in equation (7-14): 

g90(x,. Y) Pi fo 

(P'(x, y) Po 
.ft 

(7-14) 

where fo and f, are the spatial frequencies of the gratings with periods Po and P,, 

respectively. 

Equation (7-14) indicates that the phase value for the same object height is 

inversely proportional to the period of the grating, or is directly proportional to the 

spatial frequency of the grating. This confirms that, with the projection method and by 

using different grating periods, the phase maps obtained will have different precisions. 

Therefore, the shape of the object with height steps can be correctly measured by 

using two gratings having different periods in the projection system to obtain two 

phase maps with different sensitivities. To obtain the correct phase distribution from the 

two phase maps requires a comparison of the phase differences between corresponding 

pixels for each of the phase maps. This is explained in sections 7.3.1 and 7.3.2. 

7.3.1 Phase Jumps Less Than 2ir 

As described above, when the phase jump is between it and 2n, the correct phase 

values may be obtained by the use of the normal phase unwrapping algorithm, but a 

correct result is not always guaranteed. Using the two phase map technique, it is 
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assumed that the periods of the two gratings used in the projection system are Po and P,, 
and further that 2Po < P1. The phase jumps, between adjacent sample points, (i, j) and 
(i+1, j), are Orpo and Acpi for the two phase distributions respectively. So for the 

true phase jump, if it < Arpo I< 2n, then. 

Aýo1 = 
Po 

Acoo < Tr 

When Iirpil >_ (Po / Pi)2r and (Aopi / Apo) < 0, this means the real phase jump is in 

the range of it to 2n, so that ±2ic should be added to the phase values for all the 

sample points which have an index number greater than i as follows: 

(p(xi+i, yi) = co(xi+i, y3)±27r (7-16) 

Here the sign is decided by the sign of Ocpo and Dpi. For example, if Dýoo <0 and 

Ap>0,271 should be added, and if A(po >0 and Opi < 0, then -271 should be added. 

This is related to the direction of the height steps. Using this method the error can be 

corrected. 

7.3.2 Phase Jumps Greater Than tic 

When the real phase jump between two adjacent sample points is greater than 2n, the 

correct phase value is obtained by firstly going through the procedure for the 

condition when the phase jump is in the range of lt to 2it as the phase jump may be in 

the range of (2n+1)n to 2(n+1)it. Then the phase difference between two adjacent 

sample points in the phase map, obtained from the projection of the grating with a 

period of P1, is calculated. If the absolute value of the phase difference, I Aýq, 1, is 

greater than 2(Po / P)7r, then the integer value of n(x, y) is calculated as follows. 

A iPi n= IN 
2 irPo 

(7-17) 
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where INT is an operator to obtain the integer value. The integer value obtained is less 

than or equal to the absolute value in the brace. 

After obtaining the value of n, 2n7t is added to the phase value of 9(-Y, y) for all 

sample points which have an index number bigger than i as follows: 

ýp(x, + i, yi) = co(xi+i, yj)+2n2r (7-18) 

Note that in the above equation, the calculation is only valid for phase jumps of less 

than or equal to (Pi / Po)ic 
, with a grating period of Po 

. 

7.4 Use of a Crossed Grating 

From the above analysis, it is clear that a simple method of utilizing two phase maps 

with different sensitivities is required. Although Zhao has studied a method to obtain 

the required two phase maps [Zhao 1994], using his method a total of eight images are 

required and accurate grating translation is needed because they use a phase shifting 

technique. To simplify the process of the measurement, it is proposed to use a crossed 

grating which has two sets of lines in different directions so that only one image is 

required for the measurement and no movement of the grating is necessary. It is more 

convenient and suitable for many applications in which vibration or other movements 

may occur. 

If two fringe patterns with the same spatial frequency but at an angle, a, to each other, 

are added together, a crossed fringe pattern is formed. If the pattern is viewed along a 

single direction, the equivalent periods of the two sets of lines will be different. 

Figures 7.5 (a) and (b) show two separated fringe patterns with lines in the vertical 

direction and at an angle, a, relative to the vertical direction. Figure 7.5 (c) shows the 

sum of figures 7.5 (a) and (b). If the original period of the two fringe patterns is P0, 

then in the case of (a), the period along the X direction is still Po. However, in the case 

of (b), the equivalent period in the X direction is given as: 
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Po 
PI = 

cos a ( 7-1 ) 

(a) (b) 

(c) 

Figure 7.5 Single Direction Fringe Patterns (a) and (b) 

and the Equivalent Crossed Fringe Pattern (c) 

This relationship is shown in figure 7.6. If this crossed grating is projected onto the 

object, the deformed grating image is equal to the superposition of the two individual 

grating images projected separately. The corresponding spatial frequencies of the two 

equivalent gratings in the X direction are: 

(7-20) 
Po 

1cos a 

Phase Unwra in the Presence of Discontinuities 
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X 

Figure 7.6 The Relationship Between the Grating's Period 

and the Equivalent Period in the X Direction 

The image can be Fourier transformed and separated in the frequency space as two 

separate images. Ater performing the inverse Fourier transform, two phase 
distributions which have different sensitivities are obtained and the correct phase values 

at each sample point can be determined by the procedures described above. 

7.5 Simulation of the Crossed Grating System 

To verify the method of using a crossed grating in the projection system and the Fourier 

transform, as described above, a program was designed to simulate an object with a 

height step, with a crossed grating projected onto its surface. The simulated three- 

dimensional object is shown in figure 7.7, which has a height step in the horizontal 

direction. The simulated crossed grating is the sum of the two sets of lines. The periods 

of the gratings are Po and P, respectively, along the horizontal direction where P, = 

8Po. The phase jump caused by the step height obtained by the grating with a period of 

Po, should be -5.6n. 
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Figure 7.8 The Deformed Crossed Grating Image on the Object in Figure 8.7 

in the X direction P1= 8Po 
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(a) 

(b) 

Figure 7.9 Deformed Grating Images on the Object 
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Figure 7.10 The Fourier Spectra of the Image in Figure 7.8 

200 

200 

117 



)ter 7 Phase Unwrapping in the Presence of Discontinuities 

Real 

x 106 

1, 

0.5 
Q) 

O 
Q. 
E 

-0.5 

-1 200 

150 

100 

Pixel number 

X 105 

4- 

2, 

0 

E -2 

-4 

-6 
200 

150 
100 

50 50 Pixel number 

(a) 

Imaginary 

150 
150 

100 100 

Pixel number 50 50 Pixel number 

(b) 

Figure 7.11 The Fourier Spectra of the Image in Figure 7.9(a) 

After Filtering and Frequency Shifting 

200 

200 

118 



Ater 7 Phase Unwrapping in the Presence of Discontinuities 

Real 

x 106 

1.5 

1 

a) 
0.5 

E0 
Q 

-0.5 

-1 200 

150 

100 

Pixel number 50 50 

(a) 

Imaginary 

X 105 

2 

0 

-2 

E -4 

-6 

-8 200 

150 
100 

Pixel number 

200 

200 

50 50 Pixel number 

(b) 

Figure 7.12 The Fourier Spectra of the Image in Figure 7.9(b) 

After Filtering and Frequency Shifting 
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The image shown in figure 7.8 can be separated in the frequency space as two images 

as shown in figure 7.9 (a) and (b), which correspond to the images obtained by the 
projection of two separate gratings in different directions. After the image is Fourier 
transformed, the real and imaginary parts of the Fourier spectra are obtained as shown 
in figures 7.10 (a) and (b) respectively 

gratings in figure 7.9 (a) and (b) 

The Fourier spectra contributed by the two 

are now separated, the negative frequency- 

components are filtered, and the positive frequency components are shifted to the oriiin 
according to the frequencies of the two gratings. The spectra obtained following the 

above procedures are shown in figures 7.11 and figure 7.12, which correspond to the 

real and imaginary parts for the gratings with equivalent periods of Po and P,, along 

the horizontal direction respectively. 
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Figure 7.13 The Phase Distribution Along One Line Obtained From the Grating 

with Period of Po in X Direction (1) Original (2) Corrected 

After the inverse Fourier transform of the two different spectra and the normal phase 

unwrapping process, two phase distributions are obtained. Figure 7.13(1) shows the 

phase distribution along one line obtained from the image shown in figure 7.9(a). It 

can be seen that the calculated phase jump caused by the object's height step in the 
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figure is only 0.471 rather than -5.6m, thereby giving an incorrect result. To correct this 

error, the procedure designed in section 7.3.1 is followed. From the phase differences of 

the two phase maps at these points, the condition of JAcpij >_ (Po / Pº), z and 

(A(pi / A(Po) <0 is satisfied and also Apo >0 and Ocp1 < 0. Therefore, -21t is added to 

the phase value as required by equation (7-17). Figure 7.13(2) shows the phase 

distribution along one line after this correction, the phase jump is -1.6n, rather than 

0.471. 
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Figure 7.14 The Phase Distribution Along One Line Obtained From Different Gratings 

1- From the Image in Figure 7.9(b) 2- From the Image in Figure 7.9(a) 3- Corrected 

The second step of correction as described in section 7.3.2, is to check that the true 

phase jump is bigger than 2it or not. In this simulation, the absolute value of the phase 

difference, IL pi 1, is larger than 2(Po / Pi)7r 
. 

By using equation (7-17), the 

calculated integer value is -2, so that 2nn =- 471 is added, as required by equation 

(7-18). At this stage, the phase values are all corrected and the actual phase jump of 

-5.6n is obtained. To compare the phase distributions from different phase maps, three 
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different phase distributions along one line are drawn in figure 7.14, where (1) is that 

obtained from the lines which have an equivalent period of P, in the horizontal 
direction, (2) is that given in figure 7.13(2) 

, and (3) gives the correct result. 

