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ABSTRACT

The thesis explores the potential of Genetic Algorithms (GAs) for optimising the

operation of electric power systems. It discusses methods which have resulted in

significant direct cost saving in operating an electric power system. In particular, the

thesis demonstrates the simple search procedure and the powerful search ability of GAs

in multi-modal, multi-objective problems, which are resisted by the most well known

conventional techniques. Special emphasis has been given to the effectiveness of the

enhanced genetic based algorithms and the importance of sophisticated problem

structures. Finally, the feasibilityand suitabilityof genetic based algorithms for power

system optimisations are verified on a real power supply system.

The basic requirement in operating a power system is to ensure that the whole system

is run at the minimum possible cost, and the lowest possible pollution level, while

reliability and security are maintained. These requirements have resulted in a wide

range of power system optimisation problems. In this work, a selection of problems

concerning operation economy, security and environmental impact have been dealt

with by Genetic Algorithms. These problems are in order of increasing complexity as

the project progresses: they range from static problems to dynamic problems, single

objective to multi-objectives, softly constrained problems to harshly constrained

problems, simple problem structure to more rigorous problem structure. Despite the

diversity, GAs consistently produce solutions comparable to conventional techniques

over the wide range of problem spectrum. It has been clearly demonstrated that a

sophisticated problem structure can bring significant financial benefits in system

operation, it has however added further complexity to the problem, where the best

result may only be sought from the genetic based algorithms. The enhancements of

Genetic Algorithms have been investigated with the aim of further improving the

quality and speed of the solution. They have been enhanced in two levels: the first is to

develop advanced genetic strategies, and this is subsequently refined by choosing

optimal parameter values to further improve the strategies. The outcome of the study

clearly indicates that genetic based algorithms are very attractive techniques for solving

the ever more complicated optimisations of electric power systems.
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CHAPTER
1

INTRODUCTION

1.1 THE ROLE OF OPTIMISATION TECHNIQUES IN

OPTIMAL OPERATION OF ELECTRIC POWER SYSTEMS

The electricity industry suffers from the fact that electricity cannot be stored (apart

from the limited storage available in pumped - storage plants), but must be generated

when required. In addition, requirements of frequency and voltage stability makes

necessary a rather precise matching between load (the demand on the system from the

consumer) and generation (the supply from the power station). Moreover, recent

public outcry for environmental protection makes it essential for a power system to

provide adequate and reliable electricity not only at the cheapest possible cost, but also

at the least level of pollution of the atmosphere. Therefore, electric power system

operation is among the most important and complex tasks in today's civilisation. It has

to involve many considerations. The basic requirement is to generate adequate

electricity to meet continuously changing customer load demand at the lowest possible

cost. Of equal importance is the need to reduce the pollution impact on the

environment which is mainly from thermal plant fuel emission. System security and

reliability constraints also have to be taken into account to provide high standards of

voltage stability and continuous supplies of electricity. Though interconnection of

power systems has improved the continuity of service and reliability, it has added

further constraints and complication related to stability and security. These

considerations form various optimisation problems for a power system engineer to deal

with [El-Hawary, 1979]. The typical problems include economic dispatch, reactive

power scheduling and allocation, maximum interchange, hydrothermal unit commitment

and dispatch, generation, transmission and distribution expansion planning, and
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maintenance scheduling, and many others. These problems become progressively more

complicated due to ever growing system size, stricter governmental and environmental

regulations, and increased requirement of system integration. Power industries face

great pressure to better utilise the existing network so as to defer power system

reinforcement. As a result, improved operation strategies are in great demand.

There emerge two directions for research which are important in achieving the goal of

optimal operation in power systems: one is towards the development and formulation

of a rigorous body of knowledge concerning problems of increased complexity; the

other is towards the development of powerful optimisation and computational

techniques. The optimal operation of power systems is strongly influenced by the

availability of advanced algorithms. The efficiency of an algorithm directly decides the

acceptability of optimal operational strategies once the problem formulation is certain.

Although there is extensive literature on how to effect algorithmic efficiencies [Sasson,

1974], it must be realised that conventional techniques (CTs), such as non-linear,

linear; quadratic, and dynamic programming, are not good enough to solve the

problem in all respects. Early experience showed that the CTs face difficulties in

dealing with the increased complexity of multi-modal, multi-objective, highly

constrained power optimisation problems, and limited either by convergence problems,

solution accuracy and/or computational efficiency. Furthermore, these techniques are

susceptible to unforseeable constraints and contingencies which occur in the field, and

the solution thus obtained is not robust and is case sensitive. Although the popular

dynamic programming technique is attractive in its ability in dealing with a variety of

problems, its applications remain successful only on moderate sized systems. It is

difficult to scale up due to the exponentially increased requirements of computing

memory and time with an increasing number of generators. Consequently, the

disadvantages of the CTs have provoked a strong requirement for a more accurate and

efficient algorithm to enable better utilisation of existing power systems. The research

work documented in this thesis is stimulated by such a growth demand, and offers

alternative Genetic Algorithm based approaches to the optimisation problems of

optimal economic operation in power systems.
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Genetic Algorithms (GAs) which are inspired from Charles Darwin's natural

evolutionary theory, 'survival of the fittest', have gained increasing recognition in many

engineering fields. This is largely due to its potential in handling complex problems,

where conventional techniques have not achieved the desired speed, accuracy and

efficiency. The major attraction of GAs lies in that the algorithms are computationally

simple yet powerful in their search for the global optimum. What is more, the

algorithms are not fundamentally limited by restrictive assumptions concerning

continuity, and/or the existence of gradient information, but allow non-linearities and

discontinuities to appear in the search space. GAs are thus potentially attractive

techniques for solving many practical difficult problems which are either impossible to

solv~ or are not easily solved by conventional means. Furthermore, the more complex

the problem is, the more benefit that one can get from GAs. Since the GA was first

introduced to solve reactive power scheduling in [Ajjarapu, 1991], many papers (

[Waiters, 1993], [Mori, 1993] etc.) have appeared to study the feasibilityand capability

of GAs over a broad range of power system optimisation problems. Researchers in this

field are active in two directions: one is further improving computational efficienciesof

the conventional Genetic Algorithms, another is seeking more application areas in the

system planning and operations. This thesis puts efforts into both of the research

directions with the aim of providing guidance in formulating robust, efficient and

flexible system operating strategies, where the search space is large, complex, and/or

poorly understood. Ultimately, costly redesigns can be reduced or eliminated.

1.2 MAJOR CONTRIBUTIONS OF THE THESIS

There are five major contributions documented in this thesis. The work has:

(1) Investigated the accuracy, efficiency and robustness of GAs over a selection of

power optimisation problems under various system and operational constraints.

(2) Investigated the possible performance enhancements with a number of advanced

Genetic based algorithms applied to Economic Dispatch problems. The research
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clearly demonstrated the improved search ability of the proposed Hybrid Genetic

Algorithms over the commonly defined Genetic Algorithms.

(3) Proposed a novel two-phased problem structure by employing both the Economic

- Environmental technique and Fuel Switching to maximum emission reduction

capacity and reduce the need for costly plant level action.

(4) Proposed a novel constraint handling method for GAs to easily handle various

constraints in a ever more complex problem landscape resulting from the

environmental and security issues.

(5) Further tested the capability and the suitability of GAs and HGAs on a number of

economic dispatch problems in a practical moderately sized system.

1.3 OVERVIEW OF THE THESIS

This research work has attempted to investigate the potential of a class of GAs

compared with conventional techniques on a variety of power system optimisation

problems, and has demonstrated the ease of GA implementation. The ultimate goal of

the thesis is to provid practitioners with information and guidance in choosing a suitable

genetic strategy for their own applications. The research work presented in this thesis

is organised into the following 9 chapters:

Chapter 2 describes and defines electric power system optimisation problems. In depth

descriptions have been given to the problems of economic dispatch, unit commitment,

reactive power planning and dispatching, and emission dispatch. Current popular

methods to solve these four problems are reviewed, and their strength and weakness are

discussed.

Chapter 3 states the general framework of optimisation problems. GAs are then

defined and their mathematical foundation is outlined. This is followed by a summary
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of the unique characteristics of GAs and a review of their application in power system

optimisations. Finally, a detailed genetic implementationprocedure is presented.

Chapter 4 makes a performance comparison on the classic static economic dispatch

problem between a commonly defined GA and a few conventional techniques, such as

Priority List and Lambda Iterative method. The strength and weakness of GA

techniques over conventional techniques are discussed.

Chapter 5 firstly investigates the possible performance improvements with the advanced

genetic strategies and optimal genetic parameter tuning on a classic static Economic

Dispatch problem. Several conclusions have been drawn upon performance

enhancements. However, improvements thus made can only balance the two

conflicting search efforts: exploration and exploitation, which implies that the increased

solution quality comes at the cost of a longer computing time and vice versa. They can

not be improved at the same time. Yet, by crossing a GA with other well-known local

search techniques, a Hybrid Genetic Algorithm (HGA) makes it possible to both

improve the solution quality and the solution speed. The second part of chapter puts

emphasis on the potential search abilitythat a HGA exhibits over a pure GA.

In chapter 6, GAs are applied to the dynamic economic dispatch problem. The

difficulties with this problem are that the solution should be able to track the time

varying load demand, and that the solution has to be attained under the additional

dynamic constraints which limit the search space severely.

In chapter 7, the problem of optimal operation of power systems has advanced from the

single cost consideration to the combined cost and emission considerations. The

emission issue enters the conventional economic dispatch problem as an additional

constraint, which complicates the search space much more. In order to maximise the

emission reduction capacity without major plant level actions, such as pre- or post-

combustion processing, a two-phased problem structure is proposed by incorporating

the economic-environmental dispatch together with the fuel switching. The proposed

structure is proven to be effective in both cost reduction and emission alleviation.
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Chapter 8 deals with multi-objective economic-environmental problems, where the

environmental issue adds a second object to the original cost objective function as well

as an additional constraint. A trade-off relation between cost and emission is set up to

assist the decision maker to find the best operating point. To further enhance the

genetic search ability, a novel constraint handling method is proposed to incorporate

the concept of how far a solution is away from the feasible region so as to give better

guidance to the search in the highly constrained problem space, consequently attain a

better overall solution ultimately.

In Chapter 9, a commonly defined GA and the proposed HGAs are challenged by a

practical moderate sized power system - Northern Ireland Electricity (NIE).

Satisfactory results are obtained with the CGA technique. Yet, HGAs are more

favourable over the CGA for their ability to provide more accurate solutions with less

computing time.

Finally, Chapter 10 summaries the thesis and offers suggestions for future work of GAs

in power system optimisations..
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CHAPTER

2

OPTIMAL ECONOMIC OPERATION IN POWER SYSTEMS:
PROBLEMS, MODELS AND TECHNIQUES

This chapter gives definitions and descriptions of some optimisation problems in

electric power systems. The mathematical formulations for those problems are

outlined, and reviews of various technical approaches to the problems are summarised.

2.1 OPTIMISATION PROBLEMS IN POWER SYSTEMS

In recent years, because of strict environmental and governmental regulations, the

development of electrical power facilities has been restricted. As a result, optimal

economic operation and planing of power systems becomes increasingly difficult.

Problems such as: economic dispatch, emission dispatch, reactive power scheduling and

allocation, maximum interchange, unit commitment and dispatch, generation,

transmission and distribution expansion planning, and maintenance scheduling, as well

as many other matters, are so diverse that economic operation of power systems

becomes a sophisticated and very difficult task. It is made even more formidable with

multi-objective optimisation problems which consist of several objectives and are

subjected to a number of constraints in one problem formulation. Yet, multi-objective

formulation expresses complex and highly interactive power problems in a more

realisticway. The followings are brief descriptions of some power system optimisation
problems [Sasson, 1974].

Economic Dispatch (ED) is among the most important issue in power system operation.

The goal of the ED is that of scheduling the level of power output on the preselected

units to match the customer load demand in order to achieve minimum operating cost.

When excess generation is available in a system such that an economic choice of units
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can be made, unit commitment (UC) should be employed to determine the on or off

schedule of generating units within a system to provide dispatchable units. Unit

commitment and power dispatch are so much coupled that they tend to be solved

simultaneously in recent research. With the increasing concern about environmental

protection, alternative operational strategies are required. Emission Dispatch (EMO)

which aims to reduce pollution from power plants while meeting the system's energy

demand, has gained ever growing attention. The goal of reactive power scheduling

and allocation is to provide a system with enough reactive power (VAR) sources for

the system to operate in an economic manner, while load constraints and operational

constraints, with respect to credible contingencies, are met. Maximum interchange is a

means for utilities to decide the maximum interchange with the neighbouring

interconnected systems ahead of time in case transmission contingencies occur.

Optimal switching can be set up to minimise the number of switching operations for

intermediate and low-voltage substations which link the high-voltage transmission

system and the distribution networks of local loads, in order to alter the configuration

of the substation for system reliability and protection purposes. This is the case when

devices need to undergo maintenance or when emergency situations occur, which

results in the need for configuration changes. Among these power optimisation

problems, this thesis mainly deals with economic dispatch, emission dispatch and their

extensions and combinations. Unit Commitment will be an extension of the current

research work.

2.2 ELECTRIC POWER SYSTEM MODEL

A power system is basically composed of generation plants, transmission lines and
loads.
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F1
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P1

Fn Pn

Figure 2.1 Power system model.

A simplified system is illustrated in Figure 2.1, which consists of n generator units

connected to a single bus-bar, serving a received customer load. Basically, power

enters a transmission system from energy (or power) source to supply load demand.

The energy source can be thermal power plants, hydro-power plants, or a neighbouring

system through interconnection. In this study it is assumed that all generator units are

thermal. From an economic operation point of view, the energy source is the major

concern. The fundamental requirement for the economic operation is a set of input-

output characteristics of a thermal generator unit [Kirchmayer, 1958]. The input is the

fuel cost, Fj, the output is the electrical power output.R, from generator i to supply the

load demand PD' An idealised input-output (Fj-Pj) form is a smooth, convex curve, as

depicted in Figure 2.2. It can be fitted as a quadratic or linear function of the active

power generation according to the utilities' preference, which can be expressed as:

Fj(Pj) = aj~2+ bj~ + cj

F.(P:) = a.P + b.I I ., I I

(Quadratic Function) (2.1)

(Linear Function) (2.2)

For large steam turbine generators, the input-output characteristics are not as smooth

as illustrated in Figure 2.2. Large generators have a number of steam admission valves

that are opened in sequence to obtain ever-increasing output of the units. When a valve

is newly opened due to the increasing load, the throttling losses increase rapidly and the

incremental heat rate rises suddenly, which leads to the discontinuity in incremental heat

rate characteristic. This type of input-output characteristic, shown in Figure 2.3, is non-
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convex. Therefore the normal optimisation techniques which require convex

characteristics face great difficulties and can not give accurate results.

Fuel Input (MJ/hr)

Output (M\\?

Figure 2.2 Convex fuel input-output curve.

Fuel Input (MJ/hr)

I,

__ ..
-----

Output (M\\?

Figure 2.3 Multi-valve point input-output curve.
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2.3 ECONOMIC DISPATCH

The Economic Dispatch (ED) problem is a constrained, non-linear optimisation

problem. It has been actively studied since its inception in the 1920's, as reviewed by

Happ [1977], an IEEE Working Group Report [1981] and Chowdhury [1990]. The

starting point was the static economic dispatch, which aims to minimise total fuel cost

by scheduling the level of power outputs for each committed unit at certain time so that

the load demand at that time is met and each generator operates within its capacity.

Soon after, it was realised that when applied to a practical power system, a perfect

solution of the classic ED problem may not be optimal for real systems, which have

been further constrained by: (i) security and reliability constraints, such as generator

ramping limit, transmission limits and spinning reserve constraints; (ii) approximate fuel

cost characteristic (without considering valve point loading); (iii) not considering future

load trend. In the light of the above problems, security assessment and enhanced

modelling have been introduced to broaden the classic ED formulation. With respect to

the desired accuracy and relevance to the problem considered, the ED problem is

further classified into following four categories:

(1) Static Economic Dispatch with or without transmission losses (SED).

(2) Dynamic Economic Dispatch (DED).

(3) Economic Dispatch with valve-point considerations (VED).

(4) Optimal power flow.

A detailed description, for each problem, is given in the next four sections, while the

technical review is only given to those problems which will be investigated in this

research.

2.3.1 STATIC ECONOMIC DISPATCH (SED)

Suppose a power system consists of n generators that are in on-line operation as shown

in Figure 2.1. The generation level of each unit is denoted by ~ and the load demand to

be supplied is denoted by PD' The fuel cost Ci incurred by each unit can be expressed

as a function of the power output Pi:

11



C· = a.p2 + b.P +c·
1 1 1 1 1 1

Where a., b., c, are constant parameters for unit i. The total operational cost

associated with this system is:

The objective of the ED problem is to minimise the total operation cost, Ft, by

scheduling individual generator output, Pi' for each unit. The essential operation

constraints are the power balance constraint, where the total generated power must be

equal to the load demand, and the power limits constraint, where each individual

generator unit must be operated within its specified range. Let Pimin represent the

minimum power capacity for unit i, and let Pimax denote the maximum power capacity.

The power limits constraint is then given by:

The power balance constraint is stated differently according to the consideration of

transmission network loss.

A Transmission loss is neglected:

When transmission loss is neglected, the power balance constraint is:

B Transmission loss is considered:

When transmission loss is included in the network, the power balance equation

becomes:

12



Transmission loss inclusion will result in potential saving in fuel cost. It is also very

important in future power system planning regarding the location of plants and the

building of transmission lines. Transmission loss was discussed in detail by

[Kirchmayer, 1958], who proposed to express the transmission loss as a function of the

power output of each unit, namely B matrix:

where Bij are constant coefficients determined by the network.

2.3.1.1 SED Objective Formulation

Finally, the mathematical formulation of SED problem can be stated as the constrained

optimisation problem as given by the following equations:

mm
N N

F.t = "" C. ="" (a.p2 + b.P + c.)£..JI£..J II II I
i=1 i=1

(2.3)

subject to: (2.4)
n
.~~ -PD = 0 (Transmission neglected) (2.5)
1=1

or
n
.~Pi - PL -PD = 0 (Transmission included)
1=1

(2.6)

where: (2.7)

The problem of the SED is to find the optimal generation output for each unit ~, so

that the cost Ft in equation (2.3) is minimised, while either equations (2.4) and (2.5) are

satisfied (when transmission loss is neglected), or equations (2.4) and (2.6) are satisfied

(when transmission loss is considered).
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2.3.1.2 Review of Techniques

(1) Merit Order Techniques

Prior to 1930, the most popular methods used for the SED problem included: (1) the

base load method, where the next most efficientunit is loaded to its maximum capacity,

then the second most efficient unit is loaded; and so on; (2) best point loading, where

units are successively loaded to their lowest heat rate point beginning with the most

efficient unit, and working down to the least efficient units. Both methods are very

easily implemented, since mathematically they involve a simple sorting function to rank

individual units into order according to their efficiency. However, such dispatch

policies are not the most economic way to allocate load demands.

(2) Lambda Iterative Method

It was as early as 1930 that the idea of equal incremental method was recognised to

yield the most economic results. The idea of equal incremental cost is: when the next

incremental cost of all generating units are equal, the system is operated in the most

economic manner. The initial approach to the equal incremental method is to transfer

the constrained minimisation problem into unconstrained optimisation with the

Lagrange multiplier,which is expressed as:

F=Ft-A\II (2.8)

where \II is equation (2.5) for the case of neglected transmission loss. The optimal

operating strategy is achievedwhen:

(2.9)

For the case of transmission losses included, \II represents equation (2.6) and the

optimal operation is achievedwhen:
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(2.10)

Where L, is a penalty factor for transmission losses, and is defined as:

(2.11)

When the generator outputs are at their operational limits, the necessary conditions

need slightlychanging to:

iFi A- for Pi = Pi"max (2.12)-~
~

iFi A- for p. = P: . (2.13)-~
~

I I"mm

The Lambda iteration method [Wood, 1984] is a quite efficient way to find the equal

incremental cost among the committed units. This popular method tends to find the

optimal A. through iterative procedure for equation (2.9) or (2.10), and subsequently

find the optimal power output Pi for each generating unit. The method is very simple,

has very quick convergent speed and gives satisfactory results. Yet, it has difficulties in

including the additional objectives and constraints when more rigorous problem

formulation is encountered which is desired in practical applications.

(3) Gradient Techniques

Another set of popular methods are the search techniques, such as the first and second

order gradient methods [Wood, 1984]. These methods tend to find search direction

from where the maximum improvements are sought. The Gradient technique has a

desirable characteristic in that it always starts off with a feasible solution (though it is

not necessary), and searches for the optimum solution along a trajectory that maintain a

feasible solution at all times. This characteristic ensures that the gradient information
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can provide a feasible solution even if the computational procedure is interrupted

midway through the calculation. The disadvantages associated with these methods are:

they require a great deal of understanding of the problems; they are susceptible to the

initial starting point, subsequently can be easily trapped in a local minimum; they can be

sensitive to the determination of the gradient step size. However, once the initial point

is located in the potential area, and the gradient information does exist, gradient

techniques guarantee findingthe global optimum.

