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In any particular theory there is only as much real science as there 
is mathematics. 

IMMANUEL KANT 

The most beautiful thing we can experience is the mysterious. It is 
the source of all true art and all science. He to whom this emotion 
is a stranger, who can no longer pause to wonder and stand rapt in 
awe, is as good as dead: his eyes are closed. 

ALBERT EINSTEIN 
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This thesis focuses on the development and analysis of general methods for the optimal design of controllers for multivariable processes in a numerical optimisation framework, 
where genetic algorithms (GAs) are used to optimise a number of specially formulated 
objective functions. Strong emphasis is given on the generality and open architecture of 
the proposed methods, which are shown to be applicable to a wide range of real-world 
multivariable control problems. 

A novel objective function is proposed for single-input, single-output (SISO) processes, 
that enables the designer to explicitly specify the performance specifications associated 
with a given problem in terms of time-domain bounds on the closed-loop responses. The 
proposed objective function is then experimentally investigated using a simple two-term 
parametric controller tuning problem. The obtained results are analysed and compared 
with those obtained using a number of popular conventional objective functions, as well 
as using a number of standard controller tuning methods. It is shown that the proposed 
objective function is inherently capable of accurately quantifying complex performance 
specifications in the time domain, which cannot normally be employed in conventional 
controller design/tuning methods. Finally, the proposed objective function is generalised 
to treat multi-input, multi-output (MIMO) control problems. 

The proposed objective functions mentioned above permit the existence of a (usually 
infinite) set of multiple optimal solutions. To enable GAs to efficiently identify multiple 
optimal solutions, standard GAs are extended using a novel fitness assignment strategy 
called adaptive fitness sharing, which is based on the techniques of niche formation and 
speciation. It is shown that the proposed method enables the GA to evolve a population 
whose members are almost uniformly distributed within the optimal solution set. It is 
also shown that adaptive fitness sharing consistently outperforms the proportionate and 
rank-based fitness assignment strategies, in terms of both performance (higher degree of 
achieved uniformity), and robustness (less sensitivity to initial conditions). The time 
complexity of adaptive fitness sharing is shown to be better than that of conventional 
fitness sharing. Finally, adaptive fitness sharing is shown to be capable of adapting the 
phenotypic density of the population as required, while maintaining a high degree of 
uniformity throughout the search run. This facilitates the application of adaptive fitness 
sharing to on-line optimisation problems. 

A new method for the automatic tuning of decentralised PI controllers for multivariable 
processes is proposed, based on GAs and the MIMO objective function developed earlier 
in this work. GAs are employed for the minimisation of this function, and the method of 
adaptive fitness sharing is used, in order to maximise the diversity of the obtained family 
of optimal solutions. The proposed tuning method is shown to be directly applicable to 
the automatic tuning of a wide range of linear or non-linear multivariable controllers, and 
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not just PI controllers. Simulation results are presented to illustrate the effectiveness of 
the proposed method. It is shown that the method enables the identification of a diverse 
family of controllers that completely satisfy the specifications, if such controllers exist. 
The designer can then manually examine the obtained family of controllers, and choose 
one which also satisfies additional qualitative optimality criteria which cannot easily be 
expressed in mathematical terms. The suitability of GAs in this optimisation problem is 
supported by statistically comparing them with two conventional optimisation methods, 
where it is shown that GAs have higher success rates and are more immune to noise. 

A new solution to the Shell standard control problem is presented, based on GAs. The 
proposed control scheme includes two linear discrete-time PID controllers with integral 
anti-windup and a multivariable Smith predictor to provide the required process output 
regulation, while the process input minimisation problem is analytically solved on-line, 
by estimating the two unmeasured disturbances entering the Shell process and solving 
the associated linear program. GAs are successfully applied to the automatic tuning of 
the two PID controllers according to the given specifications, using an extension of the 
MIMO objective function developed earlier in this work. Extensive simulation results 
are presented, which show that the proposed control scheme is robustly stable and that its 
robust performance is comparable to that of more computationally intensive approaches, 
such as the Quadratic Dynamic Matrix Control (QDMC) and other algorithms. Making 
the specifications more conservative is shown to improve the robustness of the scheme 
in the face of model uncertainties. It is also demonstrated, through simulation, that the 
proposed control scheme satisfies all steady-state specifications for all five prototype test 
cases published by Shell, which include the nominal process model as well as a number 
of worst-case uncertain models. Finally, the success of the proposed GA-based control 
scheme demonstrates the potential of the application of GAs and the objective functions 
developed in this work, to large-scale multivariable process control problems. 
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Introduction - Survey and Thesis 
Outline 

1.1 Introduction 

This chapter begins with a brief overview of optimisation as applied to the solution of 

control engineering problems. Genetic algorithms (GAs) as function optimisers are then 
introduced, focusing on their fundamental differences and advantages over conventional 

algorithms. The relevance of GAs to control systems is then illustrated by a number of 

successful applications in different areas of process modelling and control. Finally, the 

project scope and the structure of this thesis are outlined. 

1.2 Optimisation and Control Systems 

The majority of modelling and control problems are inherently associated with function 

optimisation. Consider, for example, the simple closed-loop system shown in Fig. 1.1. 

In most cases, the controller, D. is designed such that the error signal, e(t), is minimised 

in some desired way. The controller, therefore, acts as an optimiser which attempts to 

minimise some function f [e(t)] on-line, by generating a suitable control sequence which 

is applied to the process input u(t). 

Set point Error Input 
r(t) +e (t) u (t) 

Controller, D Process, G 

Feedback, H 

Output 
y(t) 

Fig. 1.1 Simple closed-loop automatic control system 
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It may often be possible to quantify the performance of the closed loop system by means 
of a function J(. ), which is usually single-valued and is often called performance index 
or objective function. This is clearly a function of D, and the controller design problem 
is, therefore, equivalent to that of optimising J over the set of all permissible (usually 
stabilising) controllers. Depending on the complexity of the mapping defined by J and 
the associated control problem, the optimisation of J may be performed analytically or 
numerically. The numerical approach, although less elegant, is conceptually simple and 
has the potential to deliver excellent designs that go beyond linear, time-invariant control 
theory, as will become apparent later. 

Several modern control approaches have been developed, which are based on function 

optimisation. Popular examples include the H2 (Linear Quadratic Gaussian - LQG), and 
H. optimal control theory, in which the H2 and H. norms are employed as performance 
indexes, respectively. A comprehensive treatment of H2 and H. optimal control theory 

can be found in Zhou, Doyle, and Glover (1996). Other popular optimisation approaches 
to control include Model Reference Adaptive Control (MRAC), in which the controller 

parameters are optimised on-line, so that the process output asymptotically matches that 

of a reference model. For more information on MRAC, the reader is referred to Aström 

and Wittenmark (1995). Most predictive control algorithms (Garcia and Morshedi, 1986; 

Clarke, Mohtadi, and Tuffs, 1987a, 1987b; Garcia, Prett, and Morari, 1989; Clarke and 
Mohtadi, 1989) are also based on on-line function optimisation. Worth mentioning is 

the so-called Edmunds' algorithm (Edmunds, 1979), in which the controller parameters 

are optimised to make the closed-loop transfer function approach some target transfer 

function as closely as possible over a specified frequency range. 

Optimisation has also been employed for the tuning of PID controllers. Lopez, Miller, 

Smith, and Murrill (1967) used a number of performance indexes based on integrals of 

functions of the form f [t, e(t)], such as the Integrated Squared Error (ISE) criterion, to 

develop graphs that relate the optimal P, PI, and PID settings with the three parameters 

of a first-order dead time process model. A time-domain PID tuning method that is also 

based on integral performance criteria was proposed by Dan-Isa and Atherton (1997). 

More recently, Gagnon, Pomerleau and Desbiens (1999) proposed a decentralised PI 

tuning method for multivariable processes, based on the minimisation of an objective 
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function which is derived from standard µ-synthesis (structured singular value) theory. 
This approach results in PI controllers that achieve improved robust performance in the 
face of process uncertainty and controller output variation constraints. 

1.2.1 Advantages of Optimisation-Based Controller Desirn 

In conventional, linear controller design methods, the problem specifications are usually 
expressed in terms of standard system characteristics, such as gain and phase margins, 
locations of poles and zeros, bandwidth, peak overshoot, settling time, rise time, and 

others. Although such characteristics may be sufficient in ensuring that the closed-loop 

system is stable and well-behaved, they may not accurately represent the specifications 
that can arise in an arbitrary, real-world control problem. Furthermore, in cases where 
the closed-loop system contains non-linear elements, linear system characteristics such 

as those mentioned above can often become meaningless. In a function optimisation 

framework, however, linearity is not at all a prerequisite. A performance index J(") that 

accurately reflects the given specifications can be formulated, and then optimised using 

a suitable analytical or numerical method. 

Analytical optimisation is usually a very difficult task, mainly due to the complexity of 

the mapping defined by J and the associated control problem. However, the widespread 

availability of high-speed computers has made numerical optimisation a viable (albeit 

less elegant) alternative to analytical optimisation. The numerical optimisation approach 

is conceptually simple in that it only requires the numerical solutions of the differential 

and difference -equations associated with the closed-loop system. These can be obtained 

using most standard control system simulation packages, provided a suitable model of 

the controlled process exists. The process model may be derived from first principles or 

from input/output data, and can contain both linear and non-linear elements. Objective 

function J for a candidate controller D can then be numerically evaluated by simulating 

the closed-loop system. A suitable optimisation algorithm may be used to optimise J, in 

order to obtain the optimal controller, Dopt. 

Clearly, optimisation-based controller design has the important advantage that it can be 

applied to a wide range of complex, non-linear control problems which cannot normally 

be solved reliably using conventional design methods. Another advantage is the ability 
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to handle arbitrary performance specifications. The fact that numerical optimisation does 

not rely on analytical tools makes this approach extremely flexible. For example, a new 
(linear or non-linear) element in the closed-loop system can be introduced by simply 
including it in the system simulation code. Similarly, a new design specification can be 
introduced by simply modifying J accordingly. The numerical optimisation can then be 

restarted with practically no further code modifications. 

1.2.2 Limitations of Optimisation-Based Controller Design 

The major limitation of optimisation-based controller design methods is the fact that they 

all depend on the performance index J(") and the way in which it quantifies the problem 

specifications. Care must, therefore, be exercised when formulating J, because a poorly 
designed performance index can result in controllers which are mathematically optimal, 
but are unacceptable in practice. The performance indexes employed in most analytical 

optimisation methods, such as H2 and H. optimal control theory, are usually continuous 

functions whose derivatives exist and can be expressed analytically in relatively simple 

terms. The problem specifications, however, may often be too complex to be adequately 

described by such simple objective functions. This results in designs that may require 

several ad hoc controller adjustments before they can be acceptable in practice. 

Another limitation is that, although J may adequately reflect the problem specifications, 

it may be too complex to be optimised, even in a numerical framework. In cases where J 

contains many local optima and is discontinuous, most conventional, calculus-based 

numerical optimisation algorithms are expected to converge to sub-optimal solutions, or 

not converge at all in some cases. Another difficulty is that the computations required to 

evaluate J may easily become excessive, and numerical robustness problems may also 

arise. The choice of a suitable optimisation method becomes a very important issue in 

such cases. 

1.3 Genetic Algorithms 

Genetic algorithms (GAs) are stochastic global search methods that are loosely based on 

the metaphor of natural biological evolution. They maintain a set of candidate solutions 

to a given problem, which are left to `evolve' using artificial genetic operators such as 
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reproduction, crossover and mutation. GAs work by combining the Darwinian `survival 
of the fittest' principle with a probabilistic information exchange strategy inspired by the 
processes of natural genetics, to form a structured yet randomised search algorithm that 
promises to be highly capable of identifying optimal or near-optimal solutions to a wide 
range of search, optimisation and machine learning problems. GAs have been developed 
by John Holland, his colleagues, and his students at the University of Michigan. Studies 
by Holland (1975), De Jong (1975), Goldberg (1989a), and others have demonstrated, 
both theoretically and experimentally, the superior performance of GAs over traditional 

search methods. They are currently being employed in a wide range of domains. More 
information on GAs and a list of practical applications can be found in Holland (1992), 
Fogel (1994), Goldberg (1994), and the introductory textbooks by Goldberg (1989a), 

and Mitchell (1996). Because of their unique structure and operation, GAs differ from 

more traditional search procedures in some very fundamental ways, making them ideal 

candidates as global function optimisers. The most important differences between GAs 

and conventional search methods are summarised in the following paragraphs. A more 
thorough comparison between GAs and conventional, gradient-based methods can be 

found in Salomon (1998) and the references therein. 

Most conventional optimisation methods are local in scope, mainly because they search 
from a single starting point. They can, thus, converge to a sub-optimal solution in the 

neighbourhood of the starting point, and miss the global optimum which may be located 

elsewhere. GAs, however, search from a population of points, not a single point, thus 

dramatically increasing the probability of reaching the global optimum. This makes 

them suitable for the optimisation of multimodal functions (i. e. functions which contain 

many local optima). 

Another weakness of conventional optimisation methods is that they usually rely on the 

existence of the partial derivatives of the objective function. Derivative information is 

used to guide the search towards the optimal point in some local neighbourhood. Popular 

examples of this approach include the so-called `hill-climbing' methods. GAs, however, 

only need objective function information. This enables them to be applicable in domains 

where continuity and derivative existence do not apply. They can also be used for the 

optimisation of `noisy' functions, where the same set of parameters will not, in general, 

produce exactly the same result. 
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Another characteristic of GAs that distinguishes them from most conventional search 
methods is that they work with a coding of the parameter set and not with the parameters 
themselves. This makes them directly applicable to a very wide range of non-numerical, 
discrete, combinatorial, and mixed optimisation problems. Most conventional optimisers 
based on continuous parameter variations cannot normally be used for the solution of 
such problems. 

Finally, unlike many conventional search methods, GAs use probabilistic transition 

rules to guide their search, not deterministic ones. This may seem odd to those familiar 

with deterministic methods, but the use of probabilistic processes does not suggest that 
GAs are equivalent to some simple random search. It can be shown (Goldberg, 1989a) 

that a clear distinction exists between the stochastic operators of GAs and other methods 
based on simple random walk. Using chance to achieve highly directed results may seem 

unusual, but the same mechanism is also used by nature, with obvious success. 

1 

a 
U 
C 
U) 
U_ 

W 

0 

Problem type 

Fig. 1.2 Efficiency of different classes of search methods 
across a problem continuum (Goldberg, 1989a) 

The power of GAs comes from the fact that they are robust and thus have the potential 

to be applicable to a wide range of problems, including those which other methods find 

difficult to solve efficiently. As expected, GAs are not guaranteed to find the globally 

optimal solution to any given problem, but they are generally good in finding "acceptably 

Combinatorial Unimodal Multimodal 
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good" solutions to a wide range of problems "acceptably quickly". The importance of 
robustness in a search method can be put in better perspective by observing Fig. 1.2. It 

can be seen that a specialised method performs very well in the problem area it has been 
designed for, but its efficiency drops rapidly when applied in different problem areas. In 

contrast to that, purely randomised methods such as random walk perform consistently 
in a wide range of problem areas, but their efficiency is generally low. Robust methods 
such as GAs combine efficiency with consistency, achieving acceptable performance 

across a wide range of domains. Therefore, in cases where specialised methods exist for 

solving specific problems, these methods are likely to outperform GAs, but in difficult 

areas where no specialised methods exist, GAs can provide a very effective - if not the 

only - approach. Even in cases where methods exist and work well, improvements can 
be made by hybridising them with GAs (Goldberg, 1989a; Salomon, 1998). 

1.4 Genetic Algorithms and Control Systems 

It is evident that, as a robust means for optimisation, the genetic algorithm approach fits 

well within the scope of optimisation-based process modelling and control, where noisy, 

highly non-linear, multimodal, and discontinuous functions of many dimensions need to 

be optimised. An overview of the relevance of GAs to problems in control engineering 

can be found in Chipperfield and Fleming (1995), Zalzala and Fleming (1996), Linkens 

and Nyongesa (1996b), and the references therein. GAs have already been employed for 

the solution of modelling and control problems, with a high degree of success. A number 

of successful applications of GAs to control systems are presented in this section. 

1.4.1 Genetic Algorithms in Process Modelling 

GAs have been employed for the parameter estimation and structure selection of both 

linear and non-linear system models. Kristinsson and Dumont (1992) demonstrated the 

use of GAs for the parameter estimation of both continuous-time and discrete-time linear 

systems, and for identifying the poles and zeros or the physical parameters of a system. 

Tan and Li (1997) employed GAs for the identification of linear and non-linear models 

from process step response data. Fonseca and Fleming (1996) used a multiobjective GA 

to identify non-linear polynomial models for a real non-linear system. A similar method 

was proposed by Li and Jeon (1993) who then used it in a learning control scheme (Li, 
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Tzeng, and Jeon, 1997). Other genetic approaches to non-linear modelling which also 
employ polynomial models were proposed by Rodriguez-Vazquez and Fleming (1997, 
1998) who identified optimal non-linear model structures using the technique of Genetic 
Programming (GP), developed by Koza (1992). GP was also used by Gray et. al. (1998), 

and McKay, Willis, and Barton (1997), for the identification of general non-linear model 
structures. The use of GP enables complete mathematical models to be constructed by 

optimally combining different types of linear and non-linear principal components. The 

obtained models have the advantage that they more closely resemble those obtained by 
first principles, and can thus provide more structural insight into the modelled process 
characteristics than black-box models such as neural networks. French, Cox, and Ho 
(1997) proposed a GA-based framework for the identification of the structure, order, and 
parameters of multivariable discrete-time transfer function matrices. GAs have also been 

used for the identification of fuzzy models. Recent applications in this direction include 

Rahmoun and Benmohamed (1998), and Hwang (1999). Shieh, Zheng, and Wang (1997) 

utilised GAs to identify discrete-time parametric models for uncertain processes which 

provide less conservative results than those obtained by conventional methods. Alonge, 

D'Ippolito, Ferrante, and Raimondi (1998) employed GAs to determine the mechanical 

and electrical parameters of a real induction motor model, and Liu and Kadirkamanathan 

(1999) proposed a GA-based method that addresses the problems of structure selection 

and identification of neural network models for non-linear systems in a multiobjective 

optimisation framework. Finally, Hong and Billings (1999) proposed a method for the 

parameter estimation of linear-in-the-parameters non-linear models, based on stacked 

regression and an evolutionary algorithm. 

1.4.2 Genetic Altorithms in Process Control 

Several GA-based methods have been developed for the optimal design and tuning of 

controllers. Porter and Jones (1992) used GAs to tune discrete-time Proportional plus 

Integral plus Derivative (PID) controllers for multivariable processes. Wang and Kwok 

(1994) proposed a GA-based technique for the tuning of PID controllers for non-linear 

processes, using the ISE performance criterion. Kawabe, Tagami, and Katayama (1996), 

and Kawabe, Tagami, and Okamura (1998) developed GA-based methods for the design 

of PID controllers that achieve robust stability and performance in the presence of plant 

uncertainty. An adaptive GA-based learning algorithm for the automatic tuning of PID 
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controllers as applied to heating, ventilating, and air conditioning systems, was proposed 
by Huang and Lam (1997), and Warwick and Kang (1998) proposed a self-tuning PID 
control scheme which they applied to the on-line control of a real industrial plant. The 
proposed approach is based on a hybrid scheme which combines the Recursive Least 
Squares (RLS) algorithm with a GA. Zuo (1995,1997) proposed a GA-based method 
for the design of discrete-time set point tracking adaptive PID controllers for complex 
multivariable plants. Finally, GA-based methods for the design of robust PID controllers 
using H. optimal control theory can be found in Takahashi, Peres, and Ferreira (1997), 

and Chen and Cheng (1998). 

GAs have also been applied in more complex control strategies. Varsek, Urbancic, and 
Filipic (1993) employed GAs to derive and fine-tune a set of if-then rules for the control 
of dynamic systems, without prior knowledge about the system to be controlled. Filipic, 
Urbancic, and Krizman (1999) proposed a similar rule-based approach. Krishnakumar 

and Goldberg (1992) used GAs to solve aerospace-related control problems by means of 

optimising standard linear quadratic regulators. Kristinsson and Dumont (1992) applied 
GAs to the design of discrete-time pole placement adaptive controllers. A comparative 

analysis of the performance of various GA-based adaptive control methods relative to 

conventional methods can be found in Lennon and Passino (1999). Hunt (1992a, 1992b) 

proposed an approach for the synthesis of LQG and H. optimal controllers for linear 

systems based on GAs. Patton and Liu (1994), and Clarke and Davies (1997), employed 
GAs for the robust control design of multivariable systems based on the eigenstructure 

assignment methodology. Shieh, Wang, and Tsai (1999) proposed a state-space design 

methodology for the optimal design of discrete-time parametric uncertain systems, based 

on GAs. Another application of GAs to robust control system design can be found in 

Marrison and Stengel (1997). GAs have also been employed as optimisers in predictive 

control algorithms. Onnen et. al. (1997) applied GAs to model-based predictive control 

of a non-linear system with input saturation and rate limit constraints. Martinez, Senent, 

and Blasco (1998) presented a Generalised Predictive Control (GPC) scheme that uses 

GAs to optimise the associated objective function. A practical application of GAs to the 

optimisation of the control parameters of a pneumatic servo cylinder drive is reported in 

Jeon, Lee, and Hong (1998). French, Cox, and Ho (1997) proposed a GA-based solution 

to the input/output pairing problem in multivariable processes. Patton, Chen, and Liu 

(1997) developed a new approach to the design of robust fault detection systems based 



Chapter 1- Introduction - Survey and Thesis Outline 10 

on GAs. In the area of process optimisation, a GA-based method was proposed by Pham 
(1998) for the constrained optimisation of chemical engineering processes, and Santos 

and Dourado (1999) developed a GA-based method for the global optimisation of energy 
and production in process industries. GAs have also been employed in the area of fuzzy 
logic control. Refer to Linkens and Nyongesa (1995a, 1995b, 1996a), Trebi-Ollennu and 
White (1997), Pham and Karaboga (1997), Lian, Marzuki, and Rubiyah (1998), Herrera, 
Lozano, and Verdegay (1998), Gürocak (1999), Wong and Fan (1999), and Hwang 
(1999) for a few examples. 

Most approaches to optimisation-based controller design and tuning use single-valued 

objective functions to provide the necessary performance indexes to guide the search for 

optimal solutions. However, control engineering problems are very seldom associated 

with a single objective. Instead, several, often conflicting objectives are usually present, 

thus resulting in vector-valued objective functions. Such cases are usually treated by 

weighting and combining all objectives into a single-valued function, thus transforming 

them into single-objective optimisation problems. This approach may be acceptable in 

certain cases, but there are times when combining the objectives in an efficient way may 

not be practically feasible. Although GAs are inherently unsuitable for multiobjective 

optimisation in their standard form, a number of extensions have been proposed which 

enable them to efficiently optimise vector-valued objective functions in a multiobjective 

framework. An overview of a number of such extensions can be found in Fonseca and 

Fleming (1995). Fonseca and Fleming (1993,1998a, 1998b) proposed what is known as 

the Multiobjective Genetic Algorithm (MOGA). The relevance of multiobjective GAs 

to control systems is outlined in Fonseca and Fleming (1994). The MOGA approach has 

successfully been employed in a number of control problems. Chipperfield and Fleming 

(1996) used a MOGA to design a multivariable control system for a gas turbine engine, 

where both the structure and the parameters of the controller are optimised. Another 

application is reported in Thompson, Chipperfield, Fleming, and Legge (1999). 

1.5 Project Scope 

The main objective of this research project is to develop general methods for the optimal 

design of controllers for multivariable processes. The project focuses on design methods 

based on numerical optimisation, where GAs are employed to optimise a number of 
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specially formulated objective functions. Strong emphasis is given on the generality and 
open architecture of the proposed methods, which must be applicable to a wide range of 
real-world multivariable control problems involving non-linearities, noise, and arbitrary 
performance specifications and controller structures. Other important aims of this project 
are to extend standard GAs, in order to improve their efficiency in problems associated 
with optimisation-based control, and also to justify the choice of GAs in the proposed 
optimisation framework by statistically comparing them with a number of conventional 
function optimisation algorithms. 

1.6 Thesis Outline 

The structure of this thesis is outlined below. Most of the material contained in Chapter 2 

is standard and is only intended as a brief review of the current state of affairs in the field 

of GAs as function optimisers. The main contributions and novel aspects of this work are 

contained in Chapters 3 to 6 and are summarised in Chapter 7. 

Chapter 2- Genetic Algorithms and Function Optimisation 

This chapter begins with a brief introduction to function optimisation, which is central 

to the design methods developed in this work. GAs are then introduced, and their main 
features and advantages over conventional optimisation methods are outlined. GAs are 

then treated in a more systematic and rigorous fashion, in order to establish key results 

that provide a deeper insight into their operation, and enable a thorough and quantitative 

assessment of their performance. 

Chapter 3- Analysis and Design of Objective Functions for Control Systems 

This chapter is primarily concerned with the analysis and design of objective functions, 

as applied to the solution of control engineering problems. A novel objective function is 

proposed for single-input, single-output (SISO) processes, that overcomes many of the 

weaknesses of conventional objective functions. The proposed objective function is then 

experimentally analysed using a simple two-term parametric controller tuning problem. 

The obtained results are analysed and compared with those obtained using conventional 

objective functions, as well as using a number of conventional tuning methods. Finally, 
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the proposed objective function is generalised to treat multi-input, multi-output (MIMO) 

control problems. 

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 

The objective functions developed in Chapter 3 have the important characteristic that 
they result in a family of solutions that completely satisfy the problem specifications. 
This results in a (usually infinite) set of optimal solutions. Standard GAs are known to 
have problems in identifying multiple optimal solutions, because the population usually 

converges to a small subset of the entire optimal solution set. In this chapter, GAs are 

extended using a novel fitness assignment strategy called adaptive fitness sharing. It is 

shown that the proposed method enables the GA to evolve a population whose members 

are almost uniformly distributed within the optimal solution set. The proposed method is 

not limited to the optimisation of the objective functions developed in this work, and 

can be used in many different search landscapes containing multiple optimal solutions. 

Chanter 5- Decentralised PI Controller Tuning for Multivariable Processes 

In this chapter, a new method for the automatic tuning of decentralised PI controllers for 

multivariable processes is proposed, based on GAs. The main advantage of the proposed 

method is that it gives the designer the freedom to explicitly specify the performance 

specifications associated with a given control problem, in terms of time-domain bounds 

on the closed-loop responses. This is achieved by transforming the PI controller tuning 

problem into a function optimisation problem by means of the MIMO objective function 

developed in Chapter 3. GAs are then employed for the minimisation of this function, 

and the method of adaptive fitness sharing developed in Chapter 4 is utilised, in order to 

maximise the diversity of the obtained family of optimal solutions. Simulation results 

are presented to illustrate the effectiveness of the proposed method. The choice of GAs 

as a suitable optimisation method is experimentally supported by statistically comparing 

them with two conventional optimisation methods. 

Chapter 6 -Solution to the Shell Standard Control Problem 

In this chapter, a new solution to the Shell standard control problem is presented, based 

on GAs. The proposed control scheme includes two discrete-time PID controllers with 
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integral anti-windup and a multivariable Smith predictor to provide the required process 

output regulation, while the process input minimisation problem is analytically solved 

on-line, by estimating the unmeasured disturbances entering the process and solving the 

associated linear program. GAs are successfully applied to the automatic tuning of the 

PID controllers according to the given specifications, using an extension of the MIMO 

objective function developed in Chapter 3. Extensive simulation results are presented to 

demonstrate the effectiveness of the proposed control scheme. 

Chapter 7- Conclusions - Main Contributions and Further Work 

The key outcomes and main contributions of this research project are summarised in this 

chapter, and a number of suggestions for further work, that will extend the application 

of GAs in the area of control systems engineering, are given. 

1.7 Summary 

In this chapter, an overview of function optimisation as applied to the solution of control 

engineering problems was given, followed by a brief introduction to genetic algorithms 

(GAs) as global function optimisers, with emphasis on their fundamental differences and 

advantages over conventional search algorithms. A literature survey was then presented, 

indicating the relevance of GAs to process modelling and control problems. Finally, the 

project scope and the structure of this thesis were outlined. 
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2 Genetic Algorithms and Function 
Optimisation 

2.1 Introduction 

This chapter begins with a brief introduction to function optimisation, which is central 
to the design methods developed in this work. Genetic algorithms as function optimisers 
are introduced, and their main features and advantages over conventional function 

optimisation methods are outlined. Genetic algorithms are then treated in a more 
systematic and rigorous fashion, in order to establish key results that provide a deeper 

insight into their operation, and enable a quantitative assessment of their performance. 

2.2 Typical Search Spaces in Function Optimisation 

A function can be thought of as a mapping from a set of elements to another set of 

elements. For example, the function f (x) = x2, xE T1 maps all real numbers to all real 

non-negative numbers (its domain and codomain are sets JR and R+ respectively). In a 

typical function optimisation problem, the requirement is to find points in the domain of 

the function associated with the problem, that satisfy certain optimality criteria. In most 

cases, the function to be optimised, often called objective function or cost function, is 

constructed in such a way that the desirable points in its domain are the ones at which 

the function attains its global extremum (maximum or minimum value). In the context 

of function optimisation, a function and its domain and codomain form a search space. 

Finding the global extremum in a search space is, in general, a very difficult problem. 

Therefore, it is crucial that the algorithm used for the optimisation is able to explore the 

search space, and at the same time exploit certain properties of the search space, which 

can help direct the search towards the global extremum. Some typical search spaces that 

can occur in a function optimisation problem are shown in Fig. 2.1. 
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(b) Multimodal, continuous, differentiable 

(c) Unimodal, noisy, non-differentiable 

X min xopt Xmax X 

(d) Multimodal, multidimensional 

500 

-500 -500 

Fig. 2.1 Typical search spaces in function optimisation 

Search space (a) in Fig. 2.1 results from a smooth (continuous, differentiable) and 

unimodal function, the minimisation of which is a trivial task. Since the derivatives 

exist at all points in the search space, they can be used to guide the search, so that the 

optimal solution, xopt, is found within very good accuracy. Search space (b) results from 

a smooth (continuous, differentiable), but multimodal function. Derivative information 

can still be used to guide the search, but locating xopt is now more difficult because 

many sub-optimal solutions (local minima) exist. It is, therefore, crucial that the starting 

point is chosen in the neighbourhood of xopt. Although qualitatively unimodal, search 

space (c) is difficult to optimise due to the presence of noise which makes the associated 

function non-differentiable. Formally, `noisy' search space (c) does not correspond to a 

function since each point x in [xmin 
, xm ] can take an infinite number of values (the 

same set of parameters will not, in general, produce exactly the same result). Finally, 

search space (d) results from a two-dimensional, multimodal function. 

Real-world search spaces are often of high dimensionality, multimodal and corrupted 

with noise, properties that can render most calculus-based and other conventional 

optimisation methods inapplicable. 

(a) Unimodal, continuous, differentiable 

)(min Xopt Xmax X 

Amin xopt Xmax X 



Chapter 2- Genetic Algorithms and Function Optimisation 16 

2.3 Conventional Optimisation Algorithms 

Most conventional function optimisation algorithms can be grouped into the following 

main categories. More details on the optimisation methods discussed in this section can 
be found in Rao (1996). 

" Direct and indirect gradient-based algorithms 

" Region-elimination methods 

" Polynomial approximation methods 

" The Nelder-Mead downhill simplex method 

" Randomised algorithms 

Direct and indirect gradient-based algorithms 

An obvious prerequisite of gradient-based algorithms is for the function to be 

differentiable and hence continuous. Direct gradient-based methods restrict the search 

space to the points where the partial derivatives in all directions are zero. This is only 

possible when an analytical expression for the function is available, something 

extremely rare in real-world problems. The indirect gradient-based methods use the 

numerical partial derivatives of the function at a given starting point, in order to guide 

the search towards other points in the neighbourhood of the starting point where all 

partial derivatives are zero. These are the so-called hill-climbing methods. The 

applicability of such methods is limited because of their dependence on the existence of 

derivatives. Another major disadvantage is that they are local optimisers since they can 

easily converge to local optima in the case of multimodal functions. 

Region-elimination methods 

Region-elimination methods are only applicable to unidimensional search spaces. They 

locate the optimal point contained in a given search interval [Xmin 
, xm ] in the domain 

of a function f (x), by successively eliminating sub-optimal regions in this interval, thus 

narrowing the interval bracketing the optimal point. When the bracketing interval is 

sufficiently small, the search terminates. Commonly used region-elimination methods 

include interval halving, dichotomous search, golden section search, Fibonacci search, 
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and others. These methods are local in scope, and are only applicable to the optimisation 
of locally unimodal functions of only one variable. Their application is, therefore, 
limited to small-scale optimisation problems. 

Polynomial approximation methods 

This is another class of methods used for the optimisation of unidimensional functions. 
They locate a point in the neighbourhood of the optimal point by extrapolation and 
interpolation using polynomial approximates as models of f(x). The candidate optimal 
points are then derived analytically using the resulting polynomial. Both quadratic and 
cubic approximations have been proposed. There is evidence that these methods 
perform slightly better in practice than the region-elimination methods described earlier. 
Polynomial approximation methods are local optimisers that are applicable to the 

optimisation of sufficiently smooth functions of only one variable, properties which 
limit their scope of application. 

The Nelder-Mead downhill simplex method 

The downhill simplex method is due to Neider and Mead (1965). This is an entirely 

self-contained and relatively simple multidimensional search method, which does not 

require the existence of derivatives. Convergence to a (local) optimum is guaranteed, 

and is achieved by appropriately modifying a n-dimensional simplex in an iterative 

fashion. The simplex method of linear programming also makes use of the geometrical 

concept of a simplex, but is otherwise unrelated to the downhill simplex method 

described here. The downhill simplex method is very easy to implement, only requires 

function evaluations, and can be used in multidimensional search spaces, but suffers 

from a slow convergence and can also easily converge to local optima. 

Randomised algorithms 

Randomised algorithms such as random walk have the advantage that they can be used 

in almost all types of search spaces, since they make almost no assumptions aboutf(x). 

However, they are extremely inefficient because they do not exploit the search space, 

and an extremely large number of function evaluations is usually required in order for 

them to converge to the optimal region within reasonable accuracy. 
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It is clear that there is a trade-off among the different algorithms, between the degree of 
exploration of the search space and the degree of exploitation of the available 
information about the search space. The gradient-based algorithms have a high degree 

of exploitation by using the derivatives of the function (if they exist) to guide the search, 
but can easily converge to local optima because of their lack of exploration of the search 
space. On the other hand, randomised algorithms have a high degree of exploration of 
the search space (it is theoretically guaranteed that, given a sufficiently large number of 
function evaluations, a near-optimal solution will be found), but they do not sufficiently 
exploit the available search information. This means that, even if they reach a point in 

the neighbourhood of the optimal solution, they may easily diverge to other sub-optimal 
points in the search space. An in-depth treatment of conventional optimisation methods 

can be found in Rao (1996), Fletcher (1987), and Gill, Murray, and Wright (1981). 

2.4 Overview of Genetic AlLyorithms 

Genetic algorithms (GAs) are global, stochastic search methods that are based on 

natural population genetics. They maintain a set of many candidate solutions to a given 

problem, which `evolve' using genetic operators such as reproduction, crossover and 

mutation. Studies by Holland (1975), De Jong (1975), Goldberg (1989a), and others 
have demonstrated, both theoretically and experimentally, the superior performance of 

GAs over traditional optimisation techniques. Due to their generality and robustness 

they are now being applied to a wide range of domains. The material presented in this 

section is standard and well-known. For more details and a list of practical applications, 

the reader is referred to Holland (1992), Fogel (1994), Goldberg (1994), and the 

introductory textbooks by Goldberg (1989a), and Mitchell (1996). 

Simple GAs operate on a set of N candidate solutions. This set is often called the 

population. Each solution is simply a set of parameters associated with the optimisation 

problem. Each parameter is encoded as a string element of cardinality (number of 

alphabet characters) k. All string elements associated with a solution are concatenated to 

form one long string of length 1 (which is directly analogous to a chromosome in natural 

genetics). In most cases, and for reasons that will become apparent later in this chapter, 

binary strings (k = 2) are used in the encoding. An example of a typical binary string that 

can be used in a simple GA is shown in Fig. 2.2 below. 
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Parameter x Length lX Parameter y Length ly Parameter z Length lZ 
0110100100111100 

... 
11 0000101100111101 

... 01 1011111010110100 
... 10 

Fig. 2.2 Example of a string representing a solution to the optimisation of function f(x, y, z) 

In the above example, the function to be optimised is f(x, y, z). The parameters are 
firstly converted to binary string elements of lengths lx, ll,, and lZ. The longer the length 

of each string element, the higher the resolution of the corresponding parameter. All 

string elements are then concatenated to form one long string of length 1= lx + ly + lZ. 

In the beginning of the evolution process, the strings in the population are usually 
chosen at random. If there is prior knowledge about the locations of near-optimal 
regions in the search space, it may be helpful to initialise part of the population with 
strings in these regions. The initial population then evolves in generations, using a 
sequence of genetic operators. In a simple GA, three fundamental genetic operators are 
used in the evolution process. These are reproduction, crossover and mutation. 

