
` Liverpool John Moores University
Systems Research Group

School
Control

of Engineering
ýýý

Optimal Design of Controllers for
Multivariable Processes Using

Genetic Algorithms

Constantinos Machos

A thesis submitted in partial fulfilment of the requirements
of Liverpool John Moores University for the degree of

Doctor of Philosophy (Ph. D.)

This research project was carried out in collaboration with
British Nuclear Fuels Limited

April 2000

In any particular theory there is only as much real science as there
is mathematics.

IMMANUEL KANT

The most beautiful thing we can experience is the mysterious. It is
the source of all true art and all science. He to whom this emotion
is a stranger, who can no longer pause to wonder and stand rapt in
awe, is as good as dead: his eyes are closed.

ALBERT EINSTEIN

To my parents

Eiovs yoveIs , uov

Abstract

Abstract

iv

This thesis focuses on the development and analysis of general methods for the optimal design of controllers for multivariable processes in a numerical optimisation framework,
where genetic algorithms (GAs) are used to optimise a number of specially formulated
objective functions. Strong emphasis is given on the generality and open architecture of
the proposed methods, which are shown to be applicable to a wide range of real-world
multivariable control problems.

A novel objective function is proposed for single-input, single-output (SISO) processes,
that enables the designer to explicitly specify the performance specifications associated
with a given problem in terms of time-domain bounds on the closed-loop responses. The
proposed objective function is then experimentally investigated using a simple two-term
parametric controller tuning problem. The obtained results are analysed and compared
with those obtained using a number of popular conventional objective functions, as well
as using a number of standard controller tuning methods. It is shown that the proposed
objective function is inherently capable of accurately quantifying complex performance
specifications in the time domain, which cannot normally be employed in conventional
controller design/tuning methods. Finally, the proposed objective function is generalised
to treat multi-input, multi-output (MIMO) control problems.

The proposed objective functions mentioned above permit the existence of a (usually
infinite) set of multiple optimal solutions. To enable GAs to efficiently identify multiple
optimal solutions, standard GAs are extended using a novel fitness assignment strategy
called adaptive fitness sharing, which is based on the techniques of niche formation and
speciation. It is shown that the proposed method enables the GA to evolve a population
whose members are almost uniformly distributed within the optimal solution set. It is
also shown that adaptive fitness sharing consistently outperforms the proportionate and
rank-based fitness assignment strategies, in terms of both performance (higher degree of
achieved uniformity), and robustness (less sensitivity to initial conditions). The time
complexity of adaptive fitness sharing is shown to be better than that of conventional
fitness sharing. Finally, adaptive fitness sharing is shown to be capable of adapting the
phenotypic density of the population as required, while maintaining a high degree of
uniformity throughout the search run. This facilitates the application of adaptive fitness
sharing to on-line optimisation problems.

A new method for the automatic tuning of decentralised PI controllers for multivariable
processes is proposed, based on GAs and the MIMO objective function developed earlier
in this work. GAs are employed for the minimisation of this function, and the method of
adaptive fitness sharing is used, in order to maximise the diversity of the obtained family
of optimal solutions. The proposed tuning method is shown to be directly applicable to
the automatic tuning of a wide range of linear or non-linear multivariable controllers, and

Abstract v

not just PI controllers. Simulation results are presented to illustrate the effectiveness of
the proposed method. It is shown that the method enables the identification of a diverse
family of controllers that completely satisfy the specifications, if such controllers exist.
The designer can then manually examine the obtained family of controllers, and choose
one which also satisfies additional qualitative optimality criteria which cannot easily be
expressed in mathematical terms. The suitability of GAs in this optimisation problem is
supported by statistically comparing them with two conventional optimisation methods,
where it is shown that GAs have higher success rates and are more immune to noise.

A new solution to the Shell standard control problem is presented, based on GAs. The
proposed control scheme includes two linear discrete-time PID controllers with integral
anti-windup and a multivariable Smith predictor to provide the required process output
regulation, while the process input minimisation problem is analytically solved on-line,
by estimating the two unmeasured disturbances entering the Shell process and solving
the associated linear program. GAs are successfully applied to the automatic tuning of
the two PID controllers according to the given specifications, using an extension of the
MIMO objective function developed earlier in this work. Extensive simulation results
are presented, which show that the proposed control scheme is robustly stable and that its
robust performance is comparable to that of more computationally intensive approaches,
such as the Quadratic Dynamic Matrix Control (QDMC) and other algorithms. Making
the specifications more conservative is shown to improve the robustness of the scheme
in the face of model uncertainties. It is also demonstrated, through simulation, that the
proposed control scheme satisfies all steady-state specifications for all five prototype test
cases published by Shell, which include the nominal process model as well as a number
of worst-case uncertain models. Finally, the success of the proposed GA-based control
scheme demonstrates the potential of the application of GAs and the objective functions
developed in this work, to large-scale multivariable process control problems.

Contents
vi

Contents

Abstract iv
Acknowledgements x
Glossary of Symbols xi

1 Introduction - Survey and Thesis Outline 1

1.1 Introduction 1
1.2 Optimisation and Control Systems 1

1.2.1 Advantages of Optimisation-Based Controller Design 3
1.2.2 Limitations of Optimisation-Based Controller Design 4

1.3 Genetic Algorithms 4
1.4 Genetic Algorithms and Control Systems 7

1.4.1 Genetic Algorithms in Process Modelling 7
1.4.2 Genetic Algorithms in Process Control 8

1.5 Project Scope 10
1.6 Thesis Outline 11
1.7 Summary 13

2 Genetic Algorithms and Function Optimisation 14

2.1 Introduction 14
2.2 Typical Search Spaces in Function Optimisation 14
2.3 Conventional Optimisation Algorithms 16
2.4 Overview of Genetic Algorithms 18

2.4.1 Reproduction 19
2.4.2 Crossover 20

2.4.3 Mutation 20
2.4.4 Generation Gap and Elitism 21
2.4.5 Structure of the Simple Genetic Algorithm 21

2.5 Mathematical Foundations of Genetic Algorithms 22
2.5.1 Similarity Templates (Schemata) 23
2.5.2 The Fundamental Theorem of Genetic Algorithms 24

2.6 Genetic Algorithm Implementation Issues 30

Contents
vii

2.6.1 Improving the Reproduction Operator 30
2.6.2 Selection of String Encoding 32
2.6.3 Selection of Genetic Algorithm Parameters 35
2.6.4 Incorporating Problem Specific Knowledge 37
2.6.5 Genetic Algorithm Termination 38

2.7 Multiobjective Optimisation and Genetic Algorithms 38
2.8 Genetic Algorithms as Universal Optimisers 43
2.9 Summary 43

3 Analysis and Design of Objective Functions for Control Systems 45

3.1 Introduction 45
3.2 Conventional Objective Functions 45

3.2.1 Limitations of Conventional Objective Functions 47
3.3 A Novel Objective Function for Control Systems 48

3.3.1 Objective Function Formulation 49
3.3.2 Optimal and Strictly Optimal Solutions 51

3.4 Experimental Analysis 52
3.4.1 The Performance Specifications 53
3.4.2 Conventional Objective Functions 54
3.4.3 PI Controller Tuning Methods 55
3.4.4 The Proposed Objective Function 56
3.4.5 Comments and Discussion 65

3.5 Generalisation to Multivariable Systems 66
3.6 Summary 69

4 Locating Multiple Optimal Solutions Using Genetic Algorithms 71

4.1 Introduction 71
4.2 Multiple Optimal Solutions and Genetic Drift 71
4.3 Niche Formation and Speciation in Genetic Algorithms 73

4.3.1 Fitness Sharing 75
4.4 The Proposed Niche Induction Method 77

4.4.1 Proportionate Fitness Assignment 77

4.4.2 Population Ranking 78

4.4.3 Adaptive Fitness Sharing 80

4.4.4 Sharing Functions 84

4.4.5 Optimal Sharing Radius Calculation 86

4.5 Experimental Analysis 88
4.5.1 Population Diversity Measure 89
4.5.2 Fitness Assignment Configurations 91
4.5.3 Simulation Results - No Mutation 92

Contents viii

4.5.4 Simulation Results - Effects of Mutation 97
4.5.5 Simulation Results - Statistical Tests 101
4.5.6 Effects of Parameter Scaling 104
4.5.7 Adaptation of the Population Density 106
4.5.8 Simulation Results in the Time Domain 108

4.6 Summary 109

5 Decentralised PI Controller Tuning for Multivariable
Processes -A Genetic Approach 111

5.1 Introduction 111
5.2 Limitations of Existing PI/PID Tuning Methods 111
5.3 The Proposed Decentralised PI Controller Tuning Method 112

5.3.1 Decentralised PI Control of Multivariable Processes 113
5.3.2 Optimisation Problem Formulation 114
5.3.3 Boundary Functions and Set Point Test Patterns 115

5.4 Decentralised PI Controller Tuning Examples 117
5.4.1 PI Controller Tuning Example 1 117

5.4.2 PI Controller Tuning Example 2 117

5.4.3 PI Controller Tuning Example 3 118

5.4.4 Closed-Loop System Formulation 118

5.4.5 Performance Specifications 119

5.4.6 Genetic Algorithm Configuration 120

5.5 Simul ation Results 121

5.5.1 Tuning Example 1 121

5.5.2 Tuning Example 2 123

5.5.3 Tuning Example 3 125

5.5.4 Search Landscape Complexity 128

5.5.5 Comparison with the Relay Feedback Technique 131

5.6 Comparison with Conventional Optimisation Methods 133

5.6.1 Computation Time Comparisons 134

5.7 Summary 135

6 Solution to the Shell Standard Control Problem Using
Genetically Tuned PID Controllers 136

6.1 Introduction 136

6.2 The Shell Standard Control Problem 136

6.3 Design Methodology 138

6.3.1 The Output Regulation Problem 138

6.3.2 The Input Minimisation Problem 141

6.3.3 LP Solution Feasibility Analysis 143

Contents
1X

6.3.4 Unmeasured Disturbance Estimation 146
6.3.5 Multivariable Smith Predictor Control 149
6.3.6 The Closed-Loop System 151

6.4 PID Controller Tuning 152
6.4.1 Objective Function Formulation 153
6.4.2 Application to the Shell Standard Control Problem 154
6.4.3 Genetic Algorithm Configuration 156

6.5 Simul ation Results 157
6.5.1 Measurement Noise and Disturbance Variations 161
6.5.2 Robust Stability and Performance Tests 166
6.5.3 Genetic Algorithm Convergence 172
6.5.4 Search Landscape Complexity 174

6.6 Summary 178

7 Conclusions - Main Contributions and Further Work 180

7.1 Introduction 180
7.2 Summary of Main Contributions 180

7.2.1 Novel Objective Function Formulation for Control Systems 180
7.2.2 Adaptive Fitness Sharing - An Extension of the Standard GA 181
7.2.3 Parametric Controller Tuning for Multivariable Processes 182
7.2.4 Solution to the Shell Standard Control Problem 183

7.3 Recommendations for Further Work 183
7.3.1 Improved Objective Functions for Control Systems 183
7.3.2 Multiobjective Optimisation 184
7.3.3 Real-Time and Adaptive Control 184

7.4 Summary 185

A The Shell Standard Control Problem 186

B Minimal State-Space Realisations 191

References & Bibliography 195
Published Work 207

Acknowledgements

Acknowledgements

X

I would like to thank my supervisors, Prof. David Williams and Dr. Barry Gomm, for
their support and encouragement throughout this research investigation. Their fruitful
interactions and feedback helped transform the initial idea into reality, and made this
project very interesting and exciting. Many thanks also go to my early supervisor, Dr.
John Evans, for his support and encouragement during the early stages of this work. The
support of Liverpool John Moores University Research Fund and British Nuclear Fuels
Limited, who funded this research project, is also gratefully acknowledged.

It is my privilege to express my gratitude to my cousin and dearest friend Athanasios
Spiropoulos, for introducing me to the wonderful world of mathematics. Undoubtedly,
this project has been greatly influenced by our numerous discussions on this subject.

Finally, I reserve my very deepest appreciation for my family. It is a hackneyed theme to
thank loved ones for patience and understanding while a project is being undertaken, but
now I know why, and do give heartfelt thanks.

Trademarks
MATLAB® is a registered trademark of The MathWorks, Inc.
SIMULINK® is a registered trademark of The MathWorks, Inc.
Pentium® III is a registered trademark of Intel Corporation.

Constantinos Vlachos
Liverpool, UK, April 2000

cvlachos@mail. com
c. vlachos@livjm. ac. uk

cvlachos@hotmail. com

Glossary of Symbols

Glossary of Symbols

N Set of natural numbers, N 0,1,2,
...

}

R Field of real numbers
IIR+ Set of non-negative real numbers
Rn n-dimensional vector space over Ili

C Unit hypercube used in adaptive fitness sharing
Set of permissible solutions (controllers)

Set of strictly optimal solutions (controllers)

2h Set 2 when scaled using vector h

Jý Hypercuboid of size h used in adaptive fitness sharing
S' Time-domain performance specifications

0 Zero vector, zero matrix
A State matrix of state-space model

B Input matrix of state-space model

b Hypervolume ratio between TSh and C

C Output matrix of state-space model

cl, css Time-domain performance specification coefficients

D, D General controller, direct transmission matrix of state-space model

D(s), D(s) Continuous-time, linear controller

D (z), D (z) Discrete-time, linear controller

DI (s) Continuous-time, linear controller in loop i of a multivariable system

Dopr, Dopt Optimal controller

d(t), d(t) Process disturbance signal

d(t), d(t) Process disturbance signal estimate

e(t), e(t) Error signal, noise signal

f(H) Average fitness of schema H in population P(t)

f Average fitness of population P(t)

f Fitness value of string Si

xi

Glossary of Symbols xii

X Ranked fitness value of string Sl

f Shared fitness value of string Si

fjj(u)(t), J1' (t) Upper and lower boundary functions used in im

fu (t), f (t) Upper and lower boundary functions used in Js

G, G General, linear or non-linear process (or process model)
G(s), G(s) Continuous-time, linear process (or process model)
G(z), G(z) Discrete-time, linear process model
G*(z) zkG(z), where k is the number of delay states of G(z)

GD(s), GD (z) Shell process model subsystem used for the disturbance estimation
GF(z) Discrete-time low-pass filter used in the disturbance estimator
GI (s), G13 (z) i, j element of transfer function matrix G(s), G(z)

GM(s), GM(z) Shell process model subsystem used for the disturbance estimation
GAS) Shell process model subsystem used for the regulation of yl and y2
Gs(z) Shell process model subsystem used in the Smith predictor

GS* (z) Delay-free Shell process model subsystem used in the Smith predictor
GM Gain margin

g Generation gap

H Schema

h Size vector of hypercuboid
-4

hl Size of the i-th edge of hypercuboid Jd

hmax Size vector of the smallest hypercuboid that contains

hmax, i The i-th element of hmax

I Identity matrix

Ili (D) Input term of Jo

J(") Single-valued objective function

Jo(D) Proposed objective function for the Shell standard control problem

Ji (D) Objective function row vector for output i, J1= [J11 """ Jiq]

J1 (D) Objective function element of JM

JM(D) Proposed objective function for multivariable systems

JM(D) Vector-valued version of JM, JM :_[J1 """ J9]T T

Js (D) Proposed objective function for single-input, single-output systems

K Linear system steady-state gain

KT Single-input, single-output PID controller integral gain

Klo Steady-state gain of the i, j element of G(s)

Kp Single-input, single-output PID controller proportional gain

sA

Glossary of Symbols
xiii

KP; Proportional gain of PID controller in loop i
k Cardinality of string alphabet, number of delay states, sample number
kax Maximum sample number, kmax = t, nax

/T

L Linear system time delay

Ll Time delay of the i, j element of G(s)

1 String length
lx Length of string element for parameter x
M Number of strictly optimal solutions in the population
MH(t), MH Number of strings in population P(t) that belong to schema H
MM (t + 1) Number of strings in population P' (t+ 1) that belong to schema H
MM (t + 1) Number of strings in population P"(t+ 1) that belong to schema H
MS Linear closed-loop system sensitivity
N Population size

Ni Derivative filter coefficient of PID controller in loop i

n Dimensions of search space
00 Computation time complexity
OIL (D) Output term of Jo

o(H) Order of schema H

P(t) Population at generation t

P'(t+l) Population formed after reproduction on P(t)

P"(t+l) Population formed after crossover on P'(t+l)

PM Phase margin

p Number of inputs of multivariable process

PC Crossover operator probability

pc(H) Crossover survival probability of schema H

Pi Probability of selecting string Si for reproduction

Pm Mutation operator probability

p, n (H) Mutation survival probability of schema H

pr(H) Reproduction survival probability of schema H

q Number of outputs of multivariable process

r(t), r(t) Set point signal

Sf(.) Fitness sharing function

Sl (t), Si i-th string in population P(t)

Si Expected number of samples of string Si in population P'(t+l)

Si Actual number of samples of string Si in population P'(t+l)

"r

Glossary of Symbols xiv

T Linear system time constant, sample time

TD; Derivative time of PID controller in loop i

TI; Integral time of PID controller in loop i

TY Time constant of the i, j element of G(s)

TT; Integral anti-windup tracking time constant of PID controller in loop i

t Time, generation

tmax Maximum simulation time

is Settling time

U Diversity measure of solutions in J4

Uo Diversity measure of solutions in -2
u(t), u(t) Process input signal
ü(t), ü(t) Process input signal before actuator constraints
V Hypervolume of unit hypercube C, V =1

w1 Weighting coefficients used in JM

X Nx n matrix of parameter vectors in the population

x State vector of state-space model

Xi Parameter vector of length n that corresponds to string Si

Xi Scaled parameter vector of length n that corresponds to string Si

x1 Parameter j of the solution that corresponds to string Si

xmax Maximum value of x
Xmin Minimum value of x

xopt Optimal value of x

y(t), y(t) Process output signal

y(t), Y_ (t) Process output signal when no disturbances are present (d = 0)

a Power factor of the power law sharing function

CCiý Output term weighting coefficient of Jo

13 Decay factor of the exponential sharing function

Aij Distance measure between strings Si and Sj

Ad(t) Process disturbance vector change at time t, Ad(t) = d(t+) - d(t_)

AK Absolute maximum uncertainty of steady-state gain KID

g(H) Defining length of schema H

gl Absolute rate limit of actuator i

Ej Uncertainty coefficient of steady-state gain KID

ß,, 1j
Input term weighting coefficient of Jo

--7

Glossary of Symbols

11 Constraint boundary coefficient

6 (G) Largest singular value of G(s), with s= jco

6(G) Smallest singular value of G(s), with s =j0)

6; Sum of the shares received by individual Si under fitness sharing

ap Population ranking selection pressure
ßshare Fitness sharing radius

oä Actuator noise variance

am Measurement noise variance

c) Natural undamped frequency

xv

Chapter 1- Introduction - Survey and Thesis Outline

Introduction - Survey and Thesis
Outline

1.1 Introduction

This chapter begins with a brief overview of optimisation as applied to the solution of

control engineering problems. Genetic algorithms (GAs) as function optimisers are then
introduced, focusing on their fundamental differences and advantages over conventional

algorithms. The relevance of GAs to control systems is then illustrated by a number of

successful applications in different areas of process modelling and control. Finally, the

project scope and the structure of this thesis are outlined.

1.2 Optimisation and Control Systems

The majority of modelling and control problems are inherently associated with function

optimisation. Consider, for example, the simple closed-loop system shown in Fig. 1.1.

In most cases, the controller, D. is designed such that the error signal, e(t), is minimised

in some desired way. The controller, therefore, acts as an optimiser which attempts to

minimise some function f [e(t)] on-line, by generating a suitable control sequence which

is applied to the process input u(t).

Set point Error Input
r(t) +e (t) u (t)

Controller, D Process, G

Feedback, H

Output
y(t)

Fig. 1.1 Simple closed-loop automatic control system

Chapter 1- Introduction - Survey and Thesis Outline 2

It may often be possible to quantify the performance of the closed loop system by means
of a function J(.), which is usually single-valued and is often called performance index
or objective function. This is clearly a function of D, and the controller design problem
is, therefore, equivalent to that of optimising J over the set of all permissible (usually
stabilising) controllers. Depending on the complexity of the mapping defined by J and
the associated control problem, the optimisation of J may be performed analytically or
numerically. The numerical approach, although less elegant, is conceptually simple and
has the potential to deliver excellent designs that go beyond linear, time-invariant control
theory, as will become apparent later.

Several modern control approaches have been developed, which are based on function

optimisation. Popular examples include the H2 (Linear Quadratic Gaussian - LQG), and
H. optimal control theory, in which the H2 and H. norms are employed as performance
indexes, respectively. A comprehensive treatment of H2 and H. optimal control theory

can be found in Zhou, Doyle, and Glover (1996). Other popular optimisation approaches
to control include Model Reference Adaptive Control (MRAC), in which the controller

parameters are optimised on-line, so that the process output asymptotically matches that

of a reference model. For more information on MRAC, the reader is referred to Aström

and Wittenmark (1995). Most predictive control algorithms (Garcia and Morshedi, 1986;

Clarke, Mohtadi, and Tuffs, 1987a, 1987b; Garcia, Prett, and Morari, 1989; Clarke and
Mohtadi, 1989) are also based on on-line function optimisation. Worth mentioning is

the so-called Edmunds' algorithm (Edmunds, 1979), in which the controller parameters

are optimised to make the closed-loop transfer function approach some target transfer

function as closely as possible over a specified frequency range.

Optimisation has also been employed for the tuning of PID controllers. Lopez, Miller,

Smith, and Murrill (1967) used a number of performance indexes based on integrals of

functions of the form f [t, e(t)], such as the Integrated Squared Error (ISE) criterion, to

develop graphs that relate the optimal P, PI, and PID settings with the three parameters

of a first-order dead time process model. A time-domain PID tuning method that is also

based on integral performance criteria was proposed by Dan-Isa and Atherton (1997).

More recently, Gagnon, Pomerleau and Desbiens (1999) proposed a decentralised PI

tuning method for multivariable processes, based on the minimisation of an objective

Chapter 1- Introduction - Survey and Thesis Outline 3

function which is derived from standard µ-synthesis (structured singular value) theory.
This approach results in PI controllers that achieve improved robust performance in the
face of process uncertainty and controller output variation constraints.

1.2.1 Advantages of Optimisation-Based Controller Desirn

In conventional, linear controller design methods, the problem specifications are usually
expressed in terms of standard system characteristics, such as gain and phase margins,
locations of poles and zeros, bandwidth, peak overshoot, settling time, rise time, and

others. Although such characteristics may be sufficient in ensuring that the closed-loop

system is stable and well-behaved, they may not accurately represent the specifications
that can arise in an arbitrary, real-world control problem. Furthermore, in cases where
the closed-loop system contains non-linear elements, linear system characteristics such

as those mentioned above can often become meaningless. In a function optimisation

framework, however, linearity is not at all a prerequisite. A performance index J(") that

accurately reflects the given specifications can be formulated, and then optimised using

a suitable analytical or numerical method.

Analytical optimisation is usually a very difficult task, mainly due to the complexity of

the mapping defined by J and the associated control problem. However, the widespread

availability of high-speed computers has made numerical optimisation a viable (albeit

less elegant) alternative to analytical optimisation. The numerical optimisation approach

is conceptually simple in that it only requires the numerical solutions of the differential

and difference -equations associated with the closed-loop system. These can be obtained

using most standard control system simulation packages, provided a suitable model of

the controlled process exists. The process model may be derived from first principles or

from input/output data, and can contain both linear and non-linear elements. Objective

function J for a candidate controller D can then be numerically evaluated by simulating

the closed-loop system. A suitable optimisation algorithm may be used to optimise J, in

order to obtain the optimal controller, Dopt.

Clearly, optimisation-based controller design has the important advantage that it can be

applied to a wide range of complex, non-linear control problems which cannot normally

be solved reliably using conventional design methods. Another advantage is the ability

Chapter 1- Introduction - Survey and Thesis Outline 4

to handle arbitrary performance specifications. The fact that numerical optimisation does

not rely on analytical tools makes this approach extremely flexible. For example, a new
(linear or non-linear) element in the closed-loop system can be introduced by simply
including it in the system simulation code. Similarly, a new design specification can be
introduced by simply modifying J accordingly. The numerical optimisation can then be

restarted with practically no further code modifications.

1.2.2 Limitations of Optimisation-Based Controller Design

The major limitation of optimisation-based controller design methods is the fact that they

all depend on the performance index J(") and the way in which it quantifies the problem

specifications. Care must, therefore, be exercised when formulating J, because a poorly
designed performance index can result in controllers which are mathematically optimal,
but are unacceptable in practice. The performance indexes employed in most analytical

optimisation methods, such as H2 and H. optimal control theory, are usually continuous

functions whose derivatives exist and can be expressed analytically in relatively simple

terms. The problem specifications, however, may often be too complex to be adequately

described by such simple objective functions. This results in designs that may require

several ad hoc controller adjustments before they can be acceptable in practice.

Another limitation is that, although J may adequately reflect the problem specifications,

it may be too complex to be optimised, even in a numerical framework. In cases where J

contains many local optima and is discontinuous, most conventional, calculus-based

numerical optimisation algorithms are expected to converge to sub-optimal solutions, or

not converge at all in some cases. Another difficulty is that the computations required to

evaluate J may easily become excessive, and numerical robustness problems may also

arise. The choice of a suitable optimisation method becomes a very important issue in

such cases.

1.3 Genetic Algorithms

Genetic algorithms (GAs) are stochastic global search methods that are loosely based on

the metaphor of natural biological evolution. They maintain a set of candidate solutions

to a given problem, which are left to `evolve' using artificial genetic operators such as

Chapter 1- Introduction - Survey and Thesis Outline 5

reproduction, crossover and mutation. GAs work by combining the Darwinian `survival
of the fittest' principle with a probabilistic information exchange strategy inspired by the
processes of natural genetics, to form a structured yet randomised search algorithm that
promises to be highly capable of identifying optimal or near-optimal solutions to a wide
range of search, optimisation and machine learning problems. GAs have been developed
by John Holland, his colleagues, and his students at the University of Michigan. Studies
by Holland (1975), De Jong (1975), Goldberg (1989a), and others have demonstrated,
both theoretically and experimentally, the superior performance of GAs over traditional

search methods. They are currently being employed in a wide range of domains. More
information on GAs and a list of practical applications can be found in Holland (1992),
Fogel (1994), Goldberg (1994), and the introductory textbooks by Goldberg (1989a),

and Mitchell (1996). Because of their unique structure and operation, GAs differ from

more traditional search procedures in some very fundamental ways, making them ideal

candidates as global function optimisers. The most important differences between GAs

and conventional search methods are summarised in the following paragraphs. A more
thorough comparison between GAs and conventional, gradient-based methods can be

found in Salomon (1998) and the references therein.

Most conventional optimisation methods are local in scope, mainly because they search
from a single starting point. They can, thus, converge to a sub-optimal solution in the

neighbourhood of the starting point, and miss the global optimum which may be located

elsewhere. GAs, however, search from a population of points, not a single point, thus

dramatically increasing the probability of reaching the global optimum. This makes

them suitable for the optimisation of multimodal functions (i. e. functions which contain

many local optima).

Another weakness of conventional optimisation methods is that they usually rely on the

existence of the partial derivatives of the objective function. Derivative information is

used to guide the search towards the optimal point in some local neighbourhood. Popular

examples of this approach include the so-called `hill-climbing' methods. GAs, however,

only need objective function information. This enables them to be applicable in domains

where continuity and derivative existence do not apply. They can also be used for the

optimisation of `noisy' functions, where the same set of parameters will not, in general,

produce exactly the same result.

Chapter 1- Introduction - Survey and Thesis Outline 6

Another characteristic of GAs that distinguishes them from most conventional search
methods is that they work with a coding of the parameter set and not with the parameters
themselves. This makes them directly applicable to a very wide range of non-numerical,
discrete, combinatorial, and mixed optimisation problems. Most conventional optimisers
based on continuous parameter variations cannot normally be used for the solution of
such problems.

Finally, unlike many conventional search methods, GAs use probabilistic transition

rules to guide their search, not deterministic ones. This may seem odd to those familiar

with deterministic methods, but the use of probabilistic processes does not suggest that
GAs are equivalent to some simple random search. It can be shown (Goldberg, 1989a)

that a clear distinction exists between the stochastic operators of GAs and other methods
based on simple random walk. Using chance to achieve highly directed results may seem

unusual, but the same mechanism is also used by nature, with obvious success.

1

a
U
C
U)
U_

W

0

Problem type

Fig. 1.2 Efficiency of different classes of search methods
across a problem continuum (Goldberg, 1989a)

The power of GAs comes from the fact that they are robust and thus have the potential

to be applicable to a wide range of problems, including those which other methods find

difficult to solve efficiently. As expected, GAs are not guaranteed to find the globally

optimal solution to any given problem, but they are generally good in finding "acceptably

Combinatorial Unimodal Multimodal

Chapter 1- Introduction - Survey and Thesis Outline 7

good" solutions to a wide range of problems "acceptably quickly". The importance of
robustness in a search method can be put in better perspective by observing Fig. 1.2. It

can be seen that a specialised method performs very well in the problem area it has been
designed for, but its efficiency drops rapidly when applied in different problem areas. In

contrast to that, purely randomised methods such as random walk perform consistently
in a wide range of problem areas, but their efficiency is generally low. Robust methods
such as GAs combine efficiency with consistency, achieving acceptable performance

across a wide range of domains. Therefore, in cases where specialised methods exist for

solving specific problems, these methods are likely to outperform GAs, but in difficult

areas where no specialised methods exist, GAs can provide a very effective - if not the

only - approach. Even in cases where methods exist and work well, improvements can
be made by hybridising them with GAs (Goldberg, 1989a; Salomon, 1998).

1.4 Genetic Algorithms and Control Systems

It is evident that, as a robust means for optimisation, the genetic algorithm approach fits

well within the scope of optimisation-based process modelling and control, where noisy,

highly non-linear, multimodal, and discontinuous functions of many dimensions need to

be optimised. An overview of the relevance of GAs to problems in control engineering

can be found in Chipperfield and Fleming (1995), Zalzala and Fleming (1996), Linkens

and Nyongesa (1996b), and the references therein. GAs have already been employed for

the solution of modelling and control problems, with a high degree of success. A number

of successful applications of GAs to control systems are presented in this section.

1.4.1 Genetic Algorithms in Process Modelling

GAs have been employed for the parameter estimation and structure selection of both

linear and non-linear system models. Kristinsson and Dumont (1992) demonstrated the

use of GAs for the parameter estimation of both continuous-time and discrete-time linear

systems, and for identifying the poles and zeros or the physical parameters of a system.

Tan and Li (1997) employed GAs for the identification of linear and non-linear models

from process step response data. Fonseca and Fleming (1996) used a multiobjective GA

to identify non-linear polynomial models for a real non-linear system. A similar method

was proposed by Li and Jeon (1993) who then used it in a learning control scheme (Li,

Chapter 1- Introduction - Survey and Thesis Outline g

Tzeng, and Jeon, 1997). Other genetic approaches to non-linear modelling which also
employ polynomial models were proposed by Rodriguez-Vazquez and Fleming (1997,
1998) who identified optimal non-linear model structures using the technique of Genetic
Programming (GP), developed by Koza (1992). GP was also used by Gray et. al. (1998),

and McKay, Willis, and Barton (1997), for the identification of general non-linear model
structures. The use of GP enables complete mathematical models to be constructed by

optimally combining different types of linear and non-linear principal components. The

obtained models have the advantage that they more closely resemble those obtained by
first principles, and can thus provide more structural insight into the modelled process
characteristics than black-box models such as neural networks. French, Cox, and Ho
(1997) proposed a GA-based framework for the identification of the structure, order, and
parameters of multivariable discrete-time transfer function matrices. GAs have also been

used for the identification of fuzzy models. Recent applications in this direction include

Rahmoun and Benmohamed (1998), and Hwang (1999). Shieh, Zheng, and Wang (1997)

utilised GAs to identify discrete-time parametric models for uncertain processes which

provide less conservative results than those obtained by conventional methods. Alonge,

D'Ippolito, Ferrante, and Raimondi (1998) employed GAs to determine the mechanical

and electrical parameters of a real induction motor model, and Liu and Kadirkamanathan

(1999) proposed a GA-based method that addresses the problems of structure selection

and identification of neural network models for non-linear systems in a multiobjective

optimisation framework. Finally, Hong and Billings (1999) proposed a method for the

parameter estimation of linear-in-the-parameters non-linear models, based on stacked

regression and an evolutionary algorithm.

1.4.2 Genetic Altorithms in Process Control

Several GA-based methods have been developed for the optimal design and tuning of

controllers. Porter and Jones (1992) used GAs to tune discrete-time Proportional plus

Integral plus Derivative (PID) controllers for multivariable processes. Wang and Kwok

(1994) proposed a GA-based technique for the tuning of PID controllers for non-linear

processes, using the ISE performance criterion. Kawabe, Tagami, and Katayama (1996),

and Kawabe, Tagami, and Okamura (1998) developed GA-based methods for the design

of PID controllers that achieve robust stability and performance in the presence of plant

uncertainty. An adaptive GA-based learning algorithm for the automatic tuning of PID

1- Introduction - Survey and Thesis Outline 9

controllers as applied to heating, ventilating, and air conditioning systems, was proposed
by Huang and Lam (1997), and Warwick and Kang (1998) proposed a self-tuning PID
control scheme which they applied to the on-line control of a real industrial plant. The
proposed approach is based on a hybrid scheme which combines the Recursive Least
Squares (RLS) algorithm with a GA. Zuo (1995,1997) proposed a GA-based method
for the design of discrete-time set point tracking adaptive PID controllers for complex
multivariable plants. Finally, GA-based methods for the design of robust PID controllers
using H. optimal control theory can be found in Takahashi, Peres, and Ferreira (1997),

and Chen and Cheng (1998).

GAs have also been applied in more complex control strategies. Varsek, Urbancic, and
Filipic (1993) employed GAs to derive and fine-tune a set of if-then rules for the control
of dynamic systems, without prior knowledge about the system to be controlled. Filipic,
Urbancic, and Krizman (1999) proposed a similar rule-based approach. Krishnakumar

and Goldberg (1992) used GAs to solve aerospace-related control problems by means of

optimising standard linear quadratic regulators. Kristinsson and Dumont (1992) applied
GAs to the design of discrete-time pole placement adaptive controllers. A comparative

analysis of the performance of various GA-based adaptive control methods relative to

conventional methods can be found in Lennon and Passino (1999). Hunt (1992a, 1992b)

proposed an approach for the synthesis of LQG and H. optimal controllers for linear

systems based on GAs. Patton and Liu (1994), and Clarke and Davies (1997), employed
GAs for the robust control design of multivariable systems based on the eigenstructure

assignment methodology. Shieh, Wang, and Tsai (1999) proposed a state-space design

methodology for the optimal design of discrete-time parametric uncertain systems, based

on GAs. Another application of GAs to robust control system design can be found in

Marrison and Stengel (1997). GAs have also been employed as optimisers in predictive

control algorithms. Onnen et. al. (1997) applied GAs to model-based predictive control

of a non-linear system with input saturation and rate limit constraints. Martinez, Senent,

and Blasco (1998) presented a Generalised Predictive Control (GPC) scheme that uses

GAs to optimise the associated objective function. A practical application of GAs to the

optimisation of the control parameters of a pneumatic servo cylinder drive is reported in

Jeon, Lee, and Hong (1998). French, Cox, and Ho (1997) proposed a GA-based solution

to the input/output pairing problem in multivariable processes. Patton, Chen, and Liu

(1997) developed a new approach to the design of robust fault detection systems based

Chapter 1- Introduction - Survey and Thesis Outline 10

on GAs. In the area of process optimisation, a GA-based method was proposed by Pham
(1998) for the constrained optimisation of chemical engineering processes, and Santos

and Dourado (1999) developed a GA-based method for the global optimisation of energy
and production in process industries. GAs have also been employed in the area of fuzzy
logic control. Refer to Linkens and Nyongesa (1995a, 1995b, 1996a), Trebi-Ollennu and
White (1997), Pham and Karaboga (1997), Lian, Marzuki, and Rubiyah (1998), Herrera,
Lozano, and Verdegay (1998), Gürocak (1999), Wong and Fan (1999), and Hwang
(1999) for a few examples.

Most approaches to optimisation-based controller design and tuning use single-valued

objective functions to provide the necessary performance indexes to guide the search for

optimal solutions. However, control engineering problems are very seldom associated

with a single objective. Instead, several, often conflicting objectives are usually present,

thus resulting in vector-valued objective functions. Such cases are usually treated by

weighting and combining all objectives into a single-valued function, thus transforming

them into single-objective optimisation problems. This approach may be acceptable in

certain cases, but there are times when combining the objectives in an efficient way may

not be practically feasible. Although GAs are inherently unsuitable for multiobjective

optimisation in their standard form, a number of extensions have been proposed which

enable them to efficiently optimise vector-valued objective functions in a multiobjective

framework. An overview of a number of such extensions can be found in Fonseca and

Fleming (1995). Fonseca and Fleming (1993,1998a, 1998b) proposed what is known as

the Multiobjective Genetic Algorithm (MOGA). The relevance of multiobjective GAs

to control systems is outlined in Fonseca and Fleming (1994). The MOGA approach has

successfully been employed in a number of control problems. Chipperfield and Fleming

(1996) used a MOGA to design a multivariable control system for a gas turbine engine,

where both the structure and the parameters of the controller are optimised. Another

application is reported in Thompson, Chipperfield, Fleming, and Legge (1999).

1.5 Project Scope

The main objective of this research project is to develop general methods for the optimal

design of controllers for multivariable processes. The project focuses on design methods

based on numerical optimisation, where GAs are employed to optimise a number of

Chapter 1- Introduction - Survey and Thesis Outline 11

specially formulated objective functions. Strong emphasis is given on the generality and
open architecture of the proposed methods, which must be applicable to a wide range of
real-world multivariable control problems involving non-linearities, noise, and arbitrary
performance specifications and controller structures. Other important aims of this project
are to extend standard GAs, in order to improve their efficiency in problems associated
with optimisation-based control, and also to justify the choice of GAs in the proposed
optimisation framework by statistically comparing them with a number of conventional
function optimisation algorithms.

1.6 Thesis Outline

The structure of this thesis is outlined below. Most of the material contained in Chapter 2

is standard and is only intended as a brief review of the current state of affairs in the field

of GAs as function optimisers. The main contributions and novel aspects of this work are

contained in Chapters 3 to 6 and are summarised in Chapter 7.

Chapter 2- Genetic Algorithms and Function Optimisation

This chapter begins with a brief introduction to function optimisation, which is central

to the design methods developed in this work. GAs are then introduced, and their main
features and advantages over conventional optimisation methods are outlined. GAs are

then treated in a more systematic and rigorous fashion, in order to establish key results

that provide a deeper insight into their operation, and enable a thorough and quantitative

assessment of their performance.

Chapter 3- Analysis and Design of Objective Functions for Control Systems

This chapter is primarily concerned with the analysis and design of objective functions,

as applied to the solution of control engineering problems. A novel objective function is

proposed for single-input, single-output (SISO) processes, that overcomes many of the

weaknesses of conventional objective functions. The proposed objective function is then

experimentally analysed using a simple two-term parametric controller tuning problem.

The obtained results are analysed and compared with those obtained using conventional

objective functions, as well as using a number of conventional tuning methods. Finally,

Chapter 1- Introduction - Survey and Thesis Outline 12

the proposed objective function is generalised to treat multi-input, multi-output (MIMO)

control problems.

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms

The objective functions developed in Chapter 3 have the important characteristic that
they result in a family of solutions that completely satisfy the problem specifications.
This results in a (usually infinite) set of optimal solutions. Standard GAs are known to
have problems in identifying multiple optimal solutions, because the population usually

converges to a small subset of the entire optimal solution set. In this chapter, GAs are

extended using a novel fitness assignment strategy called adaptive fitness sharing. It is

shown that the proposed method enables the GA to evolve a population whose members

are almost uniformly distributed within the optimal solution set. The proposed method is

not limited to the optimisation of the objective functions developed in this work, and

can be used in many different search landscapes containing multiple optimal solutions.

Chanter 5- Decentralised PI Controller Tuning for Multivariable Processes

In this chapter, a new method for the automatic tuning of decentralised PI controllers for

multivariable processes is proposed, based on GAs. The main advantage of the proposed

method is that it gives the designer the freedom to explicitly specify the performance

specifications associated with a given control problem, in terms of time-domain bounds

on the closed-loop responses. This is achieved by transforming the PI controller tuning

problem into a function optimisation problem by means of the MIMO objective function

developed in Chapter 3. GAs are then employed for the minimisation of this function,

and the method of adaptive fitness sharing developed in Chapter 4 is utilised, in order to

maximise the diversity of the obtained family of optimal solutions. Simulation results

are presented to illustrate the effectiveness of the proposed method. The choice of GAs

as a suitable optimisation method is experimentally supported by statistically comparing

them with two conventional optimisation methods.

Chapter 6 -Solution to the Shell Standard Control Problem

In this chapter, a new solution to the Shell standard control problem is presented, based

on GAs. The proposed control scheme includes two discrete-time PID controllers with

Chapter 1- Introduction - Survey and Thesis Outline 13

integral anti-windup and a multivariable Smith predictor to provide the required process

output regulation, while the process input minimisation problem is analytically solved

on-line, by estimating the unmeasured disturbances entering the process and solving the

associated linear program. GAs are successfully applied to the automatic tuning of the

PID controllers according to the given specifications, using an extension of the MIMO

objective function developed in Chapter 3. Extensive simulation results are presented to

demonstrate the effectiveness of the proposed control scheme.

Chapter 7- Conclusions - Main Contributions and Further Work

The key outcomes and main contributions of this research project are summarised in this

chapter, and a number of suggestions for further work, that will extend the application

of GAs in the area of control systems engineering, are given.

1.7 Summary

In this chapter, an overview of function optimisation as applied to the solution of control

engineering problems was given, followed by a brief introduction to genetic algorithms

(GAs) as global function optimisers, with emphasis on their fundamental differences and

advantages over conventional search algorithms. A literature survey was then presented,

indicating the relevance of GAs to process modelling and control problems. Finally, the

project scope and the structure of this thesis were outlined.

Chapter 2- Genetic Algorithms and Function Optimisation 14

2 Genetic Algorithms and Function
Optimisation

2.1 Introduction

This chapter begins with a brief introduction to function optimisation, which is central
to the design methods developed in this work. Genetic algorithms as function optimisers
are introduced, and their main features and advantages over conventional function

optimisation methods are outlined. Genetic algorithms are then treated in a more
systematic and rigorous fashion, in order to establish key results that provide a deeper

insight into their operation, and enable a quantitative assessment of their performance.

2.2 Typical Search Spaces in Function Optimisation

A function can be thought of as a mapping from a set of elements to another set of

elements. For example, the function f (x) = x2, xE T1 maps all real numbers to all real

non-negative numbers (its domain and codomain are sets JR and R+ respectively). In a

typical function optimisation problem, the requirement is to find points in the domain of

the function associated with the problem, that satisfy certain optimality criteria. In most

cases, the function to be optimised, often called objective function or cost function, is

constructed in such a way that the desirable points in its domain are the ones at which

the function attains its global extremum (maximum or minimum value). In the context

of function optimisation, a function and its domain and codomain form a search space.

Finding the global extremum in a search space is, in general, a very difficult problem.

Therefore, it is crucial that the algorithm used for the optimisation is able to explore the

search space, and at the same time exploit certain properties of the search space, which

can help direct the search towards the global extremum. Some typical search spaces that

can occur in a function optimisation problem are shown in Fig. 2.1.

Chapter 2- Genetic Algorithms and Function Optimisation 15

(b) Multimodal, continuous, differentiable

(c) Unimodal, noisy, non-differentiable

X min xopt Xmax X

(d) Multimodal, multidimensional

500

-500 -500

Fig. 2.1 Typical search spaces in function optimisation

Search space (a) in Fig. 2.1 results from a smooth (continuous, differentiable) and

unimodal function, the minimisation of which is a trivial task. Since the derivatives

exist at all points in the search space, they can be used to guide the search, so that the

optimal solution, xopt, is found within very good accuracy. Search space (b) results from

a smooth (continuous, differentiable), but multimodal function. Derivative information

can still be used to guide the search, but locating xopt is now more difficult because

many sub-optimal solutions (local minima) exist. It is, therefore, crucial that the starting

point is chosen in the neighbourhood of xopt. Although qualitatively unimodal, search

space (c) is difficult to optimise due to the presence of noise which makes the associated

function non-differentiable. Formally, `noisy' search space (c) does not correspond to a

function since each point x in [xmin
, xm] can take an infinite number of values (the

same set of parameters will not, in general, produce exactly the same result). Finally,

search space (d) results from a two-dimensional, multimodal function.

Real-world search spaces are often of high dimensionality, multimodal and corrupted

with noise, properties that can render most calculus-based and other conventional

optimisation methods inapplicable.

(a) Unimodal, continuous, differentiable

)(min Xopt Xmax X

Amin xopt Xmax X

Chapter 2- Genetic Algorithms and Function Optimisation 16

2.3 Conventional Optimisation Algorithms

Most conventional function optimisation algorithms can be grouped into the following

main categories. More details on the optimisation methods discussed in this section can
be found in Rao (1996).