7.6 Summary 

In this chapter, the basic Fourier transform and phase unwrapping technique are 

reviewed. To solve the problem of phase unwrapping in the presence of discontinuities 

caused by the object's height steps or other reasons, a new phase unwrapping algorithm 

has been proposed. The two phase maps are obtained by the projection of a crossed 

grating and use of the Fourier transform technique. Only one image is required for each 

complete measurement so that vibrations have no effect and accurate grating 

translations are not required during the process. The theoretical analysis and simulation 

results have shown that the proposed algorithm is fast and could be used in many 

applications, for the measurement of three-dimensional object profile. 
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8.1 Introduction 

In the previous chapter, the theoretical analysis of the proposed phase unwrapping 
algorithm was described for a phase map with discontinuities, by the use of a crossed 
grating, and the algorithm is verified by the results of simulation. In this chapter, an 
experimental system which is used to verify the technique and the corresponding 

procedure for signal processing, will be described. A crossed grating is projected onto 
an object with height steps and the deformed grating image is captured by a CCD 

camera. The signal is processed by the specially designed software. The experimental 

results show that the phase unwrapping algorithm, compared with previous techniques, 
is fast and can be used for the measurement of three-dimensional object profile in many 

application areas. The following section details the experimental arrangement and the 
instruments used in the system. The signal processing procedure and the design of the 

software are described in section 8.3, and the experimental results and their discussion 

are contained in section 8.4. Section 8.5 gives a summary of the chapter. 

8.2 Experimental Arrangement 

The theoretical analysis and simulation in chapter seven have shown that the proposed 

phase unwrapping algorithm is able to unwrap phase images with discontinuities caused 

by height steps. To verify this theoretical conclusion, an experimental system which 

includes a crossed sinusoidal grating, CCD camera, projector and computer, as shown 

in figure 8.1, is designed. The camera and the projector have the same perpendicular 

distance to the object. The distance between the camera and the object is large 

compared with the object height. The crossed grating is projected onto the surface of 

the object, the deformed grating image is captured by the CCD camera and the data is 

read to the computer memory for processing. The image is in a 128 x 128 pixel 

format. 

In this arrangement, the crossed grating used is a commercially available crossed 

sinusoidal grating from Technolink (Europe) Ltd. The effect is the same as the sum of 
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two separate gratings of the same period, projected at an angle a, to each other The 

original period of the grating is Po = 0.25mm, and the angle between the two sets of 
lines, a- 80°. When the period of one set of lines along the horizontal direction is Po, 

the equivalent period of the other set of lines is Po/cosa= 5.5 Po. The size of the grating 

is 50mm x 50mm. The projector is a standard 35mm slide projector, (Prado Universal, 

Germany). The CCD camera is a CCIR monochrome camera, (COHU INC. ), with 

Nikon lens, (f = 55mm, 1: 2.8). The computer is an IBM PC 486DX2 computer, 

equipped with a frame grabber, (ITEX Variable-Scan Frame Grabber, VFG 1.0, 

Imaging Technology Inc. ). 

e 

Figure 8.1 Schematic Diagram of an Experimental System 

for the Phase Unwrapping Algorithm 
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8.3 Signal Processing Procedure 

inia 

For the convenience of the frequency shifting process, a suitably deformed grating image 

on the surface of the object is chosen to ensure that both fringe numbers for each set of 
grating lines along the horizontal direction, are integer values. This is adjusted by 

altering the distance between the camera and the object before the image is captured. 
After the image is captured, it is digitized and saved in computer memory for 

processing. The image is then Fourier transformed by the use of the FFT. The Fourier 

spectra contain frequency components from both sets of grating lines. Since there is 

an angle, a, between them, the corresponding frequency components, except the dc 

component, are separated in the frequency space by an amount proportional to the 

angle between the two sets of lines. The whole Fourier spectra of the deformed image is 

separated into two individual spectra which correspond to each separate grating. If these 

two spectra are now inverse Fourier transformed, two deformed images, similar to 

those shown in figure 7.9 (a) and (b), will be obtained. After the negative frequency and 

dc components have been removed, the remaining positive frequency components are 

shifted to the origin and inverse Fourier transformed. Two wrapped phase maps with 

different precisions will be obtained. 

These two wrapped phase maps contain information about the object's height 

distribution. However, if there are any discontinuities in these phase maps, it would 

not be possible to obtain the correct distribution of the object's height. Therefore, the 

normal phase unwrapping procedure is utilised to obtain the correct phase distribution 

when the phase discontinuities are caused by a continuos height variation, which may 

cause a 271 phase jump. When the object's height steps or the noise spikes are large 

enough to cause a phase jump greater than it, as explained in section 7.3, the normal 

phase unwrapping technique may not be used to obtain the correct phase distribution. 

The problem can be solved by the algorithm described in chapter seven. Therefore, the 

next stage is to follow the procedures described in section 7.3.1 to correct the error in 

the phase distribution, when the phase jump is between it and 2it. A phase jump of 

2n7t would be corrected by the technique described in section 7.3.2 using two phase 

126 



Chapter 8 eriments and Results of Phase i'nwra ins; 

maps with different sensitivities. At this point, all phase discontinuities should be 
corrected and the resulting phase distribution should represent the correct height 
distribution of the measured object. The complete algorithm is shown in figure 8. 

I Capture the deformed grating image I 

Fourier transformed image 

Fourier spectra are separated 
into two separate images 

Each spectra is filtered and the positive 
components are shifted to the origin 

Each spectra is inverse-transformed 

Normal phase unwrapping 

Correct phase jump between it to 2n 

Correct phase jump of 2nit 

End 

Figure 8.2 Flow Diagram of the Signal Processing Procedure 

8.4 Experimental Results 

The experiments to verify the proposed phase unwrapping algorithm were carried out 

using the experimental system described in figure 8.1. The signal is processed using the 
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procedure described in section 8.3. The experiments are carried out in two staves. 
Firstly, it is required to verify the relationship between the values of the phase jump 

and the periods of the gratings for a given object height step, and that between different 
height steps and the periods of the gratings, as described by equation (7-15). Secondly, 

the crossed grating is used to measure the height distribution of the three dimensional 

object containing height steps. To obtain a good quality image, the objects used in the 

experiments are painted matt white. The experiments and the corresponding results 
obtained are described in sections 8.4.1 and 8.4.2. 

8.4.1 The Phase Jump for Different Grating Periods 

The purpose of the experiments is to verify the relationship between the phase jump and 

the periods or spatial frequencies of the gratings, and compare them with those 

obtained by the theoretical analysis given in section 7.3. In these experiments, the 

objects used have two flat parts with different height steps. The height difference 

between the two flat parts varies between 1.5mm and 11.5mm. The largest height step 

causes the phase jump, for large period of grating, is less than it, and it is bigger 

than nit (n >2) for the small period of grating. The number of fringes in the image 

varies from 2 to 16. The corresponding values of the phase jumps caused by 

different height steps are obtained by the procedure described in section 8.3. 

When the object height step is 5mm, and the number of fringes in the image are 16,7, 

4, and 2, respectively, the deformed grating images for the same fixed distance between 

the object and the camera, and that between the camera and the projector, are shown in 

figures 8.3 (a) to (d). The calculated values of the phase jump caused by the 5mm 

height step are 5.10,2.21,1.24 and 0.62 radians, for fringe numbers of 16,7,4, and 

2 respectively. The relationship between the fringe number in the image and the values 

of the phase jump for the same height step are shown in figure 8.3 (e). It can be seen 

that the relationship is linear and confirms the conclusion expressed by equation 

(7-15). 
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(a) sixteen fringes 

(c) four fringes 
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(b) seven fringes 

(d) two fringes 
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Figure 8.3 The Images and Phase Jumps Caused by the 5mm Height Step for Different 

Numbers of Fringes in the Image 
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(a) 4 fringes and 1.5mm height step 

(c) 4 fringes and 6.5mm height step 

(e) 4 fringes and 11.5mm height step 

(b) 16 fringes and 1.5mm height step 

(d) 16 fringes and 6.5mm height step 

(f) 16 fringes and 11.5mm height step 
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(g) the phase values obtained by different fringe number and after the correction 

Figure 8.4 The Images and Phase Jumps Caused by Different Height Steps for 

a Fringe Number of 4 and 16 respectively 

Different phase jumps will be obtained when the grating used has a different period 

for the same height step, as that obtained above. If the object has different height steps, 

different values of the phase jump can be obtained by using the same grating. To verify 

the conclusion obtained from the theoretical analysis, two gratings with a spatial 

frequency ratio of 4 are used for the projection, and the object height steps are 

1.5mm, 6.5mm and 11.5mm respectively. The number of fringes in the image for both 

gratings are 16 and 4 respectively. The images obtained are shown in figures 8.4 (a) 

to (f). The corresponding values of the phase jumps with different object height steps 

are shown in figure 8.4 (g), where in (i), I- the phase jumps obtained by the grating 

which has 16 fringes in the image, 2- the phase jumps obtained by the grating with 4 
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fringes in the image, and (ii), the correct values of the phase jumps obtained by the 

proposed phase unwrapping algorithm. From this figure, it can be seen that for the 

given parameters of the experimental system, the correct value of the phase jump should 
be directly proportional to the height step. The results obtained by the large period 

grating satisfies this condition. However, those obtained by the small period grating 
do not. Though the phase values obtained by the use of a large period grating are 

correct, it is not sufficiently sensitive. The inverse condition is true when considering the 

small period grating. By using both gratings, phase values which are correct and 

accurate, can be obtained. 

8.4.2 Measurement of 3-D Objects Containing a Height Step 

Using a Crossed Grating 

A crossed grating used for the projection in our experiments is formed by two sets of 

grating lines at an angle of about 80° and an original period of 0.25mm It has a 

frequency ratio of 5.5 along the horizontal direction. The numbers of fringes along the 

horizontal direction are 22 and 4 respectively. The three dimensional object to be 

measured has a height step of 10mm in the vertical direction. 

