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Abstract 

This thesis reports the bedload transport characteristics of two small upland streams on 
Plynlimon, mid-Wales. The Nant Tanllwyth is a small upland channel undergoing a 

period of land use change and the Mon Cyff is an open moorland catchment previously 

used as a control in paired catchment studies. In accordance with forest guidelines, an 

ecologically centred approach to timber harvesting was undertaken in the Nant 

Tanllwyth. Measures included the removal of brashings from near watercourses, hand 

felling proximal to the main channel and using brash matting to protect soils from heavy 

mechanical operations. 

Bedload transport characteristics were monitored by measuring trapped sediment in end 

of channel bedload traps, whilst tracing various sizes of magnetically tagged clasts 

through the channels. Over a two-year period, the sediment fluxes in both the harvested 

Nant Tanllwyth and in the nearby Afon Cyff were examined. Measured bedload yields 

by trapping were 0.91 t km2yr-1 in the Afon Cyff and 7.47 t kmý yr-1 in the Nant 

Tanllwyth. Analysis of historical records showed that in both channels bedload yields 

had decreased more than six-fold since the 1970s. Bedload trap data showed 

differences between the two channels in their response to threshold strearnflow. The 

Nant Tanllwyth showed a clear linear relationship between bedload outputs and 

strearnflow over a 0.3 m3 S_ I threshold, whereas the Afon Cyff demonstrated more 

variability around its linear response to threshold events. 

Tracer results underline this difference between the channels and demonstrate the 

stochastic nature of bedload transport in both reaches. Mean travel distances of all 

clasts were 39.74 m yr-1 and 27.26 m yr- I in the Nant Tanllwyth and Afon Cyff 

respectively. Whilst a probability function for tracer travel distance for any individual 

clast or size range is not provided, size selectivity of smaller clasts is shown in both 

reaches and mean travel distances correlate significantly with streamflow thresholds. 

The decrease in bedload yields in the undisturbed Mon Cyff since the 1970s is 

attributed to the effects of a previously unreported dam-break in the upper reaches of the 

catchment. This feature has significant implications for the use of the Mon Cyff in 

V 



future paired catchment studies. Decreases in bedload yields in the Nant Tanllwyth are 

attributed to the further stabilisation of ditches and soils under mature forestry. 

Abrasion of clasts is controlled primarily by travel distance rather than abrasion in 

place, but abrasion levels in both channels are not seen as an important determinants of 

total bedload yield. 

Evidence presented suggests that in the short term, new forestry practices have reduced 

the impacts of harvesting on bedload flux. Little disturbance of the stream channels or 

banks took place within the study and although tracer clasts moved slightly further 

during the post-harvest phase, yields from the Nant Tanllwyth bedload trap remained 

unaltered. This discrepancy is thought to represent the bedload trap's inherent lag 

monitoring change. 
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Section 1: Introduction 



Bedload transport in gravel bed rivers is controlled by both the hydrological and 
sedimentological parameters in the surrounding catchment. This thesis will examine 
the way in which timber harvesting of plantation forestry affects these parameters and 
subsequently changes the nature of coarse bedloadflux in a small mountain stream. 

1.1. The issue: clearfelling of plantation forests and its effect on 

streams 

Changes in upland bedload yields can affect both channel morphology and downstream 

landforms and flow parameters, in turn these can impact on the ways in which river 

channels and their water yields are used as a resource. Channel instability problems are 
demonstrated on the Mon Trannon a 72 km2catchment in mid Wales where Leeks et al. 
(1988) found changes in upstream engineering affecting downstream channel erosion. 
The magnitude and distribution of bedload yields also affect the spawning of fish 

(especially salmon) due to infilling of the sediment matrix (Lisle and Lewis, 1992) and 

hence spawning beds (Maitland et al., 1990; Bellamy, 1992). There are also possible 

implications for reservoir infilling (Lovell et al., 1973; Duck and McManus, 1987) 

where supply capacity is reduced. 

To date few data are available from which we can assess the impact of upland plantation 

forestry on the mechanics of bedload flux. The UK studies which have reported the 

effects of forest land use on bedload yields do not show a consistent trend. Indeed, the 

extent of changes in bedload yields due to forest activities has shown considerable 

variation. Bedload changes include a 40% increase in bedload at Balquhidder (Blackie 

and Newson, 1986; Ferguson and Stott, 1987; Johnson, 1993) in the forested Kirkton 

catchment. Numerous studies demonstrate decreases in the medium term coarse 

sediment outputs due to the effect of debris jams (Hedin et al., 1988; Whitaker, 1992; 

Assani and Petit, 1995). Painter et al. (1974) highlighted the difficulty of accounting 

for the large number of variables affecting bedload experiments. Leeks (1992) 

examined the effects of the forest rotation on suspended and bedload yields and showed 

that delivery of sediment was from "catchment surface, drains and tracks" with the 
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surface area damaged by forwarders and skidders. Bedload yields in the Plynlimon 

catchments were reported by Moore and Newson (1986) with the afforested Nant 
Tanllwyth giving yields of 38.4 t kM-2 yr-1 and moorland Afon Cyff 6.1 t kM-2 yr- I. At 
Balquhidder, Central Scotland, Ferguson et al. (1987) reported 9 fold increases in 

bedload yield of the Kirkton catchment after felling, with pre-harvest yields of 56.6 t 
kM-2 yr-1 and post-harvest yields increasing to 462.8 t kM-2yr-1. In the Loch Ard 

catchment, Central Scotland, Ferguson et al. (199 1) showed a doubling in suspended 
sediment outputs following clearfelling of 85 % of the catchment from I to 2t kM-2 yr-1 

The importance of understanding the role of forestry in bedload transport characteristics 
is underlined by the changing land use in the United Kingdom. Table 1.1 shows the 

changes in forest cover in the United Kingdom since 1980. Total forest cover has 

increased by 18% since 1980/81 and the increase in area of broadleaf by around 16% 

between 1985/86 and 1996/97 following introduction of grant schemes to encourage 

new planting. 

Table 1.1. Forest cover in the United Kingdom since 1980/81 

Year Coniferous woodland Broad-leaved 
woodland 

1000 Ha '000 Ha 
80/81 1430 691 
85/86 1520 781 
90/91 1582 830 
94/95 1581 890 
95/96 1585 901 
96/97 1597 907 

Source: The environment in your Pocket. The Departmentfor the Environment, Transport and 

Regions (1998) HMSO 

Bedload fluxes have been demonstrated to vary both spatially and temporally, with a 

number of discrete mechanisms (over and above the relationship between discharge and 

transport) governing the nature of bedload transfer over the short, medium and long 

terms. These include mechanisms, such as the propagation of sediment slugs (Nicholas 
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et al., 1995), changes in the nature of sediment sources (Burt et al., 1983), adjustments 
to bed armour (Gomez, 1983) and changes in overall hydrology (Johnson, 1991). 

Changes have recently taken place in the UK in forest clearance practices. In the past, 
aerial cableways have been used on steep terrain to extract timber from steep slopes to 
roads and clearings where it was loaded onto lorries. On shallower slopes, heavy 

machinery such as forwarders were previously used. Modern clearfelling practices 
utilise 'one machine' operations, where a single machine called a timber harvester can 
drive into the forest, cut down trees, strip brashings and chop whole trees into logs in a 
single action. In addition, rather than harvesting a whole catchment, plot-scale 
harvesting is now commonly undertaken to minimise disturbance and harvesting is 

timed to avoid long periods of heavy rain and run off. The introduction of this 

machinery, the practice of laying down brash matting and the use of buffer strips around 
water courses has increased the need for a re-examination of the effects of forest 

operations on bedload transport. The technical recommendations for current forestry 

practice are included in the publication Forest and Water Guidelines (1993). 

To successfully examine the significance of modern forest clearance on bedload 

transfer, the first requisite is for a process-based study of bedload transfer, ascertaining 

the nature and pattern of sediment transfer before and after felling operations. 

1. The history and extent of forestry in the UK 

Since the realisation during the First World War that the nation's timber resources were 
limited (Blackie and Newson, 1986), Britain has embarked on a major policy of 

afforestation to supply the demand for timber. In 1980 Britain imported 92% of its 

timber resources (Newson and Calder, 1980) and the government committed to 

doubling its resource base, with a further 3 million ha of development planned. 

Approximately 11.5% of Wales is under commercial forest cover (Omerod et al. 1987) 

Conversion to plantation forest has been and continues to be, the biggest change of land 

use in the UK, peaking in the 1970s with 40,000 ha yr-1 of planting (Robinson and 

Blyth, 1982). The majority of this development has taken place throughout the upland 
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areas of North and West Britain (Binns, 1979,1986; Newson and Calder 1980), land 

traditionally of the lowest quality. These areas are also associated with the highest 

rainfall totals and are consequently the water supply regions of the UK. 

Historical patterns of afforestation in England, Scotland and Wales have differed 

slightly, with the respective peak of planting occurring in England in the period 1955-59 

(12 000 ha yr-1). In Scotland the peak was in the period 1970-74 (35 000 ha yr-1), and 
in Wales during the period 1960-64 (6 000 ha yr-1) (Omerod and Edwards, 1985). With 

planting times largely controlled by political and economic conditions, a disparity exists 

in the extent and pattern of clearfelling required. The major increase in the requirement 

of clearfelled land in Wales is therefore associated with the tremendous increase in 

planting occurring during the 1950s and 1960s in Wales (6000 ha yr-1 in Wales alone). 

Only a small percentage of timber planted this century has been harvested (Stott, 1987) 

and harvesting will increase further the maturing of current forest cover. 

1.2.2. The implications for water users. 

The derivation of water from uplands in the UK is important since a large percentage of 

domestic and industrial supplies flow from upland catchments. Water suppliers 

traditionally favoured forestry as cover for water supply catchments in the UK (Leeks 

and Roberts, 1987) believing forests to provide protection against pollution and soil 

erosion (Cuthbertson, 1948). However, with the work of Law (1956) highlighting 

changes in hydrology and Newson (1980a) showing changes in coarse sediment 

outputs, the impact of commercial forestry on water users has become increasingly 

spotlighted. 

Reported effects of increased sediment supply and changing sediment regimes are 

numerous and include the impacts on fisheries, morphology and reservoir capacity. 

Studies on fisheries (Harriman and Morrison, 1982; Stoner and Gee, 1985; Carling and 

Orr, 1990; Bellamy, 1992) have concentrated on the adjustment of sediment 

distributions of surface river gravels as changes in the near surface matrix affect Salmon 

spawning success. The impact on downstream river morphology (Bilby, 1984; Carling, 

1988; Newson, 1986; Newson and Leeks, 1987) and the changes in reservoir capacity 
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(Stretton, 1984, Duck and McManus, 1987) are also possible consequences of changes 
in sediment supply. Significant research has been undertaken in North America (Grant 

and Wolff, 199 1; Ursic, 199 1) and New Zealand (O'Loughlin et al., 1980) to establish 
the effects of forest clearance on sediment transport, though little research has been 

undertaken on how the new harvesting techniques might impact on bedload considering 
the specific climatic and geomorphic conditions of the United Kingdom. 

1.2.3. The implications of new technologies and techniques 

New techniques for forest-clearance are now widely practised, including the one- 

machine operations now in use at Plynlimon. Previous work on the effects of forest 

operations on water resources (Haupt and Kidd, 1965; Ferguson and Stott, 1987) may 
be of limited value as these studies were based on different practice and technology. 

Stott (1997b) states that harvesting in previous years was generally undertaken with 

chainsaws and aerial runways, but personal observations now suggest that the major 

erosive damage associated with these methods might now have been limited by the 

techniques now used by forest operators regarding water management (Forestry 

Conu-nission, 1993). 

It is now appropriate to examine the effects of the implementation of these techniques. 

Not only are some previous experiments associated with outdated harvesting machinery, 

but consideration of the results of previous studies has prompted a more ecologically- 

centred harvesting philosophy, using environmentally sensitive plot-scale (as opposed 

to catchment- scale) harvesting. 

1.2. The research ga 

Although some research into bedload transport in forest catchments has been 

undertaken, a number of areas are either under- developed, do not include the felling 

phase of the forest rotation, or have not used modern techniques to examine potentially 

subtle changes in bedload output. The areas outlined overleaf are identified as areas 

where opportunity exists for further investigation: 
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I Bedload tracers, whilst proven as an aid in understanding bedload transfer, have not 
been used in conjunction with forestry land use change; 

2 tracers have not been used in conjunction with bedload traps as a method for 
independently assessing flux in the same channel, and 

3 forest clearance mechanisms are changing, with plot-scale harvesting practice 
undertaken in the United Kingdom and new timber harvesting technology in place 
and have not yet been investigated. 

1.3. Thesis development 

1. Project Aims 

In order to attempt to address the research opportunities above and to direct the research 

work, a set of aims were formulated early in the project. They are listed below, and will 
be addressed in the discussion and conclusions in sections 5 and 6: 

I To ascertain the effects of a change in land use in one catchment on the bedload 

characteristics of the main channel using a traditional paired catchment study; 

2 to take an holistic approach to bedload transport, in studying totalflux, size 

distribution and individual grain dynamics in the natural environment; 

3 to assess how changing sediment production regimes affect the nature of bedload 

transport, and 

4 to examine howforest operations can be improvedfurther to minimise the impacts 

of timber-harvesting. 
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1.3.2. Thesis structure 

This introduction aims to set out the problem, rationalise a possible hypothesis and set 

out the aims of the project. The literature review (Section 2), will examine the issues of 
forestry, the mechanics of sediment transport and discuss the previous use of tracers in 

fluvial geomorphology. Section 3, Methodology, will describe the monitoring of 
hydrological variables and the design and implementation of tracing and trapping 

progranu-nes to establish the bedload regimes for the two channels. In the Section 4, 

Results, the flow data for the experimental period is analysed and related to bedload trap 

data and tracer travel distances. The discussion will consider if the partial clearfelling 

of the Nant Tanllwyth catchment in April 1996 affected the transport characteristics 

(both flux dynamics and total load) of the Nant Tanllwyth and examine these results 

with reference to the Afon Cyff. It will also consider the changes in catchment outputs 

since the study by Moore and Newson (1986) and Leeks (1992). 

1.4. Field sites 

1. Selection Criteria 

Field sites were required to test out the hypothesis and aims of the project outlined and 

discussed above. Sites were required that specifically satisfied the logistical, financial 

and scientific constraints of the project. The major requirements identified for suitable 

field sites are listed below: 

I An upland afforested area, with a stream network with measurable bedload flux; 

a catchment undergoing harvesting of a significant portion of its area; 

3 the availability of hydrometric instrumentation to monitor streamflow; 

4 the availability of a paired catchment to provide control in the experiment, and 
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5 accessible driving distance from Liverpool John Moores University. 

The project required catchment sites that could be characterised in terms of their 
geornorpho logical and hydrological parameters prior to a time of land use change. It 

was therefore necessary to have a suitable time to monitor both catchments and quantify 
total sediment fluxes under a range of flows and conditions. A relatively active pair of 
channels was deemed necessary, as in streams exhibiting low sediment discharges, any 
changes due to felling might prove difficult to quantify in the short to medium term. 
The consent and co-operation of relevant forest management was needed to confirm the 
time of felling and this was available at the Plynlimon catchments. The Plynlimon 

catchments also offered an unparalleled suite of data, both historic and current, 
including strearnflow, meteorological and long-term sediment records. 

The use of a paired catchment study was important to the aims of the project, with 

paired catchments providing a useful tool in geornorphological investigation (Moore 

and Newson, 1986). It was intended that the use of a control, in conjunction with the 

changing catchment, would provide an additional tool for disentangling data from the 

many environmental factors that would inevitably influence the results, particularly in 

terms of extreme events. The catchments needed to be similar in physiographic, 

hydrologic and meteorological characteristics. 

Finally and crucially, with the project's financial and logistical constraints, a location 

was required that allowed easy access from Liverpool. Access had to allow trips to be 

undertaken with the minimum of notice, permitting fieldwork to be carried out soon 

after flood events, during good weather or with available field staff. 

1.5. The Plynlimon Catchments 

The Plynlimon catchments are located on the spine of the Cambrian Mountains in mid- 

Wales, in the headwaters of the Rivers Wye and Severn. The primary research areas 

were the channels of the Nant Tanllwyth and Afon Cyff, headwater streams of the 

Rivers Severn and Wye respectively. With the consent and co-operation of the Institute 

of Hydrology, it was possible to use the Plynlimon research catchments and associated 
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instrumentation (Newson, 1976; Kirby et al., 1991). The catchments have been 

operational since 1968 and now maintain intensive hydrology, water quality and 

sediment monitoring networks (Leeks and Roberts, 1987; Leeks, 1992; Stott and Marks, 

1998). The stream channels are influenced by both the local hard rock geology, which 
is Ordovician and Silurian mudstones and shales and glacially derived cobbles and 
boulders. Much of the bedload is made up from this material and reworking of fluvio- 

glacial material of similar composition. Table 1.2 below lists various physical 

characteristics of the stream channels and Figure 1.1 is a location map of the Plynlimon 

catchments, showing their basic drainage network and location of experimental channel 

reaches. Plate 1.1 is a view of the forested Nant Tanllwyth channel reach before timber- 

harvesting operations began. Plate 1.2 shows a section of the Afon Cyff experimental 

channel reach at the start of the project. No major land use change occurred within the 

Afon Cyff catchment during the field study period. 

1.5.1. Catchment characteristics 

The basic catchment characteristics are summarised in Table 1.2 below. With 

clearfelling taking place adjacent to the channel banks in the Nant Tanllwyth, timber- 

harvesting activity was expected to manifest itself on sediment production sources both 

within the main channel as well as in the surrounding catchment areas. Further details 

on channel characteristics are given in section 1.6.2. Data in Table 1.2 reproduced from 

Newson (1976,1980a) is indicated. 
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Table 1.2. Physical Characteristics of the Plynlimon Catchments 

Measurement Units Nant Tanilwyth Mon Cyff 

Physiographic 
characteristic 

Catchment area 
Altitude range 
Land use 
Drainage density 
Mainstream length 

Overland slopes (0-9') 
(10-190) 

Channel gradient 

Stream flow (1980-1990) 

Mean 
Max 

" Reported in Newson (1976,1980a) 

(kM2) 0.89 3.13 
350 -570 360-560 
Forestry Moorland 

km km 2.5 1.9 
km 1.9 2.9 

(3.3 including drains) 

% 69.4 47.5 
30.6 52.5 

m km-1 58.2 79.4 

m3 s- 1 0.066 0.20 
m3 s- 1 2.66 6.07 

The Nant Tanllwyth catchment area is approximately one third that of the Mon Cyff. 

This difference is reflected in the mean and maximum strearnflow that the channels 

produce. Mean flow during the 1980s in the Afon Cyff (0.07 m3 S-I ) is approximately 

three times that of the Nant Tanllwyth (0.20 rnýs-) and maximum flow is over twice as 

high (6.07 m-'s-1 and 2.66 M3 s-1 respectively). Further analysis of flow thresholds in the 

channels is given in section 4.1. The Tanllwyth has a similar range in altitude to the 

Cyff and both bedload traps are at 360 m A. O. D.. Land use in the Nant Tanllwyth is 

commercial forestry with its forest boundaries extending through the entire catchment. 

Main channel length is shorter in the 1.9 km Nant Tanllwyth with the Afon Cyff one km 

longer; effective drainage density is greater however in the Nant Tanllwyth than in the 

Afon Cyff. Drainage density is greatly affected by the existence of forest drainage 

ditches in the Nant Tanllwyth, which nearly doubles its drainage density. Newson and 

Harrison (1978) however, highlight the effects of piping and peat throughflow as being 

particularly important in the moorland Mon Cyff catchment. Greatest catchment slope 

angles are found in the Mon Cyff, with over 50% of the catchment having slopes 

greater than 100. A similar index in the Nant Tanllwyth shows only 31% in this range. 

Both streams are of a pool-riffle type, exhibiting areas of channel where bedrock is 

exposed, as well as areas where accumulations of sediment up to 0.5 m deep 
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predominate. The Mon Cyff has greater areas of flat, si-nooth bedrock and where this is 

the case, the bedrock is significantly smoother than the broken shale beds of the Nant 

Tanllwyth. 

A location map of the Plynlimon catchments is shown in Figure 1.1 below, with forest 

cover shaded. Locations of bedload traps and experimental channel reaches are also 

indicated. Descriptions of each catchment are given individually below. 

Figure I. I. Map of Plynlimon experimental catchments 
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NANT TANLLWYTH 

The Nant Tanllwyth sub-catchment is set between two larger catchments, which are also 
utilised for commercial plantation forestry. To the North is the Hafren catchment, 
officially the source of the River Severn. The Hafren has been the subject of several 
studies into the effects of afforestation on sediment and hydrology ( e. g. Newson and 
Harrison, 1978) as well as the effects of afforestation on fish populations (Crisp et al., 
1980). To the south, the recently felled Mon Hore was studied by Leeks (1992) with 

reference to the impact of commercial forestry on sediment dynamics. 

The catchment itself has near complete forest cover, with plantation forest running right 

to the channel banks. Very small unplanted areas are present in the catchment, most 

notably in a poorly drained flat area on the south side of the experimental channel and at 

the top of the study reach. This area was approximately 40 m long and 20 m wide. 

During planting of the catchment in the 1940s, buffer zones were not incorporated 

between forest boundary and stream channels. As such, mature trees exist less than Im 

from the banks on both sides of the channel and drainage ditches run directly into the 

main channel network. Plate 1.1 shows a view through the Nant Tanllwyth taken before 

felling operations, located approximately 200 m above the bedload trap. 
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Plate 1.1. The Plynlimon Catchments: Nant Tanllwyth prior to timber harvesting 

e 

Figure 1.2 shows the harvesting regime of the Nant Tanllwyth, indicating the direction 

of timber extraction and the order in which areas were harvested. 
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Figure 1.2. Harvesting regime of the Nant Tanllwyth catchment 
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AFON CYFF 

The Mon Cyff catchment lies 4 km to the south west of the Nant Tanllwyth and is a 
3.12 kmý open moorland catchment. Land is used for sheep grazing, though a track 

runs through the lower portion of the catchment that is used for the testing of rally 

touring cars. Field observations suggest that small sediment inputs might derive from 

debris from this track thrown into the stream network by passing high-speed vehicles. 

The existence of a nineteenth century lead mine in the upper reaches could potentially 

change catchment drainage characteristics, but otherwise there are no artificial changes 

to the catchment drainage network. During summer 1999, the presence of an old dam 

(Hill, pers comm) was also discovered in the upper catchment, the structure is thought 

to date from the nineteenth century. Studies by Newson (1976) and Newson and 

Harrison (1978) make further reference to the catchment details. A view of the lower 

portion of the Mon Cyff catchment is shown Plate 1.2 below. The furthest point of the 

channel visible being the steepest section of the experimental channel used in the study. 

Plate 1.2. The Plyrdimon Catchments: Mon Cyff 
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1.5.2. Channel characteristics 

CHANNEL DIMENSIONS 

Characteristics of the experimental reaches shown in Figure 1.1 are highlighted in Table 
1.3. 

Table 1.3. Physical Characteristics of the experimental channel reaches 

Length Mean channel Mean thalweg 
slope depth 

0/0 
...... . ..... . .......... .... Nant Tanilwyth 397 5.4 0.08 

Mon Cvff 327 4.5 0.16 

Both experimental channels reaches end at the pre-installed channel bedload traps near 

the confluence point of their source channels: the River Wye in the Afon Cyff and Afon 

Hafren (River Severn) for the Nant Tanllwyth. The Nant Tanllwyth experimental 

channel is some 21 % longer than the channel of the Afon Cyff. By examining the 

gradients of entire channel lengths (see in Table 1.2), the Afon Cyff is considerably 

steeper than the Nant Tanllwyth. Examining gradients of just the small experimental 

sections reverses this trend, with the Nant Tanllwyth being slightly steeper. Mean 

thalweg depth of the Afon Cyff is double that of the Nant Tanllwyth. This can be 

attributed to the larger pools within the channel and two significant falls within the 

study reach. 

BEDLOAD GRAIN SIZE DISTRIBUTION 

Methods for determining grain size distributions are discussed in section 3. To place 

the study in context, approximate grain size distributions are given below for each 

experimental channel. 
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Nant Tanllwyth 

Figure 1.3 shows the approximate grain size distribution for the Surface material In the 
Nant Tanllwyth. These were determined using Wolman counts at random exposed 

points in the channel. Figure 1.4 shows a more detailed sub-surface distribution 

obtained by a series of freeze core samples taken during the project. Freeze core data 

shows only clasts below 64 mm. 

Figure 1.3. Surface grain size distribution of Nant Tanllwyth channel bed 

Using a Wolman based counting method, the median b-axis of clast in the Nant 

Tanllwyth falls in the 32-45 mm category, with long tails either side of the median. The 

method uses a counting strategy, so the median represents the number of clasts rather 

than a median derived by mass (sieving). It was decided that this was the best way to 

attempt to make a tracer distribution, as due to technical difficulties, tracers could not be 

manufactured to represent all parts of the size distribution. The method did create 

problems in measuring small gravels, and was particularly susceptible to error in 

determining sites to chose for sampling. 

To augment this surface sample, sieving of samples obtained by freeze coring was 

undertaken in conjunction with the Institute of Hydrology and these data are shown 

below in Figure 1.4. Full details of this method are given in section 3. 
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Figure 1.4. Freeze core derived sub-surface distribution of the Nant Tanllwyth channel bed 

The three trend lines in Figure 1.4 represent the size distribution in the total depth of 

core (- 0.3 m), the top 0.1 rn and from 0.1 - 0.2 m. The surface distribution is 

significantly coarser than the sub-surface distribution. In the surface distribution 24 % 

of sediment is smaller than 11.2 mm, whereas in the sub-surface distribution 48 % is 

below this size threshold. The difference is mirrored throughout the smaller size 

intervals of the distribution. 

Af on Cyff 

Figure 1.5 shows the approximate grain size distribution for the surface material in the 

Mon Cyff. These were also determined using surface counts. Again, this is followed 

(Figure 1.6) by a more detailed examination of the substrate obtained from freeze core 

samples. 
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Figure 1.5. Surface grain size distribution of Mon Cyff, derived from surface counts 
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The Mon Cyff surface sample shows a significantly more even distribution, 

maintaining a peak in the 32-45 mm class. However, the distribution has shorter tails, 

and smaller percentages in the small size fractions (8-16 rnm). 
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Figure 1.6. Freeze core derived sub-surface size distribution of the Mon Cyff 

The subsurface freeze core samples for the Mon Cyff (Figure 1.6) show a different 

pattern to the Nant Tanllwyth. There is little difference in the samples from different 

depths, suggesting that a vertical sediment gradient does not exist in the Afon Cyff, and 

that is well mixed. 

Comparisons of both channels 

Figure 1.7. Comparisons of size distribution based on surface counts in Nant Tanllwyth and Mon 

Cyff 
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The size distributions of the two channel's surface samples (Figure 1.7) show curves of 

slightly different shapes and demonstrate a coarser distribution in the Mon Cyff, 

exaggerated in the largest size categories. In the surface samples no sediment in the 

smallest size ranges is found in the Mon Cyff which could highlight either 

measurement deficiency, or alternatively the existence of armour. Freeze core data 

(Figure 1.6) confirm that these small clasts do exist in the Mon Cyff. However, there is 

no difference in surface and sub-surface distributions in the Mon Cyff, which suggest 

armour is not present. There are more fines in the Nant Tanllwyth than in the Mon 

Cyff, which suggests forest ditches still provide some contribution of sediment to the 

Nant Tanllwyth channel. These results are comparable to recent studies from Brewer et 

al. (1992) but show less fine sediment than from earlier work. Billi (1986) showed that 

the bedload size distributions of the two streams were alike using surface samples. 

Similarly to this study, the variation in samples between bedload traps, bulk samples 

and sub-surface sediment in the Nant Tanllwyth showed a greater proportion of fines. 

Arkell et al. (1983) showed the high volume of fines entering from two surveyed ditch 

systems in the Nant Tanllwyth. The increased frequency of fines in the Nant Tanllwyth 

was attributed to the existence of these forest ditches throughout the catchment, some of 

which were heavily eroded. 

Forestry ditches still make a contribution to the sediment load and grain size distribution 

of the Nant Tanllwyth, though due to the flushing out of sediment (which, as 

observations in the Nant Tanllwyth show is frequent) drainage ditches have been eroded 

to bedrock and become supply limited. 
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Figure 1.8. Freeze-core grain size distributions in the Nant Tanllwyth and Mon Cyff 

The distribution of the bed in the Mon Cyff is finer in the smaller size ranges, but in the 
largest sizes, the Nant Tanllwyth has a coarser distribution. 

BEDLOAD SHAPE DISTRIBUTION 

Shape plays a potentially important, though often secondary role in determining travel 
distance. If shape distributions from the two channels had been significantly different, 

further analytical problems would arise. In addition, shape may govern abrasion rates 
by breakage of clasts occurring more readily on thin or angular gravel. However, 

bedload shape distribution in both channels was found to be almost identical (also seen 
in Billi) and the distributions are shown below of Zingg (Figure 1.9) and Krumbein 

(Figure 1.10) analysis. Zingg analysis was chosen to give a clear descriptive indication 

of the shape distribution of the two channels, along with providing a set of values to 

compare with notable previous work (Ergenzinger, 1992). The Zingg classification also 

provides an objective measure of particle form (Briggs, 1977). The Krumbein 

sphericity index provided a more convenient assessment for statistical analysis in terms 

of its analysis providing an output between 0 and 1, though in reality most particles fall 

between 0.1 and 0.9. 

For shape distribution, clasts large enough to be fitted with magnets for tracing purposes 

were selected at random and measured. The Zingg distribution showed a large skew 
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towards blades and discs, with few rods and spheres present. This can be easily 
attributed to the nature of the geology. 
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Figure 1.9. Particle shape distribution of the Nant Tanllwyth and Mon Cyff. 

Shape distribution was also examined based on Krumbein. The distribution of bedload 

is shown below and demonstrates the dominance of sphericities of between 0.4 and 0.6. 
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Figure 1.10. Krumbein sphericity index of both channels 

1.6. Summar 

The impacts of new forest guidelines for timber harvesting in the United Kingdom need 

to be examined for their effectiveness. The Plynlimon catchments satisfy the scientific 
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and logistical needs of a location to study these impacts. This is especially important 

with regard to access to sites and knowledge of the timing of forest operations. 

The Plynlimon catchments offer an excellent resource for the study of forest practice on 
bedload flux, particularly with reference to their proven hydrological monitoring 

networks and long term sediment records. The only major differences between the 

catchments are the land use and catchment area, with the channels exhibiting similar 

characteristics in channel slope as well as bedload size and shape distribution. It would 

of course be desirable to have two identically sized catchments with different land uses, 

but the long term hydrological records of the two channels allows good account to be 

taken of the differences in catchment area and stream discharge. 
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Section 2: Previous Literature 
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This section will address the pertinent literature on coarse sediment transport and the 

use of bedload tracers. In addition, the role of plantation forestry in modifying coarse 

sediment flux and its impact on the ecology and geomorphology of fluvial systems will 
be considered. 

The literature can be subdivided by geographic region and by the nature of the sediment 
involved. Examples will be drawn from upland areas and will concentrate on bedload, 

as opposed to suspended sediment. To understand the effects of afforestation on 

sediment transport, it is first necessary to examine the mechanisms by which sediment 

is transported through the fluvial system. Part one of this literature review will deal, 

therefore, with aspects of flow competence, dynamics of sediment transport, volumes 

transported and movement of individual grains and clast clusters, as well as an 

examination of the techniques used for their study. 

Part two will examine the effects forestry has had on the supply of coarse sediment to 

river systems and the subsequent effect on fluvial bedforms. It will deal specifically 

with the effects of the felling stage of the forest rotation on bedload transport. Part three 

will briefly examine how fluxes of coarse sediment through a channel affect bedform 

assemblages. 

2.1. Coarse sediment dynamics 

Several approaches can be taken to define what constitutes bedload. Gomez (1991) 

stated that bedload is the proportion of the matrix that moves by saltation or rolling. 

This approach, whilst simplifying bedload in a given flood event for a given channel, 

does not define a size bracket for those particles defined to be bedload or suspended 

sediments. Leeder (1983) assumes anything under 0.2 mm goes directly into 

suspension, whilst recognising that one clast size may under some conditions be 

entrained in the flow while at other times may be moved by rolling or saltation. Moore 

and Newson (1986), working in the Plynlimon catchments, used the total volume of 
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sediment held within given bedload traps to define bedload which included any material 
collected from stilling ponds where sediment could settle. 

The dispersion and transport of sediment in alluvial channels is the result of transport of 
individual grains (Parker, 1990; Church and Hassan, 1992). In most natural gravel bed 
rivers, bed material is immobile in ordinary flow conditions and moves only during 
floods (Ferguson, 1994). Understanding some of the physical principles of transport 
will be essential before undertaking an empirical study and attempting to draw any 
realistic conclusions from the methods used in this thesis. 

This section will examine the mechanisms needed to entrain particles, initial motion 
criteria, the way in which particles are transported and will discuss the effects of size 
and shape on the probability of entrainment and transport. Once entrained, the nature of 
how sediment is transported is critical to investigating the impacts of clearfelling on 
sediment dynamics. Any forestry induced changes on the parameters governing 
transport itself will subsequently feed back to total transport rates within the channel 
(Powell, 1998). 

1.1. The mechanisms of transport 

The flux of coarse, fluvial sediment can be subdivided into its constituent parts and 

associated mechanisms: entrainment (the point of initial motion of the clast), transport 

(the time in which the clast is in motion), and deposition and subsequent imbrication 

(the point at which transport ceases and the clast stops). Presenting these constituent 

parts separately creates a significant challenge as any one component of the transport 

process is not discrete. 

Various studies have examined initial motion criteria and the shear stresses and 

mechanisms required to entrain particles on a gravel river's bed (Brayshaw et al., 1983; 

Reid et al., 1984; 1992; Andrews and Smith, 1992; Bridge and Bennet, 1992; Ferguson, 

1994; Carling et al., 1998). The point at which an individual particle is entrained and 

set in motion can be defined by the dimensionless shear stressr*,. Shields (1936) 
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defined a critical shear stress T*, of incipient motion, and concluded that no transport 
below c*, of 0.06 would occur. 

Andrews and Smith (1992) examined marginal movements and calculated that 
occasional entrainment starts with dimensionless shear stresses of around 0.02 and 
continue to 0.06. Given time at these marginal stresses, a high proportion of bed 

material will become mobilised. These authors highlight the importance of particle 
shape and packing (imbrication) in determining the actual numbers of particles in 

motion. Ashworth and Ferguson (1989) also report this and concluded that threshold 
shear stress is more dependent on the relative rather than the absolute grain size of an 
individual particle. Baker and Ritter (1975) noted that in shallow streams, or during 
low flows, entrainment is higher than expected by empirical prediction. Lift forces are 
shown to be higher in shallow streams, as opposed to during high flows where lift 
forces are reduced in deep water areas. 

In Squaw Creek, Montana, a steep stream with transport undertaken exclusively by 

snowmelt, Bunte (1992) reported the strong effects of hiding of individual clasts on 
total transport volumes and argues that coarse material transport is poorly related to 
discharge. The build up of sediment shoals and movement of slugs might also control 

the pattern and distribution of sediment movement (Warburton and Davies, 1994; 

Nicholas, et al., 1995; Wathen and Hoey, 1998). Consideration of this aspect of 

transport is included in the discussion. 

In the discussion of Andrew and Smith (1992), Reid criticises the work for ignoring the 

real importance of interlock between particles (Brayshaw et al., 1983; Reid et al., 1984). 

He suggests that values of c*c are difficult to define as consolidation leading to a wide 

range of entrainment thresholds. Brayshaw et al. (1983) found that with interlocked 

particles, 46% were entrained in a flow, whilst 87% of particles on an open plane bed 

were entrained. Thus, the influence of clusters is a major determinant on sediment 

sorting which is also highlighted by Reid et al. (1984). Due to the difficulty of 

characterising hiding and pebble clusters, Armanini (1992) ascertains that it is 

impossible to attribute any values to hiding mechanisms and armouring processes 
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(Parker and Sutherland, 1990; Gomez, 1994). Armanini (1992) further argues that any 
true representation of entrainment values is also impossible. 

The nature of deposition and subsequent imbrication is crucial to total flux, as it governs 
the probability of further entrainment and transport. It relates directly to the clustering 
probabilities studied in particular by Reid and co-workers during the 1980s (Brayshaw 
et al., 1983; Frostick et al., 1984; Reid et al., 1984). Paola and Seal (1995) 
demonstrated strong selective deposition, even in cases where equal mobility of 
entrainment was exactly satisfied, this established grain size patches in different channel 
patterns. Gomez (1994) showed the importance of selective transport to fluvial 
landforms; specifically how feedback loops constructed new flow structures and 
subsequently affected future bed dynamics. 

2.1.2. The probability of transport 

The dispersion of river gravels of different size and shape and at different stages of the 

transport process has resulted in a number of contrasting conclusions with regard to the 

probability of transport. These can often be attributed to local hydrological and 

geomorpho logical regimes. Gomez and Church (1989) maintain that there is no 

universal equation for bedload transfer due to these factors. Arkell (1985) concludes 

that the data derived from the several Plynlimon headwater steams "clearly question the 

assumptions made in the application of most sediment transport formulae". No 

relationship was found with tractive forces, but the importance of sediment stores and 

shoals was noted (including the influence of man made structures, including bridge 

struts). Arkell highlights that the development of these formulae from specific 

circumstances (often flumes) normally rule out any universal application. This section 

will consider the importance of size, shape and packing of bed material in governing the 

probability and distribution of bedload transport at the Plynlimon catchments. 

PARTICLE SIZE 
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The question as to whether a particle's size affects its probability of entrainment and 
ultimately therefore influences its final transport distance, is one of the key questions 
continuing to drive research on coarse sediment transport in gravel bed rivers. Is the 
effect of hiding and protrusion strong enough to cancel out the effects of mass and make 
all particles equally mobile (Ashworth and Ferguson, 1989)? Evidence is available to 
suggest that gravel bed rivers exhibit both equal mobility and selective transport in 
different regional, channel and flow conditions. The differing opinions on the effect of 
size can be summarised as the theories of equal mobility and size selective transport. 
Equal mobility (Parker et al., 1982; Church et al., 199 1; Komar and S hih, 1992) is 

where all of the size distribution is assumed to move at the same long term velocity. 
Size selective transport (Reid et al., 1992; Ferguson et al., 1996) occurs when 
individual grain sizes are preferentially transported according to clast size. Size 

selectivity may take place at either end of the grain size distribution. 