" Direct and indirect gradient-based algorithms

" Region-elimination methods

" Polynomial approximation methods

" The Nelder-Mead downhill simplex method

" Randomised algorithms

Direct and indirect gradient-based algorithms

An obvious prerequisite of gradient-based algorithms is for the function to be

differentiable and hence continuous. Direct gradient-based methods restrict the search

space to the points where the partial derivatives in all directions are zero. This is only

possible when an analytical expression for the function is available, something

extremely rare in real-world problems. The indirect gradient-based methods use the

numerical partial derivatives of the function at a given starting point, in order to guide

the search towards other points in the neighbourhood of the starting point where all

partial derivatives are zero. These are the so-called hill-climbing methods. The

applicability of such methods is limited because of their dependence on the existence of

derivatives. Another major disadvantage is that they are local optimisers since they can

easily converge to local optima in the case of multimodal functions.

Region-elimination methods

Region-elimination methods are only applicable to unidimensional search spaces. They

locate the optimal point contained in a given search interval [Xmin
, xm] in the domain

of a function f (x), by successively eliminating sub-optimal regions in this interval, thus

narrowing the interval bracketing the optimal point. When the bracketing interval is

sufficiently small, the search terminates. Commonly used region-elimination methods

include interval halving, dichotomous search, golden section search, Fibonacci search,

2- Genetic Algorithms and Function Optimisation 17

and others. These methods are local in scope, and are only applicable to the optimisation
of locally unimodal functions of only one variable. Their application is, therefore,
limited to small-scale optimisation problems.

Polynomial approximation methods

This is another class of methods used for the optimisation of unidimensional functions.
They locate a point in the neighbourhood of the optimal point by extrapolation and
interpolation using polynomial approximates as models of f(x). The candidate optimal
points are then derived analytically using the resulting polynomial. Both quadratic and
cubic approximations have been proposed. There is evidence that these methods
perform slightly better in practice than the region-elimination methods described earlier.
Polynomial approximation methods are local optimisers that are applicable to the

optimisation of sufficiently smooth functions of only one variable, properties which
limit their scope of application.

The Nelder-Mead downhill simplex method

The downhill simplex method is due to Neider and Mead (1965). This is an entirely

self-contained and relatively simple multidimensional search method, which does not

require the existence of derivatives. Convergence to a (local) optimum is guaranteed,

and is achieved by appropriately modifying a n-dimensional simplex in an iterative

fashion. The simplex method of linear programming also makes use of the geometrical

concept of a simplex, but is otherwise unrelated to the downhill simplex method

described here. The downhill simplex method is very easy to implement, only requires

function evaluations, and can be used in multidimensional search spaces, but suffers

from a slow convergence and can also easily converge to local optima.

Randomised algorithms

Randomised algorithms such as random walk have the advantage that they can be used

in almost all types of search spaces, since they make almost no assumptions aboutf(x).

However, they are extremely inefficient because they do not exploit the search space,

and an extremely large number of function evaluations is usually required in order for

them to converge to the optimal region within reasonable accuracy.

Chapter 2- Genetic Algorithms and Function Optimisation 18

It is clear that there is a trade-off among the different algorithms, between the degree of
exploration of the search space and the degree of exploitation of the available
information about the search space. The gradient-based algorithms have a high degree

of exploitation by using the derivatives of the function (if they exist) to guide the search,
but can easily converge to local optima because of their lack of exploration of the search
space. On the other hand, randomised algorithms have a high degree of exploration of
the search space (it is theoretically guaranteed that, given a sufficiently large number of
function evaluations, a near-optimal solution will be found), but they do not sufficiently
exploit the available search information. This means that, even if they reach a point in

the neighbourhood of the optimal solution, they may easily diverge to other sub-optimal
points in the search space. An in-depth treatment of conventional optimisation methods

can be found in Rao (1996), Fletcher (1987), and Gill, Murray, and Wright (1981).

2.4 Overview of Genetic AlLyorithms

Genetic algorithms (GAs) are global, stochastic search methods that are based on

natural population genetics. They maintain a set of many candidate solutions to a given

problem, which `evolve' using genetic operators such as reproduction, crossover and

mutation. Studies by Holland (1975), De Jong (1975), Goldberg (1989a), and others
have demonstrated, both theoretically and experimentally, the superior performance of

GAs over traditional optimisation techniques. Due to their generality and robustness

they are now being applied to a wide range of domains. The material presented in this

section is standard and well-known. For more details and a list of practical applications,

the reader is referred to Holland (1992), Fogel (1994), Goldberg (1994), and the

introductory textbooks by Goldberg (1989a), and Mitchell (1996).

Simple GAs operate on a set of N candidate solutions. This set is often called the

population. Each solution is simply a set of parameters associated with the optimisation

problem. Each parameter is encoded as a string element of cardinality (number of

alphabet characters) k. All string elements associated with a solution are concatenated to

form one long string of length 1 (which is directly analogous to a chromosome in natural

genetics). In most cases, and for reasons that will become apparent later in this chapter,

binary strings (k = 2) are used in the encoding. An example of a typical binary string that

can be used in a simple GA is shown in Fig. 2.2 below.

Chapter 2- Genetic Algorithms and Function Optimisation 19

Parameter x Length lX Parameter y Length ly Parameter z Length lZ
0110100100111100

...
11 0000101100111101

... 01 1011111010110100
... 10

Fig. 2.2 Example of a string representing a solution to the optimisation of function f(x, y, z)

In the above example, the function to be optimised is f(x, y, z). The parameters are
firstly converted to binary string elements of lengths lx, ll,, and lZ. The longer the length

of each string element, the higher the resolution of the corresponding parameter. All

string elements are then concatenated to form one long string of length 1= lx + ly + lZ.

In the beginning of the evolution process, the strings in the population are usually
chosen at random. If there is prior knowledge about the locations of near-optimal
regions in the search space, it may be helpful to initialise part of the population with
strings in these regions. The initial population then evolves in generations, using a
sequence of genetic operators. In a simple GA, three fundamental genetic operators are
used in the evolution process. These are reproduction, crossover and mutation.

2.4.1 Reproduction

Each one of the N strings in the population is firstly decoded to its corresponding set of

parameters. These parameters are then used to evaluate the performance of each string
by means of an objective function, which is a problem-dependent, real and single-valued
function of the parameters to be optimised. For each string, the performance index

obtained from the objective function is used to produce a non-negative real number,

whose value is called the fitness value of the string and is a measure of the quality of the

corresponding solution. During the reproduction phase, individual strings are selected

according to their fitness values. This means that strings with higher fitness values have

a higher probability of producing one or more offspring in the next generation. Fitness

values are often chosen to be directly proportional to the objective function values. This

scheme is called proportionate selection. Other, more advanced selection schemes exist,

including rank selection, tournament selection, truncation selection, and others. More

details on proportionate and rank selection can be found in Section 4.4 of Chapter 4.

Convergence models for a number of selection schemes can be found in the work by

Thierens and Goldberg (1994). The reader is also referred to Goldberg and Deb (1991),

and Hancock (1994), for comparisons between different schemes. After reproduction,

the selected strings are placed in a mating pool where crossover takes place.

Chapter 2- Genetic Algorithms and Function Optimisation 20

2.4.2 Crossover

The crossover operator is of major importance in the operation of a GA as it enables the

exchange of information between strings. Initially, pairs of the reproduced strings in the

mating pool are formed at random. In single-point crossover, a crossing site is randomly

chosen along the length of each string pair. Then, a new pair of strings is created by

swapping all characters (usually called features or detectors) to the left or right of the

crossing site. This is illustrated in Fig. 2.3 below.

Crossing site

Parent 1

Parent 2

Offspring 1

Offspring 2

1100101110000101 0011110101111000110101101000

0100010100010100 1,110100011000111100000111010

11100101110000101
1110100011000111100000111010

0100010100010100 0011110101111000110101101000

Fig. 2.3 Example of single point crossover

In this way, good qualities of highly fit strings can be combined to form new, possibly

better strings. The crossover operator is applied with a given probability called the

crossover probability, pc. Therefore, on average, Npc strings undergo crossover. It

should be noted that more advanced crossover operators have been proposed, including

multipoint crossover (De Jong, 1975), uniform crossover (Syswerda, 1989), shuffle

crossover (Caruana, Eshelman, and Schaffer, 1989), and others.

2.4.3 Mutation

Mutation is the random alteration of the value of a string position and usually occurs

with a small probability called the mutation probability, p, n. Consequently, on average,

Nlpm mutations occur per generation. Mutation plays a secondary but important role in

a GA, and is needed to replace potentially useful genetic material that has been lost and

cannot be replaced by crossover alone. It ensures the reachability of all points in the

search space. The mutation operator is illustrated in Fig. 2.4 below.

Chapter 2- Genetic Algorithms and Function Optimisation 21

Original 11001011100001010011110101 1I11000110101101000 string

Mutated 11001011100001010011110101; 0 11000110101101000 string

Fig. 2.4 Example of uniform mutation

2.4.4 Generation Gap and Elitism

In a simple GA, strings in the population undergo reproduction, crossover, and
mutation, and the entire population is replaced in each generation. Rudolph (1994) has

shown that this procedure cannot ensure asymptotic convergence to an optimum. This

problem can be overcome by employing a heuristic technique first proposed by De Jong

(1975), in which only a percentage of the population is replaced in each generation. This

is controlled by the so-called generation gap, g, which can take values between 0 and 1.

That is, N (1- g) strings in the population are chosen to survive intact in the next

generation. These strings can be chosen at random (random reinsertion) or according to

their fitness values (fitness-based reinsertion). The latter is often called an elitist

strategy because the N(1-g) best individuals in the population always propagate

through to successive generations. This guarantees asymptotic convergence by ensuring

that the best solution in a generation can only be replaced by a better solution.

2.4.5 Structure of the Simple Genetic Algorithm

The algorithmic structure of the so-called Simple Genetic Algorithm (SGA) can be

summarised in the following sequence of steps.

Step 1: Initialise the population of candidate solutions.
Step 2: Evaluate solutions using the objective function.
Step 3: Check if termination criteria are satisfied. If yes, stop.
Step 4: Assign appropriate fitness values to solutions.
Step 5: Apply the reproduction operator to strings.
Step 6: Apply the crossover operator to reproduced strings.
Step 7: Apply the mutation operator to offspring.
Step 8: New generation is complete! Go to Step 2.

Chapter 2- Genetic Algorithms and Function Optimisation 22

It can be seen that genetic algorithms are very different from conventional optimisation

methods. They search from a population of points, not a single point. The search space
is, therefore, `attacked' at many points simultaneously, dramatically increasing the

probability of reaching the global optimum. Furthermore, GAs only need objective
function information. This enables them to be used in domains where continuity and
derivative existence do not apply. They can also be used in `noisy' search spaces, where
the same set of parameters will not, in general, produce exactly the same result. Another

characteristic of GAs is that they work with a coding of the parameter set and not with
the parameters themselves. This makes them directly applicable to a wide range of

non-numerical, combinatorial, and mixed optimisation problems. Finally, GAs use

probabilistic transition rules, not deterministic ones, which adds to their generality and

robustness. A more thorough comparison between evolutionary algorithms and classical

gradient methods can be found in Salomon (1998) and the references therein.

For these and other reasons, GAs form a simple to implement, yet robust and generic

optimisation tool, which can be used in many different classes of numerical as well as

combinatorial optimisation problems. The truth of the above statements will become

apparent in the following sections, where a mathematical framework for the analysis of

the operation of simple GAs will be developed.

2.5 Mathematical Foundations of Genetic Algorithms

In the previous sections, genetic algorithms were introduced and their fundamental

differences from conventional optimisers were outlined. Genetic algorithms can be

thought of as crude models of natural genetics, employing principles such as the

Darwinian `survival of the fittest', resulting in a randomised, yet structured mechanism

for the search of optimal solutions to optimisation problems. In Section 2.4 it was shown

that a simple GA involves nothing more complex than random number generation,

string copying, partial string exchanging and random bit alterations. Intuitively, based

on the obvious success of natural genetics, one may expect GAs to perform well in most

optimisation problems. Indeed, numerous applications of GAs to a wide range of

domains have shown their superiority over conventional optimisation methods (see

Holland, 1992; Fogel, 1994; Goldberg, 1989a, and the references therein). However,

Chapter 2- Genetic Algorithms and Function Optimisation 23

despite their intuitive appeal and their experimental success, it is crucial that these
positive indications about GAs are backed by rigorous mathematical facts. In order to
accomplish this task, the important concept of similarity templates (or schemata) is
introduced, which provides the notational tool necessary to arrive at an important

theorem known as The Fundamental Theorem of Genetic Algorithms (also called the
Schema Theorem). Most of the material in this section is due to Holland (1975), and
De Jong (1975).

2.5.1 Similarity Templates (Schemata)

Recall that candidate solutions in a simple GA are represented by strings, which

undergo reproduction, crossover, and mutation, in order to form new generations. To

guide the search, highly fit strings (representing better solutions) are given a higher

probability of surviving and propagating their genetic material through their offspring to

successive generations. Instead of working with each string individually, it is often

useful to group strings in the population based on their similarities. In order to

accomplish this task, the concept of similarity templates (or schemata) is introduced.

Definition 2.1: A schema (Holland, 1975) is a similarity template describing a

subset of strings with similarities at certain string positions. "

Without loss of generality, the discussion will be limited to strings of cardinality k=2.

Specifically, the binary alphabet 10,11 will be used. A schema is denoted by appending

a new symbol to this alphabet. The symbol * is used to signify a `don't care' string

position. Hence, the schema **000 describes all strings of length l=5 whose three last

positions are 0. Therefore, schema **000 describes the four distinct strings

{0 0000,010 0 0,10 000,110 0 0) .
In order to understand the importance of the notion

of schemata, consider the problem of maximising the function f (x) = x2. Assuming that

direct binary coding is used to encode parameter x, it is obvious that strings containing

1 in their most significant bit will be fitter than other strings. Using the notion of

schemata and assuming l=5, we can conclude that schema 1**** represents better

solutions than schema 0****. Note that the sets represented by the two schemata are

disjoint and their union forms the search space for the optimisation problem.

Chapter 2- Genetic Algorithms and Function Optimisation 24

The notion of schemata helps us understand the amount of information that is contained
within a single population in a GA. In terms of individual binary strings, the population
can contain up to a total of 21 different strings. However, in terms of schemata, due to
the extended alphabet { 0,1, *1 used, the population can contain up to a total of 31
different schemata. Using a string length 1= 5, the upper bound in the number of
schemata is 35 = 243, as opposed to only 25 = 32 in the case of individual strings. In
general, for strings of cardinality k, there can exist k' distinct strings and (k+ l)1 distinct

schemata. It is now apparent that, by considering the strings, their fitness values, and the
similarities among the strings in the population, there is a wealth of new information

available to help direct the search.

The amount of information that is contained in a population is not constant and depends

on the population diversity (i. e. the proportion of distinct strings in the population). A

population containing copies of the same string is a worst-case example of a population
with low diversity. Calculation of the precise amount of information contained in a
population requires the explicit knowledge of the strings in the population. However, it
is possible to establish upper and lower bounds on the total number of schemata in a

population. It is easy to see that, in general, a particular string of length 1 is a member of
21 schemata. This is because each string position can take its own value or the * symbol.
Therefore, depending on the population diversity, a population of size N can contain

somewhere between 21 and N-21 schemata. Note that this result does not depend on the

cardinality of the alphabet used to form the strings.

The above result clearly shows that even moderately sized populations can contain a

wealth of information about the search space, which can be used to direct the search.

The issue of whether GAs exploit this information or not still remains open. In order to

show that GAs actually make use of the available information, the effects of the three

fundamental genetic operators, reproduction, crossover, and mutation must be analysed

in a systematic and rigorous way. This is the subject of the following section.

2.5.2 The Fundamental Theorem of Genetic Algorithms

In order to add rigour to the following discussion, some simple notation needs to be

introduced. Without loss of generality, it is assumed that strings are constructed over the

Chapter 2- Genetic Algorithms and Function Optimisation 25

binary alphabet { 0,1). The state of a population at time (or generation) t is represented

symbolically as P(t) _{ Si (t), i =1,2 , ... , NJ, where the boldface denotes a population,

Sl (t) denotes the i-th string in the population at time t, and N denotes the population
size. In order to improve clarity, the dependence of Si (t) on t may not be shown
explicitly. Note that P(t) is a multiset, meaning that the elements of P(t) are not
necessarily distinct.

A schema is simply a string constructed over the extended alphabet 10,1, * }, and is

represented by the letter H. An example of a schema is H=* 10 * 0, which describes the

four strings S1 = 010005 S2 = 01010, S3 =11000, and S4 = 11010. The number of

strings described by a schema is clearly a function of the number of ` *' symbols

contained in the schema. For example, schema Hl = 110 *0 describes much fewer

strings than schema H2 =1****. Furthermore, schema Hl spans more of the total

string length than schema H2. In order to quantify the above properties, the notions of

schema order and defining length are introduced.

The order of a schema H is the number of fixed positions contained in a schema, and is

denoted by o (H). In the examples above, o (Hl) = 4, and o (H2) =1. The defining length

of a schema H is the `distance' between the first and last specific string position, and is

denoted by b(H). In the examples above, b(Hi) =5 -1= 4, and 8(H2)=1-1=0. In

general, a schema H describes kl-°(, ') distinct strings of cardinality k.

The effects of reproduction

In order to determine the effects of reproduction on the expected number of schemata in

the population from time t to time t+1, suppose that, at time t, there are MH strings that

belong to a particular schema H within the population P(t). This is denoted as

MH = MH(t). Recall from Section 2.4.1 that during reproduction, a string Si is copied

according to its fitness value, denoted by f. In particular, the probability pi of selecting

string Sl for reproduction is given by

f
pi N

If
j=i

(2.1)

Chapter 2- Genetic Algorithms and Function Optimisation 26

In a simple GA, the reproduction operator is applied N times resulting in a new set of N
individuals that form a new population P'(t+l). Consider the MH strings belonging to

schema H. Obviously MH <_ N, and without loss of generality, assume that the strings in

the population are ordered in such a way that these MH strings appear first in the

sequence of N strings that form the population. Then, the probability of any one of these
MH strings propagating through to P'(t+l) is given by

MH

MH
f

i-1
Pr (H) = lpi =N (2.2)

i=1 Lf

j=1

Hence, since P'(t+l) is formed by selecting N strings from P(t) with replacement, the

number of examples of schema H in P'(t+1) is given by

MH

N. f

MH (t + 1) = Npr (H) =N1 (2.3)
f

>=i

Let f(H) denote the average fitness of the strings representing schema H in population

P(t), and f denote the average fitness of the entire population P(t).

MH

Id fi
f (H) -l M H(t

N
Lf

and f= 1

Combining Eq. (2.3) with the above equations leads to

MO + 1) = MH(t)
NN f(H)

= MH(t)
f (H)

(2.4)
f Lf

j=i

Eq. (2.4) shows that the growth of a particular schema H can be expressed as the ratio of

the average fitness of the schema to the average fitness of the entire population. In other

words, schemata contained in population P(t) that have fitness values above the

population average will receive an increasing number of string representatives in

Chapter 2- Genetic Algorithms and Function Optimisation 27

population P'(t+l), whereas schemata contained in population P(t) that have fitness

values below the population average will receive a decreasing number of string
representatives in population P'(t+l). Furthermore, it can easily be shown that the
schemata growth/decay rate is exponential.

The above results clearly show that GAs can successfully exploit the information

contained in the population, by allocating exponentially increasing and decreasing

numbers of schemata to subsequent generations. However, reproduction alone does not
help the GA explore new regions in the search space, since it does not alter the genetic
material contained in a given population. The mechanism of introducing new structures
in the population, thus promoting exploration of the search space, is provided by the

crossover and mutation operators.

The effects of crossover

Recall from Section 2.4.2 that the crossover operator involves the random mating and

exchange of genetic material between pairs of selected strings. In single-point

crossover, a crossing site is randomly chosen along the length of each string pair. Then,

a new pair of strings is created by swapping all characters to the left or right of the

crossing site (see Fig. 2.3). For strings of length 1, there are 1-1 possible crossing sites.
This exchange of information clearly introduces new structures in the population, but

may disrupt certain schemata, while leaving others unaffected. In particular, if the

crossing site falls within the defining length 8 of a given schema, this schema will be

destroyed, whereas if the crossing site falls outside its defining length, the schema will

survive. This means that schemata with short defining lengths have a higher probability

of surviving crossover than schemata with long defining lengths. Assuming that the

crossing site is uniformly chosen at random and that the crossover operator is applied

with a probability pc, it is possible to establish a lower bound on the crossover survival

probability pc (H) of a schema H in terms of its defining length b, which is given below.

H >1-
6(H)

p()- ps l-1
(2.5)

Consider P"(t+l), the population formed after the combined effects of reproduction and

crossover. A lower bound on the expected number of strings representing schema H in

Chapter 2- Genetic Algorithms and Function Optimisation 28

P"(t+l), denoted by MH(t+1), can now be obtained by combining Equations (2.4) and
(2.5) as shown below.

MH (t + 1) >_ Mx (t)
f (H)

1- p,
S (H)

f 1-1
(2.6)

The combined effect of reproduction and crossover can clearly be seen by examining
the above equation. It is observed that schemata with both above-average fitness values
and short defining lengths will propagate from population P(t) through to P"(t+l) and
will receive samples at exponentially increasing rates.

The effects of mutation

Mutation is the last of the three fundamental genetic operators in a simple GA. In
Section 2.4.3 the mutation operator was defined as the random alteration of a single

position of a string, which occurs with a probability p, n. Hence, the survival probability

of each individual character in a string after mutation is 1- pm. A schema is essentially
defined by the values of the fixed positions within the schema. In order for a given

schema to survive, all values of its fixed positions must be preserved intact. Since a

schema H contains o(H) fixed positions, and the individual mutations are statistically
independent, a schema H survives mutation with a probability p, n (H) =(I -p, n) 0(1'0.

Similarly to natural population genetics, it is desirable for the mutation probability to be

kept small in order not to severely disrupt the structures developed in the population. In

this case, the schema survival probability mentioned above can be approximated by the

expression pm (H) -- 1- o(H) p, n.

Consider P(t+l), the population formed after the combined effects of reproduction,

crossover and mutation. A lower bound on the expected number of strings representing

schema H in P(t+l), denoted by MH(t+l), can now be obtained by combining the

above result with Eq. (2.6) as shown below (ignoring the cross-product term).

MH (t + 1) >- MxCt)
f CH)

f

[i_fl ý (H)
-° (H))pm (2.7)

l-1

Since p, n is usually kept small, the contribution of the mutation operator does not alter

much the earlier conclusion that highly fit schemata of short defining lengths receive

Chapter 2- Genetic Algorithms and Function Optimisation 29

exponentially increasing samples in subsequent generations. Schemata possessing the

above two properties are often called building blocks.

The results of Eq. (2.7) are central to the understanding of the underlying mechanism in

the artificial evolution of a GA. They constitute the Schema Theorem, also known as the
Fundamental Theorem of Genetic Algorithms. This theorem shows that GAs not only

exploit the available information about a given search space, but also explore different

regions of the search space in a manner that facilitates the creation of new and better

structures. They accomplish this by using reproduction to exploit the available
information about the search space, by segmenting it into smaller highly fit subsets

represented by schemata with above-average fitness. Crossover is then used to further

exploit and also explore the search space by combining building blocks, in order to form

potentially better solutions. Finally, mutation promotes exploration by introducing new

genetic material to the population, and guarantees the reachability of every point in the

search space.

The interpretation of the Schema Theorem outlined above is known as the building

block hypothesis (Goldberg, 1989a). Although this interpretation may seem too

intuitive, there is a growing body of theoretical and empirical evidence to support it. For

work on quantifying these ideas, the reader is referred to Holland (1975,1987), Spears

(1993), Thierens and Goldberg (1993), and Bethke (1981).

It should be noted here that the evolution process does not require information about the

state of the population in past generations. The only information necessary for a simple

GA to operate at any one time, is just the state of the current population of N strings. In

fact, studies by Holland (1975) and Goldberg (1985) have shown that, despite the

processing of only N structures in each generation, a GA effectively and usefully

processes approximately N3 schemata. Holland has given this result a special name,

implicit parallelism. Among its important implications on information processing

within a GA, implicit parallelism also facilitates the computer implementation of GAs,

since the only memory requirement is the storage of the current state of the population

of only N structures. Furthermore, a GA search run that was terminated at a given

generation t can easily be resumed to continue the search, by simply initialising the

population to its state at the terminating generation t.

Chapter 2- Genetic Algorithms and Function Optimisation 30

2.6 Genetic Algorithm Implementation Issues

The performance of the Simple Genetic Algorithm (SGA) can be significantly improved

by optimising certain elements in the algorithm, such as the sampling algorithm used in

the reproduction operator, the encoding used to form the strings in the population, the

population size, and the crossover and mutation probabilities. Some relevant theoretical

and empirical results found in the GA literature are presented in the sections below.

2.6.1 Improving the Reproduction Operator

Consider P(t) ={ Si (t), i =1,2 , ... , NJ, the multiset of all individuals in the population

at time t. The reproduction phase begins by the determination of the expected number of

samples of each individual to appear in P'(t+l), the population formed immediately

after reproduction. Let s; denote the expected number of samples of string Si in P'(t+l).

It clearly follows that

s; =Npl, s; EIt + (2.8)

where p; is the probability of selecting string S; for reproduction, obtained using

Eq. (2.1). After computing the expected number of samples of each of the strings in

P(t), a sampling algorithm is used to sample P(t) in order to form P'(t+l). For each of

the strings in P(t), the sampling algorithm must be able to convert the corresponding

expected number of samples si, a real number, to a discrete number of samples string Si

will actually receive in P'(t+l). The conversion must be made in such a way that the

sampling is accurate and consistent. In order to quantify these goals, the measures of

sampling bias and sampling spread are introduced.

Sampling bias

Sampling bias is defined as the absolute difference between an individual's actual, and

expected number of samples. Let sl denote the actual number of samples string Si

receives in P'(t+l). Then, the sampling bias can be written as I s; - s, I. Sampling bias is

a measure of sampling accuracy. The optimal value of sampling bias is zero and occurs

whenever each individual's actual number of samples equals its expected number of

samples.

Chapter 2- Genetic Algorithms and Function Optimisation 31

Sampling spread

Sampling spread is defined as the range of possible values for st
. In the special case

where sl E ILsi rs; ll, the resulting spread is the smallest possible, which theoretically

permits zero bias. This is called minimum spread. Sampling spread is a measure of

sampling precision.

TABLE 2.1 Characteristics of commonly used sampling algorithms (Baker, 1987)

Sampling algorithm Bias Spread Efficiency
Stochastic Sampling with Zero (optimal) Unlimited O(N log N) Replacement (SSwR) 0 ... N
Stochastic Sampling with Partial Medium Upper bounded O(N IogN) Replacement (SSwPR) 0

...
rsjl

Remainder Stochastic Sampling with Zero (optimal)
Lower bounded

O(N log N) Replacement (RSSwR) Ls; J ... Ls; J +Zs;
Remainder Stochastic Sampling Medium Minimum O(N logN) without Replacement (RSSwoR) Ls; J, Fs; 1

Deterministic Sampling (DS) High Minimum

,J, r ,l
O(N log N)

Stochastic Universal Sampling (SUS) Zero (optimal) Minimum

LsiJ, rs; l T O(N)

Table 2.1 presents the basic characteristics of a number of commonly used sampling

algorithms, in terms of sampling bias, sampling spread, and computational efficiency. It

is observed that Stochastic Universal Sampling (SUS) outperforms all other sampling

algorithms in both sampling bias and sampling spread. It is also more computationally

efficient, delivering all N samples in a single pass. A visual representation of the SUS

algorithm is shown in Fig. 2.5 below.

Leading sample randomly
chosen between 0 and 1 Equally spaced samples

0 .<

Population of N=10 individuals

Fig. 2.5 Example of the Stochastic Universal Sampling (SUS) algorithm

Chapter 2- Genetic Algorithms and Function Optimisation 32

In the beginning of the SUS algorithm, a leading sample is uniformly chosen at random
between 0 and 1. The remaining N-1 samples are obtained by equally spacing them

along the population `line' of N unit segments, starting from the leading sample and
maintaining a distance of 1 between successive samples, as shown in Fig. 2.5. This is

equivalent to a gambler's spinning wheel, with the i-th wheel slice proportional in size
to s;, and with not only one, but N equally spaced pointers. In this regime, an individual

is guaranteed to receive [sj samples, but no more than rsl1 samples. Hence, the SUS

algorithm has minimum spread. Furthermore, in a randomly ordered population, the

selection probability pi, of a particular string Si is only a function of the position of the
leading sample (which is uniformly chosen at random) and the expected number of

samples, sl. Hence, the SUS algorithm has zero bias. In the example shown in Fig. 2.5,

strings Si, S3, S5, S7, S8, S9, and S10 will receive 1,2,3,1,1,1, and 1 copy in P'(t+l),

respectively, whereas strings S2, S4, and S6 will not appear in P'(t+l).

The optimal performance of the SUS algorithm makes it ideal for use in the

reproduction operator, enabling the selection of individuals according to the theoretical

specifications. More details and an empirical analysis of SUS and the other sampling

algorithms shown in Table 2.1, can be found in Baker (1987).

2.6.2 Selection of String Encodin

The way in which candidate solutions are encoded into strings is of major importance

for the success of a GA. In fact, the task of finding the best encoding for a given

optimisation problem is equivalent to solving the problem itself (Mitchell, 1996). The

suitability of a particular encoding depends on certain (and in most cases unknown)

properties of the objective function associated with a given optimisation problem.

Unfortunately, there are currently no rigorous guidelines for predicting which encoding

will work best in a particular optimisation problem.

Binary string en=

Although the mathematical framework developed earlier was based on strings

constructed over the binary alphabet 10,1), the results obtained can be generalised to

alphabets of arbitrary cardinality. However, there are certain theoretical justifications

Chapter 2- Genetic Algorithms and Function Optimisation 33

for adopting the binary alphabet for the string encoding. Since a particular string of
length 1 is a member of 21 schemata, longer strings contain an exponentially increasing

number of schemata, regardless of the cardinality of the alphabet used. For a particular

candidate solution xEN, x#0, the length of the encoded string under an alphabet of

cardinality k is given by 1ý logk x. It is clear that the maximum possible string length is

achieved by having k=2, resulting in the binary alphabet. This justification is also
mentioned in Holland (1975).

Another reason for using binary encoding is the fact that the majority of theoretical and
empirical studies of GAs and their properties, especially in terms of both rigorous and
heuristic results about appropriate GA parameter settings, such as the crossover and

mutation probabilities, are based on binary encoded strings, and cannot be easily

generalised to alphabets of arbitrary cardinality.

Caruana and Schaffer (1988) proposed the use of Gray coding for the construction of

strings. They argued that Gray coding usually results in more accurate solutions than

other conventional codings, such as direct binary coding. This is attributed to the fact

that, in Gray coding, adjacent integers differ by a single bit (a Hamming distance of 1).

This adjacency property also results in smaller perturbations of the values of the strings

under mutation. Practical applications, including results in this work, have indicated that

Gray coding generally performs better that direct binary coding.

Adantina the string encodin

Based on the theoretical framework developed in Section 2.5, in order to improve the

performance of a GA, the encoding used for constructing the strings must be such that

functionally related, small string segments are more likely to stay together in a single

string under crossover, in order to facilitate the building block hypothesis described

earlier. However, this is not possible without knowing ahead of time which string

segments are important in the formation of useful schemata. This is known in the GA

literature as the linkage problem. Many scientists have tried to solve this problem by

adapting the encoding used in a GA during the evolution process. The inversion

operator developed by Holland (1975), works by reordering parts of strings, while

preserving the functional interpretation of each of the string positions. Another

Chapter 2- Genetic Algorithms and Function Optimisation 34

technique developed by Schaffer and Morishima (1987) works by evolving crossover
hot spots, the positions at which crossover is allowed to occur, thus adaptively
restricting `dangerously disrupting' crossing sites from being used in the crossover
operator. Messy GAs developed by Goldberg, Korb, and Deb (1989), attempt to improve

the performance of GAs in function optimisation by building up increasingly longer and
highly fit strings, derived from well-tested shorter building blocks. For more details on
messy GAs, also refer to Goldberg, Deb, and Korb (1990), and Goldberg, Deb,
Kargupta, and Harik (1993).

Selection of string length and parameter scaling

In most GA configurations, strings are formed by encoding each of the parameters
involved in the optimisation, and concatenating the resulting string elements, as shown
in Fig. 2.2. The length of each string element affects the resolution of the corresponding

parameter representation. The longer the length of a string element, the more accurate
the representation of the corresponding parameter becomes. However, since a string of
length 1 and cardinality k results in a search space whose size is k' points, long string

elements can result in extremely large search spaces which can slow down the

convergence of the GA.

In linear scaling, the difference between two successive numbers in a representation is

given by Ax = (xm - xm, n)/(k1- -1) , where x r= [xmin, xm] and l, is the length of the

corresponding string element. Linear scaling results in a uniform distribution of points
in the search space, thus maintaining a constant resolution throughout the search space.

When the ranges of the parameters are not known, logarithmic scaling can be used,

enabling a wider range of values to be searched using shorter strings. In logarithmic

scaling, the klx search points are logarithmically spaced in [xmin, xm], resulting in a

distribution of points that is more dense in regions closer to xmin. This achieves a higher

resolution in smaller parameter values, thus enabling shorter strings to be used more

effectively. In cases where varying degrees of resolution are required at specific regions

in the search space, non-linear scaling can be used where the required mapping can be

described by any suitable, strictly monotonic, non-linear function. Fig. 2.6 illustrates

three different types of parameter scaling.

Chapter 2- Genetic Algorithms and Function Optimisation 35

String

111
110

101

100
011

010

001

xn n
xmax x

String

111

110
101

100

011

010

001

000

String
Non-linear scaling

111 ---
110 --
101 "------------- --------
100 --------------------------------
011 -----------------------------
010 ------------------------
001 ----- -----------

Xmn X.. X

Fig. 2.6 Different types of parameter scaling with k =2 and 1 =3

2.6.3 Selection of Genetic Algorithm Parameters

In order to implement a genetic algorithm, the crossover and mutation probabilities and
the population size need to be specified. Similarly to the problem of selecting a suitable

string encoding, there are no rigorous guidelines for determining these parameters, as
the optimal value of one parameter is, in general, a non-linear function of the values of
the other parameters, thus making it impossible to optimise them one at a time.
Fortunately, experience has shown that, in most optimisation problems, GAs are robust

enough that the GA parameters do not severely affect their performance.

A number of researchers have investigated how the GA parameters affect the search

performance of GAs. In particular, De Jong (1975) used a suite of test functions as a
basis for testing the on-line and off-line performance of GAs with different

combinations of GA parameters. On-line performance is computed by taking the

average fitness of all individuals in all generations, whereas off-line performance is

computed by taking the average of only the best individuals. In most function

optimisation problems, it is the off-line performance that is of interest. De Jong found

that both the on-line and the off-line performance of GAs peaked with a population size

N= 50 - 100 individuals, a single-point crossover probability p, -- 0.6, and a mutation

probability pm ~ 0.001 per string position.

Grefenstette (1986) performed a set of experiments in which a meta-level GA was used

to optimise the parameters of other GAs that were set up to optimise the functions in

De Jong's test suite. The parameters for the meta-level GA were set to De Jong's

recommended values. The results of Grefenstette's work in terms of on-line

Linear scaling Logarithmic scaling

Chapter 2- Genetic Algorithms and Function Optimisation 36

performance were N= 30, p, = 0.95, and pm = 0.01. The generation gap discussed in
Section 2.4.4 was also used in the experiments, and the optimal value was found to be

g =1. In terms of off-line performance, the optimal values of the GA parameters were
found to be N= 80, pc = 0.45, p, n = 0.0 1, and g=0.9.

In another experimental work, Schaffer, Caruana, Eshelman, and Das (1989) identified

the optimal GA parameters for on-line performance to be N= 20 - 30, p, = 0.75 - 0.95,

and pm = 0.005 - 0.01, which are very similar to Grefenstette's results. The test suite

used in this work was a set of numerical optimisation problems including some of
De Jong's test functions, all encoded with Gray coding.

Heuristic formulas for optimal settings of p, and p, n as functions of 1 and N have been

proposed by Hesser and Männer (1991), where it was suggested that the optimal

mutation probability, p, n, is inversely proportional to the string length, 1. Loosely

speaking, this is because with larger 1 the probability that good solutions are destroyed

by mutation is higher, since longer strings are more likely to be mutated than shorter

ones. The predicted GA parameters using the proposed formulas are in accordance with

the experimental studies outlined above. Interesting theoretical results regarding the

estimation of the optimal population size in a GA as a function of 1 have been published

by Goldberg (1985), who showed that N=1.65 x 20.211 for binary strings of length 1<_ 60.

Also refer to Goldberg (1989b), Ros (1989), and Goldberg, Deb, and Clark (1992,1993)

for further relevant results.

Note that care should be taken when treating the above recommendations for the GA

parameters as globally optimal or universal. The results outlined above are applicable to

the test suites used for conducting the experiments and cannot be easily generalised to

every optimisation problem and string encoding. There is, however, a general trend

emerging from the above results, suggesting a high crossover probability, a low (but

non-zero) mutation probability, and a population size of 50 to 100 individuals. These

settings can provide good initial values for the GA parameters, which can then be varied

and fine-tuned as required by the particular optimisation problem.

Since the optimal GA parameters may change during the evolution process, many

researchers have argued that there may be a need for the adaptation of the various GA

Chapter 2- Genetic Algorithms and Function Optimisation 37

parameters as the genetic search is progressing. The reader is referred to the work by
Davis (1989,1991) for an interesting approach to the adaptation of the genetic operator
probabilities, based on their observed performance. The basic idea for this approach was
proposed much earlier by Cavicchio (1972). Relevant to the above discussion is the

more recent work by Thierens (1995), in which he proposed an adaptive crossover
algorithm. In this case, it is not the crossover probability that is adapted, but the

crossover algorithm itself.

2.6.4 Incorporating Problem Specific Knowledge

In many optimisation problems, useful information about the problem may already

exist, and can often be used a priori to effectively help GAs perform better in terms of
both rate of convergence and solution accuracy. Prior knowledge can be incorporated in

genetic search in various ways, the most commonly used being the careful initialisation

of part of the population at time t=0, and the combination of GAs with local optimisers

such as hill-climbing algorithms.

Improving the rate of convergence

If there exists prior information about regions in the search space where the optimal

points may lie, a percentage of the population at time t=0 can be initialised by selecting

candidate solutions from these promising regions. This approach can be used whenever

one seeks to improve on previously computed `optimal' solutions. In this way, the GA

begins with a set of potentially above-average solutions, which can significantly

improve the rate of convergence of the GA. This approach has been applied by

Grefenstette (1987) to the solution of the travelling salesman problem. While the

crossover and mutation operators theoretically ensure that the algorithm will still

explore different regions in the search space, such heuristic initialisations of the

population should be applied carefully, in order to avoid premature convergence, the

situation where the GA converges to a sub-optimal region in the search space.

Improving the solution accurac

Another approach is to `refine' the results obtained by the GA, using hill-climbing or

any other suitable conventional optimisation algorithm. For example, if there is a priori

Chapter 2- Genetic Algorithms and Function Optimisation 38

knowledge that the search space is locally continuous and differentiable, but highly

multimodal, a GA can be used to locate the optimal `peak', while a hill-climbing

algorithm can be used to focus on the identified, locally unimodal region of the search
space. Such combinations of GAs and conventional optimisers are often termed hybrid
GAs. There are many application examples in the GA literature demonstrating the
improved performance of hybrid GAs over simple GAs. For a few such examples, refer
to Hart and Belew (1996), and Salomon (1998).

2.6.5 Genetic Algorithm Termination

Due to the stochastic nature of GAs, conventional termination criteria such as the ones
based on the precision of the obtained solutions, cannot be directly applied to GAs. In

most practical GA implementations, the algorithm is terminated after a given number of

generations, and the best individuals in the final generation are assessed. If the resulting

solutions are not satisfactory, the GA can be restarted, or a new GA can be initiated, in

which part of the population at time t=0 is initialised with the best individuals found in

previous GA search runs (see Section 2.6.4).

2.7 Multiobjective Optimisation and Genetic Algorithms

Multiobjective or multicriteria optimisation problems arise in cases where several, often

conflicting objectives are present, thus resulting in vector-valued objective functions. In

fact, the majority of optimisation problems are multiobjective in nature, but are usually

treated by weighting and combining all objectives into a single-valued function, thus

transforming them into single-objective optimisation problems. This approach may be

acceptable in certain cases, but there are times when combining the objectives in an

efficient way may not be practically feasible.

A multiobjective optimisation problem is equivalent to the problem of simultaneously

optimising the m elements of a vector-valued function, such as the one shown below.

f (x) = [. fi (x) ... fm(')] EV (2.9)

where x= [x1 """ xn]EU is the n-dimensional parameter vector. Sets U and V are the

effective domain and codomain of f (x), respectively, as defined in the context of the

Chapter 2- Genetic Algorithms and Function Optimisation 39

given optimisation problem. Since the objectives fi(x), iE{i,...
,m} are all functions

of parameter vector x, they cannot be optimised one at a time. It is, therefore, clear that
the notion of optimality in the context of multiobjective optimisation must be redefined
in a way that respects the integrity of each objective, and at the same time permits
interactions between objectives. Precisely these goals are achieved by the concept of
Pareto-optimality. A parameter vector x is said to be Pareto-optimal if and only if there
is no other parameter vector which can improve any of the individual objectives, f (x),

without worsening at least one other objective. In order to make the above definition

mathematically more rigorous, the following additional definitions are necessary.

Definition 2.2: Let x, yE R'. Vector x is partially less than y, denoted as x<y, if

and only if

xl<_y, A 3iE11,..., ml1 x, <yi

Definition 2.3:

0

Assuming a minimisation problem, parameter vector xl EU belongs

to the Pareto-optimal set of function f (x) E Rm as defined in (2.9), if and only if there is

no other parameter vector x2 EU such that f (X2): 5 f (xl). "

Vectors belonging to the Pareto-optimal set are called non-dominated or non-inferior,

while all remaining vectors are called dominated or inferior. In order to better illustrate

the concept of Pareto-optimality, consider the following vector-valued function.

f (x) =1 x2 (x - 2)21 (2.10)

Fig. 2.7 illustrates the dominated and non-dominated regions in the solution plane for

the above unidimensional function. It is observed that the non-dominated region

consists of not only one solution but a family of solutions that form the Pareto-optimal

set. All points in this set are, in general, optimal solutions of equal importance and a

good multiobjective optimiser should be able to locate all points in the set. It is

interesting to note that the conventional, weighted-sum approach of combining all

weighted individual objectives into a singe-valued function, such as

J(x)=1wi
.f

(x), w1? 0 (2.11)

=1

Chapter 2- Genetic Algorithms and Function Optimisation 40

14
x=-1.74

12 ----- -------------------- - -------
Non-dominateg region
Dominated regions 10 --------------- -------------- ----------- -.

N
8 --- ---------------------------- ------------ -

g ---- - ---------- --- -------

x =0
4 ------------------------------- ------- ----

x=3.74

2 --------------- ----------- ------- ---
x

x=2
0

02 468 10 12 14

Objective 1

Fig. 2.7 A simple multiobjective problem (Schaffer, 1985)

results in a single Pareto-optimal solution. The location of this solution within the

non-dominated region is determined by the choice of the weighting coefficients w1. As

an example, using objective function (2.11) to minimise the elements of function (2.10)

results in the following expression for the optimal value of parameter x.

xopt =
2w2

Wl + W2

Hence, when W 1= W2 =1, objective function (2.11) is minimised at the Pareto-optimal

point x =1 (see Fig. 2.7). Varying the weighting coefficients results in different unique

solutions spanning the Pareto-optimal region xE [0,2].

In most real-world optimisation problems, the relationship between the optimal values

of weighted-sum objective functions such as (2.11) and the weighting coefficients w, is

complex and unknown a priori, and it is not at all clear how one should weight the

various objectives in order to arrive at a specific Pareto-optimal solution. This

practically unpredictable bias towards specific solutions is the main weakness of

conventional, weighted-sum approaches to multiobjective optimisation. More details on

Chapter 2- Genetic Algorithms and Function Optimisation 41

multiobjective optimisation and an overview of different methods and applications can
be found in Hwang and Masud (1979).

Multiobiective izenetic alizorithms

It is clear from the preceding discussion that multiobjective optimisation problems must
be treated in a way that respects the definition of Pareto-optimality. The existence of

multiple optimal solutions, even in such simple multiobjective problems as the one
illustrated in Fig. 2.7, results in inherently multimodal search landscapes, and this is true

even in cases where the individual objectives are all unimodal and convex functions of

the decision variables. This property alone can render most conventional optimisation

techniques inapplicable, as they were not designed to handle multiple solutions.

Although the parallel evolution of multiple individuals makes GAs structurally superior

to most conventional search techniques in the solution of multiobjective optimisation

problems, the inherently scalar way in which GAs process fitness information makes

them unsuitable for such problems in their standard form. Many researchers have

attempted to modify standard GAs, in order to make them applicable to multiobjective

optimisation, with various degrees of success. The following is only intended as a brief

review of the work that has been done in this field. A more complete review can be

found in Fonseca and Fleming (1995).