Figure 8.5 The Deformed Crossed Grating Image 
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Figure 8.6 The Fourier Spectra of the Image in Figure 8.5 
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Figure 8.7 The Fourier Spectra of the Image in Figure 8.5, after filtering and frequency 

shifting for the grating with 22 fringes in the horizontal direction 

134 

100 
50 

55 0 

Pixel number 00 Pixel number 



)ter 8 Experiments and Results of Phase I; nwrnnni 

Real 

X 104 

10ý 

0- E 
0 

-5 

100 

50 

Pixel number 

X 10 

1 

0.5 

0, , Iiqg 

E -0.5 

-1 

-1 .5 

100 

50 

Pixel number 

100 

50 
00 Pixel number 

(a) 

Imaginary 

100 

00 
50 

Pixel number 

(b) 

Figure 8.8 The Fourier Spectra of the Image in Figure 8.5, after filtering and frequency 

shifting for the grating with 4 fringes in the horizontal direction 
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Figure 8.9 The Phase Distribution Along One Line and 3-D Plot of the Object 

The deformed crossed grating image captured by the camera, is shown in figure 8.5. 

After the image is Fourier transformed, the real and imaginary parts of the Fourier 

spectra are shown in figure 8.6 (a) and figure 8.6 (b) respectively. Figure 8.7 and 

figure 8.8 show the real and imaginary parts of the Fourier spectra for the grating lines 

in the vertical direction and at an angle of about 80° relative to the vertical direction, 

after they are separated from each other, filtered and frequency shifted to the origin. 

The calculated phase distribution along one line, obtained from two separate spectra 

and that after phase unwrapping, are shown in figure 8.9, where (i) to (iii) are the 

phase distributions obtained from the gratings with 4 and 22 lines in the horizontal 

direction and that after correction, respectively. The three dimensional plot using 

the final correct phase distribution is shown in figure 8.9. 
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From the results of this work, the object height step of 10mm causes phase jumps for 
the 22 and 4 fringe gratings in the image, of 9.66 radians and 1.76 radians 
respectively. However, the phase value obtained from the 22 fringe map in the image 
is only 3.32 radians, which is 27t less than that which would be expected. Assuming 
that the relationship is linear and the frequency ratio of the two gratings is 5.5, the 
correct value of the phase jump caused by this height step calculated from the orating 
with a large period in horizontal direction, should be 1.76 x 5.5=9.68 radians. The 

phase jump obtained from the grating with 22 fringes in the horizontal direction should 
be 3.32 + 27r = 9.60 radians. Obviously, there is an error in the results obtained. The 

reason for this error is discussed in section 8.4.3. 

8.4.3 Discussions 

From the theoretical analysis, it is known that the values of the phase jumps are directly 

proportional to the values of the height steps for a given spatial frequency grating. 

Furthermore, for a given height step, the values of the phase jumps are directly 

proportional to the spatial frequencies of the gratings. These are confirmed by 

simulation and the experimental results described above. There are still some errors 

which are caused by noise or imperfections contained in the grating. 

In the theoretical analysis of the phase unwrapping algorithm, to ensure accurate 

results, it is assumed that the crossed grating is the superposition of two separate sets 

of lines and the number of fringes in the image are integer values for both gratings. 

However, in practice, it is not easy to make a crossed grating which actually 

represents the sum of two separate gratings. In most practical cases, the transmittance of 

the crossed grating is the multiplication of the individual transmittances of the two 

separate gratings, and this can be seen from figures 8.6 (a) and 8.6(b). This leads to 

some extra frequency components appearing in the frequency space in the case of the 

crossed grating, which do not appear in the case of the two gratings considered 

separately. This makes it difficult to filter and frequency shift accurately, which results in 

errors. In the normal Fourier transform technique, the filtering and frequency shifting 
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are carried out on an integer basis, rather than a fraction basis. Unsuitable filtering will 
leave some unwanted frequency components in the spectra, which when inverse 
transformed to obtain the phase distribution, result in noise components in the phase 
map. The non-integer value of fringes in the image will cause difficulty in the frequency 

shifting process and will result in errors in the phase map. 

To avoid these errors, it is necessary to make the crossed grating as perfect as possible 
to ensure that the transmittance is the sum of the transmittances of the two individual 

gratings. It is also necessary to choose a suitable angle between the grating lines to 

obtain an appropriate frequency ratio for certain height step measurements, and to adjust 
the distance between the camera and the object to make sure the number of fringes in 

the image are integer values for both sets of grating lines. In these experiments, the 

crossed grating is not perfect since the transmittance is not only the sum of the two 

separate transmittances, but contains some extra components which result in errors. 

8.5 Summary 

In this chapter, an experimental system to verify the phase unwrapping algorithm and the 

details of the instruments used in the system, have been described. Experiment and 

signal processing procedure was explained. The experiments to verify the relationship 

between the values of the phase jump and the spatial frequency of the grating, as well as 

the relationship between the object height steps and the corresponding phase jump 

values, were described. The reasons for any errors and how to minimise their effects, 

have been discussed. The experimental results show that the proposed phase 

unwrapping algorithm can be used for the measurement of an object with certain height 

steps. The maximum measurable height step is determined by the spatial frequency of 

the grating, which has a large equivalent period in the horizontal direction. The overall 

accuracy of the measurement is dependent upon the spatial period of the finer grating. 
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9.1 Introduction 

The measurement of absolute distance and three-dimensional object shape is ýerý" 
important in many applications. The primary purpose of this research v ork is, firstly, 

to develop an original concept proposed for the optical non-contact measurement of 
absolute distance and 3-D shape, based on the shadow moire method and rotation of a 
grating, and to make improvements to the previous methods. Secondly, it is required to 
develop a phase unwrapping algorithm using a crossed grating and Fourier transform 

analysis, to obtain the correct phase distribution for phase maps containing 
discontinuities. 

This thesis has described the content and progression of three different contouring 

methods, which are used for the measurement of absolute distance and three- 

dimensional object shape. It also discusses a phase unwrapping algorithm using a 

crossed grating and Fourier transform analysis. The height distribution of an object 

can be accurately measured in the presence of discontinuities caused by height steps, 

or noise contained in the phase map. 

The earlier techniques of shadow moire contouring, and projection moire contouring 

including phase shifting, Fourier transform, and phase unwrapping, were reviewed in 

chapter one. Chapters two, three, and four specified the principles of each of the 

proposed new absolute distance contouring techniques. The experimental system used 

to verify the proposed methods, as well as the experimental results obtained, were 

given in chapter five. The features of the three different methods were analysed and 

compared in chapter six. 

The theoretical analysis of the proposed phase unwrapping algorithm was given in 

chapter seven, and the corresponding experimental system, signal processing, and 

results obtained, were described in chapter eight. The proposed techniques have been 

verified by theoretical analysis, simulation and experiments. In this chapter. the 
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conclusions obtained by this research work 

further work in these areas are made. 

9.2 Conclusions 

are presented and recommendations for 

Absolute distance contouring, which is based on shadow moire contouring and the 
rotation of a grating, is a new technique for the measurement of absolute distance and 
three-dimensional object shape. In this system, the effective period of the grating is 

varied by its rotation, so that the phase of the moire pattern is also changed. By the 

selection of suitable rotation angles, images are captured at different positions of the 

grating to obtain the absolute distance from the grating to the object, as well as the 

object's height, through an examination of the phase differences between each of the 

resulting fringe patterns. 

This absolute distance contouring technique is divided into three different methods. 

They are known as: (i) absolute distance contouring, (ii) four-image absolute distance 

contouring, and (iii) three-image absolute distance contouring, according to the number 

of images required for each measurement. In the first method, the number of images 

required for each measurement is not fixed and depends on the distance to be measured 

and the required resolution. A maximum rotation angle needs to be chosen and the 

number of steps to be rotated by the grating is decided by the image number. In the 

four-image method, two angles need to be chosen and these determine the remaining 

two angles according to a fixed relationship. In the three-image method, only one angle 

is to be chosen, the other two being decided by the relevant equations. 

The maximum measurable ranges for each of the three different methods, are related 

to the parameters of the experimental arrangement and the rotation angles. The 

maximum measurable ranges are all directly proportional to the distance between the 

camera and the grating and the period of the grating itself However, they are inversely 

proportional to the distance from the camera to the light source and the sinusoidal value 

of the rotation angles. In the first method, the measurable range is inversely proportional 
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to the sinusoidal value of the maximum rotation angle. In the four-image and three- 
image methods, it is inversely proportional to the sum of the sinusoidal values of the 
two chosen angles and the sinusoidal value of the chosen angle, respectively. 

Theoretically, there is no measurable range limit for the first method. For a fixed 

arrangement, the measured absolute distance is directly proportional to the fringe 

number and inversely proportional to the sinusoidal value of the maximum rotation 

angle. Thus, for a given distance to be measured, the larger the rotation angle, the 
larger the fringe number will be. Therefore, a larger image number can be chosen to 

ensure that the phase difference between steps is not too great, which could result in a 

significant measurement error. If the image number is limited, a small rotation angle can 
be chosen. In this case, the fringe number and the phase difference between steps, is 

small. In this way, any errors caused by missing the maximum or minimum values of 

the cosine function, can be avoided. 

The accuracy of the measurement obtained by the three different methods depends 

upon the accuracy of the system parameters and the rotation angles. The relationships 

describing these functions are similar, but they differ when considering the rotation 

angles. For the first method, only the accuracy of the maximum rotation angle will affect 

the accuracy of the measurement and despite any error in the angles between each step, 

it does not have any effect on the overall accuracy of the measurement. However, for 

the four-image and three-image methods, any error in the angles will have some effect 

on the measurement. 