2.3.2 DYNAMIC ECONOMIC DISPATCH

The aim of DynamicEconomic Dispatch (OED) is to allocate load among the available

generating units using knowledge of both the present and the predicted load to

minimise the fuel cost over a short period of time, while meeting some instantaneous

constraints. The DED considers temporal costs and uses forecasts of system load to

develop optimal generator output trajectories for the generators to follow. The DED

incorporates the costs which correspond to the change of generator output over some

period of time to provide more accurate results, enabling the cost saving. The Static

Economic Dispatch is a special case of the DED, which contains merely one time
interval.

Considering the n generators network from Figure 2.1, the DED problem tends to

minimisethe operating cost Ft over a time period T:

where the load demand is given as PO,i and transmission loss is PL.i, both at the time

interval i.

The essential operational constraints, power balance constraint and power limitation

constraint at any time t are given by:
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Additional Constraints

The additional instantaneous constraints typically include power ramp rate limit and

spinning reserve constraint.

(1) Ramping Rate Constraint

In practice it is extremely important to account for the ramp rate constraint. When a

change of a generator unit output is required due to the load variation, the maximum

permissible output change should be limited to a certain level in order to avoid wide

variation of process variables (i.e. temperature, pressure, and boiler water level). This

ensures the safety of the equipment and smoother control of power output. The ramp

rate constraint of a generator is a dynamic operational constraint. The mathematical

formulation is given as:

where Du(t) is the maximum increase in output of generator i over one time interval,

and Dd(t) is the maximum decrease in power output over one time interval.

(2) Spinning Reserve Constraint

Spinning reserve R(t) is defined as the amount of unused power which can be delivered

within short time by the committed generators. This power is reserved to improve the

reliability of the system to cover cases such as: unexpected changes in the demand, load

prediction error, sudden loss of equipment. The spinning reserve for each committed

generator at time tis Pimax - Pi(t). The spinning reserve constraint for the N generator

system is expressed as:

N

L [Pimax - Pi(t)] ~ R(t)
i=l
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N

As the power balance equation at time tis: L ~(t) = PD, the spinning reserve can be
i=l

transformed as:

N

L Pimax ~ PD+R(t)
i=l

2.3.2.1 DED PROBLEM FORMULATION

In conclusion, the mathematical formulation for the DED problem over a time period t

can be expressed by the following equations:

mm (2.14)

Subject to: (2.15)

(2.16)

(2.17)
N

L Pimax ~ PD(t) +R(t)
i=l

(2.18)

2.3.2.2 TECHNICAL REVIEW

The DED problem is a highly constrained non-linear optimisation problem. The

difficulties of the problem lie in its high dimensionality and multi-modal search space.

Therefore, it needs sophisticated techniques to search for solutions in the difficult

search space. Ross and Kim [Ross, 1980] have proposed dynamic programming for the

DED problem taking into account the power rate limits, which yielded quite good

results on a system comprising 15 generators. However, as the number of generator

increases, the proposed technique is limited by an exponential increase in computer

memory and calculation time. Bosch [1985] used a gradient projection method with

cOnjugate search direction to solve the DED problem owing to both spinning reserve

and power rate limits. The proposed method has quite comparable computing speed,

but it is easy to be trapped in the local optimum if the starting point is near the local
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optimum. Recently, Fukuyama [1991] has discussed the application of Neural

Networks to the DED problem. The new method has the advantage of easily taking

more constraints and contingencies into consideration. However, Neural Network

methods can not guarantee a global minimum.

2.3.3 ED WITH VALVE POINT LOADING

Large generators normally have 4 to 12 inlet control valves to control power output as

shown in Figure 2.3. The rippling effect in the cost curve is the result of the procedure

of sequential valve opening, where there are sharp increases in throttle loss due to the

disturbance of steam flow. As a result, the efficiency is lowest when the valve is just

opened, and it is highest when the valve is fully open. Most utility companies have

found that it is quite acceptable to approximate this discontinuous unit input-output

characteristic with a smooth quadratic function, as shown by the dotted line;

consequently, the valve point effects are ignored. However, if a method avoids this

approximation, overcoming the inaccuracy introduced by the approximation, one could

have great financialbenefit compared with the classic piece-wise linear fuel cost curves

[Fink, 1969]. Valve point loading considers more detailed knowledge of the input-

output characteristic of the generator units and hence requires techniques that easily

model these characteristics. For such a non-monotonically increasing input-output

economic dispatch problem formulation, the most general solution is based on Dynamic

Programming (DP) [El-Hawary, 1979]. Unlike other traditional techniques, DP

imposes no restrictions on the generating unit characteristic. However, DP suffers from

the curse of dimensionality by the dramatically increased computing time and

computing storage with the increase in number of generators.

2.3.4 OPTIMAL POWER FLOWS (OPF)

The OPF represents an exact system formulation to determine the voltages and phase

angles at all buses of the network, from which active and reactive power outputs of

generators can be found and cost can be minimised subject to security constraints

[Burchett, 1982]. The advantage of the OPF does not lie in higher accuracy of results,

19



but in its ability to include security constraints in the formulation, which is not easily

handled by software using traditional ED models. The detailed study of the OPF is

beyond the scope of this project.

2.4 EMISSION DISPATCH (EMD)

2.4.1 INTRODUCTION

With increasing concern about environmental protection, the conventional approach to

electric power dispatch, with its emphasis on economic considerations, can no longer

be sole consideration for the operation strategy. Society demands adequate and secure

electricity not only at the cheapest possible price, but also at the least level to pollute

the environment [Cadogan, 1975]. Therefore, when a dispatch procedure is formulated

in a power plant, it is beneficial to consider both economic and environmental

requirements while satisfyingcustomer load demand.

2.4.2 EMISSION MODELLING

When power is generated from a generator unit several types of emissions are released,

such as Sulphur Oxides (S02)' Nitrogen Oxide (NOx) and Carbon Dioxide (C02).

They are formed in the boiler when unused oxygen combines with sulphur from coal

and nitrogen from the air. The extent of the emission released from each unit can be

modelled as a function of power output, which has the similar curve as the cost

function. The extent of emissionsproduced by each unit is:

E·· = a, +b·.P+C··p2IJ IJ IJ 1 IJ 1 (2.19)

where Eij is emission of type j (i.e. S02, NOx, CO2) for unit i , Pi is i-th unit power

output, aij, bij, cij are the constant coefficient for emission type j for unit i.
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2.4.3 OPTIONS FOR EMISSION CONTROL

A reduction of emissions into the atmosphere can be achieved either by system redesign

or by changing operational strategy. The following options are currently available to

reduce emission:

(1) Minimum Emission Dispatch (MED): to allocate the load demand among the

committed units so that the emission produced is minimised regardless of the

operation cost.

Evaluation: it has been dismissed owing to the lack of cost consideration, which

would result in unnecessary high cost.

(2) Economic-Environmental Dispatch (EED): to schedule the generators so that

the one with lower emissionsproduces the more power output. The environmental

object could either be a second objective or an additional constraint to the classic

economic dispatch.

Evaluation: it shows the desirable characteristic to take account of both emission

and cost, and requires minimal additional cost and least lead time. Further

attraction lies in its ease of implementation. The disadvantage is its limited

operational capacity.

(3) Fuel Switching: to replace a fuel with a high content of pollutant, such as high

sulphur fuel, with one of lower polluting potential. This is a function of the ratio of

fuel mix between high sulphur fuel and low sulphur fuel. Though the cost is

increased, the emissionproduced from each generator unit is decreased.

Evaluation: this option is cost effective, needs only minor modification to the

existing plant, but could be affected by the availabilityand the price of the fuel.

(4) Use of scrubbers: a post-combusting cleaning system, also known as flue gas

desulphurisation.

Evaluation: it requires not only considerable time for design, testing and

installation, but also considerable capital cost.
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(5) Use of natural gas

Evaluation: natural gas is an attractively cheap fuel in the UK at present, especially

in combined-cycle operation. However, it should be noted that not all the

generator units can bum natural gas, also there is a possibility that the North Sea

and the Irish Sea will be depleted in the next 20 years, and replacement will be

more expensive.

Practically, most of the industrial effort has been made on plant level action, such as

post-combustion modification and stack-gas scrubbing, that change of power dispatch

only serves as a supplementary tool for pollution abatement. Though its operational

capacity is limited, the EED strategy is attractive as it requires less lead time and less

capital investment than most changes or additions to power generating equipment. In

practice, it is more likely to combine several options to get the best compromise

between cost and emission. In this study, EED strategy, Fuel Switching and their

combination are investigated further, in order to get maximum emission reduction and

minimumoperational cost without major plant level action.

2.4.4 MINIMUM EMISSION DISPATCH

The issue of minimising emission was first discussed [Gent, 1971] to minimise NOx

emission rather than cost as the priority. The minimumemission strategy is defined by

the functions similarto the classic economic dispatch:

min
N N

Et = ~E.= ~ (aooP,2 + booP: +coo)£....j£.... Ijl Ijl Ij
i=I i=l

(2.20)

subject to: (2.21)

(2.22)

where: (2.23)
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The obvious weakness with the MED dispatch procedure is its lacking consideration of

cost, which led to the Economic-Environmental Dispatch (EED), where both economy

and emission are taken into consideration.

2.4.5 ECONOMIC ENVIRONMENTAL DISPATCH

2.4.5.1 DEFINITION OF EED

The purpose of the EED power dispatch is to supply the load demand while minimising

the environmental impact at the minimum possible operating cost. One complication,

introduced by such a dispatch strategy, is the fact that the cost and the emission

functions are two conflicting, incommensurable objectives. Favouring one objective

may degrade another. There is no possibility of a third term which might minimise both

of them simultaneously. The optimal solution is more likely to be the best compromise

between those two.

2.4.5.2 EED PROBLEM FORMULATION

The EED problem formulation has been studied by many researchers, such as [Lamont,

1973], [Friedmann, 1974], [Zahavi, 1975], [Bemow, 1991], and [petrovic, 1993]. A

review of the mathematical formulation is given by [Talaq, 1994], which is summarised

as follows:

(1) Minimise 'full cost':
N

min F = L[Ci +aEi]
i=l

(2.24)

The full cost is formed by assigning prices to emission and adding the result to the fuel

cost.

(2) Minimise weighted sum of Cost and Emission:
N

mm F = L[aiCi + PiEa
i=l

(2.25)
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(3) Minimising cost with controlled emission:
N

mm Ct=L c,
i=l

(2.26)

Subject to:
N

Et = LEi ~ Qmax
i=l

(2.27)

where Qmax is maximum allowable emission produced.

(4) Minimising emission with constrained cost:
N

E=L Einun (2.28)
i=l

Subject to:
N

Ct = LCi s Cmax
i=l

(2.29)

where Cmax is maximum allowable cost.

(5) Economic-environmental trade-ofT study:

The cost and emission trade off curve is mainly for off-line operational investigations

[Heslin, 1989] and [Yokoyama, 1988]. Their studies had the goal to assist the decision

maker how to approach the optimal dispatch policy. The dispatch objective is formed

as a weighted sum of cost and emission:

N

min F = L[aCi + (1- a)Ei]
i=l

(2.30)

The best EED policy can be found by increasing a from 0 to 1 to cover the entire

search region. a =1 states the conventional economic dispatch, while a=0 accounts

for minimising emission only. The best operating a is chosen by the decision maker as

a compromise between the cost and the emission.

It should be noted that all minimisation strategies run the risk of emission overkill,

which might lead to emissions reduced to a level below that required by environmental

regulation, and result in unnecessarily high cost. Hence, practical dispatch strategies
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have the tendency to include the environmental objective as an additional constraint,

where the dispatch policy can be either the operation cost, or the 'full cost'.

2.4.5.3 MORE RIGOROUS EED STRATEGY

Granelli et al [1992] formed a dynamicEED strategy to take into account the integral

nature of the environmental constraints on the daily amount of emission. Hu and Wee

[1994] presented a hierarchical dynamic EED system to combine the off-line system

and on-line system to minimise both cost and emission. The treatment of multiple

pollution strategy is suggested in papers [Gjengedal, 1992] and [Ramanathan, 1994],

while papers [Yoloyama, 1987] and [Nakamura, 1987] include additional security

constraints into the original EED policy to provide more secure and clean electric

power with the least possible cost.

2.4.5.4 MATHEMATICAL APPROACH

It has been observed that most of the papers in the present literature still focus their

attention on the formulation of the EED problem while only few papers have appeared

to investigate the effectiveness of solutions by employing advanced techniques. Among

the earliest, El-Keib and Ding [1994] presented a linear programming method to

approach the EED problem. King and El-Hawary [1995] examined a Neural Network

approach in finding optimal solutions for the EED problem. A more rigorous problem

formulation, which has the form of heavily constrained multi-objectives, raises

questions to the existing mathematical techniques. A great deal of research work still

remains to be done.

2.5 FUEL SWITCHING (FS)

The EED strategy can only be used as a supplementary method to give abatement of

emission, as its operational capacity is limited. Without major plant level action,

another attractive method is fuel switching. FS tends to determine the optimum fuel

mixture of high- and low-sulphur fuels in order to minimise total fuel cost under
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environmental constraint. As stated before, it is a cost effective means to reduce

emission, yet requires only minor plant modification.

The operational cost in this case is more complex. It becomes the function of both

power output and fuel ratio:

F. = (a. - p.S.\(a. +b.P +c.p2)
I I I iJ I I I I I

where ai' Pi are the cost per kcal coefficients, and a., b., c, are fuel consumption

coefficients.

The newly appeared variable Si is the sulphur contents in fuel for unit i. The sulphur

contents in fuel for each unit is determined by the mix ratio of high and low sulphur

fuels. Assuming the percentage of high sulphur content SUj(%) is ~(~<l.O), the low

sulphur fuel with S~(%) then becomes (1-~). The overall sulphur in fuels can thus be

expressed as:

S·= SU x W + SL·x (1- W)I I I I I

The additional inequality constraint introduced by fuel switching is the upper and lower

bounds upon sulphur in fuels, and is expressed as:

where SLi, SUi are the maximum and minimum sulphur contents in fuels respectively.

The emission produced at each unit is:

2.S.1 FS PROBLEM FORMULATION

The complete FS problem formulation is given by following equations:
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n

mm Fs = ~F.~.Si) (2.31)
1=1

subject to: Pimin s Pis Pimax (2.32)
n
I:p. - PL - PD= 0 (2.33)j=l 1

SL. :s; ~ sSUj (2.34)
N

Et = LEi ~ Qmax (2.35)
i=l

where: F. = (a. - p.SJ(a. +b.P +c.p,2) (2.36)1 I I I I I I I

S·= SU x W: + SL·x (1- W:) (2.37)I I I I I

Ej = ejSj(aj+bjPj+Cjpj2) (2.38)

PL = Boo +! BiO~ +~tPiBijPj (2.39)
1=0 1=0 j=O

2.5.2 TECHNICAL REVIEW

FS is a highly constrained bi-variable optimisation problem. FS always works closely

with EED strategy, since the operation cost is the function of both fuel mixture and

power output. Tsuji [1981] proposed the first model to determine the optimum fuel

mixture as well as optimal load dispatch. He successfully solved the problem with the

classic Lambda iterative method. Heslin and Hobbs [1989] presented a model which

could evaluating the cost and employment impacts of effluent dispatch and fuel

switching. Li et al [1995] proposed a two phase approach to the ramping rate

constrained bi-optimization problem with a Genetic Algorithm. The method promised

great financialbenefits.
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2.6 UNIT COMMITMENT

2.6.1 PROBLEM SPECIFICATION

Unit Commitment (VC) is a non-linear constrained optimisation problem. UC aims to

minimisethe cost of operation over a period of time by selecting which generator units

should be turned on or off, the type of fuel, the power to be generated by each unit, the

fuel mixture when applicable and the generation reserve margins over and above system

demand, while paying due attention to major physical, operational and contractual

constraints. The problem of UC involves hundreds or even thousands of 0, 1 variables

and a large and complex set of constraints. The UC schedule could be performed with

planning horizons ranging from one day to one week. The schedule objective is

obtained by considering many cost factors which include unit fuel costs, maintenance

costs and start-up costs. The constraints on thermal units are listed below:

(1) Minimum-up time: Once the unit is running, it should not be turned off

immediately.

(2) Minimum-down time: Once the unit is decommitted, there is a minimumtime

before it can be recommitted.

(3) Crew constraint: If a plant consists of two or more units, they can not be

turned on at the same time.

(4) Power rate: The maximumrate of change of real power output is not allowed

to exceed its rated value.

The system constraints are mainly spinning reserve constraints, which guarantee that a

sufficient amount of spinningreserve should be maintained at all times.
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2.6.2 TECHNICAL REVIEW

The major difficulty in the unit commitment problem is the high dimensionality of the

possible solution space. The exact solution to the above highly constrained problem

can only be obtained by enumeration, which costs excessive computing time. The most

widely used conventional techniques [Sheble, 1993] for the solution of UC problems

are:

(1) Priority-list schemes: a simple, fast and highly heuristic solution method, but is

apt to miss the optimal commitment.

(2) Dynamic programming (DP): effective but decreases in efficiency as the

number of units increases, because of the high dimensionality of the problem. Although

many papers have appeared to reduce the search space of DP, it cannot avoid making

excessive demands on computing storage and computing time.

(3) Integer and Mix-integer programming (MIP): using the Branch and Bound

technique can reduce the solution space enormously through discarding the infeasible

subsets, which results in the possibility of finding the local minimum.

These approaches have two common defects: the first is that it is easy to be trapped in a

local minimum solution, the second is the integer decisions which need to be modelled.

Although MIP provides very good solution to UC, the process is rather complicated.

Currently, all the solution methods are based on some assumptions, there is no

technique that could solve the UC problem exactly.

Recent practice in UC is now to use artificial intelligence techniques. Its solution

methods can treat the UC problem and the ED problem simultaneously, which promises

to provide faster computing speed and the ability to accommodate more complicated

constraints. Expert systems have been used to investigate UC problem by Mokhtari

[1988], Wong [1991] and Salam [1991]. Experience from power system operators are

combined with unit commitment expertise to create a rule based expert system, which is
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used to get more comprehensive information to reach a decision. Test results showed

that this approach can provide a better and more operationally acceptable unit

commitment solution. The application of Neural Network in this field was found by

Sendaula and Biswas (1991] to treat several objectives simultaneously. Zhuang [1990]

used Simulated Annealing to solve the UC problem. The method is based on the

resemblancebetween the annealingof a metal and a minimisationprocess. It starts with

a random feasible solution and moves along the feasible direction towards an unique

global minimumwith high probability.
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2.7 RESEARCH TRENDS IN POWER SYSTEM OPERATION

2.7.1 TRENDS IN PROBLEM FORMULATION

Recent research has a tendency to devote the effort to multi-objective optimal

economic operation problems. Beside economic dispatch, other objectives such as

security, reliability, unit commitment, and emission consideration, are combined and

attained simultaneously. However, these objectives may contradict each other so that

preference of one objective may degrade the performance of another. This makes it

difficult to handle this class of problems with conventional techniques, which are

designed to solve one single objective. Yokoyama [1988] used probability security

criteria to solve a multi-objective optimisation problem, with a satisfactory result being

obtained among these trade-off objectives. Sendaula [1991] treated unit commitment

and economic dispatch simultaneouslywith various constraints using Artificial Neural

Networks. Fuzzy Logic techniques incorporated with a knowledge based system are

used to solve multi-objective dynamic generation scheduling [Srinivasan, 1994], in

which economy, security, emission and unit commitment are transferred to one

objective and the problem is solved by maximisingthis function.

2.7.2 TRENDS IN MATHEMATICAL TECHNIQUES

Recent advances in the solution methods to various optimisation problems in power

systems have been achieved by a group of techniques described by the general title of

artificial intelligence. It includes techniques such as Neural Networks, Fuzzy Logic,

Simulated Annealing and Genetic Algorithms. When they are applied to the simple

optimisation problems for the applicability study, such as SED problem, they cannot

achieve much improvement regarding the solution accuracy or speed over conventional

techniques, for instance the Lambda Iteration Method. However, as the problem

formulation becomes progressively more complicated, the conventional techniques are

gradually limited by either convergence problems, solution inaccuracy or computational

deficiency. Though the popular dynamicprogramming techniques offer a few attractive

advantages, such as being able to solve problems of a variety of sizes and wide range of

31



functions for moderate systems, however, they are restricted by their efficiency. As a

consequence, the advanced artificial intelligencetechniques have a increasing advantage

over the conventional techniques, and are able to give more accurate solutions.

2.8 POTENTIAL OF GENETIC ALGORITHMS

Genetic Algorithms (GAs) have been introduced as alternative powerful tools to handle

complex, multi-modal, multi-objective optimisation problems [Goldberg, 1989], where

conventional techniques have not achieved the desired speed, accuracy or efficiency.

