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Abstract 

The string matching problem has attracted a lot of interest throughout the history of 
computer science, and is crucial to the computing industry. The theoretical community 
in Computer Science has a developed a rich literature in the design and analysis of string 
matching algorithms. To date, most of this work has been based on the asymptotic 
analysis of the algorithms. This analysis rarely tell us how the algorithm will perform 
in practice and considerable experimentation and fine-tuning is typically required to 
get the most out of a theoretical idea. 

In this thesis, promising string matching algorithms discovered by the theoretical com- 
munity are implemented, tested and refined to the point where they can be usefully 
applied in practice. In the course of this work we have presented the following new 
algorithms. We prove that the time complexity of the new algorithms, for the average 
case is linear. We also compared the new algorithms with the existing algorithms by 
experimentation. 

" We implemented the existing one dimensional string matching algorithms for En- 

glish texts. From the findings of the experimental results we identified the best two 
algorithms. We combined these two algorithms and introduce a new algorithm. 

" We developed a new two dimensional string matching algorithm. This algorithm 
uses the structure of the pattern to reduce the number of comparisons required to 
search for the pattern. 

" We described a method for efficiently storing text. Although this reduces the size 
of the storage space, it is not a compression method as in the literature. Our aim 
is to improve both space and time taken by a string matching algorithm. Our new 
algorithm searches for patterns in the efficiently stored text without decompressing 
the text. 

" We illustrated that by pre-processing the text we can improve the speed of the 
string matching algorithm when we search for a large number of patterns in a 
given text. 

" We proposed a hardware solution for searching in an efficiently stored DNA text. 
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Chapter 1 

Introduction 

Theory and theoreticians have played a major role in the development of the field of 

computer science. Theoreticians have developed a set of basic concepts and method- 

ologies that transcend application domains. These contributions include automata 

and natural language theoretic models, data structures and algorithms, methodolo- 

gies for evaluating algorithm performance, the theory of NP completeness [64], logics 

of programs and correctness proofs and methods of public-key cryptography [56,114]. 

Within theoretical computer science algorithms are usually evaluated by metrics 

such as their asymptotic worst case running time or average case running time or 

their competitive ratio. Many groundbreaking results have been proved according to 

the worst and/or average case running time of the algorithm. These metrics rarely 

tell us how well the algorithm will perform in practice. This is because the metrics 

are not sufficiently accurate to predict actual performance. The situation can be im- 

proved using models that take into account more details of the system architecture 
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and factors such as data movement and interprocessor communication, but even then 

considerable experimentation and fine-tuning is typically required to get the most out 

of a theoretical idea. An effort must be made to ensure that promising algorithms 

discovered by the theory community are implemented, tested and refined to the point 

where they can be usefully applied in practice [69,77,131]. During the practical eval- 

uation of the algorithm it is possible to learn what affects the speed of the algorithm. 

It is possible to then modify the algorithm and remove any features that are slowing 

the algorithm down. This experimental testing and tuning of algorithms is known as 

Algorithm Engineering. 

If an algorithm has a better theoretical evaluation than another algorithm we 

would expect that the algorithm would be faster in practice. Until we compare both 

algorithms in practice we can claim nothing. Although practical evaluation would 

seem dependant upon the environment, comparing algorithms in one environment is 

a good indication of how the algorithm may perform in other practical environments. 

The method used for the theoretical evaluation of algorithms is known as the 

asymptotic analysis of algorithms using Big-Oh notation and is described in Chap- 

ter 2. When we theoretically analyse algorithms we consider the amount of time taken 

for the algorithm to complete its task and the amount of space or memory required 

for the task. Big-Oh notation gives a guideline of how the algorithm should perform. 

There are three main types of analysis used in the evaluation of algorithms. They are 
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the best case, worst case and average case analysis of the algorithm. 

The best case is the optimal performance of an algorithm for a given data set. 