2.4.1 Reproduction 

Each one of the N strings in the population is firstly decoded to its corresponding set of 

parameters. These parameters are then used to evaluate the performance of each string 
by means of an objective function, which is a problem-dependent, real and single-valued 
function of the parameters to be optimised. For each string, the performance index 

obtained from the objective function is used to produce a non-negative real number, 

whose value is called the fitness value of the string and is a measure of the quality of the 

corresponding solution. During the reproduction phase, individual strings are selected 

according to their fitness values. This means that strings with higher fitness values have 

a higher probability of producing one or more offspring in the next generation. Fitness 

values are often chosen to be directly proportional to the objective function values. This 

scheme is called proportionate selection. Other, more advanced selection schemes exist, 

including rank selection, tournament selection, truncation selection, and others. More 

details on proportionate and rank selection can be found in Section 4.4 of Chapter 4. 

Convergence models for a number of selection schemes can be found in the work by 

Thierens and Goldberg (1994). The reader is also referred to Goldberg and Deb (1991), 

and Hancock (1994), for comparisons between different schemes. After reproduction, 

the selected strings are placed in a mating pool where crossover takes place. 
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2.4.2 Crossover 

The crossover operator is of major importance in the operation of a GA as it enables the 

exchange of information between strings. Initially, pairs of the reproduced strings in the 

mating pool are formed at random. In single-point crossover, a crossing site is randomly 

chosen along the length of each string pair. Then, a new pair of strings is created by 

swapping all characters (usually called features or detectors) to the left or right of the 

crossing site. This is illustrated in Fig. 2.3 below. 

Crossing site 

Parent 1 

Parent 2 

Offspring 1 

Offspring 2 

1100101110000101 0011110101111000110101101000 

0100010100010100 1,110100011000111100000111010 

11100101110000101 
1110100011000111100000111010 

0100010100010100 0011110101111000110101101000 

Fig. 2.3 Example of single point crossover 

In this way, good qualities of highly fit strings can be combined to form new, possibly 

better strings. The crossover operator is applied with a given probability called the 

crossover probability, pc. Therefore, on average, Npc strings undergo crossover. It 

should be noted that more advanced crossover operators have been proposed, including 

multipoint crossover (De Jong, 1975), uniform crossover (Syswerda, 1989), shuffle 

crossover (Caruana, Eshelman, and Schaffer, 1989), and others. 

2.4.3 Mutation 

Mutation is the random alteration of the value of a string position and usually occurs 

with a small probability called the mutation probability, p, n. Consequently, on average, 

Nlpm mutations occur per generation. Mutation plays a secondary but important role in 

a GA, and is needed to replace potentially useful genetic material that has been lost and 

cannot be replaced by crossover alone. It ensures the reachability of all points in the 

search space. The mutation operator is illustrated in Fig. 2.4 below. 
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Original 11001011100001010011110101 1I11000110101101000 string 

Mutated 11001011100001010011110101; 0 11000110101101000 string 

Fig. 2.4 Example of uniform mutation 

2.4.4 Generation Gap and Elitism 

In a simple GA, strings in the population undergo reproduction, crossover, and 
mutation, and the entire population is replaced in each generation. Rudolph (1994) has 

shown that this procedure cannot ensure asymptotic convergence to an optimum. This 

problem can be overcome by employing a heuristic technique first proposed by De Jong 

(1975), in which only a percentage of the population is replaced in each generation. This 

is controlled by the so-called generation gap, g, which can take values between 0 and 1. 

That is, N (1- g) strings in the population are chosen to survive intact in the next 

generation. These strings can be chosen at random (random reinsertion) or according to 

their fitness values (fitness-based reinsertion). The latter is often called an elitist 

strategy because the N(1-g) best individuals in the population always propagate 

through to successive generations. This guarantees asymptotic convergence by ensuring 

that the best solution in a generation can only be replaced by a better solution. 

2.4.5 Structure of the Simple Genetic Algorithm 

The algorithmic structure of the so-called Simple Genetic Algorithm (SGA) can be 

summarised in the following sequence of steps. 

Step 1: Initialise the population of candidate solutions. 
Step 2: Evaluate solutions using the objective function. 
Step 3: Check if termination criteria are satisfied. If yes, stop. 
Step 4: Assign appropriate fitness values to solutions. 
Step 5: Apply the reproduction operator to strings. 
Step 6: Apply the crossover operator to reproduced strings. 
Step 7: Apply the mutation operator to offspring. 
Step 8: New generation is complete! Go to Step 2. 
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It can be seen that genetic algorithms are very different from conventional optimisation 

methods. They search from a population of points, not a single point. The search space 
is, therefore, `attacked' at many points simultaneously, dramatically increasing the 

probability of reaching the global optimum. Furthermore, GAs only need objective 
function information. This enables them to be used in domains where continuity and 
derivative existence do not apply. They can also be used in `noisy' search spaces, where 
the same set of parameters will not, in general, produce exactly the same result. Another 

characteristic of GAs is that they work with a coding of the parameter set and not with 
the parameters themselves. This makes them directly applicable to a wide range of 

non-numerical, combinatorial, and mixed optimisation problems. Finally, GAs use 

probabilistic transition rules, not deterministic ones, which adds to their generality and 

robustness. A more thorough comparison between evolutionary algorithms and classical 

gradient methods can be found in Salomon (1998) and the references therein. 

For these and other reasons, GAs form a simple to implement, yet robust and generic 

optimisation tool, which can be used in many different classes of numerical as well as 

combinatorial optimisation problems. The truth of the above statements will become 

apparent in the following sections, where a mathematical framework for the analysis of 

the operation of simple GAs will be developed. 

2.5 Mathematical Foundations of Genetic Algorithms 

In the previous sections, genetic algorithms were introduced and their fundamental 

differences from conventional optimisers were outlined. Genetic algorithms can be 

thought of as crude models of natural genetics, employing principles such as the 

Darwinian `survival of the fittest', resulting in a randomised, yet structured mechanism 

for the search of optimal solutions to optimisation problems. In Section 2.4 it was shown 

that a simple GA involves nothing more complex than random number generation, 

string copying, partial string exchanging and random bit alterations. Intuitively, based 

on the obvious success of natural genetics, one may expect GAs to perform well in most 

optimisation problems. Indeed, numerous applications of GAs to a wide range of 

domains have shown their superiority over conventional optimisation methods (see 

Holland, 1992; Fogel, 1994; Goldberg, 1989a, and the references therein). However, 
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despite their intuitive appeal and their experimental success, it is crucial that these 
positive indications about GAs are backed by rigorous mathematical facts. In order to 
accomplish this task, the important concept of similarity templates (or schemata) is 
introduced, which provides the notational tool necessary to arrive at an important 

theorem known as The Fundamental Theorem of Genetic Algorithms (also called the 
Schema Theorem). Most of the material in this section is due to Holland (1975), and 
De Jong (1975). 

2.5.1 Similarity Templates (Schemata) 

Recall that candidate solutions in a simple GA are represented by strings, which 

undergo reproduction, crossover, and mutation, in order to form new generations. To 

guide the search, highly fit strings (representing better solutions) are given a higher 

probability of surviving and propagating their genetic material through their offspring to 

successive generations. Instead of working with each string individually, it is often 

useful to group strings in the population based on their similarities. In order to 

accomplish this task, the concept of similarity templates (or schemata) is introduced. 

Definition 2.1: A schema (Holland, 1975) is a similarity template describing a 

subset of strings with similarities at certain string positions. " 

Without loss of generality, the discussion will be limited to strings of cardinality k=2. 

Specifically, the binary alphabet 10,11 will be used. A schema is denoted by appending 

a new symbol to this alphabet. The symbol * is used to signify a `don't care' string 

position. Hence, the schema **000 describes all strings of length l=5 whose three last 

positions are 0. Therefore, schema **000 describes the four distinct strings 

{0 0000,010 0 0,10 000,110 0 0) . 
In order to understand the importance of the notion 

of schemata, consider the problem of maximising the function f (x) = x2. Assuming that 

direct binary coding is used to encode parameter x, it is obvious that strings containing 

1 in their most significant bit will be fitter than other strings. Using the notion of 

schemata and assuming l=5, we can conclude that schema 1**** represents better 

solutions than schema 0****. Note that the sets represented by the two schemata are 

disjoint and their union forms the search space for the optimisation problem. 
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The notion of schemata helps us understand the amount of information that is contained 
within a single population in a GA. In terms of individual binary strings, the population 
can contain up to a total of 21 different strings. However, in terms of schemata, due to 
the extended alphabet { 0,1, *1 used, the population can contain up to a total of 31 
different schemata. Using a string length 1= 5, the upper bound in the number of 
schemata is 35 = 243, as opposed to only 25 = 32 in the case of individual strings. In 
general, for strings of cardinality k, there can exist k' distinct strings and (k+ l)1 distinct 

schemata. It is now apparent that, by considering the strings, their fitness values, and the 
similarities among the strings in the population, there is a wealth of new information 

available to help direct the search. 

The amount of information that is contained in a population is not constant and depends 

on the population diversity (i. e. the proportion of distinct strings in the population). A 

population containing copies of the same string is a worst-case example of a population 
with low diversity. Calculation of the precise amount of information contained in a 
population requires the explicit knowledge of the strings in the population. However, it 
is possible to establish upper and lower bounds on the total number of schemata in a 

population. It is easy to see that, in general, a particular string of length 1 is a member of 
21 schemata. This is because each string position can take its own value or the * symbol. 
Therefore, depending on the population diversity, a population of size N can contain 

somewhere between 21 and N-21 schemata. Note that this result does not depend on the 

cardinality of the alphabet used to form the strings. 

The above result clearly shows that even moderately sized populations can contain a 

wealth of information about the search space, which can be used to direct the search. 

The issue of whether GAs exploit this information or not still remains open. In order to 

show that GAs actually make use of the available information, the effects of the three 

fundamental genetic operators, reproduction, crossover, and mutation must be analysed 

in a systematic and rigorous way. This is the subject of the following section. 

2.5.2 The Fundamental Theorem of Genetic Algorithms 

In order to add rigour to the following discussion, some simple notation needs to be 

introduced. Without loss of generality, it is assumed that strings are constructed over the 
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binary alphabet { 0,1). The state of a population at time (or generation) t is represented 

symbolically as P(t) _{ Si (t), i =1,2 , ... , NJ, where the boldface denotes a population, 

Sl (t) denotes the i-th string in the population at time t, and N denotes the population 
size. In order to improve clarity, the dependence of Si (t) on t may not be shown 
explicitly. Note that P(t) is a multiset, meaning that the elements of P(t) are not 
necessarily distinct. 

A schema is simply a string constructed over the extended alphabet 10,1, * }, and is 

represented by the letter H. An example of a schema is H=* 10 * 0, which describes the 

four strings S1 = 010005 S2 = 01010, S3 =11000, and S4 = 11010. The number of 

strings described by a schema is clearly a function of the number of ` *' symbols 

contained in the schema. For example, schema Hl = 110 *0 describes much fewer 

strings than schema H2 =1****. Furthermore, schema Hl spans more of the total 

string length than schema H2. In order to quantify the above properties, the notions of 

schema order and defining length are introduced. 

The order of a schema H is the number of fixed positions contained in a schema, and is 

denoted by o (H). In the examples above, o (Hl) = 4, and o (H2) =1. The defining length 

of a schema H is the `distance' between the first and last specific string position, and is 

denoted by b(H). In the examples above, b(Hi) =5 -1= 4, and 8(H2)=1-1=0. In 

general, a schema H describes kl-°(, ') distinct strings of cardinality k. 

The effects of reproduction 

In order to determine the effects of reproduction on the expected number of schemata in 

the population from time t to time t+1, suppose that, at time t, there are MH strings that 

belong to a particular schema H within the population P(t). This is denoted as 

MH = MH(t). Recall from Section 2.4.1 that during reproduction, a string Si is copied 

according to its fitness value, denoted by f. In particular, the probability pi of selecting 

string Sl for reproduction is given by 

f 
pi N 

If 
j=i 

(2.1) 
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In a simple GA, the reproduction operator is applied N times resulting in a new set of N 
individuals that form a new population P'(t+l). Consider the MH strings belonging to 

schema H. Obviously MH <_ N, and without loss of generality, assume that the strings in 

the population are ordered in such a way that these MH strings appear first in the 

sequence of N strings that form the population. Then, the probability of any one of these 
MH strings propagating through to P'(t+l) is given by 

MH 

MH 
f 

i-1 
Pr (H) = lpi =N (2.2) 

i=1 Lf 

j=1 

Hence, since P'(t+l) is formed by selecting N strings from P(t) with replacement, the 

number of examples of schema H in P'(t+1) is given by 

MH 

N. f 

MH (t + 1) = Npr (H) =N1 (2.3) 
f 

>=i 

Let f(H) denote the average fitness of the strings representing schema H in population 

P(t), and f denote the average fitness of the entire population P(t). 

MH 

Id fi 
f (H) -l M H(t 

N 
Lf 

and f= 1 

Combining Eq. (2.3) with the above equations leads to 

MO + 1) = MH(t) 
NN f(H) 

= MH(t) 
f (H) 

(2.4) 
f Lf 

j=i 

Eq. (2.4) shows that the growth of a particular schema H can be expressed as the ratio of 

the average fitness of the schema to the average fitness of the entire population. In other 

words, schemata contained in population P(t) that have fitness values above the 

population average will receive an increasing number of string representatives in 
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population P'(t+l), whereas schemata contained in population P(t) that have fitness 

values below the population average will receive a decreasing number of string 
representatives in population P'(t+l). Furthermore, it can easily be shown that the 
schemata growth/decay rate is exponential. 

The above results clearly show that GAs can successfully exploit the information 

contained in the population, by allocating exponentially increasing and decreasing 

numbers of schemata to subsequent generations. However, reproduction alone does not 
help the GA explore new regions in the search space, since it does not alter the genetic 
material contained in a given population. The mechanism of introducing new structures 
in the population, thus promoting exploration of the search space, is provided by the 

crossover and mutation operators. 

The effects of crossover 

Recall from Section 2.4.2 that the crossover operator involves the random mating and 

exchange of genetic material between pairs of selected strings. In single-point 

crossover, a crossing site is randomly chosen along the length of each string pair. Then, 

a new pair of strings is created by swapping all characters to the left or right of the 

crossing site (see Fig. 2.3). For strings of length 1, there are 1-1 possible crossing sites. 
This exchange of information clearly introduces new structures in the population, but 

may disrupt certain schemata, while leaving others unaffected. In particular, if the 

crossing site falls within the defining length 8 of a given schema, this schema will be 

destroyed, whereas if the crossing site falls outside its defining length, the schema will 

survive. This means that schemata with short defining lengths have a higher probability 

of surviving crossover than schemata with long defining lengths. Assuming that the 

crossing site is uniformly chosen at random and that the crossover operator is applied 

with a probability pc, it is possible to establish a lower bound on the crossover survival 

probability pc (H) of a schema H in terms of its defining length b, which is given below. 

H >1- 
6(H) 

p( )- ps l-1 
(2.5) 

Consider P"(t+l), the population formed after the combined effects of reproduction and 

crossover. A lower bound on the expected number of strings representing schema H in 
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P"(t+l), denoted by MH(t+1), can now be obtained by combining Equations (2.4) and 
(2.5) as shown below. 

MH (t + 1) >_ Mx (t) 
f (H) 

1- p, 
S (H) 

f 1-1 
(2.6) 

The combined effect of reproduction and crossover can clearly be seen by examining 
the above equation. It is observed that schemata with both above-average fitness values 
and short defining lengths will propagate from population P(t) through to P"(t+l) and 
will receive samples at exponentially increasing rates. 

The effects of mutation 

Mutation is the last of the three fundamental genetic operators in a simple GA. In 
Section 2.4.3 the mutation operator was defined as the random alteration of a single 

position of a string, which occurs with a probability p, n. Hence, the survival probability 

of each individual character in a string after mutation is 1- pm. A schema is essentially 
defined by the values of the fixed positions within the schema. In order for a given 

schema to survive, all values of its fixed positions must be preserved intact. Since a 

schema H contains o(H) fixed positions, and the individual mutations are statistically 
independent, a schema H survives mutation with a probability p, n (H) =(I -p, n) 0(1'0. 

Similarly to natural population genetics, it is desirable for the mutation probability to be 

kept small in order not to severely disrupt the structures developed in the population. In 

this case, the schema survival probability mentioned above can be approximated by the 

expression pm (H) -- 1- o(H) p, n. 

Consider P(t+l), the population formed after the combined effects of reproduction, 

crossover and mutation. A lower bound on the expected number of strings representing 

schema H in P(t+l), denoted by MH(t+l), can now be obtained by combining the 

above result with Eq. (2.6) as shown below (ignoring the cross-product term). 

MH (t + 1) >- MxCt) 
f CH) 

f 

[i_fl ý (H) 
-° (H) )pm (2.7) 

l-1 

Since p, n is usually kept small, the contribution of the mutation operator does not alter 

much the earlier conclusion that highly fit schemata of short defining lengths receive 
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exponentially increasing samples in subsequent generations. Schemata possessing the 

above two properties are often called building blocks. 

The results of Eq. (2.7) are central to the understanding of the underlying mechanism in 

the artificial evolution of a GA. They constitute the Schema Theorem, also known as the 
Fundamental Theorem of Genetic Algorithms. This theorem shows that GAs not only 

exploit the available information about a given search space, but also explore different 

regions of the search space in a manner that facilitates the creation of new and better 

structures. They accomplish this by using reproduction to exploit the available 
information about the search space, by segmenting it into smaller highly fit subsets 

represented by schemata with above-average fitness. Crossover is then used to further 

exploit and also explore the search space by combining building blocks, in order to form 

potentially better solutions. Finally, mutation promotes exploration by introducing new 

genetic material to the population, and guarantees the reachability of every point in the 

search space. 

The interpretation of the Schema Theorem outlined above is known as the building 

block hypothesis (Goldberg, 1989a). Although this interpretation may seem too 

intuitive, there is a growing body of theoretical and empirical evidence to support it. For 

work on quantifying these ideas, the reader is referred to Holland (1975,1987), Spears 

(1993), Thierens and Goldberg (1993), and Bethke (1981). 

It should be noted here that the evolution process does not require information about the 

state of the population in past generations. The only information necessary for a simple 

GA to operate at any one time, is just the state of the current population of N strings. In 

fact, studies by Holland (1975) and Goldberg (1985) have shown that, despite the 

processing of only N structures in each generation, a GA effectively and usefully 

processes approximately N3 schemata. Holland has given this result a special name, 

implicit parallelism. Among its important implications on information processing 

within a GA, implicit parallelism also facilitates the computer implementation of GAs, 

since the only memory requirement is the storage of the current state of the population 

of only N structures. Furthermore, a GA search run that was terminated at a given 

generation t can easily be resumed to continue the search, by simply initialising the 

population to its state at the terminating generation t. 
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2.6 Genetic Algorithm Implementation Issues 

The performance of the Simple Genetic Algorithm (SGA) can be significantly improved 

by optimising certain elements in the algorithm, such as the sampling algorithm used in 

the reproduction operator, the encoding used to form the strings in the population, the 

population size, and the crossover and mutation probabilities. Some relevant theoretical 

and empirical results found in the GA literature are presented in the sections below. 

2.6.1 Improving the Reproduction Operator 

Consider P(t) ={ Si (t), i =1,2 , ... , NJ, the multiset of all individuals in the population 

at time t. The reproduction phase begins by the determination of the expected number of 

samples of each individual to appear in P'(t+l), the population formed immediately 

after reproduction. Let s; denote the expected number of samples of string Si in P'(t+l). 

It clearly follows that 

s; =Npl, s; EIt + (2.8) 

where p; is the probability of selecting string S; for reproduction, obtained using 

Eq. (2.1). After computing the expected number of samples of each of the strings in 

P(t), a sampling algorithm is used to sample P(t) in order to form P'(t+l). For each of 

the strings in P(t), the sampling algorithm must be able to convert the corresponding 

expected number of samples si, a real number, to a discrete number of samples string Si 

will actually receive in P'(t+l). The conversion must be made in such a way that the 

sampling is accurate and consistent. In order to quantify these goals, the measures of 

sampling bias and sampling spread are introduced. 

Sampling bias 

Sampling bias is defined as the absolute difference between an individual's actual, and 

expected number of samples. Let sl denote the actual number of samples string Si 

receives in P'(t+l). Then, the sampling bias can be written as I s; - s, I. Sampling bias is 

a measure of sampling accuracy. The optimal value of sampling bias is zero and occurs 

whenever each individual's actual number of samples equals its expected number of 

samples. 
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Sampling spread 

Sampling spread is defined as the range of possible values for st 
. In the special case 

where sl E ILsi rs; ll, the resulting spread is the smallest possible, which theoretically 

permits zero bias. This is called minimum spread. Sampling spread is a measure of 

sampling precision. 

TABLE 2.1 Characteristics of commonly used sampling algorithms (Baker, 1987) 

Sampling algorithm Bias Spread Efficiency 
Stochastic Sampling with Zero (optimal) Unlimited O(N log N) Replacement (SSwR) 0 ... N 
Stochastic Sampling with Partial Medium Upper bounded O(N IogN) Replacement (SSwPR) 0 

... 
rsjl 

Remainder Stochastic Sampling with Zero (optimal) 
Lower bounded 

O(N log N) Replacement (RSSwR) Ls; J ... Ls; J +Zs; 
Remainder Stochastic Sampling Medium Minimum O(N logN) without Replacement (RSSwoR) Ls; J, Fs; 1 

Deterministic Sampling (DS) High Minimum 

,J, r ,l 
O(N log N) 

Stochastic Universal Sampling (SUS) Zero (optimal) Minimum 

LsiJ, rs; l T O(N) 

Table 2.1 presents the basic characteristics of a number of commonly used sampling 

algorithms, in terms of sampling bias, sampling spread, and computational efficiency. It 

is observed that Stochastic Universal Sampling (SUS) outperforms all other sampling 

algorithms in both sampling bias and sampling spread. It is also more computationally 

efficient, delivering all N samples in a single pass. A visual representation of the SUS 

algorithm is shown in Fig. 2.5 below. 

Leading sample randomly 
chosen between 0 and 1 Equally spaced samples 

0 .< 

Population of N=10 individuals 

Fig. 2.5 Example of the Stochastic Universal Sampling (SUS) algorithm 
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In the beginning of the SUS algorithm, a leading sample is uniformly chosen at random 
between 0 and 1. The remaining N-1 samples are obtained by equally spacing them 

along the population `line' of N unit segments, starting from the leading sample and 
maintaining a distance of 1 between successive samples, as shown in Fig. 2.5. This is 

equivalent to a gambler's spinning wheel, with the i-th wheel slice proportional in size 
to s;, and with not only one, but N equally spaced pointers. In this regime, an individual 

is guaranteed to receive [sj samples, but no more than rsl1 samples. Hence, the SUS 

algorithm has minimum spread. Furthermore, in a randomly ordered population, the 

selection probability pi, of a particular string Si is only a function of the position of the 
leading sample (which is uniformly chosen at random) and the expected number of 

samples, sl. Hence, the SUS algorithm has zero bias. In the example shown in Fig. 2.5, 

strings Si, S3, S5, S7, S8, S9, and S10 will receive 1,2,3,1,1,1, and 1 copy in P'(t+l), 

respectively, whereas strings S2, S4, and S6 will not appear in P'(t+l). 

The optimal performance of the SUS algorithm makes it ideal for use in the 

reproduction operator, enabling the selection of individuals according to the theoretical 

specifications. More details and an empirical analysis of SUS and the other sampling 

algorithms shown in Table 2.1, can be found in Baker (1987). 

2.6.2 Selection of String Encodin 

The way in which candidate solutions are encoded into strings is of major importance 

for the success of a GA. In fact, the task of finding the best encoding for a given 

optimisation problem is equivalent to solving the problem itself (Mitchell, 1996). The 

suitability of a particular encoding depends on certain (and in most cases unknown) 

properties of the objective function associated with a given optimisation problem. 

Unfortunately, there are currently no rigorous guidelines for predicting which encoding 

will work best in a particular optimisation problem. 

Binary string en= 

Although the mathematical framework developed earlier was based on strings 

constructed over the binary alphabet 10,1), the results obtained can be generalised to 

alphabets of arbitrary cardinality. However, there are certain theoretical justifications 
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for adopting the binary alphabet for the string encoding. Since a particular string of 
length 1 is a member of 21 schemata, longer strings contain an exponentially increasing 

number of schemata, regardless of the cardinality of the alphabet used. For a particular 

candidate solution xEN, x#0, the length of the encoded string under an alphabet of 

cardinality k is given by 1ý logk x. It is clear that the maximum possible string length is 

achieved by having k=2, resulting in the binary alphabet. This justification is also 
mentioned in Holland (1975). 

Another reason for using binary encoding is the fact that the majority of theoretical and 
empirical studies of GAs and their properties, especially in terms of both rigorous and 
heuristic results about appropriate GA parameter settings, such as the crossover and 

mutation probabilities, are based on binary encoded strings, and cannot be easily 

generalised to alphabets of arbitrary cardinality. 

Caruana and Schaffer (1988) proposed the use of Gray coding for the construction of 

strings. They argued that Gray coding usually results in more accurate solutions than 

other conventional codings, such as direct binary coding. This is attributed to the fact 

that, in Gray coding, adjacent integers differ by a single bit (a Hamming distance of 1). 

This adjacency property also results in smaller perturbations of the values of the strings 

under mutation. Practical applications, including results in this work, have indicated that 

Gray coding generally performs better that direct binary coding. 

Adantina the string encodin 

Based on the theoretical framework developed in Section 2.5, in order to improve the 

performance of a GA, the encoding used for constructing the strings must be such that 

functionally related, small string segments are more likely to stay together in a single 

string under crossover, in order to facilitate the building block hypothesis described 

earlier. However, this is not possible without knowing ahead of time which string 

segments are important in the formation of useful schemata. This is known in the GA 

literature as the linkage problem. Many scientists have tried to solve this problem by 

adapting the encoding used in a GA during the evolution process. The inversion 

operator developed by Holland (1975), works by reordering parts of strings, while 

preserving the functional interpretation of each of the string positions. Another 
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technique developed by Schaffer and Morishima (1987) works by evolving crossover 
hot spots, the positions at which crossover is allowed to occur, thus adaptively 
restricting `dangerously disrupting' crossing sites from being used in the crossover 
operator. Messy GAs developed by Goldberg, Korb, and Deb (1989), attempt to improve 

the performance of GAs in function optimisation by building up increasingly longer and 
highly fit strings, derived from well-tested shorter building blocks. For more details on 
messy GAs, also refer to Goldberg, Deb, and Korb (1990), and Goldberg, Deb, 
Kargupta, and Harik (1993). 

Selection of string length and parameter scaling 

In most GA configurations, strings are formed by encoding each of the parameters 
involved in the optimisation, and concatenating the resulting string elements, as shown 
in Fig. 2.2. The length of each string element affects the resolution of the corresponding 

parameter representation. The longer the length of a string element, the more accurate 
the representation of the corresponding parameter becomes. However, since a string of 
length 1 and cardinality k results in a search space whose size is k' points, long string 

elements can result in extremely large search spaces which can slow down the 

convergence of the GA. 

In linear scaling, the difference between two successive numbers in a representation is 

given by Ax = (xm - xm, n)/(k1- -1) , where x r= [xmin, xm ] and l, is the length of the 

corresponding string element. Linear scaling results in a uniform distribution of points 
in the search space, thus maintaining a constant resolution throughout the search space. 

When the ranges of the parameters are not known, logarithmic scaling can be used, 

enabling a wider range of values to be searched using shorter strings. In logarithmic 

scaling, the klx search points are logarithmically spaced in [xmin, xm ], resulting in a 

distribution of points that is more dense in regions closer to xmin. This achieves a higher 

resolution in smaller parameter values, thus enabling shorter strings to be used more 

effectively. In cases where varying degrees of resolution are required at specific regions 

in the search space, non-linear scaling can be used where the required mapping can be 

described by any suitable, strictly monotonic, non-linear function. Fig. 2.6 illustrates 

three different types of parameter scaling. 
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111 ------------------------------------------------------- 
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101 "------------- -------- 
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011 ----------------------------- 
010 ------------------------ 
001 ----- ----------- 

Xmn X.. X 

Fig. 2.6 Different types of parameter scaling with k =2 and 1 =3 

2.6.3 Selection of Genetic Algorithm Parameters 

In order to implement a genetic algorithm, the crossover and mutation probabilities and 
the population size need to be specified. Similarly to the problem of selecting a suitable 

string encoding, there are no rigorous guidelines for determining these parameters, as 
the optimal value of one parameter is, in general, a non-linear function of the values of 
the other parameters, thus making it impossible to optimise them one at a time. 
Fortunately, experience has shown that, in most optimisation problems, GAs are robust 

enough that the GA parameters do not severely affect their performance. 

A number of researchers have investigated how the GA parameters affect the search 

performance of GAs. In particular, De Jong (1975) used a suite of test functions as a 
basis for testing the on-line and off-line performance of GAs with different 

combinations of GA parameters. On-line performance is computed by taking the 

average fitness of all individuals in all generations, whereas off-line performance is 

computed by taking the average of only the best individuals. In most function 

optimisation problems, it is the off-line performance that is of interest. De Jong found 

that both the on-line and the off-line performance of GAs peaked with a population size 

N= 50 - 100 individuals, a single-point crossover probability p, -- 0.6, and a mutation 

probability pm ~ 0.001 per string position. 

Grefenstette (1986) performed a set of experiments in which a meta-level GA was used 

to optimise the parameters of other GAs that were set up to optimise the functions in 

De Jong's test suite. The parameters for the meta-level GA were set to De Jong's 

recommended values. The results of Grefenstette's work in terms of on-line 

Linear scaling Logarithmic scaling 
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performance were N= 30, p, = 0.95, and pm = 0.01. The generation gap discussed in 
Section 2.4.4 was also used in the experiments, and the optimal value was found to be 

g =1. In terms of off-line performance, the optimal values of the GA parameters were 
found to be N= 80, pc = 0.45, p, n = 0.0 1, and g=0.9. 

In another experimental work, Schaffer, Caruana, Eshelman, and Das (1989) identified 

the optimal GA parameters for on-line performance to be N= 20 - 30, p, = 0.75 - 0.95, 

and pm = 0.005 - 0.01, which are very similar to Grefenstette's results. The test suite 

used in this work was a set of numerical optimisation problems including some of 
De Jong's test functions, all encoded with Gray coding. 

Heuristic formulas for optimal settings of p, and p, n as functions of 1 and N have been 

proposed by Hesser and Männer (1991), where it was suggested that the optimal 

mutation probability, p, n, is inversely proportional to the string length, 1. Loosely 

speaking, this is because with larger 1 the probability that good solutions are destroyed 

by mutation is higher, since longer strings are more likely to be mutated than shorter 

ones. The predicted GA parameters using the proposed formulas are in accordance with 

the experimental studies outlined above. Interesting theoretical results regarding the 

estimation of the optimal population size in a GA as a function of 1 have been published 

by Goldberg (1985), who showed that N=1.65 x 20.211 for binary strings of length 1<_ 60. 

Also refer to Goldberg (1989b), Ros (1989), and Goldberg, Deb, and Clark (1992,1993) 

for further relevant results. 

Note that care should be taken when treating the above recommendations for the GA 

parameters as globally optimal or universal. The results outlined above are applicable to 

the test suites used for conducting the experiments and cannot be easily generalised to 

every optimisation problem and string encoding. There is, however, a general trend 

emerging from the above results, suggesting a high crossover probability, a low (but 

non-zero) mutation probability, and a population size of 50 to 100 individuals. These 

settings can provide good initial values for the GA parameters, which can then be varied 

and fine-tuned as required by the particular optimisation problem. 

Since the optimal GA parameters may change during the evolution process, many 

researchers have argued that there may be a need for the adaptation of the various GA 
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parameters as the genetic search is progressing. The reader is referred to the work by 
Davis (1989,1991) for an interesting approach to the adaptation of the genetic operator 
probabilities, based on their observed performance. The basic idea for this approach was 
proposed much earlier by Cavicchio (1972). Relevant to the above discussion is the 

more recent work by Thierens (1995), in which he proposed an adaptive crossover 
algorithm. In this case, it is not the crossover probability that is adapted, but the 

crossover algorithm itself. 

2.6.4 Incorporating Problem Specific Knowledge 

In many optimisation problems, useful information about the problem may already 

exist, and can often be used a priori to effectively help GAs perform better in terms of 
both rate of convergence and solution accuracy. Prior knowledge can be incorporated in 

genetic search in various ways, the most commonly used being the careful initialisation 

of part of the population at time t=0, and the combination of GAs with local optimisers 

such as hill-climbing algorithms. 

Improving the rate of convergence 

If there exists prior information about regions in the search space where the optimal 

points may lie, a percentage of the population at time t=0 can be initialised by selecting 

candidate solutions from these promising regions. This approach can be used whenever 

one seeks to improve on previously computed `optimal' solutions. In this way, the GA 

begins with a set of potentially above-average solutions, which can significantly 

improve the rate of convergence of the GA. This approach has been applied by 

Grefenstette (1987) to the solution of the travelling salesman problem. While the 

crossover and mutation operators theoretically ensure that the algorithm will still 

explore different regions in the search space, such heuristic initialisations of the 

population should be applied carefully, in order to avoid premature convergence, the 

situation where the GA converges to a sub-optimal region in the search space. 

Improving the solution accurac 

Another approach is to `refine' the results obtained by the GA, using hill-climbing or 

any other suitable conventional optimisation algorithm. For example, if there is a priori 
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knowledge that the search space is locally continuous and differentiable, but highly 

multimodal, a GA can be used to locate the optimal `peak', while a hill-climbing 

algorithm can be used to focus on the identified, locally unimodal region of the search 
space. Such combinations of GAs and conventional optimisers are often termed hybrid 
GAs. There are many application examples in the GA literature demonstrating the 
improved performance of hybrid GAs over simple GAs. For a few such examples, refer 
to Hart and Belew (1996), and Salomon (1998). 

2.6.5 Genetic Algorithm Termination 

Due to the stochastic nature of GAs, conventional termination criteria such as the ones 
based on the precision of the obtained solutions, cannot be directly applied to GAs. In 

most practical GA implementations, the algorithm is terminated after a given number of 

generations, and the best individuals in the final generation are assessed. If the resulting 

solutions are not satisfactory, the GA can be restarted, or a new GA can be initiated, in 

which part of the population at time t=0 is initialised with the best individuals found in 

previous GA search runs (see Section 2.6.4). 

2.7 Multiobjective Optimisation and Genetic Algorithms 

Multiobjective or multicriteria optimisation problems arise in cases where several, often 

conflicting objectives are present, thus resulting in vector-valued objective functions. In 

fact, the majority of optimisation problems are multiobjective in nature, but are usually 

treated by weighting and combining all objectives into a single-valued function, thus 

transforming them into single-objective optimisation problems. This approach may be 

acceptable in certain cases, but there are times when combining the objectives in an 

efficient way may not be practically feasible. 

A multiobjective optimisation problem is equivalent to the problem of simultaneously 

optimising the m elements of a vector-valued function, such as the one shown below. 

f (x) = [. fi (x) ... fm(')] EV (2.9) 

where x= [x1 """ xn ]EU is the n-dimensional parameter vector. Sets U and V are the 

effective domain and codomain of f (x), respectively, as defined in the context of the 
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given optimisation problem. Since the objectives fi(x), iE{i,... 
,m} are all functions 

of parameter vector x, they cannot be optimised one at a time. It is, therefore, clear that 
the notion of optimality in the context of multiobjective optimisation must be redefined 
in a way that respects the integrity of each objective, and at the same time permits 
interactions between objectives. Precisely these goals are achieved by the concept of 
Pareto-optimality. A parameter vector x is said to be Pareto-optimal if and only if there 
is no other parameter vector which can improve any of the individual objectives, f (x), 

without worsening at least one other objective. In order to make the above definition 

mathematically more rigorous, the following additional definitions are necessary. 

Definition 2.2: Let x, yE R'. Vector x is partially less than y, denoted as x<y, if 

and only if 

xl<_y, A 3iE11,..., ml1 x, <yi 

Definition 2.3: 

0 

Assuming a minimisation problem, parameter vector xl EU belongs 

to the Pareto-optimal set of function f (x) E Rm as defined in (2.9), if and only if there is 

no other parameter vector x2 EU such that f (X2): 5 f (xl). " 

Vectors belonging to the Pareto-optimal set are called non-dominated or non-inferior, 

while all remaining vectors are called dominated or inferior. In order to better illustrate 

the concept of Pareto-optimality, consider the following vector-valued function. 

f (x) =1 x2 (x - 2)21 (2.10) 

Fig. 2.7 illustrates the dominated and non-dominated regions in the solution plane for 

the above unidimensional function. It is observed that the non-dominated region 

consists of not only one solution but a family of solutions that form the Pareto-optimal 

set. All points in this set are, in general, optimal solutions of equal importance and a 

good multiobjective optimiser should be able to locate all points in the set. It is 

interesting to note that the conventional, weighted-sum approach of combining all 

weighted individual objectives into a singe-valued function, such as 

J(x)=1wi 
.f 

(x), w1? 0 (2.11) 

=1 
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Fig. 2.7 A simple multiobjective problem (Schaffer, 1985) 

results in a single Pareto-optimal solution. The location of this solution within the 

non-dominated region is determined by the choice of the weighting coefficients w1. As 

an example, using objective function (2.11) to minimise the elements of function (2.10) 

results in the following expression for the optimal value of parameter x. 

xopt = 
2w2 

Wl + W2 

Hence, when W 1= W2 =1, objective function (2.11) is minimised at the Pareto-optimal 

point x =1 (see Fig. 2.7). Varying the weighting coefficients results in different unique 

solutions spanning the Pareto-optimal region xE [0,2]. 

