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Abstract
In this thesis, a new systematic approach is introduced for developing software
systems from domain-oriented components. The approach is called Domain
Oriented Object Reuse (DOOR) which is based on domain analysis and Generic
Software Architectures. The term 'Generic Software Architectures' is used to
denote a new technique for building domain reference architectures using
architecture schemas. The architecture schemas are used to model the
components behaviour and dependency. Components dependencies describe
components behaviour in terms of their inter-relationships within the same
domain scope. DOOR uses the architecture schemas as a mechanism for
specifying design conceptions within the modelled domain. Such conceptions
provide design decisions and solutions to domain-specific problems which may
be applied in the development of new systems.

Previous research in the area of domain analysis and component-oriented reuse
has established the need for a systematic approach to component-oriented
development which emphasises the presentation side of the solution in the
technology. DOOR addresses the presentation issue by organising the domain
knowledge into levels of abstractions known to DOOR as sub-domains. These
levels are organised in a hierarchical taxonomy tree which contains, in addition
to sub-domains, a collection of reusable assets associated with each level. The
tree determines the scope of reuse for every domain asset and the boundaries for
their application. Thus, DOOR also answers the questions of reuse scope and
domain boundaries which have also been raised by the reuse community.

DOOR's reuse process combines development for reuse and development with
reuse together. With this process, which is supported by a set of integrated tools,
a number of guidelines have been introduced to assist in modelling the domain
assets and assessing their reusability. The tools are also used for automatic
assessment of the domain architecture and the design conceptions of its
schemas. Furthermore, when a new system is synthesised, components are
retrieved, with the assistance of the tools, according to the scope of reuse within
which the system is developed. The retrieval procedure uses the components
dependencies for tracing and retrieving the relevant components for the required
abstraction.
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Chapter One

1. Introduction.

1.1 The Software Crisis.

The software industry has come a long way in a short period of time and

the process of writing software has changed from an art to an engineering

discipline. Programming and design methods have changed a great deal

and, in consequence, have changed the way in which modern software is

written. New software engineering approaches have emerged in order to

make the software development process systematic. With the increasing
demand on software systems, (because of the rapid development in

hardware) they have become much more complicated and forced their way

into all branches of modern life. Payroll systems, air traffic control

systems, word processors, numerical controlled machines and many more

examples, are systems run by software. The size of these systems

increasingly becomes larger and larger. Nowadays, we can find very large

systems with millions of lines of code.

The cost of software development forms the major part of the overall cost

of any information system project. This is because of the nature of

software development, since it is a labour-intensive process which restricts

productivity and increases cost. Furthermore, maintaining software

systems is a difficult process and sometimes painful. For these reasons

among others, the need for reliable, well-engineered software has become

vital to reduce cost and increase productivity and maintainability.



Chapter One

The term "software crisis" refers to the problems that are encountered in

the development of computer software [Booch1986].The problems are not

limited to software that does not function properly but in the way software

systems are developed and maintained. The questions are: are we really in

a crisis? And what are the problems that characterise the crisis? Most of

the problems suffered by software systems that characterise the crisis in

the software industry are problems that deal with managing the

development process. The main problems are the management of cost,

quality and productivity within the software projects. Software systems

are built from scratch every time new ones are developed. This yields to

the fact that there is no effective way to accurately estimate the time and

cost of developing new systems. Quality and productivity cannot

effectively be measured and controlled for the same reason. Hence cost

and implementation time normally run over the estimated plan causing

an increasing pressure to meet the project deadline and hindering the

quality of the product. When it comes to maintenance, the problems are

even more severe. System maintainability was not a factor in the design of

the existing systems, therefore maintaining these systems can be very

difficult. A high proportion of the software cost is consumed in the

maintenance stage.

Problems associated with the software crisis have been caused by the

character of software itself [pressman 1992]. Software is a logical rather

than a physical system element and its realisation is usually seen as a

challenge to the people who develop it. The intellectual challenge of

software development is one cause to the crisis, however the way in which

software has been developed and the people who are in charge of doing it

bear a large share of the responsibility.

New techniques for the software development process have been

introduced in order to reduce cost and increase productivity. Structural

methods, object oriented techniques, rapid prototyping, and software

2
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reuse are examples of these techniques. Among these, software reuse is a

newly adopted technique which seems promising. In the next section,

software reuse is introduced and its advantages are underlined.

1.2 Software Reuse, Why?

Reuse means re-applying knowledge gained through the development of

one system to another system in order to reduce the effort of development

and maintenance of the other system [Biggerstaff and Perlis 1989]. Reuse

could include the reuse of design methods and decisions and code reuse.

Code reuse is not a new concept as the use of functions, subroutines and

libraries in FORTRAN programming forms some kind of reusability.

Other examples of reuse are found in the UNIX system through the use of

filters and pipelines that enable the user to connect and interface several

commands together to form new functionality. Lex and Yacc are real

examples of code reuse as they can be used to generate compilers from a

definition language.

Adopting a reuse approach to software development means making

maximum use of existing software components whenever that is possible.

As expected, the major advantage of this approach is reduction in the

overall development cost. Fewer software components need to be specified,

designed and implemented in the development process of the new system.

However, the exact amount of reduction in cost is difficult to calculate.

The estimated unnecessarily-developed code in data processing

applications is about 60% of the overall code, and could be standardised

and reused [Hall and Boldyreff 1991]. Expectedly, reuse will sharply

increase productivity and the effort spent on developing reusable software

is worth taking. For example, the Japanese reported in 1980 that they had

achieved an overall increase in productivity of 14% per year over several

years by introducing reuse in the development process. They view the

process as a manufacturing process, hence the term "Japanese software

factory".

3



Chapter One

Other advantages can be gained from adopting systematic reuse in the

development process, which are [Sommerville 1992]:

1· Increasing the system reliability: Reused components, which have

been applied in working systems are more reliable than new

components as new components have not been tested in actual

working environments.

2· Reducing overall risk: The uncertainty of estimating the cost of

developing new components is eliminated by reusing existing

components. This forms better grounds for project management in

reducing the risk in cost estimation.

3- Making effective use of specialists: In the process of developing

software systems, application specialists are referred to as sources

of information. They join the project for a short time and they often

do the same job. These specialists can develop reusable components

which encapsulate their knowledge.

4- Developing standardisation with reusable components: Developing

reusable components forms a good opportunity for including some

standard objects which can become familiar for all users. For

example, applying reusable components providing menus to

different applications means that all applications present the same

menu format to users.
5· Reducing development time: Reusing components speeds up system

production because both development and validation should be

reduced. This is very important in marketing software systems.

1.3 What is a Domain and What is Domain Analysis?

Developing software systems from reusable modules requires that

software components must first be built in a form suitable for reuse. This

fact leads to the division of the development process into two equally

important stages; software development for reuse and software

development with reuse.

4
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In software development for reuse, every component constructed for future

reuse must be designed such that it could be used over the application to

which that component belongs. We refer to a class of similar systems as a

domain. The underlying feature that define domains is the similarity of

the systems that belong to it. These could be in the form of one or more of

these features: functions, objects, sub-systems or design structures.

Domains need to be analysed and modelled in order to identify the

similarity that characterise the reusable objects in them. The necessary

information, that is required in the analysis process, can be obtained from

different sources like technical literature, existing systems, customer

surveys, human expertise and current and future requirements. The

process of knowledge acquisition, identifying and analysing reusable

objects of a class of similar systems is called domain analysis. With

domain analysis, we try to model the whole domain rather than the
system under development only. Modelling the domain means searching

for any common objects and features in the application and providing a

specification framework for components with potential reusability.

The first introduction to domain analysis was made by Neighbors when he

described an approach to software reuse which is known as the Draco

approach [Neighbors 1984]. He referred to the term domain analysis as

"the activity of identifying the objects and operations of a class of similar

systems in a particular problem domain". The Draco approach tackled the

problem of domain analysis at the organisation level. The development

life-cycle was extended to include a phase for future reuse. New roles for

domain analysts were introduced to carry out domain analysis tasks in

the development process.

1.4 Objectives and Contributions of the Work

There are still some problems in the way software components are

referenced and retrieved. Components' descriptions must include some

5
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information about their functionality and scope before they could be used.

On the other hand, components cannot be specified or reused in isolation

of other components in the domain. The way components are normally

designed and implemented is influenced by the scope of application and

their interaction with other entities in the domain. Component indexing

and retrieval mechanisms ignore this critical issue and treat components

as stand alone entities that could be located and retrieved for any

application. This view is based on generic reusable components.

Another problem that faces the reuse community is how domains could be

analysed and structured for the reuser to make effective use of the domain

resources. Current domain analysis methods are mainly ad-hoc in which

reuse is opportunistic rather than systematic (see chapter two for

discussion). When domains are analysed, there is no clear idea about the

outputs of the process or how to achieve the goal. In some cases, domain

architectures are used for introducing the problem domain. The

architectures do not provide the solution to the problem. Furthermore,

since there is no systematic approach to domain analysis, there is a lack in

the tool support for domain analysis and domain modelling.

In this thesis, a domain-oriented approach to software reuse is proposed

for solving the above problems. It is based on the concept of application

scope. When domains are analysed, they are divided into a hierarchy of

abstraction levels. These levels represent the scope for reuse of the

reusable components in the domain. The approach allows components to

be identified and designed for reuse within a specific scope. When they are

retrieved, the scope is used as a guide for locating and tracing components

from a domain knowledge base. The approach supports reuse through the

reuse of design conceptions within the domain. Thus it is a solution-based

approach in which the solutions to the domain problems are encapsulated

in the reusable components.

6
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The approach is based on the following elements:

1. A domain infrastructure, that supports the development of new

systems. The infrastructure comprises a domain taxonomy, reusable

components and a reference architecture.

2. A technology which helps in developing and refining the infrastructure.

This is encapsulated in a number of Generic Architectural Models

which are used for describing the reference architecture.

3. A process and guidelines for building the infrastructure (using the

technology) and for synthesising new systems. The process is divided

into Domain Engineering and Application Engineering phases.

4. A supporting tool for automating and validating the infrastructure

development process.

Components are modelled in terms of their scope, behaviour and their

interaction with other components in the domain. The relationships are
modelled using the technology of generic software architectures. These

architectures are built using pre-described architectural models that are

used for modelling the design conceptions in the domain. Architectures

are also used for tracing components in the domain knowledge base by

tracing the relationships among reusable components.

The process of building software systems in this approach is designed in

such a way to make it as systematic as possible. This is done by providing

a list of design guidelines for building the domain model and checking the

overall design. A number of guidelines are also set for assessing the

reusability of the domain components as well as the architectures.

The novelty of this approach could be summarised in the following points:

1. The approach provides a new way for classifying and structuring the

domain abstractions which is used for defining the component scope of

application. Thus it provides a representation method of the domain

knowledge as well as an indexing scheme for its components.

7
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2. Components are described using a new model called the 3-D model

(scope, behaviour and reaction space) which helps in describing the

component's functionality and constraints.

3. A technology for modelling the domain architectures using genenc

architectural models. The technology is named Generic Software

Architectures which is used for modelling the components'

relationships and dependency within the domain. These relationships

are also used for tracing components in the domain knowledge base.

4. A set of design guidelines for classifying the domain and building the

domain architectures. These guidelines make the approach more

systematic and help with assessing the components' reusability as well

as the architecture validity. The guidelines are developed through

experience gained from applying the approach to a number of exemplar

domains. Further work may be needed for developing more guidelines

as the approach is extended in the future.

5. An integrated tool for supporting classifying and modelling domains,

building domain architectures, tracing and retrieving components and

reuse assessment.

Some of the work developed In this thesis has been presented in a

number of publications [Al-Yasiri and Ramachandran 1994,

Ramachandran and Al-Yasiri 1994A, Ramachandran and Al-Yasiri

1994B].

1.5 Outline of the Thesis

The thesis is organised as follows. Chapter two introduces the main issues

of software reuse and domain analysis within the software development

process. It also reviews current research in software reuse, components

retrieval and domain analysis methods. Chapter three discusses software
architectures and object-oriented design patterns (sometimes called micro

architectures) and their support for reuse. Current research in these two

8
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areas is also reviewed. Chapter four presents an overview of the proposed

approach with discussion about the domain classification and components

modelling. Chapter five explains the technology of the generic software

architectures, relationships between components and constraints. In

chapter six, the process of modelling domain and building domain

reference architectures is described and a number of design guidelines are

introduced for executing the process. Chapter seven describes the tool

support and presents a case study for applying the approach to a real-

world domain. The thesis is concluded in chapter eight where the

approach is critically assessed and future extension to the work is

suggested.

9



Chapter Two

2. Software Reuse and Domain Analysis.

2.1 Introduction

In this chapter, the concepts of software reuse and domain analysis are

introduced. Firstly, the factors that should be considered in software

development from reusable modules are introduced. More specifically,

composition based reuse and component retrieval mechanisms are

reviewed in section 2.3. Later in the chapter, a review of domain analysis

and domain analysis methods will follow with a critical comparison

between different methods.

2.2 Reusability Issues and Software Development

Software reuse has been widely publicised and researched over the past

few years because of its obvious benefits (see chapter one). However, there

is little available evidence to suggest that systematic reuse is practised on

a wide scale. This is because of a number of obstacles (both technical and

managerial) that inhibit reuse. Some of these obstacles are connected to

the way we write software components and others are connected to how

we use them.

Gautier and Wallis define reusability as :

"... a measure of the ease with which a software

component may be used in a variety of application

contexts" [Gautier and Wallis 1990]
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Reusability is determined by the way components are written and how

they are used. This leads to looking at the problems from two points of

view; software development for reuse and software development with

reuse.

2.2.1 Software Development for Reuse.

Adopting a component-based approach to reuse requires a library of

software components already existing. Previous research showed that 40-

60% of actual program code was repeated [Horowitz and Munson 1984,

Lanergan and Grasso 1984]. Such observations among the software

community have led to a common misconception, that components are

available in existing systems [Sommerville 1992]. In fact, components

must first be designed for reuse before they can be reused. This means

they have to be generalised to satisfy a wider range of requirements.

When a software component is developed for reuse, there are a number of

factors that affect its reusability; some are technical and some are

managerial factors. On the managerial side, developing generalised

components is more expensive than developing components for a specific

purpose so increases project costs. As the principal role of project

managers is to minimise costs, they are understandably reluctant to

invest extra effort in developing components which will bring them no

immediate return. The process requires an organisational policy decision

to increase short-term costs for long-term gain. The organisation rather

than individual project managers must make such decisions. The

difficulty lies in how well senior managers can see the long-term benefits

of such investments.

Technically, components must be designed to serve a well specified

abstraction in the application domain. Sommerville lays two rules to

assess the reusability of a component [Sommerville 1992]:

11
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1. How well does the component represent an application domain
abstraction?

2. Has the component been written so that it IS generalised and

adaptable?

These rules are useful if assuming that the developer and the reuser of

the component are both experts in the application domain. The first rule is

relevant but we cannot measure the precision of the component

representation without understanding the domain first. The second

combines adaptability and generality which are difficult to achieve at the

same time. It could be more useful if the component exhibits completeness

and flexibility. By completeness we mean that a component encapsulates

all relevant features in a specific domain abstraction and nothing more.

Flexibility means a component has the ability to evolve as the domain
evolves.

In our view, more fundamental questions should be asked to assess the
reusability of a component.

1. How accurate can we describe the domain abstraction?

2. How well does the component represent the solutions to that

abstraction?

3. Can we comprehend the component behaviour such that it is easy to

use and modify?

The answer to the first question requires a comprehensive modelling and

presentation of the domain abstraction. Questions two and three deal with

the modelling of the component behaviour and in order to answer them we

need to model them with reference to their scope for reuse. Chapters four

and five will explain our approach to modelling application domains and

components' behaviour.

In the light of this discussion, some guidelines are needed for writing

software components such that they have better reusability. In principle,
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reusable components are designed around the principles of abstraction

and information hiding. Some work has already been done to define some

guidelines for component writing. Most of these guidelines are language

dependent, especially targeting the Ada language. One work presented in

[Gautier and Wallis 1990] set a number of Ada reusability guidelines and

classified them into the following categories: design guidelines, generic

components, exceptions and tasks. Obviously these guidelines are relevant

to Ada as they deal with features supported by Ada. However some of the

design guidelines could be generalised for other languages which are

similar to Ada (strongly-typed languages) such as C++ or Object Pascal.

As an example, consider the following guideline presented in [Gautier and

Wallis 1990]:

Avoid specifying a package in such a way that all

implementations of that package will have to maintain

internal state.
This guideline could be modified for defining C++classes as follows:

Avoid specifying a class in such a way that all its member

functions will have to maintain internal state (in other

words, avoid declaring variables as static in such

functions).

Matsumoto suggests some general guidelines to make software modules

reusable [Matsomoto 1984]. His list compnses the following

characteristics:

1) Generality

2) Definiteness

3) Transferability

4) Retrieveability

The first two characteristics call for us to build components that are

focused on a single abstraction. The next two characteristics are mainly

issues ofportability and library management.

13
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Another work by [Booch 1987] sets a number of general guidelines for

writing reusable components and some specific guidelines for writing Ada

components for the domain of abstract data structures. Booch has

developed an extensive classification structure for such components and

discusses how generalised components can be implemented by applying

his own guidelines. The general guidelines (set by him) state that software

components should exhibit the best characteristics of any good piece of

software which are:-

• maintainable

• efficient

• reliable

• understandable

Furthermore, Booch suggests three more desirable characteristics to be

added to Matsumoto's list which are:

• Sufficient
• Complete

• Primitive
Booch's guidelines (in addition to Matsumoto's) deal with the outside view

of a component and how components are utilised. However, the last three

characteristics emphasise the generality issue of the designed component

which is the major design consideration in Booch's components. We will

come back to Booch's work in the next section when we discuss

component-oriented reuse. Sufficiency means the component captures

enough characteristics of the abstraction to permit meaningful interaction

with it. Whereas completeness means the component's interface captures

all characteristics of the component. On the other hand, a component

specification must include primitive operations which can be efficiently

implemented only with access to the underlying representation of the

component; thus complying with the principles of abstraction and

information hiding.
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Further work has been done by Smith [Smith 1990] to set ten informal

guidelines for enhancing reusability of software modules in the C and C++

languages. These are casual guidelines which the author does not claim to

be applicable in all situations. In addition, they lack the depth under

which Ada guidelines have been treated. Nonetheless, most of Ada

reusability guidelines can be applied for C++ after modification, as we

have outlined earlier in this section. In another work [Johnson and Foote

1988], some rules were suggested for designing reusable classes as a basis

for reusable object oriented software. These are high-level design

heuristics for designing reusable modules with no detailed information of

how to implement the rules as the case with the Ada guidelines. As an

example, consider the following rule for finding frameworks of

interconnected classes "Split large classes". This rule and its elucidation

failed to show possible ways of splitting the classes; for instance, should

they be broken into a number of sub-classes of another abstract class or
should they be designed as parts of one composite class. Based on these

rules, some object-oriented design guidelines were developed by

[McGregor and Sykes 1992]. In their work, the guidelines are more

focused and more specific. Some of them are a union of two or more rules

presented by Johnson and Foote. Furthermore, the work shows, through

examples, how to apply these guidelines as design choices (alternatives) to

enhance reusability.

2.2.2 Software Development with Reuse

Developing new software systems from existing building blocks is called

development with reuse. The main factor that motivates reuse within an

organisation is the increase in productivity and competitiveness. However,

several factors are still there inhibiting reuse. [Biggerstaff and Richter,

1987] outline some of these factors as:

1. Inadequate representation technology.

2. Lack of clear and obvious direction.

3. High initial capitalisation.
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4. The Not-Invented-Here (NIH) factor.

In their opinion, the main factor that prevents the successful reuse of

design information is the representation factor. They explained how the

representation problem would prohibit the reusability of components. In

this respect, the following features were identified to be needed in a

representation approach or style:

The ability to present knowledge about implementation structures in

factored form.

The ability to create partial specifications of design information that

can be incrementally extended.

The ability to allow flexible coupling between instances of designs and

the various interpretations they can have.
The ability to express controlled degrees of abstraction and precision

(i.e., degrees of ambiguity)

The second factor concerns the debate between management and

technologists. Managers usually are reluctant to invest in a new

technology until they are certain of the best path. Technologist often take

the initiative and explore the avenues researching for the best path. In

this case, the nature of the problem is different; reuse is a multi-

organisation problem and requires a library of software components before

the pay-off'scan be realised. Therefore, commitment on the management

side is needed for building such libraries in order to anticipate the benefits

of the technology. This also leads to the third factor which is high initial

capitalisation where we need to invest a great deal of intellectual capital,

real capital and time before we can benefit from the technology. The

problem is not just the amount of investment needed for this commitment,

but the time period required for the reorganisation of the company to

accommodate reuse and reap the benefits of it. Normally, a reuse program

takes between five to ten years to mature within an organisation [Lim,

1994]. This makes the problem harder on the management side, and
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requires high gains in terms of productivity and competitiveness to justify

such high profile commitment.

The NIH factor is a cultural problem that exists among software

developers. Developers think that reusing existing components is limiting

their creativity, in addition to the reduced confidence in the components

that are developed elsewhere. Biggerstaff and Richter think that this

problem is easily curable compared to some of the technical problems.

Whereas they could be right in that it is less significant than the others,

this work has shown that it is not easily curable because the cultural

problems are linked to the technical and organisational issues. It will be

easily curable if proper solutions to the other problems are found. They

claim that the cure is up to the management to establish a proper reuse

culture within the organisation, and when the developers practise reuse

they will soon realise its benefits and find new challenges for proving
their creativity. This is fine, but we already know that managers are

reluctant to adopt the reuse approach. Moreover, we agree with their

suggestion of rewarding successful reuse among individuals or within

projects as an incentive to overcome this problem. Furthermore we believe

that the problem needs a systematic approach to development with reuse

where reuse is a planned process rather than ad-hoc and is supported by a

number of clear steps for developing systems from existing components

and a number of guidelines or heuristics to assess the validity of the

design. In chapter five, we will present our solution to some of these

problems based on the previous principles.

There are a number of examples of organisational approaches to

development with reuse. The most successful approach was the Japanese

software factories. In these factories, they integrated known techniques

from different disciplines like source management, production

engineering, quality control, software engineering and industrial

psychology [Tajima and Matsubara 1984, Matsumoto, et al. 1980].
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Matsumoto reported that they had achieved an increase in productivity of

14% per year over a number of years. The Toshiba factory, for example,

[Matsumoto 1984] is using a set of well-known software engineering

representation and design disciplines, and they enforce these design,

environment and tool standards. The success of the software factories is

attributed to the following reasons:-

• They have established a critical mass ID the number of reusable

components and programs (>1000) available to use and develop them.

• They have taken the separate phases in the software development

process and assigned them to different departments within the

software factory.

• They have developed an integrated set of tools and rigid standards to

support reuse in the software production life-cycle. Because of the large

number of users of the tools, their initial development cost can be
economically justified.

• Their management is committed to this approach.
• Software reuse is part of their training process.

A British Aerospace project for large-scale reuse has been reported in

[Hutchinson and Hindley 1988]. The project is aimed at supporting

development of large, real-time, embedded systems. The approach is

focused on a specific domain within which reusable software components

are designed by isolating reuse attributes discovered during domain

analysis. Reuse, in this approach, is identified in different levels which

are based on the principle that every software entity is potentially

reusable; whole system, sub-system, functions at requirements level or

components at design and code level. The approach is supported by a

library tool for cataloguing and retrieving reusable components.

The REBOOT (Reuse Based on Object-Oriented Techniques) project is the

European reuse initiative within the ESPRIT-2 project which was started

in 1990 for four years initially and the research has been carried out in six
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countries [Morel and Faget 1993]. The project is based on the faceted

classification scheme of components [Serumgard et al. 1993]. REBOOT

applies reuse by composition which means that the reuser builds new

systems by composing it from atomic building blocks. REBOOT assumes a

vast number of reusable components from different domains are present

in a library system. The classification scheme applied here is used for

implementing an "intelligent" retrieval mechanism based on keyword-

based search mechanism. REBOOT classification is built around four

facets; Abstraction, Operations, Operates on and Dependencies. Later in

this thesis we will discuss our approach to classify components according

to 3-D model of reusable components which are Scope, Behaviour and

Reaction. Our model is used for modelling dependencies between

components as well as components' retrieval.

Another large-scale reuse programme has been carried out by the

Hewlett-Packard company [Lim 1994, Fafchamps 1994]. In HP, the

emphasis is on developing a reuse culture within the organisation. Their

view to reuse is to divide engineers into two groups; producers and

consumers ofwork products (code, design, test plans, ...etc.). Producers are

creators of reusable work products and consumers are those who use

them. The reuse programme included resources to create and maintain

reusable work products, a reuse library, reuse tools and implementing

reuse-related processes. Fafchamps' research modelled the relationships

between producers and consumers and the influence of the organisation

structure on the reuse programme. She has identified four models of

producer-consumer relationship which are:- lone producer, nested

producer, pool producer and team producer. Each one has its advantages

and disadvantages for different organisation structures. Her conclusions

were that the team-producer model is the most successful model and the

one that provides better cultural shift towards reuse within an

organisation because it allows transition from a project to an organisation

frame ofmind.
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2.3 Component-Oriented Reuse

After outlining the characteristics of a reusable component, and the

impact of reuse on the development process, it is normal to ask what is a

reusable component and how can we find and locate such a component? In

the last section some researchers proposed that any work product is

potentially reusable [Hutchinson and Hindley 1988; Morel and Faget

1993]. This means a reusable part could be a whole system, a sub-system,

functions in the requirements phase or modules in the design and code

phase. When we talk about component-oriented reuse (as opposed to

generation-based reuse which is outside the scope of this thesis), we mean

the process of building new systems from existing building-blocks. The

process requires a comprehensive library of reusable components with a

scheme for searching and retrieving components from this library.

The research in this area has covered the following aspects of composition-
oriented reuse:

• Generic abstract data structures.

• Identifying and locating reusable components.

• Classification schemes.

• Components' interface and interconnection.

• Component retrieval and library management systems.
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The work carried out by Booch [1987] is a major effort in the development

of generic reusable components. Booch has worked on the domain of

abstract data structures and classified them into what he called forms of

reusable components. His work was well received because he chose a

domain that is well specified and understood by the software development

community. His classification of this domain is shown in figure 2-1. He

classified reusable components as Structures, Tools and Subsystems.

Figure 2- 1 Classification of Reusable Components [Booch 1987]

Structures are generic components that denote objects or class of objects

characterised as abstract data types. They are classified according to their

internal representation as monolithic or polylithic. The distinction is

based on whether the structure contains any sub-structures that can be

manipulated independently. For example, a tree is polylithic because it is

a recursive component in which it is possible to select part of the tree and

treat it as a tree. This distinction is important for the way components are

implemented.
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Tools are imperative components that act as agents for some algorithmic

abstractions that are aimed at an object or class of objects. The relation

between objects and tools are close although tools are not objects

themselves. Objects are entities, while tools are closely coupled operations

(or collection of operations) that act upon entities.

The third type of reusable components that Booch proposed is sub-

systems. In such cases, rather than reusing components as building

blocks, a collection of components can form a sub-system that can be

reused. Booch claims that the higher the abstraction level for reuse, the

higher the pay-off gained from reuse and easier to implement.

The other type of classification that Booch proposed is classification
according to time and space. Different components could be defined for a

single abstraction, depending on its time and space features. These

components would look the same from the outside view but vary in the

implementation features to suit different applications requirements.

Booch calls such variations in a reusable component as forms of a

component. The same component could come in sequential or concurrent

form, bounded or unbounded, managed or unmanaged and iterator or

noniterator (or a combination of these forms).

Booch's work was useful and comprehensive for this particular domain,

however there are a number of observations that we would like to make

about his classification:

The generic feature of such components is useful for the domain of

abstract data structures but is less applicable to other domains whose

components cannot be generalised. Therefore, this type of design is

better treated as domain-specific design rather than generic reusable

components.

The differentiation between tools and structures in treatment

(structures are objects and tools are imperative components) makes it
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more difficult for the reuser to comprehend how components are

interconnected and used. We believe a unified approach to component

presentation and interconnection is crucial for increasing the

reusability of a collection of related components.

The issue of bigger components and higher pay-off's is debatable. If a

sub-system (as a bigger-size component) is reused in a particular

situation there is no guarantee that the same sub-system would serve

the same purpose in another situation without modification. In this

case the effort in building a reusable sub-system for that situation may

prove to be wasted if no perfect match could be achieved. On the other

hand, a bigger component is more difficult to comprehend and

interconnect because of its higher degree of complexity.

The implementation of the component's forms are made as a repeat for

the whole internal details. With the use of objects and object-oriented

techniques, we believe that polymorphic objects and inheritance would

form a better basis for modelling and implementing variations in the

implementation details for a collection of related components. In a later

chapter of this thesis we will propose another scheme for classifying

reusable components to deal with this issue.