The best case is rarely used and does not show how the algorithm would perform on 

other input. We would expect the average case analysis of an algorithm to show the 

average performance of an algorithm over a range of input. A worst-case analysis of 

the algorithm gives the upper bound of the number of steps taken by the algorithm. 

For example consider the sorting algorithms Quicksort and Mergesort, the worst- 

case analysis shows that the Mergesort algorithm is better than the Quicksort algo- 

rithm. When they are evaluated practically the Quicksort algorithm is faster than 

the Mergesort algorithm. The time taken for the algorithms to sort randomly or- 

dered lists of different sizes are taken from [120] and from these results we would 

chose the Quicksort algorithm as it is up to eight times faster than the Mergesort 

algorithm. For sorted lists the Quicksort algorithm suffers a drop in performance. 

This is due to the worst-case for the Quicksort algorithm being used. For the sorted 

lists the Mergesort algorithm is up to five times faster than the Quicksort algorithm. 

If we were to choose an algorithm to sort a list we would want to use the Quicksort 

algorithm for unordered lists, and the Mergesort algorithm for ordered lists. This 

example clearly shows that an evaluation of algorithms in both theory and practice is 

required before choosing an algorithm for a specific task. These results are described 

in Chapter 2. 
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The worst-case for an algorithm may never occur or occur rarely for an algorithm 

in practice. By implementing the algorithms and evaluating them it is possible to 

see what features affect the time taken by the algorithm. It is then possible to fine 

tune the algorithms to produce faster algorithms using the knowledge gained from a 

practical evaluation. 

String matching is the searching for a pattern P of length m in a Text T of length 

n. The pattern is aligned with the beginning of the text and the pattern characters are 

compared with the corresponding text characters. This is called an attempt. After a 

mismatch or match the pattern is shifted to the right and comparisons are again made 

between the pattern and text characters. A number of string matching algorithms 

have been developed [36,84,47]. The main difference among the algorithms is in the 

order the comparisons are made and how far the pattern is shifted to right after a 

mismatch or match. When searching for a pattern in a text we have to search through 

all of the text. Full descriptions of one-dimensional string matching algorithms used 

in this thesis are given in Chapter 3. 

The string matching algorithms are practically evaluated in Chapter 4 using two 

different methods. We count the number of comparisons taken by each algorithm 

record the real time taken by the algorithms on the chosen data sets. The texts are 

written in English and the patterns are English words. From these tests we choose 

the best two algorithms. Using the features of these algorithms we designed a new 
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algorithm, the BR algorithm. 

The average case analysis of the BR algorithm is given and is proven to be linear. 

The new algorithm is then compared to the nine fastest existing algorithms and the 

KMP algorithm by experimentation. Both the number of comparisons taken and the 

time taken by the BR algorithm are compared with the existing algorithms. 

String matching can be two-dimensional as well as one-dimensional. 

Two-dimensional string matching usually involves searching for a pattern matrix P of 

dimensions ml x m2 in a text matrix T of dimensions nl x n2. In Chapter 5 we discuss 

two-dimensional string matching algorithms and describe a new algorithm for the 

task. We prove that the new algorithm has a linear average case time complexity. The 

algorithms are both theoretically and practically evaluated. The practical evaluation 

again records the number of comparisons taken and the time taken for the algorithms 

to perform specific searches on chosen data sets. We include results for alphabets 

and pattern of different sizes. The new algorithm is the fastest algorithm when the 

alphabet set is large (> 64). 

We can decrease the length of the text by compressing it. Text compression is 

the re-representation of the characters in a text so that they take less space. There 

are many different text compressions algorithms available and we describe the most 

widely used algorithms in Chapter 6. They are Huffman encoding [73], Lempel-Ziv 77 

[140], Lempel-Ziv 78 [141] and Lempel-Ziv-Welch [134]. The time taken to compress 
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the text can be a factor when choosing a text compression algorithm but generally 

the algorithm that offers the greatest amount of compression is used. Searching in 

the compressed file is called Compressed string matching. By performing compressed 

string matching we would expect to decrease the amount time taken to search for a 

pattern in a file. 

