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ABSTRACT
We use the hydrodynamical EAGLE simulation to study the magnitude and origin of the
scatter in the stellar mass–halo mass relation for central galaxies. We separate cause and effect
by correlating stellar masses in the baryonic simulation with halo properties in a matched
dark matter only (DMO) simulation. The scatter in stellar mass increases with redshift and
decreases with halo mass. At z = 0.1, it declines from 0.25 dex at M200,DMO ≈ 1011 M� to 0.12
dex at M200,DMO ≈ 1013 M�, but the trend is weak above 1012 M�. For M200,DMO < 1012.5

M� up to 0.04 dex of the scatter is due to scatter in the halo concentration. At fixed halo
mass, a larger stellar mass corresponds to a more concentrated halo. This is likely because
higher concentrations imply earlier formation times and hence more time for accretion and
star formation, and/or because feedback is less efficient in haloes with higher binding energies.
The maximum circular velocity, Vmax, DMO, and binding energy are therefore more fundamental
properties than halo mass, meaning that they are more accurate predictors of stellar mass, and
we provide fitting formulae for their relations with stellar mass. However, concentration alone
cannot explain the total scatter in the Mstar–M200,DMO relation, and it does not explain the
scatter in Mstar–Vmax, DMO. Halo spin, sphericity, triaxiality, substructure and environment are
also not responsible for the remaining scatter, which thus could be due to more complex halo
properties or non-linear/stochastic baryonic effects.

Key words: galaxies: evolution – galaxies: formation – galaxies: haloes – cosmology: theory.

1 IN T RO D U C T I O N

The formation of structure in a universe consisting of dissipation-
less dark matter particles and dark energy is well understood and
can be modelled with large N-body simulations, such that the halo
mass function and the clustering of haloes can be predicted to high
precision for a given set of cosmological parameters (e.g. Springel,
Frenk & White 2006).

However, observations measure the masses and clustering of
galaxies rather than dark matter haloes, so it is of utmost importance
to connect stellar masses to dark matter halo masses. It is much more
difficult for simulations to reproduce the observed stellar masses, as
this requires a thorough understanding of the baryonic (feedback)
processes involved, which are generally highly non-linear, complex
and couple to a wide range of spatial scales. Therefore, a key goal of

� E-mail: matthee@strw.leidenuniv.nl
†Royal Society University Research Fellow.

modern galaxy formation theory is to find the correlation or relation
between the halo mass function and the stellar mass function.

The relation between stellar mass and halo mass is related to the
efficiency of star formation, and to the strength of feedback from star
formation (e.g. radiation pressure from hot young stars, stellar winds
or supernovae) and active galactic nuclei (AGN; e.g. quasar-driven
outflows or heating due to radio jets that prevent gas from cooling).
By matching the abundances of observed galaxies and simulated
dark haloes ranked by stellar and dark matter mass, respectively, we
can infer that the relation is steeper for low-mass centrals than for
high-mass central galaxies (e.g. Vale & Ostriker 2004; Kravtsov,
Vikhlinin & Meshscheryakov 2014). There is no tight relation be-
tween halo mass and stellar mass for satellite galaxies because of
environmental processes such as tidal stripping, which is more effi-
cient for the extended dark halo than for the stars. For the remainder
of this paper, we therefore focus on central galaxies only.

The evolution of galaxies is thought to be driven by the growth
of halo mass (e.g. White & Rees 1978; Blumenthal et al. 1984), as
assumed by halo models and semi-analytical models (SAMs, e.g.
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Figure 1. Relation between the stellar mass of central EAGLE galaxies
and halo mass in the matched DMO simulation. The white dashed lines
highlight the measured 1σ scatter in the region where individual points
are saturated. Also shown are results obtained from abundance matching to
observations (Behroozi et al. 2013a; Moster et al. 2013), including a shaded
region indicating their 1σ scatter. It can be seen that the slope changes at a
halo mass around 1012 M�, which is the mass at which the galaxy formation
efficiency peaks.

Henriques et al. 2015; Lacey et al. 2016) and related techniques
such as abundance matching (e.g. Berlind & Weinberg 2002; Yang,
Mo & van den Bosch 2003; Behroozi, Conroy & Wechsler 2010;
van den Bosch et al. 2013). However, both abundance-matching
models and observations suggest that there exists scatter in the stel-
lar mass–halo mass (SMHM) relation (More et al. 2011; Behroozi,
Wechsler & Conroy 2013a; Moster, Naab & White 2013; Zu & Man-
delbaum 2015), meaning that halo masses alone cannot be used to
predict accurate stellar masses. This could mean that there is also
a second halo property which might explain (part of) the scatter in
the SMHM relation, for example the formation time (e.g. Zentner,
Hearin & van den Bosch 2014), or that there is a halo property other
than mass which is more strongly correlated to stellar mass, such
as the circular velocity (e.g. Conroy, Wechsler & Kravtsov 2006;
Trujillo-Gomez et al. 2011).

In this paper, we use simulated galaxies from the EAGLE project
(Crain et al. 2015; Schaye et al. 2015) to assess which halo property
can be used to predict stellar masses most accurately, and how it
is related to the scatter in the SMHM relation, see Fig. 1. EAGLE
is a hydrodynamical simulation for which the feedback from star
formation and AGN has been calibrated to reproduce the z = 0.1
stellar mass function, galaxy sizes and the black hole mass–stellar
mass relation. Because the simulation accurately reproduces many
different observables and their evolution (e.g. Furlong et al. 2015a,b;
Schaye et al. 2015; Trayford et al. 2016), it is well suited for further
studies of galaxy formation.

The properties of dark matter haloes can be affected by baryonic
processes (e.g. Bryan et al. 2013; Velliscig et al. 2014; Schaller
et al. 2015b). For example, efficient cooling of baryons can in-
crease halo concentrations. For our purposes, it is therefore critical
to connect stellar masses to dark matter halo properties from a
matched dark matter only (DMO) simulation. Otherwise, it would
be impossible to determine whether a given halo property is a cause
or an effect of efficient galaxy formation. In order to find which halo
property is most closely related to stellar mass, we thus use halo
properties from the DMO version of EAGLE, which has the same

initial conditions, box size and resolution as its hydrodynamical
counterpart.

An important caveat in studying the scatter in a galaxy scaling re-
lation in general is that many properties are correlated. For example,
the scatter in the SMHM relation by construction cannot correlate
strongly with any property that correlates strongly with halo mass.
This way, an actual physical correlation can be hidden. As many halo
properties are related to halo mass (e.g. Jeeson-Daniel et al. 2011),
we should therefore be careful to only correlate the residuals of the
SMHM relation to properties that are weakly or, ideally, not cor-
related with halo mass. We therefore use only dimensionless halo
properties to study the origin of scatter in the SMHM relation.

This paper is organized as follows. The simulations and our analy-
sis methods are presented in Section 2. In Section 3, we study which
halo property is related most closely to stellar mass. We study the
origin of scatter in the SMHM relation and the Mstar–Vmax, DMO re-
lation in Section 4. We show how we can predict more accurate
stellar masses with a combination of halo properties in Section 5. In
Section 6, we show the redshift evolution of the SMHM relation and
its scatter. We discuss our results and compare with the literature in
Section 7. Finally, Section 8 summarizes the conclusions.

2 M E T H O D S

2.1 The EAGLE simulation project

In our analysis, we use central galaxies from the (100 cMpc)3 refer-
ence EAGLE model at redshift z = 0.101, with a resolution such that
a galaxy with a mass of Mstar = 1010 M� (such as the Milky Way) is
sampled by ∼10 000 star particles. The hydrodynamical equations
are solved using the smoothed particle hydrodynamics N-body code
GADGET 3, last described by Springel (2005), with modifications to
the hydrodynamics solver (Hopkins 2013; Schaller et al. 2015c;
Dalla Vecchia, in preparation), the time stepping (Durier & Dalla
Vecchia 2012) and new sub-grid physics. There are 2 × 15043 parti-
cles with masses 1.8 × 106 M� (baryonic) and 9.7 × 106 M� (dark
matter). The resolution has been chosen to resolve the Jeans scale
in the warm (T∼104 K) interstellar medium (at least marginally).
EAGLE uses Planck cosmology (Planck Collaboration XVI 2014).
The halo and galaxy catalogues and merger trees from the EAGLE
simulation are publicly available (McAlpine et al. 2016). For hy-
drodynamical simulations of galaxy formation, the implementation
of sub-grid physics is critical (e.g. Schaye et al. 2010; Scannapieco
et al. 2012). The included sub-grid models account for radiative
cooling by the 11 most important elements (Wiersma, Schaye &
Smith 2009a), star formation (Schaye & Dalla Vecchia 2008) and
chemical enrichment (Wiersma et al. 2009b), feedback from star
formation (Dalla Vecchia & Schaye 2012), growth of black holes
(Springel et al. 2005; Rosas-Guevara et al. 2015; Schaye et al. 2015)
and feedback by AGN (Booth & Schaye 2009). Galactic winds de-
velop naturally without predetermined mass-loading factors, veloc-
ities or directions, without any explicit dependence on dark matter
properties and without disabling the hydrodynamics or the radiative
cooling. This is achieved by injecting the feedback energy thermally
using the stochastic implementation of Dalla Vecchia & Schaye
(2012), which reduce numerical radiative losses. As discussed by
Crain et al. (2015), the z ≈ 0 galaxy stellar mass function can be
reproduced even without tuning the feedback parameters. However,
the feedback needs to be calibrated in order to simultaneously re-
produce present-day galaxy sizes, which in turn leads to agreement
with many other galaxy scaling relations.