GAs are unique in that they operate from a rich database of many points

simultaneously. They exploit historical information by using 'bits and pieces' of the

fittest of the old structures to create new sets in an attempt to improve future system

performance. The major beauty of such algorithms lies in their computational simplicity

and their powerful search ability to attain the global optimum. The further attraction of

GAs is that they are extremely robust with respect to the complexity of the problem.

Moreover, these robust solution methods do not need assumptions concerning

continuity, existence of derivative information, or uni-modality, but allow non-

linearities and discontinuities to appear in the solution space.

In conclusion, GAs are extremely useful for an ill-structured, complex system where

other techniques can not solve the problem exactly, or the existing techniques are too

complicated. The more complex the problem is, the more benefit one could get from

GAs. They are thus the ideal techniques to offer robust and efficient strategies for a

broad range of power system optimisation.
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2.9 THE OPTIMISATION PROBLEM SCOPE

FOR GA APPLICATIONS

GAs are employed in this project to tackle the following optimisation problems in

optimal economic operation of power systems:

{l) classic static economic dispatch (chapters 4, 5).

(2) dynamic economic dispatch (chapters 6,9).

(3) dynamic economic -environmental dispatch (chapters 7, 8,9).

(a): environmental issue as additional constraint (chapters 7, 9).

(b): environmental issue as the second objective (chapter 8).

(4) dynamic economic -environmental dispatch + fuel switching (chapter 7).
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CHAPTER

3

BACKGROUND INTRODUCTION OF
GENETIC ALGORITHMS

This chapter states the general framework of optimisation problems, introduces the

concept of GAs, and a formal mathematical framework is laid out afterwards. A review

of application of GAs in electric power systems is presented, followed by the detailed

genetic implementation procedure.

3.1 THE GENERALISED OPTIMISATION PROBLEMS

1.1.1 THE GOAL OF OPTIMISATION

Optimisation is the act of obtaining the best possible results under given circumstances

[Rao, 1979]. The ultimate goal is to either minimise the cost or maximise the benefit.

The cost or the benefit can be expressed as a function of certain decision variables,

optimisation therefore tries to find the best (or a set of good) possible strategies which

give the maximum or minimum value of the function.

The most desirable strategy should be able to give accurate, efficient and robust

solutions. The strategy should not only attain the optimum, but should do it within

reasonable time and when subjected to severe disturbances.

3.1.2 STATEMENT OF GENERAL OPTIMISATION PROBLEMS

An optimisation problem can be stated as follows:
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Given an objective function, f, find a set of points X· = {x;,x;, x:}, which

minimisef(X)

gl(X) s 0
~(X) = 0

subject to:

and

i= 1,2, , m

i=m+ 1, m+2, , p

Where X is an n-dimensional vector, K;(X) are inequality constraints and 14(x) are

equality constraints. The number of constraints need not be related to the number of

variables. In the case of p being zero, the problem is referred to as an unconstrained

optimisation problem. Otherwise, problems are known as constrained optimisation

problems.

3.1.3 CONVENTIONAL MATHEMATICAL APPROACH

The above problem statement is very general and can be applied to any kind of linear or

non-linear optimisation problems. However, there is no single generic method available

for solving all problems efficiently. Hence, a number of optimisation methods have

been developed for solving different types of optimisation problems in the past with a

certain degree of success, such as gradient, linear, non-linear, quadratic, and dynamic

programming. These methods fall into the following three categories: Calculus-based

methods, enumerative methods and random search techniques [Goldberg, 1989].

Calculus-based methods are useful in finding the optimum of continuous and

differentiable functions. They make use of the techniques of differential calculus in

locating the optimum points. In doing so, they either perform steepest ascent hill

climbing,or find the points with slopes of zero in all directions. Since some of practical

problems involve objectives that are not continuous and/or differentiable, the

applications of this set of search techniques are limited in scope.

Enumerative methods are a human kind of search. They check objective values for

every point in the search space, one at a time. If it is for a small search space, the

method can guarantee to find the best possible solution. However, many practical
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spaces are too large for this kind of method to complete even within a lifetime. This

kind of method is therefore not attractive for the reason of efficiency.

Random Search methods seek and save the best solution during random walks.

Though they are intended to overcome the shortcoming that the previous two methods

exhibit, they do no better than the enumerativemethod in a long run.

To better illustrate the problem solving ability of the conventional methods, Figure 3.1

[Goldberg, 1989] depicts the efficiencyof technique versus complexity of the problem.

The obvious preference is the robust scheme, where the powerful search ability is

independent of the complexity of the problem.

Efficiency

Problem Spectrum

Figure 3.1 Efficiencyof different optimisation techniques.

3.2 OUTLINE OF GAs

3.2.1 DEFINITION OF GAs

Genetic Algorithms are general purpose techniques for optimisation and learning. They

were developed by Holland [1975], and advanced by many other researchers [long,

1975], [Lawence, 1987]. The mechanism of a GA is analogous to the evolutionary

behaviour of biological systems. In the same way as nature evolves its living things,

GAs evolve a group of initially poor solution guesses of a problem, to a set of

acceptable solutions through successive generation (or iteration in computing
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terminology). The initial candidates or guesses are generated at random with little

knowledge of correctness. Parameters of each solution guess are represented as bit

strings instead of actual parameters, so that they can be improved repeatedly with a

series of genetic operators, known as reproduction, crossover and mutation. This

simple genetic procedure is applied with the aim to exchange valuable information

between fitter solutions in an attempt to increase performance of future solution

structure. The population of solution structures are maintained during a course of a

GA run, so that the entire solution space has been investigated. Therefore GA searches

are not susceptible to initial starting points, but are able to lead the search towards the

global optimal point.

3.2.2 MATHEMATICAL FRAMEWORK OF GAs

The computing language of GAs is binary strings. A search for a good solution is

merely a search for particular binary strings. The possibilityof all strings for a practical

difficult problem represents a very complex landscape, which involves many high

points and valleys. The valleymarks the location of strings that encode poor solutions,

and the land's highest point corresponds to the best possible strings. When confronted

with such a difficult search space, the conventional techniques can only move in one

direction at one time. A method such as hill-climbingtechnique has difficulty in finding

the right hill. Even in determining which way is up becomes increasingly difficult as

the number of dimensions of the problem space increases. In addition, such search

spaces are usually very large, and as a consequence, one step - one time conventional

search strategy is simply not practically applicable, and would take enormous

computing time and effort to even attain a feasible solution, rather than the optimum.

In contrast, the unique genetic search strategy provides itself with an assurance against

prolonged searches. Instead of the conventional single path search, Genetic

Algorithms cast a net over the entire search space, so that useful regions which contain

partial solutions can be identified. The search can therefore focus its attention on the

most promising space. These identified partial solutions serve as the basic building

blocks, from which better and better solutions can be constructed. As one solution
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contains many of these partial solutions, an evaluation of a single string is equivalent to

testing and computing a significant number of search regions. So called inherent

parallelismprovides the essential insurance for a GA to seek near optimal solutions.

The building blocks have a special terminology of schema in genetic algorithm, which

are defined as subset of strings with l's or O's in specified places, and represent a

certain region in the search space. For example, the string 1010010 belongs to a

number of regions (or schemata): 10*****, 1****1, *0*0***, and so forth. The bit

represented by * denotes do not care. The unspecified bit implies that it will not make

any difference or have any effect whether they are represented by 1 or 0 on those bits.

The largest region which contains many unspecified bits will be sampled by a large

fraction of all the strings in a population. Therefore, a genetic algorithm that

manipulates a population of a few hundred strings actually samples a vastly large

number of regions, and can thus find comparable solutions with much less computing

time and effort. Moreover, the short, low-order (small number of defining bits), and

above average schemata receive exponentially increased trials in subsequent

generations as concluded in Holland's Schema Theory [Holland, 1975]. These highly

fit, low-order schemata serve as partial solutions to a problem, and a GA discovers

new solutions by speculating on many combinations of the best partial solutions

contained within the current population.

The role of the three simple genetic operators is therefore to identify the potential

schemata among the population, and to construct better structures by combining

schemata which associate with high performance. Consequently, the search can focus

its attention on the most promising region. The reproduction operator samples

building blocks at near optimal rates, and the identified potential building blocks are

then recombined via crossover. Mutation which occasionally alters the value of a

string position, has little effect on those building blocks, but provides background

insurance to restore the beneficial genetic material. Hence, in working with these

particular schemata, the complexity of a problem is reduced greatly. Instead of trying

every conceivable combination, the best string should be sought from the best partial

solutions (schemata) through past samplings. As a result, the string as a whole is no

38



longer significant in seeking performance improvement. Instead, the growth of highly

fit and short defining schemata plays a more important role in guiding the search

towards the most promising region. This inherent parallelism gives GAs a central

advantage over other problem-solving processes, and contributes their major attraction

of simple implementation procedure, yet powerful search ability to identify the global

optimum.

3.2.3 CHARACTERISTICS OF GAs

The uniqueness of the GA search strategy contributes a number of advantages of GAs

over other traditional techniques:

(1) GAs are accurate: GA searches the optimum with a group of candidates, and

climbsmany hills in parallel. This ensures that the GA search is less susceptible to the

initial starting points, and make it possible to escape the local minimum, and arrive at

the global one.

(2) GAs are robust: GA search has the capacity to locate the global optimum in a

multi-modal search space, where the GA needs no assumptions about continuity or

gradient information of objectives, but only the raw objectives. GAs can therefore have

wide practical application, and be able to guide the search towards the solution area

even if the problem domain is substantiallycomplex and uncertain.

(3) GAs are simple: Computational implementation of GAs is surprisingly simple. It

involves nothing more complex than string generating, string copying and partial strings

exchanging. Yet, such search procedure is powerful.

(4) GAs use probabilistic transition rules rather than deterministic rules: the

transition rules of Genetic Algorithms are obtained by sampling the search at random,

which makes GAs more suitable for more complex problems.
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3.3 A REVIEW OF THE APPLICATIONS OF GAs IN

POWER SYSTEM OPTIMISATIONS

These advantages (Section 3.2.3) contribute to the suitability of GAs for power system

optimisations. They avoid many of the shortcomings exhibited by local search

techniques, which need further improvements in respect to accuracy, efficiency and

robustness for the following reasons:

(1) CTs are becoming very complicated formulations due to increased complexity and

uncertainty arising from environmental issues, thus exposing deficiencies in problem

solving techniques.

(2) CTs have to sometimes decompose a highly integrated problem into several more

manageable sub-problems and solve them sequentially, which greatly increases the

complexity of the problem and reduces the efficiency of computation.

(3) CTs are not robust to unforeseeable constraints and contingencies which occur in

the field.

(4) CTs are susceptible to the initial starting point.

In contrast, GAs can provide an inherent global optimisation property, and offer fast,

robust and efficient solutions. Its simple yet powerful strategies have attracted wide

attention. A complete comparisons between GAs and CTs is summarised in Table 3.1.
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Table 3.1 Comparisons Between GAs and CTs.

CTs GAs

Computational
implementation complex simple
procedure

objective functions plus
Information auxiliaryinformation such as: objective functions only
requirement gradient information and

continuity of the search space
Robustness over a case sensitive robust

spectrum of problems
inequalityconstraints impose inequality constraints can

Constraint handling extra burden to the problem be easily handle by the
objective algorithm inherently

Transition rules deterministic ~robabilistic
Computlnz Time short long

Since the GA was first suggested to optimise capacitor placement for reactive power

scheduling [Ajjarapu, 1991], many papers have appeared to study the feasibility and

capability of GAs over a broad range of power system optimisations. Walters [1993] is

among the earliest who successfully implemented GAs in power system operation. In

the paper, he focused his attention on the highly non-linear economic dispatch problem

with Valve-point Loading. However, the system considered is a simple three generator

system. Iba [1993] gave the first report of using GAs on reactive power allocation.

Richards [1993] used GAs to find optimal combinations of switched capacitors and

load impedance in the distribution system. Nara [1993] minimised distribution system

losses by GAs. Yoshimi [1993] demonstrated the algorithm's feasibility on the ED

problem on a 15 generator system, whileMori [1993] presented papers to improve the

accuracy over conventional GAs. The difficult Unit Commitment problem was first

solved with GAs by Adapa [1994]. Economic Dispatch, as a popular subject in power

system operation again, gained much attention with the new algorithm. Currently,

researchers in the economic operation field concentrate their effort in two major

directions: one is to further improve the computational efficiencies of existing Genetic

Algorithms, another is to apply GAs to the more rigorous problem formulation. Some

initial achievements of genetic approach to optimal economic operation of power

systems have been obtained by Bakirtzis [1994], Li [1994], Sheble [1995], Wong

[1995] and Chang [1995].
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3.4 OUTLINE OF A CONVENTIONAL GA

3.4.1 GENETIC SEARCH PROCEDURE

A genetic search starts with generating a population of chromosomes ( binary strings)

randomly, each of which can be decoded into a solution to represent a point in the

search space. For each iteration of the genetic algorithms - a generation, the process

begins with evaluation of the fitness value for each string. Chromosomes are then

stochastically chosen to become parents and reproduce according to their evaluated

fitness. In order to explore the new search space, some variation is introduced into the

new strings by genetic resembled crossover and mutation operators. Crossover causes

a structured, yet randomised exchange of genetic material between good solutions with

the aim of generating even better ones. The role of mutation is in restoring lost or

unexplored genetic material into the population to ensure the whole space is searched.

Each generation end with new strings (offspring) replacing the old ones (parents), and

the next generation begins. The process is repeated until some termination conditions

are satisfied. The termination conditions can be chosen either as system convergence or

maximum generation number. An abstract view of GAs can be represented as the

following structure:

Initial generated population G(O)
Evaluate structures in G(O)~
t=O;
Repeat:
t = t+l
reproduce G(t)' from G(t-l);
recombine G(t) from G(t)'
with crossover and mutation;

replace G(t-l) with G(t)~
evaluate structures in G(t);

Until termination condition reached
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3.4.2 CGA IMPLEMENTATION PROCEDURE

The following are the basic steps to implement GAs:

(1) Mapping objective functions to GA recognised fitness function;

(2) Generating initial population;

(3) Encoding system structure to binary string;

(4) Decoding individual binary strings to real variable;

(5) Evaluating individual strings' fitness values;

(6) Applying genetic operators: reproduction, crossover and mutation.

(a) Novel Fitness Function Formulation

Among the procedures, the mapping method which transfers the objective functions to

the fitness function is one of the most important issues in GA implementation. As the

fitness value directly guides the search for improvement, it is vitally important to have a

formula which best expresses the objectives and constraints. Furthermore, it has to be

flexible enough to consider additional objectives and constraints easily.

Under such requirements, a novel mapping method is proposed in this project. The idea

behind the fitness formulation is that the objective function and the constraints can be

treated equally. To achieve this goal, the best way to express each objective function

and constraint is to use a percentage formula. That is, the best solution has the biggest

value of 1 for each objective and constraint, and the worst has the smallest value of O.

The advantage of this formula is that the formulation can consider additional objectives

and constraints very easily. The proposed formulation has been further developed by

employing weight coefficients for the constraints so as to adjust their importance. With

a weight coefficient exceeding 1, the constraint is rendered more important. A less

important constraint is represented by a weight coefficient less than 1. While the

inequality constraints are handled in decoding section, which effectively reduces the

searching space, and improve the search efficiency. The overall fitness function for a

minimisation problem under several constraints is stated as:
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costmax - costobj ~w cons. - conSiobj
F=( )+~ iX( mIX )

cost - cost . 1=0 CODSi - CODSi.max nun max nun

(3.2)

Where

w: number of constraints.

W;: distance based weighting coefficient.

cost... : value of the objective function, where the maximum and the minimum values

among the current population are self defined by the subscripts, any individual values

between them are defined by the subscript obj.

consi.ub: value for ith constraint, the subscription has the same meaning as it has for the

objective function.

(b) Scaling

Fitness scaling is suggested for maintaining a more careful control over the entire

population. Simple scaling helps to prevent the early domination of extraordinary

individuals which could cause premature failure, while later on it encourages an

adequate competition among near equals. With the scaling factors, the fitness function

becomes:

Fs = ax (F-b) (3.3)

Where 'a' is a problem dependent coefficient and 'b' is the average string fitness during

each generation.

(c) Encoding

Encoding is the process of coding a problem as a number of finite strings. Normally,

the smallest alphabet should be selected to permit a natural expression of the problem,

which leads to the decision of using binary encoding. In the ED problem, assuming

each generator represented by a 5 binary bit string. For a system with n committed

generators, the overall string length will be n x 5.
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(d) Decoding

Decoding a binary string into an unsigned integer can play a very important role in GA

implementation. The inequality power limit constraint is performed in such a way that

the individual string is normalised to its specified range [pimin, Pimax], which

determines the individual generator output as:

P: =P: . +X.fD. -p:. )/C
1 unm V imax unm (3.4)

X is the unsigned integer. C is chosen to normalise X, which is equal to (2L - 1).

(e) Genetic Operators

Genetic algorithms modify the bit strings with three operators: reproduction, crossover,

and mutation to drive the individuals towards the optimal points or near to them.

Reproduction is a process to select highly fit strings as parents to make copies passing

to the next generation according to their fitness. The easiest way which is widely used

to carry out this survival competition is a simple roulette wheel method. This selection

method is designed as follows: the strings with a higher fitness value will have a larger

portion of the wheel, while those strings with low fitness are given a relatively small

portion of the roulette wheel. When the weighted wheel is spun to yield the

reproduction candidates, the more highly fit strings have a higher probability to make

more copies, consequently, improving their chance to survive in the next generation.

Once the string has been selected for reproduction, a replica of the string is made being

a member of G'(t). This string is then entered into a temporary mating pool ready for

recombination.

Crossover allows highly fit members in G'(t) to be mated at random. Each pair

subsequently undergoes crossover with a high probability. When the pair are chosen to

crossover, a point along the string is selected at random among {I, n-l}, the portions
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tothe right of that point are swapped over to produce two offspring. This procedure is

illustrated in Figure 3.2.

o 0 0 0 0 0 0 0

1 1 1 1 0 000

10 0 0 0 1 1 1 1

Figure 3.2 The procedure of a simple crossover operation.

Mutation appears to flip the value of a bit from 1 to 0, or vice versa with a very small

probability. Mutation provides background variation and introduces beneficial material

into strings. It serves as an insurance for the search to be explored further rather than

stagnated at a premature stage.

3.4.3 GENETIC PARAMETERS

Running a genetic algorithm entails setting a number of parameter values. The choice

of the parameter values can have significant impact on the system performance. The

typical genetic parameters include:

(1) Population Size:

(2) Crossover Rate:

(3) Mutation Rate:

(4) Scaling Window:

affects search accuracy.

controls primary search exploration speed.

controls secondary search exploration speed.

controls search pressure.

Though a great deal of effort has been devoted to the optimal parameter setting, such

as Grefenstette [1986], Schaffer [1989] and Srinivas [1994], there still does not exist a

generic parameter setting to suit all problems. A perfect parameter set for one problem

can be a disaster for another, and the setting is very much problem dependent. The

issue will be discussed in detail in Chapter 5.
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3.4.4 DEFINITION OF A eGA

GAs include a broad range of algorithms. The commonly defined conventional GAs

(CGA) are: use binary encoding, blind initial population, generational reproduction,

some fitness normalisation, one-point crossover and constant mutation rate to solve the

optimisation problems:

maxF(X) (3.5)

Where F is called the fitness function, with which individual candidates evaluate

themselves. All minimisation problems should be transferred to non-negative fitness

function to be maximised. The CGAs is the simplest yet quite efficient search strategy

to attain the optimum, however it is imperfect. Further enhancements upon CGAs are

made in Chapter 5.
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CHAPTER

4
COMPARISON OF GAs WITH CONVENTIONAL TECHNIQUES

ON CLASSIC ECONOMIC DISPATCH PROBLEMS

This chapter makes a comparison between CGAs and conventional optimisation

techniques on the classic ED problems. Four test cases have been employed to verity

the GA's accuracy and robustness on the different ED problems with varying degrees

of complexity. The systems undertaken are small in scale, so that comparisons are

easier to make, and implementations are simple to carry out.

4.1 ECONOMIC DISPATCH PROBLEM

The classic ED problem as discussed in Chapter 2 is a static optimisation problem. It

has been assumed that it is known which generators are operational, that the customer

load demand is known, and the cost functions for each unit are supplied. The task of

the ED problem is thus to find the optimal generator outputs so that the total cost is

minimised, customer load demand is met, and each unit is operated within its specified

operating limits. The formal problem formulation is restated below:
N

mm Ft=LCi (4.1)
i=l

subject to:

Transmission neglected:
n
~B-PD=O
i=l I

(4.2)

(4.3)

Transmission included: (4.4)

where: (4.5)
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4.2 TEST CASES

Four example cases have been studied to illustrate a GA's search ability in finding the

optimal power outputs ~, while the degree of problem complexity was increased in

ascending order. They are listed as follows:

Test 1: Economic Dispatch Neglecting Transmission Losses. To schedule the

power outputs among the committed generator units so that the total fuel cost is

minimised and the customer load demand is satisfied. The cost function in equation

(4.1) is represented by a smooth and convex quadratic curve. As the real power losses

on the transmission network are neglected in this case, equation (4.3) was used as the

power balance equation.