The guidelines and implementation of the components are based on the

language he used (Ada), hence many of the design decisions are

specific to Ada.

Another work targeting Ada components was presented in [Carter 1990].

This has dealt with concurrency in Ada components and criticised Booch's

use of Abstract Data Types (ADT) to implement reusable concurrent

components. The criticism is based on the fact that in order to solve some

of the problems with concurrency, we have to allow a certain degree of

violation to the integrity of the component's abstraction as in the
implementation of a binary semaphore (in Booch's guarded form

implementation), or the use of shared variables which violates the

principles of information hiding and locality. The proposed solution (in
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Carter's paper) to this problem is based on the use of Abstract State

Machines (ASM)instead of ADTs. The author claims that this solution is

easier understood and presented using modern graphical software

development methods.

Carter's proposals provide a solution to the issue of violating the

information hiding principles in concurrent components but creates

another problem to the reuser. The reuser needs to understand additional

design concepts to the ones he intends to the required components. This

work as well as Booch's approach have shown that solving the technical

problems could cause additional problems that discourage reuse. In our

approach, a technical solution is proposed which also emphasises how a

component is applied when it is reused.

2.3.1 Component Retrieval Mechanisms

The success of reusing software components is bound by the existence of a

large library of such components and how they could be identified and

retrieved. When a set of requirements is analysed, the first step in

development with reuse comprises finding components that satisfy those

requirements. When the number of components in the library is large,

developers can no longer afford to examine and inspect each component

individually to check its suitability. We need an automated method to

perform a search and match process to retrieve a list of potentially

reusable components.

The existing approaches to component's retrieval cover a wide spectrum of

search and matching algorithms. In general they fall into three main

streams which are:

1. Text-based retrieval.

2. Lexical descriptor-based retrieval.

3. Specification-based retrieval.
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With text-based retrieval, the textual representation of a component is

used as an implicit functional descriptor. The users then supply

arbitrarily complex string search expressions which are matched against

the textual representation. The main advantage of such an approach is

related to cost; no encoding is required and queries are fairly easy to

formulate. Its disadvantages are simply that plain-text encoding is neither

sound nor complete.

Plain-text encoding and search have been used in a number of software

libraries alone or in conjunction with other search methods [Frakes and

Najmeh 1990; Yoelle et al1991] and had fairly good recall and precision

rates. In a controlled experiment performed at the Software Productivity

Consortium. Frakes and Pole found that more sophisticated methods had

no provable advantages over plain text retrieval in terms of recall and

precision [Frakes and Pole 1992]. However, they found that developers
took 60% more time than with the best method to be satisfied that they

had retrieved all the items relevant to their queries. This accounts for

both the speed with which individual search statements/expressions can

be formulated and the number of distinct search statements that had to be

submitted to answer the same query. With traditional document retrieval

systems such as library systems, longer search times are a mere

annoyance. In a reuse context, bigger search times can make the

difference between reusing and not reusing.

With lexical descriptor-based encoding, each component is assigned a set

of key phrases that tell what the components offers. Domain experts

inspect the components and assign to them key phrases taken from a pre-

defined vocabulary that reflects the important concepts in the domain

[Burton et al. 1987; Prieto-Diaz and Freeman 1987].Notwithstanding the

possibility of human error and the coarseness of the indexing vocabulary,

such encoding is sound, as opposed to plain-text encoding. Further,

because a key phrase need not be occurring in the component's textual
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description to be assigned to it, it is also more complete than plain text

encoding.

Lexical descriptor-based encoding and retrieval suffers from a number of

problems. First, an agreed vocabulary has to be developed. That is both

labour-intensive and conceptually challenging. In [Serumgard et al. 1993],

a number of problems in developing and using classification vocabulary

have been reported. They experienced known problems in building

indexing vocabularies for document retrieval, including trade-offs between

precision and size of the vocabulary and the choice between what is

referred to as pre-conditioned and post-conditioned indexing, with the

confusion that may result from mixing the two. Software-specific

challenges include the fact that one-word or one-phrase abstractions are
hard to come by in the software domain.

Further, it is not clear whether indexing should describe the

computational semantics of a component or its application semantics.

Characterising computational semantics could help reuse across

application domains. However, reusers may have the tendency to

formulate their queries in application-meaningful terms. Finally, neither

the encoding mechanism nor the retrieval algorithm lend themselves to

assessing the effort required to modify a component that does not perfectly

match the query.

Specification-based encoding and retrieving comes closest to achieving full

equivalence between what a component is and does and how it is encoded.

With text and lexical descriptor-based methods, retrieval algorithms treat

queries and codes as mere symbols, and any meaning assigned to queries,

component codes, and the extent of match between them is external to the

encoding language. Further, being natural language-based, the codes are

inherently ambiguous and imprecise. By contrast, specification languages

have their own semantics within which the fitness of a component to a
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query can be formally established [Chen et al. 1993; Mill et al. 1994;

Zaremski and Wing 1993]. The formal specification-based methods

correspond to what is called partial order-based retrieval, using a partial-

order relationship between specifications. This partial order is often used

to pre-organise the components of the library to reduce the number of

comparisons between specifications.

In [Mili et al. 1994], the authors describe a method for organising and

retrieving components that uses relational specifications of programs and

refinement ordering between them. Their method is based on two

concepts; the first is that there is an ordered relationship between the

program specifications such that the program which satisfies a given

specification would satisfy the specifications above it. The second is that a

specification retrieves the program attached to it as well as those attached

to specifications that are below it. Two forms of retrieval are defined: exact

retrieval, which fetches all the specifications that are more refined than a

reuser-supplied specifications, and approximate retrieval, which is

invoked whenever the exact retrieval fails, and which retrieves

specifications that have the biggest overlap with the reuser's

specifications. They claim that the approximate retrieval may be useful in

suggesting a way of modifying the retrieved programs to make them

satisfy the requirements although it does not directly assess the effort

required to modify a requirement.

The approach proposed in [Chen et al. 1993] uses algebraic specifications

for abstract data types and an implementation partial ordering between

them. Reusable components, which may be seen as abstract data types,

are specified by both their signature and their behaviour axioms.

However, while the implementation relationship takes into account the

behaviour axioms, the retrieval algorithm uses only signatures, which is a

renaming of the "types" of the components to match those of the query; the
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authors did envisage using an interactive system for algebraic

implementation proofs.

Zaremski and Wing propose an approach based exclusively on signature

matching [Zaremski and Wing 1993]. The major advantage of their

approach is that the information required for matching can be extracted

directly from the code. They first define exact matches between function

signatures, to within parameter names, and then define module signature

and partial matches between modules using various generalisation and

sub-typing relationships. They too envisage taking into account

behavioural specifications in future versions, using LARCH specifications

[Guttag et al. 1985], which would then have to be encoded manually.

None of the formal specification-based methods addresses directly the

issue of assessing the effort required to modify a component retrieved by
approximate retrieval (partial match). Further specification-based

methods that include behavioural specifications (and not just signatures)

suffer from considerable costs. First, there is the cost of deriving and

validating formal specifications for the components of the library. This

cost is recoverable because it could be amortised over several trouble-free

uses of the components and is minimal if specifications are written before

the components are implemented. The second cost has to do with the

computational complexity of proof procedures. This cost can be reduced if

actual proofs are performed only for those components that match a

simplified form of the specifications, e.g., the signature; not much can be

done about the inherent complexity of proof procedures without sacrificing

specification power. The last cost is the cost for the reuser to write

comprehensive specifications for the desired components. Because there is

no evidence that specifications are either easier or shorter to write than

programs, reusers need motivations other than time-savings, or computer

assistance, to write specifications for the components they need.
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2.3.2 Component-Based Software Development

The availability of a library of software components (no matter how big it

is) does not guarantee that software engineers will use (or reuse) them in

the development of new systems. We have already outlined the

significance of an approach (for development with reusable software)

within an organisation before developers could reuse software. As a

matter of fact the whole software development life-cycle should be

modified to accommodate the new technology. In this section, we will

review a number of approaches to developing software systems from

software components.

A software life cycle is a model for organising, planning and controlling

the activities associated with software development and maintenance

[peters 1987].For the most part, a life cycle identifies development tasks,

elucidates and standardises intermediate deliverables and reviews and

evaluates the overall process [Mill et al. 1995].Existing life cyclesmay be

classified based on the kind of development tasks, deliverables and the

organisation of such tasks. For example, the waterfall life cycle, the spiral

model [Boehm 1987] and to some extent prototyping, all involve some

measure of analysis, design, coding and testing. Nevertheless, whereas

the waterfall life cycle implies that an entire system is analysed before

any part of it is designed and implemented, both the spiral model and

prototyping prescribe the analysis-to-testing cycle on system increments

[Agresti 1986].

When we talk about component-based development, existing approaches

normally consider the process as two separate life cycles; the life cycle for

developing reusable components and the life cycle for developing with

reusable components.

In [Sommerville 1992], a reuse-driven approach is proposed, assuming a

library of reusable components already exists. In this approach the design
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of a component-based system could be modified according to the

specifications of existing components. As shown in figure 2-2, the system

requirements are modified according to the reusable components available

in the library. A side effect of this process is that there may have to be

compromises over the system's original requirements and that the design

may be less efficient. If, however, a wide-range of component forms is

available in the library then the developer can choose from a selection of

different versions of a single component that can meet a wide-spectrum of

specifications. Still there is a need for an approach that tells the reuser

about the different versions of that component and the relationship

between them to help him/her find the best possible match between the

system's requirements and the components' specifications.

Figure 2- 2 Reuse Driven Software Development [Sommerville

1992]

Hall and Boldyreff proposed a simple model of the reuse process which

identifies a number of steps to be taken in proceeding from the recognition

of the opportunity for reuse to the actual reuse of components in new

applications [Hall and Boldyreff 1991]' Figure 2-3 shows these steps in

the context of a component library, using data flow diagram conventions of

structured systems analysis and design method (SSADM). There is clear

distinction between development for reuse and development with reuse
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knowledge should play a more driving role in the process where both

phases of the process are inspired by its results.

In [Caldieri and Basili 1991], the authors proposed an approach which

mimics the software factory approach (see section 2.2.2). In their model,

project teams dono programming (see figure 2-4).They are responsible for

requirements and design specifications, which they submit to the

experience factory, and for integration and testing. The experience

factory's activities can be divided into synchronous activities and

asynchronous activities. In the first, activities are initiated following

requests from the project teams, and can range from a simple look-up to

building the required components from scratch. Such activities are subject

to project teams' schedules. The asynchronous activities, on the other

hand, consisting of creating components that are likely to be requested

(anticipating future demands), or re-engineering components generated by

the synchronous activities to enhance their reusability.

Figure 2- 4 Reuse Framework and Organisation[Caldieri and

Basili 1991]
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The work, presented in [Basili et al. 1992], reported on experiences at the

Software Engineering Laboratory (SEL), funded and operated by the

University of Maryland, NASA, and the Computer Sciences Corp., in

which further research on the above software factory has been pursued.

The emphasis here is on the experience factory which was responsible

mainly for process (vs. product) development and reuse [Basili and Green

1994]. Over a period of five years, reuse rates increased from 26% to 96%,

the cost per delivered statement decreased by 58%, a 138% increase in

productivity - and the number of errors decreased by a factor of four

[Basili et al. 1992]. It is not clear how a pure producer-consumer

relationship between the experience factory and the project teams would

have worked.

The fountain model for object-oriented software development [Henderson-

Sellers and Edwards 1993], introduces a different view of the development

life cycle, which combines both the incremental nature of the spiral model

and a component library. The paper first introduces the fountain model

for object-oriented software development on three different levels, which

are system level, sub-system level and class development level. Then the

model is extended to allow for reuse of classes from a class repository

(software pool). Figure 2-5 shows the fountain model for object-oriented

(0-0) development. As shown in the figure, the model is based on the

following principles:

1. There is an overlap between analysis, design and implementation

phases with iterative cycles across two (or all three) of these broad

phases.

2. The entire model is based on the existence of the 'software pool' or

'repository' of classes.

3. There are three development possibilities; new sub-systems, partial

reuse/partial modification and total reuse.
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4. The concept of domain analysis is integrated with the application life

cycle to form a coherent life cycle for an organisation. The system level

life cycle uses components discovered by the domain analysis activity

and results in components that are generalised for reuse in other

development projects.

Figure 2- 5 The Fountain model for object-oriented development

process [Henderson-Sellers and Edwards 1993]

This model provides a useful analogy to describe the 0-0 life cycle,

however some of the important issues in the process have been dealt with

casually. For example, it has not addressed domain analysis and domain

knowledge in details. Domain analysis was superimposed on the model

without a clear idea about its role or its deliverables. Furthermore, there

is no indication how classes are identified from the pool and assessed for

reuse within the new applications.

34



chapter two

2.4 Domain Analysis

Domain analysis (DA) was first introduced by Neighbors [1984] as a

process of "identifying the objects and operations of a class of similar

systems in a particular problem domain". Neighbors views domain

analysis with analogy to systems analysis such that system analysis deals

with the specifications in a specific system, while domain analysis

describes the common actions and objects in all systems in an application

area. Domain analysis can be performed prior to systems analysis and its

output (domain model) supports systems analysis in the same way that

the systems analysis output (specifications document) supports the system

design, see figure 2-6.

Domain Analysis
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Figure 2- 6 Domain Analysis and Domain Model

Domain analysis represents a higher level of abstraction than systems

analysis. In the conventional water-fall model, systems analysis

incorporates creating a model of the system with suggestions to automate

or improve this system. The outcome of systems analysis is then used by

the system designer to produce a particular design that meets a set of

requirements and specifications. The two activities (requirements analysis

and system design) deal with a model of a particular system. In domain
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analysis, on the other hand, a domain model is created in which all

systems in a specific application are generalised. Domain analysis

includes generalising common characteristics from similar systems,

identifying objects and operations common to all systems and defining a

model that describes the relationship between them.

2.4.1 Domain Analysis Process

Domain analysis is actually an information collecting, analysing and

presenting process about a specific application domain. Figure 2-6 shows

the inputs, outputs and agents that comprise the elements of a domain

analysis process [Prieto-Diaz 1990]. In general, different approaches to

domain analysis agree about the inputs, outputs and agents of the process

but they provide alternative ways to realise the outputs from the inputs.

Two agents are required for the domain analysis process which are a

domain expert and a domain analyst. The domain expert is a person who

is familiar with the application area and who does not have to be a

systems analyst or a software engineer. His role is vital for identifying the

relevant areas in the domain and the relationship between the different

objects and functions in the domain. In many cases the domain expert's

role is to verify and organise the information acquired from other sources

of knowledge. The other agent of the process, the domain analyst, is a

person who is responsible for collecting and analysing the information

about the domain from the different sources and present these

information in a domain model according to a domain analysis method.

The inputs and outputs of the process are:

2.4.1.1 Inputs

The inputs to the process are the sources from which information is

acquired. These sources provide knowledge about a problem domain and
the models for implementing software-intensive solutions to problems.

The inputs to the process include:
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1. Technical literature: Textbooks, scientific journals and manuals.

2. Existing applications, which can be investigated such as source code,

design documentation, user manuals and the results of reverse-

engineering the implementations.

3. Customer surveys and market analysis.

4. Human expertise in the problem domain (e.g. the expertise of

accountants, chemists, or police officers) and the design of systems in

that domain (The expertise of systems analysts, designers,

programmers or maintainers).

5. Historical records of evolution in the domain.

For practical domain analysis, each source of information has advantages

and limitations. Human experts are good sources for creating general

views of the conceptual structure of a problem domain. These views help

the analysts understand the interaction between the mass of information

to be examined during the process of domain analysis. Human experts are
usually the only sources for justifications or explanation of the system's

way of operation. A domain expert's memory is usually rich with historical

information that cannot be found any where else. Nevertheless, the time

of human experts is usually scarce and costly.

The technical literature often provide precise and detailed data but it is

not likely that it contains insights and causal or historical knowledge.

Although this source of information is cheap and available, it cannot be

credited for insights, justifications or elaboration . Existing applications

are useful as practical examples for the knowledge required from experts.

They help by clarifying and discovering information like variations in the

definitions of domain objects, relations, constraints, specialised design

plans and implementation knowledge. However, they are very specific and

it is time consuming to move from a specific application abstraction to a

new one. Market surveys do not provide much more than statistical

distributions of market needs. However, they provide pragmatic grounds

for establishing whether specific properties are essential, common or rare.
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The various information sources can act together to provide the analyst

with a clear picture of the domain rather than using only one or two

sources of information.

2.4.1.2 Outputs:

The output of the domain analysis process is a model of the domain. The

contents of the model are determined by the requirements of the software

construction process. Thus, a useful model for an application domain

should contain at least:

• A definition of the concepts used in the specification of problems and

software systems.

• A definition of what constitutes typical software designs, alternatives,

trade-offs, and justifications.

• Software implementation plans
Different models are produced as outputs of the domain analysis process

to serve different purposes. A taxonomy model represents a definition

model that shows the domain context and its organisation. Knowledge

representation models like semantics networks and frames provide

domain semantic and some explanatory capabilities. Domain-specific

languages are models that may support direct translation of software

specification into executable code.

Other models provide information that help in describing the domain.

These models may take the form of standards, templates or interface

definitions. Functional models provide descriptions about systems

operation using graphical representations like data flow diagrams.

2.4.2 Survey of Existing Domain Analysis Methods

In this survey, five approaches to domain analysis are described. In the

fifth, we review two object-oriented domain analysis methods. The process,

inputs and outputs of each one are illustrated and the advantages and

problems encountered in each one are outlined in section 2.4.3.
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2.4.2.1 The Draco Approach.

This approach was introduced by Neighbors [1980] and it was the first

time that the concept of domain analysis for reuse was mentioned as an

activity that generalises the solutions to problems over an application

level. Draco's approach has set formal procedures for developing reusable

software components on the organisation level [Neighbors 1989]. That

means it provides an engineering view for reuse of design in addition to

the generation of reusable software. The idea conveyed by the Draco

approach is once the domain analysis has been carried out for the

application domain then its outcome can be reused for all the systems in

that domain.

Figure 2-7 The Draco Approach [Neighbors 1984]

In the Draco approach, three new human roles have been introduced (as

shown in figure 2-7): the application domain analyst, the modelling

domain analyst and the domain designer. The application domain analyst

defines the objects and operations which can be identified in a class of

similar system according to his previous experience and by interacting

with users of these systems. His function is compared to the systems
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analyst function but over an application area or a domain. The output is a

description of all the objects and operations in that domain which is given

to the domain designer. The domain designer specifies different

implementations for objects and operations using notations of domains

already known to Draco. The modelling domain analyst function is similar

to the function of the application domain analyst, but is more concerned

with which notations and techniques have been successful in modelling a

wide range of applications.

The domains are specified to the Draco system by six parts which are:

parser, prettyprinter, optimisations, components, generators and

analysers. The parser description checks the validity of notations used by

Draco to define and manipulate the internal form of a domain. This

information can be used to allow or restrict use of inter-domain

definitions. The prettyprinter description specifies the external syntax of

the domain to be produced by Draco. This enables Draco to interact with

the users in the language of the domain. Optimisations are the rules of

exchange between the objects and operations within a certain domain. The

output of optimising any fragment of the domain language is checked by

the parser descriptions, the final arbiter of a well-formed notation

fragment in the domain. The semantics of the domain are specified within

the components. There is a component for each object or operation in the

domain. Different implementations and implementation decisions for each

object or operation in terms of one or more refinements are included in the

components. The next descriptions are the generators. They are used in

some cases, where domains are specified in the form of algorithmic

knowledge, to generate domain-specific code. The generators do not do any

optimisation tasks but write new codes in the domain. The generators

operate and produce internal form of the domain where they were

introduced and they are subject to checking by the parser description. The

final descriptors are the analysers like data flow analysers, execution

monitors, theorem provers and design quality measures, which
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manipulate information about an input instance of domain notation. As

with all domain-specific procedures, the data produced and consumed by

the analysers are kept within the schema described by the domain parser

definition.

The Draco system function is to generate a domain specific language using

information given by the domain analysis process. Once a statement in a

domain language has been parsed into internal form it may be

• prettyprinted back into the external syntax of the domain;

• optimised into a statement in the same domain language;

• taken as input to a program generator that restates the problem in

the same domain;

• analysed for possible leads for optimisation, generation or

refinement or

• implemented by software components, each of which contains
multiple refinements and which make implementation decisions by

restating the problem in other domain languages
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2.4.2.2 The Prieto-Diaz Approach.

The Prieto-Diaz approach to domain analysis [Prieto-Diaz 1987] (as shown

in figure 2-8) is centred around two key actors in the process which are a

domain analyst who has the procedural know-how on domain analysis

and a domain expert who provides relevant knowledge about the domain

in accordance with a set of guidelines. Information can also be extracted
from existing systems.

Figure 2- 8 Context Diagram of Prieto-Diaz Approach [Prieto-Diaz
1987]

The domain analysis activities in Prieto-Diaz approach are presented in

data flow diagrams and structured in levels of abstractions. In the highest

level, three stages are identified - as shown in figure 2-9, which are (1)

prepare domain information which contains activities prior to domain

analysis (named by Prieto-Diaz as pre-DA), (2) analyse domain and (3)

produce reusable work products which are referred to as post-DA

according to Prieto-Diaz. Some of the important intermediate outputs can

be noticed in this level like DA requirements document, a domain

taxonomy and domain frames. A domain model and a domain language

are optional products because not all domains can be modelled.
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Figure 2- 9 Data Flow Diagram of Domain Analysis Stages [Prieto-

Diaz 1987]

In pre-DA stage, a set ofDA guidelines are applied to a particular domain.

It is the job of the analyst at this stage to define the domain and identify

its boundaries. The product of this stage is the DA requirements

document. This document should include a high level breakdown of

activities in the domain, which part of the domain to analyse, potential

areas to modularise, standard examples of available systems, and any

issues relevant to that domain.

In the activity of analysing domains, the analyst identifies reusable

objects and operations, abstractions and classification. The output of this

stage are domain frames and taxonomies.

In post-DA stage, domain frames, taxonomy and a possible domain model

are used to produce work products. This involves encapsulating elements

that could be candidates for reuse, defining guidelines for reusing

individual components and setting standards for building systems in the
domain.
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2.4.2.3 The IDeA Approach.

This approach is presented by [Lubars 1991] where the process of

analysing domains for reuse is distinguished from the process of building

the reusable artefacts. The former is called domain analysis and the

second is domain engineering. Analysing a domain for IDeA is a bottom-

up process starting from analysing similar problems in an application

domain and different solution alternatives to the problems to generalising

the solution domain over a number of related application domains. The

process incorporates three stages. Each stage results in identifying

common abstractions relevant to that stage:

1. Analysis of similar problem solutions. The results are characterisations

of solutions of particular classes of problems in the application domain.

2. Analysis of solutions in an application domain. In this stage, the

characterisations from stage 1 are grouped to produce

characterisations of a particular application domain.

3. Analysis of an abstract application domain. The characterisations

defined in stage 2 are generalised in this stage to model related
application domain classes.

IDeA concentrates on the reuse of abstract software designs which are

represented in the form of design schemas. The design schemas present

the designer with solutions to the similar problems in the application

domain. The emphasis is on the commonality in the domain leaving

variation to be informally specified during the stage of analysing the

domains. In addition to the design schemas, the outputs of domain

analysis within IDeA includes properties of the objects in the domain,

data types in the form of type hierarchy, type constraints and a set of

rules for schemas specialisation and refinement.

2.4.2.4 The KAPTUR Approach.

KAPTUR [Moore and Bailin 1991] IS a bottom-up solution-oriented

approach to domain analysis by going from analysing solutions to specific
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problems in an application to generalising the solution scope over the

whole domain. The aim of the approach is capturing design decisions and

rationales of systems while they are being developed to support the reuse

of software assets. These assets are stored in a knowledge base whose

creation is time consuming and involves several refinement stages. Models

of existing system in the domain are first examined and their common

formats are modelled using data flow, entity-relationship and state

transition diagrams. Generic models of domain specific variations in the

architectural designs of the systems are built using the results from the

analysis of the different system designs. These models are then verified by

consultations with domain experts to solve the problems concerning the

features and operations that are specific to the domain. Experts also help

to fill in gaps that may arise in the process building the generic models.

Results from consultations with domain experts are used to identify

reusable assets that are added to the domain knowledge base.

The outputs of this approach are called assets for reuse and represent the

domain knowledge as a framework for reuse [Moore and Bailin 1991]. The

framework constitutes tools and products that are used to support reuse in

the domain; in general these are:-

• Dialogue-based specification, which are alternative reusable options

and their problems and trade-offs.

• Reuse database; these are the products that resulted in the domain

analysis process.

• Graphical programming, which are a means of integrating reusable

components into new systems.

• Domain-specific very high level language; these are high level

abstractions and macros provided to reduce the amount of new code

necessary to implement new requirements.
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2.4.2.5 Object-Oriented Domain Analysis Methods

The realisation of the object-oriented benefits to software reuse has led to

a shift in the concept of problem analysis. Because objects are entities that

inherently bear domain features, domain analysis is gradually gaining

momentum in the object-oriented analysis methods as an important

phase. Capturing the domain specific features in the object design is

becoming essential for successful and evolving objects, and in consequence

increasing their reusability. This notion (domain analysis in object

identification and design) has already been outlined when we discussed

the fountain model in section 2.3.2 of this chapter. In this section, we

discuss two domain analysis approaches based on the object-oriented

technology.

The Shlaer and Mellor method relies on the concept of a domain or a

"subject matter" [Shlaer and Mellor 1993]. They claim that thinking of a

system development in terms of domains allows for more realistic,

multilevel views of the problem as a whole, as well as supporting the

object-oriented goal of reuse. This is opposed to the traditional approach of

separating problem from solution which, they think, is overly simplistic.

The object-oriented domain analysis method proposed by Shlaer and

Mellor concentrates on capturing domain-specific knowledge with the help

of a domain expert and mapping the knowledge into an object-oriented

design.

The approach is based on building three types of 'formal models':

Information Models. State Models and Process Models [Shlaer and Mellor

1989]. In the information models, conceptual entities (objects, attributes

and relationships) of the problem are identified and formalised in objects

and attributes. Emphasis is placed on formalising the relationships

between objects. The state models are used to formalise the ''life-cycles'' or

"life histories" of objects and relationships. The information models

describe the static characteristics of objects, while the state models
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describe their dynamic behaviour. When a state model is built to describe

an object's life-cycle, the behaviour of a single typical, but unspecified

instance is formalised. The authors state that single state model suffices

to explain the behaviour of all instances, and is analogous to pure code. In

the third type of models, the processes required to drive an object or

relationship through its life-cycle are derived from the actions of the state

models. A separate data flow diagram is constructed for each state in each

state model. The data flow diagram for a state depicts, in a graphical

form, the process associated with that state.

Reuse (in this method) is achieved through the process models. Shlaer and

Mellor express their view of reuse by urging the analyst to compare the

data flow diagrams for all the states of a single state model looking for

similar processes which are being used repetitively.

Another approach based on object-oriented technology was presented in

[Gomaa et al. 1989; Gomaa 1992]; the Evolutionary Domain Life Cycle

(EDLC) Model. This is a software life cycle that allows systems to evolve

through several iterations eliminating the distinction between software

development and maintenance. According to the EDLC model, the

traditional system development activities (Requirements Analysis,

Requirements Specifications and System Design) are replaced with

domain analysis, domain specification and domain design generating a

domain model as a deliverable. The domain model is a problem-oriented

architecture for the application domain that reflects the similarities and

variations of the members of the domain (systems within the domain).
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The EDLC consists of three major activities which are Domain Modelling,

Target System Generation and Target System Configuration (see figure 2-

10). In domain modelling domain-specific reusable components (reusable

specification and reusable architecture) are developed and stored in a

reuse library. In target system generation, given the requirements of an

individual target system, system specification is generated by tailoring the

reusable specification and the target system architecture. In the last

activity an instance of the target system is composed based on the target

system configuration data.

Figure 2-10 Evolutionary Domain Life-Cycle Model [Gomaa

1993a]

EDLC models a problem domain by considering similarities and variations

among its members. Those objects and features that are common to all

members of the domain are called the kernel of the domain. Modelling the

domain is an iterative process, so that kernel requirements and objects are

considered before the variations. The variations in the domain represent

iterations on an evolving domain model. Furthermore EDLC identify three

types of objects in the model which are: kernel, optional or variants.

Kernel objects are those required to satisfy kernel requirements.

48



Chapter Two

2.4.3 Discussion.

Following the review of some domain analysis methods, most are bottom-

up approaches where individual problems and their alternative solutions

are first analysed and then solutions are extended and generalised over

the whole domain. We find this in IDeA, KAPTUR and Draco Approach.

In Prieto-Diaz approach, the process is done inwhat is called a top-down-

bottom-up way; hence it is sometimes called the 'sandwich' approach. The

domains are defined and their boundaries are identified first (top-down),

and then common problems are analysed for reuse in a later stage

(bottom-up).