MNRAS 465, 2381–2396 (2017)

 at L
iverpool John M

oores U
niversity on January 9, 2017

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
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Table 1. The properties of the simulated galaxies and haloes that are con-
sidered in our analysis. The stellar mass is from the reference EAGLE
model, while the other properties are from the matched DMO simulation.
See Section 2.3 for detailed definitions of properties.

Property Description

Dimensional
Mstar Stellar mass inside 30 kpc, in M�
M200,DMO Mass, in M�
Mcore, DMO Mass within NFW scale radius, in M�
σ2500,DMO Central velocity dispersion, in km s−1

Vmax, DMO Maximum circular velocity, in km s−1

E2500,DMO Binding energy, in M� km2 s−2

Vpeak, DMO Highest Vmax in a galaxy’s history, in km s−1

Vrelax, DMO Highest Vmax while halo was relaxed, in km s−1

Dimensionless
N2Mpc, DMO Total number of subhaloes within 2 Mpc
N10Mpc, DMO Total number of subhaloes within 10 Mpc
c200,DMO Concentration
λ200,DMO Spin
sDMO Sphericity
TDMO Triaxiality
Substructure Mass fraction in bound substructures in a halo
z0.5,DMO Assembly redshift

2.2 Halo definition and matching between simulations

Haloes and galaxies are identified using the two step Friends-
of-Friends (FoF; e.g. Einasto et al. 1984) and SUBFIND (Springel
et al. 2001; Dolag et al. 2008) algorithms. First, the FoF-algorithm
groups particles together using a linking length of 0.2 times the
mean interparticle distance (Davis et al. 1985). Then, SUBFIND iden-
tifies subhaloes as local overdensities whose membership is defined
by the saddle points in the density distribution. The particles are
then verified to be gravitationally bound to the substructure. The
central galaxy is the subhalo at the minimum potential of the FoF
group. Following Schaye et al. (2015), we use a spherical 30 proper
kpc aperture, centred on the central subhalo in each FoF group, to
measure the stellar masses of each central galaxy.

Dark matter halo properties are taken from the DMO version of
EAGLE, which has the same initial conditions (phases and ampli-
tudes of the initial Gaussian field) and resolution as the reference
model. Haloes in the DMO and EAGLE reference simulations were
matched as described by Schaller et al. (2015a). In short, the 50
most bound dark matter particles were selected for each halo in the
reference model. These particles were located in the DMO model
and haloes were matched if at least 25 of these particles belong to a
single FOF halo in the DMO simulation. We note that for the halo
masses discussed here (for the sample selection see Section 2.5),
>99 per cent of the haloes are matched successfully.

2.3 Definitions of halo properties

We study two classes of (dark matter) halo properties: dimensional
and dimensionless. An overview of the properties, which are defined
in this section, is given in Table 1.

2.3.1 Dimensional halo properties

In addition to stellar mass and halo mass (M200,DMO), dimensional
properties that we consider are the core mass (Mcore, DMO), the max-
imum circular velocity at z = 0.1 (Vmax) and in the halo’s history

(Vpeak), the central velocity dispersion (σ 2500, DMO) and the halo
binding energy (E2500,DMO). While our main focus is on the SMHM
relation, we use the other dimensional halo properties to investigate
which halo property correlates best with stellar mass. Note that we
vary our definition of stellar mass in Appendix A1.

M200,DMO is used as the halo mass, which is the total mass con-
tained within R200,DMO, the radius within which the enclosed over-
density is 200 times the critical density. We study the effect of
changing the definition to 500 and 2500 times the critical density in

Section 3. Vmax is the maximum circular velocity, max(
√

GM(<R)
R

).
Vpeak is the maximum circular velocity a halo had over its history
(for central galaxies this is typically similar to the current Vmax, as
shown for EAGLE by Chaves-Montero et al. 2016). We also include
Vrelax, the maximum circular velocity of a halo during the part of its
history when the halo was relaxed, which correlates most strongly
with stellar mass (Chaves-Montero et al. 2016).1 In this definition, a
halo is relaxed when the formation time is longer than the crossing
time (e.g. Ludlow et al. 2012). The formation time is defined as the
time at which a fraction of 3/4 of the halo mass was first assembled
in the main progenitor (although using a fraction of 1/2 leads to
similar results, see Chaves-Montero et al. 2016).

Another definition of the halo mass is the halo core mass
(Mcore, DMO), which is the mass inside the scale radius (rs) of the
Navarro–Frenk–White (NFW) profile (e.g. Huss, Jain & Stein-
metz 1999). As highlighted by Diemer, More & Kravtsov (2013),
the evolution of M200,DMO can be split into two stages: an initial
growth of mass inside the z = 0 scale radius (growth of the core
mass, e.g. Ludlow et al. 2013; Correa et al. 2015b), followed by
‘pseudo-evolution’ due to the decreasing critical density of the Uni-
verse with cosmic time, during which the core mass remains nearly
constant. We compute the core mass using the NFW fits of Schaller
et al. (2015a) to obtain the scale radius. Typically, the core mass is
≈0.15 × M200,DMO, although there is significant scatter of 0.2 dex.

The halo binding energy is related to the halo mass and con-
centration. Galaxy formation may be more efficient in a halo
with a higher binding energy (e.g. Booth & Schaye 2010, 2011),
since it will be harder for stellar and black hole feedback to drive
galactic winds out of the galaxy. We compute the binding energy
at three different radii: R200,DMO, R500,DMO and R2500,DMO, using
E200,DMO = M200,DMO σ 2

200,DMO, where σ 200, DMO is the velocity dis-
persion within R200,DMO (and similarly for R500,DMO and R2500,DMO).
As we are generally interested in stellar mass, which is concentrated
in the centres of haloes, we focus on the binding energy and ve-
locity dispersion of dark matter particles within R2500,DMO. This
radius ranges from R2500,DMO ≈ 50 kpc for Mstar = 109.5 M� to
R2500,DMO ≈ 350 kpc for galaxies with Mstar = 1011.5 M�. R2500,DMO

is typically ≈0.3 × R200,DMO, and typically ≈2 × rs, where rs is the
NFW scale radius.

2.3.2 Dimensionless halo properties

Dimensionless halo properties are generally related to the shape of
the halo (such as triaxiality, sphericity, concentration and substruc-
ture), the environment (such as the number of neighbours) or its
spin. These dimensionless properties are considered when we study
the scatter in scaling relations.

1 Note that Chaves-Montero et al. (2016) included satellites, whereas we
only consider central galaxies.
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The halo concentration was obtained by fitting an NFW profile
(Navarro, Frenk & White 1997) to the dark matter particles in the
halo, as described by Schaller et al. (2015a). The concentration is
defined as c200,DMO = R200,DMO/rs.

The dimensionless spin parameter, λ200,DMO, is defined as in Bul-
lock et al. (2001), λ200,DMO = j√

2V200,DMOR200,DMO
, where j = L/M is

the specific angular momentum.
We quantify the shape of the halo with the sphericity, s, and

triaxiality, T, parameters. The sphericity is defined as s = c/a,
where c and a are the minor and major axes of the inertia tensor
(e.g. Bett et al. 2007). The halo triaxiality is defined as T = a2−b2

a2−c2

(Franx, Illingworth & de Zeeuw 1991).
The environment of the halo, NX Mpc, is quantified by the number

of neighbours within a distance of X Mpc. The number of neigh-
bours, defined as the number of subhaloes (including satellites) with
a total dark matter mass above 1010M�, is measured within spheres
of 2 Mpc (N2Mpc) and 10 Mpc (N10Mpc).

The substructure parameter quantifies the environment of the
central galaxy within the halo. It is defined as the fraction of the
total mass of an FoF halo in bound substructures with dark matter
mass above 1010M�.

The assembly history of a halo is quantified by z0.5,DMO, the red-
shift at which half of the halo mass has been assembled into a single
progenitor subhalo. We use the EAGLE merger trees (McAlpine
et al. 2016) to track the dark matter mass of the haloes from
z = 4. For a halo at a fixed redshift, we select all the progeni-
tors in the previous snapshot. The mass of the halo at that previous
redshift is then the halo mass of its most massive progenitor. We
thus obtain a mass assembly history for each halo and measure the
formation redshift using a spline interpolation of the masses at the
different snapshots.2

2.4 Obtaining residuals of scaling relations

We quantify the scatter in scaling relations as the 1σ vertical offset
from the mean relation (the residual). The mean relations are esti-
mated in two ways: using non-parametric and parametric methods.
The benefit of non-parametric methods is that they do not require an
assumed functional form, but the downside is that they are less eas-
ily reproducible and perform less well at the limits of the dynamic
range.