Using these methods, the absolute distance and object height can be accurately 

ascertained. The advantages over the previous methods are that it is not necessary to 

determine the absolute fringe order and there is no ambiguity between the hills and 

valleys of the object's surface. Therefore, some of the problems of the previous shadow 

moire methods can be solved and their inconvenience can be overcome. These methods 

have been verified by theoretical analysis and corresponding experiments as accurate 

and fast techniques, offering an accuracy of better than 10µm, taking only 16,4, and I 
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seconds for the three methods respectively. They offer robust techniques for 
topographic inspection in many engineering areas. 

The phase unwrapping algorithm, through the use of a crossed grating and the Fourier 
transform, is an algorithm to be used to solve the problems caused by the presence of 
discontinuities in the phase map, especially when measuring objects containing height 

steps. The algorithm is sufficiently different from, and significantly simpler than 

previous techniques. Using this algorithm, only simple computation is involved and 

only cheap equipment is required. 

A crossed grating is projected onto the object's surface. The deformed grating image is 

equivalent to the superposition of two separate conventional grating images. After the 

image is Fourier transformed, the Fourier spectra are separated into two images. The 

inverse Fourier transform of the two images, after filtering and frequency shitfing, 

results in two phase maps with different sensitivities. Phase unwrapping of each pixel is 

carried out independently. By comparing the phase differences between adjacent pixels 

in the two phase maps, the phase discontinuities which may be caused by object height 

steps or noise, can be identified and corrected. The maximum measurable phase jump 

depends on the original period of the grating and the angle between the two sets of 

grating lines. Alternatively, this is considered as the ratio of the equivalent periods of the 

two sets of grating lines. This has been confirmed by theoretical analysis, simulation, 

and experiment. 

Using this algorithm, only one image is required for each measurement and no grating 

translation is required. This provides an advantage over the previous techniques. This 

method is tolerant of discontinuities and noise in the phase map. It is faster and 

especially suitable for the measurement of three-dimensional object profiles in the 

presence of height steps and in cases where there is vibration. This new technique will 

find applications in many new areas, for example, for the inspection of components on a 

production line, or in robotic vision systems. 
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9.3 Recommendations for Further Work 

The theoretical and experimental analysis of absolute distance contouring and the phase 
unwrapping algorithm has been the fundamental aim of this research program. 
Although much investigation has been undertaken into the theoretical concepts, 
practical operation and analysis of data, much work is still required to develop the 
instrument to the stage where it may be successfully used as a stand-alone device 

capable of making accurate measurement of absolute distance and three-dimensional 

profile. 

Using the absolute distance contouring technique, it has been shown that discrepancies 

in the measurements obtained, are caused by errors in the parameters of the 

experimental system, measurement of the rotation angles, and imperfections contained 
in the grating. Imperfections in the grating will cause incorrect phase distributions in 

the fringe pattern. The accuracy of the rotation angles has a direct effect on the accuracy 

of the whole measurement. If the grating is to be relied upon in the future for this 

purpose, it is essential that its transmission profile be as accurate as possible. To achieve 

this, one possible arrangement is to make a high quality grating through the use of 

two mono-mode optical fibres forming two arms of an interferometer, producing a 

sinusoidal intensity distribution, or Young's fringes. The disadvantage of this method is 

that the available light output from such a system, is likely to be small. Alternatively, a 

grating could be manufactured using a non-optical technique. One of these methods 

would be to generate mathematically perfect fringes on a computer system, the grey- 

scale density of which would then be printed onto an appropriate substrate. The 

accuracy of this method is limited by the resolution of the printing device and it may be 

difficult to achieve the very high resolutions obtainable by modern photographic 

processes. 

One of the most interesting developments would be to use more advanced versions of 

C++ which can be used under Windows. The advantage is that they make more 

efficient use of computer memory for data storage so that the resolution and speed of 
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the measurement can be improved. The number of images required by the absolute 
distance contouring method can therefore be increased to improve the accuracy of the 
measurement. It is also more appropriate to run the program within a Windows 

environment, rather than under DOS as at present. The software associated with the 

system should, therefore, be redesigned as a Windows graphical user interface. 

The most obvious development for absolute distance contouring, is to integrate the 

system into a self-contained instrument to be used for real world applications. To 

achieve this, the system should be miniaturised, using components which are as small as 

possible, to minimise the size of the instrument. 

In the case of the phase unwrapping algorithm, since a crossed grating is used in the 

projection system, the quality of the grating is most important to ensure an accurate 

measurement. In practice, this is not so easy to achieve. It is necessary to improve the 

quality of the crossed grating to ensure the transmittance of the crossed grating is 

exactly equal to the sum of the individual transmittances of the two separate gratings. In 

this way, the accuracy of the measurement will be greatly enhanced. Once the crossed 

grating is manufactured, the angle between the two sets of lines, or the ratio of the two 

equivalent periods, as well as the maximum measurable phase jump, is fixed. A possible 

alternative technique to solve this problem is to project two interference fringe patterns 

of which the direction and period of the fringes can be adjusted. This could be achieved, 

for example, by using an optical fibre interferometer, producing fringes in two different 

directions. In this way, the ratio of the two equivalent spatial frequencies could be easily 

varied to suit the measurement of a particular range, or height step in order to optimise 

the accuracy. This type of technology lends itself very well to the manufacture of such 

optical systems using a modular approach. Fringe patterns can most readily be produced 

using laser diodes and pig-tailed fibres. The spacing of the fringes can be adjusted by 

altering the spacing between the fibre ends, which act as spatial filters, thereby 

producing clean interferograms. Rotation of the fringes is achieved by the simple 

expedient of rotating the fibres themselves. A suitable crossed grating could also be 

produced by using a system of three fibres, the characteristics of the pattern being 

dependant upon the relative positions of the fibres. Using three unpolarised fibre sources 
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would result in the production of a three-pattern system. ̀ Whilst this may be suitable for 

measurement purposes, it would require a significant amount of analysis to develop it to 

the stage of a usable technique. This should be examined as part of any future work 

programme. However, to generate a standard crossed grating system as described 

earlier, two of the fibre sources would need to use light which was polarised at 90 

degrees to each other, thereby producing no interference pattern. Introducing a third 

fibre source, such that all three fibre ends are oriented in a triangular arrangement, 

would allow the production of a twin pattern crossed interferogram, provided the third 

source was polarised at 45 degrees to each of the other light sources. A system such as 

this is currently under development elsewhere within the University and has shown 

significant promise. However, it does suffer from various problems, especially from the 

small amount of useful light which is available at the output of the system. The 

interferometer and camera should be packed together as a detecting head of the 

whole instrument, fixing many of the geometric relationships of the system. 
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Appendix 

Four-Map Absolute Distance Contouring 

Abstract 

A new method called four-map absolute distance contouring, based on the shadow 

moire technique, is described in this paper. In this system, the period of a 

sinusoidal grating is varied through its rotation, with the effect that the phase of the 

moire pattern is also changed. By selecting suitable rotation angles, four images at 

different grating positions are acquired, from which the absolute distance from 

the object to the grating can be determined. The theoretical analysis is presented 

for the method, which has been verified by suitable laboratory experimentation. The 

measurable range is directly proportional to the period of the grating and 

inversely proportional to the angles through which the grating is rotated. The 

results show that the method is fast and accurate. 

Phase-Unwrapping Algorithm in the Presence of Discontinuities 

Using a System with Crossed Grating 

Abstract 

A new phase-unwrapping algorithm for the phase map containing discontinuities by the 

use of a system with crossed grating is described in this paper. A crossed grating is 

projected onto the object in the usual way, the deformed grating image acquired is 

Fourier transformed and the frequency spectra for the individual gratings are separated. 

Using both phase distributions which have different sensitivities, the correct phase values 

in the presence of discontinuities, especially those caused by the object with height steps, 

can be obtained. This algorithm is fast and accurate. The results of the measurement 

of a three-dimensional object with height steps are presented. 
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Three-map absolute moire contouring 

Xinjun Xie, John T. Atkinson, Michael J. Lalor, and David R. Burton 

In the shadow-moire system, the period of the grating is varied by rotation of the grating, so the phm,, 
of the moire pattern is changed as well. By the selection of suitable rotation angles, three images at different positions of the grating are acquired to obtain the absolute distance from the object to the 
grating. A theoretical analysis is presented for the method, and some experiments have been done to 
verify the theoretical analysis. The results show that the method is fast and the accuracy is better than 
10 µm. The measurable range is directly proportional to the period of the grating and inversely 
proportional to the angles at which the grating is rotated. © 1996 Optical Society of America 

Key words: Three map, absolute moire contouring, projection moire, shadow moire, phase shifting, 
sinusoidal intensity grating, rotating grating. 

1. Introduction 
In the past decades, moire techniques have been 
widely used as a simple and powerful means of three- 
dimensional shape analysis for various applications, 
including contouring large objects and living bodies, 
obtaining differences in object shapes, etc. 1-10 There 
are projection-moire and shadow-moire methods for 
determining the objects' contouring. Although 
shadow moire suffers certain limitations, the main 
benefits of this method in terms of potential accuracy 
tend to outweigh these problems. The main limita- 
tion of shadow moire is that the measurement-field 
size is limited by the cross-sectional size of the grat- 
ing itself. There are also potential problems arising 
from issues such as the diffraction effect, but this 
occurs only when the grating is some distance from 
the object being measured or the grating spacing is 
fine. 