The first significant contribution in this direction is the work by Schaffer (1985), who

developed what is known as the Vector Evaluated Genetic Algorithm (VEGA). In his

approach, the population consists of a number of equally sized sub-populations, each one

corresponding to a particular objective. The reproduction operator is applied locally in

each sub-population, resulting in individuals being selected based on their performance

on the corresponding objective only. The crossover operator, however, is applied to

individuals across sub-population boundaries, thus enabling the mixing of individuals

corresponding to different objectives. Non-dominated individuals are identified as the

population evolves, but this information is not used by the VEGA itself. Although this

scheme is intuitive and easy to implement, in can be shown (Richardson, Palmer,

Liepins, and Hilliard, 1989) that it results in a bias against certain members of the

Pareto-optimal set, something against the notion of Pareto-optimality.

Chapter 2- Genetic Algorithms and Function Optimisation 42

A different approach was proposed by Goldberg (1989a), in which each individual in
the population is ranked on the basis of non-dominance. All non-dominated individuals
in the current population are identified and assigned a rank of 1. Among the individuals
that have not yet been ranked, the non-dominated ones are identified and assigned a
rank of 2. The process is repeated until all individuals in the current population are
ranked. The reproduction operator is then applied based on the rank of each individual.
In this way, all non-dominated individuals (i. e. all members of the Pareto-optimal set)
are guaranteed to receive an equal probability of reproduction. This rank-based
approach theoretically enables the GA to locate all points in the Pareto-optimal set.
However, in order to maintain a sufficient degree of diversity among individuals, this

approach should be used in conjunction with the more advanced techniques of niche
formation and speciation. These techniques enable a more even distribution of the

members of the population along equally important regions in the search space. More
details on niche formation and speciation can be found in Chapter 4. An introduction to
this topic can be found in Goldberg (1989a) and the relevant references therein.

More recently, Fonseca and Fleming (1993,1998a, 1998b) proposed a Pareto-based

method known as the Multiobjective Genetic Algorithm (MOGA), which is an extension

of the Pareto-based method proposed by Goldberg (1989a) and outlined above. In this

approach, each individual is ranked according to the number of individuals in the

current population by which it is dominated. In this way, non-dominated individuals are

all assigned the same rank, while dominated ones are penalised according to the

population density in the corresponding region of the trade-off surface. Another

important element of the MOGA approach is the so-called Decision Maker (DM), which

is used to direct the search towards the most promising regions in the search space by

combining dominance with partial preference information. In the beginning of the

evolution process, the DM uses the a priori domain-specific knowledge about the

problem (if such knowledge exists), to produce a suitable fitness assignment strategy for

the members of the currently identified Pareto-optimal set. As the artificial evolution

progresses, the acquired knowledge obtained by the GA is used by the DM to refine its

fitness assignment strategy accordingly. In this way, the algorithm can effectively

identify a subset of the Pareto-optimal set that satisfies certain auxiliary optimality

criteria. The DM may range from a conventional, weighted-sum approach, to an

intelligent decision maker operating manually.

Chapter 2- Genetic Algorithms and Function Optimisation 43

2.8 Genetic Algorithms as Universal Optimisers

The preceding discussion may have given readers the impression that genetic algorithms

outperform other optimisation algorithms on virtually all classes of optimisation

problems. Unfortunately, recent studies by Wolpert and Macready (1997) revealed that

this is not the case. Their central result is an important set of theorems known as the No

Free Lunch Theorems (NFL). The implications of these theorems are general, and are

not limited to GAs. Loosely speaking, the NFL theorems state that there can never exist

any one optimisation algorithm that works better than any other, when averaged over

the set of all possible optimisation problems. In particular, if algorithm A outperforms

algorithm B on some cost functions, there must exist exactly as many other functions

where B outperforms A. Put in other terms, no optimisation algorithm can ever exist

that is better than random search (or any other algorithm), if its performance measure is

averaged over all possible cost functions. The NFL theorems clearly imply that a priori

domain-specific knowledge must be incorporated in a given search algorithm, in order

for it to perform well in that particular domain. More relevant results in this direction

can be found in Macready and Wolpert (1996,1998), and Culberson (1998).

The NFL theorems and their implications raise important questions regarding GAs and

the justification for their preference over conventional optimisers. Since standard GAs

are essentially blind search algorithms, how can one explain their success in numerous

practical applications? A possible explanation may be that the majority of cost functions

encountered in practice exhibit certain common properties which facilitate the use of

GAs in some way. Note that the set of "all possible cost functions" used in the statement

of the NFL theorems, certainly contains an infinite number of `unusual' functions not

likely to be encountered in practice. Although the explanation given above has an

intuitive appeal, it should be treated carefully, and blind faith in a particular algorithm,

including GAs, to search effectively and efficiently across a broad class of problems

should, in general, be avoided.

2.9 Summary

In this chapter, genetic algorithms (GAs) as function optimisers were introduced, and

their fundamental differences with conventional optimisation algorithms were outlined.

Chapter 2- Genetic Algorithms and Function Optimisation 44

A brief introduction to the structure and operation of simple GAs was given, followed

by a rigorous mathematical treatment, including the important concept of a schema, the

building block hypothesis, and the fundamental theorem of genetic algorithms. Certain

important issues regarding the implementation of GAs were then presented, including

guidelines for selecting various parameters, such as the string encoding, the population

size, the crossover and mutation probabilities, and others. Issues regarding incorporating

problem specific knowledge in GAs were discussed, followed by a brief introduction to

multiobjective optimisation using GAs. Finally, the role of GAs as universal optimisers

was briefly discussed, including the important no free lunch theorems for optimisation.

The material contained in this chapter is standard, and is only intended as a brief review

of the current state of affairs in the field of GAs as function optimisers.

Chapter 3- Analysis and Design of Objective Functions for Control Systems 45

Analysis and Design
Functions for Control

3.1 Introduction

of Objective
Systems

This chapter is primarily concerned with the analysis and design of objective functions,

as applied to the solution of control engineering problems. A number of conventional

objective functions are introduced, and it is shown that they can often provide poor

controller performance indexes. A novel objective function is then proposed for the

solution of control problems involving single-input, single-output (SISO) processes, that

overcomes many of the weaknesses of conventional objective functions. The proposed

objective function is experimentally analysed using a simple control problem, involving

the tuning of a proportional plus integral (PI) controller for a linear, time-invariant

process with time delay. The obtained results are analysed and compared with those

obtained using conventional objective functions, as well as using several conventional

PI controller tuning methods. Finally, the proposed objective function is generalised to

multi-input, multi-output (MIMO) control problems.

3.2 Conventional Objective Functions

Consider the general, closed-loop SISO system shown in Fig. 3.1.

Set point Error Input Output

r(t) + e(t) u(t) Y(t)
Controller, D Process, G

Fig. 3.1 General, closed-loop SISO system

Chapter 3- Analysis and Design of Objective Functions for Control Systems 46

In the system shown in Fig. 3.1, the controller and process can be linear or non-linear.
The performance of the controller, D, in this system can be assessed by examining the
signals r(t), e(t), u(t), and y(t). This can be expressed mathematically as

J(D) =f [r(t), e(t), u(t), y(t)] ER, DE 2,0<_ t< 00 (3.1)

where J(.) is a single-valued function, often called objective function, and 2 is the set
of all permissible controllers. Each controller in 2 is also known as a solution to the

control problem. It is common practice to design J in such a way that the optimal
controller, Dopt, is the one at which J attains its minimum value. Hence, Dopt is obtained
by solving the following minimisation problem.

J(Dopt) = min J(2) (3.2)

A suitable and simple requirement is that the error signal e(t) should be kept as small as

possible, and e(t) -+ 0 as t oo. A number of objective functions that are based on this

requirement are shown below.

00 JIAE (D) =I e(t) I dt
0

00

JISE(D) =f (t) dt
0

00

'VITAE
(D) =f tI e(t) I dt

0

00
JITSE (D) = te2(t) dt

0

(3.3)

In the Integrated Absolute Error (IAE) and Integrated Squared Error (ISE) objective
functions, the entire error signal is assigned the same weight, whereas in the Integrated

Time and Absolute Error (ITAE) and Integrated Time and Squared Error (ITSE), the

weight on the error starts from zero at t=0 and increases linearly with time, in order to

allow for the transient error signal which will always be large.

Using any one of the objective functions in (3.3), the control problem in Fig. 3.1 can be

transformed into a function optimisation problem, where the objective function J is

minimised over 2. Consider the case where the process is controlled by a linear

controller of the general form

D(s) -
bosm+ blSm-1 + ... + bm-1S + bm

e-sL (3.4)

Sk(Sn + a1Sn-1 + ... + an-1S + Qn

Chapter 3- Analysis and Design of Objective Functions for Control Systems 47

Then, the objective function would be of the form

J(ai,...
, an, b0,

... ,
bn, L, m, n, k) =f [r(t), e(t), u(t), Y(t)] , 0<_ t< oo (3.5)

Note that, in this case, the minimisation of J is a mixed optimisation problem, in which
both the parameters (real variables, al, b,, L) and the structure (integer variables, m, n,
k) of the controller D (s) are tuneable. The discontinuities associated with the integer

variables make this problem extremely difficult to solve numerically using conventional

optimisation techniques. GAs, however, can be directly applied to such problems by

simply defining a suitable chromosome structure, as described in Chapter 2.

3.2.1 Limitations of Conventional Obiective Functions

The performance specifications for a given control problem are often associated with

the shape of the closed-loop system transient response to some set point signal such as a

step or ramp function. Standard response characteristics such as peak overshoot, settling

time, rise time, steady-state offset, velocity lag, and others may be used to specify a

required controller performance. In order to provide reliable performance indexes, the

objective function should, therefore, be able to adequately describe such specifications.

In the case of objective functions such as the ones shown in (3.3), it is clear that the

simple error minimisation requirement may not be adequate for the description of such

specifications. In general, this can result in mathematically optimal solutions that may

be unacceptable in practice, as illustrated in Fig. 3.2.

Yl

v

Fig. 3.2 Closed-loop system responses

Chapter 3- Analysis and Design of Objective Functions for Control Systems 48

With respect to Fig. 3.2, all objective functions shown in (3.3) falsely indicate that the
controller associated with the oscillatory response 1 performs better than that associated
with the almost critically damped response 2. This illustrates that a mere minimisation
of the error signal can lead to qualitatively unacceptable solutions. The occurrence of
this problem can be minimised by adding an extra term in the objective function, that

penalises excessive variations in the process input signal, u(t). This approach, however,

can result in relatively conservative controllers.

The performance of the objective functions in (3.3) can be improved by minimising the

error signal that results by taking the difference between the actual system response and

a desired system response that meets the design specifications. However, a solution that

precisely achieves the desired system response may not exist, especially in cases where
the structure of the controller remains fixed. Therefore, similarly to the case illustrated

in Fig. 3.2, an attempt to minimise the objective function may result in system responses
that `follow' the desired response but are qualitatively unacceptable.

Another disadvantage of the objective functions in (3.3) is that they almost always result
in search landscapes where the global minimum is achieved by a unique solution, even
though an infinite number of solutions may exist that satisfy the given specifications. A

well-designed objective function should be able to identify all solutions that completely

satisfy the specifications, without bias towards specific solutions. This enables the

designer to manually examine the obtained solutions, and choose one which also

satisfies certain qualitative objectives which cannot easily be expressed in mathematical

terms. This is generally not possible using the objective functions in (3.3).

3.3 A Novel Objective Function for Control Systems

In this work, a novel objective function has been designed for use in control engineering

problems, that overcomes most of the limitations of conventional objective functions

outlined earlier. The main advantage of the proposed objective function is that it enables

the designer to explicitly specify the required performance specifications for a given

problem, in terms of time-domain bounds on the closed-loop system responses. The

proposed objective function is initially formulated for use in problems involving SISO

processes, but can easily be generalised to MIMO control problems.

Chapter 3- Analysis and Design of Objective Functions for Control Systems 49

The proposed objective function was designed in order to satisfy the following three
fundamental requirements.

1. It must allow arbitrary performance specifications to be given in the time-domain,
in a precise and straightforward manner.

2. All solutions that satisfy the specifications must be mapped to a single number.
3. It must be applicable to a wide range of linear, non-linear, and time-varying

control systems of arbitrary structures.

Requirement 1 is based on the fact that the majority of performance specifications are

expressed in terms of transient characteristics of the closed-loop system, such as peak

overshoot and settling time. Furthermore, time-domain specifications are generally
better understood by control personnel. In the case where many solutions that satisfy the

specifications exist, requirement 2 ensures that there will be no bias towards specific

solutions. Finally, requirement 3 enables the objective function to be used in complex

control problems involving non-linear and time-varying elements, properties that are

very common in practice.

3.3.1 Objective Function Formulation

Consider the general SISO system shown in Fig. 3.1. The set of desired time-domain

response characteristics can be thought of as an area in the (y, t) plane. One such area is

shown as the shaded region in Fig. 3.3, where the desired response characteristics may

be expressed in terms of the constants cl, c2, c3, css, and t2, as follows.

Peak overshoot:
Cl - CSS

x 100%
CSS

Settling time: S t2, where the settling time is max
C2 - CSS

,
CSs - C3

x 100%
CSS CSS

Every response whose trajectory lies entirely within the shaded region will have the

above characteristics. Note, however, that the converse is not true, mainly because of

the additional specifications imposed by c4 and ti. Let Js denote the area that is formed

by the parts of the response curve that do not belong to the shaded region. Area JS is the

sum of the areas marked ® in Fig. 3.3. The magnitude of JS gives an indication of how

Chapter 3- Analysis and Design of Objective Functions for Control Systems 50

close the system performance is to the desired for a particular controller, and hence a
measure of the ability of the controller to meet the specifications. The larger the
magnitude of JS, the poorer the controller performance, with a value of zero indicating
that the performance specifications have been completely satisfied.

Yc

C

Fig. 3.3 Typical set point tracking performance specifications

With reference to Fig. 3.3, the controller that produces response curve 1 has totally met

the specifications. On the other hand, parts of response curve 2 lie outside the shaded

region. The value of the objective function is defined as the magnitude of area JS in the

time range [0, tm]. Hence, for response 1 the value of the objective function is zero,

whereas for response 2 it is a positive real number. Therefore, JS can be thought of as a

measure of the `distance' between the candidate solution and the set of solutions that

completely satisfy the specifications.

Note that the region representing the desired specifications need not be of the same

shape as the one shown in Fig. 3.3. Any number of response constraints within the

simulation time range [0, tn] can be arbitrarily defined by the designer, thus making

the proposed objective function extremely flexible. In mathematical form, the proposed

objective function is defined as

tmar

JS (D) :_ (max{(t)_y(t), 0} + max{y(t) - fu (t) , 0}) dt (3.6)
0

U t1 t2 tmax t

Chapter 3- Analysis and Design of Objective Functions for Control Systems 51

where DE 2 is the candidate controller, and fl (t) and f,, (t) are user-specified functions

defining the lower and upper boundaries, respectively, of the region representing the

performance specifications, with fl(t) <_ f,, (t) for all tin [0, tm]. In objective function

(3.6), the integration is not carried through infinity, but truncated up to tmax, the time

required for the system to reach the steady state.

3.3.2 Optimal and Strictly Optimal Solutions

The following definitions are necessary in order to improve clarity, by distinguishing

between the different degrees of optimality that can be achieved when minimising

objective function (3.6).

----------- --- - --------------------------------
Definition 3.1: With reference to the objective function (3.6), a solution D in 2 is

called optimal, if and only if JS (D) = min JS (2). "
-- ----------------

-- --

Definition 3.2: With reference to the objective function (3.6), a solution D in Th is

called strictly optimal, if and only if it belongs to the kernel of Js. The set of all strictly

optimal solutions is, therefore, -5 = {D E21 Js (D) = 0}. "

-- -------------------------------------- --------------------------------- --------------------------------- --------------

From the definitions above, it is clear that optimal solutions will always exist, whereas

strictly optimal solutions may or may not exist, depending on the given specifications

and the capabilities of the control scheme employed. The fact that Js :2H TI + ensures

that all strictly optimal solutions are also optimal, and that all strictly optimal solutions

are favoured equally, since they are all assigned the same performance index of zero.

The analytical minimisation of JS can be a very difficult task, even in cases where the

process and controller are both linear and time-invariant. However, the development of

fast computers and powerful control system simulation packages has made numerical

optimisation a feasible and attractive alternative to analytical optimisation. This enables

complex objective functions such as (3.6) to be optimised numerically, an approach that

has the potential to deliver excellent designs that go beyond conventional, linear,

time-invariant control theory. If a model of the controlled process exists, JS can easily

Chapter 3- Analysis and Design of Objective Functions for Control Systems 52

be evaluated for a particular candidate controller by simulating the resulting closed-loop

system and evaluating the integral in (3.6) numerically. This makes the proposed

objective function applicable to a wide range of linear, non-linear and time-varying

closed-loop systems.

3.4 Experimental Analysis

In this section, the objective function developed earlier is experimentally analysed, by

applying it to a simple parametric controller design problem involving a SISO, linear,

time-invariant process with time delay. The obtained results are analysed and compared

with those obtained using the four conventional objective functions shown in (3.3), as

well as a set of five well-known, empirical controller tuning rules.

The objective is to tune a Proportional plus Integral (PI) controller, so that the resulting

closed-loop system meets some given performance specifications. The closed-loop

system has the following standard configuration.

Set point Error Input Output
r(t) + e(t) u(t) Y(t)

10
-(Vý

PI controller, D(s) Process, G(s)

Fig. 3.4 A simple parametric controller design problem

In the system shown in Fig. 3.4, the transfer functions of the process and controller have

the following structure.

G(s) =K e-SL and D(s) = Kp +
K.

Ts+1 s
(3.7)

It is observed that the process is described by a standard first-order dead time model,

with K= 0.5, T= 10 sec, and L=3 sec. Controller parameters Kp and K; are unknown.

The reason for choosing this particular PI controller structure will become apparent later

LIVERPOOL
-, ER7i` if

Jt+' iii i' 1
i' i nii

ýi a

Chapter 3- Analysis and Design of Objective Functions for Control Systems 53

in this section, where it will be shown that this controller structure enables the
parameterisation of all stabilising PI controllers in a way that facilitates the graphical
determination of the relative stability and robustness properties of the solutions, based

on their location in the parameter plane (Kp, K;).

3.4.1 The Performance Specifications

The performance specifications for the control problem were given as time-domain
bounds in the (y, t) plane, of the response of the closed-loop system to a unit step
function. They are represented by the shaded region shown in Fig. 3.5.

y(t)

c, =1.20 -----------------------

c2 =1.05 ---------------------------------- '-
cw = 1.00 ---
c3=0.95 -- -----------------------

-------------------------------- Cq=0.80 -

0 t, =12.5 t2=25 tmax=50 t(Sec)

Fig. 3.5 The performance specifications

This corresponds to a peak overshoot of at most 20% and a 5% settling time of at most

25 sec. Note that the lower boundary of the shaded region in Fig. 3.5 also imposes some

additional specifications, by rejecting responses with points in the rectangle that results

by setting ti = 12.5 and c4 = 0.8. Experiments have shown that including this additional

constraint, by setting tl = t2 /2 and C4=2c,, -cl (Cl mirrored around cs5), generally

results in qualitatively better responses.

In order to numerically evaluate the objective functions, the closed-loop system was

simulated on a computer running the simulation package MATLAB /SIMULINK, using the

Runge-Kutta fifth-order numerical integration algorithm with a step size of 0.5 sec and a

maximum simulation time, tm = 50 sec.

Chapter 3- Analysis and Design of Objective Functions for Control Systems 54

3.4.2 Conventional Objective Functions

The conventional objective functions shown in (3.3) were minimised numerically, using
the downhill simplex method of Neider and Mead (1965). In each case, the

minimisation was repeated several times to ensure that the global minimum is obtained.
The resulting optimal controller parameters are shown in Table 3.1 below.

TABLE 3.1 Optimal controller parameters using the objective functions in (3.3)

Objective function Kp K; (sec-) Strictly optimal?

Integrated Absolute Error (IAE) 4.2165 0.3862 Yes (Js = 0)
Integrated Time and Absolute Error (ITAE) 3.4828 0.3458 Yes (Js = 0)
Integrated Squared Error (ISE) 5.5658 0.3570 Yes (Js = 0)

Integrated Time and Squared Error (ITSE) 4.7607 0.3782 Yes (Js = 0)

The performance of the controllers shown above can be observed in Fig. 3.6, which

shows the closed loop system responses to a unit step function.

yc

1.
1.
1.
0.
0.

t (sec)

Fig. 3.6 Closed-loop system responses to a unit step function (see Table 3.1)

It is observed that all optimal controllers in Table 3.1 are also strictly optimal (they

completely satisfy the specifications in Fig. 3.5). The ISE criterion results in the fastest

U %J w --

Chapter 3- Analysis and Design of Objective Functions for Control 55

response, with its peak value almost at the upper boundary of the specification region,
having a peak overshoot of almost 20%. The ITAE criterion results in the slowest and
least oscillatory response. Note that the solutions obtained, although strictly optimal, are
only four of the infinite number of strictly optimal solutions contained in Th. It will be

shown later that a much larger number of strictly optimal solutions (theoretically all of
them) can be identified using the proposed objective function, J.

3.4.3 PI Controller Tuning Methods

The control problem in Fig. 3.4 was also solved using five standard PI controller tuning

methods based on the characteristics of the controlled process. These are the classical
step and frequency response methods due to Ziegler and Nichols (1942), the method by
Chien, Hrones and Reswick (1952) optimised for set point tracking with 0% and 20%

overshoot, and finally the method by Cohen and Coon (1953). For more information on
these methods, refer to Aström and Hägglund (1995). The resulting optimal controller

parameters are shown in Table 3.2 below.

TABLE 3.2 Controller parameters obtained using different PI controller tuning methods

PI controller tuning method Kp K; (sec-) Strictly optimal?

Ziegler-Nichols (step response) 6.0000 0.6667 No (Js = 0.85)
Ziegler-Nichols (frequency response) 4.7121 0.5442 No (Js = 0.19)

Chien, Hrones and Reswick (0% overshoot) 2.3333 0.1944 No (Js = 0.02)

Chien, Hrones and Reswick (20% overshoot) 4.0000 0.4000 Yes (Js = 0)

Cohen-Coon 7.6560 1.2497 No (Js = 8.16)

The performance of the controllers shown above can be observed in Fig. 3.7, which

shows the closed loop system responses to a unit step function. It is observed that only

the Chien, Hrones and Reswick (20% overshoot) method results in a strictly optimal PI

controller. The Chien, Hrones and Reswick (0% overshoot) method results in an almost

strictly optimal controller having a very overdamped response with no overshoot. The

Ziegler-Nichols step and frequency response methods result in controllers having

responses with a relatively large overshoot. Finally, the Cohen-Coon method results in a

closed-loop system with very low damping, something that was expected since the

Cohen-Coon method has been designed mainly for the rejection of load disturbances.

Chapter 3- Analysis and Design of Objective Functions for Control Systems 56

y(t)
" Ziegler-Nichols Step Response
 Ziegler-Nichols Frequency Response
f Chien, Hrones and Reswick (0%)
f Chien, Hrones and Reswick (20%)
f Cohen-Coon

Fig. 3.7 Closed-loop system responses to a unit step function (see Table 3.2)

3.4.4 The Proposed Objective Function

In the preceding analysis it was observed that each of the conventional objective

functions and the PI tuning methods results in a single PI controller, which can be

thought of as a point in the parameter plane (Kp, K;). This is not the case with JS, which

results in an area in (Kp, K;) containing all strictly optimal solutions (the set -5). In

order to better visualise -S and its properties, the parameter plane (Kp, K1) was

augmented with relative stability contours, based on the PID controller design method

by Shafiei and Shenton (1997). The procedure is outlined below.

Assume that the process under PI control can be adequately represented by the

following standard transfer function.

G(S)
-

bosm+ b1Sm-1 + ... + bm-1S + bm

e-sL (3.8)
Sn + a1Sn-1 + ... + an-1S + an

Chapter 3- Analysis and Design of Objective Functions for Control Systems 57

For the transfer function (3.8) to be realisable, the conditions n _> m, a; E R, and bi E R,

must hold. We further assume that b,,,: # 0 (the plant does not have zeros at the origin of
the complex plane). The PI controller is assumed to be of the form

KKs+K.
D(s) = Kp +'=p

ss
(3.9)

A condition for absolute stability of plant (3.8) when controlled by controller (3.9) is the

well-known Nyquist stability criterion, in which the open-loop characteristic polynomial
is equated to zero.

. 1+D(s)G(s)=O or D(s)G(s) =
Kps +K`

G(s) = -1 (3.10)
s

Condition (3.10) can be generalised, in order to investigate the relative stability of linear

systems. Instead of using -1 +j0 as the reference point in the stability condition (3.10),

the point a +jb is used, with a and b chosen in such a way that the condition is satisfied

if and only if the closed-loop system achieves a specific gain or phase margin. The

condition for relative stability is shown below.

Ks+K1
D(s)G(s) =pI G(s) =a +jb

s
(3.11)

For example, setting a= -1/GM and b=0, the condition is satisfied only for systems

having a gain margin GM. Similarly, setting a +jb = e-i("-PM), the condition is satisfied

only for systems having a phase margin PM. To facilitate the algebraic development of

the analysis, Eq. (3.11) is rearranged (with s= jco) as

jcoKp+KI =
jco (a +jb)

G(J(o) =R(te) +jI((u) (3.12)

where R(co) and I(co) are the real and imaginary parts of jco(a + jb)/G(ja),

respectively. Equation (3.12) can be used to compute relative stability boundaries in the

parameter plane (Kp, KI). When 0< co < oo, the stability boundaries for specific

gain/phase margins are governed by the following equations.

Ki = R(w) and Kpco = I(w) (3.13)

Chapter 3- Analysis and Design of Objective Functions for Control Systems SR

Quantities R((o) and I((o) can be easily computed for different values of w using a
computer, resulting in a process-dependent set of gain margin and phase margin
contours in the parameter plane (Kp, K;), as shown in Fig. 3.8 below.

G(S) = 0.5e 3s/(105+1) ® UnStahii2 rAninn 1

1

E
L-
Q)

N
c
O

O
a
O

0-

0
Integral term, K; (sec-1)

Fig. 3.8 Controller parameter plane including relative stability contours

It is observed from Fig. 3.8 that all stabilising PI controllers (with Kp >_ 0, and KI >_ 0) are

compactly represented by the white region, making it very easy to visualise the obtained

results and their relative stability properties. This is an advantage of the PI controller

representation (3.9), and is due to the fact that the controller parameters appear linearly

in D(s). This representation also has the advantage that the effect of each term is

proportional to the value of the corresponding parameter. Thus, the integral action can

be switched off by simply setting Kl = 0.

Using the controller parameter plane template of Fig. 3.8, the results of Sections 3.4.2

and 3.4.3, as well as those obtained using the proposed objective function Js, are shown

together in Fig. 3.9, where the boundary of 2 is indicated by the thick line.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Chapter 3- Analysis and Design of Objective Functions for Control Systems 59

1

1

Yý
E
a)
a--Co

O
Q

O
^L 0

I

y(t)

1.20 ---------------

1.05
---------------------------- ------__R-_ 1.00 -------- ------------------' ----------- 00.95

0.80

ý-

--------------- -------

O Integrated Absolute Error (IAE)
Q Integrated Time and Absolute Error (ITAE)
O Integrated Squared Error (ISE)
o Integrated Time and Squared Error (ITSE)
" Ziegler-Nichols Step Response
 Ziegler-Nichols Frequency Response
" Chien, Hrones and Reswick (0%)
A Chien, Hrones and Reswick (20%)
f Cohen-Coon

01 12.5 25 50 t (Sec)

G(s) = 0.5e 3s/(1Os+1) ® Unstable reainn

Ku=11.78
Tu= 10.82 sec

....:.....

15

. ý; 45° 30°

00

3dB
... ý. ýý...

... r ..:.........:.....:..........:!..... f.........:..
ý

120°
)9dB:

_...:. :........
j5dB

_/"18dß /" v' /ý"ý: ý'
/ýý/

v
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Integral term, K; (sec-1)

Fig. 3.9 Controller parameter plane showing the set of strictly optimal
solutions (bounded by the thick line) for the specifications shown

It is observed that -5 contains solutions with various degrees of relative stability, with

gain margins ranging from 5.6 dB to 14.3 dB, and phase margins ranging from 48° to

75°. Note that the shape of the boundary of 2 implies that the specifications set for this

problem cannot be expressed in terms of gain and phase margin bounds. It is also

observed that all solutions obtained by the conventional objective functions are included

in 2. However, most of the PI tuning methods tested are not contained in -5. Of

course, this was expected since the optimality criteria used in these methods are not, in

Chapter 3- Analysis and Design of Objective Functions for Control Systems 60

general, associated with the ones shown in Fig. 3.5. The above comparison merely
demonstrates the flexibility of the proposed objective function in the design of

controllers for arbitrary performance specifications.

In order to better illustrate the relationship between the time-domain specifications

defined by functions fl (t) and fu (t), and the boundary of set -5 in the parameter

plane, a number of tests were performed using different time-domain specifications. The

results are shown in Figures 3.10 to 3.13.

y(t)

1.20 ---------------1

1.05
_ 1.00 -------------------I-------------------

O Integrated Absolute Error (IAE)
Q Integrated Time and Absolute Error (ITAE)
O Integrated Squared Error (ISE)
A Integrated Time and Squared Error (ITSE)

" Ziegler-Nichols Step Response
 Ziegler-Nichols Frequency Response
f Chien, Hrones and Reswick (0%)
A Chien, Hrones and Reswick (20%)
V Cohen-Coon

01 25 50 t (sec)

G(s) = 0.5&-3s /(1OS+1) ® Unstable region
1

1

E
I-

0
0
a- 0 L

a

Integral term, K; (sec-1)

Fig. 3.10 Controller parameter plane showing the set -5 of strictly optimal

solutions (bounded by the thick line) for the specifications shown

ý0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Chapter 3- Analysis and Design of Objective Functions for Control Systems 61

" Ziegler-Nichols Step Response
 Ziegler-Nichols Frequency Response
f Chien, Hrones and Reswick (0%)
A Chien, Hrones and Reswick (20%)
V Cohen-Coon

1.00
0.95

0.80

------------------- ----------------------------

o Integrated Absolute Error (IAE)
Q Integrated Time and Absolute Error (ITAE)
O Integrated Squared Error (ISE)
A Integrated Time and Squared Error (ITSE)

Ju f (sec)

G(s) = 0.56-3s /(los+l)
1

1

CL

E
a)
-Fu
c 0
tf
0 0 0 L

a

® Unstable region

Ku=11.78
Tu= 10.82 sec

..:

15*
-ý.,.,,

° ý...... :..........: .\. ý....................... _\ 45

600

... x. 01
........... ý....:........., ý..... f.

3dB
..... `- \6dB ý

. 120°ý
19dß'

12dß
l8dB

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Integral term, K; (sec-1)

Fig. 3.11 Controller parameter plane showing the set -5 of strictly optimal
solutions (bounded by the thick line) for the specifications shown

Fig. 3.10 shows the set -5 that results when only the upper boundary is present in the

specifications, by setting fl (t) =0 in (3.6). It is observed that -5 now contains

controllers in the region around the origin (including the point Kp =0 and K; = 0, since

output y(t) =0 is indeed within specification). It is also observed that . contains points

in the horizontal and vertical axes, which correspond to integral-only and

proportional-only controllers respectively. Similarly, Fig. 3.11 shows the results

obtained when only the lower boundary is present, by setting f,, (t) = oo in (3.6). As

Chapter 3- Analysis and Design of Objective Functions for Control Systems 62

expected, -S is now larger than in Fig. 3.9 and contains controllers that achieve lower

relative stability margins. This is because the new specifications permit controllers that

result in more oscillatory responses with large overshoots. In this case, 2 contains

most of the solutions obtained by conventional methods.

Fig. 3.12 shows the set -S that results when the specifications are modified, so that they

correspond to zero overshoot and a 5% settling time of 25 sec. Since the specifications

are now more stringent, set -5 is smaller than in the previous cases.

y(t)

O Integrated Absolute Error (IAE)
Q Integrated Time and Absolute Error (ITAE)
O Integrated Squared Error (ISE)
A Integrated Time and Squared Error (ITSE)

" Ziegler-Nichols Step Response
 Ziegler-Nichols Frequency Response
f Chien, Hrones and Reswick (0%)
A Chien, Hrones and Reswick (20%)
V Cohen-Coon

1

0-

a)

0

0

Q
0

^L

0 12.5 25 50 t(sec)

G(s) = 0.5e -3S /(10S+1) ® Unstable region

Ku=11.78
Tu= 10.82 sec

1

15*
\. _. ` ý.. \...:. -.....:......... 2.......

30°
6 .. " 45..

ý. .\ i3dB

4 i: .. \6dB

vp 0.2 0.4 0.6 0.8 1 1.2 1.4 1. b i. 0

Integral term, K; (sec-1)

Fig. 3.12 Controller parameter plane showing the set 25 of strictly optimal

solutions (bounded by the thick line) for the specifications shown

2

Chapter 3- Analysis and Design of Objective Functions for Control Systems 63

y(t)

1.80 ---------------

1.20 -----------------------------
1.00 ---------------------------------------'

0.80

0.20 --------------- ------

0 12.5 25 50

O Integrated Absolute Error (IAE)
Q Integrated Time and Absolute Error (ITAE)
O Integrated Squared Error (ISE)
o Integrated Time and Squared Error (ITSE)
" Ziegler-Nichols Step Response
 Ziegler-Nichols Frequency Response
f Chien, Hrones and Reswick (0%)

Chien, Hrones and Reswick (20%)
Cohen-Coon

t(sec)

G(s) = 0.5e 3s/(1Os+1)
1

1

Yý
E
a)
N

0

0
Q
0 L

^
LL

Unstable region

K�=11.78
T�=10.82 sec

D

..... _:.........:.........:.........

450 30°
:....:. a:....:.....................

00

\
'3d6

4--. _ _ _.. ý. ýý
...... /..... /.........:..

900 9dB

. 120

, '. ý. //:..... ý. ý.......:... 2 i_ 15dß ... ý12dB
18 dS

10 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Integral term, K; (sec-1)

Fig. 3.13 Controller parameter plane showing the set -5 of strictly optimal
solutions (bounded by the thick line) for the specifications shown

Finally, Fig. 3.13 shows the set -5 that results when a very wide time-domain envelope

of permissible responses is used. It is observed that _5 is now very large, covering most

of the stable region. Notice the irregular shape of the boundary of -5, an indication of

the complexity of the mapping described by Js.

Let S and S2 denote the areas in the (y, t) plane, of two arbitrary specifications, both

defined in [0, t, nax] by means of the boundary functions fl (t) and fu (t) . Also, let -51

-

Chapter 3- Analysis and Design of Objective Functions for Control Systems 64

and 22 denote the corresponding sets of strictly optimal solutions. This can be written

as Sl H -S 1 and S2 H f5
2. Then, the formulation of Js implies that

s1Cs2gT1C°52

Sl()S2 H-S1(-) 52
(3.14)

Note that Sl v S2 is not mapped to .1v -f5 2, since there can exist responses that

entirely fit in area Sl v S2, but do not entirely fit in either Sl or S2 individually. The

above properties are illustrated in the Venn diagram shown in Fig. 3.14. Compare this

with Figures 3.9 to 3.13.

G(s) = 0.5e 3s/(10s+1) ® Unstable region
1

1

CL

G)
m
c
0

0
0-
0
a

2

Ku=11.78
Tu=10.82 sec

0

8-

6-

-

Ms=1.3

4

i
MS=2.0

n
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.6

Integral term, K; (sec-1)

Fig. 3.14 Venn diagram illustrating properties (3.14)

L

Fig. 3.14 also shows the robustness properties of the obtained solutions, in terms of the

closed-loop sensitivity to variations in process dynamics, M. This is defined as

MS = max
1 (3.15)

0: 5w<oo 1 +D(j(o)G(jo)

9ter 3- Analysis and Design of Objective Functions for Control Systems 65

Reasonable values for the sensitivity MS are in the range from 1.3 to 2 (Aström and
Hagglund, 1995). It is observed that the majority of controllers in the shaded region are
within the reasonable sensitivity range.

In terms of transient responses of the obtained solutions, a very coarse gridding of the
stable region (exhaustive search) revealed 24 strictly optimal solutions, uniformly
distributed in

-5, that result in the closed-loop responses shown in Fig. 3.15. Note that

the obtained solutions are only a finite subset of the infinite set -5.

yc

1.
1.
1.
0.
0.

0 -' z. o zo Du t (sec)

Fig. 3.15 Closed-loop system responses of 24 uniformly distributed solutions in

3.4.5 Comments and Discussion

The PI controller tuning problem used in the preceding analysis was chosen mainly

because it results in a two-dimensional search space, thus enabling the visualisation of

the obtained solutions. Furthermore, the simplicity of the problem enabled the use of

exhaustive search algorithms for the optimisation of the various objective functions,

something which guarantees that the solutions obtained are not sub-optimal. Of course,

the preceding analysis should not be considered general, since it is only experimental

and hence limited to the design examples considered. However, the analysis clearly

demonstrates the flexibility and open architecture of the proposed objective function.

Chapter 3- Analysis and Design of Objective Functions for Control Systems 66

The generality of the obtained results will be strengthened in the following chapters, by

successfully applying Js to a number of difficult multivariable control problems.

Recall that GAs search for optimal solutions by evolving a population of many
candidate solutions in parallel. This makes them especially suited for the minimisation

of Js, which usually results in a family of strictly optimal solutions. It will be shown in

the following chapters that GAs can successfully identify a finite set of strictly optimal

solutions that are almost uniformly distributed within 2. This is generally not possible

using standard conventional optimisation methods.

3.5 Generalisation to Multivariable Systems

In this section, the objective function Js is generalised, in order to treat control problems

involving multivariable processes. A typical closed-loop configuration for a p-input,

q-output process is shown in Fig. 3.16.

ri

r2

rq

Fig. 3.16 Typical multivariable closed-loop system

Yi

Y2

yq

The objective is to design the q-input, p-output controller so that the q process outputs

follow, in some desired way, the corresponding set point signals, and the interactions

between the loops are within specification. The set point tracking specifications can be

described by the shaded region in Fig. 3.3. The additional loop coupling specifications

can be described in a similar way. With reference to Fig. 3.17, the desired response

characteristics can be expressed as

Chapter 3- Analysis and Design of Objective Functions for Control Systems 67

y, (t)

f (1)

Cl -------------------------
C2

SS ------------------------- --------------- I ------------------------- ------

C

0 tj t2 tmax

y; (t)
C5

Fig. 3.17 Typical set point tracking (top) and loop coupling (bottom)
performance specifications

Peak overshoot:
Cl - CSS

X100% CSS

Settling time: t2 , where the settling time is max
c2 - csS

css

Loop coupling: _<
c5

x 100%, 0 <_ t <_ t3 CSS

< max
c6

,
Cl

x 100%, t3 <t <_ tmax
I Css Css

- C3 Css
X 100%

Css

Each output can have different specifications, which also depend on the set point

patterns applied to the reference inputs of the closed-loop system. Therefore, in order to

evaluate a candidate controller, a number of set point patterns must be applied, and the

corresponding sets of specifications must be used to evaluate all q outputs. Let J11 denote

the objective function Js, when used to evaluate output i under set point pattern j, as

shown below.

Jýf (D) : _0

tmmc

(max{(°(t) YI (t), 01+ max{Y; (t) -f
(u) (t), 0 }) dt (3.16)

Chapter 3- Analysis and Design of Objective Functions for Control Systems 68

Notice that, in (3.16), the boundary functions can be different for every output and set
point pattern combination. In cases where the closed-loop system is square (q-input,

q-output) as shown in Fig. 3.16, one possibility is to apply q set point patterns where, in

pattern j, a unit step function is applied to reference input rj, while the remaining q -1
reference inputs remain at zero. For each set point pattern, all q outputs are evaluated

using objective function (3.16) with the appropriate specifications (set point tracking

specifications should be used for output j, while loop coupling specifications should be

used for all other outputs).

After evaluating all q objective function elements for set point patternj, the results can
be weighted and added together to form a single number that represents the quality of

the controllers for set point patternj. Finally, when all q set point patterns have been

applied to the closed-loop system, the maximum of all resulting objective function

elements (indicating the worst performance) can be selected as the final objective

function value. The generalised objective function is, therefore, defined as

9

JM (D) := max w. J. (D) (3.17)
ý=1,..., q i=1

where Jij denotes the objective function for output i under set point pattern j, and w11

denotes the weighting factor of J,, with w1 >_ 0. The higher the weighting factor, the

more important the corresponding objective function element becomes. It is observed

that q simulations are required for the evaluation of JM for a single candidate controller.

Depending on the complexity of the process and controller, this can result in long

execution times and is a disadvantage of the proposed approach. However, this may not

be a significant problem in cases where unsupervised search algorithms, such as GAs,

are used in the optimisation.

The choice of suitable values for the weighting factors wy is particularly important when

the given performance specifications cannot be completely satisfied (no strictly optimal

solutions exist in the search landscape). In such cases, wy determine the balance of

specification violations between the objective function elements J, ý that is required to

minimise JM. This means that the location of the optimal point in the search landscape is

generally a function of w1J. Conversely, when strictly optimal solutions do exist in the

Chapter 3- Analysis and Design of Objective Functions for Control Systems 69

search landscape, their location is completely unaffected by w, 3, because J1 =0 for such
solutions by the definition of J, . In such cases, the weighting factors w, 3 can still affect
the convergence of the search algorithm, since their values affect the search landscape.
However, the search algorithm should eventually converge to the same strictly optimal

solution set, irrespective of the values of w1, provided that w; y >0 for all i and j

Consider the situation where no strictly optimal solutions exist in the search landscape,

but a solution has been found for which some elements J13 are exactly zero. This means
that the performance specifications for some particular combinations of i and j have

been completely satisfied, but not for the remaining combinations. Now assume that a

new solution is discovered for which all elements J, are non-zero, but their weighted

values result in a value of JM that is lower than that of the previous solution. Although

the new solution results in violations in all combinations of i and j, it will outperform

the previous one for which some combinations completely satisfy the specifications. It

clearly follows that modifying the specification envelope by means of f-(u)(t) and fy(')(t)

for a particular combination of i and j is not even qualitatively equivalent to modifying

the corresponding weighting factor w13. While the former can potentially create strictly

optimal solutions in cases where they did not previously exist, the latter merely affects

the balance between existing violations. In order to reduce the importance of a particular

objective function element, it may thus be more appropriate to widen the corresponding

specification envelope by means off ý(u)(t) and fy' (t), than to simply decrease w1 .

3.6 Summary

This chapter focused on the application of optimisation methods to control engineering

problems. It was shown that this can be performed by expressing the performance of the

closed-loop system as a function of the controller to be designed or tuned, by means of a

single-valued objective function. A number of commonly used objective functions were

presented, and it was argued that, although they are convenient to use in an analytical

framework, they can often provide poor controller performance indexes. This can affect

the quality of the obtained solutions, since the objective function is normally the only

source of information used to guide the search towards the optimal solution set. A novel

objective function, denoted by Js(.), was then proposed for single-input, single-output

Chapter 3- Analysis and Design of Objective Functions for Control Systems 70

systems, which enables the designer to explicitly specify the performance specifications

associated with a given problem, in terms of time-domain bounds on the closed-loop

responses. The formulation of JS is such that the set of all controllers that completely

satisfy the specifications is precisely the kernel of Js. This set is denoted by 2, and can
be the empty set (in cases where the specifications are unrealisable by the controller), or

can even be an infinite set, where an infinite number of equivalent controllers exist that

completely satisfy the specifications. Objective function JS was experimentally analysed

using a simple PI controller tuning problem. The obtained results were analysed and

compared with those obtained using conventional objective functions, as well as using

several standard PI controller tuning methods. Finally, a different objective function,

denoted by JM("), was proposed, which is a generalisation of JS to multivariable control

systems. Both JS and JM can be used as a basis for the design and tuning of general,

linear or non-linear controllers of arbitrary structures, because they only require the

numerical solutions of the differential equations associated with the closed-loop system.

Provided that a model of the process exists and is relatively accurate, these can easily be

obtained using most standard control system simulation packages.

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 71

4 Locating Multiple Optimal Solutions
Using Genetic Algorithms

4.1 Introduction

In Chapter 3 it was shown that the objective functions Js and JM developed in this work
have the important characteristic that they result in a family of strictly optimal solutions,

namely the set -S. The analytical identification of this set can be a very difficult task,

even for trivial problems. This is mainly due to the high complexity of the mappings
defined by Js and JM. In a numerical optimisation framework, a more realistic goal

would be to identify a finite subset of 2, whose elements are uniformly distributed

within -5. Genetic algorithms appear to be especially suited for this task, since they

search by evolving a population of many solutions in parallel. However, the fact that the

population size is finite and must be kept relatively small for practical reasons, causes

the members of the population of a simple GA to cluster around specific regions in

while leaving other regions unexplored. This chapter focuses on ways of overcoming

this important limitation of GAs. A new method based on the techniques of niche

formation and speciation is proposed, and it is shown that it enables the GA to evolve a

population whose members are almost uniformly distributed within 2. The proposed

method is not limited to the optimisation of Js and JM, and can be used in many different

search landscapes containing multiple optimal solutions.