2.4.1 Non-parametric method: local polynomial regression

For the non-parametric approach, we use the local polynomial re-
gression (LPR) method (also known as locally weighted scatterplot
smoothing; Cleveland 1979). In short, for each data point Xi = [xi,
yi] a fitted value fi is obtained using a local linear fit (described
below), for which only the nearest half of the other data points are
used. Our results are insensitive to changes in the fraction between
0.3 and 0.6 of the data that are used, except for the highest masses
where a larger fraction results in an underestimate of the relation,
or the lowest masses where smaller fractions result in greater noise.
The following weight is then applied to each of the closest half of
the data points:

wij =
(

1 −
(

d

max(d)

)3
)3

, (1)

2 The snapshot redshifts are z = [0.10, 0.18, 0.27, 0.37, 0.50, 0.62, 0.74,
0.87, 1.00, 1.26, 1.49, 1.74, 2.01, 2.28, 2.48, 3.02, 3.53, 3.98].

Figure 2. Relation between stellar mass in the EAGLE simulation and halo
mass in the matched DMO simulation, illustrating the method to obtain
residuals. The red points show the relation fitted using the non-parametric
LPR method, see Section 2.4.1. The green line is the exponential fit spec-
ified by equation (3). The points marked in blue correspond to the three
mass regimes mentioned throughout the text. Black points are galaxies not
included in our analysis, but included in the LPR estimate of the relation.

where d = √
(xj − xi)2 + (yj − yi)2 is the two-dimensional dis-

tance between points Xi and Xj. Finally, a linear relation is fitted to
each selected data point using the least-squares method:

fi =
∑

j

wij yj

/ ∑
j

wij . (2)

From this linear relation, the fitted value, fi, for Xi is obtained. This
procedure is repeated for each point. This method is included in the
R statistical language3 by B. D. Ripley, and the reference for more
information is Cleveland, Grosse & Shyu (1992). The main benefit
of this method is that it can handle non-trivial relations without
assuming a functional form.

For the LPR procedure, we include all galaxies with a halo mass
greater than 1011 M� in the matched DMO simulation (correspond-
ing to stellar components with � 500 star particles). The resulting
values of fi are shown using red symbols in Fig. 2. Note that there are
as many red points as grey points, but that the red points appear as a
line where they are close to each other. After this procedure, we find
that the scatter, the 1σ standard deviation of the residuals (yi − fi;
σ (�log10 Mstar(M200,DMO))), ranges from 0.15 to 0.27 dex, depend-
ing on the halo mass (see e.g. Fig. 3). A shortening of this method
is that its accuracy depends on the number density of neighbouring
points in the two-dimensional plane. Therefore, it is less accurate
at the highest masses (M200,DMO > 1013.5 M�, see Fig. 2) where
there are fewer points, and the available neighbours are strongly
biased towards lower masses. Haloes of these masses are however
not included in our analysis because of their small number in the
simulation.

2.4.2 Parametric method: functional fit

In addition to the non-parametric LPR fits, we perform paramet-
ric fits to the relations between stellar mass and dark matter halo

3 https://www.r-project.org
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The origin of scatter in Mstar-Mhalo 2385

Figure 3. Scatter in the difference between true stellar masses (in the baryonic simulation) and stellar masses computed from the non-parametric (left) and
parametric (right) fits to the relation between stellar mass and the different dark matter halo properties from the matched DMO simulation listed in the legend,
as a function of DMO halo mass. We show the jackknife estimates of the errors in σ (log10 Mstar(M200,DMO)) as a function of M200,DMO as a blue shaded region.
The errors on σ (�log10Mstar) for the other halo properties are similar. We note that for halo properties other than M200,DMO, we have binned σ (�log10Mstar)
in bins of the specific halo property, and plot the result as a function of the corresponding M200,DMO of that bin. In general, there is more scatter in the stellar
mass–halo property relation at small stellar mass than at high stellar mass, irrespective of the halo property used. For M200,DMO < 1012.5 M�, M200,DMO is a
less accurate predictor of stellar mass than Vmax, DMO, Vrelax, DMO and E2500,DMO.

properties. We use the following functional form in log–log space,
which has three free parameters (α, β, γ ):

log10(Mstar/M�) = α − eβ log10(M200,DMO/M�)+γ
. (3)

In this equation, the halo property used is the halo mass (M200,DMO),
but it can be replaced by the other properties from Section 2.3.1.
Because our sample of galaxies is dominated by the lowest-mass
galaxies, we weight our fit, such that galaxies at all masses con-
tribute equally. To do this, we compute the average stellar mass in
halo mass bins of 0.1 dex and compute the standard deviation of
the stellar masses in each bin. We only include bins that contain
more than 10 haloes (so up to M200,DMO ≈ 1013.5 M�). Using these
bins and using the standard deviations as errors, we fit equation
(3) by minimizing the χ2 value. We start with a large, but sparse,
three-dimensional grid of allowed values for the three parameters.
After a first estimate of the values, we increase the resolution in a
smaller range of allowed values to obtain our best-fitting values. For
the SMHM relation, we find best-fitting values of α = 11.85+0.32

−0.18,
β = −0.68+0.13

−0.12 and γ = 8.65+1.17
−1.32.4 The fit has a reduced χ2 of

0.12 for 27 degrees of freedom. It can be seen in Fig. 2 that the
parametric fit (green line) resembles the LPR values (red points)
very well, except for the highest and lowest masses, for which the
LPR method is less successful. This is because the LPR method is
slightly biased towards the edges of parameter space, which can be
overcome when the number density is sufficiently large to include a
smaller fraction in the fit of a larger number density without adding
noise.

We also fit equation (3) to the relation between stellar mass and
E2500,DMO, Vmax, DMO, Vpeak, DMO, Vrelax, DMO and σ2500,DMO with the
same method as described above. The results are summarized in
Table 2. Using these equations, the dispersion in the residuals of

4 We note that equation (3) can alternatively also be written as: log10( Mstar
M� )

= α − eγ ( M200,DMO
M� )βlog10(e). In this case, our best fit can be written as:

log10( Mstar
1010M� ) = 1.85 − 1.63( M200,DMO

1012M� )−0.30.

Table 2. Fitted parameters for relations between stellar mass and the listed
DMO halo properties using the functional form from equation (2).

Halo property α β γ χ2
red

M200,DMO 11.85+0.32
−0.18 −0.68+0.13

−0.12 8.65+1.17
−1.32 0.12

Vmax, DMO 11.56+0.62
−0.29 −2.67+0.73

−0.76 6.28+1.35
−1.35 0.08

Vpeak, DMO 11.66+0.57
−0.32 −2.46+0.62

−0.85 5.92+1.53
−1.17 0.10

Vrelax, DMO 11.62+0.59
−0.28 −2.63+0.71

−0.76 6.20+1.39
−1.30 0.11

E2500,DMO 11.54+0.48
−0.17 −0.54+0.11

−0.03 8.77+0.36
−1.39 0.08

σ2500,DMO 11.49+0.66
−0.32 −2.77+0.78

−0.91 5.94+1.52
−1.22 0.04

the SMHM relation, σ (�log10 Mstar(M200,DMO)), is 0.15–0.26 dex,
depending on the stellar mass range (see Fig. 3).

For infinitesimally small bins of halo mass, the dispersion in the
residuals of the SMHM relation is equal to the scatter in stellar
mass at fixed halo mass, σ (log10 Mstar(M200,DMO)), and we will
now therefore abbreviate this to σ (�log10Mstar) for simplicity in the
remainder in the text.

2.5 Sample selection and mass range dependence

We initially select all central galaxies at z = 0.1 with a halo mass of
M200 > 1011 M� in the EAGLE simulation (and use these for fit-
ting). However, due to small differences between M200 and M200,DMO

we restrict our analysis to galaxies with M200,DMO > 1011.1 M� to
avoid any biases which could arise from the influence of baryons
on the dark matter halo mass of the lowest halo masses.

In order to estimate the scatter in the SMHM relation as a function
of halo mass, we perform the following steps: for each halo, we first
obtain the residual relative to the main relation between stellar mass
and the halo property (using either the non-parametric or parametric
method). We then divide our sample of galaxies in bins (with width
0.4 dex for bins of halo mass, 0.6 dex for bins of E2500,DMO and 0.2
dex for bins of Vmax), and compute the 1σ dispersion in the residual
values of galaxies in each bin. We interpolate the values of the 1σ

scatter as a function of halo mass and show this for the different
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Table 3. Properties of the three halo mass samples. Different columns show
different DMO halo mass ranges, the average stellar mass and the 1σ disper-
sion of the residuals of the SMHM relation, abbreviated as σ (�log10Mstar).

Halo mass range <Mstar > σ (�log10Mstar)
(M�) (M�) (dex)

11.2 < log10(M200,DMO) < 11.3 8.7 × 108 0.26
11.9 < log10(M200,DMO) < 12.1 1.7 × 1010 0.16
12.6 < log10(M200,DMO) < 12.9 6.5 × 1010 0.16

halo properties in Fig. 3. Errors on σ (�log10Mstar) are estimated
using the jackknife method. This means that we split the simulated
volume in eight sub-domains of (50 cMpc)3 and compute the 1σ

spread of residuals of the SMHM relation of the galaxies in each
sub-box (for each bin of halo mass). Errors become significantly
large at M200,DMO � 1012.7 M� because of the limited number of
massive haloes in the simulation.