In most real-world optimisation problems, the relationship between the optimal values 

of weighted-sum objective functions such as (2.11) and the weighting coefficients w, is 

complex and unknown a priori, and it is not at all clear how one should weight the 

various objectives in order to arrive at a specific Pareto-optimal solution. This 

practically unpredictable bias towards specific solutions is the main weakness of 

conventional, weighted-sum approaches to multiobjective optimisation. More details on 
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multiobjective optimisation and an overview of different methods and applications can 
be found in Hwang and Masud (1979). 

Multiobiective izenetic alizorithms 

It is clear from the preceding discussion that multiobjective optimisation problems must 
be treated in a way that respects the definition of Pareto-optimality. The existence of 

multiple optimal solutions, even in such simple multiobjective problems as the one 
illustrated in Fig. 2.7, results in inherently multimodal search landscapes, and this is true 

even in cases where the individual objectives are all unimodal and convex functions of 

the decision variables. This property alone can render most conventional optimisation 

techniques inapplicable, as they were not designed to handle multiple solutions. 

Although the parallel evolution of multiple individuals makes GAs structurally superior 

to most conventional search techniques in the solution of multiobjective optimisation 

problems, the inherently scalar way in which GAs process fitness information makes 

them unsuitable for such problems in their standard form. Many researchers have 

attempted to modify standard GAs, in order to make them applicable to multiobjective 

optimisation, with various degrees of success. The following is only intended as a brief 

review of the work that has been done in this field. A more complete review can be 

found in Fonseca and Fleming (1995). 

The first significant contribution in this direction is the work by Schaffer (1985), who 

developed what is known as the Vector Evaluated Genetic Algorithm (VEGA). In his 

approach, the population consists of a number of equally sized sub-populations, each one 

corresponding to a particular objective. The reproduction operator is applied locally in 

each sub-population, resulting in individuals being selected based on their performance 

on the corresponding objective only. The crossover operator, however, is applied to 

individuals across sub-population boundaries, thus enabling the mixing of individuals 

corresponding to different objectives. Non-dominated individuals are identified as the 

population evolves, but this information is not used by the VEGA itself. Although this 

scheme is intuitive and easy to implement, in can be shown (Richardson, Palmer, 

Liepins, and Hilliard, 1989) that it results in a bias against certain members of the 

Pareto-optimal set, something against the notion of Pareto-optimality. 
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A different approach was proposed by Goldberg (1989a), in which each individual in 
the population is ranked on the basis of non-dominance. All non-dominated individuals 
in the current population are identified and assigned a rank of 1. Among the individuals 
that have not yet been ranked, the non-dominated ones are identified and assigned a 
rank of 2. The process is repeated until all individuals in the current population are 
ranked. The reproduction operator is then applied based on the rank of each individual. 
In this way, all non-dominated individuals (i. e. all members of the Pareto-optimal set) 
are guaranteed to receive an equal probability of reproduction. This rank-based 
approach theoretically enables the GA to locate all points in the Pareto-optimal set. 
However, in order to maintain a sufficient degree of diversity among individuals, this 

approach should be used in conjunction with the more advanced techniques of niche 
formation and speciation. These techniques enable a more even distribution of the 

members of the population along equally important regions in the search space. More 
details on niche formation and speciation can be found in Chapter 4. An introduction to 
this topic can be found in Goldberg (1989a) and the relevant references therein. 

More recently, Fonseca and Fleming (1993,1998a, 1998b) proposed a Pareto-based 

method known as the Multiobjective Genetic Algorithm (MOGA), which is an extension 

of the Pareto-based method proposed by Goldberg (1989a) and outlined above. In this 

approach, each individual is ranked according to the number of individuals in the 

current population by which it is dominated. In this way, non-dominated individuals are 

all assigned the same rank, while dominated ones are penalised according to the 

population density in the corresponding region of the trade-off surface. Another 

important element of the MOGA approach is the so-called Decision Maker (DM), which 

is used to direct the search towards the most promising regions in the search space by 

combining dominance with partial preference information. In the beginning of the 

evolution process, the DM uses the a priori domain-specific knowledge about the 

problem (if such knowledge exists), to produce a suitable fitness assignment strategy for 

the members of the currently identified Pareto-optimal set. As the artificial evolution 

progresses, the acquired knowledge obtained by the GA is used by the DM to refine its 

fitness assignment strategy accordingly. In this way, the algorithm can effectively 

identify a subset of the Pareto-optimal set that satisfies certain auxiliary optimality 

criteria. The DM may range from a conventional, weighted-sum approach, to an 

intelligent decision maker operating manually. 



Chapter 2- Genetic Algorithms and Function Optimisation 43 

2.8 Genetic Algorithms as Universal Optimisers 

The preceding discussion may have given readers the impression that genetic algorithms 

outperform other optimisation algorithms on virtually all classes of optimisation 

problems. Unfortunately, recent studies by Wolpert and Macready (1997) revealed that 

this is not the case. Their central result is an important set of theorems known as the No 

Free Lunch Theorems (NFL). The implications of these theorems are general, and are 

not limited to GAs. Loosely speaking, the NFL theorems state that there can never exist 

any one optimisation algorithm that works better than any other, when averaged over 

the set of all possible optimisation problems. In particular, if algorithm A outperforms 

algorithm B on some cost functions, there must exist exactly as many other functions 

where B outperforms A. Put in other terms, no optimisation algorithm can ever exist 

that is better than random search (or any other algorithm), if its performance measure is 

averaged over all possible cost functions. The NFL theorems clearly imply that a priori 

domain-specific knowledge must be incorporated in a given search algorithm, in order 

for it to perform well in that particular domain. More relevant results in this direction 

can be found in Macready and Wolpert (1996,1998), and Culberson (1998). 

The NFL theorems and their implications raise important questions regarding GAs and 

the justification for their preference over conventional optimisers. Since standard GAs 

are essentially blind search algorithms, how can one explain their success in numerous 

practical applications? A possible explanation may be that the majority of cost functions 

encountered in practice exhibit certain common properties which facilitate the use of 

GAs in some way. Note that the set of "all possible cost functions" used in the statement 

of the NFL theorems, certainly contains an infinite number of `unusual' functions not 

likely to be encountered in practice. Although the explanation given above has an 

intuitive appeal, it should be treated carefully, and blind faith in a particular algorithm, 

including GAs, to search effectively and efficiently across a broad class of problems 

should, in general, be avoided. 

2.9 Summary 

In this chapter, genetic algorithms (GAs) as function optimisers were introduced, and 

their fundamental differences with conventional optimisation algorithms were outlined. 
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A brief introduction to the structure and operation of simple GAs was given, followed 

by a rigorous mathematical treatment, including the important concept of a schema, the 

building block hypothesis, and the fundamental theorem of genetic algorithms. Certain 

important issues regarding the implementation of GAs were then presented, including 

guidelines for selecting various parameters, such as the string encoding, the population 

size, the crossover and mutation probabilities, and others. Issues regarding incorporating 

problem specific knowledge in GAs were discussed, followed by a brief introduction to 

multiobjective optimisation using GAs. Finally, the role of GAs as universal optimisers 

was briefly discussed, including the important no free lunch theorems for optimisation. 

The material contained in this chapter is standard, and is only intended as a brief review 

of the current state of affairs in the field of GAs as function optimisers. 
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Analysis and Design 
Functions for Control 

3.1 Introduction 

of Objective 
Systems 

This chapter is primarily concerned with the analysis and design of objective functions, 

as applied to the solution of control engineering problems. A number of conventional 

objective functions are introduced, and it is shown that they can often provide poor 

controller performance indexes. A novel objective function is then proposed for the 

solution of control problems involving single-input, single-output (SISO) processes, that 

overcomes many of the weaknesses of conventional objective functions. The proposed 

objective function is experimentally analysed using a simple control problem, involving 

the tuning of a proportional plus integral (PI) controller for a linear, time-invariant 

process with time delay. The obtained results are analysed and compared with those 

obtained using conventional objective functions, as well as using several conventional 

PI controller tuning methods. Finally, the proposed objective function is generalised to 

multi-input, multi-output (MIMO) control problems. 

3.2 Conventional Objective Functions 

Consider the general, closed-loop SISO system shown in Fig. 3.1. 

Set point Error Input Output 

r(t) + e(t) u(t) Y(t) 
Controller, D Process, G 

Fig. 3.1 General, closed-loop SISO system 
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In the system shown in Fig. 3.1, the controller and process can be linear or non-linear. 
The performance of the controller, D, in this system can be assessed by examining the 
signals r(t), e(t), u(t), and y(t). This can be expressed mathematically as 

J(D) =f [r(t), e(t), u(t), y(t)] ER, DE 2,0<_ t< 00 (3.1) 

where J(. ) is a single-valued function, often called objective function, and 2 is the set 
of all permissible controllers. Each controller in 2 is also known as a solution to the 

control problem. It is common practice to design J in such a way that the optimal 
controller, Dopt, is the one at which J attains its minimum value. Hence, Dopt is obtained 
by solving the following minimisation problem. 

J(Dopt) = min J(2) (3.2) 

A suitable and simple requirement is that the error signal e(t) should be kept as small as 

possible, and e(t) -+ 0 as t oo. A number of objective functions that are based on this 

requirement are shown below. 

00 JIAE (D) =I e(t) I dt 
0 

00 

JISE(D) =f (t) dt 
0 

00 

'VITAE 
(D) =f tI e(t) I dt 

0 

00 
JITSE (D) = te2(t) dt 

0 

(3.3) 

In the Integrated Absolute Error (IAE) and Integrated Squared Error (ISE) objective 
functions, the entire error signal is assigned the same weight, whereas in the Integrated 

Time and Absolute Error (ITAE) and Integrated Time and Squared Error (ITSE), the 

weight on the error starts from zero at t=0 and increases linearly with time, in order to 

allow for the transient error signal which will always be large. 

Using any one of the objective functions in (3.3), the control problem in Fig. 3.1 can be 

transformed into a function optimisation problem, where the objective function J is 

minimised over 2. Consider the case where the process is controlled by a linear 

controller of the general form 

D(s) - 
bosm+ blSm-1 + ... + bm-1S + bm 

e-sL (3.4) 

Sk(Sn + a1Sn-1 + ... + an-1S + Qn 
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Then, the objective function would be of the form 

J(ai,... 
, an, b0, 

... , 
bn, L, m, n, k) =f [r(t), e(t), u(t), Y(t)] , 0<_ t< oo (3.5) 

Note that, in this case, the minimisation of J is a mixed optimisation problem, in which 
both the parameters (real variables, al, b,, L) and the structure (integer variables, m, n, 
k) of the controller D (s) are tuneable. The discontinuities associated with the integer 

variables make this problem extremely difficult to solve numerically using conventional 

optimisation techniques. GAs, however, can be directly applied to such problems by 

simply defining a suitable chromosome structure, as described in Chapter 2. 

3.2.1 Limitations of Conventional Obiective Functions 

The performance specifications for a given control problem are often associated with 

the shape of the closed-loop system transient response to some set point signal such as a 

step or ramp function. Standard response characteristics such as peak overshoot, settling 

time, rise time, steady-state offset, velocity lag, and others may be used to specify a 

required controller performance. In order to provide reliable performance indexes, the 

objective function should, therefore, be able to adequately describe such specifications. 

In the case of objective functions such as the ones shown in (3.3), it is clear that the 

simple error minimisation requirement may not be adequate for the description of such 

specifications. In general, this can result in mathematically optimal solutions that may 

be unacceptable in practice, as illustrated in Fig. 3.2. 

Yl 

v 

Fig. 3.2 Closed-loop system responses 



Chapter 3- Analysis and Design of Objective Functions for Control Systems 48 

With respect to Fig. 3.2, all objective functions shown in (3.3) falsely indicate that the 
controller associated with the oscillatory response 1 performs better than that associated 
with the almost critically damped response 2. This illustrates that a mere minimisation 
of the error signal can lead to qualitatively unacceptable solutions. The occurrence of 
this problem can be minimised by adding an extra term in the objective function, that 

penalises excessive variations in the process input signal, u(t). This approach, however, 

can result in relatively conservative controllers. 

The performance of the objective functions in (3.3) can be improved by minimising the 

error signal that results by taking the difference between the actual system response and 

a desired system response that meets the design specifications. However, a solution that 

precisely achieves the desired system response may not exist, especially in cases where 
the structure of the controller remains fixed. Therefore, similarly to the case illustrated 

in Fig. 3.2, an attempt to minimise the objective function may result in system responses 
that `follow' the desired response but are qualitatively unacceptable. 

Another disadvantage of the objective functions in (3.3) is that they almost always result 
in search landscapes where the global minimum is achieved by a unique solution, even 
though an infinite number of solutions may exist that satisfy the given specifications. A 

well-designed objective function should be able to identify all solutions that completely 

satisfy the specifications, without bias towards specific solutions. This enables the 

designer to manually examine the obtained solutions, and choose one which also 

satisfies certain qualitative objectives which cannot easily be expressed in mathematical 

terms. This is generally not possible using the objective functions in (3.3). 

3.3 A Novel Objective Function for Control Systems 

In this work, a novel objective function has been designed for use in control engineering 

problems, that overcomes most of the limitations of conventional objective functions 

outlined earlier. The main advantage of the proposed objective function is that it enables 

the designer to explicitly specify the required performance specifications for a given 

problem, in terms of time-domain bounds on the closed-loop system responses. The 

proposed objective function is initially formulated for use in problems involving SISO 

processes, but can easily be generalised to MIMO control problems. 
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The proposed objective function was designed in order to satisfy the following three 
fundamental requirements. 

1. It must allow arbitrary performance specifications to be given in the time-domain, 
in a precise and straightforward manner. 

2. All solutions that satisfy the specifications must be mapped to a single number. 
3. It must be applicable to a wide range of linear, non-linear, and time-varying 

control systems of arbitrary structures. 

Requirement 1 is based on the fact that the majority of performance specifications are 

expressed in terms of transient characteristics of the closed-loop system, such as peak 

overshoot and settling time. Furthermore, time-domain specifications are generally 
better understood by control personnel. In the case where many solutions that satisfy the 

specifications exist, requirement 2 ensures that there will be no bias towards specific 

solutions. Finally, requirement 3 enables the objective function to be used in complex 

control problems involving non-linear and time-varying elements, properties that are 

very common in practice. 

3.3.1 Objective Function Formulation 

Consider the general SISO system shown in Fig. 3.1. The set of desired time-domain 

response characteristics can be thought of as an area in the (y, t) plane. One such area is 

shown as the shaded region in Fig. 3.3, where the desired response characteristics may 

be expressed in terms of the constants cl, c2, c3, css, and t2, as follows. 

Peak overshoot: 
Cl - CSS 

x 100% 
CSS 

Settling time: S t2, where the settling time is max 
C2 - CSS 

, 
CSs - C3 

x 100% 
CSS CSS 

Every response whose trajectory lies entirely within the shaded region will have the 

above characteristics. Note, however, that the converse is not true, mainly because of 

the additional specifications imposed by c4 and ti. Let Js denote the area that is formed 

by the parts of the response curve that do not belong to the shaded region. Area JS is the 

sum of the areas marked ® in Fig. 3.3. The magnitude of JS gives an indication of how 
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close the system performance is to the desired for a particular controller, and hence a 
measure of the ability of the controller to meet the specifications. The larger the 
magnitude of JS, the poorer the controller performance, with a value of zero indicating 
that the performance specifications have been completely satisfied. 

Yc 

C 

Fig. 3.3 Typical set point tracking performance specifications 

With reference to Fig. 3.3, the controller that produces response curve 1 has totally met 

the specifications. On the other hand, parts of response curve 2 lie outside the shaded 

region. The value of the objective function is defined as the magnitude of area JS in the 

time range [0, tm ]. Hence, for response 1 the value of the objective function is zero, 

whereas for response 2 it is a positive real number. Therefore, JS can be thought of as a 

measure of the `distance' between the candidate solution and the set of solutions that 

completely satisfy the specifications. 

Note that the region representing the desired specifications need not be of the same 

shape as the one shown in Fig. 3.3. Any number of response constraints within the 

simulation time range [0, tn] can be arbitrarily defined by the designer, thus making 

the proposed objective function extremely flexible. In mathematical form, the proposed 

objective function is defined as 

tmar 

JS (D) :_ (max{(t)_y(t), 0} + max{y(t) - fu (t) , 0}) dt (3.6) 
0 

U t1 t2 tmax t 



Chapter 3- Analysis and Design of Objective Functions for Control Systems 51 

where DE 2 is the candidate controller, and fl (t) and f,, (t) are user-specified functions 

defining the lower and upper boundaries, respectively, of the region representing the 

performance specifications, with fl(t) <_ f,, (t) for all tin [0, tm]. In objective function 

(3.6), the integration is not carried through infinity, but truncated up to tmax, the time 

required for the system to reach the steady state. 

3.3.2 Optimal and Strictly Optimal Solutions 

The following definitions are necessary in order to improve clarity, by distinguishing 

between the different degrees of optimality that can be achieved when minimising 

objective function (3.6). 

----------- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- - -------------------------------- 
Definition 3.1: With reference to the objective function (3.6), a solution D in 2 is 

called optimal, if and only if JS (D) = min JS (2). " 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------------- 

------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------ 

Definition 3.2: With reference to the objective function (3.6), a solution D in Th is 

called strictly optimal, if and only if it belongs to the kernel of Js. The set of all strictly 

optimal solutions is, therefore, -5 = {D E21 Js (D) = 0}. " 

---------------------------------------------------------------------------------------------- -------------------------------------- --------------------------------- --------------------------------- -------------- 

From the definitions above, it is clear that optimal solutions will always exist, whereas 

strictly optimal solutions may or may not exist, depending on the given specifications 

and the capabilities of the control scheme employed. The fact that Js :2H TI + ensures 

that all strictly optimal solutions are also optimal, and that all strictly optimal solutions 

are favoured equally, since they are all assigned the same performance index of zero. 

The analytical minimisation of JS can be a very difficult task, even in cases where the 

process and controller are both linear and time-invariant. However, the development of 

fast computers and powerful control system simulation packages has made numerical 

optimisation a feasible and attractive alternative to analytical optimisation. This enables 

complex objective functions such as (3.6) to be optimised numerically, an approach that 

has the potential to deliver excellent designs that go beyond conventional, linear, 

time-invariant control theory. If a model of the controlled process exists, JS can easily 
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be evaluated for a particular candidate controller by simulating the resulting closed-loop 

system and evaluating the integral in (3.6) numerically. This makes the proposed 

objective function applicable to a wide range of linear, non-linear and time-varying 

closed-loop systems. 

3.4 Experimental Analysis 

In this section, the objective function developed earlier is experimentally analysed, by 

applying it to a simple parametric controller design problem involving a SISO, linear, 

time-invariant process with time delay. The obtained results are analysed and compared 

with those obtained using the four conventional objective functions shown in (3.3), as 

well as a set of five well-known, empirical controller tuning rules. 

The objective is to tune a Proportional plus Integral (PI) controller, so that the resulting 

closed-loop system meets some given performance specifications. The closed-loop 

system has the following standard configuration. 

Set point Error Input Output 
r(t) + e(t) u(t) Y(t) 

10 
-(Vý 

PI controller, D(s) Process, G(s) 

Fig. 3.4 A simple parametric controller design problem 

In the system shown in Fig. 3.4, the transfer functions of the process and controller have 

the following structure. 

G(s) =K e-SL and D(s) = Kp + 
K. 

Ts+1 s 
(3.7) 

It is observed that the process is described by a standard first-order dead time model, 

with K= 0.5, T= 10 sec, and L=3 sec. Controller parameters Kp and K; are unknown. 

The reason for choosing this particular PI controller structure will become apparent later 
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in this section, where it will be shown that this controller structure enables the 
parameterisation of all stabilising PI controllers in a way that facilitates the graphical 
determination of the relative stability and robustness properties of the solutions, based 

on their location in the parameter plane (Kp, K; ). 

3.4.1 The Performance Specifications 

The performance specifications for the control problem were given as time-domain 
bounds in the (y, t) plane, of the response of the closed-loop system to a unit step 
function. They are represented by the shaded region shown in Fig. 3.5. 

y(t) 

c, =1.20 ----------------------- 

c2 =1.05 ---------------------------------- '- 
cw = 1.00 ----------------------------------------------------------- 
c3=0.95 ---------------------------------------------- ----------------------- 

-------------------------------- Cq=0.80 - 

0 t, =12.5 t2=25 tmax=50 t(Sec) 

Fig. 3.5 The performance specifications 

This corresponds to a peak overshoot of at most 20% and a 5% settling time of at most 

25 sec. Note that the lower boundary of the shaded region in Fig. 3.5 also imposes some 

additional specifications, by rejecting responses with points in the rectangle that results 

by setting ti = 12.5 and c4 = 0.8. Experiments have shown that including this additional 

constraint, by setting tl = t2 /2 and C4=2c,, -cl (Cl mirrored around cs5), generally 

results in qualitatively better responses. 

In order to numerically evaluate the objective functions, the closed-loop system was 

simulated on a computer running the simulation package MATLAB /SIMULINK, using the 

Runge-Kutta fifth-order numerical integration algorithm with a step size of 0.5 sec and a 

maximum simulation time, tm = 50 sec. 



Chapter 3- Analysis and Design of Objective Functions for Control Systems 54 

3.4.2 Conventional Objective Functions 

The conventional objective functions shown in (3.3) were minimised numerically, using 
the downhill simplex method of Neider and Mead (1965). In each case, the 

minimisation was repeated several times to ensure that the global minimum is obtained. 
The resulting optimal controller parameters are shown in Table 3.1 below. 

TABLE 3.1 Optimal controller parameters using the objective functions in (3.3) 

Objective function Kp K; (sec-) Strictly optimal? 

Integrated Absolute Error (IAE) 4.2165 0.3862 Yes (Js = 0) 
Integrated Time and Absolute Error (ITAE) 3.4828 0.3458 Yes (Js = 0) 
Integrated Squared Error (ISE) 5.5658 0.3570 Yes (Js = 0) 

Integrated Time and Squared Error (ITSE) 4.7607 0.3782 Yes (Js = 0) 

The performance of the controllers shown above can be observed in Fig. 3.6, which 

shows the closed loop system responses to a unit step function. 

yc 

1. 
1. 
1. 
0. 
0. 

t (sec) 

Fig. 3.6 Closed-loop system responses to a unit step function (see Table 3.1) 

It is observed that all optimal controllers in Table 3.1 are also strictly optimal (they 

completely satisfy the specifications in Fig. 3.5). The ISE criterion results in the fastest 

U %J w -- 
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response, with its peak value almost at the upper boundary of the specification region, 
having a peak overshoot of almost 20%. The ITAE criterion results in the slowest and 
least oscillatory response. Note that the solutions obtained, although strictly optimal, are 
only four of the infinite number of strictly optimal solutions contained in Th. It will be 

shown later that a much larger number of strictly optimal solutions (theoretically all of 
them) can be identified using the proposed objective function, J. 

3.4.3 PI Controller Tuning Methods 

The control problem in Fig. 3.4 was also solved using five standard PI controller tuning 

methods based on the characteristics of the controlled process. These are the classical 
step and frequency response methods due to Ziegler and Nichols (1942), the method by 
Chien, Hrones and Reswick (1952) optimised for set point tracking with 0% and 20% 

overshoot, and finally the method by Cohen and Coon (1953). For more information on 
these methods, refer to Aström and Hägglund (1995). The resulting optimal controller 

parameters are shown in Table 3.2 below. 

TABLE 3.2 Controller parameters obtained using different PI controller tuning methods 

PI controller tuning method Kp K; (sec-) Strictly optimal? 

Ziegler-Nichols (step response) 6.0000 0.6667 No (Js = 0.85) 
Ziegler-Nichols (frequency response) 4.7121 0.5442 No (Js = 0.19) 

Chien, Hrones and Reswick (0% overshoot) 2.3333 0.1944 No (Js = 0.02) 

Chien, Hrones and Reswick (20% overshoot) 4.0000 0.4000 Yes (Js = 0) 

Cohen-Coon 7.6560 1.2497 No (Js = 8.16) 

The performance of the controllers shown above can be observed in Fig. 3.7, which 

shows the closed loop system responses to a unit step function. It is observed that only 

the Chien, Hrones and Reswick (20% overshoot) method results in a strictly optimal PI 

controller. The Chien, Hrones and Reswick (0% overshoot) method results in an almost 

strictly optimal controller having a very overdamped response with no overshoot. The 

Ziegler-Nichols step and frequency response methods result in controllers having 

responses with a relatively large overshoot. Finally, the Cohen-Coon method results in a 

closed-loop system with very low damping, something that was expected since the 

Cohen-Coon method has been designed mainly for the rejection of load disturbances. 
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y(t) 
" Ziegler-Nichols Step Response 
  Ziegler-Nichols Frequency Response 
f Chien, Hrones and Reswick (0%) 
f Chien, Hrones and Reswick (20%) 
f Cohen-Coon 

Fig. 3.7 Closed-loop system responses to a unit step function (see Table 3.2) 

3.4.4 The Proposed Objective Function 

In the preceding analysis it was observed that each of the conventional objective 

functions and the PI tuning methods results in a single PI controller, which can be 

thought of as a point in the parameter plane (Kp, K; ). This is not the case with JS, which 

results in an area in (Kp, K; ) containing all strictly optimal solutions (the set -5). In 

order to better visualise -S and its properties, the parameter plane (Kp, K1) was 

augmented with relative stability contours, based on the PID controller design method 

by Shafiei and Shenton (1997). The procedure is outlined below. 

Assume that the process under PI control can be adequately represented by the 

following standard transfer function. 

G(S) 
- 

bosm+ b1Sm-1 + ... + bm-1S + bm 

e-sL (3.8) 
Sn + a1Sn-1 + ... + an-1S + an 
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For the transfer function (3.8) to be realisable, the conditions n _> m, a; E R, and bi E R, 

must hold. We further assume that b,,,: # 0 (the plant does not have zeros at the origin of 
the complex plane). The PI controller is assumed to be of the form 

KKs+K. 
D(s) = Kp +'=p 

ss 
(3.9) 

A condition for absolute stability of plant (3.8) when controlled by controller (3.9) is the 

well-known Nyquist stability criterion, in which the open-loop characteristic polynomial 
is equated to zero. 

. 1+D(s)G(s)=O or D(s)G(s) = 
Kps +K` 

G(s) = -1 (3.10) 
s 

Condition (3.10) can be generalised, in order to investigate the relative stability of linear 

systems. Instead of using -1 +j0 as the reference point in the stability condition (3.10), 

the point a +jb is used, with a and b chosen in such a way that the condition is satisfied 

if and only if the closed-loop system achieves a specific gain or phase margin. The 

condition for relative stability is shown below. 

Ks+K1 
D(s)G(s) =pI G(s) =a +jb 

s 
(3.11) 

For example, setting a= -1/GM and b=0, the condition is satisfied only for systems 

having a gain margin GM. Similarly, setting a +jb = e-i("-PM), the condition is satisfied 

only for systems having a phase margin PM. To facilitate the algebraic development of 

the analysis, Eq. (3.11) is rearranged (with s= jco) as 

jcoKp+KI = 
jco (a +jb) 

G(J(o) =R(te) +jI((u) (3.12) 

where R(co) and I(co) are the real and imaginary parts of jco(a + jb)/G(ja ), 

respectively. Equation (3.12) can be used to compute relative stability boundaries in the 

parameter plane (Kp, KI). When 0< co < oo, the stability boundaries for specific 

gain/phase margins are governed by the following equations. 

Ki = R(w) and Kpco = I(w) (3.13) 
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Quantities R((o) and I((o) can be easily computed for different values of w using a 
computer, resulting in a process-dependent set of gain margin and phase margin 
contours in the parameter plane (Kp, K; ), as shown in Fig. 3.8 below. 

G(S) = 0.5e 3s/(105+1) ® UnStahii2 rAninn 1 

1 

E 
L- 
Q) 

N 
c 
O 

O 
a 
O 

0- 

0 
Integral term, K; (sec-1) 

Fig. 3.8 Controller parameter plane including relative stability contours 

It is observed from Fig. 3.8 that all stabilising PI controllers (with Kp >_ 0, and KI >_ 0) are 

compactly represented by the white region, making it very easy to visualise the obtained 

results and their relative stability properties. This is an advantage of the PI controller 

representation (3.9), and is due to the fact that the controller parameters appear linearly 

in D(s). This representation also has the advantage that the effect of each term is 

proportional to the value of the corresponding parameter. Thus, the integral action can 

be switched off by simply setting Kl = 0. 

Using the controller parameter plane template of Fig. 3.8, the results of Sections 3.4.2 

and 3.4.3, as well as those obtained using the proposed objective function Js, are shown 

together in Fig. 3.9, where the boundary of 2 is indicated by the thick line. 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 



Chapter 3- Analysis and Design of Objective Functions for Control Systems 59 

1 

1 

Yý 
E 
a) 
a--Co 

O 
Q 

O 
^L 0 

I 

y(t) 

1.20 --------------- 

1.05 
---------------------------- ------__R-_ 1.00 -------- ------------------' ----------- 00.95 

0.80 

ý- 

--------------- ------- 

O Integrated Absolute Error (IAE) 
Q Integrated Time and Absolute Error (ITAE) 
O Integrated Squared Error (ISE) 
o Integrated Time and Squared Error (ITSE) 
" Ziegler-Nichols Step Response 
  Ziegler-Nichols Frequency Response 
" Chien, Hrones and Reswick (0%) 
A Chien, Hrones and Reswick (20%) 
f Cohen-Coon 

01 12.5 25 50 t (Sec) 

G(s) = 0.5e 3s/(1Os+1) ® Unstable reainn 

Ku=11.78 
Tu= 10.82 sec 

.... ..................... ........:..... 

15 

. ý; 45° 30° 

00 

3dB 
... ý. ýý... 

... r ..:.........:..... ....:..........:!..... f......... .....:.. 
ý 

120° 
)9dB: 

_...:. :........ 
j5dB 

_/"18dß /" v' /ý"ý: ý' 
/ýý/ 

v 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Integral term, K; (sec-1) 

Fig. 3.9 Controller parameter plane showing the set of strictly optimal 
solutions (bounded by the thick line) for the specifications shown 

It is observed that -5 contains solutions with various degrees of relative stability, with 

gain margins ranging from 5.6 dB to 14.3 dB, and phase margins ranging from 48° to 

75°. Note that the shape of the boundary of 2 implies that the specifications set for this 

problem cannot be expressed in terms of gain and phase margin bounds. It is also 

observed that all solutions obtained by the conventional objective functions are included 

in 2. However, most of the PI tuning methods tested are not contained in -5. Of 

course, this was expected since the optimality criteria used in these methods are not, in 
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general, associated with the ones shown in Fig. 3.5. The above comparison merely 
demonstrates the flexibility of the proposed objective function in the design of 

controllers for arbitrary performance specifications. 

In order to better illustrate the relationship between the time-domain specifications 

defined by functions fl (t) and fu (t), and the boundary of set -5 in the parameter 

plane, a number of tests were performed using different time-domain specifications. The 

results are shown in Figures 3.10 to 3.13. 
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Fig. 3.10 Controller parameter plane showing the set -5 of strictly optimal 

solutions (bounded by the thick line) for the specifications shown 
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Fig. 3.11 Controller parameter plane showing the set -5 of strictly optimal 
solutions (bounded by the thick line) for the specifications shown 

Fig. 3.10 shows the set -5 that results when only the upper boundary is present in the 

specifications, by setting fl (t) =0 in (3.6). It is observed that -5 now contains 

controllers in the region around the origin (including the point Kp =0 and K; = 0, since 

output y(t) =0 is indeed within specification). It is also observed that . contains points 

in the horizontal and vertical axes, which correspond to integral-only and 

proportional-only controllers respectively. Similarly, Fig. 3.11 shows the results 

obtained when only the lower boundary is present, by setting f,, (t) = oo in (3.6). As 
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expected, -S is now larger than in Fig. 3.9 and contains controllers that achieve lower 

relative stability margins. This is because the new specifications permit controllers that 

result in more oscillatory responses with large overshoots. In this case, 2 contains 

most of the solutions obtained by conventional methods. 

Fig. 3.12 shows the set -S that results when the specifications are modified, so that they 

correspond to zero overshoot and a 5% settling time of 25 sec. Since the specifications 

are now more stringent, set -5 is smaller than in the previous cases. 
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Fig. 3.12 Controller parameter plane showing the set 25 of strictly optimal 

solutions (bounded by the thick line) for the specifications shown 

2 



Chapter 3- Analysis and Design of Objective Functions for Control Systems 63 

y(t) 

1.80 --------------- 

1.20 ----------------------------- 
1.00 ---------------------------------------' 

0.80 

0.20 --------------- ------ 

0 12.5 25 50 

O Integrated Absolute Error (IAE) 
Q Integrated Time and Absolute Error (ITAE) 
O Integrated Squared Error (ISE) 
o Integrated Time and Squared Error (ITSE) 
" Ziegler-Nichols Step Response 
  Ziegler-Nichols Frequency Response 
f Chien, Hrones and Reswick (0%) 

Chien, Hrones and Reswick (20%) 
Cohen-Coon 

t(sec) 

G(s) = 0.5e 3s/(1Os+1) 
1 

1 

Yý 
E 
a) 
N 

0 

0 
Q 
0 L 

^ 
LL 

Unstable region 

K�=11.78 
T�=10.82 sec 

D 

..... ..... _ ........:......... ............ ...... ........ ..:.........:......... 

450 30° 
:.... .....:. a ....... ...... ...:.... ....:..................... 

00 

\ 
'3d6 

4--. _ _ _.. ý. ýý 
...... ......... ......... . .............. . /..... /.........:.. 

900 9dB 

. 120 

, '. ...... ý. //:..... ý. ý.......:... 2 i_ . ....... 15dß ... ý12dB 
18 dS 

10 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Integral term, K; (sec-1) 

Fig. 3.13 Controller parameter plane showing the set -5 of strictly optimal 
solutions (bounded by the thick line) for the specifications shown 

Finally, Fig. 3.13 shows the set -5 that results when a very wide time-domain envelope 

of permissible responses is used. It is observed that _5 is now very large, covering most 

of the stable region. Notice the irregular shape of the boundary of -5, an indication of 

the complexity of the mapping described by Js. 

Let S and S2 denote the areas in the (y, t) plane, of two arbitrary specifications, both 

defined in [0, t, nax] by means of the boundary functions fl (t) and fu (t) . Also, let -51 

- 
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and 22 denote the corresponding sets of strictly optimal solutions. This can be written 

as Sl H -S 1 and S2 H f5 
2. Then, the formulation of Js implies that 

s1Cs2gT1C°52 

Sl()S2 H-S1(-) 52 
(3.14) 

Note that Sl v S2 is not mapped to .1v -f5 2, since there can exist responses that 

entirely fit in area Sl v S2, but do not entirely fit in either Sl or S2 individually. The 

above properties are illustrated in the Venn diagram shown in Fig. 3.14. Compare this 

with Figures 3.9 to 3.13. 
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Fig. 3.14 Venn diagram illustrating properties (3.14) 

L 

Fig. 3.14 also shows the robustness properties of the obtained solutions, in terms of the 

closed-loop sensitivity to variations in process dynamics, M. This is defined as 

MS = max 
1 (3.15) 

0: 5w<oo 1 +D(j(o)G(jo) 
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Reasonable values for the sensitivity MS are in the range from 1.3 to 2 (Aström and 
Hagglund, 1995). It is observed that the majority of controllers in the shaded region are 
within the reasonable sensitivity range. 

In terms of transient responses of the obtained solutions, a very coarse gridding of the 
stable region (exhaustive search) revealed 24 strictly optimal solutions, uniformly 
distributed in 

-5, that result in the closed-loop responses shown in Fig. 3.15. Note that 

the obtained solutions are only a finite subset of the infinite set -5. 
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Fig. 3.15 Closed-loop system responses of 24 uniformly distributed solutions in 

3.4.5 Comments and Discussion 

The PI controller tuning problem used in the preceding analysis was chosen mainly 

because it results in a two-dimensional search space, thus enabling the visualisation of 

the obtained solutions. Furthermore, the simplicity of the problem enabled the use of 

exhaustive search algorithms for the optimisation of the various objective functions, 

something which guarantees that the solutions obtained are not sub-optimal. Of course, 

the preceding analysis should not be considered general, since it is only experimental 

and hence limited to the design examples considered. However, the analysis clearly 

demonstrates the flexibility and open architecture of the proposed objective function. 
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The generality of the obtained results will be strengthened in the following chapters, by 

successfully applying Js to a number of difficult multivariable control problems. 