We consider searching in the 'compressed' DNA text in Chapter 7. The DNA 

alphabet consists of four characters A, C, G and T. A common search using string 

matching in DNA texts is for boundary or cutting locations. These boundaries or 

cutting locations are strings of DNA characters and strings may contain wildcard 

characters, which can represent two or more of the DNA characters. Most DNA texts 

use eight bits to store each of the DNA characters. As there are only four characters 

we can represent each of the characters using only two bits. This efficient storage 

method would guarantee to reduce the size of the original DNA text by 75%. 

We compare our new efficient storage method with existing compression algo- 

rithms and find that our method is competitive with the existing methods. We 

describe a new algorithm for searching in the efficiently stored DNA text. We prove 

that the average case time complexity of our new algorithm is linear. The new algo- 

rithm is compared practically with the existing string matching algorithms and the 

results show that our new algorithm is roughly more than three times faster than the 

existing string matching algorithms. This is mainly due to the use of the efficient 
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storage method. 

The new algorithm can search for patterns with or without wildcards. The existing 

algorithms have to be modified to handle wildcards. The modified algorithms are 

compared to the new algorithm and new algorithm is still roughly three times faster 

than the existing algorithms. 

We expand our idea of efficiently storing DNA texts to include storing texts with 

an alphabet of any size in Chapter 8. We give a method for efficiently storing texts 

with an alphabet of < 128 characters. This new method will reduce the text to 

[1092 
8a of its original size, where o is the size of the alphabet set. We describe a 

new string matching algorithm that will search for patterns in the efficiently stored 

text. We prove that the new algorithm has a linear average case time complexity. 

We compare our new string matching algorithm with the existing string matching 

algorithms and find that as the alphabet increases the performance of the new string 

matching algorithm degrades. This is due to the amount of space that is saved by 

using the efficient storage method being reduced as the size of the alphabet increases. 

The algorithms described in Chapters 3 and 4 require pre-processing of the pattern 

that they are searching. More over, these algorithms require the reading of the text 

into an array before searching for the pattern. In Chapter 9 we describe a new string 

matching algorithm which requires the pre-processing of the text. This means that 

we record the positions of characters or strings of characters in the text. Using this 
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method we are able to reduce the number of attempts required to search a text. This 

results in fewer comparisons and faster searches. Although this algorithm spends 

time on pre-processing the text, the running time of this algorithm is comparable to 

the other existing algorithms as they require the reading of the text into a text array 

before searching for the pattern. We prove the new algorithm has a linear average 

case time complexity. The new algorithm is compared to the existing string matching 

algorithms by recording the time taken to search for patterns in texts using the same 

data sets as in Chapter 4. 

In Chapter 10 we develop a hardware solution for searching the efficiently stored 

DNA text. We outline the new algorithm, the BK algorithm, we show how we can 

build a new hardware solution for this algorithm. We give a modification to the basic 

BK algorithm, which will search a stream of DNA text for multiple sub-strings in 

a single pass of the text. Attention is paid to the inadequacies of modern micro- 

processors and the advantages which so-called 'hardware compilation techniques' can 

offer as a means of accelerating the execution of algorithms. We compare our BK 

algorithm with five of the fastest existing algorithms by experimentation. 

1.1 Novel aspects of the thesis 

We have devised a number of new algorithms for solving different string matching 

problems. The new algorithms have been compared with the existing algorithms to 
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show that the new algorithms are competitive with the existing algorithms. 

" The BR algorithm, a one dimensional string matching algorithm described in 

Chapter 4, is the first algorithm to consider using the next two characters outside 

of the pattern and the text alignment window to calculate how far to shift the 

pattern to the right after a match or mismatch. This algorithm is also described 

in [31]. 

" We have developed a two-dimensional algorithm (2D-BR), described in Chap- 

ter 5, that uses the structure of the pattern to reduce the number of comparisons 

required to search for the pattern. We found that the algorithm is best when 

the size of the alphabet set being used is large. 