4.2 Multiple Optimal Solutions and Genetic Drift

In multimodal search landscapes where many local optima may exist, a simple GA is

expected to converge to solutions in the neighbourhood of the global optimum. There

may be cases, however, where the locations of other optima are also of interest. Most

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 72

importantly, there may be cases where the search landscape contains many equivalent
optima, all of which correspond to solutions of equal quality. In such cases, the global
optimum does not correspond to a unique optimal solution, but to a set of optimal
solutions that may be finite or infinite. A number of search landscapes with the above

properties are shown in Fig. 4.1 below.

(a) Unique optimal solution

(c) Infinite number of optimal solutions

(b) Finite number of optimal solutions

(d) Infinite number of optimal solutions

0.

0.

0.

0.

4

-1 -1

Fig. 4.1 Examples of multimodal search landscapes

Assuming a maximisation problem, search landscape (a) contains five maxima which

progressively decrease in magnitude. The global optimum is located at the unique

optimal solution x =1. Although this solution outperforms all others, there may be cases

where it is desirable to also find the locations of the remaining four maxima. This is

certainly the case in search landscape (b), where all five maxima are of the same

magnitude. In this case, the global optimum is achieved by the finite set of optimal

solutions {1,3,5,7,9}
. In search landscape (c), the global optimum is achieved by the

infinite set of optimal solutions {1,3,9} v [5,7]. This is because for all solutions x in the

continuous interval [5,7], the function remains at its maximum value of 1. Similarly, in

search landscape (d), the global optimum is achieved by the infinite set of optimal

uic 13 +viayX uic ý+ avioy

VIG0YJVIV .7 Jý

Ater 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 73

solutions formed by the union of the four flat regions on the top of the peaks, where the
function also remains at its maximum value of 1. Search landscapes (c) and (d) are
qualitatively similar to the ones resulting from the minimisation of JS and JM, where the

global optimum is achieved by all solutions in set lb, and JS ýýS)
= JM (ýj)

_ {0}.

Simple GAs have a particular difficulty in optimising multimodal functions such as the
ones shown in Fig. 4.1. Specifically, the population will most likely converge to a small
subset of the set of optimal solutions. In the case of search landscape (a), the entire
population will most likely converge to the leftmost peak, although the location of the
other four optima may also be of interest. Of course, this is not surprising since the
leftmost peak outperforms all others. However, the same behaviour is observed in the

case of search landscapes (b), (c), and (d), where the optima are all equivalent. A simple
GA will most likely converge to only one of the five optima in (b), and will distribute

the population unevenly in the continuous optimal regions in (c) and (d). This problem
is caused by stochastic errors in sampling due to finite population sizes, and is known as

genetic drift (De Jong, 1975; Goldberg and Richardson, 1987; Goldberg, 1989a). Since

the size of the population cannot be very large for practical reasons, the effects of

genetic drift can be significant and must be reduced if an unbiased sample of the entire

set of optimal solutions is desired, as in the case of minimising JS and JM.

4.3 Niche Formation and Speciation in Genetic Algorithms

In order to overcome the problem caused by genetic drift and maintain appropriate
diversity in the population, a number of modifications to the simple GA have been

proposed that are loosely based on the natural mechanisms of niche formation and

speciation. In natural ecosystems, living organisms are divided into different species on

the basis of their similarities. This enables species to form stable sub-populations which

occupy different niches in the environment. In the context of artificial genetic search,

niches are analogous to optimal regions in a search landscape, and species are analogous

to the members of the population located in these regions. The main objective is to

enable the GA to distribute the population evenly among different equivalent niches

without bias towards specific niches. A number of proposed schemes incorporating the

above ideas into GAs are briefly outlined below.

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 74

One of the first attempts to induce niche formation and speciation in genetic algorithms
was made by Cavicchio (1970), who introduced a mechanism he called preselection. In
this scheme, an offspring produced after the crossover of a string pair is required to

perform better than the inferior parent in order to assume a place in the population. The
inferior parent is then discarded from the population. If the offspring's fitness is lower

than that of both its parents, then it is discarded. Furthermore, in order for a mutated
individual to assume a place in the population, it must perform better than the individual

before mutation. This method helps maintain diversity in the population because strings
tend to replace others similar to themselves (one of their parents). This indirectly

encourages niche formation and speciation, and helps prevent convergence to a single

optimum. Cavicchio claimed to maintain more diverse populations in a number of GA

runs with populations of size N=20 individuals.

Cavicchio's preselection scheme was later generalised by De Jong (1975) in a scheme
he called crowding. In this scheme, an offspring is compared with a small number of
individuals (typically 2 or 3), randomly chosen from the population. The individual with

the highest similarity is replaced by the offspring, where Hamming distance is used as

the similarity measure. Like preselection, crowding helps maintain population diversity

and encourages niche formation and speciation. A variation of De Jong's crowding was

later proposed by Stadnyk (1987), who achieved better results by selecting individuals

according to inverse fitness. In this way, offspring tend to replace strings which belong

to the same niche and are also inferior to other strings in the niche.

Booker (1982,1985) proposed a scheme he called restricted mating. Restricted mating

is based on the observation that species are unlikely to mate with organisms dissimilar

to themselves. In this scheme, two individuals in the population are allowed to mate and

produce offspring only if they are functionally similar. This facilitates the formation of

distinct mating groups (species), which helps promote diversity in the population. The

functional similarity between individuals is measured using `mating templates' - special

identifiers in the chromosomes. Only those individuals with matching templates are

allowed to mate and produce offspring. The mating templates are not fixed, but evolve

along with the rest of the chromosome, adaptively restricting mating between dissimilar

species. A similar mating approach is also mentioned in Holland (1987), in the context

of classifier systems. Deb and Goldberg (1989) proposed a relatively simple scheme,

Chapter 4- ale Optimal Solutions Usin Genetic Algorithms 75

called phenotypic mating restriction, in which mating is restricted on the basis of
similarities between individuals in the decoded parameter space. This has the advantage
that it does not depend on the coding scheme used in the chromosome formation. Worth

mentioning is the work by Hillis (1992) on spatially restricted mating, in which the
population evolves on a spatial lattice, and individuals are likely to mate only with those
belonging to their spatial neighbourhoods.

4.3.1 Fitness Sharing

Goldberg and Richardson (1987) proposed a practical and effective niche formation and
speciation scheme known as fitness sharing. In this scheme, individuals that occupy the

same niche are forced to share their fitness among each other. Therefore, under fitness

sharing, the fitness awarded to an individual is inversely proportional to the number of
individuals in the niche it belongs to. Given a number of equivalent niches, this causes

underpopulated or unfilled niches to appear more rewarding in comparison with other,

overpopulated ones. Eventually, an equilibrium is achieved, where the population is

evenly distributed among all equivalent niches. Furthermore, in cases where the niches

are not equivalent, the number of individuals allocated to each niche is proportional to

the niche's absolute fitness. These properties of fitness sharing have been demonstrated

in Goldberg and Richardson (1987), and Deb and Goldberg (1989).

The degree of fitness sharing among individuals is determined by means of a sharing

function, Sf(O1ý), which is a function of the `distance' Olt between strings Si and Sj in the

population. Sharing function Sf determines the degree of membership of strings Si and S;

to the same niche, based on their similarity. The distance metric AE R+ can be based

on differences in the genotype (such as the strings' Hamming distance), or parameter

differences in the phenotype. A typical sharing function returns a value of 1 for identical

strings, and its value decreases as the similarity between the two strings decreases. The

shared fitness value f of the i-th individual in the population is determined by dividing

its potential fitness value f by the sum of the shares Sf(A1ý), where j =1,2, ... , N.

f fN

Sf (Ali
j=l

(4.1)

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 76

Sf(A

Fig. 4.2 Triangular sharing function (Goldberg and Richardson, 1987)

A typical sharing function is shown in Fig. 4.2, where it is assumed that Aij is inversely

proportional to the similarity of strings Si and Sj, with A=0 for identical strings.

Parameter ashare determines the `size' of the niche, and two individuals with Aij ? ashare

are considered isolated. It is clear from Eq. (4.1) that when many individuals are in the

same neighbourhood, as defined by Sf and A, 3, their shared fitness values are lower than

their potential fitness values, since the shares Sj(A, j) are significant. This reduces the

reproductive potential of groups of individuals occupying densely populated regions,

while isolated individuals retain their potential fitness. As a result, fitness sharing helps

maintain diversity in the population by dynamically directing the genetic search towards

sparsely populated optimal regions in the search landscape.

A different approach to sharing was later proposed by Beasley, Bull, and Martin (1993)

in a method they called sequential niche. This method involves multiple GA runs, with

each run locating one peak in a multimodal search landscape. After a peak has been

located, the search landscape is modified so that the identified peak no longer exists in

the landscape. This ensures that the same peak will not be rediscovered. The GA is then

restarted and the process is repeated until all peaks have been located. Sequential niche

uses a sharing function to suppress the identified peaks from the search landscape. The

main difference with fitness sharing is that, instead of the fitness of an individual being

reduced because of its proximity to other individuals in the population, the fitness of an

individual is reduced because of its proximity to peaks located in previous GA runs.

-ýnoc
ij

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 77

4.4 The Proposed Niche Induction Method

In this section, a new niche induction method is proposed, which is designed for the

optimisation of search landscapes of the form of (c) and (d) in Fig. 4.1. These are
qualitatively similar to the ones associated with objective functions Js and JM developed

in Chapter 3. The required population diversity is achieved by employing an extension

of the technique of fitness sharing described earlier, called adaptive fitness sharing.
Based on theoretical and heuristic justifications, equations are derived for the optimal

value of the sharing parameter ßshare, which is expressed as a function of the population

size, N, the dimensionality of the search landscape, n, as well as certain geometrical

properties of the currently identified set of optimal solutions (the set -5 in the case of

optimising JS and JM). This results in a near-uniform sampling of the set of optimal

solutions. In addition to that, the population sampling density is adaptively modified in

cases where the set of optimal solutions changes in the course of a GA search run. This

facilitates the application of the proposed method to on-line optimisation problems.

Note that, in order to improve clarity, -S is thought to contain strictly optimal solutions

that may assume a variety of forms. For example, let string Si correspond to a solution

in -5. Also, let xi denote the parameter vector associated with Si, and let DI (or Dl in the

multivariable case) denote the controller associated with xi. Then, the statements

SIEZ, x 2, DIE2 or DIE-: 2 (4.2)

are all valid, equivalent, and interchangeable. The same applies to Js, JM, and any other

similar objective function where, for example, the statements

J(S;) = 0, J(x,) = 0, J(Di) =0 or J(Di) =0 (4.3)

are all valid, equivalent, and interchangeable. The different equivalent notations shown

in (4.2) and (4.3) are all extensively used throughout this work.

4.4.1 Proportionate Fitness Assignment

The reproductive potential of the i-th string in the population of a GA is determined by

the string's fitness value f, as indicated in Eq. (2.1). Fitness values are non-negative real

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 78

numbers assigned to strings, based on their observed performance. Assuming that the
optimisation problem involves the minimisation of objective function J, and that J(S)
denotes the objective function value of string Si, then the absolute fitness value of Si is

given by the following equation.

f= max J(Sj) -J(S,)
j=i,..., N

(4.4)

This is often called proportionate fitness assignment because the reproductive potential

of an individual is directly proportional to its observed performance. It is clear that f >_ 0

and that the lower the value of J(SI), the higher the value of f i, with strictly optimal
solutions (if they exist in the population) having the maximum fitness value of all N

strings. Function J can be any suitable objective function, such as Js and JM.

4.4.2 Population Ranking

In proportionate selection, the selection probability pi of an individual in the population
depends on the absolute fitness f of that individual, as computed in Eq. (4.4). This can
lead to convergence problems, especially in cases where a small number of individuals

have fitness values which are significantly higher than those of their competitors. In such

cases, these highly fit individuals can often dominate the entire population, while the

majority of the remaining individuals are discarded. This can significantly reduce the

population diversity, and can also cause the GA to converge prematurely. Furthermore,

if parts of the population are characterised by very low fitness variance, proportionate

selection may not be able to provide the selection pressure necessary to distinguish

between individuals with slightly different fitness values. With finite population sizes,

this can lead to individuals with different fitness values contributing the same number of

samples in subsequent generations, essentially discarding all available relative fitness

information for those individuals.

Population ranking or rank selection is an alternative selection method whose purpose

is to promote diversity and prevent premature convergence. It achieves this by ranking

the individuals in the population according to fitness, and the selection probability pi of

each individual depends on its rank rather than on its absolute fitness. In this approach,

all absolute fitness information is totally discarded, while relative fitness information is

oter 4- Locating Multiple Optimal Solutions Using Genetic A 79

preserved. This has the effect of dynamically adapting the selection pressure according
to the population fitness variance, since the ratio of expected samples of individuals

ranked i and i +I will always be the same whether their absolute fitness differences are
high or low.

The population ranking algorithm used in this work was proposed by Baker (1985). In
this algorithm, each one of the N individuals in the population is ranked in increasing

order of fitness, from 1 to N. Individuals are then assigned new fitness values which

are given by

i-1 f =2-6p+2(6p-l)
N-1

(4.5)

where it is assumed that the members of the population are ordered according to their

absolute fitness, so that S1 is the least fit individual, SN is the fittest individual, and Si is

of rank i. Furthermore, it is required that

N
]ýO and If =N

i=1

(4.6)

It is easy to see that, given the above constraints, the fitness value f obtained from

Eq. (4.5) is equivalent to the expected number of samples sl of individual i. The amount

of selection pressure can be controlled by parameter up, where 1
_< 6p _<

2. When ßp =1

there is no selection pressure, and each individual is expected to contribute precisely

one sample to the next generation. When ßp =2 the selection pressure is at its maximum,

and Si and SN are expected to contribute precisely 0 and 2 samples, respectively. It is

observed that the expected number of samples any one individual contributes to the next

generation is bounded in the interval [2 - ap, 6p] and it changes linearly with rank. This

fitness assignment strategy has the advantage that it maintains a high fitness variance in

the population, and at the same time prevents extremely fit individuals from dominating

the population, since sl 5 ßp <_ 2 which means that no single individual is expected to

contribute more than 2 samples in the next generation. Note that the average ranked

fitness of the entire population always remains constant at unity, irrespective of the

choice of ap. In cases where there are many individuals with the same absolute fitness

values, their ranked fitness f is averaged over their multiplicity, so that they all have

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 80

the same reproductive potential while the global population fitness is kept constant. In
Eq. (4.5), fitness values f change linearly with rank. Exponential and other non-linear
functions can also be used, provided that they are strictly monotonic.

4.4.3 Adaptive Fitness Sharing

In conventional fitness sharing methods, such as the one proposed by Goldberg and
Richardson (1987) and outlined in Section 4.3.1, parameter ßshare is problem-dependent
and must be chosen carefully because it directly affects the density of the distribution of
the members of the population. Deb and Goldberg (1989) have proposed formulae for

computing the optimal value of ßshare, assuming that the number of niches is known,

and that they are evenly distributed in the search space. However, in most optimisation
problems, the validity of these assumptions cannot be guaranteed. The niche size, which
directly affects the optimal value of ßshare, is rarely known a priori. Furthermore, even if

a bare is chosen correctly for a given search landscape, the size, shape and location of the

niches may change in cases where the search landscape changes during the course of a
GA run. In such cases, ßshare must be adapted to its new optimal value while the genetic

search progresses. In this section, a new fitness sharing method is proposed, in which

the optimal value of ßshare is estimated as a function of N and n. The optimality of ashare
is retained throughout the genetic search, by dynamically adapting the scaling of the

search parameters using the information contained in the population at each generation.

Let M denote the number of strictly optimal solutions that are contained in the current

population of N individuals. Obviously M_<N and without loss of generality, assume

that the members of the population are ordered in such a way that these M individuals

appear first in the population. Therefore, {s1,...
, SM }g

-5 and { SM+1, ... ,
SN } ýS

.

Each solution in the population consists of n parameters. The entire population can,

therefore, be expressed as the following Nx n matrix.

T X= [XI
X2 ... XN] (4.7)

denotes the parameter vector for the i-th solution Si, and x1ý where xi _ [xii x, 2 """ xjT

denotes the element in the i-th row andj-th column of X. Now consider .
I, the n-cuboid

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 81

with the smallest n-volume that contains all of the M strictly optimal solutions. This

hypercuboid can be thought of as a crude estimate of 2, and its size is given by the
following vector.

TT

h= max x; l ... max x; n -
[min

x; l""" min x, n (4.8)

An example of a two-dimensional hypercuboid (a right parallelogram) containing strictly

optimal solutions is shown in Fig. 4.3. Set 2 is also shown for comparison. This

example is taken from the PI controller tuning problem in Section 3.4 of Chapter 3.

7

6

Y5

E

c
0

0
CL
0 L- 0- 3

2

Boundary of set 15 0 Strictly optimal solutions " Sub-optimal solutions

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Integral term, K; (sec-1)

"
"

"
""

"

O
J4

"O O
O0O

"O

O
OO O"

O

"
"

"

Fig. 4.3 Example of a 2-cuboid (a right parallelogram) containing all 12 strictly
optimal solutions in the current population of 30 individuals

Hypercuboid .i can expand as new strictly optimal solutions are found, and can also

contract in cases where previously identified strictly optimal solutions are no longer

strictly optimal due to changes in the search landscape. It will later become apparent

that this size adaptation property of the above hypercuboid is directly equivalent to the

automatic adaptation of ashare in the proposed adaptive fitness sharing method.

4- Locating Multiple Optimal Solutions Using Genetic Algorithms 82

The parameter vectors that correspond to the M strictly optimal solutions are then scaled
using vector h, so that hypercuboid il is transformed into a unit hypercube. The scaled
parameter vectors are given by

T
x, l xt2 xin

xl= hh... h,
i=1,...

Im (4.9)
12n

where hl is the i-th element of h and denotes the size of the i-th edge of hypercuboid
.
1,

and it is assumed that all elements of h are non-zero. This parameter vector scaling is

necessary in order to obtain an acceptable visualisation of the shape of based on the

currently identified M strictly optimal solutions. Under this scaling, the samples of -5
are now contained in a unit n-cube instead of a n-cuboid, and hence they span the same

amount of `space' in all n directions. Note that the above scaling normalises the aspect

ratio of the parameters based on the currently identified shape of 25, and the scaling

coefficients hl are adapted at each generation as new strictly optimal solutions are found

and the estimate of the shape of _5 becomes more accurate. Since the shape of -5 is not
known a priori, a mere normalisation of the search parameter ranges prior to the search

run will not, in general, achieve the same result. Experimental results illustrating the

importance of the above parameter scaling are presented in Section 4.5.6.

After the M strictly optimal parameter vectors are appropriately scaled using Eq. (4.9),

their fitness values are shared using Eq. (4.1). The shared fitness values f of these M

individuals are thus given by

fM

1 Sf (Au)
j=1

f
M

ýsf(iix1-X; IIý)
j=1

i=1,, M (4.10)

where f is the original fitness value of the i-th individual prior to fitness sharing. Any

vector p-norm can be used as the distance metric L. The infinity norm was used in this

work, because it facilitates the estimation of the optimal value of ßshare that is used in

the sharing function Sf (see Fig. 4.2). A method for obtaining an estimate of the optimal

value of ßshare, based on the infinity norm, is proposed in Section 4.4.5. The choice of

Chapter 4- Locating Multi e imal Solutions Usin Genetic Algorithms 83

phenotypic sharing is based on the fact that the phenotype of a string is not affected by
the type of encoding used in the formation of the string. This avoids any topological
distortion introduced by the coding scheme. The advantages of phenotypic sharing have
also been reported by Deb and Goldberg (1989), who compared it with genotypic
sharing based on Hamming distance information.

From Eq. (4.10) it is observed that fitness sharing is not applied to the entire population,
but only to the M members of -5, whose shared fitness values may have now become
lower than the fitness values of the remaining sub-optimal solutions. In order to ensure
that strictly optimal solutions always have higher shared fitness values than sub-optimal
ones, the remaining N-M sub-optimal individuals are assigned `shared' fitness values
according to the following equation.

=f fi=,..., (4.11)
max ßj

M+ N

where
M

6T=zSf(llXi-Xj11.0)ý (4.12)
j=1

In the above equations, al denotes the sum of the shares the i-th strictly optimal solution

receives. This quantity can be used as a measure of the population diversity in the

phenotypic neighbourhood of string Si. This is discussed in Section 4.5.1.

In the preceding discussion it was assumed that all elements of h are non-zero. If there

are i zero elements in h, with i =1, ... , n, the corresponding hypercuboid ii is said to be

rank-deficient, and its n-volume is zero. In such cases, the parameters that correspond to

the i dimensions where the zeros occur are excluded from the sharing algorithm by

removing the corresponding columns of X and treating the solutions as having n-i

dimensions. If all n dimensions are deficient, such as in cases where there is only one

distinct strictly optimal solution in the population, or when M= 0, then h= On and no

fitness sharing is applied. Rank-deficient hypercuboids may transitionally arise in the

beginning of the genetic search when M is small, but they quickly disappear as new

distinct strictly optimal solutions are discovered.

Chapter 4 - Locating e Optimal Solutions Using Genetic Algorithms 84

The time complexity of the proposed fitness sharing method is 0(M), which is better
than the 0(N2) of conventional fitness sharing since M is initially small and gradually
approaches N. Note that the time taken to compute Olt for a string pair, using the infinity

norm, is usually much smaller than the time taken for an objective function evaluation.
Hence, the additional complexity of O(M) introduced by sharing is not likely to
significantly slow down the genetic search.

4.4.4 Sharing Functions

Various sharing functions can be used with the proposed fitness sharing method. The

most common ones are presented in this section. Goldberg and Richardson (1987) and
Deb and Goldberg (1989) suggested a class of functions with the following properties.

Sf (AU) E [0,1]
, VA1

Sf(0)=1

lim Sf(Ajý)=0
Aii -> 00

(4.13)

Many functions satisfy the above properties. Goldberg and Richardson (1987) and Deb

and Goldberg (1989) proposed the following power law function.

Ali a

(4.14) Sf (Au) =
0,
-

(ashare)
'

otherwise

Ail < a,,

Parameter a is the power factor, which determines the amount of convexity (a > 1) or

concavity (c c< 1) of Sf. The linear, triangular sharing function shown in Fig. 4.2 is

obtained by setting a= 1. Another sharing function which satisfies properties (4.13) and

is based on the exponential function is shown below.

R'; > ', Old < 6share (4.15) Sf(A
ý, ..) -0,

exp
(6Sha

otherwise

Sharing function (4.15) is always concave, and the amount of concavity is controlled by

parameter ß, with ß >_ 0. A higher value of ß results in a more concave Sf. Several power

law and exponential sharing function graphs are shown in Fig. 4.4 for ßshare =1.

Chapter 4- Locating Multiple Optimal Snhjt»»v rTcii ý,., ý. .,. ____ ,, R5

Power law fitness sharing function

1

ä5
""0.8

2

'FU 0.6 a=1

0 0.5
C 0.4

0.25

"ý 0.1
0. z

0

1

0. s

aý
0.6

C 0
U
C 0.4

ti-
a)
C

Co 0.2
U)

0

r- --------------------------- =

0 0.2 0.4 0.6 0.8

Distance, iX

Exponential fitness sharing function

0

0.2

0.5

ß=ý

2

4

aý ------------------- 0 0.2 0.4 0.6 0.8

Distance, 0;;

Fig. 4.4 Power law and exponential fitness sharing functions

Using the infinity norm as the distance metric Oll, an individual SI will share its fitness

only with those individuals that are contained in the hypercube of edge size 26Sre and

which has Si at its centre. Therefore, fitness sharing between two n-volume 2n6 moire

individuals occurs only when their scaled distance Aid is less than as re.

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 86

4.4.5 Optimal Sharing Radius Calculation

It was shown earlier that the proposed fitness sharing method penalises strictly optimal
solutions that are in the same neighbourhood, as defined by the sharing function Sf and
the sharing radius ashare. This extra pressure on these individuals causes them to move
away from each other, since Sf decreases with distance and their shared fitness values

will be higher if they are spread out. If ashare is sufficiently small, an equilibrium will

eventually be reached, where there will be no two individuals whose scaled distance is

less than 6share " If °share is chosen correctly, this lower bound on the distance between

individuals can be maximised, resulting in a near-uniform distribution of the members

of the population within -5. A method for the calculation of a suitable value for ashare is

proposed in this section.

Let C denote the unit hypercube containing the M scaled strictly optimal solutions. The

optimal value of ßshare is defined as the maximum value of as/re for which there exists a

set of N points within C, such that the distance between any two points is no less than

ßshare " Note that the above optimality criterion creates enough room in C for the entire

population of N individuals, to allow M to approach N as new solutions in are found.

Fig. 4.5 shows C in one, two, and three dimensions. The optimal, uniform distribution

of the N solutions, as well as the optimal value of ashare in each case, are also shown.

6share=0.125

ý-
1

n=1, N=9

6share -2- 0.5 6share=0.5
ý1

Fig. 4.5 Unit hypercube C in one, two, and three dimensions

n=3, N=27 n=2, N=9

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 87

Assuming that N is a power of n, it is observed from Fig. 4.5 that each one of the edges

of C contains Ii equally spaced points which divide it into ,N -1 line segments, each

of length ßshare. The length of each one of the edges of C is VTC, where VC denotes the

n-volume of C. The optimal value of ashare is thus given by

6share
n

-1
(4.16)

where the approximate equality becomes an equality when N is a power of n. Let 2h

denote the set -S when transformed using scaling (4.9). The value of ßshare obtained

from Eq. (4.16) will be optimal only when C= Thh. In general, however, C :F TSh and

hence, the n-volume of ý5h may be different than that of C. A more accurate estimate of

the optimal value of ßshare may thus be obtained using the following equation.

ßshare VN--- 1 -1

(4.17)

where b is the n-volume ratio between -5h and C. The dependency on Vf is dropped,

since C is a unit hypercube and V =1. Hence, parameter b should be chosen as close as

possible to the n-volume of TSh. Recommended values for b are given in Table 4.1 for

different values of n, assuming that 5h is the n-sphere with the largest n-volume that

can be placed inside C. Notice that b decreases with increasing n, which indicates that

volume mismatches between-5 hand C can affect the accuracy of (4.17) for large n.

TART F 4.1 Recommended values for parameter b in Eq. (4.17), for different values of n

n b n b

1 1 1.0000 6 384 7C3 0.6574

2 4 7Z 0.8862 7 840 n3 0.6242

3
6 7t 0.8060 8

6144 ý4 0.5957

4
32 ? t2 0.7452 9 15120 7C 4 0.5709

5
1 it2 0.6970 10 8o n 122s

5 0.5491

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms RR

Note that the recommended values for b shown in Table 4.1 should not be treated as
universally optimal, as they are based on the assumption that ýSh is spherical in shape.

4.5 Experimental Analysis

In this section, the proposed fitness sharing method described earlier is experimentally
analysed, in order to demonstrate its effectiveness and illustrate its adaptive properties.
The experimental setup consists of the following closed-loop system.

Set point Error Input Output
r(t) + e(t) u(t) Y(t) PI controller, D(s) Process, G(s)

Fig. 4.6 Experimental setup for the analysis of adaptive fitness sharing

This system is based on the experimental setup of Section 3.4 in Chapter 3. The transfer
functions of the process and controller have the following structure.

G(s) =K e-SL and D(s) = Kp +
K`

Ts +ls
(4.18)

The process parameters were set to be K= 0.5, T =10 sec, and L=3 sec, but K was

allowed to change in certain cases, in order to demonstrate the adaptive properties of the

proposed fitness sharing method. The controller performance specifications were the

ones shown in Fig. 3.5, namely a peak overshoot of at most 20% and a 5% settling time

of at most 25 sec.

A genetic algorithm was used to find optimal values for the controller parameters Kp

and KI, with a generation gap g=0.9, reproduction with stochastic universal sampling

(Baker, 1987), single-point crossover, and fitness-based reinsertion to implement an

elitist strategy. The size of the population was chosen to be N= 80, in accordance with

experimental studies of Grefenstette (1986). The initial, randomly selected population

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 89

was left to evolve for a maximum of 100 generations. The two tuning parameters were
encoded using the binary alphabet and Gray coding (Caruana and Schaffer, 1988). The

string resolution for each of the two parameters was set to 12 bits, resulting in a total

string length of 1= 2x 12 = 24 bits. The crossover and mutation probabilities were chosen
to be p, = 0.45 and pn = 0.01, respectively, using the guidelines of Grefenstette (1986). In

certain cases, however, the mutation operator was disabled by setting pm = 0. This

enables the assessment of the true capabilities of the proposed fitness sharing method,

since no arbitrary diversity is introduced through mutation. If appropriate diversity can
be maintained without mutation, similar or better performance should be expected when

mutation is present (Goldberg and Richardson, 1987). The proportional terms Kp were

assumed to take values from the interval [0,12], and the integral terms K; from the

interval [0,2] sec 1.

The parameters for fitness sharing were set as follows. Function (4.14) was used as the

sharing function Sf in Eq. (4.10), with a power factor a=1, which is equivalent to the

triangular sharing function used in Goldberg and Richardson (1987). The value of the

sharing radius 6Share was computed using Eq. (4.17), as shown below.

_
4-7c

_ 6share --0.1116 (4.19)
-1 80 -1

where n =2, and b is taken from Table 4.1. Whenever population ranking was applied,

the selection pressure in Eq. (4.5) was chosen to be at its maximum value of ßp =2.

4.5.1 Population Diversity Measure

In order to quantify the performance of the proposed fitness sharing method, a measure

of population diversity is proposed in this section. It is based on the sum of shares ßl

each individual receives, computed using Eq. (4.12). Formally, the degree of diversity

or uniformity of a given set of M samples of JS that are contained in i/ is defined as

M

U: =1- `=1 =1- M(M-1)

MM

Sf(IIXi-X, IIo)
1=i j=l

jai
M(M-1)

(4.20)

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 90

It is easy to see that U is always bounded in the closed interval [0,11 provided that Sf

satisfies properties (4.13). Assuming ashare is at its optimal value and that M> 1, when

the diversity of the M samples of 2 is at its maximum, there exist no two individuals in

b whose scaled distance A is less than ßshare. Hence, it follows directly from (4.14)

and (4.15) that Sf (A') =0 when i #j. In this case, U attains its maximum value of 1,

indicating maximum diversity. On the other hand, when the diversity of the M samples

of ýS is at its minimum, all M individuals are identical and thus correspond to a single

point in -5. Hence, Sf (Au) =1 for any solution pair since A=0 for all i and j. Therefore,

o 1=M for all i, and the inner summation in Eq. (4.20) contributes exactly M- 1 shares

for every one of the M individuals. In this case, U attains its minimum value of zero,
indicating minimum diversity. Note that the accuracy of diversity measure U depends

on the optimality of ßshare .

Since no information about set -5 is used in Eq. (4.20), diversity measure U can only

quantify the degree of uniformity of the M solutions within hypercuboid JI whose size

is defined by vector h. This hypercuboid does not necessarily contain the entire set -5,

and hence, its n-volume may be very small if -5
is not sampled adequately. Therefore, if

the M solutions are near-uniformly distributed within .
4, the value of U will approach

unity (indicating good performance), although ii may only occupy a very small region

in -5. This problem can be overcome by considering the hypercuboid with the smallest

n-volume that contains the entire set -5. The size of this hypercuboid is given by the

following vector.

TT

zl """ min Zn z= ýz1 """ zn E (4.21)
- min

Z
hm = max zl """ mZ ax Zn

Z

Vectors h and hm. can be used to obtain an estimate of the amount of n-volume of -5

that is spanned by the M solutions. This estimate can be used to correct the value of U,

resulting in the following, more accurate diversity measure.

n
flh,

Uo =U ni=l
(4.22)

hmax,

i=1

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 91

where h,, ,,,,, i is the i-th element of h,.,,,,, and the numerator and denominator of the ratio
in Eq. (4.22) are the n-volumes of the hypercuboids of size h and hm, respectively. It is
easy to see that this ratio is always positive and cannot exceed unity. Therefore, Uo is
always bounded in the closed interval [0, I], with Uo =1 indicating maximum diversity

over the entire set -5, and Uo =0 indicating minimum diversity.

Note that set -5 must be known a priori, in order to compute Uo. But knowing -S means
that the optimisation problem has already been solved. Therefore, Uo can only be used
for the evaluation of methods under test problems for which Th is already known, such
as the PI controller tuning problem shown in Fig. 4.6. In cases where diversity must be

assessed without prior knowledge of 2, diversity measure U may be used.

4.5.2 Fitness Assignment Configurations

In order to evaluate the performance of adaptive fitness sharing and its combination

with population ranking, six different fitness assignment configurations were considered
in this work. Their flow charts are shown in Fig. 4.7.

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5 Configuration 6

StartStart StartStartStartStart

Proportionate Proportionate Proportionate Proportionate Proportionate Proportionate
Fitness Fitness Fitness Fitness Fitness Fitness

Assignment Assignment Assignment Assignment Assignment Assignment

Population Population Adaptive Fitness Population Adaptive Fitness F-- Ranking Sharing Ranking Sharing Ranking

Adaptive Fitness Population Adaptive Fitness
Sharing Ranking Sharing

I Population
Ranking

End i(End)(End)(End)(End)(End

Fig. 4.7 Flow charts of the six fitness assignment configurations

Configuration 1 corresponds to a conventional, simple GA with proportionate fitness

assignment, while configurations 2 to 6 also include population ranking, adaptive fitness

sharing, and various combinations of the two.

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 92

4.5.3 Simulation Results - No Mutation

Fig. 4.8 shows the set of M solutions in 2, obtained by the GA at generation 100, using
fitness assignment configuration 1 without mutation. It is observed that the distribution

of solutions is far from uniform, and that there are large regions in -S which are not
sampled at all by the GA. This was expected, since no population ranking or adaptive
fitness sharing is applied in this configuration.

Configuration 1 without mutation - Generation 100
U0=O. 1254 U=0.8295 M=80

6

5.5 -

5 -

4.5 -

4 -
0

3.5 ö
- a

0
12-

3 -

2.5 -

2 -

It
Iý

I

""1
I

I

I

*S
I i/I

i- ! -S------"-i

0.2 0.25 0.3 0.35 0.4 0.45

Integral term, K; (sec-1)

Fig. 4.8 Map of strictly optimal solutions obtained at generation 100 using
fitness assignment configuration 1 without mutation

0.5

The inadequate sampling of 2 is also indicated by the size of parallelogram ii, whose

area is much smaller than that of -S. Quantitatively, Uo = 0.1254, which is very close to

zero, indicating poor performance. In contrast to that, U= 0.8295, which is much higher

than the value of Uo. This is because U quantifies the degree of diversity only within ii,

since no information about 2 is used in the calculation of U.

)ter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 93

Configuration 2 without mutation - Generation 100
Uo=0.3189 U=0.8171 M=75

6

5.5

5

Ya 4.5
E

4

0
ö 3.5
0 0 L 0

3

2.5

2

---.: "-: ---ý

die "3

"I

i------- ----------
ý

0.2 0.25 0.3 0.35 0.4 0.45
Integral term, K; (sec-1)

Fig. 4.9 Map of strictly optimal solutions obtained at generation 100 using
fitness assignment configuration 2 without mutation

0.5

Fig. 4.9 shows the set of M solutions in 2, obtained by the GA at generation 100, using
fitness assignment configuration 2 without mutation. In this case, population ranking is

applied to the N solutions in the population. Similarly to Fig. 4.8, it is observed that the

distribution of solutions is not uniform, and that -5 is not adequately sampled. The

reason for this lack of improvement is because all M solutions in 2 have precisely the

same objective function value of zero. Therefore, their reproductive potential relative to

each other cannot be affected by population ranking. This clearly means that population

ranking alone cannot improve the diversity of the M strictly optimal solutions. However,

the diversity of the entire population of N solutions can be improved, especially in the

initial stages of the GA run, where not many strictly optimal solutions have been found

and M« N. For this reason, it is generally beneficial to employ population ranking in

the fitness assignment strategy, but it is clear from Fig. 4.9 that other methods must also

be employed, in order to achieve an acceptable degree of sample diversity within . In

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 94

this experiment, Uo = 0.3189, which indicates an overall improvement, but U=0.8171,

which is slightly smaller than that of the previous experiment.

Fig. 4.10 shows the set of M solutions in 3, obtained by the GA at generation 100,

using fitness assignment configuration 3 without mutation. In this case, the proposed

method of adaptive fitness sharing is applied to the M strictly optimal solutions in
.
i. It

is clearly observed that there is a vast improvement in performance. The distribution of

the M solutions in
.4

is now almost uniform, and most of the area of -S is adequately

sampled, as predicted by the theoretical development in Section 4.4. It is also observed

that .4 now resembles -S more closely. Note that some deviations from uniformity are

inevitable because of the highly disruptive nature of the crossover operator, which may

generate offspring that are strictly optimal, but do not necessarily preserve uniformity.

In this experiment, Uo = 0.6683, which indicates a significant performance improvement,

and also U= 0.9774, which indicates very good uniformity within -4.

Configuration 3 without mutation - Generation 100
U0=O. 6683 U=0.9774 M=74

6

5.5

5

4.5

4

0
ö 3.5
a
0
0

3

2.5

2

r-------------------------

" ""
"

"

" " " "

" 0
"
of "

" "
ý

" " 5 " "

" ". " " "

'" " "
"" " "

I-
------------------ ---------

0.2 0.25 0.3 0.35 U. 4 U. 4O v. U
Integral term, K; (sec-1)

Fig. 4.10 Map of strictly optimal solutions obtained at generation 100 using
fitness assignment configuration 3 without mutation

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 95

Fig. 4.11 shows the set of M solutions in ., obtained by the GA at generation 100,
using fitness assignment configuration 4 without mutation. In this case, population
ranking is firstly applied to the N solutions in the entire population, and then adaptive
fitness sharing is applied to the M strictly optimal solutions in

.
4. This configuration is

called adaptive fitness sharing with pre-ranking.

Configuration 4 without mutation - Generation 100
Uo=0.5949 U=0.9806 M=77

6

5.5 -

5 -

4.5 -

4 - Co
c
0
ö 3.5
a
0

I.. L

3 -

2.5

2

r------- -f- ---------------1

JII

I"""""I

N""0 of

" "" """M1

`.

y
f"

0.2 0.25 0.3 0.35 0.4 0.45 0.5

Integral term, K; (sec-1)

Fig. 4.11 Map of strictly optimal solutions obtained at generation 100 using
fitness assignment configuration 4 without mutation

It is observed that the performance of adaptive fitness sharing with pre-ranking is very

similar to that of adaptive fitness sharing alone, shown in Fig 4.10. This indicates that

pre-ranking does not affect the performance of adaptive fitness sharing. Pre-ranking

can, therefore, be used to improve the exploration ability of the GA in the initial stages

of the search run, without disrupting the distribution of the M solutions in TS achieved

by adaptive fitness sharing. In this experiment, U00.5949 and U=0.9806, which are

similar to those obtained using adaptive fitness sharing alone.

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 96

Fig. 4.12 shows the set of M solutions in
-5, obtained by the GA at generation 100,

using fitness assignment configuration 5 without mutation. In this case, adaptive fitness

sharing is firstly applied to the M strictly optimal solutions in
.
4, and then population

ranking is applied to the N solutions in the entire population. This configuration is

called adaptive fitness sharing with post-ranking. Finally, Fig. 4.13 shows the set of M

solutions in -5, obtained by the GA at generation 100, using fitness assignment

configuration 6 without mutation. In this case, population ranking is applied to the N

solutions in the entire population before and after the application of adaptive fitness

sharing to the M strictly optimal solutions in _. This configuration is called adaptive
fitness sharing with full ranking. Note that, in both cases, the fitness values of the M

strictly optimal solutions may now be different, due to the effect of adaptive fitness

sharing. Therefore, post-ranking can affect their distribution in
.
J. It is observed that

both configurations achieve very good results. For configuration 5, U0=O. 5174 and

U= 0.9827, and for configuration 6, Uo = 0.5723 and U= 0.9816.

Configuration 5 without mutation - Generation 100
Uo=0.5174 U=0.9827 M=73

6

5.5

5

4.5

a)

}' 4
c
0
ö 3.5
0
0 L

0
3

2.5

2

1 --
" --"--- go - -t--. --4---, ---- J/i

ý"""""

i "" """t

i""i

0.2 0.25 0.3 0.35 U. 4 u. 40 v. v
Integral term, K; (sec-1)

Fig. 4.12 Map of strictly optimal solutions obtained at generation 100 using
fitness assignment configuration 5 without mutation

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 97

Configuration 6 without mutation - Generation 100
Uo=0.5723 U=0.9816 M=78

6

5.5

5

Y4 4.5

a)
4

0
0 3.5
CL
0
a

3

2.5

2

I- --------------------

I JII
I"" """ "

"" N

"""# "" """ j

"" """

I"
I s ""

" " "

_

0.2 0.25 0.3 0.35 0.4 0.45 0.5
Integral term, K; (sec-1)

Fig. 4.13 Map of strictly optimal solutions obtained at generation 100 using
fitness assignment configuration 6 without mutation

4.5.4 Simulation Results - Effects of Mutation

In order to illustrate the effects of mutation on the distribution of the M solutions in T5,

all experiments in Section 4.5.3 were repeated with the only difference that the mutation

operator was included in the GA. Figures 4.14 to 4.16 show the obtained results for all

six fitness assignment configurations.

It is observed that mutation slightly improves the performance of most of the different

fitness assignment strategies considered. Similarly to the results without mutation, the

best performance is achieved in configurations 3 to 6, where adaptive fitness sharing is

applied. It is also clearly observed from Fig. 4.14 that the arbitrary diversity introduced

by mutation is not sufficient for achieving an acceptable degree of solution diversity in

cases where adaptive fitness sharing is not applied, such as configurations 1 and 2. This

clearly demonstrates the effectiveness of the proposed diversification method.

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 98

Configuration I with mutation - Generation 100
L/=O. 3462 U=0.6368 M=45

6

5.5

5

4.5
E
I- a)

4 Co
0
ö 3.5
a 0
a

3

2.5

2

"
" rt

"I

I"I
I"$I

It

f------------------ -I

0.2 0.25 0.3 0.35 0.4 0.45
Integral term, K; (sec-1)

0.5

Configuration 2 with mutation - Generation 100
U0=O. 4421 U=0.9157 M=70

6

5.5

5
""

I"

"

"j "

""

L-------f------------------

Q

4.5

a)
4 Co

0
ö 3.5
0
a

3

2.5

2

0.2 0.25 0.3 0.35 0.4 U. 45 U. D
Integral term, K; (sec-1)

Fig. 4.14 Effects of mutation on the performance of configurations 1 and 2

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 99

Configuration 3 with mutation - Generation 100
U0=O. 6247 U=0.9788 M=69

6

5.5

5

4.5

a)
4 m

c 0
ö 3.5
CL
0 L-

3

2.5

2

r-----------f--------------
JI

"=I
""""

I"""I
"""I

I""I
I" :"
I"I

"I

"" """.: "

"T
I""""I

I"""
I" "

"""I

----f---------------------

0.2 0.25 0.3 0.35 0.4 0.45

Integral term, K; (sec-1)
o. 11

II

Configuration 4 with mutation - Generation 100
U0=O. 4634 U=0.9810 M=73

5.5

5
-- --- -----"-"--f---- 1

I

"I " IM"I

""M

"""""

I. """" "I
I"""
I"""I

"""""1

I"""" "I
I""""" "1

I"I

L--f-------------------

4.5

a)
4 m

c 0
ö 3.5
a 0 I- a

3

2.5

2

). 2 0.25 0.3 0.35 U. 4 u. 4ý v
Integral term, K; (sec-1)

I

"r

Fig. 4.15 Effects of mutation on the performance of configurations 3 and 4

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 100

Configuration 5 with mutation - Generation 100
U0=O. 6624 U=0.9754 M=69

6

5.5

5

Q
Y 4.5
E
a)

4

0
0 3.5
a
0
OL

3

2.5

2

------- --- ----------------
" jjI

"" "t "
""

""I

4""" "" "

0 00

I"I
""

"
ý"

"#
I

I""I
I""

-I

0.2 0.25 0.3 0.35 0.4 0.45
Integral term, K; (sec-1)

0.5

Configuration 6 with mutation - Generation 100
Ua=0.6936 U=0.9829 M=70

v

5.5

5

Q

4.5

4 Co
0
ö 3.5
Q-
0

^L 0

3

2.5

---------f -------------------

"

"""

ý'i~''I"'y
ý. "ý
1 "" """"""1

-3

L-- -0- -- -0 - ma i-------------------

2

0.2 0.25 0.3 0.35 U. 4 u. 40 u. 0
Integral term, K; (sec-1)

Fig. 4.16 Effects of mutation on the performance of configurations 5 and 6

C ter 4- Locatin
101

Strictly optimal solution diversity at generation 100 based on measure Uo

4.5.5 Simulation Results - Statistical Tests

In the experiments discussed in the previous sections, all search runs were started using
the same randomly generated initial population, and the random number generator seeds
were always reset prior to each experiment. This was done in order to obtain more
reliable comparison results. However, the presence of random elements in the generic
operators of the GA reduces the degree of confidence in the obtained results. In order to

obtain statistically significant results, the set of all twelve experiments was repeated 100

times, with a different randomly generated initial population in each set. The obtained

results in terms of diversity measures Uo and U are shown in Fig. 4.17 below.