Recall that GAs search for optimal solutions by evolving a population of many 
candidate solutions in parallel. This makes them especially suited for the minimisation 

of Js, which usually results in a family of strictly optimal solutions. It will be shown in 

the following chapters that GAs can successfully identify a finite set of strictly optimal 

solutions that are almost uniformly distributed within 2. This is generally not possible 

using standard conventional optimisation methods. 

3.5 Generalisation to Multivariable Systems 

In this section, the objective function Js is generalised, in order to treat control problems 

involving multivariable processes. A typical closed-loop configuration for a p-input, 

q-output process is shown in Fig. 3.16. 

ri 

r2 

rq 

Fig. 3.16 Typical multivariable closed-loop system 

Yi 

Y2 

yq 

The objective is to design the q-input, p-output controller so that the q process outputs 

follow, in some desired way, the corresponding set point signals, and the interactions 

between the loops are within specification. The set point tracking specifications can be 

described by the shaded region in Fig. 3.3. The additional loop coupling specifications 

can be described in a similar way. With reference to Fig. 3.17, the desired response 

characteristics can be expressed as 
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Fig. 3.17 Typical set point tracking (top) and loop coupling (bottom) 
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Each output can have different specifications, which also depend on the set point 

patterns applied to the reference inputs of the closed-loop system. Therefore, in order to 

evaluate a candidate controller, a number of set point patterns must be applied, and the 

corresponding sets of specifications must be used to evaluate all q outputs. Let J11 denote 

the objective function Js, when used to evaluate output i under set point pattern j, as 

shown below. 

Jýf (D) : _0 

tmmc 

(max{(°(t) YI (t), 01+ max{Y; (t) -f 
(u) (t), 0 }) dt (3.16) 
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Notice that, in (3.16), the boundary functions can be different for every output and set 
point pattern combination. In cases where the closed-loop system is square (q-input, 

q-output) as shown in Fig. 3.16, one possibility is to apply q set point patterns where, in 

pattern j, a unit step function is applied to reference input rj, while the remaining q -1 
reference inputs remain at zero. For each set point pattern, all q outputs are evaluated 

using objective function (3.16) with the appropriate specifications (set point tracking 

specifications should be used for output j, while loop coupling specifications should be 

used for all other outputs). 

After evaluating all q objective function elements for set point patternj, the results can 
be weighted and added together to form a single number that represents the quality of 

the controllers for set point patternj. Finally, when all q set point patterns have been 

applied to the closed-loop system, the maximum of all resulting objective function 

elements (indicating the worst performance) can be selected as the final objective 

function value. The generalised objective function is, therefore, defined as 

9 

JM (D) := max w. J. (D) (3.17) 
ý=1,..., q i=1 

where Jij denotes the objective function for output i under set point pattern j, and w11 

denotes the weighting factor of J,, with w1 >_ 0. The higher the weighting factor, the 

more important the corresponding objective function element becomes. It is observed 

that q simulations are required for the evaluation of JM for a single candidate controller. 

Depending on the complexity of the process and controller, this can result in long 

execution times and is a disadvantage of the proposed approach. However, this may not 

be a significant problem in cases where unsupervised search algorithms, such as GAs, 

are used in the optimisation. 

The choice of suitable values for the weighting factors wy is particularly important when 

the given performance specifications cannot be completely satisfied (no strictly optimal 

solutions exist in the search landscape). In such cases, wy determine the balance of 

specification violations between the objective function elements J, ý that is required to 

minimise JM. This means that the location of the optimal point in the search landscape is 

generally a function of w1J. Conversely, when strictly optimal solutions do exist in the 
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search landscape, their location is completely unaffected by w, 3, because J1 =0 for such 
solutions by the definition of J, . In such cases, the weighting factors w, 3 can still affect 
the convergence of the search algorithm, since their values affect the search landscape. 
However, the search algorithm should eventually converge to the same strictly optimal 

solution set, irrespective of the values of w1, provided that w; y >0 for all i and j 

Consider the situation where no strictly optimal solutions exist in the search landscape, 

but a solution has been found for which some elements J13 are exactly zero. This means 
that the performance specifications for some particular combinations of i and j have 

been completely satisfied, but not for the remaining combinations. Now assume that a 

new solution is discovered for which all elements J, are non-zero, but their weighted 

values result in a value of JM that is lower than that of the previous solution. Although 

the new solution results in violations in all combinations of i and j, it will outperform 

the previous one for which some combinations completely satisfy the specifications. It 

clearly follows that modifying the specification envelope by means of f-(u)(t) and fy(')(t) 

for a particular combination of i and j is not even qualitatively equivalent to modifying 

the corresponding weighting factor w13. While the former can potentially create strictly 

optimal solutions in cases where they did not previously exist, the latter merely affects 

the balance between existing violations. In order to reduce the importance of a particular 

objective function element, it may thus be more appropriate to widen the corresponding 

specification envelope by means off ý(u)(t) and fy' (t), than to simply decrease w1 . 

3.6 Summary 

This chapter focused on the application of optimisation methods to control engineering 

problems. It was shown that this can be performed by expressing the performance of the 

closed-loop system as a function of the controller to be designed or tuned, by means of a 

single-valued objective function. A number of commonly used objective functions were 

presented, and it was argued that, although they are convenient to use in an analytical 

framework, they can often provide poor controller performance indexes. This can affect 

the quality of the obtained solutions, since the objective function is normally the only 

source of information used to guide the search towards the optimal solution set. A novel 

objective function, denoted by Js(. ), was then proposed for single-input, single-output 
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systems, which enables the designer to explicitly specify the performance specifications 

associated with a given problem, in terms of time-domain bounds on the closed-loop 

responses. The formulation of JS is such that the set of all controllers that completely 

satisfy the specifications is precisely the kernel of Js. This set is denoted by 2, and can 
be the empty set (in cases where the specifications are unrealisable by the controller), or 

can even be an infinite set, where an infinite number of equivalent controllers exist that 

completely satisfy the specifications. Objective function JS was experimentally analysed 

using a simple PI controller tuning problem. The obtained results were analysed and 

compared with those obtained using conventional objective functions, as well as using 

several standard PI controller tuning methods. Finally, a different objective function, 

denoted by JM("), was proposed, which is a generalisation of JS to multivariable control 

systems. Both JS and JM can be used as a basis for the design and tuning of general, 

linear or non-linear controllers of arbitrary structures, because they only require the 

numerical solutions of the differential equations associated with the closed-loop system. 

Provided that a model of the process exists and is relatively accurate, these can easily be 

obtained using most standard control system simulation packages. 
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4 Locating Multiple Optimal Solutions 
Using Genetic Algorithms 

4.1 Introduction 

In Chapter 3 it was shown that the objective functions Js and JM developed in this work 
have the important characteristic that they result in a family of strictly optimal solutions, 

namely the set -S. The analytical identification of this set can be a very difficult task, 

even for trivial problems. This is mainly due to the high complexity of the mappings 
defined by Js and JM. In a numerical optimisation framework, a more realistic goal 

would be to identify a finite subset of 2, whose elements are uniformly distributed 

within -5. Genetic algorithms appear to be especially suited for this task, since they 

search by evolving a population of many solutions in parallel. However, the fact that the 

population size is finite and must be kept relatively small for practical reasons, causes 

the members of the population of a simple GA to cluster around specific regions in 

while leaving other regions unexplored. This chapter focuses on ways of overcoming 

this important limitation of GAs. A new method based on the techniques of niche 

formation and speciation is proposed, and it is shown that it enables the GA to evolve a 

population whose members are almost uniformly distributed within 2. The proposed 

method is not limited to the optimisation of Js and JM, and can be used in many different 

search landscapes containing multiple optimal solutions. 

4.2 Multiple Optimal Solutions and Genetic Drift 

In multimodal search landscapes where many local optima may exist, a simple GA is 

expected to converge to solutions in the neighbourhood of the global optimum. There 

may be cases, however, where the locations of other optima are also of interest. Most 
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importantly, there may be cases where the search landscape contains many equivalent 
optima, all of which correspond to solutions of equal quality. In such cases, the global 
optimum does not correspond to a unique optimal solution, but to a set of optimal 
solutions that may be finite or infinite. A number of search landscapes with the above 

properties are shown in Fig. 4.1 below. 

(a) Unique optimal solution 

(c) Infinite number of optimal solutions 

(b) Finite number of optimal solutions 

(d) Infinite number of optimal solutions 

0. 

0. 

0. 

0. 

4 

-1 -1 

Fig. 4.1 Examples of multimodal search landscapes 

Assuming a maximisation problem, search landscape (a) contains five maxima which 

progressively decrease in magnitude. The global optimum is located at the unique 

optimal solution x =1. Although this solution outperforms all others, there may be cases 

where it is desirable to also find the locations of the remaining four maxima. This is 

certainly the case in search landscape (b), where all five maxima are of the same 

magnitude. In this case, the global optimum is achieved by the finite set of optimal 

solutions {1,3,5,7,9} 
. In search landscape (c), the global optimum is achieved by the 

infinite set of optimal solutions {1,3,9} v [5,7]. This is because for all solutions x in the 

continuous interval [5,7], the function remains at its maximum value of 1. Similarly, in 

search landscape (d), the global optimum is achieved by the infinite set of optimal 

uic 13 +viayX uic ý+ avioy 
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solutions formed by the union of the four flat regions on the top of the peaks, where the 
function also remains at its maximum value of 1. Search landscapes (c) and (d) are 
qualitatively similar to the ones resulting from the minimisation of JS and JM, where the 

global optimum is achieved by all solutions in set lb, and JS ýýS) 
= JM (ýj) 

_ {0}. 

Simple GAs have a particular difficulty in optimising multimodal functions such as the 
ones shown in Fig. 4.1. Specifically, the population will most likely converge to a small 
subset of the set of optimal solutions. In the case of search landscape (a), the entire 
population will most likely converge to the leftmost peak, although the location of the 
other four optima may also be of interest. Of course, this is not surprising since the 
leftmost peak outperforms all others. However, the same behaviour is observed in the 

case of search landscapes (b), (c), and (d), where the optima are all equivalent. A simple 
GA will most likely converge to only one of the five optima in (b), and will distribute 

the population unevenly in the continuous optimal regions in (c) and (d). This problem 
is caused by stochastic errors in sampling due to finite population sizes, and is known as 

genetic drift (De Jong, 1975; Goldberg and Richardson, 1987; Goldberg, 1989a). Since 

the size of the population cannot be very large for practical reasons, the effects of 

genetic drift can be significant and must be reduced if an unbiased sample of the entire 

set of optimal solutions is desired, as in the case of minimising JS and JM. 

4.3 Niche Formation and Speciation in Genetic Algorithms 

In order to overcome the problem caused by genetic drift and maintain appropriate 
diversity in the population, a number of modifications to the simple GA have been 

proposed that are loosely based on the natural mechanisms of niche formation and 

speciation. In natural ecosystems, living organisms are divided into different species on 

the basis of their similarities. This enables species to form stable sub-populations which 

occupy different niches in the environment. In the context of artificial genetic search, 

niches are analogous to optimal regions in a search landscape, and species are analogous 

to the members of the population located in these regions. The main objective is to 

enable the GA to distribute the population evenly among different equivalent niches 

without bias towards specific niches. A number of proposed schemes incorporating the 

above ideas into GAs are briefly outlined below. 
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One of the first attempts to induce niche formation and speciation in genetic algorithms 
was made by Cavicchio (1970), who introduced a mechanism he called preselection. In 
this scheme, an offspring produced after the crossover of a string pair is required to 

perform better than the inferior parent in order to assume a place in the population. The 
inferior parent is then discarded from the population. If the offspring's fitness is lower 

than that of both its parents, then it is discarded. Furthermore, in order for a mutated 
individual to assume a place in the population, it must perform better than the individual 

before mutation. This method helps maintain diversity in the population because strings 
tend to replace others similar to themselves (one of their parents). This indirectly 

encourages niche formation and speciation, and helps prevent convergence to a single 

optimum. Cavicchio claimed to maintain more diverse populations in a number of GA 

runs with populations of size N=20 individuals. 

Cavicchio's preselection scheme was later generalised by De Jong (1975) in a scheme 
he called crowding. In this scheme, an offspring is compared with a small number of 
individuals (typically 2 or 3), randomly chosen from the population. The individual with 

the highest similarity is replaced by the offspring, where Hamming distance is used as 

the similarity measure. Like preselection, crowding helps maintain population diversity 

and encourages niche formation and speciation. A variation of De Jong's crowding was 

later proposed by Stadnyk (1987), who achieved better results by selecting individuals 

according to inverse fitness. In this way, offspring tend to replace strings which belong 

to the same niche and are also inferior to other strings in the niche. 

Booker (1982,1985) proposed a scheme he called restricted mating. Restricted mating 

is based on the observation that species are unlikely to mate with organisms dissimilar 

to themselves. In this scheme, two individuals in the population are allowed to mate and 

produce offspring only if they are functionally similar. This facilitates the formation of 

distinct mating groups (species), which helps promote diversity in the population. The 

functional similarity between individuals is measured using `mating templates' - special 

identifiers in the chromosomes. Only those individuals with matching templates are 

allowed to mate and produce offspring. The mating templates are not fixed, but evolve 

along with the rest of the chromosome, adaptively restricting mating between dissimilar 

species. A similar mating approach is also mentioned in Holland (1987), in the context 

of classifier systems. Deb and Goldberg (1989) proposed a relatively simple scheme, 
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called phenotypic mating restriction, in which mating is restricted on the basis of 
similarities between individuals in the decoded parameter space. This has the advantage 
that it does not depend on the coding scheme used in the chromosome formation. Worth 

mentioning is the work by Hillis (1992) on spatially restricted mating, in which the 
population evolves on a spatial lattice, and individuals are likely to mate only with those 
belonging to their spatial neighbourhoods. 

4.3.1 Fitness Sharing 

Goldberg and Richardson (1987) proposed a practical and effective niche formation and 
speciation scheme known as fitness sharing. In this scheme, individuals that occupy the 

same niche are forced to share their fitness among each other. Therefore, under fitness 

sharing, the fitness awarded to an individual is inversely proportional to the number of 
individuals in the niche it belongs to. Given a number of equivalent niches, this causes 

underpopulated or unfilled niches to appear more rewarding in comparison with other, 

overpopulated ones. Eventually, an equilibrium is achieved, where the population is 

evenly distributed among all equivalent niches. Furthermore, in cases where the niches 

are not equivalent, the number of individuals allocated to each niche is proportional to 

the niche's absolute fitness. These properties of fitness sharing have been demonstrated 

in Goldberg and Richardson (1987), and Deb and Goldberg (1989). 

The degree of fitness sharing among individuals is determined by means of a sharing 

function, Sf(O1ý), which is a function of the `distance' Olt between strings Si and Sj in the 

population. Sharing function Sf determines the degree of membership of strings Si and S; 

to the same niche, based on their similarity. The distance metric AE R+ can be based 

on differences in the genotype (such as the strings' Hamming distance), or parameter 

differences in the phenotype. A typical sharing function returns a value of 1 for identical 

strings, and its value decreases as the similarity between the two strings decreases. The 

shared fitness value f of the i-th individual in the population is determined by dividing 

its potential fitness value f by the sum of the shares Sf(A1ý), where j =1,2, ... , N. 

f fN 

Sf (Ali 
j=l 

(4.1) 
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Sf(A 

Fig. 4.2 Triangular sharing function (Goldberg and Richardson, 1987) 

A typical sharing function is shown in Fig. 4.2, where it is assumed that Aij is inversely 

proportional to the similarity of strings Si and Sj, with A=0 for identical strings. 

Parameter ashare determines the `size' of the niche, and two individuals with Aij ? ashare 

are considered isolated. It is clear from Eq. (4.1) that when many individuals are in the 

same neighbourhood, as defined by Sf and A, 3, their shared fitness values are lower than 

their potential fitness values, since the shares Sj(A, j) are significant. This reduces the 

reproductive potential of groups of individuals occupying densely populated regions, 

while isolated individuals retain their potential fitness. As a result, fitness sharing helps 

maintain diversity in the population by dynamically directing the genetic search towards 

sparsely populated optimal regions in the search landscape. 

A different approach to sharing was later proposed by Beasley, Bull, and Martin (1993) 

in a method they called sequential niche. This method involves multiple GA runs, with 

each run locating one peak in a multimodal search landscape. After a peak has been 

located, the search landscape is modified so that the identified peak no longer exists in 

the landscape. This ensures that the same peak will not be rediscovered. The GA is then 

restarted and the process is repeated until all peaks have been located. Sequential niche 

uses a sharing function to suppress the identified peaks from the search landscape. The 

main difference with fitness sharing is that, instead of the fitness of an individual being 

reduced because of its proximity to other individuals in the population, the fitness of an 

individual is reduced because of its proximity to peaks located in previous GA runs. 

-ýnoc 
ij 
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4.4 The Proposed Niche Induction Method 

In this section, a new niche induction method is proposed, which is designed for the 

optimisation of search landscapes of the form of (c) and (d) in Fig. 4.1. These are 
qualitatively similar to the ones associated with objective functions Js and JM developed 

in Chapter 3. The required population diversity is achieved by employing an extension 

of the technique of fitness sharing described earlier, called adaptive fitness sharing. 
Based on theoretical and heuristic justifications, equations are derived for the optimal 

value of the sharing parameter ßshare, which is expressed as a function of the population 

size, N, the dimensionality of the search landscape, n, as well as certain geometrical 

properties of the currently identified set of optimal solutions (the set -5 in the case of 

optimising JS and JM). This results in a near-uniform sampling of the set of optimal 

solutions. In addition to that, the population sampling density is adaptively modified in 

cases where the set of optimal solutions changes in the course of a GA search run. This 

facilitates the application of the proposed method to on-line optimisation problems. 

Note that, in order to improve clarity, -S is thought to contain strictly optimal solutions 

that may assume a variety of forms. For example, let string Si correspond to a solution 

in -5. Also, let xi denote the parameter vector associated with Si, and let DI (or Dl in the 

multivariable case) denote the controller associated with xi. Then, the statements 

SIEZ, x 2, DIE2 or DIE-: 2 (4.2) 

are all valid, equivalent, and interchangeable. The same applies to Js, JM, and any other 

similar objective function where, for example, the statements 

J(S; ) = 0, J(x, ) = 0, J(Di) =0 or J(Di) =0 (4.3) 

are all valid, equivalent, and interchangeable. The different equivalent notations shown 

in (4.2) and (4.3) are all extensively used throughout this work. 

4.4.1 Proportionate Fitness Assignment 

The reproductive potential of the i-th string in the population of a GA is determined by 

the string's fitness value f, as indicated in Eq. (2.1). Fitness values are non-negative real 
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numbers assigned to strings, based on their observed performance. Assuming that the 
optimisation problem involves the minimisation of objective function J, and that J(S) 
denotes the objective function value of string Si, then the absolute fitness value of Si is 

given by the following equation. 

f= max J(Sj) -J(S, ) 
j=i,..., N 

(4.4) 

This is often called proportionate fitness assignment because the reproductive potential 

of an individual is directly proportional to its observed performance. It is clear that f >_ 0 

and that the lower the value of J(SI), the higher the value of f i, with strictly optimal 
solutions (if they exist in the population) having the maximum fitness value of all N 

strings. Function J can be any suitable objective function, such as Js and JM. 

4.4.2 Population Ranking 

In proportionate selection, the selection probability pi of an individual in the population 
depends on the absolute fitness f of that individual, as computed in Eq. (4.4). This can 
lead to convergence problems, especially in cases where a small number of individuals 

have fitness values which are significantly higher than those of their competitors. In such 

cases, these highly fit individuals can often dominate the entire population, while the 

majority of the remaining individuals are discarded. This can significantly reduce the 

population diversity, and can also cause the GA to converge prematurely. Furthermore, 

if parts of the population are characterised by very low fitness variance, proportionate 

selection may not be able to provide the selection pressure necessary to distinguish 

between individuals with slightly different fitness values. With finite population sizes, 

this can lead to individuals with different fitness values contributing the same number of 

samples in subsequent generations, essentially discarding all available relative fitness 

information for those individuals. 

Population ranking or rank selection is an alternative selection method whose purpose 

is to promote diversity and prevent premature convergence. It achieves this by ranking 

the individuals in the population according to fitness, and the selection probability pi of 

each individual depends on its rank rather than on its absolute fitness. In this approach, 

all absolute fitness information is totally discarded, while relative fitness information is 
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preserved. This has the effect of dynamically adapting the selection pressure according 
to the population fitness variance, since the ratio of expected samples of individuals 

ranked i and i +I will always be the same whether their absolute fitness differences are 
high or low. 

The population ranking algorithm used in this work was proposed by Baker (1985). In 
this algorithm, each one of the N individuals in the population is ranked in increasing 

order of fitness, from 1 to N. Individuals are then assigned new fitness values which 

are given by 

i-1 f =2-6p+2(6p-l) 
N-1 

(4.5) 

where it is assumed that the members of the population are ordered according to their 

absolute fitness, so that S1 is the least fit individual, SN is the fittest individual, and Si is 

of rank i. Furthermore, it is required that 

N 
]ýO and If =N 

i=1 

(4.6) 

It is easy to see that, given the above constraints, the fitness value f obtained from 

Eq. (4.5) is equivalent to the expected number of samples sl of individual i. The amount 

of selection pressure can be controlled by parameter up, where 1 
_< 6p _< 

2. When ßp =1 

there is no selection pressure, and each individual is expected to contribute precisely 

one sample to the next generation. When ßp =2 the selection pressure is at its maximum, 

and Si and SN are expected to contribute precisely 0 and 2 samples, respectively. It is 

observed that the expected number of samples any one individual contributes to the next 

generation is bounded in the interval [2 - ap, 6p] and it changes linearly with rank. This 

fitness assignment strategy has the advantage that it maintains a high fitness variance in 

the population, and at the same time prevents extremely fit individuals from dominating 

the population, since sl 5 ßp <_ 2 which means that no single individual is expected to 

contribute more than 2 samples in the next generation. Note that the average ranked 

fitness of the entire population always remains constant at unity, irrespective of the 

choice of ap. In cases where there are many individuals with the same absolute fitness 

values, their ranked fitness f is averaged over their multiplicity, so that they all have 
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the same reproductive potential while the global population fitness is kept constant. In 
Eq. (4.5), fitness values f change linearly with rank. Exponential and other non-linear 
functions can also be used, provided that they are strictly monotonic. 

4.4.3 Adaptive Fitness Sharing 

In conventional fitness sharing methods, such as the one proposed by Goldberg and 
Richardson (1987) and outlined in Section 4.3.1, parameter ßshare is problem-dependent 
and must be chosen carefully because it directly affects the density of the distribution of 
the members of the population. Deb and Goldberg (1989) have proposed formulae for 

computing the optimal value of ßshare, assuming that the number of niches is known, 

and that they are evenly distributed in the search space. However, in most optimisation 
problems, the validity of these assumptions cannot be guaranteed. The niche size, which 
directly affects the optimal value of ßshare, is rarely known a priori. Furthermore, even if 

a bare is chosen correctly for a given search landscape, the size, shape and location of the 

niches may change in cases where the search landscape changes during the course of a 
GA run. In such cases, ßshare must be adapted to its new optimal value while the genetic 

search progresses. In this section, a new fitness sharing method is proposed, in which 

the optimal value of ßshare is estimated as a function of N and n. The optimality of ashare 
is retained throughout the genetic search, by dynamically adapting the scaling of the 

search parameters using the information contained in the population at each generation. 

Let M denote the number of strictly optimal solutions that are contained in the current 

population of N individuals. Obviously M_<N and without loss of generality, assume 

that the members of the population are ordered in such a way that these M individuals 

appear first in the population. Therefore, {s1,... 
, SM }g 

-5 and { SM+1, ... , 
SN } ýS 

. 

Each solution in the population consists of n parameters. The entire population can, 

therefore, be expressed as the following Nx n matrix. 

T X= [XI 
X2 ... XN] (4.7) 

denotes the parameter vector for the i-th solution Si, and x1ý where xi _ [xii x, 2 """ xjT 

denotes the element in the i-th row andj-th column of X. Now consider . 
I, the n-cuboid 
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with the smallest n-volume that contains all of the M strictly optimal solutions. This 

hypercuboid can be thought of as a crude estimate of 2, and its size is given by the 
following vector. 

TT 

h= max x; l ... max x; n - 
[min 

x; l""" min x, n (4.8) 

An example of a two-dimensional hypercuboid (a right parallelogram) containing strictly 

optimal solutions is shown in Fig. 4.3. Set 2 is also shown for comparison. This 

example is taken from the PI controller tuning problem in Section 3.4 of Chapter 3. 
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Fig. 4.3 Example of a 2-cuboid (a right parallelogram) containing all 12 strictly 
optimal solutions in the current population of 30 individuals 

Hypercuboid .i can expand as new strictly optimal solutions are found, and can also 

contract in cases where previously identified strictly optimal solutions are no longer 

strictly optimal due to changes in the search landscape. It will later become apparent 

that this size adaptation property of the above hypercuboid is directly equivalent to the 

automatic adaptation of ashare in the proposed adaptive fitness sharing method. 
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The parameter vectors that correspond to the M strictly optimal solutions are then scaled 
using vector h, so that hypercuboid il is transformed into a unit hypercube. The scaled 
parameter vectors are given by 

T 
x, l xt2 xin 

xl= hh... h, 
i=1,... 

Im (4.9) 
12n 

where hl is the i-th element of h and denotes the size of the i-th edge of hypercuboid 
. 
1, 

and it is assumed that all elements of h are non-zero. This parameter vector scaling is 

necessary in order to obtain an acceptable visualisation of the shape of based on the 

currently identified M strictly optimal solutions. Under this scaling, the samples of -5 
are now contained in a unit n-cube instead of a n-cuboid, and hence they span the same 

amount of `space' in all n directions. Note that the above scaling normalises the aspect 

ratio of the parameters based on the currently identified shape of 25, and the scaling 

coefficients hl are adapted at each generation as new strictly optimal solutions are found 

and the estimate of the shape of _5 becomes more accurate. Since the shape of -5 is not 
known a priori, a mere normalisation of the search parameter ranges prior to the search 

run will not, in general, achieve the same result. Experimental results illustrating the 

importance of the above parameter scaling are presented in Section 4.5.6. 

After the M strictly optimal parameter vectors are appropriately scaled using Eq. (4.9), 

their fitness values are shared using Eq. (4.1). The shared fitness values f of these M 

individuals are thus given by 

fM 

1 Sf (Au) 
j=1 

f 
M 

ýsf(iix1-X; IIý) 
j=1 

i=1,, M (4.10) 

where f is the original fitness value of the i-th individual prior to fitness sharing. Any 

vector p-norm can be used as the distance metric L. The infinity norm was used in this 

work, because it facilitates the estimation of the optimal value of ßshare that is used in 

the sharing function Sf (see Fig. 4.2). A method for obtaining an estimate of the optimal 

value of ßshare, based on the infinity norm, is proposed in Section 4.4.5. The choice of 
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phenotypic sharing is based on the fact that the phenotype of a string is not affected by 
the type of encoding used in the formation of the string. This avoids any topological 
distortion introduced by the coding scheme. The advantages of phenotypic sharing have 
also been reported by Deb and Goldberg (1989), who compared it with genotypic 
sharing based on Hamming distance information. 

From Eq. (4.10) it is observed that fitness sharing is not applied to the entire population, 
but only to the M members of -5, whose shared fitness values may have now become 
lower than the fitness values of the remaining sub-optimal solutions. In order to ensure 
that strictly optimal solutions always have higher shared fitness values than sub-optimal 
ones, the remaining N-M sub-optimal individuals are assigned `shared' fitness values 
according to the following equation. 

=f fi=,..., (4.11) 
max ßj 

M+ N 

where 
M 

6T=zSf(llXi-Xj11.0)ý (4.12) 
j=1 

In the above equations, al denotes the sum of the shares the i-th strictly optimal solution 

receives. This quantity can be used as a measure of the population diversity in the 

phenotypic neighbourhood of string Si. This is discussed in Section 4.5.1. 

In the preceding discussion it was assumed that all elements of h are non-zero. If there 

are i zero elements in h, with i =1, ... , n, the corresponding hypercuboid ii is said to be 

rank-deficient, and its n-volume is zero. In such cases, the parameters that correspond to 

the i dimensions where the zeros occur are excluded from the sharing algorithm by 

removing the corresponding columns of X and treating the solutions as having n-i 

dimensions. If all n dimensions are deficient, such as in cases where there is only one 

distinct strictly optimal solution in the population, or when M= 0, then h= On and no 

fitness sharing is applied. Rank-deficient hypercuboids may transitionally arise in the 

beginning of the genetic search when M is small, but they quickly disappear as new 

distinct strictly optimal solutions are discovered. 
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The time complexity of the proposed fitness sharing method is 0(M), which is better 
than the 0(N2) of conventional fitness sharing since M is initially small and gradually 
approaches N. Note that the time taken to compute Olt for a string pair, using the infinity 

norm, is usually much smaller than the time taken for an objective function evaluation. 
Hence, the additional complexity of O(M) introduced by sharing is not likely to 
significantly slow down the genetic search. 

4.4.4 Sharing Functions 

Various sharing functions can be used with the proposed fitness sharing method. The 

most common ones are presented in this section. Goldberg and Richardson (1987) and 
Deb and Goldberg (1989) suggested a class of functions with the following properties. 

Sf (AU) E [0,1] 
, VA1 

Sf(0)=1 

lim Sf(Ajý)=0 
Aii -> 00 

(4.13) 

Many functions satisfy the above properties. Goldberg and Richardson (1987) and Deb 

and Goldberg (1989) proposed the following power law function. 

Ali a 

(4.14) Sf (Au) = 
0, 
- 

(ashare) 
' 

otherwise 

Ail < a,, 

Parameter a is the power factor, which determines the amount of convexity (a > 1) or 

concavity (c c< 1) of Sf. The linear, triangular sharing function shown in Fig. 4.2 is 

obtained by setting a= 1. Another sharing function which satisfies properties (4.13) and 

is based on the exponential function is shown below. 

R'; > ', Old < 6share (4.15) Sf(A 
ý, .. ) -0, 

exp 
(6Sha 

otherwise 

Sharing function (4.15) is always concave, and the amount of concavity is controlled by 

parameter ß, with ß >_ 0. A higher value of ß results in a more concave Sf. Several power 

law and exponential sharing function graphs are shown in Fig. 4.4 for ßshare =1. 
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Fig. 4.4 Power law and exponential fitness sharing functions 

Using the infinity norm as the distance metric Oll, an individual SI will share its fitness 

only with those individuals that are contained in the hypercube of edge size 26Sre and 

which has Si at its centre. Therefore, fitness sharing between two n-volume 2n6 moire 

individuals occurs only when their scaled distance Aid is less than as re. 
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4.4.5 Optimal Sharing Radius Calculation 

It was shown earlier that the proposed fitness sharing method penalises strictly optimal 
solutions that are in the same neighbourhood, as defined by the sharing function Sf and 
the sharing radius ashare. This extra pressure on these individuals causes them to move 
away from each other, since Sf decreases with distance and their shared fitness values 

will be higher if they are spread out. If ashare is sufficiently small, an equilibrium will 

eventually be reached, where there will be no two individuals whose scaled distance is 

less than 6share " If °share is chosen correctly, this lower bound on the distance between 

individuals can be maximised, resulting in a near-uniform distribution of the members 

of the population within -5. A method for the calculation of a suitable value for ashare is 

proposed in this section. 

Let C denote the unit hypercube containing the M scaled strictly optimal solutions. The 

optimal value of ßshare is defined as the maximum value of as/re for which there exists a 

set of N points within C, such that the distance between any two points is no less than 

ßshare " Note that the above optimality criterion creates enough room in C for the entire 

population of N individuals, to allow M to approach N as new solutions in are found. 

Fig. 4.5 shows C in one, two, and three dimensions. The optimal, uniform distribution 

of the N solutions, as well as the optimal value of ashare in each case, are also shown. 

6share=0.125 

ý- 
1 

n=1, N=9 

6share -2- 0.5 6share=0.5 
ý1 

Fig. 4.5 Unit hypercube C in one, two, and three dimensions 

n=3, N=27 n=2, N=9 
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Assuming that N is a power of n, it is observed from Fig. 4.5 that each one of the edges 

of C contains Ii equally spaced points which divide it into ,N -1 line segments, each 

of length ßshare. The length of each one of the edges of C is VTC, where VC denotes the 

n-volume of C. The optimal value of ashare is thus given by 

6share 
n 

-1 
(4.16) 

where the approximate equality becomes an equality when N is a power of n. Let 2h 

denote the set -S when transformed using scaling (4.9). The value of ßshare obtained 

from Eq. (4.16) will be optimal only when C= Thh. In general, however, C :F TSh and 

hence, the n-volume of ý5h may be different than that of C. A more accurate estimate of 

the optimal value of ßshare may thus be obtained using the following equation. 

ßshare VN--- 1 -1 

(4.17) 

where b is the n-volume ratio between -5h and C. The dependency on Vf is dropped, 

since C is a unit hypercube and V =1. Hence, parameter b should be chosen as close as 

possible to the n-volume of TSh. Recommended values for b are given in Table 4.1 for 

different values of n, assuming that 5h is the n-sphere with the largest n-volume that 

can be placed inside C. Notice that b decreases with increasing n, which indicates that 

volume mismatches between-5 hand C can affect the accuracy of (4.17) for large n. 

TART F 4.1 Recommended values for parameter b in Eq. (4.17), for different values of n 

n b n b 

1 1 1.0000 6 384 7C3 0.6574 

2 4 7Z 0.8862 7 840 n3 0.6242 

3 
6 7t 0.8060 8 

6144 ý4 0.5957 

4 
32 ? t2 0.7452 9 15120 7C 4 0.5709 

5 
1 it2 0.6970 10 8o n 122s 

5 0.5491 
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Note that the recommended values for b shown in Table 4.1 should not be treated as 
universally optimal, as they are based on the assumption that ýSh is spherical in shape. 

4.5 Experimental Analysis 

In this section, the proposed fitness sharing method described earlier is experimentally 
analysed, in order to demonstrate its effectiveness and illustrate its adaptive properties. 
The experimental setup consists of the following closed-loop system. 

Set point Error Input Output 
r(t) + e(t) u(t) Y(t) PI controller, D(s) Process, G(s) 

Fig. 4.6 Experimental setup for the analysis of adaptive fitness sharing 

This system is based on the experimental setup of Section 3.4 in Chapter 3. The transfer 
functions of the process and controller have the following structure. 

G(s) =K e-SL and D(s) = Kp + 
K` 

Ts +ls 
(4.18) 

The process parameters were set to be K= 0.5, T =10 sec, and L=3 sec, but K was 

allowed to change in certain cases, in order to demonstrate the adaptive properties of the 

proposed fitness sharing method. The controller performance specifications were the 

ones shown in Fig. 3.5, namely a peak overshoot of at most 20% and a 5% settling time 

of at most 25 sec. 

A genetic algorithm was used to find optimal values for the controller parameters Kp 

and KI, with a generation gap g=0.9, reproduction with stochastic universal sampling 

(Baker, 1987), single-point crossover, and fitness-based reinsertion to implement an 

elitist strategy. The size of the population was chosen to be N= 80, in accordance with 

experimental studies of Grefenstette (1986). The initial, randomly selected population 
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was left to evolve for a maximum of 100 generations. The two tuning parameters were 
encoded using the binary alphabet and Gray coding (Caruana and Schaffer, 1988). The 

string resolution for each of the two parameters was set to 12 bits, resulting in a total 

string length of 1= 2x 12 = 24 bits. The crossover and mutation probabilities were chosen 
to be p, = 0.45 and pn = 0.01, respectively, using the guidelines of Grefenstette (1986). In 

certain cases, however, the mutation operator was disabled by setting pm = 0. This 

enables the assessment of the true capabilities of the proposed fitness sharing method, 

since no arbitrary diversity is introduced through mutation. If appropriate diversity can 
be maintained without mutation, similar or better performance should be expected when 

mutation is present (Goldberg and Richardson, 1987). The proportional terms Kp were 

assumed to take values from the interval [0,12], and the integral terms K; from the 

interval [0,2] sec 1. 

The parameters for fitness sharing were set as follows. Function (4.14) was used as the 

sharing function Sf in Eq. (4.10), with a power factor a=1, which is equivalent to the 

triangular sharing function used in Goldberg and Richardson (1987). The value of the 

sharing radius 6Share was computed using Eq. (4.17), as shown below. 

_ 
4-7c 

_ 6share --0.1116 (4.19) 
-1 80 -1 

where n =2, and b is taken from Table 4.1. Whenever population ranking was applied, 

the selection pressure in Eq. (4.5) was chosen to be at its maximum value of ßp =2. 