9 The DS algorithm is a one dimensional string matching algorithm that searches 

in an efficiently stored DNA text and is described in Chapter 7. The efficient 

storage method is not novel and has been documented by [91]. Using the efficient 

storage method a DNA text can be stored in 25% of the space required for the 

original text. The DS algorithm searches in the efficiently stored text and can 

search for patterns with and without wildcard characters. The DS algorithm 

was found to be the fastest algorithm for the task of searching for DNA patterns. 

The algorithm is also described in [321. 

9 We have extended our work from Chapter 7 to form a new algorithm that 
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searches in an efficiently stored text for any alphabet set of size < 128. This 

new method will reduce the text to 
P092 

8a of its original size, where o, is the size 

of the alphabet set. The new algorithm will search for patterns in the efficiently 

stored text. The algorithm is also described in [34]. 

" In Chapter 9 we describe a new algorithm that searches for a pattern by pre- 

processing the text. This new algorithm reduces the number of comparisons 

required to search for the pattern. The string matching via pre-processing 

algorithm is many times faster than the existing algorithms when searching for 

a large number of patterns in the same text. 

" In Chapter 10 we describe a hardware solution to searching in the efficiently 

stored DNA text. Although the algorithm has not been fully implemented in 

hardware we expect the algorithm to be faster than the DS algorithm. The 

hardware solution is also described in [33]. 



Chapter 2 

Analysis of Algorithms 

2.1 Introduction 

Algorithms can be evaluated in a number of different ways. We need to be able 

to demonstrate that one algorithm is superior to another algorithm. For a given 

application we have to be able to decide which algorithm is the superior without 

relying on formal arguments, without being misled by special cases and without being 

influenced by the efficiency of the programming language used or the hardware used 

to run the algorithm. 

To solve this problem we use a theoretical evaluation of the algorithms, which is 

independent of the environment used to implement the algorithm. To evaluate each 

algorithm we use an asymptotic analysis of the algorithm. 

11 
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2.2 Asymptotic Analysis of algorithms 

The most obvious way to evaluate the efficiency of an algorithm would be to measure 

the amount of processor time and memory space required to run the algorithm to ob- 

tain a correct solution using a specific data set. This process is called benchmarking. 

However this only gives a measure of efficiency for one data set. If we changed the 

data set then the algorithm may no longer be superior to the other available algo- 

rithms. For example, searching a telephone directory for a name in sequential order 

from A to Z may be acceptable if the directory only contains 40 entries but if we 

increase the number of entries to 400,000 then this algorithm would be unaccept- 

able. Benchmarking is a good way of seeing if a finished program runs to the timing 

specifications desired for this algorithm. We need an appropriate method to evaluate 

algorithms before we start coding them. 

A single number cannot describe the amount of work done because the number 

of steps performed is not the same for all inputs. We observe first that the amount 

of work done usually depends on the size of the input. For example, computing the 

sum of ten numbers usually requires less operations than computing the sum of 100 

numbers. Suppose we have an array A of n integers, then the following algorithm 

computes the sum of the n integers. 
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for j=1 to n do 

sum=sum+Ab] 

Figure 2.1: Algorithm to sum n numbers 

It is convenient to use T(n) to represent the time complexity of an algorithm on 

any input size n. For example, T(n) = cn for Figure 2.1, where c is a constant. 

The first observation indicates that we need a measure of the size of the input for a 

problem. It is usually easy to choose a reasonable measure of size. In Table 2.1 we 

give some examples: 

Problem Size of input 

Find x in a list of names The number of names in the list 

Sort a list of numbers The number of entries in the list 

Multiply two matrices The dimensions of the matrices 

Table 2.1: The size of input for a number of problems 

Even if the input is fixed at, say n, the number of operations performed may 

depend on the particular input. Most often we describe the behaviour of an algorithm 

by stating its worst-case time complexity, which is the maximum number of basic 

operations performed by the algorithm on any input of size n. 