0.7

0.6

0 0.5

N 0.4
I- aý

0.3

0.2

0.1

 No mutation
o Mutation

-- ---------------------
0.42

-- ----------

023

Multiple

------------ --- 0.37

0 . 20

al Solutions Using Genetic Algorithms

----- --0.58 ------- - -- ------------- 0.58 ---- -- ---- - -------..... 0.56 0 57

0.47 ---- ---------
0.44 0.43

1- Simple GA 2- Population 3- Adaptive Finess 4- AFS with Pre- 5- AFS with Post- 6- AFS with Full
Ranking Sharing (AFS) Ranking Ranking Ranking

Strictly optimal solution diversity at generation 100 based on measure U
1

0.95

zi

U,, 0.9
L-
a

0.85

0.8

0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
 No mutation
0 Mutation

---------- ---------

0.91 0.91

0,84

0.82

1- Simple GA 2- Population 3- Adaptive Finess 4- AFS with Pre- 5- Ars wtn rost- b-# ro wmi rm
Ranking Sharing (AFS) Ranking Ranking Ranking

Fig. 4.17 Simulation results in terms of diversity measures Uo and U (averaged over 100 runs)

It is observed that the proposed adaptive fitness sharing method (configurations 3 to 6)

consistently outperforms both the simple GA (configuration 1) and population ranking

alone (configuration 2), in terms of both Uo and U. In terms of diversity measure Uo, the

Chapter 4- Multiple Optimal Solutions Using Genetic Algorithms 102

observed performance improvement using mutation is because of the dependence of Uo
on the size of il. This can result in higher values of Uo whenever mutation generates

new solutions in
-5 that result in an increase in the size of ,, even if these solutions

actually disrupt the uniformity in J4. On the other hand, the value of diversity measure
U does not depend on the size of -4. Hence, U quantifies the degree of uniformity of the

solutions within -4,
irrespective of its size relative to that of TS. In terms of diversity

measure U, it is observed that adaptive fitness sharing achieves near-perfect results that

are virtually unaffected by mutation. As expected, the degree of diversity achieved by

the simple GA and population ranking alone is improved by mutation, but is still not
sufficiently high, as illustrated in Figures 4.14 to 4.16.

The simulation results in terms of the number of strictly optimal solutions, M, contained
in the population at generation 100, are shown in Fig. 4.18 below. It is observed that the

simple GA is greatly affected by mutation, whereas all other methods maintain most of

the population inside -S even in the presence of mutation. It is also observed that the

combinations of population ranking with adaptive fitness sharing achieve slightly higher

values of M than adaptive fitness sharing alone.

Number of identified strictly optimal solutions Mat generation 100
85

80

75
c
0 70

0
65

60

55
1- Simple GA 2- Population 3- Adaptive Finess 4- AFS with Pre- 5- AFS with Post- 6- AFS with Full

Ranking Sharing (AFS) Ranking Ranking Ranking

Fig. 4.18 Number of identified strictly optimal solutions M (averaged over 100 runs)

Assuming that no knowledge about the search landscape is known a priori, the initial

population used in the beginning of a GA run is usually chosen at random. Therefore, in

general, the performance of a given method is expected to change under different initial

populations. Methods that are reasonably insensitive to changes in the initial conditions

Chapter 4- 103 e Optimal Solutions Using Genetic Algorithms

are said to be robust. Robustness is a characteristic of fundamental importance in the

assessment of methods containing random processes, such as GA-based methods. High

robustness ensures a high degree of repeatability and increases the degree of confidence
in the obtained results. In the case of the six fitness assignment configurations tested in

this work, robustness can be assessed by examining the variances of the different results

obtained from the 100 sets of experiments. These are shown in Fig. 4.19 below.

3

2.5

ö2

x
1.5

co
1

0.5

0

Variance of diversity measure Uo at generation 100

1- Simple GA 2- Population 3- Adaptive Finess 4- AFS with Pre- 5- AFS with Post- 6- AFS with Full
Ranking Sharing (AFS) Ranking Ranking Ranking

Variance of diversity measure U at generation 100
3

2.5

ö2

x
1.5

co
ýý

0.5

0

&24 0.25
0.00 0.00 0.00 0.00 0.00 0.00

------------ -------
0.00 0.00

1- Simple GA 2- Population 3- Adaptive Finess 4- AFS with Pre- 5- AFS with Post- 6- AFS with Fu

Ranking Sharing (AFS) Ranking Ranking Ranking

Variance of the number of strictly optimal solutions M at generation 100
6 No mutation

0 Mutation
5.02

4 -------- -------- ----- - ---- -- -- ----- -
3.47

x
---------- ------- --- -

3 ------ ---
c
ca

2 1.31

L

0.85 0.81-
-- --- - -.

0.85
----- - 0.67

1 .
31

36 . 53 0.37 0.33 0
O

0
1- Simple GA 2- Population 3- Adaptive Finess 4- AFS with Pre- 5- AFS with Post- 6- AFS with Full

Ranking Sharing (AFS) Ranking Ranking Ranking

Fig. 4.19 Variances of Uo, U, and M, obtained from the 100 sets of experiments

Chapter 4-L Multiple Optimal Solutions Usin Genetic Algorithms 104

In terms of U0, it is observed that when no mutation is applied, adaptive fitness sharing
alone (configuration 3) has the highest robustness, since it has the lowest variance of all
six configurations. Mutation is shown to improve the robustness of all configurations,
with the ones associated with adaptive fitness sharing having the highest robustness. In
terms of U, it is observed that all four adaptive fitness sharing variants have excellent
robustness that is almost unaffected by the absence of mutation, achieving virtually zero
variance in all cases. Mutation is again shown to improve robustness, especially that of
the simple GA and population ranking alone.

In terms of M, it is observed that population ranking alone, as well as all adaptive fitness

sharing variants, are significantly more robust than the simple GA. Note that, contrary
to the previous observations for Uo and U, mutation is shown to reduce the robustness

of all configurations in terms of M. This is because of the disruptive nature of the

mutation operator which can easily destroy strictly optimal solutions, by moving them

away from in an unpredictable way. It is, therefore, concluded that mutation can help

improve performance as well as robustness in terms of solution diversity, but too high a

value of pn can result in reduced performance as well as robustness in terms of the

number of samples of 2, as also illustrated in Fig. 4.18.

4.5.6 Effects of Parameter Scaling

Adaptive fitness sharing has been designed in order to distribute the GA population in

such a way that an acceptable visualisation of the shape of 2 is obtained, based on the

currently identified M strictly optimal solutions. This is achieved by parameter vector

scaling (4.9), which is at the heart of the proposed fitness sharing method. In order to

demonstrate the importance of this scaling, adaptive fitness sharing was applied with no

scaling on the parameter vectors. This is equivalent to setting h=[11]'. The obtained

results are shown in Fig. 4.20. The initial state of the population was kept the same as in

all previous experiments, in order to obtain more reliable comparison results.

It is clearly observed that the distribution of the M solutions in 2 is inferior to that

obtained when parameter scaling is present (Fig. 4.12). This is because of the uneven

effect of fitness sharing in the horizontal and vertical directions, caused by the lack of

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 105

scaling. This can be better understood by considering the parallelogram marked ® in

Fig. 4.20. Solutions in
-5 that are all contained in the interior of a single parallelogram

of this size will share their fitness values. It is observed that the aspect ratio of this

parallelogram is significantly different from that of II. In the horizontal direction,

sharing penalises individuals that are considerably distant with respect to the size of 5.

Conversely, in the vertical direction, individuals that are very close to each other are not

penalised at all. It can be seen that this causes the M solutions to cluster around specific

regions, forming vertical `columns' of distance ashare. The location of these regions is

unpredictable and is affected by the initial state of the population. It should be stressed

here that a mere scaling of the parameter vectors with respect to the size of the search

space will not, in general, achieve acceptable results. It is the size of -,
/, given in h, that

must be used to scale the parameters, because the aspect ratio of .I can be considerably

different from that of the entire search space. Scaling the parameters using h also gives

the proposed method its adaptive properties, as demonstrated in the following section.

Configuration 5 without mutation - Generation 100
No parameter scaling is applied (h=[1 1]T)

6 -

5.5 -

5 -

4.5 -

4 -
0
ö 3.5 -
0
OL

3

2.5

2

------f----------------ý
I

JJI

I" I

S I" I
i " I

I"%" ýI

I "+"I "
I I

"" I
I"" I

""
" i"

i"I" =I

I"0 S
I" I

"
I
I

ý- -----
ýý

--------- -----

6share

nrrr

0.2 0.25 0.3 U.; i5 x. 11+ W..,
Integral term, K; (sec-1)

Fig. 4.20 Effects ofparameter vector scaling on the distribution of solutions in

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 106

4.5.7 Adaptation of the Population Density

Adaptive fitness sharing has been designed in order to achieve a population distribution

density that is kept constant relative to the size of Z). This means that in cases where the

size of -5 changes during the course of a GA run, the density of the population also

changes accordingly. The sharing radius ßshare itself does not change, but its optimality
is maintained by dynamically changing the scaling of the parameter vectors. In order to
demonstrate this, an experiment was performed in which the gain K of process G(s) in

Fig. 4.6 was changed during the course of the GA run. At generation 50, K was changed
from its original value of K1= 0.5 to its new value of K2 =1.2. This modifies the search

landscape and causes -5 to change. Let -51 denote set 2S when K=K1, and Th2 denote

set 2 when K=K2
.
The gain change causes 2 to retain its shape, but shrink in size by

the ratio Kl /K2. Its location also changes, so that -51 and T2 are disjoint sets. The

obtained results at generations 50 and 100 are shown in Fig. 4.21 below.

Configuration 4 with mutation - Generations 50 and 100
Process gain changes at generation 50 from K= 0.5 to K= 1.2

6

5.5

5

4.5

4

3.5

C3
0
Q ä 2.5

2

1.5

1

---------t-----------

i"""""
i"",
i"""";

"" """""""
"

""
"""

ý "" ""

.""""" "i

"""
1""+""

-" ------------

®

Results at generation 50:
II

Lý

1" "" " "! f Uo=0.7191 U=0.9821 M=67

1"" **oaf I Results at generation 100:
#""r" ". "N
t! S_____® Uo=0.6016 U=0.9846 M=72

-b2
nr

0.1 0.15 0.2 0.25 0.3 u.: sz) U. 11+ U. I+U

Integral term, K; (sec-1)

Fig. 4.21 Adaptation of the population density using adaptive fitness sharing

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 107

It is observed that the distribution of solutions in Th1 at generation 50 is near-uniform, as
indicated by diversity measures Uo and U. The parallelogram marked ® that is located

inside i/i indicates the size of the spatial neighbourhood where fitness sharing occurs.
Because of scaling (4.9), the size of this parallelogram is given by vector hßshare, and its

aspect ratio is thus the same as that of J/1. At generation 50, most of the N individuals

have successfully converged inside X51 as indicated by the value of M. After the process

gain change at generation 50, these M individuals are no longer strictly optimal, and the

population is expected to move away from 21 and converge in X52. This is precisely

what was observed. As can be seen in Fig. 4.21, at generation 100 the majority of the

population has successfully converged inside T52, and has a near-uniform distribution as

indicated by the new values of Uo and U. Notice that, although the value of ßshare was

never changed during the entire GA run, the population at generation 100 has adapted to

the required higher density, since the size of 22 is smaller than that of 21.

Solution diversity Uo and solution count M generation histories
Process gain changes at generation 50 from K= 0.5 to K=1.2

0.8

0.6
N
N

0.4
c O

0.2
0

C

80

60
c

40
0

ö 20

0

i1

10 20 30 40 50 60
Generation

io bU uu 100

N4

.......................... -----------

----------- ------- ---- ------- --------------- ------------

.......................... -- -------- --------------

10 20 30 40 5U bU
Generation

-T

-------------- --

iu OV 90 100

Fig. 4.22 Generation histories of solution diversity measure Uo and solution count M

Chapter 4- Locating Multiple Optimal Solutions Using Genetic Algorithms 108

Fig. 4.22 shows the generation time histories of Uo and M throughout the entire GA run.
In the beginning of the search run, it is observed that the sample diversity as well as the

number of samples of 21 rapidly increase in a few generations. When the process gain

change occurs at generation 50, solution count M drops to zero and stays there for a few

generations. This is because the M solutions in 21 do not belong to X52 and hence they

are no longer strictly optimal. After a number of generations, both Uo and M increase

and reach similar levels to those prior to the gain change.

An interesting observation is that both U0 and M increase much faster in the beginning

of the GA run, than after the gain change occurs. This is because the population in the
beginning of the GA run was chosen at random, and hence, the GA was very rich in

genetic material to guide the search towards 21. On the other hand, immediately after

the gain change, 67 of the total 80 individuals in the population were all located in the

region occupied by set lb I, which is only a small subset of the entire search space. This

limits the amount of genetic material in the population, and inevitably slows down

convergence. The presence of mutation in such cases can play an important role, by

introducing new genetic material that cannot be generated by crossover alone. Based on

the above justifications, it may be beneficial to slightly increase the mutation probability

pm in cases where large changes in the search landscape are expected. Furthermore, it

may be beneficial to monitor M at each generation and either modify pm as required, or

randomly re-initialise a proportion of the population whenever the value of M becomes

very low or zero.

4.5.8 Simulation Results in the Time Domain

The time-domain responses of the strictly optimal solutions obtained using a simple GA

and adaptive fitness sharing with full ranking are shown in Fig. 4.23. These results were

obtained with the mutation operator present, and thus correspond to the maps shown in

Fig. 4.14 (top) and Fig. 4.16 (bottom), respectively. As expected, it is observed that the

degree of uniformity in -5
is reflected in the spread of the time-domain responses inside

the performance specification envelope. Adaptive fitness sharing clearly achieves better

results, with responses having peak overshoots ranging from 0% up to the maximum

requirement of 20%, and settling times of at most 25 sec, as required.

Chapter 4- Locating Multi

y(t) Simple GA (configuration 1) with mutation
Number of unique solutions: 28 (35% of N)

------- 1.20 ---------- ---IiiIi«
1.05

------------- - -------------------------- 1.00
------------ - 0.95

0.80 ---------- -----

I

0 12.5 25 50

Adaptive fitness sharing with full ranking
y(t) (configuration 6) with mutation 1

Number of unique solutions: 65 (81 % of N)

12.5 25 50

Fig. 4.23 Closed-loop system responses of the Msolutions in -5 obtained
using a simple GA (top) and adaptive fitness sharing (bottom)

4.6 Summary

t (sec)

t (sec)

109

In this chapter, a new method called adaptive fitness sharing was proposed, whose

purpose is to enable a GA to locate multiple equivalent optimal solutions and distribute

the members of the population uniformly within the optimal solution set. The proposed

method is based on the techniques of niche formation and speciation, and is applicable

e Optimal Solutions Using Genetic Algorithms

to the optimisation of search landscapes which contain an infinite number of equivalent

4-L le Optimal Solutions Using Genetic Al 110

optimal solutions which share a unique objective function value that is known a priori.
The proposed method can thus be used for the optimisation of objective functions JS and
JM, developed earlier in this work. Formulae were derived for the estimation of the

optimal value of the sharing radius ashare involved in the fitness sharing algorithm. The

optimality of ashare is maintained during the course of the search run, by dynamically

modifying the scaling of the parameter vectors. This was shown to be equivalent to the

automatic adaptation of ashare. The proposed method can thus be used in cases where the

search landscape changes during the course of a search run. The time complexity of the

proposed method was shown to be better that that of conventional fitness sharing. The

computation time required to apply adaptive fitness sharing is usually much less than

that of an objective function evaluation. Hence, the proposed method is not likely to

significantly slow down the GA, and its application is simple and straightforward.

The effectiveness of adaptive fitness sharing was supported by extensive simulation

results, and two population diversity measures were developed in order to quantify the

obtained results. It was experimentally shown that adaptive fitness sharing, and all its

combinations with the technique of population ranking, consistently outperformed the

simple GA and population ranking alone. The performance and robustness of the

proposed method was further investigated by performing a set of statistical tests, where

it was shown that adaptive fitness sharing always outperformed all other methods, in

terms of both performance (higher degree of achieved uniformity) and robustness (less

sensitivity to initial conditions). Finally, the adaptive properties of the proposed method

were demonstrated by modifying the search landscape during the course of a single GA

run. It was clearly shown that adaptive fitness sharing successfully adapted the density

of the population as required, while maintaining a high degree of uniformity throughout

the search run.

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 111

5 Decentralised PI Controller Tuning for
Multivariable Processes -A Genetic
Approach

5.1 Introduction

In this chapter, a new method for the automatic tuning of decentralised PI controllers for

multivariable processes is proposed, based on genetic algorithms. The major advantage

of the proposed method is that it gives the designer the freedom to explicitly specify the

required performance specifications for a given multivariable control problem, in terms

of time-domain bounds on the closed-loop responses. This is achieved by transforming

the control problem into a function optimisation problem, using objective function JM

developed in Chapter 3. A genetic algorithm is then employed for the minimisation of

JM, and the method of adaptive fitness sharing developed in Chapter 4 is used, in order

to maximise the diversity of the obtained family of solutions. The proposed method has

the flexibility to be applicable to a wide range of multivariable processes. Simulation

results are presented to illustrate the effectiveness of the proposed method. The obtained

results are shown to be superior than those obtained using the relay feedback technique.

The choice of genetic algorithms as a suitable optimisation method is supported by

statistically comparing them with two conventional optimisation methods.

5.2 Limitations of Existing PI/PID Tuning Methods

Although methods exist for the automatic tuning of PI and PID controllers for certain

classes of multivariable processes (Aström and Hägglund, 1995; Loh, Tan, and Vasnani,

1994; Halevi, Palmor, and Efrati, 1997; Palmor, Halevi, and Krasney, 1995; Semino and

Scali, 1998; Zhuang and Atherton, 1994; Hang, Loh, and Vasnani, 1994), many of these

methods make certain assumptions about the nature of the controlled process, such as

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 112

size (number or input/output pairs), linearity, weak interactions within the process,
absence of noise, and others. A literature search did not reveal a generic, multi-loop PI

or PID tuning method that enables a range of different and arbitrary specifications for

each loop and between loops, to be defined in the context of an interacting multivariable

process. If the controlled process is linear and a simple mathematical model exists or
can be derived easily, then it may be possible to derive analytical methods for the tuning

of the controllers. However, in the real world, processes are usually non-linear and very

complex, and the resulting models are often too complex to be useful in an analytical
framework.

A number of successful PI and PID tuning methods for multivariable processes have

been proposed by Loh, Tan, and Vasnani (1994), Halevi, Palmor, and Efrati (1997), and
Semino and Scali (1998), in which the relay feedback technique developed by Aström

and Hägglund (1984) is employed. These methods appear to work well, but have the

disadvantage that not all classes of multivariable processes can exhibit sustained and

near-sinusoidal oscillations under multi-loop relay feedback. Therefore, these methods

are only applicable to certain classes of multivariable processes. Furthermore, in Loh,

Tan, and Vasnani (1994), the relay switching levels have to be modified manually, in

order to bring the process to a certain mode of oscillations that is necessary for the

method to be successfully applied. As the size of the multivariable process increases,

this task may become extremely difficult. Another important limitation, as with most

existing multi-loop PI/PID tuning methods, is that they employ tuning rules such as

those proposed by Ziegler and Nichols (1942), which were originally developed for use

with SISO systems and correspond to a fixed set of performance specifications. It will

be shown in the following sections that the proposed PI tuning method inherently and

completely overcomes these limitations.

5.3 The Proposed Decentralised PI Controller Tuning Method

In this section, a new method is proposed for the tuning of decentralised, multi-loop PI

controllers. The tuning problem is transformed into a function optimisation problem by

means of objective function JM developed in Chapter 3, with JM having 2q parameters,

where q is the number of PI loops in the closed-loop, multivariable system. The highly

non-linear and multimodal nature of JM, and the lack of derivatives, mainly due to noise

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 113

and other uncertain elements that may be present in the closed-loop system, motivates
the use of GAs in this optimisation problem. The ability of JM to deliver a family of
strictly optimal solutions is exploited, by using the method of adaptive fitness sharing
developed in Chapter 4. The resulting PI tuning method, with the numerical robustness

and global optimisation ability of GAs, is expected to overcome limitations of empirical

methods based on tuning rules such as those proposed by Ziegler and Nichols (1942). A

major advantage of the proposed GA-based tuning method is that the optimality criteria

can be explicitly and accurately specified by the designer in the time domain, in terms

of the desired transient responses of all closed-loop system outputs under different,

user-defined set point patterns, including loop coupling specifications. This makes the

method directly applicable to many complex multivariable control problems.
Furthermore, although only decentralised PI controllers are considered in this work, the

generality and open architecture of the proposed method makes it suitable for the

automatic tuning of different parametric controllers, both linear and non-linear, and not

just PI controllers. This is because the proposed method only requires the numerical

solutions of the differential equations associated with the closed-loop system, which can

easily be obtained using most standard control system simulation packages.

5.3.1 Decentralised PI Control of Multivariable Processes

In aqxq multivariable process, a typical decentralised PI controller structure would be

one in which q PI controllers would be used in the q loops associated with the process,

as shown in Fig. 5.1.

Fig. 5.1 Typical decentralised PI controller structure

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 114

The pairing of controlled variables y; with manipulated variables uj can be performed by

examining the process's relative gain array, either in the steady state (Bristol, 1966), or
within the desired closed-loop bandwidth. The PI controllers considered in this work are
continuous-time, arranged in the standard decentralised structure shown below.

D1(s) 0

D(S)
0 DZ(S)

00

ýýý 0

... Dq (s)j

(5.1)

The elements in the diagonal of controller transfer function matrix D(s) are single-input,

single-output PI controllers of the following standard form.

Di (s) = Kp
(i+ 1

i=1,..., q TJs
(5.2)

where KPr
. and Tr denote the proportional gain and integral time, respectively, of the PI

controller in loop i. The interactions within the process cause the output of the controller

in loop i to appear as a disturbance in all other loops. Hence, the i-th PI controller must

be designed such that the desired set point tracking performance for loop i is achieved,

while the disturbances caused by the PI controller outputs of the remaining q- I loops

are rejected. This makes the PI tuning problem difficult, and conventional PI tuning

rules such as those proposed by Ziegler and Nichols (1942) which have been designed

for SISO systems may not, in general, achieve acceptable results. The proposed tuning

method, however, is inherently capable of treating interacting multivariable processes.

This is experimentally demonstrated later in this chapter.

5.3.2 Optimisation Problem Formulation

The proposed PI tuning method works by minimising objective function JM, which is a

function of the PI controller parameters associated with the tuning problem. Hence, the

set 2 of all permissible PI controller transfer function matrices D(s), is simply a vector

of the 2q tuneable parameters, as shown below.

2S =
JrKp1... Kpq T1 ... T91 E R2q} (5.3)

LJ

Chapter 5- Decentralised Pl Controller Tuning for Multivariable Processes >>5

In this context, objective function JM can be used in its original form, and can thus be
expressed as shown below.

JM(Kp,..., KPq, Tl,..., Tql = max w1. J,.. (5.4)

where

tm
«

. Iy (Kp,..., KPq, TI,...
ýT9) =

(max{j')(t)0

no (5.5)

+ max {yl (t) -f
(u) (t), 0 }) dt

It is observed that only the process outputs yl,... , y9 are considered in the minimisation.
In certain cases, it may be desirable or necessary to also consider the process inputs (the
controller outputs) u1, ... , uq, as well as their rates of change This is common

practice in objective functions employed in predictive control algorithms (Garcia, Prett,

and Morari, 1989; Clarke and Mohtadi, 1989), where control weights are used to limit
the activity of the manipulated variables. This can also be incorporated in the proposed
method as an additional term in J, or JM. Depending on how this is done, the inclusion

of additional terms in the objective function may alter certain desirable properties of JM,

such as the existence of strictly optimal solutions. This is discussed in Chapter 6. In the

present chapter, JM and J, ý are used exactly as shown in (5.4) and (5.5), respectively.

5.3.3 Boundary Functions and Set Point Test Patterns

The set point test patterns used to test the candidate controllers in order to evaluate JM,

the corresponding boundary functions f, (u)(t) and fy(l)(t), and the weighting factors w1,

are problem-dependent and must be chosen in accordance with the given specifications.
In cases where step functions are used to evaluate the candidate controller, the boundary

functions fy(u)(t) and f j(l)(t) shown in Fig. 3.17 can be used, by appropriately choosing

the constants Cl,,, ... 5C79 css, tl, ... , t3, and t. Recall that Jlý is the objective function

element for output i under set point patternj. Since the closed-loop system consists of q

loops, q set point patterns can be applied, where in pattern ja step function is applied to

reference input rj, while the remaining q -1 reference inputs remain at zero. When all q

set point patterns have been applied to the closed-loop system, all q2 elements J, ý can be

evaluated in order to compute JM. This is illustrated in Fig. 5.2 for a2x2 system.

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 116

Closed-loop test 1

Cl)

0
Q.

r, (t)

0t

r2(t)

ot cr

r, (f)

C
0

I.
(ß

E_
(/)

C
0

(ß
ui

v) C

r2(t)

Closed-loop test 2

r, (t) r2(t)

0t0

r, (t)

Closed-Loop
System

y1(t)

y, (t) y2(t) Y, (t)

ototot

J11

W,,

J21

W21

J12

W12

r2(t)

Y2(t)

J22

W22

JM

Fig. 5.2 Typical procedure for the computation of JM for a two-input, two-output system

The procedure shown in Fig. 5.2 is only a suggestion for problems with typical set-point

tracking and loop coupling performance specifications. The number of closed-loop tests

can be greater than q, especially in cases where the controlled process is non-linear and

many different operating points must be considered in the evaluation of the candidate

controllers. Furthermore, the set point signals need not be step functions, but can also be

ramps or any other suitable function, and can be different for each reference input and

closed-loop test combination, provided J7 (t) and J (l)(t) are chosen accordingly.

Y, (t) Y2(t)

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 117

5.4 Decentralised PI Controller Tuning Examples

To illustrate the flexibility and effectiveness of the proposed PI tuning method, three
tuning examples previously investigated by Loh, Tan, and Vasnani (1994) are presented
in this section, using three multivariable (2-input, 2-output) processes with non-linear
elements and different degrees of interaction. These are given in Sections 5.4.1 to 5.4.3.
The closed-loop system configuration is then described in Section 5.4.4, followed by the

performance specifications used in the tuning, which are given in Section 5.4.5. Finally,

the genetic algorithm configuration used in the optimisation is given in Section 5.4.6.

5.4.1 PI Controller Tuning Example 1

The process used in this example is a 2-input, 2-output linear multivariable process with

strong interactions between the two input/output pairs. It is based on the empirical

model of a pilot-scale distillation column developed by Wood and Berry (1973), and is

also used in Loh, Tan, and Vasnani (1994). The four transfer functions associated with

the process have first-order dynamics and are subject to different time delays. The

dynamics of the process are represented by the following 2x2 transfer function matrix,

with all time-unit parameters given in minutes.

12.8e-' 18.9e As

16.7s+1 21s+1
G1(s) _ (5.6)

6.6e-7s 19.4eAs
10.9s+1 14.4s+1

It can be seen by examining the off-diagonal elements of Gi(s) that the interactions

within the process are strong, and the delay times range from 1 minute to 7 minutes. It

will be shown later in this chapter that even simple MIMO processes such as G1(s) can

generate very complex search landscapes containing thousands of local minima.

5.4.2 PI Controller Tuning Example 2

In this example, G1 (s) is modified in order to reduce the interactions within the process.

Specifically, the steady-state gains of the off-diagonal elements of Gi(s) are reduced,

resulting in the following transfer function matrix.

Chapter 5- Decentralised PI Controller Multivariable Processes I 1R

12.8e-S 0.2e-3S
6.7 ss+1 21s+1 G2 (s) _
e-7S 19.4e-3s

10.9s +1 14.4s +1

5.4.3 PI Controller Tuning Example 3

(5.7)

Finally, in this example, the gain of the G12(s) element of Gl (s) is reduced, in order to
weaken the interaction from loop 2 to loop 1, but the interaction from loop 1 to loop 2 is
left unchanged, thus resulting in a `moderate' degree of interaction. This results in the
following transfer function matrix.

12.8e-S l0e-3S
16.7s+1 21s+1

G3 (s) _
6.6e-7 19.4e-3S

10.9s +1 14.4s+1

5.4.4 Closed-Loop System Formulation

(5.8)

In all three tuning examples, yl was paired with ui and y2 with u2 as indicated by the

steady-state relative gain arrays of Gi(s), G2(s), and G3(s), all of which have positive

elements in the main diagonal and negative elements elsewhere. Two continuous-time

PI controllers in the standard form of Eq. (5.2) were used to control the multivariable

processes. In all three examples, the processes were augmented with saturation (±0.5

units) and rate limit (±0.015 units per minute) non-linearities as actuator constraints.

These non-linearities, as well as the existence of time delays in the process, limit the use

of conventional, linear systems control theory for the design of the PI controllers, as

such designs may not, in general, yield reliable results. The resulting closed-loop system

is shown in Fig. 5.3.

In order to evaluate JM, the closed-loop systems were simulated in MATLAB /SIMULINK

using the Runge-Kutta fifth-order numerical integration algorithm with a constant step

size of tmax/ 100 minutes, where to is the maximum simulation time in each example.

The integral in Eq. (5.5) was numerically evaluated using the Euler method.

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 119

Fig. 5.3 The closed-loop configuration used in the PI controller tuning examples

5.4.5 Performance Specifications

In all examples, the set point tracking and loop coupling performance specifications are

of the same form as the ones shown in Fig. 3.17. The closed-loop system was subjected

to unit step functions, as shown in Fig. 5.2, and the values of the constants cl,... , C7, css,

tl,... , t3, and t,, in Fig. 3.17 were chosen so that the performance specifications of the

closed-loop system are as follows.

Peak overshoot of outputs yl and y2:

Settling time of outputs yl and y2:

Coupling between loops 1 and 2:

< 20%

<_ 50 min, where the settling time is 5%

S50%, 0<_t<_25min

<_ 5%, 25 min < t5100 min

In all examples, the weighting factors w1 in Eq. (5.4) were set to be w11= W22 =1 and

w12 = W21= 0.25, in order to give more emphasis to the set point tracking objectives. As

mentioned in Chapter 3, the weighting factors wy do not at all affect the locations of the

strictly optimal solutions in the search landscape. However, w13 should still be chosen

according to the importance of the corresponding specifications, since the existence of

strictly optimal solutions is not known a priori. Furthermore, even when strictly optimal

solutions do exist, the values of w13 can affect the convergence of the GA because they

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 120

can modify the shape of the sub-optimal regions of the search landscape. More on the
effects of wy in the optimisation results can be found in Section 3.5.

5.4.6 Genetic Algorithm Configuration

In all three examples, a standard GA with adaptive fitness sharing was used to minimise
JM, with a generation gap g=0.9, reproduction using the stochastic universal sampling

algorithm (Baker, 1987), single-point crossover, and fitness-based string reinsertion to
implement an elitist strategy. The size of the population was chosen to be N= 80, in

accordance with experimental studies of Grefenstette (1986). The initial population was

always randomly selected, and was left to evolve for a maximum of 100 generations,

although good convergence was usually achieved in much fewer generations.

The four PI controller tuning parameters were encoded using the binary alphabet and
Gray coding (Caruana and Schaffer, 1988). The string resolution for each parameter was

set to 12 bits, resulting in a total string length of 1= 4x 12 = 48 bits. This corresponds to a

search space whose size is approximately 2.8 x 1014 points. The chromosome structure

used in all tuning examples is shown in Fig. 5.4 below.

PI controller in loop 1 PI controller in loop 2

01101... 10 11100... 11 00010... 00 11101... 01

KP, TI, KP2 T12

Fig. 5.4 Chromosome structure used in the tuning examples

The crossover and mutation probabilities were chosen to be p, =0.45 and p,,, =0.01,

respectively, using the guidelines of Grefenstette (1986). The PI controller proportional

terms KP, were assumed to take values in the interval [0,10], and the integral terms TI,

in the interval [0.1,100] minutes. Adaptive fitness sharing with pre-ranking was used as

the fitness assignment strategy in all examples. The sharing radius asnare was computed

using Eq. (4.17), where n =2q = 4, and the value of b was taken from Table 4.1.

ý/
43 7C2

6share _ -0.3744 (5.9)

-1 480-1

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 121

5.5 Simulation Results

5.5.1 Tuning Example 1

Simulation results for the best set of PI controller parameters after 100 generations are

shown in Fig. 5.5. In the output responses, the boundary functions fjj(u)(t) and fjj(l)(t) are

also plotted for comparison, indicated by the dotted lines. The convergence of the value

of J, ß, 1 and that of the proportional and integral terms of the two PI controllers is shown

in Fig. 5.6, where the vertical dashed line indicates the generation at which the GA has

identified one or more strictly optimal solutions (JM= 0).

1.2

1

0.8

0.6

0 0.4
0 0.2

A

0.18

Unit step function to r1(t) only

-

. 2.

20 40 60 80 100 0
0.2 r

0.16
Z CL
c

0.14

0.12'-
0 20 40 60 80

0

-0.02 N
Z3

-0.04 c c

-0.06

-0.08 6
0 20 40 60 SU

Time, t (minutes)

1.2

1

0.8

0.6

0.4

0.2

1

Unit step function to r2(t) only

_2 777

....

----- ------------------------------- I

0 20 40 60 80 100

.. I 0

-0.05

-0.1

-0.15

100

0.11

0 20 40 60 80

0.1

0.09

0.08-

100 0

Fig. 5.5 Strictly optimal closed-loop system responses (Pl tuning example 1)

100

20 40 60 80 100

Time, t (minutes)

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 122

102

ö 10'

C
210-2
a)

010-4
0

10-6

........:.......... "....................
..................... .:.......

.......... :..
......... I..........;...........

..........:..........:
i.............................:

........:.........

_:...................:.

.................ý....... :......... :........ :.........

IV cu : su 40 50 60

Generation

o.

Y 0.3

N
C

0.2

0
0

0.1

0

70 80 90 100

10 20 30 40 50 60
Generation

3

25

20

15

1 10
aD

5

0

70 80 90 100

:........

:... :.

.............

:..........

i
.......... i.........

i

......... i..........
i
i

.

...... ':........

......:..........:.........

.:::....................

i

10 20 30 40 50 60 70 80 90 100
Generation

Fig. 5.6 Convergence of JM and the four PI controller parameters (PI tuning example 1)

It can be clearly seen that the closed-loop system has completely met all specifications.

Although strictly optimal solutions (JM= 0) were obtained as early as generation 50, the

population was left to evolve for 100 generations, so that other strictly optimal solutions

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 123

are obtained using adaptive fitness sharing. It was observed that the resulting solutions
were very similar. This is because the performance specifications for the given process

were very tight, resulting in the n-volume of 2 being extremely small. Evidence of the

small n-volume of 2 in this example can be found in Fig. 5.6, where the variance of the

controller parameters after generation 50 is low.

5.5.2 Tuning Example 2

Simulation results for the family of strictly optimal PI controllers for G2(s) obtained at

generation 100 are shown in Fig. 5.7. The GA convergence plots are shown in Fig. 5.8.

Unit step function to r1(t) only Unit step function to r2(t) only

1.2

_I
0.8

0.6

0.4
0

0.2

.,

"-' 0.2

- "

2

20 40 60 80

1.2

1

0.8

0.6

0.4

0.2

100 0 20
x 10,

0

0.3 r

c 0.1

N -5

40 60 80 100 o, 1 0 20
x 10'

0

............. I _.... I............ I

0

-5

-10

-15

.

.................

.................

ýI

rttl

40 60 80 100

0 20 40 60 80 100

0.15

Q
C

-10
0.05

0 20 40 60 80 100

Time, t (minutes)

0.1

oý 0 20 40 60 80

Time, t (minutes)

100

Fig. 5.7 Family of strictly optimal closed-loop system responses (PI tuning example 2)

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 124

10 ̀

7ý

........
'
.........:..

I.
.......

y

:

.............................
I:

C
010'
U

10 V0
u)
0

10-1
10 20 30

0.8

o. 6

40 50 60 70 80 90 100

Generation

1

C
0_
iH

CL
0.4

0
0

0.2

0
10 20 30 40 50 60 70 80 90 100

Generation

100

80

c
60

40
cm
a)

20

0

Fig. 5.8 Convergence of JM and the four PI controller parameters (PI tuning example 2)

Similarly to the previous example, it can be seen that the performance specifications

have been completely satisfied, with strictly optimal solutions being obtained as early as

generation 78. It is observed that in this tuning example, the GA was able to locate

10 20 30 40 50 60 70 80 90 100

Generation

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 125

many significantly different strictly optimal solutions. This was expected because the

process used in this example is almost diagonal due to the very weak interactions within
the process, making the performance specifications realisable by a much wider range of

PI controllers. Evidence of the large n-volume of -5 in this example can be found in

Fig. 5.8, where the variance of the controller parameters after generation 78 is high.

5.5.3 Tuning Example 3

Simulation results for the family of strictly optimal PI controllers for G3(s) obtained at

generation 100 are shown in Fig. 5.9. The GA convergence plots are shown in Fig. 5.10.

1.2

1

0.8

0.6

0.4

0.2

n

0.25

0.2

a- 0.15
c

Unit step function to rl(t) only
1......, ii

..........................
1N'"...

..............................

-

-2

0 20 40 60 80 100

0.1

0 20 40 60 80 100

..

0 20 40 60 80 100

0.15

0.1

0.05

0
100 0 20 40 60 80

Time, t (minutes)
-"' 0 20 40 60 80

Time, t (minutes)

0
. -" -0.02

N

-0.04

0--0.06

-0.08
Al

Fig. 5.9 Family of strictly optimal closed-loop system responses (PI tuning example 3)

1.2

1

0.8

0.6

0.4

0.2
n

Unit step function to r2(t) only

.......
2

..................................
............................

.................

....

_1

......................................
............ 7 ------------ I ------------- f ------------
0 20 40 60 80 100

0

-0.02

-0.04

-0.06

-0.08

100

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 126

1O

10'

0 v 100
c
42

> 10-1
U
a) ö10-2

10-3
10 20 30

0.3

40 50 60 70 80 90 100

Generation

0.4

C
0 0.2
O
0.
O

a- 0.1

30

25
a)

20

15

% 10 rn

5

0

0

................:..

........

............................. .

...... :..

.

I

..... i...:..................

10 20 30 40 50 60 70 80 90 100
Generation

_..... '........ I.. '......... '........ ' '.........:.........

................:........ ..:.......... :.........:.......... :..........:..........:.......

10 20 30 40 50 60 70 80 90 100

Generation

Fig. 5.10 Convergence of JM and the four PI controller parameters (PI tuning example 3)

Similar results were obtained for the third example, as indicated in Fig. 5.9, with strictly

optimal solutions being obtained as early as generation 38. In this case, it was observed

that the envelope of achievable strictly optimal output responses was narrower than that

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 127

of example 2. This was expected, since G3(s) exhibits stronger interactions than G2(s).

Evidence of the large n-volume of T5 in this example can be found in Fig. 5.10, where
the variance of the controller parameters after generation 38 is high.

The high variance observed in the tuning parameter values in examples 2 and 3 towards

the end of the GA search run should not be treated as an indication of poor convergence.
The best solutions in and after the generation marked by the dashed line in Figures 5.6,

5.8 and 5.10 are all strictly optimal, and the tuning parameters should be expected to

stay in but not necessarily settle at specific values. Another relevant observation is

that in examples 2 and 3, the variance of the tuning parameters appears to increase after

the GA has located strictly optimal solutions. This is because prior to the discovery of

solutions in 3, the entire population contains sub-optimal solutions. Therefore, the best

solution in the population at each generation (plotted in Figures 5.6,5.8 and 5.10) is

likely to be unique among the distinct members of the population. Since g< 1 and the

string reinsertion is fitness-based, this solution will be propagated through to successive

generations until a better solution is discovered. When the GA has run long enough to

have located the optimal region in the search landscape, this new solution is likely to be

in the phenotypic neighbourhood of its predecessor. This similarity between successive

best solutions reduces the parameter variance prior to the discovery of solutions in -5.

When at least two distinct solutions in 2 are discovered, adaptive fitness sharing is

activated in order to maximise the solution diversity in 2'. This diversity maximisation

is directly responsible for the increase in the variance of the parameters after the GA has

located 2', as clearly observed in Figures 5.8 and 5.10.

The resulting strictly optimal PI controller parameters for the three tuning examples, as

well as the associated objective function values, are shown in Table 5.1 below.

TABLE 5.1 Typical, strictly optimal PI controller parameters for the three PI tuning examples

Tuning example I Tuning example 2 Tuning example 3

Loop 1 Loop 2 Loop 1 Loop 2 Loop 1 Loop 2

Proportional, Kp1 0.1636 0.0781 0.1832 0.1294 0.2173 0.1270

ntegral, TI, (minutes)

)bjective function, JM

6.0525 1 7.4187

0 (strictly optimal)

6.3941 115.3960

0 (strictly optimal)

8.8336 1 16.3719

0 (strictly optimal)

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 128

The PI controller parameter values shown in Table 5.1 for examples 2 and 3 are typical

representatives of the solution families obtained by the GA, and were selected manually
by examining the strictly optimal closed-loop responses.

5.5.4 Search Landscape Complexity

The search landscapes that correspond to the three PI tuning examples presented earlier

are all four-dimensional and thus cannot be visualised easily. It is possible, however, to

examine the surface slices that result by keeping any two of the four parameters at their

optimal values given in Table 5.1. One such surface slice for tuning example 1 is shown

in Fig. 5.11, obtained by keeping the two proportional terms at their optimal values and

varying the two integral terms.

400

300
c
0
U
C

.ý 200
N

: =r

100
O

0
10-1

Fig. 5.11 Objective function surface slice for PI tuning example 1 (all proportional

terms are at their optimal values shown in Table 5.1)

10 -'

It is observed that the surface slice is complex, highly non-linear and also multimodal.

The multimodality of the surface slice can better be observed in Fig. 5.12, where the

map of the minima of that surface slice are shown. The locations of the minima were

"2 (n7"7utes 10 102 V\ýe9` 2

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 129

computed by evaluating JM at a grid of 401 x 401 points where 8,630 minima were found,

of which only 14 (-0.16%) correspond to strictly optimal solutions (JM= 0). These are
indicated by the circular marker in Fig. 5.12.

102

N

10

E
_C14

L
Q)

ca L- 3100
. - C

10

Map of minima of surface slice - Proportional terms at optimal values
Total number of minima: 8,630 - Strictly optimal: 14 (0.16%)

10-1 100 10,
Integral term, T11 (minutes)

102

Fig. 5.12 Map of minima of objective function surface slice for PI tuning example 1

(all proportional terms are at their optimal values shown in Table 5.1)

Similar results were obtained by keeping the two integral terms at their optimal values

and varying the two proportional terms. The resulting surface slice, together with the

associated map of minima, is shown in Fig. 5.13. The locations of the minima were again

computed by evaluating JM at a grid of 401x401 points, where 9,453 minima were

found, of which only 2 (~- 0.02%) correspond to strictly optimal solutions (JM=O). These

are indicated by the circular marker in Fig. 5.13. Note that, in both cases, the minima

were computed by assuming that JM changes monotonically between grid points. This

should generally hold if the grid is sufficiently dense. The actual `continuous' surface

slices may contain a much larger number of minima.

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes

7ý
C
O

U
C
9-

y-
4)
>

U
Q)

0

500

400

300

200

100

0
100

100

Map of minima of surface slice - Integral terms at optimal values
Total number of minima: 9,453 - Strictly optimal: 2 (0.02%)

E L

Q)
(ß 10-1
C
O_

O
Q.
O

..,
10_2 10-1 100

Proportional term, Kp1

Fig. 5.13 Objective function surface slice and map of minima for PI tuning example 1
(all integral terms are at their optimal values shown in Table 5.1)

i r%-2

100

130

rn7,0!
P, 10-2 10-2 PCB

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 131

5.5.5 Comparison with the Relay Feedback Technique

Decentralised PI controller tuning for multivariable processes has also been investigated
by Loh, Tan, and Vasnani (1994), who proposed a solution to the tuning problem by

employing an extension of the relay feedback technique (Aström and Hägglund, 1984)

to multivariable plants. The tuning examples they used to demonstrate the effectiveness
of their method are identical to those presented in this chapter, with the only exception
that, in Loh, Tan, and Vasnani (1994), no actuator constraints are present in the process
inputs. The PI controller parameters they obtained, as well as the values of JM, are

shown in Table 5.2 below.

TABLE 5.2 PI controller parameters as computed in Loh, Tan, and Vasnani (1994)

Tuning example I Tuning example 2 Tuning example 3

Loop 1 Loop 2 Loop I Loop 2 Loop 1 Loop 2

Proportional, Kp1 0.3160 0.1080 0.7580 0.1540 0.4390 0.1160

Integral, T; (minutes) 10.2200 10.2200 3.2400 8.6000 9.6000 9.6000

Objective function, JM 0.1042 0.7439 0.2327

It is observed that, according to the performance specifications given in Section 5.4.5,

the controllers computed in Loh, Tan, and Vasnani (1994) are sub-optimal. Of course,

this was expected since the optimality criteria used in Loh, Tan, and Vasnani (1994) are

the ones associated with the tuning rules of Ziegler and Nichols (1942), and do not

correspond to those given in Section 5.4.5. The above comparison merely demonstrates

the flexibility of the proposed method in the automatic tuning of PI controllers for

arbitrary performance specifications.