4.5.1 Population Diversity Measure 

In order to quantify the performance of the proposed fitness sharing method, a measure 

of population diversity is proposed in this section. It is based on the sum of shares ßl 

each individual receives, computed using Eq. (4.12). Formally, the degree of diversity 

or uniformity of a given set of M samples of JS that are contained in i/ is defined as 

M 

U: =1- `=1 =1- M(M-1) 

MM 

Sf(IIXi-X, IIo) 
1=i j=l 

jai 
M(M-1) 

(4.20) 
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It is easy to see that U is always bounded in the closed interval [0,11 provided that Sf 

satisfies properties (4.13). Assuming ashare is at its optimal value and that M> 1, when 

the diversity of the M samples of 2 is at its maximum, there exist no two individuals in 

b whose scaled distance A is less than ßshare. Hence, it follows directly from (4.14) 

and (4.15) that Sf (A') =0 when i #j. In this case, U attains its maximum value of 1, 

indicating maximum diversity. On the other hand, when the diversity of the M samples 

of ýS is at its minimum, all M individuals are identical and thus correspond to a single 

point in -5. Hence, Sf (Au) =1 for any solution pair since A=0 for all i and j. Therefore, 

o 1=M for all i, and the inner summation in Eq. (4.20) contributes exactly M- 1 shares 

for every one of the M individuals. In this case, U attains its minimum value of zero, 
indicating minimum diversity. Note that the accuracy of diversity measure U depends 

on the optimality of ßshare . 

Since no information about set -5 is used in Eq. (4.20), diversity measure U can only 

quantify the degree of uniformity of the M solutions within hypercuboid JI whose size 

is defined by vector h. This hypercuboid does not necessarily contain the entire set -5, 

and hence, its n-volume may be very small if -5 
is not sampled adequately. Therefore, if 

the M solutions are near-uniformly distributed within . 
4, the value of U will approach 

unity (indicating good performance), although ii may only occupy a very small region 

in -5. This problem can be overcome by considering the hypercuboid with the smallest 

n-volume that contains the entire set -5. The size of this hypercuboid is given by the 

following vector. 

TT 

zl """ min Zn z= ýz1 """ zn E (4.21) 
- min 

Z 
hm = max zl """ mZ ax Zn 

Z 

Vectors h and hm. can be used to obtain an estimate of the amount of n-volume of -5 

that is spanned by the M solutions. This estimate can be used to correct the value of U, 

resulting in the following, more accurate diversity measure. 

n 
flh, 

Uo =U ni=l 
(4.22) 

hmax, 

i=1 
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where h,, ,,,,, i is the i-th element of h,.,,,,, and the numerator and denominator of the ratio 
in Eq. (4.22) are the n-volumes of the hypercuboids of size h and hm, respectively. It is 
easy to see that this ratio is always positive and cannot exceed unity. Therefore, Uo is 
always bounded in the closed interval [0, I], with Uo =1 indicating maximum diversity 

over the entire set -5, and Uo =0 indicating minimum diversity. 

Note that set -5 must be known a priori, in order to compute Uo. But knowing -S means 
that the optimisation problem has already been solved. Therefore, Uo can only be used 
for the evaluation of methods under test problems for which Th is already known, such 
as the PI controller tuning problem shown in Fig. 4.6. In cases where diversity must be 

assessed without prior knowledge of 2, diversity measure U may be used. 

4.5.2 Fitness Assignment Configurations 

In order to evaluate the performance of adaptive fitness sharing and its combination 

with population ranking, six different fitness assignment configurations were considered 
in this work. Their flow charts are shown in Fig. 4.7. 

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5 Configuration 6 

StartStart StartStartStartStart 

Proportionate Proportionate Proportionate Proportionate Proportionate Proportionate 
Fitness Fitness Fitness Fitness Fitness Fitness 

Assignment Assignment Assignment Assignment Assignment Assignment 

Population Population Adaptive Fitness Population Adaptive Fitness F-- Ranking Sharing Ranking Sharing Ranking 

Adaptive Fitness Population Adaptive Fitness 
Sharing Ranking Sharing 

I Population 
Ranking 

End i( End )( End )( End )( End )( End 

Fig. 4.7 Flow charts of the six fitness assignment configurations 

Configuration 1 corresponds to a conventional, simple GA with proportionate fitness 

assignment, while configurations 2 to 6 also include population ranking, adaptive fitness 

sharing, and various combinations of the two. 
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4.5.3 Simulation Results - No Mutation 

Fig. 4.8 shows the set of M solutions in 2, obtained by the GA at generation 100, using 
fitness assignment configuration 1 without mutation. It is observed that the distribution 

of solutions is far from uniform, and that there are large regions in -S which are not 
sampled at all by the GA. This was expected, since no population ranking or adaptive 
fitness sharing is applied in this configuration. 

Configuration 1 without mutation - Generation 100 
U0=O. 1254 U=0.8295 M=80 
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Fig. 4.8 Map of strictly optimal solutions obtained at generation 100 using 
fitness assignment configuration 1 without mutation 

0.5 

The inadequate sampling of 2 is also indicated by the size of parallelogram ii, whose 

area is much smaller than that of -S. Quantitatively, Uo = 0.1254, which is very close to 

zero, indicating poor performance. In contrast to that, U= 0.8295, which is much higher 

than the value of Uo. This is because U quantifies the degree of diversity only within ii, 

since no information about 2 is used in the calculation of U. 
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Configuration 2 without mutation - Generation 100 
Uo=0.3189 U=0.8171 M=75 
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Fig. 4.9 Map of strictly optimal solutions obtained at generation 100 using 
fitness assignment configuration 2 without mutation 
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Fig. 4.9 shows the set of M solutions in 2, obtained by the GA at generation 100, using 
fitness assignment configuration 2 without mutation. In this case, population ranking is 

applied to the N solutions in the population. Similarly to Fig. 4.8, it is observed that the 

distribution of solutions is not uniform, and that -5 is not adequately sampled. The 

reason for this lack of improvement is because all M solutions in 2 have precisely the 

same objective function value of zero. Therefore, their reproductive potential relative to 

each other cannot be affected by population ranking. This clearly means that population 

ranking alone cannot improve the diversity of the M strictly optimal solutions. However, 

the diversity of the entire population of N solutions can be improved, especially in the 

initial stages of the GA run, where not many strictly optimal solutions have been found 

and M« N. For this reason, it is generally beneficial to employ population ranking in 

the fitness assignment strategy, but it is clear from Fig. 4.9 that other methods must also 

be employed, in order to achieve an acceptable degree of sample diversity within . In 
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this experiment, Uo = 0.3189, which indicates an overall improvement, but U=0.8171, 

which is slightly smaller than that of the previous experiment. 

Fig. 4.10 shows the set of M solutions in 3, obtained by the GA at generation 100, 

using fitness assignment configuration 3 without mutation. In this case, the proposed 

method of adaptive fitness sharing is applied to the M strictly optimal solutions in 
. 
i. It 

is clearly observed that there is a vast improvement in performance. The distribution of 

the M solutions in 
.4 

is now almost uniform, and most of the area of -S is adequately 

sampled, as predicted by the theoretical development in Section 4.4. It is also observed 

that .4 now resembles -S more closely. Note that some deviations from uniformity are 

inevitable because of the highly disruptive nature of the crossover operator, which may 

generate offspring that are strictly optimal, but do not necessarily preserve uniformity. 

In this experiment, Uo = 0.6683, which indicates a significant performance improvement, 

and also U= 0.9774, which indicates very good uniformity within -4. 

Configuration 3 without mutation - Generation 100 
U0=O. 6683 U=0.9774 M=74 
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Fig. 4.10 Map of strictly optimal solutions obtained at generation 100 using 
fitness assignment configuration 3 without mutation 
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Fig. 4.11 shows the set of M solutions in ., obtained by the GA at generation 100, 
using fitness assignment configuration 4 without mutation. In this case, population 
ranking is firstly applied to the N solutions in the entire population, and then adaptive 
fitness sharing is applied to the M strictly optimal solutions in 

. 
4. This configuration is 

called adaptive fitness sharing with pre-ranking. 

Configuration 4 without mutation - Generation 100 
Uo=0.5949 U=0.9806 M=77 
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Fig. 4.11 Map of strictly optimal solutions obtained at generation 100 using 
fitness assignment configuration 4 without mutation 

It is observed that the performance of adaptive fitness sharing with pre-ranking is very 

similar to that of adaptive fitness sharing alone, shown in Fig 4.10. This indicates that 

pre-ranking does not affect the performance of adaptive fitness sharing. Pre-ranking 

can, therefore, be used to improve the exploration ability of the GA in the initial stages 

of the search run, without disrupting the distribution of the M solutions in TS achieved 

by adaptive fitness sharing. In this experiment, U00.5949 and U=0.9806, which are 

similar to those obtained using adaptive fitness sharing alone. 
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Fig. 4.12 shows the set of M solutions in 
-5, obtained by the GA at generation 100, 

using fitness assignment configuration 5 without mutation. In this case, adaptive fitness 

sharing is firstly applied to the M strictly optimal solutions in 
. 
4, and then population 

ranking is applied to the N solutions in the entire population. This configuration is 

called adaptive fitness sharing with post-ranking. Finally, Fig. 4.13 shows the set of M 

solutions in -5, obtained by the GA at generation 100, using fitness assignment 

configuration 6 without mutation. In this case, population ranking is applied to the N 

solutions in the entire population before and after the application of adaptive fitness 

sharing to the M strictly optimal solutions in _. This configuration is called adaptive 
fitness sharing with full ranking. Note that, in both cases, the fitness values of the M 

strictly optimal solutions may now be different, due to the effect of adaptive fitness 

sharing. Therefore, post-ranking can affect their distribution in 
. 
J. It is observed that 

both configurations achieve very good results. For configuration 5, U0=O. 5174 and 

U= 0.9827, and for configuration 6, Uo = 0.5723 and U= 0.9816. 

Configuration 5 without mutation - Generation 100 
Uo=0.5174 U=0.9827 M=73 
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Fig. 4.12 Map of strictly optimal solutions obtained at generation 100 using 
fitness assignment configuration 5 without mutation 
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Configuration 6 without mutation - Generation 100 
Uo=0.5723 U=0.9816 M=78 
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Fig. 4.13 Map of strictly optimal solutions obtained at generation 100 using 
fitness assignment configuration 6 without mutation 

4.5.4 Simulation Results - Effects of Mutation 

In order to illustrate the effects of mutation on the distribution of the M solutions in T5, 

all experiments in Section 4.5.3 were repeated with the only difference that the mutation 

operator was included in the GA. Figures 4.14 to 4.16 show the obtained results for all 

six fitness assignment configurations. 

It is observed that mutation slightly improves the performance of most of the different 

fitness assignment strategies considered. Similarly to the results without mutation, the 

best performance is achieved in configurations 3 to 6, where adaptive fitness sharing is 

applied. It is also clearly observed from Fig. 4.14 that the arbitrary diversity introduced 

by mutation is not sufficient for achieving an acceptable degree of solution diversity in 

cases where adaptive fitness sharing is not applied, such as configurations 1 and 2. This 

clearly demonstrates the effectiveness of the proposed diversification method. 
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Configuration I with mutation - Generation 100 
L/=O. 3462 U=0.6368 M=45 
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Configuration 2 with mutation - Generation 100 
U0=O. 4421 U=0.9157 M=70 
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Fig. 4.14 Effects of mutation on the performance of configurations 1 and 2 
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Configuration 3 with mutation - Generation 100 
U0=O. 6247 U=0.9788 M=69 
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Configuration 4 with mutation - Generation 100 
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Fig. 4.15 Effects of mutation on the performance of configurations 3 and 4 
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Configuration 5 with mutation - Generation 100 
U0=O. 6624 U=0.9754 M=69 

6 

5.5 

5 

Q 
Y 4.5 
E 
a) 

4 

0 
0 3.5 
a 
0 
OL 

3 

2.5 

2 

------- --- ---------------- 
" jjI 

"" "t " 
"" 

""I 

4""" "" " 

0 00 

I"I 
"" 

" 
ý" 

"# 
I 

I""I 
I"" 

------------------------- 
-I 

0.2 0.25 0.3 0.35 0.4 0.45 
Integral term, K; (sec-1) 

0.5 

Configuration 6 with mutation - Generation 100 
Ua=0.6936 U=0.9829 M=70 
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Fig. 4.16 Effects of mutation on the performance of configurations 5 and 6 
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Strictly optimal solution diversity at generation 100 based on measure Uo 

4.5.5 Simulation Results - Statistical Tests 

In the experiments discussed in the previous sections, all search runs were started using 
the same randomly generated initial population, and the random number generator seeds 
were always reset prior to each experiment. This was done in order to obtain more 
reliable comparison results. However, the presence of random elements in the generic 
operators of the GA reduces the degree of confidence in the obtained results. In order to 

obtain statistically significant results, the set of all twelve experiments was repeated 100 

times, with a different randomly generated initial population in each set. The obtained 

results in terms of diversity measures Uo and U are shown in Fig. 4.17 below. 
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Fig. 4.17 Simulation results in terms of diversity measures Uo and U (averaged over 100 runs) 

It is observed that the proposed adaptive fitness sharing method (configurations 3 to 6) 

consistently outperforms both the simple GA (configuration 1) and population ranking 

alone (configuration 2), in terms of both Uo and U. In terms of diversity measure Uo, the 
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observed performance improvement using mutation is because of the dependence of Uo 
on the size of il. This can result in higher values of Uo whenever mutation generates 

new solutions in 
-5 that result in an increase in the size of ,, even if these solutions 

actually disrupt the uniformity in J4. On the other hand, the value of diversity measure 
U does not depend on the size of -4. Hence, U quantifies the degree of uniformity of the 

solutions within -4, 
irrespective of its size relative to that of TS. In terms of diversity 

measure U, it is observed that adaptive fitness sharing achieves near-perfect results that 

are virtually unaffected by mutation. As expected, the degree of diversity achieved by 

the simple GA and population ranking alone is improved by mutation, but is still not 
sufficiently high, as illustrated in Figures 4.14 to 4.16. 

The simulation results in terms of the number of strictly optimal solutions, M, contained 
in the population at generation 100, are shown in Fig. 4.18 below. It is observed that the 

simple GA is greatly affected by mutation, whereas all other methods maintain most of 

the population inside -S even in the presence of mutation. It is also observed that the 

combinations of population ranking with adaptive fitness sharing achieve slightly higher 

values of M than adaptive fitness sharing alone. 

Number of identified strictly optimal solutions Mat generation 100 
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Fig. 4.18 Number of identified strictly optimal solutions M (averaged over 100 runs) 

Assuming that no knowledge about the search landscape is known a priori, the initial 

population used in the beginning of a GA run is usually chosen at random. Therefore, in 

general, the performance of a given method is expected to change under different initial 

populations. Methods that are reasonably insensitive to changes in the initial conditions 
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are said to be robust. Robustness is a characteristic of fundamental importance in the 

assessment of methods containing random processes, such as GA-based methods. High 

robustness ensures a high degree of repeatability and increases the degree of confidence 
in the obtained results. In the case of the six fitness assignment configurations tested in 

this work, robustness can be assessed by examining the variances of the different results 

obtained from the 100 sets of experiments. These are shown in Fig. 4.19 below. 
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Fig. 4.19 Variances of Uo, U, and M, obtained from the 100 sets of experiments 
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In terms of U0, it is observed that when no mutation is applied, adaptive fitness sharing 
alone (configuration 3) has the highest robustness, since it has the lowest variance of all 
six configurations. Mutation is shown to improve the robustness of all configurations, 
with the ones associated with adaptive fitness sharing having the highest robustness. In 
terms of U, it is observed that all four adaptive fitness sharing variants have excellent 
robustness that is almost unaffected by the absence of mutation, achieving virtually zero 
variance in all cases. Mutation is again shown to improve robustness, especially that of 
the simple GA and population ranking alone. 

In terms of M, it is observed that population ranking alone, as well as all adaptive fitness 

sharing variants, are significantly more robust than the simple GA. Note that, contrary 
to the previous observations for Uo and U, mutation is shown to reduce the robustness 

of all configurations in terms of M. This is because of the disruptive nature of the 

mutation operator which can easily destroy strictly optimal solutions, by moving them 

away from in an unpredictable way. It is, therefore, concluded that mutation can help 

improve performance as well as robustness in terms of solution diversity, but too high a 

value of pn can result in reduced performance as well as robustness in terms of the 

number of samples of 2, as also illustrated in Fig. 4.18. 

4.5.6 Effects of Parameter Scaling 

Adaptive fitness sharing has been designed in order to distribute the GA population in 

such a way that an acceptable visualisation of the shape of 2 is obtained, based on the 

currently identified M strictly optimal solutions. This is achieved by parameter vector 

scaling (4.9), which is at the heart of the proposed fitness sharing method. In order to 

demonstrate the importance of this scaling, adaptive fitness sharing was applied with no 

scaling on the parameter vectors. This is equivalent to setting h=[11]'. The obtained 

results are shown in Fig. 4.20. The initial state of the population was kept the same as in 

all previous experiments, in order to obtain more reliable comparison results. 

It is clearly observed that the distribution of the M solutions in 2 is inferior to that 

obtained when parameter scaling is present (Fig. 4.12). This is because of the uneven 

effect of fitness sharing in the horizontal and vertical directions, caused by the lack of 
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scaling. This can be better understood by considering the parallelogram marked ® in 

Fig. 4.20. Solutions in 
-5 that are all contained in the interior of a single parallelogram 

of this size will share their fitness values. It is observed that the aspect ratio of this 

parallelogram is significantly different from that of II. In the horizontal direction, 

sharing penalises individuals that are considerably distant with respect to the size of 5. 

Conversely, in the vertical direction, individuals that are very close to each other are not 

penalised at all. It can be seen that this causes the M solutions to cluster around specific 

regions, forming vertical `columns' of distance ashare. The location of these regions is 

unpredictable and is affected by the initial state of the population. It should be stressed 

here that a mere scaling of the parameter vectors with respect to the size of the search 

space will not, in general, achieve acceptable results. It is the size of -, 
/, given in h, that 

must be used to scale the parameters, because the aspect ratio of .I can be considerably 

different from that of the entire search space. Scaling the parameters using h also gives 

the proposed method its adaptive properties, as demonstrated in the following section. 

Configuration 5 without mutation - Generation 100 
No parameter scaling is applied (h=[1 1]T) 
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4.5.7 Adaptation of the Population Density 

Adaptive fitness sharing has been designed in order to achieve a population distribution 

density that is kept constant relative to the size of Z). This means that in cases where the 

size of -5 changes during the course of a GA run, the density of the population also 

changes accordingly. The sharing radius ßshare itself does not change, but its optimality 
is maintained by dynamically changing the scaling of the parameter vectors. In order to 
demonstrate this, an experiment was performed in which the gain K of process G(s) in 

Fig. 4.6 was changed during the course of the GA run. At generation 50, K was changed 
from its original value of K1= 0.5 to its new value of K2 =1.2. This modifies the search 

landscape and causes -5 to change. Let -51 denote set 2S when K=K1, and Th2 denote 

set 2 when K=K2 
. 
The gain change causes 2 to retain its shape, but shrink in size by 

the ratio Kl /K2. Its location also changes, so that -51 and T2 are disjoint sets. The 

obtained results at generations 50 and 100 are shown in Fig. 4.21 below. 

Configuration 4 with mutation - Generations 50 and 100 
Process gain changes at generation 50 from K= 0.5 to K= 1.2 
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It is observed that the distribution of solutions in Th1 at generation 50 is near-uniform, as 
indicated by diversity measures Uo and U. The parallelogram marked ® that is located 

inside i/i indicates the size of the spatial neighbourhood where fitness sharing occurs. 
Because of scaling (4.9), the size of this parallelogram is given by vector hßshare, and its 

aspect ratio is thus the same as that of J/1. At generation 50, most of the N individuals 

have successfully converged inside X51 as indicated by the value of M. After the process 

gain change at generation 50, these M individuals are no longer strictly optimal, and the 

population is expected to move away from 21 and converge in X52. This is precisely 

what was observed. As can be seen in Fig. 4.21, at generation 100 the majority of the 

population has successfully converged inside T52, and has a near-uniform distribution as 

indicated by the new values of Uo and U. Notice that, although the value of ßshare was 

never changed during the entire GA run, the population at generation 100 has adapted to 

the required higher density, since the size of 22 is smaller than that of 21. 

Solution diversity Uo and solution count M generation histories 
Process gain changes at generation 50 from K= 0.5 to K=1.2 
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Fig. 4.22 shows the generation time histories of Uo and M throughout the entire GA run. 
In the beginning of the search run, it is observed that the sample diversity as well as the 

number of samples of 21 rapidly increase in a few generations. When the process gain 

change occurs at generation 50, solution count M drops to zero and stays there for a few 

generations. This is because the M solutions in 21 do not belong to X52 and hence they 

are no longer strictly optimal. After a number of generations, both Uo and M increase 

and reach similar levels to those prior to the gain change. 

An interesting observation is that both U0 and M increase much faster in the beginning 

of the GA run, than after the gain change occurs. This is because the population in the 
beginning of the GA run was chosen at random, and hence, the GA was very rich in 

genetic material to guide the search towards 21. On the other hand, immediately after 

the gain change, 67 of the total 80 individuals in the population were all located in the 

region occupied by set lb I, which is only a small subset of the entire search space. This 

limits the amount of genetic material in the population, and inevitably slows down 

convergence. The presence of mutation in such cases can play an important role, by 

introducing new genetic material that cannot be generated by crossover alone. Based on 

the above justifications, it may be beneficial to slightly increase the mutation probability 

pm in cases where large changes in the search landscape are expected. Furthermore, it 

may be beneficial to monitor M at each generation and either modify pm as required, or 

randomly re-initialise a proportion of the population whenever the value of M becomes 

very low or zero. 

4.5.8 Simulation Results in the Time Domain 

The time-domain responses of the strictly optimal solutions obtained using a simple GA 

and adaptive fitness sharing with full ranking are shown in Fig. 4.23. These results were 

obtained with the mutation operator present, and thus correspond to the maps shown in 

Fig. 4.14 (top) and Fig. 4.16 (bottom), respectively. As expected, it is observed that the 

degree of uniformity in -5 
is reflected in the spread of the time-domain responses inside 

the performance specification envelope. Adaptive fitness sharing clearly achieves better 

results, with responses having peak overshoots ranging from 0% up to the maximum 

requirement of 20%, and settling times of at most 25 sec, as required. 
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In this chapter, a new method called adaptive fitness sharing was proposed, whose 

purpose is to enable a GA to locate multiple equivalent optimal solutions and distribute 

the members of the population uniformly within the optimal solution set. The proposed 

method is based on the techniques of niche formation and speciation, and is applicable 

e Optimal Solutions Using Genetic Algorithms 

to the optimisation of search landscapes which contain an infinite number of equivalent 
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optimal solutions which share a unique objective function value that is known a priori. 
The proposed method can thus be used for the optimisation of objective functions JS and 
JM, developed earlier in this work. Formulae were derived for the estimation of the 

optimal value of the sharing radius ashare involved in the fitness sharing algorithm. The 

optimality of ashare is maintained during the course of the search run, by dynamically 

modifying the scaling of the parameter vectors. This was shown to be equivalent to the 

automatic adaptation of ashare. The proposed method can thus be used in cases where the 

search landscape changes during the course of a search run. The time complexity of the 

proposed method was shown to be better that that of conventional fitness sharing. The 

computation time required to apply adaptive fitness sharing is usually much less than 

that of an objective function evaluation. Hence, the proposed method is not likely to 

significantly slow down the GA, and its application is simple and straightforward. 

The effectiveness of adaptive fitness sharing was supported by extensive simulation 

results, and two population diversity measures were developed in order to quantify the 

obtained results. It was experimentally shown that adaptive fitness sharing, and all its 

combinations with the technique of population ranking, consistently outperformed the 

simple GA and population ranking alone. The performance and robustness of the 

proposed method was further investigated by performing a set of statistical tests, where 

it was shown that adaptive fitness sharing always outperformed all other methods, in 

terms of both performance (higher degree of achieved uniformity) and robustness (less 

sensitivity to initial conditions). Finally, the adaptive properties of the proposed method 

were demonstrated by modifying the search landscape during the course of a single GA 

run. It was clearly shown that adaptive fitness sharing successfully adapted the density 

of the population as required, while maintaining a high degree of uniformity throughout 

the search run. 
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5 Decentralised PI Controller Tuning for 
Multivariable Processes -A Genetic 
Approach 

5.1 Introduction 

In this chapter, a new method for the automatic tuning of decentralised PI controllers for 

multivariable processes is proposed, based on genetic algorithms. The major advantage 

of the proposed method is that it gives the designer the freedom to explicitly specify the 

required performance specifications for a given multivariable control problem, in terms 

of time-domain bounds on the closed-loop responses. This is achieved by transforming 

the control problem into a function optimisation problem, using objective function JM 

developed in Chapter 3. A genetic algorithm is then employed for the minimisation of 

JM, and the method of adaptive fitness sharing developed in Chapter 4 is used, in order 

to maximise the diversity of the obtained family of solutions. The proposed method has 

the flexibility to be applicable to a wide range of multivariable processes. Simulation 

results are presented to illustrate the effectiveness of the proposed method. The obtained 

results are shown to be superior than those obtained using the relay feedback technique. 

The choice of genetic algorithms as a suitable optimisation method is supported by 

statistically comparing them with two conventional optimisation methods. 

5.2 Limitations of Existing PI/PID Tuning Methods 

Although methods exist for the automatic tuning of PI and PID controllers for certain 

classes of multivariable processes (Aström and Hägglund, 1995; Loh, Tan, and Vasnani, 

1994; Halevi, Palmor, and Efrati, 1997; Palmor, Halevi, and Krasney, 1995; Semino and 

Scali, 1998; Zhuang and Atherton, 1994; Hang, Loh, and Vasnani, 1994), many of these 

methods make certain assumptions about the nature of the controlled process, such as 
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size (number or input/output pairs), linearity, weak interactions within the process, 
absence of noise, and others. A literature search did not reveal a generic, multi-loop PI 

or PID tuning method that enables a range of different and arbitrary specifications for 

each loop and between loops, to be defined in the context of an interacting multivariable 

process. If the controlled process is linear and a simple mathematical model exists or 
can be derived easily, then it may be possible to derive analytical methods for the tuning 

of the controllers. However, in the real world, processes are usually non-linear and very 

complex, and the resulting models are often too complex to be useful in an analytical 
framework. 

A number of successful PI and PID tuning methods for multivariable processes have 

been proposed by Loh, Tan, and Vasnani (1994), Halevi, Palmor, and Efrati (1997), and 
Semino and Scali (1998), in which the relay feedback technique developed by Aström 

and Hägglund (1984) is employed. These methods appear to work well, but have the 

disadvantage that not all classes of multivariable processes can exhibit sustained and 

near-sinusoidal oscillations under multi-loop relay feedback. Therefore, these methods 

are only applicable to certain classes of multivariable processes. Furthermore, in Loh, 

Tan, and Vasnani (1994), the relay switching levels have to be modified manually, in 

order to bring the process to a certain mode of oscillations that is necessary for the 

method to be successfully applied. As the size of the multivariable process increases, 

this task may become extremely difficult. Another important limitation, as with most 

existing multi-loop PI/PID tuning methods, is that they employ tuning rules such as 

those proposed by Ziegler and Nichols (1942), which were originally developed for use 

with SISO systems and correspond to a fixed set of performance specifications. It will 

be shown in the following sections that the proposed PI tuning method inherently and 

completely overcomes these limitations. 

5.3 The Proposed Decentralised PI Controller Tuning Method 

In this section, a new method is proposed for the tuning of decentralised, multi-loop PI 

controllers. The tuning problem is transformed into a function optimisation problem by 

means of objective function JM developed in Chapter 3, with JM having 2q parameters, 

where q is the number of PI loops in the closed-loop, multivariable system. The highly 

non-linear and multimodal nature of JM, and the lack of derivatives, mainly due to noise 
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and other uncertain elements that may be present in the closed-loop system, motivates 
the use of GAs in this optimisation problem. The ability of JM to deliver a family of 
strictly optimal solutions is exploited, by using the method of adaptive fitness sharing 
developed in Chapter 4. The resulting PI tuning method, with the numerical robustness 

and global optimisation ability of GAs, is expected to overcome limitations of empirical 

methods based on tuning rules such as those proposed by Ziegler and Nichols (1942). A 

major advantage of the proposed GA-based tuning method is that the optimality criteria 

can be explicitly and accurately specified by the designer in the time domain, in terms 

of the desired transient responses of all closed-loop system outputs under different, 

user-defined set point patterns, including loop coupling specifications. This makes the 

method directly applicable to many complex multivariable control problems. 
Furthermore, although only decentralised PI controllers are considered in this work, the 

generality and open architecture of the proposed method makes it suitable for the 

automatic tuning of different parametric controllers, both linear and non-linear, and not 

just PI controllers. This is because the proposed method only requires the numerical 

solutions of the differential equations associated with the closed-loop system, which can 

easily be obtained using most standard control system simulation packages. 

5.3.1 Decentralised PI Control of Multivariable Processes 

In aqxq multivariable process, a typical decentralised PI controller structure would be 

one in which q PI controllers would be used in the q loops associated with the process, 

as shown in Fig. 5.1. 

Fig. 5.1 Typical decentralised PI controller structure 
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The pairing of controlled variables y; with manipulated variables uj can be performed by 

examining the process's relative gain array, either in the steady state (Bristol, 1966), or 
within the desired closed-loop bandwidth. The PI controllers considered in this work are 
continuous-time, arranged in the standard decentralised structure shown below. 

D1(s) 0 

D(S) 
0 DZ(S) 

00 

ýýý 0 

... Dq (s)j 

(5.1) 

The elements in the diagonal of controller transfer function matrix D(s) are single-input, 

single-output PI controllers of the following standard form. 

Di (s) = Kp 
(i+ 1 

i=1,..., q TJs 
(5.2) 

where KPr 
. and Tr denote the proportional gain and integral time, respectively, of the PI 

controller in loop i. The interactions within the process cause the output of the controller 

in loop i to appear as a disturbance in all other loops. Hence, the i-th PI controller must 

be designed such that the desired set point tracking performance for loop i is achieved, 

while the disturbances caused by the PI controller outputs of the remaining q- I loops 

are rejected. This makes the PI tuning problem difficult, and conventional PI tuning 

rules such as those proposed by Ziegler and Nichols (1942) which have been designed 

for SISO systems may not, in general, achieve acceptable results. The proposed tuning 

method, however, is inherently capable of treating interacting multivariable processes. 

This is experimentally demonstrated later in this chapter. 

5.3.2 Optimisation Problem Formulation 

The proposed PI tuning method works by minimising objective function JM, which is a 

function of the PI controller parameters associated with the tuning problem. Hence, the 

set 2 of all permissible PI controller transfer function matrices D(s), is simply a vector 

of the 2q tuneable parameters, as shown below. 

2S = 
JrKp1... Kpq T1 ... T91 E R2q} (5.3) 

LJ 
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In this context, objective function JM can be used in its original form, and can thus be 
expressed as shown below. 

JM(Kp,..., KPq, Tl,..., Tql = max w1. J,.. (5.4) 

where 

tm 
« 

. Iy (Kp,..., KPq, TI,... 
ýT9) = 

(max{j')(t)0 

no (5.5) 

+ max {yl (t) -f 
(u) (t), 0 }) dt 

It is observed that only the process outputs yl,... , y9 are considered in the minimisation. 
In certain cases, it may be desirable or necessary to also consider the process inputs (the 
controller outputs) u1, ... , uq, as well as their rates of change This is common 

practice in objective functions employed in predictive control algorithms (Garcia, Prett, 

and Morari, 1989; Clarke and Mohtadi, 1989), where control weights are used to limit 
the activity of the manipulated variables. This can also be incorporated in the proposed 
method as an additional term in J, or JM. Depending on how this is done, the inclusion 

of additional terms in the objective function may alter certain desirable properties of JM, 

such as the existence of strictly optimal solutions. This is discussed in Chapter 6. In the 

present chapter, JM and J, ý are used exactly as shown in (5.4) and (5.5), respectively. 

5.3.3 Boundary Functions and Set Point Test Patterns 

The set point test patterns used to test the candidate controllers in order to evaluate JM, 

the corresponding boundary functions f, (u)(t) and fy(l)(t), and the weighting factors w1, 

are problem-dependent and must be chosen in accordance with the given specifications. 
In cases where step functions are used to evaluate the candidate controller, the boundary 

functions fy(u)(t) and f j(l)(t) shown in Fig. 3.17 can be used, by appropriately choosing 

the constants Cl,,, ... 5C79 css, tl, ... , t3, and t. Recall that Jlý is the objective function 

element for output i under set point patternj. Since the closed-loop system consists of q 

loops, q set point patterns can be applied, where in pattern ja step function is applied to 

reference input rj, while the remaining q -1 reference inputs remain at zero. When all q 

set point patterns have been applied to the closed-loop system, all q2 elements J, ý can be 

evaluated in order to compute JM. This is illustrated in Fig. 5.2 for a2x2 system. 
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Fig. 5.2 Typical procedure for the computation of JM for a two-input, two-output system 

The procedure shown in Fig. 5.2 is only a suggestion for problems with typical set-point 

tracking and loop coupling performance specifications. The number of closed-loop tests 

can be greater than q, especially in cases where the controlled process is non-linear and 

many different operating points must be considered in the evaluation of the candidate 

controllers. Furthermore, the set point signals need not be step functions, but can also be 

ramps or any other suitable function, and can be different for each reference input and 

closed-loop test combination, provided J7 (t) and J (l)(t) are chosen accordingly. 

Y, (t) Y2(t) 
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5.4 Decentralised PI Controller Tuning Examples 

To illustrate the flexibility and effectiveness of the proposed PI tuning method, three 
tuning examples previously investigated by Loh, Tan, and Vasnani (1994) are presented 
in this section, using three multivariable (2-input, 2-output) processes with non-linear 
elements and different degrees of interaction. These are given in Sections 5.4.1 to 5.4.3. 
The closed-loop system configuration is then described in Section 5.4.4, followed by the 

performance specifications used in the tuning, which are given in Section 5.4.5. Finally, 

the genetic algorithm configuration used in the optimisation is given in Section 5.4.6. 

5.4.1 PI Controller Tuning Example 1 

The process used in this example is a 2-input, 2-output linear multivariable process with 

strong interactions between the two input/output pairs. It is based on the empirical 

model of a pilot-scale distillation column developed by Wood and Berry (1973), and is 

also used in Loh, Tan, and Vasnani (1994). The four transfer functions associated with 

the process have first-order dynamics and are subject to different time delays. The 

dynamics of the process are represented by the following 2x2 transfer function matrix, 

with all time-unit parameters given in minutes. 

12.8e-' 18.9e As 

16.7s+1 21s+1 
G1(s) _ (5.6) 

6.6e-7s 19.4eAs 
10.9s+1 14.4s+1 

It can be seen by examining the off-diagonal elements of Gi(s) that the interactions 

within the process are strong, and the delay times range from 1 minute to 7 minutes. It 

will be shown later in this chapter that even simple MIMO processes such as G1(s) can 

generate very complex search landscapes containing thousands of local minima. 

5.4.2 PI Controller Tuning Example 2 

In this example, G1 (s) is modified in order to reduce the interactions within the process. 

Specifically, the steady-state gains of the off-diagonal elements of Gi(s) are reduced, 

resulting in the following transfer function matrix. 
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12.8e-S 0.2e-3S 
6.7 ss+1 21s+1 G2 (s) _ 
e-7S 19.4e-3s 

10.9s +1 14.4s +1 

5.4.3 PI Controller Tuning Example 3 

(5.7) 

Finally, in this example, the gain of the G12(s) element of Gl (s) is reduced, in order to 
weaken the interaction from loop 2 to loop 1, but the interaction from loop 1 to loop 2 is 
left unchanged, thus resulting in a `moderate' degree of interaction. This results in the 
following transfer function matrix. 

12.8e-S l0e-3S 
16.7s+1 21s+1 

G3 (s) _ 
6.6e-7 19.4e-3S 

10.9s +1 14.4s+1 

5.4.4 Closed-Loop System Formulation 

(5.8) 

In all three tuning examples, yl was paired with ui and y2 with u2 as indicated by the 

steady-state relative gain arrays of Gi(s), G2(s), and G3(s), all of which have positive 

elements in the main diagonal and negative elements elsewhere. Two continuous-time 

PI controllers in the standard form of Eq. (5.2) were used to control the multivariable 

processes. In all three examples, the processes were augmented with saturation (±0.5 

units) and rate limit (±0.015 units per minute) non-linearities as actuator constraints. 

These non-linearities, as well as the existence of time delays in the process, limit the use 

of conventional, linear systems control theory for the design of the PI controllers, as 

such designs may not, in general, yield reliable results. The resulting closed-loop system 

is shown in Fig. 5.3. 

In order to evaluate JM, the closed-loop systems were simulated in MATLAB /SIMULINK 

using the Runge-Kutta fifth-order numerical integration algorithm with a constant step 

size of tmax/ 100 minutes, where to is the maximum simulation time in each example. 