As the correlations between halo properties and stellar mass
might depend on the mass range, we also investigate how correla-
tions between residuals and halo properties vary with halo mass (or
circular velocity or binding energy, depending on the relevant halo
property). We therefore compare galaxies in three narrow ranges of
halo mass throughout the text. These intervals are listed in Table 3
and they are illustrated as blue points in Fig. 2. The lowest halo
mass range is typical of dwarf galaxies, the middle of Milky Way-
like galaxies and the highest mass range of massive galaxies (the
number of galaxies in a fixed range of halo masses declines quickly
with mass, such that our bin widths increase with mass).

3 C ORRELATIONS BETWEEN STELLAR MASS
A N D D M O H A L O PRO P E RT I E S

In this section, we explore which halo property correlates best with
the stellar mass of central galaxies and is therefore the most funda-
mental.

In order to determine which halo property correlates most
strongly with stellar mass, we perform a Spearman rank correla-
tion (Rs) analysis. In a Spearman rank analysis, the absence of a
relation between two properties results in Rs = 0 and a perfect
(anti-)correlation results in Rs = ( − )1. We will call a correlation
‘strong’ if |Rs| > 0.3. For this value, a correlation of 70 data points
is statistically significant at 99 per cent confidence. For our highest
halo mass bin, consisting of 228 galaxies, a 99 per cent confidence
significance is obtained for Rs = 0.17 and higher.

We find that all dimensional halo properties are strongly corre-
lated with stellar mass, with Spearman coefficients Rs > 0.85, see
Table 4. The highest Spearman coefficients are found for Vmax, DMO,
Vpeak, DMO, Vrelax, DMO and the halo mass and binding energy at
R2500,DMO and R500,DMO, which all give Rs = 0.93. This indicates
that the central binding energy or maximum circular velocity are
the most fundamental halo properties, although the differences are
marginal.

Another way to study which halo property is the most funda-
mental, is by exploring how accurately a halo property can predict
stellar masses, as a function of halo mass. By ‘accuracy’ we mean
the 1σ scatter in the difference between the predicted and true stellar
masses, σ (�log10Mstar). Predicted stellar masses are obtained with
both the non-parametric and the parametric relations between stel-
lar mass and halo properties (see Section 2.4), and the true stellar
masses are those measured in the baryonic simulation. The number
density-weighted averaged results are listed in Table 4. The scat-

Table 4. Amount of scatter in stellar mass over all masses,
as defined by the 1σ spread in the residuals from the non-
parametric relation between stellar mass and the relevant
DMO halo property. The column on the right shows the
Spearman correlation rank coefficient for the relation be-
tween stellar mass and the halo property.

Halo property 1σ scatter with Mstar Rs

M200,DMO 0.24 0.92
M500,DMO 0.22 0.93
M2500,DMO 0.21 0.93
Mcore, DMO 0.33 0.85
M200, mean, DMO 0.24 0.91
E200,DMO 0.23 0.92
E500,DMO 0.22 0.93
E2500,DMO 0.21 0.93
σ200,DMO 0.25 0.91
σ500,DMO 0.24 0.91
σ2500,DMO 0.24 0.92
Vmax,DMO 0.21 0.93
Vpeak,DMO 0.24 0.93
Vrelax,DMO 0.21 0.93

Figure 4. As Fig. 3, but now for varying definitions of halo mass. Bins are
made in the respective halo property, but we plot the results as a function
of the values of M200,DMO corresponding to each bin. The halo mass within
R2500,DMO is most strongly related to stellar mass.

ter is largest for the core mass (0.33 dex) and smallest (0.21 dex)
for the halo mass measured at R2500,DMO, E2500,DMO, Vmax, DMO and
Vrelax, DMO. In Fig. 3, we show the mass dependence of the results for
the halo properties with the least scatter in the difference between
predicted and true stellar masses. Note that we vary the definitions
of halo mass in Fig. 4 and of stellar mass in Appendix A.

Regardless of the halo property or fitting method, we find that
σ (�log10Mstar) decreases from � 0.25 dex at M200,DMO ≈ 1011.2

M� to � 0.15 dex at M200,DMO ≈ 1012.2 M�. We show in
Appendix B that this is not an effect of the limited simulation
volume. This is in contrast with the typical assumptions in halo
models, which use a mass-independent scatter of ∼0.20 dex (i.e.
Moster et al. 2013; van Uitert et al. 2016). Above M200,DMO � 1012.2

M�, the uncertainties in σ (�log10Mstar) are large enough (likely
due to the limited simulation volume) that a constant scatter cannot
be ruled out. Therefore, for the highest halo masses the decrease
in the scatter with halo mass needs to be confirmed with larger
simulation volumes.
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We find that Vmax, DMO, Vrelax, DMO and E2500,DMO give similarly
small σ (�log10Mstar), while M200,DMO performs somewhat worse
for M200,DMO < 1012.5M�. However, using the parametric method,
the differences are slightly smaller. This might mean that the chosen
functional form is not optimal for Vmax, Vrelax and E2500,DMO at low
masses. Perhaps more striking is the fact that regardless of the halo
property, there is at least 0.15 dex scatter in stellar masses at M200

< 1012M�, indicating that processes other than those captured by
our halo properties are important. Another feature is that the slope
changes at a mass of ≈1012 M�, which coincides with the halo
mass at which the galaxy bimodality arises and where feedback
from AGN starts to become important (e.g. Bower et al. 2016).

In Fig. 4, we test whether our results depend on our specific
choice of halo mass definition. Using M200,mean,DMO, which is based
on the mass enclosed by the radius within which the mean density
is 200 times the mean density of the Universe (as opposed to the
critical density used before), results in a slightly larger scatter in
the SMHM relation (by ∼0.01 dex, with some dependence on halo
mass, see Fig. 4). However, the scatter in the SMHM relation is
much larger when using Mcore, DMO.This is surprising, since the
core mass is measured at a radius (rs) which is typically half of
R2500,DMO, and thus more central. A possible explanation is that the
NFW fits are inaccurate in the centres of haloes. Halo mass most
accurately predicts stellar mass when it is measured at R500,DMO and
R2500,DMO, at least for M200,DMO < 1012.5 M�. This is also the case
for the binding energy. The halo properties measured at inner radii
are more closely related to stellar mass. The same has been shown
to hold for galaxy properties other than stellar mass (e.g. Velliscig
et al. 2014; Zavala et al. 2016).

For comparison, we also have computed the scatter in stellar mass
at fixed halo mass when using M200 and Vmax from the baryonic sim-
ulation. We find that σ (�log10Mstar) is ≈0.015 dex smaller at masses
� 1012 M� when using M200 instead of M200,DMO. The scatter in

stellar mass at fixed rotational velocities is more sensitive to bary-
onic effects. At masses � 1012 M�, we find that σ (�log10Mstar) is
≈0.06 dex smaller when using Vmax than Vmax, DMO. There are no
statistically significant differences between σ (�log10Mstar) in the
baryonic and the DMO simulation at masses >1012 M�.

4 SO U R C E S O F SC AT T E R

In order to understand which processes are the source of scatter in
the relations between stellar mass and dark matter halo properties,
we investigate the scatter in two scaling relations: Mstar–M200,DMO

and Mstar–Vmax. We chose halo mass as this is most intuitive and
widely used, and Vmax as this property leads to the most accurate
stellar masses (see Fig. 3). In this section, we correlate the residuals
of these scaling relations with the dimensionless DMO halo proper-
ties listed in Table 1 and discussed in Section 2.3.2. We quantify the
strengths of the correlations using the Spearman rank correlation
coefficient (Rs).

4.1 Sources of scatter in Mstar–M200,DMO

We find a strong correlation between the residuals of the SMHM
relation and the concentration of the dark matter halo, c200,DMO,
implying that more concentrated haloes yield higher stellar masses.
This effect is strong for both the low- and intermediate-mass ranges
(Rs = 0.50, 0.48), see Fig. 5. We find a weaker correlation for the
high halo mass range (Rs = 0.12, P-value 93 per cent), indicating
that there might be different physical processes operating at these
halo masses. We have verified that the correlations in the low- and
intermediate-mass ranges are not driven by the larger dynamic range
in halo concentrations that is sampled, thanks to a larger number of
objects. By randomly resampling the numbers of galaxies in these
mass ranges, such that we get the same number of galaxies as in

Figure 5. Top: correlations between the residuals of the SMHM relation (�log10Mstar(M200,DMO)) and DMO halo concentration in the different halo mass
ranges (log10(M200,DMO/M�) ≈ 11.2, 12.0, 12.6, from left to right, respectively). The Spearman rank correlation coefficient (rs) is shown in the corner of
each panel. A strong correlation can be seen for the low and intermediate masses, showing that the scatter in the SMHM relation is partly due to the scatter
in halo concentration at fixed mass. Bottom: correlations between the residual and the formation time in different halo mass ranges. The results are similar to
those for concentration.
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the high-mass range, we find in all subsamples that Rs ≈ 0.5, with
a spread of 0.05.

The residuals of the relation between Mstar and both M500,DMO and
M2500,DMO are correlated weakly with concentration (not shown).
This is because the mass in a more central part of the halo depends
on both M200,DMO and concentration.