Several techniques have been introduced to in- 
crease the accuracy and resolving power of the 
contouring method. 11-14 Projection moire itself be- 
comes a phase-shifting method by the use of one or 
two gratings in the system. Also, some investiga- 
tions have been done by the use of the interference 
fringes of a laser to replace the projection of the grat- 
ing15 and by the use of the rotatable polarizer for 

The authors are with the Coherent and Electro-Optics Research 
Group, Liverpool John Moores University, Byrom Street, Liverpool 
L3 3AF, United Kingdom. 
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phase shifting. 16 However, it could be difficult to 
control the phase of all fringes precisely in a shadow- 
moire system, as in a projection-moire system. In 
recent years a few techniques'7-22 have been used in 
shadow moire to vary the phase of the moire pattern 
by a change in the distance between the grating and 
the camera, or between the camera and light source, 
and by the movement of the object or grating verti- 
cally to get a few frames phase change. All of these 
methods need accurate control of the movement. 

Here, we propose one trial to apply phase shifting 
to the shadow-moire process by rotation of the grat- 
ing. When the grating is rotated, the period of the 
grating, as well as the phase of the moire pattern, is 
changed. By rotation of the grating to three differ- 
ent positions, three moire patterns with different 

phase distributions can be obtained. The absolute 
distance from the object to the grating and the object 
height distribution can be obtained directly. The ex- 
periment has verified the proposed method as a fist 

and accurate method. 

2. Theoretical Analysis 

Figure 1 is a diagram of the absolute moire- 
contouring arrangement. The sinusoidal wave- 
intensity grating is mounted on a bearing such that it 

can be rotated about an axis normal to the plane of 
the rulings. The object is illuminated by a light 

source, which need not be coherent. The shadow of 
the grid is cast onto the surface through an angle (I. 
Hence the shadow on the object is shifted in the y 
direction by a distance z(x, vºtan ur relative to the 

grating. Light from this scene passes through ai 

grating and a lens, forming an image in the region of 
the sensor, as depicted. The light source and the 



--l- 

zo 

Z 

Fig. 1 

lens are the same perpendicular distance zo from the 
grating. Together with the object point at z they 
define a plane. The intersection of this plane with 
the grating defines the line along which the period p 
of the grating is measured. This line also serves as 
the datum for the rotation of the grating. When the 
rulings are parallel to it, the angle 0 is zero. The 
system can be analyzed as follows. 

For a sinusoidal wave grating, the transmission 
function is 

11 2Tr 
T(y) =2+2 sin y (1) ýpo 

where po is the period of the grating. The intensity 
incident on the object at point z may be represented by 

T(y-ztan a)=T y- 
zys (2) 

z+ zo 

The observed moire pattern M can be found by the 
multiplication of Eqs. (1) and (2): 

ZYS M=IoT(y)T 
. Y-z+z01 

The intensity of the moire pattern can be written as 

Io 2'rr 2ir zys M=4 1+sin( P-y + sin p y- Z+z 
0 

1 2'r zyG 1 2w zys 
-2cos p 

2y-z+z +2cos P Z+Z 
00 

As the grating is rotated at an angular velocity w, th(. measured period of the grating changes such that 

Po 
P= - e=wr, ýº sin 0 

So Eq. (4) can be rewritten as 

io 1 (2Tr ztil, M4 1+2cos 
P0 Z+z 

sines ý6) 
0 

So at three different position of t+, we can get different 
values of P, as well as M: 

Y 

Ml' = K' 1+ k" cos 
27r zy'- 

sin H, , (; (po z- z� 

M2' = K' 1+ k" cos 
21T zv, 
- sin H, (8) Poz+zo 

M3' = K' 1+ k" cos 
271 

-- 
zys 

- sin N, ,(9 
(po 

Z+ Z� 

where K' = I0/4 and k" = 1/2. 
If we let A= sin 01, B= sin 02, C =sin fº,,, and 

2, iT zy, 
POZ+zo, 

then we get 

M, ' - M2' 
_ 

cos(AD) - cos(B(D) 
M2' - M3' cos(Bt) - cos(C(D) 

A+B A-B 
sin 2 (D sin 2 4)) 

B+C B-C 
sin 2- (sin 2 (U 

(10) 

(11) 

If we letA +B = 2(B + C) andA - B=B - C. we 
have A= 5C and B= 3C. So Eq. (11) become., 

M,, _M2, =2 cos(0.4Aý). (121 M2' 
- M3' 

For convenience, let 

H=0.5* (1: ý' 

Then we can have 
(3) 

where Io is the amplitude of the incident light inten- 
=1 cos '(H) 

. 
(1 t 

situ. The contour item could be expressed as 0.4A 

M' -'O 1+1 cos 
(21T z. (4) From Eqs. (10) and (141, for simplif: \-ing the expres- 

42Pz+ zo sion, assume that z� > z, then the object height could 

10 December 1996 / Vol. 35, No. 35 / APPLIED OPTICS 6991 

. 
Schematic diagram of absolute moire contouring. 
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be calculated as 

Pozo 
-ý(ý (15) z=- cos 0.8Try, A 

In Eq. (15), Po, zo, and ys are known values of the 
experiment setup, so if we choose the value of A(01), 
then the value of z can be calculated from Eqs. (13) 
and (15). From Eqs. (12) and (13) we can see that H 
varies between -1 and 1 as a periodical function of 
the assumed value of z, and the phase t varies as a 
periodical function of the assumed value of z as well. 
So if we use the 1 values in Eq. (15), the relation 
between the calculated and assumed values of z is 
similar to that of (D. This means that, as the as- 
sumed value of z increases, the calculated value of z 
varies from zero to a maximum value zmaX, then de- 
creases to zero periodically. The value of z,,,. can be 
obtained from Eq. (15) when H= -1 as 

Zmax _ 
Poz0 

(16) 
0.8ys sin(0l) 

From the above analysis we can see that this 
method couldn't be applied directly to the measure- 
ment of an object height unless the maximum height 
of the object were less than or equal to zm. This is 
because, when cos-1(H) varies from zero to Tr, there is 
a linear relation between the calculated and assumed 

10 

1C 

30 -- -- 

20 

10 

(a) ZO-mm 

001 
--^- 

-001 

-0 02 p1- -I 23aS6 
(a) Z4M 

0.02 

0.01 

0 
-"J 

01 
20 30 40 50 60 70 60 90 

(b) ., a. e. ¢.. 
Fig. 4. Error in the value of z, caused by the error in the mea- 
surement of 0, for Po = 1.0 mm, zo = 450 mm, and v, = 100 mm: 
(a) 01 = 90°, 091 = 0.05°, and z= 0-5.625 mm; and N H, - 20-9(1°, 
A6 = 0.05°, and z=5.0 mm. 

values of z. So we can use this method for some 
limited object-height measurements. When we 
have values of P0 = 1.0 mm, zo = 450 mm, and v, _ 
100 mm, then we see the relation of the calculated 
and assumed values of z for the first linear part (z 
from zero to zmax - 5.625 mm, in this case) as drawn 
in Fig. 2(a). Figure 2(b) shows the difference be- 
tween the calculated and assumed values of z; it can 
be seen that the difference is very small. 

From the theoretical analysis, we also found that 
zmax is directly proportional to the grating's period P0 
and the distance from the camera to the object zo, and 
it is inversely proportional to the angle 01 and the 
distance from camera to the light source y4. From 
Eq. (16) we obtain the relations among zmax and zo, 
Po, ys, and A(01), which are shown in Fig. 3. So we 
can get different values for zn18X by choosing different 
parameters of the experiment setup. But it is con- 
venient to choose the angle 01 to get the required 
value of zmax for a certain height or depth of the 
object, e. g., when 01 = 90°, 30°, 10°, Zmax = 5.625, 
11.25, and 32.393 mm, respectively, under the condi- 
tions of zo = 450 mm, Po = 1.0 mm, and y,, = 100 mm. 

From Eq. (15) we can see that any errors from the 
experimental setup, the period of the grating, or the 

rotating angles will cause an error in the results. 
Here we consider only the effects from the rotating 
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E 
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Fig. 5. Diagram of the absolute moire-contouring instruments: 
(1) grating, (2) bearing, (3) object, (4) micrometer, (5) stepper mo- 
tor, (6) control board, (7) monitor, (8) computer, (9) CCD camera, 
(10) aperture, (11) lens, and (12) light source. 

angles. If the error A01 is 0.05° when 01 = 90°, Po = 
1.0 mm, zo = 450 mm, ys = 100 mm, and 02 and 03 are 
correct, then we see the simulated error Az, which is 
shown in Fig. 4(a). When the value of z is near that 
of z,,,. (here it is 5.625 mm), the maximum value for 
Oz is approximately 15 µm. But if z 5.5 mm, then 
Az is less than 1 µm. From Fig. 4(b) it can be seen 
that the errors caused by the same value of X91 are 
related to the value of 01. When 01 is smaller than 
30°, Oz is inversely proportional to the value of 01. 
When Al = 20° and z=5.0 mm, Oz is approximately 
16 µm. And Az is between ±4 µm when 01 is in the 
range of 30° to 90°. Also, if the errors of 01,02, and 
03 are same, e. g., 00 = 0.05°, and under the same 
conditions as given for Fig. 4(a), the maximum value 
of Oz is less than 0.001 µm. So for the measurement 
of certain-height objects, to reduce the error of the 
measurement, a suitable rotating angle should be 
chosen. 

3. Experiment and Results 
Figure 5 shows a schematic diagram of the experi- 
mental system used for the three-map absolute moire 
contouring. The whole experimental process is con- 
trolled by specially designed software. The sinusoi- 
dal intensity grating is mounted on a bearing rotated 
by a stepper motor. The object is located behind the 
grating and illuminated by a white light source (Mod- 
el IL 410 illumination system, AG Electro-Optics, 
Ltd. ). The distance between the object and grating 
can be adjusted by micrometer intervals. The 
moire-contour pattern is focused by the lens and 
sensed by the CCD camera (Model CCIR mono- 
chrome CCD camera, COHU, Inc. ). The computer (a 
PC 486DX2) was equipped with an ITEX variable- 
scan frame grabber (Model VFG V1.0). The analog 
signal from the camera was converted to a digital- 
format signal and then stored in memory for process- 
ing. By the rotation of the grating to three different 
positions, three images are captured. The rotation 

(a) 

(b) 

(c) 
Fig. 6. Images of the concave object obtained with the grating at 
different positions: (a) 9, = 36.87°, (b) Hl = 21.10°, and (c) H_, 6.89°. 

of the stepper motor can be controlled to an accuracy 
of better than 0.01°. 