Test 2: Economic Dispatch Considering Transmission Losses. The test case is

similar to that of test 1, except that the power losses on the transmission network are

included. The test therefore takes additional transmission losses into account with

equation (4.4), while the same smooth quadratic cost curve is applied.

Test 3: Valve-Point Loading Without Transmission Losses. To schedule the power

outputs among the committed generator units based on the more precise unit

characteristics. The Valve-point Loading accounts for the ripple effect for larger

generators in order to obtain further financial benefit. In this case, a more accurate,

highly non-linear, non-convex cost curve is used to represent the cost function in

equation (4.1). The power losses on the transmission network are excluded, and

equation (4.3) is used for the loss neglecting power balance.

Test 4: Valve-Point Loading With Transmission Losses. Again the more accurate

cost function was put into use in this test and equation (4.4) was used for the loss

considering power balance.
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4.3 THE TEST SYSTEM

The example tests have been carried out on a three generator system which is obtained

from Wood [1984]. The detailed data are given as follows.

The customer load demand needed to be supplied is 850 MW.

The quadratic cost functions are given for each generator as:

Ft ($/h) = 0.001562Pr +7.92Pl +561

~ ($/h) = 0.00194Pl+7.85P2 +310

F:3 ($ I h) = 0.00482P? + 7.97P3+ 78

(4.6)

The power limitations for each generator are given by:

100 < 1\ < 600
100<P2 <400
50<P3 <200

The transmission loss coefficients (B-coefficients) for the system are:

[

0.00676 0.00953 - 0.00507]
B3x3 = 0.00953 0.0521 0.00901

-0.00507 0.00901 0.02940

(4.7)

BO=[-~~~:::]
0.0189

BOO = 0.040357

(4.8)

In the case of valve-points loading, the cost functions are approximated by adding a

sinusoid contribution to the original quadratic input-output cost curve, which has the

following formula:

Ft ($ I h) = 0.001562P? + 792Pl + 561 + pOO. sin(0.0315(l00- Pl)~

F2($/h) = 0.00194Pl + 785P2+310+~00.sin(0.042(100- P2)~ (4.9)

F:3 ($ I h) = 0.00482Pj + 7.97P3+ 78 + ~50. sin(0.042(50- P3)~

The data required for each case are listed in Table 4.1.
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Table 4.1 Date Requirements for the Four Cases.

Cases Description Cost Function Power Limit Transmission Loss
Test One ED neglecting Quadratic (4.6) (4.7) neglect

transmission losses
Test Two ED considering Quadratic (4.6) (4.7) B-coefficients (4.8)

transmission losses
Test Three VP neglecting Non-convex (4.9) (4.7) neglect

transmission losses
Test Four VP considering Non-convex (4.9) (4.7) B-coefficients (4.8)

transmission losses

4.4 GENETIC ALGORITHM APPROACH

4.4.1 Implementation Procedure

The basic procedure of eGA implementation is summarised in the following flow chart:

I Map objective function I
Encode system control variables I

Random population generation
Gen=O

1
Repeat

Decode control variables
Fitness evaluation
Reproduce Gen
Crossover Gen
Mutation Gen
Gen=Gen+l

Until maximum zeneration reaches

No
Is solution acceptable? II

Yes

I END I

Figure 4.1 The GA implementation flow chart.
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(1) The first step in the approach to the ED problem is to map the ED cost

minimisation problem into a GA recognised fitness maximisation function. For the

classic ED problem, the fitness function is composed of the cost function and the

equality power balance constraint. The inequality power limit constraints are handled

by the algorithm itself in the decoding section. This resulted in a fitness function

derived from equation (3.2) as:

cost_ - cost; ) ( cons... - consabj)
F = ( + w«

cost... - costmln cons.. - consmln

(4.10)

(2) The initial population was generated at random, and the size was remained fixed

during the course of a GA run.

(3) Each of the four tests contains three control variables, which are PI>P2, and P3.

The aim of genetic processing is to find the optimal values for these three variables in

order to minimisethe total cost while meeting load demand. The GA fulfils the task by

working with coding of the variables rather than variables themselves in order to get an

insight of the solution structure. In this application, each generator output, Pi, was

encoded by L=10 binary bits. This resulted in each string in the population having a

length of3*10=30 binary bits.

4) The decoding procedure is to decode the binary string to an unsigned value X,

and then use the following function to map X to the ith generator output within its

specified operating range [Pimin,Pimax]:

(4.11)

Where C =( 2L-1), L=10.

(5) The parameter values for the fitness scaling function Fs = ax (F-b) are chosen as:
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b is the average string fitness value over the whole population to insure that each

average population member contributes at least one expected offspring to the next

generation.

a = 1.8, which defines the number of expected copies desired for the best

population member. It is normally chosen between the range of 1.2 to 2 [Goldberg,

1989].

(6) The optimal parameter setting varies with the selected GA structure. However, it

is suggested by Grefenstette [1986] that if a small generation number is considered,

then a high crossover rate and low mutation rate are necessary; on the other hand, if a

relatively large population is used, there should be a moderate crossover rate and a low

mutation rate. His suggested parameter setting for a general good behaviour with a

relatively short search is as follows:

population size 30

crossover rate 0.9

mutation rate 0.01

These values will be used in this set of ED applications

4.4.2 RESULTS FOR FOUR TEST CASES

The GAs were programmed in C, and run on a 486 66MHz PC throughout this project.

4.4.2.1 A GRAPHIC ILLUSTRATION OF A GENETIC SEARCH

The genetic procedure, which evolves a set of poor solutions of an ED problem to a set

of acceptable solutions, is illustrated in Figures (4.2-4.4) (A population of 100 was used

here for better illustration). Figure 4.2 shows the initial randomly generated population

(or solutions) which are widely distributed in the search space to keep the search

diversity. These solutions have been improved significantly after 10 generations, as

depicted in Figure 4.3. Figure 4.4 shows that after 30 generations, most of the points
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have been converged to the near optimal point. Figure 4.5 illustrates the best solution

obtained at each generation.

Cost
1ZOOr------------------------------------------------,

Figure 4.2 Initial randomly generated population.

Cost
10000 .--------------------------------------------------,

4000 -

Generations

Figure 4.3 The evolving population after 10 Generations.
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The evolving population after 30 Generations.
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Figure 4.5 Best Solution of Each Generation.
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As shown in Figures (4.2-4.4), a GA works with a group of populations, searches many

areas in parallel. This ensures that the GA search is not easily trapped by the deceptive

local minimum, and has improved probability to attain the global optimum.

4.4.2.2 SIMULATION RESULTS FOR THE CLASSIC ED PROBLEMS

(TEST 1& TEST 2)

Three identical CGA runs have been performed on both the Test 1 and the Test 2

problem. Each run started with a fresh initial population. The results are listed in Table

4.2 and 4.3 for the Test 1 and Test 2 problem respectively. The solutions obtained for

both tests have assumed that the cost function for each unit is a smooth and convex

quadratic cost curve, which is shown in Figures 4.6 (a, b, c) for unit 1, unit 2 and unit 3

respectively (the costs are per hour value). Though there are slight variations on the

solution results among those GA searches (this is due to randomised search procedure

of GAs), they showed acceptable consistency. The total fuel cost attained by GAs are

listed under the title of Cost ($/h). However, such obtained optimal output might not

be optimal in terms of more accurate cost curve with a ripple effect, which accounts for

the valve-point characteristic. In order to show the effectiveness of Valve-point

Loading, the optimal power outputs obtained from the test 1 and the test two were fed

into the more accurate cost function (4.9). The costs thus obtained are listed under the

title of V_Cost, and compared with that of valve-point loading in next section.

Table 4.2 Test 1Results with A Simple Genetic Algorithm Load = 850.0 P
L
= 0

------------------------------------------------------------------------------------------------------
Run
1
2
3

Unit 1
449.46
404.99
438.22

Unit2
293.55
355.72
321.41

Unit 3
106.16
88.42
89.44

Total (MW) Cost ($/h) V_Cost ($/h)
849.17 8196.22 8744.22
849.12 8192.90 8538.90
849.07 8194.55 8592.55

Time (s)
1.59
1.59
1.59

------------------------------------------------------------------------------------------------------
Table 4.3 Test 2 Results with A Simple Genetic Algorithm Load = 850.0 P

L
:;:: 0

------------------------------------------------------------------------------------------------------------
Run Unit 1
1 418.18
2 464.13
3 360.02

Unit2
309.09
254.55
384.16

Unit 3 Total (MW) Cost ($/h) V_CosT ($/h) Time(s) Loss(MW)
142.82 870.09 8387.19 8732.41 1.92 21.05
151.91 870.59 8407.14 8734.14 1.92 21.53
126.39 870.57 8389.16 8939.16 1.92 21.36

--------------------------------------------------------------------------------------------------------------
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4.4.2.3 SIMULATION RESULTS FOR VALYE-POINT LOADING
(TEST 3 & TEST 4)

The smooth and convex cost curves used in Test 1 & 2 are the approximation of the

original cost curve for the ease of calculation. The more precise cost curves are the

solid rippled lines in Figures 4.6 (a, b, c). When considering such a ripple effect in the

cost function, Valve-point Loading is desirable to get further cost reduction. The

power of the Valve-point strategy is that it can locate the power outputs close to the

more efficient points, and avoid power allocations which would result in a higher cost.

A unit is in its minimum efficiency when the valve is newly opened, and in its maximum

efficiency when the valve is fully opened [Wood, 1984]. Therefore, the best operating

points for those three generators are the points close to A, B, C, D and E in the given

input-output figures.
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Figure 4.6a Unit 1 input-output curve.
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The results of Test 3 and Test 4 based on the valve-point loading which were obtained

by CGA are listed in Table 4.4 and Table 4.5 respectively. Again, three identical GA

runs have been performed, each with fresh new starting points and each solution

showed acceptable consistency with others in the same category.

Table 4.4 Test 3 Results with A Simple Genetic Algorithm Load = 850.0 PL = 0

Run
1
2
3

Unit 1
357.58
325.81
522.78

Unit 2
333.43
328.45
222.58

Unit 3
158.21
195.01
103.67

Total (MW) V_Cost ($/h)
849.22 8269.42
849.27 8295.35
849.02 8313.66

Time (s)
1.59
1.59
1.59

------------------------------------------------------------------------------------------------------
Table 4.5 Test 4 Results with A Simple Genetic Algorithm Load = 850.0 PL *' 0
Run Unit 1
1 359.53
2 386.41
3 487.59

Unit 2
321.41
390.62
202.93

Unit 3
187.39
94.72
180.06

Total (MW) V_Cost ($/h) Loss(MW) Time (s)
849.05 8460.60 19.28 1.92
849.15 8479.13 22.60 1.92
849.18 8524.28 21.40 1.92

--------------------------------------------------------------------------------------------------------

The average cost reduction achieved by the GA with valve-point loading over the

classic economic dispatch are listed in Table 4.6. As indicated in the table, the

advantage of valve-point loading is obvious. The cost saving is significant even on the

three generator system. It should also be noticed that although the problem complexity

has been increased over the four cases, their computational times are virtually the same.

This is because the GA uses probabilistic rule rather than deterministic rules to obtain

solutions. A GA works as a black box, which treats all problems alike, regardless of

their simplicity or difficulty. Therefore, the more difficult the problem is, the more

benefit that one can get from a GA. However, such probabilistic rule also imposes

disadvantages, that the solution results are different from run to run, as it has been

shown in Tables (4.2-4.5). Yet, the solution variation is only small (less than 0.5%),

Table 4.7 gives the solution variation of each run compared with the average value for

the four test cases.
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Table 4.6 Cost Comparison Between CED and Valve-point Loading
Load = 850.0

------------------------------------------------------------------------------------------------------
V_Cost ($/h)
Classic ED

Cost ($/h)
Valve_point

Saving ($/h) Saving(%)

------------------------------------------------------------------------------------------------------
8625.22 (Test 1)
880l.90 (Test 2)

8292.81 (Test 3)
8488.00 (Test 4)

332.41
313.89

4.01
3.7

------------------------------------------------------------------------------------------------------

Table 4.7 Solution Variations for the Four Test Cases
----------------------------------------------------------------------------------------------------------

Run 1 Run 2 Run 3 Average
Costs ($Ib) Variation(%) Costs ($Ib) Variation(%) Costs ($Ib) Variation(%) Cost ($/h)

----------------------------------------------------------------------------------------------------------
Test 1
Test 2
Test 3
Test 4

8196.22
8387.19
8269.42
8460.60

0.0203
0.0871
0.2820
0.3228

8192.90
8407.14
8295.35
8479.13

0.0201
0.1506
0.0306
0.1048

8194.55
8389.16
8313.66
8524.28

0.000
0.0636
0.2514
0.4274

8194.56
8394.50
8292.81
8488.00

-----------------------------------------------------------------------------------------------------------

4.5 CONVENTIONAL TECHNICAL APPROACHES

In this section, two conventional techniques - Merit Order and Lambda Iterative

techniques, which use deterministic transit rules to determine the solution strategy,

have been applied to the same four test cases. They are used as two opposite

approaches to the probabilistic based GA search technique.

4.5.1 Merit Order Technique

Merit Order is the quickest technique to be implemented on the ED problem. It is

generally used to work with Unit Commitment calculations, where speed is of

Particularly importance, and where the accuracy has to be sacrificed for speeding up the

Whole processing. The idea of Merit Order is quite straight forward in that the most

efficient unit is running to its maximum capacity, the second most efficient unit is

loaded next, and so on, until the required load demand is fully supplied. Computational

implementation of the technique is very simple, only involving a sorting function to sort

the committed generator in order according to their efficiency. The computational time
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required for all four test cases are so short that they are less than 1 second for this small

system. However, the Merit Order technique is not the most economical dispatch

strategy. Furthermore, it can not take transmission losses into merit consideration.

Therefore, the optimal power output allocations are virtually the same for the ED

problems with or without losses. This would undoubtedly result in unnecessary high

fuel cost. Table 4.8 is the results attained byMerit Order method for Test 1 and Test 3.

As the technique can not handle the transmission losses, the Test 2 and the Test 4 had

the same results with Test 1 and Test 3 respectively.

Table 4.8 Merit Order Method Load = 850.0 PL= 0
------------------------------------------------------------------------------------------------------
Test 1
Test 3

Unit 1
450.00
250.00

Unit 2
400.00
400.00

Unit 3 Total (MW) Cost ($/h)
0.00 850.00 8279.71
200.00 850.00 N/A

v_Cost($/h)
8585.71
8571.83

------------------------------------------------------------------------------------------------------
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4.5.2 Lambda Iteration Method

The Lambda Iterative method is based on the principle of equal incremental cost. The

idea is that the next incremental cost of all machines should be set equal to yield the

most economic results. This method is still popular today, particular for the large

power systems for its ease of implementation, short computational time, and ability to

account for transmission losses. Mathematically, this optimal operation strategy can be

stated as:

(4.12)

where Fi is the fuel cost for the ith generator when the power output is ~.

For the case of transmission losses included, the optimal operation is achieved when:

(4.13)

where L, is the penalty factor for transmission losses, and expressed as:

(4.14)

and PL are transmission losses contributed by unit i.

When the generator outputs are at their operational limits, the necessary conditions

need amendment to:

Cfi A for Pi = Pi max (4.15)-<m- "•
Cfi A for Pi = ~"min (4.16)->m-

•

The simulation results on the first two cases attained by the Lambda Iterative method

are listed at Table 4.9
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Table 4.9 Lambda Iterative Method Load = 850.0 (Test 1 & 2)

Case One
Case two

Losses
o

15.79

Unit 1
393.07
434.67

Unit 2
334.52
299.63

Unit 3
122.19
130.50

Total (MW) Cost($/h) V_Cost ($/h)
850.00 8192.4 8478.40
850.00 8335.17 8916.17

-----------------------------------------------------------------------------------------------------------

The Lambda Iterative method does not have the capability to resolve the Valve-point

Loading problem. It is restricted by the need for the objective functions to be

continuous, convex and the gradient information does exist. Once these conditions are

satisfied, the method can guarantee to attain the most economic results. However, the

practical system often includes objectives which are discontinuous. Additional

constraints can be non-linear. The solution with the Lambda Iterative method has to

be based on the approximated and simplified linear, continuous objectives and

constraint, which will undoubtedly introduce inaccuracy in power dispatch.

4.6 COMPARISON BETWEEN GAsANDCTs

Finally, results obtained from three techniques are drawn together for the four test

cases to analyse the effectiveness and robustness of CGA over the conventional search

techniques.

Table 4.10 is the summary of solution results of the three techniques. For the results

obtained with CGA, Cost_ave is the average cost over three GA runs, while Cost_best

is the best result among those three runs. Table 4.11 is the comparison made regarding

the solution accuracy among the three methods, the cost underneath CGA is taken as

the average value of the three GA runs, together listed are the solution variation to

show GA's relative consistency. The Lambda Iterative method is used as the

benchmark. As the Lambda Iterative method can not resolve the problem of Valve-

point Loading, optimal generator outputs are the same for Test 1 and 3, Test 2 and

Test 4. The difference lies in that their operational costs are based on different cost

functions.
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Table 4.10 Summary of Solutions with Various Methods

CGA Lambda Iterative Merit Order
Cost ave Cost best Time Cost Time Cost Time
($&) ($/h) (s) ($/h) (s) ($/h) (s)

Test 1 8194.56 8192.90 1.92 8192.40 0.0005 8279.71 0.0001
Test 2 8394.49 8382.41 1.92 8335.17 0.0007 # #
Test 3 8292.81 8269.35 1.92 8478.40 0.0006 8571.83 0.0001
Test 4 8488.00 8460.60 1.92 8916.17 0.0008 # #

Table 4.11 Comparison of Solutions with Various Methods
Lambda Iterative Method is the benchmark

CGA Lambda Iterative Merit Order
Cost Solution Cost Cost

Improvement Variations Improvement Improvement
(%) (%) (%) (%)

Test 1 - 0.024 0.02 0 - 1.055
Test 2 - 0.707 0.15 0 #
Test 3 2.528 0.18 0 - 1.090
Test 4 5.385 0.25 0 #

As indicated in Table 4.10, the two conventional techniques are attractive in their

computational speed. Generally, as the size of system increases, the Lambda Iterative

method requires more computing time over the Merit Order technique, while Merit

Order technique needs more off-line time to design a suitable criterion. The attraction

of GAs lies in its accuracy and robustness over the whole range of problems.

The Merit Order technique generally does not need assumptions about the search

space, that the objectives can be non-linear and discontinuous. This enables the

technique find a wide range of application. However, as for the solution of ED

problem, the Merit Order must be dismissed by its lack of accuracy, and difficulty in

forming a suitable criterion when multi-conflicting objectives and additional constraints

are encountered. Even in the single criterion optimisation problem, the Merit Order

technique can not take transmission losses into account and result in unnecessary high

costs.

The attraction of the Lambda Iterative method lies in its accuracy when the auxiliary

information is fully provided, such as the existence of gradient information, continuity
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of the search space, convex of the objective function. However, not all the practical

system can be approximated by a function with such quality. Furthermore, this quality

is inevitably obtained as the result of scarifying the dispatch accuracy. As for the case

of Valve-point Loading, when the more accurate, non-convex functions were

employed, the Lambda Iterative method failed to resolve the problem because of the

discontinuity of the incremental cost curve.

CGA outperformed both conventional techniques when the problems became more

complicated. For the case of Valve-point Loading, both Merit Order and Lambda

Iterative methods failed to live up with that of the CGA. The effectiveness of three

techniques versus problem complexity is depicted in Figure 4.7. As is shown in the

diagram, the robustness of the CGA is unbeatable by the conventional techniques. The

solutions attained by CGA remained near optimal even though the complexities of

problems were increasing. Further, as a GA uses probabilistic rule rather than

deterministic rule to determine a solution, the processing speed is independent of the

complexity. Hence, a GA would result in same computational time over wide range of

problem spectrum when the same power plant is applied. On the other hand, the

Lambda Iterative method uses the transit rule for a solution result, and the

computational time is therefore largely dependent on the complexity of the problem. It

can then be concluded that the more complex the problem is, the more benefit that one

can get with a CGA. However, due to its inherent parallelism, the CGA requires much

longer computing time. The issue of speeding up GA processing by Hybrid Genetic

Algorithm will be discussed in detail in Chapter S. In addition, despite GA's

comparable performance, the class of CGA has experienced difficulties in carrying out a

genetic search both effectively and efficiently. Further performance enhancement can

be done by optimising the CGA search strategy, which will be addressed in next

chapter.
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Figure 4.7 Comparison of efficiency with respect to problem
complexity between the CGA and conventional techniques.
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CHAPTER

5

PERFORMANCE ENHANCEMENT OF A CGA ON THE
STATIC ECONOMIC DISPATCH PROBLEM

This chapter gives in-depth investigations on Conventional Genetic Algorithms(CGAs)

and performs some modifications to improve the system performance. The outcome of

the study is to try to find the best genetic operating strategy to work on the static

economic dispatch problem (SED). Two levels of problem have been dealt with for

performance improvement: firstly choosing a suitable genetic strategy, and secondly

tuning various parameter values for the preselected genetic strategies. Both levels have

been tested on a 6 generator system. The strength and weakness of individual

strategies are analysed regarding both on-line and off-line system performances.