We investigate what fraction of the scatter in stellar masses at
fixed halo mass is accounted for by concentration. This is done by
fitting a linear relation between concentration and the residuals of
the SMHM relation, for halo mass bins of 0.4 dex:

�log10Mstar(c200,DMO) = a + b log10(c200,DMO). (4)

The errors on the normalization a and slope b of these fits are com-
puted with the jackknife method, as described above. We then fit
polynomial relations (with powers up to log10(M200,DMO)3 to the
relations in order to obtain the mass dependence of the normaliza-
tion and slope, a(log10(M200,DMO)) and b(log10(M200,DMO)). Then,
� log10 Mstar(M200,DMO, c200,DMO), the scatter after accounting for
concentration, is computed as

�log10Mstar(M200,DMO, c200,DMO) = �log10Mstar(M200,DMO)

+ a(log10(M200,DMO)) + b(log10(M200,DMO)) × log10(c200,DMO).

(5)

At fixed halo mass, we fold the errors in the normalization, �a, and
slope, �b, through the errors on the scatter in stellar masses, and
obtain the halo mass dependence of the error in the scatter after tak-
ing account for concentration, σ (�log10Mstar(M200,DMO, c200,DMO)),
with a spline interpolation.

The result is shown in the top-left panel of Fig. 6. At the
lowest halo masses, 0.03 dex of the scatter in stellar masses is ac-
counted for by concentration, while this is lower at higher masses.
For M200,DMO > 1012.5 M� the inclusion of concentration does not
reduce the scatter in stellar mass, again indicating that different
physical processes are at play (i.e. Tinker 2016).

It is interesting to note that Jeeson-Daniel et al. (2011) found
from a principal component analysis of DMO simulations that halo
concentration is the most fundamental halo property, being strongly
related to many other dimensionless halo properties, and that halo
mass only sets the scale of a system. This is consistent with our
results, as we find that once the scale of the halo is factored out
(by studying residuals at fixed halo mass), concentration is corre-
lated with stellar mass. Furthermore, Booth & Schaye (2010) find
that the black hole masses in their hydrodynamical simulation are
set by halo mass with a secondary dependence on concentration,
similar to our results for stellar mass, leading them to conclude
that the halo binding energy is the most fundamental halo property
in setting black hole masses. It could be that halo binding energy

Figure 6. Scatter in the difference between the true and predicted stellar mass as a function of DMO halo mass, before and after using a dimensionless DMO
halo property in addition to mass, in blue and red, respectively. Each panel corresponds to a different property. The shaded regions indicate the 1σ uncertainty.
Only c200,DMO and z0.5,DMO are responsible for a statistical improvement in the scatter in stellar masses.
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Figure 7. SMHM relation in the EAGLE simulation colour coded with
the formation redshift of the halo. At low and intermediate halo masses,
an earlier formation time corresponds to a higher stellar mass at fixed halo
mass. This correlation is not seen at the highest masses. The transition occurs
at masses slightly above 1012 M�, where the SMHM relation also flattens.

also determines stellar masses, as it is for example more difficult to
drive galactic winds out of a galaxy in a halo with a steeper poten-
tial well. At the highest masses, the correlation with binding energy
may weaken because star formation is quenched and galaxies grow
predominantly through mergers.

Since concentration is strongly correlated with formation time
(e.g. Wechsler et al. 2002; Zhao et al. 2009; Jeeson-Daniel
et al. 2011; Ludlow et al. 2014; Correa et al. 2015a), we expect
galaxies with a large stellar mass at fixed halo mass to have formed
earlier. We indeed find that the residuals of the SMHM relation
correlate with z0.5,DMO, particularly for halo masses below ∼1012

M�, as illustrated in Fig. 5. In Fig. 6, it can be seen that z0.5,DMO is
responsible for roughly the same amount of scatter in stellar masses,
as concentration is. This is further illustrated in Fig. 7, which shows
that haloes that form galaxies relatively efficiently generally form
earlier.

Hence, another explanation for the correlation between concen-
tration (and formation time) and the residuals of the SMHM relation
is that haloes with a higher concentration started forming stars ear-
lier and will thus be able to reach a higher stellar mass by a fixed
redshift.

For halo masses >1012 M�, there is almost no correlation be-
tween formation time and the residuals of the SMHM relation. As
was the case for concentration, a possible explanation for this is
that in the most massive haloes stars have formed earlier than the
assembly of their final halo, which is generally known as down
sizing (e.g. Cowie et al. 1996; De Lucia et al. 2006).

Fig. 6 shows that no halo property considered here, other than
concentration and formation time, is responsible for the scatter
in stellar mass at fixed halo mass. We find that there are weak
correlations (Rs ≈ 0.3) between the residuals of the SMHM relation
and sphericity, substructure and N2Mpc,DMO for masses <1012 M�.
However, these might be explained by correlations between these
quantities and concentration (e.g. Jeeson-Daniel et al. 2011). Since
accounting for the concentration (or formation time) reduces the
scatter in stellar mass by only � 0.04 dex, most of the scatter in
the SMHM relation cannot be explained in terms of variations in
the DMO halo properties.

It is interesting to measure how strongly the residuals of the
SMHM relation are correlated with the concentration of the dark
matter halo as measured in the full baryonic simulation. This cor-
relation is much stronger for all halo mass ranges (Rs = 0.77, 0.79
and 0.47) than the correlation between the DMO concentration and
the residuals of the SMHM relation (Rs = 0.50, 0.48 and 0.12).
This implies that a higher concentration is both a cause of and
an effect from efficient galaxy formation. For a given halo mass,
efficient cooling (and thus star formation) leads to a higher con-
centration (e.g. Blumenthal et al. 1986; Duffy et al. 2010; Schaller
et al. 2015b). However, the concentration from the DMO version
of the simulation can only be a cause of more efficient galaxy for-
mation. Thus, for a given halo mass, a higher dark matter halo
concentration will lead to a higher stellar mass, which then results
in an even more concentrated dark matter halo in the full baryonic
simulation.

4.1.1 Robustness of results and varying definitions of
concentration and formation time

The fact that halo concentration is itself weakly correlated with
halo mass (e.g. Navarro et al. 1997; Avila-Reese et al. 1999; Duffy
et al. 2008), with the parametric form c200,DMO ∝ MB

200,DMO, with
B ≈ −0.1, can influence our results. We remove this dependence by
correlating the residuals of the SMHM relation with the residuals
of the c200,DMO–M200,DMO relation obtained with the non-parametric
method. We find that this does not change the Spearman coefficient
for the correlation between σ (�log10Mstar) and concentration by
more than 0.02, regardless of halo mass range.

We varied our definition of the concentration, as it might be
important how we define the viral radius and because the use of
an NFW profile to obtain the concentration might bias the results.
Definitions that were tested are based on the circular velocity in
the DMO version at various radii: Vmax/V200,DMO, Vmax/V500,DMO

and Vmax/V2500,DMO. However, all correlate slightly less or equally
strong with the residuals of the SMHM relation than is the case for
c200,DMO. This suggests that our definition of concentration is close
to optimal. A similar result is found when we vary the definition
of formation time. The correlations between formation time and
the residuals of the SMHM relation are slightly weaker if other
assembly mass fractions than 0.5 are chosen (we tested fractions
of 0.33, 0.66 and 0.75). This indicates that our somewhat arbitrary
choice of a mass fraction of 0.5 is close to optimal.

We also test the effect of selecting only relaxed haloes, using the
definition from Duffy et al. (2008). This means that we only select
haloes for which the distance between the centre of mass and the
most bound particle is smaller than 0.07 times the virial radius. The
fractions of relaxed haloes in the low, intermediate and high halo
mass ranges are 0.65, 0.55 and 0.52, respectively. For the highest
halo mass range, we find that there are no differences. For the
low and intermediate masses, the correlation between the scatter
and concentration becomes slightly weaker (Rs = 0.45 and 0.35,
respectively). This is expected since the spread in concentration
will be smaller, as concentration is correlated with relaxedness (e.g.
Jeeson-Daniel et al. 2011).

To test the impact of recent interactions between haloes, we re-
move central galaxies which have been satellite galaxies in the
recent past (<3 Gyr) or will become satellites between z = 0.1 and
0.0 (note that we carry out our analysis at z = 0.1). While some
of these galaxies have either some of the highest or lowest stellar
masses for their halo mass, there is little difference statistically.
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The σ (�log10Mstar) decreases by � 0.01 dex for all mass ranges
and the correlation between σ (�log10Mstar) and formation time be-
comes slightly stronger for the low and intermediate mass ranges
(Rs = 0.57 and 0.55, respectively), and similarly for concentration.

4.2 Sources of scatter in Mstar–Vmax, DMO

In Section 3, we showed that Vmax, DMO is somewhat more closely
related to the stellar mass of central galaxies than M200,DMO is.
However, there is still significant scatter in the Mstar–Vmax, DMO rela-
tion. Therefore, we now investigate whether any dimensionless halo
properties correlate with the residuals of the relation between stellar
mass and Vmax, DMO. Note that Vmax, DMO is very closely related to
E2500,DMO, with a scatter of only 0.05 dex.