Early discussion argued specifically towards one theory. For example, Einstein (1950) 

argued that the average step length of a clast would be 100 times particle b-axis. Parker 

et al. (1982) working on Oak Creek concluded that once the pavement is broken, all 

sizes are equally mobile. Parker et al. (1982) recognised equal mobility to be a first 

order approximation, as re-examination of the data suggested a coarser bedload flux for 

high flow events and slight change of bedload size distribution with shear stress. Lower 

flows favour smaller bedload sizes, whilst higher flows favour a larger bedload grain 

size distribution. Once shear stress exceeds a certain value, bedload approaches a state 

of being equally mobile. Using the White River, Lyngsdalselva, Feshie and Dubhaig 

rivers to examine sediment transport relationships and size distributions, Ashworth and 

Ferguson (1989) found size selectivity at all but the highest flows and shear stresses. 

However, a state approaching equal mobility was demonstrated at these highest 

discharges. Ashworth et al. (1992) showed that despite daily variance in shear stress 

and total transport, the D50 remained stable, and both load and deposition were finer 

than the bed, indicating selective transport. Working in experimental flumes, Kuhnle 

and Southard (1988) found that after test runs the remaining bed surface was coarser in 

all but the highest flow experiments which showed selective transport of smaller clasts. 

Field observations do not entirely explain downstream fining by abrasion in stream and 

lead to the conclusion that at a range of flow levels, selective transport will 
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predominate. However, in high flows and during the breakdown of armour (Moog and 
Whiting, 1998) equal mobility will be approached. These conditions will also occur in 
areas of low bed stability (Kuhnle, 1992) and perhaps in flashy, desert, ephemeral 
rivers, such as the Nahal Hebron (Hassan et al. 1984; Reid et al. 1998). Kuhnle (1993) 
examined transport of bimodal sediment distributions and showed transport to approach 
equal mobility at high flows, but remained strongly size selective at low flows. 

Sediment transport distance has also been shown to be dependent on relative, rather 
than absolute grain size. Larger particles in an individual matrix will protrude more 
than smaller particles and have a higher chance of entrainment (Fenton and Abbott 
1977; Ashworth and Ferguson, 1989). Several tracer experiments have recognised this; 
for example Church and Hassan (1992) scaled tracer sizes to the median bed size. The 

conclusion was that larger clasts showed a decline in mobility where Di/D50sub '-- 10- 

Within smaller size ranges, less relation was shown to mean bed size, concluding that 

the trapping of small clasts in cavities within the bed affects overall travel distance. 

Powell (1998) states that bedload grain size distributions are modified as different size 
fractions are routed along different transport pathways, leading eventually to selective 

transport. Shih and Komar (1990) state: 

The movement of grains in a mixture is affected by other particles, since small grains 

can be sheltered by the larger, and the largest particles have greater exposure to flow. 

As a result, each sizefraction will have its individual transport rate which depends on 

the total distribution of sizes availablefor transport. 

There is no clear consensus on equal mobility or selective transport in gravel bed rivers. 
Equal mobility has to be a first order approximation for sediment budgets (Parker et al., 
1982) though selective transport has been shown to be relevant at a range of discharges 

(Ashworth and Ferguson 1989). Complex models (Armanini, 1992) have attempted to 

address the issue numerically, but still omit factors accounting for hiding, protrusion 

and armouring which are proven to be critical. Billi (1986) visually assessed pebble 

clusters within the Nant Tanllwyth and Mon Cyff and showed a significantly greater 

number of pebble clusters in the Mon Cyff. Although the work does not analyse the 

relationship of these clusters to sediment transport loads, the importance of these 

clusters in limiting the initiation of transport is highlighted. A greater stress is required 
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to entrain a similar size range of all clustered particles and hence makes equal mobility 
of particles likely at the break up point of the clusters. 

PARTICLE SHAPE 

Determining the effect of particle shape on sediment transport has mainly relied upon 
the use of tracers, as abrasion processes change particle shape and distribution 

downstream (Huddart, 1994). Carling et al. (1992) found that shape affected initial 

motion criteria on a variety of bed roughnesses. They examined initial motion criteria 
for set shapes on three beds and concluded that shape and orientation of a clast was as 
important as its mass in controlling its likely entrainment. Carling et al. (1992) also 

argue that the complexities of shape and size distribution, as well as particle packing 

mean a mechanistic approach to modelling sediment movement is required. The effect 

of particle shape on bedload transport has also been examined by Schmidt and 
Ergenzinger (1992); Gomez (1994); Huddart (1994) and Warburton and Demir (in 

press) and despite some disparity, a general pattern for the travel distance of different 

shapes emerges. A major problem has been removing the effects of particle size, which 

have proven difficult to separate out from those of shape (particularly relevant in terms 

of shape and packing). 

Working in the Allt Dubhaig, Scotland, Ferguson and Wathen (1998) found that shape 

has a secondary (after size) role in determining travel distance, with 90% of variance in 

travel distance explained by relative grain size and Shields stress. Gomez (1994) found 

the mobility of flat fine gravels is enhanced by the lower surface roughness of the 

associated armour, with ellipsoids travelling the least distance. Although angular 

gravels are restricted in their mobility by interlocking effects, this is offset by their 

projection into the flow and greater overall mobility. Also highlighted is the importance 

of the shape of gravel in the armouring process, with flat gravels constructing stronger 

armour layers. Bedload output from streams with flat gravels is likely to be lower than 

from streams with spherical gravel matrices. Schmidt and Ergenzinger (1992), working 

in the Lainbach River, Germany, recommended separate distributions for particle 

shapes, finding elongated rods to have the greatest transport distance and discs 

remaining close to the seeded starting point. Stott and Sawyer (in press) showed that 
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the highest mean travel rates were for rods and spheres, which are the two most under 

represented groups in the particle shape distribution of the Nant Tanllwyth and Mon 

Cyff. Further evidence of this pattern of selectivity is presented in Gintz and Schn-tidt 

(1991) with a sequence of rod, ellipsoid, ball and plate travelling decreasing step 
lengths. Brayshaw et al. (1983) examined the wider implications of interlocking of 
differing shapes and found the combination of lift and drag, and therefore entrainment 

probability, was governed by particle exposure. Given the conclusions of Gomez 

(1994) above, the shape of particles in differing streams is important, though in most 

cases secondary to size. We might therefore reasonably expect streams having different 

flow regimes on different geology and a different proportion of clasts in the same shape 

category to exhibit marginally different bedload transport regimes (Komar and Carling, 

1991). 

ARMOUR AND PAVEMENT 

The threshold for entraining river gravels can change through time due to the armouring 

and pavement process. Pavement is a coarse surface layer maintained by successive 

periods of bedload transport during which all bed material sizes move (Parker and 

Klingeman, 1982). Parker et al. (1982) argued that in gravel beds with pavement 

phenomena, all size ranges are transported equally. Milhouse and Klingeman (1973) 

found bedload transport per unit discharge increased after peak flow. This they 

attributed to the shift in critical discharge after the destruction of the bed armour. In 

contrast Nanson (1974) working on Bridge Creek, Saskatchewan River, observed 

bedload per unit water discharge to be greater prior to the spring flood. This was 

irrespective of whether samples were taken from rising or falling limbs: critical 

discharge required to entrain bedload increased after the flood peak. 

Gomez (1994) says that the throughput of fine sediment load through a system may 

mask the effects of hiding, which would be particularly relevant in periods of lower 

flows. Carling (1989), considering bed load transport as a function of excess stream 

power, found winnowing of smaller particles occurring from a largely undisturbed 

framework, which at low shear stresses made transport strongly supply limited. 

However, when the framework or armour is disturbed and the sub-armour is exposed, a 
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new threshold of transport is revealed, demonstrating the importance of armour to the 
coarse sediment budgets (Parker and Klingeman, 1982). 

SUPPLY CONSIDERATIONS. 

Static armour layers have been shown to form under conditions of no inputs of sediment 
from upstream (Sutherland, 1987) and thus adjustment of bedload supply properties 
may affect the armouring process in any channel. 

Newson (1980b), using bulk bedload traps and comparing sediment outputs with flood 

magnitudes, found evidence for phases of both supply-limited and transport -limited 
bedload output. In the same Plynlimon catchments, Moore and Newson (1986) found 

both experimental catchments were supply-limited, evidenced by high flows not always 

according with high bedload outputs. It is often difficult to disentangle these data from 

the effects of previous events with regard to bed armouring and pavement formation. 

Bennet and Bridge (1995), exarnining the controls of bedload transport in laboratory 

conditions, induced aggradation and examined the reaction on total transport rate. 
Flumes were systematically adjusted by tilting and changing the sediment availability to 

the flow. Increasing sediment supply (sediment overloading) resulted in increased 

imbrication of pebbles, a decrease in mean water surface slope and reduction in total 

bedload transport. Conversely, reduction in sediment inputs resulted in rapid 

downstream erosion and upstream deposition. 

Working in the Plynlimon catchments, Billi (1986) highlights a number of controlling 

parameters that may govern sediment transport patterns. Billi particularly studied the 

co-existence of individual particles with one another and classified these in terms of 

interlocking, imbrication, bed armouring and the bedforms of pebble clusters and 

transverse ribs. In addition, the examination of the channel morphology of the 

Plynlimon catchments showed that stepped pools were common in both channels (17 in 

each) along with boulder steps (72 and I 10 in the Nant Tanllwyth and Mon Cyff 

respectively) - 
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2.1.3. Coarse sediment tracing 

HISTORICAL DEVELOPMENT 

Tracers in geomorphology provide an opportunity in a variety of disciplines to study 

processes in action, and tracers have been widely used In fluvial geomorphology. 
Chemical, radioactive, and physical tagging of material can elucidate information not 

readily available using surveys involving measuring mass deposits or fluxes alone. First 

attempted by Leopold et al. (1964) and Takayama (1965) tracers were essentially 

simple painted clasts which were seeded and tracked during their progress downstream. 

Their use was continued by Thorne and Lewin (1979). However, the painted pebble 

method gave poor recovery rates (less than 50%) and elucidated data only from the 

exposed section of the matrix (Church and Hassan, 1992). Significant improvements to 

the technique were made by Hassan et al. (1984) by introducing a magnetic core into 

natural tracers to increase recovery rates. This technique was also used by Reid et al. 
(1984). Ergenzinger (1985) outlined a variety of implanted core techniques and 

analysed improving recovery rates. Developments in technology and experiments using 

magnetically tagged clasts have allowed particles to be monitored during the passage of 

a flood event (Schmidt and Ergenzinger, 1992). Using active, rather than passive 

tracers, this allowed positive identification of clasts without removal from the bed, and 

furthermore, tracers could be located from deep and imbricated positions (Schmidt and 

Ergenzinger, 1992; Ferguson et al., 1996). Large-scale tracing experiments have not yet 

used this system, but have utilised the implanted magnet approach (Ferguson and 

Wathen, 1998). Alternative tracer techniques have also been applied in fluvial 

geomorphology. Radioactively tagged sediments were used in the 1960s (Hubbell and 

Sayre, 1964) and more recently by Bonnet et al. (1989) in the Plynlimon catchments. 

Also working in the Plynlimon catchments, Arkell et al. (1983) used baked clasts to 

artificially increase magnetism to aid location. This method has recently been used in 

the Afon Trannon to estimate total bedload flux (Mount, pers comm). The purpose of 

the development of tracers as a tool in coarse sediment transport in fluvial 

geomorphology is to examine transport in as near natural conditions as possible 

(Ergenzinger et al., 1989). It also allows examination of movements in the entire 
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system, rather than just studying the total mass of sediments with a channel, for 

example by using bedload traps (Newson, 1980a). 

PASSIVE TRACING SYSTEMS 

Tracers can currently be divided into passive and active, though this section will 

concentrate specifically on passive tracing methods. Passive tracers are placed in a 
channel and can be differentiated by their construction. They may either be constructed 
from artificial material (Gintz and Schmidt, 1991; Brewer et al., 1992), or natural bed 

material (Ferguson and Wathen, 1998). Tracers can also be defined by their method of 
location, marked using paint (Takayama, 1965), artificial magnet (Ferguson and 
Wathen, 1998) or baked for total magnetism (Arkell et al., 1983). They are either then 
located at fixed intervals (for example monthly), or more usefully on an event basis, 

after a sediment mobilisation threshold or other arbitrary flow threshold. Low recovery 

rates for passive tracers, (e. g. 15% after 20 floods by Thorne and Lewin (1979)) led to 

the development of passive tracers that could be detected at depth. These tracers, 

implanted with either a ferrous material (Reid et al., 1984), or a magnet (Hassan et al., 
199 1; Ferguson et al., 1996) allow for a representative number of clasts to be tagged in 

a channel at a reasonable cost. This allows repeated visits over a large area which was 

not possible using the coil monitoring technique (Reid et al., 1984). The ability to 

monitor a large dataset and to understand the distribution of steps and rest periods is 

essential to an understanding of the overall dynamics of sediment transport (Einstein, 

1937). 

Schmidt and Ergenzinger (1992) further highlight that the techniques allow the 

determination of the cumulative travel lengths covered by clasts, with details on step 

lengths, duration of rest periods and pathways of individual particles. Natural cobbles 

tagged with iron implants were traced in the Lainbach River, Germany, which could be 

later detected with a locating device. Tracers ranged from 330 g to 5020 g, and had 

flatness indices ranging between 107 to 380. Recovery rates ranged form 92% after the 

first event to just 17% after the eighth flood. Losses were explained both by clasts 

leaving the I km study reach, or by burial so deep as to prevent recovery. Results 

showed some tendency for selective transport, but this was masked by the fact that the 
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starting position and shape of clasts were not controlled. Church and Hassan (1992), 

reviewing several coarse tracing experiments, found that clasts larger than the median of 

surface material showed a steep decline in mobility. 

The following section will deal with a variety of results yielded from tracing 

experiments, concentrating on those in upland rivers and from the large bedload size 
fraction. Although tracers have also been used in conjunction with flumes (Bagnold, 

1980) the most important clast tracing technique for studying changes by forest 

operations on coarse sediment transport, is within natural channels. Dietrich et al. 
(1982) discusses the pre-requisites for tracer study which include a requirement of 100 

per cent recovery rates, an achievement that no study published to date has attained. 
The reason for this requirement is that immediately recovery rates drop below the 100% 

level, uncertainty over the reason for tracer loss exists. The uncertainty is centred 

around why specific tracers are lost, with mean values incorrectly calculated as it is not 

clear if tracers were lost due to deep burial or because of transport 500 m through the 

channel reach. This error however seems inevitable to continue, as the physical 

methods of tracing and trapping sediment do not allow for perfect relocation. Hassan 

and Church (1992) show that distributions of distances moved of tracers are highly 

stochastic, most plots of distance versus particle size showing little correlation. 

Schmidt and Ergenzinger (1992) observed that particle velocities tend to be randomly 

distributed as overall velocity is controlled by rest periods, which themselves are 

random. Laronne and Duncan (1992) noted the importance of deposition location on 

bedforms, for the subsequent entrainment of tracers. Tracers on bedforms exposed and 

less frequently submerged in flow had a lower probability of being entrained. Thorne 

and Lewin (1979) also used tracer pebbles to establish a relationship between previous 

bedform and the next downstream. 

The importance of vertical exchange of clasts within a bed has been illustrated by 

Frostick et al. (1984) where fine material was shown to permeate through the bed 

structure. Hassan (1990) attempted correlation between burial depth and travel 

distance, and defined several discrete particle burial mechanisms. In general, less tracer 

activity was associated with deeper burial. This conflicts with Drew (1992) who 

observed preferential scouring and no association between burial depth and tracer 

movement. 
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2.1.4. Abrasion 

Downstream fining and rounding of coarse river sediments is well documented 

(McPherson, 197 1; Mills, 1979; Knighton, 1980; Huddart, 1994; Ferguson et al., 1996) 

and these changes in the sediment characteristics are commonly explained in terms of 

selective entrainment, transport, and deposition (hydraulic sorting), or the physical 

modification of clasts by mechanical abrasion. Such abrasion processes have been 

studied in the past using abrasion tanks (Kuenen, 1956; Bradley, 1970; Bradley et al., 
1972) and tumbling barrels (Daubree, 1879; Wentworth, 1919; Marshall, 1927; 

Bigelow, 1984). Under the laboratory conditions used by these workers, clast weight 
losses per unit distance were consistently lower than downstream reductions in weight 
loss derived from field sampling (Bradley, 1970; Schumm and Stevens, 1973; Adams, 

1978,1979). The observed difference between laboratory simulated and field measured 

reduction rates have been attributed to either weathering (Bradley, 1970), hydraulic 

sorting processes (Mackin, 1963) or the theory of 'abrasion in place' (Schumm and 

Stevens, 1973) whereby clasts may be abraded by vibration within the bed without net 

downstream movement. Laboratory simulation of this vibration yielded promising 

results (Schumm. and Stevens, 1973), though the authors did not report significant 

abrasion occurring in their experiments. Brewer et al. (1992) used 25 mm rock cubes, 

shown using extensive laboratory simulation of abrasion processes to exhibit similar 

weight loss patterns and rates to natural channel material (Brewer, 1991), to monitor 

abrasion. The cuboid tracers, which were sawn from large pieces of parent bedrock, 

were bolted or tethered with string to the channel bedrock. The standard size cube 

eliminated differences in surface area between tracers, and allowed easy identification 

of impact marks or loss of corners and edges. Weight losses sustained by 39 tracers over 

a six week period in a coarse upland channel indicated the potential of 'sandblasting' as 

an additional 'abrasion in place' process. 
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2.2. The effects of forestry 

Introduction 

The impact of afforestation on the landscape of the British uplands can be borne out in 

terms of statistics. Forestry has been the largest single land use change in Britain, and 
in the 1970s new planting took place at a rate of about 40 000 ha yr-1 (Robinson and 
Blyth, 1982). Further, it is the cultivation of non-indigenous, fast growing species such 

as Sitka Spruce (Picea sitchensis) shows the most significant change (Clarke and 
McCulloch, 1979). With forest stands attaining maturity after c. 40 years and the peak 

of forest planting not reached until after the 1950s, only a small proportion of timber 

planted has been harvested (Stott, 1997a). 

Britain is within a period where commercial plantation forest operations in the 'harvest 

stage' of the forest rotation are reaching a peak. Examination of the harvest stage and its 

effects on fluvial systems is particularly important. However, the impacts of timber 

harvesting on hydrology and fluvial geomorphology in a British context are still poorly 

understood (Binns, 1986). This section intends to provide an overview of the effects of 

forestry land use on stream networks in upland catchments and on downstream fluvial 

geomorphology. The section will examine effects on three areas: hydrology, suspended 

sediments and bedload. It will address the different stages of the forest rotation, but will 

concentrate and review the major effects that forest clearance operations have had on 

sediment movement in upland streams. The Binns (1979) framework of ditching, 

planting, pole and harvesting will be used throughout the text. 

Forest planting procedures in the British uplands are to first plough furrows in the 

moorland on which the trees will be planted. This is followed by the construction of a 

drainage network to remove excess water. Thirdly, trees are planted in the drained soil. 

A description of the guidelines is given in (Taylor, 1970) and Thomson (1979). Taylor 

states in his conclusions that "... land need no longer dictate what he [theforester] 

should grow, or determine the rate of growth he should accept". Forest practice in the 

UX has been to fit plantation forest into areas otherwise too marginal for alternative 
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land use. Management guidelines from the Forestry Commission (Mills, 1980) 

recognises the problem of sediment adjustment in clearfelling and thinning and does 

recommend felling strategies to limit brashings and lops falling into stream channels. 

Areas of forest clearance and logging activity are associated with the use of heavy 

machinery and major land use change (Stott, 1987) and felling procedure has typically 
taken place using cable crane and skyline timber extraction in the U. K. Fredrikson 

(1970) showed that different forest logging practices (in the Pacific Northwest, USA) 

could reduce sediment outputs from the fluvial system, with clear cut basins have 

significantly higher sediment yields than patch cut basins, with aerial cable "skyline" 

removal techniques. 

2.2.1. Forestry effects on hydrology 

With the travel distances of unrestrained clasts and the discharge of suspended sediment 
directly related to discharge parameters, significant importance must be attached to 

changes in upland hydrology caused by any stage in the forest rotation cycle. 

Before the 1950s, it was assumed that the propagation of plantation forestry led to 

greater water yields in water supply catchments (Cuthbertson, 1948) and forestry was 

often seen as a positive step in protecting reservoir supplies. It was Law (1956) who 

undertook the first serious study on the effects of forest land use on water yield in the 

catchment of Stock's Reservoir in Lancashire. Using a natural lysimeter planted with 

mature Sitka spruce, Law's experiment concluded that the forest canopy used significant 

water through transpiration and subsequently lowered water yields from afforested 

catchments, evaporating 275mm kM-2 more than an equivalent grassland catchment. He 

translated these water losses into financial terms, claiming that the foresters owed the 

water resource managers some f 550 per ha of trees planted. 

The impact of forestry on upland hydrology is also governed by the position of the 

forest in the commercial forest cycle. During the establishment phase, drainage ditches 

(see Plate 3.1 .) may promote the rapid runoff of water, and decrease time to flood peak. 

On the 152 ha Coalburn catchment in Southern Scotland, establishment of drainage 
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ditches meant that time to flood peak was reduced by 50 per cent (Robinson, 1980; 
Robinson and Blythe, 1982). 

Plate 3.1. Drainage ditches in Nant Tanllwyth catchment. 

During growth and maturity, infilling of drainage ditches with needles and other 

vegetation will reduce the impact on flood timing (Leeks and Roberts, 1987). Blackie 

and Newson (1986) suggest that timing and magnitude of flood peaks would be reduced 
due to forest canopy interception as the canopy begins to close. At Balquhidder, in 

Scotland, it was found that the duration and magnitude of small and medium sized flood 

peaks was lower in the afforested Kirkton catchment, than in the adjacent paired 

Monachyle moorland catchment (Johnson, 1991). There are physical reasons why 

water yield will reduce. These include turbulence (Clarke and McCulloch, 1979), total 

interception (Calder, 1986), advection from the canopy (Newson and Calder, 1980) and 

evapotranspiration (Binns, 1979). Both Clarke and McCulloch (1979) and Johnson 

(1990) show how losses from upland catchments with high precipitation are likely to be 

proportionally greater than from catchments with low precipitation. This is due to 

higher precipitation intensities and stronger winds which help to ventilate the canopy. 
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The effect of harvesting has been to cause a dramatic increase in water yield after forest 

operations. As a part re-examination of the work of Hibbert (1967), Bosch and Hewlett 

(1982) examined the effects of removal of canopy in 94 catchment experiments and 

showed a linear relationships between increase in water yield and removal of forest 

cover. Removal of coniferous vegetation was found to have the greatest effect on 
increased streamflow (Rothacher, 1970; Harris, 1973). The authors concluded that the 

reduction of forest cover by 20 percent or less was unlikely to be detected as changes in 

flow parameters. The majority of these case studies were in the USA and involved the 

clearfelling of natural forests, but the physical reasons for the changes are, it may be 

argued, relevant also to plantation forests in upland Britain. Johnson (1990) determined 

interception losses for the Balquhidder catchments in central Scotland and showed 
largest interception losses of water in the summer months, reaching 79 % in May 1985. 

He also showed how the shape of the tree and the age of stand (relating to distance from 

the stem) had an effect on losses, with throughfall increasing and sternflow decreasing 

with increased age of forest stands. 

2.2.2. Forestry effects on suspended sediment yields 

Afforestation in upland Britain traditionally uses damaging furrow drainage to drain the 

surface peat for planting (Stott, 1997a) and these drains allowing rapid removal of both 

water and sediment into main river channels. Some of the largest demonstrated effects 

of afforestation have been manifested in changes in suspended sediment outputs. 

Working in the Coalburn catchment, Southern Scotland, Robinson and Blythe (1982) 

studied sediment outputs before forestry, during drainage operations and during early 

growth stages. Sediment yields were shown to dramatically increase during and in the 

five years after drainage. Suspended sediment yields were 3t km 2 yr-1 in the moorland 

area before ploughing and ditching and rose to 25 t kM2 yr-1 during the three month 

ploughing period. Yields declined to 13 t km2yr-lduring the first four years of growth. 

In the Balquhidder catchments, Johnson (1993) found that suspended sediment yields 

increased by up to 818% due to forest operations in the Kirkton catchments, attributing 

both forestry and changed precipitation patterns as factors influencing the increase. 
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Polarised reviews [Authors opinion] of the effects of upland forestry on soil erosion and 

subsequent sediment outputs have been undertaken by Moffat (1988) for the Forestry 

Commission and by Soutar (1989) for the Nature Conservancy Council. Moffat(1988) 

argues that at Balquhidder, most sediment comes from first-order watercourses in the 

upper sections of the catchment (above forested areas in these studies) and that 

afforestation is not responsible for increase in sediment yields. Moffat (1988) adds that 

few studies into the effect of harvesting operations have been undertaken in the UK. 

Those that have (for example Lewis and Neustein (197 1)) show that selective harvesting 

techniques can protect exposed soil from erosion and that erosion intensity was 
4insufficient to justify managerial concern'. Moffat also refutes evidence from other 

regions in the world that suggest increased landslides after forest operations (Pritchett 

and Fischer, 1987). Although acknowledging the lack of published evidence on the 

effects of harvesting, Soutar (1989) highlights it as a major cause of erosion worldwide. 

Ursic (199 1) examined the effects of two different felling mechanisms on hydrology 

and sediment outputs on stands of shortleaf pine (Pinus echintata). Concentrations of 

sediment were found to be 40 per cent lower in the skidded catchment than in the 

control in the first year, but exceeded the control catchment in the following years, 

implying delayed transport. Recommendations and conclusions from this study 

suggested that even careful logging strategies would result in increased sedimentation in 

logged catchments, whilst maintaining recommendations that headwater channels are 

exceptionally vulnerable and require care in harvest. With harvesting techniques 

changing due both to new technology and environmental concerns, it is appropriate to 

examine the differences in harvesting techniques and the effects on bedload transfer. 

2.2.3. Forestry effects on bedload yields 

The effects of forest operations on bedload transport in gravel bed rivers has received 

relatively little attention, despite its impacts on fish habitats, downstream morphology 

and implications for water resources. This is especially true of harvesting in a United 

Kingdom context (Maitland et al., 1990). Records of both increases and reductions in 

bedload outputs have been demonstrated in the presence of afforestation, though at 

different points within the forest rotation, as highlighted by Leeks ( 1992). 
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The impacts of forest operations on bedload transport are split into the stages of the 

forest rotation. Much of the literature discussed highlights the statistical relationships 
between yields, land use and flooding. While some highlight the importance of a 

process based approach (Moore and Newson, 1986), few address the problem with 

experimental studies. It is again difficult to disentangle the relationship between the 

hydrological effects discussed in section 2.2.1 (which themselves effect sediment 

movement) and the effects of the forestry on sediment output. 

Leeks and Roberts (1987) exan-fined the impact of ground preparation and planting in 

the Llanbrynmair catchments, rnid-Wales. They found that this caused a change in both 

total output of bedload and its size distribution. This was mostly attributable to the 

loose gravel from road construction in the preparation stages. No evidence for 

significant reduction in outputs after the initial drainage was noticed, with high yields 

continuing through erosion of active sediment sources. The size distribution of bedload 

from the forested Cwm catchment became finer during the planting period. This 

sedimentation has potentially serious implications on downstream fisheries. 

In the Mature forest stage, studies suggest that yields of bedload still maintain the high 

output levels seen during planting and ditching. Newson (1980a) and Kirby et al. 

(199 1) studying the Afon Cyff and Nant Tanllwyth catchments on Plynlimon, found 

that the main sediment source was the drainage ditches. These ditches are set in a 

herringbone pattern around the natural drainage channels, and provide significant 

sediment sources. Bedload outputs were shown to increase quickly immediately after 

forestry operations commenced, and to remain at a high level during the early growth 

stage. Newson (1980a) suggests that it is during the greatest floods that bedload output 

is most increased under the maturely forested Tanllwyth catchment (planted in 1949/50) 

and that this suggests new sediment sources to explain this increase. 

The felling stage has received relatively little attention in UK catchments, despite 

significant research in the USA (Swanson and Swanson, 1976), New Zealand (0' 

Loughlin et al., 1978) and Asia (Froelich and Starkel, 1993). Some work has again 

been undertaken at the Plynlimon catchments, with a network of sediment traps 

monitoring bedload yield before and after clearfelling in the Hore, a sub-catchment of 
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the River Severn. Leeks and Roberts (1987) found an increase in bedload outputs from 

1.2 M3 kM-2 yr-I to 23.4 M3 kM-2 yr-1 in a tributary of the Hore catchment on Plynlimon, 

mid-Wales during removal of trees using skidding techniques, though after tree build up 

in ditches, yields decreased. The initial impacts of clearfelling can cause a reduction in 

bedload outputs attributed to build up of bedload behind debris jams, but as these jams 

decayed, yields rose to more than five times their original level (Leeks, 1992). A 

strategy of staggering the clearfelling period to reduce the bedload pulses both from 

immediate machinery and breakdowns of dead organic matter was suggested. The 

timing of felling is also noted, with late spring (in an upland British context) seen as the 

most appropriate time to avoid damage by winter floods and allow consolidation and re- 

vegetation during the spring and summer. A useful model is attempted by Leeks (1992) 

of sediment production (both bedload and suspended sediment) based on the first and 

second rotation of forestry (see Figure 2.1). 

Suspended 

Bed load 

I 
Time --4- 

Figure 33.8 Summary diagram of upland stream sediment yields over the forest rotation 

Figure 2.1. Summary diagram of upland stream sediment yields over the forest rotation (source: 

Leeks, 1992) 
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At Squaw Creek in Montana, Bugosh and Custer (1989) found that after a logjam burst, 

well after the felling period, bedload transport increased twofold immediately after the 
dam break, building a delayed bedload pulse into the system. Stott (I 997b) showed 
bedload yields to be significantly higher under forested catchments, with yields varying 

proportionally with percentage forest cover. Stott et al. ( 1986) and Ferguson and Stott 

(1987) reported that bedload made up only 2% of total sediment outputs from the 
Kirkton and Monachyle catchments. Arkell et al. (1983) suggested six fold increases in 

bedload outputs under forestry. However, Johnson (1993) found little evidence for 

changing bedload regimes in the Balquhidder catchments, though he highlighted the 
difficulty of measurement with little specialist equipment or techniques available. 
Working on the granitic bedrock of Idaho, and in natural, rather than commercial 
forests, Megahan (1982) found that logging reduced channel storage capacity because 

natural storage points were destroyed by forest operations. Grant and Wolff (1991), 

working in paired catchments in Oregon on naturally forested catchments, found 

supplies of coarse sediment rose after harvesting by twelve-fold in steep streams 

capable of transporting load. Bedload outputs were supply limited, with most bedload 

moving completely though the system during the study. High levels of bedload output 

were maintained ten years after harvesting. Grant and Wolff (1991) highlight the 

importance of major threshold events in any geomorphological study, paired or 

otherwise. 

The most important conclusion, especially from the felling phase, appears to be that 

mechanisms of felling can dramatically alter the impact and timing of bedload inputs. 

Although the conclusions of Megahan (1982) differ to the conclusions of Leeks (1992), 

this can be attributed to Megahan studying steep terrain, indigenous woodland, with 

Leeks examining plantation forestry. 

Complex process-based computer modelling has been used to attempt to assess the 

effects of sedimentation on aquatic habitats. Ziemer et al. (199 1) used the Monte Carlo 

model to assess the effects of different management practices in upland forestry, though 

the authors highlight the importance of being able to accurately simulate natural 

processes accurately. The simulation aimed to examine the effects of changing bedload 

regimes (as a function of the depths of scour and fill) on fish habitats and spawning 

beds. Harvesting was either I% or 10% of catchment per year. The 10% logging 

45 



strategy increased damage, albeit temporarily, to fish populations. The I% strategy, 
however, suggests that current belief of dispersion avoiding damage may be incorrect, 

and that cumulative effects of small pocket logging may be greater than anticipated. 

2.3. Geomorphic landforms 

River channel bedform and floodplain planform are largely regulated by the pattern of 

sediment supply and transfer within the fluvial system. Any adjustment due to 

hydrologic variables, vegetation and mass movement within the system also depends on 

the existence, or lack of, a suitable sediment source. An adjustment in either quantity or 

distribution of sediment supply and transfer in the upper reaches of a fluvial system will 

therefore influence downstream morphology. The nature and extent of the change, and 

its geomorphic, social, and ecological consequences, will depend on the change of 

sediment parameters and the flow and transport competence of the channel itself. 

Kuhnle and Southard (1988) observed variation in transport rates in the laboratory, 

caused by the migration of long and low bedload sheets through the channel in medium 

transport rates. In high transport rates dune like bedforms occurred. 

Changes in landform assemblages of gravel bed rivers is driven by flood magnitude, 

flood frequency and sediment inputs and gravel bed rivers can be classified into those 

limited by flow competence and those limited by sediment availability. Both types of 

streams exhibit landforms specific to the flow and sediment conditions that have created 

them. Where sediment supply is limited, deep scoured channels with significant 

exposed bedrock will predominate with bedload pulses moving quickly through the 

channel. In channels where flow is the limiting factor, and bedload is freely available, 

braids and bars are more common bedforms. These basic prepositions are based on the 

way in which bedload is transported by water on the streambed. Harvey (1987,199 1) 

working in the Howgills of Cumbria, showed that streams fed by large amounts of 

coarse sediment led to the development of unstable wide and braided channels. 

Conversely, lower coarse sediment inputs tend to create meandering, straight and stable 

channels. Harvey demonstrated that in the Howgills, active gullies and scars were 

responsible for providing sediment for braided and unstable channel patterns. 
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Froehlich and Starkel (1993) reported that forest clearance in the Himalayas resulted in 

a direct disturbance in the equilibrium of slopes and river channels. Frequency of mass 
movements in cultivated areas was 4-20 times greater than in natural forest areas. As 

such, channels in deforested areas underwent transformation by debris flow, making 
them deeper and wider. Differences between normal magnitude and major floods were 
also seen. With normal flood, streams are underloaded and with major floods became 

overloaded with coarse sediments (Froehlich and Starkel, 1987). Creation of unusually 
high riverbed rises (greater than normally observed by shifting bars) was also seen, as 

well as changes of longitudinal profiles greater than 50- 1 00m long. A shift from 

incision to aggradation occurs, with the flow unable to rework the amount of coarse 
debris available. 

2.4. Summary 

The literature discussed describes some of the methods used and conclusions arising 
from studying sediment dynamics in gravel bed streams. The influence of forest 

operations is also discussed, though there has been little literature examining the impact 

of forestry on the flux of individual clasts in a gravel bed river. Particular reference has 

been made to coarse sediment and the use of tracers as an indicator of bedload transport. 

The stochastic nature of the travel distances of individual clasts has been highlighted, as 

well as the problems and opportunities of using tracer-mo nito ring progranu-nes. The 

chapter also highlights the different approaches of monitoring bedload transport and 

demonstrates that research is undertaken at total yield scale, as well as examining the 

combination of forces necessary to entrain a single clast from a gravel bed. 
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Section 3: Methodology 

\-9 
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3.1. Introduction 

This section introduces and justifies the methods used for the experiments. It describes 

the techniques used for monitoring bedload characteristics, fixing channel features and 

change, measuring abrasion and determining hydrometric data. 

The methodology section will present a justified choice of scientific method to achieve 

the project goals, in a manner influenced by the literature described so far. Details of 

the analysis of the data will be dealt with more thoroughly in the results section. 

1.1. Project Aims 

The project aims are repeated to justify the methods used: - 

I To ascertain the effects of a change in land use in one catchment on the bedload 

characteristics of the main channel using a traditional paired catchment study; 

to take an holistic approach to bedload transport, in studying totalflux, size 

distribution and individual grain dynamics in the natural environment; 

3 to assess how changing sediment production regimes affect the nature of bedload 

transport, and 

4 to examine howforest operations can be improvedfurther to minimise the impacts 

of timbe r- harvesting. 

To achieve these aims, methods were required to monitor (both accurately and 

repeatedly) bedload fluxes and the dynamics of gravel bed rivers over the medium term. 
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3.1.2. Data collection period 

The project planning period started in September 1994 at Liverpool John Moores 

University. Data were collected between January 1995 and June 1997 at the Institute of 
Hydrology research catchments at Plynlimon, mid-Wales. Processing, analysis and 

writing took place from June 1997 to December 1997 and between September 1998 and 

August 1999. 

3-2. Hydrometry and mappinll 

In order to precisely monitor and compare sediment parameters over the study period, 

both basic hydrometric and morphological data needed to be reliably collected. A high 

quality hydrologic data set was needed for the duration of the study, along with the 

ability to survey and resurvey critical points along the channel and banks. Methodology 

is presented from each experiment type. 

3.2.2. Hydrometric monitoring 

The collection of flow variables is integral to any examination of sediment transport. 

The essential transport mechanisms of saltation and rolling, outlined by Gomez (1991), 

are controlled by the energy coefficient exerted by the stream, with changes in discharge 

directly affecting stress, lift and drag coefficients on the river bed. 

As part of the long term Plynlimon catchment experiment, The Institute of Hydrology 

(IH) maintain a flow monitoring network on Plynlimon, including flow gauging 

structures situated on the Nant Tanllwyth and Mon Cyff channels. Data are collected 

automatically using data loggers downloaded at 14 - 15 day intervals. Pressure 

transducers measure the depth in a stilling well adjacent to experimentally designed 

steep stream flumes (See Plates 3.1 and 3.2). The logger scans every 10 seconds and 

logs stage in the stilling well every 15 minutes from the hour, logging 96 times each 

day. A calibrated stage discharge relationship then provides the discharge in cumecs 

(M -3 s-1). An unbroken record for the period of study was available in a raw format in 14- 

50 



day segments. These segments were cut and apportioned as necessary to form the study 

periods that made up the duration of fieldwork. Table 3.1 shows the study periods and 

the dates between January 1995 and June 1997 on which critical fieldwork was 

undertaken. Analysis of the hydrometric data is given in section 4.1. 

Plate 3.1. Flow gauging flume in Nant Tanllwyth. 