Another interesting observation is that, in PI tuning example 1, the integral terms of the

PI controllers obtained using the proposed method have similar values (see Table 5.1).

This is consistent with the results of Loh, Tan, and Vasnani (1994), where it has been

experimentally shown that highly interacting multivariable processes such as G1(s),

when placed under relay feedback, will usually exhibit sustained oscillations of the

same frequency, and hence all control loops will have the same ultimate period, thus

resulting in PI controllers that have the same integral term setting. This can be observed

in Table 5.2.

Ater 5- Decentralised PI Controller Tuning for Multivariable Processes 132

The systems used in the three tuning examples are considered non-linear because of the
saturation and rate limit non-linearities that are present in the process inputs. Therefore,

as expected, the controller parameters in Table 5.1 are guaranteed to be strictly optimal
only when the systems are subjected to the same input patterns as the ones used in the
GA for the optimisation (i. e. unit step functions), and may not be strictly optimal when
the systems are subjected to step functions with magnitudes other than unity. This is due

to the fact that the PI controllers are linear and thus cannot be optimal over the entire
process operating region. In the extension of the relay feedback method to multivariable
processes, an infinite number of sets of ultimate quantities can be obtained by varying
the loop relay switching levels, thus yielding an infinite number of controllers, and this
is true even for linear processes (Halevi, Palmor, and Efrati, 1997; Palmor, Halevi, and
Krasney, 1995). The proper adjustments of the loop relay switching levels, so that the

resulting ultimate quantities reflect the operating point of interest, can be a very difficult

task that is largely based on trial-and-error. This is especially true when, at the same

time, the process has to exhibit a certain mode of oscillations necessary for the relay
feedback method to be successfully applied. More details on the different modes of

oscillations that may arise in a multivariable process under relay feedback can be found

in Loh and Vasnani (1994), who showed that the obtained limit cycles are related to the

strength of the interactions within the controlled process. Processes GI(s), G2(s), and

G3(s), used in the tuning examples in this chapter, exhibit all three modes of oscillations

investigated in Loh and Vasnani (1994), and Loh, Tan, and Vasnani (1994).

In the proposed PI tuning method, the operating points of interest are embedded in the

performance specifications. Therefore, the tuning task is greatly simplified. In addition

to that, the PI controllers can be made robust over different operating conditions by

defining appropriate set point test patterns that cover all operating points of interest and

specifying the corresponding performance specifications. A limitation of the proposed

method is that a suitable process model and the use of a simulator may be required, in

order to perform the closed-loop tests necessary to evaluate JM. This is mainly because

of the stochastic nature of GAs which may produce solutions (controllers) that cannot

be directly applied to the real process for safety and other reasons. However, a similar

limitation exists for the relay feedback technique, in which the real process is forced to

exhibit limit-cycle oscillations, something that may not be allowed in certain types of

processes for safety and other reasons.

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 133

5.6 Comparison with Conventional Optimisation Methods

In order to evaluate the performance of GAs in the PI tuning examples presented earlier,
the Sequential Quadratic Programming (SQP) algorithm and a pure random search were
used to minimise JM in PI tuning example 1. The SQP algorithm utilises a quasi-Newton
Hessian approximation using the BFGS updating method. An overview of SQP can be
found in Fletcher (1987), Gill, Murray, and Wright (1981), and Powell (1983). All tests

were performed with and without actuator and measurement noise in the closed-loop

system. The actuator and measurement noise signals were normally distributed random

sequences, having zero mean and variances 6ä =2x 10-5 and o=5x 10-4, respectively.

Furthermore, additional GA tests were performed, in which the crossover and mutation

operators were not applied, to demonstrate their effect in the performance of the GA. In

order to obtain statistically significant results, the GA and random search algorithms

were run 200 times each, and the SQP algorithm 5000 times. The resulting optimisation

success rates for two different convergence criteria are shown in Fig. 5.14 below.

PI controller tuning example I- Optimisation success rates
100%

aý 80%

N
N

60%

Co
C

40%

E
CL
0 20%

0%

GA GA + Noise No Crossover No Mutation SQP SQP + Noise Random

Fig. 5.14 Optimisation success rates for two convergence criteria (PI tuning example 1)

It is clearly observed that the performance of the GA is superior to that of both the SQP

algorithm and the pure random search. In the case where only near-optimal solutions are

required (JM < 0.05), it can be seen that the GA is very robust and immune to noise, with

success rates between 73% and 78%. On the other hand, the SQP algorithm performed

poorly, with less than 2% success in the noise-free case and no successful runs at all

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 134

when noise was added to the system. The pure random search was also not successful,
even in the noise-free case. When strictly optimal solutions are required (JM= 0), it is

observed that the performance of the GA is again significantly better than that of the
other methods, with success rates between 24% and 28%. Again, the SQP algorithm
performed poorly, with less than 1% success in the noise-free case and no successful
runs at all when noise was added to the system. The pure random search was again not
successful. In the case where no crossover is applied, the ability of the GA to locate

strictly optimal solutions was greatly reduced, thus indicating that crossover improves

the exploitation ability of the GA. In the case where no mutation is applied, the GA was
unable to locate even near-optimal solutions, thus demonstrating the very important role
of mutation in introducing new genetic material in the population of the GA.

5.6.1 Computation Time Comparisons

In all three optimisation algorithms, the majority of computation time was taken up by

the evaluation of the objective function, rather than the computations involved in the

algorithms. The evaluation of JM for a single set of controller parameters required 38.9

milliseconds on a standard personal computer with the Intel® Pentium® III processor

running at 450 MHz. The population of N= 80 individuals in the GA was left to evolve

for 100 generations, thus resulting in 8,000 objective function evaluations (5.2 minutes).

Note, however, that both optimality criteria were usually met in fewer generations. The

termination criterion for the SQP and pure random search algorithms was also set to

8,000 function evaluations, although the SQP algorithm uses an additional termination

criterion based on the precision of the obtained solution. In the noise-free case, the

number of function evaluations required in order for the SQP algorithm to successfully

reach near-optimal solutions (J, ß, 1 <_ 0.05) varied between 216 (8.4 seconds) and 1,556

(1 minute), with an average of 722 (28.1 seconds). When strictly optimal solutions are

required (JM= 0), the number of function evaluations required by the SQP algorithm

varied between 216 (8.4 seconds) and 1,487 (57.8 seconds), with an average of 595

(23.1 seconds). Although the computation time required by the SQP algorithm appears

shorter than the GA case, it should be noted that the SQP algorithm only achieved

near-optimal solutions in less than 2% of all test runs. Hence, in order to obtain reliable

results, the SQP algorithm requires a large number of runs from different starting points

in the search space, which makes the overall computation time comparable to that of the

Chapter 5- Decentralised PI Controller Tuning for Multivariable Processes 135

GA. In the case where noise was added to the system, the SQP algorithm was unable to
converge to a minimum. Furthermore, the proposed GA-based PI tuning method has the
ability to locate a family of strictly optimal solutions, as opposed to the single solution
obtained by the SQP algorithm. The pure random search algorithm is not discussed in

this section because it was not successful in obtaining either near-optimal (JM <_ 0.05) or

strictly optimal (JM= 0) solutions.

5.7 Summary

In this chapter, a new method for the automatic tuning of decentralised PI controllers for

multivariable processes, based on GAs, was proposed. The major advantage of the

proposed tuning method is the ability to handle arbitrary performance specifications in

the time-domain, that can be different for each system output and set point test pattern

combination. This is achieved by transforming the PI tuning problem into a function

optimisation problem, using objective function JM developed in Chapter 3. The method

of adaptive fitness sharing developed in Chapter 4 is employed, in order to maximise

the diversity of the obtained family of strictly optimal PI controllers. The numerical

robustness and open architecture of GAs make the method applicable to the automatic

tuning of a wide range of linear or non-linear parametric multivariable controllers, and

not just PI controllers. The effectiveness of the proposed tuning method was supported

by simulation results using three two-input, two-output processes with different degrees

of interaction between the two loops. It was shown that, in all cases, the resulting PI

controllers were strictly optimal, and thus the closed-loop systems completely satisfied

all performance specifications. The method of adaptive fitness sharing was shown to

achieve a high degree of diversity in the obtained family of solutions. The choice of

GAs as a suitable optimisation method was supported by comparing GAs with two

conventional optimisation methods, where it was shown that GAs have significantly

higher success rates and are more immune to noise. A disadvantage of the proposed

method in its current form is that it may only be useful in practice for off-line

parametric controller tuning, mainly because of the stochastic nature of GAs and the

relatively large number of closed-loop tests involved. Hence, a suitable process model

and the use of a simulator may be required.

Chapter 6- Solution to the Shell Standard Control Problem
136

6 Solution to the Shell Standard Control

Controllers
Problem Using Genetically Tuned PID

6.1 Introduction

In this chapter, a solution to the Shell standard control problem is presented, based on
genetic algorithms. The proposed scheme includes two discrete-time PID controllers
with integral anti-windup and a multivariable Smith predictor to provide the required
process output regulation, while the process input minimisation problem is analytically
solved on-line, by estimating the unmeasured disturbances entering the process and
solving the associated linear program. This, as well as the presence of constraints in the
process manipulated variables, results in a complex, non-linear closed-loop system and
hence, the manual tuning of the PID controllers according to some given performance
specifications becomes a difficult task. Genetic algorithms are successfully applied to
the automatic tuning of the PID controllers according to the given specifications, using
an extension of the objective function JM developed in Chapter 3. Simulation results are

presented to demonstrate the effectiveness of the proposed control scheme.

6.2 The Shell Standard Control Problem

The Shell standard control problem was first published by the company in 1986 in the

1St Shell Process Control Workshop (Prett and Morari, 1987), with the intention to

provide a standard and realistic test bed for the evaluation of new control theories and

technologies. It captures most of the relevant control issues while staying as realistic as

possible. The full problem statement and the model of the process under control is given

in Appendix A, and can also be found in Prett and Morari (1987) and Prett, Garcia, and

Morari (1990). The process is a multivariable heavy oil fractionator (5-input, 7-output)

Chapter 6- Solution to the Shell Standard Control Problem 137

which is highly constrained, with very strong interactions and large dead times. The key
elements of the Shell standard control problem are shown in Fig. 6.1 below.

Unmeasured disturbances

d1 d2

U1

Constraints

u1
Do- YJ

Shell Heavy Oil Y2
Fractionator Y4

YD
Process, G(s) Y5

Ys 1
0, Y7

Constraint on y7
Regulation of y, and y2

Cl)
CU

0C3 U2
cu ,

U3

Fig. 6.1 Key elements of the Shell standard control problem

The problem is stated such that an infinite number of scenarios can occur in controlling

the unit. The process input/output relations are linearly modelled using a matrix of
first-order dead time transfer functions. Inputs ul, u2, and u3 can be used as manipulated

variables to control the process, but are subject to saturation (±0.5) and rate limit (±0.05

per minute) actuator hard constraints, thus making the process non-linear. Inputs dl and

d2 are unmeasured but bounded disturbances entering the process, with I dl I <_ 0.5 and

I d2 1<_ 0.5. Furthermore, the process is subject to uncertainties in the gains of the model

transfer functions.

The main objective is to maintain process outputs yl and y2 at specification (0.0 ±0.005

in the steady state), while at the same time input u3 has to be minimised and output y7

has to be kept to values of at least -0.5 at all times. Furthermore, output yl must be

maintained within the maximum and minimum values of 0.5 and -0.5 at all times, and

the unmeasured disturbances dl and d2 have to be rejected even when the sensors of yl

and y2 fail. The closed-loop speed of response must be kept between 0.8 and 1.25 of the

open-loop process bandwidth and the fastest permissible sampling time is 1 minute.

Chapter 6- Solution to the Shell Standard Control Problem 138

It is apparent that the Shell standard control problem is an extremely difficult problem
which includes many possibly conflicting process requirements that are very difficult to
satisfy. A number of partial solutions to the problem have been proposed in the 2nd Shell
Process Control Workshop (Prett, Garcia, and Morari, 1990) and it has been conjectured
that a complete solution to the problem does not exist (Prett, Garcia, and Morari, 1990).
In this work, the solution is also partial, but has the advantage that it achieves very good
results using a control strategy that is relatively simple and much easier to implement

than most of the solutions available in the literature. Furthermore, it will be shown that
the proposed approach is not limited to the Shell standard control problem and can be

used in a wide range of real-world multivariable control problems.

6.3 Design Methodology

The majority of proposed solutions to the Shell standard control problem available in

the literature utilise the state-of-the-art Quadratic Dynamic Matrix Control (QDMC)

algorithm (Garcia and Morshedi, 1986) developed by Shell. The main advantage of

QDMC is that the objectives and constraints associated with the control problem are

directly embedded in the process control algorithm, thus requiring only minimal ad hoc

controller adjustments (Garcia, Prett, and Morari, 1989). However, a disadvantage of

QDMC is that it is extremely computationally intensive, and this is one of the reasons

why it has not enjoyed widespread use in the small- and medium-size industries. In this

work, PID controllers are employed as the main elements of the proposed solution. PID

controllers are still widely used in industry, they are relatively easy to implement, and

the majority of control personnel are familiar with their operation.

6.3.1 The Output Regulation Problem

Two discrete-time PID controllers with integral anti-windup loops and derivative term

filtering were employed, to provide the integral actions necessary in order to achieve the

regulation requirement for outputs yl and y2. Of the three manipulated variables, ul and

u2 were chosen for closing the two PID loops, since u3 has the additional minimisation

requirement and hence cannot be used in the loops. Furthermore, the choice of ul and u2

to control yl and y2 arises naturally from process operation considerations. This results

in the following 2x2 transfer function matrix (see Appendix A).

Chapter 6- Solution to the Shell Standard Control Problem 139

4.05e-27s 1.77e-28

_
Gl l (s) G12 (s) 50s+1 60s+1 GR(S) ":

[

[G21(s) G22(S)
5.39e-'8s 5.72e-14s

(6.1)

50s+1 60s+1

By examining the elements of GR (s) it is observed that the best pairing of manipulated
and controlled variables is to control yl with ul and y2 with u2, since the gains in the

main diagonal of GR(s) are sufficiently large and thus the interaction between the loops

will be minimal. Note, however, that the gain of G21(s) is larger than that of Gii(s) and
hence, there will be strong interaction from loop 1 to loop 2. The above input/output

pairing is also indicated by the steady-state relative gain array of GR(s), which consists

of positive elements in its main diagonal and negative elements elsewhere.

Fig. 6.2 PID controller in loop i with integral anti-windup (continuous-time)

The PID controller structure used in this work is exactly the one proposed by Aström

and Hagglund (1995), and is shown in Fig. 6.2. The PID controllers are discrete-time,

arranged in a decentralised (diagonal) structure. When there is no actuator saturation,

the output ul (z) of controller i is given by

Proportional

ul (z) = KP; el (z) +

Integral Derivative

TKp, (z+1)11
týý -L

-KPDTD. NI(z-1)
V. (7)

2T7 (z -1) TD. (z-1)+NTz
(6.2)

Chapter 6- Solution to the Shell Standard Control Problem 140

where el (z) = r; (z) - y; (z) is the error signal for loop i, r; (z) is the set point signal for

loop i, and i =1,2. The discrete-time transfer functions for the integral and derivative

terms shown in Eq. (6.2) were obtained using Tustin's approximation and the backward

difference approximation, respectively. With reference to Fig. 6.2 and Eq. (6.2), Kp, TI,,

and TD; denote the parameters of the i-th PID controller, and T denotes the discretization

sample time. Parameter Ni is used to limit the high-frequency gain of the derivative

term, thus improving the high-frequency noise immunity of the controller. This is

achieved by filtering the derivative signal using a first-order low-pass filter with time

constant TD. /1V. Typical values of NI range from 8 to 20 (Aström and Hägglund, 1995).

In this work, the setting N1=N2 =8 was used, resulting in a filter with the lowest cut-off

frequency in this range. Parameter TT in Fig. 6.2 is known as the tracking time constant

and controls the effect of the integral anti-windup mechanism. Parameter TT should be

larger than TD, and smaller than TI.. A rule of thumb is to choose TT = JTD (Aström

and Hägglund, 1995). This, however, has the serious disadvantage that it can result in

arbitrarily large signals in the anti-windup feedback loop when TD, tends to zero, which

can destabilise the loop. Specifically, in digital implementations of the PID controller,

such as the one shown in Eq. (6.2), the anti-windup loop in Fig. 6.2 becomes unstable

when TT <_ T12. To see this, consider the anti-windup loop shown in Fig. 6.3 below.

Fig. 6.3 Digital implementation of the anti-windup loop

The discrete-time integrator in Fig. 6.3 is obtained using Tustin's approximation. The

unit delay in the feedback path is necessary, in order to eliminate the algebraic loop that

Chapter 6- Solution to the Shell Standard Control Problem 141

would otherwise be formed, since the current output of the integrator is a function of the
current input. When the actuator saturates, the main PID loop is broken, and the external
signals entering the anti-windup loop are not affected by the signals generated inside the
loop. Therefore, the stability of the anti-windup loop solely depends on its loop transfer
function, whose characteristic equation is shown below.

2TTZ2+(T-2TT)z+T=0 (6.3)

In order for the above polynomial equation to have all its roots inside the unit circle, the
following three conditions must be satisfied (Jury, 1973).

T>O
TT >o

2TT>ITI

(6.4)

Clearly, all three conditions are satisfied for positive T, only when TT > T/2. It is easy to

see that this result is also true for the forward and backward difference approximations,

and shows that the setting TT = VTITD, recommended by Aström and Hägglund (1995)
J

must be used with caution when TD, is small. The above result has also been confirmed

by personal communication with Hägglund (1999).

In order to avoid this instability problem, the setting TT = max {T; TD; ,TI was used in

this work, which ensures that TT
->

T even when the derivative term is switched off. This

lower bound on TT ensures that the anti-windup loop is always stable and well-damped,

irrespective of the values of KP,, TI,, and TD;.

6.3.2 The Input Minimisation Problem

The minimisation of process input u3 is a challenging problem since the optimal value

of u3 does not remain fixed, but changes as the unmeasured disturbances dl and d2

change. Hence, the problem cannot be solved by conventional control designs such as a

PID controller. The optimal value of u3 is defined as the lowest possible value of u3

such that the closed-loop system satisfies all control objectives without violating any of

Chapter 6- Solution to the Shell Standard Control Problem 142

the control constraints. This requirement should be satisfied during the entire process
operating time. Formally, this results in the following optimisation problem.

min u3(t), Vt, i=1,2,3
u; (t)

Subject to: l u; (t)I S 0.5, Vt, i=1,2,3
du, (t)

ý 0.05, Vt, i=1,2,3
dt

yl (t) I <_ 0.005, t >_ ts, i =1,2

vl(t) I <- 0.5, dr
Y7 (t) > -0.5, dt

(6.5)

where is is the time required for the closed-loop system to reach the steady state, and

must be chosen such that the closed-loop system speed of response is between 0.8 and
1.25 of the open-loop process bandwidth. This problem is difficult to solve analytically

since all signals involved in (6.5) are not constant, but vary with time. The requirements
for uj can be satisfied a priori by simply constraining the controller outputs to the level

and rate limits of ±0.5 and ±0.05 per minute, respectively. This is permissible because

of the anti-windup mechanism employed in the PID controllers, which ensures that no

integral wind-up will occur. Assuming that output constraint violations are allowed in

the transient period, the optimisation problem defined in (6.5) can be solved analytically

for the steady-state optimal value of u3 as follows.

Let Klo denote the steady-state gain of the i, j element of the process transfer function

matrix G(s). Then, in the steady state, the following equation holds.

Yi Kli K12

Y2 = K21 K22

Y7 K71 K72

K13 K14

K23 K24
K73 K74

Ul

K15 U2
K25 U3

K75 di

d2

(6.6)

In the steady state, outputs yl and y2 are guaranteed to be zero because of the integral

action of the two PID controllers. Furthermore, it is easy to see that, in the steady state,

minimisation of u3 means that at least one of ul, u2, u3, y7 will be exactly at its

Chapter 6- Solution to the Shell Standard Control Problem 143

constraint boundary. If the disturbances dl and d2 are known, Eq. (6.6) is simply a
system of three simultaneous linear equations with four unknowns (ul, u2, u3, y7). It is,

therefore, sufficient to set each one of ul, u2, u3, y7 to its constraint boundaries (one at a
time) and use Eq. (6.6) to solve for the remaining three. Specifically, ul E {+0.5, -0.515

U2 E {+0.5, -0.5}, u3 E {+0.5, -0.51, and y7 EJ-0.51. Hence, Eq. (6.6) has to be solved

seven times and this will result in seven different values for u3. The optimal value of u3
is the minimum of these values for which none of the four variables, Ui, u2, U3, ̂

violates the constraints. This is a standard linear programming (LP) problem and it can
be shown that it always has a feasible solution when I dl l <_ 0.5 and j d2 1<_ 0.5 (see

Section 6.3.3). It should be pointed out at this point that if the gain matrix in Eq. (6.6) is

not constant, as in the case of uncertainties in the gains of the model, the resulting value

for u3 may not be optimal. In this case, one could specify more conservative constraint

boundaries, so that the effects of uncertainties are accounted for (see Section 6.5.2).

In the solution of the minimisation problem (6.5) described above, it was assumed that

output constraint violations are allowed in the transient period. It will be shown in

Section 6.4.2 that the transient requirements for process outputs yl and y2 can be used as

closed-loop performance specifications for the tuning of the two PID controllers, by

means of an extension of objective function JM.

6.3.3 LP Solution Feasibility Analysis

It was shown in the previous section that, in the steady state, optimisation problem (6.5)

is equivalent to the following linear program.

minu3, i=1,2,3
Ui

Subject to: 1 u11 _<
0.5, i=1,2,3 (6.7)

1YI1 = 0, i=1,2

Y7 >_ -0.5

It is known from linear programming theory (Wood and Dantzig, 1949; Dantzig, 1949)

that if a feasible solution of a linear program exists, it must lie precisely at the edges of

the convex polyhedron defined by the inequalities associated with the linear program.

Chapter 6- Solution to the Shell Standard Control Problem 144

0.5

U

0

0

_n ý

Input ul = +0.5

-0.5 0

Input u2 = +0.5
0.5 ff

a

0 ýf

-0.5

0.5

Qi U
C
ß Co

0

AG

0

Input u3 = +0.5

0.5
Input u, = -0.5

0

JAC
-U. J

0.5 -0.5

0.5-

0

-0.5 0.5 -0.5

0.5

\\ \\ \\ \\ \\\\\\\\ ý\ \\\\\\\\\\\\\
\\\

\\\\\\\\\'\\\\\\\\
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

\\\\\\\\\"\\\\\\\\

\\\\\\ �¼. ' \; \\\\\\\\

\\\\\\\\\'\\\\\\\
\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\
\\\\\\\\\. \\\\\\\

\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

-V. J

-0.5

0.5

N

ai U
C
co 0

U)

-0.5
-0.5

0

Output y7= -0.5

0 0.5

Disturbance, di

Constraint violation legend

u1 > +0.5 ® u3 > +0.5

u, <-0.5 u3 < -0.5

y7 <-0.5

No violations (feasible region)

Fig. 6.4 Feasibility regions of linear programming problem (6.7)

0

n"

0 0.5

Input u2 = -0.5

0

Input u3 = -0.5

0.5

0.5 -0.5

0 0.5

Disturbance, d,

Chapter 6- Solution to the Shell Standard Control Problem 145

In the case of the LP problem shown in (6.7), there are seven linear inequalities, and the

solution feasibility regions in each case are shown graphically in Fig. 6.4. Clearly, (6.7)

always has a feasible solution when I dl < 0.5 and I d2 I <_ 0.5, because for any given pair

of dl and d2 there is at least one case which results in a feasible value for u3 (i. e. with no

constraint violations on ul, u2, u3, y7). The optimal value of u3 is the minimum of these

feasible values. It is also clearly observed that when u2 = +0.5, U2=-0.5, and u3 = -0.5,

no feasible solutions exist for any combination of dl and d2. Hence, it is only necessary

to solve the remaining four systems of linear equations which correspond to cases where

feasible solutions exist. The fact that no feasible solutions exist when u3 = -0.5 means

that the problem of minimising u3 cannot be solved by simply setting u3 at its lowest

possible value because this will result in steady-state constraint violations on y7, or both

ul and y7 (see Fig. 6.4). It is, therefore, concluded that u3 cannot be kept at a constant

value, but must be adjusted on-line. The solution of LP problem (6.7) as a function of dl

and d2 is shown in Fig. 6.5 below.

-0.1

-0.2

Q
c -0.3

-0.4
-0.5

Fig. 6.5 Optimal steady-state value of u3 as a function of d1 and d2

-0.5

The minimum achievable steady-state value of u3 is u3 = -0.3419, and is achieved when

dl=+0.5 and d2 = -0.3152. The worst-case scenario is when d1= d2 = -0.5, where the

l "2 0.5 0.5

Chapter 6- Solution to the Shell Standard Control Problem 146

minimum achievable steady-state value of u3 is U3=-0.1040. The optimal steady-state

values of u3 for various combinations of dl and d2 are shown in Table 6.1 below.

TABLE 6.1 Optimal steady-state values of u3 for various disturbance vectors d= Id, d, 1T
d, d2 Optimal value of u3 Constraint boundary condition

+0.5 +0.5 -0.2178 Output y7at boundary (y7= -0.5)
-0.5 -0.5 -0.1040 Input u, at upper boundary (u, =+0.5)
+0.5 -0.5 -0.2988 Input u, at upper boundary (u, = +0.5)

-0.5 +0.5 -0.2834 Output y7 at boundary (y7= -0.5)
0 0 -0.3181 Input u, at upper boundary (u, =+0.5)

+0.5 -0.3152 -0.3419 Output y7 at boundary (y7= -0.5)

6.3.4 Unmeasured Disturbance Estimation

In order to be able to solve the LP problem in (6.7), the unmeasured disturbances dl and

d2 have to be known. The uncertainties in the steady-state gains of the process model

make the estimation of dl and d2 a difficult task. Assuming that the model uncertainty is

small, dl and d2 can be estimated by using the available knowledge of the relations

between the disturbances and the process outputs.

Consider any two process outputs ya and yb, with a< b. These outputs are affected by the

manipulated variables (known) as well as the disturbances (unknown).

Ya(s)
[ul(s)1 dl(s)

Yb (s)
Gm(s) u2(s) +GD(s) d2(s)

u3 (S)

where

(
Gal(s) Ga2 (S) Ga3(S)

GM `s) [Gbl(S)
Gb2 (s) Gb3 (S)

=
Ga4 (s) Ga5 (s)

GD(s) [Gb4(s) Gb5(S)

(6.8)

(6.9)

Transfer function matrices GM(s) and GD(s) are subsystems of process model G(s)

given in Appendix A, and they map manipulated variables ul, u2, u3 and disturbances d1

Chapter 6- Solution to the Shell Standard Control Problem 147

and d2, respectively, to process outputs ya and Yb. Therefore, the contribution of ul, u2,
and u3 (but not dl and d2) to ya and Yb can be expressed as

yQ (S) ui (S)

vb (S) GM (s) u2 (S) (6.10) [u3(S)j

An estimate of the disturbance vector can be computed by subtracting Eq. (6.10) from
Eq. (6.8) and solving for [dl d2]T, as shown below.

[di(s)1]=GDI(S)

. va (s) Y,, (S)
6.11 d2 (s)

[Yb

(S) -. vb (s)
()

The direct inversion of GD(s) results in an unrealisable system, and this is true for all
possible choices of a and b. This situation can be resolved by considering GD(z), the

z-Transform of GD(s). Transfer function matrix GD(z) must admit the following

representation.

GD(z) _
Ga4 (Z) Ga5 (Z)

Z-k
Gb4 (Z) Gb5 (z)

(6.12)

where G, (z) denotes the part of Gtj (z) that remains when all delay states (including the

one associated with the zero-order hold) have been removed. The inverse of GD(z) can

now be expressed as

1=
Ga4 (Z) Ga5 (Z)

Zk GD (Z) [G4(z)
bGb5

(Z)
(6.13)

Multiplying the above equation by z-k (i. e. removing the common factor zk) results in a

realisable system which can be used to estimate disturbance vector d= [di d2] T at each

sampling instant. Note that representation (6.12) is only possible if all elements of

GD (z) have the same number of delay states. It can be seen by examining the delays of

the Shell process model that this is true when a, bE 13,..., 7 1. This permits (2')
=10

different combinations for a and b. The number of common delay states of GD(z) in all

combinations is k=1, which means that there will be a delay of one sample in the

disturbance estimates. Pairs (a=3, b=7) and (a=4, b=6) are rejected because they

Chapter 6- Solution to the Shell Standard Control Problem 148

result in GD (s) being non-minimum phase and therefore inverse unstable. Among the
remaining eight combinations of a and b, pair (a=3, b =5) was chosen because the
estimator obtained exhibits the lowest sensitivity to measurement noise. If noise exists
in the measurements of ya and yb, Eq. (6.11) can be written as

di(S)
GDl(S) va(S)+ea(s)-Ya(S)

d2 (S) vb(S)+eb(S)-Yb(s)

(6.14)

= GDl (s) e (s) +Gj (s)
va (s) - Ya (s) [yb

(s) - Yb (S)

where e= [ea eb]T is the measurement noise vector. It is observed from Eq. (6.14) that

the contribution of the noise to the disturbance estimates is GD'(s)e(s). Therefore, the

sensitivity to measurement noise can be minimised by selecting a and b such that the

resulting GD1(s) exhibits the lowest 'gain'. Although a transfer function matrix does not

have a unique gain, the largest singular value of GDl(s), denoted ß= IIGD1II, can be used

as it provides an upper bound on the amplification of Ile II by GDl . The largest singular

values of GD' (s)
, with s= jcw, for all eight combinations of a and b are shown in Fig. 6.6.

It can be seen that the chosen pair (indicated by the solid thick line) exhibits the lowest

amplification of noise almost over the entire frequency range of interest. Furthermore,

since a, bo{1,2}, the measurements of yl and y2 are not required for the operation of

the estimator. Hence, the disturbance estimates will not be affected in case of failure in

one or both of the sensors of y, and y2. The estimator in its final form is given below.

dz
_k _1 Ya(z) ul(Z)

La2i =z GF (z) G(z) -
GM (Z) u2 (z) (6.15)

(z)
Lybzi)

u3(Z)

where a=3, b=5, and GF(z) is a diagonal matrix of two discrete-time low-pass filters,

which can be used to reject noise. In this work, GF (z) =I was used (i. e. no filtering).

The obtained estimates of dl and d2 at each sampling instant are then used to compute

the optimal steady-state value of u3 on-line, as described in Section 6.3.2. An additional

low-pass filter may be employed to condition u3 before it is applied to the process. In

this work, a first-order filter was used with a time constant of 50 minutes.

Chapter 6- Solution to the Shell Standard Control Problem 149

m 0

50

40 4 f
----- ------- r

ýi

---- - -------

------ - ------- - ---

Ip

30
aý
Co

m
20

N
U) 0
rn
m J 10

10-4 10-3 10-2 10-1
Frequency, co (rad min-1)

0
100

Fig. 6.6 Largest singular value ftequency responses of GD'(s) for the eight permissible
combinations of a and b (solid thick line indicates the chosen pair a=3, b=5)

Note that care should be taken when using disturbance estimators such as the one given
in Eq. (6.15) as part of an on-line control algorithm, because they can be very sensitive

to modelling errors and can thus produce unreliable disturbance estimates when large

uncertainties in the model parameters are present. Other, more accurate disturbance

estimation methods (such as a Kalman filter, for example) may be required, depending

on the complexity of the controlled process and the accuracy of the available model.

6.3.5 Multivariable Smith Predictor Control

The large dead times associated with GR(S) limit the achievable performance of the PID

controllers discussed in Section 6.3.1. To compensate for this, a multivariable Smith

predictor proposed by Maciejowski (1994) was used in this work. This is an extension

of the SISO approach proposed by Smith (1957). The multivariable Smith predictor

structure in the form of Internal Model Control (IMC) is shown in Fig. 6.7.

Chapter 6- Solution to the Shell Standard Control Problem

r(z) ++Y (s) Controller, D(z)
u (z)

Process, G(s)

T

Predictor, G* (z) Model, Gs(z)

Fig. 6.7 Multivariable Smith predictor in the form of IMC (Maciejowski, 1994)

+

150

The Smith predictor consists of a discrete-time process model Gs(z), and a delay-free

model GS (z) obtained by removing all delay states from all of the elements of Gs(z). It

is observed that in the Smith predictor structure shown in Fig. 6.7, the controller D(z) is

controlling the delay-free model and not the actual process. Hence, the effect of the

controller output vector u to the process output vector y is not delayed by the inherent

process delays, but is immediately available to the controller. In this way, processes

with large dead times such as GR(s) can be controlled by conventional controllers such

as PID controllers without significant loss in achievable performance. An auxiliary loop

(outer loop) compensates for modelling errors by appropriately modifying the set point

vector r. The two process models associated with the Smith predictor can easily be

obtained by discretizing the transfer function matrix G(s) of the Shell process. Since

there are three manipulated variables, ul, u2, and u3, and two controlled variables, yl and

y2, the process model GS(z) and the predictor GS (z) are represented by the 2x3 transfer

function matrices shown below.

Gs(z) =
Gii(Z) G12(z) G13(Z) [G2i(z)

G22 (Z) G23 (Z)

GS (Z) =
Gil (Z) Gil (z) Gi3 (z)

[;
(z) G22 (Z) G23 (Z)

(6.16)

where GO'(z) denotes the part of G13 (z) that remains when all its delay states have been

removed. Note that in this case there is no requirement for the number of delay states in

the elements of GS(z).

Chapter 6- Solution to the Shell Standard Control Problem 151

6.3.6 The Closed-Loop System

A block diagram of the closed-loop system configuration is shown in Fig. 6.8. The thick
lines denote vector signal paths, and it is assumed that samplers and data hold devices
exist in the interconnections between continuous-time and discrete-time blocks. The set
point vector was set to r= [0 Of T since there are no set point tracking requirements.

d1 d2

Fig. 6.8 The closed-loop system configuration

The sample time for all discrete-time blocks was chosen to be T= 5 minutes, which is

five times the minimum permissible. The sample time imposes an upper bound on the

achievable closed-loop bandwidth, which cannot exceed ic/T radians per time unit, or

0.6283 rad min-' in this case. Fig. 6.9 shows the singular value frequency responses of

GR(s), where it is observed that the closed-loop bandwidth upper bound imposed by T is

well above the open-loop process bandwidth which is about 0.0192 rad min-'.

Process manipulated variables ui, u2 and u3 were constrained in accordance with the

problem specifications. Specifically, I u, 1 <_ 0.5 and I Au; 1<_ 0.05 T, where Du; denotes the

change in u; between two successive sampling instants, and i =1,2,3. These constraints

were regarded as equipment limitations, such that if the PID controllers demand values

outside the given ranges, the limiting values are applied. The modified z-Transform was

employed to obtain GM(z), GD'(z), Gs(z), and GS* (z), from the nominal process model

G(s). The minimal state-space realisations of these systems are given in Appendix B.

Chapter 6- Solution to the Shell Standard Control Problem 152

20

10

03
'a
1-1

cr_

bi

cc -10 a
110
U)

-20
tß

N

-30 c

-40

-50'-
10-4

Frequency, w (rad min-1)

Fig. 6.9 Singular values (frequency response) of GR (s)

The saturation and rate limit non-linearities associated with the process, as well as the

linear program solver used for the minimisation of u3 result in a complex closed-loop

system, and hence the tuning of the two PID controllers becomes a difficult task. In this

work, the PID tuning problem is transformed into a function optimisation problem using

an extension of the objective function JM developed in Chapter 3, and then GAs are

employed to search for suitable PID controllers to meet the design specifications for

outputs yl and y2. This is discussed in Section 6.4.

6.4 PID Controller Tuning

This section focuses on the tuning of the two PID controllers according to the design

specifications. Objective function J, ß, 1 is used as the basis for the controller performance

index assignment strategy. In contrast to the tuning problems discussed in Chapter 5, in

the case of the Shell standard control problem there are no set point tracking or loop

coupling specifications. The output regulation objective is to reject disturbances d1 and

10-3 10-2 10-1 100 101

Chapter 6- Solution to the Shell Standard Control Problem 153

d2 and maintain outputs yi and y2 at specification (0.0 ±0.005 in the steady state). There

is also a transient requirement for yl which must be maintained within the maximum

and minimum values of 0.5 and -0.5 at all ' t. Since the main requirement is to reject dl

and d2, the PID controller performance can be evaluated by subjecting the closed-loop

system to a set of disturbance test patterns, and objective function JM can still be used to

compare the resulting responses for yl and y2 with the problem specifications. This is

discussed in detail in Section 6.4.1.

6.4.1 Objective Function Formulation

The performance of PID controller i under disturbance test pattern j can be quantified

using the following function, where DE -S and f (u)(t) and jj, ' (t) are the upper and

lower boundary functions representing the corresponding specifications.

Olt (D) : _0

tmcrac

(max{J°(t)
- y. (t), 01+ maxly, (t) -f

(u) (t), 0 }) dt (6.17)

This function is the same as J,, in Eq. (3.16), and quantifies the controller performance,

based solely on the shape of the process output signals. However, there may be cases

where it is desirable or necessary to suppress the activity of the manipulated variables.

A measure of the activity of manipulated variable i under disturbance test patternj can

be obtained by evaluating the following function.

kmý L\ul (kT) 2

II(D). _ý b k=1 1

(6.18)

where Dul (kT) = ul (kT) - ul [(k -1)T], T denotes the sample time, and k,,, =t,,, IT. The

manipulated variable moves Aul are normalised by dividing them with their absolute

rate limits of 81 units per sample. Similarly to the formulation of JM, the terms Oy and Ili

can be weighted and lumped together to form an objective function that can be used to

quantify the performance of candidate controller D with respect to all combinations of i

and j. Formally, the objective function is defined as

JO(D): =max
Z[ajjOjj(D)+kjjIjj(D)] ER+ (6.19)

1

Chapter 6- Solution to the Shell Standard Control Problem 154

where aij >_ 0 and ? >_ 0 are the output and input weighting coefficients, respectively,
for loop i under disturbance test patternj. It is observed that the numerical evaluation of
Jo for one candidate controller requires the closed-loop system to be simulated as many
times as there are disturbance patterns. In simulation run j, disturbance test patternj is

applied to the closed-loop system, and output and input terms Olt and Ili, respectively,
are evaluated for all loops. The results are then weighted and added together to form a
single number that indicates the quality of the candidate controller under disturbance

pattern j. After all disturbance patterns have been applied to the closed-loop system, the

maximum of all resulting numbers is chosen as the value of Jo(D).

The addition of input term III in the objective function results in Th = 0. This is because

the definition of Ili implies that III >0 for all non-trivial controllers. Therefore, provided

ky > 0, objective function Jo will be non-zero for all non-trivial controllers. This means

that no strictly optimal solutions can exist in 2). A direct consequence of this, is that a

unique optimal solution should normally be expected when minimising Jo. Although the

addition of III in the objective function removes the useful properties associated with

strictly optimal solutions, the improved robustness achieved by the inclusion of III was

judged as necessary, considering the difficulty of the Shell standard control problem.

This approach is also very common in other optimisation-based control schemes, such

as most predictive control algorithms (Garcia and Morshedi, 1986; Clarke, Mohtadi, and

Tuffs, 1987a, 1987b; Garcia, Prett, and Morari, 1989; Clarke and Mohtadi, 1989).

6.4.2 Application to the Shell Standard Control Problem

In the case of the Shell standard control problem, the set of all permissible controller

parameter vectors is 2 =I T. TD1 Kp2 TI, TDZ]ER 61
. Two disturbance test patterns

were used for the closed-loop tests. Specifically, d1= [0.5 0.5]T and d2 = [-0.5 -0.5]T

which represent the worst-case scenarios, since dl and d2 are at the extremes of ±0.5 and

have the same sign. With reference to Eq. (6.19), i =1,2 (for the two PID loops), and

j =1,2 (for the two disturbance patterns).

In the steady state, yl and y2 must be maintained at 0.0 ±0.005. In addition to that, yl

must be maintained between 0.5 and -0.5 at all t, while there is no transient requirement

Chapter 6- Solution to the Shell Standard Control Problem 155

for y2. These specifications were expressed as time-domain bounds by means of j1 (t)

and fj' (t) which are shown in Fig. 6.10. They were kept constant for all disturbance test

patterns. The maximum simulation time was set to be tmx = 400 minutes. The required

settling time, as defined in (6.5), was set to be tS = 200 minutes, which is well within the

closed-loop bandwidth requirement. The weighting and scaling coefficients were set to
be ct =2 =1 and 8; = 0.05 T=0.25, respectively, for all i, j. In order to evaluate Jo, the

closed-loop system shown in Fig. 6.8 was simulated in MATLAB /SIMULINK using the
Runge-Kutta fifth-order numerical integration algorithm, with a constant step size of 1

minute. The integral in Eq. (6.17) was evaluated using the Euler method.

Yi

0.500

0.200
0.005
0.000

-0.005
-0.200

-0.500

Y2

0.200
0.005
0.000

-0.005
-0.200

Fig. 6.10 Performance specifications for outputs yj and Y2

., ýt
,ý

ýt

The transient specifications for output y7 were not included in the objective function J0,

because the two PID controllers do not directly affect the value of y7, and no feedback

information about y7 is used in the computation of controller outputs ul and u2. The LP

Chapter 6- Solution to the Shell Standard Control Problem 156

approach used to compute u3 guarantees that the constraint y7 >- -0.5 will not be violated
in the steady state. However, constraint violations may occur in the transient period. To
minimise these constraint violations on y7, the optimal value of u3 at each sampling
instant must be computed, which implies solving the full minimisation problem in (6.5).
This is a difficult task and was not attempted in this work. Cuthrell, Rivera, Schmidt,

and Vegeais (1990) attempted to numerically solve (6.5) using QDMC and a non-linear
programming-based controller, where it was observed that constraint violations on yi, y2
and y7 still occurred in the transient period. This is a strong indication that a feasible

solution to problem (6.5) may not exist at all t, and constraint violations in the transient

period may thus be inevitable. An interesting discussion on the feasibility of (6.5) can
be found in Prett, Garcia, and Morari (1990).

6.4.3 Genetic Algorithm Configuration

Objective function Jo was minimised using a simple GA, with a generation gap g=0.9

and fitness-based reinsertion to implement an elitist strategy. Linear population ranking
(described in Section 4.42) was used as the fitness assignment strategy, with a selective

pressure ap=2. Adaptive fitness sharing was not applied in this problem, since there

exist no strictly optimal solutions in the search landscape (by the definition of Jo) and

the optimal solution is likely to be unique. Stochastic universal sampling (Baker, 1987)

and single-point crossover were employed in the reproduction and crossover operators,

respectively. The size of the population was chosen to be N= 80, in accordance with

experimental studies of Grefenstette (1986). The initial, randomly selected population

was left to evolve for 200 generations, although good convergence was achieved in less

than 120 generations. Each of the six parameters in DE2 was encoded using the binary

alphabet and Gray coding (Caruana and Schaffer, 1988). The string resolution for each

parameter was set to 12 bits, resulting in a total string length of 1= 6x 12 = 72 bits. This

results in a search space whose size is approximately 4.7 x 1021 points. The chromosome

structure used is similar to the one shown in Fig. 5.4. The crossover and mutation

probabilities were chosen to be p, = 0.45 and p, n = 0.01, respectively, using the guidelines

of Grefenstette (1986). The PID controller proportional terms Kp, were assumed to take

values in the interval [0,10], the integral terms TI, in the interval [0.1,100] minutes, and

the derivative terms TD, in the interval [0,20] minutes.

Chapter 6- Solution to the Shell Standard Control Problem 157

6.5 Simulation Results

In order to test the performance of the control scheme, the closed-loop system was
subjected to disturbance patterns d1= [0.5 0.5]T, d2 = [-0.5 -0.5]", d3 = [0.5 -0.5]T, and
d4 = [-0.5 0.5]T, covering disturbances with the same sign and with opposite signs. Note
that patterns d3 and d4 were not used in the PID tuning closed-loop tests. Figures 6.11 to
6.14 show the closed-loop responses obtained using the best PID controller parameters
at generation 200. The regulation performance specifications for yl and y2 (shown in
Fig. 6.10), as well as the saturation constraint boundaries for ul, u2, and u3 are also
plotted for comparison.

It can be seen that, under all four disturbance test patterns, the closed-loop system has

completely met the steady-state specifications. It is observed that outputs yl and y2 are
rapidly stabilised to zero while input u3 is minimised. Furthermore, all manipulated

variables are within the saturation and rate limit constraints. It is also observed that

when d= dl (Fig. 6.11), y7 settles precisely at its constraint boundary of -0.5. This

means that the steady-state value of u3 is indeed the lowest possible value such that all

objectives are satisfied and no constraints are violated in the steady state. If u3 is set to a
lower value, y7 will drop below -0.5 causing a constraint violation. This situation also

occurs when d= d4 (Fig. 6.14). Similarly, when d= d2 (Fig. 6.12), it is ul which now

settles precisely at its upper constraint boundary of 0.5, indicating that the steady-state

value of u3 is again optimal. If u3 is set to a lower value, ul will have to be increased to a

value greater than 0.5 to satisfy all other requirements. But ul is already constrained

such that I ul 1< 0.5. This will cause the actuator of ul to saturate, resulting in a negative

offset in yl, thus dissatisfying the regulation requirement for y'. This situation also

occurs when d= d3 (Fig. 6.13).