Similarly as for M200,DMO in Fig. 6, Fig. 8 shows the 1σ spread
in the residuals of the Mstar–Vmax, DMO relation as a function of
Vmax, DMO, before and after correcting for the dependence on a di-
mensionless halo property. None of the investigated halo properties
reduce the scatter in stellar mass. Indeed, we find no strong (|Rs|
> 0.3) correlations between the residuals of the Mstar–Vmax, DMO

relation and dimensionless DMO halo properties. The fact that we
find no correlation with concentration or formation time, means that
the additional scatter in the SMHM relation due to concentration is
already accounted for by Vmax, which is related to both halo mass
and concentration. This is also shown in Fig. 9, which compares the
spread in stellar mass as a function of halo mass, where the stellar
mass is computed either from M200,DMO, Vmax, DMO or E2500,DMO

alone, or from M200,DMO and either c200,DMO or z0.5,DMO. Note that
while we have binned in Vmax, DMO and E2500,DMO, we show the halo
masses corresponding to those bins, respectively. By comparing the
green curve (for Vmax) with the dashed curves (using M200,DMO and
an additional property), it is clear that M200,DMO performs less well
than the other predictors.

5 A PA R A M E T R I C D E S C R I P T I O N FO R
PREDICTING STELLAR MASSES

As described in Section 4.1, up to 0.04 dex of scatter in stellar
masses at fixed halo mass is attributed to variations in formation

Figure 9. Scatter in the difference between true and predicted stellar mass
from various parametric fits as a function of M200,DMO. To first order,
the stellar mass can be computed using halo masses and equation (3). A
second-order correction based on the relation between the scatter in the
SMHM relation and formation time or concentration is applied using either
equation (9) or equation (10). Since the scatter in the SMHM relation does
not correlate with formation time at the highest halo masses, the scatter is
only reduced for halo masses below 1012.6 M�. It can be seen that using
formation time is slightly more robust than using concentration. The scatter
is then very similar to the scatter in stellar mass as a function of Vmax.

times and concentrations (where we measured the scatter in the
SMHM relation with the non-parametric method). In this section,
we use the parametric method to obtain fitting functions for stellar
mass as a function of halo mass and concentration or formation
time.

5.1 Halo mass and formation time

We correct the stellar mass at fixed M200,DMO using a fit between
the scatter in the SMHM (�Mstar(M200,DMO)) and DMO formation
time. As before, we use a simple linear least-squares fit between the

Figure 8. As ig. 6 but now with the scatter in stellar mass as a function of Vmax, DMO instead of M200,DMO. The addition of a dimensionless halo property to
Vmax, DMO does not result in statistically more accurate stellar masses.
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residuals of the SMHM and z0.5,DMO, which results in

�log10Mstar(M200,DMO, z0.5,DMO)

= a(log10M200,DMO/M�) z0.5,DMO + b(log10M200,DMO/M�). (6)

When including all galaxies (such that we average over all
halo masses), we find best-fitting parameters a = 0.22+0.01

−0.01 and
b = −0.31+0.01

−0.01.
However, we have seen that the dependence on formation time

varies with halo mass. We therefore need to fit the parameters a and
b in a mass-dependent way. This mass dependence is obtained in
the same way as we obtain the mass dependence of the scatter in
the SMHM relation, which was described in Section 2.5.

The relations between the slope and normalization of equation
(6) and halo masses are fit with a cubic relation.

a(X) = −196.005 + 49.262 X − 4.107 X2 + 0.114 X3, (7)

where we define X = log10(M200,DMO/M�), and

b(X) = 154.322 − 39.571 X + 3.357 X2 − 0.094 X3. (8)

Combining equations (3), (6), (7) and (8), we find that we can
predict stellar masses at z = 0.1 to a precision of ≈0.12–0.22 dex
from DMO halo properties with the following equation:

log10(Mstar/M�) = α − eβ X+γ + a(X) z0.5,DMO + b(X), (9)

where α, β and γ are listed in the first line of Table 2. We note that
the errors on the fits for a(X) and b(X) are large at M200,DMO > 1012.5

M�. Above that halo mass, a(X) and b(X) should therefore be set
to zero.

Using equation (9) instead of equation (3) reduces the 1σ scatter
in the difference between predicted stellar masses and true stellar
masses from 0.26 to 0.23 dex and from 0.16 to 0.14 dex in the low-
mass and intermediate-mass ranges, respectively, by construction
(a = b = 0 for M200,DMO > 1012.5 M�. This is illustrated in Fig. 9,
where we compile the scatter in the difference between true and
predicted stellar mass as a function of DMO halo mass for various
parametric fits.

5.2 Halo mass and concentration

Although formation time correlates slightly better with the resid-
uals of the SMHM relation than concentration does, we can also

use concentration as a secondary parameter to obtain more accurate
stellar masses. We repeat the same steps as the previous section
by using log10(c200,DMO) instead of z0.5,DMO. The benefit of using
log10(c200,DMO) is that we do not rely on the merger tree, and there-
fore only require the simulation output of a DMO simulation at a
single snapshot. For the simulation output at z = 0.1, we obtain the
following equation:

d(X) = −399.944 + 100.358 X − 8.341 X2 + 0.230 X3, (10)

and

e(X) = 296.274 − 75.165 X + 6.307 X2 − 0.175 X3. (11)

Finally, this results in

log10(Mstar/M�) = α − eβ X+γ + d(X) log10c200,DMO + e(X),

(12)

where the relevant α, β and γ are listed in the first line of Table 2.
We note again that above M200,DMO > 1012.5 M�, d(X) and e(X) are
set to zero because of the large errors.

When comparing the statistical corrections to stellar masses using
formation time or concentration in Fig. 9, it is clear that using the
formation time is only marginally better. One possible reason that
the formation time performs slightly better than c200,DMO at low
halo masses could be that there is some other scatter in c200,DMO at
low halo mass that is due to numerical noise because the number of
dark matter particles available to constrain the fitted NFW profile
is small.

6 EVO L U T I O N

In this section, we investigate the evolution of the SMHM relation
and the scatter in stellar mass as a function of halo mass. As we did
for z = 0.1, we fit the relation between stellar mass and M200,DMO

for central galaxies at different output redshifts from the EAGLE
simulation using the non-parametric method.

We show Mstar/M200,DMO versus M200,DMO in the left-hand panel
of Fig. 10, as this better highlights the differences in comparison
to showing stellar mass as a function of halo mass. There is almost
no evolution between z = 0 and 0.3. At higher z, the evolution
of the SMHM relation is, to first order, described by a decreas-
ing normalization: the ratio between stellar mass and halo mass

Figure 10. Evolution of the SMHM relation (left) and its scatter (right). Different from previous figures, we plot Mstar/M200,DMO along the y-axis in order to
increase the dynamic range. Dashed lines indicate where there are fewer than 100 galaxies per halo mass bin of 0.4 dex width. With increasing redshift the
normalization of the SMHM drops and, except at the lowest halo masses, the scatter increases.
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decreases with increasing redshift, roughly independent of halo
mass. At M200,DMO ≈ 1011 M�, Mstar/M200,DMO is roughly 0.15 dex
lower at z = 2.5 than at z = 0. The evolution is largest at halo masses
≈1012 M�, with M�, Mstar/M200,DMO decreasing by roughly 0.25
dex from z = 0 to 2.5. As a consequence, the peak in Mstar/M200,DMO

shifts to slightly higher masses with increasing redshift.
At fixed halo mass and z = 0, the normalization of Mstar/M200,DMO

is about 0.2–0.3 dex lower in EAGLE than inferred from abundance
matching by Behroozi et al. (2013a) and Moster et al. (2013). Simi-
larly to Behroozi et al. (2013a), we find that the halo mass at which
Mstar/M200,DMO peaks increases only slightly (≈0.1–0.2 dex) be-
tween z = 0 and 2.5, while Moster et al. (2013) find a larger shift of
≈0.6 dex. Contrary to Behroozi et al. (2013a) (who find a constant
or even increasing peak Mstar/M200,DMO with redshift), we find that
the peak Mstar/M200,DMO decreases by ≈0.2 dex between z = 0 and
2.5, which is more similar to the trend found by Moster et al. (2013).

In the right-hand panel of Fig. 10, we show the evolution of the
scatter in the SMHM relation between z = 0 and 2.5. While we
find a relatively constant scatter for M200,DMO ≈ 1011 M�, there is
significantly more scatter for M200,DMO ≈ 1011.5–12.0 M� at higher
redshifts. This could be caused by a larger spread in halo forma-
tion times at these higher redshifts. The evolution of the scatter in
the SMHM relation at higher halo masses is unconstrained due to
uncertainties stemming from the limited number statistics in the
EAGLE volume.

7 D ISCUSSION

7.1 Mass dependence of scatter

As shown in Fig. 3, the scatter in the difference between true stel-
lar masses and stellar masses computed from fits to the SMHM
relation, σ (�log10Mstar), decreases with increasing halo mass, at
least up to a halo mass of M200,DMO ≈ 1012 M�. This is not a re-
sult of the limited volume of the EAGLE simulation, as shown in
Appendix B. This is in contrast with the typical assumption that
σ (log10Mstar) is not a strong function of halo mass, and roughly
equals 0.2 dex (e.g. Leauthaud et al. 2012; Moster et al. 2013; van
Uitert et al. 2016), which is often used in halo abundance-matching
modelling (e.g. Behroozi et al. 2013a). However, as noted by Vakili
(2016), abundance-matching models that allow for assembly bias
(see Section 7.2) indicate that the scatter can be significantly larger.