Domain analysis approaches can be classified according to. their final

products as either language-based or model-based approaches. In the first
type, the output is a domain specific language where it is used to specify

components within the domain. In some cases, like the Draco approach,
they work like application generators. In the second type, the output is a

framework for reuse in the domain in a form of a domain model. Typical

contents of the model (called assets or artefacts) are: reusable components,

reuse guidelines, domain standards .. etc. A typical example of this type is

the IDeA approach.

In general, domain analysis activities are conducted on an ad-hoc basis.

We cannot point out a systematic approach to carry out domain analysis

activities in a well-defined fashion. Although the outputs are defined in

all approaches, it is not clear how these outputs are going to be utilised in

the process of developing new systems from reusable components. This

problem is more obvious in the model-based approaches.

Nevertheless, domain knowledge acquisition is the basis for all the

approaches. They all recognised the importance of capturing domain

knowledge prior to developing reusable components and therefore domain

analysis is regarded as a part of the development for reuse process. They
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may, however, vary in the timing of carrying out domain analysis; some

view it as a front-end stage prior to actual software development, while

others regard it as an integrated part of the software development for

reuse. A detailed comparison of domain analysis methods was presented

in [Watrik and Prieto-Diaz 1992].

In comparison, the object-oriented domain analysis methods are more

focused since they all consider objects as the foundations of the

development process. This leads to the identification of domain-specific

features within objects at very early stages of the analysis process. In the

Shlaer and Mellor method for domain analysis, reuse is opportunistic

rather than systematic. This is a feature that most domain analysis

methods seem to have. The EDLC model, on the other hand, deals with

reuse more systematically. Reusable objects are identified early in the life

cycle and distinguished from other types of objects. However, this

approach is aimed at developing distributed applications in which many of

its features are relevant to this domain. The approach also sets criteria for

identifying objects from domain requirements and multiple views to

domain modelling. These criteria are mainly relevant to the domain of

distributed applications. The approach is clearly more reuse-oriented than

other object-oriented analysis methods but it needs extension to make it

applicable to other application domains.

2.5 Summary
The discussion in this chapter has highlighted a number of issues which

need to be addressed for increasing the likelihood of reusing software

components. In chapters 4-7, a new approach for reusing domain-oriented

components is proposed. This approach attempts to address the following

points related to reuse:-

• One of the main obstacles to software reuse is component's

comprehension. Reusers need to have a clear idea about what the
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component can offer their application and how to integrate it with

other parts of the system.

• Linked to the previous point, and as was pointed out by [Biggerstaff

and Ritcher 1987], the presentation factor is very important to

understand components abstraction and scope. We need an organised

way to present the domain knowledge and domain analysis results

before we could make effectiveuse of its resources.

• Some cultural resistance among practitioners to adopt reuse within

organisations which, in our view, is attributed to a lack in the

technical support that facilitates the re-application of components in a

systematic fashion. There is real need for a technical approach that

transforms the reuse process from an ad-hoc to a systematic approach.

• Component retrieval mechanisms needs to stress the idea of how a
component fits with other components in a certain application. A

retrieval mechanism should also be an integrated part of the entire

development process.

• This also means that the software development life-cycle need to be

changed to accommodate domain-analysis, component retrieval and

reuse assessment.

The proposed approach is an attempt to solve the above points through

providing a technical support to manage reusable assets as well as a

process for development with reuse based on domain analysis. This is

done by introducing a new technology to model the components and their

relationships within specific domain scope. The results of the domain

analysis are presented in a structural way which enables effective

identification and retrieval of the reusable assets when systems are

synthesised. A number of design guidelines are introduced for applying

the approach in software development. These are general guidelines that

are not language-specific.

51



Chapter Three

3. Object-Oriented Design Patterns and Software
Architectures

3.1 Introduction

A critical aspect of the design for any large software system is its high-level

organisation of computational elements and interactions between those

elements. Broadly speaking, this is the software architectural level of design.

Recently software architecture has begun to emerge as an explicit field of study

for software engineering practitioners and researchers [Garlan 1995;Garlan and

Perry 1995]. There is a large body of recent work in areas such as module

interface languages, domain-specific architectures, architectural description
languages, design patterns and pattern catalogues and architectural design

environments.

In this chapter, we will review some of the work in the areas of software

architecture and object-oriented design (ODD) patterns. First, the support of

design patterns to software reuse is discussed and then the concept of design

patterns and its engineering background is outlined in section 3.3.2.1. In section

3.3.2.2, some common patterns in object-oriented design are described. In this

study, we introduce some examples to illustrate how design patterns solve

particular design problems in ODD, and to highlight the differences between

design patterns and software architectures. The purpose of this review is to

underline how design patterns differ from the generic software architectures

that are explained in chapter 5.
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In 3.3.3, we discuss software architectures and start by describing four common

architectural styles. Then in section 3.3.3.2, we discuss what a domain specific

software architecture is and in section 3.3.3.3, we review some of the research

efforts in the area of software architecture

3.2 Object-Oriented Design Patterns and Software Reuse

Designing object-oriented software is hard, and designing reusable object-

oriented software is even harder. You must find pertinent objects, factor them

into classes at the right granularity, define class interfaces and inheritance

hierarchies, and establish key relationships among them. Your design should be

specific to the problem at hand but also general enough to address future

problems and requirements. You also want to avoid redesign, or at least

minimise it. Experienced object-oriented designers already know that a reusable

and flexible design is difficult if not impossible to get right the first time. They

usually try to reuse it several times, modifying it each time until the design is

matured.

Identifying reusable and flexible designs is part of the experience that a designer

gains with time. Usually good solutions are used in the development of similar

systems and in turn increasing the reliability of the resulting systems.

Consequently, patterns of classes and communicating objects will be found in

many object-oriented systems. These patterns solve specific design problems and

make object-oriented designs more flexible and ultimately reusable.

Design patterns (sometimes referred to as micro-architectures) make it easier to

reuse successful designs and architectures. Building software architectures in

terms of known patterns will result in a higher level system design (software

architecture) that is easier to build, more reusable and simply mapped into

detailed design and code [Gamma et al. 1995].

The study of design patterns is gammg more attention for its anticipated

influence on the software industry [Booch 1993; Dutto and Sims 1994; Johnson
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1994; Coad 1992]. Design patterns, in conjunction with related subjects such as

frameworks and architectures, could dramatically change the way software will

be designed and written.

3.2.1 What Is a Design Pattern?

In order to identify and use (or reuse) patterns among object-oriented designs

successfully, we need to explain what a design pattern is, what the elements of

design patterns are and what the uses of design patterns are.

Design patterns is not a new concept in other engmeenng disciplines. In

building engineering, for examples, patterns have been used as a way for

reusing experience in the design of buildings and towns. Christopher Alexander,

an architect, says, "each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice" [Alexander et al. 1977]. Even though
the above quote is extracted from building engineering, the concept is true for

object-oriented design. Gamma et al. define a design pattern as "a mechanism

for expressing design structures. Design patterns identify, name and abstract

common themes in object-oriented design" [Gamma et al. 1993]. They have

conducted a research on object-oriented designs and frameworks and observed

that there exists idiomatic class and object structures that help make designs

more flexible, reusable and elegant. For example, the Model- View-Controller
(MVC) paradigm from Smalltalk is a design structure that separates

representation from presentation. MVC promotes flexibility in the choice of

views, independent of the model.

Peter Coad puts a definition to object-oriented design patterns as follows:

An object-oriented pattern is an abstraction of a doublet, triplet,

or other small grouping of classes that is likely to be helpful

again and again in object-oriented development. [Coad 1992].
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Erich Gamma identifies three essential parts that constitute a design pattern

[Gamma et al. 1993]:

1. An abstract description of a class or object collaboration and its structure.

The description is abstract because it concerns abstract design, not a

particular design.

2. The issue in system design is addressed by the abstract structure. This

determines the circumstances inwhich the design pattern is applicable.

3. The consequences of applying the abstract structure to a system's

architecture. These determine if the pattern should be applied in view of

other design constraints.

Gamma also identifies a number of uses of patterns In the object-oriented

development process[Gamma et al. 1993]:

design patterns provide a common vocabulary for designers to communicate,

document and explore design alternatives.

Design patterns constitute a reusable base of experience for building reusable

software. They extract and provide a means to reuse the design knowledge

gained by experienced practitioners.

Design patterns act as building blocks for constructing more complex designs;

they can be considered as micro-architectures that contribute to overall

system architecture.

Design patterns help reduce the learning time for a class library. Once a

library consumer has learned the design patterns in one library, he can reuse

this experience when learning a new library.

Design patterns provide a target for the recognition or re-factoring of class

hierarchy.

3.2.2 Some Common Patterns

Some research work is currently going on identifying and cataloguing design

patterns (see Booch 1993). Erich Gamma's book on design patterns [Gamma et

al. 1995] contains a catalogue of patterns that are organised according to scope

and purpose as shown inTable 3-1
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According to Gamma's classification ofpatterns with respect to purpose, patterns

can be either creational, structural, or behavioural. Creational patterns

concern the purpose of object creation. Structural patterns deal with the

composition of classes or objects. Behavioural patterns characterise the ways in

which classes or objects interact and distribute responsibility.

Table 3-1 Design pattern space [Gamma et al. 1995].

With respect to scope, Gamma's classification specifies whether the pattern

applies primarily to classes or to objects. The main difference between class and

object scope is in that class patterns are concerned with the organisation of the

inheritance (class-subclass) relationship; while object patterns deal with the

organisation of object collaboration. The general features of each category of

patterns are shown in Table 3-2

We have selected three patterns from Gamma's catalogue as examples of the

three categories (creational, structural and behavioural). The choice of these

patterns (Factory Method, Adapter and Strategy) is made for their common use

in the design of object-oriented software.
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Table 3-2 General features of design patterns

Purpose

Creational Structural Behavioural

defer some use inheritance to use inheritance to
part of object compose classes describe algorithms

Class creation to and flow of control
subclasses.

Scope defer some describe ways to describe how a

part of object assemble objects group of objects

Object creation to cooperate to

another object perform a task that

no single object can

carry out alone

The first pattern is Factory Method which is a class creational pattern. In this

pattern the intent is to define an interface for creating an object, but let

subclasses decide which class to instantiate. Factory Method lets a class defer

instantiation to subclasses. This is a common design decision that happens

almost in every object-oriented system, which may be best presented by an

example. Consider an application for presenting multiple documents to the user.

There are two abstract classes (an abstract class is a class that cannot have an

object instantiated from it) in this scenario, which are Application and

Document, and Application is responsible for managing Document objects. To

create a particular application type, you need a particular type of documents

(e.g. drawing application and drawing document). The abstract class Application

knows that it needs to create a Document and when to create it. However

because the particular Document subclass to instantiate is application-specific,

Application does not know what type of Document to instantiate. This causes a

problem: A class must instantiate other classes, but it only knows about abstract

classes, which it cannot instantiate [Gamma etal. 1995].

57



Chapter Three

The Factory Method pattern offers a solution. It encapsulates the knowledge of

which Document subclass to create and provides an abstract CreateDocument

method that simulates the creation of the document (see Figure 3-1). The actual

creation of Document is deferred to Application's subclasses, which redefine the

method CreateDocument where the appropriate Document subclass is created.

Thus, the interface of Application abstract class could be used at compile time

without having to worry about the type of the Document object. At run time

though, the relevant object of Application (MyApplication) is in a position to

create the needed object whose type (MyDocument) is a subclass of Document.

This object could even be manipulated by the methods of the abstract class

Application, since its parent class Document is already known to Application.
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Figure 3-1 Factory Method Pattern

The second pattern is Adapter, which is both a class and an object structural

pattern. The intent is to convert the interface of a class into another interface

that clients expect. Adapter lets classes work together that could not otherwise

because of incompatible interfaces. This is another common situation in object-

oriented design where a particular class cannot be reused because of its

unfamiliar interface. The Adapter pattern resolves the situation by introducing a

new class (usually through inheritance) that conforms the two interfaces.

Let us consider the example of a drawing editor that lets users draw and arrange

graphical elements (lines, polygons, text, etc.) into pictures and diagrams. The

drawing editor's key abstraction is the graphical object, which has an editable
shape and can draw itself. The interface for graphical objects is defined by an
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abstract class called Shape. The editor defines a subclass of Shape for each kind

of graphical object: a LineShape class for lines, a PolygonShape class for

Polygons, and so forth [Gamma et al. 1995].

The graphical editor example represents a typical example of an application that

incorporates objects that behave expectedly (LineShape and PolygonShape), and

have a familiar interface, and an object (TextShape) that has a more complicated

behaviour. Nevertheless the graphical editor needs to treat all of them in like

manner. If an off-the-shelf object is to be reused for providing a complete and

sophisticated text handling facility (TextView), the situation is that it is very

likely that TextView will have an interface that is not compatible to Shape. This

means we cannot use TextView and Shape objects interchangeably.
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Figure 3-2 Adapter Pattern

The Adapter pattern (see Figure 3-2) provides a mechanism for adapting the

TextView interface to Shape's. This pattern comes in two forms; one is class

structural form using multiple inheritance for inheriting Shape's interface and
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TextView's implementation, and the second is object structural form by

composmg a TextView instance within a TextShape and implementing
TextShape in terms ofTextView's interface.

The third commonly used pattern is Strategy. which is an object behavioural

pattern. The intent of the pattern is to define a family of algorithms, encapsulate

each one, and make them interchangeable. Strategy lets the algorithm vary

independently from clients that use it. This pattern can be applied in situations

when there are a number of related classes that differ only in their behaviour, or

there are a number of possible alternative implementations of a certain

algorithm within a certain abstraction.

Consider the example of breaking a stream of text into lines, many algorithms

exist for doing this. Hard-coding all such algorithms into the classes is not

desirable because the classes that utilise them get more complex, different

algorithms will be appropriate in different situations and it is too difficult to add

new algorithms and vary existing ones when line breaking is an integral part of

a client. These problems can be avoided by defining classes that encapsulate

different line breaking algorithms. An algorithm that is encapsulated this way is

called a strategy [Gamma et al. 1995].

As seen in Figure 3-3, suppose a Composition class is responsible for

maintaining and updating the linebreaks of text displayed in a text viewer. The

actual implementation of line breaking strategies is done separately in a

subclasses instead of implementing them within Composition.
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In many cases, it may seem (for experienced designers) that Gamma is stating

the obvious when he describes his patterns. However, for a novice designer, the
patterns provide insights for good (as well as reusable) object-oriented design. It

is also obvious that inheritance and polymorphism are the corner stones of

Gamma's patterns in most of his patterns. This does not come surprisingly to

object-oriented practitioners as these are the features (in addition to

encapsulation and abstraction) that distinguish this technology and make it

more supportive to reuse.

Another set of patterns was presented by Peter Coad [Coad 1992]. Some of the

patterns are the same as Gamma's patterns but having different names. As an

example, the Strategy pattern is introduced by Coad as Roles-played pattern. We

have chosen one pattern from Coad's set. Figure 3-4 shows the structure and an

example of the pattern called Broadcast (known as Observer in Gamma's

catalogue). This pattern is used to communicate complex changes between one

major section of an aaA/ODD model with another major section. Whenever it

changes, a "broadcasting item" object broadcasts a change notification to the

"receiving item" objects that it knows about. A notified "receiving item" object

then sends a message to the "broadcasting item" object to get the change; once it

gets the change, a "receiving item" object takes whatever action is necessary In

light of the change.

Figure 3-4 Broadcast Pattern [Coad 1992]
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As an example, the pattern is applied to keep human interaction distinct from

business domain classes. This is done to simplify both parts; and it is done to

increase the likelihood of reuse for each part. A ''human interaction view" object

gets user input and sends a message to invoke action to the corresponding

"model" object. At some point in time, when a change does occur, a "model"

object" broadcasts a change notification to its dependent" human interaction

view" objects. Then each dependent ''human interaction view" object sends a

message to get the change; on receipt of the change, the ''human interaction

view" updates its display (see Figure 3-4).

Bruce Anderson has catalysed significant study into the codification of patterns.

He also established workshops (during OOPSLA conferences) focused on the

creation of an architecture handbook the purpose of which is ultimately to serve

as a catalogue of patterns [Anderson 1994]. His catalogue of patterns contained

a number of patterns that have been proposed by the participants of the

workshops with brief description of each pattern.

Patterns within object-oriented designs are important tools for getting the most

of your design and represent a higher-leverage form of reuse. The search for

patterns encompasses far more than finding perfect class abstraction; rather, it

focuses upon identifying the common behaviour and interactions that transcend

individual objects. Nevertheless, a number of different sets of patterns might

confuse their users where they are supposed to provide common ground (between

practitioners) for communication and documentation; especially when the same

pattern is named different names in different catalogues. One unified set of

patterns could be very useful for designers of object-oriented software.

3.3 Software Architectures

Recent research works have shown that some of the problems encountered in

engineering the reuse process could be solved by considering the software

architectures in a domain [Kogut and Clements 1994; Tracz 1994; Garlan et al.

1995; Shaw 1995]. Software architecture is an organisational structure of a

62



Chapter Three

system that includes components, connections, constraints and rationale [Garlan

and Shaw 1993]. Software architectures form a higher level of system design

that involves decisions made early in the life-cycle. These decisions have their

impact on the way the systems are analysed and designed. The whole life-cycle

could then be driven by the architectural style, hence providing a framework for

designing and reusing the components and their connections.

Software architecture is concerned with design at the system level. Certainly

this includes system structure (or topology), discriminations among different

kinds of structures, and abstractions or generalisations about structures and

families of similar structures. It also includes identification, specification, and

analysis of the properties that are related to these structures, either because

they influence the selection of a structure or because they are consequences of

that structure.

At the architecture level, the components of interest are modules and the

interconnections among modules. Architectural styles guide the selection of

kinds of components and of the strategies for composing them. As a result, the

kinds of components and interconnections can differ substantially between

architectural styles. The properties of interest include system structure, gross

performance, component consistency, and other aggregate properties such as

security and reliability.

The efforts for engineering the software architectures have focused on the

identification and modelling of architectural styles for designing software

systems in a domain [Shaw 1995, Kruchten 1995]. Some of the attempts

comprised the use of architecture description languages [Kazman and Bass

1994]. However these attempts focused, in general, on the linkage between sub-

systems rather than between components and modules. Some of the work

considered the use ofbuilding blocks in creating system's architectures [Van Der

Linden and Muller 1995]. In their paper, they proposed a method for building

sound architectures for large-system development by decomposing the system
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into building blocks (hardware and software) ill order to decrease system
complexity.

3.3.1 Architectural Styles

Software architecture is an emerging field whose theory is still not fully-

developed and its taxonomy is not well-accepted [Garlan and Shaw 1993].

However, we can now identify a number of architectural patterns, or styles, that

currently form the basic repertoire of a software architect. Typically a software

system involve some combination of several styles.

Gralan and Shaw have considered a number of common architectural styles

upon which many existing systems are currently based [Garlan and Shaw 1993].

Many of these styles are extracted from existing systems in practice and how

they are organised. The choice of an architecture style in a system may

considerably affect design decisions in the design of the system. In her paper

[Shaw 1994], Mary Shaw conducted a research work on studying the effect of an

architectural style on the designed system. Her study was carried out using the
example of the cruise-control system which was originally presented in [Booch

1986].

In this section, we will briefly introduce a number of common architectural

styles. The choice of the selected styles does not imply that they are the best

styles for a particular application, but they were selected for their common use

in system's organisations and their support to reuse.

3.3.1.1 Pipes and Filters Style

In this style, there are three major elements; filters, pipes and data streams,

these are unique to this style. Components in this style are the filters where

each has a set of inputs. and generates a set of outputs by applying a local

transformation to the input streams. Pipes are the connectors between the

components which are mechanisms for transmitting outputs of one filter to

inputs of other filter. Data streams are data flow between components. For each
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component there are two streams of data, one at the input and one at the output,

sometimes known as upstream and downstream. Figure 3-5 shows a graphical

presentation of this style.

Filters

I~ I

._J
\--VI

Pipes 7"'''''
Figure 3-5 Pipes and Filters Architecture Style

This style has the following characteristics:

Filters must be independent entities: in particular, they should not share

state with other filters.

Filters do not know the identity of their upstream and downstream filters.

They might require certain requirements in the input streams or specify the

nature of their output streams, but they may not identify the filters which

supply or receive the data.

There should be no constraints (regarding correctness of processing) on the

order and organisation of the filters and pipes in a system.

The best known examples of pipe and filter architectures are programs written

in the UNIX shell. Another example of this style is the traditional compiler

systems.

The following benefits in this style give it wide usage in system architecture:

It allows the designer to understand the overall input/output behaviour of a

system as a simple composition of the behaviour of its individual filters.
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It supports reuse: any two filters can be hooked together, provided they agree
on the data that is transmitted between them.

It supports concurrent execution; each filter can be implemented as a

separate task and potentially executed in parallel with other filters.

Although literature identifies some potential problems with this architectural

style, like possible batch processing organisation, we think that the main

disadvantage with this style is its lower degree of flexibility. Once a system is

organised using filters and pipes, it is difficult to change the system's

configuration to accommodate new requirements. The whole system architecture

might need changing for that purpose.

3.3.1.2 Implicit Invocation Style

In implicit invocation, procedures and functions, in a certain component, are not

invoked directly by other components. Instead, a component can announce (or

broadcast) one or more events. Other components register an interest in a

certain event by associating a procedure with the event. When the event occurs

the system itself invokes all of the procedures that have been registered for that

event. Thus an event occurrence "implicitly" causes the invocation of procedures

in other modules.

Components in an implicit invocation style could be thought of as modules which

provide procedures (as with abstract data types) and a set of events. So in

addition to the possibility of procedures being invoked directly, a component can

register some of its procedures with events of the system. The main property of

this style is that components that raise events do not know which components

will be affected by those events. Therefore, components cannot make

assumptions about the order of processing or what processing will occur as a

result of their events.

The main benefit of this style is its strong support for reuse. New components

can be introduced to the system by registering it. for certain events in that
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system. Furthermore, components in this style can be modified or replaced by

new ones without affecting the interfacing of other components.

The main disadvantage of this style can be summed up by its uncertainty in the

performance of the system. The components which announce events do not know

what components will be affected by the events and do not know the order of

processing and the computation involved which might cause problems especially

in safety critical systems. Another problem is associated with data management.

Usually data is passed with the event itself, however, sometimes the data is

stored in a common repository in the system and managing this data may be

problematic in this style.

3.3.1.3 Layered Systems Style

This style is widely known in communication protocols and operating systems.

Systems in this style are organised hierarchically in layers where each layer

represents a level of abstraction. Each layer provides services to the layer above

it and requires services from the one below it. Lower levels define lower levels of

interaction, the lowest typically being defined by hardware connections. In some

layered systems, inner layers are hidden from other layers except the adjacent

outer layers. Some carefully selected functions are excluded and may be exported

to other layers or users, such as low level procedure calls in operating systems.

Figure 3-6 shows an illustration of this style. Real-time software systems are

usually arranged in a similar fashion [Baker and Scallon 1986].

Figure 3-6The Layered Systems Architecture Style
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The layered systems style has the benefit of incremental design by partitioning a

system into a sequence of incremental steps based on increasing levels of

abstraction. Another benefit is its support to software reuse; different

implementations of the same layer can be used interchangeably, provided they

support the same interfaces to their adjacent layers. On the other hand, this

style suffers from two main disadvantages. First, not all systems can be

structured in this way and secondly, due to performance consideration, there

may be high coupling between high level functions and their low level

implementation.

3.3.1.4 Blackboard Architecture Style

Blackboard systems have originally been used in AI and signal processing

applications such as speech and pattern recognition. This architectural style

treats problem-solving as an incremental, opportunistic process of assembling a

satisfactory configuration of solution elements. [Hayes-Roth 1985].

Blackboard
(Shared data) KS2 ~~~

"'~~~m~~l~~~di[~~

KS2

Figure 3-7The Blackboard Architecture Style

A blackboard system is usually presented with three main elements (Figure 3-7):

The Knowledge Sources:

Separate, independent parcels of application-dependent knowledge (solution

elements), which are generated during the problem-solving. Knowledge sources
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have a condition-action format. Only knowledge sources whose conditions are

satisfied can perform their actions. Knowledge sources are independent in that

they do not invoke one another and ordinarily have no knowledge of each other's

expertise, behaviour, or existence.

The Blackboard Data Structure:

A global database in which solution elements are organised into an application-

dependent hierarchy. Knowledge sources make changes to the blackboard that

lead to a solution to the problem.

A Scheduling Mechanism:

Because in most blackboard systems knowledge source activities are event-

driven (depending on the condition-action format), they may compete to execute

their actions. A scheduling mechanism is needed to determine which activities

execute their actions and in what order. The scheduling is driven entirely by

state of the blackboard. Knowledge sources respond opportunistically when

changes in the blackboard make them applicable.

This architectural style is used to produce a problem-solving style that is

characteristically incremental and opportunistic. The knowledge sources

generate solution elements, one at a time, and record them in different

blackboard locations. They extend the most promising solution elements and

eventually merge them with others to form the complete solution. The sequence

with which the solution develops depends largely upon the scheduler's

behaviour.

The blackboard architecture style supports reuse by providing solutions to

domain problems. Domain knowledge sources respond to, generate, and modify

solution elements on a domain blackboard, under the control of a scheduling

mechanism.
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3.3.2 Domain Specific Software Architectures (DSSA)

Currently, there is a growing interest in the study of software architectures for

reuse. Many of these efforts have been focused on developing domain-specific

software architectures (DSSAs) which are architectures for a family of

application systems in a domain [Kogut and Clements 1994]. These architectures

are used as a basis for developing systems within that particular domain, thus

supporting reuse of design information in the domain.

In July 1991 the Advanced Research Projects Agency (ARPA) launched a

program to build a number of domain-specific software architectures known as

the ARPA DSSA program. The program comprises developing "reference"

architectures for specific domains in a five-year research project [Mettala and

Graham 1992]. DSSA is based on the concept of an accepted generic software

architecture for the target domain. Some of the domains (mainly military

domains) targeted by the project are Avionics Navigation [Cogalianese, et al

1992], Guidance and Flight Director [Agrwala, et al. 1992], Command and

Control [Braun, et al. 1992], Distributed Intelligent Control and Management

(DICAM) for Vehicle Management and Intelligent Guidance, Navigation and

Control [Hayes-Roth, et al. 1992].

The main question asked is; what is a DSSA? Will Tracz [Tracz 1994] defines the

DSSAas:

... a process and infrastructure that supports the

development of a Domain Model, Reference

Requirements, and Reference Architecture for a family of

applications within a particular problem domain. The

expressed goal of a DSSA is to support the generation of

applications within a particular domain.

From this definition we could identify the elements of a DSSA which are

• A software architecture (sometimes called reference architecture) with

reference requirements and domain model.
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• Infrastructure to support it.

• process to instantiate! refine it.

Figure 3-8 [Tracz 1995] shows a typical DSSA reference architecture and

infrastructure.
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Figure 3-8 DSSAArtefacts

The difference between reference architecture and application architecture is

that, an application architecture is an architecture for a single system and a

reference architecture is a software architecture for a family of application

systems. Reference architectures support reuse by providing a design model for

all systems in the problem domain, and normally are refined to generate an

application architecture. The infrastructure is a collection of reusable

components that resides in the domain model ready for re-application. These

components could be code fragments, domain dictionary, scenarios, object model

..etc. (see Figure 3-8). Reference requirements are behavioural requirements for

applications in a domain used to drive the design of the reference architecture.

3.3.3 Review of Research in Software Architectures.

In this section, we will review some examples of reference architectures, for
specific application domains. The first effort was presented (as stated earlier in
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this chapter) by the ARPA DSSA program [Mettala and Graham 1992], which is

a project for building reference architectures for a number of military domains.

As an example of this program the DICAM (Distributed Intelligent Control and

Management) project is reviewed first.

The DICAM-DSSA project is developed simultaneously as a "model" or

framework for understanding control problems and as an architecture and

related environments for the rapid development of high performance controllers

to be employed in DICAM applications [Terry, et al. 1994]. In the process of

building controllers, concepts from software engineering and knowledge

engineering are combined in a software development environment. This

environment includes a blackboard-like development workspace to represent

both the software under development and the software development process.

Information Base
& World Model

Semi-autonomous
Inter-connected

Controllers .
Past Present Future

Figure 3-9 The DICAM Vehicle Architecture

DIeAM-DSSA uses a reference architecture for modelling the interaction of

controllers in a DIeAM application, and internal structure of an individual

controller in the reference architecture. These controllers may work as a single

intelligent agent or as a multiple co-operating agents. Figure 3-9 [Terry, et al.