In terms of transient specifications, it is observed that small constraint violations occur

for yl in the time range between 45 and 70 minutes (Figures 6.11 and 6.12). Transient

constraint violations also occur for y7 in the first 220 minutes. Setting Xy =0 for all i, j

and repeating the PID tuning did not solve the problem. Note, however, that similar

violations also occur when using the QDMC algorithm, as well as several other modem

approaches (see Prett, Garcia, and Morari, 1990). It is, therefore, conjectured that the

transient response output constraint violations arise necessarily from the structure of the

controlled process, and thus cannot be avoided.

Chapter 6- Solution to the Shell Standard Control Problem 158

1

0.5

N0

a-

-0.5

-1

2

....
1

....

0

0.4

0.2

0

Cl)
Q -0.2
C

-0.4

_na

50 100 150 200 250

Time, t (minutes)

1

23

-v. v

0 50 100 150 200 250 300 350 400
Time, t (minutes)

Fig. 6.11 Closed-loop system responses under disturbance pattern d1= [0.5 0.5J T

0.5

~" 0

N
Q

-0.5

0

_1

0.6

0.4

Cl) 0.2
CL c 0

7,. ý_

1

0 50 100 150 200 250 300 350 400

Time, t (minutes)

i_ ý-

2

-v. r- 0 50 100 150 200 250 300 350
Time, t (minutes)

Fig. 6.12 Closed-loop system responses under disturbance pattern d2 = [-0.5 -0.51
ý

3

400

Chapter 6- Solution to the Shell Standard Control Problem 159

0.2

0

-0.2 vý

Q -0.4
O

-0.6

-0.8

;
-- - ` - - ---------

0

0.6

50 100 150 200 250

Time, t (minutes)
T

.................................

1 0.4

0.2
Cl)

a0
c

-0.2

-n A

2

3

0 50 100 150 200 250 300 350 400
Time, t (minutes)

Fig. 6.13 Closed-loop system responses under disturbance pattern d3 = [0.5 -0.5J T

0.2

0

-0.2 Cl)

Q -0.4
O

-0.6

nQ

7

-v. v0 50 100 150 200 250 300 350
Time, t (minutes)

0.6

0.4

0.2
Cl)

0 Q

-0.2

nA

400

1

2

3

v. T0 50 100 150 200 250
Time, t (minutes)

300 350 400

Fig. 6.14 Closed-loop system responses under disturbance pattern d4 = [-0.5 0.5] T

Chapter 6- Solution to the Shell Standard Control Problem 160

The parameters of the optimal controller, Dopt, obtained by the GA, as well as the value
of Jo (Dope), are shown in Table 6.2 below.

TABLE 6.2 Optimal PID controller aarameters with n:: -1 any 1 .. -1 f�r nil ;;
Parameter PID Controller 1 PID Controller 2

Proportional gain, Kp, 1.5043 0.5690
Integral action time, T; (minutes) 7.1259 39.8404
Derivative action time, Toj (minutes) 0 0
Objective function, Jo 4.9631

It is observed that Kp, -- 3KP2 and T,, -- 6T1, indicating that loop 1 requires tighter

control. This is mainly because of the additional transient requirement for yl which does

not exist for y2 (see Fig. 6.10). An interesting observation is that TD, = TD2= 0, indicating

that the derivative terms in both loops have been switched off. This is not surprising

since PI control is generally sufficient for processes with first-order dynamics, such as

the available model of the Shell process.

In order to see the effect of the term Ili in the objective function Jo in Eq. (6.19), the GA

run was repeated with ky=0. The parameters of the optimal controller, Dop,, obtained by

the GA, as well as the value of Jo (Dopt), are shown in Table 6.3 below.

- -- --wý- iý--- i r, %'n __ L.. ýIIý.. ý..... L..... ...: 4-4. ... -4 -l ý1
-r%

c- - -I I;;
I AULC O. J LI LII1IQI rILJ IVIIllIJII I 1J IclI ic: wi. ý VWI II w/j- 1 a. ý1ýn -Ij-v I WO - .jj

Parameter PID Controller I PID Controller 2

Proportional gain, Kp1 2.8327 1.1624

Integral action time, T; (minutes) 4.4912 43.2558

Derivative action time, To; (minutes) 0 3.8974

Objective function, J0 1.8618

It is observed that X, ý =0 for all i, j resulted in controllers with higher proportional gains,

a lower integral action time for the controller in loop 1, and a non-zero derivative action

time for the controller in loop 2. This was expected since ?=0 means that term I, ý,

which penalises the activity of the manipulated variables, is not used in the objective

Chapter 6- Solution to the Shell Standard Control Problem 161

function. In terms of transient output constraint violations, the PID controllers obtained
achieved marginally better performance than those in Table 6.2, but at the expense of
unwanted oscillatory behaviour in the manipulated variables, as can be observed in
Fig. 6.15 where the closed-loop system responses under disturbance dl are shown. This
is a strong indication of poor robustness. It is, therefore, concluded that term III is an
important element of Jo, which can improve the robustness of the closed-loop system. A
desirable balance between performance and robustness can be achieved by appropriately

adjusting the weighting coefficients alj and k y.

1

0.5

Cl) o
CL

-0.5

21

......., _:

1 U1 1

71
1

.. :.;

-1 0 50 100 150 200 250 300 350
Time, t (minutes)

400

0.4

0.2

0
Q -0.2

-0.4

nc

1

2 3

-v. v0 50 100 150 200 250 300 350 400
Time, t (minutes)

Fig. 6.15 Closed-loop system responses under disturbance pattern d1= X0.5 0.55T

using the PID controller parameters given in Table 6.3

6.5.1 Measurement Noise and Disturbance Variations

The genetically tuned PID controllers were also tested under noisy output measurements

and disturbance variations. Specifically, measurement noise was added to all measured

process outputs, yl, Y2, y3, y5, y7. The noise signals used were independent, normally

distributed sequences, all having zero mean and variance o =1 x 10-3. The closed-loop

Chapter 6- Solution to the Shell Standard Control Problem 162

system was subjected to the four disturbance patterns d1= [0.5 0.5]T, d2 = [-0.5 -0.5]TI
d3 = [0.5 -0.5]T, and d4 = [-0.5 0.5]T, which were applied in the following sequence.

dl(t) _ [0.5 0.5]T5

d(t) =
d2 (t) = [-0.5 -0.5]T,
d3(t) = [0.5 -0.5]T,
d4 (t) = [-0.5 0.5]T,

0 <_ t< 400
400<_ t< 800

800 <_ t< 1200
1200 <_ t <_ 1600

(6.20)

where t is in minutes. The closed-loop responses without measurement noise are shown
in Fig. 6.16, while those with measurement noise are shown in Fig. 6.17. It is observed
that the presence of measurement noise does not significantly affect the performance of
the closed-loop system. As expected, the disturbance vector transition from dl to d2 at
t= 400 minutes results in large deviations from the transient specifications for outputs

yl, y2, and y7. Note, however, that the Shell standard control problem specifications

assume that all signals are at zero prior to a disturbance change (zero initial conditions).

Since I dl 1<_ 0.5 and I d2 <_ 0.5, this results in disturbance changes with 11 Ad ll < -,.
[2-/2. In

function d(t) in (6.20), the transition at t=400 minutes is of magnitude II d2 - dl ll =

which is twice the maximum 11 Ad 11. This is the reason for the large constraint violations

that are observed after the disturbance change at t= 400 minutes. In the noise-free case

(Fig. 6.16), the disturbance estimates accurately track the real disturbances, with a lag of

one sample as theoretically predicted earlier. These estimates are then used by the LP

solver, which accurately computes the optimal steady-state value of u3. In the case

where measurement noise was added to the system (Fig. 6.17), it is observed that the

output responses are qualitatively very similar to those in the noise-free case, indicating

good noise immunity. It can be seen that the noise propagates through to the disturbance

estimates, and also to the LP solution which is filtered by a low-pass filter before being

applied to the process. In order to reject the noise in the disturbance estimator outputs,

filter GF(Z) in Eq. (6.15) was also used. GF(z) consists of two filters, both with a time

constant of 30 minutes. The obtained results are shown in Fig. 6.18.

GF (z) _

0.1535z

z-0.8465

0

0
0.1535z

z-0.8465

(6.21)

Chapter 6- Solution to the Shell Standard Control Problem 163

..... ̀.. z`
2 :.............; I; i1

,...........
-0.5 ,_.. _..... -- --"--"-------------------------------- ------.... -------- . --- 71

-1.5
I`

-2

0.4

0.2

.r
N0

a

-0.2

-0.4

1 II
I

i

3II
2 I

0 200 400 600 800 1000 1200 1400

V. 0

0.4
4 'a

0.2
N
U
c0
Co

-0.2

C) -0.4

_na

)0

200 400 600 800 1000 1200 1400 1600 0

0-6-

0.4
N

. 0.2
Qi U
C0 (ß

-0.2
Co
Ö -0.4

r% r- -v. V0 200 400 600 800 1000 1200 1400

0

C -0.1 0

i
vi -0.2

J

-0.3

Filtered (ü3)
ii

Unfiltered ý

Do

0 200 400 600 800 1000 i? -UU 14UU 1bUu

Time, t (minutes)

Fig. 6.16 Closed-loop system responses without measurement noise

Chapter 6- Solution to the Shell Standard Control Problem 164

1

0.5

0

-0.5
n-

-1
0

-1.5
-2

0

0.4

0.2

Cl) 0
Q-

-0.2

-0.4

200 400 600 800 1000 1200 1400 1600

ý

III
III
III

I
I

I
3

2 I

0 200 400 600 800 1000 1200 1400 1600

u. d

"-' 0.4

0.2
a) U
C0
N

-0.2 .r Cl)

-0.4

_na ýIýIýI
T=TY

ý
200 400 600 800 1000 1200 1400 1600 0

0.6

0.4
N

<-0

0.2

0
co

-0.2-

-0.4-

na -v. V0 200 400 600 800 1000 1200 1400

0

-0.1 O

N
-0.2

0
J

-0.3

1416

LFiltered('03)

ii

Unfiltered

0 200 400 600 800 1000 1200 1400 1bOO

Time, t (minutes)

Fig. 6.17 Closed-loop system responses with measurement noise

Chapter 6- Solution to the Shell Standard Control Problem 165

i

. -. �" 0 .ý ý,
Cl)

-1 0

0
-2

0.4

0.2

Cl) 0
CL

-0.2

-0.4

cuu 4UU 600 800 1000 1200 1400 16 00

0 200 400 600 800 1000 1200 1400 1600
0.6

----- ------ --------- ---- - 0.4

4'a
0.2

U
0

-0.2
N
C) -0.4-

-0.6 0 200 400 600 800 1000 1200 1400 1600

0.6
------ ---- -------- ---------

0.4 N
ýý

0.2

0

-0.2
N
5 -0.4

-0.60 200 400 600 800 1000 1200 1400 1600

0

c 0.1 r ------
Filtered (ü3) 03)

i
vi -0.2-

-j Unfiltered !

-0.3

0 200 400 600 800 1000 1200 1400 1600

Time, t (minutes)

Fig. 6.18 Closed-loop system responses with measurement noise and disturbance filtering

Chapter 6- Solution to the Shell Standard Control Problem 166

It is observed from Fig. 6.18 that filter GF(z) in the disturbance estimator results in

much less noisy disturbance estimates, but at the expense of a much slower disturbance

tracking time. Although the LP solver output is now less noisy than that in Fig. 6.17, it

is observed that there are large undershoots around 400 and 1200 minutes. The reason
for this behaviour is that the LP solver output is a non-linear function of the disturbance

estimates, which means that slow changes in the values of the disturbance estimates in

the direction of the real disturbances does not necessarily imply slow changes in the LP

solver output in the direction of its optimal value. With reference to Fig. 6.18, although

the optimal steady-state values of u3 when d= dl and d= d2 are -0.2178 and -0.1040,

respectively (as observed in Table 6.1), the slow tracking of the real disturbance vector

results in d [0 Of at t= 420 minutes. The optimal steady-state value of u3 in this case

is -0.3181 (because of the non-linearity of the LP solver). This causes the undershoot in

the LP solver output at t= 420 minutes. A similar situation occurs at t =1220 minutes.

These undershoots reduce the overall performance of the closed-loop system, as can be

observed by comparing the output responses of Fig. 6.18 with those of Fig. 6.17. It is,

therefore, concluded that filter GF(Z) should be used with caution when combined with

non-linear elements such as the LP solver used in this work. GF(Z) may, however, be

helpful in cases where the unfiltered d is heavily corrupted with noise.

6.5.2 Robust Stability and Performance Tests

In all simulation results presented earlier in this section, it was assumed that there is no

uncertainty in the gains of the process model. However, in the Shell standard control

problem statement, the gains of all 35 transfer functions of the process model G(s) are

subject to uncertainties of the following form.

K11+E1AK11
e-SLii

Tls+l

G(s)
K71+E1AK71

e-sL71
Tals+l

...
K15 + s5AK15

e-SL'S
TSS+1

...

K75 + 65AK75
e-SL75

T7Ss+l

(6.22)

where Klj, Typ, and Ly denote the nominal gain, time constant, and time delay of the i, j

element of G(s), OKu denotes the absolute maximum uncertainty of gain Kjj, and sj

0

Chapter 6- Solution to the Shell Standard Control Problem 167

determines the amount of uncertainty of gain K, j, with -1 <_ sj< 1 and j =1, ... , 5. The

numerical values for K, , Ty, L,
, and AKy can be found in Appendix A. According to the

Shell standard control problem statement (see Appendix A), the closed-loop system
should satisfy all control objectives for all the plants in the uncertainty set (i. e. for all
combinations of ci). The Shell problem statement contains a number of prototype test
cases, which have been formulated in order to provide a common frame of reference for

evaluating the robust stability and performance of different design approaches. These

prototype test cases are given in Table 6.4 below.

TABLE 6.4 Prototype test cases for the Shell standard control problem (Prett and Morari. 1987)

Test case EI £2 £3 £4 £5 d1 d2 Optimal value of u3
1 0 0 0 0 0 +0.5 +0.5 -0.2178
2 -1 -1 -1 +1 +1 -0.5 -0.5 +0.0782
3 +1 -1 +1 +1 +1 -0.5 -0.5 -0.2146
4 +1 +1 +1 +1 +1 -0.5 +0.5 -0.2494
5 -1 +1 0 0 0 -0.5 -0.5 +0.0386

Prototype test case 1 corresponds to the nominal process (since sj =0 for all j=1, ...) 5),

with d= [0.5 0.5]T. This case has already been investigated earlier in Section 6.5, with

the closed-loop responses shown in Fig. 6.11. In order to evaluate the robustness of the

closed-loop system in terms of stability and performance, the remaining four prototype

test cases were also investigated. All of these cases introduce large uncertainties in the

gains of the process. The closed-loop responses for prototype test cases 2 to 5 are shown

in Figures 6.19 to 6.22, respectively. The corresponding optimal steady-state values of

u3 for the four uncertain processes, shown in Table 6.4, are also shown in the figures for

comparison. The results for test cases 2,3, and 5 should be compared with those shown

in Fig. 6.12 because the latter uses the same disturbance vector d= [-0.5 -0.5]T, but

without uncertainty. Similarly, the results for test case 4 should be compared with those

shown in Fig. 6.14 where d= [-0.5 0.5] T.

Although the proposed design was only based on the nominal process parameters, it is

observed that all prototype test cases result in a stable and well-damped closed-loop

system, which strongly suggests that the closed-loop system is robustly stable. In test

case 2 (Fig. 6.19), it can be seen that yl and y2 are stabilised to zero, but the transient

Chapter 6- Solution to the Shell Standard Control Problem 168

constraint violations are now larger than those in Fig. 6.12 (no uncertainty). It is also
observed that u3 now converges to a value that is slightly larger than the optimal. This is
because the disturbance estimator and the LP solver used in the proposed scheme are
both based on the nominal process parameters which are now significantly different
than those of the real (uncertain) process. The sub-optimality of u3 can also be inferred
by the fact that none of the constrained variables, u1, u2, u3, y7, approaches a constraint
boundary in the steady-state. However, the difference from the true optimal steady-state
value of u3 is not very large, considering the severity of the gain uncertainties present in

the process (gains Kll, K21, K31, and K71, for example, which are extensively used in the

proposed scheme, all have values which are less than half of their nominal ones). In

fact, the observed performance of the scheme proposed in this work appears to be better

than that of a QDMC controller that is tuned for the nominal process, and is comparable
to that of schemes in which the model gain uncertainty is considered explicitly (see, for

example, Cuthrell, Rivera, Schmidt, and Vegeais, 1990, who proposed a solution to the

Shell standard control problem based on a nominal process QDMC design, as well as a

non-linear programming approach that explicitly considers model uncertainty).

In test case 3 (Fig. 6.20) it is observed that, although y2 achieves the regulation objective

and is stabilised to zero, there is a steady-state offset in yi which settles at a non-zero

value, indicating that integral action in loop 1 cannot be achieved. This problem arises

because of the steady-state value of u3 computed by the LP solver, which is now smaller

than the optimal and is thus infeasible. This causes ul to saturate heavily, thus removing

the integral action from loop 1. Apart from the steady-state offset in yl, the observed

performance is qualitatively comparable to that of QDMC and other, more advanced

schemes (see, for example, Cuthrell, Rivera, Schmidt, and Vegeais, 1990). It will be

shown later in this section that the steady-state offset in yl can be completely eliminated

by appropriately modifying the linear program in (6.7).

Finally, in both test cases 4 (Fig. 6.21) and 5 (Fig. 6.22), the proposed scheme achieves

zero offset for both yl and y2, with values for u3 which, although sub-optimal, are close

to the optimal ones. The output responses in test case 4 are more oscillatory thanthose

shown in Fig. 6.14 (no uncertainty), but the output constraint violations are similar. In

test case 5, the output constraint violations are now slightly larger that those shown in

Fig. 6.12 (no uncertainty).

Chapter 6- Solution to the Shell Standard Control Problem 169

0.2

0
-0.2
-0.4
-0.6

0-0.8
-1

-1.2

'1%
7

--- ------- I......... -----........... ------............................ ---............ -----................................ - '. 2'

v

0.6

'1 0.4

0.2
Q
c

0

+.. .ý ý,

ý -I

O

ou iuU 150 200 250 300 350 400
Time, t (minutes)

1

-2

0 50 100 150 200 250 300 350 400
Time, t (minutes)

Fig. 6.19 Closed-loop system responses for prototype test case 2

'ý' 3

----- Optimal steady-state value of u3

--

1ý

\1Iý.

........
ýý``

....:

\\
1

17

Time, t (minutes)

0.6

0.4

0.2
N

0
C

-0.2

nA

----- Optimal steady-state value of u3 J

___i

I
............

I
..............

----------- - --------

0 50 100 150 200 250 300 350 400
Time, t (minutes)

Fig. 6.20 Closed-loop system responses for prototype test case 3

Chapter 6- Solution to the Shell Standard Control Problem 170

0.2

0

-0.2 cli
ý- -0.4
0

-0.6

-0.8

............

,, ------... -..
,, -------------------------------------- ý .. -

0

0.3

0.2

0.1

N0

0.1

-0.2

_n

bU 100 150 200 250 300 350
Time, t (minutes)

rvv

1

2 ----- Optimal steady-state value of u3

3

0 50 100 150 200 250 300 350
Time, t (minutes)

Fig. 6.21 Closed-loop system responses for prototype test case 4

0.5

. -. 0 .ý

`tvv

tIIIý

/ý

---------ý---------

7

\ ... 4
Cl)
Q -0.5
0

0
-1

0.6

0.4

N
0.2

a
c

0 50 100 150 200 250 300 350 400
Time, t (minutes)

............................ ý. ý...
1

2

0
0 50 100 150 200 250 300 35u

Time, t (minutes)

3ý

Fig. 6.22 Closed-loop system responses for prototype test case 5

----- Optimal steady-state value of u3

400

Chapter 6- Solution to the Shell Standard Control Problem 171

It was shown in Section 6.3.2 that when s» =0 for all j=1,
... ,5 (no uncertainty), the LP

solver used in the proposed scheme computes the steady-state value of u3 that brings the
process at the verge of at least one constraint violation. Also, neither the LP solver, nor
the disturbance estimator consider the model gain uncertainties explicitly, but are only
based on the nominal process model. This means that gain mismatches between the real
process and the nominal process model will almost certainly cause the LP solver output
to deviate from the optimal value of u3. If the LP solver output satisfies all conditions of
linear program (6.7) for the real (not the nominal) process, the obtained solution will be

sub-optimal and may still be acceptable. This situation can be observed in prototype test

cases 2,4, and 5 (Figures 6.19,6.21, and 6.22, respectively). On the other hand, if the
LP solver output does not satisfy all conditions of linear program (6.7) for the real (not

the nominal) process, the solution will be infeasible and, therefore, not acceptable. This

situation can be observed in prototype test case 3 (Fig. 6.20), where the equality y1= 0 in

linear program (6.7) is not satisfied, resulting in the steady-state offset in yl.

In order to alleviate this problem and improve the robust performance of the proposed

scheme, more conservative constraint boundaries may be specified in (6.7), so that the

effects of uncertainties are accounted for. Consider the following linear program.

minu3, i=1,2,3
Ui

Subject to: 1Ui 1<0.5rß, i=1,2,3 (6.23)

1 y1I = 0, i=1,2

y7 >- -0.511

where 0: 5 11: 5 1. Setting il =1 results in linear program (6.7), while the smaller the value

of q, the more conservative the constraint boundaries. Setting 11 <1 will inevitably result

in the LP solver generating sub-optimal solutions for u3, but these solutions will now be

feasible on a wider range of processes within the uncertainty set. This is similar to the

heuristic approach of de-tuning a controller in order to increase its robustness. Fig. 6.23

shows the closed-loop responses for prototype test case 3, with Ti = 0.75. It is observed

that the steady-state offset in yl has now been completely eliminated, and the value of u3

is marginally larger than the optimal.

Chapter 6- Solution to the Shell Standard Control Problem 172

0.5

. ý. ,... .. ý
ý+ 0

-0.5
0

-1

0.6

0.4

0.2

r_ 0

-o. 2

U 50 100 150 200 250 300 350
Time, t (minutes)

1

2

3
----- Optimal steady-state value of u3

400

Fig. 6.23 Closed-loop system responses for prototype test case 3, with 0.75

Prototype test cases 1,2,4, and 5 were also evaluated using 11 = 0.75, in order to see
how this setting affects the obtained results. It was clearly observed that in all cases the

obtained responses were qualitatively similar to those obtained when 11 =1. As expected,

when fl = 0.75 the LP solver output converged to values for u3 slightly larger than those

obtained when 'q = 1. Interestingly, the transient constraint violations were fewer when

,q=0.75. This is because of the conservatism in the constraint boundaries used.

6.5.3 Genetic Algorithm Convergence

The optimisation performance of the GA can be observed in Fig. 6.24, which illustrates

the convergence of the objective function Jo, as well as that of the proportional, integral,

and derivative terms of the two PID controllers. Fig. 6.24 shows the parameters of the

best pair of PID controllers in each generation. It can be seen that good convergence for

all parameters is achieved in less than 120 generations. The solution shown in Table 6.2

was attained at generation 134, indicated by the vertical dashed line.

0 50 100 150 200 250 300 350 400
Time, t (minutes)

6- Solution to the Shell Standard Control Problem 173

ýo

C
O

U
C

N

U
4)
H
0

ieu 4u 60 80 100 120 140 160 180 200

x1

Cu
C
0
r
0
CL
O

0-

d) 4

C

E
l.:: F

N
a)
a1

20 40 60 80 100 120 140 160 180 200

..........:........ i

............................ :.........................
.......................:........

20 40 60 80 100 120 140 160 180 200

E
a

0 0.

"L 0.

0

III IIII1

1

....... : : : : :

20 40 60 80 100 120 140 160 180 200

Generation

Fig. 6.24 Convergence of Jo and the six PID controller parameters

6- Solution to the Shell Standard Control Problem 174

In order to evaluate the performance of the GA in terms of optimality of the obtained
solution, the minimisation of Jo was repeated several times, resulting in a total of 50
independent GA runs. In each run, the GA was initialised with a different, randomly
selected population. It was observed that in 72% of all runs (36 runs), the GA converged
precisely to the solution shown in Table 6.2. In the remaining 28% (14 runs), the GA
converged to solutions which, although sub-optimal, are practically identical to the one
shown in Table 6.2, differing only in the terms KP, and T1, where the observed absolute

maximum differences were 7.3 x 10-3 (which is equivalent to three least significant bits

or 0.073% of the search interval for K
1) and 2.4 x 10-2 minutes (which is equivalent to

one least significant bit or 0.024% of the search interval for T,), respectively. Of course,

there is no guarantee that the solution shown in Table 6.2 is the one which achieves the
global minimum of Jo, but the fact that practically all randomly initialised GA runs
successfully converged to that particular solution is a strong indication of the optimality
of the solution.

6.5.4 Search Landscape Complexity

The search landscape associated with the PID controller tuning is six-dimensional, and

thus cannot be visualised easily. It is possible, however, to examine the surface slices

that result by keeping any four of the six parameters at their optimal values shown in

Table 6.2, and varying the remaining two. Gridding can then be used to compute the

locations of the minima of the surface slice. In this way, the complexity of the search

landscape can be assessed.

Three such surface slices and the corresponding maps of minima, obtained by varying

the proportional, integral, and derivative terms, are shown in Figures 6.25,6.26, and

6.27, respectively. The remaining controller parameters in each surface slice were kept

at their optimal values shown in Table 6.2. It is observed that the surface slices are

complex, highly non-linear and also multimodal. The multimodality of the surface slices

can better be observed by examining the corresponding maps of minima, which were

computed by evaluating Jo at a grid of 501 x 501 points, where thousands of minima

were found in each surface slice, of which only 1 (indicated by the circular marker)

corresponds to the optimal controller parameters (unique solution).

Chapter 6- Solution to the Shell Standard Control Problem
175

500

- 400
C
O

300

> 200
U
N

0 100

0
10

Map of minima of surface slice -I and D terms at optimal values Total number of minima: 21,184 - Optimal: 1 (unique solution)

N

Y

0)
c
0
If
0q
0-
0
O3

2

1

10

Fig. 6.25 Objective function surface slice and map of minima (all integral and
derivative terms are at their optimal values shown in Table 6.2)

"ýýýp 0.1 0.1 ? 109 -

"" iýýYýýrY. iSt1

0123456789 10
Proportional term, Kp1

Chapter 6- Solution to the Shell Standard Control Problem 176

400

300
0
U

200
a)
U

100
O

0
10_i

10`

I-,

10ý
c
E

N

fýý

L^`

W

cu
1 00

c

Map of minima of surface slice -P and D terms at optimal values
Total number of minima: 8,123 - Optimal: 1 (unique solution)

a
i

.
1

"

&;

tat

04

? \4
. F ..

"M

""

\v,.. I"":)

.
..........

Jew

I

IS -
ýr.

v
WN.

10-1 1_
1

10 10° 10'
Integral term, T1 (minutes)

ý., p.
l

10-1

102

Fig. 6.26 Objective function surface slice and map of minima (all proportional

and derivative terms are at their optimal values shown in Table 6.2)

112 (Mintl 102 102 V\x0l
"

tes)

6- Solution to the Shell Standard Control Problem
171
I//

200

150
0
U

100
a)
U
d)
H 50
0

0
20

20

18

16

U)
5 1. -
4 14
c
E

12

10

aD 8

cß
6

0

0

Map of minima of surface slice -P and I terms at optimal values Total number of minima: 16,867 - Optimal: 1 (unique solution)

20

Fig. 6.27 Objective function surface slice and map of minima (all proportional
and integral terms are at their optimal values shown in Table 6.2)

. wlR7,0 0 Vey,. 02

2468 10 12 14 16 18 20

Derivative term, Tot (minutes)

er 6- Solution to the Shell Standard Control Problem 17R

The surface slice obtained by varying the proportional terms (Fig. 6.25) exhibits the
highest multimodality of all, with 21,184 minima, followed by the surface slice obtained
by varying the derivative terms (Fig. 6.27), which contains 16,867 minima. The surface
slice obtained by varying the integral terms (Fig. 6.26) was the least multimodal of all,
containing 8,123 minima. Note that, in all three cases, the minima were computed by
assuming that Jo changes monotonically between grid points. This assumption should
generally hold true if the grid is sufficiently dense. The actual `continuous' surface slices
may contain a much larger number of minima.

6.6 Summary

In this chapter, a solution to the Shell standard control problem was developed, based on

genetically tuned PID controllers. Two linear, discrete-time PID controllers with integral

anti-windup and a Smith predictor were employed for the regulation problem, while the

input minimisation problem was solved analytically, by estimating the two unmeasured
disturbances entering the process, and then solving the associated linear programming

problem on-line. The six parameters associated with the two PID controllers were tuned

using GAs. An extension of the objective function JM developed in Chapter 3 was used

to provide the necessary performance indexes. The performance of the proposed control

scheme was very satisfactory, and this was illustrated by extensive simulation results. It

was demonstrated, through simulation, that the resulting closed-loop system is robustly

stable and that its robust performance is comparable to that of more computationally

intensive approaches, such as QDMC and other algorithms (see, for example, Cuthrell,

Rivera, Schmidt, and Vegeais, 1990). Making the specifications more conservative was

shown to improve the robustness of the scheme in the face of large model uncertainties.

The closed-loop system satisfied all steady-state specifications for all five prototype test

cases published by Shell, which include the nominal process model as well as a number

or worst-case uncertain models. It must be mentioned here that the proposed solution is

not complete. Specifically, output constraint violations can arise in the transient period,

and the possibility of failure in the sensors for outputs yl and y2 was not considered in

the design. However, transient constraint violations are present in all solutions available

in the literature that the author is aware of, and it has been conjectured that a complete

solution to the problem does not exist (Prett, Garcia, and Morari, 1990). The optimality

of the genetically tuned PID controllers was supported by repeating the controller tuning

Chapter 6- Solution to the Shell Standard Control Problem 179

several times, where it was observed that practically all randomly initialised GA runs

successfully converged to the same set of controller parameters. The complexity of the

search landscape associated with the PID tuning was demonstrated by examining three

surface slices, where a large number of local minima were shown to be present. This

justifies the use of GAs in this problem, as conventional optimisers are not likely to

perform well in such complex search landscapes.

Chapter 7- Conclusions - Main Contributions and Further Work 180

Conclusions -Main Contributions and
Further Work

7.1 Introduction

The first part of this chapter summarises the key results and main contributions of this

research project. A number of recommendations for further work in this direction, that

will extend the application of GAs in the area of control systems engineering, are given
in the second part of this chapter.

7.2 Summary of Main Contributions

This research work investigated the potential of the use of GAs as a basis for the optimal

solution of control engineering problems in a function optimisation framework, focusing

on multivariable process control. A number of novel performance indexes and controller
design/tuning methods were developed and analysed, and an extension of the standard

GA was proposed, which enables GAs to identify multiple equivalent optimal solutions

to a given problem. The proposed methods were tested on a number of control problems

involving multivariable processes of varying complexity, including a 5-input, 7-output

chemical process with strong interactions, constraints, actuator non-linearities, and large

dead times. The main contributions and novel aspects of this work can be summarised

as follows. The references of the published parts of this work are also given.

7.2.1 Novel Obiective Function Formulation for Control Systems

A novel objective function, denoted by Js(.), was proposed for use in SISO systems, that

enables the designer to explicitly specify the performance specifications associated with

a given problem, in terms of time-domain bounds on the closed-loop system responses.

Chapter 7- Conclusions - Main Contributions and Further Work 181

The formulation of Js is such that the set of all controllers that completely satisfy the

specifications is precisely the kernel of J. This set, denoted by 2, can be the empty set
(in cases where the given specifications are unachievable by all controllers in the search
space), or can even be an infinite set, where an infinite number of equivalent (in terms
of performance index) controllers exist that completely satisfy the given specifications.
Objective function Js was experimentally analysed using a simple PI controller tuning

problem. The obtained solutions were compared with those obtained using conventional
objective functions, as well as using several standard PI controller tuning methods. It was
shown that JS is capable of accurately quantifying complex performance specifications
which cannot be accurately expressed in conventional terms such as gain /phase margin

requirements. Finally, a more general objective function was proposed, denoted by JM("),

which is a generalisation of JS for use in MIMO systems. Parts of these results have been

published in Vlachos, Evans, and Williams (1997), and Vlachos, Williams, and Gomm

(1999a, 1999b).

7.2.2 Adaptive Fitness Sharing - An Extension of the Standard GA

A new method called adaptive fitness sharing was proposed, whose purpose is to enable

GAs to locate multiple equivalent optimal solutions and distribute the members of the

population uniformly within the optimal solution set. The proposed method is based on

the techniques of niche formation and speciation, and is applicable to the optimisation

of search landscapes which contain an infinite number of equivalent optimal solutions

which share a unique objective function value that must be known a priori. The proposed

method can thus be used for the optimisation of objective functions Js and JM. Formulae

were derived for the estimation of the optimal value of the sharing radius ashare involved

in the fitness sharing algorithm. The optimality of ßshare is maintained during the course

of the search run, by dynamically modifying the scaling of the parameter vectors. This

was shown to be equivalent to the automatic adaptation of ashare. The proposed method

can thus be used in cases where the search landscape changes during the course of a GA

search run. The time complexity of the proposed method was shown to be better than that

of conventional fitness sharing. The computation time required to apply adaptive fitness

sharing is usually much less than that of the objective function evaluations. Hence, the

proposed method is not likely to significantly slow down the GA, and its application is

simple and straightforward. The effectiveness of adaptive fitness sharing was supported

Chapter 7- Conclusions - Main Contributions and Further Work 182

by extensive simulation results, and two population diversity measures were developed in

order to quantify the obtained results. It was experimentally shown that adaptive fitness

sharing outperforms the simple GA and population ranking alone. Furthermore, a set of
statistical tests were performed, where it was clearly shown that adaptive fitness sharing

consistently outperforms the simple GA and population ranking alone, in terms of both

performance (higher degree of achieved uniformity) and robustness (less sensitivity to
initial conditions). The adaptive properties of the proposed method were demonstrated

by modifying the search landscape during the course of a GA run, where it was shown
that adaptive fitness sharing successfully adapts the density of the population as required,

while maintaining a high degree of uniformity throughout the search run.

7.2.3 Parametric Controller Tuning for Multivariable Processes

A new method for the automatic tuning of decentralised PI controllers for multivariable

processes, based on GAs, was proposed. The major advantage of the proposed method is

the ability to handle arbitrary performance specifications in the time-domain, that can be

different for each system output. This is achieved by transforming the PI tuning problem

into an optimisation problem, using objective function JM. Adaptive fitness sharing is

also employed, in order to maximise the diversity of the obtained family of optimal PI

controllers. The numerical robustness and open architecture of GAs make the proposed

method directly applicable to the automatic tuning of a wide range of linear or non-linear

multivariable controllers, and not just PI controllers. The effectiveness of the proposed

tuning method was supported by a number of simulation results using three two-input,

two-output processes with different degrees of interaction between the two loops. It was

shown that, in all cases, the resulting PI controllers completely satisfied all performance

specifications. Adaptive fitness sharing was shown to achieve a high degree of diversity

in the obtained family of optimal solutions. The choice of GAs as a suitable optimisation

method was supported by comparing GAs with two conventional optimisation methods,

where it is was shown that GAs have higher success rates and are more immune to noise.

The complexity of the optimisation problem associated with one of the three PI controller

tuning examples was experimentally demonstrated by examining two surface slices of

the resulting four-dimensional search landscape, where a large number of local minima

were shown to be present. Parts of these results have been published in Vlachos, Evans,

and Williams (1997), and Vlachos, Williams, and Gomm (1999a, 1999b).

Chapter 7- Conclusions - Main Contributions and Further Work 183

7.2.4 Solution to the Shell Standard Control Problem

A new solution to the Shell standard control problem was proposed, based on genetically

tuned PID controllers. Two discrete-time PID controllers with integral anti-windup and

a multivariable Smith predictor were employed for the output regulation problem, while
the input minimisation problem was solved analytically, by estimating the unmeasured
disturbances entering the process, and then solving the associated linear programming

problem on-line. The six parameters associated with the two PID controllers were tuned

using GAs. An extension of the objective function JM was used to provide the necessary

performance indexes. Extensive simulation results were presented, which show that the

proposed control scheme achieves a very satisfactory performance. It was demonstrated,

through simulation, that the resulting closed-loop system is robustly stable and that its

robust performance is comparable to that of more computationally intensive approaches,

such as the Quadratic Dynamic Matrix Control (QDMC) and other algorithms. Making

the specifications more conservative was shown to improve the robustness of the scheme

in the face of model uncertainties. It was also demonstrated, through simulation, that the

proposed control scheme satisfies all steady-state specifications for all five prototype test

cases published by Shell, which include the nominal process model as well as a number

of worst-case uncertain models. The complexity of the optimisation problem associated

with the PID controller tuning was demonstrated by examining three surface slices of the

resulting six-dimensional search landscape, where a large number of local minima were

shown to be present. This justifies the use of GAs in this problem, since conventional

optimisers are not likely to perform well in search landscapes of such complexity. Parts

of these results have been published in Vlachos, Williams, and Gomm (1998).

7.3 Recommendations for Further Work

In this section, a number of recommendations for further work are given, focusing on the

development of improved objective functions for control systems, and on the application

of GAs in multiobjective optimisation and real-time/adaptive control.

7.3.1 Improved Objective Functions for Control Systems

The non-dependence of GAs on continuity and derivative existence enables a wide range

of complex objective functions for control systems to be developed, which accurately

Chapter 7- Conclusions - Main Contributions and Further Work 184

quantify the performance specifications for a given control problem. Functions JS and
JM, developed in this work, are only two such examples. Objective functions of such
complexity would normally be avoided, due to the apparent lack of efficient optimisation
methods. The robustness and global optimisation ability of GAs enable many complex
objective functions to be developed, without the limitations imposed by continuity and
derivative existence requirements. This approach can result in powerful methods which
have the potential to deliver excellent designs that would normally be unachievable using
conventional design methods based on linear, time-invariant control theory.

7.3.2 Multiobiective Optimisation

Most approaches to optimisation-based controller design and tuning use single-valued

objective functions to provide the necessary performance indexes to guide the search for

optimal solutions. However, control engineering problems are very seldom associated

with a single objective. Instead, several, often conflicting objectives are usually present,
thus resulting in vector-valued objective functions. Such cases are usually treated by

weighting and combining all objectives into a single-valued function, thus transforming

them into single-objective optimisation problems. Function JM, developed in this work,

uses this weighted-sum approach to combine all individual objectives Jy by means of

the weighting factors wy. This approach may be acceptable in certain cases, but there are

times when combining the objectives in an efficient way may not be practically feasible.

Although GAs are inherently unsuitable for multiobjective optimisation in their standard

form, a number of extensions have been proposed (Fonseca and Fleming, 1995), which

enable them to efficiently optimise vector-valued objective functions in a multiobjective

framework. A vector-valued version of JM can easily be obtained by simply redefining it

as JM : J1 ... Jq E III+2 where J; {i1
""" Jq jER, A multiobjective GA can then be

employed to optimise JM. This approach eliminates the need to choose values for w1,

and should greatly improve the efficiency of the resulting design/tuning methods.

7.3.3 Real-Time and Adaptive Control

The structure and operation of standard GAs generally prevent them from being applied

to areas such as real-time and adaptive control, where the GA may be required to update

certain system parameters on-line. The main problem is that, due to the stochastic nature

Chapter 7- Conclusions - Main Contributions and Further Work 185

of their operation, standard GAs often produce solutions that cannot be directly applied
to the real process for safety and other reasons. Furthermore, every member of the GA
population has to be tested on the real process, and this can slow down the convergence
of the GA if the process under control is relatively slow (as in most chemical processes,
for example). The investigation into possible ways of extending standard GAs, in order
to make them more suitable for real-time and adaptive control applications is a promising
research area. In a process control framework, one possibility may be to develop a model
of the process to be controlled, and use this model in a simulator to evaluate the members
of the GA population at each generation. The solutions that result in stable closed-loops
and achieve acceptable performance can then be selected and applied to the real process,
and the objective function values of all members of the population can be corrected as
necessary, based on the true performance of the selected solutions. In this way, only the

well-behaved solutions are applied to the real process, thus minimising the probability
of damaging the process, while at the same time the speed of convergence of the GA is

greatly improved by only using the simulator to evaluate the solutions that appear to be

unsatisfactory or inapplicable. Depending on the accuracy of the process model and the

speed of response of the real process, a solution acceptability criterion can be specified
that determines whether a candidate solution is satisfactory and safe enough to be tested

on the real process. The acceptability criterion can be based on the candidate solution's

objective function value, as well as on other additional safety criteria and the information

acquired from previous on-line tests.

7.4 Summary

In this chapter, a summary was given of the key results and main contributions of this

research project. A number of recommendations for further work in this direction, that

will extend the application of GAs in the area of control systems engineering, were then

outlined, concentrating on the development of improved objective functions for control

systems, and on the use of GAs in multiobjective optimisation and real-time/adaptive

control applications.

A- The Shell Standard Control Problem
186

A The Shell Standard Control Problem
(Prett and Morari, 1987)

A. 1 Problem Description

Fig. A. 1 shows a heavy oil fractionator with three product draws and three side circu-
lating loops. The heat requirement of the column enters with the feed, which is a gase-
ous stream. Product specifications for the top and side draws are determined by eco-
nomics and operating requirements. There is no product specification for the bottom
draw, but there is an operating constraint on the temperature in the lower part of the
column. The three circulating loops remove heat to achieve the desired product separa-
tion. The heat exchangers in these loops reboil columns in other parts of the plant.
Therefore, they have varying heat duty requirements. The bottom loop has an enthalpy
controller which regulates heat removal in the loop by adjusting steam make. Its heat
duty can be used as a manipulated variable to control the column.

The relevant information regarding the Shell standard control problem is stated in the
following five sections.

1. Control objectives
2. Control constraints
3. Process model

4. Uncertainties in the gains of the model
5. Prototype test cases

We have tried to encapsulate the relevant control issues in this one problem while stay-

ing as realistic as possible. The problem is stated such that an infinite number of sce-

narios can occur in controlling the unit. We would encourage the development of solu-

tion methodologies that are flexible enough to deal with varying (and possibly conflict-

ing) problem requirements, and can be readily automated such that control designs can

be carried out by plant personnel with only a modest knowledge of control concepts.

endfix A- The Shell Standard Control Problem
1Q7

Q(F, T)
Control

Fig. A. 1 Diagram of a heavy oil fractionator (Shell control problem)

A complete solution to the problem should describe, in detail, the analysis and synthesis

procedures that indicate that the proposed controller satisfies the control objectives for

all plants in the uncertainty set. However, because of possible discrepancies between

investigators on analysis techniques, we have formulated a number of prototype test

cases which form a common frame of reference for evaluating different designs.

A. 2 Control Objectives

1. Maintain the top and side draw product end points at specification (0.0 ±0.005 in

the steady state).

Appendix A- The Shell Standard Control Problem 188

2. Maximise steam make in the steam generators (maximise heat removal) in the bot-

tom circulating reflux (Important note: Heat duties are expressed in terms of heat
input to the column. Decreasing heat duty implies increasing the amount of heat

removed).

3. Reject the unmeasured disturbances entering the column from the upper and inter-

mediate refluxes due to changes in heat duty requirements from other columns (up-

per and intermediate reflux duties range between -0.5 and 0.5). Reject disturbances

even when one or both end point analysers fail.

4. Keep the closed-loop speed of response between 0.8 and 1.25 of the open-loop pro-

cess bandwidth.

A. 3 Control Constraints

1. All draws must be within hard maximum and minimum bounds of 0.5 and -0.5.
2. The bottom reflux heat duty is constrained within the hard bounds of 0.5 and -0.5.
3. All manipulated variables have maximum move size limitations of magnitude 0.05

units per minute.

4. Fastest sampling time is 1 minute.

5. The bottom reflux draw temperature has a minimum value of -0.5.

6. The top end point must be maintained within the maximum and minimum values of

0.5 and -0.5.

A. 4 Process Model (First-Order Dead Time)

The model of the Shell heavy oil fractionator process is a transfer function matrix G(s),

whose i, j element is a first-order dead time transfer function that relates the i-th process

output with thej-th process input.

G11(s)

G(S) =
G21 (s)

G71(s)

G12 (s) ... Gb (s)

G22 (s) ... G25 (s)

G72(S) ... Gis(S)

(A. 1)

Appendix A- The Shell Standard Control Problem 189

G, j (s) _
Kj e

-L, ý s

TJs+1 (A. 2)

The nominal model gains K, ý, time constants T13, and time delays L1, are all shown in
Table A. 1. The units for Ty and L, 3 are in minutes.