If we have an array L of n distinct entries and wish to find the location of x in 

L. The following algorithm described in Figure 2.2 compares x to each entry in turn 
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until a match is found or the list is exhausted. If x is in the list, the algorithm returns 

the index of the array entry containing x, and index equal to 0 otherwise. 

index=l 

while (index < ra) and (L[index] x) do 

begin 

index = index +1 

end 
if index >n then index =0 

print (index) 

Figure 2.2: Algorithm to find an entry in a list 

Clearly the worst-case time complexity T(n) is equal to cn, where c is a constant. 

The worst cases occur when x appears only in the last position in the list or when x 

is not in the list at all. In both cases x is compared to all n entries. 

2.3 Big-Oh notation 

Suppose one algorithm for a problem does 2n basic operations, hence roughly 2cln 

operations in total, for some constant cl and another algorithm does 3n basic oper- 

ations, or 3c2n in total. We don't know which algorithm will run faster. The first 

algorithm may do many more overhead operations, i. e. its constant of proportionality 

may be a lot higher. Thus if functions describing the behaviour of two algorithms 

differ by a constant factor, it may be pointless to try to distinguish between them. 

We consider such algorithms to be in the same complexity class. 
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Suppose one algorithm for a problem does 
2 n2 basic operations and another algo- 

rithm does 5n. For small values of n< 10 the first does fewer basic operations but for 

large values of n> 10 the second is better. In fact whatever had been the coefficients 

of n2 and of n in these expressions, the second would be faster than the first for all 

n greater than some value, no say. The rate of growth of a quadratic function is so 

much greater than a linear function that the coefficients don't matter when n is large. 

For these reasons we usually express the time complexity of an algorithm using 

Big-Oh notation, which is designed to let us hide constant factors. For example, 

instead of saying the time complexity T(n) of the algorithm described in Figure 2.1 

is cn we would say T(n) = 0(n), which is read "big-oh of n" which informally means 

"some constant times n". 

Now let f (n) be some function defined on the non negative integers n. We say 

that T(n) is O(f (n)) if there exists an integer no and a constant c>0 such that 

for all integers n> no we have T(n) 5 cf (n). For example if we have an algorithm 

whose time complexity T(n) = 6n + 3. We can say that T(n) = O(n) because: 

T (n) = 6n +3 

T (n) < 6n + 3n 

T (n) < 9n 

We can let c=9 and no =1 in the definition above. 

Suppose T(n) is a polynomial of the form akn' + ak-ink-1 +"""+ a2n2 + aln, 
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where leading coefficient ak is positive. Then we can remove all the terms but the 

first and the constant ak replacing it by 1. That is we can conclude T(n) = O(nk). 

Table 2.2 shows some of the more common time complexities for algorithms and 

their informal names. 

Big-Oh Informal Name 

0(1) constant 

O(log n) logarithmic 

O(n) linear 

O(n log n) n log n 

0(n2) quadratic 

O(n3) cubic 

0(2") exponential 

Table 2.2: Common time complexities for algorithms and their informal names 

2.4 Theoretical Versus Practical evaluation of algorithms 

In 1984, Narendra Karmarkar [79] took the key step (not common among theoreti- 

cians) of implementing his new linear programming algorithm. In doing so, he discov- 

ered that it typically ran much more quickly than its worst-case guarantee indicated. 

His initial claims proved controversial, as other researchers could not at first duplicate 
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his results. The reason for this was that Karmarkar, coming from a computer science 

background, had implemented the algorithm using modern data structure techniques, 

something that was not yet common in the mathematical programming community. 

The ferment caused by Karmarkar's results and claims has been immensely beneficial 

for the field of mathematical programming. The packages have improved dramatically 

by adapting modern data structures and programming techniques. 

Many algorithms have been proven to be efficient according to their worst-case or 

average case evaluations. The worst-case and average case results rarely tell us how 

an algorithm will work in practice. A practical evaluation of an algorithm requires 

information about the application area of the algorithm. Using a practical evaluation 

we can focus on the typical problems that will be solved by the algorithm. 