The integral in Eq. (5.5) was numerically evaluated using the Euler method. 
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Fig. 5.3 The closed-loop configuration used in the PI controller tuning examples 

5.4.5 Performance Specifications 

In all examples, the set point tracking and loop coupling performance specifications are 

of the same form as the ones shown in Fig. 3.17. The closed-loop system was subjected 

to unit step functions, as shown in Fig. 5.2, and the values of the constants cl,... , C7, css, 

tl,... , t3, and t,, in Fig. 3.17 were chosen so that the performance specifications of the 

closed-loop system are as follows. 

Peak overshoot of outputs yl and y2: 

Settling time of outputs yl and y2: 

Coupling between loops 1 and 2: 

< 20% 

<_ 50 min, where the settling time is 5% 

S50%, 0<_t<_25min 

<_ 5%, 25 min < t5100 min 

In all examples, the weighting factors w1 in Eq. (5.4) were set to be w11= W22 =1 and 

w12 = W21= 0.25, in order to give more emphasis to the set point tracking objectives. As 

mentioned in Chapter 3, the weighting factors wy do not at all affect the locations of the 

strictly optimal solutions in the search landscape. However, w13 should still be chosen 

according to the importance of the corresponding specifications, since the existence of 

strictly optimal solutions is not known a priori. Furthermore, even when strictly optimal 

solutions do exist, the values of w13 can affect the convergence of the GA because they 
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can modify the shape of the sub-optimal regions of the search landscape. More on the 
effects of wy in the optimisation results can be found in Section 3.5. 

5.4.6 Genetic Algorithm Configuration 

In all three examples, a standard GA with adaptive fitness sharing was used to minimise 
JM, with a generation gap g=0.9, reproduction using the stochastic universal sampling 

algorithm (Baker, 1987), single-point crossover, and fitness-based string reinsertion to 
implement an elitist strategy. The size of the population was chosen to be N= 80, in 

accordance with experimental studies of Grefenstette (1986). The initial population was 

always randomly selected, and was left to evolve for a maximum of 100 generations, 

although good convergence was usually achieved in much fewer generations. 

The four PI controller tuning parameters were encoded using the binary alphabet and 
Gray coding (Caruana and Schaffer, 1988). The string resolution for each parameter was 

set to 12 bits, resulting in a total string length of 1= 4x 12 = 48 bits. This corresponds to a 

search space whose size is approximately 2.8 x 1014 points. The chromosome structure 

used in all tuning examples is shown in Fig. 5.4 below. 

PI controller in loop 1 PI controller in loop 2 

01101... 10 11100... 11 00010... 00 11101... 01 

KP, TI, KP2 T12 

Fig. 5.4 Chromosome structure used in the tuning examples 

The crossover and mutation probabilities were chosen to be p, =0.45 and p,,, =0.01, 

respectively, using the guidelines of Grefenstette (1986). The PI controller proportional 

terms KP, were assumed to take values in the interval [0,10], and the integral terms TI, 

in the interval [0.1,100] minutes. Adaptive fitness sharing with pre-ranking was used as 

the fitness assignment strategy in all examples. The sharing radius asnare was computed 

using Eq. (4.17), where n =2q = 4, and the value of b was taken from Table 4.1. 

ý/ 
43 7C2 

6share _ -0.3744 (5.9) 

-1 480-1 
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5.5 Simulation Results 

5.5.1 Tuning Example 1 

Simulation results for the best set of PI controller parameters after 100 generations are 

shown in Fig. 5.5. In the output responses, the boundary functions fjj(u)(t) and fjj(l)(t) are 

also plotted for comparison, indicated by the dotted lines. The convergence of the value 

of J, ß, 1 and that of the proportional and integral terms of the two PI controllers is shown 

in Fig. 5.6, where the vertical dashed line indicates the generation at which the GA has 

identified one or more strictly optimal solutions (JM= 0). 
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Fig. 5.6 Convergence of JM and the four PI controller parameters (PI tuning example 1) 

It can be clearly seen that the closed-loop system has completely met all specifications. 

Although strictly optimal solutions (JM= 0) were obtained as early as generation 50, the 

population was left to evolve for 100 generations, so that other strictly optimal solutions 
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are obtained using adaptive fitness sharing. It was observed that the resulting solutions 
were very similar. This is because the performance specifications for the given process 

were very tight, resulting in the n-volume of 2 being extremely small. Evidence of the 

small n-volume of 2 in this example can be found in Fig. 5.6, where the variance of the 

controller parameters after generation 50 is low. 

5.5.2 Tuning Example 2 

Simulation results for the family of strictly optimal PI controllers for G2(s) obtained at 

generation 100 are shown in Fig. 5.7. The GA convergence plots are shown in Fig. 5.8. 
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Similarly to the previous example, it can be seen that the performance specifications 

have been completely satisfied, with strictly optimal solutions being obtained as early as 

generation 78. It is observed that in this tuning example, the GA was able to locate 

10 20 30 40 50 60 70 80 90 100 

Generation 
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many significantly different strictly optimal solutions. This was expected because the 

process used in this example is almost diagonal due to the very weak interactions within 
the process, making the performance specifications realisable by a much wider range of 

PI controllers. Evidence of the large n-volume of -5 in this example can be found in 

Fig. 5.8, where the variance of the controller parameters after generation 78 is high. 

5.5.3 Tuning Example 3 

Simulation results for the family of strictly optimal PI controllers for G3(s) obtained at 

generation 100 are shown in Fig. 5.9. The GA convergence plots are shown in Fig. 5.10. 
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Fig. 5.10 Convergence of JM and the four PI controller parameters (PI tuning example 3) 

Similar results were obtained for the third example, as indicated in Fig. 5.9, with strictly 

optimal solutions being obtained as early as generation 38. In this case, it was observed 

that the envelope of achievable strictly optimal output responses was narrower than that 
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of example 2. This was expected, since G3(s) exhibits stronger interactions than G2(s). 

Evidence of the large n-volume of T5 in this example can be found in Fig. 5.10, where 
the variance of the controller parameters after generation 38 is high. 

The high variance observed in the tuning parameter values in examples 2 and 3 towards 

the end of the GA search run should not be treated as an indication of poor convergence. 
The best solutions in and after the generation marked by the dashed line in Figures 5.6, 

5.8 and 5.10 are all strictly optimal, and the tuning parameters should be expected to 

stay in but not necessarily settle at specific values. Another relevant observation is 

that in examples 2 and 3, the variance of the tuning parameters appears to increase after 

the GA has located strictly optimal solutions. This is because prior to the discovery of 

solutions in 3, the entire population contains sub-optimal solutions. Therefore, the best 

solution in the population at each generation (plotted in Figures 5.6,5.8 and 5.10) is 

likely to be unique among the distinct members of the population. Since g< 1 and the 

string reinsertion is fitness-based, this solution will be propagated through to successive 

generations until a better solution is discovered. When the GA has run long enough to 

have located the optimal region in the search landscape, this new solution is likely to be 

in the phenotypic neighbourhood of its predecessor. This similarity between successive 

best solutions reduces the parameter variance prior to the discovery of solutions in -5. 

When at least two distinct solutions in 2 are discovered, adaptive fitness sharing is 

activated in order to maximise the solution diversity in 2'. This diversity maximisation 

is directly responsible for the increase in the variance of the parameters after the GA has 

located 2', as clearly observed in Figures 5.8 and 5.10. 

The resulting strictly optimal PI controller parameters for the three tuning examples, as 

well as the associated objective function values, are shown in Table 5.1 below. 

TABLE 5.1 Typical, strictly optimal PI controller parameters for the three PI tuning examples 

Tuning example I Tuning example 2 Tuning example 3 

Loop 1 Loop 2 Loop 1 Loop 2 Loop 1 Loop 2 

Proportional, Kp1 0.1636 0.0781 0.1832 0.1294 0.2173 0.1270 

ntegral, TI, (minutes) 

)bjective function, JM 

6.0525 1 7.4187 

0 (strictly optimal) 

6.3941 115.3960 

0 (strictly optimal) 

8.8336 1 16.3719 

0 (strictly optimal) 
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The PI controller parameter values shown in Table 5.1 for examples 2 and 3 are typical 

representatives of the solution families obtained by the GA, and were selected manually 
by examining the strictly optimal closed-loop responses. 

5.5.4 Search Landscape Complexity 

The search landscapes that correspond to the three PI tuning examples presented earlier 

are all four-dimensional and thus cannot be visualised easily. It is possible, however, to 

examine the surface slices that result by keeping any two of the four parameters at their 

optimal values given in Table 5.1. One such surface slice for tuning example 1 is shown 

in Fig. 5.11, obtained by keeping the two proportional terms at their optimal values and 

varying the two integral terms. 
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Fig. 5.11 Objective function surface slice for PI tuning example 1 (all proportional 

terms are at their optimal values shown in Table 5.1) 

10 -' 

It is observed that the surface slice is complex, highly non-linear and also multimodal. 

The multimodality of the surface slice can better be observed in Fig. 5.12, where the 

map of the minima of that surface slice are shown. The locations of the minima were 

"2 (n7"7utes 10 102 V\ýe9` 2 



Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 129 

computed by evaluating JM at a grid of 401 x 401 points where 8,630 minima were found, 

of which only 14 (-0.16%) correspond to strictly optimal solutions (JM= 0). These are 
indicated by the circular marker in Fig. 5.12. 
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Fig. 5.12 Map of minima of objective function surface slice for PI tuning example 1 

(all proportional terms are at their optimal values shown in Table 5.1) 

Similar results were obtained by keeping the two integral terms at their optimal values 

and varying the two proportional terms. The resulting surface slice, together with the 

associated map of minima, is shown in Fig. 5.13. The locations of the minima were again 

computed by evaluating JM at a grid of 401x401 points, where 9,453 minima were 

found, of which only 2 (~- 0.02%) correspond to strictly optimal solutions (JM=O). These 

are indicated by the circular marker in Fig. 5.13. Note that, in both cases, the minima 

were computed by assuming that JM changes monotonically between grid points. This 

should generally hold if the grid is sufficiently dense. The actual `continuous' surface 

slices may contain a much larger number of minima. 
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5.5.5 Comparison with the Relay Feedback Technique 

Decentralised PI controller tuning for multivariable processes has also been investigated 
by Loh, Tan, and Vasnani (1994), who proposed a solution to the tuning problem by 

employing an extension of the relay feedback technique (Aström and Hägglund, 1984) 

to multivariable plants. The tuning examples they used to demonstrate the effectiveness 
of their method are identical to those presented in this chapter, with the only exception 
that, in Loh, Tan, and Vasnani (1994), no actuator constraints are present in the process 
inputs. The PI controller parameters they obtained, as well as the values of JM, are 

shown in Table 5.2 below. 

TABLE 5.2 PI controller parameters as computed in Loh, Tan, and Vasnani (1994) 

Tuning example I Tuning example 2 Tuning example 3 

Loop 1 Loop 2 Loop I Loop 2 Loop 1 Loop 2 

Proportional, Kp1 0.3160 0.1080 0.7580 0.1540 0.4390 0.1160 

Integral, T; (minutes) 10.2200 10.2200 3.2400 8.6000 9.6000 9.6000 

Objective function, JM 0.1042 0.7439 0.2327 

It is observed that, according to the performance specifications given in Section 5.4.5, 

the controllers computed in Loh, Tan, and Vasnani (1994) are sub-optimal. Of course, 

this was expected since the optimality criteria used in Loh, Tan, and Vasnani (1994) are 

the ones associated with the tuning rules of Ziegler and Nichols (1942), and do not 

correspond to those given in Section 5.4.5. The above comparison merely demonstrates 

the flexibility of the proposed method in the automatic tuning of PI controllers for 

arbitrary performance specifications. 

Another interesting observation is that, in PI tuning example 1, the integral terms of the 

PI controllers obtained using the proposed method have similar values (see Table 5.1). 

This is consistent with the results of Loh, Tan, and Vasnani (1994), where it has been 

experimentally shown that highly interacting multivariable processes such as G1(s), 

when placed under relay feedback, will usually exhibit sustained oscillations of the 

same frequency, and hence all control loops will have the same ultimate period, thus 

resulting in PI controllers that have the same integral term setting. This can be observed 

in Table 5.2. 
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The systems used in the three tuning examples are considered non-linear because of the 
saturation and rate limit non-linearities that are present in the process inputs. Therefore, 

as expected, the controller parameters in Table 5.1 are guaranteed to be strictly optimal 
only when the systems are subjected to the same input patterns as the ones used in the 
GA for the optimisation (i. e. unit step functions), and may not be strictly optimal when 
the systems are subjected to step functions with magnitudes other than unity. This is due 

to the fact that the PI controllers are linear and thus cannot be optimal over the entire 
process operating region. In the extension of the relay feedback method to multivariable 
processes, an infinite number of sets of ultimate quantities can be obtained by varying 
the loop relay switching levels, thus yielding an infinite number of controllers, and this 
is true even for linear processes (Halevi, Palmor, and Efrati, 1997; Palmor, Halevi, and 
Krasney, 1995). The proper adjustments of the loop relay switching levels, so that the 

resulting ultimate quantities reflect the operating point of interest, can be a very difficult 

task that is largely based on trial-and-error. This is especially true when, at the same 

time, the process has to exhibit a certain mode of oscillations necessary for the relay 
feedback method to be successfully applied. More details on the different modes of 

oscillations that may arise in a multivariable process under relay feedback can be found 

in Loh and Vasnani (1994), who showed that the obtained limit cycles are related to the 

strength of the interactions within the controlled process. Processes GI(s), G2(s), and 

G3(s), used in the tuning examples in this chapter, exhibit all three modes of oscillations 

investigated in Loh and Vasnani (1994), and Loh, Tan, and Vasnani (1994). 

In the proposed PI tuning method, the operating points of interest are embedded in the 

performance specifications. Therefore, the tuning task is greatly simplified. In addition 

to that, the PI controllers can be made robust over different operating conditions by 

defining appropriate set point test patterns that cover all operating points of interest and 

specifying the corresponding performance specifications. A limitation of the proposed 

method is that a suitable process model and the use of a simulator may be required, in 

order to perform the closed-loop tests necessary to evaluate JM. This is mainly because 

of the stochastic nature of GAs which may produce solutions (controllers) that cannot 

be directly applied to the real process for safety and other reasons. However, a similar 

limitation exists for the relay feedback technique, in which the real process is forced to 

exhibit limit-cycle oscillations, something that may not be allowed in certain types of 

processes for safety and other reasons. 
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5.6 Comparison with Conventional Optimisation Methods 

In order to evaluate the performance of GAs in the PI tuning examples presented earlier, 
the Sequential Quadratic Programming (SQP) algorithm and a pure random search were 
used to minimise JM in PI tuning example 1. The SQP algorithm utilises a quasi-Newton 
Hessian approximation using the BFGS updating method. An overview of SQP can be 
found in Fletcher (1987), Gill, Murray, and Wright (1981), and Powell (1983). All tests 

were performed with and without actuator and measurement noise in the closed-loop 

system. The actuator and measurement noise signals were normally distributed random 

sequences, having zero mean and variances 6ä =2x 10-5 and o=5x 10-4, respectively. 

Furthermore, additional GA tests were performed, in which the crossover and mutation 

operators were not applied, to demonstrate their effect in the performance of the GA. In 

order to obtain statistically significant results, the GA and random search algorithms 

were run 200 times each, and the SQP algorithm 5000 times. The resulting optimisation 

success rates for two different convergence criteria are shown in Fig. 5.14 below. 

PI controller tuning example I- Optimisation success rates 
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Fig. 5.14 Optimisation success rates for two convergence criteria (PI tuning example 1) 

It is clearly observed that the performance of the GA is superior to that of both the SQP 

algorithm and the pure random search. In the case where only near-optimal solutions are 

required (JM < 0.05), it can be seen that the GA is very robust and immune to noise, with 

success rates between 73% and 78%. On the other hand, the SQP algorithm performed 

poorly, with less than 2% success in the noise-free case and no successful runs at all 
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when noise was added to the system. The pure random search was also not successful, 
even in the noise-free case. When strictly optimal solutions are required (JM= 0), it is 

observed that the performance of the GA is again significantly better than that of the 
other methods, with success rates between 24% and 28%. Again, the SQP algorithm 
performed poorly, with less than 1% success in the noise-free case and no successful 
runs at all when noise was added to the system. The pure random search was again not 
successful. In the case where no crossover is applied, the ability of the GA to locate 

strictly optimal solutions was greatly reduced, thus indicating that crossover improves 

the exploitation ability of the GA. In the case where no mutation is applied, the GA was 
unable to locate even near-optimal solutions, thus demonstrating the very important role 
of mutation in introducing new genetic material in the population of the GA. 

5.6.1 Computation Time Comparisons 

In all three optimisation algorithms, the majority of computation time was taken up by 

the evaluation of the objective function, rather than the computations involved in the 

algorithms. The evaluation of JM for a single set of controller parameters required 38.9 

milliseconds on a standard personal computer with the Intel® Pentium® III processor 

running at 450 MHz. The population of N= 80 individuals in the GA was left to evolve 

for 100 generations, thus resulting in 8,000 objective function evaluations (5.2 minutes). 

Note, however, that both optimality criteria were usually met in fewer generations. The 

termination criterion for the SQP and pure random search algorithms was also set to 

8,000 function evaluations, although the SQP algorithm uses an additional termination 

criterion based on the precision of the obtained solution. In the noise-free case, the 

number of function evaluations required in order for the SQP algorithm to successfully 

reach near-optimal solutions (J, ß, 1 <_ 0.05) varied between 216 (8.4 seconds) and 1,556 

(1 minute), with an average of 722 (28.1 seconds). When strictly optimal solutions are 

required (JM= 0), the number of function evaluations required by the SQP algorithm 

varied between 216 (8.4 seconds) and 1,487 (57.8 seconds), with an average of 595 

(23.1 seconds). Although the computation time required by the SQP algorithm appears 

shorter than the GA case, it should be noted that the SQP algorithm only achieved 

near-optimal solutions in less than 2% of all test runs. Hence, in order to obtain reliable 

results, the SQP algorithm requires a large number of runs from different starting points 

in the search space, which makes the overall computation time comparable to that of the 
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GA. In the case where noise was added to the system, the SQP algorithm was unable to 
converge to a minimum. Furthermore, the proposed GA-based PI tuning method has the 
ability to locate a family of strictly optimal solutions, as opposed to the single solution 
obtained by the SQP algorithm. The pure random search algorithm is not discussed in 

this section because it was not successful in obtaining either near-optimal (JM <_ 0.05) or 

strictly optimal (JM= 0) solutions. 

5.7 Summary 

In this chapter, a new method for the automatic tuning of decentralised PI controllers for 

multivariable processes, based on GAs, was proposed. The major advantage of the 

proposed tuning method is the ability to handle arbitrary performance specifications in 

the time-domain, that can be different for each system output and set point test pattern 

combination. This is achieved by transforming the PI tuning problem into a function 

optimisation problem, using objective function JM developed in Chapter 3. The method 

of adaptive fitness sharing developed in Chapter 4 is employed, in order to maximise 

the diversity of the obtained family of strictly optimal PI controllers. The numerical 

robustness and open architecture of GAs make the method applicable to the automatic 

tuning of a wide range of linear or non-linear parametric multivariable controllers, and 

not just PI controllers. The effectiveness of the proposed tuning method was supported 

by simulation results using three two-input, two-output processes with different degrees 

of interaction between the two loops. It was shown that, in all cases, the resulting PI 

controllers were strictly optimal, and thus the closed-loop systems completely satisfied 

all performance specifications. The method of adaptive fitness sharing was shown to 

achieve a high degree of diversity in the obtained family of solutions. The choice of 

GAs as a suitable optimisation method was supported by comparing GAs with two 

conventional optimisation methods, where it was shown that GAs have significantly 

higher success rates and are more immune to noise. A disadvantage of the proposed 

method in its current form is that it may only be useful in practice for off-line 

parametric controller tuning, mainly because of the stochastic nature of GAs and the 

relatively large number of closed-loop tests involved. Hence, a suitable process model 

and the use of a simulator may be required. 
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6 Solution to the Shell Standard Control 

Controllers 
Problem Using Genetically Tuned PID 

6.1 Introduction 

In this chapter, a solution to the Shell standard control problem is presented, based on 
genetic algorithms. The proposed scheme includes two discrete-time PID controllers 
with integral anti-windup and a multivariable Smith predictor to provide the required 
process output regulation, while the process input minimisation problem is analytically 
solved on-line, by estimating the unmeasured disturbances entering the process and 
solving the associated linear program. This, as well as the presence of constraints in the 
process manipulated variables, results in a complex, non-linear closed-loop system and 
hence, the manual tuning of the PID controllers according to some given performance 
specifications becomes a difficult task. Genetic algorithms are successfully applied to 
the automatic tuning of the PID controllers according to the given specifications, using 
an extension of the objective function JM developed in Chapter 3. Simulation results are 

presented to demonstrate the effectiveness of the proposed control scheme. 

6.2 The Shell Standard Control Problem 

The Shell standard control problem was first published by the company in 1986 in the 

1St Shell Process Control Workshop (Prett and Morari, 1987), with the intention to 

provide a standard and realistic test bed for the evaluation of new control theories and 

technologies. It captures most of the relevant control issues while staying as realistic as 

possible. The full problem statement and the model of the process under control is given 

in Appendix A, and can also be found in Prett and Morari (1987) and Prett, Garcia, and 

Morari (1990). The process is a multivariable heavy oil fractionator (5-input, 7-output) 
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which is highly constrained, with very strong interactions and large dead times. The key 
elements of the Shell standard control problem are shown in Fig. 6.1 below. 

Unmeasured disturbances 

d1 d2 

U1 

Constraints 

u1 
Do- YJ 

Shell Heavy Oil Y2 
Fractionator Y4 

YD 
Process, G(s) Y5 

Ys 1 
0, Y7 

Constraint on y7 
Regulation of y, and y2 

Cl) 
CU 

0C3 U2 
cu , 

U3 

Fig. 6.1 Key elements of the Shell standard control problem 

The problem is stated such that an infinite number of scenarios can occur in controlling 

the unit. The process input/output relations are linearly modelled using a matrix of 
first-order dead time transfer functions. Inputs ul, u2, and u3 can be used as manipulated 

variables to control the process, but are subject to saturation (±0.5) and rate limit (±0.05 

per minute) actuator hard constraints, thus making the process non-linear. Inputs dl and 

d2 are unmeasured but bounded disturbances entering the process, with I dl I <_ 0.5 and 

I d2 1<_ 0.5. Furthermore, the process is subject to uncertainties in the gains of the model 

transfer functions. 

The main objective is to maintain process outputs yl and y2 at specification (0.0 ±0.005 

in the steady state), while at the same time input u3 has to be minimised and output y7 

has to be kept to values of at least -0.5 at all times. Furthermore, output yl must be 

maintained within the maximum and minimum values of 0.5 and -0.5 at all times, and 

the unmeasured disturbances dl and d2 have to be rejected even when the sensors of yl 

and y2 fail. The closed-loop speed of response must be kept between 0.8 and 1.25 of the 

open-loop process bandwidth and the fastest permissible sampling time is 1 minute. 
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It is apparent that the Shell standard control problem is an extremely difficult problem 
which includes many possibly conflicting process requirements that are very difficult to 
satisfy. A number of partial solutions to the problem have been proposed in the 2nd Shell 
Process Control Workshop (Prett, Garcia, and Morari, 1990) and it has been conjectured 
that a complete solution to the problem does not exist (Prett, Garcia, and Morari, 1990). 
In this work, the solution is also partial, but has the advantage that it achieves very good 
results using a control strategy that is relatively simple and much easier to implement 

than most of the solutions available in the literature. Furthermore, it will be shown that 
the proposed approach is not limited to the Shell standard control problem and can be 

used in a wide range of real-world multivariable control problems. 

6.3 Design Methodology 

The majority of proposed solutions to the Shell standard control problem available in 

the literature utilise the state-of-the-art Quadratic Dynamic Matrix Control (QDMC) 

algorithm (Garcia and Morshedi, 1986) developed by Shell. The main advantage of 

QDMC is that the objectives and constraints associated with the control problem are 

directly embedded in the process control algorithm, thus requiring only minimal ad hoc 

controller adjustments (Garcia, Prett, and Morari, 1989). However, a disadvantage of 

QDMC is that it is extremely computationally intensive, and this is one of the reasons 

why it has not enjoyed widespread use in the small- and medium-size industries. In this 

work, PID controllers are employed as the main elements of the proposed solution. PID 

controllers are still widely used in industry, they are relatively easy to implement, and 

the majority of control personnel are familiar with their operation. 

6.3.1 The Output Regulation Problem 

Two discrete-time PID controllers with integral anti-windup loops and derivative term 

filtering were employed, to provide the integral actions necessary in order to achieve the 

regulation requirement for outputs yl and y2. Of the three manipulated variables, ul and 

u2 were chosen for closing the two PID loops, since u3 has the additional minimisation 

requirement and hence cannot be used in the loops. Furthermore, the choice of ul and u2 

to control yl and y2 arises naturally from process operation considerations. This results 

in the following 2x2 transfer function matrix (see Appendix A). 
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4.05e-27s 1.77e-28 

_ 
Gl l (s) G12 (s) 50s+1 60s+1 GR(S) ": 

[ 

[G21(s) G22(S) 
5.39e-'8s 5.72e-14s 

(6.1) 

50s+1 60s+1 

By examining the elements of GR (s) it is observed that the best pairing of manipulated 
and controlled variables is to control yl with ul and y2 with u2, since the gains in the 

main diagonal of GR(s) are sufficiently large and thus the interaction between the loops 

will be minimal. Note, however, that the gain of G21(s) is larger than that of Gii(s) and 
hence, there will be strong interaction from loop 1 to loop 2. The above input/output 

pairing is also indicated by the steady-state relative gain array of GR(s), which consists 

of positive elements in its main diagonal and negative elements elsewhere. 

Fig. 6.2 PID controller in loop i with integral anti-windup (continuous-time) 

The PID controller structure used in this work is exactly the one proposed by Aström 

and Hagglund (1995), and is shown in Fig. 6.2. The PID controllers are discrete-time, 

arranged in a decentralised (diagonal) structure. When there is no actuator saturation, 

the output ul (z) of controller i is given by 

Proportional 

ul (z) = KP; el (z) + 

Integral Derivative 

TKp, (z+1)11 
týý -L 

-KPDTD. NI(z-1) 
V. (7) 

2T7 (z -1) TD. (z-1)+NTz 
(6.2) 
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where el (z) = r; (z) - y; (z) is the error signal for loop i, r; (z) is the set point signal for 

loop i, and i =1,2. The discrete-time transfer functions for the integral and derivative 

terms shown in Eq. (6.2) were obtained using Tustin's approximation and the backward 

difference approximation, respectively. With reference to Fig. 6.2 and Eq. (6.2), Kp, TI,, 

and TD; denote the parameters of the i-th PID controller, and T denotes the discretization 

sample time. Parameter Ni is used to limit the high-frequency gain of the derivative 

term, thus improving the high-frequency noise immunity of the controller. This is 

achieved by filtering the derivative signal using a first-order low-pass filter with time 

constant TD. /1V. Typical values of NI range from 8 to 20 (Aström and Hägglund, 1995). 

In this work, the setting N1=N2 =8 was used, resulting in a filter with the lowest cut-off 

frequency in this range. Parameter TT in Fig. 6.2 is known as the tracking time constant 

and controls the effect of the integral anti-windup mechanism. Parameter TT should be 

larger than TD, and smaller than TI.. A rule of thumb is to choose TT = JTD (Aström 

and Hägglund, 1995). This, however, has the serious disadvantage that it can result in 

arbitrarily large signals in the anti-windup feedback loop when TD, tends to zero, which 

can destabilise the loop. Specifically, in digital implementations of the PID controller, 

such as the one shown in Eq. (6.2), the anti-windup loop in Fig. 6.2 becomes unstable 

when TT <_ T12. To see this, consider the anti-windup loop shown in Fig. 6.3 below. 

Fig. 6.3 Digital implementation of the anti-windup loop 

The discrete-time integrator in Fig. 6.3 is obtained using Tustin's approximation. The 

unit delay in the feedback path is necessary, in order to eliminate the algebraic loop that 
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would otherwise be formed, since the current output of the integrator is a function of the 
current input. When the actuator saturates, the main PID loop is broken, and the external 
signals entering the anti-windup loop are not affected by the signals generated inside the 
loop. Therefore, the stability of the anti-windup loop solely depends on its loop transfer 
function, whose characteristic equation is shown below. 

2TTZ2+(T-2TT)z+T=0 (6.3) 

In order for the above polynomial equation to have all its roots inside the unit circle, the 
following three conditions must be satisfied (Jury, 1973). 

T>O 
TT >o 

2TT>ITI 

(6.4) 

Clearly, all three conditions are satisfied for positive T, only when TT > T/2. It is easy to 

see that this result is also true for the forward and backward difference approximations, 

and shows that the setting TT = VTITD, recommended by Aström and Hägglund (1995) 
J 

must be used with caution when TD, is small. The above result has also been confirmed 

by personal communication with Hägglund (1999). 

In order to avoid this instability problem, the setting TT = max {T; TD; ,TI was used in 

this work, which ensures that TT 
-> 

T even when the derivative term is switched off. This 

lower bound on TT ensures that the anti-windup loop is always stable and well-damped, 

irrespective of the values of KP,, TI,, and TD;. 

6.3.2 The Input Minimisation Problem 

The minimisation of process input u3 is a challenging problem since the optimal value 

of u3 does not remain fixed, but changes as the unmeasured disturbances dl and d2 

change. Hence, the problem cannot be solved by conventional control designs such as a 

PID controller. The optimal value of u3 is defined as the lowest possible value of u3 

such that the closed-loop system satisfies all control objectives without violating any of 
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the control constraints. This requirement should be satisfied during the entire process 
operating time. Formally, this results in the following optimisation problem. 

min u3(t), Vt, i=1,2,3 
u; (t) 

Subject to: l u; (t)I S 0.5, Vt, i=1,2,3 
du, (t) 

ý 0.05, Vt, i=1,2,3 
dt 

yl (t) I <_ 0.005, t >_ ts, i =1,2 

vl(t) I <- 0.5, dr 
Y7 (t) > -0.5, dt 

(6.5) 

where is is the time required for the closed-loop system to reach the steady state, and 

must be chosen such that the closed-loop system speed of response is between 0.8 and 
1.25 of the open-loop process bandwidth. This problem is difficult to solve analytically 

since all signals involved in (6.5) are not constant, but vary with time. The requirements 
for uj can be satisfied a priori by simply constraining the controller outputs to the level 

and rate limits of ±0.5 and ±0.05 per minute, respectively. This is permissible because 

of the anti-windup mechanism employed in the PID controllers, which ensures that no 

integral wind-up will occur. Assuming that output constraint violations are allowed in 

the transient period, the optimisation problem defined in (6.5) can be solved analytically 

for the steady-state optimal value of u3 as follows. 

Let Klo denote the steady-state gain of the i, j element of the process transfer function 

matrix G(s). Then, in the steady state, the following equation holds. 

Yi Kli K12 

Y2 = K21 K22 

Y7 K71 K72 

K13 K14 

K23 K24 
K73 K74 

Ul 

K15 U2 
K25 U3 

K75 di 

d2 

(6.6) 

In the steady state, outputs yl and y2 are guaranteed to be zero because of the integral 

action of the two PID controllers. Furthermore, it is easy to see that, in the steady state, 

minimisation of u3 means that at least one of ul, u2, u3, y7 will be exactly at its 
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constraint boundary. If the disturbances dl and d2 are known, Eq. (6.6) is simply a 
system of three simultaneous linear equations with four unknowns (ul, u2, u3, y7). It is, 

therefore, sufficient to set each one of ul, u2, u3, y7 to its constraint boundaries (one at a 
time) and use Eq. (6.6) to solve for the remaining three. Specifically, ul E {+0.5, -0.515 

U2 E {+0.5, -0.5}, u3 E {+0.5, -0.51, and y7 EJ-0.51. Hence, Eq. (6.6) has to be solved 

seven times and this will result in seven different values for u3. The optimal value of u3 
is the minimum of these values for which none of the four variables, Ui, u2, U3, ̂  

violates the constraints. This is a standard linear programming (LP) problem and it can 
be shown that it always has a feasible solution when I dl l <_ 0.5 and j d2 1<_ 0.5 (see 

Section 6.3.3). It should be pointed out at this point that if the gain matrix in Eq. (6.6) is 

not constant, as in the case of uncertainties in the gains of the model, the resulting value 

for u3 may not be optimal. In this case, one could specify more conservative constraint 

boundaries, so that the effects of uncertainties are accounted for (see Section 6.5.2). 

In the solution of the minimisation problem (6.5) described above, it was assumed that 

output constraint violations are allowed in the transient period. It will be shown in 

Section 6.4.2 that the transient requirements for process outputs yl and y2 can be used as 

closed-loop performance specifications for the tuning of the two PID controllers, by 

means of an extension of objective function JM. 

6.3.3 LP Solution Feasibility Analysis 

It was shown in the previous section that, in the steady state, optimisation problem (6.5) 

is equivalent to the following linear program. 

minu3, i=1,2,3 
Ui 

Subject to: 1 u11 _< 
0.5, i=1,2,3 (6.7) 

1YI1 = 0, i=1,2 

Y7 >_ -0.5 

It is known from linear programming theory (Wood and Dantzig, 1949; Dantzig, 1949) 

that if a feasible solution of a linear program exists, it must lie precisely at the edges of 

the convex polyhedron defined by the inequalities associated with the linear program. 
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In the case of the LP problem shown in (6.7), there are seven linear inequalities, and the 

solution feasibility regions in each case are shown graphically in Fig. 6.4. Clearly, (6.7) 

always has a feasible solution when I dl < 0.5 and I d2 I <_ 0.5, because for any given pair 

of dl and d2 there is at least one case which results in a feasible value for u3 (i. e. with no 

constraint violations on ul, u2, u3, y7). The optimal value of u3 is the minimum of these 

feasible values. It is also clearly observed that when u2 = +0.5, U2=-0.5, and u3 = -0.5, 

no feasible solutions exist for any combination of dl and d2. Hence, it is only necessary 

to solve the remaining four systems of linear equations which correspond to cases where 

feasible solutions exist. The fact that no feasible solutions exist when u3 = -0.5 means 

that the problem of minimising u3 cannot be solved by simply setting u3 at its lowest 

possible value because this will result in steady-state constraint violations on y7, or both 

ul and y7 (see Fig. 6.4). It is, therefore, concluded that u3 cannot be kept at a constant 

value, but must be adjusted on-line. The solution of LP problem (6.7) as a function of dl 

and d2 is shown in Fig. 6.5 below. 

-0.1 

-0.2 

Q 
c -0.3 

-0.4 
-0.5 

Fig. 6.5 Optimal steady-state value of u3 as a function of d1 and d2 

-0.5 

The minimum achievable steady-state value of u3 is u3 = -0.3419, and is achieved when 

dl=+0.5 and d2 = -0.3152. The worst-case scenario is when d1= d2 = -0.5, where the 

l "2 0.5 0.5 
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minimum achievable steady-state value of u3 is U3=-0.1040. The optimal steady-state 

values of u3 for various combinations of dl and d2 are shown in Table 6.1 below. 

TABLE 6.1 Optimal steady-state values of u3 for various disturbance vectors d= Id, d, 1T 
d, d2 Optimal value of u3 Constraint boundary condition 

+0.5 +0.5 -0.2178 Output y7at boundary (y7= -0.5) 
-0.5 -0.5 -0.1040 Input u, at upper boundary (u, =+0.5) 
+0.5 -0.5 -0.2988 Input u, at upper boundary (u, = +0.5) 

-0.5 +0.5 -0.2834 Output y7 at boundary (y7= -0.5) 
0 0 -0.3181 Input u, at upper boundary (u, =+0.5) 

+0.5 -0.3152 -0.3419 Output y7 at boundary (y7= -0.5) 

6.3.4 Unmeasured Disturbance Estimation 

In order to be able to solve the LP problem in (6.7), the unmeasured disturbances dl and 

d2 have to be known. The uncertainties in the steady-state gains of the process model 

make the estimation of dl and d2 a difficult task. Assuming that the model uncertainty is 

small, dl and d2 can be estimated by using the available knowledge of the relations 

between the disturbances and the process outputs. 

Consider any two process outputs ya and yb, with a< b. These outputs are affected by the 

manipulated variables (known) as well as the disturbances (unknown). 

Ya(s) 
[ul(s)1 dl(s) 

Yb (s) 
Gm(s) u2(s) +GD(s) d2(s) 

u3 (S) 

where 

( 
Gal(s) Ga2 (S) Ga3(S) 

GM `s) [Gbl(S) 
Gb2 (s) Gb3 (S) 

= 
Ga4 (s) Ga5 (s) 

GD(s) [Gb4(s) Gb5(S) 

(6.8) 

(6.9) 

Transfer function matrices GM(s) and GD(s) are subsystems of process model G(s) 

given in Appendix A, and they map manipulated variables ul, u2, u3 and disturbances d1 
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and d2, respectively, to process outputs ya and Yb. Therefore, the contribution of ul, u2, 
and u3 (but not dl and d2) to ya and Yb can be expressed as 

yQ (S) ui (S) 

vb (S) GM (s) u2 (S) (6.10) [u3(S)j 

An estimate of the disturbance vector can be computed by subtracting Eq. (6.10) from 
Eq. (6.8) and solving for [dl d2]T, as shown below. 