5.1 INTRODUCTION

Searching a complex space of problem solutions with any search technique often

involves two conflicting objectives: exploitation and exploration. On one hand, a

strategy must be able to gather broad information about the search space and use it to

concentrate the search effort in the most promising regions (exploitation). On the other

hand, if a region does not lead the search to the optimal point, the search must be able

to move on to other regions of the space, so that the search can continue in more

promising regions (exploration). A good genetic search strategy depends solely on its

optimal balance between these two contradictory goals. A balanced strategy can not

only identify the area where the optimum locates, but also concentrate its effort there

and converge to the optimum with a reasonable time. Hill-climbing and Gradient

techniques are two typical exploiting search strategies that fully make use of available

knowledge to search for solutions where the improvements are most likely to be.
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However, this kind of search is local in scope, and easily trapped in a local optimum

which could be far removed from the global optimum. Random Search is a good

example of exploring search strategy, which continuously explores the search space and

keeps the current best solution. The Random Search ignores the available feedback

information to reduce the uncertainty about the search space, and randomely samples

every corner of the solution space. As a result, the search suffers intolerable

inefficiency.

GAs are search techniques which are proposed to balance these two goals in a near

optimal way. GAs possess both the properties of using accumulated historical

information to locate the search to the potential region and the hill climbing ability to

converge the search to the optimal point. With this powerful search ability, GAs are

able to solve difficult problems in high-dimension, multi-modal, discontinuity or noisy

problem environments. The success of GAs in the complex problem domain have been

demonstrated in a number of applications, including function optimisation [Dejong,

1975], gas pipe control [Goldberg, 1985], pattern recognition [Cavicchio, 1970], as

well as in the electric power industry.

5.2 LIMITATIONS OF A eGA

Despite their powerful search ability, the conventionally defined GAs (CGAs) fail to

live up to the high expectations engendered by the theory [Davis, 1987]. CGAs

experience difficulties in balancing the two conflicting search goals, and exhibit two

undesirable behaviours: one is premature convergence, in which case the genetic

search converges to a non-optimal plateau; another is slow processing speed, that the

GA takes a considerable long time to complete a search. Both problems become

extensively severe when the size and constraints of an operating system grow.
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5.3 OVERCOMING PREMATURE CONVERGENCE

The cause of premature convergence behaviour can be intricate. It is partially due to

the stochastic side-effect of random samples on a finite population. Baker [1985]

observed that the premature convergence often occurs when a few highly fit individuals

contribute a large number of offspring to the next generation. Since the overall

population is fixed, a small number of offspring are available for the rest of the

population. When too many individuals have no chance to reproduce totally, the search

loses its diversity and prematurely converges to a local optimum.

Hence premature convergence is purely the result of the unbalance in the two

contradictory search efforts: exploitation and exploration. Selection and crossover are

two major factors which influence the balance between the two search efforts. The

amount of exploration performed by crossover is limited by the amount of exploitation

performed by selection. The exploration performed by mutation is small in scale, and

only provides background variation and restoration. The degree of the two search

efforts is controlled by the values assigned to each genetic operator. However, this

adjustment can only be used as a secondary tool to keep the balance. By carefully

implementing a genetic procedure, unbalance of the two search efforts can be avoided,

and the premature convergence can be avoided also.

5.3.1 OPTIMISING GENETIC ALGORITHMS

Prevention of premature convergence should be sought from advanced genetic

algorithms. This involves two levels of tasks. The bottom level is to select an

advanced or problem oriented genetic strategy, while the top level is to finely tune the

parameter value optimally in order to get maximum efficiency out of the preselected

genetic strategies. [Lawrence, 1987] suggested five ways to improve a genetic search

strategy, the bulk of which is actually seeking to balance the two search efforts of

exploitation and exploration; they are:
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(1) Advanced Genetic Operators: by employing the advanced genetic operators, the

search may avoid the selection inaccuracy and recombination efficiency. Besides the

commonly used proportional genetic selection, more advanced selection operators have

been developed, which include ranking selection, and steady-state selection methods

[Goldberg, 1991] to avoid a few super individuals dominating the whole population.

An Elitist Genetic Algorithm [Dejong, 1975] has been proposed to maintain the current

best one in the population for its beneficial genes to be passed to all generations even

under severe sample error. Crossover is improved from simple one point crossover to

two point crossover and multi-point crossover. A more disruptive crossover operator,

known as uniform crossover, is suggested to provide even better results [Syswerds,

1989]. Fixed Mutation rate has been changed as functions of the string's fitness or

maximum generations to enhance the system performances [Fogarty, 1989]. Moreover,

an adaptive parameter setting is proposed by Srinivas [1994] to realise the twin goals of

keeping search diversity and search pressure.

(2) Suitable Evaluation Function: a suitable evaluation function could enhance the

system performance greatly with genetic approaches, normally by employing a

normalization process and an appropriate way to implement complex constraints

[Homailfar, 1994].

(3) Appropriate String Representation: string representation can be changed from bit

string coding to grid coding or floating point representation [Janikow, 1991].

(4) Better Initial String Generation: the formation of the initial population is not

limited to random generation, but can instead take into account the additional

knowledge about the system [Davis, 1991].

(5) Optimal Choice of Genetic Parameters: system performance can be significantly

influenced by the combined effects of population size, crossover rate, mutation rate,

and the number of crossover points. The optimal setting of the genetic parameters can

improve the realisation of the twin goals of maintaining diversity in the population and

sustaining the convergence of the GA.
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5.3.2 THE PROPOSED PERFORMANCE IMPROVEMENTS

For development and adaptation of advanced genetic strategies, this project mainly puts

efforts in selection and crossover procedure, as they are the two principal and

influential operators for the trade-off' between exploitation and exploration. The

following advanced genetic strategies have been employed in this project:

(1) Steady-state Genetic Algorithm (SSGA).

(2) Elitist Genetic Algorithm (EGA).

(3) Ranking Genetic Algorithm (RGA).

(4) Two-points crossover Genetic Algorithm (TGA).

(5) Variable mutation Genetic Algorithm (VGA).

(6) Deterministic roulette wheel selection (DGA)

Parameter values, such as population size, crossover rate and mutation rate, for each

strategy are tuned till satisfactory results are obtained. Optimally combining two levels

of improvement tasks can have significant impact on overall system performance. The

search will be given enough selection pressure for better realisation of the "survival of

the fittest". At the same time, the diversity of the search space is maintained.

5.3.2.1 STEADY-STATE GENETIC ALGORITHM (SSGA)

In a eGA, the new generation is created to replace the entire population of old

individuals with the genetic modified new ones. This generational replacement

technique has some potential drawbacks. Firstly, the diversity of solution is easily lost

if there are few individuals with extraordinary high fitness. These individuals could

dominate the whole population within a small number of generations, while the search

is still in a local minimum. Secondly, the best individual among strings may be lost or

destroyed by genetic operators. To overcome these problems, instead of replacing the

whole population at every generation, SSGA only replaces a few of the old population

at a time. It tends to slow down the convergence speed, and keeps the search space as

diverse as possible.
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5.3.2.2 ELITIST GENETIC ALGORITHM (EGA)

The SSGA is a quite effective method to prevent the best solution being disrupted by

the genetic operator over generations. However, it is very inefficient due to the large

iteration a SSGA requires, which in tum is owing to only a few new members

introduced at each iteration. A simpler technique is to keep the current best individual

unchanged, and always pass it to the next generation to allow the beneficial material to

be maintained in the whole generation.

5.3.2.3 RANKING GENETIC ALGORITHM(RGA)

For the same reason as the SSGA, the RGA tends to keep the search diverse to prevent

premature convergence. For the rank based GAs, an evaluation function becomes less

important. Ranking assigns each string a new fitness value according to its

performance related to other members in the population. The superiority of the RGA

over other GAs lies in its ability not only to slow search speed to keep search diversity,

but also to increase speed by exerting the selection pressure when necessary.

5.3.2.4 GENETIC ALGORITHMS WITH TWO-POINT CROSSOVER

The disadvantage that one-point crossover exhibits is that it can not reach every feature

that strings can combine. This results in losing some beneficial parts among the strings.

Two-point crossover overcomes this drawback and introduces more variations to

offspring, which encourages the search to move towards the most promising area.

5.3.2.5 GENETIC ALGORITHMS WITH VARIABLE MUTATION RATE

The mutation rate is normally held constant throughout a run of the conventional

genetic search. It is normally kept very low to provide only background variations.

With such a low rate, the mutation operator might not be able to provide enough new

material to test the search space thoroughly. Yet, a higher mutation rate will result in

large disruptions of the highly fit solution. As a result, the variable mutation rate is
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introduced. It tends to give enough variation at the beginning of the search to keep the

diversity, while offer less variation at the end of run to prevent too many good solutions

from disruption. The variable mutation rate proposed in this study is exponentially

decreased over the number of generations.

5.3.2.6 DETERMINISTIC ROULETTE WHEEL SELECTION

The reproduction procedure is easily performed by creating a roulette wheel. The idea

is that strings with higher fitness values take a larger portion of the wheel, while strings

with low fitness are given a smaller portion of the roulette wheel. A span of the

weighted wheel yields the reproduction candidates, where the highly fit strings have a

higher chance to contribute more copies into next generation. Hence,' survival of the

fittest' is realised with this simple procedure. However, sample errors might be

introduced by the finite and randomised selection procedure. The reason is that the

landing point is completely randomised at each spinning of the wheel. If only a finite

population size is used, an imbalance can be introduced when some regions on the

wheel receive more than two landings, while some others receive none. When the

sample errors are accumulated over the generations, the overall effect can lose some

beneficial material and lead the search away from those theoretically predicted.

Although increasing population size can be the solution to this problem, it can only be

done moderately, as this increased accuracy is at the cost of great computational

expense.

A deterministic roulette wheel selection is proposed in this project to reduce the sample

error. First, the roulette wheel is equally divided into different regions, and the number

of regions is the same as the population size. Secondly, the wheel is forced to land only

once at each region so that the entire search space is equally sampled. With the

improved selection procedure, more accurate information is gathered to assist the

algorithm to make the right decision and lead the search towards the right direction,

consequently improving the reproduction accuracy.
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5.3.2.7 OPTIMAL CHOICE OF GENETIC PARAMETERS

Optimal parameter tuning can have significant impact on overall system performance.

However, there is no generic parameter setting available which will perform equally

well in various problems. The best parameter setting for one problem might be quite

different from that for another problem. The tuning for various parameter values is a

time consuming task. Some general guidance has been drawn by several researches.

DeJong concluded the effect of different parameters on the performance in his Ph.D.

thesis [DeJong, 1975] as:

"Increasing the population size would improve long-term performance at the expense

of slower initial response. Increasing mutation rate was seen to improve off-line (best

performance at each generation) system performance at the expense of decreased on-

line (average performance at each generation) system performance. Increasing the

crossover rate results in overall performance improvements."

With this observation DeJong recommended a parameter setting which yields generally

good behaviour for both on-line and off-line performances. They are:

population size

crossover rate

mutation rate

50-100

0.6

0.001

[Grefenstette, 1986] suggested a quite different way of choosing appropriate parameter

values. His suggestion is: if a small generation number is considered, then a high

crossover rate and low mutation rate are necessary; on the other hand, if a relatively

large population is used, there should be a moderate crossover rate and a low mutation

rate. Thus, the following parameter settings were chosen by him for the applications

which favour in better on-line performance:

population size 30

crossover rate 0.9

mutation rate 0.01
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Although these two conventional suggestions can generally attain reasonably good

solutions, practical applications emphasise the need for robust settings which can adapt

optimally to various search strategies and problem environments. [Srinivas, 1994]

derived adaptive parameter settings for the crossover and mutation rates, where the

recombination rates are determined by the GA itself. The user is therefore relieved of

the burden of specifying the values of crossover and mutation rates.

5.3.3 EFFECTIVE IMPLEMENTATION OF GAs ON

CLASSIC ECONOMIC DISPATCH PROBLEM

In this section, the impact of parameter tuning and the effectiveness of the proposed

enhanced GAs are demonstrated on the classic ED problem. The solution quality will

be measured with regard to both on-line performances (average performance at each

generation) and off-line performance (best performance at each generation). The on-

line system performance is simply the average performance of all structures tested

during the search. This measure is appropriate in those situations in which an adaptive

system is used to dynamically alter the performance of a system, where any tested

structure which is shown to be poor will be penalised. To do well on the on-line

performance, a search algorithm must be able to quickly decide where the best value

lies and concentrates its search there. The off-line performance is computed by using

only the current best solution, which does not give penalties for exploring the poor

regions of the search space on the way to better solutions. It is applicable in situations

where the test can be done independently of the system being controlled. The search

might be done off-line while the current best structure is used until a better one is

found. To do well off-line, an algorithm must give enough time for the search to

explore the entire search space, which enhances the possibility to find the global

optimum.

5.3.3.1 THE SYSTEM DESCRIPTION

The test system employed consists of six generator units supplying one constant load

demand, which is obtained from Wood [1984]. The fuel cost function of each unit is a
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quadratic function of the generator's real power output. The cost functions and the

output limits are given as follows:

F}($/h) = O. 001562P}2 + 7.92P} +561.0

F2($/h)=0.00194P2
2 +7.85P2 +310.0

F3 ($/h)= O. 00482P/ + 7.97P3 + 78.0

F4 ($/h) = 0.00139P/ + 7.06P4 + 500

Fs($/h) = 0.00184Ps
2 + 7.46Ps + 295

F6 ($/h)= 0.00184P6
2 + 7.46P6 + 295

100<P} <600

100<P2 <400

50<P3 <200

140<P4 <590

110<Ps<440

1l0<P6 <440

The load demand is 1800 MW and transmission losses are ignored in the test.

5.3.3.2 EXPERIMENTAL DESIGN

Initially, a benchmark was established to assess the performance of each improved GA.

The effect of parameter setting on the on-line and off-line system performances was

investigated, followed by the tests of various improved GAs on the SED problems.

The tests carried out are in the order as:

(1) Optimal parameter tuning.

(2) Elitist GA (EGA).

(3) Steady-state GA (SSGA).

(4) Ranking GA (RGA).

(5) Two-point crossover GA (TGA).

(6) Variable mutation rate (VGA).

(7) Deterministic GA (DGA).
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5.3.3.3 EXPERIMENTAL RESULTS

Benchmark

The bench mark is established from the on-line and off-line results of a eGA on the

SED problem using the six generator system. The ultimate goal for the SED problem is

to determine the optimal generator output level for each unit in order to minimise the

total operating cost. Two parameter sets for population size, crossover rate and

mutation rate have been employed for the problem. One is Dejong's steady setting [50,

0.6, 0.001], and the other is Grefenstett's adaptive setting [30, 0.9, 0.01]. Each

generator output is represented with aID bit string, which resulted in a fixed string

length of 60 for each solution. A total of 50 generations were used throughout the

parameter tuning test in the aim of providing adequate evolution to the initial Guessed

solutions.

The on-line and off-line system responses with Dejong's and Grefenstette's settings are

illustrated in Figure 5.1 and Figure 5.2 respectively. Dejong's settings have steadily

improved the solution fitness on on-line system performance over generations.

However, the improvement made is in small steps due to the slow exploring speed

defined by the lower crossover rate and mutation rate. The results with Grefenstett's

settings are quite disruptive because of the higher crossover and mutation rate, which

are intended to emphasise the effort of exploration. Though the performance with

Grefenstett's setting is not steady, it is quicker to obtain a good solution. Moreover,

the search has better chances to attain a good solution strategy within a shorter time.

Also, because of the larger population size with Dejong's settings, it takes a much

longer computing time to complete a genetic process. For the SED problem on the 6

generator system, it took 9.83 seconds for the Dejong's setting to complete the 50

generation processing compared with that of 2.69 seconds for Grefenstett's setting.

From the computational expenses and short-term performance point of view,

Grefenstette's setting of [30, 0.9, 0.01] is more attractive. For long term system

performance, Dejong's setting is safer because of its consistent improvement on the

solution quality.
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(1) Effect of Parameter Tuning

The effects of parameter tuning are addressed to the three most important parameters:

population size, crossover rate and mutation rate. However, the effect of such

parameter tuning is influenced greatly by the random search nature of genetic

processing. Figure 5.3 shows performance variations with 10 trials on the SED

problem with the typical parameter settings:

Total generations: 50

Population size: 30

Crossover rate: 0.9

Mutation rate: 0.01

It is notable that both on-line and off-line performances have large variation for the 10

identical runs, and only the preserved best solution showed some consistency. The

reason is that each genetic processing always starts with a fresh initial starting point,

which is quite different from one trial to another. Also, the whole processing is

completely randomised, which can cause performance variation. However, over a long

term, these variations should be reduced. Figure 5.4, 5.6 and 5.7 are the effect of

parameter tuning in population size, crossover rate and mutation rate on on-line and

off-line performances. Figure 5.5 is the relation between the computing time and

population size.

It is clearly shown in Figure 5.4 that larger population size does not always imply a

better solution quality. A large population can guarantee a better long-term off-line

performance, but the on-line performance is adversely affected. For example, a GA

with a population size of 30 gave the best on-line performance, while one with a size of

40 had the best off-line performance. For the population sized 60, the GA had

relatively good results for both on-line and off-line performances. However, under the

same number of generations, the GA with the larger population responded more slowly.

It is clearly shown in Figure 5.5 that computing time is proportional to population size

while the number of generation was kept as 50. For the population size of 30, the

completion of 50 generations required 2.4 seconds, while for the size of 60, it needed

4.6 seconds to finish, and the cost saving thus made is only 0.38%. However, a too
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small population size, such as below 20, can not provide good results for either on-line

or off-line performances.

The effect of an increased crossover rate and mutation rate mainly lies in their more

disruptive on-line and off-line performances. The benefit is that a search can result

better preserved best solution, which can be made use of in the case of the SED

problem. This effect is more obvious in the case of changing crossover rate. A lower

crossover rate and mutation rate tend to reduce the number of new individuals per

generation, and are therefore not sufficient to attain better overall solutions.

In the application of the CGA on the SED problem, the best parameter settings for the

6 generator system were verified as:

Population size: 30

Crossover rate: 0.6

Mutation rate: 0.008

The resulting performance is illustrated in Figure 5.8. The advantages, which the

optimal parameter setting achieved, lie in its steady improvement of on-line

performance, yet keeps off-line advances over the generation. However, the

improvement made is not significant. Therefore, parameter tuning can only be used as

a supplementary tool for performance enhancements.
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Figure 5.1 The eGA performance based on Dejong's setting [100, 0.6, 0.001].
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Figure 5.2 The eGA performance results based on Grefenstette's set [30, 0.9, 0.01]
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Figure 5.3 The effect of the randomised genetic procedure on system performances.
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Figure 5.4 The effect of population size on system performances.

81

120



Time(s)
12

10

oL----.----~---.----~---.----~---.----~---.----~---.--~

8

20 40 80 80 100 120

Fitness~--------------------------------------------~
12000

Number of PODulation

Figure 5.5 The effect of population size on computing time.
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Figure 5.6 The effect of crossover rate on system performances.
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Figure 5.7 The effect of mutation rate on system performances.
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Figure 5.8 The eGA performances with the optimal parameter setting.
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(2) Elitist Genetic Algorithms (EGA)

It is shown in Figure 5.2 that the performance ofCGA with Grefenstette is superior for

its ability to attain better results at very early stage, but limited by its unstable overall

on-line performances. On the contrary, DeJong's settings consistently improve the

performance over the time as seen in Figure 5.1. It is therefore attractive for its

security and safety. However, the improvement over each generation is in much

smaller steps. The EGA has therefore been developed [DeJong, 1975] to insert

security in to the disruptive Grefenstette's setting by always passing on the current best

solution among the population to sustain the beneficial material. The results of the

EGA on the system for both parameter settings are shown in Figures (5.9-5.10), where

it is clear that the performance improvement on Grefenstette's setting is significant

from the very early stage.