The worst-case complexity describes an upper bound on the worst-case time we 

would see when running an algorithm. The average case complexity presents an upper 

bound on the average time taken when running the algorithm many times on various 

inputs. If the algorithm is to be run a hundred or a thousand times it is pessimistic 

that the worst-case time will occur each time. In this situation the cumulative time 

of thousands of different runs should show some averaging out of the worst case 

behaviour. An average case analysis may give a more realistic picture of the time 

taken by the algorithm. A practical analysis is still required to guarantee the speed 

of an algorithm. 
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A practical evaluation may involve no more than running a few tests to see what 

happens. After a while one develops an informed opinion about what is likely to 

affect performance. If we know what factors speed-up or slow-down an algorithm, 

we can try to apply the speed-ups to other algorithms and remove the slow-downs to 

improve the algorithm. 

Two algorithms may have the same worst-case time complexity or one may have 

a better worst case time complexity than another. This does not mean that the algo- 

rithm with the lower order worst-case time complexity will be the fastest algorithm 

for all sizes of input. For example, in parallel computing the fastest algorithm known 

for permutation routing on the hypercube is by Cypher and Plaxton [42] and runs in 

O(log n(log log n)2) time with a substantial amount of offline computation. Although 

asymptotically this is an improvement over the O(log2 n) algorithm, because of the 

large constants hidden by the Big-Oh notation Cypher and Plaxton's algorithm only 

becomes competitive for hypercubes of dimension greater than 20. 

Algorithms may have similar time complexities. For example, Mergesort and 

Quicksort have a worst-case time complexities of O(n log n) and 0(n2) respectively 

and both algorithms have an average case time complexity of O(n log n). To determine 

which algorithm is the best for the task of sorting a list of n numbers we must code 

both algorithms and time them to see which actually does run faster. (The values in 

Tables 2.3 and 2.4 were taken from [120]). In Table 2.3, we show the time taken in 



19 

seconds to sort a randomised list of numbers with n= 500,2500 and 10000. 

List size 500 2,500 10,000 

Mergesort 0.8 8.1 39.8 

Quicksort 0.3 1.3 5.3 

Table 2.3: Time in seconds to sort a randomised list 

From Table 2.3 we would choose the Quicksort algorithm to sort lists. However, 

the Quicksort algorithm suffers a rapid degrade in performance if the list is ordered 

as can be seen in Table 2.4. 

List size Random In Order Reverse Order 

Mergesort 8.1 7.8 7.9 

Quicksort 1.3 35.1 37.1 

Table 2.4: Time in seconds for sorting ordered lists for n= 2500 

When the list is ordered the Quicksort algorithm performs in its worst-case of 

O(n2). If we were to sort a number of lists we would choose to use the Quicksort 

algorithm as long as the lists were in a random order. If the lists were partially 

sorted or fully sorted we would want to use the Mergesort algorithm. We wouldn't 

expect the worst-case of the list being sorted already to occur very often in real 

world applications of sorting algorithms. We wouldn't know which algorithm was 

best for sorting until we implement them and test them over a number of lists. The 

average-case and worst-case analysis of an algorithm are only indicative of how fast 
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the algorithm should be and do not guarantee any speed over other algorithms in 

practice. This example clearly shows that an evaluation of algorithms both in theory 

and practice is required before selecting an algorithm for a specific task. 

In Chapters 4,5,7,8,9 and 10 we present and discuss a new algorithm and 

analyse the speed of the new algorithm. We perform a theoretical analysis of the new 

algorithm and calculate the worst-case and average case analyses of the algorithms. 

The worst-case analysis gives the upper bound number of steps taken by the algo- 

rithm. The average case analysis presents an upper bound on the average time we 

would expect when running the algorithm many times on various inputs. This shows 

that theoretically the new algorithms are competitive with the existing algorithms. 