The most direct observational (yet model dependent) constraints
on the mass dependence of σ (log10Mstar) come from More et al.
(2009) and Yang, Mo & van den Bosch (2009), who both measure
a halo mass independent scatter of ≈0.17 dex. The observations
from More et al. (2009) are based on the kinematics of satellite
galaxies, while Yang et al. (2009) use a galaxy group catalogue
from the Sloan Digital Sky Survey (SDSS). However, for obser-
vational reasons, these constraints are mostly set at halo masses
M200,DMO > 1012 M� which are higher than the masses for which
we find a significant trend. As illustrated in Fig. 11, EAGLE is
consistent with these observational constraints, contrarily to some
SAMs of galaxy formation, which produce much greater scatter
(Guo et al. 2016). We note that the observational measurements of
the scatter should be considered as upper limits due to errors in
stellar mass measurements.

By fitting to lensing and clustering measurements, Zu & Man-
delbaum (2015) simultaneously constrain the SMHM relation and
its scatter at z ∼ 0.1. In agreement with our results, they find that
σ (log10Mstar) decreases with increasing halo mass: from 0.22+0.02

−0.01

dex at M200 � 1012 M� to 0.18+0.01
−0.01 dex at M200 ≈ 1014 M� (see

Figure 11. Scatter in the stellar mass at fixed halo mass as a function of
halo mass. Yellow points show the binned results from the SDSS galaxy
group catalogue from Yang et al. (2009). The green shaded region shows
the observational constraints from satellite kinematics (More et al. 2009).
Both observational constraints are inferred for samples of galaxies with
M200,DMO > 1012M� and are consistent with the results from EAGLE for
this mass range. The red dashed line and shaded region show the mass-
dependent scatter inferred by Zu & Mandelbaum (2015). We note that
σ (�log10 Mstar) in EAGLE is intrinsic, and does not take errors in stel-
lar masses into account, which do affect the observations. Therefore, the
observational constraints should be considered as upper limits.

also Fig. 11 and the results from a semi-empirical approach by
Rodrı́guez-Puebla et al. 2015). This scatter is similar to that we find
in EAGLE at M200 � 1012 M�, but it decreases more slowly with
halo mass than in EAGLE, which may be due to the constraints set
by their assumption that the mass dependence of the scatter follows
a simple linear relation. Tinker et al. (2016) report a 0.18+0.01

−0.02 dex
scatter at M200 � 1012.7 M�, slightly higher than the scatter in the
SMHM in EAGLE. Combined with the result from Kravtsov et al.
(2014) (who find that the scatter is 0.17 ± 0.02 dex for M200 >

1014 M�), the observations indicate that the scatter in the SMHM
relation is insensitive of halo mass for haloes more massive than
M200 � 1012.7 M�.

In a recent combined analysis of N-body simulations and the
fitted SMHM relation from Behroozi, Wechsler & Conroy (2013b),
Gu, Conroy & Behroozi (2016) study the origin of scatter in the
SMHM relation. Although their analysis is limited to haloes with
masses M200,DMO > 1012M�, they argue that the constant scatter in
the SMHM relation as a function of halo mass is due to an interplay
of scatter due to ex situ growth (i.e. accretion) and in situ growth
(i.e. star formation), and that the observed independence of the
scatter in the SMHM relation on halo mass is a coincidence. In the
analysis of Gu et al. (2016), hierarchical assembly leads to a scatter
of ≈0.16 dex at high halo masses, which is roughly independent of
the details of galaxy formation. Although the scatter due to ex situ
growth increases towards low halo masses, the relative importance
of in situ growth dominates below M200,DMO < 1012M�. Therefore,
the scatter in the SMHM relation at lower masses is set mostly by
the scatter in the in situ growth at fixed halo mass, which is more
strongly related to the details of galaxy formation. Gu et al. (2016)
assume the scatter in in situ mass growth to be 0.2 dex for all
halo masses. However, if this scatter were higher, or increases with
decreasing halo mass, the resulting scatter in the SMHM relation
will increase with decreasing halo mass. This would be consistent
with our findings based on the EAGLE simulation, particularly since
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we find that at low halo masses the scatter in the SMHM relation
depends strongly on halo formation time (which is likely related to
in situ star formation or binding energy).

More observational constraints on the scatter in the SMHM re-
lation at low halo masses would be valuable. However, it is ob-
servationally challenging to measure halo masses for lower mass
central galaxies using methods such as satellite kinematics or
galaxy–galaxy lensing (e.g. Mandelbaum et al. 2006; Zu & Man-
delbaum 2015). At lower stellar masses, halo masses may be esti-
mated from measured rotational velocities (e.g. Blanton, Geha &
West 2008; Reddick et al. 2013 and see for example the compi-
lation by Leauthaud et al. 2012). However, adiabatic contraction
due to galaxy formation increases halo concentrations and thus also
rotational velocities at fixed halo mass (e.g. Desmond & Wech-
sler 2015). Thus, the measured scatter in stellar mass at fixed halo
mass would be biased low if halo masses were based on rotational
velocities.

7.2 Relation to assembly bias and abundance matching

A commonly used technique to connect stellar masses to halo
masses is abundance matching, which, in its simplest form, as-
sumes that stellar mass increases monotonically with halo mass
(or another halo property such as the maximum rotational velocity).
This is related to the assumption that the halo clustering strength is
fully determined by the halo mass. It may be plausible that a sec-
ond halo property that is related to halo clustering is also a second
parameter in determining galaxy stellar masses.

The existence of a second halo property that is related to the clus-
tering strength of haloes is called assembly bias (e.g. Gao, Springel
& White 2005; Dalal et al. 2008; Lacerna & Padilla 2011). These
studies have shown that the clustering of dark matter haloes de-
pends not only on halo mass, but also on their formation time.
Chaves-Montero et al. (2016) showed that assembly bias signifi-
cantly alters the clustering of galaxies in the EAGLE simulation,
and that using Vrelax as a halo property suffers significantly less from
this effect. There is no consensus in observations of large sets of
galaxies (such as 2dFGRS or SDSS) on the existence of assembly
bias. While some authors claim a signal from assembly bias (Yang,
Mo & van den Bosch 2006; Wang et al. 2008), others (Blanton &
Berlind 2007; Tinker et al. 2008) argue little to no dependence of
(for example) galaxy colour on large-scale clustering (cf. Hearin
et al. 2016). More recently, Zentner et al. (2016) and Vakili (2016)
argue that significant assembly bias cannot be excluded from galaxy
clustering data from SDSS.

The existence of scatter in the SMHM relation means that halo
mass alone cannot predict stellar mass with an accuracy better than
≈0.2 dex, although we note again that this scatter decreases with
increasing halo mass, see e.g. Fig. 9. The scatter in stellar masses can
be slightly reduced by using information about the concentration
or formation time of the haloes. This is similar to the approach by
Lehmann et al. (2015) and Hearin et al. (2016), who extend the
abundance-matching method to halo properties that also depend on
halo concentration. Thus, halo properties such as Vmax or binding
energy, which are related to both halo mass and concentration, are
the most fundamental halo properties in determining stellar masses
(see also Reddick et al. 2013). This resembles the conclusion from
Booth & Schaye (2010), who argue that the halo binding energy
determines black hole mass and indicates a co-evolution of galaxies
and their massive black holes.

From an analysis of local galaxies from the SDSS, Lim et al.
(2016) argued that there is a relation between the ratio of a central

galaxy’s stellar mass to its halo mass (from the Yang et al. 2009
group catalogue) and the galaxy formation time. They find that
galaxies with a high ratio of central stellar mass to halo mass are
typically redder, older and more bulge like: properties that are all
associated with older stellar populations. In EAGLE, as illustrated
in Fig. 7, such a relation also exists between DMO halo formation
time and the ratio of stellar to halo mass. In this case, it certainly
indicates a causal relationship, since the halo formation time is
measured in the independent DMO version of EAGLE.

7.3 The origin of the remaining scatter

Intriguingly, we find that there remains significant scatter in the
SMHM relation after accounting for the effect of concentration,
and that there is also scatter in the Mstar–Vmax relation, which is not
strongly related to any of the dimensionless DMO halo properties
(see Section 4.2) studied. We consider possible explanations for the
remaining scatter.

(i) The scatter reflects noise due to the finite numerical resolution.
We think this is unlikely since particularly the highest mass galaxies
are resolved using >10 000 particles. In Appendix B, we compare
with a higher resolution 25 Mpc EAGLE simulation. Although this
comparison is only possible for a volume that is too small to sample
halo masses � 1012.5 M�, we find no evidence for significant
resolution effects.

(ii) The scatter is caused by a combination of weak correlations
with halo properties that are uncorrelated with the halo properties
we included. In particular, baryonic processes might be very non-
linear and chaotic, such that only small differences in halo properties
result in substantial differences in the final stellar mass. Examples
may include rare but explosive feedback or the interplay between
dissipation, collapse and feedback.