Plate 3.2. Flow gauging flume in Mon Cyff. 
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Table 3.1. Flow characteristics for the study period, split into fieldwork sampling intervals 

Nant Tanllwyth Mon Cyff 
Period 
name 

Period dates Up to 
Julian day 

Individual 
Dynamics 

Bedload 
tra p 

Individual 
Dynamics 

Bedload 
trap 

A 16-Jan-95 to 03-Feb-95 18 SEED EMPT 
B 03-Feb-95 to 15-Mar-95 58 TRACE 1 
c 15-Mar-95 to 24-May 95 128 TRACE 2 SEED 
D 24-May 95 to 07-Jul-95 172 DIP DIP 
E 07-Jul-95 to 27-Jul-95 192 DIP TRACE 1 
F 27-Jul-95 to 11-Aug-95 207 TRACE 3 SEED 
G 11-Aug-95 to 05-Oct-95 262 DIP 
H 05-Oct-95 to 15-Oct-95 272 SEED DIP 

HA 15-Oct-95 to 26-Oct-95 283 
1 26-Oct-95 to 15-Dec-95 333 DIP 
3 15-Dec-95 to 11-Jan-96 360 TRACE 4 DIP DIP 
K 11-3an-96 to 18-3an-96 367 TRACE 2 

KA 18-Jan-96 to 20-Feb-96 400 D/EMPT SEED D/EMPT 
L 20-Feb-96 to 26-Mar-96 435 TRACE 5 
M 26-Mar-96 to 02-Apr-96 442 TRACE 3 DIP 

MA 02-Apr-96 to 03-May-96 473 DIP 
N 03-May-96 to 02-Jul-96 533 TRACE 6 DIP DIP 
0 02-Jul-96 to 01-Oct-96 624 TRACE 7 DIP DIP 
p 01-Oct-96 to 19-Nov-96 673 D/EMPT DIP 
Q 19-Nov-96 to 10-Dec-96 694 TRACE 8 DIP DIP 
R 10-Dec-96 to 14-Mar-97 788 DIP DIP 
S 14-Mar-97 to 09-Apr-97 814 TRACE 9 DIP TRACE 4 DIP 

T 09-Apr-97 to 02-Jun-97 868 REMOVAL DIP REMOVAL DIP 
10 5 

Data were analysed in terms of both total discharge and excess flow over threshold 

flood levels. Thresholds were determined by personal communication with IH 

employees and based on experimentation with local thresholds for entrainment. 

Selection of flow thresholds by Moore and Newson (1986) was undertaken in the same 

channels using evidence derived from observed thresholds using Helly-Smith samplers. 

These thresholds were different for the Nant Tanllwyth and the Afon Cyff, with no 

thresholds under the 1.0 m3 s- I used. However, analysis of thresholds under 1.0 m3s-1 

in the Afon Cyff showed that sediment mobilisation did occur. It was therefore decided 

to use the same thresholds for both rivers, and additionally extend thresholds in the 

Afon Cyff to represent its higher discharges. 
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Parameters of time (hours over 0.3,0.5,1.0,1.5 and 3.0 rn 3 s-1 flow) and discharge (total 
volume (in 000 M) over 0.3,0.5,1.0,1.5 and 3.0 m3 S-1 )) were calculated using 
Microsoft Excel spreadsheet macros. 

The actual threshold values were not the only choice for the analysis of threshold 
events. Several approaches have been taken to the analysis of flood events, these 
include: 

1. time over threshold; 
2. number of events over threshold; 

3. volume over threshold and, 
4. individual peak flows. 

All of the approaches are viable in terms of comparing floods over time and between 

catchments, as flow records show hydrograph shape is consistent, allowing for time and 
discharge analysis. Testing of relationships was undertaken and the use of the volume 
over threshold was chosen both for its best statistical correlation and for physical 
correctness. Volume over threshold was chosen as a measure of the stream's capacity 
to transport and includes the measures of time and overall peaks. Using only a time 

over threshold does not include any measure of how much the threshold was exceeded 
by. Using number of events over threshold in turn gives no indication of how long the 

peaks lasted for: this time factor has a significant control on their geomorpho logical 

effectiveness (Gilvear and Harrison, 199 1). 

3.2.3. Tracer mapping techniques 

A survey method was required to map tracer locations and channel banks which had to 

satisfy the needs of accuracy, practicability and reliability. The conditions in which the 

fieldwork was undertaken largely governed the mapping method chosen. Both channels 

were small in size, the Nant Tanllwyth averaging less than 2m in width and the Afon 

Cyff less than 4m. Methods considered and subsequently rejected included: EDM, 

level, theodolite, and horizontally laid tape. The use of an EDM was initially an 

attractive option, providing extremely accurate and repeatable readings. However, it 

was impractical both for use on solo visits and for the conditions in the Nant Tanllwyth 
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where trees and overhanging branches made surveying from limited fixed points to the 

channel impossible. The use of a level and tape was rejected for the same reasons, with 

overhanging trees obscuring the siting of the level at many points. A further option 

considered was to align a tape parallel with the channel and measure points adjacent and 

perpendicular to the line to determine distance. This was rejected due to lack of 

reliability in producing 90-degree angles and subsequent loss of accuracy in mapping 
both lateral and downstream position of tracers in the channel. 

The final method also needed to fulfil several criteria: - 

I The method had to be operable by one person, as the bulk of fieldwork was to be 

done alone; 

2 it needed to be durable and as invisible to the public as possible, as both forest 

operations and a public footpath ran alongside the Nant Tanllwyth; 

3 it needed to be accurate, as previous work (Ergenzinger and Conrady, 1982; Hassan, 

1990) had demonstrated the relative stability of some tracers in situ, and 

4 it needed to be rapid and repeatable, so as to allow traces of up to 200 clasts per 

channel to take place in limited periods both in practical fieldwork terms, and 

between winter flow events. With winter daylight hours limited, a rapid but 

accurate reconnaissance was essential. 

Taking account of the various constraints, a triangulation method (the two-tapes 

method) was developed for use in all tracer surveys in the Mon Cyff and Nant 

Tanllwyth. This provided a technical solution to the mapping problem for accuracy and 

reliability, as well as accounting for the time, personnel and financial constraints of the 

project. 

The method is outlined below. Differing terrain present in the Mon Cyff and Nant 

Tanllwyth meant that slight variations on the setting up of the system were used, with 

an extra level of complexity, and therefore error, present in the Nant Tanllwyth. The 

methods are described respectively. 
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Figure 3.1. Diagram showing morphological mapping and location 

The triangulation 'two tapes'technique chosen works on a simple method. The ends of 

two tapes are fixed at known benchmarks on the channel side, as shown in Figure 3.1. 

Any new point, say point x, can be mapped by stretching each tape to point x and 

measuring and recording the distance from each benchmark. With the distance from 

each benchmark known, it was then possible to define Cartesian co-ordinates for the 

new point x. A series of regularly spaced benchmarks along the channel banks could 

then map features in the channel, channel banks and any tracer location. The positions 

of the benchmarks was fixed at the start of the project, with standard levelling 

techniques (Clancy, 199 1) used to fix their XYZ co-ordinates. As noted above, the 

siting of these benchmarks were constrained, particularly in the forested Nant 

Tanllwyth, by bankside vegetation. 

Using Microsoft Excel macros, Cartesian co-ordinates were calculated as shown in 

Figure 3.2, in an excerpt of the calculation spreadsheet. The table below is shown as an 

example only. 

Errors from the method were dependent on a number of variables: 

1. the surveyed accuracy of the benchmarks themselves; 
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2. any stretch of the measuring tapes; 
3. measuring error in terms of the original location of the pebble, and 
4. measurement error due to field worker error. 

The benchmarks were surveyed in at the beginning of the study. The distances between 
benchmarks and then distances between hooks were measured and re-checked. The 
distances between hooks used to calculate the pebble positions were always directly 

measured distances (marked known distance on figure 3.1). All distances between 
hooks were found to be ±5 mm after re-measurement. This eliminated any error 
associated with deriving the position of the hooks from benchmarks in the Nant 
Tanllwyth. Tapes were tested in both summer and winter measuring between 
benchmarks: no differences between measurements were found and this source of error 
was eliminated. 

The main errors were identified as properly measuring the originally located pebble 
position and the operator error. The errors in locating the exact position of the pebble 
are near impossible to quantify. On most occasions, location of the tracers pebbles was 
straightforward and the resting position was easily identified. However, in cases of 
deep burial and occasionally in the case when two pebbles were located at the same 

point, the excavation caused the movement of the pebble out of the dredged hole. In 

this case an error was possible, but not quantifiable. With the deepest excavations 
leading to holes around 400mm, it is possible that the measured position was up to 

200 mrn from the true buried position. In practice, these deep excavations happened 

rarely and in any case, it is likely that the original signal (where the centre of the hole 

would have been made) indicated the correct location. The second error was operator 

error. This could have occurred due to misreading the tapes. Care was taken to always 

read the tapes on the vertical above the pebble (ascertained using the Magnotrack 

locator) but repeated surveys at the same point showed up to a ±50 mm error. This 

figure however is slightly misleading as errors tended to occur in a cross-stream rather 

than downstream direction due to the mapping method. With analysis of downstream 

movements most crucial, effective errors in distances travelled (between two traces) 

remained at ±50 mm. Thus the effect of the error was not cumulative. 
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123456789 10 11 12 
Bank D/S U/S Dist Bear East North New EA TNG NoRTHING BM BM bearinci 

Bank C4 7-ý D 13 292.5 966 1002 6.43-] 966.1-0-07.05 

Column I Designate a bank description, or tracer code. 

Column 2-3 shows downstream benchmark code (known co-ords) and tape length to 
mapped point 

Column 4-5 shows upstream benchmark code (known co-ords) and tape length to mapped 
point 

Columns 6-9 Are automatically pasted by macro depending on the value of the lower hook 
point, and designate the distance between hooks, bearing from North between 
them, and the Easting and Northing of the downstream hook. 

Column 10 calculates the new angle between the downstream hook and the survey point. 

Columns 11 and 12 finalise the new-Easting and Northing co-ordinates. 

Figure 3.2. Notation for mapping and tracer relocation 

AFON CYFF 

The channel reach selected for study in the moorland Mon Cyff was approximately 325 

m, with no obstacles to surveying the channel. Benchmarks were fixed at 

approximately 15 m intervals and between 0.50 m and 1.50 m from the bank side. 
Benchmarks consisted of 0.6 m wooden stakes driven into the ground, leaving 

approximately 0.1 m of the top exposed. Each benchmark was allocated a letter (from 

A to V) and marked with a steel plate and a hook was fixed in the stake to allow a tape 

to be securely attached to it. These benchmarks were subsequently used as the 

triangulation points for all mapping and tracer co-ordinates. Using standard levelling 

techniques (Clancy, 1991) each benchmark was assigned Cartesian XYZ co-ordinates 

based on (0000,0000,0000) as the top right corner of the bedload trap. These were 

calculated and recorded to 0.0 1 m. An example of the field survey notation for tracer 

location is shown in Figure 3.3 below. This notation was used AFTER the benchmarks 
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were levelled in. In reality, the field notebook would also contain columns for notes, as 
well as a description of what was being mapped in each row. 

_Lower 
Benchmar Distance 

- 
Upper benchmark Distance 

A ý:: 6.0 0m B 5.00 m 

Figure 3.3. Recording notation during tracer location 

NANT TANLLWYTH 

The afforested Nant Tanllwyth presented an additional problem. With the trees present 

around the channel, it proved impossible to position benchmarks where both full 

coverage of the channel and level sighting was possible. Instead, the trees on the north 

side of the channel (not to be felled) were utilised as hook triangulation points, with a 

separate network of benchmarks installed as in the Mon Cyff, but not providing hooks 

for channel measurement. The tree hooks were then surveyed from the benchmarks to 

obtain the channel mapping co-ordinates that could be levelled without interference 

from trees. The XYZ co-ordinates of the tree hooks were then surveyed directly from 

the benchmarks and it was these hooks, as with the Mon Cyff, for which all 

triangulation was undertaken. 

3.2.4. Stream survey 

At the start of the project, it was envisaged that a detailed survey of the channel banks 

of both rivers would be undertaken. Based on the experience of previous studies (Davis 

and Gregory, 1994), erosion and damage to banks was anticipated in the afforested Nant 

Tanllwyth during forest clearance operations. However, in tandem with this study and 

over the same period, a comprehensive study into bank erosion in the channels (Stott, 

1999) revealed mean erosion rates to be only 30 nun yr-1. Mean bank erosion rates 

post-harvesting increased to 65mm yr-1 on unfelled banks and to 95 mm yr-1 on banks 

from which trees had been clearfelled. However, these bank erosion rates were 
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significantly less than the standard error of the two-tapes measuring technique. The 
technique was subsequently not used for the study of channel bank erosion. 

3.3. Grain size distributions 

Monitoring of bedload was undertaken at repeated intervals throughout the project to 

assess the grain size distribution of the channels. It was hoped to use grain size 
distributions as a background to any change in sediment transport flux and to assess 
change, which n-fight affect salmon spawning and channel stability. Several methods 

were attempted to monitor changing grain size distributions in the channels. 

I Bed photography; 

2 surface counts; 

3 channel bulk samples, and 
4 freeze core samples. 

Due to unsuccessful attempts at the use of photography, this technique has not been 

included in the thesis as a method of deriving grain size distributions. Several sets of 

photographs were taken through the catchment during the felling period at fixed 

locations, and initial testing using digitised measuring techniques were promising. 

Problems arose however with ground truthing the results and it proved impossible to 

correlate distribution of size measurements of sieved data to those derived from 

photography. The technique was originally promising as the method is non-destructive 

and the shape distribution in the Nant Tanllwyth and Mon Cyff suggested that the 

method could be successful. 

Photographs were taken initially at sixteen sites along the bed of the Nant Tanllwyth 

and at ten sites along the Mon Cyff. Images were obtained using a tripod at fixed 

height above the sediment surface, photographing vertically to the bed. At each point 

two frames were taken at different shutter speeds. Each photograph included a 100 cm 

rule uniquely marked to correspond with notes taken of site details. Sites were mapped 

using the two-tapes method to allow relocation of the sample points on the bed. 
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After processing, colour photographs were scanned into Adobe Photoshop for 

correction and improvement. Photoshop allowed improvements in light and contrast to 
the photographs which were often taken in difficult conditions. Using Photoshop, all 
visible pebbles were measured and recorded along the two visible axes, based on the 
dimensions of the rule included in each image. A frequency distribution was then 
drawn up. To ground truth the data, three areas in the lower Nant Tanllwyth were used 
to photograph, surface sieve and grid sample. In drawing up the distributions made by 
the separate methods, it was impossible to match the image derived distributions with 
those from grid sampling or sieving. 

The method may have benefited from a different approach at the ground truthing stage. 
Instead of relying on distributions (the ultimate derivation) for ground truthing, a more 
basic unit of study could have been attempted, whereby an area is photographed and a 
number of clasts (-100) could have been marked in the photo. These clasts could then 
be measured individually to match up with the photo derived measurements of the same 
clasts to allow a closer examination of where the variations and errors were derived. 

3.3.1. Surface counts 

Surface counts were undertaken using a derivation of the Wolman method (Wolman, 

1954) which represents the aereal distribution of the size range over the bed. Random 

samples of 100 pebbles in a reach were taken and the intermediate axis was measured 

on removal. This method has the advantage that there is no requirement for sieving, 

although Wolman (1954) points out that median diameter is larger than that obtained 

using a sieving technique. It is, however, representative and can be used in comparisons 

with other channels of similar size range. Consistency of reach length is required for 

comparison, and as both reaches were of similar length, the same number of samples 

could be taken from each. 

The technique chosen used a grid system of sampling. Several methods were trialled, 

including a specially constructed table from which paint was dipped onto the clasts from 

above. However, this method restricted the area from which samples could be taken. 

The final system chosen used a tautly stretched tape laid over the sediment surface and 
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samples were taken on 0.2 m intervals on the tape. A2 rn square was constructed and 
nodes taken every 0.2 m across the square. Samples were made at 4 points in each 
channel approximately 100 m spaced apart. This fulfilled the random selection of the 
count and removed the difficulty of selecting clasts without looking (using the toe of the 
boot method) where picking up smaller clasts is problematic. 

3.3.2. Bulk Samples 

At five regular intervals during the course of the fieldwork, bulk samples of sediment 

were taken at 5 fixed points in each channel. Samples were shovel sampled at exactly 
the same point on each occasion, and were bagged, dried and removed to the laboratory 

for sieving and analysis. Samples were firstly weighed wet, then dried, sieved and the 

size fractions weighed individually. It was hoped the technique would allow the 

assessment of the degree of variability in bedload distributions throughout the channel. 
Selective sediment loss of fines was thought to be a problem (Thorns, 1992) as the 

shovel passes through the water and fines were swept off the shovel (Petts, 1988). The 

variation in each sample, however, meant that changes could not be detected in such a 

small sample, and these samples were eventually used just to give overall D50 rather 

than assessing change over time. In addition, the method meant that selective sampling 

of sediment, with both very large and very small sections of the distribution left under- 

represented. Removing samples large enough to give true distributions (Church et al., 

1987) would have simply been too destructive in such a small channel as the Nant 

Tanllwyth, where tracing and trapping techniques required maintaining the channel in as 

natural condition as possible. Church and Wolcott (1987) state the largest clast in the 

sample should make up no more than I% of the mass of the total sample. 

3.3.2. Freeze coring 

To obtain samples that were both deeper and less prone to any selective sediment loss, 

freeze coring was undertaken in conjunction with the Institute of Hydrology (Marks, 

1996). The method can collect bedload and associated substrate up to a depth of 

approximately 0.3 m and full details of the method are available in Petts et al. (1989). 
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The basic method is as follows. A hollow metal stake is driven into the riverbed to the 

required depth (approximately 0.4 m) and into the stake a liquidC02 is pumped via a 

pipe with a number of evenly distributed nozzles. The surrounding gravel then freezes 

and forms a cylindrical core of substrate around the stake, which can be winched from 

the riverbed and removed for analysis. After removal, sediment was divided into 0.1 m 

sections and each sieved separately. 

3.4. Sediment Yields 

The total bedload output of each stream was determined using bedload traps at the lower 

end of each channel reach. Each trap was resurveyed at the time interval shown in 

Table 3.1. Several studies, notably Moore and Newson (1986), had used the bedload 

traps installed within the catchments and they provide a valuable long-term record of 

the bedload outputs of the two channels. To fully reallse the project aims and to obtain 

a dataset of suitable quality, it was deemed necessary to upgrade the bed load traps for 

the purpose of the study. 

Previous work by IH at Plynlimon (Moore and Newson, 1986, Leeks 1992) had 

measured total flux by emptying the bed load trap on each measurement using a JCB 

bucket, the sediment removed being emptied onto a stake adjacent to the trap (see Plate 

3.3). 
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5 

Plate 3.3. Nant Tanllwyth bedload trap: JCB excavation onto measuring spike. 

The stake was fitted with partition boards to allow one eighth of the sediment cone to be 

split. This sample was then wet weighed, and multiplication of this mass by eight gave 

a total flux for that period. There were several limitations with this method: - 

I The availability of heavy machinery for each survey; 
2a loss of accuracy, both from failure to completely empty the trap and in incorrectly 

estimating the proportion of the sediment cone, and 

3 the availability of manpower for each survey. 

It was therefore decided to utilise the existing bed load traps and to upgrade them to a 

more accurate and usable system. A system was required to meet the needs of the 

study, and especially important was that resurvey needed to be accurate and carried out 

using the minimum of pre-planning or expense. 

The process of dipping of the traps inevitably had minor associated errors. The traps 

themselves, due to their rigorous construction were relatively free of errors. They were 

built of concrete, had immovable monitoring rails and the dipping sticks were 

constructed from carefully machined steel parts - this ensured the stick was vertical 
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when meeting the sediment surface. The main error therefore was the possible 

movement of the dipping stick when contacting the sediment surface, either through 

slight sliding on a smooth pebble, or by moving into a soft granular sediment surface. 

Errors were estimated by repeat monitoring of the trap on the same day. Of the 144 

points on each dip, errors in individual readings after repeat dipping were shown to be 

40 mm, with more than 75% of these errors ± 10 mm between first and second dip. 

Errors were distributed normally and lead to the overall error in bedload yield to be less 

than 35 kg for each dip. 

3.4.2. Construction of bedload traps 

Existing bedload traps measured 4m square by 1.5 m deep and traps were constructed 

of reinforced concrete, with smooth straight walls (see Plate 3.4). The lip at the front of 

the trap was designed to ensure sediment did not pass through the trap to the channel 

below. Confirming the traps worked correctly in practice presented a challenge. Field 

observations below the traps suggested little sediment was passing through in the Nant 

Tanllwyth, but due to the initial design siting of the Mon Cyff trap, some sediment 

seemed likely to pass through at high flows, or during high sediment mobilising events. 

In practice, traps were assumed not to be leaking large volumes of sediment based on 

the following observations: 

1. traps were never observed to have filled up to the lip of the exit rim; 

2. traps were emptied when approximately half full, to allow for the capture of large 

events, and 

3. observations downstream showed that no significant sediment accumulations took 

place within 50 m of the trap. 

The design of the bedload trap in the Nant Tanllwyth is shown in Plate 3.4. Upgrading 

of the traps was undertaken by constructing fixed metal runners on which to mount a 

movable template for fixing a grid of 144 positions over the trap surface. Using a 

specially designed and manufactured movable bridge for measurements, this grid 

enabled a measuring stick to be lowered at fixed positions over repeated visits to the 
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trap. The dipping of the trap enabled a three dimensional image to be drawn of the 
bedload trap surface on each visit and a calculation made of the total volume change of 
the trap from the last visit. The technique is explained below. 

3.4.3. Trap measurement and maintenance 

Dipping the bedload trap was a three-stage process: installation of template, location of 
the dipstick into the template and reading of depth measurements. To locate the same 

precise point at which to dip for each visit, the template bar had to be positioned at fixed 

points. These were fixed using small studs on the runners in the bedload trap. On 

locating the template into one of its nine positions, the dipstick was guided into two 

slots on the template to ensure a vertical measurement. This vertical position was 

crucial to measurement accuracy, as any variation would firstly measure an incorrect 

angle and thus a greater distance to the sediment surface. Secondly, if the dip-stick 

were to locate at the top of a sediment clast, it might slip down below its true position. 
The first point of contact of the dipping stick, as it was lowered through the template, 

was considered the sediment surface. With the possibility of particle winnowing and a 
different surface/sub- surface distribution present in the bed load trap itself, adherence to 

this procedure was seen as central in determining small levels of change within the 

traps. Test experiments showed that larger particles present in the trap introduced 

further error, which was a particular consideration in the Mon Cyff. Readings were 

processed into a contour map of the sediment surface. An example is shown in Figure 

3.4 below. 
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Plate 3.4. Survey method for Nant Tanllwyth and Mon Cyff bedload traps. 

Figure 3.4. Diagram of sediment surface from dipping bedload trap. 

On two occasions during the study the bed load traps required mechanical emptying 

after heavy sediment accumulation. This process required hiring a JCB digger (Plate 

3.3) and emptying bedload in a pile adjacent to the trap. The sediment cone was 
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positioned sufficiently far from the trap to avoid sediment washing back out into the 
trap or channel again. 

3.4.4. Analysis of trap data to estimate yields 

With several measurements taking place between each excavation and emptying, a 
method of estimating total sediment yield in each period was required. Using two 

contour maps of the bedload trap, a volume of sediment deposited or removed from the 
trap could be calculated using a spreadsheet solution. The difference in volume 
between the first and second readings, multiplied by the density of sediment gave a total 

output of material during the measuring period. These volumes could then easily be 

related to time and strearnflow conditions. Density was derived using bulk samples 

removed directly from the bedload trap. Density was determined by taking a known 

volume of wet sediment, drying it and weighing the dry material. Bedload in the Nant 

Tanllwyth bedload trap had a density of 1.69 t m2whilst in the Mon Cyff, density of 

trapped material was 1.83 t M2. 

3.5. Individual Particle dynamics 

As well as determining total flux of sediment in bedload traps, particle dynamics were 

monitored over the experimental period using passive magnetic tracers. Flux was 

estimated by measuring the distance moved by each particle between traces. A record 

of the depth and channel position of the tracers at the time of each survey was also kept. 

A method was required to give an accurate representation of sediment flux that would 

define the nature and distribution of transport of surface and subsurface material in the 

channel. The tracing methods discussed in section 2.1 have specific advantages and 

disadvantages and a technique was required to fulfil the dual needs of yielding quality 

data and being a practical solution for one or two field workers. The passive tracer 

system used by Hassan et al. (1984) and Wathen (1995) which involved implanting 

ferrous material or magnets into natural clasts, was chosen to allow a large quantity of 

tracers to be manufactured on a limited budget. Bunte and Ergenzinger (1989) state: 
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Choosing the appropriate tracer technique. for the question Qf research and nature of 
tile site is not only dependent on pecuniary matters but on the availability of 
technicallelectronic instrumentation and know-how. 

Thus, the technique needed to be reliable and usable by initially inexperienced and 
unsupported field workers. 

3.5.1. Tracer design and planning 

To represent sediment fluxes Dietrich et al. (1982) maintained the need for any tracer 

population to mirror the size distribution of the bed. Hassan et al. (1992) highlight the 
discrepancy between tracer distributions and actual channel distributions in many 
previous experiments. In addition, the question of selection of the type of size 
distribution also arises. The D50 surface and D50 subsurface show different values and 
there are different freeze coring and Wolman distributions in the samples from the Nant 
Tanllwyth and Mon Cyff. Difficulty persists within tracing in geomorphology, in that 

the tracer distribution will always have a skewed size range due to the lower limits of 
the size of clasts that can be successfully tagged. The choice of size range was a crucial 

consideration in the experimental design and one that would ultimately affect the 

analysis and prediction of sediment fluxes in both channels. To attempt to represent the 

entire distribution was impossible due to the logistical constraints of constructing 

sufficient tracers in the smaller size ranges. In addition, techniques available did not 

allow for successful tagging of clasts smaller than 8 mm. The final distribution of the 

tracer particles is shown in section 3.5.4 below. 

The success of any passive tracing system is based upon the ability to re-locate tracers 

in the field. This depends on the strength of the magnetic field emitted by the tracer, the 

sensitivity of the search instrument, and the background magnetism of the search area. 

Testing and discussion (Wathen, pers comm) led to using small cylindrical and cubic 

magnets, varying in size and strength of field emitted. Larger clasts could be fitted with 

the biggest magnet, type a (Cylindrical, depth 7 mm, diameter 10 mm), with smaller 

clasts having size b (cubic, 4 mm, 4 nun, 8 mm. ) and smallest clasts type c (4mm, 4mm, 

2mm. ) installed. The decision as to which magnet to use was often subjective, but was 
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largely based on both the size and shape of the tracer clast, and was in practice often 

governed by particle c-axis. 

3.5.2. Tracer construction 

All tracers were manufactured using clasts from the channel in which they were 

subsequently used. Clasts were selected at random from the surface of each channel. 
Around 95 % of bedload material in the Nant Tanllwyth was composed of shales, 

suitable for tracer manufacture. Approximately 5% of material (by mass) in the Nant 

Tanllwyth was a hard glacially derived granitic rock, which proved exceptionally 
difficult to drill successfully and therefore these clasts were not used to manufacture 

tracers. 

Tracers were constructed using the following process. - 

I Clasts were selected for drilling based on bed distribution (section 1.3); 

2 clasts were sorted into size classes for construction with different magnet size; 

3 clasts had a hole drilled into the thickest section using a drill stand and high-speed 

masonry drill bit, without hammer action (this was found to quickly weaken and 

shatter the clast); 

4 the tracer was cleaned and dried, and a layer of epoxy poured into the hole; 

5a magnet was inserted into the wet epoxy, with the hole flooded with epoxy with 

approximately 3 mm recess; 

6a waterproof label was inserted into the end of the hole, covering the magnet 

embedded in liquid epoxy, and 

7 after a one-hour drying period, further epoxy was added to cover the label and fill 

the hole flush with the rock surface. 

An example of a completed tracer is shown in Plate 3.5. Tracers were tested in a for 

waterproofing and breakage. No problems were found in the tested tracers, although 

one batch was found to have rapidly corroding labels, possibly due to incorrect 

waterproofing of the labels, or the epoxy mixture having changed in manufacture. This 

was discovered after tracing was undertaken. 
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After manufacture, all pebbles were weighed, measured (a, b and c axes) and were 
given a small colour spot on one side. The public right of way along the Nant 

Tanllwyth precluded the use of brightly coloured markers as attempted by Takayama 

(1963), Thorne and Lewin (1979) and Wathen (1995). 

Plate 3.5. Labelled tracer clast in Nant Tanllwyth (above) with temporary marker pebble (below) 

3.5.3. Tracer seeding 

Significant importance had been attached to the initial, or seed location, of the tracers in 

the stream channel. Much of the work pioneered by Schmidt and Ergenzinger (1992) 

and furthered by Stott (pers comm) in developing a clast that does not require digging 

for relocation (radio tagged tracer) has been driven by the advantage of allowing a tracer 

to start from the natural position in which it rests. Tracers in this study were seeded in a 

line of either 5 or 10 across the channels in both riffles and pools. It was anticipated 

that this would provide the most rapid form of entrainment and yield useful data on the 

competence of flow in transporting bedload. Tracers were seeded along the entire 
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length of the channel with lines equally spaced approximately 30 m apart. This was 
done in an attempt to represent and quantify transport parameters throughout the study 

reach. Seeding was undertaken by pushing the tracer into the gravel using the sole of a 

rubber boot, this was to ensure that tracers had as natural starting position as possible. 

3.5.4. Tracer size distribution 

Bed grain size distributions for Mon Cyff and Nant Tanllwyth are discussed in the 

Plynlimon section 1.6.2. Various approaches have been used to construct a size 
distribution for tracers to use in an experimental stream channel. These can be split into 

manufactured (concrete or other material) tagged tracers, and natural (local bed 

material) tagged tracers. 

Studies attempting physical modelling of entrainment, transport and deposition 

parameters have found the control given by the use of manufactured tracers invaluable. 

The method allows modellers to better calculate conditions at times of entrainment, and 

minimise controlling variables by manufacturing large numbers of tracers of 

predetermined size and shape classes. 

A number of experiments aiming to determine bedload characteristics of specific 

streams, rather than investigating the physical forces involved in entrainment and 

transport of individual clasts, have used natural bed material. This material, 

subsequently tagged, should better simulate natural conditions of entrainment and 

transport through a channel. This experiment aimed to examine natural transport 

conditions within two specific channels, so tracers taken from the channel were deemed 

more appropriate. It was intended that the tracer Dtrac sample should represent the size 

distribution of sediment in each channel. In reality however, Dtrac could only represent 

one constituent part of the distribution, with overall sediment distributions differing 

with surface and subsurface conditions, as well as possibly differing due to different 

stages of armour progression. Thus, an approximation of the surface size distribution 

was made. Bulk sediment samples and freeze core samples taken from the Mon Cyff 

and Nant Tanllwyth do not adequately represent the size ranges of the bed surface 

material. In order to best represent the bed surface distribution random counts based on 
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Woli-nan (1954) at both exposed and underwater points within the channel were used. 
Bulk samples removed from the bedload trap contained a large proportion of fines, 

unsuitable for tracing, and were not applicable for determining tracer distributions for 

the individual particle tracing experiment. 

The distribution of the tracer sample in the Nant Tanllwyth is shown in Figure 3.5, and 
for the Mon Cyff in Figure 3.6. 

Figure 3.5. Tracer and surface size distributions for the Nant Tanllwyth 

Figure 3.6. Tracer and surface size distributions for the Mon Cyff 

The bed distribution is represented by 200 randomly sarnpled tracers from the surface of 

the Nant Tanllwyth at four exposed and semi-exposed sediment stores through the 

reach. 
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Figure 3.5 shows the tracer distribution in the Nant Tanllwyth to be comparable to 

previous surface counts in the channel. The coarser size distribution of tracers 

originally seeded in the Mon Cyff (Figure 3.6) reflects its coarser size distribution (see 

section 1.6.2). 

Figure 3.7. Tracers size distributions for Nant Tanllwyth and Mon Cyff 

From the data described above, we can assume that the tracer data reasonably, but not 

exactly, matches the bed distribution. 

3.5.4. Tracer location and identification 

Tracers were located using a Magnotrack I OOTMmagnetic locator, a device similar to 

that used by Hassan et al. (1984). Searches were undertaken working (and facing) 

downstream, whilst standing (with non-ferrous footwear) on the bed of the channel. 

The detector was passed across the entire bed on a broad search setting to maximise 

search radius. When a signal was received from a ferrous or magnetic object, the 

sensitivity settings were reduced to exactly locate the found object. Search radius was 

approximately 0.5 m, with depth up to approximately 0.45 m. The waterproof detector 

could operate in water depths of up to 0.9 m. On location of the tracer, the searcher 

would dig the tracer from the bed and replace it with a temporary marker. The identity 
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of the tracer would then be established, and its position recorded using the two-tape 

method. The searcher would stretch the tapes (see Plate 3.6) above the marked point 
and hold the detector vertically on the point on the bed at which the tracer was found. 
The tape readings at a point vertically above the tracer location would then be made. 
Recordings of local conditions, depth within sediment and depth of water were also 
made. 

Plate 3.6. The two-tapes method. Tracer pebble location and mapping in the Nant Tanllwyth 

The tracer was then replaced and reburied to its original depth and covered as well as 

possible with excavated sediment. This process was both technically difficult and time 

consuming. Theoretically to maintain the tracer's integrity as an undisturbed clast for 

further transport and account for particle clustering (Brayshaw et al., 1983), one would 

have to exactly imbricate the tracer within its original matrix and to its exact depth. 

Although Drew (1992) claimed disturbance in his study to be minimal at these depths, 

this proved impossible in the field and with deep excavations of up to 0.4 m necessary, 

this was a source of error. How the effects of these disturbances and the different 

circumstances of the first trace on overall travel distances must be considered. The 

stream bed of the Nant Tanllwyth and Mon Cyff are both characterised by low sediment 

and water depths. Excepting the first test trace (where only 20 tracers moved slightly 
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lower distances), examination of a particle's first movement in comparison with future 

movements of matching size classes and under similar flow magnitudes did not show 

any significant differences. It was felt therefore that to remove tracers from the dataset 

would not be appropriate. Search procedure was identical in both channels, though 

deeper water in general was found in the Mon Cyff whilst deeper sediments tended to 

characterise the Nant Tanllwyth. 

Identification was made by recording the serial number within the small epoxy window 

on the clast. Serial numbers ran from 1-99, from A-Z, and from AA-GZ. On occasion, 
due to a broken tracer or damaged epoxy window, identification in the field was 
impossible. Two courses of action were possible: 

I The location of the tracer was recorded, its dimensions measured and the tracer was 

then removed from the experiment and scratch marked for identification, or 

2 if there was only uncertainty as to the tracer identification, the epoxy window was 

dug out and the tracer label established. If possible, the tracer was then marked by 

scratching a label into the surface of the rock. These tracers were later removed 

from the abrasion study since their mass would have been artificially altered after 

scratching. 

On return to the laboratory, any tracers not having positive identification were identified 

using the central database based upon their weight, size and location parameters. 

Tracers that could not be positively identified were stored until the study end, when 

further attempts to identify them were made by a process of elimination. Tracers were n 

3.5.5. Analysis of tracer positions and travel distance. 

Distances were computed based on distance moved from the seeding point, or last 

traced position to finish point. The two Cartesian co-ordinates were used to calculate 

the shortest path between the two points. Small error is associated with this where a 

tracer passes around a significant bend in the channel. However, within the Nant 

Tanllwyth only one such point existed. In the Mon Cyff, the channel was almost 
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straight, and the amount of error was negligible. After experimentation with various 
macros to simulate following the thalweg, it was found that drawing straight vectors 
between points was in fact the most accurate method. The full discussion on travel 
distances and relative speed of movement is discussed in the results section 4.3 1. 

3.6. Abrasion 

Length measurements of a, b and c axes of each clast were made and mass recorded to 
0.1 g. These were recorded both at the start of the study, before tracers were introduced 

into the channels and at the end of the study, when they were removed. Abrasion 

measures were taken on freely moving clasts only to represent as closely as possible the 

effects of travel distance, burial and time on the abrasion of individual clasts. A dataset 

of abrasion against hydrologic and travel distance parameters could be constructed. 

3.7. Summar 

This section has described the techniques of monitoring bedload by both tracing of 
individual clasts and trapping total bedload outputs. It demonstrates the improvements 

in the bedlo ad- monitoring network since previous studies took place in the catchments. 
With the availability of new technology, this trapping network has been augmented 

further with the use of tracers to examine individual particle travel distances through the 

channels. The catchments are particularly well provided with hydrometric data and it is 

anticipated that the analysis of thresholds of these data can be used as a basis for 

examination of bedload flux. 
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Section 4: Results 
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4.1. H-vdroloLyical moni 

Institute of Hydrology monitoring flumes (see section 3.1) were used to collect data 
from the Nant Tanllwyth and Mon Cyff catchments. Data are presented from the 
duration of fieldwork and are delimited into study-periods that correspond to field 

measurements. The aim of this section is twofold: 

I To define and describe the hydrological profile of the two catchments, and 
2 to assess the degree to which the catchments can realistically be classed as paired. 

The data will be examined at a range of scales. Firstly, for the duration of the field 

work. Secondly, split into each study period and thirdly, through yearly comparison 

with historical data. 

4.1.1. Hydrological statistics: duration of fieldwork 

This section will analyse the continuous flow data and the major hydrological features 

from the two experimental catchments. It will draw comparison between the Nant 

Tanllwyth and Mon Cyff and describe the main influences on the results that are 

presented. 

The summary hydrological data for the Nant Tanllwyth and Mon Cyff catchments for 

the duration of fieldwork is shown in Table 4.1. 

Table 4.1. Discharge characteristics for study period 16th January 1995 - 2nd June 1997. 

Stream discharge (m's-') 
Maximum Minimum Mean 

Nant Tanllwyth. 2.316 0.045 0.051 

Mon Cyff. 6.358 0.037 0.159 
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Table 4.1 shows mean and maximum stream discharge in the Mon Cyff to be greater 

than in the Nant Tanllwyth by factors of 2.74 and 3.10 respectively. Low flows, both 

minimum and analysed QO. 95 flows (not shown) are relatively comparable. This is in 

direct relation to catchment areas, with the Mon Cyff 3.1 km 2 and the Nant Tanllwyth 

0.89 km 2 (a factor of 3.5). 

Figures 4.1 and 4.2 show the discharge from the complete 15-minute discharge record 

of both streams. The hydrograph is split into 6-month blocks, starting from the first 

fieldwork on 16th January 1995 and finishing on the 2nd June 1997. Felling in the Nant 

Tanllwyth is indicated by the vertical dashed line in Figure 4.1. 
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Figure 4.1. Time series graphs showing 15 min flow data for Nant Tanllwyth 

80 



6 

4 
E 
=3 U 

2 L 

0 

0 so 100 ISO 

6 12th January 1995 - 30th June 1995 

5 

4 

E3 
U2 

I 

0 

200 250 300 

6 lst June 1995 - 31st December 1995 

5 

4 
CU E3 
U2 

1 

0 

0 so 100 ISO 
lst January 1996 - 30th June 1996 6 

5 

4 

E3 

U 2 

0 

200 250 300 
lst June 1996 - 31st December 1996 

6 

5 

4 
E3 

U 
2 

0 

0 so 100 ISO 
lst January 1997 - 30th June 1997 

Figure 4.2. Time series graphs showing 15 min flow data for Mon Cyff 

350 

350 

Note the difference in scales between graphs, with the Afon CyfF maximum set at 6 m3s-I and 

the Nant Tanllwyth maximum set at 2 m3s--. 