To show the actual performance of the algorithms we implement them and compare 

them with the existing algorithms. The time taken by the new algorithms is shown 

to be competitive with the existing algorithms. 



Chapter 3 

String matching algorithms 

3.1 Introduction 

A number of different tasks are performed on strings [47,63,127]. String matching 

is finding an occurrence of a pattern string in a larger string of text. String matching 

can be one dimensional, for example the comparison of a word with a text or can be 

two dimensional, the comparison of one matrix with another matrix. In this chapter 

we will consider one dimensional string matching and its applications. 

The string matching problem has attracted a lot of interest throughout the history 

of computer science, and is crucial to the computing industry. This problem arises in 

many computer packages in the form of spell checkers, search engines on the Internet, 

find utilities on various machines, matching of DNA strands and so on. 

String matching algorithms [47,127] work as follows. First the pattern of length 

in, P[l.. m], is aligned with the extreme left of the text of length n, T [l.. n]. Then the 

pattern characters are compared with the text characters. The algorithms can vary in 

21 
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the order in which the comparisons are made. After a mismatch is found the pattern 

is shifted to the right and the distance the pattern can be shifted is determined by 

the algorithm that is being used. This shifting procedure and the speed at which a 

mismatch is found are the main difference between the string matching algorithms. 

In the Naive or Brute Force (BF) algorithm, the pattern is aligned with the 

extreme left of the text characters and corresponding pairs of characters are compared 

from left to right. This process continues until either the pattern is exhausted or a 

mismatch is found. Then the pattern is shifted one place to the right and the pattern 

characters are again compared with the corresponding text characters from left to 

right until either the text is exhausted or a full match is obtained. This algorithm can 

be very slow. Consider the worst case when both pattern and text are all a's followed 

by a b. The total number of comparisons in the worst case is O(nm). However, this 

worst case example is not one that occurs often in natural language text. 

3.1.1 Knuth, Morris and Pratt algorithm and its derivatives 

The number of comparisons performed by the BF algorithm can be reduced by moving 

the pattern to the right by more than one position when a mismatch is found. This is 

the idea behind the Knuth-Morris-Pratt (KMP) algorithm [84]. The KMP algorithm 

starts and compares the characters from left to right the same as the BF algorithm. 

When a mismatch occurs the KMP algorithm moves the pattern to the right by 
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maintaining the longest border of a prefix (the beginning) of the pattern with a suffix 

(the end) of the part of the text that has matched the pattern so far (See Figure 3.1). 

A border is a repeated substring in the pattern with the repeated substring starting 

with the first character of the pattern. The border of 'babdcbabcadb' is 'bab'. If a 

border does exist then we shift the pattern so as to preserve any characters that 

have already matched. So for the example 'babdcbabcadb' u= 'babdcbab', v= 'bab' in 

Figure 3.1. 

T 

P 

P 

i+j 

Figure 3.1: Shift in the Knuth-Morris-Pratt algorithm (v border of u and d 54 c) 

As can be seen v is not compared again and the comparisons start at the character 

after the string v. In general the shift is calculated so that each character in the text 

is compared at most twice. Then the comparisons begin again at the character that 

mismatched in the text and the corresponding pattern character. If a border does not 

exist then the comparisons continue from the first character in the pattern. There 

are not many English words, on average, with a border bigger than 1. The KMP 

algorithm takes at most 2n character comparisons. Although when using English 

text it behaves very closely to the BF algorithm. The KMP algorithm does O(m + n) 

operations in the worst case. The reason for this is that if we consider the worst 
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case again of a text of all a's and a pattern of all a's followed by a b. Then we have 

an overlap of m-1 (the length of the longest repeated substring). So the pattern 

is shifted by one position after a mismatch and begins the comparisons at the last 

character in the pattern as it already knows the previous m -1 characters will match. 

So the algorithm will take n+m operations. A coding of the KMP algorithm in the 

programming language JAVA is shown in [110]. 