In our experiment, a few concave and convex ob- 
jects were used as samples to verify the above- 
described theoretical analysis. The concave objects' 
depths are 1.858,3.418, and 5.210 mm, and the con- 

vex objects' heights are 1.470 and 3.018 mm, as mea- 

sured with a mechanical gauge. In the experiment, 
we set z0 = 450 mm, y, = 100 mm, Po = 0.763 mm, 
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Fig. 8. (a) Results along the central line of the concave object as 
measured with the contact gauge (+) and the moire method (-) 
and (b) the difference of the results in (a). 

A=1.0,0.8,0.6,0.4,0.2,0.1, and Zmax = 4.29,5.36, 
7.15,10.73,21.46,42.92 mm. For example, when we 
have A=0.4, the first image is acquired at 01 = 
23.58°, then the grating is rotated to the next posi- 
tions, 02 = 13.89° and 03 = 4.59°, and another two 
images are grabbed. The image is divided into 64 X 
64 pixels. Equations (14) and (15) are used for the 
calculation of the phase and the absolute distance. 
The result obtained can be output in tabular or 
graphic format. The whole process of one measure- 
ment takes only 3 s. 

Figure 6 shows the images of the concave object 
when the grating is at different positions: 01 = 
36.87°, 02 = 21.10°, and 03 = 6.89°. Figure 7 illus- 
trates three-dimensional plots of the concave and 
convex objects from the experimental results. The 
results obtained with the mechanical gauge and the 
moire method along one central line of the concave 

Table 1. Measurement Results Obtained by the Moire and Mechanical 
Techniques" 

Object Shape and Number 

Concave Concave Concave Convex Convex 
Technique 1 2 3 1 2 

Moire 1.862 3.414 5.215 1.469 3.019 
Mechanical gauge 1.858 3.418 5.210 1.470 3.018 

"The measurements are in units of millimeters. 

object and their differences are shown in Fig. 8. The 
measured objects' depth or height agreed very well with that measured by the gauge. The difference 
between them is a few micrometers, as shown in Fig. 
8(b) and Table 1. 

4. Conclusion 

We have proposed a new method for absolute moire 
contouring by the rotation of a grating for the mea- 
surement of the three-dimensional profile of an ob- ject. It is verified by experiment that three-map 
absolute moire contouring is a fast and accurate 
method. One measurement takes only 3 s. The 
measurement accuracy of less than one hundredth of 
a micrometer in theory and a few micrometers in the 
experiment have been obtained for testing concave 
and convex objects. The absolute distance between 
the object and the grating can be acquired directly. 
The measurable range is directly proportional to the 
period of the grating used and inversely proportional to 
the angle at which the grating is rotated. Choosing 
different periods for the grating or rotation angle yields 
different measurable ranges. The rotating angle can 
be controlled to high accuracy, better than 0.01'. The 
whole experimental process is controlled by specially 
designed software. This method may be a more effi- 
cient means of three-dimensional profile measurement 
for some relevant application areas. 
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ABSTRACT 

A novel absolute moire contouring principle and the associated 
experimental system is described. This system enables the absolute 
distance from the object point to the reference plane and the height of 
the object to he measured directly to a high degree of accuracy. It is not 
necessary to judge the hills or valleys to decide the object's shape. A %eKw 
objects were used as samples to illustrate the procedure. The objects' 
height, found by using the moire technique, compares very well with 
that found by using a mechanical gage. © 1997 Elsevier Science Ltd. 
All rights reserved. 

1 INTRODUCTION 

Measurement of the 3D surface geometry of an object has been 

extensively studied because such topographic information is needed in 

quality control, robotics, CAD/CAM, medical diagnostics, solid modeling, 
computer vision, metrology, and many manufacturing applications. The 

use of optical methods (moire, holography, etc. ) is a desirable alternative 
to micrometers and dial gages. It is a non-contact method, acquires data 

rapidly and has a high and adjustable sensitivity. One promising optical 
method is moire contouring for which the experiment set-up is quite 

simple. 
An early application of the moire method was demonstrated in 1925. ' 

The method was reintroduced by a number of authors at a later time, 2-4 

attempting to use the formation of moire patterns by the projection of the 

shadow of a grating on a surface with collimated light. In the last 20 years, 

a group of authors have generalized the conditions of observation and 
149 
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illumination, 5-6 and automatic data processing of shadow pattern has been 
developed. '-' 3 

Early methods suffer from some difficulties. Firstly, the observation of 
moire fringe contours does not allow the direct determination of whether 
a fringe pattern indicates a hill or a valley. This judgment can only be 
made if one knows the object's shape. Surface height data betwen fringes 
must be extrapolated from the available data. This type of determination 
could not be applied to an unknown object or in automatic processing. 
Secondly, the absolute distance between the object surface and the 
reference plane can only be measured by positioning a continuous object 
(e. g. a wire) from the surface to the reference plane and counting the 
fringes along it. The above drawbacks may not be serious for many 
applications. However, there are limitations for many applications. This 

paper describes a method called absolute moire contouring, which can 
overcome the drawbacks of the previous moire techniques. 

2 ABSOLUTE MOIRE CONTOURING 

Moire contouring is a well documented and widely used technique. "' A 

typical arrangement for producing good quality fringe maps, is similar to 

that shown in Fig. 1. 

light source image plane 

- -- grating 

Fig. 1. Shadow moire contouring. 



Absolute moire contouring 

T 
ZO 

Y 

151 

Figure 2 is a schematic diagram of the absolute moire contouring 
apparatus. The sinusoidal wave intensity grating is mounted on a bearing, 
such that it can be rotated about an axis normal to the plane of the 
rulings. The object is illuminated by a light source which need not be 
coherent. The shadow of the grid is cast onto the surface through an angle 
a. Hence the shadow on the object is shifted in the y direction by a 
distance z(x, y) tan a relative to the grating. Light from this scene passes 
through a grating and a lens, forming an image in the region of the sensor, 
as depicted. The light source and the lens are the same perpendicular 
distance, z,,, from the grating. Together with the object point at z they 
define a plane. The intersection of this plane with the grating defines the 
line along which the period, p, of the grating is measured. This line also 
serves as the datum for the rotation of the grating. When the rulings are 
parallel to it, the angle 0 is zero. The system can be analyzed as follows: 

Let the transmission function of the grating be given by 

T(v) =11 +sin (Dry ý1) 
2 PJ 

Fig. 2. Absolute moire contouring. 
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where p is the period of the grating. The intensity incident on the object at z may be represented by 

T(y-ztana)=T(y- zys 
2 

Z+ zo) 
The observed moire pattern, M, can be found by multiplying the 
expressions: 

l M= T(Y)T Y- 
ZY., 

z+1 zo 

+ sin 
r2ý 

y- 
Zy` l =A1+ sin 

(2Iry) 
1 

PL Jý P ., +I Z(, 

A1 
+sin 

21ry 
+sin - 

Zy' 
4P P) [27t( +, ) ýý 

I 
cos 

21r- zti,, cos 
21r zy` ll 

+I 

2[ (2y (3) P+ IJ 2C+ Iý Z z� Pzz 

where A is the amplitude of the light intensity. 

The last term in eqn (3), 
A 

cos 
(21r +, has a single unknown, z, 8 Pz z� 

and yields contour lines on the surface. 
As the grating is rotated at an angular velocity, w, the measured period 

of the grating changes such that: 

P= 
P' 

9= wt (4) 
sin 0 

Therefore the above contour term can be rewritten as: 

cos 
l2, zy, M' =A sin (5) 

8 P� z+ Z( 

This equation represents a modulated function with respect to time. Each 

peak of the output trace corresponds to an integer fringe number n. These 
integer values of n occur at values of 9� at which the contour depth of the 
system is the nth fraction of z. 

It follows from eqn (5) that the value of 8 at which the fringe number iý 

n(9�) is: 

tip. 

Sin 9� = (:. + :. ýý) 
((') 

"1' 
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So that z can be found from 

z 
z�n P, 

y, sin 9�-nP� 

Now z,,, y� and P� are known values of the optical arrangement. To 
calculate z from the sensor output a suitable value of n is chosen and the 
value of 0 at which it occurs is measured. 

From eqn (6), if assume a= n/4, we have 

sin g� = 
nP� 

(8) 
z 

From eqn (8), consider that the value of z is changed by Az from ;., to z,, 
then 9,,, and 9�2 will change as follows: 

sin 0, = sin 0,,, 
I\ 

1- 
A` 

(9) 
Z 

and if 0,,, = 90° 

8- sin '(1 - 
AX) 

If a grating of period 500 µm is used, and z has a initial value of 125 µm 
(so that °� ) 25 is 90°), then increasing the value of z by 0.1 µm would 
cause 9� 

_0.25 to change to 87.7°. This means that the technique is very 
sensitive if n is chosen such that 9� approaches 90°. Figure 3 is a typical 
time varying output. 