81 



In contrasting and examining the long-term hydrographs of the two catchments, it is 
possible to use these data as a sound basis for comparison of bedload fluxes and 
dynamics in later sections. The competent flow thresholds and hydrograph behaviour 
will be an important control on the bedload transport parameters being studied. We can 
examine the base-data of the two catchments in several ways. 

Flood magnitude is consistently and reliably greater in the Mon Cyff. Any flows in the 
Nant Tanllwyth above baseflow are mirrored in the Mon Cyff by a factor of 
approximately three. A relationship of y=2.94 x+0.00 13, r2=0.94 exists for exact 15 

minute timings; using averaged hourly data significantly improves this relationship 
approaching r2 =1. The total catchment areas of the Nant Tanllwyth (0.89 kM2 ) and 
Mon Cyff (3.1 kM2) mean that the Nant Tanllwyth is 29% of the size of the Mon Cyff, 

whereas flow magnitudes are on average 34% of the Mon Cyff. 

Flood response timing has been analysed and both the Nant Tanllwyth and Mon Cyff 

respond similarly. Flood peaks are attained in both catchments within 45 minutes of 
each other (and in most cases are at identical times), except for on one occasion (see 
below). Previous work in forested catchments has shown a delay in flood peaks under 
heavy plantation due to precipitation interception and delayed transport to stream 

pathways. In the case of the Nant Tanllwyth however, it is suggested that these factors 

are offset by the effect of drainage ditches within the catchment, which give rise to rapid 

runoff throughout the artificial drainage network. 

Both catchments exhibit long periods of low flows, with the Nant Tanllwyth summer 
low flow being - 0.03 m3 S-I and the Mon Cyff summer low flow being - 0.06 m3 s-I . 
Despite the difference between these figures, evidence suggests that lengthy periods of 

low flows do not influence sediment transport (Shields, 1936) or the stability of the 

bedload matrix, as they are unable to promote even the movement of fines. 

Figures 4.1 and 4.2 show 15 minute flood hydrographs for the entire study period, split 

into 6 monthly blocks. When the Nant Tanllwyth and Afon Cyff are overlain and 

compared, the only significant event within one channel not to have a duplicate in the 

other was on 28th March 1996 (day 87 of the study) in the Afon Cyff. This flow peak 
31 

reached a magnitude of 4.95 in s- , whilst over the same period, no equivalent rise in the 
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flow hydrograph was seen in the Nant Tanllwyth. This does not affect the transport 
measurements in the Mon Cyff as the channel was not monitored at that time. 

Figures 4.1 and 4.2 demonstrate the exceedingly flashy hydrographs of both channels. 
Runoff from the shales and steep slopes is rapid, with drainage pathways assisting rapid 
transit of water through the fluvial system returning quickly to baseflow. A typical 
hydrograph is shown below in Figure 4.3. This shows a typical flood over a 24-hour 
flood period, with both rapid rise and fall of the hydrograph. 
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Figure 4.3. Example of a 24 hour flood hydrograph showing the Nant Tanllwyth and Mon Cyff on 

2 ind February 1995 

4.1.2. Hydrological statistics: analysis by study periods 

The practical implications of working in a fluvial environment, where fieldwork is 

largely event driven, meant that fieldwork intervals were not of fixed length. This was 

further emphasised by logistical and monetary constraints. As such, each visit to the 

field sites was dated and periods between these dates labelled as shown below. All 

further analysis refers to these dates and labels, which hereafter become known as the 
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study periods. The complete time of study will be called the duration offieldwork and 
the pre-harvest and post-harvest times referred to as phases. Table 4.2 shows the 
hydrological characteristics of the study periods, as well as their start and end dates. 

Table 4.2. Flow characteristics for the duration of fieldwork, split into study periods 

Nant Tanilwyth Mon Cvff 
Period 
name 

Period dates Up to 
Julian day 

Mea n 
(m 3 -1) 

Maximum 
(m 3 S-1) 

Mean 
(m 3 S-1 

Maximum 
(M3S-' 1 

A 16-lan-95 to 03-Feb-95 18 0.18 2.32 0.49 6.36 
B 03-Feb-95 to 15-Mar-95 58 0.12 1.00 0.37 3.40 
C 15-Mar-95 to 24-May 95 128 0.03 0.41 0.09 4.97 
D 24-May 95 to 07-3ul-95 172 0.02 0.09 0.06 0.54 
E 07-Jul-95 to 27-3ul-95 192 0.03 0.81 0.08 2.75 
F 27-3ul-95 to 11-Aug-95 207 0.01 0.04 0.02 0.04 
G 11-Aug-95 to 05-Oct-95 262 0.02 0.93 0.09 3.09 
H 05-Oct-95 to 15-Oct-95 272 0.06 0.41 0.20 1.16 

HA 15-Oct-95 to 26-Oct-95 283 0.02 0.06 0.05 0.14 
I 26-Oct-95 to 15-Dec-95 333 0.03 0.16 0.11 0.64 
3 15-Dec-95 to 11-3an-96 360 0.07 1.43 0.20 3.28 
K 11-Jan-96 to 18-lan-96 367 0.06 0.37 0.20 0.79 

KA 18-lan-96 to 20-Feb-96 400 0.06 1.33 0.17 3.40 
L 20-Feb-96 to 26-Mar-96 435 0.04 0.25 0.13 0.60 
M 26-Mar-96 to 02-Apr-96 442 0.04 0.12 0.12 0.30 

MA 02-Apr-96 to 03-May-96 473 0.04 0.38 0.12 1.60 
N 03-May-96 to 02-3ul-96 533 0.04 0.99 0.12 3.56 
0 02-3ul-96 to 01-Oct-96 624 0.03 0.88 0.09 2.34 
p 01-Oct-96 to 19-Nov-96 673 0.12 2.25 0.37 5.78 
Q 19-Nov-96 to 10-Dec-96 694 0.10 0.84 0.35 3.91 
R 10-Dec-96 to 14-Mar-97 788 0.07 1.48 0.20 3.90 
S 14-Mar-97 to 09-Apr-97 814 0.03 0.16 0.13 0.68 

T 09-Apr-97 to 02-Jun-97 868 0.04 0.52 0.12 1.72 
Overall duration of fieldwork 0.05 2.32 0.17 6.36 

The pertinent data in Table 4.2 above is summarised graphically below, in Figures 4.4 - 
4.5. The horizontal line in Table 4.2 delimits the pre- and post-harvesting phases. 
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Figure 4.4. Total streamflow in the Nant Tanllwyth and Mon CYff during delimited study periods 

The variation in terms of both magnitude and seasonality of flow regimes of the Nant 

Tanllwyth and Mon Cyff is demonstrated in Figure 4.4. Seasonal differences are 

noticeable, with all the wettest periods B, P and R falling within winter months. Figure 

4.4 also highlights the range of flow regimes experienced between fieldwork events, 

with significant variation around the high winter discharge periods. This is typical of a 

wet maritime climate such as that experienced on Plynhi-non. Note that the histogram 

delimits periods of variable lengths. 

Figure 4.5 shows the relationship between the Nant Tanllwyth and Mon Cyff in terms 

of catchment means through each study period. 
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Figure 4.5. Graphical comparison of catchment discharge means in the study periods 

Figure 4.6 shows the relationship between the Nant Tanllwyth and Mon Cyff in terms 

of catchment maxima through each study period. 
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Figure 4.6. Graphical comparison of catchment maximum discharges in the study periods 

Figures 4.5 and 4.6 above show significant correlation in mean flows through study 

periods, though a reduced significance in correlation between maximum events in the 

channels. Hydrologically therefore, the maximum and mean hydrologic responses of 

the catchments can be considered paired. However, the flood peak of 28th March 1996 

in the Afon Cyff did not affect the Nant Tanllwyth. This point does not affect the 
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analysis of bedload or tracer data, as the Mon Cyff monitoring programme had not been 
initiated during period C. 

All of these graphs go to illustrate the variety in flow regime through the study period, 
and highlight the implications for studying bedload transport in these fluctuating 

conditions. 

4.1.3. Nant Tanilwyth: pre-harvest and post-harvest hydrology 

One advantage of the paired catchment approach is in the ability to maintain a constant 
reference in a case of changing land use (Ferguson et al., 199 1). However, when 
examining any time series experiment, the changing base parameters, in this case flow, 

will affect the overall experiment. With the date of land use change defined as April 

2nd 1996, flow in the pre-harvesting and post-harvesting phases must be examined. 
The onset of harvesting was earlier than this, falling in mid March, with harvesting 

completed in early May. April 2 nd has been chosen as the date to define the boundary of 
the two phases. It conveniently delimits two flow monitoring periods and it is in the 

middle of the short harvesting period when there were only low flows (Figure 4.1) in 

the Nant Tanllwyth. Comparison of two separate phases is extraordinarily difficult. 

The periods are shown in Table 4.3 below. 

Table 4.3. Definition of pre- and post- harvest phases and summary hydrologic data 

Pre-harvest Post-harvest 
th nd Start date - 16 January 1995 -2 April 1996 - 

End date 2 nd April 1996 2 nd June 1997 

Period length (days) 442 426 
Total Discharge ('000 M3) 1840 2020 

Mean flow M3S-1 0.048 0.055 
Maximum flow M3S-1 2.32 2.25 

Number of peaks above 26 25 
0.3 M3S-1 

Number of peaks above 16 21 
0.5 M3S-1 

Number of peaks above 5 7 
1m3 S-1 
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Table 4.3 demonstrates firstly that the pre-harvest and post-harvest phases are 
comparable in length and exhibit comparable flow characteristics. Subtle differences in 
the data are, however, shown. The total discharge and therefore the mean discharge, is 
17% greater in the post-harvesting phase than in pre-harvesting phase. More 
importantly for bedload entrainment however, is that the pre-harvest phase, although 
having a slightly higher maximum has a smaller number of flood peaks in the above 0.5 

m3 s- I threshold. The differences are not marked, but examination of the long term 
hydrographs in Figures 4.1 also shows the Nant Tanllwyth flow peaks exhibit clustering 
in the first 60 days of the pre-harvesting phase. In the post-harvest phase, peaks are 

more widely distributed though a seasonal distribution is still evident. Analysis was 

made of both peak and mean flow in pre- and post harvest phases comparing with the 
Afon Cyff. Mean flow in the Nant Tanllwyth was showed a slight decrease compared 
to the Afon Cyff, though peak flows showed a slight decrease. The differences in the 
data were subtle could not be relied upon as the basis for assuming changes in 

hydrology. With any short to medium term project comparing two phases, there is a 
difficulty in ensuring a seasonal balance within the data. The problem can arise in two 

ways: firstly, the time phases are not precisely matched in terms of seasonal start and 

end dates. Secondly, one of the phases might incorporate an extreme hydrometric 

period, with unseasonable high or low flows. The project attempts throughout to make 

dimensionless units of travel distances and bedload yields, but a short summary of the 

study phases compared to each other and to previous years' data is given below. 

4.1.4. Examination of historical data 

For the Nant Tanllwyth and Afon Cyff, historical hydrological data were made available 

by the Institute of Hydrology. Tables 4.4 and 4.5 below summarise the flow during the 

previous 22 years. This flow period covered the period use by Moore and Newson 

(1986) in their study, and provided a long-term record. Although it is difficult to 

impose artificial time boundaries on geomorpho logical data, it is essential, nevertheless, 

to test for completeness the comparability of the years studied to previous records. To 

eliminate error and compare similar data, only years 1995 and 1996 are presented, a full 

record of 1997 was not available, and combining results may bias an examination due to 

seasonality of flow. 
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Table 4.4. Historical flow records of the Nant Tanllwyth catchment 

Year Maximum Mean 
rn 3 S-1 m3 S-1 

1973 2.366 0.079 
1974 2.111 0.068 
1975 2.106 0.046 
1976 1.717 0.037 
1977 5.464 0.060 
1978 1.671 0.054 
1979 2.382 0.062 
1980 2.373 0.060 
1981 2.244 0.066 
1982 1.859 0.059 
1983 2.152 0.065 
1984 1.515 0.052 
1985 1.858 0.062 
1986 2.334 0.073 
1987 2.294 0.062 
1988 2.419 0.068 
1989 2.656 0.093 
1990 1,873 0.061 
1991 2.511 0.060 
1992 2.396 0.067 
1993 2.141 0.066 
1994 2.460 0.086 
Mean 2.314 0.064 
1995 2.315 0.051 
1996 2.251 0.051 

Figure 4.7. Comparison of Nant Tanllwyth archive data and fieldwork duration data 
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Table 4.5. Historical Flow Characteristics of the Mon Cyff Catchment 

Year I MAX AVG 
1973 5.572 0.296 
1974 5.504 0.238 
1975 5.470 0.152 
1976 5.812 0.126 
1977 4.856 0.201 
1978 5.422 0.199 
1979 5.638 0.235 
1980 5.788 0.217 
1981 5.686 0.233 
1982 5.003 0.191 
1983 6.174 0.220 
1984 3.538 0.169 
1985 5.450 0.196 
1986 6.065 0.225 
1987 5.911 0.202 
1988 6.041 0.218 
1989 4.767 0.147 
1990 5.511 0.213 
1991 6.082 0.196 
1992 5.764 0.201 
1993 6.160 0.207 
1994 6.083 0.262 
MEAN 5.559 0.207 
1995 6.358 0.157 
1996 5.778 0.165 
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Figure 4.8. Comparison of Mon Cyff archive data and fieldwork duration data 
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Table 4.4 illustrates that the mean of the archive data in the Nant Tanllwyth was higher 

than the two years analysed over the duration of fieldwork. Although maximum flows 

are slightly higher, these figures illustrate peak events and without a complete 
distribution, it is not possible to interpret these maxima as a trend. Similar observations 
are also available in the Mon Cyff (Table 4.5, Figure 4.8) retaining high flow peaks 
with a notably lower mean. In conclusion, years 1995 and 1996 are seen overall, to 

show lower discharge, but retain similar peak flows. 

4.2. Coarse sediment trappin 

Bedload traps located at the downstream end of each experimental channel were dipped 

to determine total bedload yields from the channel (see section 3.4). Data were related 

to total duration of fieldwork, to individual study periods and to the pre- and post- 

harvest phases in the Nant Tanllwyth. Within these constraints, data were related to a 

number of chosen discharge thresholds. 

4.2.1. Initial data presentation 

The Nant Tanllwyth bedload trap was measured on 15 dates, commencing 12th January 

1995, with 14 bedload yield results recorded. The Afon Cyff bedload trap was 

measured 12 times, commencing 7th July 1995, with II bedload yield results recorded. 

All readings finished on the 2nd June 1997. Monitoring periods were therefore 850 

days for the Nant Tanllwyth and 696 days for the Afon Cyff. 

A summary of results from the duration of the experiment is shown in Table 4.6a and 

shows both total trapped sediment and yield (t km2yr-1). Table 4.6b shows the total 

bedload trapped during each study period, the second column shows a weekly yield for 

each of the study periods and illustrates the variation in bedload discharge between 

study periods. 
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Timing of bedload trap dips was constrained by the availability of equipment, vehicles 
and assistant personnel and thus the dip intervals do not always correspond during the 

early study periods for each river. Furthermore, construction of the dipping devices on 
the Mon Cyff bedload trap was not completed until 7th July 1995. All calculations, 
however, are based upon the period lengths for each river, and further analysis of 
bedload flux based on flow and time parameters always take the real time, or flow 

between dips into account. Table 4.6a below shows the yields of the Nant Tanllwyth 

and Mon Cyff over the complete duration of fieldwork. 

Table 4.6a. Bedload yields for the Nant Tanllwyth and Mon Cyff for rieldwork duration 

Study 
length (yrs) 

Catchment 
area (kM2) 

Total output 
M 

Yield 
t kM-2 yr-1 

Nant Tanllw th 2.3 0.89 18.09 8.68 
vff Mon Cyff 1.9 3.13 5.40 0.91 

Table 4.6a shows more than a nine-fold difference in sediment yields between the Nant 

Tanllwyth and Mon Cyff. There is a significant difference between the outputs of the 

two channels. Table 4.6b summarises all of the monitoring periods undertaken in the 

Nant Tanllwyth and Mon Cyff. Dashes in cells below indicate no reading was made, 

thus cells with values indicate bedload accumulation since the previous reading. The 

grey hatched area shows the post-harvest phase of the Nant Tanllwyth. 
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Table 4.6b. Total bedload outputs of the Nant Tanllwyth and Mon Cyff measured using bedload 
traps 

Period Names Period Dates Nant Tanllwvth Mon r-vff- 
Specific periods for 

each river 
Bedload 
output 

Weekly 
yield 

Bedload 
output 

Weekly 
yield 

Nant Afon Cyff Tanllwyth t t wk-1 t t wk-1 
A-C 03-Feb-95 to 07-Jul-95 5.34 0.243 

D 07-Jul-95 to 27-3ul-95 0.25 0.089 
E-F 27-Jul-95 to 5-Oct-95 0.24 0.024 - - 

D-G 07-3ul-95 to 15-Oct-95 0.76 0.053 
H-I 5-Oct-95 to 15-Dec-95 0.03 0.003 - - 

Ha-J 15-Oct-95 to 11-3an-96 - - 0.10 0.008 
1-3 15-Dec-95 to 11-3an-96 1.12 0.289 - - 

J-Ka 11-Jan-96 to 20-Feb-96 0.76 0.133 0.29 0.050 
Ka-M 20-Feb-96 to 02-Apr-96 - - 0.23 0.039 

Ka-Ma 20-Feb-96 to 03-May-96 0.07 0.006 - - 
M-N 02-Apr-96 to 02-Jul-96 - - 0.40 0.031 

Ma-N 03-May-96 to 02-Jul-96 0.88 0.103 - - 
0 02-Jul-96 to 01-Oct-96 0.37 0.029 0.13 0.010 
P 01-Oct-96 to 19-Nov-96 4.28 0.611 2.28 0.326 

Q 19-Nov-96 to 10-Dec-96 0.32 0.107 0.35 0.117 
R 10-Dec-96 to 14-Mar-97 4.30 0.320 0.81 0.060 
S 14-Mar-97 to 9-Apr-97 0.04 0.010 0.05 0.015 
T 09-Apr-97 to 02-3un-97 0.10 0.013 0.07 0.009 

Totals: 

A-T 03-Feb-95 to 02-Jun-97 18.09 0.149 
D-T 07-Jul-95 to 02-Jun-97 5.40 0.054 

Figure 4.9 and 4.10 show the study periods and illustrate the weekly bedload yield in 

the traps. Bedload output data are shown on the same scale for both the Nant Tanllwyth 

and Mon Cyff (note difference in discharge and bedload scales). 

The maximum weekly value of 0.61 t wk-1 in the Nant Tanllwyth occurs between Ist 

October 1996 and 19th November 1996. During several other study periods, notably at 

the start of the fieldwork, in periods A-C, and during the two winter periods of 95/96 

and 96/97 bedload totals are high and clearly relate to flood magnitudes in the Nant 

Tanllwyth. In contrast, Figure 4.10 shows that the Mon Cyff has yielded significantly 

lower totals, despite a catchment 3 times greater than that of the Nant Tanllwyth and 

flows of matching and greater magnitude. From a visual examination of the Mon Cyff 

data, it is possible to see from the bar charts a response to flood peaks, but the 

relationship is significantly less well defined than in the Nant Tanllwyth. 

93 



2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

0 

2.5 

2.0 

1.5 
1.0 

0.5 

0.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

0 

200 250 300 350 

0.5 
m (D 

0.4 CI- 
0 0) 

0.3 CL 

(D 
0.2 

:E 

0.0 

0.5 co (D 

0.4 o Cl) cl 
0.3 : 5. 

a 

0.2 

0.1 

0.0 

0.5 

0.4 CIID' 
rL 
0 

0.3 wa CL 

0.2 

0.1 

0.0 

0.5 
lp 

0.4 
(D 

0 
w 

0.3 

0.2 

0.1 

0.0 

0.5 

co 
C, 0.4 I'D 

0 
Q; 

0.3 

0.2 CL 

0.1 

0.0 

Figure 4.9. Bar charts showing bedload outputs and stream discharge in Nant Tanllwyth 
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Figure 4.10. Bar charts showing bedload outputs and stream discharge in Mon Cyff 

0.5 

co 
0.4 C'L 

0 0) 0.3 Cl- 

0.2 

0.1 

0.0 

O. S 
03 
(D 

0.4 2, 
0 a) CL 

0.3 -: s 
(D 
CL 

0.2 - 

0.1 

0.0 

0.5 

UD 0.4 (D 

0.3 

(D 
0.2 

0. iL 

0.0 

0.5 

0.4 

c. 
0.3 1: ý 

(D 

0.2 

:E 
0.1 

0.0 

0.5 

0.4 (D 

0.3 

0.2 

0.1 e 

0.0 

95 

200 250 300 350 
lst June 1996 - 31st December 1996 



4.2.2. Analysis of bedload trap data 

To attempt to approximate the relationship between channel discharge and total bedload 

output, a number of testing parameters were established. The channels were analysed 

using the flow thresholds in section 4.1, as long term field observations (Leeks, Marks, 

pers comm. ) had estimated floods of magnitudes 0.3 m3 s- I and 0.5 m3 s- I to be capable of 
initiating bedload movement. It was instructive initially to relate total bedload output to 

a function of time, followed by total discharge and subsequently to develop the 

parameters into a more detailed analysis of the flow distribution. 

When correlating discharge threshold parameters with bedload yields, both a time over 

a threshold function and total volume offlow over threshold function were used. When 

relating flow parameters to bedload fluxes (tracers and traps) the totalflow over the 
discharge gave consistently better results and r2 values than a time over threshold 

function. Moore and Newson (1986) undertook multiple regression in the same 

channels and found that instantaneous discharge showed the best correlation; in this 

study this was not the case. These are subsequently referred to throughout the thesis. 

Total volume of flow over threshold is likely to be a better indicator and therefore exert 

greater influence on bedload transport parameters. It reflects not only duration of flow 

over threshold, but indicates the size of flood peaks within the time over threshold and 

therefore is a better measure of stream power (Sawyer et al., 1996). 

Relationships were constructed using higher discharge thresholds, but closest 

approximations were gained using the 0.5 m3 s- I and 0.3 M3S-1 thresholds. In addition, 

fewer periods were available for relating to floods of high magnitudes. In the Mon 

Cyff, higher thresholds were used in addition to those discussed, in order to account for 

the higher flows of the channel. Correlations with these higher thresholds however, 

were poor. 

Relationships were also examined for lower thresholds, though no improvement on 

discharge relationships were made, and thus the 0.3 M3S- 1 and 0.5 M3S-I thresholds were 

assumed to be critical in entraining and transporting bedload. This evidence is further 
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backed up by the original data, where little or no bedload is moved in periods with 
extended low flows and few flood peaks (periods I, Ma, and S). 

DURATION OF FIELDWORK 

Figures 4.11 and 4.12 initially compare the relationship between bedload trap output 
and total discharge from the Nant Tanllwyth and the Mon Cyff. The most striking 
feature is to demonstrate the significantly lower yields of bedload in the Mon Cyff, 
despite much greater discharge. Figure 4.11 demonstrates the stronger relationship in 
the Nant Tanllwyth with an r2 of 0.84 from a simple discharge / bedload relationship. It 

could be assumed therefore, that future-changing trends in the Nant Tanllwyth would be 

more easily identifiable than in the Mon Cyff, which has an r2 of 0.59. The full 

equations are shown in Table 4.7. 
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Figure 4.11. Total stream discharge compared to bedload trap outputs in Mon Cyff and Nant 

Tanllwyth 

Figure 4.12 continues to show the differences in magnitude between the Mon Cyff and 

Nant Tanllwyth, but shows how the relationships are improved using a discharge over 

threshold (0.3 M3S-1), indicating that low flows are not related to bedload transport in the 

channels. 
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Figure 4.12. Total excess stream discharge above 0.3 M3S-1 threshold with bedload trap outputs in 
Mon Cyff and Nant Tanllwyth 

Table 4.7. Equations showing bedload relationships in Mon Cyff and Nant Tanllwyth 

Nant Tanilwyth Afon Cyff 
Initial approximation based 

on total discharge 
Y=0.0073x - 0.68 y=0.0012x - 0.50 

r2 0.84 0.59 

Further analysis of these data is given in Figures 4.13 to 4.17 (Nant Tanllwyth) and 4.18 

to 4.22 (Afon Cyff). The Figures show the relationships between flow threshold 

parameters and total bedload output, as well relationship with time. 

Figures 4.13 to 4.17 show the relationships between total bedload outputs and various 

controlling parameters in the Nant Tanllwyth. 
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Figures 4.18 to 4.22 below show the relationships between total bedload outputs and 
various controlling parameters in the Mon Cyff. 

Figure 4.18. Mon Cyff: time and bedload yield 
per dip 
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In the Nant Tanliwyth, as in all figures, it is illustrated that in the short term, there is a 
poor relationship between bedload outputs and length of monitoring period (Figure 

4.13). Relationships with flow parameters are better: r2 =0.95 (n= 13, p<0.00 1) for a 0.3 

m3 s- I threshold and slightly better r2 value of 0.96 for a 0.5 M3S-1 threshold, though the 

value of n is reduced to II (p<0.001). The sample decreases with greater magnitude 
flow events (threshold 1.0 M3S-1 ), and furthermore the relationship decreases to r2=0.91 
(n=8, p<0.001). 

These data describe a stream that exhibits flow-limited bedload transport characteristics: 

where floods capable of entraining bedload arise, the bedload available is transported 

through the system efficiently. 

In the Mon Cyff, however, the relationship is less clear. The best, though far from 

conclusive r2 value for total bedload outputs is obtained, as in the Nant Tanllwyth, by 

correlating a threshold of 0.5 m3s-1. However the relationship r 2=0 
. 71 is not as strong 

(n=l 1, p<0.01). With reduced relationships at higher flows (despite the Mon Cyff 

experiencing flows of three times the magnitude of the Nant Tanllwyth), it could be 

concluded that the initial entrainment and transport thresholds of the two channels are 

similar. The nature of sediment availability has changed with the Mon Cyff exhibiting 

characteristics of a supply-limited bedload system. 

The possible reasons for this, including the availability of bedload, its matrix, 

composition and bed armouring will be discussed in section 5. 

THE HARVESTING OF THE NANT TANLLWYTH 

In order to disentangle the effect of harvesting on total bedload outputs, analysis of 

yield before and after harvesting operations was undertaken. Table 4.8 below shows the 

total bedload output before and after harvesting as well as the yield per unit flow for the 

two phases. 

101 



Since harvesting took place between dip periods, the figures used begin at the start of 
the duration of fieldwork and continue up to the 3rd May 1996 for the pre-harvest 

period for total bedload data. Analysis of the period between the dips however, shows 

only a very low bedload output during that period and the effects on the results is 

deemed to be negligible. 

Table 4.8. Comparison of pre- and post-harvesting bedload outputs in the Nant Tanllwyth. 

Pre-harvesting Post-harvesting Percentage 

'change Total (tonnes) 7.74 10.35 38.1% 

Yield per million M3 4.21 5.12 21.6% 

Yield per million M3 over 
threshold (0.3 M3S-1) 16.75 17.54 4.7% 

Yield per million M3 over 
threshold (0.5 m3 S-1) 

30.84 31.26 1.3% 

On initial examination, the data show that total bedload outputs increase significantly 

after harvesting, a total tonnes increase of 3 8.1 %, compared with the slightly shorter 

pre-harvesting phase. However, investigation of the data in Table 4.8 shows an 

interesting trend. Having earlier established the good relationship between bedload 

output and discharge thresholds in the Nant Tanllwyth, these relationships can be relied 

upon in an analysis of pre- and post-harvest phases. This analysis, making the data 

dimensionless using total discharge ('000 in 3) above the thresholds shown in Table 4.8, 

shows that little difference can be seen between the two phases and this difference is 

certainly not significant. When the phases are analysed using the 0.5 m3 S_ I threshold, 

there is only a 1.3 % difference in the outputs. Using correlation coefficients for the 

pre- and post-harvesting periods did not show any difference in the relationships and 

when plotted, both regression lines were near identical. 
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A COMPARISON WITH THE AFON CYFF 

The availability of a paired catchment allows us to make a two pronged examination on 
the dynamics of the geomorpho logical system, by providing a control, and removing 
many of the variables that cause problems when making comparisons. However, one of 
the main differences between the Mon Cyff and Nant Tanllwyth is that evidence 

suggests that the pattern of bedload outputs is different and may be controlled by 

different mechanisms. The excellent relationship between the 0.3 M3S- 1 discharge 

threshold and bedload output obtained in the Nant Tanllwyth is not mirrored in the Mon 

Cyff. It would be futile to attempt a duplicate of Table 4.8 for the Mon Cyff and expect 
the data to be useful, as there is simply no available relationship in the Mon Cyff to 

allow such a comparison. 

SUMMARY 

It can be concluded therefore, that the harvesting of the portion of the Nant Tanllwyth 

catchment has had no discernible effect, within the parameters studied, on the total 

bedload outputs of the Nant Tanllwyth. This short summary is neither exhaustive, nor 

representative of the bedload particle dynamics to be discussed in section 4.3. 

4.3. Individual particle dynamics 

4.3.1. Introduction 

Tracer clasts were tracked downstream to provide a detailed picture of sediment flux in 

both channels and to augment the data available on total bedload outputs (monitored 

bedload throughputs in the bedload traps in section 4.2). Magnetic ally-tagged, natural 

tracer clasts were seeded over a period of 28 months in both experimental sections of 

the channels described in section 2.5. Tracing methodology and standards are discussed 

in section 3.5 and a full discussion of resolving missing tracers is given later in this 

introduction. Data were related to duration of fieldwork, individual monitoring-periods 
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and in the Nant Tanllwyth, to pre-harvest and post-harvest phases. As with the data 
from the bedload traps, travel distances are also related to discharge thresholds. 

The data are presented in order of analysis technique. First results in section 4.32 
describe the mean travel distances of clasts based on each trace and relates these step 
lengths to flood magnitude and flow parameters. Section 4.33 examines the relationship 
between step length and total travel distance and trace size and section 4.34 examines 
the effect of tracer shape on step and travel distance. Finally, section 4.35 examines the 
influence of conditions of entrainment on travel distance. 

Monitoring individual clasts also gave the opportunity for an abrasion study utilising 

natural clasts, and relating abrasion to travel distances and burial. This is discussed 

separately in section 4.4. 

INITIAL DATA PRESENTATION. 

Monitoring of individual particle dynamics commenced in the Nant TanIlwyth on 3 rd 

February 1995, with the seeding of 20 tracer clasts with b-axis ranging from 22 - 87 

mm. 

These tracers were evaluated until 24 th May 1995, when their design was found to be 

acceptable. Seeding of further tracers in the Nant Tanllwyth took place on 15 th October 

1995 (46 into main channel, 20 in small tributary) and II th January 1996 (101 in main 

channel). In the Afon Cyff, 45 tracers were seeded on 24 th May 1995, and subsequent 

seeds were made on II th August 1995 (51 tracers) and 20"' February 1996 (104 tracers). 

Total monitoring periods for the Nant Tanllwyth and Mon Cyff were therefore 850 days 

and 740 days respectively. In the forested Nant Tanllwyth, 10 traces were made, and in 

the Mon Cyff, 5 full traces were made. Limitations of fieldwork time and access to the 

Mon Cyff catchment account for the discrepancy in monitoring intensity. In addition to 

the tracers in the main channel in the Nant Tanllwyth, 20 tracers were entered into a 

small tributary of the upper Nant Tanllwyth at the top of the study reach. These tracers 

were seeded at four points spaced at 20 m, 40 m, 60 m and 80 m from the confluence 
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with the Nant Tanllwyth. During the fieldwork none of these tracers were transported 
into the main channel. 

Tracing activity through the two channels is summarised in Table 4.9, which includes 

the initial recovery rates for each search. It is often difficult in the literature to ascertain 
by which exact method recovery rates are determined. A full discussion of this is given 
later in this section. The recovery rates below show the percentage of tracers that are 

recovered, identified and recorded from the total population of tracers seeded in the 

channel. 

Table 4.9. Summary of work: monitoring of individual tracer step lengths throughout field study 

period 

Date Nant Tanllwyth. 
........... .... ........ .... .... .... .. 

Afon Cyff. 
... Work Total Recovery Work Total seeded Recovery 

seeded rate rate 
3d Feb 95 Seed 20 

15 th Mar 95 Trace 1 20 100 0/0 
24 th May 95 Trace 2 20 100 0/0 Seed 45 
27 th Jul 95 Trace 1 45 98 0/b 

1 1th Aug 95 Trace 3 20 100 0/0 Seed 92 
15 th Oct 95 Seed 66 
1 1th Jan 96 Seed (101) 167 83 O/o 

Trace (66) 4 
18 th Jan 96 Trace 2 92 60 0/b 
20 Feb 96 Seed 196 

26 th Mar 96 Trace 5 167 82 0/b 
2nd Apr 96 Trace 3 196 89 O/o 
2nd Ju196 Trace 6 167 (7)1 87 0/b 
1't Oct 96 Trace 7 167 (24)1 84 I/b 

1 oth Dec 96 Trace 8 167 (30)1 72 I/b 
9th Apr 97 Trace 9 167 (30)1 N/A Trace 4 196 55 0/0 
2nd Jun 97 Removal 10 167 (37)1 71 0/b Removal S 196 47 O/o 

'Figures in brackets shows number of tracers'known to have been removed. 

RECOVERY RATES AND TRAVEL DISTANCES 

The issue of recovery rates is addressed in this section [rather than methods] as it is a 

direct consequence of fieldwork measurement that the issues arose. Prior to the full 

experiment, it was not possible to determine the statistical distribution of how pebbles 

would be lost, therefore the issue is explained in this section. 
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The analysis of clast travel distances is hampered by the problems of missing values. 
During the 28-month period of fieldwork only 49 tracers from the Nant Tanllwyth and 
56 from the Mon Cyff were found on every search occasion. These tracers are termed 
the "subset50". This results in a large volume of missing data. Although there are 
several physical ways in which a tracer is lost (magnet failure, transport through the 

reach into the bedload trap, deep burial, or even theft by walkers! ) the losses can be 

treated in two just two ways: - 

IA tracer is lost, and is not subsequently recovered through the study, and 

a tracer is lost, but is subsequently recovered in a future trace. 

The two scenarios affect consideration and calculation of the following: 

I How to present meaningful recovery rates, and thus estimate overall travel 

distances? 

2 How to assign travel distances to clasts during a trace (where ignoring the value, 

would incorrectly assign a no travel distance to a reading)? 

Presenting recovery rates 

The recovery of tracers is based firstly upon the ability of the instrument and 

fieldworker to establish the magnetic field of the tracer whilst on the bed and secondly, 

on being able to locate the exact tracer and recover it. Only very rarely was a tracer 

located by sight alone during a search. 

Experience throughout the study showed recovery was difficult in the following 

situations; 

I When tracers were buried deeply in the bed; 

2 in areas where foreign material (e. g. nails, wire and fence material were common, 

particularly in the Nant Tanllwyth) was present, and 

3 in tracers belonging to the smallest size classes. 
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The percentage of tracers recovered and the distribution of class sizes to which missing 
tracers belong, is crucial in estimating the overall travel distances of each class size that 

exist on the bed. 

Little emphasis seems to have been placed on this issue in previous literature and in 

many studies appears to be completely ignored. Tracer recovery rates were analysed in 

the Nant Tanllwyth and Mon Cyff to examine if a pattern of missing tracers existed and 

if tracer parameters affected probability of loss. By examining the size distribution of 
tracers found every time (the subset5o) and comparing these to the total tracer 

population, it was shown that tracers from the coarser size ranges were more likely to be 

recovered than finer clasts. This is shown in Figures 4.23 and 4.24. This selectivity can 
be explained in two ways: 

I Tracer characteristics, magnets used in smaller clasts gave out a smaller magnetic 
field, or some types, sizes and geologies of tracer may be susceptible to breakage, 

and 

2 geornorphological reasons, tracers themselves were more difficult to locate, either 

due to deeper burial, or due to transport though the experimental reach. 

Figure 4.23 shows that in fine class sizes where a significant number of tracers were 

present, recovery rates were much lower than in the coarse size ranges. This again 

highlights the deficiency in using tracer distributions to match bed distribution. More 

appropriate would be to use equal numbers in each class 
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Figure 4.23. Chart comparing the recovery rate of the subset-5o, with total tracer population in the 

Nant Tanllwyth 

Figure 4.24. Chart comparing the recovery rate of the subset5o, with total tracer population in the 

Mon Cyff 

On occasion, tracers may have been found but deliberately removed due to construction 

failure, or impossible identification. This leads to a reduction in total population, but 

not necessarily a reduction in the recovery rate of subsequent traces. 

Assigning travel distances 

Travel distances from one trace to the next were calculated from knowing the location 

of the tracer pebble at both traces. This presents no problem in the case of the subset50 

as tracers can be assigned travel distances for each trace, and the total travel distance 
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can be attained by summing the calculated travel distances for each trace. However, 

when losses and re-finds occur, although the total travel distance at the end of the study 

will be correct, the distance travelled per trace will not be known. The upper part of 
Table 4.10 below highlights possible scenarios, whilst the lower half shows how each 

scenario is dealt with. Figure 4.25 shows the routine by which tracers are ascribed 

travel distances. 

Table 4.10. Examples of possible scenarios when tracers are not found 

Tracer Trace Z Trace 2 Trace 3 Trace, 6 Total 
A SEED 10 10 10 10 40 
B SEED 10 - 20 10 40 
C SEED - - 40 40 
D SEED 10 10 10 - 30 

Tracer Scenario Action on distance Action on Time 
Is found on each occasion, has a 
100% recovery rate, and has a 
total movement of 40m. As flow 
and time records exist for each 

A trace, it is easy to ascribe these No action is required No action required 
parameters to the distance 
moved, each period can therefore 
have a mean movement per day 
or per flow threshold. 
Tracer not been found on trace 2, Assign trace 2 value 
but was subsequently found on based on the 
trace 3. The trace distance for proportion of 
trace 3 is 20m, but it is flooding that took 

B impossible to tell the period in place over the No action required 
which movement occurred (i. e. period of trace 2, 
between the first and second out of T2 and T3. 
trace, or the second and third). Total of trace 2 and 

three will be 20m. 
Tracer is found only on the last As seed-time is 
search. Although we do not Assign all missing later, total time and 

C know when the travel took place, cells values based flood totals reduced 
we do know its total travel on flood index. due to reduced 
distance (40m). monitoring period. 