1994] illustrates the DICAM reference architecture. This architecture provides a
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general model of controller applications that prescribes the key system

components and their inter-relationships. It includes two principal components

in any distributed intelligent control and management application. First an

information base and world model is a conceptually distributed in a centralised

databasel knowledge base that represents the state of the world. It can be viewed

as a three-dimensional structure. The first dimension represents information

stored at high to low-levels of aggregation of controllers' corresponding levels of

responsibility. The second dimension corresponds to the different types of

information that must be stored. Four types of information are shown on the

figure termed data, propositions, rules and plans. The third dimension is time.

The second principal component of the DIeAM reference architecture is a

collection of semi-autonomous interconnected controllers. The controllers are

differentiated in terms of the scope of behaviour they address, the resources they

control and the time frame spanned by their decisions.

In [Hayes-Roth, et al. 1995], a domain-specific software architecture for a large

application domain of adaptive intelligent systems (AIS) is presented. This

DSSA has three main elements; first it provides an AIS reference architecture

designed to meet the functional requirements shared by applications of the

domain. Secondly it provides principles for decomposing expertise into highly

reusable components and the third element is a configuration method for

selecting relevant components from a library and automatically configuring

instances of these components in an instance of the architecture.

The AIS reference architecture is a heterogeneous mixture of common

architectural styles (Figure 3- 10 [Hayes-Roth, et al. 1995]). It is divided

hierarchically into layers for different sets of computational tasks. The layers

and the relationships among them provide properties of pipe and filter style

architectures. Each layer, itself, comprises a number of components, organised in

a blackboard style, to allow for a range of potentially complex behaviour. The

architecture has two layers, or levels, to control concurrent physical and
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cognitive behaviours. Behaviours at the physical level implement perception and

action in the external environment. Behaviours at the cognitive level implement

more abstract reasoning activities such as planning, problem solving, etc.

Information flow is bi-directional. The results of cognitive behaviours can

influence physical behaviours and vice versa.

As shown in Figure 3- 10 this AlS reference architecture has some features

which are inherited from the DICAM reference architecture. Firstly, the

blackboard structure is implemented in the Information Base and World Model

which has the same three dimensional view. Secondly the notion of meta-

controllers is used in both architectures.

COGNITIVE LEVEL

IICurrent Plan II~············~ Information BaseI
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Figure 3- 10 AlS ReferenceArchitecture

There are some other research efforts for building reference architectures for

specific domains. These are not domain specific software architecture (DSSA's

include, in addition to reference architectures, an infrastructure and a process).
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In [Baker and Scallon 1986], an architecture for real-time systems is proposed.

The architecture is based on the layered style, where layers are arranged from

low to high-levels of abstraction. At the low-level layer is the hardware which is

followed by the operating system layer that handles interrupts, manages

hardware configuration and detects faults. The operating system interacts with

the next layer (the executive) through a standard interface. The executive

schedules application processes, allocates storage and dispatches tasks within

processes. The highest level in the architecture is the application layer which

also uses a standard interface to interact with the executive. The application

layer performs tasks for solving user's problems and is independent of hardware

details. The paper also proposes an architecture for the executive layer by using

three components for performing the executive's tasks. These components are,

scheduler, resource allocator and dispatcher.

In another effort [Shaw 1995], a new approach for the design of process control

software was proposed based on the control architecture. This paper uses the

original control view of the feedback control problem to solve object-oriented

design problems for process control software. The author used the cruise control

problem, which was first presented by Grady Booch in his paper [Booch 1986], to

illustrate how this view is used for building an architecture for the cruise control

system. Figure 3-11 [Shaw 1995] shows the proposed cruise control software

architecture. The author argues that this problem is a control problem and the

software design could be based on the control view architecture which, she

claims, would clarify the software design.
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Figure 3-11Control Architecture for Cruise Control
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We cannot consider this view as a reference architecture for the process control

domain (regardless of its appropriateness) for the following reasons:

1. There are a number of views to the control problems (e.g. feedback, feed

forward, adaptive control, etc.) which need more than one architecture to

model and this might confuse the user of the reference architecture.

2. This view is a design tool (the block diagram method) used by control

engineers to analyse physical systems and derive their transfer functions

(mathematical model of the system's physical behaviour). In many cases the

block diagram method is a simplified version of the actual control

organisation. On the other hand, the software components may be arranged

in a different order to satisfy constraints imposed by the operating system,

memory mapping or performance.

3. There are situations in the process control domain that cannot be represented

using this control view. For instance, batch processes which are implemented

as a sequence of actions cannot be modelled using this 'block diagram'

approach'.

In [Kazman et al. 1994], a method for analysing the properties of software

architectures is proposed. The paper describes three perspectives for

understanding the description of a software architecture and then proposes a

five-step method for analysing software architectures called SAAM (Software

Architecture Analysis Method). These analysis perspectives are the functional

partitioning of its domain of interest (the application), its structure and the

allocation of domain function to that structure. The authors illustrate their

method by analysing three non-commercial user interface architectures with

respect to the quality ofmodifiability.

3.4 Summary

To summarise the points covered in this chapter, we start by differentiating

between design patterns and software architectures and then explain how each

supports software reuse. An application architecture represents a model of the

organisation of a single software system and a reference architecture represents
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an organisation of common components and the inter-relationships among them

for a family of systems in a specific application domain. A design pattern is a

possible arrangement of classes (or objects) and their structures and interfaces

which provides a solution to a design problem that is found across a wide range

of object-oriented software systems. A design problem could be a generic one

(found in any domain), or specific to certain domain (e.g. specific to user

interface domain).

Software architectures support reuse through the use of reference architectures

that can be refined to generate an instance of the application architecture for the

system under development. On the other hand design patterns support reuse

through encapsulating design expertise in the pattern which can be applied for

solving that particular design problem over and over again.

Reference architecture is a term which means a software architecture for a

family of systems that could be instantiated into system's architecture when

systems are developed. The domain specific software architecture is a term used

by ARPA to denote a program for developing reference architectures for a

number of related domains. The discussion of domain specific architectures and

reference architectures showed that architectures for similar domains usually

employ a common style. For example, all reference architectures for real-time

domains are based on the layered style and reference architectures for

intelligent domains use the blackboard architectural style. There is no approach

to define a generic architecture model (or models) that can be used or re-

organised to build reference architectures for specific domains. Such type of

architectures could prove to be very useful in addressing design and organisation

issues across a wide range of domains.

In the next chapters, a new approach for building reference architectures is

described. The approach defines a number of generic models that are tailored

according to domain-specific constraints to build a reference architecture. The

generic software architectures is a new term used to describe a new technology
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for building reference architectures from pre-specified architectural models. The

reference architecture, which is an architecture for a family of systems within

the domain, is then used for defining the interaction between components when

systems are synthesised. Reference architectures comprise a number of

architecture schemas which represent design conceptions in terms of reusable

components and relationships among them. Architecture schemas are different

from design patterns in the sense that design patterns represent solutions to

typical object-oriented design patterns. Whereas the architecture schemas

encapsulate domain-specific design decisions that are used when systems are

built from reusable components.
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4. DOOR -An Approach to Domain Oriented Object Reuse

4.1 Introduction

In this chapter, we discuss a new approach to software development based on

reusable objects. As opposed to generic components, we propose domain-oriented

components that are specifically designed to be re-applied in a specific scope

within the application domain; thus the name Domain-Oriented Object Reuse

(DOOR). The approach combines development for reuse and development with

reuse together and is based on the existence of a domain knowledge-base which

is also referred to as a domain model. The approach is divided into two phases,

domain engineering and application engineering, which are performed in

parallel throughout the development process. In domain engineering, the

domain model is built and its components are assessed, whereas in application

engineering, the domain model is used as a framework for synthesising new

systems.

Our approach is based on the following elements:

1. A domain infrastructure, called DOOR Assets, that support the development

of new systems. The infrastructure comprises a domain taxonomy, reusable

components and a reference architecture.

2. A new technology called Generic Software Architectures which is used in

.developing and refining the infrastructure. This is encapsulated in a number

of Generic Architectural Models which are used for describing the reference

architecture.



Chapter Four

3. A process and guidelines for building the infrastructure (using the

technology) and for synthesising new systems using DOOR Assets. The

process is divided into Domain Engineering and Application Engineering.

4. A supporting tool for automating and validating the infrastructure

development process; see chapter seven and figure 7-2.

In this chapter, we will provide an overview of the approach and a description of

the infrastructure which is known as DOOR Assets. In the next chapter, the

technology of Generic Architectures is described and in chapter six, we will

describe the process. The tool support and a case study are reported in chapter

seven.

4.2 Problem Statement and An Overview a/the DOOR Approach

Two main problems have been identified with domain analysis methods which

are: first, most methods are conducted on ad-hoc basis where no guidelines are

specified to produce the products of domain analysis; secondly, there is no

systematic approach for retrieving and applying these products in the

development of new systems. Other problems with reusing components are

related to how a software component is specified such that its functionality is

modelled. Furthermore, how could we locate and retrieve components that meet

the requirements of the new system. This approach suggests possible solutions

for these problems. It provides a number of guidelines to model domains and

classify them in a hierarchical classification of domain abstractions, known as

the domain taxonomy, from which components are traced and retrieved by

narrowing the search space to a specific abstraction level, known as the scope of

reuse. Components are specified using a 3-D model, which specifies the

component's scope, behaviour and relationships with other components in the

domain model (see section 4.4.2). The relationships with other components are

specified using the generic software architectures technology which helps in

locating the reusable components.
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In our approach, which is based on domain analysis, software systems are

developed from reusable components, objects and their specifications, that are

especially developed to be reused within an application domain. The DOOR

approach re-configures the software life-cycle for designing domain oriented

components by using a domain knowledge-base, called a domain model, to assist

in the identification and specification of reusable components [Al-Yasiri and

Ramachandran 1994]. The domain model contains the domain infrastructure

(DOOR Assets) which can be incorporated while synthesising new systems.

Every time a new system is constructed, the DOOR assets and the reuse effort

are assessed, and where applicable the domain model is updated. Figure 4-1

shows the main elements of the DOORapproach.

I

-, /

Figure 4-1Elements of the DOORApproach

DOOR assets are divided into domain resources and domain artefacts. The

distinction between the two types is attributed to the way the assets are

prepared; the resources are collected and presented in the domain model,

whereas the artefacts are developed by the domain engineer and added to the

domain model. The resources are information items that are collected during the

domain analysis process and comprise dictionaries, scenarios and rationales. The

purpose of the resources in the domain model is to capture the domain-specific
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information and present them to the domain engineers and systems engineers.

The artefacts are the reusable assets that are generated during domain

engineering and comprise a domain taxonomy, reusable components and the

reference architecture. The domain taxonomy classifies the domain according to

the scope of application of its reusable components. It is represented as a tree of

the domain's subject matters and their corresponding components. The taxonomy

is useful to introduce the domain organisation to the users where they can focus

their search for reusable assets to a specific scope on the tree.

A reusable component in DOOR means, a packaged piece of code (encapsulated

in an object) and its specifications. This term may be used in a different context

in other approaches to mean any piece of information (including code, design,

frameworks, etc.) that are used in the development of a number of applications.

We use the term DOOR asset to represent this notion. Reusable components are

specified according to their position in the taxonomy tree to perform a specific

task within its application scope.

The reference architecture is constructed from generic architectural models, each

of which has two or more reusable components, a relationship that links them

and a number of constraints. The reference architecture consists of a number of

architecture schemas that model the interactions between the reusable

components to specify certain domain-specific design conceptions. It also helps

in tracing components and retrieving them from the domain model. A detailed

description of the generic software architectures is found in the next chapter.

The process of building the domain model is integrated in the domain

engineering and application engineering phases. The process is supported by a

sets of guideline for building the taxonomy, the reference architecture,

synthesising systems and assessment of the reuse effort. The detailed

description of the process is presented in chapter six.
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4.3 The Domain Resources

During domain analysis, the whole application domain is analysed. This is

mainly a knowledge acquisition process for gathering as much information as

possible about the domain and building the domain model. The results of the

domain analysis are called Domain Resources, which are information items

collected from the domain sources of information (for details see chapter two)

and stored in the domain model as text for future reference. In DOOR, domain

resources comprise Domain Scenarios, Domain Rationales and the Domain

Dictionary. Domain scenarios represent domain specific transactions, domain

rationales represent domain specific constraints or non-functional requirements

whereas a domain dictionary is a description of domain specific terms and

concepts. In domain analysis we try to model the problem space of the domain,

therefore the domain resources reflect the state of the problem space not the

solution space. However, these resources are used for eliciting artefacts in the

solution space.

In general, domain resources do not require further refinement apart from

sorting and combining together related resources. The resources are cross

referenced between each other. For example, a certain domain scenario could be

linked to one or more rationales which are relevant to the scenario, or the

domain dictionary may contain information that explains a certain concept that

occurs in a certain scenario.

4.3.1 Domain Scenarios

These are extracts from functional requirements of existing systems in the

analysed domain which are common in the application domain. They are vital

for understanding usual transactions in the domain. An example of such a

scenario is shown in Figure 4-2 . They are also useful for identifying objects in

the domain using textual analysis methods; where objects correspond to nouns

and methods to verbs. We must emphasise at this point that the objects

identified from the scenarios may well be subject to change at later stages of the

analysis process as the process is iterative.
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Pump Control Scenario

The required behaviour of the pump is that it monitors the water
level in the sump. When the water reaches a high level (or when

requested by the operator) the pump is turned on and the sump is

drained until the water reaches the low level. At this point (or when

requested by the operator) the pump is turned off. The pump should

only be operated if the methane level is below a certain critical level.

Figure 4-2An Example of a Domain Scenario

When the domain model is built the scenarios play a major role in identifying

reusable components and sub-systems in the domain. By examining the previous

scenario, we could identify some useful objects for pump control systems.

Examples are: pump, sump, sensor and operator. Some of these objects could be

generalised as domain-oriented components and added to the domain model. In

addition the scenarios could also be used for defining dependencies among
objects, which is the basis 'for specifying reference architectures in the domain

model.

When new systems are synthesised the domain scenarios are used for matching

the system requirements with the domain assets. They are then used for

providing reusable specifications of the system components. By identifying the

relevant scenarios the reuser will be able to identify a number of components

from the domain infrastructure whose specifications are already included with

them.

4.3.2 Domain Rationales

Domain rationales are closely related to the scope of reuse within the domain. A

reuse scope is defined as an abstraction level in the domain structure where a

component or group of components are likely to be applied; more discussion

about the reuse scope is found in section 4.4.1. For every scope in the domain,
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there are a number of rationales that are associated with it. Despite the fact that

these rationales represent constraints that restrict the design of the components,

they are essential for ensuring that components comply with the domain specific

requirements and hence increasing the chance of reusing them. Normally,

domain rationales are non-functional requirements, design and implementation

requirements extracted from existing systems within the domain. Such

requirements serve the development of systems or sub-systems in the domain by

providing a general view for consideration. These are limiting characteristics in

the solution space of the domain artefacts. This could be in the form of time,

space or specific language or platform constraints. An example of such rationales

is shown in Figure 4-3.

Response Time Requirement:

For all interrupt service routines, the maximum allowed

computation time should be in the range of 1 ms. This is a re-

assurance for regular pulse rates generated from different

timers in the system.

Figure 4-3An Example of Domain Rationale

4.3.3 Domain Dictionary

The third element of the domain resources is the domain dictionary. This is a list

of commonly used words and phrases found in the scenarios and customer needs

documents. The dictionary includes a brief description about every word or

phrase in the list. The dictionary acts as a supporting information tool to other

resources. However it is an important part of the domain resources and should

be constructed carefully and accurately. It should give concise but precise

description about its elements and domain experts must be consulted when it is

constructed.

As with other resources, the domain dictionary is organised according to the

reuse scope. This reduces the effort of looking up entries in the dictionary and

makes it easier to link it with other resources.
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4.4 The Domain Artefacts

The domain artefacts are the elements of the domain infrastructure that are

generated by the domain engineer using the domain resources. The artefacts are

not collected from the domain information sources (as in the domain resources),

but they have to be produced and modelled during the domain engineering
,

process by following a number of steps as will be described in chapter six. The

domain artefacts include Domain Taxonomy, Reference Architectures and

Reusable Components.

4.4.1 Domain Taxonomies

An application domain is defined as a class of similar systems which provide

services to that application and share common features and objects. Each system

in the domain can then be called a member system of that domain. If a domain is

modelled, the common features in the domain are identified and their reuse

scope is specified. However, it is found that analysing the uncommon features in

the domain is also necessary to complete the picture of the domain model.

The domain member systems may share some components in terms of objects

and functions. Such components will then have reuse scope across the entire

domain. Some of the systems may be grouped in subsets within the mam

domain. Each subset will have common components shared by them. Each

subset is then called a sub-domain and could be decomposed in the same way as

the main domain. Sub-domains represent abstraction levels and usually outline

subject matters within the main domain. For example the domain of networking

software could be decomposed into Local Area Networks (LAN) and Wide Area

Networks (WAN) sub-domains.

The common components in the domain are grouped together and included in

the taxonomy tree. They are indicated in the core of the taxonomy tree and

called the Domain Kernel. The kernel contains frequently reusable components

in the domain whose scope covers the entire domain. These components are

identified and specified using object-oriented analysis methods [Graham 1991].
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The remainder of the domain member systems is called the Domain Subordinate

as shown in Figure 4-4. The domain subordinate contains specifications of the

domain member systems less the common components which are identified in

the domain kernel. Systems in the subordinate inherit the features of the kernel

components of the main domain. We, therefore, refer to the main domain as the

parent domain of the subordinate.

Main Domain

I
Kernel

Component
Component
Component

T

a System I sys_1
Domain Subordinate

Figure 4-4 The Domain Structure

More reusable components in the subordinate may be identified, but their reuse

scopewill not cover the entire domain. They could have a scope for reuse within

a subset of the application domain. This is why modelling the uncommon

features is necessary in this approach. By identifying these subsets, the domain

subordinate is then divided into a number of sub-domains which can be modelled

in the same way. The process continues to structure the domain into sub-

domains and kernels of reusable components until no further decomposition is

possible. Such a case is identified on the tree as a Unity Domain which is a

domain abstraction whose functional requirements can be conceived by one

system, and perceived by the domain community as a common utility in the

domain.
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The domain taxonomy is represented graphically (as shown in Figure 4-5) using

the following elements:

1. AMain domain (denoted by rectangular box),

2. Sub-domains (denoted by rectangular boxes),

3. Unity domains (denoted by double-lined boxes),

4. Kernels (denoted by rounded boxes), and

5. Reusable components which are listed in the kernel

component1
component2

component3
componentA

component5
componentt

Figure 4-5 Domain Taxonomy Tree

There are several benefits gained from classifying domains and building a

structural model of the domain classification. We can summarise these benefits

in the following points:

1. The main aim of conducting domain analysis is to capture the domain

knowledge and present it to developers who intend to make use of the

reusable assets in the domain model. The structural model presents this

knowledge in a more understandable and easier to follow fashion.

2. The structural modelling of domain knowledge focuses the search for the

relevant information to the relevant application domain. This minimises the

effort spent in tracing the domain assets and identifying components.

3. The domain structure clearly identifies the reusable components in the

model. In fact, as soon as the scope of application is selected, a list of

reusable components can be obtained from the domain kernel. From these
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ones, other components could be traced, by following the inter-relationship

links between them. These links are also included in the domain model (see

chapter five).

4.4.2 Reusable Components.

As we have said in the last section, reusable components in DOOR are

represented by objects and their specifications. Each component is designated a

scope for reuse. This means that any reusable component must be associated

with one sub-domain and included in its kernel on the tree. This also means that

a reusable component must comply with the constraints imposed by the domain

scope in the way the component is designed or the way it interacts with other

components. Therefore the component location on the taxonomy tree is important

for determining its scope and constraints.

In DOOR, a reusable component is classified according to its scope or its location

on the taxonomy tree as:

• Intrinsic,
• Frequently Reusable,

• Candidate or

• Bounded.
For a specific scope in the domain taxonomy, components that are inherited from

the parent domain kernel are called Intrinsic components of that scope. Any

component that is part of the kernel of that level is called Frequently Reusable

component within that scope. Components that are located in the kernels of the

subsequent levels are called Candidate components. If the subordinate of that

level contains any unity domains then these are called Bounded components.

Figure 4-6 shows a graphical representation of the components' classification

according to scope. Any components that are located outside the scope of that

level are said to have no scope for reuse within that level. For example, the

components Camp 3 and Camp 4 in Figure 4-6 have no scope for reuse within

Domain 1. For examples of component types according to scope, see section 4.5

where the domain of reservation and inventory systems is classified. It must be
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noted that at a main domain level, the intrinsic components and the frequently

reusable components are the same; this is because a main domain has no parent

domain scope.

__~~~l!~~~~m~_t¥!_,
intrinsic components "

" ,
.............. \~ Systems bulH .'

Domain 1 .:::.:..... within the .:
........ scop.or '.

............... Domain 1 :=
......:-. : ;.: : ;

Figure 4-6 Classifying Reusable Components according to scope

A reusable component is modelled using what we call the 3-D model as shown in

Figure 4-7. This model helps understanding the semantics of the reusable

components. It models a component in terms of its behaviour, scope and

reaction.

Scop.

Reusable
Component

Behaviour

Figure 4-7 3-DModel of the Component
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The first dimension is the component's behaviour which is characterised by the

component interface; signature of all methods of the object. In DOOR, a reusable

component is stored in the domain model with its interface methods and

specifications. The component's behaviour is important for building the reference

architectures as will be discussed in the next chapter. The second dimension of

the model is the domain scope. It represents the position of the component on the

taxonomy tree. The scope imposes a number of constraints which must be

complied with by the component behaviour. The third dimension is the reaction

of the component which represents all the components that are linked with it in

the reference architecture. It is important to note that the reaction space of any

component, which are the components that are allowed to be liked to that

component, is determined by the four component categories of its scope; intrinsic,

frequently reusable, candidates and bounded components. In this case the

reaction space of any bounded component is its intrinsic components only.

4.4.3 Reference Architectures.

Reference architectures are the links that model the relationships between all

other artefacts in the domain model. They are built using the reusable

components and the interrelationships between them. The way the components

are interrelated is governed by the domain constraints. These constraints are

embedded in a number of generic software architectures and a domain

description language.

Reference architectures depend on the reusable components, their behaviours

and their scope. They are built using architecture schemas which are

constructed from components that appear in each others' reaction space. The

detailed description of the technology of generic software architectures and the

way reference architectures are built will be discussed in the next chapter.

4.4.4 Guidelines for Building Domain Taxonomies

Structuring the application domain into a tree of abstraction levels is important

in the DOOR approach because the domain resources as well as the domain
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artefacts are designated to the relevant scope in the tree. The domain tree is also

useful in tracing and retrieving the domain assets from the domain model.

Hence it is important to have a tree that reflects the real structure of the domain

and helps in tracing the reusable assets in the domain model.

In this section we introduce some guidelines for structuring the domain

taxonomy tree. These guidelines could be conducted according to the order

presented here or arbitrarily as regarded necessary by the domain analyst. We

must also say that it is likely that several attempts are conducted before a

satisfactory tree is achieved. On the other hand, as a rule of thumb, the domain

taxonomy is constructed from the application subject matters and their systems.

It is also important to say that this approach looks like a top-down approach,

however it is possible to apply a bottom-up approach to build it by identifying

components and systems first then group them into sub-domains.

Guideline 1

Apply domain analysis by considering existing systems in the domain and with the aid of a

domain expert. Prepare a list of possible reusable components within the domain and

extract domain scenarios by analysing existing systems and interviewing domain

specialists.

Guideline 2

Run through the domain scenarios and identify a list of possible operations in the domain

that can be automated and group them according to behaviour abstractions and designate

a name for each behaviour which is perceived by the domain community as common

utilities (or systems) in the domain.

Guideline 3

Define a number of subject matters within the domain and allocate them to groups of the

systems identified in guideline 2; these correspond to sub-domains in the taxonomy. As a

general rule each sub-domain must have at least three systems allocated to.
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Guideline 4

Identify reusahle components within the suh-domain and group them together as kernels

for that suh-domain.

Guideline 5

Identify related components (ohjects) that are allocated to more than one suh-domain in

the same level and design an ahstract class which includes only the common features of

all the identified components. Such ahstract class should he included in the kernel of the

parent domain of that level.

Guideline 6

Qone ore more ahstract classes are identified for a suhset of the suhordinate then a new

level in the tree could he introduced which will have a kernel of ahstract classes only. The

same rule of at least three systems in one suh-domain must he maintained in this case as

well.

Guideline 7

Any systems that are left ungrouped with other systems should he identified and modelled

as unity domains on the tree.

Guideline 8

In a case where there is a suhject matter in the domain whose memher systems do not have

common components then it is allowed to he identified as a suh-domain (with no kernel)

and included it on the tree only if the following conditions are satisfied:

1. The modelling of this suh-domain is important for understanding the domain

model and its resources.

2. The suhordinate of this suh-domain contains two or more suh-domains and each

one of them has its own kernel.

Guideline 9

Make sure that all the lowest levels in any hranch of the tree contain only unity domains.
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Guideline 10

Re-visit the whole tree as many times as needed until no further decomposition or

grouping among its components is possible.

The above guidelines are general guidelines for identifying domain abstractions

and components within an application domain. These are based on our

experience that we have gained by applying this approach to some example

domains (see chapter seven). Other decisions made during the building of the

reference architectures could influence the way the taxonomy tree is constructed.

We will introduce more design guidelines for building the reference architecture

in the next chapter; some of them are also relevant for the purpose of building

the domain taxonomy and its components. Also during the processes of domain

engineering and application engineering the domain taxonomy may evolve

further. More design guidelines within the DOOR process are also applicable to

the construction of the domain taxonomy and the identification of reusable

components. Two more sets of design guidelines are found in chapter six.

4.5 Example - Reservation Systems Domain

This example introduces a working case study based on a paper written by Will

Tracz [Tracz 1995]. We have chosen this example for the following reasons:

l. The example is already published and presented on more than one occasion

which makes it well understood.

2. The example describes a well known domain that many people are familiar

with.
3. Although the information about the analysed domain in the paper are

concise, it still gives the reader a reference for checking the flow of

information and makes it possible to follow the concepts.

4. The example is presented using the DSSA approach and this enables us to

compare the results of our approach to the DSSA approach.

5. The example introduces a small and simplified domain which makes it

suitable for introducing the concepts of the DOOR approach. A more lengthy

example for analysing a real-world domain is described in chapter seven.
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This is a working example which will be used in the next two chapters as well.

The overall modelling of the domain is built in stages as the approach phases are

introduced. In this chapter we introduce the problem and build a preliminary

domain taxonomy. In the next two chapters, the same example is used to identify

components, relationships between them and the reference architecture is then

constructed. You will find out that the solution is maturing gradually as more

information is analysed and the final version is achieved after several iterations.

Tracz's Problem Space.

Tracz's paper introduces a simple system for theatre reservation system which

could be generalised to cover similar situations in other domains using DSSA's.

The information presented in the paper (see also Appendix A) gives a solution to

that particular system from the theatre domain and then finds similarities with
three more domains, Airline, Library and Inventory domains.

There are a number of scenarios, functional and non-functional requirements

drawn from the theatre example which act as resources for driving most of the

solution steps in the example. Five scenarios have been included in the paper

describing some common transactions in the theatre domain which are Ticket

Purchase, Ticket Return, Ticket Exchange, Ticket Sales Analysis and Theatre

Configuration Scenarios. These scenarios are found inAppendix A.