2 
18 

16 

14 

12 

1 

08 

06 

04 

0.2 

o0, 120 20 40 60 so 1W 
Wit 

Fig. 3. A typical time varying output. 
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3 EXPERIMENTAL SYSTEM 

Figure 4 is the schematic diagram of the experiment system used for 
absolute moire contouring. The grating was a sinusoidal wave intensity 
grating and was mounted on a bearing rotated by a stepper motor. The 
object was illuminated by a light source (white light source-IL 410 
illumination system). The object was located behind the grating. The 
distance between the object surface and the reference plane (grating) 
could be adjusted by a micrometer. The moire contour pattern was 
focused by the lens and the image was taken by a CCD camera (CCIR 
monochrome CCD camera-COHU). The computer was equipped with 
on ITEX Variable-Scan Frame Grabber (VFG V1.0). The analog signal 
from the camera was converted to a digital formatted signal then stored in 
computer memory. By rotating the grating step by step, the images at 
different positions (0) of the grating were grabbed by the frame grabber. 
Using a specially designed software, all the data were processed and the 
results were displayed in tabular or graphical formats. The moire fringe 
pattern images were divided into pixels. When the grating was at the 
position of 0= 0°, the first image was grabbed into the computer. Then by 

rotating the grating from 0° to 0� step by step, more images were taken. 
After all the images were acquired, the background of the signal was 
removed and the signal normalized, then the phase changes for each step 
of the motor's rotation and the total fringe number for each pixel were 
calculated, and eqn (7) was used to calculate the absolute distance 
between the object and the grating. By finding out the maximum distance, 

the object's height which is relative to its deepest point equals max (z) - z. 

Fig. 4. Absolute moire contouring instrument: 1-light source, 2-grating, 3-hearings, 

4-object, 5-motor, 6-CCD camera, 7-lens, 8-computer, 9-monitor. 
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4 EXPERIMENTAL RESULTS 

In this experiment, the period of the grating is 0.763 mm, y, = 100 mm, 
z,, = 420 mm. The image was divided into 64 x 64 pixels. The grating is 
rotated from 0° to 30°. The rotation of the stepper motor was controlled 
by the program. For one measurement, 21 images were taken. The data 

were processed as described above. 
Concave and convex objects of different dimensions were used as the 

samples in the experiment. The object's surfaces were painted white to 
obtain a good image. Figure 5 is a photograph of the moire fringe pattern 
of the concave-convex, and concave objects at 0= 30°. The measured 
object surface area was about 10 cm2, limited by the size of the hearing. 
The measuring time was about 16 s. Figure 6 shows the 3D plots of the 

(b) 

Fig. 5. The photos of the object's moire fringe pattern: (a) conca\c-Convex object: 

(b) concave object-both (a) and (b) at 9= 30°. 
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Fig. 6. (Continued. ) 

objects used in the experiments. In Table 1, the height of the convex 
objects and the depth of the concave objects, and the groove measured by 
absolute moire contouring and by the mechanical gage are listed. The 
height and depth relative to the flat surface of the concave-convex object 
are listed in the Table 2. 

TABLE I 
The Height/Depth of the Convex/Concave Objects Measured by Moire Technique and 

Mechanical Gage 

Concavel Concave2 ConvexI Conve_r2 Groove 

Moire 3.414 1.865 3.010 1.461 2.676 

technique 
Mechanical 3.417(8) 1.858(6) 3.017(9) 1.37O(7) 2.667(7) 

gage 

TABLE 2 
The Height and Depth of the Concave/Convex Object 

Measured by Moire Technique and Mechanical Gage 

Height Depth 

Moire technique 1.412 1.71 1 

Mechanical gage 14321(2) 1.718(5) 

00 1V 
Y axis-mm X axis-mm 

concave-convex 
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From the above results, it can be seen that the values of z found by 
using the moire technique, compares very well with that found by using mechanical gage. 

5 CONCLUSION 

It has been demonstrated that the absolute moire contouring system has 
some important advantages. It can distinguish between hills and valleys in 
the object's shape. The absolute distance between the object point and the 
reference plane is obtained directly. The whole experiment process is 
controlled by the computer, and one measurement only takes 16 s. Objects 
with different shapes and dimensions have been used as examples in the 
experiments. The results agree very well with that found by a mechanical 
gage. The difference of the object's height or depth from two methods is 
less than 10µm. The set-up is simple and it is an accurate method. The 
measurable height or depth range of the object is proportional to the 
period of the grating used. Due to the limits of the contour depth, if the 
object's relative height is too big, the measuring accuracy will be lower. 
Also if the grating is not perfect, the measuring accuracy will be affected. 
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ABSTRACT 

Effects on the absolute moire contouring systems from using different 
period and profile gratings and rotating angles are described in this 
paper. It was found that by choosing a different period of the grating or 
the rotating angle, different resolution and accuracy of the measurement 
can be obtained. So, for objects with different height or depth, different 
period of grating or rotating angle should be chosen to ensure accuracy 
of the measurement. The square wave intensity grating with small period 
can be treated as a sinusoidal wave intensity grating in the absolute 
moire contouring system. A few objects with different shapes and 
dimensions have been used as samples to verify the above conclusion. 
© 1997 Elsevier Science Ltd. All rights reserved. 

1 INTRODUCTION 

Three-dimensional (3D) shape measurement by non-contact optical meth- 
ods has been extensively studied because of its importance in automated 
manufacturing, component quality control, medicine, robotics and mo- 
delling applications. Among the various types of methods, i. e. light 

scattering, speckle, holography, moire etc., the moire method is popular. 
The early application of moire method can be traced back to 1925. ' In 

recent years this method has attracted the attention of many workers as an 
attractive alternative for measuring the shape of 3D objects . 

2-1 The 

methods employed were variations of the principles of shadow moire and 

projected fringes, with and without phase shift technique. But in the 

previous methods, it was not easy to decide whether a contour fringe 
indicates a hill or a valley or to calculate the absolute distance from the 

247 
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object's surface to the reference plane unless one knew the shape of the 
object and used additional techniques. 

We have proposed a new method-absolute moire contouring, '8 which 
allows a direct determination of hills or valleys and the absolute distance 
measurement between the object's surface and grating, and the object's 
height, without any additional information being needed. In this paper the 
effects on absolute moire contouring by using the gratings with different 
profile and period and rotation angle are discussed. 

2 EXPERIMENT PRINCIPLE 

Figure 1 is a schematic diagram of the absolute moire contouring 
arrangement. The grating is mounted on a bearing which can be rotated 
about an axis normal to the plane of the rulings. The object to be tested is 
located behind the grating and illuminated by a light source which need 
not be coherent. The shadow of the grid is cast on to the object's surface 
with angle a. The moire fringe pattern is observed through the grating in a 
direction perpendicular to the plane of the grating's rulings. 

I 
zo 

1 

S 

Y 

Fig. 1. Schematic diagram of absolute moire contouring. 
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If T (y) represents the transmission function of the grating, the intensity 
incident on the target at z may be represented by 

T 
(y 

_zY., 
) 

z+ zo 
The observed moire pattern, M, can be found by multiplying these 
expressions 

M= T(y)T (y 
-z 

ys ) 
z+zo 

(1) 

For a square wave (Ronchi) grating, the transmission function is given by 

T(Y) =1+2 2 7r 

sin[ (2m + 1) 
P 
pryl 

J 
2m+1 

(2) 

The moire contouring term resulting from substitution of eqn (2) in eqn 
(1) may be written as: 

cos(2ý(2m + 1) ysz 

M=1+ 
?m 

-o 

p 
(2m + 1)2z+z0 

(3) 
n 

As the grating is rotated at angular velocity, w, the measured period of 
the grating changes such that 

P= 
PO 

9=wc 
sin 0 

So eqn (3) can now be rewritten as: 

2 
M=1+ 2> Jr 

m=o 

cos 
27r 

(2m + 1)ys Z 
sin cot] 

Po z+ zo 
(2m + 1)2 

(4) 

(5) 

This equation represents an `extended' triangular wave with respect to 

time. Each peak of the trace corresponds to an integer fringe number n. 
These integer values of n occur at values of 9� at which the contour depth 

Oz of the system is an nth fraction of z. 
It follows from eqn (5) that the value of 9 at which the fringe number is 

n(9�) is 

sin 6� = 
nP� (Z + zo) (6) 
zys 
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so that z can be found from 

z_ 
zonPo 

(ý) 
Ys sin(6�) - nPo 

For the sinusoidal wave grating, the transmission function can be given as 

T(Y) +2sin (2'ty (8) 

P) The same expression as eqn (6) has been obtained for the sinusoidal wave 
grating. '8 

Now z, y, and Po are known values of the optical arrangement. To 
calculate z from the sensor output a suitable value of n is chosen and the 
value of 0 at which it occurs is measured. 

3 EXPERIMENTAL PROCEDURE AND SIGNAL PROCESSING 

The experimental system of absolute moire contouring is shown in Fig. 2. 
The whole experimental process is controlled by specially designed 
software. The moire fringe pattern observed through the grating is sensed 
by a CCD camera (CCIR monochrome CCD camera-COHU). The signal 
from the camera is digitised and stored in the frame memory. By rotating 
the grating step by step, the images at different positions (0) of grating 

12 

Fig. 2. Diagram of absolute moire contouring instruments: (1) grating; (2) bearing; (3) 

object; (4) micrometer; (5) stepper motor; (6) control board; (7) monitor; (8) computer; 
(9) CCD camera; (10) aperture; (11) lens; (12) light source. 
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are captured. After capturing all required images, the grey level data of 
one pixel from a different image is moved to one array, first removing the background from the data, then calculating the total phase varying from 
0= 0° to 9� as well as the fringe number. The distance z from the object to 
the grating is calculated from the eqn (7). After the maximum z is found, 
the object's height can be obtained. A function to eliminate the random 
noise is used in the program. Figure 3 illustrates the procedure of the 
experiment and signal processing. 