Tracer is not found on the last 
trace. We know its total travel Values normal for Total time and flood 
distance at the end of trace 3, traces 1-3. with NO totals reduced due 
but cannot relate that number to 

value assigned for to reduced 
any time or flow thresholds after trace 4 monitoring period. 
trace 4. 

These considerations are summarised in the flow diagram Figure 4.25 below. 
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Figure 4.25. Flow diagram showing how a missing tracer is ascribed a value. 

Backfilling the dataset 

The large number of gaps in the location data caused by lost, or temporarily lost tracers, 

causes a disproportionately large amount of travel distance data to be rejected. If the 

only accepted data was that derived from two consecutive traces, 46% of results are 

removed from the data set. It is desirable to avoid abandoning such useful data whilst at 

the same time, maintaining the integrity of the data set. 

Examining the subset50, the mean travel distances for each trace (section 4.32) are 

almost identical to the remaining (excluding the subset5o) dataset where only 

consecutive successful traces are considered. We can therefore deduce that individual 

tracers that have missing trace values can be backfilled. It is known from bedload trap 

data (section 3.2) and mean individual tracer movements (see Figure 4.26) that a good 

relationship with the 0.3 m3 s- I threshold is attained (r 2=0.95, n=13, p<0.001). 

Backfilling is undertaken on all missing values using the ratio of flow over the 0.3 m3 s- I 

threshold in each period of tracing. 
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This process can be illustrated by examining the fictitious tracer B in Table 4.10. Trace 

3 has a travel distance of 20m, whilst no value exists for trace 2. For example, a 

scenario exists where the flow in period 3 was 25 '000 t and the flow in period 2 was 75 

'000 t. The value of period 3 would be 25% of the total travel distance (5 m) and for 

period 2 75% of the travel distance (15 m). This avoids the incorrect assertion that in 

period 3, the travel distance was 20 m, and in period 2, zero m. If no backfilling was 

undertaken, data from both trace 3 and trace 2 would have to be removed. 

What backfilling does not do is interpret forward any data, for example, it makes no 

attempt at predicting movement (in the fictional example) of tracer D in the 4 th trace. 

The advantages to this backfilling method are as follows: 

I More values are present within the data set, and quality data is not rejected, 

2 significantly better coverage at the distribution tails is attained, and 

3 traces with poor recovery rates are not n-ýisrepresented. This is particularly 

applicable to trace 9 in the Nant Tanllwyth. 

In all tracer results that follow, calculations of travel distances, time and flow units are 

derived from the length of time the tracer was known to have been in the channel. 
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4.3-2. Mean travel distances for each trace 

INITIAL RESULTS 

Table 4.11 shows trace dates and mean step lengths of the total tracer population in the 
Mon Cyff and Nant Tanllwyth. The figures are derived using all tracers and using the 
back filling technique for unfound tracers. The table does not account for variations in 

time and flow conditions for each individual period. 

Table 4.11. Trace dates and mean travel distances (m) in the Nant Tanllwyth and Mon Cyff 

Date Nant Tanilwyth. Mon Cyff 
Travel distance (m) Travel distance (m) 

------ ----- 3-Feb-95 SEED 
15-Mar-95 TRACE 1 7.62 
24-May-95 TRACE 2 2.87 SEED 
27-Jul-95 TRACE 1 0.63 
11-Aug-95 TRACE3 1.91 
11-3an-96 TRACE4 8.60 
18-Jan-96 TRACE2 5.74 
26-Mar-96 TRACES 8.89 
2-Apr-96 TRACE3 1.64 

2-Jul-96 TRACE 6 5.59 
1-Oct-96 TRACE7 3.35 

10-Dec-96 TRACE8 29.67 
9-Apr-97 TRACE9 20.04 TRACE4 41.88 

2-Jun-97 TRACE 10 2.52 TRACE 5 and 5.36 

and REMOVAL 
REMOVAL 

Sum of all traces 91.06 55.26 

The data in Table 4.11 show the variation in travel distances for individual clasts. Mean 

distances for each trace vary from 1.91 m to 29.67 m in the Nant Tanllwyth and from 

0.63 m to 41.88 m in the Afon Cyff. The greatest mean travel distances in the Nant 

Tanllwyth took place in the post-felling period, during the winter of 1996-97. 

Maximum travel distances in the Afon Cyff took place during the final trace between 
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April and June 1997. The mean travel distance for all tracers over all traces in the Nant 
Tanllwyth is nearly double that for the Mon Cyff, 91-06 rn and 55.26 m respectively. 

ANALYSIS BY TIME AND FLOW THRESHOLDS 

Table 4.12 below standardises the data described in Table 4.11, by relating travel 
distances to time and flow over the 0.3 m3 s- I threshold. Section 4.2 has established the 
link between bedload trap data and the 0.3 m3 s- I threshold and again, although other 
thresholds were tested on the tracer data, the 0.3 m3 s- I proved to be the most successful. 

Table 4.12. Mean travel distances for each trace, related to time and flow thresholds 

Date Nant Tanilwyth. Mon Cyff 
m day-' m '000 UIL m day-' m 1000 Ul 

3-Feb-95 
15-Mar-95 0.19 0.06 
24-May-95 0.04 0.51 
27-Jul-95 0.01 0.007 
11-Aug-95 0.02 0.11 
11-lan-96 0.06 0.08 
18-Jan-96 0.03 0.008 
26-Mar-96 0.12 0.12 
2-Apr-96 0.02 0.004 
2-Jul-96 0.06 0.11 
1-Oct-96 0.04 0.08 

10-Dec-96 0.42 0.11 
9-Apr-97 0.17 0.09 0.11 0.011 
2-Jun-97 0.05 0.13 0.10 0.021 

Mean 0.12 0.09 0.08 0.01 

Table 4.12 continues to show variation in transport rates on a by trace basis, particularly 

in terms of time. In the Nant Tanllwyth, these rates range from 0.02 m day-' to 0.42 m 

day-] (a variation by a factor of 20). The Mon Cyff also shares a wide variation, but 

daily rates show a lower range from 0.01 m day-I to 0.1 m day-' (a variation factor of 

10). Again, the mean travel distance computed for all tracers over all traces in the 

Tanllwyth is 1.5 times greater than for the Cyff, 0.12 m day-' compared with 0.08 m 

day- I respectively. However, the travel distances which take account of flow show 
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much greater contrasts between the two channels, with the Tanllwyth mean being 9 
times greater, 0.09 m'000 t-1 as compared with the Cyff at 0.01 m, 000 t-1. 

Tracers in the Nant Tanllwyth travel on average 50 % further than their counterparts in 
the Mon Cyff shown by analysing tracer movements on a time (m day-') only basis. 
These data are derived using the total distance moved by all individual tracers and the 
total time for which all tracers were monitored (accounting for tracers seeded or lost 

partway through the experiment). Tracers in the Nant Tanllwyth travel on average of 
0.12 rn day-' whereas tracers in the Mon Cyff travel 0.08 rn day-. 

To place these results in context, it is useful to review from section I the differing 

channel characteristics of the two channels. The Mon Cyff has a significantly greater 
discharge than the Nant Tanllwyth and achieves flood peaks, some three times higher. 

The thalweg depth of the Mon Cyff is deeper, whilst channel slope is greater in the 

Nant Tanllwyth. Billi (1986) highlights the step-pool nature of both channels and 

shows greater riffle numbers within the Mon Cyff, along with greater pebble clustering. 

As with the total bedload flux examined in the bedload traps, the relationship with flow 

thresholds is a more useful and geomorpho logically robust measure. Although variation 

between the channels still exists by comparison with the 0.3 m3 s- I threshold, variation 

becomes consistently lower. Values range from 0.06 m '000 t-1 and 0.51 m'000 t-1 

(factor of 8) in the Nant Tanllwyth, and between 0.004 m '000 t- 1 and 0.021 m '000 t- 

(factor of 5) in the Afon Cyff. The high value in the Nant Tanllwyth (a search of only 

20 tracers on 24 th May 1995) is not caused solely by large mean travel distance. It is the 

combination of a small flood index and unusually large travel distance during the 

period. 

The relationship between the 0.3 m3s-1 threshold and tracer travel distance is therefore 

examined further. Travel distances in the Nant Tanllwyth are shown in Figure 4.26, 

where the x-axes shows flood index above 0.3 m3 s- I and y-axes show the mean travel 

distance for all tracers. 
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Figure 4.26. Nant Tanllwyth: relationship between the 0.3 m3 S-I flow threshold and mean travel 

distance of all tracers for each trace 

When examined on a trace by trace basis, both rivers show travel distance is dependent 

on the flow over 0.3 m3 s- I threshold, though the number of traces in the Mon Cyff 

makes analysis inconclusive. The strong relationship in the Mon Cyff however, is due 

to the outlying point (trace 4) and cannot be relied upon for statistical significance. 

Without the outlying point, the plot has an r2 of only 0.35 (n=4). 

FELLING IN THE NANT TANLLWYTH CATCHMENT 

The date for felling in the Nant Tanllwyth has been defined as 2 nd April 1996. With a 

trace occurring in the Nant Tanllwyth on 26 th March 1996, the pre- and post-harvest 

phases are easily delimited for tracer data. 

A comparison of lumped data before and after harvest, shows that during the pre-harvest 

phase mean annual travel distance of all size classes was 31.75 m, whereas during the 

post-harvesting phase, mean annual travel distances increased to 47.77 m. These 

figures do not account for flood intensity over the period (data available in section 4.1. ) 

More usefully, based on the proven relationship with the flood intensity 0.3 m3s-1 

threshold, the data can be shown as travel distance per unit flow above the threshold. 

These data are compared using a t-test in Table 4.13 below. Mean travel distance of 

clasts increases after felling, when the data has been made dimensionless using the 0.3 

m3 s- I threshold, and is statistically significant at the p<0.00 I level. 
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Table 4.13. t-test comparing total pre-harvest and post-harvest tracer movements based on 0.3 m3 S_ 
' flood index in the Nant Tanllwyth 

Pre-felli 
Mean 0.07 0.11 

Variance 0.005 0.01 
Observations 164 153 

P (t<=t) two-tail 0.001 

Data for this test are derived from all tracers, monitored before and after felling operations, 

and based on the distance moved of each tracer before and after the felling period. 

mean tracer travel distances increased significantly in the post-harvesting phase. To 

ensure outlying values were not controlling the outcome of the t-test, further tests were 

made removing the ends of the distribution and no changes in the value of t were found. 

We can be confident that the felling period has had an effect in increasing the transport 

of in situ bed sediment in the Nant Tanllwyth. 

4.3.3. Analysis of flux by particle size 

INTRODUCTION 

Previous literature on the effects of particle size on sediment flux is discusse in section 

2.1.2. In this section, it is intended to examine the controlling parameters of both b-axis 

and mass on the flux of sediment downstream. Research in the Balquhidder catchments 

showed forest operations to change the size distribution of sediment inputs (Stott 1996, 

1997b). Tracers larger than the median size of the bed were found to have a steep 

decline in mobility as discussed by Church and Hassan (1992) in a review from several 

papers. 
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ANALYSIS BY B-AXIS AND MASS 

Figures 4.27 and 4.28 show the total travel distance of each tracer compared to mass of 
each tracer in the Nant Tanllwyth and Mon Cyff respectively. Figures 4.29 and 4.30 

show the equivalent relationships the using the b-axis. Travel distance is equalised 

using the 0.3 rn 3 s- I threshold and without this, the variation in the time tracers spent in 

the channel would control the results. 
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Figure 4.27. Total travel distance of individual clasts compared to mass in Nant Tanllwyth 
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Figure 4.28. Total travel distance of individual clasts compared to mass in Mon Cyff 
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Within both channels, the relationship between travel distance and mass is enveloped 
into a range that appears to limit the distance that heavier clasts can travel. Within each 
particle size range however, a large variation in travel distance exists. It is important to 
note the difference in scales of the two figures. This reflects both the higher flows and 
lower transport distances in the Mon Cyff. 

Figure 4.29. Total travel distance of individual clasts compared to b-axis in Nant Tanllwyth 
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Figure 4.30. Total travel distance of individual clasts compared to b-axis in Mon Cyff 

All four charts show an approximate envelope in which values are maintained. Visual 

analysis of the b-axis data suggests maximum travel distances that peak in the 22-32 
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rnm size range in both channels. However, the small end of the size range is truncated 
due to the physical limit in the size of tracers that could be implanted into a magnet 

without breakage. The fact that the peak is not in the smallest particles might initially 

suggest a hiding mechanism might be operating. With no problems existing in tagging 
larger clasts, a clear reduction in travel distance with increasing size is seen. The few 

tracers in the large size fraction are clearly limited in their travel distance. 

By grouping the data, as done by Hassan et al. (199 1), a clearer pattern emerges; this is 

shown in Figure 4.3 1, showing that mean distance moved progressively decreases with 

size fraction. 

Figure 4.31. Mean travel distance of tracers by half phi-size fraction in the Nant Tanllwyth 

Note differences in scales of y-axes between Nant Tanilwyth and Mon Cyff charts 

Figure 4.32. Mean travel distance of tracers by half phi-size fraction in the Afon Cyff 
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After grouping the data into half phi-size classes (and calculating means of particle 
travel distance), there is a smooth transition between smaller particles travelling further, 

and larger clasts shorter distances in the Nant Tanllwyth. In the Mon Cyff, the smallest 

particles do not move as far as the next four larger categories. The peak shown in the 8- 

11 mm class in the Nant Tanllwyth (Figure 4.3 1) is partly attributable to a peak travel 
distance of an individual tracer and does not represent a true mean. This highlights a 
deficiency in the initial tracer selection procedure, where a greater number of tracers 

might have yielded statistically more significant results at the tails of the distribution. 

This is further highlighted by the inability to express full standard error bars at the tails 

of the distribution. Indeed work by Wathen et al. (1998) used an equal number of 

tracers in each class of the distribution, enabling a more detailed analysis, especially in 

the lower size ranges where sediment is more likely to become lost in tracing 

experiments 

Both channels exhibit signs of size selective transport over the timescale of the study. 

The Nant Tanllwyth shows a near linear decrease in travel distance with phi size and 

although the date for the Mon Cyff is less clear, excepting the smallest category, the 

grouped data show larger clasts are universally transported shorter distances. 

ANALYSIS BY INDIVIDUAL FLOOD EVENT 

In an attempt to examine how flood magnitude might affect travel distances of specific 

sizes each trace's individual travel distances were plotted on a scatter chart, regressing 

travel distances of each trace with b-axis. The regression lines for the Nant Tanllwyth 

and Mon Cyff showed extreme scatter and no significant results were found. It was 

attempted therefore, as in Figures 4.31 and 4.32 to group the tracers into size categories 

for each flood event. 

Figures 4.33 and 4.34 show the mean travel distance of each size class, for each trace in 

the Nant Tanllwyth and Mon Cyff respectively. Data for these graphs were allocated 

from the raw dataset with no backfill, as backfill would destroy the validity of 
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individual trace and tracer results. With the removal of a significant amount of data, 

size categories are in phi, rather than half phi categories. 

Data are ordered by magnitude of flood event for each study period, with magnitude 

rneasured by total flow exceeding 0.3 m3 s-1 during the study period. 
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Figure 4.33. Mean travel distances of four clast sizes, in flood magnitude order in the Nant 

Tanllwyth. 

Only trace 1 (2.32 m3 s-1) is out of synchrony in the figure and this trace had a small 

number of tracers in the channel. 
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Figure 4.34. Mean travel distances of four clast sizes, in flood magnitude order in the Afon Cyff 

Combining elements of analysis by threshold flow and size range, both streams exhibit 

a relationship between travel distances controlled by flood magnitude. In addition, most 

individual traces show a pattern of size selectivity between class sizes. Examination of 

the Nant Tanllwyth data shows that small size ranges in particular, are controlled by 

flood magnitude. The size selectivity clearly shown when examining all tracers 

throughout all traces, does not exhibit itself as clearly within individual traces. During 

the larger 5 flood events in the Nant Tanllwyth, size selection is more prevalent than in 

the lower order floods. There is little overall exception to the trend, apart from trace 1, 

where smaller travel distances are noted. The seeding of all tracers before trace I is to 

be noted when interpreting this result. 

In the Mon Cyff, fewer traces make meaningful analysis more difficult. However, data 

are available for the three size ranges between 16 and 128 mm. There is significantly 

more scatter in the plots than in the Nant Tanllwyth, with travel distance based on flood 

magnitude also less clear. Although during the trace containing areatest number of peak 

flows all size ranges are transported furthest, notable variation takes place during 

smaller flooding periods. There is particular variation in the 16 - 32 rnrn size fraction, 

where a high rnean distance (though with large variation) is seen during trace 5. 
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When power trend lines are fitted to the data, r2 values progressively decreased through 
increasing size ranges. Table 4.14 shows the size ranges and r2 values of the regression 
lines for both streams, while Figures 4.35 and 4.36 show the regression lines of each 
size category. 

Table 4.14. r2 values for mean travel distances correlated with grouped size ranges for individual 

traces 
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Figure 4.36. Regression lines of mean travel distances of grouped size ranges for individual traces 

in the Mon Cyff 

The fitted regression lines show more clearly the variation in transport regimes within 

the Nant Tanllwyth and Mon Cyff. Whilst in the Nant Tanllwyth the difference in the 

transport between each size fraction is increased during high flow periods, with the 

Mon Cyff, only the largest of the size ranges shows significantly lower transport rates 
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through the traces. In this channel, the three smaller size ranges show little divergence 
through flood sizes. 

4.3.4. Analysis of flux by shape 

The inherent difficulty in investigating the effects of shape on tracer transport lies in the 
fact that there is so much variation in the shapes of natural clasts in the channel. With 

the shale of Plynlimon not being resistant to long term abrasion, most clasts are angular 
and poorly rounded. Using Zingg analysis (Zingg, 1935), few if any spherical forms 

exist and the bulk of rods seem easily to be easily broken into smaller pieces. Blades 

and discs dominate the clastic mix. The shape distributions are shown in section 1.6.2. 

It is also extremely difficult to isolate shape and remove the effects of size on travel 
distance without using manufactured and standardised tracers. This is especially true 

with such a large size distribution and only limited number of tracers available. The 

problem of isolating shape is partially solved by using manufactured tracers of specified 

shape and size categories, as shown by Warburton and Demir (in press). However, this 

approach was not applicable in the scope of this project. 

All presented figures and tables have, unless stated otherwise been extracted from travel 

distances made dimensionless through dividing by the standard threshold flow. Only 

total travel distances of all tracers are considered, with shape seen as secondary to size 

in terms of subtle effects of forest operations. Changes in transport of shape classes 

were not examined in terms of the two phases of forestry. 
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Figure 4.37. Relationship between shape class and mean movement per day in Nant Tanllwyth 

Both channels show differences in travel distances based on shape. Spheres move on 

average the furthest in the Tanllwyth, but in the Mon Cyff travel shorter distances than 

rods or discs. This variation can be attributed to the large error involved due to the 

small number of spheres in the sample. 

Figure 4.38. Relationship between shape class and mean step movement per day in Mon Cyff 
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Examining the effects of sphericity (Krumbein, 1942) shows an approximate envelope 
of values, with lowest tracers with lowest sphericity index having a tendency for lower 
travel distances, those with highest travel distances are associated with a mid to highest 

sphericity index. Both the Nant Tanllwyth (Figure 4.39) and the Mon Cyff (Figure 
4.40) show similar patterns. Analysis of individual size ranges for sphericity and shape 
did not provide a different pattern of distribution. 
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Figure 4.39. Mean travel distance per day based on Krumbein index in the Nant Tanllwyth 

Figure 4.40. Mean travel distance per day based on Krumbein index in the Afon Cyff 
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4.3.5. The effect of burial depth 

In both channels, travel distances were examined with reference to burial depth (Hassan, 
1990) and channel position (Gomez, 1984) of clasts in the two channels. Burial depths 

of recovered clasts averaged in excess of 0.05 m and some clasts were recovered from 

as deep as 0.5 m. Analysis was made of each clast travel distance and probability of 

entrainment compared to its original burial position recorded on the previous trace. 
Furthermore, analysis was made by grouping tracers into 0.05 m burial depth categories 

and clast size categories. No relationship was found for any trace, nor was there a 
distinctive pattern between grouped burial depth classes. This suggests that once the 

threshold of transport is reached, the active layer becomes mobile and all clasts have an 

equal probability of being entrained. This is subtly different from true equal mobility 

where the distance the particle moves is the subject of the probability function. There 

appears to be a" moving mat" in the two rivers where once a threshold of flow is 

crossed, the mat becomes active, at which point preferential transport of smaller 

particles occurs. 

Four examples (figures 4.41 - 4.44) from traces six and seven are shown that 

demonstrate the variation in tracer travel distances based on water and burial depth. 

Indeed trend lines from subsequent traces show opposite relationships, though there is 

clearly no direct relationship between the variables to draw conclusive trend lines. 

Other traces showed similar variation and analysis of grouped data showed weak 

results. 
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Figure 4.41. Travel distances of trace 6 based on water depth of previous trace 
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Figure 4.42. Travel distances of trace 7 based on water depth of previous trace 

Figure 4.43. Travel distances of trace 6 based on burial depth of previous trace 

Figure 4.44. Travel distances of trace 7 based on burial depth of previous trace 
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4.4. Abrasion of tracer clasts 

Introduction 

Analysis of clast abrasion was carried out by determining the mass of tracers after the 
tracing programme was completed in June 1997 and clasts were removed from the 

channels and returned to the laboratory. Reference should be made to the appendices 
where a copy of the paper Stott and Sawyer (1999) is attached. 

Results 

Table 4.15 shows summary statistics for all Tanllwyth andCyff tracers. Though tracers 
in the forested Nant Tanllwyth channel appear to show higher weight losses than those 
in the Mon Cyff, the difference is not statistically significant when compared using the 

t-test. The mean mass of all tracers introduced to the channels was 78.51 g and so this 

represents an actual mean weight reduction of 2.74 g per clast per year. 

Table 4.15. Summary statistics for tracer abrasion (% weight loss) and travel distances for 
Tanllwyth and Cyff channels 

Annual mean O/o Max O/o weight 
n weight loss loss 

Cyff tracers 114 2.8 ± 0.2 42.2 

Tanllwyth 
tracers 

114 4.2 ± 0.2 57.2 

All tracers 228 3.5 ± 0.1 57.1 

Blades 95 2.8 ± 0.2 24.5 
Discs 110 3.8 ±0.2 42.2 

Spheres 4 1.2 ± 0.4 2.5 
Rods 19 5.4 ± 0.7 57.2 

Table 4.15 also shows the variations in both weight loss and travel distance for clasts in 

the four Zingg shape classes. Rod shaped clasts showed the greatest weight losses (5.4 

* 0.7 %) and the difference between the weight loss of rods and blades is significant (p 

* 0.05) as shown by the t-test. The greater weight losses of rod shaped clasts may be 
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accounted for by their higher travel rates. The low number of spheres in the sample 
means that estimates of weight loss and travel distance are unreliable. 

8- 
Cyff Cyff 

W 0.8- 
0 

6- 
(A 0.6 

.T. Q -51 0) 
-m ? ý, 4- 0'0 0.4- 

I> 8-0 
2-- T, 

Q 0.2- 

00 
OD tD (N (14 LO 0 00 CD (N (N Lf) C) CD 

I I? ýt os (D (N (N I Os - (D C4 (\I LI) 4 (N co RI, (D 0 (N cf) Rt (D 6 

C" cn Size Class (mm' Size Class (mm: 

Tanllwyth Tanllwyth 
8- 0.8- 

6-- 0.6- - 

4- 0.4- 

2- 0 2 . - 

0- 0 
00 - (D CN CI4 LO Nt C) co 

cý "? 1? 0 
co - LO " (14 LO -tt 0 CO 

v-I? cý CA (D C, 4 cq n4 04 co Zt (D 6 06 'n .1- --Nm 't w6 a) (3) 

Size Class (mm: Size Class (mm: 

Figure 4.45. Analysis by size: weight loss of tracers and distance travelled for Tanllwyth and Cyff 
tracers 

Figure 4.45 shows mean annual weight losses for tracers by their size class. When all 

tracers are combined, the trend appears to show greatest weight losses in the I 1. - 16 mm. 

and 16-22 mm size classes with a decrease in weight loss in the larger size classes. 

However, the small sample size in the II- 16 mm class (n = 4) means estimates are 

unreliable. The only statistically significant differences between rnean weight loss and 

clast size class was found in the coarser size classes. Weight loss in the 32-45 mm class 

was significantly greater than in the 45-64 mm class (p < 0.01) and weight loss in the 

45-64 mm class was significantly lower than in the 64-90 mrn class (p < 0.05). 
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REGRESSION AND MULTIPLE REGRESSION ANALYSIS 

The results of regression and multiple regression analysis are presented in Table 4.16. 
Data were plotted for each channel separately and in common with many previous 
tracer studies produced a large amount of scatter. The data were loglo transformed and 
regressed both one variable at a time and then all three at once in multiple regression. 
Data from each channel were analysed separately. The results show that both tracer 
travel distance (m day-') and relative clast size (Di/D50)were both useful predictors of % 

weight loss of clasts. These were statistically significant at p<0.01 and p<0.025 for 

the Cyff and Tanllwyth tracers respectively as shown by the F test. Clast shape, as 

represented by the Krumbein Sphericity Index (Krumbein, 194 1) was not a significant 

predictor in either channel. Using multiple regression the three independent variables 

explained 42.5 and 30.6% of the variation in clast weight loss in the Cyff and Tanllwyth 

channels respectively. 

Table 4.16. Regression and Multiple Regression Analyses: factors affecting % weight loss (% WL) 
of tracers 

CYFF Multiple R V, V2 F Significance 

Regression 
1 
2 
3 

Loglo %WL vs. Loglo distance 
Loglo %WL vs. Loglo sphericity 

Loglo %WL vs. Loglo Dj/D50 

31.6 
14.5 
33.2 

1 
1 
1 

77 
77 
77 

8.45 
1.64 
9.46 

p 

P 

< 0.01 
n. s. 
< 0.01 

Multiple Regression 
4 Loglo %WL vs. Loglo distance, Loglo 

sphericity, Loglo Dj/D50 
42.5 3 77 5.43 p < 0.01 

TANLLWYTH 

Regression 
5 
6 
7 

Loglo %WL vs. Loglo distance 
Loglo %WL vs. Loglo sphericity 

Loglo %WL vs. Loglo Dj/D5o 

22.9 
10.1 
21.9 

1 
1 
1 

105 
105 
105 

5.79 
1.08 
5.28 

p 

p 

< 0.025 
n. s. 

< 0.025 

Multiple Regression 
8 Loglo %WL vs. Loglo distance, Loglo 

s. hericity, Loqj, o Dr/D50 
30.6 3 105 3.50 p < 0.025 

v, and v2 are upper and lower d. f respectively. 
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Further investigation into how clast shape and size affect tracer travel distance is shown 
in Table 4.17. The proportion of variation in travel distance explained by sphericity and 
relative grain size (Di/D50) is maximised to 30.9 and 32.3% in the Cyff and Tanllwyth 

respectively by dividing sphericity by relative size to remove the effect of size. This 

suggests that clast shape (sphericity) does have a significant effect on travel distance 

after allowing for size (p < 0.001). 

Table 4.17. Regression analysis results of factors affecting tracer travel distance 

Re 
.... 
9ression 

......... .. 
CYFF 

1 Distance vs. sphericity 
2 Distance vs. Di/D50 
3 Distance vs. (sphericity 

Di/D, 50) 

TANLLWYTH 

R V1 V2 F Significance 

2.6 1 118 0.08 n. s. 
27.1 1 118 9.26 p<0.01 
30.9 1 118 12.34 p<0.001 

4 Distance vs. sphericity 21.5 1 164 7.91 p<0.01 
5 Distance vs. Di/D50 24.6 1 164 10.58 p<0.01 
6 Distance vs. (sphericity 32.3 1 164 18.98 P<0.001 

Dj/D50) 

v., and v2 are upper and lower d. f respectively. 

4.5. Summar 

The data presented has shown that total bedload output and individual sediment flux is 

significantly higher in the forested Nant Tanllwyth than in the open moorland Mon 

Cyff catchment, despite significantly lower flow levels. It has also been established that 

the relationship between flow thresholds and bedload outputs is better in the Nant 

Tanllwyth than the Afon Cyff. During and after the period of timber harvesting in the 

Nant Tanllwyth, total bedload outputs monitored using bedload trapping did not show 

any significant change. Using magnetic tracers to represent the particles on the channel 

bed, mean travel distances of individual clasts did increase sIgnificantly after the felling 

period. Tracers also showed that travel distance of clasts was controlled by the size of 
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the clast, with tracers in the smallest size ranges moving the furthest distance. 

Surprisingly, burial depth was not found to be an important factor influencing particle 

travel distance. 
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Section 5: Discussion 
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5.1. Introduction 

This study has attempted to examine the nature of sediment transfer in a small upland 

stream with a forested catchment. It has compared this to transfer in the nearby Mon 
Cyff catchment. Furthermore, by studying the mechanisms of coarse bedload transportl 

the effects of ecologically sensitive plot-scale timber harvesting of 20 % of the Nant 

Tanllwyth catchment have been examined. 

The discussion will consider the study from two directions. The first relates to study 

methodology, addressing how the experiment measured the mechanics of bedload 

transport though the fluvial systems of the Nant Tanllwyth and Mon Cyff. The second 

part addresses how forestry has affected the transport and production of coarse sediment 

and considers the likely future management implications. 

The discussion will examine the results presented in section 4, and has four main aims: 

I To suggest explanations for the results described in section 4; 

2 to place and relate these results in the context of previous work described in section 

2; 

3 to appraise how the study methodology described in section 3 provides an insight 

into the effects of forestry on bedload transport processes, and 

to suggest the direction of further work in the field. 

5.2. Bedload transport: the monitorinp, propramme 

The analysis will deal firstly with bedload trap results and secondly with individual 

tracer dynamics. Discussion of how the techniques may be drawn together is given in 

section 5.2.3. 
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5.2.1. Bedload trapping: design, monitoring and results 

Bedload trapping methodology is given in section 3.4, with results shown in section 4.2. 
This section aims to suggest reasons for these results and to place the results into the 
context of previous trapping work in the Plynlimon catchments. 

DATA QUALITY ISSUES 

Before interpreting the results of the bedload trap data, what data were actually being 

collected must be considered. The issue of trap efficiency is not considered in Moore 

and Newson (1986) to which significant reference is made later in the discussion. It is 
deemed imperative to consider it before discussion of the results is undertaken. The 
function of the end of the channel bedload traps is to monitor coarse sediment outputs 
that can not be covered by suspended sediment observation techniques. The traps are 
situated at a sampling point in the catchment to examine activity above the traps. 
Suspended sediment outputs during 1996 in the catchments (Stott and Marks, 1998) 

were 24.2 t kM2 yr-1 for the Nant Tanllwyth and 5.3 t kM2 yr-1 for the Afon Cyff. 

Analysis of bedload trap material however shows that up to 30 % of the sediment is in 

the size range that would typically be transported in flood as suspended sediment. This 

sediment is directly sampled during flood events (the suspended sediment sampler is 

located in the flow above the bedload trap) and therefore the sediment might 

conceivably be sampled twice. It is difficult, therefore, to accurately combine the 

results for suspended sediment with that of the bedload trap at this stage, as it is 

impossible to quantify this possible error. It can however be assumed that the bedload 

trap does collect the coarse sediment output of the channel. This assertion can be made 

as observations below both traps revealed little coarse sediment immediately below the 

lower wall of the pond. However, as discussed in earlier chapters, there were slight 

differences between the Mon Cyff and Nant Tanllwyth bedload traps. The Nant 

Tanllwyth is built on a straight section where there are no major complex flow 

structures affecting the entrance to the trap in high flood levels. Deposits were found to 

be relatively even within the trap, illustrated in Figure 5.1 below which shows the 

sediment surface of the Nant Tanllwyth bedload trap on 5t" October 1996. The vertical 
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axis shows the depth below the horizontal measurement datum; flow is travelling from 

front right to back left. Mechanisms of deposition can be seen from the figure to 
deposit first at the entrance lip of the trap, then force sediment forward towards (but not 

over top) the exit lip of the trap. On no occasion did the sediment height in the trap 

come within 0.3 m of the exit lip. Analysis of the changes in the surface of the bedload 

trap was undertaken by examining the changes of each of the 144 measurement nodes. 
This technique proved useful, though no technique (apart from tracers in conjunction 

with total change, by literally entering tracers in the bedload trap) is able to properly 
distinguish between deposition and redistribution. 4: ) 

Figure 5.1. Sediment surface of Nant Tanllwyth bedload trap on 5 th November 1996 

In contrast to the Nant Tanllwyth, the bedload trap in the Mon Cyff experienced a more 

complex flow structure (especially during high flows) at its upstream lip. The 

construction of the trap on a bend in the channel and in an area of low bedslope (and 

hence low stream velocity) has resulted in ponding and forced sedimentation to occur 

upstream. Nearly all tracers at the end of the Mon Cyff experimental section were 

found in this area of sedimentation. The bedload trap is itself affecting the bedload 

transport characteristics of the stream in a way not occurring in the Nant Tanllwyth. A 
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surface profile of the Afon Cyff bedload trap is shown below, taken from 14 March 
1997. 
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Figure 5.2. Sediment surface of Mon Cyff bedload trap 14'hMarch 1997 

Bedload material is brought in from the left-hand side of the trap where a large sediment 

store exists above the trap. Sediment is brought in, scoured from the back right and 

redistributed towards the front of the exit lip. It is envisaged that before the dip on 14 th 

March 1997, there was scour of the trap resulting in transport of sediment through the 

bedload trap without this transport being recorded. It is difficult to estimate how much 

sediment may have passed though the trap, though it is believed to be small since little 

sediment was seen below the structure. Construction of future traps should, however, 

consider the issue of the structure influencing flow structure dynamics. Traps should be 

sited at a position not directly affecting the flow dynamics above the structure and not at 

a site of changing channel gradient or direction. 

This issue means that the bedload trap in the Mon Cyff catchment is likely on occasion 

to be slightly underestimating the bedload yield of the channel. Because the trap had 

not been emptied for a significant time before the project outset and the pattern of 

deposition in the traps was not visible, it was not possible to pre-forecast the problem of 

scour. However, the extent of the difference became clear during the experiment. 
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There is also a temporal issue to trap efficiency, particularly during high flows; it is 

possible that a greater amount of bedload (particularly in the smaller size ranges) would 
be transported through the traps by other suspension or bouncing mechanisms. This 

would cause greater error during periods of high flow. One possible solution to this 

problem would be to complete an emptying of the trap after each flood event and a full 

analysis of bedload size distribution. Another possible solution would be to trap any 

sediment passing over the trap in either (a) a second trap, or (b) a mesh net fixed across 
the channel. Resources available made these options impossible to complete. 

ANALYSIS 

Despite the small problems of trap efficiency, the bedload traps show that bedload 

yields from the two catchments are radically different. The difference is far greater than 

that which might be associated with measurement error or differences of trap efficiency. 

The Nant Tanllwyth has bedload yields (t yr-1 kM2 ) eight times higher than those of the 

Mon Cyff and yields in the Nant Tanllwyth are well predicted by flood magnitude. In 

the Mon Cyff a less clear relationship with flood magnitude is seen. The figures relate 

to the bedload yields for the 23-month period prior to 6t" June 1997. 

Table 5.1. bedload yields in the Nant TanIlwyth and Mon Cyff. 

Bedload yields 
t kM2 -1 

Nant Tanllwyth 7.47 
Afon Cyff 0.91 

Factor 8.2 

The large volume of sediment available over the length of the Nant Tanllwyth (only 

very short sections of the channel show any degree of exposed bedrock) suggests that 

the stream demonstrates features of a transpo rt- limited system. Bedload is freely 

available for transport over the channel length and for the duration of the study no major 

changes were observed in sediment stores in the Nant Tanllwyth. If sediment were to 

move in small shoals in the Nant Tanllwyth (Nicholas et al., 1995), these are not 

detectable using the techniques applied. In the Afon Cyff greater variation exists within 
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the relationship between stream power and coarse sediment transport. This suggests 
that coarse sediment flux in the Mon Cyff, as well as being of a lower total volume, is 
limited not by transport capability but by the sediment supply of the channel itself. 
Large areas of the channel consist of bare, flat and smooth bedrock. In this case the 
likelihood of bedload coming to rest in these areas is limited as protrusion into the flow 

means that shear stress on free clasts is at a maximum (Brayshaw et al., 1983). The 

propagation and existence of sediment slugs allows cohesive sections of clasts to move 
and deposit together. Trimble (198 1) suggests that sediment slugs can be treated at a 
range of scales and that they may take the form of a catchment wide disturbance (which 

might include a change to forest land use, or a change in forest land use). However, in 

the context of the two-year time-scale examined in the Mon Cyff, these slugs can be 

considered as small sedimentary bedforms at the reach scale. 

Comparison with historical records 

Previous work in both Nant Tanllwyth and Mon Cyff had relied upon estimating mass 

of sediments trapped by emptying the trap on each visit (see section 3.4). This yielded 

results matching those obtained by dipping. On refurbishment of the bedload trap 

network, a thorough comparison of the two methods was undertaken. This analysis 

confirms that although the gravimetric method of recording bedload deposition did not 

allow frequent interpretation without actually emptying the traps, results of total 

bedload output can be trusted and are accurate. It is therefore possible to compare 

previous sediment loads taken during a different stage of the forest rotation with those 

taken during the time of the current project. The record of trapped sediment in the 

1970s is shown in Table 5.2. Historical data are specifically given in total outputs and 

not yields; data from this study are presented as a yearly average, with yields in 

parentheses. A broken sediment record was also available from differing sources, but 

has not been included to avoid error. 
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Table 5.2. Historical records of the Nant Tanllwyth and Mon Cyff bedload traps 

Nant Tanllwyth Mon Cyff Factor 
t t 

1973 69.0 51.4 1.3 
1974 22.4 34.2 0.7 
1975 19.9 19.5 1.0 
1976 10.4 9.6 1.1 
1977 75.6 14.8 5.1 
1978 18.8 11.4 1.6 
1979 62.9 20.8 3.0 
1980 15.0 7.2 2.1 

1970's average 36.75 (41.29) 21.01 (6.71) 1.7 
Current research 6.65(7.47) 2.85(0.91) 2.3 

Data from 7th July 1995 to 2 nd June 1997, derived from Leeks pers comm and are total 
volumes of trapped sediment each year. 

Yields are shown in parentheses. 

The data presented from this study in Table 5.2 for both the Nant Tanllwyth and Mon 

Cyff are taken from analysed results for nearly two years of the same start-finish dates. 