(3) Steady-state Genetic Algorithms (SSGA)

The system performances on the ED problemwith the SSGA are shown in Figures 5.11

and 5.12, where Figure 5.11 is the result with DeJong's setting while Figure 5.12 is that

of Grefenstette's settings. The difference lies between the CGA and the SSGA is that

the SSGA replaces only two worst parents at every generation, while CGA replaces the

entire population each time. With a total of 200 generations, the on-line performance

has been improved significantlyon both parameter settings over the course of a GA

run. The off-line performance has been improved substantially on Grefenstette's

settings. This pictures clearly shows the benefit of the SSGA's ability in better

preservation of beneficial genes, being able to keep its search diversity, and therefore

have more chance to attain the global optimum. While other GAs tend to decide which

way up at a much early stage, and can be trapped in a local optimum. For the GA with

DeJong's settings, no significant off-line performance improvement has been made

during the 200 generation. This is mainly due to its slow recombination speed, hence

takes much longer time to complete the same search space compared with that of

Grefenstette's setting. However, it is expected that given a longer time to DeJong's

setting, same improved on the performance can be make. Because of the large

generation it has to endure to provide enough manipulation to the initial population, the

SSGA is a very time consuming search strategy. It takes about 5 times longer than
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eGA to arrive at the same optimal point. Despite the time consuming problem, it still

attracts wide attention because it guarantees the significant performance improvement

in the long term.

(4) Ranking Genetic Algorithm (RGA)

The results of the RGA on the SED problem are illustrated in Figure 5.13 and Figure

5. 14. The RGA exhibits significant improvement in on-line performance with

Grefenstette's setting, which proves the RGA can reduce the sampling error and

stochastic effect with the deterministic evaluation function. The on-line performance

improvement has also been made with DeJong's setting, yet the improvement is rather

small. The superiority of the RGA compared with the SSGA lies in its hugely improved

on-line performance, and its reduced computing time compared with the SSGA. The

argument against the RGA is that it ignores the large variation between the different

solutions, but only assigns the fitness value according to the performance rank among

the population. This is against the foundation of genetic search, where the fitness value

is the only information to guide the search.

(5) Deterministic Genetic Algorithm (DGA)

A DGA can prevent a roulette wheel selection procedure from unbalanced landing, and

therefore give each area an equal opportunity to be sampled. The DGA provides

background insurance against the possibility of sampling error, consequently reducing

chances of getting premature convergence. The comparison upon system performance

has been carried out with the optimal parameter setting [50, 0.6, 0.008] as population

size, crossover rate and mutation rate for the 6 generator system. From Figure 5.15,

such insurance did improve both on-line and off-line performance, though the

improvement is small in scale.

(6) Two-points Crossover Genetic Algorithm

The performances ofTGA are depicted in Figures 5.16 and Figures 5.17. It is notable

that significant on-line improvement has been made at a very early stage, however, the

off-line performances were only improved slightly.
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(7) Variable Mutation Genetic Algorithm

The performance of VGA is illustrated in Figures 5.18 and 5.19. The performance

improvement on on-line performance is significant, especially with Grefenstette's

parameter setting. This is due to its ability to preserve better individuals at later stage

by decreasing the mutation rate. However this improved on-line performance is at the

cost of the off-line performance.
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Figure 5.9 The EGA performances with DeJong's setting [lOO, 0.6,0.001].
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Figure 5.10 The EGA performances with Grefenstette's setting [30,0.9,0.01].
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Figure 5.11 The SSGA performances with Dejong's setting [100,0.6,0.001].
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Figure 5.13 The RGA performances with DeJong's setting [100,0.6,0.001].
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Figure 5.14 The RGA performances with Grefenstette's setting [30,0.9,0.01].
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Figure 5.15 The performance comparison between the DGA and the optimal eGA.
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Figure 5.16 The TGA performances with Dejong's setting [100,0.6,0.001].
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Figure 5.17 The TGA performances with Grefenstette's setting [30,0.9,0.01].
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Figure 5.18 The VGA performances with Dejong's setting [100,0.6,0.001].
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Figure 5.19 The VGA performances with Grefenstette's setting [30, 0.9,0.01].

5.3.4 DISCUSSION

A good genetic strategy lies in two levels of choice. The primary level is the selection

of a suitable genetic strategy, the secondary level is the choice of the appropriate

parameter setting. Optimal combination of these two levels can help a genetic strategy

in seeking a balance between the two conflicting search efforts: exploration and

exploitation. The experiments carried out in the previous section clearly indicate that

the choice of a genetic strategy and an optimal parameter setting can influence system

performance significantly.

Performance enhancement ought to be sought firstly from advanced genetic strategy,

where the improvement made is fundamental, and therefore can be huge. From the

experiments, it can be concluded that SSGA has the advantage of attaining better off-

line solutions in the long term, while RGA, TGA, and VGA have the ability to obtain

better on-line solutions. EGA and DGA have the capacity to improve both on-line and

off-line performances, they can be coupled with any genetic strategy, though the
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improvements thus made were small in scale. Further advances in genetic strategy can

be sought from the combination and extension of the above listed strategies.

Parameter tuning serves as a secondary tool to enhance system performance, yet it can

play a very important role in performance improvement. An increase in population size

will improve long-term off-line performance, but at the cost of on-line performance and

slow system response time. An increase in crossover rate and mutation rate will

adversely affect on-line performance, but improves off-line performance. Despite the

significant impact that the parameter setting can have on a system performance, tuning

parameter values is a time consuming job, and in many real-time cases, such time is not

affordable. Under such circumstances, two conventional suggestions for parameter

setting have been proved to be valuable and can be made use of One is Grefenstette's

setting, which has the advantage of quick processing speed and better off-line

performance, and another is DeJong's setting, which is slower in speed, but provides

generally good performance for both on-line and off-line performances.

Apart from the advanced genetic strategy and optimal parameter tuning, other factors

such as a suitable fitness functions to better handle objectives and constraints, better

initial population generation, etc., also play very important role in performance

Improvement. In conclusion, a good GA strategy is dependent on effective string

representation, better initial population generation, a suitable evaluation function,

advanced genetic operators, as well as optimal choice of GA parameters. By carefully

implementing a genetic search algorithm, the imbalance of those two search efforts can

be reduced, and the premature convergence can be alleviated.
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5.4 OVERCOMING SLOW PROCESSING SPEED WITH

HYBRID GENETIC ALGORITHMS

The improvement made by carefully implementing a genetic algorithm as discussed in

section 5.3, can only balance the two conflicting search efforts: exploration and

exploitation. This implies that an increase in the accuracy of a solution must be at the

cost of sacrifice to the speed of the convergence, and vice versa. It is unlikely that both

of them can be improved simultaneously. In contrast, by crossing a genetic algorithm

with other well known conventional techniques, the hybrid operational strategy makes

it possible to speed up the genetic search processing as well as to improve the solution

quality.

5.4.1 INTRODUCTION

Slow processing speed is another vital weakness associated with GAs. A GA casts a

net through the entire search space so that the potential hill can be identified no matter

how complex the search space is. However, this increased robustness comes at the

cost of considerable computational time because of a GA working with a group of

solutions in parallel. This has prevented their use in many practical applications, where

speed is of particular importance. Speeding up genetic processing is therefore a very

Important issue in GA applications. Although many researchers suggested using

parallel processors to make the multiple genetic search serial, which can indeed

improve the genetic processing speed significantly, it needs considerable capital cost

and lead time for design and implementation.

HGAs are the cheap and simple solutions to the slow processing speed of genetic

search. The attraction of a GA search is its ability to identify the potential hill.

However, as a GA spends most of the time in competing between different hills, rather

than improving the solution along the potential hill, a GA takes a considerably long

time for the fine tuning local search. In contrast, local search techniques have the

advantage of climbing hiIIs very fast. However, they are blind to the neighbourhood

search area, and therefore can become easily trapped in a local optimum. By crossing a
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GA with other well known local search techniques, a HGA can take advantages of both

the local and GA techniques, so that the global perspective of the GA is made use of

and the convergent capability of the local search techniques is utilised. So called

hybridisation of Genetic Algorithms (HGAs) can boost the system performance greatly

by improving the search algorithm both effectively and efficiently.

5.4.2 DESIGN OF A HYBRID GENETIC ALGORITHM

In this study, HGAs are designed by crossing an Elitist Genetic Algorithm (EGA) with

a first order gradient technique (GT). The EGA employed has the mechanism of

generational reproduction, one-point crossover, random mutation and preservation of

the best solution among the population. The EGA is used as the base search technique

to quickly identify the optimal region and consequently reduce the search space. The

feasible solution obtained with the EGA is subsequently passed over to a first-order GT

[Wood, 1984] which is adopted as a local hill climber to rapidly climb the remaining

hill. Consequently, the optimum can be attained very quickly. The GT has one

characteristic which is desirable in hybridisation with a GA, that the GT always starts

with a feasible solution, and searches for the optimal solution along a feasible

trajectory. In the case of interruption of computation, the most recent operating point

will still be a reasonable point to be utilised. Therefore, the GT might be one of the

most suitable algorithms to work together with GAs. As for the search space shown in

Figure 5.20, the proposed hybrid scheme uses the EGA to identify the potential hill -

H2 within a reasonably short time, while the first-order gradient technique is next

employed to quickly climb the remaining hill of H2. Thus constructed hybrid genetic

algorithms boost the search performance greatly by resolving the premature convergent

problem and slow processing speed simultaneously.

Figure 5.20 A multi-modal search space.
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5.4.3 IMPLEMENTATION OF A HYBRID

GENETIC ALGORITHM

The test of the proposed HGA on the SED problem is carried out on the six generator

system as described in section 5.3.1.1. The number of generations for the EGA is

restricted to a relatively small number so that only small computational expense is

required. However, it has to be sufficient to be able to identify the hills which contain

the potential solutions. The best generation number for the base search is case

dependent, mostly obtained by experiments or experience. The best generation number

for this case will be discussed in next section. The other parameter values chosen for

the EGA in this application are based on Dejong's suggestion.

The results of the base EGA search are then passed over to a first-order GT. Based on

the feasible solution provided by the base EGA search, the GT performs changes on the

selected unit output to get further cost reduction subject to the following constraint

equation:

n

L,1fl(t) = 0
i=l

(5.1)

Equation (5.1) states that the sum of the changes in all the power outputs must be equal

to zero. This implies that, when a change of power output for any random selected unit

x is made, the remaining n-I units should correspondingly change the total power

output at the equal amount but in the opposite direction. Therefore, when the output

of unit x is increased by a certain amount, the remaining n-I units must be decreased by

the same amount, and vice versa. This ensures that the newest operating point is still

feasible. Mathematically stated, this move can be shown as:

~Px(t) = -L ~Pi(t)
i;tx

(5.2)

Repeatedly performing this move, the GT is able to climb to the top of the hill. By

crossing the EGA with the GT, the proposed HGA can attain better solutions within a

reasonably short time on the constrained ED problem. The flow chart for the proposed

HGA is drawn in Figure 5.21.
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Figure 5.21 A flow chart for the proposed HGA.
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5.4.4 AN ILLUSTRATION OF THE HYBRID GENETIC

ALGORITHM ON STATIC ECONOMIC DISPATCH PROBLEM

Two HGAs have been proposed in this project to demonstrate their inherent

characteristics on the SED problem. The first hybrid scheme (termed as HGA(I) is

constructed such that the local search does only one iteration. In this way, the local

gradient search technique has a light and constant computing time, which can be

ignored when accounting for the total computing time. Under such a hybrid scheme,

though the execution time can be approximated to be the same as a eGA, the operating

cost is indeed improved. However, the local search technique designed thus may not

be able to fulfil the remaining task since the search is restricted by the limited search

time. The second hybrid scheme (termed as HGA(2» is designed to further improve the

operating cost by fully utilising the potential of local search techniques. The HGA(2)

allows local search technique to complete the remaining hill climbing with an extended

search time, therefore has better opportunities to achieve or nearly reach the optimal

point. Both algorithms are analysed regarding the solution quality and the solution

speed. Number of generations for the base GA search is varied for each algorithm in

order to provide valuable information in constructing a robust and efficient Hybrid

Genetic Algorithm for the ED problem.

Firstly, the test was carried out on the SED problem by the HGN). The local search

time climbed only one step up so that the search time was limited to 0.22 seconds.

With the base GA search changing the number of successive generations from 5 to 35,

the resulting operating costs with the HGN) are plotted in Figure 5.22. As clearly

illustrated, even with a very light local search effort, the technique can improve the cost

reduction significantly (up to 0.62%). If the local search time (0.22 seconds) is

ignored, for the same computing time (computing time is in proportion to the number

of generations), a HGA achieved a lower operating cost (line a in Figure 5.22). For the

same operation cost, the HGA required a lighter computational expense, as indicated by

line h. As the number of generations linearly increases, the improvement that the local

technique made is monotonically decreased, as shown in Figure 5.23. This occurrence

might be explained as follows. Assuming that any base GA search could identify the
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potential hill, different GAs locate the search at the different levels of that hill. As can

be expected, a long base GA search encounters points at the upper region of the hill,

While a short base GA search finds the points at the bottom area of the hill. When the

search is getting closer to the top of the hill, little improvement can be made.

Moreover, small improvements require a great deal of search effort. The bottom region

has plenty of room to be improved, and the improvement can be made rather easily.

Secondly, the test was applied to the same SED problem with the second HGA (2). In

this case, the HGAC2) provides adequate time for the local search to accomplish the

remaining search task so that the search gets better chances to arrive at the optimal

point. Again, the base GA search varied its generation number from 5 to 35. The cost

improvement thus obtained are shown in Figure 5.24, together with the costs attained

by the HGACI) and the EGA for comparison. The picture clearly shows that the cost can

be significantly improved with the HGAC2) (up to 2.67% saving). As the gradient

technique is a quick local hill climber, HGA (2) only took slightly longer time than that of

HGA(I) to attain much lower costs. The HGAC2) is therefore more desirable in this

application.

C~(~h'l) --,

171500 ,...

¢.,

o 35

-. " EGA Cost
. . t-,.~

Figure 5.22 Performance improvement ofa HGACI) over a EGA
with different base GA search.
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Figure 5.23 Cost saving by HGA(I) with different base GA search.
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Finally, the best operating points for optimising the solution accuracy and the solution

speed are drawn in Figure 5.25 for the two hybrid algorithms. The computing times for

two algorithms are close enough to be plotted as one. The best operating point for

HGA(l) is G(1), where the number of iterations is close to 20. Table 5.1 shows the

detailed improvements made with the three HGA(I) s under the operating point ofG(l).

For the first two runs, the improvement made by the local search is notable despite the

short computing time that the local gradient technique spent on the problem. On the

third run, the base GA search has arrived at an optimal plateau, therefore local search

made no further improvements. Table 5.2 shows the difference of each generator

power output under the HGA (I) and the EGA search strategy.

Cost ($Ih)
17050

11.,.. (mins) 4

3

17000

""" HGA(l)................ .. .... .. .. 2

16950

16900

",
16850

"... .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

16800

16750 o
o 40

Generation

Figure 5.25 Compromise points for two hybrid algorithms.

Table 5.1 Comparison Between EGA and HGA(l) on
the Solution Quality and the Solution Speed

Run 1 Run2 Run3
Cost Time Cost Time Cost Time
($Ih) (mins) ($Ih) _(mins) ($Ih) (mins)

EGA 16657.96 1.75 16710.81 1.75 16607.06 1.75
HGA(I) 16616.l5 1.75 16606.40 1.75 16607.06 1.75

Difference 41.81 0 104.41 0 0 0
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Table 5.2 The Difference in Power Outputs for Each Unit Made
b the HGA (I) over CGA

EGA 285.72

Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

60.99
HGA(I) 251.59 372.87 83.96

309.35
578.65

391.61 365.80
377.65 135.58

386.80

Difference 34.13 13.93 22.97 269.30 13.96 230.22

The compromise point G(2) for HGA(2) has an iteration number of 15. The results

attained by three identical HGAs(2) are listed in Table 5.3. The allocation differences

are listed in Table 5.4. The HGA(2) showed the obvious advantage by providing a

better solution with a short computing time. However, if either the solution speed or

the accuracy is of great importance to the application, alternative results would be

attained at the trade-off curve. The potential of HGAs has been further verified on the

Dynamic Economic Dispatch problem on a practical power supply system in Chapter 8.

Table 5.3 Comparison Between EGA and HGA(2) on
the Solution Quality and the Solution Speed

Run 1 Run2 Run3

Cost Time Cost Time Cost Time
(Sib) (mins) (Sib_} (mins) (Sib_} _(min~

EGA 16696.99 0.98 16596.26 0.98 16663.27 0.98
HGA(2) 16361.11 0.98 16468.66 0.98 16217.79 0.98

Difference 335.89 0 127.59 0 445.48 0

Table 5.4 The Difference in Power Outputs for Each Unit Made by
the HGA (2)over CGA

Unit 1 Unit 2 Unit 3 Unit4 Unit 5 Unit 6
(MW) (MW) _{MW) (MW) (MW) (MW)

EGA 249.56 356.89 103.81 577.24 187.09 325.48
HGA(2) 114.91 250.42 93.16 588.72 438.73 314.06

Difference 134.65 106.47 10.65 11.48 251.64 11.42
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CHAPTER

6

DYNAMIC ECONOMIC DISPATCH WITH
GENETIC ALGORITHMS

6.1 INTRODUCTION

The classic economic dispatch (SED) problem discussed in the previous chapters is a

static power scheduling problem, where the customer load demand is fixed, and a

single time interval is considered. This well established SED policy is not optimal in

terms of security, reliability and continuity of the electricity supply. The SED cannot

foresee the trends of load demand over the future time horizon, but schedules the

power outputs only with the present load. This makes it harder to meet the actual load

demand under stricter constraints, especially when a large load variation is

encountered. In practical applications, dynamic economic dispatch (DED) [Ross,

1980] is favoured because it can improve the generation control. The DED strategy

anticipates changes in demand through the use of load forecasting to determine the

economic allocation of the future power generation. In constrast to the SED which

cannot foresee the effect of the present loading on the future generation capability, the

DED policy enables a better match between the load demand and the power

generation. It uses the knowledge of both present and future loads, and additionally

takes system and security constraints into account, such as ramping rate and spinning

reserve constraints. However, this increased accuracy comes at the cost of the

complexity of the dispatch problem. Many techniques for solving constrained and

unconstrained optimization problems have been applied to the DED problem with

different degrees of complexity, and as it has been concluded that a better solution can

only be obtained from those techniques with natural complexity. As a result, the
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popular solution methods have to contend with extended computing time and

excessive needs for computing storage, which limits their application on larger power

systems. This chapter explores the potential search ability that GAs exhibit on the

DED problem, and further demonstrates the ease of GAs implementation in solving

problems with increased order of complexity.

6.2 DED PROBLEM

The problem ofDED aims to determine the economic allocation of committed units by

using predicted load trends in order to better track customer load demand and improve

the overall generation economics. The dynamic constraint considered in this study is

the generation ramp rate (GR) constraint, which is used to ensure the safety of the

equipment and the smoother operation of the power systems. This consideration has

in turn formed a highly constrained DED problem for the GA to work with.

The mathematical formulation of the DED is stated as:

T n
min F = L LI1(t)

t=O i=l
(6.1)

Where F is the total operating cost over the scheduling period of T. It is assumed that

the forecast load demand remains fixed at each discrete time interval indexed as t=O, 1,

2, .....T, where there are a total ofn dispatchable units at time t. Fj(t) is the fuel cost for

each generator unit at time t.

Within each time interval, a static economic dispatch is carried out. Both the equality

power balance constraint and inequality power limit constraint have to be satisfied.

(6.2)

~min < ~(t) < ~max (6.3)
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Where

Pdt) : is the transmission loss at time t.

Po(t): is the constant load demand at that time.

Pimax: is the maximum operating capacity for unit i.

Pimin: is the minimum operating capacity for unit i.

The additional dynamic Generation Ramping Rate constraint limits the maximum

increase and decrease of power output and bounds the neighbourhood state together ..

This is done by placing additional limits on unit's operating capacity for the next time

interval according to the present outputs, which is stated as follows:

Pj(t+ l)max= min{Pjmax'Pj(t)+ UP(t)}

Pj(t+ l)min= max{~min'Pj(t)- DW(t)}

(6.4)

(6.5)

where UP(t) is the generation ramping up rate and DW(t) is the ramping down rate at

time t, which should be kept within a certain limited level for the safety of the

equipment.

6.3 GENETIC APPROACH TO THE DED PROBLEM

The flow chart of a GA to approach the DED problem is illustrated in Figure 6.1.
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I Map objective function J
1

Encode system control variables

1
t=O JTotal_ cost=O

j_
.1 Random populanon generation

Gen=O

1
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Decode control variables
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Reproduce Gen
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Gen=Gen+l

Until maximum generation reached

No
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Yes

t=t+l
Total cost=Total cost+Cost(t)

1Does t exceed dispatch period? I
No

Yes
LEnd J

Figure 6.1 GA Implementation procedure on DED problem.