TABLE A. 1 Shell heavy oil fractionator model nominal naramPtPrs K:: T: and
Top draw

(ui)
Side draw

(u2)
Bottoms reflux

duty (u3)
Inter. reflux
duty (di)

Upper reflux
duty (d2)

K'1 Tj L, K'j T, 1 L, K'1 T1 L'1 Kii Ti Lii Kai Ti iii

Top end point (yi) 4.05 50 27 1.77 60 28 5.88 50 27 1.20 45 27 1.44 40 27
Side end point (y2) 5.39 50 18 5.72 60 14 6.90 40 15 1.52 25 15 1.83 20 15
Top temperature (y3) 3.66 9 2 1.65 30 20 5.53 40 2 1.16 11 0 1.27 6 0
Upper reflux temp. (y4) 5.92 12 11 2.54 27 12 8.10 20 2 1.73 5 0 1.79 19 0
Side draw temp. (y5) 4.13 8 5 2.38 19 7 6.23 10 2 1.31 2 0 1.26 22 0
Inter. reflux temp. (y6) 4.06 13 8 4.18 33 4 6.53 9 1 1.19 19 0 1.17 24 0
Bottoms reflux temp. (y7) 4.38 33 20 4.42 44 22 7.20 19 0 1.14 27 0 1.26 32 0

A. 5 Uncertainties in the Gains of the Model

The gains of the transfer function elements of the process model G(s) are subject to un-

certainties of the following form.

K,
ý + sj OK,

ý _Lý .s G, ý (s) =e, -1 < EJ <1 (A. 3)
Tos+1

where AK, denotes the absolute maximum uncertainty of gain K, 1, and cj determines the

amount of uncertainty of gain Ky. The values of AK, are shown in Table A. 2.

TABE A. 2 Shell heavy oil fractionator model gain uncertainty parameters, AK;;

Top draw Side draw Bottoms reflux Inter. reflux Upper reflux
(U,) (U2) duty (us) duty (d,) duty (d2)

Top end point (yi) 2.11 0.39 0.59 0.12 0.16

Side end point (y2) 3.29 0.57 0.89 0.13 0.13

Top temperature (ye) 2.29 0.35 0.67 0.08 0.08

Upper reflux temp. (ya) 2.34 0.24 0.32 0.02 0.04

Side draw temp. (ye) 1.71 0.93 0.30 0.03 0.02

Inter. reflux temp. (y6) 2.39 0.35 0.72 0.08 0.01

Bottoms reflux temp. (y7) 3.11 0.73 1.33 0.18 0.18

Appendix A- The Shell Standard Control Problem 190

A. 6 Prototype Test Cases

Demonstrate, through simulation, that the proposed controller satisfies the control ob-
jectives without violating the control constraints for the following plants within the un-

certainty set (assume all inputs and outputs are initially at zero). The magnitudes for the

upper and intermediate reflux duty step changes are indicated below.

1. E1 = E2 = E3 = E4 = £5 = 0. Upper reflux duty= 0.5, intermediate= 0.5.

2. E 1= £2 = E3 = -1, E4 = F-5= 1. Upper reflux duty = -0.5, intermediate = -0.5.
3. E1 = E3 = E4 = £5 = 1, E2 =-1. Upper reflux duty = -0.5, intermediate = -0.5.

4.1 = £2 = E3 = £4 = F-5= 1. Upper reflux duty = 0.5, intermediate = -0.5.

5. £ 1= -1, E2 =1, E3 = 64 = F-5= O. Upper reflux duty = -0.5, intermediate = -0.5 .

B- Minimal State-Space Realisations
191

Minimal State-Space Realisations of
GM(z), G1(z), Gs(z), and Gs(z)

B. 1 State-Space Model Representation

The discrete-time process models GM(z), GD-'(z), Gs(z), and GS* (z), that were employed
in the proposed GA-based solution to the Shell standard control problem (Chapter 6), are
given in this Appendix. The models were derived from the nominal process model G(s)

using the modified z-Transform method, and are expressed in the following standard
discrete-time state-space representation.

x[(k+1)TJ = Ax(kT) +Bu(kT)

y(kT) = Cx(kT) + Du(k7)

(B. 1)
(B. 2)

The sample time for all four models is T= 5 minutes. The A. B, C, and D matrices of the

minimal state-space realisations of models GM(z), GD-1(z), Gs(z), and GS (z) are given

in the following sections.

B. 2 Disturbance Estimator Models

Models GM(z), GD'(z) are used in the disturbance estimator that is shown in Eq. (6.15),

to estimate the unmeasured disturbances entering the Shell Process. Model GM(z) maps

process inputs ul, u2, and u3 to process outputs y3 and ys, while the inverse model GD'(z)

maps process outputs y3 and ys to process disturbances dl and d2. Recall that GD'(z) can

be expressed as

G-1 Z=
G4(Z) G*5(Z)

-1

Z1 (B. 3)
D()* G54 (Z) G55 (Z)

Appendix B- Minimal State-Space Realisations 192

The system shown in Eq. (B. 3) is non-causal and is, therefore, unrealisable. The model
used in the proposed solution is obtained by introducing a delay of one sample to GDI(z),

resulting in the realisable system z-1GD1(z).

The A, B, C, and D matrices of the minimal state-space realisation of GM(z) are given
below, with their elements truncated to five significant digits.

A=

B=

8.1123 x 10-1 3.3034 x 10-1 4.2353 x 10-1 -4.2429 x 10-2 1.8497 x 10-3 -1.6913 x 10-1 -3.8037 x 10-2
2.6932 x 10-2 5.6513 x 10-1 -5.6254 x 10-2 -1.0648 x 10-1 1.2335x10-1 -5.7893x1()-2 -1.8487 x 10-1
1.6144 x 10-2 -6.5287 x 10-2 6.6293 x 10-1 -1.3177 x 10-1 -2.4529x10-1 -3.0730x10-1 5.5904 x 10-2
0 -1.7494 x 10-3 2.0130 x 10-1 5.6862 x 10-1 -3.7132x10-1 -1.2348x10-1 2.7045 x 10-1
0 1.2757 x 10-1 2.7603 x 10-3 2.7728 x 10-1 8.3980 x 10-2 1.0125 -8.8723 x 10-2
000

-1.0705 x 10-1 2.8927 x 10-1 2.5506 x 10-1 1.0342 x 10-1
0004.2573 x 10-2 7.2735x10-1 -2.2925x10-1 1.8366 x 10-1
00000

-2.3133 x 10-2 8.8901 x 10-1
00000

-1.3037 x 10-1 -1.5774 x 10-1
0000000
0000000

-3.4886 x 10-1 3.3621x10-2 -1.3253x10-1 3.5936 x 10-2
4.7635 x 10-1 -9.4686 x 10-2 9.0974 x 10-3 1.7006 x 10-2
5.2455 x 10-1 1.6653 x 10-1 1.1766 x 10-1 3.7046 x 10-2
1.7523 x 10-1 -1.3908 x 10-1 -7.9846 x 10-2 -4.8762 x 10-2

-7.0760 x 10-3 -2.5415 x 10-2 2.4044 x 10-3 -3.8019 x 10-2

-2.1710 x 10-2 1.7797 x 10-2 -4.2364 x 10-2 5.2773 x 10-2
1.1180 x 10-1 2.2709 x 10-2 -2.1036 x 10-2 6.9740 x 10-2

-5.8348 x 10-2 4.0263 x 10-2 -1.5963 x 10-1 1.8985 x 10-2
1.2859 x 10-1 -1.1155 x 10-1 -2.4172 x 10-1 -9.5897 x 10-2

-1.8349 x 10-1 4.8268 x 10-1 7.6366 x 10-1 4.4344 x 10-2

-1.4125 x 10-1 -6.2704 x 10-1 -2.4721 x 10-1 4.8877 x 10-1

-2.5957 x 10-2 2.7364x10-1 -1.5407x10-1
-4.7853 x 10-2 -4.7602 x 10-3 1.6352 x 10-3

4.6167 x 10-1 6.0542x10-1 -6.8283x10-1
-2.2493x10-1 -1.3125x10-1 1.3328 x 10-1

3.5091x10-1 -3.0657x10-1 -4.6210x10-1
3.7313x10-1 -1.1179 -4.0604 x 10-1
1.2686 x 10-1 2.7392x10-1 -4.6085x10-1
2.1675 x 10-1 3.1699 x 10-1 -2.3821 x 10-1
8.0265 x 10-1 1.4841 x 10-1 5.3374 x 10-1
8.7365 x 10-1 0 3.9904 x 10-1
1.8928 x 10-2 0 -6.3294 x 10-1

C 000 0 0 0 0 0 0 1.1850
-2

1.1580x 10-1

000 0 0 0 0 0 0 5.4526x 10 -2.5168

000 D-[000

Similarly, the A, B, C, and D matrices of the minimal state-space realisation of z-' GD1(z)

are given below.

B- Minimal State-Space Realisations
1Q

5.4102 x 10-1 5.2205x1()-2 -3.2764x10-1 6.9073 x 10-1
5.2205 x 10-2 2.2599 x 10-1 4.8360x10-1 -3.0540x10-1

-4.4631 x 10-2 2.7653 x 10-1 6.8188x10-1 -5.2987x10-1
9.7708 x 10-2 1.5770 x 10-2 -4.4385 x 10-2 1.1407 x 10-1

-1.4395 1.2484
7.7960 x 10-1 -9.1342 x 10-1
1.2862 -9.1117 x 10-2
9.8509 x 10-1 1.9579 x 10-1

0 0-2.1563 x 10-1 1.3979 x 10-1
001.2724 x 10-1 -6.5620 x 10-1

D= -3.3932 x 10-1 9.5119 x 10-1
1.5929 -5.6127 x 10-1

B. 3 Smith Predictor Models

Models Gs(z) and GS* (z) are used in the multivariable Smith predictor shown in Fig. 6.7.
Model Gs(z) maps process inputs ul, u2, and u3 to process outputs yl and y2, while model
GS (z) is obtained by removing all delay states from all of the elements of Gs(z). The A,

B, C. and D matrices of the minimal state-space realisation of Gs(z) are given below.

A=

8.8756x10-1 -4.2295x10-1 3.9721x10-1 -4.5609x10-2 -4.4462x10-1 -1.7091x10-1 -7.3164x10-2
-3.8448 x 10-2 2.4002 x 10-1 6.4848x10-1 -2.7843x10-1 6.0858 x 10-1 1.9770 x 10-1 2.2259 x 10-1
-3.6169 x 10-3 2.4074 x 10-1 6.0398 x 10-1 9.2950 x 10-1 -3.8137 x 10-1 3.2563 x 10-1 6.6621 x 10-2
-3.7844 x 10-3 -2.3009 x 10-1 2.8134 x 10-1 8.6864 x 10-2 3.3954 x 10-2 -1.4049 x 10-1 -8.3515 x 10-2

00 -2.1292 x 10-2 2.9073 x 10-1 4.0712 x 10-1 -1.3261 x 10-1 -1.0203 x 10-1
001.0603 x 10-2 5.8383 x 10-1 6.9825x10-1 -2.3335x10-1 -1.4592x10-1
0000 -1.5502 x 10-2 7.5760x10-1 -2.4776x10-1
00003.6320 x 10-1 3.2335x10-2 -1.4312x10-1
0000006.8496 x 10-
0000004.2294 x 10-
0000000
0000000
0000000
0000000

1.4749 x 10-1 9.1540 x 10-2

-1.0443 x 10-1 -2.0312 x 10-1
5.3136 x 10-3 -1.2692 x 10-1
1.6038 x 10-1 6.9712 x 10-2
1.2818 x 10-1 8.5989 x 10-2

-1.1177 x 10-1 1.7268 x 10-1

-8.0872 x 10-2 3.4275 x 10-1
7.4975 x 10-1 5.0173 x 10-2
5.3892 x 10-1 3.9088 x 10-1

-8.7278 x 10-1 2.5807 x 10-1
0 6.6479 x 10-1
0 -1.1402 x 10-1
00
00

-2.7887 x 10-2
6.7762 x 10-3
5.2196 x 10-2
4.3052 x 10-2
4.1186 x 10-3
1.6344 x 10-2

-3.4767 x 10-3

. 3.5549 x 10-2
2.8051 x 10-2
1.7996 x 10-2
1.6959 x 10-1
9.8882 x 10-1
0
0

4.7660 x 10-2
3.0895 x 10-2

-8.3305 x 10-2
7.2564 x 10-2
2.7702 x 10-4
6.7231 x 10-3
1.3136 x 10-1
1.8547 x 10-2

-4.8921 x 10-2
6.3371x10-3
3.0435 x 10-2
2.0075 x 10-2
8.1600 x 10-1

-8.8361 x 10-2

-2.6611 x 10-2
5.0364 x 10-2
4.4659 x 10-2

-3.6700 x 10-2

-2.2440 x 10-2

-4.7653 x 10-2

-1.0974 x 10-1

-9.9299 x 10-3

-8.0855 x 10-2

-6.5061 x 10-2
2.5691 x 10-1

-2.9853 x 10-2
1.0184 x 10-1
9.4046 x 10-1

-8.6266 x 10-2

-9.3126 x 10-2
1.5800 x 10-1

-1.3811 x 10-1
1.3048 x 10-2
1.4040 x 10-2

-2.1832 x 10-1

-3.3131 x 10-2
1.8054 x 10-1
3.5851 x 10-2

-2.4848 x 10-1

-2.3346 x 10-2
4.5293 x 10-1
0

5.9327 x 10-2

-3.0116 x 10-2

-7.8008 x 10-2
6.8522 x 10-2
2.7893 x 10-2
6.0780 x 10-2
1.9819 x 10-1
2.5246 x 10-2
1.7358 x 10-1
1.2203 x 10-1

-4.0389 x 10-1
5.4388 x 10-2

-9.2591 x 10-2
2.5567 x 10-1

B- Minimal State-Space Realisations
IQd

B=

-6.0704 x 10-1 4.3012 x 10-1 2.3708 x 10-1
2.9394 x 10-1 -2.0828 x 10-1 -1.6119 x 10-1

-2.4076x10-1 -6.9959x10-1 5.1415 x 10-1
1.4635x10-2 -9.0709x10-1 5.6393 x 10-1
1.1784 -3.4238 x 10-2 -3.9278 x 10-2

-9.0215 x 10-2 -2.2938 x 10-1 -7.7114 x 10-2
-4.9364x1()-2 -9.7559x10-2 -1.8937x10-1 2.9631 x 10-1 6.1421 x 10-1 1.1367
0 5.6308 x 10-2 0
0 -1.2503 x 10-1 0
0 0 0
0 0 0
0 0 0
0 0 0

0000000000005.0273
x 10-1 0

0000000000000
-7.6405 x 10-1

D= ro 0 0l
[000J

Finally, the A, B, C, and D matrices of the minimal state-space realisation of Gs (z) are
given below.

9.0253x 10-1 -4.1354x 10-3 -2.4712x 10-3 5.5050x 10-3
-4.1354x10-3 9.1539x10-1 -1.9989x10-3 1.1153x10-2
-2.4712 x 10-3 -1.9989 x 10-3 9.0252 x 10-1 6.0768 x 10-3

5.5050 x 10-3 1.1153 x 10-2 6.0768 x 10-3 8.9177 x 10-1

1.2005 -1.6042x10-1 -7.2768x10-1
-9.9678 x 10-2 1.3136 -4.7075 x 10-1

4.1474 x 10-1 4.5015 x 10-2 5.7579 x 10-1
6.1379 x 10-1 4.9669 x 10-1 9.5778 x 10-1

[0
0 5.8622x10-1 2.3180x10-1]

00 -1.4549x10-1 9.3398x10-1

D= [o 0 0l
lo00J

References & Bibliography

References & Bibliography

195

Alonge, F., D'Ippolito, F., Ferrante, G., and Raimondi, F. M. (1998). Parameter identifi-
cation of induction motor model using genetic algorithms. IEE Proceedings on Control Theory and Applications, 145,6,587-593.

Aström, K. J., and Hägglund, T. (1984). Automatic tuning of simple regulators with
specifications on phase and amplitude margins. Automatica, 20,5,645-651.

Aström, K. J., and Hägglund, T. (1995). PID controllers: Theory, design, and tuning. 2nd
Edition, Instrument Society of America.

Aström, K. J., and Wittenmark, B. (1995). Adaptive control. 2nd Edition, Addison-Wesley.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In Grefenstette,
J. J. (Ed.), Proceedings of the First International Conference on Genetic Algorithms
and Their Applications, Laurence Erlbaum Associates, pp. 101-111.

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In Grefen-
stette, J. J. (Ed.), Proceedings of the Second International Conference on Genetic
Algorithms, Lawrence Erlbaum Associates, pp. 14-21.

Beasley, D., Bull, D. R., and Martin, R. R. (1993). A sequential niche technique for mul-
timodal function optimization. Evolutionary Computation, 1,2,101-125.

Bethke, A. D. (1981). Genetic algorithms as function optimizers. Doctoral Dissertation,
University of Michigan (University Microfilms No. 81-06101).

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment.
Doctoral Dissertation, University of Michigan (University Microfilms No.
82-14966).

Booker, L. B. (1985). Improving the performance of genetic algorithms in classifier

systems. In Grefenstette, J. J. (Ed.), Proceedings of the First International Confer-

ence on Genetic Algorithms and Their Applications, Laurence Erlbaum Associates,

pp. 80-92.

Caruana, R. A., Eshelman, L. J., and Schaffer, J. D. (1989). Representation and hidden

bias II: Eliminating defining length bias in genetic search via shuffle crossover. In

Sridharan, N. S. (Ed.), Proceedings of the Eleventh International Joint Conference

on Artificial Intelligence, Morgan Kaufmann, pp. 750-755.

References & Bibliography 196

Caruana, R. A., and Schaffer, J. D. (1988). Representation and hidden bias: Gray vs. bi-
nary coding for genetic algorithms. In Laird, L. (Ed.), Proceedings of the Fifth In-
ternational Workshop on Machine Learning, Morgan Kaufmann, pp. 153-161.

Cavicchio, Jr., D. J. (1970). Adaptive search using simulated evolution. Doctoral Dis-
sertation, University of Michigan.

Cavicchio, Jr., D. J. (1972). Reproductive adaptive plans. Proceedings of the 1972 An-
nual Conference of the Association for Computing Machinery, pp. 60-70.

Chen, B. -S., and Cheng, Y. -M. (1998). A structure-specified H°° optimal control design
for practical applications: A genetic approach. IEEE Transactions on Control Sys-
tems Technology, 6,6,707-718.

Chien, K. L., Hrones, J. A., and Reswick, J. B. (1952). On the automatic control of gener-
alized passive systems. Transactions of the American Society of Mechanical Engi-
neers, 74,175-185.

Chipperfield, A., and Fleming, P. (1995). Genetic algorithms in control systems engi-
neering. Control and Computers, 23,3,88-94.

Chipperfield, A., and Fleming, P. (1996). Multiobjective gas turbine engine controller
design using genetic algorithms. IEEE Transactions on Industrial Electronics, 43,
5,583-587.

Clarke, T., and Davies, R. (1997). Robust eigenstructure assignment using the genetic
algorithm and constrained state feedback. Proceedings of the Institute of Mechani-
cal Engineers, 211,53-61.

Clarke, D. W., and Mohtadi, C. (1989). Properties of generalized predictive control.
Automatica, 25,6,859-875.

Clarke, D. W., Mohtadi, C., and Tuffs, P. S. (1987a). Generalized predictive control -
Part I. The basic algorithm. Automatica, 23,2,137-148.

Clarke, D. W., Mohtadi, C., and Tuffs, P. S. (1987b). Generalized predictive control -
Part II. Extensions and interpretations. Automatica, 23,2,149-160.

Cohen, G. H., and Coon, G. A. (1953). Theoretical consideration of retarded control.
Transactions of the American Society of Mechanical Engineers, 75,827-834.

Culberson, J. C. (1998). On the futility of blind search: An algorithmic view of "no free

lunch". Evolutionary Computation, 6,2,109-127.

Cuthrell, J. E., Rivera, D. E., Schmidt, W. J., and Vegeais, J. A. (1990). Solution to the

Shell standard control problem. Proceedings of the Second Shell Process Control

Workshop, Butterworths, pp. 27-58.

Dan-Isa, A., and Atherton, D. P. (1997). Time-domain method for the design of optimal
linear controllers. IEE Proceedings on Control Theory and Applications, 144,4,

287-292.

References & Bibliography 197

Dantzig, G. B. (1949). Programming of interdependent activities. II. Mathematical
model. Econometrica, 17,200-211.

Davis, L. (1989). Adapting operator probabilities in genetic algorithms. In Schaffer, J. D.
(Ed.), Proceedings of the Third International Conference on Genetic Algorithms,
Morgan Kaufmann, pp. 61-69.

Davis, L. (1991). Handbook of genetic algorithms. Van Nostrand Reinhold.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive sys- tems. Doctoral Dissertation, University of Michigan (University Microfilms No.
76-9381).

Deb, K., and Goldberg, D. E. (1989). An investigation of niche and species formation in
genetic function optimization. In Schaffer, J. D. (Ed.), Proceedings of the Third In-
ternational Conference on Genetic Algorithms, Morgan Kaufmann, pp. 42-50.

Edmunds, J. M. (1979). Control system design and analysis using closed-loop Nyquist
and Bode arrays. International Journal of Control, 30,5,773-802.

Filipic, B., Urbancic, T., and Krizman, V. (1999). A combined machine learning and
genetic algorithm approach to controller design. Engineering Applications of ArtUl-
cial Intelligence, 12,4,401-409.

Fletcher, R. (1987). Practical methods of optimization. 2nd Edition, John Wiley & Sons.

Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks, 5,1,3 -14.

Fonseca, C. M., and Fleming, P. J. (1993). Genetic algorithms for multiobjective optimi-
zation: Formulation, discussion and generalization. In Forrest, S. (Ed.), Proceed-
ings of the Fifth International Conference on Genetic Algorithms, Morgan Kauf-

mann, pp. 416-423.

Fonseca, C. M., and Fleming, P. J. (1994). Multiobjective optimal controller design with

genetic algorithms. Proceedings of the International Conference on Control '94,

IEE, pp. 745-749.

Fonseca, C. M., and Fleming, P. J. (1995). An overview of evolutionary algorithms in

multiobjective optimization. Evolutionary Computation, 3,1,1-16.

Fonseca, C. M., and Fleming, P. J. (1996). Non-linear system identification with mul-
tiobjective genetic algorithms. Proceedings of the Thirteenth Triennial IFAC World

Congress, pp. 187-192.

Fonseca, C. M., and Fleming, P. J. (1998a). Multiobjective optimization and multiple

constraint handling with evolutionary algorithms - Part I: A unified formulation.

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Hu-

mans, 28,1,26-37.

References & Bibliography 198

Fonseca, C. M., and Fleming, P. J. (1998b). Multiobjective optimization and multiple
constraint handling with evolutionary algorithms - Part II: Application example. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Hu-
mans, 28,1,38-47.

French, I. G., Cox, C. S., and Ho, C. K. S. (1997). Genetic algorithms in model structure
and controller structure identification. Proceedings of the Institute of Mechanical
Engineers, 211,333-343.

Gagnon, E., Pomerleau, A., and Desbiens, A. (1999). Mu-Synthesis of robust decental-
ised PI controllers. IEE Proceedings on Control Theory and Applications, 146,4,
289-294.

Garcia, C. E., and Morshedi, A. M. (1986). Quadratic programming solution of Dynamic
Matrix Control (QDMC). Chemical Engineering Communications, 46,73-87.

Garcia, C. E., Prett, D. M., and Morari, M. (1989). Model predictive control: Theory and
practice -A survey. Automatica, 25,3,335-348.

Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical optimization. Academic
Press.

Goldberg, D. E. (1985). Optimal initial population size for binary-coded genetic algo-
rithms. TCGA Report No. 85001, The Clearinghouse for Genetic Algorithms, Uni-
versity of Alabama, Tuscaloosa.

Goldberg, D. E. (1989a). Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley.

Goldberg, D. E. (1989b). Sizing populations in serial and parallel genetic algorithms. In
Schaffer, J. D. (Ed.), Proceedings of the Third International Conference on Genetic
Algorithms, Morgan Kaufmann, pp. 70-79.

Goldberg, D. E. (1994). Genetic and evolutionary algorithms come of age. Communica-

tions of the Association for Computing Machinery, 37,3,113 -119.

Goldberg, D. E., and Deb, K. (1991). A comparative analysis of selection schemes used
in genetic algorithms. In Rawlins, G. (Ed.), Foundations of Genetic Algorithms,

Morgan Kaufmann, pp. 69-93.

Goldberg, D. E., Deb, K., and Clark, J. H. (1992). Genetic algorithms, noise, and the

sizing of populations. Complex Systems, 6,333-362.

Goldberg, D. E., Deb, K., and Clark, J. H. (1993). Accounting for noise in the sizing of

populations. In Whitley, L. D. (Ed.), Foundations of Genetic Algorithms 2, Morgan

Kaufmann, pp. 127-140.

Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G. (1993). Rapid, accurate optimiza-
tion of difficult problems using fast messy genetic algorithms. In Forrest, S. (Ed.),

Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan

Kaufmann, pp. 56-64.

References & Bibliography 199

Goldberg, D. E., Deb, K., and Korb, B. (1990). Messy genetic algorithms revisited: Studies in mixed size and scale. Complex Systems, 4,415-444.

Goldberg, D. E., Korb, B., and Deb, K. (1989). Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems, 3,493-530.

Goldberg, D. E., and Richardson, J. (1987). Genetic algorithms with sharing for multi- modal function optimization. In Grefenstette, J. J. (Ed.), Proceedings of the Second International Conference on Genetic Algorithms, Laurence Erlbaum Associates, pp. 41-49.

Gray, G. J., Murray-Smith, D. J., Li, Y., Sharman, K. C., and Weinbrenner, T. (1998).
Nonlinear model structure identification using genetic programming. Control Engi-
neering Practice, 6,11,1341-13 52.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-16,1,122-128.

Grefenstette, J. J. (1987). Incorporating problem specific knowledge into genetic algo-
rithms. In Davis, L. (Ed.), Genetic Algorithms and Simulated Annealing, Morgan
Kaufmann, pp. 42-60.

Gürocak, H. B. (1999). A genetic-algorithm-based method for tuning fuzzy logic con-
trollers. Fuzzy Sets and Systems, 108,1,39-47.

Hägglund, T. (1999). On the stability of integral anti-windup loops in discrete-time PID
controllers. Personal communication by electronic mail, 17 May 1999.

Halevi, Y., Palmor, Z. J., and Efrati, T. (1997). Automatic tuning of decentralized PID

controllers for MIMO processes. Journal of Process Control, 7,2,119-128.

Hancock, P. J. B. (1994). An empirical comparison of selection methods in evolutionary
algorithms. In. Fogarty, T. C. (Ed.), Evolutionary Computing: Artificial Intelligence

and Simulation of Behaviour (AISB) Workshop, Leeds, UK, April 1994 - Selected
Papers, Springer-Verlag, pp. 80-94.

Hang, C. C., Loh, A. P., and Vasnani, V. U. (1994). Relay feedback auto-tuning of cas-

cade controllers. IEEE Transactions on Control Systems Technology, 2,1,42-45.

Hart, W. E., and Belew, R. K. (1996). Optimization with genetic algorithm hybrids that

use local search. In Belew, R. K., and Mitchell, M. (Eds.), Adaptive Individuals in

Evolving Populations, Addison-Wesley, pp. 483 -496.

Herrera, F., Lozano, M., and Verdegay, J. L. (1998). A learning process for fuzzy con-

trol rules using genetic algorithms. Fuzzy Sets and Systems, 100,1-3,143 -158.

Hesser, J., and Männer, R. (1991). Towards an optimal mutation probability for genetic

algorithms. In Schwefel, H. -P., and Männer, R. (Eds.), Parallel Problem Solving

from Nature, Springer-Verlag, pp. 23-32.

References & Bibliography 200

Hillis, W. D. (1992). Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure. In Langton, C. G., Taylor, C., Farmer, J. D, and Rasmussen, S.
(Eds.), Artificial Life II, Addison-Wesley, pp. 313-324.

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michi-
gan Press (2nd Edition, MIT Press, 1992).

Holland, J. H. (1987). Genetic algorithms and classifier systems: Foundations and future
directions. In Grefenstette, J. J. (Ed.), Proceedings of the Second International
Conference on Genetic Algorithms, Laurence Erlbaum Associates, pp. 82-89.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267,1,44-50.

Hong, X., and Billings, S. A. (1999). Parameter estimation based on stacked regression
and evolutionary algorithms. lEE Proceedings on Control Theory and Applications,
146,5,406-414.

Huang, W., and Lam, H. N. (1997). Using genetic algorithms to optimize controller pa-
rameters for HVAC systems. Energy and Buildings, 26,3,277-282.

Hunt, K. J. (1992a). Polynomial LQG and H. controller synthesis: A genetic algorithm
solution. Proceedings of the Thirty-First IEEE Conference on Decision and Con-
trol, pp. 3604-3609.

Hunt, K. J. (1992b). Optimal control system synthesis with genetic algorithms. In Män-
ner, R., and Manderick, B. (Eds.), Parallel Problem Solving from Nature 2, El-
sevier Science, pp. 381-389.

Hwang, H. S. (1999). Automatic design of fuzzy rule base for modelling and control
using evolutionary programming. IEE Proceedings on Control Theory and Appli-

cations, 146,1,9-16.

Hwang, C. -L., and Masud, A. S. M. (1979). Multiple objective decision making - Meth-

ods and applications. Lecture Notes in Economics and Mathematical Systems, 164,
Springer-Verlag.

Jeon, Y. -S., Lee, C. -O., and Hong, Y. -S. (1998). Optimization of the control parameters

of a pneumatic servo cylinder drive using genetic algorithms. Control Engineering

Practice, 6,7,847-853.

Jury, E. I. (1973). Theory and application of the z-Transform method. Robert E. Krieger

Publishing Company.

Kawabe, T., Tagami, T., and Katayama, T. (1996). A genetic algorithm based minimax

optimal design of robust I-PD controller. Proceedings of the International Confer-

ence on Control '96, IEE, pp. 436-441.

Kawabe, T., Tagami, T., and Okamura, M. (1998). A matrix inequality design of robust
PID controller with two degrees of freedom. Transactions of the Institute of Sys-

tems, Control, and Information Engineers, 11,1,19-25.

References & Bibliography 201

Koza, J. R. (1992). Genetic programming: On the programming of computers by means
of natural selection. MIT Press.

Krishnakumar, K., and Goldberg, D. E. (1992). Control system optimization using ge-
netic algorithms. Journal of Guidance, Control, and Dynamics, 15,3,735-740.

Kristinsson, K., and Dumont, G. A. (1992).
netic algorithms. IEEE Transactions
1033-1046.

System identification and control using ge-
on Systems, Man, and Cybernetics, 22,5,

Lennon, W. K., and Passino, K. M. (1999). Genetic adaptive identification and control. Engineering Applications of Artificial Intelligence, 12,2,185-200.

Li, C. J., and Jeon, Y. C. (1993). Genetic algorithm in identifying non linear auto regres-
sive with exogenous input models for non linear systems. Proceedings of the 1993
American Control Conference, pp. 2305-2309.

Li, C. J., Tzeng, T. -C., and Jeon, Y. C. (1997). A learning controller based on a nonlinear
ARX inverse model identified by a genetic algorithm. International Journal of
Systems Science, 28,8,847-855.

Lian, S. T., Marzuki, K., and Rubiyah, Y. (1998). Tuning of a neuro-fuzzy controller by
genetic algorithms with an application to a coupled-tank liquid-level control sys-
tem. Engineering Applications of Artificial Intelligence, 11,4,517-529.

Linkens, D. A., and Nyongesa, H. O. (1995a). Genetic algorithms for fuzzy control. Part
1: Offline system development and application. IEE Proceedings on Control The-
ory and Applications, 142,3,161-176.

Linkens, D. A., and Nyongesa, H. O. (1995b). Genetic algorithms for fuzzy control. Part
2: Online system development and application. IEE Proceedings on Control Theory

and Applications, 142,3,177-185.

Linkens, D. A., and Nyongesa, H. O. (1996a). A hierarchical multivariable fuzzy con-
troller for learning with genetic algorithms. International Journal of Control, 63,5,
865-883.

Linkens, D. A., and Nyongesa, H. O. (1996b). Learning systems in intelligent control: An

appraisal of fuzzy, neural and genetic algorithm control applications. IEE Pro-

ceedings on Control Theory and Applications, 143,4,367-386.

Liu, G. P., and Kadirkamanathan, V. (1999). Multiobjective criteria for neural network

structure selection and identification of nonlinear systems using genetic algorithms.
IEE Proceedings on Control Theory and Applications, 146,5,373-382.

Loh, A. P., Tan, W. W., and Vasnani, V. U. (1994). Relay feedback of multivariable sys-
tems and its use for auto-tuning of multi-loop PI controllers. Proceedings of the In-

ternational Conference on Control '94, IEE, pp. 1049-1054.

Loh, A. P., and Vasnani, V. U. (1994). Necessary conditions for limit cycles in multiloop

relay systems. IEE Proceedings on Control Theory and Applications, 141,3,163 -
168.

References & Bibliography 202

Lopez, A. M., Miller, J. A., Smith, C. L., and Murrill, P. W. (1967). Tuning controllers
with error-integral criteria. Instrumentation Technology, November Issue, 57-62.

Maciejowski, J. M. (1994). Robustness of multivariable Smith predictors. Journal of Process Control, 4,1,29-32.

Macready, W. G., and Wolpert, D. H. (1996). What makes an optimization problem hard? Complexity, 1,5,40-46.

Macready, W. G., and Wolpert, D. H. (1998). Bandit problems and the explora-
tion/exploitation tradeoff. IEEE Transactions on Evolutionary Computation, 2,1,
2-22.

Marrison, C. I., and Stengel, R. F. (1997). Robust control system design using random
search and genetic algorithms. IEEE Transactions on Automatic Control, 42,6,
835-839.

Martinez, M., Senent, J. S., and Blasco, X. (1998). Generalized predictive control using
genetic algorithms (GAGPC). Engineering Applications of Artificial Intelligence,
11,3,355-367.

McKay, B., Willis, M., and Barton, G. (1997). Steady-state modelling of chemical proc-
ess systems using genetic programming. Computers and Chemical Engineering, 21,
9,981-996.

Mitchell, M. (1996). An introduction to genetic algorithms. MIT Press.

Neider, J. A., and Mead, R. (1965). A simplex method for function minimization. Com-
puter Journal, 7,308-313.

Onnen, C., Babuska, R., Kaymak, U., Sousa, J. M., Verbruggen, H. B., and Isermann, R.
(1997). Genetic algorithms for optimization in predictive control. Control Engi-

neering Practice, 5,10,1363 -1372.

Palmor, Z. J., Halevi, Y., and Krasney, N. (1995). Automatic tuning of decentralized
PID controllers for TITO processes. Automatica, 31,7,1001-1010.

Patton, R. J., Chen, J., and Liu, G. P. (1997). Robust fault detection of dynamic systems

via genetic algorithms. Proceedings of the Institute of Mechanical Engineers, 211,

357-364.

Patton, R. J., and Liu, G. P. (1994). Robust control design via eigenstructure assignment,

genetic algorithms and gradient-based optimisation. IEE Proceedings on Control

Theory and Applications, 141,3,202-208.

Pham, D. T., and Karaboga, D. (1997). Genetic algorithms with variable mutation rates:
Application to fuzzy logic controller design. Proceedings of the Institute of Me-

chanical Engineers, 211,157-167.

phi, Q. T. (1998). Dynamic optimization of chemical engineering processes by an

evolutionary method. Computers and Chemical Engineering, 22,7-8,1089-1097.

References & Bibliography
203

Porter, B., and Jones, A. H. (1992). Genetic tuning of digital PID controllers. Electronics Letters, 28,9,843-844.

Powell, M. J. D. (1983). Variable metric methods for constrained optimization. In Bachem, A., Grotschel, M., and Korte, B. (Eds.), Mathematical Programming: The State of the Art, Springer-Verlag, pp. 288-311.

Prett, D. M., Garcia, C. E., and Morari, M. (1990). The Second Shell Process Control Workshop. Butterworths.

Prett, D. M., and Morari, M. (1987). The Shell Process Control Workshop. Butterworths.

Rahmoun, A., and Benmohamed, M. (1998). Genetic algorithm based methodology to
generate automatically optimal fuzzy rules. IEE Proceedings on Control Theory
and Applications, 145,6,583-586.

Rao, S. S. (1996). Engineering optimization: Theory and practice. 3rd Edition, John
Wiley & Sons.

Richardson, J. T., Palmer, M. R., Liepins, G., and Hilliard, M. (1989). Some guidelines
for genetic algorithms with penalty functions. In Schaffer, J. D. (Ed.), Proceedings
of the Third International Conference on Genetic Algorithms, Morgan Kaufmann,
pp. 191-197.

Rodriguez-Vazquez, K., and Fleming, P. J. (1997). A genetic programming/NARMAX
approach to nonlinear system identification. Proceedings of the Second Interna-
tional Conference on Genetic Algorithms in Engineering Systems: Innovations and
Applications, IEE, pp. 409-414.

Rodriguez-Vazquez, K., and Fleming, P. J. (1998). Multi-objective genetic programming
for nonlinear system identification. Electronics Letters, 34,9,930-931.

Ros, H. (1989). Some results on Boolean concept learning by genetic algorithms. In
Schaffer, J. D. (Ed.), Proceedings of the Third International Conference on Genetic
Algorithms, Morgan Kaufmann, pp. 28-33.

Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE
Transactions on Neural Networks, 5,1,96-101.

Salomon, R. (1998). Evolutionary algorithms and gradient search: Similarities and dif-
ferences. IEEE Transactions on Evolutionary Computation, 2,2,45-55.

Santos, A., and Dourado, A. (1999). Global optimization of energy and production in

process industries: A genetic algorithm application. Control Engineering Practice,
7,4,549-554.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic al-
gorithms. In Grefenstette, J. J. (Ed.), Proceedings of the First International Confer-

ence on Genetic Algorithms and Their Applications, Laurence Erlbaum Associates,

pp. 93-100.

References & Bibliography 204

Schaffer, J. D. (1987). An adaptive crossover distribution mechanism for genetic algo-
rithms. In Grefenstette, J. J. (Ed.), Proceedings of the Second International Confer-
ence on Genetic Algorithms, Laurence Erlbaum Associates, pp. 36-40.

Schaffer, J. D., Caruana, R. A., Eshelman, L. J., and Das, R. (1989). A study of control
parameters affecting online performance of genetic algorithms for function optimi-
zation. In Schaffer, J. D. (Ed.), Proceedings of the Third International Conference
on Genetic Algorithms, Morgan Kaufmann, pp. 51-60.

Semino, D., and Scali, C. (1998). Improved identification and autotuning of PI control- lers for MIMO processes by relay techniques. Journal of Process Control, 8,3,
219-227.

Shafiei, Z., and Shenton, A. T. (1997). Frequency-domain design of PID controllers for
stable and unstable systems with time delay. Automatica, 33,12,2223-2232.

Shieh, L. S., Wang, W., and Tsai, J. S. H. (1999). Optimal digital design of hybrid uncer-
tain systems using genetic algorithms. IEE Proceedings on Control Theory and Ap-
plications, 146,2,119-130.

Shieh, L. S., Zheng, J., and Wang, W. (1997). Digital modeling and digital redesign of
analog uncertain systems using genetic algorithms. Journal of Guidance, Control,
and Dynamics, 20,4,721-728.

Smith, O. J. M. (1957). Closer control of loops with dead time. Chemical Engineering
Progress, 53,5,217-219.

Spears, W. M. (1993). Crossover or mutation? In Whitley, L. D. (Ed.), Foundations of
Genetic Algorithms 2, Morgan Kaufmann, pp. 221-237.

Stadnyk, I. (1987). Schema recombination in a pattern recognition problem. In Grefen-

stette, J. J. (Ed.), Proceedings of the Second International Conference on Genetic
Algorithms, Laurence Erlbaum Associates, pp. 27-35.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Schaffer, J. D. (Ed.),

Proceedings of the Third International Conference on Genetic Algorithms, Morgan

Kaufmann, pp. 2-9.

Tan, K. C., and Li, Y. (1997). Evolutionary system identification in the time domain.

Proceedings of the Institute of Mechanical Engineers, 211,319-323.

Takahashi, R. H. C., Peres, P. L. D., and Ferreira, P. A. V. (1997). Multiobjective H2/H..

guaranteed cost PID design. IEEE Control Systems Magazine, 17,5,37-47.

Thierens, D. (1995). Analysis and design of genetic algorithms. Doctoral Dissertation,

Katholieke Universiteit Leuven, Belgium.

Thierens, D., and Goldberg, D. E. (1993). Mixing in genetic algorithms. In Forrest, S.

(Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms,

Morgan Kaufmann, pp. 38-45.

References & Bibliography 205

Thierens, D., and Goldberg, D. E. (1994). Convergence models of genetic algorithm se- lection schemes. In Davidor, Y., Schwefel, H. -P., and Männer, R. (Eds.), Parallel
Problem Solving from Nature 3, Springer-Verlag, pp. 119-129.

Thompson, H. A., Chipperfield, A. J., Fleming, P. J., and Legge, C. (1999). Distributed
aero-engine control systems architecture selection using multi-objective optimisa- tion. Control Engineering Practice, 7,5,655-664.

Trebi-Ollennu, A., and White, B. A. (1997). Multiobjective fuzzy genetic algorithm op- timisation approach to nonlinear control system design. IEE Proceedings on Con-
trol Theory and Applications, 144,2,137-142.

Varsek, A., Urbancic, T., and Filipic, B. (1993). Genetic algorithms in controller design
and tuning. IEEE Transactions on Systems, Man, and Cybernetics, 23,5,1330-
1339.

Vlachos, C., Evans, J. T., and Williams, D. (1997). PI controller tuning for multivariable
processes using genetic algorithms. Proceedings of the Second International Con-
ference on Genetic Algorithms in Engineering Systems: Innovations and Applica-
tions, IEE, pp. 43-49.

Vlachos, C., Williams, D., and Gomm, J. B. (1998). Solution to the Shell standard con-
trol problem using genetic algorithms. Proceedings of the International Conference
on Control '98, IEE, pp. 1587-1592.

Vlachos, C., Williams, D., and Gomm, J. B. (1999a). Genetic approach to decentralised
PI controller tuning for multivariable processes. IEE Proceedings on Control The-
ory and Applications, 146,1,58-64.

Vlachos, C., Williams, D., and Gomm, J. B. (1999b). Tuning decentralised controllers
for multivariable systems -A genetic approach. Proceedings of the Second Wismar
Symposium on Automatic Control, Hochschule Wismar, Germany.

Wang, P., and Kwok, D. P. (1994). Optimal design of PID process controllers based on
genetic algorithms. Control Engineering Practice, 2,4,641-648.

Warwick, K., and Kang, Y. -H. (1998). Self-tuning proportional, integral and derivative

controller based on genetic algorithm least squares. Proceedings of the Institute of
Mechanical Engineers, 212,437-448.

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1,1,67-82.

Wong, C. -C., and Fan, C. -S. (1999). Rule mapping fuzzy controller design. Fuzzy Sets

and Systems, 108,3,253-261.

Wood, M. K., and Dantzig, G. B. (1949). Programming of interdependent activities. I.

General discussion. Econometrica, 17,193-199.

Wood, R. K., and Berry, M. W. (1973). Terminal composition control of a binary distil-

lation column. Chemical Engineering Science, 28,1707-1717.

References & Bibliography 206

Zalzala, A. M. S., and Fleming, P. J. (1996). Genetic algorithms: Principles and applica-
tions in engineering systems. Neural Network World, 6,5,803-820.

Zhou, K., Doyle, J. C., and Glover, K. (1996). Robust and optimal control. Prentice-Hall.

Zhuang, M., and Atherton, D. P. (1994). PID controller design of a TITO system. IEE
Proceedings on Control Theory and Applications, 141,2,111-120.

Ziegler, J. G., and Nichols, N. B. (1942). Optimum settings for automatic controllers.
Transactions of the American Society of Mechanical Engineers, 64,759-768.

Zuo, W. (1995). Multivariable adaptive control for a space station using genetic algo-
rithms. IEE Proceedings on Control Theory and Applications, 142,2,81-87.

Zuo, W. (1997). A genetic approach to adaptive control system design. Proceedings of
the Institute of Mechanical Engineers, 211,15-23.

Published Work

Published Work

207

Vlachos, C., Evans, J. T., and Williams, D. (1997). PI controller tuning for multivariable
processes using genetic algorithms. Proceedings of the Second International Con-
ference on Genetic Algorithms in Engineering Systems: Innovations and Applica-
tions, IEE, pp. 43-49.

Vlachos, C., Williams, D., and Gomm, J. B. (1998). Solution to the Shell standard con-
trol problem using genetic algorithms. Proceedings of the International Conference
on Control '98, IEE, pp. 1587-1592.

Vlachos, C., Williams, D., and Gomm, J. B. (1999a). Genetic approach to decentralised
PI controller tuning for multivariable processes. IEE Proceedings on Control The-
ory and Applications, 146,1,58-64.

Vlachos, C., Williams, D., and Gomm, J. B. (1999b). Tuning decentralised controllers
for multivariable systems -A genetic approach. Proceedings of the Second Wismar
Symposium on Automatic Control, Hochschule Wismar, Germany.