[di(s)1 ]=GDI(S) 

. va (s) Y,, (S) 
6.11 d2 (s) 

[Yb 

(S) -. vb (s) 
() 

The direct inversion of GD(s) results in an unrealisable system, and this is true for all 
possible choices of a and b. This situation can be resolved by considering GD(z), the 

z-Transform of GD(s). Transfer function matrix GD(z) must admit the following 

representation. 

GD(z) _ 
Ga4 (Z) Ga5 (Z) 

Z-k 
Gb4 (Z) Gb5 (z) 

(6.12) 

where G, (z) denotes the part of Gtj (z) that remains when all delay states (including the 

one associated with the zero-order hold) have been removed. The inverse of GD(z) can 

now be expressed as 

1= 
Ga4 (Z) Ga5 (Z) 

Zk GD (Z) [G4(z) 
bGb5 

(Z) 
(6.13) 

Multiplying the above equation by z-k (i. e. removing the common factor zk) results in a 

realisable system which can be used to estimate disturbance vector d= [di d2] T at each 

sampling instant. Note that representation (6.12) is only possible if all elements of 

GD (z) have the same number of delay states. It can be seen by examining the delays of 

the Shell process model that this is true when a, bE 13,..., 7 1. This permits (2') 
=10 

different combinations for a and b. The number of common delay states of GD(z) in all 

combinations is k=1, which means that there will be a delay of one sample in the 

disturbance estimates. Pairs (a=3, b=7) and (a=4, b=6) are rejected because they 
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result in GD (s) being non-minimum phase and therefore inverse unstable. Among the 
remaining eight combinations of a and b, pair (a=3, b =5) was chosen because the 
estimator obtained exhibits the lowest sensitivity to measurement noise. If noise exists 
in the measurements of ya and yb, Eq. (6.11) can be written as 

di(S) 
GDl(S) va(S)+ea(s)-Ya(S) 

d2 (S) vb(S)+eb(S)-Yb(s) 

(6.14) 

= GDl (s) e (s) +Gj (s) 
va (s) - Ya (s) [yb 

(s) - Yb (S) 

where e= [ea eb]T is the measurement noise vector. It is observed from Eq. (6.14) that 

the contribution of the noise to the disturbance estimates is GD'(s)e(s). Therefore, the 

sensitivity to measurement noise can be minimised by selecting a and b such that the 

resulting GD1(s) exhibits the lowest 'gain'. Although a transfer function matrix does not 

have a unique gain, the largest singular value of GDl(s), denoted ß= IIGD1II, can be used 

as it provides an upper bound on the amplification of Ile II by GDl . The largest singular 

values of GD' (s) 
, with s= jcw, for all eight combinations of a and b are shown in Fig. 6.6. 

It can be seen that the chosen pair (indicated by the solid thick line) exhibits the lowest 

amplification of noise almost over the entire frequency range of interest. Furthermore, 

since a, bo{1,2}, the measurements of yl and y2 are not required for the operation of 

the estimator. Hence, the disturbance estimates will not be affected in case of failure in 

one or both of the sensors of y, and y2. The estimator in its final form is given below. 

dz 
_k _1 Ya(z) ul(Z) 

La2i =z GF (z) G(z) - 
GM (Z) u2 (z) (6.15) 

( z) 
Lybzi) 

u3(Z) 

where a=3, b=5, and GF(z) is a diagonal matrix of two discrete-time low-pass filters, 

which can be used to reject noise. In this work, GF (z) =I was used (i. e. no filtering). 

The obtained estimates of dl and d2 at each sampling instant are then used to compute 

the optimal steady-state value of u3 on-line, as described in Section 6.3.2. An additional 

low-pass filter may be employed to condition u3 before it is applied to the process. In 

this work, a first-order filter was used with a time constant of 50 minutes. 
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Fig. 6.6 Largest singular value ftequency responses of GD'(s) for the eight permissible 
combinations of a and b (solid thick line indicates the chosen pair a=3, b=5) 

Note that care should be taken when using disturbance estimators such as the one given 
in Eq. (6.15) as part of an on-line control algorithm, because they can be very sensitive 

to modelling errors and can thus produce unreliable disturbance estimates when large 

uncertainties in the model parameters are present. Other, more accurate disturbance 

estimation methods (such as a Kalman filter, for example) may be required, depending 

on the complexity of the controlled process and the accuracy of the available model. 

6.3.5 Multivariable Smith Predictor Control 

The large dead times associated with GR(S) limit the achievable performance of the PID 

controllers discussed in Section 6.3.1. To compensate for this, a multivariable Smith 

predictor proposed by Maciejowski (1994) was used in this work. This is an extension 

of the SISO approach proposed by Smith (1957). The multivariable Smith predictor 

structure in the form of Internal Model Control (IMC) is shown in Fig. 6.7. 
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Fig. 6.7 Multivariable Smith predictor in the form of IMC (Maciejowski, 1994) 
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The Smith predictor consists of a discrete-time process model Gs(z), and a delay-free 

model GS (z) obtained by removing all delay states from all of the elements of Gs(z). It 

is observed that in the Smith predictor structure shown in Fig. 6.7, the controller D(z) is 

controlling the delay-free model and not the actual process. Hence, the effect of the 

controller output vector u to the process output vector y is not delayed by the inherent 

process delays, but is immediately available to the controller. In this way, processes 

with large dead times such as GR(s) can be controlled by conventional controllers such 

as PID controllers without significant loss in achievable performance. An auxiliary loop 

(outer loop) compensates for modelling errors by appropriately modifying the set point 

vector r. The two process models associated with the Smith predictor can easily be 

obtained by discretizing the transfer function matrix G(s) of the Shell process. Since 

there are three manipulated variables, ul, u2, and u3, and two controlled variables, yl and 

y2, the process model GS(z) and the predictor GS (z) are represented by the 2x3 transfer 

function matrices shown below. 

Gs(z) = 
Gii(Z) G12(z) G13(Z) [G2i(z) 

G22 (Z) G23 (Z) 

GS (Z) = 
Gil (Z) Gil (z) Gi3 (z) 

[; 
(z) G22 (Z) G23 (Z) 

(6.16) 

where GO'(z) denotes the part of G13 (z) that remains when all its delay states have been 

removed. Note that in this case there is no requirement for the number of delay states in 

the elements of GS(z). 
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6.3.6 The Closed-Loop System 

A block diagram of the closed-loop system configuration is shown in Fig. 6.8. The thick 
lines denote vector signal paths, and it is assumed that samplers and data hold devices 
exist in the interconnections between continuous-time and discrete-time blocks. The set 
point vector was set to r= [0 Of T since there are no set point tracking requirements. 

d1 d2 

Fig. 6.8 The closed-loop system configuration 

The sample time for all discrete-time blocks was chosen to be T= 5 minutes, which is 

five times the minimum permissible. The sample time imposes an upper bound on the 

achievable closed-loop bandwidth, which cannot exceed ic/T radians per time unit, or 

0.6283 rad min-' in this case. Fig. 6.9 shows the singular value frequency responses of 

GR(s), where it is observed that the closed-loop bandwidth upper bound imposed by T is 

well above the open-loop process bandwidth which is about 0.0192 rad min-'. 

Process manipulated variables ui, u2 and u3 were constrained in accordance with the 

problem specifications. Specifically, I u, 1 <_ 0.5 and I Au; 1<_ 0.05 T, where Du; denotes the 

change in u; between two successive sampling instants, and i =1,2,3. These constraints 

were regarded as equipment limitations, such that if the PID controllers demand values 

outside the given ranges, the limiting values are applied. The modified z-Transform was 

employed to obtain GM(z), GD'(z), Gs(z), and GS* (z), from the nominal process model 

G(s). The minimal state-space realisations of these systems are given in Appendix B. 
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The saturation and rate limit non-linearities associated with the process, as well as the 

linear program solver used for the minimisation of u3 result in a complex closed-loop 

system, and hence the tuning of the two PID controllers becomes a difficult task. In this 

work, the PID tuning problem is transformed into a function optimisation problem using 

an extension of the objective function JM developed in Chapter 3, and then GAs are 

employed to search for suitable PID controllers to meet the design specifications for 

outputs yl and y2. This is discussed in Section 6.4. 

6.4 PID Controller Tuning 

This section focuses on the tuning of the two PID controllers according to the design 

specifications. Objective function J, ß, 1 is used as the basis for the controller performance 

index assignment strategy. In contrast to the tuning problems discussed in Chapter 5, in 

the case of the Shell standard control problem there are no set point tracking or loop 

coupling specifications. The output regulation objective is to reject disturbances d1 and 

10-3 10-2 10-1 100 101 
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d2 and maintain outputs yi and y2 at specification (0.0 ±0.005 in the steady state). There 

is also a transient requirement for yl which must be maintained within the maximum 

and minimum values of 0.5 and -0.5 at all ' t. Since the main requirement is to reject dl 

and d2, the PID controller performance can be evaluated by subjecting the closed-loop 

system to a set of disturbance test patterns, and objective function JM can still be used to 

compare the resulting responses for yl and y2 with the problem specifications. This is 

discussed in detail in Section 6.4.1. 

6.4.1 Objective Function Formulation 

The performance of PID controller i under disturbance test pattern j can be quantified 

using the following function, where DE -S and f (u)(t) and jj, ' (t) are the upper and 

lower boundary functions representing the corresponding specifications. 

Olt (D) : _0 

tmcrac 

(max{J°(t) 
- y. (t), 01+ maxly, (t) -f 

(u) (t), 0 }) dt (6.17) 

This function is the same as J,, in Eq. (3.16), and quantifies the controller performance, 

based solely on the shape of the process output signals. However, there may be cases 

where it is desirable or necessary to suppress the activity of the manipulated variables. 

A measure of the activity of manipulated variable i under disturbance test patternj can 

be obtained by evaluating the following function. 

kmý L\ul (kT) 2 

II(D). _ý b k=1 1 

(6.18) 

where Dul (kT) = ul (kT) - ul [(k -1)T], T denotes the sample time, and k,,, =t,,, IT. The 

manipulated variable moves Aul are normalised by dividing them with their absolute 

rate limits of 81 units per sample. Similarly to the formulation of JM, the terms Oy and Ili 

can be weighted and lumped together to form an objective function that can be used to 

quantify the performance of candidate controller D with respect to all combinations of i 

and j. Formally, the objective function is defined as 

JO(D): =max 
Z[ajjOjj(D)+kjjIjj(D)] ER+ (6.19) 

1 
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where aij >_ 0 and ? >_ 0 are the output and input weighting coefficients, respectively, 
for loop i under disturbance test patternj. It is observed that the numerical evaluation of 
Jo for one candidate controller requires the closed-loop system to be simulated as many 
times as there are disturbance patterns. In simulation run j, disturbance test patternj is 

applied to the closed-loop system, and output and input terms Olt and Ili, respectively, 
are evaluated for all loops. The results are then weighted and added together to form a 
single number that indicates the quality of the candidate controller under disturbance 

pattern j. After all disturbance patterns have been applied to the closed-loop system, the 

maximum of all resulting numbers is chosen as the value of Jo(D). 

The addition of input term III in the objective function results in Th = 0. This is because 

the definition of Ili implies that III >0 for all non-trivial controllers. Therefore, provided 

ky > 0, objective function Jo will be non-zero for all non-trivial controllers. This means 

that no strictly optimal solutions can exist in 2). A direct consequence of this, is that a 

unique optimal solution should normally be expected when minimising Jo. Although the 

addition of III in the objective function removes the useful properties associated with 

strictly optimal solutions, the improved robustness achieved by the inclusion of III was 

judged as necessary, considering the difficulty of the Shell standard control problem. 

This approach is also very common in other optimisation-based control schemes, such 

as most predictive control algorithms (Garcia and Morshedi, 1986; Clarke, Mohtadi, and 

Tuffs, 1987a, 1987b; Garcia, Prett, and Morari, 1989; Clarke and Mohtadi, 1989). 

6.4.2 Application to the Shell Standard Control Problem 

In the case of the Shell standard control problem, the set of all permissible controller 

parameter vectors is 2 =I T. TD1 Kp2 TI, TDZ ]ER 61 
. Two disturbance test patterns 

were used for the closed-loop tests. Specifically, d1= [0.5 0.5]T and d2 = [-0.5 -0.5]T 

which represent the worst-case scenarios, since dl and d2 are at the extremes of ±0.5 and 

have the same sign. With reference to Eq. (6.19), i =1,2 (for the two PID loops), and 

j =1,2 (for the two disturbance patterns). 

In the steady state, yl and y2 must be maintained at 0.0 ±0.005. In addition to that, yl 

must be maintained between 0.5 and -0.5 at all t, while there is no transient requirement 
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for y2. These specifications were expressed as time-domain bounds by means of j1 (t) 

and fj' (t) which are shown in Fig. 6.10. They were kept constant for all disturbance test 

patterns. The maximum simulation time was set to be tmx = 400 minutes. The required 

settling time, as defined in (6.5), was set to be tS = 200 minutes, which is well within the 

closed-loop bandwidth requirement. The weighting and scaling coefficients were set to 
be ct =2 =1 and 8; = 0.05 T=0.25, respectively, for all i, j. In order to evaluate Jo, the 

closed-loop system shown in Fig. 6.8 was simulated in MATLAB /SIMULINK using the 
Runge-Kutta fifth-order numerical integration algorithm, with a constant step size of 1 

minute. The integral in Eq. (6.17) was evaluated using the Euler method. 

Yi 
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0.000 
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-0.200 

-0.500 

Y2 

0.200 
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-0.200 

Fig. 6.10 Performance specifications for outputs yj and Y2 

., ýt 
,ý 

ýt 

The transient specifications for output y7 were not included in the objective function J0, 

because the two PID controllers do not directly affect the value of y7, and no feedback 

information about y7 is used in the computation of controller outputs ul and u2. The LP 
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approach used to compute u3 guarantees that the constraint y7 >- -0.5 will not be violated 
in the steady state. However, constraint violations may occur in the transient period. To 
minimise these constraint violations on y7, the optimal value of u3 at each sampling 
instant must be computed, which implies solving the full minimisation problem in (6.5). 
This is a difficult task and was not attempted in this work. Cuthrell, Rivera, Schmidt, 

and Vegeais (1990) attempted to numerically solve (6.5) using QDMC and a non-linear 
programming-based controller, where it was observed that constraint violations on yi, y2 
and y7 still occurred in the transient period. This is a strong indication that a feasible 

solution to problem (6.5) may not exist at all t, and constraint violations in the transient 

period may thus be inevitable. An interesting discussion on the feasibility of (6.5) can 
be found in Prett, Garcia, and Morari (1990). 

6.4.3 Genetic Algorithm Configuration 

Objective function Jo was minimised using a simple GA, with a generation gap g=0.9 

and fitness-based reinsertion to implement an elitist strategy. Linear population ranking 
(described in Section 4.42) was used as the fitness assignment strategy, with a selective 

pressure ap=2. Adaptive fitness sharing was not applied in this problem, since there 

exist no strictly optimal solutions in the search landscape (by the definition of Jo) and 

the optimal solution is likely to be unique. Stochastic universal sampling (Baker, 1987) 

and single-point crossover were employed in the reproduction and crossover operators, 

respectively. The size of the population was chosen to be N= 80, in accordance with 

experimental studies of Grefenstette (1986). The initial, randomly selected population 

was left to evolve for 200 generations, although good convergence was achieved in less 

than 120 generations. Each of the six parameters in DE2 was encoded using the binary 

alphabet and Gray coding (Caruana and Schaffer, 1988). The string resolution for each 

parameter was set to 12 bits, resulting in a total string length of 1= 6x 12 = 72 bits. This 

results in a search space whose size is approximately 4.7 x 1021 points. The chromosome 

structure used is similar to the one shown in Fig. 5.4. The crossover and mutation 

probabilities were chosen to be p, = 0.45 and p, n = 0.01, respectively, using the guidelines 

of Grefenstette (1986). The PID controller proportional terms Kp, were assumed to take 

values in the interval [0,10], the integral terms TI, in the interval [0.1,100] minutes, and 

the derivative terms TD, in the interval [0,20] minutes. 
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6.5 Simulation Results 

In order to test the performance of the control scheme, the closed-loop system was 
subjected to disturbance patterns d1= [0.5 0.5]T, d2 = [-0.5 -0.5]", d3 = [0.5 -0.5]T, and 
d4 = [-0.5 0.5]T, covering disturbances with the same sign and with opposite signs. Note 
that patterns d3 and d4 were not used in the PID tuning closed-loop tests. Figures 6.11 to 
6.14 show the closed-loop responses obtained using the best PID controller parameters 
at generation 200. The regulation performance specifications for yl and y2 (shown in 
Fig. 6.10), as well as the saturation constraint boundaries for ul, u2, and u3 are also 
plotted for comparison. 

It can be seen that, under all four disturbance test patterns, the closed-loop system has 

completely met the steady-state specifications. It is observed that outputs yl and y2 are 
rapidly stabilised to zero while input u3 is minimised. Furthermore, all manipulated 

variables are within the saturation and rate limit constraints. It is also observed that 

when d= dl (Fig. 6.11), y7 settles precisely at its constraint boundary of -0.5. This 

means that the steady-state value of u3 is indeed the lowest possible value such that all 

objectives are satisfied and no constraints are violated in the steady state. If u3 is set to a 
lower value, y7 will drop below -0.5 causing a constraint violation. This situation also 

occurs when d= d4 (Fig. 6.14). Similarly, when d= d2 (Fig. 6.12), it is ul which now 

settles precisely at its upper constraint boundary of 0.5, indicating that the steady-state 

value of u3 is again optimal. If u3 is set to a lower value, ul will have to be increased to a 

value greater than 0.5 to satisfy all other requirements. But ul is already constrained 

such that I ul 1< 0.5. This will cause the actuator of ul to saturate, resulting in a negative 

offset in yl, thus dissatisfying the regulation requirement for y'. This situation also 

occurs when d= d3 (Fig. 6.13). 

In terms of transient specifications, it is observed that small constraint violations occur 

for yl in the time range between 45 and 70 minutes (Figures 6.11 and 6.12). Transient 

constraint violations also occur for y7 in the first 220 minutes. Setting Xy =0 for all i, j 

and repeating the PID tuning did not solve the problem. Note, however, that similar 

violations also occur when using the QDMC algorithm, as well as several other modem 

approaches (see Prett, Garcia, and Morari, 1990). It is, therefore, conjectured that the 

transient response output constraint violations arise necessarily from the structure of the 

controlled process, and thus cannot be avoided. 
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The parameters of the optimal controller, Dopt, obtained by the GA, as well as the value 
of Jo (Dope), are shown in Table 6.2 below. 

TABLE 6.2 Optimal PID controller aarameters with n:: -1 any 1 .. -1 f�r nil ;; 
Parameter PID Controller 1 PID Controller 2 

Proportional gain, Kp, 1.5043 0.5690 
Integral action time, T; (minutes) 7.1259 39.8404 
Derivative action time, Toj (minutes) 0 0 
Objective function, Jo 4.9631 

It is observed that Kp, -- 3KP2 and T,, -- 6T1, indicating that loop 1 requires tighter 

control. This is mainly because of the additional transient requirement for yl which does 

not exist for y2 (see Fig. 6.10). An interesting observation is that TD, = TD2= 0, indicating 

that the derivative terms in both loops have been switched off. This is not surprising 

since PI control is generally sufficient for processes with first-order dynamics, such as 

the available model of the Shell process. 

In order to see the effect of the term Ili in the objective function Jo in Eq. (6.19), the GA 

run was repeated with ky=0. The parameters of the optimal controller, Dop,, obtained by 

the GA, as well as the value of Jo (Dopt), are shown in Table 6.3 below. 

- -- --wý- iý--- i r, %'n __ L.. ýIIý.. ... ........ ý..... L..... ...: 4-4. ... -4 -l ý1 
-r% 

c- - -I I;; 
I AULC O. J LI LII1IQI rILJ IVIIllIJII I 1J IclI ic: wi. ý VWI II w/j- 1 a. ý1ýn -Ij-v I WO - .jj 

Parameter PID Controller I PID Controller 2 

Proportional gain, Kp1 2.8327 1.1624 

Integral action time, T; (minutes) 4.4912 43.2558 

Derivative action time, To; (minutes) 0 3.8974 

Objective function, J0 1.8618 

It is observed that X, ý =0 for all i, j resulted in controllers with higher proportional gains, 

a lower integral action time for the controller in loop 1, and a non-zero derivative action 

time for the controller in loop 2. This was expected since ?=0 means that term I, ý, 

which penalises the activity of the manipulated variables, is not used in the objective 
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function. In terms of transient output constraint violations, the PID controllers obtained 
achieved marginally better performance than those in Table 6.2, but at the expense of 
unwanted oscillatory behaviour in the manipulated variables, as can be observed in 
Fig. 6.15 where the closed-loop system responses under disturbance dl are shown. This 
is a strong indication of poor robustness. It is, therefore, concluded that term III is an 
important element of Jo, which can improve the robustness of the closed-loop system. A 
desirable balance between performance and robustness can be achieved by appropriately 

adjusting the weighting coefficients alj and k y. 
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Fig. 6.15 Closed-loop system responses under disturbance pattern d1= X0.5 0.55T 

using the PID controller parameters given in Table 6.3 

6.5.1 Measurement Noise and Disturbance Variations 

The genetically tuned PID controllers were also tested under noisy output measurements 

and disturbance variations. Specifically, measurement noise was added to all measured 

process outputs, yl, Y2, y3, y5, y7. The noise signals used were independent, normally 

distributed sequences, all having zero mean and variance o =1 x 10-3. The closed-loop 
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system was subjected to the four disturbance patterns d1= [0.5 0.5]T, d2 = [-0.5 -0.5]TI 
d3 = [0.5 -0.5]T, and d4 = [-0.5 0.5]T, which were applied in the following sequence. 

dl(t) _ [0.5 0.5]T5 

d(t) = 
d2 (t) = [-0.5 -0.5]T, 
d3(t) = [0.5 -0.5]T, 
d4 (t) = [-0.5 0.5]T, 

0 <_ t< 400 
400<_ t< 800 

800 <_ t< 1200 
1200 <_ t <_ 1600 

(6.20) 

where t is in minutes. The closed-loop responses without measurement noise are shown 
in Fig. 6.16, while those with measurement noise are shown in Fig. 6.17. It is observed 
that the presence of measurement noise does not significantly affect the performance of 
the closed-loop system. As expected, the disturbance vector transition from dl to d2 at 
t= 400 minutes results in large deviations from the transient specifications for outputs 

yl, y2, and y7. Note, however, that the Shell standard control problem specifications 

assume that all signals are at zero prior to a disturbance change (zero initial conditions). 

Since I dl 1<_ 0.5 and I d2 <_ 0.5, this results in disturbance changes with 11 Ad ll < -,. 
[2-/2. In 

function d(t) in (6.20), the transition at t=400 minutes is of magnitude II d2 - dl ll = 

which is twice the maximum 11 Ad 11. This is the reason for the large constraint violations 

that are observed after the disturbance change at t= 400 minutes. In the noise-free case 

(Fig. 6.16), the disturbance estimates accurately track the real disturbances, with a lag of 

one sample as theoretically predicted earlier. These estimates are then used by the LP 

solver, which accurately computes the optimal steady-state value of u3. In the case 

where measurement noise was added to the system (Fig. 6.17), it is observed that the 

output responses are qualitatively very similar to those in the noise-free case, indicating 

good noise immunity. It can be seen that the noise propagates through to the disturbance 

estimates, and also to the LP solution which is filtered by a low-pass filter before being 

applied to the process. In order to reject the noise in the disturbance estimator outputs, 

filter GF(Z) in Eq. (6.15) was also used. GF(z) consists of two filters, both with a time 

constant of 30 minutes. The obtained results are shown in Fig. 6.18. 

GF (z) _ 

0.1535z 

z-0.8465 

0 

0 
0.1535z 

z-0.8465 

(6.21) 
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Fig. 6.18 Closed-loop system responses with measurement noise and disturbance filtering 
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It is observed from Fig. 6.18 that filter GF(z) in the disturbance estimator results in 

much less noisy disturbance estimates, but at the expense of a much slower disturbance 

tracking time. Although the LP solver output is now less noisy than that in Fig. 6.17, it 

is observed that there are large undershoots around 400 and 1200 minutes. The reason 
for this behaviour is that the LP solver output is a non-linear function of the disturbance 

estimates, which means that slow changes in the values of the disturbance estimates in 

the direction of the real disturbances does not necessarily imply slow changes in the LP 

solver output in the direction of its optimal value. With reference to Fig. 6.18, although 

the optimal steady-state values of u3 when d= dl and d= d2 are -0.2178 and -0.1040, 

respectively (as observed in Table 6.1), the slow tracking of the real disturbance vector 

results in d [0 Of at t= 420 minutes. The optimal steady-state value of u3 in this case 

is -0.3181 (because of the non-linearity of the LP solver). This causes the undershoot in 

the LP solver output at t= 420 minutes. A similar situation occurs at t =1220 minutes. 

These undershoots reduce the overall performance of the closed-loop system, as can be 

observed by comparing the output responses of Fig. 6.18 with those of Fig. 6.17. It is, 

therefore, concluded that filter GF(Z) should be used with caution when combined with 

non-linear elements such as the LP solver used in this work. GF(Z) may, however, be 

helpful in cases where the unfiltered d is heavily corrupted with noise. 

6.5.2 Robust Stability and Performance Tests 

In all simulation results presented earlier in this section, it was assumed that there is no 

uncertainty in the gains of the process model. However, in the Shell standard control 

problem statement, the gains of all 35 transfer functions of the process model G(s) are 

subject to uncertainties of the following form. 

K11+E1AK11 
e-SLii 

Tls+l 

G(s) 
K71+E1AK71 

e-sL71 
Tals+l 

... 
K15 + s5AK15 

e-SL'S 
TSS+1 

... 

K75 + 65AK75 
e-SL75 

T7Ss+l 

(6.22) 

where Klj, Typ, and Ly denote the nominal gain, time constant, and time delay of the i, j 

element of G(s), OKu denotes the absolute maximum uncertainty of gain Kjj, and sj 
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determines the amount of uncertainty of gain K, j, with -1 <_ sj< 1 and j =1, ... , 5. The 

numerical values for K, , Ty, L, 
, and AKy can be found in Appendix A. According to the 

Shell standard control problem statement (see Appendix A), the closed-loop system 
should satisfy all control objectives for all the plants in the uncertainty set (i. e. for all 
combinations of ci). The Shell problem statement contains a number of prototype test 
cases, which have been formulated in order to provide a common frame of reference for 

evaluating the robust stability and performance of different design approaches. These 

prototype test cases are given in Table 6.4 below. 

TABLE 6.4 Prototype test cases for the Shell standard control problem (Prett and Morari. 1987) 

Test case EI £2 £3 £4 £5 d1 d2 Optimal value of u3 
1 0 0 0 0 0 +0.5 +0.5 -0.2178 
2 -1 -1 -1 +1 +1 -0.5 -0.5 +0.0782 
3 +1 -1 +1 +1 +1 -0.5 -0.5 -0.2146 
4 +1 +1 +1 +1 +1 -0.5 +0.5 -0.2494 
5 -1 +1 0 0 0 -0.5 -0.5 +0.0386 

Prototype test case 1 corresponds to the nominal process (since sj =0 for all j=1, ... ) 5), 

with d= [0.5 0.5]T. This case has already been investigated earlier in Section 6.5, with 

the closed-loop responses shown in Fig. 6.11. In order to evaluate the robustness of the 

closed-loop system in terms of stability and performance, the remaining four prototype 

test cases were also investigated. All of these cases introduce large uncertainties in the 

gains of the process. The closed-loop responses for prototype test cases 2 to 5 are shown 

in Figures 6.19 to 6.22, respectively. The corresponding optimal steady-state values of 

u3 for the four uncertain processes, shown in Table 6.4, are also shown in the figures for 

comparison. The results for test cases 2,3, and 5 should be compared with those shown 

in Fig. 6.12 because the latter uses the same disturbance vector d= [-0.5 -0.5]T, but 

without uncertainty. Similarly, the results for test case 4 should be compared with those 

shown in Fig. 6.14 where d= [-0.5 0.5] T. 

Although the proposed design was only based on the nominal process parameters, it is 

observed that all prototype test cases result in a stable and well-damped closed-loop 

system, which strongly suggests that the closed-loop system is robustly stable. In test 

case 2 (Fig. 6.19), it can be seen that yl and y2 are stabilised to zero, but the transient 
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constraint violations are now larger than those in Fig. 6.12 (no uncertainty). It is also 
observed that u3 now converges to a value that is slightly larger than the optimal. This is 
because the disturbance estimator and the LP solver used in the proposed scheme are 
both based on the nominal process parameters which are now significantly different 
than those of the real (uncertain) process. The sub-optimality of u3 can also be inferred 
by the fact that none of the constrained variables, u1, u2, u3, y7, approaches a constraint 
boundary in the steady-state. However, the difference from the true optimal steady-state 
value of u3 is not very large, considering the severity of the gain uncertainties present in 

the process (gains Kll, K21, K31, and K71, for example, which are extensively used in the 

proposed scheme, all have values which are less than half of their nominal ones). In 

fact, the observed performance of the scheme proposed in this work appears to be better 

than that of a QDMC controller that is tuned for the nominal process, and is comparable 
to that of schemes in which the model gain uncertainty is considered explicitly (see, for 

example, Cuthrell, Rivera, Schmidt, and Vegeais, 1990, who proposed a solution to the 

Shell standard control problem based on a nominal process QDMC design, as well as a 

non-linear programming approach that explicitly considers model uncertainty). 

In test case 3 (Fig. 6.20) it is observed that, although y2 achieves the regulation objective 

and is stabilised to zero, there is a steady-state offset in yi which settles at a non-zero 

value, indicating that integral action in loop 1 cannot be achieved. This problem arises 

because of the steady-state value of u3 computed by the LP solver, which is now smaller 

than the optimal and is thus infeasible. This causes ul to saturate heavily, thus removing 

the integral action from loop 1. Apart from the steady-state offset in yl, the observed 

performance is qualitatively comparable to that of QDMC and other, more advanced 

schemes (see, for example, Cuthrell, Rivera, Schmidt, and Vegeais, 1990). It will be 

shown later in this section that the steady-state offset in yl can be completely eliminated 

by appropriately modifying the linear program in (6.7). 

Finally, in both test cases 4 (Fig. 6.21) and 5 (Fig. 6.22), the proposed scheme achieves 

zero offset for both yl and y2, with values for u3 which, although sub-optimal, are close 

to the optimal ones. The output responses in test case 4 are more oscillatory thanthose 

shown in Fig. 6.14 (no uncertainty), but the output constraint violations are similar. In 

test case 5, the output constraint violations are now slightly larger that those shown in 

Fig. 6.12 (no uncertainty). 



Chapter 6- Solution to the Shell Standard Control Problem 169 

0.2 

0 
-0.2 
-0.4 
-0.6 

0-0.8 
-1 

-1.2 

--- 

'1% 
7 

--- ------- ......... I......... ... .... -----........... ------............................ ---............ -----................................ - '. 2' 

v 

0.6 

'1 0.4 

0.2 
Q 
c 

0 

+.. .ý ý, 

ý -I 

O 

ou iuU 150 200 250 300 350 400 
Time, t (minutes) 

1 

-2 

0 50 100 150 200 250 300 350 400 
Time, t (minutes) 

Fig. 6.19 Closed-loop system responses for prototype test case 2 

'ý' 3 

----- Optimal steady-state value of u3 

------------------------------------------------------ 

1ý 

\1Iý. 

........ 
ýý`` 

....: ............... 

\\ 
1 

17 

Time, t (minutes) 

0.6 

0.4 

0.2 
N 

0 
C 

-0.2 

nA 

----- Optimal steady-state value of u3 J 

_________________________________________________i 

I 
............ ........ 

I 
.............. 

----------- - -------- 

0 50 100 150 200 250 300 350 400 
Time, t (minutes) 

Fig. 6.20 Closed-loop system responses for prototype test case 3 



Chapter 6- Solution to the Shell Standard Control Problem 170 

0.2 

0 

-0.2 cli 
ý- -0.4 
0 

-0.6 

-0.8 

............ 

,, ------... -.. 
,, -------------------------------------- ý .. - 

0 

0.3 

0.2 

0.1 

N0 

0.1 

-0.2 

_n 

bU 100 150 200 250 300 350 
Time, t (minutes) 

rvv 

1 

2 ----- Optimal steady-state value of u3 

3 

0 50 100 150 200 250 300 350 
Time, t (minutes) 

Fig. 6.21 Closed-loop system responses for prototype test case 4 

0.5 

. -. 0 .ý 

`tvv 

tIIIý 

/ý 

---------ý--------- 
--------------------------------------- 

7 

\ ... 4 ......... ...... . ...... ........................................................................................................... .. 
Cl) 
Q -0.5 
0 

0 
-1 

0.6 

0.4 

N 
0.2 

a 
c 

0 50 100 150 200 250 300 350 400 
Time, t (minutes) 

............................ ý. ý... 
1 

2 

0 
0 50 100 150 200 250 300 35u 

Time, t (minutes) 

3ý 

Fig. 6.22 Closed-loop system responses for prototype test case 5 

----- Optimal steady-state value of u3 

400 



Chapter 6- Solution to the Shell Standard Control Problem 171 

It was shown in Section 6.3.2 that when s» =0 for all j=1, 
... ,5 (no uncertainty), the LP 

solver used in the proposed scheme computes the steady-state value of u3 that brings the 
process at the verge of at least one constraint violation. Also, neither the LP solver, nor 
the disturbance estimator consider the model gain uncertainties explicitly, but are only 
based on the nominal process model. This means that gain mismatches between the real 
process and the nominal process model will almost certainly cause the LP solver output 
to deviate from the optimal value of u3. If the LP solver output satisfies all conditions of 
linear program (6.7) for the real (not the nominal) process, the obtained solution will be 

sub-optimal and may still be acceptable. This situation can be observed in prototype test 

cases 2,4, and 5 (Figures 6.19,6.21, and 6.22, respectively). On the other hand, if the 
LP solver output does not satisfy all conditions of linear program (6.7) for the real (not 

the nominal) process, the solution will be infeasible and, therefore, not acceptable. This 

situation can be observed in prototype test case 3 (Fig. 6.20), where the equality y1= 0 in 

linear program (6.7) is not satisfied, resulting in the steady-state offset in yl. 

In order to alleviate this problem and improve the robust performance of the proposed 

scheme, more conservative constraint boundaries may be specified in (6.7), so that the 

effects of uncertainties are accounted for. Consider the following linear program. 

minu3, i=1,2,3 
Ui 

Subject to: 1Ui 1<0.5rß, i=1,2,3 (6.23) 

1 y1I = 0, i=1,2 

y7 >- -0.511 

where 0: 5 11: 5 1. Setting il =1 results in linear program (6.7), while the smaller the value 

of q, the more conservative the constraint boundaries. Setting 11 <1 will inevitably result 

in the LP solver generating sub-optimal solutions for u3, but these solutions will now be 

feasible on a wider range of processes within the uncertainty set. This is similar to the 

heuristic approach of de-tuning a controller in order to increase its robustness. Fig. 6.23 

shows the closed-loop responses for prototype test case 3, with Ti = 0.75. It is observed 

that the steady-state offset in yl has now been completely eliminated, and the value of u3 

is marginally larger than the optimal. 
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Prototype test cases 1,2,4, and 5 were also evaluated using 11 = 0.75, in order to see 
how this setting affects the obtained results. It was clearly observed that in all cases the 

obtained responses were qualitatively similar to those obtained when 11 =1. As expected, 

when fl = 0.75 the LP solver output converged to values for u3 slightly larger than those 

obtained when 'q = 1. Interestingly, the transient constraint violations were fewer when 

,q=0.75. This is because of the conservatism in the constraint boundaries used. 

6.5.3 Genetic Algorithm Convergence 

The optimisation performance of the GA can be observed in Fig. 6.24, which illustrates 

the convergence of the objective function Jo, as well as that of the proportional, integral, 

and derivative terms of the two PID controllers. Fig. 6.24 shows the parameters of the 

best pair of PID controllers in each generation. It can be seen that good convergence for 

all parameters is achieved in less than 120 generations. The solution shown in Table 6.2 

was attained at generation 134, indicated by the vertical dashed line. 
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In order to evaluate the performance of the GA in terms of optimality of the obtained 
solution, the minimisation of Jo was repeated several times, resulting in a total of 50 
independent GA runs. In each run, the GA was initialised with a different, randomly 
selected population. It was observed that in 72% of all runs (36 runs), the GA converged 
precisely to the solution shown in Table 6.2. In the remaining 28% (14 runs), the GA 
converged to solutions which, although sub-optimal, are practically identical to the one 
shown in Table 6.2, differing only in the terms KP, and T1, where the observed absolute 

maximum differences were 7.3 x 10-3 (which is equivalent to three least significant bits 

or 0.073% of the search interval for K 
1) and 2.4 x 10-2 minutes (which is equivalent to 

one least significant bit or 0.024% of the search interval for T, ), respectively. Of course, 

there is no guarantee that the solution shown in Table 6.2 is the one which achieves the 
global minimum of Jo, but the fact that practically all randomly initialised GA runs 
successfully converged to that particular solution is a strong indication of the optimality 
of the solution. 