The channels are therefore compared from the same periods of the meteorological cycle. 
The table above compares the 23 months (excluding the period from 3 rd Feb 1995 to 7 th 

July 1995, where a measurement was made exclusively in the Nant Tanllwyth) for 

which parallel trap data is available. 

What is being examined in this section is the temporal change of the differences 

between forested and unforested catchments. There is a unique opportunity to return to 

sites reliably studied in the 1960s and 1970s and re-examine them using known 

techniques. The Nant Tanllwyth's measured sediment yield (accounting for catchment 

area) by trapping is some eight times greater than that of the Mon Cyff. Ignoring 

catchment area, the total volume of sediment through the bedload traps in the Nant 

Tanllwyth is just over twice the mass as the Mon Cyff (6.65 t and 2.85 t respectively). 

There has clearly been a major change in the bedload outputs of the catchments since 

the 1970s. Bedload yields in the catchments presented in Moore and Newson (1986) 

showed yields of 38.4 t kM2 yr-1 and 6.4 t krný yr-1 in the Tanllwyth and Cyff 

respectively. This represents a difference in the two catchments' yields of a factor of 6. 

The difference in the yields of the Nant Tanllwyth and Afon Cyff catchments in the 
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present study is approximately 8 so both catchments have experienced similarly 
decreased yields. Total yields have however decreased enormously In both catchments. 
In the Nant Tanllwyth, Moore and Newson (1986) record a yield of 38.4 t yr-1, whereas 
the present study records a decrease in yield to 7.47 t kM2 yr- 1- In the Afon Cyff, the 
1970's average is 6.4 t kM2 yr-1 whereas this study records 0.91 t kM2 yr-1. The historical 
flow charts in Figure 4.7 and historical bedload yields in Table 5.2 show that the 1977 
flood had a major influence on bedload yields with 75.6 tonnes measured in that year 
alone. The flow peak of 5.46 m3 s- I was unprecedented in the Nant Tanllwyth and this 
has influenced the difference between the contemporary and historical readings. 
However, yields were not merely greater in 1977 but in all years available from 

historical data. 

By examining data in Leeks (1992) it might be expected that bedload yield in the Nant 

Tanllwyth would decrease over time. In this paper, Figure 33.8 (Figure 2.1 in this 

thesis) predicts a peak in bedload yields after site preparation and a gradual (though 

perhaps not this marked) decrease in yields over time. Although the decrease in 

bedload yields is dramatic and without typical precedent in the literature, there are valid 

geomorpho logical reasons to explain the observations. The sedimentation of drainage 

ditches and the removal of coarse sediment previously liberated by ditching and 

planting mechanisms, should all have been completed in the relatively stable periods of 

forest land use of the last 20 years. In addition, the disturbances previously associated 

with timber harvesting seem now to have been nearly completely removed, particularly 

with reference to the careful felling procedure around river channels (Forest 

Conu-nission, 1993). Expectations of damage to channel banks by workers and 

machinery simply did not materialise. In practice, either harvesting adjacent to channel 

banks was undertaken by hand or by using a timber-harvester which did not have its 

tracks near the channel banks. Consequently, none of the banks in the Nant Tanllwyth 

suffered any damage directly because of felling trees. Stott and Marks (1998) describe 

slightly increased erosion rates after the period, but this can be attributed to changes in 

temperature and exposure to frosts rather than to direct physical change. 

More challenging is explaining the change in the bedload outputs of the Afon Cyff. The 

Afon Cyff is reported to have remained essentially undisturbed during the latter part of 

the century, but has shown a sevenfold decrease in bedload yield since the 1970s. 
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Analysis of the data from the 1970s (see Table 5.3) and further study of individual 
floods during the decade (Newson, 1975) reveals that several major floods did occur 
during the period. During 1977 in the Nant Tanllwyth and during 1973 in both 

catchments large floods were reported. However, the flood of 1973 in the Wye, 

reported in Newson (1975) that peaked at 65 rnýs-', did not seem to have its main source 
area in the Afon Cyff where maximum discharge that year was only 5.57 rnýs-'. Further 

analysis of the period studied by Moore and Newson (1986) reveals that although 

stream flows were slightly higher during the 1970s, the differences in flood magnitudes 

were not significant (see Table 5.3). We must therefore attribute this as a real change in 

the sediment regime of the channel and not a change due to changes in stream 
hydrology of the two periods. 

Table 5.3. Hydrologic variables over the 23-month bedload study period and the Institute of 
Hydrology's 1970s data 

Average Mean flow Average Maximum 
m3 S-1 m3s -1 

1970s Present 1970s Present study 
study 

Mon Cyff 0.21 0.15 5.56 5.35 
Nant Tanllwyth 0.06 0.05 2.31 2.25 

After historical examination of the Mon Cyff catchment (Hill, pers comm. ) it was 

discovered that in the late 1960s, the failure of a mining dam (estimated to be in excess 

of 100 years old) occurred. This feature (Plate 5.1) is situated in the main channel of 

the upper Mon Cyff approximately 1.5 km above the bedload trap (I km above the top 

of the experimental catchment). It is thought that the break up of this feature resulted in 

the release of a large volume of sediment at the end of the 1960s (Hill, pers comm). 

This sediment, originally built up by the dam reservoir may have continued to be in 

transit through the system during the 1970s. Gilbert (1917) noted the passage of 

sediment in the Sierra Nevada moved in wave like forms. This would explain the 

relatively large sediment yields in the Afon Cyff during the previous Moore and 

Newson study period. Field observations during summer 1999 show the possible 

effects of the dam breach on the results. It was clear that the construction and 
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subsequent destruction of the dam had been a major influence on the fluvial system. 
Immediately below the former dam headwall (Plate 5.2) a large volume of boulder sized 
sediment was present in the channel. Interestingly, this headwall is the only point on 
either channel where a significant source of unconsolidated bedload is available for 
transport in the channel (Plate 5.1 and 5.2). The sediment distribution changes 
downstream with a rapid reduction in the size of dominant coarse material towards the 
upper boundary of the experimental catchment, approximately I krn from the dam. At 
this point, the size distribution of the bed material becomes evenly characterised, as 
described in the Plynlimon section 1.5 of the introduction. What is most noticeable 
about the sediment distribution at present in the Mon Cyff is a sediment 'gradient' that 

appears to be so clearly controlled by the existence of the dam. Above the dam site, the 

sediment is much finer and more akin to the distribution in the experimental channel. 
There is then a 'step' in the grain size distribution, including abnormally large boulders 

in the area of the dam. Presumably these boulders were used in the construction of the 
dam; although there is evidence that some of the clasts were transported downstream 

and deposited in the pool made by the dam. 

Possible effects of an old dam in the Afon Cyff catchment 

A possible scenario to explain the changes in the Mon Cyff bedload trap data can be 

related to the dam breach as follows. During the period when the dam remained 

unbroken (approximately 100 years), sediment from all flood magnitudes built up in the 

reservoir behind the dam. All sizes of bedload would be represented and the size of the 

dam would make overtopping and transport of coarse sediment through the system 

unlikely. The material in the reservoir would therefore consist of the coarsest elements 

of the bedload distribution, which would not be subject to further abrasion or 

degradation as in normal transport circumstances. Examination of the remains of the 

dam suggests that construction used the largest clasts available in the catchment area 

with their lithology indicating that they were selected from the bedload in the channel. 

This 100-year period would allow a significant volume of sediment to build up, if the 

bedload output from the Mon Cyff was conservatively estimated at I-2t yr-1, then in a 

100 year period up to 200 t of coarse sediment could have built up behind the dam. 

This is in addition to the material used in the construction of the dam. Estimating the 
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exact mass is difficult both intensive periods of monitoring (this study, Moore and 
Newson (1986)) would have both been influenced by the existence of the dam. 

Plate 5.1. Upper wall of old dam site 

The circumstances of the breakage of the dam are unclear as no historical records of the 

event exist. It is known, however, that during the 1960s, either a catastrophic failure, or 
the final stages of break-up of the dam took place. This would have released a large 

volume of sediment available for transport into the lower channel of the Mon Cyff and 

completely altering the bedload supply characteristics of the channel (Nicholas et al., 
1995). The bedrock nature of much of the channel below the dam would have allowed 

rapid transit of this sediment pulse though the system and would have resulted in high 

bedload yields during the following years. With the period immediately following the 

dam burst not experiencing any abnormal flows in the Mon Cyff, the largest of the 

material available would not have been transported, or would only have been moved 

short distances downstream. Section 4.1 shows how transport of the largest clasts in the 

Mon Cyff is size selective. Ashworth and Ferguson (1989) have suggested that equal 

mobility is only approached at the highest flows. This is backed up by field 

observations of a large number of boulders immediately below the dam site (Plate 5.3). 
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Smaller bedload seems to have been winnowed from the gaps between these boulders 

T 

Plate 5.2. Site of failed 19"' Century Dam 
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Plate 5.3. Coarse bedload a short distance below the dam site 

Once this available bedload was transported, two scenarios are possible within the Mon 

Cyff. The channel could return to its original bedload output state, with the supply of 

sediment unaffected by the whole dam structure. This would only be attained if the 

total bedload built up behind the dam had been transported through the system. This is 

unlikely for two reasons; firstly, average step lengths observed by tracers suggest that 

bedload does not move through the Mon Cyff that quickly. Secondly, field 

observations show that a sediment gradient exists directly below the dam and that 

uncharacteristically large sized boulders exist below the site (Plate 5.3). It is possible 

that the old dam site still affects the sediment outputs of the channel. Sediment may be 

available for transport that is presently protected by the armour of the boulders, which 

remains in the old reservoir area and immediately below the dam site. This sediment 

could be liberated, and subsequently transported during a high return period flood. The 

coarse sediment remaining around the dam site may also affect the sediment dynamics 
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of particles in transit from upstream. Sediment moving downstream could become 

trapped between larger particles, whereas previously these clasts would have been 

transported through the system. Observations around the dam site indicate sediment is 

available for transport and that in case of competent flows, this material would be 

transported to the lower reaches, which have large areas of exposed bedrock channel. 

Alternative explanations 

Other possible factors which might explain this bedload transport difference may be a 

difference in the monitoring technique used in the two studies. This is seen as unlikely 

as the same traps were used and the traps were not allowed to over-top during the study 

periods. Careful calibration of the spike and dip methods were undertaken on 

excavation and revealed no differences in the techniques. 

A further hypothesis is that the Afon Cyff is susceptible to sediment slugs (Bunte, 1992; 

Nicholas et al., 1995) or pulses not only on a small feature scale, but also on a larger 

temporal and physical scale (Trimble, 198 1). Hoey (1992) notes that the most 

successful way of modelling these waves is using a three-dimensional approach, but 

evidence during this study is circumstantial, as resources were not available for a 

continuous monitoring strategy along the two channels. The model of a macro-scale 

pulse does however, fit well into the observations within the channel. Both results from 

Moore and Newson (1986) and those from this study show a relationship between 

discharge thresholds and bedload yield. Both studies (Moore and Newson, 1986: Table 

3) show relationships in the Afon Cyff are not as strong as in the Nant Tanllwyth, 

though in both channels a relationship does exist. On the longer time scale between the 

studies, it is clear that these relationships now have different parameters, with 

equivalent flooding in the channels during the 1970s causing much higher bedload 

yields. A full analysis with all the original flow and sediment data from the 1970s 

would allow an assessment as to what degree that the Afon Cyff was previously a more 

transport- limited system, similar to how the Nant Tanllwyth is in the present day. 

It is the author's view that the reason for the changes in the Nant Tanllwyth is land use 

change. In the Mon Cyff, the propagation and throughput of an initial sediment pulse 
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induced by the failure of a dam structure in the late 1960s can explain the reduction of 
sediment output. It is unfortunate that the original intention of the study, for the Mon 
Cyff to act as a paired catchment, has not been entirely possible. 

5.2.2. Bedload tracinq: design monitoring and results 

Bedload tracing methodology is given in section 3.5 with results shown in section 4.3. 

This discussion aims to explain the travel distance data provided in these previous 

sections. 

DATA QUALITY ISSUES 

It is thought that, for the first time, an experiment has used tracers to attempt to 

determine the effects of land use change on the sediment regime in a gravel bed stream. 
It was hoped that tracers would show detail in the dynamics of the bedload transport in 

the channel that would not be available from bedload trapping alone. This would also 

complement this total flux data. 

Previous studies have shown that the nature of bedload transport is highly stochastic 

(Hassan et al., 1984; Ergenzinger et al., 1989) and that predicting travel distance based 

on clast size, shape and burial depth is extremely problematic. The data presented in 

this study support this evidence. As with the bedload trap data, it is judicious at this 

point of the discussion to review exactly what data were collected. The tracers seeded 

and monitored in the channels measured the transfer of a specified bedload size range of 

b-axis 8 mm to 90 mm and do not represent transport of sediment from other size 

ranges. This is in contrast to the monitoring of the bedload trap, which is more likely to 

be an inclusive measurement of sediment collected across the whole size distribution, 

although this depends on the trapping efficiency of the bedload traps. As the recovery 

rate of tracers in the smaller size categories is lower than in larger size categories, so the 

ability to accurately represent transport parameters of these size ranges is reduced. 
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In a case of 100 per cent recovery of a specific size range, it can be assumed (sample 
size permitting) that tracers accurately represent the movement of that size range in the 
channel. As soon as the recovery rate is reduced, this reliability and representation is 
also reduced. Tracers that are unfound due to passage through the experimental channel 
will force the mean travel distance presented from the remaining tracers to be under- 
estimated. Tracers unfound due to deep burial (and therefore effectively immobile) or 
lost through tracer breakage will cause the mean travel distance presented to be over- 
estimated. Although it is impossible to determine for what reason a tracer has become 
lost, it seems unlikely that the Magnotrack I OOTm detector would fail to locate a 
significant number of tracers due to burial depth. This assumption is based on the 

observed high sensitivity (workable range in excess of 0.5 m) of the instrument in use 
and the generally shallow depth of sediment of the two channels. 

Recovery rates for the study compare favourably with previous work using natural 

clasts in coarse gravel bed rivers. Table 4.13 shows that recovery rates in the early 

experimental stages are 100 per cent in the Nant Tanllwyth and approaching 100 per 

cent in the Mon Cyff. As the project continued, with longer residence times and with 

the introduction of smaller clasts, recovery rates are shown to reduce through each trace. 

Schmidt and Ergenzinger (1992) showed recovery rates of iron tagged tracers in the 

Lainbach, Bavaria, which started at 92% after one flood and reduced to 17 % after 4 to 

8 flood peaks. Other studies show recovery rates varying from 8% using painted clasts 

(Takayama, 1965) to between 90 and 93% using magnetic clasts (Hassan et al., 1991). 

These high recovery rates by Hassan et al. ( 199 1) were notably in ephemeral streams 

where reliable low flows and a clement tracing climate made for ideal conditions for 

relocation. In the light of this previous literature, it is suggested that recovery rates 

within the two Plynlimon channels are high enough to present useful data. 

Measuring travel distances and velocities (if any time function is included) can be based 

on a real or virtual approach. Ergenzinger et al. (1989) and Hassan et al. (1992) also 

highlight this. Essentially the analysis by which this project has been undertaken is a 

combination of these two, as it combines an element of virtual travel in discharge over a 

threshold as well as total distance travelled. With the field equipment available, and the 

number of traces made over a 2-year period, it is impossible to measure exactly the real 

velocity of tracers in transit. 
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ANALYSIS 

Introduction 

The aim of using tracers was to establish differences in the bedload transport regime of 
the two channels and to investigate how felling of a portion of the Nant Tanllwyth 

would affect that bedload transport regime. It would be desirable to model exactly the 
bedload transfer process in both channels and examine the differences between the 
channels in this manner. The data presented in tracing section 4.3 shows that the 
variability of the results makes this impossible and indeed the project does not set out to 
achieve this. Ferguson et al. (199 1) highlighted the difficulty of disentangling 

suspended sediment data in the Loch Ard catchments following forest operations. 
Fluctuations in flow regimes of paired catchments and natural variability in suspended 
sediment concentrations made conclusive evidence of changes due to forest operations 
difficult to disentangle. The large number of variables influencing bedload transport 
(Brayshaw et al., 1983) were not, and cannot, be measured fully in an experiment 

involving this number of tracers. 

The approach used in this study was to attempt to find 'patterns' within the 

geomorpho logical data monitored. Regression analysis of clast travel distance was 

carried out using field predictors of water depth, burial depth, channel position and 
discharge thresholds, as well as tracer parameters of size and shape. No relationships 

were found between travel distance and the controlling parameters of burial and water 
depths, nor was starting channel position found to a control the subsequent travel 

distance of a clast. In certain circumstances however, these factors have been proven to 

control the probability and distance of sediment transfer in a gravel bed river (Hassan, 

1990). 

Tracer clast travel distances in other rivers throughout the world have varied according 

to the study location. Although mean annual travel distances are not reported by 

Ergenzinger et al. (1989), the study shows 80% of clast moved between 200 and 500 m 
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in a single flood event (discharge peaking at 18 M3S-1 ). On the same Lainbach reachq 
Schmidt and Ergenzinger (1992) report mean travel distances of clasts of mass 330 g to 
5020 g at between 15 rn and 33 m per flood. In this study, return periods of these floods 
are not determýined and thus the magnitude of sediment transport in the rivers is not 
estimated. Ferguson and Wathen (1998) working in the Alit Dubhaig, Scotland, 

measured mean travel distances per year in six reaches. Results varied between 22 m 
yr-1 and 95 m-1, the highest travel distances associated with the steeper upstream 
sections of the channel. Although the Dubhaig has significantly higher discharge (peaks 

exceeding 20 rn 3 s-1) than the Nant Tanllwyth or Mon Cyff, mean travel distances of 
clasts in this study are as high as 48 m yr-1 in the Nant Tanllwyth and 27 rn yr-1 in the 
Mon Cyff. There is variation between the two channels, but it is in direct contrast to 
the hydrological character of the channels, with the Mon Cyff having peaks some three 
times higher than the Nant Tanllwyth. 

Travel distances of tracers and clast size 

Figure 4.26 shows that in the Nant Tanllwyth, a good relationship between flood 

magnitude over 0.3 rnýs-' and mean travel distance of each trace exists, with an r2=0.93 
(n=10, p<0.001). This is for the study period inclusive of pre- and post-felling phases. 
It is therefore possible to make estimations on the likely effect of floods within the 

limits of flood intensities studied on future bedload travel distances. Further analysis 
however, makes it clear that prediction of the travel distance of any one clast is not 

possible. It is not possible to compare this value with the Mon Cyff, as the small value 

of n makes it impossible. As with the study of data from the bedload trap, bedload 

transport in the Mon Cyff is less predictable than in the Nant Tanllwyth. It is simply 

not possible to make predictions for mean travel distances of clasts based on any 

measure of flood magnitude. 

Relationships between travel distance and a number of discharge parameters were 

attempted. The most successful approach proved to be calculating a mean distance of 

movement for each trace and comparing this with flood magnitudes (Figures 4.25 and 

4.26) or representing the results as falling within an 'envelope'of values (Figures 4.27 to 

1 4.30). This confirms observations shown in Figure 6 of Schmidt and Ergenzinger 
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(1992) where an envelope of values exists but no functional relationship between 

predicting parameter and travel distance is forthcoming. Individual tracers show a large 
variation in clast travel distance in relation to mass and b-axis (Figures 4.27 and 4.30). 
When these tracers are sectioned into size categories (Figures 4.31 and 4.32) size 
selectivity emerges and this selectivity favours smaller over larger clasts. This is 

particularly clear in the Nant Tanllwyth. With the analysis of tracer pebbles showing 
tracers in the small size ranges moving further, combined with their reduced likelihood 

of relocation (also forcing the figure to be artificially low), this observed size selectivity 

can be considered real. 

Hassan et al. (1992) also analyses the relationship between travel distance of each size 

range and discharge parameters and found that no size range exhibited a stronger 

relationship than any other. The confirmation of these findings in the present study may 
be partially explained by the limited size range studied, with tracer clasts not fully 

representing the small size ranges. More likely, however, is that the findings represent 

the stochastic nature of the real transport regime of each size fraction, as illustrated by 

the general scatter in the results and that all of size ranges are equally difficult to model 

predictively. 

The travel distance data from the Nant Tanllwyth and Mon Cyff has shown that the 

Nant Tanllwyth is more predictable in terms of mean travel distances per flood (see 

Figure 4.26). 

Figure 4.31 shows that this predictability extends to the size selectivity of the Nant 

Tanllwyth, tracers within the 8 -11 mm category moving on average more than six times 

as far as tracers in the 90 - 128 mm category. The rate of transport changes smoothly 

through the size distribution. In the Mon Cyff, however, this trend is not as pronounced 

with the smallest size range contradicting the pattern. Unfortunately, the reduced 

number of traces in the Mon Cyff means that it is difficult to use mean travel distances 

to develop a good relationship, though by visual examination, there is huge variation in 

the travel distances at lower flood indices which is not readily seen in the Nant 

Tanllwyth (Figure 4.26). 
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An explanation of why travel distance is more selective in the Nant Tanllwyth than in 
the Mon Cyff is required. There are several possibilities that are discussed below. 

1. Different particle interlocking structures between the two channels; 
2. deeper water present in the Mon Cyff (table 1.3), and 
3. large scale sediment storage structures within Mon Cyff 

The evidence from both bedload traps (section 5.2.1) and tracer experiments shows that 

transport in the Mon Cyff is both supply-limited and occurs in shoals: sediment exists 

on the channel bed but it is not being readily entrained. Billi (1986) observed the higher 

number of pebble clusters in the Mon Cyff than in the Nant Tanllwyth, with 888 

clusters and 236 clusters respectively. These clusters would partly explain the reduced 

selectivity as initiation of transport relies first on the break-down of the clusters, after 

which point transport can occur throughout the range. Examination of individual 

sediment structures did not take place during the period of fieldwork and it is therefore 

not possible to confirm if these observations from Billi continued during the study 

period. However, with no relationship with burial depth, both channels exhibit a pattern 

of 'moving mat' transport, where the active layer is mobilised during flood events. If 

the entire active layer does become equally mobile at the time of excess threshold, but 

there is still evidence of size selectivity of transport distance, then it is not the 

entrainment threshold that is crucial but instead the ability of the flow to continue 

transporting the clast during the flood event. It would be interesting to have been able 

to trace after every flow event thought to exceed the entrainment threshold and 

particularly to be able to trace clasts from a natural starting position. This might have 

revealed clasts being entrained only from the bed surface: at one point the bed must pass 

through this stage, as observations suggest that the formation of a true armour layer 

does not occur in these channels. 

The shape of the Mon Cyff channel results in a deeper thalweg than in the Nant 

Tanllwyth. The increased lift coefficients occurring in shallow streams would be 

exaggerated in the case of the Plynlimon sediments that are made up of predominantly 

discs and blades. This would lead to higher thresholds of entrainment in the Mon Cyff 

and generally lower levels of transport. 
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During peak flows, bedload is definitely deposited in shoals in the Mon Cyff, which 
during normal high flows, simply deflect the current around them and along the thalweg 
(often smooth bedrock). When sediment mobilising flows do occur, the entire bed 

becomes entrained and these shoals move into new positions, though maintain a series 

of bedforms in the channel. These bedforms can form more easily partly due to the 
difference in size of the two channels. Newson and Harrison (1978) and the authors 

results show that channel widths are greater in the Mon Cyff. Observations in the Nant 

Tanllwyth on constrained channel banks mean that even moderate discharges can fill the 

channel bottom. This also explains the pulsing nature of bedload trapped in the Mon 

Cyff shown by a lower correlation coefficient of trapped bedload to flow thresholds. 

The nature of the bed of the channels themselves, as highlighted by Billi (1986) is 

significant in explaining the stochastic nature of the bedload transport and the wide 

variation around the means observed. 

It is not possible to conclusively rule out any of these factors, as all have a potentially 

important role in why the transport regime is different in the Mon Cyff. The impact of 

sediment clusters is particularly difficult to quantify as no observations were made. 

However, observations did show that large numbers of tracers were found on lateral 

channel bedforms and that in many central channel areas, no sediment stores existed. 

This, in tandem with the depth of water in the Mon Cyff, would have had a controlling 

influence on sediment transport rates. 

The influence of flood magnitude 

When each individual flood is analysed (Figure 4.33), size selectivity is again clear in 

the Nant Tanllwyth but less so in the Mon Cyff (Figure 4.34). Where each flood period 

has been organised based on its magnitude, the trend lines (Figures 4.35 and 4.36) show 

that tracer movement in the Nant Tanllwyth is size selective during both large and small 

magnitude events. This is not as clear in the Mon Cyff, where we see crossing of the 

trend lines of each size fraction and from the original data, significant variation from 

each flood event. This is not fully expected as Figure 4.32 shows that a general pattern 

exists in the Mon Cyff whereby (apart from the smallest category) smaller particles are 

transported further. The analysis by flood size shows that, specifically during the 
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largest flood period (trace 4), tracers in the smallest categories moved less than in larger 
size ranges. In the final trace (trace 5), the trend is reversed, and although there are 
smaller overall travel distances, size selection is clearer. What is causing these 
observations? 

It was hypothesised that there would be a relationship between the previous flood event 
and the variation in transport rates of individual size ranges. The approach of analysing 
size ranges under different starting conditions was undertaken by Brayshaw et al. 
(1983) who examined the effect of particle clustering. However, the data that were 
required to model the effects of clustering were not available in this study, though it was 
hoped that sediment burial depth and water depth of particles would explain some 
changes in transport. Hassan (1990) found that buried tracers moved lower distances 

and tracers on the surface had a more than 80% chance of being entrained. 
Significantly, for both channels in this study, burial depth was found to have no 

relationship to the travel distance of clast, or the probability of entrainment. Both 

channels exhibit a "moving mat" style of transport, with burial depth having no 

measurable effect on travel distance. 

Travel distances can be expected to vary according to bedload size, channel slope, bed 

roughness and flood maxima. In the case of a tracer positioned on a flat and smooth 
bed, a larger tracer would require a greater stress exerted on it to entrain it, and thus the 

probability of the tracer moving a long distance is reduced. This is particularly relevant 

in the predominantly bedrock Mon Cyff channel, characterised by a smooth bed and 

hence low bed roughness. The field results show, however, that this channel has not 

exhibited the high bedload output characteristic of this phenomenon. This may be 

because the overriding control on the sediment regime of the Mon Cyff is reduced 

availability of sediment. Indeed the total volume of sediment available for transport on 

the surface of the channel is lower than in the Nant Tanllwyth. Whether this is 

controlled by the existence of the dam higher in the catchment was discussed earlier. 

5.2.3. Combining the data sources 

One issue arising from this study is how well data from the two main monitoring 

sources can be combined. An essential question is: "can a relationship be established 
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between bedload trap volumes, mean tracer travel distances and flood magnitudes? " If 
this is the case, then it should be possible to use a tracer experiment to estimate total 

yields of any stream without the need for bedload traps. This study has not made an 
attempt at modelling the physical mechanisms of entrainment discussed in the section 2. 
It has attempted to build a pattern of transport under two contrasting land uses, as well 

as to compare the dynamics of two separate streams. The two data sources, the bedload 

traps and individual clast tracing, give rise to findings that are clearly related to each 

other, but provide results in different formats. Table 5.4 below summarises these 

results. 

Table 5.4. Summary of results from tracing and trapping experiments 

Bedload yields Bedload Total Mean tracer travel 
t kM2 yr-'L t yr-' distances 

Nant Tanllwyth 7.47 6.65 39.74 
Mon Cyff 0.91 2.85 27.26 

Factor 8.2 2.3 1.5 

Nant Tanllwyth No proven change N/A Proven increase 
post-harvest 

Although the two monitoring sources are both measuring the flux of bedload, they are 

measuring it using different methods and with different spatial parameters. The 

sediment yield based on measurement using bedload traps measures the exact amount of 

sediment (based on the assumptions in 3.2) passing a specific point in the channel (the 

trap at the end of the experimental reach). This measure is commonly expressed as a 

total volume of bedload discharge per unit area of catchment. Tracing individual clasts 

in the stream (and expressing this as the function mean travel distance), measures 

transport of a sample of a specific size range, along an experimental channel reach of 

specified length. The result is that the bedload flux in the two channels can be 

expressed in three different ways and the results in this study show factorial differences 

in the outputs of between 1.5 and 8.2. How can this be resolved if we accept the 

relationships between flow thresholds and bedload outputs that have been constructed in 

earlier chapters? 
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Bedload movement measured using tracers describes the dynamics of clasts within the 
channel alone and takes no account of catchment area, tracers measure the transport of 
the existing sediment using tagged clasts to integrate themselves as part of the sediment 
mix. Bedload yield measured using bedload traps can vary significantly in a temporal 
sense (Hoey, 1992). In the long term, trapping accounts for the inputs of coarse 
sediment from catchment sources such as channel banks and tributaries. It then 

expresses the value of sediment yield based on the size of the catchment. In the short 
term however, traps are more likely to measure (especially accurately in a transport- 
limited system) the volume of sediment that is stored in the reach immediately above 
the trap itself, which may be part of a sediment wave or sheet (Whiting et al., 1988) on 

a variety of scales. In this case, to add a factor of catchment area is surely 
inappropriate? In addition, to expect the trap to show changes due to new sediment 

regimes much higher up the catchment would be unrealistic. 

Perhaps the problem of matching the methods does not exist in the short term, as both 

systems measure the dynamics in a short reach of channel and not in the whole 

catchment. The tracers that were injected into the most active tributary of the Nant 

Tanllwyth (section 4.3.2) did not reach the main channel; with the lowest tracers in the 

tributary moving less than 20 m over the two year period. Wathen (1995) suggests that 

the only inputs (on the reach scale) to bedload transport are bank erosion and the 

channel itself. If travel distance of tracers averages between 25 and 40 m yr-1 in the two 

channels, one might rightly expect bedload traps to take in excess of 10 years to register 

the input of sediment changes occurring between 250 and 400 in above the respective 

bedload traps. In the Nant Tanllwyth, there is no significant tributary or eroding bank 

face that might be expected to contribute bedload within 80 m upstream of the bedload 

trap. It could be assumed then that the majority of sediment measured in the Nant 

Tanllwyth trap was actually within 80 m of the trap when measurement started; 

certainly that length of channel could accommodate the 12 t of bedload trapped. It is 

concluded, therefore, that it is unlikely that the bedload traps could, in the short to 

medium term, detect any change in bedload yield due to timber harvesting. In addition, 

the probable reason for the lower bedload output of the Mon Cyff is simply because 

there was not the sediment available to be transported, either because their was simply 

no supply from upstream, or that the lack of supply had in places caused patchiness in 

armour in sediment stores. Under these conditions of low or non existent sediment 
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inputs, static armour has been shown to form (Sutherland, 1987) and might prevent 
significant transport of material that is protected under this armour. This may be 

occurring in the Mon Cyff preventing high bedload yields. 

It is not the purpose of this section to manipulate the data so the Nant Tanllwyth and 
Mon Cyff bedload yields respond identically to flow thresholds, but instead to explain 
why the magnitudes of the different methods of monitoring bedload appear to be 
different in the two channels. Table 5.3 shows that the difference in magnitude of 
bedload yield from the channels (the Nant Tanllwyth is eight times greater than the 
Mon Cyff) is not comparable to the difference in magnitude of tracer travel distances (a 

factor of 1.5). The removal of the catchment area factor brings the two figures far 

closer with a difference in magnitude of 2.3. This removal is justified as it has been 

shown to be inappropriate to use a catchment area function at this timescale of analysis. 

Tracing describes the probability of a clast of a certain size travelling a certain distance, 

not the same function as measuring the total coarse sediment output of the channel. The 

experiments monitor sediment that differs in both size distribution, as well as point of 

measurement. Perhaps this difference is due to the failure of tracers to represent the 

small size ranges? Observation of the size distribution of the bedload trap material 

shows that fine sediment (other than what would normally be classed as bedload) is 

included within the distribution. If the amount of fine sediment in the channels is 

different (the Nant Tanllwyth has a significantly greater suspended sediment load (Stott 

and Marks, 1998)), then the proportion of the trap distribution made up of this sediment 

is likely to be different. Sediment settles out of suspension under conditions of low bed 

slope angles, deep water and lower roughness elements. This describes the relatively 

stable environment of the bedload trap, conditions not available elsewhere in the 

channels. If the Nant Tanllwyth does have a higher concentration of fines in the 

bedload trap, this would partly explain the differences in the factors between the two 

channels by over estimating the yields of true bedload in the Nant Tanllwyth. 

160 



THE IMPACTS OF TIMBER HARVESTING 

There is conclusive evidence to show that travel distance of tracers increased post- 
harvesting. The change in tracer travel distances has been demonstrated as a real 
change based on the discharge over the 0.3 M3S-1 threshold (Table 4.13). In contrast, the 
total discharge of bedload from the channels using bedload trapping has not been 

proved to change. Although total bedload yield increased slightly, when analysed 
against the hydrology of the two phases, only a5% increase was observed (against the 
0.3 m3 s- I threshold). Either this observation is due to the monitoring procedure or there 
is a genuine physical explanation for the results. The possible reasons for tracer and 
trap data not displaying the same trends have been discussed above. 

Stott and Marks (1998) reported an increase in suspended sediment in the Tanllwyth 

during the felling period. The felling period was characterised by low flows and the 

coarser part of this mix would not be transported during these flows. This would result 
in the infilling of gaps in the coarse matrix (very noticeable in the Tanllwyth bedload 

trap during summer months) and would likely make entrainment of coarse bedload and 

tracer gravels less probable. Exactly the opposite, however seems to have occurred, 

with tracer travel distances increasing equally in all size ranges (see Figure 5.3). The 

contrast between the increases in sediment from forest work seen in previous studies 

(Stott, 1987) with the no change in the catchment situation in the Nant Tanllwyth during 

harvesting could not have been clearer; it is unlikely that significantly more bedload 

entered the channel, as both bank erosion and tributary sediment source changes were 

limited by the nature of harvesting. 
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Figure 5.3. The impact of harvesting the Nant Tanllwyth on pre-harvest and post-harvest travel 
distances in 4 clast size classes 

The observed increase in tracer travel distances in the post-harvesting period is made 
based on the assumptions of data made dimensionless using the flow thresholds. The 

period after the felling period did in fact experience the two greatest flood events (Nant 

Tanllwyth periods 8 and 9), this is particularly clear in Figure 4.33. With flood periods 

eight and nine containing the two periods of highest discharge during the study (2.25 

in 3 S_ I and 1.48 M3 s-1 respectively), it is likely that the relationships between tracer travel 

distances at these high flows is different to lower flood peaks (say the 0.3 or 0.5 M3 s-1 

threshold). This is partially underlined by the mean travel distances of all tracers (see 

Figure 4.25) which shows the period with greatest flood activity over the 0.3 and 0.5 

thresholds (trace 8) to have a disproportionally greater mean travel distance to flood 

magnitude. It is difficult for any mechanism (further to the standardising to thresholds 

already attempted) that can detýrmine and disentangle the effects of land use change. 

5.3. Abrasion 

The results suggest that greater mean travel distances of tracer clasts may account for 

the difference in weight loss between tracers in the forested Tanllwyth and the grassland 

Cyff channels. There is no doubt that bed sediment is much more mobile in the 

Tanllwyth channel with travel distances being higher than those in the Cyff and it is 

likely that drainage ditches excavated in the 1930s at the time the plantation forest was 
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established continue to supply some sediment to the main channel. The lower mean 
travel rates reported in this study for the Cyff concur with these findings. 

In terms of shape of clasts, rods and spheres have the highest mean travel distances, but 

while rods have highest mean weight losses, spheres have the lowest. This may be 

accounted for by the fact that their shapes make them more suited to rolling and, once in 

motion they are less likely to be deposited due to imbrication and bed armouring. 
Spheres are least likely to break while in transport and, predictably, their mean weight 
loss is the lowest of the four shape classes. Spheres, however, are very uncommon in 

these channels and the extremely small sample size renders these inferences at best 

suggestive, and at worst unreliable. Rods, in contrast, seem to be more prone to 
breakage. Indeed, the maximum weight loss for all tracers was 57.2 % and this clast 

was a rod. The next highest weight loss for rods is 13.0 % which implies that breakage 

of clasts is relatively unusual and that corner rounding and edge chipping are more 
likely to account for the weight losses observed. However, one limitation of the 

approach taken is the inability to document and quantify the different weight loss 

mechanisms that may be operating. These mechanisms may include abrasion of clasts 

against bedrock and other sediment in movement, sandblasting by the sand component 

of the suspended or saltating load, edge/corner chipping or even splitting as illustrated 

above. In the light of these data, it is not possible to determine whether abrasion 

processes operating in each channel are different, or operate in different ways. Further 

work based on the techniques used by Brewer et al. (1992) will be required to answer 

these questions. 

Regression and multiple regression have been partially successful in explaining 

percentage weight losses in terms of travel distance, particle shape (Krumbein's 

Sphericity Index) and relative clast size (Di/D50). Multiple regression was able to 

explain 42.5 and 30.6 % of the variation in tracer % weight loss in the Afon Cyff and 

Nant Tanllwyth respectively. This suggests that other factors such as the precise 

geological composition of the clasts are almost certainly important in predicting 

abrasion rates. In regression analysis the least useful predictor was sphericity which 

was not statistically significant in either channel, whereas travel distance and relative 

size (Di/E)50) were both statistically significant (p < 0.01 in the Mon Cyff; p<0.025 in 

the Nant Tanllwyth). 
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The findings of this study suggest that weight losses of natural tracers is likely to be 

more dependent on clast size and travel distance, with clast shape being of secondary 
importance. This contrasts with the "abrasion in place" processes (bed load over- 

passing and sandblasting) monitored in the Tanllwyth channel by Brewer et al. (1992) 

and the "vibratory" processes proposed by Schumm and Stevens (1973). 

These findings may help to explain observed trends in downstream fining and bed 

sediment character of alluvial channels and the production of fines from in-channel 

abrasion processes. They add significantly to a relatively small dataset from which 

natural in-channel abrasion rates may be assessed. Consideration should be given to 

including them as a component in models that attempt to predict downstream changes in 

shape and size as well as the production of fines from abrasion processes. 
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Section 6: Conclusions 
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The conclusions section aims to draw together the thesis by surnmarising the main 
findings, considering what implications these findings have on the future management 
of British upland forests and suggesting directions for further or more intensive study. 