The paper first identifies a number of objects in the theatre domain and then

generalises them over the other domain. Some of the objects are introduced with

a list of attributes and operations. The paper also describes some structures

between objects in terms of inheritance and aggregation diagrams. Data flow

diagrams and state transition diagrams are used for showing the flow of

information and control in the developed system in the theatre domain. Some of

the results in the paper are presented in Table 4-1 and Table 4-2. The overall

DSSA solution is found in Appendix A.
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Table 4-1 List of Objects, Operations and Attributes in
the Theatre Domain

Object Attributes Operations

Seat Name Sell a Seat

Status (e.g. Sold, Return a Seat

Available) Initialise a Seat

Row Name No. of Available Seats

List Available Seats

List all Seats

Initialise a Row

Section Narne (e.g, orchestra) List All Rows

List Available Rows

Initialise a Section

Theatre Name List Sections

Total Tickets Sold Display Seating

Total Tickets Unsold Arrangement

Total Sales Initialise Theatre
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Table 4-2 Comparison between Theatre, Airline, Inventory and Library

Domains

Theatre Domain Airline Domain Library Domain Inventory

Domain

Seat Seat Book Item

Row Row Shelf Room! Shelf! Bin

Section Ticket Category Section Aisle or Building

Performance Flight Number Title Description

Seating Seating Floor Plan Warehouse
Arrangement Arrangement

Tickets Sold Tickets Sold Books on loan Items Sold

Tickets Remaining Tickets Remaining Books available Current inventory

Price Price Penalty for Cost/Item
lateness

Performance Time Flight Departure N/A N/A

Performance Date Flight Date Due Date Expiration Date

Ticket Agent Ticket Agent Librarian Clerk

The results shown in Table 4-1 and Table 4-2 are achieved by applying

guidelines 1 and 3 of the guidelines for building domain taxonomies introduced

in section 4.4.4. By applying guideline 4 and analysing Table 4-2, we could easily

find some common components between all four subject matters. As a matter of

fact, from experience with building systems of that nature all four situations

share more common features than just common objects, such as the reservation

or ordering seats or items and looking up a certain item in a list to check if it is

available or not. Therefore it is logical to treat them as four sub-domains of one

main domain which will have a kernel containing the common objects and each

sub-domain will contain its own kernel of objects for that scope. The information

in Table 4-2 tells us about the similarity, however it does not tell us where we

could reuse the information over the three sub-domains. For example, we know

that there is similarity between seat object or a book object, but we obviously
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cannot use them interchangeably. The user would wonder how reuse could be

achieved. It is more logical and time saving to identify similarities and suggest

ways of reusing them at the same time by showing the relationships between

them. In this case a book, a seat and an item could be treated as special cases of

one general case which we refer to as Unit. Unit will then be an object that

contains the common features of all the other objects and could be inherited by

them (guideline 5). This represents a case for identifying relationships between

components in different scopes. More discussion about components' relationships

is found in the next chapter. Similarly we could identify other components that

could be used in all four sub-domains. By applying guidelines 2 and 7, we

identify some unity domains in the theatre sub-domain. According to the

available information, unity domains that are perceived as common transactions

within the theatre application are Ticket Purchase, Ticket Return, Ticket

Exchange, Ticket Sales Analysis and Theatre Configuration. A preliminary

classification of the domain is presented in Figure 4-8 where we may identify

some unity domains for the other sub-domains. As an example, we have

identified cases for the library domain as unity domains similar to those of the

theatre domain.

AIsle ~!
Producrtlon ~

Clerk ·H
.......\.....,..,. "~""r

Seciion
Title

Figure 4-8 Re ervation and Inventory Domain Preliminary Taxonomy
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By examining Figure 4-8 and applying guidelines 5 and 6 further similarities

could be identified between the theatre domain and the airline domain in terms

of shared objects. This leads to modifying the taxonomy to reflect this situation

by introducing a new level in the taxonomy; a reservation sub-domain whose

subordinate includes the airline and theatre sub-domains and its kernel will

contain the shared objects between the two. Figure 4-9 shows the modified
taxonomy of the overall domain.

~... ,....