As clearly shown in Figure 6.1, the inner loop of the DED solution procedure at each

time interval is almost the samewith that of SED as illustrated in Figure 4.1. The only

difference is the additional operational limits imposed by the GR constraint which can

be handled by a GA inherently. Therefore, within each time interval, the same static

ED solution procedure is carried out. The Lagrange approach has been employed

again to solve the SED problem by transferring the constrained problem into an

unconstrained problem, which is done by adding the constraint equations with a

multiplier to the original objective function. This results in the overall objective

function for each time interval as:
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L = F- A~ (6.6)

where <p is the power balance constraint equation (6.2), and A is the Lagrange multiplier for

the equality constraint. The power limits constraint equation (6.3) and generation ramping

rate constraint equations (6.4-6.5) can be easily handled by the GA itself, which is another

unique feature of GAs over conventional techniques. Based on the overall objective

function, the fitness function is formulated in the same way as that of SED which has been

described in equation (3.2).

By performing this static economic dispatch procedure repeatedly until the total dispatch

interval is reached, a DED dispatch strategy is obtained.

6.4 THE TEST SYSTEM AND SIMULATION RESULTS

The GA approach to the DED problem is tested on a system with four generator units

[Tsuji, 1981]. The purpose of the test is to dispatch the power for each unit to track

the customer load demand so as that the overall cost is minimised. The characteristics

of the fuel cost consumed by the ith unit has been represented by multiplying the

quantity of fuels consumed by the cost, which has the format as :

F. - (a· - h·S·)(a· + p. p. + y. p.2)1- 1 II 1 II II (6.7)

Where ai' hi are the cost per kcal coefficients, a; Pi' r, are fuel consumption

coefficients, and ~ is the individual unit's power output.

The data of fuel cost Fi and operation limits for each unit are given below:

Ft ($/h) = (3.065-0.4545*SI)*(025* 10-3*PI2 + 2.21 PI + 148.4) 125<P1<500

F2($/h) = (3.219-0.3553*S2)*(025*10-3* P22 + 1.89P2+136.2) 180<P2<500

f:3($/h) = (3.219-0.3553*S3)*(028 *10-3*P32 + 1.99P3+96.1) 100<P3<365

F4 ($/h) = (3.248-0.3080*S4)*(028* 10-3*P42 + 1.99P4+96.0) 94<P4<365
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Where Si is the sulphur content in fuels for unit i, which is a function of the mix ratio of

high and low sulphur fuels. Si has been kept fixed as 0.5 in this test, while it will

change with the customer load demand, in the next chapter, when environmental issue

is encountered.

A typical daily load demand curve for the system is depicted in Figure 6.2, which has

significant variations over the period of 24 hours.

A GA with the Elitist scheme coupled with the Deterministic roulette wheel selection

(described at section 5.3.2) has been employed to solve the DED problem on the 4

generator system over 24 hour dispatch period. The parameter values are based on the

Gregenstette's setting with a total generation of 30 for a general good result on the

DED problem.

The GR constraints were defined as:

80O/o(P(t»i < Pi(t + 1) < 120o/o(~(t» (6.8)

This restriction implies that the maximum increase and decrease of power output due to

the demand variation is limited to no more than 20% of the previous power output.

The total cost over 24 hours attained by the coupled Elitist and Deterministic Genetic

Algorithm is $1990 per hour. The cost for each time interval is illustrated in Figure 6.3.

The power contributions from each unit for the load demand under optimal operation

strategy resulted from the GA are depicted in Figure 6.4. As can be observed, the

change of a power output for each generator is very smooth, which is the beneficial

result from the additional GR constraint. However, a slightly higher cost has to be paid

comparing with the relaxed power dispatch.
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Figure 6.2 A typical daily load demand.
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Figure 6.3 Resulting operation cost with EGA.
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Power Output (MW)
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Figure 6.4 Power contributions from each unit under optimal operating

strategy resulted from the GA.

6.5 CONCLUSION

The GAs are well suited for the DED problem, since they can easily handle the

additional GR constraint by themselves on the decoding section. Moreover, GAs do

not require additional effort on the much more complicated search space. GAs have

been proven in this application that the more complex the problem is, the more benefit

that one can obtain with the GAs.
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CHAPTER

7

ECONOMIC - ENVIRONMENTAL DISPATCH WITH
GENETIC ALGORITHMS

7.1 ECONOMIC - ENVIRONMENTAL DISPATCH

The generation of electricity from fossil fuels releases several contaminants, such as

Sulphur Oxides (S02)' Nitrogen Oxide (NOx) and Carbon Oxide (C02), into the

atmosphere, which imposes a excessive burden on the environment. Their effects on

the atmosphere depend on the fuel type and its quality. There are several types offossil

fired electric power plants, using fuels such as coal, oil, gas or combinations of these as

the primary energy sources. Coal produces particulate matter such as ash, and gaseous

pollutants. The thermal energy dissipated in cooling water raises its temperature and

may also be considered as a pollutant. Nuclear plant produces no gaseous emissions,

but it does produce waste heat, and in addition it produces radiation, which however is

well contained [Bernow, 1991]. Hydro-plants produce no emissions of any sort. Up to

now, most researchers have devoted their effort in reducing two most obvious

emissions - sulphur oxides and oxides of nitrogen. In this study, reducing sulphur S02

emission is considered, because it is probably the most important. Other contaminants

such as NOx and CO2 can be handled in a quite similar way.

A reduction of the S02 emission can be achieved either by system plant-level redesign,

or by supplemental control. The plant-level redesign includes processor reconstruction,

such as pre- or post-combustion, while supplementary control involves fuel switching

and changing operational strategy, which are rather simple ways. Historically, the

electric power industries have scheduled their generation at an absolute minimum cost

basis regardless of emissions produced. This pure economic based dispatch strategy
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must be at least partially reconsidered in favour of environmental protection. An

alternative strategy has to be raised to satisfy both the economic and the environmental

requirements while providing the consumer with adequate and secure electricity. This

is known as economic-environmental dispatch (EED), which seeks to shift the load

from one unit with high emission rate to the lower emission rate unit. The

environmental objective enters the conventional dispatch strategy as a second objective

or as an additional constraint.

The complication imposed by such a dispatch strategy is that the cost and the emission

functions are two conflicting, incommensurable objectives. Favouring of emission

reduction will result in higher operation cost, and vice versa. There is no common term

in which they can both be minimised at the same time. When facing this multi-

conflicting objective and highly constrained EED problem, many conventional

techniques can only seek solutions under the conditions of various assumptions and

simplification of the problem. The results thus obtained may not be the best operating

strategy. GAs are therefore favoured for their requirement of a raw objective function

only, their use of a probability rule to determine a solution, their simple search

procedure, and their powerful search ability. These characteristics of GAs, in turn,

support the dispatch policy to explore the potential area in an efficient manner in the

complex search space exhibited by the EED problem.

7.2 FUEL SWITCHING

The EED approach is an attractive tool for both reducing environmental impact and

operating cost. However, EED has the disadvantage that its operational capacities are

limited. As a result, the ability of EED to reduce S02 emission is restricted. The

utilities have to make great efforts to change power generation equipment to meet ever

increasing environmental regulations. To avoid such time and cost consuming plant

level changes, the fuel switching (FS) technique can be incorporated to get a

compromise between system hardware reconstruction and software redesign. The FS

aims to switch a fuel with a high content of pollutant but low cost, such as high sulphur

fuel, to one of lower polluting potential but high cost. Though the cost is increased,
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the emission produced from each generator unit is thus decreased. This has long been

identified as a cost-effective means of decreasing S02 emission, and requires only

minor system hardware reconstruction. The FS is therefore another favourable

supplementary tool to attain the twin goals of cost minimisation and emission

reduction.

7.3 THE PROPOSED TWO-PHASE EED STRATEGY

7.3.1 THE TWO-PHASED PROBLEM STRUCTURE

In practice, it is desirable to meet the environmental restriction without major plant

level in avoidance of considerable capital cost and time. It is therefore beneficial to

employ both the EED and the FS techniques to maximise the emission reduction

capacity, and provide flexibilityin attaining the twin goals of minimising fuel cost and

reducing emission. To assist a search technique to better fulfil the job, a two-phase

dispatch structure is proposed in this project. During the first phase, the cost is

minimised and the emission is reduced with both the EED dispatch strategy and the

fuel switching techniques. The problem is thus modified to a bi-optimisation function,

where unit power output and high sulphur and low sulphur fuel ratio are the two

control variables. Based on the optimal fuel mixture obtained from phase one, the

second phase, which contains only a single cost criterion, searches for the least

expensive solution in the optimal sulphur region. The two-phase problem structure can

be briefly concluded as:

PHASE ONE: Min Fs( Fuel Ratio, Power Output)
Bi-variables

PHASE TWO: Min F( Power Output)

Single-variable

The essence of the proposed method is that phase one provides the potential search

area for phase two to work with in order to obtain a better overall solution.
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7.3.2 THE TWO-PHASED PROBLEM FORMULATION

With both econormc and environmental priorities taken into account, and the

employment offuel switching, the objective functions for both phases are expressed as:

PHASE ONE :
n

minFs= LF.(~.~)
i=1

(7.1)

PHASE TWO :
n

min Fs= LF. (~)
i=l

(7.2)

Where Si is the sulphur contents in fuels for unit i. The sulphur in fuel for each unit is

decided by the mix ratio of high and low sulphur fuels. Assuming the percentage of

high sulphur content SU;(%) is \\'i, (Wi<1.0), the low sulphur fuel with SLj(%) then

becomes (1-Wi). The overall sulphur in fuels can thus be expressed as:

S· = SU x W + SL- x (1- W)1 1 1 1 1 (7.3)

The additional inequality constraint introduced by fuel switching is the upper and lower

bounds upon sulphur in fuels:

(7.4)

SLi, SUi are the maximum and minimum sulphur contents in fuels respectively.

Also, system and operational constraints to be satisfied are:
n

Power Balance Constraint: L ~ ( t ) - PL( t ) - Po ( t ) = 0
i=l

(7.5)

(7.6)Power Limits Constraint: Pimin< ~ ( t ) < Pimax

n
Environmental Constraint: QAREA - .}; Qi > 0

1=0
(7.7)

Where Qi is the S02 emission produced from unit i per hour, QAREA is the total

permissible S02 emission for the whole area per hour.
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For the proposed two-phase structure, the first phase contains two control variables

for each unit: power output Pi and fuel ratio Si. The structure aims to achieve

minimisation of cost and optimisation of sulphur content in fuel under environmental

restrictions. During the second phase, the sulphur content in the fuel is specified at the

level defined by the phase one operation. The objective therefore contains only a

single cost criterion, and can be searched in great detail in the optimal sulphur region.

7.4 GENETIC APPROACH TO THE TWIN OPTIMISATION PROBLEMS

The solutions to the problems of both phases are attained by Genetic Algorithms to

demonstrate their effectiveness on both single and multi-variable EED problems. The

fitness function formulation is the first concern when approaching a problem with a

GA, as its value is the only information available to guide the search towards the

optimum point. The fitness function for the proposed two-phase EED problem is

described as:

Fs rp f)
FN +AX . + I-lX------ Fs max- Fs min rp max- rp mm f) max- f) min (7.8)

Where Fs, <p and B are the fuel cost objective, the equality power balance constraint

and the area emission constraint respectively. A and I-l are corresponding weight

coefficients. For both phases, the inequality constraints for control variables of

equation (7.4), (7.6) have been handled by the algorithm inherently in the decoding

section.

The formulation of the fitness function is the same for both phases; the difference lies in

that they contain different control variables. In phase one, two variables are involved in

the objective function Fs, namely power output and fuel ratios for each unit. The

second phase has only one control variable - power output, where the value of the

sulphur content in fuel is specified at the level that phase one has decided.
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Each solution of the problem is encoded as a string with 10 bits per unit for both

phases. In the phase one genetic search, the first 5 bits represent power output, and

the latter 5 bits represent sulphur content in fuel. During the phase 2 search, all 10 bits

are used for power output as only one variable is present. This implies that the search

is carried out in a much more detailed landscape, which raises the possibility of

obtaining better results. The value of genetic parameters are based on the Grefestette's

setting for this application.

7.5 SIMULATION RESULTS AND DISCUSSION

The application of GAs to the proposed power dispatch is demonstrated on a 4

generator system as described in Chapter 6 [Tsuji, 1981]. The daily load demand is

redrawn in Figure 7.1. The total permissible limit for S02 emission per hour is

800Nm3 for the system. The solution to the power dispatch problem in this application

is to provide the real power generation trajectory tracking the time varying load

demand, as well as the optimal fuel mixture for each unit, so that the cost is minimised

and the emission produced is reduced to an acceptable level. In order to demonstrate

the effectiveness of the proposed two-phase problem structure, the resulting cost over

the entire 24 dispatch period is compared with that of the conventional one-phased

problem structure. The comparison is illustrated in Figure 7.2, where the phase two

results show the obvious cost advantages over the conventional one phased problem

structure.

Table 7.1 gives the detailed figure of cost improvement made by using the proposed

two-phase problem structure.
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Table 7.1 Cost Comparison Between One Phased and
Two Phased Problem Structure

Total Fuel Cost ($) Cost Ratio
(24 hours)

One phase 198,749 100
Two phase 197,435 99.34

The corresponding optimal solutions - optimal power outputs and sulphur contents of

each unit, are illustrated in Figures 7.3-7.10. As clearly indicated, when the sulphur

content is lower in a unit, it produces a higher output to comply with the .

environmental constraints.

As the test system is small in scale, a large system is expected to gain even larger

financialbenefit with the proposed two-phase problem structure when dealing with the

power dispatch problem under environmental constraint. The proposed method is

proven to be more efficient compared with the conventional one phased problem

structure. The ease of GAs implementation makes the technique extremely attractive

in this application for its capability and suitability in both single and bi-optimisation

problems. GAs can thus offer more problem solving ability over the conventional

optimisation techniques.
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Figure 7.1 The daily load demand curve.
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Figure 7.5 Resulting power output for unit 2.
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Figure 7.7 Resulting power output for unit 3.
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Figure 7.8 Resulting sulphur content for unit 3.
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CHAPTER

8

MULTI-OBJECTIVE ECONOMIC - ENVIRONMENTAL
DISPATCH WITH GENETIC ALGORITHMS

8.1 INTRODUCTION

The previous chapter has shown that EED is a sophisticated and difficult task because

of the conflicting requirements of minimising generation cost and reducing

environmental pollution. GAs have been demonstrated to be promising ways to tackle

the highly constrained, multi-variable problem involved in the solution and give a better

chance of attaining the global optimum. However, the performance is affected

crucially by the way a constraint is handled in the GA implementation. The

conventional constraint handling method only incooperates the constraint equation to

the fitness function, which could exhibit difficulties for a GA to identify the potential

search area in highly complex search space. The difficulties can be particularly severe

when additional constraints are encountered, such as GR constraint (to limit the

maximum increase and decrease of power output for the safety of equipment). To

improve the efficiency with the conventional GAs, a novel constraint handling method

is proposed in this project, which aims to effectively solve the problem of economic-

environmental power dispatch (BED) under the additional GR constraint.

8.2 THE IMPORTANCE OF PENALTY CONSTRUCTION

A central issue of the GA implementation is the formulation of the fitness function.

The fitness function is formulated as a linear combination of objective functions and

penalty functions. The objective functions are often well defined from the problem

itself it is the penalty construction that creates difficulties in formulating a suitable

fitness function. Normally, a penalty function is constructed in such a way that it is a
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function of the constraint equations, plus corresponding weight coefficients. The

choice of the coefficients is a key issue in deciding the quality of the solution.

However, choosing an appropriate coefficient for each constraint to balance the search

diversity and the pressure for feasibilityis a time consuming, sophisticated and difficult

task. A common rule has not been developed to determine the weight coefficients

optimally. Quite often, they are obtained by experience, or by experiments which

require excessive time and effort. Moreover, such weight coefficients are not robust in

all cases, as they are sensitive to time and contingencies. Hence, care must be taken .

when constructing a penalty function for a constrained optimisation problem.

One obvious approach is to construct a harsh penalty function to avoid a solution being

obtained in a forbidden search area. As a result, the search is restricted in a much

narrower space, which forces the search diversity to be lost. Consequently, if a

moderately fit string happens to satisfy the constraints, it immediately becomes a super

individual and dominates the whole population. If no action is taken, the search will

restrict the opportunity for other potentially fit strings, and end up without finding the

best individual. The harsh constraint also works against the foundation of the GA

search. The GA technique is able to incorporate partial information from a group of

strings, which include both feasible and infeasible solutions. The infeasible solution

should not be just thrown away, as it may provide valuable information for the search

to progress further. The optimum point might be in the neighbourhood of a highly

infeasible solution, and could be reached by recombination operators. Therefore a

harsh penalty function must not be generated in order to avoid premature convergence.

On the other hand, an excessively soft penalty function takes too long to arrive at the

feasible region, thus giving less time to find the best individual. For the same

computing time, the soft-penalty-bearing GA would result in a wide distribution of

local minima, or merely a number of feasible solutions, while the harshly penalized GA

could reach at least a local minimum. Yet, the softly constrained GA is able to keep

the diversity which is desirable to avoid the extermination of potentially desirable

characteristics.
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For the EED problem, the formulation of a penalty formulation which involves both

economic and environmental requirements is especially challenging. It is made more

complicated when considering the additional generator rate constraint. Consequently,

finding the right coefficients for each constraint is as difficult as solving the problem

itself

8.3 THE PROPOSED CONSTRAINT HANDLING TECHNIQUE

To simplify the highly constrained EED problem, this thesis proposes an easy and

efficient way to handle the constraints. Instead of using conventionally formed penalty

functions, which contain merely a number of violated constraints, the concept of how

far the solution is away from the feasible region is incorporated, and from which the

weight coefficient is determined. The weight coefficient is monotonically decreased as

the distance to the feasible region linearly increases. Moreover, the distance is divided

into several stages to distinguish the solutions from the better to the worse. Each

distant stage is defined as:

N.2N < d «N+1).2(N+l) (S.l)

and the corresponding weight coefficient is:

(S.2)

Where N is the different distant region and d is the distance of a solution away from the

feasible region. The number of total distance stage, m, is different from one problem to

another. Basically, m is decided by the estimated biggest distance dmax (to the feasible

region) which leads (m + 1) x im+l) to the nearest dmax. For instance, if dmax = 750, the

number of distant stage m should be equal to 6 such that (m + 1) x 2(m+l) = S96 is

greater and closer to the value of the biggest distance - 750. Under this assumption, all

possible solutions are covered in the search space, and their feasible distance stage

could be any integer among 0 and m. A list of the different distance stages with the

corresponding weight coefficient can be found in Table S.l.
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Table 8.1 Lists of Distance Region and Corresponding Weight Coefficient

Distance Region Weight Coefficient

N=O 0<d<2 1

N=l 2<d<4 0.81

N=2 4<d<24 0.64

.. .. ..

N=5 160<d<384 0.25

N=6 384<d<896 0.16

.. .. ..

The proposed method is a much easier way to design a moderate penalty function to

allow a compromise between the search diversity and the pressure for feasibility.

Hence, the risk of evaluating illegal solutions or lower quality individuals is greatly

reduced.

8.4 TRADE-OFF APPROACH TO EED PROBLEM

In the previous chapter, the EED problem is solved by including the environmental

issue as an additional constraint. Alternatively, the environmental issue can be treated

as the second objective function to line up with the original cost objective. However,

this multi-objective EED policy runs the risk of emission over emphasis or under

emphasis depending on the coefficient chosen for the emission objective. It is

therefore beneficial to investigate the trade-off relation between the cost and emission

to assist the decision maker to choose the optimal operating point which is the best

compromise between those two objectives. In the case of emission limits applied, the

best operating point will be the least cost point at the trade-off curve where the

emissionproduced is at the permissible level. However, the application of the trade-off

dispatch policy can only be applied to off-line study and thereafter for future system

planning, rather than be used for on-line applications.

Under the trade-off dispatch scheme, the power dispatch problem can thus be stated

as:
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n

min C = ~ ~ *11+(1-~)*EJ
1=1 (8.3)

The EED problem is solved by increasing a from 0 to 1 to cover the entire search

region: a= 1 states the conventional economic dispatch, a=0 accounts for minimising

emission only. The best operating a is chosen by the decision maker as a compromise

between the cost and the emission.

The problem is subject to a number of operational and environmental constraints, as

outlined in equations (8.5-8.7). In addition, the generation rate constraint is taken into

account in this application:

80%(P(t»i < Pi(t + 1) < 120%(~(t» (8.4)

8.5 SIMULATION RESULTS AND DISCUSSION

The GA approach to the EED problem with the proposed penalty construction is tested

on the same four generator units with the same load demand and emission limits being

applied (Section 6.4). However the sulphur content for each unit is specified at

predefined levels, which is depicted in Figure 8.2. The figure indicates that three fuel

switchings are carried out through a 24-hour dispatch period. Ideally the fuels should

be switched as often as power output scheduling so as to meet environmental

restriction at the minimum possible operation cost. Practically, it is difficult to control

the sulphur in fuels as frequently as power output. Therefore, the number of switchings

is restricted to a limited number for the whole dispatch period. However, this limited

number of fuel switchings will reduce the flexibility of possible emission reduction, and

might result in emission over emphasis. The small number of switchings will attain a

higher emission reduction, which in turn will result in a higher fuel cost.