6.1. Summarv of findin2s 

The research in this thesis aimed to determine how, or if, bedload flux in the channel of 
the Nant Tanllwyth would be affected by the harvesting of 20 % of the catchment area's 

plantation tree cover. The project aimed to deterryfine total bedload yield of the Nant 

Tanllwyth and Mon Cyff, as well as establish patterns and relationships in the transport 

of bedload within the two channels. These aims were achieved using bedload trapping 

and tracing in the channels over a period that included the harvesting of the Nant 

Tanllwyth. The study has given rise to the following conclusions. 

e By a visual examination of timber-harvesting operations during Spring 1996, the 

impact of direct forest operations on the liberation of coarse sediment by disturbance 

of catchment slopes was minimal. Ground damage was limited by the use of brash 

matting and new forest-clearance machinery meant little disturbance to either stream 

channels or catchment slopes. Notably, coarse woody debris jams were entirely 

absent from the main channel of the Nant Tanllwyth. Evidence has since emerged 

to suggest that debris accumulations have occurred in tributaries of the main 

channel, in addition there are opportunities for developing vegetation to colonise 

previously light starved areas when under forest canopy. These factors might be 

limiting coarse sediment supply to the Nant Tanllwyth. 

e In the Nant Tanllwyth, using bedload traps to monitor bedload outputs was 

generally successful, as a clear linear relationship was constructed between excess 

flow over discharge thresholds and total bedload outputs. The relationship 

constructed allowed an examination between the pre- and post harvesting phases 

and bedload outputs were proven not to change significantly after harvesting. 

Although the relationship between bedload outputs and stream discharge remained 

stable, yields from the Nant Tanllwyth, both pre- and post-harvesting, were 
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significantly higher than from the Mon Cyff when expressed as total outputs, or 
yields inclusive of catchment area. 

Yields in both catchments have been shown to drop dramatically since the 1970s 
when sediment yields from the Plynlimon catchments were first reported. Notably, 
both Nant Tanllwyth and the Mon Cyff have experienced dramatic decreases in 
bedload yield. This is attributed to an historic dam structure and stabilisation of 
sediment sources under forestry in the Mon Cyff and Nant Tanllwyth respectively. 
It is concluded that using the Mon Cyff as part of a future paired catchment study 
must fully account for the presence of the dam changing the natural sediment regime 
of the channel. 

9 Using tracers to examine bedload. flux in both streams underlined the stochastic 

nature of the travel distances of individual clasts. Good recovery rates were 

obtained due to the size of the channel and techniques used for tracing. Preferential 

transport of smaller clasts did occur in both channels, particularly clearly in the Nant 

Tanllwyth. The influence of clast burial, shape and sphericity in the channels was 

secondary. 

9 In the Nant Tanllwyth, tracer data showed that after the felling period, travel 

distances of clasts increased. This is thought to be independent of any change in 

hydrology as travel distances were made dimensionless using a flow threshold 

index. This increase is particularly difficult to explain but can be partially attributed 

to the stochastic nature of bedload transport in upland reaches and hydrographic 

variables not determined by the type of analysis made. 

e Weight losses of natural tracers is likely to be more dependent on clast size and 

travel distance, with clast shape being of secondary importance. It is not anticipated 

that the amount of abrasion in the channels affects the overall bedload yields of the 

channels and hence this is unlikely to be an important management consideration. 
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Harvesting using ecological harvesting techniques has reduced the short-to-medium 
term effects on coarse outputs of timber commercial harvesting, The implications for 
forest contractors are discussed below. 

6.2. Management implications 

In Spring 1996 the partial felling of the Nant Tanllwyth catchment was expected to 
bring widespread change in the character of both the channel and its bedload outputs 
and transport. Evidence from previous studies worldwide had shown the likelihood of 
loose brashings forming debris jams resulting in severe bank erosion. The proximity of 
forest workers and heavy machinery has also been shown to cause erosion. These 

changes might have manifested themselves on the sediment regime of the Nant 

Tanllwyth as instant and dramatic increases or decreases in total yields. In addition, if 

significant new sediment input had occurred from banks or ditches, the volume of 
incoming sediment might simply have buried tracers in situ and made them unavailable 
for further transport. 

In practice the harvesting of the 20 per cent of the Nant Tanllwyth, even though it was 

directly adjacent to the study reach, did not have a dramatic effect on the sediment flux 

and yield of the channel in the short term. Bedload yields remained stable, most notably 

responding similarly to the flood peaks coming in the post-harvest phase as to those 

peaks pre-harvesting. Bedload tracer movements were increased (but notably not in any 

specific size range) and due to the difficulties in disentangling increased peak flows in 

the post-harvesting period, the validity of these data are difficult to quantify. 

The possible formation of coarse woody debris jams was monitored in the channel and 

catchment during and after harvesting. Although most studies concentrate mainly on 

the removal of naturally occurring debris jams in non-plantation catchments, some work 

for example (Bryant, 1980; Leeks, 1992) has shown how harvesting can promote these 

features with brashings and excess logs. Smith et al. (1993) showed that after 

development and experimental removal of debris jams, sediment transport increased 

along with increased transport energy and bank erosion. The effect was that the 
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stability of the sediment regime was affected in the mediurn term with continuous 
adjustments made to bedforms in the channel. None of these major dams were to be 
found in the Nant Tanllwyth, indeed during the study period, only on one occasion was 
a log found anywhere in the channel. Keller and Swanson (1979) observed a decrease 
in bank stability as flow is deflected against channel banks and greater sediment inputs 
due to debris jams. Keller and Swanson (1979) also note that at peak discharges 
floating debris itself may batter the bank sides and cause erosion. The attempts made 
by the forestry operators in the Nant Tanllwyth to ensure that the channel banks were 
undisturbed proved to be successful, with little or no effect on either the channel or the 
banks themselves. 

Plate 6.0. One machine Harvester processing felled tree, Nant Tanllwyth. 

There is little doubt that the care taken by forest workers, the felling techniques 

employed and the harvesting machinery (Plate 6.0) used had an enormous influence on 

the low impacts of the partial felling on the Nant Tanllwyth catchment. However, 

examination of figure 4.1, where the dashed vertical line shows the felling date, 

highlights the significant period of low flows and rainfall during and immediately 

following the felling period. The methods used in this case would still have caused 

increased erosion under wet conditions where surface soils are more susceptible to 

erosion from machinery and overland flow sources These methods differed from the 
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work undertaken in the Balquhidder catchments where aerial skylines, drags and 
forwarders were used, potentially more erosive methods. 

A summary of harvesting guidelines is given in the Forests & Water Guidelines 
(Forestry Commission, 1993) and the pertinent practical considerations of these are 
given in Table 6.1. 

Table 6.1. Summary of working checklist for harvesting operations (Forestry Commission, 1993) 

" Consider phased felling or reducing the scale of operations. 
" Fell and extract in sensitive areas during dry weather. 
" Protect underground culverts and pipelines. 
" Avoid skidding on soft soils. 
" Choose dry sites for stacking timber well away from watercourses; do not 

block roadside drains. 
" Plan extraction to minimise stream crossings. 
" Use pipes or a log bridge where extraction routes must cross watercourses. 
" Avoid long ground extraction routes on steep ground, especially in high 

rainfall areas. 
" Do not let machines work in streams. 
" Fell trees away from streams. 
" Keep branches and tops out of streams 
" Use brash mats wherever necessary to protect the soil. 

. ......... .... .... ..... .. 

These guidelines were well adhered to in the felling of the Nant Tanllwyth for both 

timber harvesting and extraction. It seems that the acknowledgement of the importance 

of small first-order streams on the sediment regimes of larger rivers, is manifested in 

practical operations. 

This section aims to suggest further improvement to these guideline. Forest operators 

now harvest the area immediately around the channel by hand and remove brashings 

back from the channel. This is shown in Plate 6.1 where the area in the bottom section 

of the photo has recently been harvested. 
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Plate 6.1. Clearfelling has taken place adjacent to the channel banks: nearly all brashings from the 
area around the channel have been removed 

The importance of the timing of this work should not be underestimated. The Forest 

and Water guidelines should include direction on the hydrological and meteorological 

conditions under which work can be undertaken near watercourses. It would be 

impractical to expect foresters to discontinue work at the advent of a rain shower, but 

guidelines for working around watercourses during intense periods of rainfall, or in 

highly saturated conditions could be easily followed. The recommendations would only 

apply in close proximity to watercourses (including forest ditches), where stream and 

ditch banks are susceptible to damage. This recommendation could be built into the 

current document. 

Undertaking this hand felling policy near the channel is in the interest of a forester who 

wishes to maintain the channel in its current state. The removal of brashings and 

careful felling avoids the interference with the medium to long-term sediment dynamics 

by continuous formation and destruction of debris jams. Specific care also needs to be 

taken in the removal of logs in the vicinity of the channel banks. A consequence of the 

partial felling of the catchment combined with the hand felling adjacent to the channel 

was observed approximately 200 m above the experimental section. The harvesting 

area was delimited using the main channel and several of its small tributaries as borders 
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for each section. This led to a neat but exposed 'wall' of trees, which was susceptible to 
wind action. With the shallow root systems of the plantation (particularly around the 
channel where furrows did not appear to have been as deeply ploughed), the trees were 
unable to support themselves and became windblown. This is shown in Plate 6.2 
below. 

Plate 6.2. Wind blown trees on the upper Nant Tanllwyth in July 1999 

The effect of this wind exposure both damaged and uprooted trees. In addition, because 

the interface between the harvested and standing areas was the channel, the bare roots of 

the trees broke up the banks of the main channel. Some of the bases of these uprooted 

trees were in excess of 3 rn in diameter and loosened significant volumes of non- 

cohesive sediment that might be entrained and transported into the channel, particularly 

during high and over-bank flow events. The problem (which did not manifest itself 

immediately) could be solved by ensuring watercourses were not used to delimit the 

partial clearfelling areas. If for management reasons this was impossible, it would be 

appropriate to leave a small standing (but significant) buffer of trees on both sides of the 

channel so that the entire stream area was protected from wind blown trees. 

Alternatively, protection could be built into the harvesting programme by felling a 
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buffer on both sides of the channel, so that the wind blow would occur far enough from 

the watercourse that exposed roots would not damage the channel and banks. 

Undertaking techniques for minimising the impacts of harvesting, such as hand felling 

next to watercourses and laying down matting for heavy machinery has significantly 

reduced erosion to both the channel itself and the surrounding slopes. The advent of the 

one machine harvester, used for economic rather than environmental reasons, has in 

itself brought benefit to the environment of the catchment. Work is undertaken at a 

much faster rate than before and fewer heavy machine hours are required in the 

catchment. Machinery to transport the logs can move easily over the felled area of the 

catchment, as brashings are well ordered and sorted into matting and the tops of stumps 

are cut low and evenly. This means that fewer new forest roads are required, roads that 

have proven to be significant sediment sources in previous studies (Painter et al., 1974; 

Ferguson and Stott, 1987). 

It is important to note that selective transport of small clasts does occur in the Nant 

Tanllwyth; if the change in catchment land-use results in an input of small grained 

sediment in the medium to long term, then this fraction would be preferentially and 

efficiently transported. It is therefore important to ensure that sediment sources of small 

bedload are minimised in all future harvesting operations. 

Future forest practice 

The net effect of undertaking ecological harvesting has been that enormous efforts have 

been made to prevent damage to the small first order watercourses such as the Nant 

Tanllwyth. The concentration on these watercourses has possibly been to the detriment 

of the network of small ditches and sub-tributaries of the stream (some of which are 

ephemeral in their discharge) which nevertheless make a valuable contribution to peak 

flows and sediment inputs into the channel. Evidence for this has been shown by the 

subsequent examination of two such tributaries running into the Nant Tanllwyth, one on 

the clearfelled side and one that remains forested. This is shown in Plate 5.6. 
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Plate 6.3. Tree brashings and lops in a small ephemeral sub channel of the Nant Tanllwyth, 
October 1997. 

A large volume of organic material (including branches and brashings up to 70 mrn in 

diameter and 2m in length have either clogged the channel, or have completely covered 
it over. Preliminary tracking of tracer clasts in these two streams (Stott, in prep) 

suggests that travel distances are in excess of 5 times higher in the sub-tributary 

remaining forested and that the limitations of transport in the clearfelled area are 

physical dams rather than stream power. The author believes that during periods of 
high precipitation, or rapid run off after snowmelt, the inability of these ditches to 

provide stable water courses could lead to the development of erosive overland flow and 

soil erosion in the main catchment of the Nant Tanllwyth. The possible benefits of log 

jams are discussed in Maitland et al. (1990) and seems to be with reference to when 

large volumes of sediment are liberated in poor working conditions. With the use of 

new guidelines seemingly halting the seriously destructive practices seen in the past, 

more care might now be appropriate in avoiding formation of logjams in small sub- 

tributaries. 
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6.3. Further Work 

This work highlights the possibility of using a combination of techniques in two 
catchments to study the effects of timber harvesting on bedload transport in upland 
streams. It has, inevitably, highlighted weaknesses in approach and given rise to areas 
worthy of further research. 

A limitation of any study involving a short time-period is the ability to quantify 

conditions before and after land use change to be able to disentangle the affects of the 
land use change itself. The study successfully quantifies the pattern in total bedload 

outputs using bedload traps, but unfortunately, it is believed that the bedload traps have 

a recording lag time too great to properly monitor the effects of land use change. A 

calculation of this lag (possibly by using tracers) and a longer study period might make 
bedload traps even more useful in monitoring the effects of harvesting. 

The break up of the dam within the Mon Cyff is highlighted as being an important issue 

controlling sediment transfer in the channel. Unfortunately, despite significant efforts 

to obtain further detailed information on dates or circumstances of the dam break, it 

proved difficult to obtain concrete data. Further detailed historical accounts or 

sedimentary records of the channel would provide increased evidence for theories 

behind reduced sediment transfer in the Mon Cyff. 

Photographic analysis of bed size distributions did not produce results anticipated and 

limits of resources made emptying traps at every visit impossible. The study therefore 

would have benefited from more reliable source of bedload grain size distributions for 

analysis. The possible improvements in bed photography were discussed in section 3.3, 

but a more successful ground truthing method, perhaps analysing individual clasts, is 

essential for using this method in future study. If resources allowed, excavations and 

sieving of a large sample of bedload trap material would also be beneficial. The 

samples would still need to be made using heavy plant for excavation and would still 

experience the wash through of fine sediment during passage through the deep water of 

the trap. However, a large sample would still be able to provide good data for each of 
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the study periods and represent the actual transport of sediment through the reach during 
the period. 

A better explanation of the increase in travel distances of tracers post-harvesting is 

required; it is thought that this explanation might be related to the size distributions of 
the bed. One of the major weaknesses of this study has been the inability to accurately 
monitor size distributions through the duration of fieldwork. Almost all of the methods 
considered were simply too destructive and would alter the transport mechanics that 
themselves were being examined. One possible solution would be a regular excavation 
and sieving of the end of channel bedload traps. As discussed previously, visual 

evidence from the Nant Tanllwyth suggested that a limited amount of sediment was 
released into the channel and material that was released would be unlikely to constitute 
bedload. 

The use of a more advanced tracing technique is also more likely to better represent the 

real conditions of entrainment in both channels. It seems unlikely that the analysis 

showing that tracer burial depth had no influence on travel distance is not partially 
influenced by the excavation and attempted reburial of tracer clasts during searches. The 

destruction of the sediment matrix surrounding the tracer is unavoidable. Research 

using passive tracers with unique ID codes seeded in ditches of the Nant Tanllwyth is 

currently being undertaken (Stott, in prep). The development of this experiment, and 

any others associated with the brashings in the ephemeral tributaries of the Nant 

Tanllwyth, is an area that requires further research. 

The influence of the release of sediment from the dam in the Mon Cyff is of significant 

interest to further investigation and future trapping and tracing study could examine the 

mechanics of bedload removal from large areas of deposited bedload after dam failure 

or mining deposits. Tracing would be particularly appropriate as there would be no 

requirement for tracers to be carefully seeded as the work would monitor one large 

shoal or sheet moving through the channel system. The changes in yields over time and 

with very large flood events might give estimates of the quantity of sediment a 

particular channel could absorb. 
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What still remains to be determined by future field observation is the proportion of time 

clasts spend undergoing "abrasion in place" processes (bed load over-passing, 

sandblasting and vibratory processes) compared to abrasion resulting from attrition 

(corner rounding, edge chipping and splitting) as clasts bounce or saltate during 

transport. Active (radio) tracer techniques as used by Schmidt and Ergenzinger (1992) 

during flood events may offer another means of isolating and determining the relative 

importance of these two sets of abrasion processes. However, techniques which rely on 

drilling clasts to insert magnets (as in this study), iron rods (Reid et al., 1984) or radio 

tags inevitably will affect the strength of clasts and may render them more prone to 

breakage or splitting. 

The long-term effects of the new harvesting techniques are now to be investigated with 

respect to bedload yields. With the long term cycle of the forest rotation, attention 

should inevitably consider the possible improvements to the second stage of the forest 

rotation, which has in the past had such dramatic effect on bedload yields. These results 

will most likely be derived from catchments with long-term sediment records, such as 

those at Plynlimon, a catchment with the longest detailed sediment record in the world. 

It would be short-sighted to neglect the value of such a record - which in turn provides a 

valuable future resource, for the sake of cost cutting in the short term. 

177 



Section 7: References 

178 



Adams, J. (1978) Data for New Zealand pebble abrasion studies. New Zealand 
Journal of Science 21,607-610. 

Adams, J. ( 1979) Gravel size analysis from photographs. Joumal q the Hydraulics ýf 
Division, Proceedings of the American Society of Civil Engineers, 105,1247- 

1255. 

Andrews, ED and Smith, J. D. (1992) A theoretical model for calculating marginal 
bedload transport rates of gravel. In: P. Billi, R. D. Hey, CR. Thome & P. 

Tacconi (eds) Dynamics oj'Gravel Bed Rivers. John Wiley & Sons Ltd., 

Chichester. 41-54. 

Arkell, B. P. (1985) Magnetic tracing of fluvial sediments. A study with special 

emphasis on gravel bed rivers. PhD thesis, Uiiiversity of Liverpool. 

Arkell, B., Leeks, G., Newson, M. and Oldfield, F. (1983) Trapping and tracing: 

some recent observations of supply and transport of coarse sediment from 

upland Wales. In: J. D. Collinson and J. Lewin (eds) Modem and Ancient - 
fluvial Systems. Blackwell Scientific Publications., Oxford. 107-119. 

Armanini, A. (1992) Variation of bed and sediment load mean diameters due to 

erosion and deposition processes. In: P. Billi, R. D. Hey, CR. Thome & P. 

Tacconi (eds) Dynamics of Gravel Bed Rivers. John Wiley & Sons Ltd., 

Chichester. 351-362. 

Ashworth, PJ and Ferguson, R. 1. (1989) Size selective entrainment of bedload in 

gravel bed streams. Water Resources Research 25,62 7-634. 

Ashworth, P. J., Ferguson, R. I., Ashmore, P. E., Paola, C. and Powell, D. M. (1992) 

Measurements in braided river chute and Lobe. 2. Sorting of bed-load 

during entrainment, transport and deposition. Water Resources Research, 

28,1887-1896 

179 



Assani, A. A. and Petit, F. (1995) Log-jam effects on bed mobility from experiments 
conducted in a small gravel-bed forest ditch. Catena 25,117-126. 

Bagnold, R. A. (1980) An empirical correlation of bedload transport rates in flumes 

and natural rivers. Proceedings of the Royal Society (London), Ser. A, 372, 
453-473. 

Baker V. R. and Ritter D. F. (1975) Competence of rivers to transport coarse bedload 

material. Bulletin of the Geological Society of Anierica, 86,975-978. 

Bellamy, K. (1992) River morphology, sediments and fish habitats. Erosion and 

sediment Transport Monitoring Programmes in River Basins (Proceedings of 

the Oslo Symposium, August 1992). International Association of Hydrological 

Sciences Publ. no. 210. 

Bennett, S. J. and Bridge, J. S. (1995) An experimental study of flow, bedload 

transport and bed topography under conditions of erosion and deposition 

and comparison with theoretical models. Sedimentology, 42,117-146. 

Bigelow, G. E. (1984) Simulation of pebble abrasion on coastal beaches by 

transgressive waves. Earth Surface Processes and Landforms 9,383-390. 

B i1by, R. E. (1984) Removal of woody debris may affect stream channel stability. 

Journal of Forestry 85,609-613. 

B i1h, P. (1986) Sediment storage, bed fabric and particles features of two mountain 

streams at Plynlimon (mid-Wales). Institute of Hydrology report no. 97. 

Binns, W. O. (1979) The Hydrological effects of afforestation in Great Britain In: G. 

E. Hollis (ed). Man's imPact on the hydrological cycle in the United Kingdom, 

Geo Abstracts Ltd, Norwich. 55- 71. 

180 



Binns, W. 0 (1986) Forestry and fresh waters: problems and remedies. In: J. F de 
L. G. Solbe (ed). Effects of Land use on Fresh Waters, Ellis Horwood, 
Chichester. 364-377. 

Blackie, J. R. and Newson, M. D (1986) The effects of forestry on the quantity and 
quality of runoff in upland Britain. In: JF de L. G. Solbe (ed). Effects of 
Land use on Fresh Waters, Ellis Horwood, Chichester. 398-412. 

Bonnet, P. J. P., Leeks, G. J. L., and Cambray, R. S. (1989) Transport processes for 
Chernobyl-labelled sediments; preliminary evidence from upland mid- 
Wales. Land Degradation and Rehabilitation. 1,39-50. 

Bosch, J. M. and Hewlett, J. D. (1982) A review of catchment experiments to 
determine the effect of vegetation changes on water yield and 

evapotranspiration. Joumal of Hydrology, 55,3-23. 

Bradley, W. C. (1970) Effect of weathering on abrasion of granitic gravel, Colorado 

River (Texas). Bulletin of the Geological Society of America, 81,61-80. 

Bradley, W. C., Fahnestock, R. K. and Rowekarnp, E. T. (1972) Coarse sediment 

transport by flood flows on Knick River, Alaska. Bulletin of the Geological 

Society of America 83,1261-1284. 

Brayshaw, A. C., Frostick, L. E. and Reid, 1. (1983) The hydrodynamics of particle 

clusters and sediment entrainment in coarse alluvial channels. 

Sedimentology, 30,137-143. 

Brewer, P. A., Leeks, G. J. L., and Lewin, J. (1992) Direct measurement of in-channel 

abrasion processes. In: Bogen, J. Walling, D. and Day, TI (eds. ) Erosion and 

sediment transport monitoring programmes in river basins. International 

Association of Hydrological Sciences Publication 210,21-30. 

181 



Bridge, J. S. and Bennet, S. J. (1992) A model for the entrainment and transport of 
sediment grains of mixed sizes, shapes, and densities. Water Resources 
Research, 28,337-363. 

Briggs, D. (1977) Sediments. Butterworths, London. 

Bryant, M. D. (1980) Evolution of large organic debris after timber harvest: 
Maybeso Creek, 1949 to 1978. United States Department o Agriculture Forest ýf 
Service General Technical Report PNW-101. Pacýfic Northwest Forest and 
Range Experimental Station, Portland, Oregon. 

Bryant, M. D. (1985) Changes 30 years after logging in large woody debris and its 

use by salmonids. In: Johnson, R. R., Ziebell, C. D., Paton, D. R., F(olloitt, P. 
F. and Hamre, R. H. (eds). Ecosystems and their Management: Reconciling 

Conflicting Uses. United States Department Agriculture, Forest Service 

General Technical Report, RM-120,329-334. 

Bugosh, N. and Custer, S. G. (1989) The effect of a logjam burst on bedload 

transport and channel characteristics in a headwater stream. In: Woessner, 

W. W. and Potts, D. F (eds). Proceedings of the Symposium on Headwater 
T T- 

hydrology. Missoula, MT, USA. 203-212. 

Bunte, K. (1992) Particle number grain-size composition of bedload in a mountain 

stream. In: P. Billi, R. D. Hey, CR. Thome & P. Tacconi (eds) Dynamics of 

Gravel Bed Rivers. John Wiley &Sons Ltd., Chichester. 55- 72. 

Bunte, K and Ergenzinger, P. (1989) New tracer techniques for particles in gravel 

bed rivers. Bulletin de la Societe Geographique de Leige, 25,85-90. 

Burt, T. P., Donahoe, M. A. and Vann, A. R. (1983) The effect of forestry drainage 

operations on upland sediment yields: the results of a storm based study. 

Earth Surface Processes and Landforms 8,339-346. 

182 



Calder, I. R. (1986) The influence of land use on water yield in upland areas of the 
U. K.. Joumal oj'Hydrology 88,201-211. 

Carling, P. A. (1988) The concept of dominant discharge applied to two gravel bed 

streams in relation to channel stability thresholds. Earth Surface Processes 

and Landforms, 13,355-367. 

Carling, P. A. (1989) Bedload transport in two gravel bedded streams. Earth Surface 
Processes and Landforms 14,2 7-39. 

Carling, P. A. and Orr, H. (1990) Response of benthic macroinverteb rates and 
salmonid fish in a Scottish stream to pre-afforestation drainage. 

Unpublished Report to the Atlantic Salmon Trust. 

Carling, P. A., Kelsey, A. and Glaister, M. S. (1992) Effect of bed roughness, particle 

shape and orientation on initial motion criteria. In: P. Billi, R. D. Hey, C. R. 

Thorne & P. Tacconi (eds) Dynamics of Gravel Bed Rivers. John Wiley & Sons 

Ltd., Chichester. 23-40. 

Carling, P. A., Williams, J. J., Kelsey, A., Glaister, M. S. and Orr, H. G. (1998) Coarse 

bedload transport in a mountain river. Earth Surface Processes and 
Landfonns, 23,141-157. 

Church, M. A. and Hassan, M. A. (1992) Size and distance of travel of unconstrained 

clasts on a streambed. Water Resources Research 28,299-303. 

Church, M. A., McLean, D. G. and Wolcott, J. F. (1987) River bed gravels: Sampling 

and analysis. In: CR. Thorne, IC Bathurst and R. D. Hey (eds). Sediment 

Transport in Gravel Bed Rivers. John Wiley and Sons, Chichester. 

Church, M. A., Wolcott, J. F. and Fletcher, K. W. (1991) A test of equal mobility in 

fluvial sediment transport: behaviour of the sand fraction. Water Resources 

Research 27,2941-2951. 

183 



Clancy, J. (1991) Site surveying and levelling. Edward Arnold, London. 

Clarke, R. T. and McCulloch, J. S. G. (1979) The effect of land use on the hydrology of 
small upland catchments. In Hollis, G. E. (ed) Mans impact on the 
hydrological cycle in the United Kingdom. Geo Abstracts Ltd, Norwich. 

Crisp, D. T., Cubby, P. R. and Robson, S- (1980) A survey of fish populations in the 

streams of the Plynlimon experimental catchments. Freshwater Biological 
Association, Teesdale Unit. 

Cuthbertson, R. H. (1948) The present case for the afforestation of gathering 

grounds. Journal of the Institution of Water Engineers and Scientists, 2,284- 

292. 

Daubree, A. (1879) Etudes Synthetiques de Geologie Experimentale, 2 Volumes 

Dunod, Paris. 

Davis, R. J. and Gregory, K. J. (1994) A new distinct mechanism of river bank 

erosion in a forested catchment. Joumal q Hydrology, 157,1-11. ýf 

Dietrich, W. E., Dunne, T., Humphrey, N. F. and Reid, L. M. (1982) Construction of 

sediment budgets for drainage basins In: F. J Swanson, R. J. Janda, T. 

Dunne and D. N. Swanson (eds), Sediment budgets and routing inforested 

drainage basins. United States Department Agriculture Forest Service Publ. 

PNW-141,5-23. 

Drew, I. B. (1992) Bedload transport, vertical exchange and sediment storage in two 

Scottish Highland gravel-bed streams. PhD thesis, St Andrews University. 

Duck, R. W. and McManus, J. (1987) Sediment yields in lowland Scotland derived 

from reservoir surveys. Transactions of the Royal Society of Edinburgh: Earth 

Sciences, 78,369-377. 

184 



Einstein, H. A. (1937) Bedload transport as a probability problem. Ph. D Thesis. 
Published as Appendix C in Sedimentation, Shen, H. W. (ed) Colorado State 
University, Fort Collins, Colorado, USA. 

Einstein, H. A. (1950) The bedload function for sediment transport in open channel 
flow. United States Department Agriculture Technical Bulletin, 1026. 

Ergenzinger, P. (1985) Electromagnetic devices for measuring bedload transport. 

Sedimentology 32,159. 

Ergenzinger, P. and Conrady, J. (1982) A new tracer technique for measuring 
bedload in natural channels. Catena 9,77-80. 

Ergenzinger, P., Schmidt, K-H. and Busskamp, R. (1989) The pebble transmitter 

system (PETS): first results of a technique for studying coarse material 

erosion, transport and deposition. Zeitschri ffir Geomorphologie, 33,503- ft 

508. 

Fenton, J. and Abbott, J. E. (1977) Initial movement of grains on a stream bed; the 

effect of relative protrusion. Proceedings of the Royal Society of London, 

Series A, 352,523-537. 

Ferguson, R., Hoey, T., Wathen, S. and Werritty, A. (1996) Field evidence for rapid 

downstream fining of river gravels through selective transport. Geology 24, 

179-182. 

Ferguson, R. I. (1994) Critical discharge for entrainment of poorly sorted gravel. 

Earth Surface Processes and Landforms, 19,179-186 

Ferguson, R. I. and Stott, T. A. (1987) Forestry effects on suspended sediment and 

bedload yields in the Balquhidder catchments, Central Scotland. 

Transactions of the Royal Society of Edinburgh: Earth Sciences, 78,379-384. 

185 



Ferguson, R. I., and Wathen, S. J. (1998) Tracer-pebble movement along a concave 
river profile: virtual velocity in relation to grain size and shear stress. 
Water Resources Research, 134,2031-2038. 

Ferguson, R. I., Grieve, I. C. and Harrison, D. J. (1991) Disentangling land use effects 
on sediment yield from year to year climatic variation. Sediment and Stream 
Water Quality in a Changing Environment: Trends and Explanation 
(Proceedings of the Vienna Symposium, August 1991), International Association 

oj'Hydrological Sciences Publication 203,13-20. 

Ferguson, R. I., Stott, T. A. and Johnson, R. C. (1987) Forestry and sediment yields in 

upland Scotland In: Erosion and Sedimentation in the Pacific Rim (Ed. by 

Beschta et al. ), International Association Hydrological Science publ. 165,499- 

500 (abstract). Poster presented at the above 1AHS/IUFRO International 

Symposium on Erosion and Deposition in Forested Steeplands, Oregon State 

University, Corvallis, Oregon, USA, Aug. 1987. 

Forestry Conunission (1993) Forests and Water Guidelines HMSO, London. 

Fredriksen, R. L. (1970) Erosion and sedimentation following road construction and 

timber harvest on unstable soils in three small western Oregon watersheds. 

United States Department of Agriculture Forest Service Research Paper PNW- 

104, Pacific NW Forest and Range Experimental Station, Portland, Oregon. 

Froehlich, W. and Starkel, L. (1987) Normal and extreme monsoon rains-their role 

in shaping the Darjeeling Himalaya. Studia Geomorphologica Carpotha- 

Balcanica, 23,105-12. 

Froehlich, W. and Starkel, L. (1993) The effects of deforestation on slope and 

channel evolution in the tectonically active Darjeeling Himalaya. Earth 

Surface Processes and Landforms 18,285-290. 

186 



Frostick, L. E., Lucas, P. M. and Reid, 1. (1984) The infiltration of fine matrices into 

coarse-grained alluvial sediments and its implications for stratigraphical 
interpretation. Journal of the Geological Society of London 141,955-965. 

Gilbert, G. K. (1917) Hydraulic-mining debris in the Sierra Nevada. United States 

Geological Survey Professional Paper 105. 

Gilvear, D. J. and Harrison, D. J. (1991) Channel change and the significance of 
floodplain stratigraphy: 1990 flood event, lower River Tay, Scotland. Earth 

Surface Processes and Landforms, Vol. 16,753-76 1. 

Gintz, D and Schmidt, K. -H. (1991) Grobgeschiebetransport in einem Gebirgsbach 

als Funktion von Gerinnebettform und Geschiebemorphometrie. Zeitschrift 

für Geomorphologie, Suppl. Bd. 89, Berlin, Stuttgart. 71-78. 

Gomez, B. and Church, M. (1989) An assessment of bedload sediment transport 

formulae for gravel-bed rivers. Water Resources Research, 25,1161-1186. 

Gomez, B. (1983) Temporal variation in bedload transport rates: the effect of 

progressive bed armouring. Earth Surface Processes and Landforms, 8,41- 

54. 

Gomez, B. (199 1) Bedload transport. Earth Science Reviews, 31,89-132. 

Gomez, B. (1994) Effects of particle-shape and mobility on stable armour 

development. Water Resources Research, 30,2229-2239. 

Grant, G. E. and Wolff, A. L. (199 1) Long-term patterns of sediment transport after 

timber harvest, Western Cascade Mountains, Oregon, USA. In: Sediment 

and Stream Water Quality in a Changing Environment: Trends and Explanation 

(Proceedings of the Vienna Symposium, August 1991), International Association 

of HYdrological Sciences Publication 203,31-40. 

187 



Harriman, R. and Morrison, B. R. S. (1982) Ecology of streams draining forested and 
non-forested catchments in an area of central Scotland subject to acid 
precipitation. Hydrobiologia 88,251-263. 

Harris, D. D. (1973) Hydrologic changes after clearcut logging in a small Oregon 

coastal watershed. Journal Resources. United States Geological Survey, 1, 
487-491. 

Harvey, A. M. (1987) Sediment supply to upland streams: Influence on channel 
adjustment. In: C. R. Thorne, J C. Bathurst and R. D. Hey (eds). Sediment 

Transport in Gravel Bed Rivers. John Wiley and Sons, Chichester, 121-150. 

Harvey, A. M. (199 1) The influence of sediment supply on the channel morphology 

of upland streams: Howgill Fells, Northwest England. Earth Surface 

Processes and Landfonns 16,675-684. 

Hassan, M. A. (1990) Scour, fill, and burial depth of coarse material in gravel bed 

streams. Earth Surface Processes and Landforms 15,341-356. 

Hassan, M. A. and Church, M. (1992) The movement of individual grains on the 

streambed. In: P. Billi, R. D. Hey, C. R. Thorne & P. Tacconi (eds) Dynamics of 

Gravel Bed Rivers. John Wiley & Sons Ltd., London. 159-176. 

Hassan, M. A., Church, M. and Ashworth, P. J. (1992) Virtual rate and mean distance 

of travel of individual clasts in gravel-bed channels. Earth Surface Processes 

and Landfo rms 17,617- 62 7. 

Hassan, M. A., Church, M. and Schick, A. P. (1991) Distance of movement of coarse 

particles in gravel bed streams. Water Resources Research 2 7,503-511. 

Hassan, M. A., Schick, A. P. and Laronne, J. B. (1984) The recovery of flood- 

dispersed coarse sediment particles -a three-dimensional magnetic tracing 

method. In: Schick, A. P. (ed) Channel Processes: Water, Sediment, Catchment 

Controls. Catena Supplement 5,153-162. 

188 



Haupt, HT and Kidd, W. J. (1965) Good logging practices reduce sedimentation in 
central Idaho. Joumal of Forestry, 63,664-670. 

Hedin, L. O., Mayer, M. S. and Likens, G. E. (1988) The effect of deforestation on 
organic debris dams. Verh. Intemat. Verein. Limnol. 23,1135-1141. 

Hibbert, A. R. (1967) Forest treatment effects on water yield. In: W. E. Sopper and 
H. W. Lull (eds). International Symposium on Forest Hydrology, Pergamon, 

Oxford. 813. 

Hoey, T. (1992) Temporal variations in bedload transport rates and sediment 

storage in gravel-bed rivers. Progress in Physical Geography, 16,319-338. 

Hubbell, D. W. and Sayre, W. W. (1964) Sand transport studies with radioactive 
tracers. Proceedings of the American Society of Civil Engineers. Journal of 
Hydraulics Division, 90,39-68. 

Huddart, D. (1994) Rock-type controls on downstream changes in clast parameters 

in sandur systems in Southeast Iceland. Journal q Sedimentary Research, 64, )f 

215-225. 

Johnson, R. C. (1990) The interception, throughfall and stenfflow in a forest in 

Highland Scotland and comparison with other upland forests in the U. K.. 

Journal o Hydrology 118,281-287. ýf 

Johnson, R. C. (199 1) Effects of upland afforestation on water resources: the 

Balquhidder experiment 1981-1991. Institute qf Hydrology report No. 16. 

Johnson, R. C. (1993) Effects of forestry on suspended solids and bedload yields in 

the Balquhidder catchments. Journal of Hydrology 145,403-417. 

Keller, E. A. and Swanson, F. J. (1979) Effects of large organic material on channel 

form and fluvial processes. Earth Surface Processes 4,361-380. 

189 



Kirby, C., Newson, M. D. and Gilman, K. (1991) Plyfflimon research: The first two 
decades. Institute of Hydrology Report 109. 

Knighton, A. D. (1980) Longitudinal changes in size and sorting of streambed 
material in four English rivers. Bulletin of the Geological Society of America, 
Part 1,91,55-62. 

Komar, P. D. and Carling, P. A. (199 1) Grain sorting in gravel-bed streams and the 
choice of particle sizes for flow-competence evaluations. Sedimentology, 38, 
489-502. 

Komar, P. D. and Shih, S-M. (1992) Equal mobility versus changing bedload grain 
sizes in gravel bed streams. In: P. Billi, R. D. Hey, CR. Thome & P. Tacconi 
(eds) Dynamics of Gravel Bed Rivers. John Wiley & Sons Ltd., Chichester, 73- 
108. 

Krumbein W. C. (1942) Settling velocity and flume behaviour of non-spherical 

particles. Transactions of the American Geophysical Union, 23,621-632. 

Kuenen, PH. H. (1956) Experimental abrasion of pebbles: 2. Rolling by current. 
Joumal of Geology 64,336-368. 

KuhnIe, R. A. (1992) Bedload transport during rising and falling stages on two small 

streams. Earth Surface Processes and Landfornis 17,191-197. 

KuhnIe, R. A. (1993) Fluvial Transport of sand and gravel mixtures with bimodal 

size distributions. Sedimentary Geology, 85,17-24. 

KuhnIe, R. A. and Southard, J. B (1988) Bed-load transport fluctuations in a gravel 

bed laboratory channel. Water Resources Research, 24,247-260. 

190 



Laronne, J. B and Duncan, M. J. (1992) Bedload transport paths and gravel bar 
formation. In: P. Billi, R. D. Hey, C. R. Thome & P. Tacconi (eds) Dynamics of 
Gravel Bed Rivers. John Wiley & Sons Ltd., Chichester, 107-204. 

Law, F. (1956) The effect of afforestation upon the yield of water catchment areas 
Journal of the British Waterworks Association 38,484-494. 

Leeder (1983) On the interactions between turbulent flow, sediment transport and 
bedform mechanics in channelized flows. In: JD. Collinson and J. Lewin 
(eds). Modem and Ancient Fluvial Systems, Blackwell Scientific Publications., 
Oxford. 121-132. 