K.rn.'
Un~ ~*l~
Rack ~
Group ~

Event .;.:.~.,.'
Actor ..,,,

K.rn.' ,'"
Item ~t:
Shelf I
Aisle I;~

Production '; .
Clerk .;;

~~~J~'

igure 4-9 The ModifiedDomain Taxonomy

then the componen

In Figure 4-9, if a sy tem i built within the scope of the reservation sub-domain

Unit, Rack, Group, Event and Actor are intrinsic
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components, Seat, Row, Agent and Ticket are frequently reusable whereas

Category, Flight, Section and Performance are candidate.

4.6 Summary

In chapter two, domain analysis was introduced and it was stated that the

process is knowledge acquisition and presentation for the domain resources. In

this chapter, we have introduced our approach which is based on domain

analysis. The knowledge presentation aspect of the process was emphasised. The

idea is to provide the developers of new systems with a structural presentation of

the domain. The reusable assets of the domain are organised according to that

structure which represents multiple levels of domain scopes.

We have identified three outputs as a result of domain analysis which are caIled

domain resources. These are domain scenarios, rationales and dictionary. We

think that these resources are important for building other reusable assets in

the domain model. Three more artefacts are generated when the domain is

modelled. These are domain taxonomy, reusable components and reference

architectures. The resources and artefacts are the elements of the DOOR

approach which are used in domain modelling and system development.

The way the domain taxonomy is constructed and reusable components are

identified could be done in different ways. It could be conducted in top-down or

bottom-up approaches or a mixture of the two. A thorough analysis of the

application domain is essential for understanding the domain dependencies

before a satisfactory structure can be built. On the other hand we propose a

number of general design guidelines for building domain taxonomies and

identifying reusable components. We recommend a mix of top-down and bottom-

up approaches when taxonomies are built. The exercise should be done in a

number of iterations until the final version is reached. This evolutionary feature

of the domain model is very important and should continue after the initial

version is built. In fact, all the DOOR assets must be evolving as the domain

itself evolves.
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In the next two chapters the technology (generic architectures) and the process

(domain engineering and application engineering) aspects of the approach are

described. These also have their effect on the evolution of the domain assets.
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5. Generic Software Architectures and

Architectural Models.

5.1 Introduction

In this chapter, the generic software architectures and their architectural models

are discussed. The chapter is organised according to the basic elements of the

architectures. In section 5.2, we will explain the general model of the generic

software architectures and its elements. The architectures are built from a

number of architecture schemas using a graphical notation. The structure of the

architecture schemas is described in section 5.2.1.

Following is a detailed description of the basic elements of the architectures

which are the reusable components, their inter-relationships and constraints

imposed on them. Section 5.3 describes the semantics of reusable components

within the domain model, and proposes a classification of the reusable

components with respect to a number of categories. Section 5.4 introduces the

generic architectural models that are used for building reference architectures.

Seven generic models, which are based on object-oriented modelling, are

described in this section. These models are used to model the relationships

between components when systems are synthesised. Two types of models are

distinguished according to the components' relationships which are static or

dynamic.

In section 5.5, we will introduce an example showing how the generic software

architectures are used for building domain reference architectures from reusable
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components. In the last section we will conclude the chapter with a summary of

the main points covered in the chapter.

5.2 The Generic Software Architectures Model

As explained in the previous chapter, the domain taxonomy presents the domain

organisation and the scope of the reusable components on the taxonomy. The

generic software architectures provide a technique for modelling the inter-

relationships between the reusable artefacts in the domain model. In other

words, it models the dependencies between these artefacts in order to form some

meaningful design abstractions within the domain. The technique is based on

the followingprinciples:

1. The generic software architecture models the domain-specific transactions

and design procedures in terms of the reusable components within the

domain and the inter-relationships among them. A reference architecture is a

representation of its domain knowledge as encapsulated by the reusable

components. Therefore, a component may not represent a meaningful
abstraction outside its domain scope.

2. The reference architecture contains a number of architecture schemas which

are composed from generic architectural models. The architectural models

define the reusable components that comprise the schema and the

relationships between them. Constraints limiting the components' behaviour

are prescribed within the generic model.

3. Using an automated architecture assessor which uses a set of design rules for

processing the architecture design. A number of validation procedures are

embedded in the assessor for checking the architecture constraints and the

validity of the design.

4. A graphical representation of the architecture schemas using a pre-defined

notation is used for modelling the components' relationships. Using the

supporting tool, the architectures can be built graphically and then passed to

the assessor for validating the design.

5. The architectures are organised according to the domain scope which gives

access to other assets within the same scope in the domain model.
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6. The generic software architectures provide a device for tracing and retrieving

reusable components from the architecture schemas. To explain this point,

suppose a number of components are linked in one architecture schema, it is

sufficient to locate one component in that schema in order to trace the others.

This is done by followingthe links from the first component to the others. The

generic software architectures specifywhat components are required and how

they are linked together to construct a useful abstraction.

In order to understand the way the generic software architectures work, we need

to describe their basic elements. Like all other architectures, the basic elements

are components, relationships and constraints. In the following sections of this

chapter these elements are described in detail by classifying the components into

categories and the relationships into a number of generic models. The

constraints are modelled by imposing restrictions on inter-connecting different

components' categories using different architectural models. In addition, the

generic software architectures have a notation for specifying the schemas

graphically and an assessor for validating the architecture schemas. Figure 5-1

shows the general model of the generic architectures .

.~
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Architectures i
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Architecture :1
Assessor .~
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Figure 5-1 The Generic Software Architecture Model
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As shown in Figure 5-1, the generic software architecture uses the architecture

schemas as the centre of modelling relationships between components. Each

schema is specified in terms of an architecture model and two or more

components. It also contains a number of constraints imposed by the selected

architectural model upon the component types in the schema. Each architectural

model is associated with a graphical notation used for specifying relationship

between its components. The validity of the architecture schemas is assessed by

the architecture assessor. The assessor uses the architectural models constraints

for validating the design of the schemas and a number of design rules for

assessing the overall reference architecture by locating redundant relationships

or suggesting modifications for improving the architecture.

5.2.1 The Architecture Schemas

A reference architecture within an application domain is a collection of design

conceptions that can be reused when systems are synthesised. A reference

architecture in the reuse context contains one or more architecture schemas that

describe the dependency between components which make up the design

conception. Thus an architecture schema represents a behaviour abstraction that

specifies a reusable design conception in the domain. In some cases architecture

schemas define a number of design alternatives to choose from.

An architecture schema is specified by two or more reusable components and a

relationship between them.

Architecture Schema = Components + Relationship

The schema is used to specify the dependency between the components in order

to form a larger component that represents a domain-specific design abstraction.

The relationships between components are specified in terms of generic

architectural models that could be used in any domain.

In DOOR, the architecture schemas are the elements of the reference

architecture. They are used to model how the components identified in the
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domain taxonomy are related. Thus the schemas provide a modelling mechanism

for showing how the components could be linked together to form a useful design

decision. Some of the schemas provide domain-specific design conceptions and

some provide design alternatives from which one could be selected when systems

are synthesised.

5.2.2 Notation
An architecture schema is described graphically using a pre-specified notation

which is defined in the generic models. Each generic model is associated with a

graphical representation that is unique to it. This helps in building the reference

architectures and tracing its components automatically.

5.2.3 Architecture Assessor

The architecture assessor is an automatic facility that is used to validate the
architecture design. This is done by checking the design against the constraints
of its models. In chapter six and seven, we will introduce a set of guidelines and
implementations for assessing the design.

5.3 Semantic Description of Components

In the last chapter we described the 3-D model (Behaviour, Scope and Reaction)

of reusable components. The model helps in describing the semantics of the

components. Basically, each component is described by three elements: its

interface, the domain constraints and the reaction space. These are indicated in

the three dimensions of the model, the behaviour, scope and the reaction to its

behaviour. The significance of the three dimensions on the semantic description

of components is presented graphically in Figure 5-2.

The application domain constraints are applicable to all the other elements of

the model. In other words, the domain constraints are imposed upon the

component's design, its reaction space and the interaction between the

component and the reaction space. Therefore, the model describes the semantics

of the component in association with its scope. It does not describe or guarantee

certain behaviour abstraction outside the domain scope for which the component

is designed.
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Application Domain Scope

Figure 5-2 Component's Semantic Description

Specifying the component interface is not sufficient to understand its behaviour.

We need to specify the interaction of the components with other components in

the domain and the constraints imposed on it by the domain.

Some of the constraints are imposed on the way the component is interconnected

with other components or by restricting its reaction space (see chapter four for

details). For example, specifying a component in a certain scopewill restrict it to

interacting with the components within its reaction space. Remember such a

constraint is imposed by the domain requirements and it is an essential part of

the domain knowledge modelling. It is not the choice of the domain engineer to

model it this way or the other. As an example, if a certain component is

connected to a list of components in an architecture schema such that only one

component from the list should be selected, then this schema represents a

constraint on the component's behaviour. Again such a constraint is imposed by

the domain requirements not by the domain engineer.

Other constraints can be imposed on the component by enforcing a certain

implementation or component's type when it is designed. For example a

component could be designed as parallel or sequential, passive or active, etc. The

component interaction with other components will be restricted by its type when

described in the reference architecture. On the other hand the type of the

component will tell us more information about its expected behaviour. Once
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more, these restrictions are imposed by the domain and are part of the domain

knowledge modelling. This is why the 3-D model describes the component's

semantics within the domain scope.

5.3.1 Classifying Reusable Components

Components vary in their behaviour, role, scope and the way they respond to

messages within a particular domain. This variation affects modelling the

relationships and links between them when the reference architecture is built.

Different types of components allow different types of relationships. Thus, by

describing the component types we can check on the validity of a certain

architecture schema, and provide some design guidelines or impose some

domain-specific constraints.

Components are classified according to their scope, implementation or mode of

operation. In this section, each of these categories is classified.

5.3.1.1 Classification According to Scope

In chapter four, reusable components were classified according to scope; in this

section, we will outline how this category affects the components' retrieve ability

and traceability.

In this category, components are classified as

• Intrinsic

• Frequently Reusable

• Candidate

• Bounded

Intrinsic components are those which make the core in any system built in the

domain. For example if we are modelling the domain of Auto-teller machines, a

component like card_reader is intrinsic because it is essential to any system in

that domain to have a card_reader in its design. The reusability of such

components are guaranteed (providing, of course, that they are designed as
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reusable; see chapter two for details) due to the fact that every system built in

the domain requires them as part of its design. Such components are found in

the main domain kernel. Once an intrinsic component is identified in the kernel,

other components can be located by following the links that relate them to the

intrinsic one; retrievability is improved by the availability of intrinsic

components in the domain model. ITthe system is designed within the scope of a

sub-domain then components identified in the parent domain kernel are

considered as intrinsic components too.

Frequently reusable components are the kernel components of the sub-domain

within which the system is built. These components are frequently reusable

within their sub-domain scope and are the distinguishing feature of that scope.

Therefore the kernel components of the main domain are both intrinsic and

frequently reusable within the main domain scope. The kernel components of a

sub-domain are important to determine the boundaries of the sub-domain.

Specifically, the reaction space of the kernel components denotes the boundary of

the sub-domain. Hence, identifying the right frequently reusable components,

when the domain taxonomy is built, is essential for building the reference

architecture correctly.

Candidate components are less reusable than the frequently reusable ones.

These may be reused if linked to some frequently reusable components by an

architecture schema. Usually when a system is developed within the scope of a

certain domain then components that are found in any of its sub-domain kernels

may be reused by this system, hence they are candidate for reuse for that

system. As an example, consider the case that a certain architecture schema

states that a component modelled in a certain domain scope needs to be linked to

one of a list of components specified in the domain subordinate. The components

in the subordinate are candidates since their reuse is not ensured by that

particular schema. The schema is only stating possible reuse of such

components.
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Bounded components are the least reusable type of components. Their

reusability is bounded to specific systems within the domain structure. They are

found in the lowest level of the domain taxonomy tree as the unity domains.

5.3.1.2 Classification According to Implementation

Component could be classified according to functionality as

• monomorphic or polymorphic

• autonomous, semi-autonomous or non-autonomous

Monomorphic components provide a single implementation to the encapsulated

functionality. In contrast, polymorphic components provide multiple

implementations for the encapsulated functionality.

The theory behind the polymorphic components for reuse is based on, but goes

beyond, polymorphism in object oriented systems. In the 0-0 paradigm,

polymorphism means that the objects may have multiple forms but treated by

the compiler as the same type with the ability to locate the right form to execute

the right method at run time. This is fine, but in domain oriented reuse we have

a situation when a reusable component varies when it is applied in different sub-

domains. A polymorphic component is used to provide an implementation

support for creating multiple forms of the component. As an example of such a

component consider a controller component in process control domain. The

controller is shared by a wide range of applications, however according to the

application there are different control algorithms which could be used to

implement the control function in the component. The best way is to design the

controller component as a polymorphic component in that process control

domain. Inheritance and software architectures play major. roles in the

implementation of such components. Later in this chapter, we will use an

example to show how polymorphic components can be used to create a

comprehensive reusable component within the domain.
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Our approach is different from Booch's forms of reusable components, which are

multiple variations of the same component [Booch 1987]. The variations in our

approach are achieved by the actual application of the component in the proper

sub-domain which means that the component forms are bound to their scope of

reuse. It also reduces the amount of redundant code that is duplicated in the

implementation of Booch's forms. Finally, polymorphic components share the

same interface.

Going back to the monomorphic components, some components are designed as

monomorphic for one good reason which is eliminating confusion about the usage

and the scope of reuse of a certain component. As an example, components that

are safety-critical and where multiple implementation can cause non-

deterministic behaviour or ambiguous response; such components are best

designed as monomorphic. In such cases, the domain requirements (safety-

critical) restricts the implementation of the component to monomorphic

implementation even if it was possible to design it as polymorphic.

Reusable components can also be classified according to their autonomy levels as

autonomous, non-autonomous or semi-autonomous. By autonomy we mean

how dependent the component is on the existence of other components in the

reference architecture. An autonomous component is defined as a component

that provides complete abstracted services without depending on the existence of

a particular component, whereas a non-autonomous component is a component

that is contingent on the existence of another autonomous component for it to be

accessed. Usually a non-autonomous component is linked to an autonomous

component as 'part-of the autonomous component (see section 5.4). As an

example, if we go back to the controller example, a control-algorithm component

may be used if and only if the controller component exists in the system. So the

controller component is autonomous while the control-algorithm is non-

autonomous and the control-algorithm component is modelled as 'part of the

controller component. Another feature of the non-autonomous components

compared to the autonomous components is that a non-autonomous component
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uses the interface of its composite component. In this case, its behaviour will be
a subset of its composite component's behaviour.

Another case occurs when the composite component's behaviour is not complete

without the availability of the non-autonomous component. In this case,

although the composite has its own interface which makes it possible for other

components to access its services, its behaviour is contingent on the non-

autonomous component. The composite component, in this case, is semi-

autonomous. The combination of the two components, however, is a broader

autonomous component.

5.3.1.3 Classification According to Mode of Operatlon

When components are put into operation, they take several forms as

• active or passive

• concurrent or sequential

An active component is basically a component that does not need to synchronise

its execution with other component's execution. Once they are created they run

to completion. They do not depend on the results or the execution of other

components. Their life-span could last as long as the system's life span or only

for a shorter time. Examples of such components can be found in every domain.

In the process control domain, for instance, a timer component is active

component where it keeps running as long as the system is in operation,

generating time signals to synchronise the operations of other parts and

components of the system.

On the other hand, a component could be described as passive which is

normally at idle state. Such a component only comes to life when triggered by

another component to provide a service. When the service is accomplished, the

component returns back to its original state waiting for another trigger to

activate it (see section 5.4.5). A typical example of such components is a print

manager component. The component provides its services to any other
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component which requires a print service regardless of their type, state or any
other considerations.

A component could also operate as concurrent or sequential. Sequential

components preserve one thread of control. This means that the component is

created to serve a certain client. If another client is requiring a service of the

same component another instance of the component should be created for that

client. Concurrent components, on the other hand, allow multiple threads of

control to be active at the same time within the component behaviour. It is the

responsibility of the component itself to solve the problems that are usually

associated with parallel processes and the client should not take any

responsibility to deal with mutual exclusion problems or other problems.

This view to the component concurrency is different from Booch's view [Booch

1987]. In his view, components are classified as sequential, guarded,

concurrent or multiple. The last two forms are parallel processes where the

mutual exclusion is enforced by the component itself. The difference is that

multiple components allow multiple simultaneous readers while concurrent

components sequentialise client access to the component whether they were

readers or writers. We feel that this classification is over-presenting the

concurrency situation of the components, especially we are dealing with reusable

components where the internal implementation of components are restricted by

the domain constraints and the scope of applying the components in the reuse

process. On the other hand, the first two forms of Booch's classification are

actually both sequential. Guarded components break the rule of providing a

comprehensive interface to their application and require the client to take the

responsibility of providing a front-end device to enforce mutual-exclusion. This is

a serious breach of the rules for uniform handling of resources inside a reusable

component which hinders the quality and reliability of reusable components.

In our approach, the implementation of solutions to a particular problem in the

domain is bound to that domain constraints, and therefore the solution is part of
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the component semantics. This means that the component exhibits a complete

and cohesive abstraction. Reusable components should not require any support

of an outside entity to accomplish a primitive operation and should allow the

user to decide how a particular problem should be solved. Ifmultiple solutions to

a problem are required then the component is better designed as polymorphic.

5.4 Generic Architectural Models

In Generic Software Architectures, the domain knowledge and component

dependencies are modelled using a number of generic architectural models.

These models are descriptions of standard relationships that interrelate

components in the domain model. The choice of these models is made to

represent common object-oriented relationships between components. Some of

these relationships have direct object-oriented implementations such as

inheritance. Others are not supported by implementations; however, they are

commonly used in object oriented systems such as the event-driven model.

The models are described in terms of the components' types that are related and

the relationship between them. One or more architectural models are used to

build one architecture schema which specifies a meaningful abstraction in the

domain scope. Choosing certain models for describing an architecture schema

means specifying particular relationships and imposing some constraints on the

components' types that are used in the schema. Also, a certain component with a

particular type is restricted by its type with regards to the architectural models

(relationships) that could be chosen for describing the design conception.

The use of the generic architectural models offers the following benefits:

1. Because they are generic these models can be used for modelling different

domains. It also means that the experience gained in modelling one domain

could be reused inmodelling other domains.

2. Presentation-wise the domain is modelled in terms of technical relationships

that are familiar to software engineers. In DSSA's, the domain architectures
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are built usmg domain-specific parts and terminology that are alien to

software engineering practitioners.

3. The reference architectures built using the generic software architectures

represent domain knowledge in terms of reusable software components. This

offers the software developer a quick transition from the problem space into

the solution space allowing for the reuse of design knowledge within the

domain.

4. The generic architectural models provide alternative ways for linking

software components together in order to form bigger reusable components

that represent broader domain abstractions.

5. Using architectural models standardises and automates the process of

building reference architectures. This makes the building and validation of

the reference architectures more systematic.

6. There is a possibility of transforming the architectural schemas into detailed

design patterns of interconnected objects which makes reaching a solution for

the developed system even more systematic.

In this section, we will discuss the generic architectural models that are used to

describe possible ways for linking components together in a reference

architecture. Each model comes with four parts; the type of the components in

the model, a relationship that links the components, a graphical notation to

present the model and a description of the constraints imposed by choosing that

particular model.

The genenc architectural models are divided into two categories; static

relationships and dynamic relationships as listed below:-

• Static Relationships

n Generalisation-specialisation model

Q Whole-part model

o Association model

• Dynamic Relationships

o Client-server model
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o Implicit creation model

o Event-driven model

o Batch-process model

Before discussing the different models, it is useful to explain the roles of the

constraints in this technology. Constraints are used for restricting the use of the

architectural models to specific component types for the following reasons:

1. When components are identified their types are specified to comply with the

domain rationales. When the components are used in the architecture

schemas there are certain types of components that could be used for a

certain model. The constraints specify the cases of component types which

could be used with a certain model.

2. In some cases, when components are linked using the architectural models

the constraints specify design alternatives relating to how these components

could be applied when systems are synthesised.

3. The constraints are used for validating the architecture schemas in the
domain model.' They also are used for modelling the domain-specific

constraints by choosing specific component types in the schemas.

5.4.1 The Generalisation-Specialisation Model

In this model components are linked by inheritance. The inherited component is

called the parent component and the inheriting component is called the child

component. The model links the components by the is-a relationship which is

described by the schema in Figure 5-3-A

Although inheritance is used for different reasons in the object-oriented

paradigm, here the is-a relationship is used to model the generalisation-
specialisation case. This is because this is the most common case for reuse by

inheritance. Hence, in the above schema Child is a special case of Parent. The

child component inherits the services, attributes and type of the parent

component. If, for instance, the parent component is not declared as concurrent

then its children cannot be designed as concurrent, because the interface of the
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parent component is not designed to allow such behaviour. There is another

reason with regards to reusability; increasing understandability of the

components in the domain infrastructure. If a component is a special case of

another component then it should bear the same attributes as the general case

component except for its specialisation feature.

The child component may provide its own services in addition to the parents

services. In the reuse context, the child component may be modelled in the

kernel of a sub-domain of the parent component domain. The parent component

constitutes a meaningful abstraction where it can be reused without requiring

the existence of the child component. The child component specifications include

only the specifications of the added features.

If the parent component is polymorphic, the child component can re-define some

or all of the parent components. Linking the child component to other

components within its sub-domain assumes that the polymorphic services are

only provided through the child which over-rides those polymorphic services. If
any service is required from the parent component then a separate link should

be drawn to the parent component. A separate object is instantiated for both

cases even if the implementation language allows such reference through the

child component (as in C++).

A special case occurs when the parent component provides an interface to its

services but does not provide implementation to one or more of those services.

The implementations of the deferred services are provided by the children

components. Such a component is called Abstract Component and must be

declared as semi-autonomous type.

If the child component inherits from more than one component then it will be

described as shown in Figure 5-3-B. In this case the child component shares the

services of both parents. The parents' and child's type is restricted as described

in the following constraints.
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Parent Parent 1 Parent 2

/
Child Child

-A- -B-

Figure 5-3Generalisation-Specialisation Generic Model

Constraints <Generalisation-Specialisationl

1. The parent and child components must be of the same type (active, passive,

etc.). The only exception is when the parent component is polymorphic then

the child component may be monomorphic.

2. IT a child component overrides one or more of the parents services then the
parent component must be polymorphic.

3. If the parent component is an abstract component then it must be declared as

a semi-autonomous, polymorphic component. The semi-autonomous type

means the behaviour of the parent component is contingent on the behaviour

of its children.

4. If the parent component is polymorphic, unless it is an abstract component, a

link to one of its polymorphic services by an architecture schema is explicit to

its own implementation. If the message is bound to the child's

implementation then a separate link to the child component must be

established.

5. ITthe domain knowledge requires that the behaviour is not determined and

could be decided upon in later stages of the design then the parent component

must be designed as an abstract component.

6. If the child inherits from two parents then the parents (as well as the child)

must be of the same mode of operation (active or passive and sequential or

concurrent). Both parents and the child may either be polymorphic or
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monomorphic. If the parents are of different levels of autonomy (autonomous,

semi-autonomous or non autonomous), then the child inherits the lowest

level.

5.4.2 The Whole-Part Model

In this model, components are linked by the aggregation (is-part-of)

relationship. Unlike the generalisation-specialisation model, the whole-part

model integrates two or more components to build one autonomous component.

One of these components holds the rest and provides a mechanism to manage

their access and operations. This component is called a composite component

and the managed components are called agents. The agents are non-

autonomous components that rely on the presence of the composite to invoke

their services.

The composite component is autonomous and may be accessed by other

components in isolation of its agents. However, if a certain service within the

composite component requires one or more agents to accomplish its functionality
then that service will be contingent on the existence of the relevant agents. In

this case the composite component is semi-autonomous which means that it can

only provide that particular service when the relevant agents are available.

However, the broader component resulting from the aggregation relationship is

autonomous.

The aggregation relationship is described by the schema in Figure 5-4-A. This

schema states that 'Composite' contains both 'Agent!' and 'Agent2'. The and

means that the presence of both agents Agent! and Agent2 are essential for the

behaviour of 'Composite'.
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Aggregation relationship with
AND function

-B-

Aggregation relationship with
OR function

Aggregation relationship with
EX-OR function

Figure 5-4The Whole-Part Generic Model

If the semantics of the resulting component requires anyone or more

components from a list of agents then the aggregation is described by an OR

function as stated in the schema in Figure 5-4-B. This is a true OR function
where anyone or more of the agents could be aggregated by the composite.

Another case exists where the resulting component after aggregation provide a

selection of different cases. Each case is supplied by one agent and the container

can only hold one selection at a time. In such a case an architectural description

should allow an EX-OR function as shown in the schema in Figure 5-4-C. In this

case 'Composite' contains a choice of any agent (but no more than one) appearing

in the list.

There is no restriction against constructing a multi-layered aggregation

relationship between components with the possibility of having different style

for different layers. Figure 5-5 shows an example of a layered aggregation

schema.
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Figure 5-5Multi-Layer Aggregation Relationship

Constraints <Whole-Part>

1. The composite component must not be a non-autonomous component.

2. The agents could be semi-autonomous or non-autonomous. However, if the

agent itself has its own agents, then it must be semi-autonomous.

3. When the composite component is bound to the aggregation of one or more

agents then it must be declared as semi-autonomous. Specifically, if the

aggregation relationship has an AND function then the composite must be
declared as semi-autonomous.

4. If the aggregation relationship has an OR or EX-OR function and the

composite component is declared autonomous then an extra fictitious agent is

assumed in the description. The fictitious agent component is called an

Empty agent which implies that the composite component does not depend on

the existence of any of its real agents. If the composite component is declared

as semi-autonomous then at least one of the agents in the list must be

aggregated in the composite component.

5.4.3 The Association Model

The whole-part model assumes that the agent component behaviour is valid only

within the behaviour of the composite component. Sometimes composition is

used to achieve reuse without any contingency between the composite and the

agent component. In other words, both components are autonomous and each

one is an agent of the other. This is modelled as association between the two

components.
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Association is a principle used to manage complexity and is used to imply that

two components happen at the same time or under similar circumstances [Coad

an Yourdon 1991]. The model does not place any contingency on the relationship

between the two components in terms of aggregation or inheritance. Each

component needs to be aware of the other's abstraction in order to accomplish its

own behaviour. The association relationship (sometimes referred to as instance

connection) is described in the schema shown in Figure 5-6:

Figure 5-6 The Association Generic Model

Constraints

1. The two components must be of the same autonomy level. For example they

have to be both autonomous. If they are both non-autonomous then both

must be described in the same aggregation relationship as shown Figure 5-7

Composite
Component

Non- Non-
Autonomous 1------1 Autonomous
Component Component

Figure 5-7 Non-autonomous Components in The Association Model

2. If one of the components is autonomous and the other one is semi-

autonomous then they can be associated to each other if the semi-autonomous

component has at least one agent in AND-function aggregation relationship

(see Figure 5-8). This condition guarantees that the combination of the semi-

122



Chapter Five

autonomous component and its agent is an autonomous component and then

this will satisfy the first constraint.

Autonomous
SemI-

Autonomous
Component Component

Non-
Autonomous

Agent

Figure 5-8 Semi-autonomous Components in The AssociationModel

5.4.4 The Client-Server Model

This model is described by two components; a client and a server which are

linked by a message relationship. The messages is passed from the client to the

server. The server takes control and executes a method to service the client's

request. The results of the invoked method are returned back to the client at

completion of the service. A message relationship is described as shown in the

schema in Figure 5-9. In this schema where Compl is a client of Comp2, the

server and service_id is a reference for the requested service; this could be in

the form of the method name or an ID number.

The nature of the service is captured in the interface of the server component

and the functionality of the requested method. The client component transfers

control to the server and enters a wait state until the completion of the invoked

service. The server then returns control to the client component and the client

resumes its operations.

Constraints (client-server>

This model imposes the followingconstraints on the design:-

1. The server component must be Active and Autonomous type component.
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2. The client component must be in an Active State. Note that an active type

component is always in active state; a passive component, however, IS

normally in a passive state unless triggered by an external condition.

3. There should be no restriction on the number of clients that can access the
server.

Service_id

Figure 5-9 The Client-Server Generic Model

If a service is provided by a server for multiple clients then the message can be

described as shown inFigure 5-10.

Service_id

Figure 5-10Multiple Client-Server

The semantics of this schema is described in the following constraint:
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Constraints (multiple-client>

1. All the client components and the server component appearing in the schema

must be included in the design when the service is needed. This case is used

for modelling a number of components that access the same server with a

relation between them such that the change in state of the second component

depend on the change in state of the first and the third depends on the

second, as explained in the next point.

2. The service must be accessed in the same order of the schema such that the

first client gets serviced before the second and the second before the third and

so on. The last client in the list must be serviced first before the first one can

request the same service again and the whole cycle is repeated.

If the server component is a concurrent one and the clients are expected to call

the required service without synchronisation such that the service is provided as

a parallel task then the message is described as a concurrent message. A client

component can be of any type already described in the previous section. The

server, on the other hand, is not allowed to be a passive or a non-autonomous

component. Figure 5-11 shows a typical concurrent message schema.

Service_id

Figure 5-11 Concurrent Client-Server
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Constraints (parallel-server)

1. The server must be a Concurrent type component. The server must not be a

Passive or Non-autonomous component.

2. All the client components and the server component appearing in the schema

must be included in the design when the service is needed. However there is

no restriction on the sequence or priority of access among the clients'

requests.

5.4.5 The Implicit Creation Model

In this model, components are linked by a relationship called a trigger. This

relationship requires that at least one of the components is active which is the

component that initiates the trigger. The other components are passive. The

triggered component does not wait for the trigger to arrive but instead it is

initially in a (passive) state and when the trigger is initiated this component

transforms to an active state. The trigger-initiating component does not require

a reply from the triggered component as a result of the trigger processing.

However it should have an idea of the time and reaction of the behaviour of the
other component. When the triggered component completes its job it goes back to

its original state.

In terms of object-oriented implementation the passive component could be

implemented as a class that is not created (instantiated) normally. It is created

when it is required by the trigger initiating component. The component is then

said to be active and continues to be active until it finishes the services that are

required by the trigger. When the services are accomplished the component goes

back to its original passive state. In terms of implementation, this is done by the

component destroying itself and when the trigger is next issued the component is

created again.

The passive component is 'implicitly' created at the same time as it is passed a

message invoking a particular service by the active component. There is another

alternative for implementing this model which is by dedicating a separate active
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component for the activity of creating and destroying passive components when

they are needed. The schema in Figure 5-12-A shows how a trigger relationship

is modelled. In this schema 'Comp l' is the trigger-initiating component and

'Comp2' is a passive component. 'Trigger-id' represents the nature of the

message initiated by the active component.

-B-

Trigger_id

-A-

Trigger_A

Figure 5-12The Implicit Creation Generic Model

The trigger should be initiated by an active component or an external source.

However a passive component could be allowed to initiate triggers to other

passive components if it was already transformed into an active state. The

restriction imposed on this situation is that a passive component must only

initiate triggers within the same description where it is triggered by an active

component. Such a case is described in a schema as shown in Figure 5-12-B.

Constraints
1. The first component that starts the train of triggers must be an active

component. A passive component can trigger other components only after it

has already been triggered and transformed into an active state.

2. When the triggered component finishes executing its service it must destroy

itself and goes back to passive state. This constraint is very important for the
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functionality of the component that issues the trigger. Thus it is the passive

component responsibility to switch itself to its original state, freeing the

other component from managing the state of the passive component.

3. Hthere are a number of passive components linked in a train of triggers then

any component must stay active during the time all the subsequent

components in the description are executing their own services. In other

words the sequence of creation and destruction of components should be first

created last destroyed.

5.4.6 The Event-Driven Model

In this model, services, in a certain component, are not invoked directly by other

components. Instead, a component can announce (or broadcast) one or more

events. Other components register an interest in a certain event by associating a

service with the event. When the event occurs the system itself invokes all of the

services that have been registered for that event.

Because this model is aimed at modelling relationships between 00 components,

we have to make the following assumption. The components that announce the

events must explicitly include in their interfaces a method for announcing each

event they are responsible for issuing. This is crucial assumption to the

behaviour of the components as well as to modelling the architecture

connections.

The services that are registered for a certain event are not restricted to be

invoked by that event only. In other words, these services are available to other

components to access by a client-server model. The event-driven model is

described as shown in the schema in Figure 5-13:
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Service_id
Event_id

Figure 5-13 The Event-Driven Generic Model

The previous schema states 'Comp2' is registering Service_id to Event_id. There

is no direct linkage between 'Comp2' and 'Comp l'. 'Comp l' does not know which

components are registered to its events and it is not responsible for invoking the

registered services when the event occurs. On the other hand 'Comp2' needs to

know about the event that 'CompI' is broadcasting.

Constraints

1. The component that registers its services for an event must be active and

autonomous.
2. A semi-autonomous component may register for a certain event if the semi-

autonomous component has at least one agent in AND-function aggregation

relationship. This condition guarantees that the combination of the semi-

autonomous component and its agent(s) is an autonomous component and

will satisfy the first constraint.

5.4.7 The Batch-Process Model

The best examples of a batch process model are the UNIX pipes and filters. The

process is passed through a number of components. The components are linked

by a front-end coupling; that is the output of the first component is passed as an

input to the second and so forth. This requires that the output of the preceding

component and the input of the succeeding one are compatible.

The batch process model is described by the relationship pipeline as shown in

the schema in Figure 5-14:
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-A-

-8-

Figure 5-14 The Batch Process Generic Model

The batch process can be modelled in two forms. The first is when the batch job

is processed once only and the second when it is a periodic process. In the first

model the components receive their inputs from the preceding ones and carry out

the operations without having to synchronise tasks with other modules, the

result is then dispensed onto the pipe (Figure 5-l4-A). In the second model, the

pipeline runs periodically passing information between components continuously

until the source stops pumping information onto the pipeline (Figure 5-l4-B).

Normally, the end of a periodic batch process is indicated by an event that could

be issued by one of the batch process components or by an external component.

Unlike other relationships between reusable components, the pipeline requires

the following considerations to be taken into account:

• How is a pipeline established between components?

• Should a component design be changed to allow a pipeline access?

• When do the pipeline operations start and end? Do we need identifiers for

this purpose?

• Where do concurrent components fit in the pipeline?

• What is the best way to pass the data between the pipeline components?
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These questions are answered depending on the way pipelines are implemented.

Although it is out of scope of this document to specify the implementation of a

certain relationship, we feel that it is necessary to provide a design view to

answer some of the above questions.

Our idea for synthesising systems based on the batch process model is based, in

general, on providing a common information storage between components. The

idea is to integrate the components without having to give any attention to their

underlying semantics. The problem (as we see it) is a pure interfacing task. The

sending component writes to the common storage area and the receiving

component reads the information from that area when it is ready to process it.

The pipeline could be established by creating a virtual machine that controls the

data traffic between components. The virtual machine is responsible for creating

the common data storage; this could be in a form of a file or a memory space on

the system's main storage. Once this area is created then the pipeline is actually

established and it is now the responsibility of the virtual machine to organise

the logistics of the process. This includes determining the start and end of the

pipeline process, the synchronisation between components and the handling of

memory management and garbage collection.

The other issues like the suitability of the components for pipelines, concurrency

and writing and reading to and from the pipeline, are left to be decided locally

inside the component itself. Nevertheless, there are two ways to solve this

problem. The first is to design special components for the batch process model