Changing a from 0 to 1 results in the cost-emission trade-off curve, which is shown in

Figure 8.3. The graph clearly illustrates how the generation cost varies with the

produced emission. The best operating point is obtained with a=0.7, where the total
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emission produced each hour is within the permissible level and the cost is the minimum

on the trade-off curve. The total cost over 24 hours at the best operating point is

shown in Figure 8.4. The resulting individual power outputs are illustrated in Figures

(8.5-8.8). Table 8.2 compares the cost reduction achieved by using the proposed

method with the conventional constraint handling method in the GA implementation.

With the conventional method, only 10% of the final results are within the feasible

region, while 90% of the solutions are distributed around the optimal feasible region.

The proposed GA technique improved this figure to 50%, which clearly demonstrates·

the benefit from the additional distance information used in the new technique.

The test has clearly demonstrated the effectiveness and ease of application of the

modified GA. Also, the potential financial benefit on the EED problem is clearly

indicated. The proposed constraint handling technique can not only pass the constraint

information to the fitness function but also provides information on how far a solution

is away from the feasible region. The additional information enables the GA to better

balance the search diversity and the pressure for feasibility to obtain potential highly fit

individuals over the search space. The test results prove that the proposed method is

easily implemented in the optimisation problems and can produce more valuable

solutions during a course of a GA run.

Table 8.2 Comparison of Total Fuel Cost

Total Fuel Cost For Cost Ratio
24 hours ($1

Conventional GA Technique 200002.34 100

Proposed GA Technique 199132.19 99.5
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Figure 8.1 The daily customer load demand.
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Figure 8.3 A cost and emission trade-off curve.
(a=O.7 is the best operating point under the emission regulation.)
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Figure 8.4 The daily cost curve at the best operating point.
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Resulting power output for unit 1.
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Figure 8.6 Resulting power output for unit 2.
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Figure 8.7
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CHAPTER

9

A REAL PRACTICAL SYSTEM POWER DISPATCH
WITH GENETIC ALGORITHMS

9.1 INTRODUCTION

In the previous chapters, GAs have been demonstrated to be able to provide promising

solutions on a number of power dispatch problems with different degrees of

complexity. The problems ED, DED and EED have been successfully solved with

various GAs. However, the results are obtained from power systems which are small

in scale. In this Chapter, GAs are challenged by a moderate sized practical system -

Northern Ireland Electricity (NIB) system - to provide the optimal power generation

trajectory tracking the time varying demand under various system and operational

constraints.

9.2 NIE SYSTEM

The NIB system is one of the smallest isolated electricity systems in Europe, and is just

3% the size of the England and Wales system. Its total 25 generator units are

distributed in four different power stations, they are Coolkeeragh, Kilroot,

Ballylumford and Belfast. They contribute to a total generating capacity of2,320MW,

60% of which is oil-fired. However, Ballylumford is in the process of being converted

to gas, which dramatically changed the system's fuel diversity to 40% gas, 20% oil and

40% coal [Moore, 1995]. Despite the restoration of interconnection between the NIB

and the Irish Republic after being destroyed by terrorists 25 years ago, NIB still suffers

heavily from inefficiency. The problem stems from the isolation from the other

systems. As a result, an extra concern of security has to be given when generating

electricity. This increased security will undoubtedly result in a higher operating cost.
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For security reasons, NIB has to carry a higher margin of reserve which is about 40%

compared with that of 25% in England and Wales. Hence, the NIB is a more difficult

system on which to achieve the best operational economics, and presents more

challenging optimisation problems for a technique to deal with. GAs have therefore

the potential to optimise the problem while taking many matters into account. In this

initial study, GAs are applied to both the Dynamic Economic Dispatch (DED) and the

Economic-Environmental Dispatch (BED) problem, under the additional generation

rate constraints. The resulting cost is compared with that of the real figure from the

NIB system. In addition, Hybrid Genetic Algorithms (HGA) will demonstrate their

effectiveness and efficiency on both DED and EED cases when compared with pure

Genetic Algorithms.

9.3 GENETIC APPROACH TO THE PRACTICAL DED PROBLEM

The Dynamic Economic Dispatch (DED) is favoured in practice because it can

improve the generation control. The formulation of the DED problem is well defined

by equations (6.1-6.7) in Chapter 6. For the NIB system, the additional generation

ramping rate constraint has been imposed for the base supply units for this practical

GA application, that a maximum increase and decrease of power output over a

dispatch interval of 30 minutes is restricted to no more than 20% of the previous

power generation. This restriction puts more pressure on the search algorithm by

severely limiting the individualgenerator's operating capacity, which makes the search

space much more complicated.

Among the total 25 generators, only one third of the generators are in operation on

normal spring days. Furthermore, as many of the generators are identical that they can

be drawn together and considered as one larger generator, which reduces the working

dimensionality from 25 to 8 (which is a common practice in the power industry, such

as National Grid Company). A typical daily load curve in the spring season is depicted

in Figure 9.1. The coal-fired and oil-fired generators provide the base load, while gas

turbine plant gives peak load capacity because of its quick start-up and quick drop
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down characteristics. The dispatch interval is taken as every half of an hour, which

results in a total of 48 dispatches over the entire 24 hours time period.

The Lagrange approach has been used to transfer the constrained DED problem to the

unconstrained problem by adding the constraint equation multiplied by a weight

coefficient to the objective function. The choice of the coefficient is determined by the

proposed constraint handling method described in Chapter 8, which adds the

information of how far the solution is away from the feasible region. This aims to give

a better guidance to trace the continuously changing load demands.

The DED problem is encoded as 5 bits per unit, therefore a string length of 40 results

for each solution. A CGA was employed to manipulate the initial guessed solutions for

the DED problem with reproduction, crossover and mutation operators. The

Grefenstette's parameter settings were used for general good solutions.

Figure 9.2 gives the resulting cost at different time intervals. The overall cost and the

computing time are shown in Table 9.1. Given the same problem and same parameter

value for a EGA, the resulting cost and the time are listed in the same table for

comparison. Obviously, the EGA attained a better cost solution, but takes a slightly

longer time. This is because of the technique has no look ahead capability. Therefore,

the resulting economic allocation often tends to fully load the large, economic units,

and leaves less capacity to meet a sudden load demand in near future. Under such a

circumstance, the EGA may not be able to attain a feasible solution unless numbers of

genetic searches are repeated, which contributes to a longer computing time compared

with a CGA.

Table 9.1 The Solution Results ofCGA and EGA on the DED Problem.

METHODS Cost (£) Time (min}
CGA 625324.94 0.82
EGA 621349.69 0.96

Figures 9.3-9.4 show the typical base load supply units, which provide 80% of the

generation supply, and which are under strict generation ramping rate constraint. In

both figures, the dotted line represents the power output with security GR constraint,
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and the solid line is that of the power output without the GR constraint. As the GA

techniques are blind to the complexity of problems, they give the same search effort on

problems with different degree of complexity. Hence, a GA gives the same search

efforts for both the relaxed and the constrained problem. Obviously, the constrained

problem formulation gives more practical desirable results. Figures 9.5-9.6 represent

intermediate and peak load supply. The power generation from these generators are

totally relaxed with respect to the GR constraint due to the small amount of power

output they produce.

The resulting cost and individual generator output agree well with that of the real

dispatch figure from NIB system. The security constrained dynamic economic

dispatch problem considered here is simpler than that of encountered in practical

operation. Other important constraints, such as spinning reserve, must be accounted

for in this small isolated power system. The more complicated power allocation

problem encountered in practice should be able to make better use of the potential of

the GA search ability.
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Figure 9.1 Typical daily load curve in spring season.
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Figure 9.3 Example of base load supply unit 1.
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Figure 9.4 Example of base load supply unit 2.
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Figure 9.5 Example of intermediate load supply unit.
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9.4 HYBRID GENETIC APPROACH TO THE DED PROBLEM

A HGA which takes advantages of both GAs and local search techniques, showed

obvious benefit in solution accuracy and solution speed on the CED problem in

Chapter 5. In this section, HGAs demonstrates its effectiveness on the real NIB

system.

9.4.1 THE REVISED SYSTEM

Because of the high reserve margin that the NIB system should have for the security

reasons, only one third of the generators are in service for a normal spring day, which

works out a total of 8 search dimensions. To further test the search ability of the

proposed HGA in a larger search space, an example power system is devised from the

NIB system in that the load demands are increased by 1000 MW at each time interval

and all 25 generator units are in operation so as to comply with the increased demands.

The modified 24-hour load demand considered in this application is depicted in Figure

9.7.
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Figure 9.7
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The modified load demand.
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9.4.2 THE IMPLEMENTATION OF HGAS ON THE DED PROBLEM

The formulation of the DED problem in this section is the same as that of Section 9.3,

only the load demands have been increased. A HGA constructed by crossing an EGA

with a first-order gradient technique, which is described as HGA(2) in Chapter 5, is

employed to tackle the problem.

The base GA is the major influence on computational speed in a HGA search. The

computing time for a genetic search increases with the number of iterations. Their

relation in the case of the DED problem on NIB system is shown in Figure 9.8. For a

short overall HGA search, a base GA search shall take a small number of iterations to

complete the search. Yet the base GA search has to be sufficient to identify the

potential hill. Figure 9.9 shows the different operating costs for various genetic

iterations when population size, crossover rate and mutation rate are set as 30, 0.9

0.01 respectively. Clearly, the HGA made significant cost improvements over the

EGA (For instance, the HGA with 20 generations made 1.23% cost saving compared

with that of the EGA). The improvements thus made by the local search technique

only took 0.27 second, which is a very good investment for cost saving. Again, the

same phenomena occurred that the cost saving is exponentially decreased as the

number of genetic iteration is linearly increasing.
Time (mlns)
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Generation

40

Figure 9.8 Computing time versus the number of generations.
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A solution comparison between the EGA and the HGA on the NIB system are outlined

in Table 9.2. With 10 iterations, most EGAs cannot find feasible solutions (where the
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load matches the demand exactly) unless the initial solutions are well guessed.

Therefore, a feasible solution from a pure EGA may take a number of repetitions of

genetic search until a good initial solution is encountered. Consequently, a long

computing time may result. In this application, the EGA took as long as 3.78 minutes

to find the feasible solution. In contrast, HGAs are not restricted by such a strict

match between the load and the power generation, but allow a wider match margin.

The power mismatch can be easily compensated at the beginning of the local search.

Hence, a HGA can always attain feasible solutions no matter how small iteration that

the base GA search spends. HGAs can indeed improve the solution speed significantly.

However, too short a genetic search runs the risk of not being able to identify the

potential hill, and a compromise point is always found to be beneficial. Under 20

iterations, most EGAs find solutions with a single genetic search. However the

solution accuracy is less attractive comparing with that of the HGA. This is because a

pure EGA spends much more effort in matching the load and generation than that of a

HGA. For a comparable solution speed and solution accuracy, the number of

iterations is chosen to be 10 to solve the DED problem on the NIB system. The

resulting operating costs on each time interval are depicted in Figure 9.11. The total

cost is £1616812.75 with a compatible computing time of 41 seconds. Although the

NIB is a very small system, the calculation is quick enough to demonstrate that

application to a more complex system is possible.

T bl 92 S I ti C B t h EGA d h HGAsa e . ou IOn ompanson e ween t e san t e
Iteration Cost £) Time min)

HGA EGA HGA EGA
10 1616812.75 1638456.38 0.69 3.78
20 1616452.75 1636538.00 1.07 1.05
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Figure 9-11 Resulting cost with the HGA (the base genetic search has 10 iterations).

9.5 HYBRID GENETIC APPROACH TO THE EED PROBLEM

Economic - Environmental Dispatch (EED) is an increasingly popular dispatch policy

in power systems owing to the increasing public concern about environmental

protection. EED is a more challenging problem as it takes two conflicting objectives

into account, and therefore expected to make better use of HGAs. In this application,

the environmental issue entered the dispatch problem as an additional constraint which

further complicates the search space. The mathematical formulation for the EED is

described by equations 7.2, 7.5-7.7 in Chapter 7. For the revised NIE power system,

the permissible S02 emission at each hour is 80 Te. The generation ramping rate

constraint is set as no more than 20% above or below the previous generator output

level.

A total iterations of 15 has been given to the base GA search to provide sufficient

search effort, while the population size, crossover rate and mutation rate are kept as

30, 0.9, 0.001 respectively. The resulting cost with the designed HGA is shown in
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Figure 9.12. Table 9.3 gives the detailed figure of performance improvement with the

HGA under environmental restriction, while Table 9.4 gives the results neglecting the

environmental constraint. As indicated clearly in Table 9.4, although large financial

benefit can be achieved with HGA under no environmental restriction, it gave no

opportunity for emission reduction. Whereas under environmental regulation, the

HGA has improved both cost and emission, which is more desirable in practice.

Figure 9.13 and 9.14 illustrate typical power outputs attained by the HGA for a base

supply unit and an intermediate unit. The dotted line represents the results without the

environmental restrictions, while the solid line represents the results under strict

environmental constraint. As the base unit is the most economic one, it tends to

produce more power when the environmental constraint does not apply. However, as

it is also the most polluting unit, when the additional environmental constraint is

imposed, the base load unit produces much less power over the entire dispatch period.

The intermediate unit is quite different, as it is a relatively more expensive and clean

unit. Without environmental restriction, the intermediate unit tends to produce less

power. When under the environmental constraint, it generates more power output.
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Figure 9.12 The resulting cost at the best operating point.
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Table 9.3 The Improvements Made with HGA on Scheduling Problem Under
Environmental Constraint

Cost Emission Time (mins)
(£) (Te)

HGA 1710445.62 988.00 4.77
CGA 1712848.50 1038.12 4.55

Improvement 2402.88 50.12

Table 9.4 The Improvements Made with HGA on Scheduling Problem without
Environmental Constraint
Cost Emission Time
(£) (Te) (mins)

HGA 1698817.12 1032.24 4.77
CGA 1705714.12 1032.24 4.55

Improvement 6897.00 0
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Figure 9.13 Power outputs for a typical base load supply unit.
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Figure 9.14 Power outputs for a typical intermediate
load supply unit.

9.6 DISCUSSION

GAs have been applied to the real power supply system - NIB system for the economic

allocation of generation output level while meeting customer load demand.

Satisfactory results have been obtained between the simulated results and real data.

Moreover, the Hybrid Genetic Algorithms have demonstrated their ability to attain

better solutions with a shorter computing time. HGAs are proven to be fast and

accurate algorithms to tackle the DED and EED problems both effectively and

efficiently on the NIB system. However, HGAs may not be the best algorithms for the

multi-objective optimisation problems. This is because a local search has limitations in

dealing with multi-objective functions. Therefore, when the GA passes the results to a

local search technique to continue the remaining search, a great deal of effort has to be

made in reforming the multi-objective problem to a single objective function, which

may disqualify the usefulness of the technique in many applications. Such a single

criterion objective is less accurate or it may not be possible to constructe such an

objective at all. Regarding the search ability of HGAs on multi-objective optimisation

problems, further investigation is needed.
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CHAPTER
10

CONCLUSION

10.1 SUMMARY

A number of problems in optimal economic operation of power systems have been

successfully solved by genetic based algorithms in previous chapters. The problems

selected cover a broad range and are of different degrees of complexity, ranging from

the static problem to the dynamic problem, from the softly constrained to the harshly

constrained, from single objective to multi-objectives, from small system size to large

system size, and from simple problem structure to more rigorous structure. The

starting point was the static economic dispatch problem on a small power system, and it

was then progressively extended to dynamic dispatch and dynamic economic -

environmental dispatch. Though the problems are so diverse, GAs consistently

produced good acceptable solutions over the wide range of the problem spectrum.

What is more, as is evidenced in chapter 4, the more complex the problem is, the more

benefit that one can get from GAs. Finally, the feasibility study of GAs and HGAs on a

practical power supply system, the NIB system, has been carried out in Chapter 9. The

problems of generation allocation for both cost minimisation only and with emission

reduction included have been dealt with subject to a number of system and operational

constraints. Satisfactory agreements have been obtained between the real figures and

the simulated data with the commonly defined GA. Moreover, HGAs showed obvious

advantages over the CGA regarding the solution accuracy and the solution speed. In

conclusion, in the case of power system optimisations the advantages of GAs over

conventional techniques are:
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(1) A genetic search procedure is very simple, yet remarkably effective in searching

for the optimum or near to it.

(2) The only requirement for genetic search is raw objectives.

(3) GAs are blind to the search space so that they need no assumption of continuity

or the existence of the gradient information about the search space.

(4) GAs have the ability to handle inequality constraints imposed on the control

variables by themselves which simplifies the search problem significantly.

The early simulation also clearly indicated the shortcomings that a GA embraces which

limits it to reach the desired efficiency and efficacy as the theory predicted. There are

two major problems associated with the genetic application. One is the problem of the

premature convergence due to the difficulties in balancing the two conflicting search

efforts: exploitation and exploration. Another is the slow processing speed which

stems from GA's population based foundation.

The treatment of the premature convergence problem has been well established, and

they mainly fall in the following five categories:

(1) Advanced genetic operator.

(2) Optimal choice of GA parameters.

(3) Suitable evaluation function.

(4) Effective string representation.

(5) Better initial string generation.

Among the 5 possible improvement procedures, this thesis puts special efforts in the

first two options to enhance the genetic strategies. It involves two levels of tasks. The

bottom or the fundamental level is to select or formulate an advanced genetic strategy,

and the top level is to optimally tune the parameter values in order to get maximum

efficiency out of the preselected genetic algorithms. It is clearly demonstrated in

Chapter 5 that optimally combining those two levels of tasks can have significant

impact on the overall system performance. However, it is also clearly indicated that

any carefully designed genetic search strategy can only balance the two conflicting

search efforts, which implies that the increased solution accuracy must come at the cost
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oflonger computing time, and vice versa. Alternatively, the method for improving both

the solution quality and the solution speed is proposed by crossing a GA with other

well established local search techniques. Therefore, the advantage ofGA's capability in

identifying the potential region, and local search technique's speedy search ability can

both be utilised. Addition to the optimisinggenetic strategy, the research has proposed

a novel constraint handling method to further enhance the genetic search ability in

Chapter 8. The proposed method incorporates the concept of how far a solution is

away from the feasible region so that a suitable evaluation function can be set up, and -

the search can be guided towards the right direction.

It is often suggested that genetic process speed can be improved by using parallel

processing to make the inherent parallel genetic search procedure serial. Despite its

effectiveness in reducing the computational time, it requires considerable capital cost

and involves very complicated system design and implementation. Nevertheless,

parallel processing is one of the most effective means to speed up genetic processing.

Although HGA can not compete with parallel processing in speeding up the genetic

processing, they have the advantages of simplicity in design, ease of implementation

and virtually zero - capital cost. Therefore the designers themselves have to choose

between the worth of the quality of the solution and the ease of the system design.

10.2 DIRECTION OF FURTHER WORK

Future work can be directed in two trajectories. One is more rigorous problem

formulation, and another is further improving genetic processing.

It has been learnt in Chapter 8 that a better problem structure can have significant

impact in system performance, which will lead to a cost saving in economic operation.

Therefore, a need is always there for more rigorous problem formulation. It is also

helpful to integrate the closely related problems whenever possible. Problems such as

economic dispatch, emission dispatch and unit commitment are so much coupled that it

is more desirable in practice to solve them as a whole rather than solve them

sequentially. Parallel to the more rigorous objectives, there is a need to include more
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operational constraints in practical systems, such as an adequate spinning reserve and

power-line capacity, which complicates the power system optimisation greatly. From

the previous study, GAs are demonstrated to be promising approaches to the complex,

multi-modal, discontinuous and noisy problems, and have the flexibility to include

additional objectives and constraints very easily. Therefore, the more difficult

economic dispatch problem, such as Optimal Power Flow, which involves several

objectives, a number of control variables and some secure and operational constraints,

should be beneficial in obtaining solutions with GAs.

Work needs to be done on further effecting GAs' efficiency to better balance the

conflicting exploitation and exploration search efforts. The compromise of the two

efforts might be well served by some newly inspired genetic operators. Although the

HGA appeared to be a perfect solution to balance the two search efforts with

comparable search speed, the applicability of the technique in multi-objectives has to

be argued. As most of the HGAs pass the GA solutions to the conventional techniques

which might only be able to deal with a single objective, require detailed information

about the problem domain, and/or need certain assumption on the search space, their

application range is severely limited. Therefore, a robust hybrid scheme should cross

genetic algorithms with other fast search techniques which have the capacity to deal

with multi-objectives and harsh constraints. The investigation of such a fast search

technique is both challenging and rewarding.
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