8 C O N C L U S I O N S

We have used the EAGLE cosmological hydrodynamical simu-
lation to study what drives the efficiency of galaxy formation in
haloes hosting central galaxies. In particular, we studied which di-
mensional dark matter halo property X is most closely related to
stellar mass, and whether other dimensionless halo properties are
responsible for driving the scatter in the stellar mass at fixed X for
halo masses from 1011–13.5 M� (corresponding to Mstar ≈ 108–11.5

M�). The investigated dimensional dark matter halo properties
include different definitions of halo mass, binding energy and ro-
tational velocity, see Table 1, while the investigated dimensionless
halo properties are concentration, formation time, spin, sphericity,
triaxiality, environment and substructure.

Since differences between haloes are ultimately determined by
differences in the initial conditions, dominated by the initial density
perturbations of (primarily) dark matter, we used halo properties
from a matched DMO simulation. This is necessary since proper-
ties in the baryonic EAGLE simulation are affected by baryonic
processes, making cause and effect impossible to separate. For ex-
ample, if the baryonic simulations predict a correlation between
stellar mass and dark matter halo concentration, then it is not clear
whether a higher concentration causes a higher stellar mass or vice
versa.

The main conclusions of this work are as follows.

(i) The maximum circular velocity, Vmax, DMO, is the DMO halo
property that is most closely related to stellar mass. The bind-
ing energy measured at R2500,DMO is almost as strongly correlated
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with stellar mass. These halo properties are more fundamental than
M200,DMO, for which there is more scatter in stellar mass, see Figs 3
and 4. We have provided formulae to compute stellar masses based
on dark matter halo properties (Section 5).

(ii) The scatter in stellar mass at fixed halo mass decreases with
increasing halo mass, from ≈0.25 dex at M200,DMO = 1011 M� to
≈0.12 dex at M200,DMO = 1013 M�. This is in contrast with the
common assumption that the amount of scatter is independent of
halo mass.

(iii) For halo masses M200,DMO > 1012 M� the scatter in stel-
lar mass decreases much less rapidly with halo mass than for
M200,DMO < 1012 M�. This may be due to the transition from feed-
back dominated by star formation to feedback dominated by AGN,
or due to the increased importance of mergers.

(iv) The measured scatter at M200,DMO > 1012 M� is consistent
with the most direct inferences from observations (Fig. 11). Future
direct observations probing lower halo masses can test whether there
is indeed more scatter in stellar mass at low halo mass.

(v) The halo concentration, which is a good proxy for formation
time, is responsible for part of the scatter in the SMHM relation
up to a halo mass of M200,DMO ∼ 1012.5 M�, see Figs 5 and 6.
Haloes with a higher concentration formed earlier and have been
more efficient at forming stars (Fig. 7), probably because they are
in a more advanced stage of their evolution and/or because it is
harder for feedback to drive winds out of haloes with a higher
concentration.

(vi) By correcting for concentration or formation time using a
functional form, the scatter in the SMHM relation can be reduced
by up to 0.04 dex (depending on the halo mass range), see Fig. 6.
However, the remaining scatter in stellar mass is as large as the
scatter in the Mstar–Vmax relation, see Fig. 9.

(vii) Empirical models, which assign stellar masses to haloes in
DMO simulations are more reliable if halo properties based on both
halo mass and concentration are used, such as Vmax.

(viii) We find no DMO halo property that can account for the
scatter in the SMHM relation after correcting for the effect of con-
centration (or formation time), or for the scatter the Mstar–Vmax rela-
tion. This means that, except for properties related to the halo mass
and concentration, other halo properties (such as spin, sphericity,
triaxiality, environment and substructure) are statistically unimpor-
tant for determining the stellar mass of a galaxy. It is therefore likely
that more complex (combinations of) halo properties and assembly
histories are responsible for the remaining scatter in stellar masses
by driving chaotic non-linear baryonic effects.

(ix) There is little evolution in the SMHM relation between
z = 0 and 0.3. At higher redshift, the evolution of the SMHM
relation is approximately described by a decreasing normalization,
relatively independent of halo mass. The evolution is largest at halo
masses ≈1012 M�. As a consequence, the peak in Mstar/M200,DMO

shifts to slightly higher masses with increasing redshift. While the
scatter in the SMHM is relatively constant between z = 0 and 2.5
for haloes with M200,DMO ≈ 1011 M�, we find that there is signif-
icantly more scatter for M200,DMO ≈ 1011.5–12.0 M� at z � 1 than
at z ≈ 0 (see Fig. 10). This is likely caused by the larger spread in
halo formation times at these higher redshifts.

The efficiency of galaxy formation, defined as the scatter in the
SMHM relation for central galaxies, is determined by the cosmo-
logical initial conditions. Haloes which reside in more overdense
regions collapse earlier, leading to a higher concentration and an
earlier formation of stars and less efficient feedback due to deeper
potential wells. Measures of the potential well depth, such as Vmax,

M2500,DMO or a combination of these properties, correlate more
strongly with stellar mass than M200,DMO alone and are thus more
fundamental properties governing the evolution of galaxies. How-
ever, this is only valid up to halo masses of ∼1012.5 M�. Beyond
this mass, additional physical processes play a role, as a more con-
centrated halo does not necessarily lead to a higher stellar mass.
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A P P E N D I X A : VA RY I N G T H E D E F I N I T I O N O F
STELLAR MASS

In this appendix, we vary the definition of stellar mass. In the main
text, we used the total mass of star particles within 30 proper kpc
of the minimum of the gravitational potential of a subhalo at z =
0.1. However, high-mass haloes contain substantial stellar mass at
larger radii. We therefore use the stellar mass of all particles in
the subhalo as identified by SUBFIND. As illustrated in Fig. A1, the
spread in stellar mass as a function of halo mass becomes slightly
lower for the highest halo masses.

Another variation that we investigate is the initial stellar mass
(either within 30 kpc or of all star particles in the SUBFIND sub-
halo). This is the mass that a stellar particle had at the time it was
formed, and using this mass removes the effects of stellar mass loss.
Fig. A1 shows no significant differences when we use this defini-
tion. Although the typical stellar mass loss is 40–50 per cent, the
difference in stellar mass loss between the youngest and oldest
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Figure A1. The effect of scatter in stellar masses for varying definitions
of stellar mass. The total stellar mass in a subhalo is slightly more closely
related to halo mass than the aperture stellar mass is. There is negligible
difference between the scatter in initial (i.e. corrected for stellar mass loss
due to stellar evolution) and current with initial stellar mass.

galaxies is small, only ≈20 per cent, as the majority of stellar mass
loss occurs on time-scales <109 yr due to the limited lifetimes
of massive stars (e.g. Segers et al. 2016). When using the initial
stellar mass, the correlations between the scatter in the SMHM re-
lation and concentration/formation time become slightly stronger
(∼+ 0.02 Spearman rank). This is easy to understand: the most
concentrated haloes form the earliest, such that the effect of stellar
mass loss will be highest, and this will therefore slightly weaken
the trend that an earlier formation time leads to a higher redshift
zero stellar mass (at fixed present-day halo mass).

A P P E N D I X B : D E P E N D E N C E O N B OX SI Z E
A N D R E S O L U T I O N

In this appendix, we test whether the scatter in the SMHM relation
as a function of halo mass depends on the simulated volume or
resolution. For the box size test, we compare the results from the
(100 Mpc)3 box with those from a (50 Mpc)3 box with the same
resolution. As shown in the top panel of Fig. A2, the spread in
stellar mass as a function of halo mass is very similar between the
two boxes. This means that our conclusions are not affected by the
finite volume of our simulation. Small number statistics (in terms
of number of galaxies and in terms of independent environments in
the simulation volume) does increase the uncertainty in σ (�log10

Mstar) with halo mass. The top panel of Fig. A2 shows that this
effect is much stronger in the smaller box, such that the increase in
uncertainty with mass may be due to the finite box size.

In the bottom panel of Fig. A2, we compare the spread in stellar
mass as a function of halo mass in two simulations with a box
size of (25 Mpc)3. Note that we had to increase the bin widths
from 0.4 to 0.6 dex in order not to be dominated by errors. While
one simulation has the fiducial resolution (L025N0376), the other
uses a spatial (mass) resolution better by a factor 2 (8). We note

Figure A2. Box size and resolution test. Scatter in the difference between
true stellar masses (in the baryonic simulation) and stellar masses computed
from the non-parametric fits to the relation between stellar mass and DMO
halo mass, as a function of DMO halo mass. The errors are estimated by
jackknife resampling the data in sub-volumes with 1/8th times the total
volume of the box. For halo mass ranges where there are less than 25 haloes
per bin, we do not show the errors and only indicate the relation with a
dashed line.

that the Recal model parameters differ slightly from those of the
Reference model, see Schaye et al. (2015). It is hard to reliably
investigate the effect of resolution on the statistical scatter in stellar
mass, because the errors are very large due to the small numbers
of galaxies per halo mass bin. While the differences are within
the error bars, there might be less scatter in stellar mass at fixed
halo mass in the simulation with higher resolution, particularly for
M200,DMO < 1012.5 M�.
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