(e.g. filters). In this case other components cannot be linked using this

relationship unless they are re-designed for this purpose. The second approach is

by providing abstract classes within a sub-domain as a driver for pipeline

components. The abstract-class is a general class whose sole objective is to
provide all the operations required in a pipeline component. Any component

required to be added to the pipeline should be linked to it using the (is-a)
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relationship and this way the component can handle the pipeline through the

abstract-class. The abstract class should not affect the behaviour and semantics

of the original component. For example if the component is concurrent then the

abstract class should preserve its concurrency. That means, while the component

is responding to the pipeline it must carry on servicing other clients when

required in a normal parallel form.

To summarise the previous considerations as well as taking into consideration

other situations, the following constraints are imposed upon this model.

Constraints

1. All the components in this model must be active and not non-autonomous.

2. Every time a batch process starts, the sequence cannot be reverted and must

run to completion.

3. If there is a shared storage between the components for passing through

data, then this storage area cannot be accessed by other components until the

batch process is finished. The data is not valid until the batch process is

terminated

4. Normally, the beginning of a batch process is triggered by a message passed

from another component, which should be in an active state, to the first

component in the model.

5. When a batch process is in periodic mode then the end of the process may be

determined by an event issued by another component. This may be

implemented by having the last component in the batch process registered for

that event. When the event is issued, a batch-terminating service (within the

last component) is invoked which causes the batch process to terminate.

5.5 Example of Architecture Modelling

In this section, we show examples of components inter-relationships using

generic architectural models. The examples used here are drawn from the

reservation systems domain which was introduced in chapter 4. In these

examples we illustrate how reusable components and generic architectural
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models are used to model design conceptions within the domain scope and

impose constraints on the use of these conceptions. In this example, we only

show examples of components dependencies within the domain reference

architecture. The overall architecture is found in the next chapter. The following

components are used in this example, Rack, Row, Shelf, Unit, Item, Seat, Book,

Theatre, Section, Agent, and Sales_analysis.

We show two types of relationships between these components; static and

dynamic. In static relationships, we model how the components are arranged in
terms of inheritance and aggregation. In dynamic relationships, we show an

example using implicit creation and client-server models.

Static Relationships

As described in chapter 4, the similarity between the components are modelled

through inheritance using abstract components that are shared between all the

sub-domains and inherited by the sub-domain components. The first step is to

determine the components' types and then relate them together using the

generic architectural models. Table 5-1 shows the components' types.

Table 5-1 Components type table

Component Type Component Type

Rack Polymorphic, Book Monomorphic

Semi-autonomous

Row Monomorphic, Shelf Monomorphic

Semi-autonomous

Unit Polymorphic, Agent Active

Semi-autonomous

Item Monomorphic Theatre Active...
Seat Monomorphic Sales_analysis Passive
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According to the constraints imposed by the Generalisation-Specialisation

generic model it is easy to distinguish the abstract components in the table.

Abstract components should be declared as polymorphic and semi-autonomous

(Constraint 3). Therefore, the two abstract components in Table 5-1 (whose

features are used by the four sub-domains) are inherited by concrete components

within the domain subordinate. Figure 5-15 shows the use of is-a relationships

to link the components in the domain. The figure clearly illustrate relationships

between components in parent domain kernel (Rack and Unit) and the other

components in the sub-domains kernel (see figure 4-9). Since Unit and Rack

components are abstract components, their features are reused by the sub-

domain components and may be over-ridden.

Row Shelf

UnitRack

Item Seat Book

Figure 5-15 Example ofis-a Relationship

In Tracz's paper [Tracz 1995], the theatre example is introduced with a structure

where every row in the theatre contains a number of seats. This structure is also

true for all four sub-domains in the taxonomy shown in figure 4-9, and therefore

the same architecture could be reused. The generic architectures have the ability

to model this structure in several ways. There is, of course, the way used by

Tracz in his paper where each situation is modelled separately as the case of the

theatre rows and seats (see Appendix A). One way is to use the abstract

components only in the structure using the Whole-Part generic model as shown

in Figure 5-1S-A. In this case the schema models a design conception which can

be reused over the four sub-domains.
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Unit
o

Seat
o
Book

o
Item

Rack Rack

o
Unit

-A- -B-

Figure 5-16 Example ofAggregation Relationship

Since both components are abstract components then the schema could be reused

in any sub-domain by replacing them by the relevant concrete components. The

other way to model it is to use a combination of abstract and concrete

components in the 'Whole-Part generic model as shown in Figure 5-16-B. In this

case, the schema uses the polymorphic component (Rack) and an EX-OR

aggregation for modelling a number of design alternatives in the domain

including the one shown in Figure 5-16-A. According to the constraints of the

Whole-Part generic model (constraint 4), since the composite component (Rack) is

semi-autonomous only one of the components in the schema must be available in

its structure. This is exactly what we try to model in the reference architecture.

The choice which design alternative to choose, when systems are synthesised,

depends on the scope of the system. If the system is developed within the theatre

or airline domains then we will choose the Seat component, and we will choose

Book if the scope is the library domain.

Dynamic Relationships

We use the Sales Analysis scenario to identify dependencies between some

components. The sales analysis component is declared as passive which means it

is created as it is needed for executing services. In order to perform its operations
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promptly, the Sales_analysis component needs the services of other components.

For example, it needs the theatre component for getting the total sales value.

Figure 5-17Example of Dynamic Relationships

Figure 5-17 shows an example of an architecture schema using dynamic

relationships. The schema uses two types of generic models; an Implicit Creation

and Client-Server model. The use of the Agent component is very important

because the Sales_analysis component was declared as a passive component. If

the schema had only contained the Sales_analysis and the Theatre components

linked by a message relationship then the schema would have been invalid

(because Sales_analysis is passive) according to constraint 2 of the client-server

model. In other words, we need the Agent component to trigger the sales-analysis

request in the domain. This is a valid domain constraint which states that sales

analysis cannot be carried out independently and needs another active

component (Agent) for starting the transaction. So the domain constraints are

imposed through the choice of the generic model and the component types.

5.6 Summary

In this chapter, we have introduced the generic software architectures which

provide a technology for modelling domains through the use of reusable

components and generic architectural models. The generic architectural models

are used for modelling dependencies between the reusable components and

domain constraints by means of standard relationships. The relationships are

divided into static and dynamic relationships. In the static relationships, we
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model the structural relationships between components, whereas in the dynamic

relationships we model how domain-specific behavioural abstractions are

synthesised from the reusable components. Three static and four dynamic

models are used in the generic software architectures. Each model has a number

of constraints that are imposed upon the components and their types that are

used in the schema. These constraints determine the way components are linked

together in the reference architecture using standard relationships.

We have also illustrated, using an example, how the architectural models are

used for describing domain-specific design conceptions. Design alternatives as

well as domain-specific decisions are also modelled using generic architectural

models. When systems are synthesised, these design conceptions are put into use

according to the scope of the developed systems.
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6. DOOR Reuse Process.

6.1 Introduction

DOOR divides the reuse process into two tasks; domain engineering and

application engineering. Both are iterative processes that allow for the evolution

of reusable assets in the domain model. Domain engineering is concerned with

building the domain model assets and application engineering deals with

identification and retrieval of these assets in the design of new systems

[Ramachandran and Al-Yasiri 1994]. Because of the dynamic nature of most

domains, where domain requirements and user needs change with time, the two

tasks are conducted together every time a new system is implemented. Whereas

new systems are synthesised from reusable objects (application engineering),

reuse effort is assessed by a set of guidelines and the domain model is updated

where needed (domain engineering).

In chapter four we introduced the main parts in the Domain Oriented Object

Reuse (DOOR) process. In this chapter, we explain these parts in details. First

we discuss the implication of DOOR process on the software development life-

cycle. A new modified life-cycle is proposed that is based on domain analysis. In

section 6.3, we explain the domain engineering tasks and in section 6.4, we

explain the tasks of application engineering. Throughout the process we provide

a comprehensive set of guidelines to conduct the tasks involved in the process.

The chapter is concluded with a summary of the main points.
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6.2 DOOR Software Development Life-cycle.

Figure 4-1 showed the basic elements of the DOOR approach. These elements

are incorporated in the process of developing software systems which comprises

a number of steps that are applied in sequence. These steps are divided into two

phases; Domain Engineering and Application Engineering (see Figure 4-1) and

validation procedures for reuse assessment. Figure 6-1 shows the role of the two

phases in the development life-cycle for building software systems from domain-

oriented components.

The software development process is based on three principles;

1. Incorporating domain analysis and domain-specific artefacts throughout the

development life-cycle.

2. Integrating development for reuse (Domain Engineering) and development

with reuse (Application Engineering) together.

3. Continuous evolution of the domain model each time a new system is being

developed.

Reusable
,..-- -, Components ,- -.,

and
System System
U er --~I Requirements

Application
Engineering

Identified
Components

Domain
Engn ring Update Domain

Model

Exi ling System
Specs

Figure 6-1 DOOR Software Development Life-cycle
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The goal is to construct a comprehensive domain model which should provide an

accurate description of the domain requirements at all times. Nevertheless, a

comprehensive domain model can be constructed only if features of all the

systems which belong to that domain are included. Of course it is not easy for a

system analyst or even a domain analyst to achieve this goal in the first

instance. The way to do that is to use existing systems requirements as a source

of information for domain analysis. In addition, the results of analysing new

systems are also used to update the domain model. The domain model, on the

other hand, provides a knowledge base, which is a repository of domain

requirements that may be used when new systems in the domain are analysed.

This way, we allow the domain model to evolve as well as ensuring that new

systems comply with the domain requirements. The domain model contains

information that describes the domain-specific requirements (see Figure 6-1).

These are domain taxonomy, reference architecture, reusable components,
domain resources and reuse guidelines.

In addition to the system analyst, there is another actor in the process, a

domain engineer who is responsible for modelling the domain and updating

the domain model. The domain engineer's tasks are identifying the common

features which are potentially reusable and analysing the properties of the new

systems to determine their reusability. If they are already specified in the

domain model they can be retrieved and used. If they do not exist, the domain

engineer sets design guidelines (in accordance with the domain constraints) for

building them in a form suitable for future reuse and the domain model is

updated accordingly.

The domain engineer's tasks are outlined in the domain engineering and

application engineering steps. The next sections explain these two phases.

6.3 Domain Engineering

Figure 6-2 shows the tasks carried out during the domain engineering phase.

Domain engineering is concerned with modelling the domain assets in the
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domain model. Domain analysis plays a significant role in the identification of

the constraints and rationales that govern the way systems are built within the

domain boundary. The various tasks of this phase are described here.
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Figure 6-2 Ta ks in the Domain Engineering Phase

6.3.1 o in Identification and Classification

These tasks ar hown in Figure 6-2. The first task (domain identification)

compris knowl dg acquisition and information collation from different

source of in orm .on. Th cond task is creating the first domain artefact (or

modifying th exi ting one) in the domain model which is the domain taxonomy.

The first ta k must be executed before the second one since the second requires

sufficient information about the domain before it could be conducted. It starts

with collecting information about the domain from sources which include

technical literature, existing systems, customer surveys, human expertise and

current and future requirements. For more information about domain analysis
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see chapter two. This task results in good knowledge to identify the domain

abstractions and its broad functional requirements. Enough and precise

information is crucial to construct a satisfactory taxonomy of the domain. The

taxonomy plays a major role in modelling the other assets in the model as well

as retrieving them when systems are synthesised. A satisfactory taxonomy

means that it reflects the main areas of the domain subject matters and makes

the modelling of the other assets easier to achieve. If the domain taxonomy is

over-simplified (small number of sub-domains) then its components will be

complex and difficult to reuse. Itwill also be difficult to specify the right form of

relationships between the components. If the taxonomy is over-structured (too

many sub-domains) then there will be a number of redundant components and

relationships. It also makes it difficult to identify the right reuse scope and

retrieve the relevant components from the domain model when systems are
synthesised.

Structuring the domain taxonomy has been covered in detail in chapter four. A

number of guidelines have also been proposed for building the taxonomy which

can be used here as well. As shown in Figure 6-2, during building the domain

taxonomy we may require additional information from the previous stage and

therefore we may need to go back to the first step to collect and analyse more

information about the domain. The process may involve a number of

consultations between the domain experts and the domain engineer in order to

achieve a satisfactory taxonomy.

6.3.2 Modelling Domain Resources

This task involves collecting and extracting two kinds of domain resources

(domain rationales and scenarios) from user requirements and existing systems

specifications. The third type of resources (domain dictionary) could also be

started here, but it may need amendment as the domain model expands,

therefore we left it to a later stage.
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The reason the rationales and scenarios are set in an early stage of the domain

engineering process is that these resources are used in the identification and

classification of domain-oriented components which follow this task.

6.3.3 Reusable Components Identification

In this step, we identify the domain-oriented components and classify them

according to their scope and group them into kernels which are included in the

domain taxonomy. At this stage faceted classification of these components (if

applicable) may also be generated to show relations between the components in

terms of generalisation-specialisation relationship. The components'

classification is based on the components' position on the taxonomy tree.

Components may only be related to other components if they fall in each other's

reaction space.

The identification of reusable components is a scenario-driven and iterative

process. The scenarios are set in the previous stage of the domain engineering

tasks. On the other hand, each iteration in the process involves a refinement

step in the object specification. The refinement is a responsibility-driven process

which uses the domain rationales for guidance.

When components are identified and classified they are organised in kernels and

placed on the domain taxonomy tree according to scope (see chapter four for

more details). The domain taxonomy may need to be changed according to the

components' classification. This is shown in Figure 6-2 by an arrow going back to

the task of building the domain taxonomy. More sub-domains may be added to

the domain taxonomy or omitted from it according to the availability of

components (see guidelines for building domain taxonomies in chapter four). The

next step of setting the domain resources may need changing as well. This may

only involve re-organising the resources over the taxonomy tree which has been

changed.
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6.3.3.1 Guidelines for Identifying Reusable Components

General guidelines for identifying objects when systems are analysed already

exist [Graham 1991]. Most of these guidelines are based on textual analysis

methods where nouns correspond to objects and verbs to methods. Certainly,

these guidelines could be used for identifying objects within the domain from

user requirements. Objects identified in this way may not be reusable and need

to be refined to make them reusable. Guidelines for writing reusable components

also exist (see chapter two) which may be applied when such objects are

designed and implemented. However, the following guidelines may also be used

for identifying reusable components.
Guideline 1

Apply textual analysis guidelines to identify possible objects from user requirements and
existing systems specifications.

Guideline 2

Analyse the domain resources set in a previous step and identify explicit responsibilities to
each identified ohject. Such responsibilities must not include access, constructor and
destructor or data output functions.

Guideline 3

According to the ohject responsibilities specified in Guideline 2, identify new objects that
could provide services to the objects identified in Guideline 1. Designate responsibilities
for each object.

Guideline 4

Use the domain rationales already identified in the domain model to refine the findings of
Guidelines 2 and J. This may involve additional services being added to the objects or
some being removed and assigned to different ohjects.

Guideline 5

Identify objects that have related names, part of a name or adjective and group them
together in clusters of ohjects.

Guideline 6

For each cluster identified in Guideline 5, identify any possible shared services that could
be reused by al/ or sub-groups of the objects.

Guideline Z
New objects should be created for encapsulating the shared services between objects
identified in Guideline 5. Attributes for such objects should also be identified and added
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to the new objects. The new objects are inherited by the objects identified in Guideline 5,
which reuse thefeatures of the new objects.

Guideline 8

For all the objects which are not related (linguistically) by name or part of the name, are
analysed for identifying common services between them. If such objects are found then
their common features must be identified and encapsulated in abstract classes and their
attributes are specified

Guideline 9

For all objects identified in Guidelines 1-4, look for objects that have a high number of
responsibilities. As a general rule the number of responsibilities must not exceed five
methods in one object. If any object exceeds the general rule then it should be split in
more than one object providing that the resulting objects exhibit high cohesion and low
coupling.

Guideline 10

Re-run Guidelines 2-10 looking for more possible common features within the refined
objects and carrying out anyfurther refinements until no more refinement ispossible.

Guideline 11

For the final version of refined objects achieved in Guideline 7, add a set of auxiliary
methods to each object. The list of auxiliary methods comprises a pair of access methods
(one for changing value and one for returning the value) and a data output method for
each attribute variable.

Guideline 12

For each concrete (non abstract) class identified, add a constructor and a destructor
method to its specification.

6.3.4 Component Specifications.

Semantics of each component are defined and documented and added to the

components specifications. In our approach, components' semantics are described

in terms of what is called the 3-D model of a component as shown in the figure 4-

7 and explained in chapter five. The model describes a component in terms of its

behaviour, domain scope and its reaction. The behaviour is denoted by the

component interface (signatures of all methods of the object); the domain

constraints are denoted by the scope of reuse which is part of the object

specification in this approach. The reaction space of the component includes

other entities whose state (internal values) are expected to change when one of

the component's services is invoked. This is denoted in the reaction space of the
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components which specifies the domain boundaries for the reuse of a
component.

When components (objects) are specified, the following information is included

(as shown in Figure 6-3):

1. Component's Name and Type:

The type is determined by the domain-oriented role which IS

encapsulated by the component's abstraction.

2. Scope:

This is the position of the components the taxonomy tree. In other

words, its parent domain name. From the component's scope the

reaction space could also be determined.

3. Behaviour:

This is a list of the component services (methods). At this stage, names

of the services only are listed here. Complete method signature could

be specified later.

4. Attribute :

The last item in the component's specification is a list of its state

variable that it is responsible of managing. These are called the

component's attributes.

Behaviour

Name and Type

Scope

Attributes

igure 6-3Domain-Oriented Component Specifications
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6.3.5 Domain Dictionary Compilation

The last of the domain resources to be added to the domain model is the domain

dictionary. The dictionary is compiled as item titles and descriptions. The

dictionary describes the domain perception of each item and is organised

according to scope. If an item is expected to be cited over the whole domain then

it should be included in the scope of the main domain. Similarly, if it is only

cited in one sub-domain then it should be included in that scope.

There is no restriction upon the information that should be included in the

dictionary. It depends on the nature of the domain to decide what information to

be included. For example, if the domain is widely known whose items are

already familiar then we expect the dictionary to be less comprehensive than a

dictionary for a less familiar domain. As a guideline, the following items are

recommended to be included in the domain dictionary:

1. Domain-specific acronyms.

2. Domain-specific hardware and devices.
3. Domain-specific procedures and transactions.

4. Real world objects that are found in the domain.

5. Domain-specific events and conditions that happen in the domain.

6. Sub-domains and unity domains in the domain taxonomy.

7. Domain-oriented components whose names are not familiar to the reuser.

6.3.6 Reference Architecture Modelling

Finally, the domain reference architecture and relationships among components

are modelled and added to the domain model. Domain architectures are

components' relationships modelled using the generic software architectures (see

chapter five for details). Each component in the domain model must be linked by

at least one architecture schema in the reference architecture. The reference

architecture specifies design conceptions in the domain which are used to link

components together in order to form valid domain-specific transactions. It uses
the domain scenarios as incentives for deriving the domain-specific transactions

in the design. On the other hand, the domain rationales are used to impose
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domain-specific constraints on the components' relationships. These constraints

are modelled in terms of the generic models' constraints and components' type.

6.3.6.1 Guidelines for Building Reference Architectures.

The reference architecture is used to specify dependency among components that

are identified in the domain model. The following guidelines are used to identify

dependencies in the reference architecture. These are guidelines which we have

developed from experience with building reference architectures. Other ways for

building the reference architecture are also possible and these guidelines should

not stop anyone from attempting other ways for building architectures.

Guideline 1

Use the 'is-a' relationship to model classification of components in terms of
generalisation-specialisation. Normally, the general type of components are found in a
parent domain and the special types arefound in sub-domains.

Guideline 2

Use the 'is-a' relationship to model dependency among an abstract component and its
concrete children. This type of dependency is used to model a consistent interface between
a number of components that have the same interface but vary in the way they are
implemented

Guideline 3

Use the 'is-a' relationship to model situations where the child component represents a
restricted condition of theparent component.

Guideline 4

Use the 'is-a' relationship between two or more polymorphic components to model design
alternatives. This relationship is mainly used to provide different implementations of a
certain service in the domain.

Guideline 5

Use multiple inheritance relationship to merge two functionalities from two distinct
objects in order to form another component that combines both functionalities. Such a
situation is mainly used to combine a data manager object (an object that is responsible
for maintaining data value or values) and a viewer object (an object that is responsiblefor
data display) to form a data manager component with specific viewingfunctionality. In
other words restricting the data display to a certain type.

Guideline 6

Use the association relationship between components that need each other's services in
order toperform their own services.
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Guideline 7

Use association relationships to model dependencies between one data manager
components and a number of viewer objects to imply possible ways for viewing the data
values.

Guideline 8

Use the aggregation relationship when components are related in the domain as one or
more components are part of another component. As an example a classroom object is
linked by aggregation relationship to a school object. If the relationship is meant to model
a design case rather than a domain-specific conception then it is more suitable to use the
association relationship.

Guideline 9

Use aggregation relationship with 'AND' function to model the case of a number of
components which are restricted to happen simultaneously in conjunction with another
composite component.

Guideline 10

Use aggregation relationship with 'OR' function to model the case of a number of
components are not restricted to happen simultaneously in conjunction with another
autonomous composite component. The unrestricted situation means that any component
could occur alone or with other components. It also means that all the components may
also be omitted since the composite class is autonomous.

Guideline 11

Use aggregation relationship with 'OR' function to model the case where a number of
components happening in conjunction with another semi-autonomous composite
component to model a situation similar to the one in Guideline 10 except that at least one
component must be available.

Guideline 12

Use aggregation relationship with 'EX-OR' function to model the case of a list of
components in conjunction with another semi-autonomous composite component. Any
component in the list is restricted to happen exclusively without the occurrence of any of
the other components.

Guideline 13

Use aggregation relationship with 'EX-OR' function to model the case of a list of
components in conjunction with another autonomous composite component. Any
component in the list is restricted to happen exclusively without the occurrence of any of
the other components. Since the composite component is autonomous then all the
components in the list may also be omitted

Guideline 14

Use a message relationship to model dependency between two components where one
componentprovides a service to the other componentfor performing a specific service.
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Guideline 15

Usea message relationships to model dependency between components that have been one
big component and then split into two or more components where services from one
components are needed by other components..

Guideline 16

Usean association relationships to model dependency between components that have been
one big component and then split into two or more components where services from
components are needed by each other. Refrainfrom modelling the relationship in terms of
aggregation because it implies high coupling between the components.

Guideline 17

Usea message relationship with multiple client-server to model service broadcastingfrom
the server component to a list of clients which must all be available for receiving the
service in sequence.

Guideline 18
Use a message relationship with concurrent client-server to model service broadcasting
from the server component to a list of clients which do not have to access the server in
sequence and without synchronisation.

Guideline 19
For every passive component in the domain model find an implicit creation model that
must link it to another active component. A good start to look for such relationships is to
look among components that are linked to that passive component by an association
relationship.

Guideline 20
Use the event-driven model to model a transaction which is described in a scenario
associated with an external condition, such as a hardwarepre-condition or a signal from
an external sensor, or a responsefrom the system user.

Guideline 21
There is a possibility that a situation like the one described in guideline 20 may involve an
implicit creation modelfor activating one or more of the components in the transaction.

Guideline 22
Use the batch process model to model a transaction that involves a repetitive sequence
between components and all components in the model are used to change the value of a
data entity, the contents of a datafile or the of status a hardware device.

Guideline 23
Use a periodic pipeline relationship to model a transaction that involves a batchprocess
that are likely to be repeated several times after the last task in the model is executed

150



Chapter Six

Guideline 24

Use the event-driven model in association with every periodic pipeline relationship to
register the event of terminating thepipeline.

Guideline 25

Use the event-driven model in association with every batchprocess to register the event of
starting thepipeline if thepipeline is not started by a message or a trigger relationship.

Guideline 26

Identify all the components that are linked by an association relationship without any
dynamic relationship between them. For each one of such an association, there is a
possible evolution in the reference architecture in thefuture to relate these components by
at least one dynamic relationship.

6.3.7 Reference Architecture Validation

The remainder of the domain engineering process is validating the domain

architecture. The validation process involves detecting invalid relationships

between components and identifying redundant or unsound relationships or
components in the architecture. The first type of validation (detecting invalid

relationships) is governed by the constraints of generic models which have

already been explained in chapter five. Such detection is done instantly and

automatically as the relationship is specified with the aid of the supporting tools.

The tool checks the type of the components used in the relationship and the

constraints imposed by the generic model to validate the application of the

relationship. If the constraints allow the combination then the schema is

accepted. If the constraints do not allow it then the schema is rejected instantly

and the relationship is deleted from the domain model; for more details see

chapter seven.

The second type of validation is concerned with improving the reference

architecture relationships and enhancing the overall design. This involves

identifying any redundant relationships and components, detecting any

incomplete transactions and updating the domain taxonomy and its kernel

components. Such validation is conducted by following a number of guidelines

used for verifying the architecture relationships.
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6.3.1.1 Guidelines for Verifying Reference Architectures.

The following guidelines are used for verifying the reference architecture in the

domain model. They mainly involve checking a combination of architecture

schemas and propose more suitable ways for designing the architecture. These

guidelines only propose alternative ways to organise the domain model and do

not enforce them. It is left to the domain engineer to decide which alternative

they would base their design upon. This is done deliberately in order to give the

domain engineer more flexibility in designing the domain model which allows

them to lay a specific schema that requires further refinement. Such refinement

could be done in the future allowing the domain model to evolve with time and

as new ideas emerge from analysing new systems.

Guideline 1

If there are two components linked to each other by one architecture schema such that
there are no other schemas that link any of the two components to other components in the
domain model, then such a schema may he redundant and the two components could be
combined together in one component.

Guideline 2

Consider the situation described in Guideline 1, if the schema is a pipeline relationship,
then it is not redundant.

Guideline 3

Consider a component situated in a parent domain and inherited by one or more
components situated in one sub-domain of the parent domain. If the component in the
parent domain is not linked by any other schema then it may be moved to the kernel of the
sub-domain.

Guideline 4

Consider the situation described in Guideline 3, if there is only one component in the sub-
domain inheriting from the parent domain component, then the two components may be
merged together in one component andplaced in the sub-domain kernel.

Guideline 5

Check all schemas that use the batchprocess model and lookfor the starting condition of
the pipeline. If there is no message or trigger relationships that indicate the start of the
relationship, then there should be an event-driven model specified for registering the
starting of thepipeline.
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Guideline 6

Check all schemas that use periodic batch process models and look for the terminating
condition of the pipeline. If there is no event-driven model usedfor registering when the
batch process is terminated, then such a schema is unsound and needs to be checked and
modified

Guideline 7

Consider two components that are situated in two separate sub-domains on the same level
of the taxonomy and need to be linked by a client-server model but they cannot be linked
because they are not situated in each other's reaction space. The solution to this problem
is to introduce a new abstract component which is inherited by the server component. The
abstract component must beplaced in theparent domain kernel.

Guideline 8

Generate a list of a/I the components that are linked by an association relationships with
no dynamic relationships between them. Such a list may be considered for possible
evolution of the domain model in thejuture.

6.4 Application Engineering.

Figure 6-4 shows the tasks of the application engineering process. The first step

in the process is choosing the domain scope to which the desired system belongs

and the domain boundaries are identified. One of the major problems with

domain-specific reuse has been the identification of the domain boundaries for a

certain application. DOOR solves this problem by classifying the domain into a

number of subject matters. This makes the identification of the domain scope

easier by browsing through the domain taxonomy to find out the subject matter

that best fits the new requirements. Ifyou have difficulty finding the right scope

for your system the following general guidelines may provide an incentive:
Guidelines (or Domain scope identification

1. Browse through a/I the unity domains in the taxonomy. These should be found at the
lowest level of the taxonomy tree.

2. Match the new system requirements with the unity domains on the taxonomy. Locate as
many matches as possible; this could be in the form of perfect or approximate
matches.

3. Make a list of all the unity domain that have matched the new system requirements.
4. Fo//ow all branches of the taxonomy tree going up from the unity domains until all

branches meet at oneparent domain. Thisparent domain represents the domain scope
for that system.
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6.4.1 System Synthesis

Once the scope is defined, a number of reusable objects can be retrieved from the

domain kernel. These are the intrinsic and frequently reusable components for

that scope. Relevant components that suit the user requirements can be

identified using the domain scenarios. So long as these are retrieved the

specifications of those components tell us about other components that are part

of their reaction space and could be traced using the generic architectures. When

all components are retrieved, the system is then synthesised and the domain

rationales (non-functional requirements) are taken into consideration. The

domain rationales are implemented and enforced on the design by means of the

constraints imposed on the generic architectures. Any domain-specific

constraints and rationales which could not have been implemented must be

taken into consideration when systems are synthesised.
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6.4.1.1 Guidelines for Synthesising Systems

When systems are synthesised from reusable components the main concern is

how close those components match the requirements of the desired system.

There is no guarantee that the existing reusable components provide a perfect

match to those requirements. However domain oriented components provide one

important incentive to achieve as close a match as possible. This is through the

design of purposely built components that are dedicated and cohesive. Broader

abstractions are achieved by combining two or more components together that

are related by one or more architecture schemas. The process of synthesising

systems is scenario driven and inspired by the responsibilities offered by the

components retrieved from the domain model. The following guidelines are

recommended when systems are synthesised:
Guideline 1

Study all the domain scenarios in the domain scope that have heen identified in the
domain engineering tasks.

Guideline 2

Match the user requirements to any of the domain scenarios and make a list of the
scenarios thatprovide similar transactions to the ones described in the user requirements.

Guideline 3

All the scenarios identified in Guideline 2 should have already been modelled using a
number of reusable components and generic architectural models.

Guideline 4

Identify any intrinsic components and frequently reusable components within the scope of
the matching scenarios. Some of these components must he used in the scenarios; make a
list of such components.

Guideline 5

Identify all the components that are linked to the components identified in Guideline 4 by
static relationships, andfall within the scope of the identified scenarios.

Guideline 6

Identify al/ the components that are linked by OR or EX-OR aggregation relationships
and retrieve the relevant alternatives,' use rationales as guidance for choosing the right
alternatives.
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Guideline 7

Identify the polymorphic components among the retrieved components and trace all
components that are linked by 'is-a' relationships tofind out the components that provide
the relevant implementation according to the user requirements.

Guideline 8

Identify all abstract components among the retrieved components and trace all component
that are linked by 'is-a' relationships tofind out the concrete components thatprovide the
desired abstraction according to the user requirements.

Guideline 9

For all the components retrieved in Guidelines 1-8, trace all the dynamic relationships
that link them to any other components.

Guideline 10

For all the schemas retrieved in Guideline 9, look for the ones that are related to the
scenarios retrieved in Guideline 1and retrieve all components that are involved in these
schemas.

Guideline 11

For all passive components retrieved in Guidelines 1-10, retrieve all active components
within the relevant scope that are responsible of activating thepassive components.

Guideline 12

For all components retrieved in Guidelines 1-10 and are responsible of announcing
certain events, identify and retrieve all components that register their services to those
events in event-driven models.

6.4.2 Reuse Assessment

The final stage of this process is reuse assessment where the whole reuse effort

is evaluated. This takes two forms; the first is assessment of any successful reuse

and problems encountered with the existing domain assets; and the second is

exploring new possibilities for reuse that may emerge from the current effort.

This may be in the form of new components, scenarios, rationale, dictionaries or

an adaptation to the existing assets. The results of the assessment could mean

that the domain model has to be modified and/or the task is repeated until all

possible reuse is explored.
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6.4.2.1 Guidelines for Reuse Assessment

The following guidelines are used to assess the reuse effort in the previous

stages. These guidelines tell the reuser about the main points to look for when

systems are built for assessing reusability of the domain assets and to give the

domain engineer new ideas for enhancing the domain model.

Guideline 1

Make a list of all the objects specified in the new system design and a list of all the objects
that have been reused without modification from the domain model The following formula
gives an indication of direct reuse in this effort:

r =!!... x 100%
N

where - n: number of reused objects in the system
N: total number of objects in the system
r: system's direct reusability

Guideline 2

Make a list of all the objects that have been reused with modification from the domain
model The following formula gives an indication of overall reuse in this effort:

Re r+ m x 100%
N

where - m: number of modified reusable objects in the system
R: system's overall reusability

Guideline 3

The higher the value of R the more successful reuse has been achieved The aim is to
achieve at least 50% overall reusability in the system.

Guideline 4

Calculate relative stability of the domain model using the followingformula:

S=!_x 100%
R

where - S: relative stability of the domain model
The lower the value of S the more the domain model needs evolution.

Guideline 5

Re-analyse the objects identified in Guideline 2 and the modification made to them.
Conduct domain engineering tasks to update the domain model accordingly.
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Guideline 6

Identify all the objects that are linked by association relationships with no dynamic
relationships between them. Analyse the way they were linked in the system and suggest
ways to link them in the domain model.

Guideline 7

Identify all the scenarios that have been identified in the system synthesis stage whose
components have been modified Analyse these scenarios and suggest ways to modify them
or create new scenarios and add them to the domain model

Guideline 8

For all the objects that have been reused directly, find out how many times they have been
reused in the past and update that number according to this effort. Report the overall
number of times those components are reused

Guideline 9

For all the objects that have been reused with modification, find out how many times they
have been modified in thepast and update that number according to this effort. Report the
overall number of times those components have been modified

Guideline /Q

Identify all the intrinsic and frequently reusable components in the current scope which
have not been reused in this system. These components should be recommended to he
considered during domain engineering tasksfor modification.

6.5 An Example of Domain Modelling

In the last two chapters, we introduced an example of the reservation systems

domain. A preliminary taxonomy of the domain was built in chapter four and a

list of reusable components has been identified. In chapter five, examples of

relationships between some of the components in the domain were

demonstrated. In this section, more examples are used to illustrate modelling the

domain scenarios and transactions using the generic architectural models.

Mter classifying the domain and building a domain taxonomy (see chapter four),

the next step in the process is modelling the domain resources; dictionaries,

scenarios and rationales. These are already modelled and presented in appendix

A Following is identifying reusable components and clustering them according
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to scope. Part of this step has been done in the preliminary domain taxonomy.

More components could be identified by following the guidelines in section

6.3.3.1. Table 6-1 shows the new components which have been identified with

respect to scope. The domain taxonomy is modified accordingly to reflect the final

version with the identified components as shown in Figure 6-5.

Table 6-1 Components Scope

Component Scope Component Scope

Customer Reservation and Trans_Mgr Reservation and

Inventory SW Inventory SW

Sales,J\fgr Reservation Purchase_Mgr Inventory

Stock_Shelf Inventory Borrower Library

Book_Shelf Library Library_section Library

Theatre Theatre Theatre_section Theatre

Seat_Arrangement Theatre Config_Mgr Theatre

Passenger Airline Airport Airline
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igure 6-5 The Reservation and Inventory Domain Taxonomy

The next step is specifying the domain-oriented components. Figure 6-6 shows

examples of the component specifications in the domain model. As shown in the

figure each component is specified with the scope and reaction space in the

taxonomy.

The next step is building the reference architecture of the domain which could be

divided into static and dynamic relationships. According to the information

available to us, the relationships used in the reference architecture are drawn

from the theatre domain. However generalised relationships in terms of abstract

classes are also included which are relevant to all domains.
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Theatre

Theatre

intialise
get_name

display_arrang
list_sections

Name
TotalNoOfTickets

TotalUnsoldTickets

Rack

Reservation and
Inventory SW

initialise
get_total_no_units
get_available_units

Name
TolalNootunits

NoOfAvaiiableUnits

Unit Seat Item

Reservation and Theatre
Inventory SW Inventory

initialse_seat

initialise
sell_seat initialise_item

get_name
is_reserved order_item
is_open manufacturerIs_available get_price productionreturn_it

get_cost

Name Style
Cost

Status Price

Row Stock_Shelf Book_Shelf

Theatre Inventory Library

initialise_row initialise_shelf
list_available_seats initialise_shelf get_number

add_item add_bookremove_item remove_book

position

Level
Number

Figure 6-6Examples of Domain-Oriented Component Specifications

The first type of static relationships are the generalisation-specialisation models

in the domain model. These relationships show what features components share

and what specific features each one has. Figure 6-7 shows examples of the

generalisation-specialisation relationships in this domain. These are useful for

two reasons; ::firstthey are used to show possible reuse in terms of inheritance

and second they are used to show which components behave similarly where

design conceptions could be reused when they are specified in terms of abstract

classes. The ::firstcase is illustrated in Figure 6-7-A and the second is illustrated

in Figure 6-7-B and C.
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Event - c-

Figure 6-7 Examples of Generalisation-Specialisation Models

The second type of static relationships is the use of aggregation models as shown

in Figure 6-8. The figure illustrates two cases; the first is a design conception

where a mixture of abstract and concrete components are used (see also section

5-5 for more details), and the second case is relevant to the theatre domain. The
interpretation of the first case (Figure 6-8-A) depends on the component types

and how they are modelled using the generalisation-specialisation model.

o
Rack

o
Row C(ibrary_

Shelf

o
Stock_
Shelf

Section
Seat_Arra
ngement

Group Theatre

-A- Row -B-

Seat

Figure 6-8 Examples ofAggregation Models
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The last type of static relationship (association model) is illustrated in Figure 6-

9. Again the figure shows a design conception and special cases relevant to the

corresponding scopes of the domain taxonomy. For example the case

demonstrated in Figure 6-9-B represents a design conception that could be used

across different domains where any Unit (abstract component) is associated with

an Event (another abstract component). Both components could be replaced by

concrete components according to the relevant scope. Figure 6-9-C illustrates the

use of this design conception in the Library domain scope whereas Figure 6-9-D

shows the Inventory domain case.

( Seat HTicket J rortonnanco J
-A-

-B- ( Unit ] ( Event ]
-c- Book Classification

-0- Item t--- Production

Figure 6-9 Examples ofAssociation Models