6.5.4 Search Landscape Complexity 

The search landscape associated with the PID controller tuning is six-dimensional, and 

thus cannot be visualised easily. It is possible, however, to examine the surface slices 

that result by keeping any four of the six parameters at their optimal values shown in 

Table 6.2, and varying the remaining two. Gridding can then be used to compute the 

locations of the minima of the surface slice. In this way, the complexity of the search 

landscape can be assessed. 

Three such surface slices and the corresponding maps of minima, obtained by varying 

the proportional, integral, and derivative terms, are shown in Figures 6.25,6.26, and 

6.27, respectively. The remaining controller parameters in each surface slice were kept 

at their optimal values shown in Table 6.2. It is observed that the surface slices are 

complex, highly non-linear and also multimodal. The multimodality of the surface slices 

can better be observed by examining the corresponding maps of minima, which were 

computed by evaluating Jo at a grid of 501 x 501 points, where thousands of minima 

were found in each surface slice, of which only 1 (indicated by the circular marker) 

corresponds to the optimal controller parameters (unique solution). 



Chapter 6- Solution to the Shell Standard Control Problem 
175 

500 

- 400 
C 
O 

300 

> 200 
U 
N 

0 100 

0 
10 

Map of minima of surface slice -I and D terms at optimal values Total number of minima: 21,184 - Optimal: 1 (unique solution) 

N 

Y 

0) 
c 
0 
If 
0q 
0- 
0 
O3 

2 

1 

10 

Fig. 6.25 Objective function surface slice and map of minima (all integral and 
derivative terms are at their optimal values shown in Table 6.2) 

"ýýýp 0.1 0.1 ? 109 - 

"" iýýYýýrY. iSt1 

0123456789 10 
Proportional term, Kp1 



Chapter 6- Solution to the Shell Standard Control Problem 176 

400 

300 
0 
U 

200 
a) 
U 

100 
O 

0 
10_i 

10` 

I-, 

10ý 
c 
E 

N 

fýý 

L^` 

W 

cu 
1 00 

c 

Map of minima of surface slice -P and D terms at optimal values 
Total number of minima: 8,123 - Optimal: 1 (unique solution) 

a 
i 

. 
1 

" 

&; 

tat 

04 

? \4 
. F .. 

"M 

"" 

\v,.. I"": ) 

. ... ...... ... ........................ ... ........ ...... 
.......... ....... ......... ............. .. 

Jew 

I 

IS - 
ýr. 

v 
WN. 

10-1 1_ 
1 

10 10° 10' 
Integral term, T1 (minutes) 

ý., p. 
l 

10-1 

102 

Fig. 6.26 Objective function surface slice and map of minima (all proportional 

and derivative terms are at their optimal values shown in Table 6.2) 

112 (Mintl 102 102 V\x0l 
" 

tes) 



6- Solution to the Shell Standard Control Problem 
171 
I// 

200 

150 
0 
U 

100 
a) 
U 
d) 
H 50 
0 

0 
20 

20 

18 

16 

U) 
5 1. - 
4 14 
c 
E 

12 

10 

aD 8 

cß 
6 

0 

0 

Map of minima of surface slice -P and I terms at optimal values Total number of minima: 16,867 - Optimal: 1 (unique solution) 

20 

Fig. 6.27 Objective function surface slice and map of minima (all proportional 
and integral terms are at their optimal values shown in Table 6.2) 

. wlR7,0 0 Vey,. 02 

2468 10 12 14 16 18 20 

Derivative term, Tot (minutes) 



er 6- Solution to the Shell Standard Control Problem 17R 

The surface slice obtained by varying the proportional terms (Fig. 6.25) exhibits the 
highest multimodality of all, with 21,184 minima, followed by the surface slice obtained 
by varying the derivative terms (Fig. 6.27), which contains 16,867 minima. The surface 
slice obtained by varying the integral terms (Fig. 6.26) was the least multimodal of all, 
containing 8,123 minima. Note that, in all three cases, the minima were computed by 
assuming that Jo changes monotonically between grid points. This assumption should 
generally hold true if the grid is sufficiently dense. The actual `continuous' surface slices 
may contain a much larger number of minima. 

6.6 Summary 

In this chapter, a solution to the Shell standard control problem was developed, based on 

genetically tuned PID controllers. Two linear, discrete-time PID controllers with integral 

anti-windup and a Smith predictor were employed for the regulation problem, while the 

input minimisation problem was solved analytically, by estimating the two unmeasured 
disturbances entering the process, and then solving the associated linear programming 

problem on-line. The six parameters associated with the two PID controllers were tuned 

using GAs. An extension of the objective function JM developed in Chapter 3 was used 

to provide the necessary performance indexes. The performance of the proposed control 

scheme was very satisfactory, and this was illustrated by extensive simulation results. It 

was demonstrated, through simulation, that the resulting closed-loop system is robustly 

stable and that its robust performance is comparable to that of more computationally 

intensive approaches, such as QDMC and other algorithms (see, for example, Cuthrell, 

Rivera, Schmidt, and Vegeais, 1990). Making the specifications more conservative was 

shown to improve the robustness of the scheme in the face of large model uncertainties. 

The closed-loop system satisfied all steady-state specifications for all five prototype test 

cases published by Shell, which include the nominal process model as well as a number 

or worst-case uncertain models. It must be mentioned here that the proposed solution is 

not complete. Specifically, output constraint violations can arise in the transient period, 

and the possibility of failure in the sensors for outputs yl and y2 was not considered in 

the design. However, transient constraint violations are present in all solutions available 

in the literature that the author is aware of, and it has been conjectured that a complete 

solution to the problem does not exist (Prett, Garcia, and Morari, 1990). The optimality 

of the genetically tuned PID controllers was supported by repeating the controller tuning 
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several times, where it was observed that practically all randomly initialised GA runs 

successfully converged to the same set of controller parameters. The complexity of the 

search landscape associated with the PID tuning was demonstrated by examining three 

surface slices, where a large number of local minima were shown to be present. This 

justifies the use of GAs in this problem, as conventional optimisers are not likely to 

perform well in such complex search landscapes. 
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Conclusions -Main Contributions and 
Further Work 

7.1 Introduction 

The first part of this chapter summarises the key results and main contributions of this 

research project. A number of recommendations for further work in this direction, that 

will extend the application of GAs in the area of control systems engineering, are given 
in the second part of this chapter. 

7.2 Summary of Main Contributions 

This research work investigated the potential of the use of GAs as a basis for the optimal 

solution of control engineering problems in a function optimisation framework, focusing 

on multivariable process control. A number of novel performance indexes and controller 
design/tuning methods were developed and analysed, and an extension of the standard 

GA was proposed, which enables GAs to identify multiple equivalent optimal solutions 

to a given problem. The proposed methods were tested on a number of control problems 

involving multivariable processes of varying complexity, including a 5-input, 7-output 

chemical process with strong interactions, constraints, actuator non-linearities, and large 

dead times. The main contributions and novel aspects of this work can be summarised 

as follows. The references of the published parts of this work are also given. 

7.2.1 Novel Obiective Function Formulation for Control Systems 

A novel objective function, denoted by Js(. ), was proposed for use in SISO systems, that 

enables the designer to explicitly specify the performance specifications associated with 

a given problem, in terms of time-domain bounds on the closed-loop system responses. 
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The formulation of Js is such that the set of all controllers that completely satisfy the 

specifications is precisely the kernel of J. This set, denoted by 2, can be the empty set 
(in cases where the given specifications are unachievable by all controllers in the search 
space), or can even be an infinite set, where an infinite number of equivalent (in terms 
of performance index) controllers exist that completely satisfy the given specifications. 
Objective function Js was experimentally analysed using a simple PI controller tuning 

problem. The obtained solutions were compared with those obtained using conventional 
objective functions, as well as using several standard PI controller tuning methods. It was 
shown that JS is capable of accurately quantifying complex performance specifications 
which cannot be accurately expressed in conventional terms such as gain /phase margin 

requirements. Finally, a more general objective function was proposed, denoted by JM("), 

which is a generalisation of JS for use in MIMO systems. Parts of these results have been 

published in Vlachos, Evans, and Williams (1997), and Vlachos, Williams, and Gomm 

(1999a, 1999b). 

7.2.2 Adaptive Fitness Sharing - An Extension of the Standard GA 

A new method called adaptive fitness sharing was proposed, whose purpose is to enable 

GAs to locate multiple equivalent optimal solutions and distribute the members of the 

population uniformly within the optimal solution set. The proposed method is based on 

the techniques of niche formation and speciation, and is applicable to the optimisation 

of search landscapes which contain an infinite number of equivalent optimal solutions 

which share a unique objective function value that must be known a priori. The proposed 

method can thus be used for the optimisation of objective functions Js and JM. Formulae 

were derived for the estimation of the optimal value of the sharing radius ashare involved 

in the fitness sharing algorithm. The optimality of ßshare is maintained during the course 

of the search run, by dynamically modifying the scaling of the parameter vectors. This 

was shown to be equivalent to the automatic adaptation of ashare. The proposed method 

can thus be used in cases where the search landscape changes during the course of a GA 

search run. The time complexity of the proposed method was shown to be better than that 

of conventional fitness sharing. The computation time required to apply adaptive fitness 

sharing is usually much less than that of the objective function evaluations. Hence, the 

proposed method is not likely to significantly slow down the GA, and its application is 

simple and straightforward. The effectiveness of adaptive fitness sharing was supported 
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by extensive simulation results, and two population diversity measures were developed in 

order to quantify the obtained results. It was experimentally shown that adaptive fitness 

sharing outperforms the simple GA and population ranking alone. Furthermore, a set of 
statistical tests were performed, where it was clearly shown that adaptive fitness sharing 

consistently outperforms the simple GA and population ranking alone, in terms of both 

performance (higher degree of achieved uniformity) and robustness (less sensitivity to 
initial conditions). The adaptive properties of the proposed method were demonstrated 

by modifying the search landscape during the course of a GA run, where it was shown 
that adaptive fitness sharing successfully adapts the density of the population as required, 

while maintaining a high degree of uniformity throughout the search run. 

7.2.3 Parametric Controller Tuning for Multivariable Processes 

A new method for the automatic tuning of decentralised PI controllers for multivariable 

processes, based on GAs, was proposed. The major advantage of the proposed method is 

the ability to handle arbitrary performance specifications in the time-domain, that can be 

different for each system output. This is achieved by transforming the PI tuning problem 

into an optimisation problem, using objective function JM. Adaptive fitness sharing is 

also employed, in order to maximise the diversity of the obtained family of optimal PI 

controllers. The numerical robustness and open architecture of GAs make the proposed 

method directly applicable to the automatic tuning of a wide range of linear or non-linear 

multivariable controllers, and not just PI controllers. The effectiveness of the proposed 

tuning method was supported by a number of simulation results using three two-input, 

two-output processes with different degrees of interaction between the two loops. It was 

shown that, in all cases, the resulting PI controllers completely satisfied all performance 

specifications. Adaptive fitness sharing was shown to achieve a high degree of diversity 

in the obtained family of optimal solutions. The choice of GAs as a suitable optimisation 

method was supported by comparing GAs with two conventional optimisation methods, 

where it is was shown that GAs have higher success rates and are more immune to noise. 

The complexity of the optimisation problem associated with one of the three PI controller 

tuning examples was experimentally demonstrated by examining two surface slices of 

the resulting four-dimensional search landscape, where a large number of local minima 

were shown to be present. Parts of these results have been published in Vlachos, Evans, 

and Williams (1997), and Vlachos, Williams, and Gomm (1999a, 1999b). 
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7.2.4 Solution to the Shell Standard Control Problem 

A new solution to the Shell standard control problem was proposed, based on genetically 

tuned PID controllers. Two discrete-time PID controllers with integral anti-windup and 

a multivariable Smith predictor were employed for the output regulation problem, while 
the input minimisation problem was solved analytically, by estimating the unmeasured 
disturbances entering the process, and then solving the associated linear programming 

problem on-line. The six parameters associated with the two PID controllers were tuned 

using GAs. An extension of the objective function JM was used to provide the necessary 

performance indexes. Extensive simulation results were presented, which show that the 

proposed control scheme achieves a very satisfactory performance. It was demonstrated, 

through simulation, that the resulting closed-loop system is robustly stable and that its 

robust performance is comparable to that of more computationally intensive approaches, 

such as the Quadratic Dynamic Matrix Control (QDMC) and other algorithms. Making 

the specifications more conservative was shown to improve the robustness of the scheme 

in the face of model uncertainties. It was also demonstrated, through simulation, that the 

proposed control scheme satisfies all steady-state specifications for all five prototype test 

cases published by Shell, which include the nominal process model as well as a number 

of worst-case uncertain models. The complexity of the optimisation problem associated 

with the PID controller tuning was demonstrated by examining three surface slices of the 

resulting six-dimensional search landscape, where a large number of local minima were 

shown to be present. This justifies the use of GAs in this problem, since conventional 

optimisers are not likely to perform well in search landscapes of such complexity. Parts 

of these results have been published in Vlachos, Williams, and Gomm (1998). 

7.3 Recommendations for Further Work 

In this section, a number of recommendations for further work are given, focusing on the 

development of improved objective functions for control systems, and on the application 

of GAs in multiobjective optimisation and real-time/adaptive control. 

7.3.1 Improved Objective Functions for Control Systems 

The non-dependence of GAs on continuity and derivative existence enables a wide range 

of complex objective functions for control systems to be developed, which accurately 
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quantify the performance specifications for a given control problem. Functions JS and 
JM, developed in this work, are only two such examples. Objective functions of such 
complexity would normally be avoided, due to the apparent lack of efficient optimisation 
methods. The robustness and global optimisation ability of GAs enable many complex 
objective functions to be developed, without the limitations imposed by continuity and 
derivative existence requirements. This approach can result in powerful methods which 
have the potential to deliver excellent designs that would normally be unachievable using 
conventional design methods based on linear, time-invariant control theory. 

7.3.2 Multiobiective Optimisation 

Most approaches to optimisation-based controller design and tuning use single-valued 

objective functions to provide the necessary performance indexes to guide the search for 

optimal solutions. However, control engineering problems are very seldom associated 

with a single objective. Instead, several, often conflicting objectives are usually present, 
thus resulting in vector-valued objective functions. Such cases are usually treated by 

weighting and combining all objectives into a single-valued function, thus transforming 

them into single-objective optimisation problems. Function JM, developed in this work, 

uses this weighted-sum approach to combine all individual objectives Jy by means of 

the weighting factors wy. This approach may be acceptable in certain cases, but there are 

times when combining the objectives in an efficient way may not be practically feasible. 

Although GAs are inherently unsuitable for multiobjective optimisation in their standard 

form, a number of extensions have been proposed (Fonseca and Fleming, 1995), which 

enable them to efficiently optimise vector-valued objective functions in a multiobjective 

framework. A vector-valued version of JM can easily be obtained by simply redefining it 

as JM : J1 ... Jq E III+2 where J; {i1 
""" Jq jER, A multiobjective GA can then be 

employed to optimise JM. This approach eliminates the need to choose values for w1, 

and should greatly improve the efficiency of the resulting design/tuning methods. 

7.3.3 Real-Time and Adaptive Control 

The structure and operation of standard GAs generally prevent them from being applied 

to areas such as real-time and adaptive control, where the GA may be required to update 

certain system parameters on-line. The main problem is that, due to the stochastic nature 
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of their operation, standard GAs often produce solutions that cannot be directly applied 
to the real process for safety and other reasons. Furthermore, every member of the GA 
population has to be tested on the real process, and this can slow down the convergence 
of the GA if the process under control is relatively slow (as in most chemical processes, 
for example). The investigation into possible ways of extending standard GAs, in order 
to make them more suitable for real-time and adaptive control applications is a promising 
research area. In a process control framework, one possibility may be to develop a model 
of the process to be controlled, and use this model in a simulator to evaluate the members 
of the GA population at each generation. The solutions that result in stable closed-loops 
and achieve acceptable performance can then be selected and applied to the real process, 
and the objective function values of all members of the population can be corrected as 
necessary, based on the true performance of the selected solutions. In this way, only the 

well-behaved solutions are applied to the real process, thus minimising the probability 
of damaging the process, while at the same time the speed of convergence of the GA is 

greatly improved by only using the simulator to evaluate the solutions that appear to be 

unsatisfactory or inapplicable. Depending on the accuracy of the process model and the 

speed of response of the real process, a solution acceptability criterion can be specified 
that determines whether a candidate solution is satisfactory and safe enough to be tested 

on the real process. The acceptability criterion can be based on the candidate solution's 

objective function value, as well as on other additional safety criteria and the information 

acquired from previous on-line tests. 

7.4 Summary 

In this chapter, a summary was given of the key results and main contributions of this 

research project. A number of recommendations for further work in this direction, that 

will extend the application of GAs in the area of control systems engineering, were then 

outlined, concentrating on the development of improved objective functions for control 

systems, and on the use of GAs in multiobjective optimisation and real-time/adaptive 

control applications. 



A- The Shell Standard Control Problem 
186 

A The Shell Standard Control Problem 
(Prett and Morari, 1987) 

A. 1 Problem Description 

Fig. A. 1 shows a heavy oil fractionator with three product draws and three side circu- 
lating loops. The heat requirement of the column enters with the feed, which is a gase- 
ous stream. Product specifications for the top and side draws are determined by eco- 
nomics and operating requirements. There is no product specification for the bottom 
draw, but there is an operating constraint on the temperature in the lower part of the 
column. The three circulating loops remove heat to achieve the desired product separa- 
tion. The heat exchangers in these loops reboil columns in other parts of the plant. 
Therefore, they have varying heat duty requirements. The bottom loop has an enthalpy 
controller which regulates heat removal in the loop by adjusting steam make. Its heat 
duty can be used as a manipulated variable to control the column. 

The relevant information regarding the Shell standard control problem is stated in the 
following five sections. 

1. Control objectives 
2. Control constraints 
3. Process model 

4. Uncertainties in the gains of the model 
5. Prototype test cases 

We have tried to encapsulate the relevant control issues in this one problem while stay- 

ing as realistic as possible. The problem is stated such that an infinite number of sce- 

narios can occur in controlling the unit. We would encourage the development of solu- 

tion methodologies that are flexible enough to deal with varying (and possibly conflict- 

ing) problem requirements, and can be readily automated such that control designs can 

be carried out by plant personnel with only a modest knowledge of control concepts. 



endfix A- The Shell Standard Control Problem 
1Q7 

Q(F, T) 
Control 

Fig. A. 1 Diagram of a heavy oil fractionator (Shell control problem) 

A complete solution to the problem should describe, in detail, the analysis and synthesis 

procedures that indicate that the proposed controller satisfies the control objectives for 

all plants in the uncertainty set. However, because of possible discrepancies between 

investigators on analysis techniques, we have formulated a number of prototype test 

cases which form a common frame of reference for evaluating different designs. 

A. 2 Control Objectives 

1. Maintain the top and side draw product end points at specification (0.0 ±0.005 in 

the steady state). 
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2. Maximise steam make in the steam generators (maximise heat removal) in the bot- 

tom circulating reflux (Important note: Heat duties are expressed in terms of heat 
input to the column. Decreasing heat duty implies increasing the amount of heat 

removed). 

3. Reject the unmeasured disturbances entering the column from the upper and inter- 

mediate refluxes due to changes in heat duty requirements from other columns (up- 

per and intermediate reflux duties range between -0.5 and 0.5). Reject disturbances 

even when one or both end point analysers fail. 

4. Keep the closed-loop speed of response between 0.8 and 1.25 of the open-loop pro- 

cess bandwidth. 

A. 3 Control Constraints 

1. All draws must be within hard maximum and minimum bounds of 0.5 and -0.5. 
2. The bottom reflux heat duty is constrained within the hard bounds of 0.5 and -0.5. 
3. All manipulated variables have maximum move size limitations of magnitude 0.05 

units per minute. 

4. Fastest sampling time is 1 minute. 

5. The bottom reflux draw temperature has a minimum value of -0.5. 

6. The top end point must be maintained within the maximum and minimum values of 

0.5 and -0.5. 

A. 4 Process Model (First-Order Dead Time) 

The model of the Shell heavy oil fractionator process is a transfer function matrix G(s), 

whose i, j element is a first-order dead time transfer function that relates the i-th process 

output with thej-th process input. 

G11(s) 

G(S) = 
G21 (s) 

G71(s) 

G12 (s) ... Gb (s) 

G22 (s) ... G25 (s) 

G72(S) ... Gis(S) 

(A. 1) 
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G, j (s) _ 
Kj e 

-L, ý s 

TJs+1 (A. 2) 

The nominal model gains K, ý, time constants T13, and time delays L1, are all shown in 
Table A. 1. The units for Ty and L, 3 are in minutes. 

TABLE A. 1 Shell heavy oil fractionator model nominal naramPtPrs K:: T: and 
Top draw 

(ui) 
Side draw 

(u2) 
Bottoms reflux 

duty (u3) 
Inter. reflux 
duty (di) 

Upper reflux 
duty (d2) 

K'1 Tj L, K'j T, 1 L, K'1 T1 L'1 Kii Ti Lii Kai Ti iii 

Top end point (yi) 4.05 50 27 1.77 60 28 5.88 50 27 1.20 45 27 1.44 40 27 
Side end point (y2) 5.39 50 18 5.72 60 14 6.90 40 15 1.52 25 15 1.83 20 15 
Top temperature (y3) 3.66 9 2 1.65 30 20 5.53 40 2 1.16 11 0 1.27 6 0 
Upper reflux temp. (y4) 5.92 12 11 2.54 27 12 8.10 20 2 1.73 5 0 1.79 19 0 
Side draw temp. (y5) 4.13 8 5 2.38 19 7 6.23 10 2 1.31 2 0 1.26 22 0 
Inter. reflux temp. (y6) 4.06 13 8 4.18 33 4 6.53 9 1 1.19 19 0 1.17 24 0 
Bottoms reflux temp. (y7) 4.38 33 20 4.42 44 22 7.20 19 0 1.14 27 0 1.26 32 0 

A. 5 Uncertainties in the Gains of the Model 

The gains of the transfer function elements of the process model G(s) are subject to un- 

certainties of the following form. 

K, 
ý + sj OK, 

ý _Lý .s G, ý (s) =e, -1 < EJ <1 (A. 3) 
Tos+1 

where AK, denotes the absolute maximum uncertainty of gain K, 1, and cj determines the 

amount of uncertainty of gain Ky. The values of AK, are shown in Table A. 2. 

TABE A. 2 Shell heavy oil fractionator model gain uncertainty parameters, AK;; 

Top draw Side draw Bottoms reflux Inter. reflux Upper reflux 
(U, ) (U2) duty (us) duty (d, ) duty (d2) 

Top end point (yi) 2.11 0.39 0.59 0.12 0.16 

Side end point (y2) 3.29 0.57 0.89 0.13 0.13 

Top temperature (ye) 2.29 0.35 0.67 0.08 0.08 

Upper reflux temp. (ya) 2.34 0.24 0.32 0.02 0.04 

Side draw temp. (ye) 1.71 0.93 0.30 0.03 0.02 

Inter. reflux temp. (y6) 2.39 0.35 0.72 0.08 0.01 

Bottoms reflux temp. (y7) 3.11 0.73 1.33 0.18 0.18 
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A. 6 Prototype Test Cases 

Demonstrate, through simulation, that the proposed controller satisfies the control ob- 
jectives without violating the control constraints for the following plants within the un- 

certainty set (assume all inputs and outputs are initially at zero). The magnitudes for the 

upper and intermediate reflux duty step changes are indicated below. 

1. E1 = E2 = E3 = E4 = £5 = 0. Upper reflux duty= 0.5, intermediate= 0.5. 

2. E 1= £2 = E3 = -1, E4 = F-5= 1. Upper reflux duty = -0.5, intermediate = -0.5. 
3. E1 = E3 = E4 = £5 = 1, E2 =-1. Upper reflux duty = -0.5, intermediate = -0.5. 

4.1 = £2 = E3 = £4 = F-5= 1. Upper reflux duty = 0.5, intermediate = -0.5. 

5. £ 1= -1, E2 =1, E3 = 64 = F-5= O. Upper reflux duty = -0.5, intermediate = -0.5 . 
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Minimal State-Space Realisations of 
GM(z), G1(z), Gs(z), and Gs(z) 

B. 1 State-Space Model Representation 

The discrete-time process models GM(z), GD-'(z), Gs(z), and GS* (z), that were employed 
in the proposed GA-based solution to the Shell standard control problem (Chapter 6), are 
given in this Appendix. The models were derived from the nominal process model G(s) 

using the modified z-Transform method, and are expressed in the following standard 
discrete-time state-space representation. 

x[(k+1)TJ = Ax(kT) +Bu(kT) 

y(kT) = Cx(kT) + Du(k7) 

(B. 1) 
(B. 2) 

The sample time for all four models is T= 5 minutes. The A. B, C, and D matrices of the 

minimal state-space realisations of models GM(z), GD-1(z), Gs(z), and GS (z) are given 

in the following sections. 

B. 2 Disturbance Estimator Models 

Models GM(z), GD'(z) are used in the disturbance estimator that is shown in Eq. (6.15), 

to estimate the unmeasured disturbances entering the Shell Process. Model GM(z) maps 

process inputs ul, u2, and u3 to process outputs y3 and ys, while the inverse model GD'(z) 

maps process outputs y3 and ys to process disturbances dl and d2. Recall that GD'(z) can 

be expressed as 

G-1 Z= 
G4(Z) G*5(Z) 

-1 

Z1 (B. 3) 
D()* G54 (Z) G55 (Z) 
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The system shown in Eq. (B. 3) is non-causal and is, therefore, unrealisable. The model 
used in the proposed solution is obtained by introducing a delay of one sample to GDI(z), 

resulting in the realisable system z-1GD1(z). 

The A, B, C, and D matrices of the minimal state-space realisation of GM(z) are given 
below, with their elements truncated to five significant digits. 

A= 

B= 

8.1123 x 10-1 3.3034 x 10-1 4.2353 x 10-1 -4.2429 x 10-2 1.8497 x 10-3 -1.6913 x 10-1 -3.8037 x 10-2 
2.6932 x 10-2 5.6513 x 10-1 -5.6254 x 10-2 -1.0648 x 10-1 1.2335x10-1 -5.7893x1()-2 -1.8487 x 10-1 
1.6144 x 10-2 -6.5287 x 10-2 6.6293 x 10-1 -1.3177 x 10-1 -2.4529x10-1 -3.0730x10-1 5.5904 x 10-2 
0 -1.7494 x 10-3 2.0130 x 10-1 5.6862 x 10-1 -3.7132x10-1 -1.2348x10-1 2.7045 x 10-1 
0 1.2757 x 10-1 2.7603 x 10-3 2.7728 x 10-1 8.3980 x 10-2 1.0125 -8.8723 x 10-2 
000 

-1.0705 x 10-1 2.8927 x 10-1 2.5506 x 10-1 1.0342 x 10-1 
0004.2573 x 10-2 7.2735x10-1 -2.2925x10-1 1.8366 x 10-1 
00000 

-2.3133 x 10-2 8.8901 x 10-1 
00000 

-1.3037 x 10-1 -1.5774 x 10-1 
0000000 
0000000 

-3.4886 x 10-1 3.3621x10-2 -1.3253x10-1 3.5936 x 10-2 
4.7635 x 10-1 -9.4686 x 10-2 9.0974 x 10-3 1.7006 x 10-2 
5.2455 x 10-1 1.6653 x 10-1 1.1766 x 10-1 3.7046 x 10-2 
1.7523 x 10-1 -1.3908 x 10-1 -7.9846 x 10-2 -4.8762 x 10-2 

-7.0760 x 10-3 -2.5415 x 10-2 2.4044 x 10-3 -3.8019 x 10-2 

-2.1710 x 10-2 1.7797 x 10-2 -4.2364 x 10-2 5.2773 x 10-2 
1.1180 x 10-1 2.2709 x 10-2 -2.1036 x 10-2 6.9740 x 10-2 

-5.8348 x 10-2 4.0263 x 10-2 -1.5963 x 10-1 1.8985 x 10-2 
1.2859 x 10-1 -1.1155 x 10-1 -2.4172 x 10-1 -9.5897 x 10-2 

-1.8349 x 10-1 4.8268 x 10-1 7.6366 x 10-1 4.4344 x 10-2 

-1.4125 x 10-1 -6.2704 x 10-1 -2.4721 x 10-1 4.8877 x 10-1 

-2.5957 x 10-2 2.7364x10-1 -1.5407x10-1 
-4.7853 x 10-2 -4.7602 x 10-3 1.6352 x 10-3 

4.6167 x 10-1 6.0542x10-1 -6.8283x10-1 
-2.2493x10-1 -1.3125x10-1 1.3328 x 10-1 

3.5091x10-1 -3.0657x10-1 -4.6210x10-1 
3.7313x10-1 -1.1179 -4.0604 x 10-1 
1.2686 x 10-1 2.7392x10-1 -4.6085x10-1 
2.1675 x 10-1 3.1699 x 10-1 -2.3821 x 10-1 
8.0265 x 10-1 1.4841 x 10-1 5.3374 x 10-1 
8.7365 x 10-1 0 3.9904 x 10-1 
1.8928 x 10-2 0 -6.3294 x 10-1 

C 000 0 0 0 0 0 0 1.1850 
-2 

1.1580x 10-1 

000 0 0 0 0 0 0 5.4526x 10 -2.5168 

000 D-[000 

Similarly, the A, B, C, and D matrices of the minimal state-space realisation of z-' GD1(z) 

are given below. 
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5.4102 x 10-1 5.2205x1()-2 -3.2764x10-1 6.9073 x 10-1 
5.2205 x 10-2 2.2599 x 10-1 4.8360x10-1 -3.0540x10-1 

-4.4631 x 10-2 2.7653 x 10-1 6.8188x10-1 -5.2987x10-1 
9.7708 x 10-2 1.5770 x 10-2 -4.4385 x 10-2 1.1407 x 10-1 

-1.4395 1.2484 
7.7960 x 10-1 -9.1342 x 10-1 
1.2862 -9.1117 x 10-2 
9.8509 x 10-1 1.9579 x 10-1 

0 0-2.1563 x 10-1 1.3979 x 10-1 
001.2724 x 10-1 -6.5620 x 10-1 

D= -3.3932 x 10-1 9.5119 x 10-1 
1.5929 -5.6127 x 10-1 

B. 3 Smith Predictor Models 

Models Gs(z) and GS* (z) are used in the multivariable Smith predictor shown in Fig. 6.7. 
Model Gs(z) maps process inputs ul, u2, and u3 to process outputs yl and y2, while model 
GS (z) is obtained by removing all delay states from all of the elements of Gs(z). The A, 

B, C. and D matrices of the minimal state-space realisation of Gs(z) are given below. 

A= 

8.8756x10-1 -4.2295x10-1 3.9721x10-1 -4.5609x10-2 -4.4462x10-1 -1.7091x10-1 -7.3164x10-2 
-3.8448 x 10-2 2.4002 x 10-1 6.4848x10-1 -2.7843x10-1 6.0858 x 10-1 1.9770 x 10-1 2.2259 x 10-1 
-3.6169 x 10-3 2.4074 x 10-1 6.0398 x 10-1 9.2950 x 10-1 -3.8137 x 10-1 3.2563 x 10-1 6.6621 x 10-2 
-3.7844 x 10-3 -2.3009 x 10-1 2.8134 x 10-1 8.6864 x 10-2 3.3954 x 10-2 -1.4049 x 10-1 -8.3515 x 10-2 

00 -2.1292 x 10-2 2.9073 x 10-1 4.0712 x 10-1 -1.3261 x 10-1 -1.0203 x 10-1 
001.0603 x 10-2 5.8383 x 10-1 6.9825x10-1 -2.3335x10-1 -1.4592x10-1 
0000 -1.5502 x 10-2 7.5760x10-1 -2.4776x10-1 
00003.6320 x 10-1 3.2335x10-2 -1.4312x10-1 
0000006.8496 x 10- 
0000004.2294 x 10- 
0000000 
0000000 
0000000 
0000000 

1.4749 x 10-1 9.1540 x 10-2 

-1.0443 x 10-1 -2.0312 x 10-1 
5.3136 x 10-3 -1.2692 x 10-1 
1.6038 x 10-1 6.9712 x 10-2 
1.2818 x 10-1 8.5989 x 10-2 

-1.1177 x 10-1 1.7268 x 10-1 

-8.0872 x 10-2 3.4275 x 10-1 
7.4975 x 10-1 5.0173 x 10-2 
5.3892 x 10-1 3.9088 x 10-1 

-8.7278 x 10-1 2.5807 x 10-1 
0 6.6479 x 10-1 
0 -1.1402 x 10-1 
00 
00 

-2.7887 x 10-2 
6.7762 x 10-3 
5.2196 x 10-2 
4.3052 x 10-2 
4.1186 x 10-3 
1.6344 x 10-2 

-3.4767 x 10-3 

. 3.5549 x 10-2 
2.8051 x 10-2 
1.7996 x 10-2 
1.6959 x 10-1 
9.8882 x 10-1 
0 
0 

4.7660 x 10-2 
3.0895 x 10-2 

-8.3305 x 10-2 
7.2564 x 10-2 
2.7702 x 10-4 
6.7231 x 10-3 
1.3136 x 10-1 
1.8547 x 10-2 

-4.8921 x 10-2 
6.3371x10-3 
3.0435 x 10-2 
2.0075 x 10-2 
8.1600 x 10-1 

-8.8361 x 10-2 

-2.6611 x 10-2 
5.0364 x 10-2 
4.4659 x 10-2 

-3.6700 x 10-2 

-2.2440 x 10-2 

-4.7653 x 10-2 

-1.0974 x 10-1 

-9.9299 x 10-3 

-8.0855 x 10-2 

-6.5061 x 10-2 
2.5691 x 10-1 

-2.9853 x 10-2 
1.0184 x 10-1 
9.4046 x 10-1 

-8.6266 x 10-2 

-9.3126 x 10-2 
1.5800 x 10-1 

-1.3811 x 10-1 
1.3048 x 10-2 
1.4040 x 10-2 

-2.1832 x 10-1 

-3.3131 x 10-2 
1.8054 x 10-1 
3.5851 x 10-2 

-2.4848 x 10-1 

-2.3346 x 10-2 
4.5293 x 10-1 
0 

5.9327 x 10-2 

-3.0116 x 10-2 

-7.8008 x 10-2 
6.8522 x 10-2 
2.7893 x 10-2 
6.0780 x 10-2 
1.9819 x 10-1 
2.5246 x 10-2 
1.7358 x 10-1 
1.2203 x 10-1 

-4.0389 x 10-1 
5.4388 x 10-2 

-9.2591 x 10-2 
2.5567 x 10-1 
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B= 

-6.0704 x 10-1 4.3012 x 10-1 2.3708 x 10-1 
2.9394 x 10-1 -2.0828 x 10-1 -1.6119 x 10-1 

-2.4076x10-1 -6.9959x10-1 5.1415 x 10-1 
1.4635x10-2 -9.0709x10-1 5.6393 x 10-1 
1.1784 -3.4238 x 10-2 -3.9278 x 10-2 

-9.0215 x 10-2 -2.2938 x 10-1 -7.7114 x 10-2 
-4.9364x1()-2 -9.7559x10-2 -1.8937x10-1 2.9631 x 10-1 6.1421 x 10-1 1.1367 
0 5.6308 x 10-2 0 
0 -1.2503 x 10-1 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0000000000005.0273 
x 10-1 0 

0000000000000 
-7.6405 x 10-1 

D= ro 0 0l 
[000J 

Finally, the A, B, C, and D matrices of the minimal state-space realisation of Gs (z) are 
given below. 

9.0253x 10-1 -4.1354x 10-3 -2.4712x 10-3 5.5050x 10-3 
-4.1354x10-3 9.1539x10-1 -1.9989x10-3 1.1153x10-2 
-2.4712 x 10-3 -1.9989 x 10-3 9.0252 x 10-1 6.0768 x 10-3 

5.5050 x 10-3 1.1153 x 10-2 6.0768 x 10-3 8.9177 x 10-1 

1.2005 -1.6042x10-1 -7.2768x10-1 
-9.9678 x 10-2 1.3136 -4.7075 x 10-1 

4.1474 x 10-1 4.5015 x 10-2 5.7579 x 10-1 
6.1379 x 10-1 4.9669 x 10-1 9.5778 x 10-1 

[0 
0 5.8622x10-1 2.3180x10-1] 

00 -1.4549x10-1 9.3398x10-1 

D= [o 0 0l 
lo00J 
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