Leeks, G. J. L. (1992) Impact of plantation forestry on sediment transport processes. 
In: P. Billi, R. D. Hey, CR. Thorne & P. Tacconi (eds) Dynamics of Gravel Bed 
Rivers. John Wiley & Sons Ltd., Chichester, 651-670. 

Leeks, G. J. L. and Roberts, G. (1987) The effects of forestry on upland streams - with 

special reference to water quality and sediment transport. In: Good, J. E. G. 

and Institute of Terrestrial Ecology (eds) Environmental aspects of plantation 
forestry in Wales, 9-24. 

Leeks, G. J. L, Lewin, J. and Newson, M. D. (1988) Channel change, fluvial 

geomorphology and river engineering: The case of the Mon Trannon, mid- 

Wales. Earth Surface Processes and Landforms 13,207-223. 

Leopold, L. B., Wolman, M. G. and Miller, J. P. (1964) Fluvial processes in 

geomorphology. W. H. Freeman & Co., San Francisco. 

Lewis, A. B. and Neustein, S. A. (197 1) A preliminary study of soil erosion following 

clearfelling. Scottish Forestry 25,121-125. 

Lisle, T. E. and Lewis, J. (1992) Effects of sediment transport on survival of 

salmonid embryos in a natural stream: a simulation approach. Canadian 

Journal of Fisheries and Aquatic Sciences, 49,233 7-2344. 

191 



Lovell, J. P. B., Ledger, D. C., Davies, 1. M. and Tipper, J. C. (1973) Rate of 

sedimentation in the North Esk reservoir, Midlothian. Scottish Joumal of 
Geology 9,57-61. 

Mackin, J. H. (1963) Rational and empirical methods of investigation in Geology. In: 

C. C. Jr. Albritton (ed). Philosophy of Geohistory 1875-1970. Benchmark 

papers in Geology, 13,135-163. 

Maitland, P. S., Newson, M. D. and Best, G. A. (1990) The impact of afforestation and 
forestry practice on freshwater habitats. Focus on Nature Conservation Rep. 

23, Nature Conservancy Council, Peterborough. 

Marks, S. D. (1996) The impacts of particulate outputs associated with timber 

harvesting. Unpublished interim report, Institute of Hydrology, P21465115. 

Marshall, P. (1927) The wearing of beach gravels. Transactions and Proceedings, 

New Zealand Institute, 58,507-532. 

Megahan, W. F. (1982) Channel sediment storage behind obstructions in forested 

drainage basins draining the granitic bedrock of the Idaho Batholith. In: 

F. J. Swanson, R. J. Janda, T Dunne and D. N. Swanson (eds) Sediment 

budgets and routing inforested drainage basins United States Department of 

Agriculture Forest Service Publ., PNW-141,114-121, Portland, OR. 114-121. 

Milhous, R. T. and Kfingeman, P. C. (1973) Sediment transport systems in a gravel 

bottomed stream. In. Hydraulic engineering and environment, Proceedings of 

the 21'vt Annual hydraulics Division speciality coiýference, American Society of 

Civil Engineers. Bozeman, Montana. 293-303. 

Mills, D. H (1979) Downstream fining of pebbles -a quantitative review. Joumal of 

Sedimentary Petrology, 49,1,295-302. 

192 



Mills, D. H. (1980) The management of forest streams. Forestry Commission Leaflet, 

78, HMSO, London. 

Moffat, A. J. (1988) Forestry and soil erosion in Britain -a review. Soil use and 
Management, 4,41-44. 

Moog, D. B. and Whiting, P. J. (1998) Annual hysteresis in bed load rating curves. 
Water Resources Research, 34,2393-2399. 

Moore, R. J. and Newson, M. D. (1986) Production, storage and output of coarse 

upland sediments: natural and artificial influences as revealed by research 

catchment studies. Journal of the Geological Society of London, 143,1-6 

Nanson, G. C. (1974) Bedload and suspended-load transport in a small steep 

mountain stream. American Journal of Science 274,471-486 

Newson, M. D. (1975) Plynlimon floods of August 5th/6th, 1973. Institute of 

Hydrology Report No. 26. 

Newson, M. D. (1976) The physiography, deposits and vegetation of the Plynlimon 

experimental catchments. Institute of Hydrology Report No. 30. 

Newson, M. D. (1980a) The erosion of drainage ditches and its effect on bedload 

yields in mid-Wales: Reconnaissance case studies. Earth Surface Processes 

5,275-290. 

Newson, M. D. (1980b) The geomorphological effectiveness of floods- a contribution 

stimulated by two recent events in mid-Wales. Earth Surftice Processes, 5,1- 

16. 

Newson, M. D. and Calder, I. R. (1980) The effects of afforestation on water resources 

in Scotland. In: Thomas M. F. and Coppock, IT (eds) Land assessment in 

Scotland. Aberdeen University Press. 

193 



Newson, M. D. and Harrison, J. G. (1978) Channel studies in the Plynlimon 

experimental catchments. Institute of Hydrology Report No. 47. 

Newson, M. D. and Leeks, G. J. H. (1987) Transport processes at the regional scale: 
a regional study of increasing sediment yield and its effects in mid-Wales, 
U. K. In: CR. Thorne, J. C. Bathurst and R. D. Hey (eds). Sediment Transport 
in Gravel Bed Rivers. John Wiley and Sons, Chichester. 187-224. 

Nicholas, AT, Ashworth PJ, Kirkby, M. J., Macklin, M. G., and Murray, T. (1995) 

Sediment slugs - large-scale fluctuations in fluvial sediment transport rates 

and storage volumes. Progress in Physical Geography, 19,500-519. 

O'Loughlin, C. L., Rowe, L. K. and Pearce, A. J. (1978) Sediment yields from small 
forested catchments, north Westland, Nelson, New Zealand. Joumal of 
Hydrology (NZ), 17,1-15. 

O'Loughlin, C. L., Rowe, L. K. and Pearce, A. J. (1980) Sediment yield and water 

quality responses to clearfelling of evergreen mixed forests in western New 

Zealand. In: The influence of man on the Hydrological Regime with Special 

Reference to Representative and Experimental Basins Symposium, International 

Association of Hydrological Sciences Publication 130,285-293. 

Omero d, S. J. and Edw ards ( 19 8 5) S tream acidity in some areas of Wales in relation 

to historical trends in afforestation and the usage of agricultural limestone. 

Journal of Environmental Management, 20,189-197. 

Ornerod, S. J. Tyler, S. J. and Lewis, M. J. S. (1987) The influence of forest on aquatic 

fauna. In: Good, J. E. G. (ed) Environmental aspects of plantation forestry in 

Wales. Institute of Terrestrial Ecology, Grange - ove r-Sands. ITE symposium 

22,37-49. 

194 



Painter, R. B., Blyth, K., Mosedale, J. C. and Kelly, A (1974) The effect of 
afforestation on erosion processes and sediment yield. In: Effects of Man on 
the Interface of the Hydrological Cycle with the Physical Environment. 
Proceedings of the Paris Symposium, Sept. 1974, International Association of 
4ydrological Sciences Publication 113,62-67. 

Paola, C. and Seal, R. (1995) Grain size patchiness as a cause of selective deposition 

and downstream fining. Water Resources Research, 31,1395-1407. 

Parker, G. (1990) Surface-based bedload transport relation for gravel river. 
Journal of Hydraulic Research, 28,417-436 

Parker, G. and Klingernan, P. C. (1982) On why gravel bed streams are paved. Water 
Resources Research, 18,1409-1423. 

Parker, G. and Sutherland, A. J. (1990) Fluvial Armour. Journal Qf Hydraulic 

Research, 1990,28,529-544. 

Parker, G., Klingeman, P. C. and McLean, D. G. (1982) Bedload and size distribution 

in paved gravel bed streams. Journal of the Hydraulics Division. ASCE, Vol. 

108, HY4,544-571. 

Petts, G. E. (1988) Accumulation of fine sediment within substrate gravels along two 

regulated rivers, UK. Regulated Rivers: Research and Management, 2,141- 

153. 

Petts, G. E. Thoms, M. C., Brittan, K. and Aitkin, B. (1989) A freeze-coring technique 

applied to pollution by fine sediments in gravel bed rivers. The Science of 

the Total Environment, 84,259-2 72. 

Powell, D. M. (1998) Patterns and processes of sediment sorting in gravel-bed 

rivers. Progress in Physical Geography, 22,1-32. 

195 



Pritchett, W. L. and Fisher, RE (1987) Properties and management of forest soils. 
John Wiley and Sons, New York. 

Reid, I., Brayshaw, A. C. and Frostick, L. E. (1984) An electromagnetic device for 

automatic detection of bedload motion and its field applications. 
Sedimentology, 31,269-276. 

Reid, I., Frostick, L. E. and Brayshaw, A. C. (1992) Microform roughness elements 

and the selective entrainment and entrapment of particles in gravel bed 

rivers. In: P. Billi, R. D. Hey, CR. Thorne & P. Tacconi (eds) Dynamics of 
Gravel Bed Rivers. John Wiley & Sons Ltd., London. 253-276. 

Reid, I., Laronne, J. B., and Powell, D. M. (1998) Flash-flood and bedload dynamics of 
desert gravel-bed streams. Hydrological Processes, 12,543-557. 

Robinson, A (1980) The effect of pre-afforestation drainage in the streamflow and 

water quality of a small upland catchment. Institute of 4ydrology Report, 73. 

Robinson, M. and Blyth, K. (1982) The effects of forestry drainage operations on 

upland sediment yields: a case study. Earth Surface Processes and 

Landforms, 7,85-90. 

Rothacher, J. (1970) Increases in water yield following clear-cut logging in the 

Pacific Northwest. Water Resources Research, 6,653-658. 

Sawyer, A. J., Leeks, G. J. L., Marks, S. D. and Stott, T. A. (1996) The effects of timber 

harvesting on bedload flux dynamics: the application of an improved 

tracing technique in a small upland catchment. Geological Society of 

America AGM, 28-31 October 1996, Denver, Colorado, USA, Abstracts. 

Schmidt, K-H., and Ergenzinger, P. (1992) Bedload entrainment, travel lengths, step 

lengths, rest periods-studied with passive (iron, magnetic) and active (radio) 

tracer techniques. Earth Surface Processes and Landfornis 17,147-165. 

196 



Schumm, S. A. and Stevens, M. A. (1973) Abrasion in place: A mechanism for 

rounding and size reduction of coarse sediments in rivers. Geology 1,37-40. 

Shields, A. (1936) Andvendung der Xhnfichkeitsmechanik find der turbulenz- 

forschung auf die geschiebebewegung. Mitteilung der preussischen 

versuchsanstaltfür wasserbau und schiffbau. 26, Berlin 

Shih, S. M. and Komar, P. D (1990) Differential bedload transport rates in a gravel- 
bed stream :a grain size distribution approach. Earth Surface Processes and 
Landforms, 15,539-552. 

Smith, R. D., Sidle, R. C. Porter, P. E., and Noel, J. R. (1993) Effects of experimental 

removal of woody debris on the channel morphology of a forest gravel bed 

stream. Earth Surface Processes and Landforms 18,455-468. 

Soutar, R. G. (1989) Afforestation, soil erosion and sediment yields in British 

freshwaters. Soil Use Management, 5,82-86. 

Stoner, J. H. and Gee, A. S. (1985) Effects of forestry on water quality and fish in 

Welsh rivers and lakes. Journal of the Institution of Water Engineers & 

Scientists, 39,27-45. 

Stott, T. A. (1987) Forestry effects on sediment sources, dynamics and yields in the 

Balquhidder catchments, central Scotland. Unpublished Ph. D. thesis, 

University of Stirling. 

Stott, T. A. (1996) Changes in amount and size distribution of bedload trap material 

during forestry operations in central Scotland. In: Erosion and Sediment 

Yields: Global and Regional Perspectives - Poster Report Booklet edited by B. 

W. Webb, International Association of Hydrological Sciences Publication 236. 

Proceedings of a symposium held at Exeter, U. K., July 1996.103-105. 

197 



Stott, T. A. (1997a) A Comparison of Stream Bank Erosion Processes on Forested 

and Moorland Streams in the Balquhidder Catchments, central Scotland. 
Earth Surface Processes and Landforms 22,366-383. 

Stott, T. A. (1997b) Forestry effects on bedload yields in mountain streams. Joumal 

o Applie Geography, 17,55-78. 

Stott, T. A. (1999) Streambank and forest ditch erosion: Preliminary responses to 
timber harvesting in mid-Wales. In: A. G. Brown and T. A. Quine (eds) Fluvial 
Processes in Environmental Change. John Wiley & Sons, London. 47-70. 

Stott, T. A., Ferguson, R. I., Johnson, R. C. and Newson, M. D. (1986) Sediment budgets 

in forested and unforested basins in upland Scotland. In: R. F. Hadley (ed) 

Drainage Basin Sediment Delivery. International Association of Hydrological 

Sciences Publication 159,57-68. 

Stott, T. A. and Marks, S. (1998) Bank erosion and suspended sediment dynamics: 

responses to timber harvesting in mid-Wales, U. K. Proceedings of the 

International Symposium on Comprehensive Watershed Management. 7-10 

September 1998, Beijing, China. 213-220 

Stott, T. A. and Sawyer, A. J. (In press) Clast travel distances and abrasion rates in 

two coarse upland channels determined using magnetically tagged bedload. 

In: Foster, LD. L (ed) Tracers in Geomorphology, Wiley & Sons Ltd. 

Stretton, C. (1984) Water supply and forestry -a conflict of interests: Cray 

Reservoir, a case study. Journal of the Institute of water engineers and 

scientists, 38,323-330. 

Sutherland, A. J. (1987) Static armour layers by selective erosion. In: CR. Thome, 

J. C Bathurst and R. D. Hey (eds). Sediment Transport in Gravel Bed Rivers. 

John Wiley and Sons, Chichester, 243-267. 

198 



Swanson, D. H. and Swanson, F. 1 (1976) Timber harvesting, mass erosion and 
steepland forest geomorphology in the Pacific Northwest. In: D. R. Coates 
(ed) Geomorpholog-v and Engineering. Dowden, Hutchinson & Ross Inc, 199- 
221. 

Takayama, S. (1965) Bedload movement in torrential mountain streams. Tokyo 
Geography Papers, 9,169-188 (in Japanese). 

Taylor, G. C. M. (1970) Ploughing practice in the Forestry Commission. Forest 
Record 73, HMSO, London. 

Thoms, M. C. (1992) A comparison of grab- and freeze-sampling techniques in the 

collection of gravel-bed river sediment. Sedimentary Geology, 78,191-200. 

Thomson, D. A. (1979) Forest drainage schemes. Forestry Commission Leaflet No. 
72, HMSO, London. 

Thorne, C. R. and Lewin, J. (1979) Bank processes, bed material movement and 

planform development in a meandering river. In: D. D. Rhodes and G. P. 

Williams (eds) Adjustments of the Fluvial System, Kendall/Hunt Publishing Co., 

Dubuque, Iowa, 117-137. 

Trimble, S. W. (198 1) Changes in sediment storage in the coon creek basin, driftless 

area, Wisconsin, 1853 to 1975. Science, 214,181-183. 

Ursic, S. J. (199 1) Hydrologic effects of two method of harvesting mature Southern 

Pine. Water Resources Bulletin, 2 7,303-315. 

Warburton, J. and Davies, T. (1994) Variability of bedload transport and channel 

morphology in a braided river hydraulic model. Earth Surface Processes 

and Landfonns 19,403-421. 

199 



Warburton J, and Dernir, T (In press) Influence of Bed Material Shape on Sediment 

transport in Gravel Bed Rivers: A field experiment. Tracers in 

Geomorphology, Wiley & Sons Ltd. 

Wathen, S. J. (1995) The effect of storage sediment transfer processes in a small 
Scottish gravel-bed river. Unpublished Ph. D. thesis, St. Andrews. 

Wathen, S. J. and Hoey, T. B - (1998) Morphological controls on the downstream 

passage of a sediment wave in a gravel-bed stream. Earth Surface Processes 

and Landforms, 23,715-730. 

Wentworth, C. K. (1919) A laboratory and field study of cobble abrasion. Joumal of 
Geology, 27,507-522. 

Whitaker, A. C. (1992) An investigation into sediment stored behind dams of 

organic debris in small streams in an area of upland afforestation, central 

Scotland. Unpublished M. Sc. Thesis, University of Newcastle upon Tyne. 

Whiting, P. J., Dietrich, W. E., Leopold, L. B., Drake, T. G. and Shreve, R. L. (1988) 

Bedload sheets in heterogeneous sediments. Geology 16,105-108. 

Wolman, M. G. (1954) A method of sampling coarse river-bed material. 

Transactions of the American Geophysical Union 35,951-956 

Ziemer, R. R., Lewis, J., Lisle, T. E. and Rice, R. A (199 1) Long-term sedimentation 

effects of different patterns of timber harvesting. In: Sediment and Stream 

Water Quality in a Changing Environment: Trends and Explanation 

(Proceedings of the Vienna Symposium, August 1991) International Association 

of Hydrological Sciences Publication 203,143-150. 

Zingg, T. H. (1935) Beitrag zur Schotter analyse. Scheizerische Mineralogische und 

Petrographische Mitteilungen, 15,39-140. 

200 



Appendicies 

201 



Clast travel distances and abrasion rates in two coarse upland 
channels determined using magnetically tagged bedload 

202 



Paper to be submitted for BGRG Annual Conference 18th-20th September 1998: Tracers in Geomorphology, Coventry University. 

Vast travel distances and abrasion rates in two coarse upland channels determined using magnetically tagged bedload' 

Tim Stoft and Adam Sawyer 

Liverpool John Moores University, 
1. M. Marsh Campus, Barkhill Road, Liverpool, L17 613D. 
E-mail: T. A. STOTT@Iivjm. ac. uk; Tel: 0151231 5329; Fax: 0151 231 5221. 

INTRODUCTION 

Downstream fining and rounding of clasts in rivers is well documented 
(McPherson, 1971; Mills, 1979; Knighton, 1980; Huddart, 1994; Ferguson et aL, 1996) and these changes in the sediment characteristics are commonly 
explained in terms of selective entrainment, transport, and deposition 
(hydraulic sorting), or the physical modification of clasts by mechanical 
abrasion. Such abrasion processes have been isolated in the past by use of 
abrasion tanks (Kuenen, 1956b; Bradley, 1970; Bradley et al., 1972) and tumbling barrels (Daubree, 1879; Wentworth, 1919; Marshall, 1927; Bigelow, 
1984). Under the laboratory conditions used by these workers, clast weight losses per unit distance were, however, consistently lower than downstream 
reductions in weight loss derived from field sampling (Bradley, 1970; Schumm 
and Stevens, 1973; Adams, 1978,1979). The observed difference between 
laboratory simulated and field measured reduction rates have been attributed 
to either weathering (Bradley, 1970), hydraulic sorting processes (Mackin, 
1963) or the alternative theory of 'abrasion in place' (Schumm and Stevens, 
1973) whereby clasts may be abraded by vibration within the bed without net 
downstream movement. Laboratory simulation of this vibration yielded 
promising results. Brewer et aL, (1992) were the first to seed mobile and 
semi-mobile tracers to directly measure the abrasion of 39 individual test 
clasts in the natural environment. Weight losses sustained by tracers over a 
six week period indicated the potential of 'sandblasting' as an additional 
'abrasion in place' process. 

By introducing nearly four hundred magnetically tagged clasts into two natural 
channels and tracing their movements for over -two years, we believe that this 
paper quantifies abrasion rates for individual test clasts in the natural field 
situation for the first time. 

STUDY SITES 

The study reaches were located within the institute of Hydrology's Plynlimon 
Experimental Catchments, (see Newson, 1976; Kirby et aL, 1991) which have 
been operational since 1968 and contain intensive hydrological, water quality 
and sediment monitoring networks (Leeks and Roberts, 1987; Leeks, 1992, 
Stott and Marks; 1998). The stream channels are influenced by both the local 
bed rock geology (Ordovician and Silurian mudstones and shales) and 
glacially derived gravels, cobbles and boulders. Much of the bedload is made 



up from this material and reworking of glacio-fluvial sediment of similar 
composition. 

The climate is temperate with a mean annual precipitation of 2449 mm. 
Figure I shows the location of the catchments with the study reaches 
indicated. The catchment areas of the Tanllwyth (Severn) and Cyff (Wye) are 
0.89 and 3.10 kM2 respectively and both channels are at a height of 
approximately 350 m A. O. D. The streams have flashy hydrographs and over 
the study period the maximum discharge reached 2.32 M3 S-1 in the Tanllwyth 
channel with a mean of 0.06 M3 S-1 over the period. There were an estimated 
31 competent flood events and the time (in hours) when the discharge was 
greater than 1 M3 S-I (T>l) was 29; T>0.5 M3 S-I = 190; T>0.3 m3 S-I 
487.75. 

METHODS 

Tracer clasts were manufactured by drilling a hole and implanting a small 
magnet and label, fixed by epoxy resin. Only less resistant clasts of Silurian 
mudstone, shale and greywacke were soft enough to be drilled easily so this 
meant that glacially derived clasts, of other geological origins were not 
included in the sample. A total of 385 tracers were made, clasts being 
sampled to represent the natural size distribution in the channels as closely 
as possible. Figure 2 shows the size distribution (% by weight) of tracers and 
natural bed material. The bed D5os were 22.3 and 44.4 mm for the Tanllwyth 
and Cyff combined surface and sub-surface bed material respectively. 
Weighed tracers with a, b and c axes measured, were first introduced to the 
channels in February 1995. Tracers were dropped onto the bed and no 
special attempt was made to seed them. Groups of 10 tracers were placed in 
an equally spaced line across the channel. Tracers remained in the channel 
an average of 419 days (individual tracers ranging from 42 to 810 days) and 
their locations were surveyed on ten occasions between February 1995 and 
July 1997. The majority of tracers became buried after 1-2 months in the 
channel and on locating them they were dug out of the bed, identified and 
replaced into the hole from which they had been excavated. From these 
surveys total distance travelled by individual clasts was computed and clast 
dimensions and masses were re-measured in July 1997 as clasts were 
retrieved from the channel. At this point data for 228 clasts were available for 
analysis. 

RESULTS 

Clast abrasion rates (weight losses) 

Figure 3 shows the variations in both weight loss and travel distance for clasts 
in the four Zingg shape classes. Clast shapes in the channels, and replicated 
in the sample of magnetically tagged tracers, were dominated by discs (48%) 

0 



and blades (42%), with rods (8%) and spheres (2%) relatively less common. Rod shaped clasts showed the greatest weight losses (5.38±0.66 %) and the difference between the weight loss of rods and blades is significant (p < 0.05) 
as shown by the West (Table 3). Though clasts in the forested Tanllwyth 
channel showed higher weight losses than those in the Cyff (moorland) 
channel, this difference is not statistically significant and may well be 
accounted for by the greater travel distances of all clasts in the Tanllwyth 
channel. Likewise, the greater weight losses of rod and sphere shaped clasts 
may be accounted for by their higher travel rates. 

Figure 4 shows mean annual weight losses for tracers by their size class. Though the trend appears to show greatest weight losses in the -4.5 (16-22 
mm) and -4.0 (11-16 mm) phi classes with a decrease in weight loss in the 
larger size classes, the small sample size in the -4.0 phi class (see Table 2) 
means this has large error bars. The only statistically significant differences 
between mean weight loss and clast size class was found in the coarser size 
classes where the weight loss in the -5.5 class was significantly greater than 
in the -6.0 phi class (p < 0.01) and weight loss in the -6.5 phi class was 
significantly greater than in the -6.0 phi class (p < 0.05) which are 
summarised in Table 3. 

Travel Distances 

The mean travel distance for all tracers was 0.1 1±0.02 m day-' with a 
maximum travel rate of 0.87 m day-'. Travel rates in the Tanllwyth (forested) 
channel were double those in the Cyff (moorland) and this difference is 
statistically significant as shown by the Mest in Table 3 (p < 0.001). 

Figure 3 shows travel rates for the four shape classes. Rods and spheres 
showed greatest travel rates with means of 0.1 8±0.09 and 0.1 8±0.15 m day-' 
respectively, though the small sample size for spheres means the estimate 
carries large error bars. Discs and blades had lower mean travel distances 
(0.1 1±0.03 and 0.10±0.03 m day I respectively) and the difference between 
the mean travel rate of discs and rods and between blades and rods were 
statistically significant as shown by the Mest (p < 0.01 for both shape classes) 
shown in Table 3. 

Figure 4 indicates a general decrease in travel distance with increasing clast 
size and table 4 (correlation coefficients) supports this with the correlation 
between relative clast size (Dj/D5o) and average distance moved being -0.172, 
n. s. and -0.217, p<0.05 for the Tanllwyth and Cyff tracers respectively. 

Regression and Multiple Regression Analysis 

The results of regression and multiple regression analysis are presented in 
Table 5. Data were plotted for each channel separately and in common with 
many previous tracer pebble studies produced a large amount of scatter. The 
data were loglo transformed and regressed both one variable at a time and 
then all three at once in multiple regression. Data from each channel were 
analysed separately. The results show that both tracer travel distance (m 
day-') and relative clast size (Di/D50) (where Di is the clast b-axis and D5() is 

the combined bed surface and sub-surface mean grain size) were both useful 



predictors (statistically significant at p<0.01 and p<0.025 for the Cyff and Tanllwyth tracers respectively as shown by the F test) of % weight loss of 
clasts. Clast shape, as represented by the Krumbein Sphericity Index 
(Krumbein, 1941), was not a significant predictor in either channel. Using 
multiple regression the three independent variables explained 42.5 and 30.6% 
of the variation in clast weight loss in the Cyff and Tanllwyth channels 
respectively. 

Table 6 shows the results of further investigations of how clast shape and size 
affect tracer travel distances. It can be seen that the proportion of variation in 
travel distance explained by sphericity and relative grain size (DI/D50) is 
maximised to 30.9 and 32.3% in the Cyff and Tanllwyth respectively by 
dividing sphericity by relative size to remove the effect of size. This suggests that clast shape (sphericity) does have a significant effect on travel distance 
after allowing for size (p < 0.001). 

DISCUSSION 

In terms of shape of clasts, rods and spheres have the highest mean travel 
distances, but while rods have highest weight losses, spheres have the 
lowest. This may be accounted for by the fact that their shapes make them 
more suited to rolling and, once in motion they are less likely to be deposited 
due to imbrication and bed armouring. Spheres, although uncommon in these 
channels, are nevertheless least likely to break while in transport and 
predictably their mean weight loss is lowest of the four shape classes, Rods, 
in contrast, are much more prone to breakage. Indeed, the maximum weight 
loss for all tracers was 57.17 % and this clast was a rod. If this particular clast 
is not considered, the mean weight loss for rods decreases to 3.85% and the 
next highest weight loss for rods is 13.02 % which implies that breakage of 
clasts is relatively unusual and that corner rounding and- edge chipping are 
more likely to account for the weight losses observed. 

The difference in weight loss between tracers in the Tanllwyth (forested) and 
the Cyff (moorland) channels is almost certainly accounted for by the greater 
mean travel distances and there is no reason to suspect, in the light of these 
data, that abrasion processes operating in each channel are different or 
operate in different ways. However, the greater production and transport of 
bedload in the Tanllwyth channel is discussed by Moore and Newson (1986) 
who report bedload yields from the Tanllwyth being six times higher than from 
the Cyff based on 10 years of records. They conclude that bedload yields 
from the forested Tanllwyth are more predictable, which reflects the greater 
importance of supply limited conditions on the grassland (unditched) Cyff 
catchment. The lower mean travel rates reported in this paper for the Cyff 
concur with these findings. 

Correlations between variables as shown inTable 4 are weak but some are 
nevertheless statistical lysig n ifica nt. The correlation between size and 
distance travelled is significant in the Cyff (p < 0.05) only giving some 
evidence for size selective transport in this channel where bedload seems to 
be supply limited. The extent and nature of this is the subject of further 

analysis (Sawyer, in prep). 



Regression and multiple regression have been partially successful in 
explaining % weight losses in terms of travel distance, particle shape (Krumbein's Sphericity Index) and relative clast size (Di/D5o). Multiple 
regression was able to explain 42.5 and 30.6 % of the variation in tracer % 
weight loss in the Cyff and Tanllwyth respectively suggesting that other factors such as the precise geological composition of the clasts are almost 
certainly important in predicting abrasion rates. In regression analysis the least useful predictor was sphericity which was not statistically significant in 
either channel, whereas travel distance and relative size (Di/D5o) were both 
statistically significant (p < 0.01 in Cyff; p<0.025 in Tanllwyth). 

In contrast to the "abrasion in place" processes (bed load over-passing and 
sandblasting) monitored in the Tanllwyth channel by Brewer et aL (1992) and distinguished from the "vibratory" processes proposed by Schumm and Stevens (1973), the findings of this study demonstrate that the abrasion rate 
of natural tracers is dependent upon clast size and travel distance, with shape being of secondary importance. What still remains to be determined by 
future field observations is the proportion of time clasts spend undergoing 
"abrasion in place $I processes (bed load over-passing, sandblasting and 
vibratory processes) compared to abrasion resulting from attrition (corner 
rounding and egde chipping) as clasts bounce or saltate during transport. 
Active (radio) tracer techniques as used by Schmidt and Ergenzinger (1992) 
during flood events may be one way of isolating and determining the relative 
importance of these two sets of abrasion processes. 

CONCLUSIONS 

1 The mean travel distance for tracers in the forested Tanllwyth channel 
(0.14±0.03 m day-' ) was double that for the Cyff (0.07±0.03 m day-) (with the 
difference significant at p<0.001 level), while mean weight losses for each 
channel of 4.15±0.24 and 2.83±0.18 % respectively suggest processes such 
as corner rounding and edge chipping to be the dominant abrasion process 
with some examples of breakage (57.17% weight loss) occurring. 

2 In general higher abrasion rates are attributed to greater travel 
distances, though for some of the coarser clasts this is not so. The data 
provide evidence for a link between clast size and abrasion rate. Significant 
differences in weight loss were found between size classes in the coarser size 
fractions which cannot be easily explained in terms of different travel 
distances. This suggests that 'abrasion in place' or 'sandblasting' processes 
may be operating. 

3 Clast shapes in the channels, and replicated in the sample of 
magnetically tagged tracers, were dominated by discs (48%) and blades 
(42%) with rods (8%) and spheres (2%) relatively less common. Rods 
showed the highest abrasion rates with clasts, losing a mean of 5.38±0.66 % 

of their mass per year. In terms of shape, the highest mean travel rates 
recorded were for rods (0-81 ± 0.09 m day-) and spheres (0-81 ± 0.15 m day- 
'), whereas discs and blades travelled 0.11 ± 0.03 and 0.12 ± 0.05 m day-' 

respectively. Only the difference between the travel rate of rods and blades 

was significant as determined by the Mest (p < 0.05). 



4 Regression and multiple regression have been partially successful in 
explaining % weight losses in terms of travel distance, particle shape (Krumbein's Sphericity Index) and relative clast size (Di/D50). Multiple 
regression was able to explain 42.5 and 30.6 % of the variation in tracer % 
weight loss in the Cyff and Tanllwyth respectively. The least useful predictor 
was sphericity which was not statistically significant in either channel, 
whereas travel distance and relative size (Di/D50)were both statistically 
significant (p < 0.01 in Cyff; p<0.025 in Tanllwyth). 

5 Relationships between clast size and travel distance were demonstrated for both the Cyff (p < 0.01) and Tanllwyth (p < 0.025) 
suggesting that size selective transport of bed material is operating to a 
greater extent in the grassland Cyff channel, which is sediment supply limited, 
than in the forested and ditched Tanllwyth where the bedload yield is up to 
six-times greater. Travel distances in the TanIlwyth channel (where the 
catchment is forested) are double those in the grassland Cyff. The higher 
transport rates in the Tanl"h channel can tentatively be used to explain the 
higher mean abrasion rate of the tracers in that channel. However, the link is 
not proven and further research, possibly using active (radio) tracers for 
example, may allow the relative importance of "abrasion in place" and attrition 
in transport (corner rounding or edge chipping) to be determined. 
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Figure 1: Location map to show study reaches. 
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Figure 3: Analysis by shape: weight loss of tracers and distance travelled for 
all tracers, Cyff only and Tanllwyth only. 
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Figure 4: Analysis by size: weight loss of tracers and distance travelled for all tracers, Cyff only and Tanllwyth only. 
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Table 1: Summary statistics for tracer abrasion (% weight loss) and travel 
distances for all tracers, separated by shape and for Cyff and TanIlwyth 
channels separately. 

Annual 
mean % 
weight 

loss 

Max 
% 

weight 
loss 

n 
Mean 
travel 

distance 
(m day-) 

Max 
travel 

distance 
(m day-) 

n 
Mean 
no. 

days 
in 

chan 
nel 

All 
tracers 

3.49±0.15 57.17 228 0.11±0.02 0.87 284 411 

Blades 2.77±0,17 24.50 95 0.10±0.03 0.73 117 402 
Discs 3.84±0.23 42.15 110 0.11±0.03 0.50 136 411 

Spheres 1.19±0.41 2.48 4 0.18±0.15 0.39 6 450 
Rods 5.38±0.66 57.17 19 0.18±0.09 0.87 25 451 

Cyff 
tracers 

2.82±0.18 42.15 114 0.07±0.03 0.43 119 423 

Tanllwyth 
tracers 

4.15±0.24 57.17 114 0.14±0.03 0.87 165 
I 

404 
L 

Table 2: Summary statistics for tracer abrasion (% weight loss or %WL) and 
travel distances for all tracers, separated by size class. 

Phi 
Size 

Annual 
mean % 
weight 
loss 

Max 
% 

weight 
loss 

n Mean travel 
distance 
(m day-) 

Max 
travel 

distance 
(m day-) 

n 
Mean 
no. 

days 
tracers 

in 
channel 

-4.0 5.46±1,74 6.85 3 0.31±0.31 0.87 3 224 

-4.5 6.33±0.85 57.17 24 0.15±0.06 0.73 35 292 
, 

-5.0 
-5.5 

3.90±0.26 
4.40±0.29 

23.26 
41.18 

56 
76 

0.12±0.04 
0.12±0.04 

- 

0.50 
0.45 

78] 
85 

356 
385 

0 -6 33±0.14 1 1.9-6- 47 0.07±0.04 0.38 58 538 
. . - - 

-6 5 33±0.46 3 K 23 20 0.07±0.05 0.19 22 574 
. _ . 

-7.0, 0.22±0.52 0.30 1 0.30±0.30 1 0.30 1 507 



Table 3: Significant t-test results for tracer weight loss (%WL) and distance 
moved for different shape and size classes. 

Tracers Mean n I Tracers I w WT n I statistic 
I 

crit 
I Significa- 

ncelevel 

-Weight 
I sses ( mean % per year) 

-5.5 3.04 116 -6.0 1.14 81 2.58 1.97 P<0.01 
-6.0 1.14 81 -6.5 3.73 28 -2.47 1.98 p<0.05 
All 

blades 
2.77 74 All rods 5.38 19 -1-99 1.98 p<0.05 

Travel D istance s (me an m day- 
All Cyff 
tracers 

0.07 1 119 _ All 
Tanllwyth 

tracers 

0.14 165 -5.62 1.96 p<0.001 

All 
blades 

0.10 85 All rods 0.18 25 -2.69 1.98 p<0.01 

All discs 0.11 136 All rods 0.18 25 -2-72 1.97 p<0.01 
-4 0.31 4 -5.0 0.12 78 2.47 1.99 p<0.05 
-4 0.31 4 -5.5 0.12 78 2.63 1.99 p<0.01 
-4 0.31 4 -6.0 0.07 58 4.14 2.00 p<0.001 
-4 0.31 4 -6.5 0.07 22 3.06 2.06 p< . 01 

-4.5 0.15 35 -6.0 0.07 58 3.64 1.98 p<0.001 
-5.0 0.12 78 -6.0 0.07 58 2.74 1.97 p< . 01 

-5.5 0.12 78 -6.0 0.07 58 3.04 1.97 . 01 

-5.5 0.12 -6.5 j 0.07 22 2.14 1.98 R<0.05 



Table 4: Correlation coefficients for tracers: % weight loss, distance moved, 
shape and size indices, with statistical significance indicated: *p>0.05; ** p 
0.01 - NB. Data are Loglo transformed. 

CYFF Average 
distance moved 

/ day) 

Krumbein's 
Sphericity Index 

Relative clast 
size Dj/D50 

% eight loss 0.316 -0.145 -0.332 
Average distance 
moved (m / day) -0.006 -0.217 
Krumbein's 
Sphericity Index 

0.219 

TANLLWYTH 
% weight loss 0.229 0.101 -0.219 

Average distance 
moved (m / day) 

0.211 -0.172 

Krumbein's 
Sphericity Index L 

0.120 



Table 5: Regression and Multiple Regression Analyses: factors affecting % 
weight loss (%WL) of tracers. 

CYFF 
Regression Multiple 

R 
v, V2 F Signific- 

ance F 
1 Logio %WL vs_Logio distance 31.6 1 77 8.45 P<0.01 
2 Loglo %WL vs Loglosphericity 14.5 1 77 1.64 n. s. 
3 Loglo %WL vs Loglo Dj/D5O 33.2 1 77 9.46 [) < 0.01 

I Multiple Regression 1 
41 Logio %WL vs Logio distance, 42.5 3 77 5.43 p<0.01 

Loom sohericitv. Loaln Di/Drm 

TANLLWYTH 

I Regression 1 
5 Logio %WL vs Logio distance 22.9 1 105 5.79 p<0.025 
6 Loglo %WL vs Loglo sphericity 10.1 1 105 1.08 n. s. 
7 Loain %WL vs Loaln Di/Ds; n 21.9 1 105 5.28 p<0.025 

I Multiple Regression 
8 Logio %WL vs Logio distance, 30.6 3 105 3.50 p<0.025 

Log, o sphericity, Log, 0 DI/D50 

v, andV2are upper and lower V respectively. 

Table 6: Regression analysis results of factors affecting tracer travel distance. 

Regression 
CYFF Multiple 

R 
V, V2 F Signific- 

ance F 

1 Distance vs spheri! ýý 2.6 1 118 0.08 n. s. 
- 

2 Distance vs Di/D5o 27.1 1 9.26 p<0.01 
3 Distance vs (sphericity 

Dj/D5o) 
30.9 1 118 12-34 p<0.001 

TANLLWYTH 

-1 ce vs sphericity t 21.5 1 164 7.91 
-p 

< 0.01 
4 an Dis 01 <0 
5 
6 

Distance vs Di/D50 
Distance vs (sphericity 

24.6 
32.3 

1 
1 

164 
164 

10.58 
18-98 

. P 
- p<0.001 

v, and v2sre upper and lower V respectively. 