4 EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Results 

In our experiments, the whole image is divided into 64 X 64 pixels. Only 
60 X 60 pixels have been used and 21 images were taken for one 
measurement. One measurement takes about 16 s. The gratings used were 
square wave gratings (0.508,1.386 and 1.800 mm) and sinusoidal wave 
gratings (0.763,0.985,1.360 and 1.800 mm). The grating rotated angles 
were 15,30,60 and 90°. The experimental process control and data 
processing are as described in Section 3. Concave and convex objects with 
different dimensions were used as the samples in the experiment. All the 
objects' surfaces were painted white to increase reflectance. Three- 
dimensional plots of four typical objects used are shown in Fig. 4. Figure 5 

shows the side view of Figs 4(a) and (b). Table 1 lists the objects' 
maximum height or depth obtained by contact gauge and the absolute 
moire contouring system. 

4.2 Analysis 

The gratings with different period 
From eqn (7) we can see that z is directly proportional to the period of the 
grating used when fringe number, n, is given, and the relation between z 
and Po is non-linear. Figure 6(a) shows the relationship. For different 

periods of the gratings, different accuracy and resolution of the measure- 
ment can be obtained. Table 2 lists the z values for different period of 
gratings when n=1. From the table we can find that resolution of the 

system is inversely proportional to the grating's period. This means that 
for certain z, the smaller the period of grating used, the more the phase 
(fringe number) varies. If we assume the object's maximum depth or 
height is zh =5 mm, the shortest distance from the object to the grating is 

zo. s, z= Zh + zo. 5, and the grating rotates 20 steps for one measurement, 
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Fig. 3. The block diagram of the experimental procedure. 
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the fringe number, n (phase varies, (D), and the average phase variation, 
M), for one step are listed in Table 3. So if we consider that the phase 
change (the phase difference between two adjacent images for one pixel) 
must not be too big for the motor rotating one step, the large period of 
grating is better. This is because when the phase difference between 
adjacent images is too big, it may result in missing the maximum or 
minimum grey level values which decide the phase values. 
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Fig. 4. Three-dimensional plots of concave and convex objects. 
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Gratings with different profile 
Both square and sinusoidal wave gratings have been used in our 

experiments. The most important aspect of using different profiles of 
gratings is how to remove the unwanted items from the whole image. For 
the sinusoidal wave grating, the whole signal consists of four items in 
which three items are unwanted. Most of these items can be removed by 
defocusing the image and lowpass function. But for the square wave 

TABLE 1 
The Objects' Maximum Height/Depth Obtained by Contact Gauge and 

the Moire Method 

Shape of Height /depth Height/depth 

objects (contact (moire 
method) method) 

(mm) (mm) 

Convexl 3.017 3.010 
Convex2 1.470 1.461 
Concavel 1.858 1.865 
Concave2 3.102 3.101 
Concave3 3.417 3.414 

Concave4 5.210 5.206 
Concave5 7.600 7.578 

Groove 2.661 2.668 
Concave and convex 1.421/1.690 1.412/1.698 

X. Xie et al. 

d-U N 15 10 50 
(a) Y axis-mm 

Z5 20 15 10 50 
(b) Y axis-mm 

Fig. 5. Side view of Figs 4(a) and (b). 
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Fig. 6. The relation of z with n for different P. and 9,,, zo = 450 mm, yJ = 100 mm: (a) 
6= 30° and Po = 0.5,1.0,1.5,2 mm; (b) Po =1 mm and 0= 15,30,60,90°. 

TABLE 2 
Values for Different Period of Gratings and Rotating angles, when 

n=1, z0 = 420 mm and ys = 100 mm 

Po/O 15° 30° 60° 900 
0.508 8.400 4.311 2.478 2.142 
0.763 12.758 6.508 3.733 3.229 
0.985 16.616 8.440 4.830 4.178 
1.360 23.293 11.743 6.699 5.792 
1.800 31.393 15.684 8.915 7.699 

grating, it is more difficult to eliminate the unwanted items from the 
signal than the sinusoidal wave grating. From our experience, if the period 
of the square wave grating is not too large, say less than 1.0 mm, it could 
be treated in the same way as a sinusoidal wave grating and used in our 
experiment, and the unwanted items could be removed in the same way as 

TABLE 3 
Values of n, 1 and 04) when z,, = 5.0 mm, zo = 420 mm, y, = 100 mm, 6� = 30° 

and Po = 0.50 and 1.80 mm 

Po Z,, (mm) zo-5 (mm) z (mm) n 1) (deg) Al) (deg) 

0.500 
1.800 

5.000 
5.000 

2.110 
7.698 

7.110 
12.698 

1.721 
0.815 

619.8 
293.5 

30.99 
14.67 
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TABLE 4 
Values of n, 1 and M) when z,, = 5.0 mm, zo = 420 mm, ys = 100 mm, Po 

1 .0 mm and rotating angles are 15,30,60 and 90° 

9� zh (mm) zo. 5 (mm) z (mm) n 0 (deg) 4'P (deg) 

15° 5.000 8.274 13.274 0.845 304.2 15.2 
30° 5.000 4.242 9.242 1.124 404.8 20.2 
60° 5.000 2.439 7.439 1.561 562.1 28.1 
90° 5.000 2.110 7.110 1.722 619.8 30.9 

for sinusoidal wave gratings. We have tried to use the square wave 
gratings with periods of 1.386 and 1.800 mm; the unwanted items are 
difficult to remove. Although from theory if a square or circular aperture 
of certain dimensions is used with the square wave grating, the visibility of 
the primary fringes would be zero for some Os and unwanted modulation 
is zero, which is not easy to realise. 

Different rotating angles 
The grating rotating angle for one measurement affects the experimental 
results. From eqn (7) and Fig. 6(b) we can see the relation of z and O. 
The relation between z and 8� for n=1 is listed in Table 2. The bigger 0� 
is, the smaller is z and higher resolution, so for a given z, the bigger 9� is, 
the bigger is the phase (fringe number) variation. If the high object needs 
to be measured, the small angle grating should be rotated. Table 4 lists the 
values of n, C and z4 when the angles are 15,30,60 and 90° for 
zh =5 mm. This relation is similar to the relation for the different period 
of gratings. 

5 CONCLUSION 

We have used the absolute moire contouring experimental system to 
measure the objects with different shape and dimensions under different 

conditions-different period and profile of gratings and rotating angle, 9,,. 
It was found that this system can be used for the measurement of absolute 
distance between object and grating and the object's height directly 

without the decision of the `hills' or `valleys'. 
The accuracy of a few micrometres can be obtained. By changing the 

rotating angle or period of grating, different accuracy and resolution can 
be obtained. For different heights of object, a different rotating angle or 
grating with a suitable period should be chosen to ensure accuracy of the 

measurement. The square wave grating with period smaller than 1.0 mm 
can be treated as a sinusoidal wave grating and used in the absolute moire 
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contouring system. It takes about 16 s for one measurement. Because all 
the data depend on the image's grey level values, if the grating is not 
perfect the results will be affected. More improvements need to be made 
on eliminating the primary fringes and unwanted items from signals, and 
making the grating as perfect as possible and reducing the measuring time. 

REFERENCES 
1. Cline., M., Application of the moire to the study of mica deformations. Rev. 

D'optique, 4 (1925) 252-59. 
2. Idesaula, M., Yatagai, T. & Soma, T., Scanning moire method and automatic 

measurement of 3-D shapes. App!. Opt., 16 (1977) 2152-62. 
3. Heiniger, F. & Tschudi, T., Moire depth contouring. App!. Opt., 18 (1979) 

1577-81. 
4. Livnat, A., Kafri, O. & Erez, G., Hills and valleys analysis in optical mapping 

and its application to moire contouring. Appl. Opt., 19 (1980) 3396-400. 
5. Pirodda, L., Shadow and projection moire techniques for absolute or relative 

mapping of surface shapes. Opt. Engng, 21 (1982) 640-9. 
6. Halioua, M., Krishnamurthy, R. S., Liu, H. & Chiang, F. P., Projection moire 

with moving gratings for automated 3-D topography. App!. Opt., 22 (1983) 
850-5. 

7. Srinivasan, V., Liu, H. C. & Halioua, M., Automated phase-measuring 
profilometry of 3-D diffuse objects. Appl. Opt., 23 (1984) 3105-8. 

8. Cline, H. E., Lorensen, W. E. & Holik, A. S., Automatic moire contouring. 
Appl. Opt., 23 (1984) 1454-9. 

9. Lamy, F., Liegeois, C. & Meyrueis, P., Three-dimensional automated pattern 
recognition using the moire techniques. SPIE, 360 (1982) 345-51. 

10. Reid, G. T., Rixon, R. C. & Messer, H. I., Absolute and comparative 
measurements of three dimensional shape by phase measuring moire topog- 
raphy. Opt. Laser Technol., 16 (1984) 315-19. 

11. Atkinson, J. T. & Lalor, M. J., A novel approach to optical range finding. 
SPIE 701, ECOOSA `86 , 

Florence, 1986, pp. 237-43. 
12. Toyooka, S. & Iwaasa, Y., Automatic profilometry of 3-D diffuse objects by 

spatial phase detection. App!. Opt., 25 (1986) 1630-3. 
13. Engelhardt, K. & Hausler, G., Acquisition of 3-D data by focus sensing. 

App!. Opt., 27 (1988) 4684-9. 
14. Gasvik, K. J., Hovde, T. & Vadseth, T., Moire technique in 3-D machine 

vision. Opt. Lasers Engng, 10 (1989) 241-9. 
15. Engelhardt, K., Acquisition of 3-D data by focus sensing utilising the moire 

effect of CCD camera. App!. Opt., 30 (1991) 1401-7. 
16. Gruber, M. & Hausler, G., Simple, robust and accurate phase-measuring 

triangulation. Optik, 89 (1992) 118-22. 
17. Gardenas-Garcia, J. F., Zheng, S. & Shen, F. Z., Implementation and use of 

an automated projection moire experimental set-up, Opt. Lasers Engng, 21 
(1994) 77-98. 

18. Xie, X. & Atkinson, J. T., Absolute moire contouring. Opt. Lasers Engng 27 
(1996) 149-59. 