In modelling the dynamic relationships, scenanos and transactions in the

domain scope must be studied and converted into a number of relationships

between components which have been identified from these scenarios. It is very

usual that some of the architectural schemas will use other components in the

domain model since the responsibilities are shared among different components.
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Figure 6-10 shows examples of such relationships. The first example is drawn

from the sales analysis scenarios (Figure 6-10-A). In this example the scenario

itself is used as a name of one component in the schema. This is because the

scenario is modelled as a unity domain and by definition a unity domain is

treated as one system or component in the domain. In order to accomplish all the

transactions in the scenario, four components are needed. As shown in the figure

the Theatre component is referenced twice because once it provides a behaviour

that is its own responsibility and the other it has to ask one of its agents to

provide the required behaviour (see Figure 6-8-B for clarification). In a similar

fashion, the theatre configuration and ticket sales scenarios are represented in

Figure 6-10-B and C respectively.

·c·

·B·

Figure 6-10 Examples of Dynamic Relationships

When systems are synthesised within a specific domain scope the first thing that

we need to determine is scope. This could be done by following the guidelines in

section 6.4. In this example, identifying the domain scope is straightforward
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since the sub-domains are organised in a way that are self-explanatory. This

makes the search for reusable components easier. Once the scope is identified (a

theatre domain for instance), a list of intrinsic and frequently reusable

components could be retrieved from the taxonomy tree (refer to Figure 6-5).

These are:

Theatre, Theatresection, Performance, Seat_arrangement,

Config_Mgr, Seat, Row, Agent, Ticket, Sales_Mgr.

The rest of the components that we could identify are bounded components.

These are components that are only used for a particular transaction (unity

domain) within the theatre scope such as Theatre_Configuration or Ticket_Sales.

If we are building a system to help in the theatre configuration, for instance,

then the Theatre_Configuration component is retrieved as well.

Other components are retrieved from the domain model by following the

architectural schema that use the above components. For example, the

Performance component inherits from the Event component within the scope of

the main domain and therefore its behaviour is reused in the theatre scope. The

theatre domain reference architecture also tells us how the relationship between

Theatre, Section, Row, Seat and SeatArrangement components as shown in

Figure 6-8. These architectural schemas represent domain specific architectures

that are expected to be used in any system built within the theatre scope.

More components or design conceptions are retrieved from the dynamic

relationships in the domain model such as the one shown in Figure 6-10-B.

Thus, domain-specific generic architectures provide design architectures for

families of systems that could be instantiated when systems are built. The other

observation is that, as bounded components are used in an architecture schema

the design becomes more specific to a certain situation or system within the

domain (as the case with Figure 6-10). This proves that unity domains represent

the lowest form of reuse with the domain taxonomy, however they are important

for modelling the application of reusable components in the domain as well as

variation among domain behavioural abstractions.
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6.6 Summary

In this chapter, we have introduced the reuse process in DOOR. This process

was divided into two phases; Domain Engineering and Application Engineering

which are executed simultaneously and recursively. The nature of the reuse

process is organised in a way that supports the evolution of the domain model

and its artefacts. This is achieved by taking into consideration the domain-

specific features and requirements that may be identified when new systems are

analysed and developed. Furthermore, when the domain model assets are

reused, the process is assessed to verify the domain-specific design as well as

identifying possible means for updating the domain model in terms of adapting

the domain architectures or introducing new artefacts.

The process is supported by a comprehensive set of guidelines for guiding the

domain engineer in the development and adaptation of the domain model. The

guidelines introduced in this chapter covered the following aspects of the reuse
process:

1. Building domain taxonomies

2. Reusable components identification

3. Building reference architectures

4. Reference architecture verification

5. Domain scope identification

6. System synthesis

7. Reuse assessment

In the last section of this chapter, we introduced a number of examples for

modelling reference architectures and synthesising systems within the domain of

reservation and inventory systems. The examples illustrated the use of generic

architectures in modelling design conceptions and components' relationships

within the domain and how components are identified and retrieved from the

domain model.
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The process could also be conducted automatically using a supporting tool which

helps build domain taxonomies, architectures and verifying them. This tool is

introduced in the next chapter.
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7. Description of DOOR Tools for Storing and

Retrieving Domain Assets

7.1 Introduction

In this chapter, the supporting tools for the DOOR process are described.

The tools are used for both building the domain knowledge base and

retrieving the reusable artefacts when systems are synthesised. The

discussion starts with an overview look at the main features and

functionality of the tools as an integrated environment. In section 7.3, the

tool support for modelling and representation of the domain assets is

outlined. Separate tool for specifying each domain artefact is used; these

are taxonomy editor, architecture editor and object specifier. A separate

integrated tool is used for modelling the domain resources; this is the

resources editor. In section 7.4, the automatic retrieval of the domain

assets is discussed.

Section 7.5 introduces a real world case study of a typical domain with

modelling the domain resources and artefacts. The chapter is concluded

with a summary of the main points.

7.2 Overview and Main Features of the Tools

The tool is an integrated environment for organising and presenting

domain knowledge and reusable assets. Figure 7·1 shows the architecture

of the tool. It shows how the tool supports both design for reuse and design
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with reuse. Within design for reuse, the DOOR assets are specified and

added to the knowledge base using the taxonomy editor, architecture

editor, object specifier and resources editor. When systems are synthesised

(design with reuse), the reusable artefacts are used to identify and

retrieve components that are necessary for system integration using the

system synthesiser.

USER .

Object
Spedfler

Tuonomy
Edttor

An:hltecture
Editor

Resources
Editor

Knowledge Base
---. Control
......... I/O

D J WlthReu Deslen For Reuse

igure 7-1 Context Diagram of DOOR Tools

The taxonomy and architecture editors allow the user to specify the

domain taxonomy and reference architectures graphically, whereas the

obj et cifier and resources editor are used to specify reusable

compon nt and domain resources textually. The structure editor and the

graphical editor are used by other parts of the tool for displaying output

and communicating with the user. On the other side, the reuse assessor is

used for eh cking validity of the overall domain architecture design. The

infra tructur manager controls the flow of information between the

differ nt parts of the tool as well as managing dependencies among the

domain assets.

The DOOR tools are designed using object-oriented techniques. All

different tools as well as domain assets are modelled as objects and stored
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m the knowledge base usmg persistent objects. The assets manager

manages the flowof data between the knowledgebase and the other parts

of the systems. It uses two types of data files for this purpose; one for

storing domain taxonomies and architectures using persistent objects and

the other is for storing HTML(Hyper Text Markup Language) source code

for future retrieval. The latter is mainly used for storing domain

resources. Figure 7-2 shows the DOOR environment and its integrated

tools.

7· ho b obj eli am for the system. All parts of the

t

(in 1 din r u able objects) are modelled using an

'Ab tract Domain' which enables the tool to
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manipulate the domain model artefacts effectively. Thus all tools

recognise only one abstract type of entities whose specific types will be

determined within the relevant tools. The Abstract Domain classification

and inheritance diagram are discussed later in this chapter.

structu ...
EdBor 1

TlXo"omy
Ed,ltor u,1 1

Object 11 "f,.. tructu ...rs~m.,. Ma.".".,.

1,m
1 1 mhltectu ...
1 ~ Id,ltor

~Il 1

R•• ourc ••
, 1

o,.m Ed,ltor 1 1

~ A ••• ts
Ma".".,. Domll" u,

1 t'-iT Structu...

~o,m
1

Domeln Lft_LrtR•• ourc ••
Abstract

~ Domll" mhltectu ... tT

Figure 7-3 Object Diagram of DOOR Tools

The main functions of the tool could be summarised as follows:

1. Building the domain taxonomy graphically. This includes structuring

the domain into levels of sub-domains and identifying reusable

components within each scope.
2. Specifying the reusable components according to scope. This includes,

specifying name, attributes, methods, type and scope of the

components.
3. Specifying the domain resources and generating HTML source code for

accessing the domain model using the WWW(World Wide Web).

4. Building the domain reference architecture using reusable components

and relationships as specified by the generic architectural models. This

also includes checking the validity of each schema within the

architecture.
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5. Allowing the user to browse through the domain model for identifying

and retrieving domain assets from the domain model. This is used

either by using the tools in the DOOR environment or through an

HTML browser.

6. Checking the validity of the overall design of the reference architecture

and reporting any design errors or redundant schemas in the design.

7.3 Automatic Modelling of Domain Assets

Reusable assets have been introduced in chapter four of this thesis and

their object model is shown in Figure 7-4. The domain assets are either

resources or artefacts.

DOOR Domain
Ass.t 1 Mq.{I.1 1

~ O,m O,m 1,m 1,m

Domain Domain
R.sourc.s Artefacts

~I
~

1~ ~I
~

I~
Dictionary Sc.narlo R.usabl. Oomaln

~ ... Ob.l.ect TUQLlomy

Rational. -<J-1 Arehltecture
~ 1 ...

Figure 7-4 DOOR Reusable Assets Classification

The domain resources are information items which are collected from

different domain analysis sources of information and organised in

Dictionary, Scenarios and Rationales. These are stored in the domain

model (domain knowledge base) as HTML source code and accessed using

an HTML browser. The artefacts are reusable work products which are

developed by the domain engineer and added to the domain model. These

are the domain taxonomy, reusable components and reference

architecture. Three of the DOOR tools are used for specifying the domain

artefacts which are the taxonomy editor, architecture editor and object
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specifier. As shown in Figure 7-4, the domain model is connected by a

whole-part relationship with the domain assets but with different

cardinalities. For instance, there are only one Architecture and one

Taxonomy in the domain model whereas you could find a number of
reusable objects in the same model.

7.3.1 The Taxonomy Editor

The taxonomy editor is used for building domain taxonomies graphically.

Figure 7-5 shows the components of a domain taxonomy as designed
within the tool.

Domain Ust

~
Domain Abstract

Taxq.Q0my Domain

r....

~_.N~ r....
Domain System Kernel

~
r>; f1 r-. 1 rt>---J O,mI

M.lnDomaln Unity Domain Reusable
()_bJ,ect-

Figure 7-5 Domain Taxonomy Components

As has been stated in section 7.2, an abstract class (Abstract Domain) is

used to model all parts of the domain taxonomy, which itself is a sub-class

of another abstract class (Domain List). The use of these abstract classes

allows the taxonomy editor to structure domains as trees of sub-domains

and kernels of reusable objects as was described in chapter four. The

domain taxonomy and the subordinate are modelled as a list of abstract

domains. The domain taxonomy contains domains, unity domains, kernels

and objects, whereas the subordinate contains domains and unity

domains. Each domain contains one subordinate and one kernel and a

kernel contains zero or many objects.
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Figure 7-2 shows the user interface of the entire environment. The

taxonomy editor is shown in the figure as a graphical editor which is

designed as a user friendly and easy to use application. It uses a drag-

and-drop approach to building different components of the taxonomy. It
also instantly checks the validity of any action taken when taxonomies are

built. For instance, it does not allow you to add two kernels to a domain or

a sub-domain in the taxonomy as this is not permissible within DOOR.

using object modelling.

7.3.2 Architecture Editor

As stated in chapter five, a domain architecture contains a number of

architecture schemas. Each schema has two or more components (reusable

objects) which are related using one or more generic architectural models.

Figure 7-6 shows the generic architectures as modelled in the system.

Archltectun
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Figure 7-6 Generic Architectures Object Model
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DOOR uses seven generic architectural models for modelling the

architecture schemas, which are client-server, aggregation,

generalisation-specialisation, association, batch process, implicit creation

and event-driven models. The reusable components are classified into

eight different types as shown in Figure 7-6. Each type is associated with

a number of constraints regarding which model could be used for

connecting with other components. These constraints are used for

checking the validity of the architecture design. For more details about

generic architectures, architectural models, reusable components and

constraints refer to chapter five.

As is the case with the taxonomy editor, the architecture editor uses a

graphical editor for building reference architectures and adding them to

the domain model using a user friendly interface (see Figure 7-2)

7.3.3 Object Specifier

This tool is used for specifying reusable objects. Figure 7-2 shows the

object specification tool as part of DOOR tools. Objects are specified in

terms of their attributes, services and type. The object scope and reaction

space are determined through the domain taxonomy and therefore the

user need not worry about the scope and reaction space. The object

specifier generates a list of attributes and services for that object and adds

them to the domain model with the type, scope and reaction space. It also

generates an HTML source file and stores it in the knowledge base which

can be accessed by an HTML browser.

7.3.4 The Resources Editor

Similar to the object specifier, the resources editor provides a tool for

specifying different resources and storing them in the domain model. It

too generates an HTML file that could be accessed through the WWW

using a suitable HTML browser. Figure 7-2 shows the resources editor (as

part of DOOR tools) which is used for specifying the three types of the
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domain resources (dictionary, scenarios and rationales). The only way to

retrieve these resources during design with reuse is through the WWW.

The tool also allows different resources to be linked together so that they

could be accessed through other resources. This is done in the HTML files

by providing links from one resources file to another

7.4 Domain Assets Retrieval

In this work, a knowledge-based approach to software libraries is adopted.

The approach is supported by information representation method which is

based on the scope of reuse and behaviour of the components in the

knowledge base. So far, in this thesis, the issues concerning the

representation of the knowledge base items have been discussed. One of

the main obstacles in building component libraries is how to represent the

components' functionality in the domain [Maarek, 1993]. In previous

chapters, modelling of components' behaviour has been introduced which

is used as a basis for representing the components and relationships

among them in the knowledge base. In this section, we concentrate on the

use of this model for retrieving reusable components from the knowledge

base.

An enumerated approach to domain classification is used for organising

the domain assets in the knowledge base. In an enumerated classification

scheme, the domain is broken into mutually exclusive classes [Frakes and

Gandel, 1990]. Domains, in our approach, are classified into a number of

sub-domains that represent the scope for reuse and retrieval indexing

mechanism. Thus mapping components retrieval to their application in

the domain which provides a context for the component's application at

the same time it is retrieved.

Figure 7-7 shows how the domain assets are stored and accessed in the
domain model (knowledge base). As shown, the knowledge base is central
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to the approach, however the domain taxonomy is both a representation

and indexing mechanism for storing and retrieving the domain assets.

Domain Domain
Do Domain Knowled e Domain Taxonom
Analysis Classification Knowledge

Base

Component Models

Identify Reference Enumerated
Architectural Architecture Classification

Reusable RelationshipsComponents

---------------------- ",,'

..'" v .;

Identify Reuse 1---+ Identify Kernel f--+ Trace r---+ System
Scope Component Components Synthesis

Figure 7-7 Domains Assets Retrieval

DOOR tools support design with reuse by allowing the user to browse the

domain model for finding and retrieving the relevant assets. The key point

to retrieving reusable assets is the identification of the relevant domain

scope. DOOR tackles reuse from the scope point of view. Once the scope is

identified, the tools will be able to locate the relevant assets for that scope.

This is very useful since these assets were designed to be used within that

scope in the first place. On the other hand, the search for relevant

components is more focused to the domain abstraction and its

applications. In contrast, other component classification schemes, such as

the faceted classifications scheme [Prieto-Diaz 1987], suggest schemes for

classification that emphasise the functionality of the component rather
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than its application. This may cause the reuser to be unsure of whether

the component is the right one for the application. In DOOR, the

component's scope and relationships with other components describe how

and where a particular component could be reused within a domain or a

sub-domain.

Mer identifying the domain scope, its kernel components are retrieved.

These are easily found by browsing the kernel contents in the tool. Figure

7-8 shows the domain browsers where the user could skim through the

domain subordinate and kernel or to go back to the parent domain. When

a component is found its specifications could be displayed and retrieved.

Components in the kernel could also be used to trace other components in

the domain model and their relationships which may be used, with the aid

of the domain scenarios, in the design and implementation of the new

synthesised system (see Figure 7-7).

Figure 7-8 Browsing the Domain ModelAssets
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There is also the possibility of the whole reference architecture being

examined and traced looking for relevant design schemas and components

to be used in a specific design. Domain resources could be accessed using

the WWW and HTML files. In the next section, a case study is used to

show how different assets are modelled and retrieved using this tool.

7.5 Case Study (The Process Control Domain)

The domain of process control is a good example of hierarchical domains

that could be broken down into a number of sub-domains. Figure 7-9

shows a sketch of the role of computer in the process control domain. The

variety of tasks that a process control software is responsible for makes

this domain an interesting and challenging domain to analyse.

Proc.ss

---.. Informetlon flow
---. Control Sign.'
___... Fluid Flow

Process Control Computer

Plotter

Control Room

Figure 7-9 Process Control Domain

A process control computer is usually responsible of a number of tasks

that vary between Control Algorithms, Control Room Activities, Data

Acquisition and Product Quality Control. The main aim of the process
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control software is regulating and maintaining the controlled variables (in

the process) within certain limits to ensure the quality of the product.

Previous research in the domain of process control has shown the

challenge of analysing this domain [Leveson 1990; Matsumoto 1993;

Halang and Kramer 1994; Leveson, et.al. 1994; Pirklbauer, et. al. 1994].

However most of these research attempts have concentrated on one aspect

of the process control software. They also failed to show how different

parts of the domain are related. In this case study, the whole of the

process control domain is modelled as the main domain which comprises a

number of sub-domains as shown in Figure 7-10

Process Control

Kernel

Control Room Process Plant Quality Control

Figure 7-10 Process Control Sub-domains

In Figure 7-10, the process control domain is divided into three sub-

domains which share some commonobjects from the main domain kernel.

All relationships between the sub-domains are made through these

objects. The process plant sub-domain represents the domain where

software components that are responsible for controlling and monitoring

the process behaviour are modelled. Therefore this abstraction comprises

three closely related sub-domains which are Testing, Control and Data

Acquisition. Appendix-B shows a detailed classification of the entire
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domain of process control software. In this case study, the process plant

sub-domain is modelled in more detail and in particular the control

abstraction is emphasised. A number of preliminary reusable components

are identified and classified in Appendix-B. These components are

distributed along the three sub-domains, however no attempt was made to

define their scope within the domain taxonomy. From the first stages in

analysing this domain, it is obvious that there is an overwhelming amount

of information to analyse; this is a common feature among all real-world

domains. For instance, the classification of the reusable components in

Appendix-B is not enough to understand their functionality or how they

are applied. There is a need for more information about how these

components are related and how they are used for synthesising new

systems. Applying the DOOR approach will clarify a number of issues that

the reuser faces when trying to reuse these components. DOOR allows the

results of domain analysis to be organised in a way that is easy to follow

and suitable for effective retrieval of information.
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The taxonomy of the process plant sub-domain is shown in Figure 7-11.

The moment the domain taxonomy is built, reusable component r

easily allocated and their applications are identified simply by id ntifying

the domain scope.

K.rn.1 ~
nl ~
Cor'N'WIf ~
EqulpmM'lt ~

ADC ~
MC ~
Clock ~
Event ::.

Figure 7-11 Process Plant Domain Taxonomy

The domain reference architecture contains information about how the

components are related and design alternatives in terms of architecture

schemas. In this example, the reference architecture within the control

sub-domain is illustrated. The static relationships in the reference

architecture are shown in Figure 7-12. These relationships (in terms of

generalisation-specialisation, association and aggregation models)

represent dependencies among components. Some design alternatives are

shown in Figure 7-12. For instance, the Control__Algorithm component is a

polymorphic non-autonomous component which is linked by a whole-part
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relationship with a semi-autonomous component (Continuous-Controller).

The Control-Algorithm component in this case is an abstract object that

represents a design alternative. Such an architecture schema may be

instantiated into a specific system design using one of the

ControLAlgorithm children components. If a specific design conception

requires an explicit modelling then concrete objects should be used in the

schema as the case with the three components P_Control. PI_Control and

PID_Control, which are linked by an EX-ORed whole-part relationship

with Continuous-Controller component.

( Converter )t----i( Instrument)

Figure 7-12 Static Relationships within Control Sub-domain
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In dynamic relationships, interactions between components are modelled

which are used to represent conceptual design decisions of a certain

domain transaction. Such domain transactions are captured in one or

more domain scenarios and restricted by domain rationales. In the control

sub-domain scope, a typical domain scenario is illustrated in Figure 7·13.

This scenario represents the transaction of reading a process value by the

Controller component for computing a controller output value. Such a

scenario could be modelled using the dynamic relationships in the generic

architectures. A similar scenario in the control sub-domain scope is shown

in Figure 7-13; the controller output scenario. This scenario is a typical

domain specific scenario within the process control domain which specifies

how the controller performs its control actions and interacts with the

process.

Reading Process Value Scenario

In order to compute the controller output, the controller
reads a process value from the relevant instrument. This is
an analogue quantity that needs to be converted into a digital
quantity by means of a suitable analogue-to-digital converter.

The period of the reading frequency is determined by a real-

time clock.

Controller Output Scenario

The controller carries out a control action computation using

a specific control algorithm. The controller output value

depends upon the controlled value, the controller last value

and the control-algorithm parameters. When the controller

action is computed, the controller output value is sent to an
actuator for modifying the process state. Typically, the

controller output value is first converted into an analogue

value (using a digital-to-analogue converter) before it is sent

to the actuator. The actuator then performs the controller
action on the process.

Figure 7-13Domain Scenarios
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Figure 7-14 shows a number of dynamic relationships to model the

scenarios shown in Figure 7-13 and other domain specific transactions.

The architecture schema shown in Figure 7-14-A models the first scenario,

whereas Figure 7-14-B models the second scenario. In Figure 7-14-C a

batch process model is used in an architecture schema for modelling the

shutdown procedure in the domain. The shutdown procedure usually

comprises a certain schedule for switching off a number of equipment

(motors, pumps, compressors ...etc.) in a certain sequence. The shutdown

component is triggered by an external event, and in turn it passes a

message to the PLC component for switching off the equipment. This

process is a periodic process which means that a number of equipment and

a number of steps in the PLC program are involved. The batch process

ceases when the end of the schedule is reached. An event-driven model is

used in the schema to mark the end of the schedule as an event for

stopping the shutdown process.
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Figure 7-14 Reference Architecture Dynamic Relationships

The modelling process continues for modelling all the relationships

between the components in the domain model. In this case study, only the

domain artefacts are modelled. Domain resources are also added to the

domain model as well such as the scenarios shown in Figure 7·13.

Specifications of some of the components used in the above architecture

schemas are found inAppendix B.

7.6 Summary

In this chapter, a number of automated tools for modelling and retrieving

domain assets were described. As outlined in the previous sections, the

tools were based on the existence of a common knowledge base of the

domain resources and artefacts. This knowledge base is central to the

DOOR approach as well as the tools. An enumerated classification scheme
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has been adopted for storing and retrieving the domain assets. Therefore,

when components (as well as other information) within the domain are

stored and retrieved the scope of their application is specified as

abstraction levels within the domain taxonomy. On the other hand,

interactions between components and architecture schemas are governed

by the scope of the participating components. This is checked with regards

to the constraints specified by the generic architectural models (see

chapter five), which are performed automatically when architecture

schemas are processed internally.

A case study from the domain of process control was introduced to

illustrate how this approach could be used for modelling a real world

domain. One of the main conclusions drawn from analysing such a domain

is the amount of information involved in the analysis process. Such

information needs to be sorted and organised in such a way to allow easy

locating and trace as well as retrieval of the domain assets. Using the

DOOR approach gives us a more systematic way of organising and

representing the domain knowledge that are easy to follow and

understand. For instance, the preliminary identification of reusable

components in the domain (Appendix B) results in a list of components

that has no guarantee for reuse. The moment that these components are

classified according to their scopes, they have better chance to be found

and retrieved since their application is narrowed. With the specification of

the relationships between components, the components are given an extra

dimension in terms of behaviour that provides better grounds for

understandability as well as tracing and retrieving them.

As a summary, DOOR approach provides a solution for some of the

problems associated with reuse that have been outlined in the first

chapter. There are some limitations to using this approach which will be

discussed in the next chapter.
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8. Conclusions, Critical Assessment and

Future Work

8.1 Introduction
In this chapter, the DOOR approach is evaluated to identify its advantages and

limitations and suggestions for future work are highlighted. Section 8.2 starts

with analysing the results of applying the approach pointing out its strengths by

comparing it to other approaches. The limitations are then outlined and

situations where the approach could or could not be applied are identified. In

section 8.3, possible areas for improving and expanding the approach are set out.

8.2 Conclusions and Critical Assessment
The thesis has described an approach to software development from reusable

objects, which is called domain-oriented object reuse (DOOR). The approach has

tackled the problems associated with reusing objects within the context of a

specific domain. The main features of the approach may be summarised in the

following points:

l. DOOR integrates Domain analysis within the development life-cycle and

allows the domain assets to evolve as new systems are analysed and

implemented.
2. The context for reuse is emphasised in DOOR by identifying the scope of the

analysis of domain knowledge as well as the application of the reusable

assets.
3. An enumeration classification scheme is adopted for organising the domain

knowledge as well as locating and retrieving its assets. The scheme is based

on the notion of the domain scope. Thus, scope acts both as a style for
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presenting the domain knowledge and a technique for archiving its

components.

4. Reusable components are described using the 3-D model which specifies

components in terms of their scope, behaviour and reaction space. The model

is used to describe the components' functionality. Together with components'

type, the model is used to specify the interactions between components within

the domain scope.

5. Dependencies between components are modelled by means of a number of

architectural models which are defined in the generic software architectures.

Each model comprises a relationship which is used to link two or more

components together and a set of constraints which restrict the use of the

model to specific component types.

6. Component relationships are specified using architecture schemas which

represent design conceptions or design alternatives within the domain. When

systems are built, the architecture schemas are instantiated into specific

system design decisions. Thus the architectural models and schemas present

solutions to the domain problems, which (the solutions) are encapsulated in

the reusable components.

7. In addition to the technical support for reuse provided by the generic

software architectures, DOOR provides a reuse process for modelling and

applying the domain assets. The process has been divided into two phases,

Domain Engineering and Application Engineering. The process is organised

in a way that supports the evolution of the domain model and its artefacts.

This is achieved by taking into consideration the domain-specific features

and requirements that may be identified when new systems are analysed and

developed.

8. A set of guidelines has been introduced for guiding the domain engineer in

building the domain artefacts and validating the domain model design. A

number of guidelines have been proposed for assessing the process and

identifying possible means for updating the domain model in terms of new

artefacts or modifying the existing ones.
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9. The approach is supported by an integrated set of tools to help in the

organisation of domains and modelling their assets. The tools were based on

the existence of a common knowledge base of the domain resources and

artefacts.

8.2.1 Advantages of the DOOR approach

In our opinion, the strengths of the approach could be summarised in the

followingpoints:

1. The enumerated classification scheme adopted in this approach is used for

presenting the domain knowledge in a structural form based on domain

abstractions. This type of classification organises the domain in a hierarchy

of related sub-domains which makes it easier for the user to locate and

retrieve information effectively.
2. When a system is built within a certain sub-domain scope, reusable

components are located immediately and presented to the user. A number of

levels of component reusability could be identified depending on their scope.

Components within a specific domain scope have a high chance for reuse

within the scope of its subordinate; thus such components have the highest

level of reusability.

3. When components are specified and included in the domain model the

relationships between components are also modelled. These relationships

represent some design conceptions or alternatives in terms of architecture

schemas that could be instantiated into design decisions when systems are

built. The same components may be used in more than one schema allowing

reconfiguration of the architecture for accommodating different design

conceptions. This increases the reusability of the component in different

contents.
4. Using the genenc software architectures in modelling component

relationships has the advantage of standardising the types of relationships

that link components together. A software practitioner needs only to be

familiar with a limited number of architectural models for modelling or

understanding components relationships.
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5. The generic architectures impose some constraints on component

relationships within the architectural models. Although such constraints will
restrict the use of the models to certain types of components, it has the

advantage of allowing checking of the architecture design against the

constraints. Another advantage is that the constraints are used for ensuring

that the relationships used in a certain schema are the ones that are

intended for domain-specific constraints.

6. The use of the guidelines in the DOOR reuse process is very useful for anyone

who is using the approach as they provide a number of steps to be followed

for achieving the complete domain model. They are also useful for checking of

the architecture schemas automatically.

8.2.2 Limitation of DOOR approach

Despite the advantage that has been listed in the previous section DOOR has

certain limitations. Mainly these limitations are associated with the hierarchical

organisation of the domain assets. The following points summarise these

limitations:
1. The hierarchical approach to organising the domains in a taxonomy tree

might not suit all domains. Some domains may not be so structured, some are

just flat domains or some of them are so inter-related that their sub-domains

are dependent on each others' operations. In such cases DOOR might not be

the best way of organising the domain taxonomy.

2. In some cases domains cross each other's borders in which components or

operations in one domain could be used in a different domain. Currently,

DOOR does not support importing components from external domains to be

used by the domain components. This is not a limitation but a case for

possible extension for the approach.

3. Sometimes problems related to interaction between sub-domains in the

taxonomy are solved by introducing common components within the parent

domain scope. Such components are then linked to components within the

scope of the sub-domains, mainly by an is-a relationship (as shown in Figure

8-1) which allows the components in the sub-domain to access the parent
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component. In some cases the interaction between components happens

within sub-domains that are not located in the subordinate of one parent

domain in which case the is-a relationships becomes more and more

complicated which hinders the reuse of the components in the domain model.

Parent
Domain

I
Kernel
parent_
comp

/ <.
Sub-domain Sub-domain

I I
Kernel Kernel
server; client_
comp comp

Figure 8-1 Cross Level Component Interaction

4. DOOR allows components in the domain model to evolve with time as new

systems are built within the domain scope. In DOOR the components in the

domain model are assumed to be the final versions in the domain model. In

some cases we need to keep a track of all the changes made to a specific

component in order to understand the component behaviour or for reusing

older versions of the component. Currently DOOR does not support multiple

versions of reusable components nor does it support multiple facets of

components. The only facets supported by DOOR are the components' 3-D

model, specifications and code.

8.3 Some Ideas for Future Work
During the course of this project, a number of problems have been addressed

regarding reuse of software components and analysing and presenting domain

knowledge. Further problems have been faced as the work progressed where we

tried to give some feasible solutions through the use of generic software
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architectures. Some of these problems still need to be addressed where time has

not been enough to do so during this project. Other ideas have been inspired by

the research which could be pursued as future extension to the project or as a

whole new projects in the future. The following ideas are possible future work

within the area of object-oriented reuse and domain specific architectures:

1. The first extension in this approach is to address the problem of inter-related

domains where components specified in one domain may be used in another

domain subject to some type and constraint checking. One possible solution to

solve this problem is to allow the definition of an external domain or a friend

domain (similar to a friend class inC++). In this case some research is needed

to identify situations where such friend domains mayor may not be

permitted. Guidelines are also needed for specifying how external (or friend)

domains are specified, in which case the guidelines proposed in this project

need to be extended to accommodate this case.
2. The use of generic software architectures has prompted situations where a

number of models could be used in one architectural schema. In situations

like this, research could be conducted for identifying patterns of relationships

within the architectural schemas. When such patterns are identified and

classified, another possible future research is finding ways to convert these

patterns into object-oriented patterns (see chapter three for discussion about

object-oriented design patterns). Figure 8-2 shows a proposed approach for

future project within the area of object-oriented reuse and pattern languages.

Domain Instantiate schemas Convert Schemas
Knowledge Build Architecture

Schemas
for specific systems into Design

design Patterns

Possible Automatic
Code Generation

Figure 8-2 Generic Architecture to Design Patterns
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As shown in Figure 8-2, the proposal comprises the use of the generic

architectures to build architectural schemas that encapsulate the domain and

abstraction and could be instantiated into specific system's architecture or

design based on the architectural models. Such system architecture is then

mapped into a number of object-oriented design patterns which could provide

more implementation oriented solution to the domain knowledge. Possible

automatic generation of code could then be investigated based on specific

design patterns. A pattern language might be needed for specifying the

system design in terms of design patterns; such a language could be used as a

basis for code generation.

3. One of the problems that are related to reusing and retrieving components is

identifying which version of the component is required and what modification

has been made on the component so far. A highly needed research work at

the moment is investigating configuration management procedures related to

indexing and maintaining reusable components. Such configuration

management procedures could be more useful if supported by a software tool

that automates version control of the reusable components. Such a tool must

have the ability to express the type of changes, the motivation behind the

change and the new features as well as the old features. Links from new to

old versions and vice versa should be allowed within the tool in order to

facilitate trace the relevant component in the domain model.

4. One of the increasingly used approaches to software reuse is the use of the

internet and the World Wide Web (WWW) for tracing and retrieving

software components. In our approach a Hyper Text Mark-up Language

(HTML) files have been automatically generated for supporting accessing and

retrieving domain resources from the domain model. A possible extension of

this work could involve the use of the internet as an environment for

accessing libraries of components with procedures for subscription to the

library and access control for allowing multiple levels of access to the library

according to domain abstractions. Internet support could be provided to
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access the domain architectures and component relationships graphically.

Links between components should also be traceable through the internet

while having the access control still enforced on the library access by external

subscribers.

As a conclusion, the work has addressed a number of the issues that are

currently facing the reuse community and opened avenues for further work. One

of the lessons which have been learnt in this project is: software components

could be large or small, however their reusability depends on how well they are

described and modelled. This leads to the issue of information presentation; the

project has emphasised this point through presenting domain knowledge and

domain-specific design conceptions. On the other hand, dedicated components

that are designed to be applied in conjunction with other components could prove

to be highly reusable because of their interaction with other components.

Finally, the approach has been applied to two case studies which showed

benefits in modelling and retrieving domain assets.
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Appendix A

A·1 Introduction
In this appendix, the example of the theatre domain is described as presented
by Tracz in his paper (Tracz 1995). The description focuses on the modelling
aspects of the domain artefacts as presented in the paper. A user needs
statement of a reservation system in the theatre domain is first introduced.
Later this statement will be used as a basis for generalising the solution over
the whole domain. Next, a number of scenarios from the domain are
presented. Some of the domain model components are then shown as
modelled in the paper.

A·2 User Needs Statement

I am in charge of the finances for a play that is being
performed by our community theatrical group. This is a one
time shot, but I think it would be nice to have a computer
program to help the person taking phone and mail orders for
tickets. Depending on how it works, I may want to use it for
the rest of the performances by our theatrical group.

The theatre we are using has reserved seats (i.e., row
number, seat number). We are charging $10 for orchestra
seats and $7 for seats in the balcony.

We would like the program to tell us such things as: how
many tickets are sold, how many are left, and how much
money has been taken in. To help the ticket agent, we also
would like a display of the seating arrangement that shows
which seats are sold and which are available.

A·3 Scenarios
The following scenarios consist of a list of numbered, labelled scenario steps
or events followed by a brief description.

A-3·1 Ticket Purchase Scenario
1. Ask: The customer asks the agent what seats are available.
2. Look: The agent enters the appropriate command into his/her

terminal and relates the results to the customer (cost, section, row
number and seat number).
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3. Decide: The customer decides what seats are desired, if any, and
tells the agent.

4. Buy: The customer pays the agent for tickets. The agent gives the
tickets to the customer.

S. Update: The agent records the transaction.

A-3-2 Ticket Return Scenario
1. Return: The customer gives the agent tickets that are no longer

needed.
2. Refund: The agent gives the customer money back.
3. Update: The agent records the transaction.

A-3-3 Ticket Exchange Scenario
1. Ask: The customer asks the agent what seats are available.
2. Look: The agent enters the appropriate command into his/her

terminal and relates the results to the customer (cost, section, row
number and seat number).

3. Decide: The customer decides what seats are desired, if any, and
tells the agent.

4. Exchange: The customer gives the agent the old tickets, then the
agent gives the customer the new tickets.
Depending on the price of the new tickets, the agent either
collects additional money from the customer or issues a refund.

S. Update: The agent records the transaction.

A-3-4 Ticket Sales Analysis Scenario
1. Stop Sales: The sales manager enters the command to stop the

sale of tickets for a particular performance.
2. Tally: The ticket sales program generates a report listing total

sales.

A-3-S Theatre Configuration Scenario
1. Performance Logistics: The sales manager enters in the name,

time, location and date of the performance.
2. Seating Arrangement: The sales manager decides if the

performance is "Reserved Seating or "Open Seating".
3. Theatre Logistics: If this performance is reserved seating, then

the sales manager enters the numbered kind of sections in the
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theatre, what rows are in what sections and what seats are in
what rows.
If this performance is open seating, then the sales manager
enters the total number of tickets to be sold.

4. Pricing: The sales manager enters in the price of each ticket,
determined by section and seating style.

A-4 Domain Dictionary
The Following domain dictionary consists of examples of commonly used
words and phrases found in the scenarios and customer needs document.

Agent:

Balcony:

The person who interacts with the application, answers
customer questions and handles tickets and money.

The farthest away and usually the least expensive seats in
the theatre.

Configuration: Information describing the performance and seating style for
which tickets are sold. "see Performance and Seating Style".

Open Seating: A seating style where there are no reserved seats (a ticket is
good for any seat in the theatre).

Orchestra: The closest and generally the most expensive seats in a
theatre.

Performance: The date, time, location and name of a theatrical production.

Seating Style: Either open seating or reserved seating.

Theatre:

Ticket:

The place full of named sections, rows and seats where
performances are held.

A ticket is what the customer buys, sells and uses to get in
the door of a performance.

A-5 Theatre Object Aggregation and Taxonomy Diagrams
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Figure-1 Person Types Taxonomy

RowTheatre Section Seat

Figure-2 Theatre Aggregation Hierarchy

Figure-3 Seating Styles and Section Taxonomy

Flgure-4 Performance and Ticket Aggregation
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Operator ::~
Proc••• Engineer ~~
Instrument Engineer ~1
Shift Engineer ~~

"~:.~,~~~:'.",..,~.."~,,,,..."J~
Process Variable
Controlled Variable
Threshold Value
Desired Value
Engineering Unft

Reusable Components Control Room

:~
:,:,:,~,:;!:,»~»~~,!!~.::;:.~~::".~",,~~~JI

sensor ~
Reader ~~

:::::::::::::::::::::*::::*::::::~::::::::::::::::::::::~~~

Process Plant

:*;::
~:,::~"!'»"~::''':::::-:-:-:::-::.'::<:o..;,.. o!::...~:.;:::-::.~
PLC .,'
Continuous Controller .~
Supervisor Controller !~~
Off ..Llne Controller .~~

..... :-~
Proportional Control
PI Control ~

PlO Control il.:
Ratio Control!;~
ON-OFF Control ~~

" '" .·.··,,,,·.'v. "''''''' .,,,,J!
Batch Process
startup
Shutdown

Quality Control

Figure B- 2 Reusable Components Classification
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Instrument Equipment
Parallel Parallel

Process Plant Process Plant

Initialise Initialise
read_value change_status
update update

ID
ID

Name
Address Address
Reading status
position position

ADC
Passive

Process Plant

start_conversion
hold_value

Control Algorithm
polymorphic, Non-

Autonomous

DOC

get_controL value
Initialise

compute_value
change_settings

get_settings

Control-Value
Last_Value

Sampler
Parallel

Data Aqulsltlon

Initialise
change_rate

ID
Address

Sampling_Rate

Controller
Seml-Autonmous

Control

gel_sel_ value
change_set_value

accept_value
Initialise

Set_value
ID

Address

Converter
Passive

Process Plant

Initialise
calibrate

start_conversion

ID
Address

Calibration
Buffer

ClockDAC
Passive

Process Plant Process Plant

Initialise
start

Time

PI-Control PIO-Control
Non-Autonomous Non-Autonomous

DOC DOC

get_settings get_settings
change_settings change_settings
compute_values compute_values

P-Term
P-Term
I-Time

I-Time D-Term
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Figure B- 3 Components Specifications
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