The Colussi (COL) algorithm [44,45] is an improvement of the KMP algorithm. 

The number of character comparisons is 1.5n in the worst case. The set of pattern 

positions is divided into two disjoint subsets. First the comparisons are performed 

from left to right for the characters at positions in the first set. If there is no mismatch, 

the characters at positions in the second set are compared from right to left. This 

strategy reduces the number of comparisons. 

Galil and Giancarlo (GG) [60] improved the COL algorithm by reducing the num- 

her of character comparisons in the worst case to 3n. In these algorithms the prepro- 

cessing takes O(m) time. 

3.1.2 Boyer-Moore algorithm and its derivatives 

The Boyer-Moore (BM) algorithm [36] differs in one main feature from the algorithms 

already discussed. Instead of the characters being compared from left to right, in 

the BM algorithm the characters are compared from right to left, starting with the 
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rightmost character of the pattern. In a case of mismatch it uses two functions, good 

suffix function (see Figures 3.2 and 3.3) and last occurrence function (see Figures 

3.4 and 3.5) and shifts the pattern by the maximum number of positions computed 

by these functions. The good suffix function returns the number of positions for 

moving the pattern to the right by the least amount, so as to align the already 

matched characters with any other substring in the pattern that are identical. The 

last occurrence function moves the pattern to the last occurrence of the text character 

in the pattern (from the left) that mismatches at the current pattern position. If the 

character is not in the pattern then the pattern is shifted by m places to the right. 

It is the last occurrence shift that gives the BM its speed and is used in many of its 

derivatives. The worst case running time of the BM algorithm is 0(nm). This is 

because as in the BF algorithm characters can be compared m times to give a worst 

case run time of O(nm). 

In Figure 3.2 a portion of the text and pattern has matched up to the character 

'a' in the text and 'b' in the pattern. The already matched portion of the text occurs 

again in the pattern at a position to the right of the current match. This other 

occurrence of u in the pattern is aligned with the characters in the text that matched 

u. This is not done if the character in the pattern that precedes the second occurrence 

of u is the same as the first occurrence. Comparisons resume at the rightmost position 

and continue from right to left. 
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T a u 
x shift 

p b u 

m 

p 

Figure 3.2: Boyer-Moore good-suffix shift, u reappears preceded by a character different 
from 'b' 

In Figure 3.3 the portion of the pattern that matched the text u has a portion v 

that is a prefix (leftmost portion) of u. The pattern is shifted so that v is aligned 

with the text characters that matched with it. Comparisons resume at the rightmost 

position and continue from right to left. 

T 

P 

P 

Figure 3.3: Boyer-Moore good-suffix shift, only a prefix of u reappears in P 

In Figure 3.4 the pattern is shifted so that the character in the text that mis- 

matched is aligned with the rightmost occurrence of that character in the pattern. 
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T ta 
shift 

pb 

Pa contains no a 

Figure 3.4: Boyer-Moore bad-character shift, a appears in P 

In Figure 3.5 the pattern is shifted past the character that mismatch as it does 

not occur in the pattern. 

T la U, 

shift 
Pbu 

p contains no a 

Figure 3.5: Boyer-Moore bad-character shift, a does not appear in P 

The Turbo Boyer-Moore (TBM) algorithm [48] and the Apostolico-Giancarlo (AG) 

algorithm [8] are amelioration's of the BM algorithm. When a partial match is made 

between the pattern and the text these algorithms remember the characters that 

matched and do not compare them again with the text. The TBM algorithm and the 

Apostolico-Giancarlo algorithm perform in the worst case at most 2n and 1.5n [52] 

character comparisons respectively. 

The Horspool (HOR) algorithm [70] is a simplification of the BM algorithm. It 

does not use the good suffix function, but uses a modified version of the last occurrence 

function. The modified last occurrence function determines the right most occurrence 

of the k+ mth text character, T [k + m] in the pattern, if a mismatch occurs when a 

pattern is aligned with T[k.. k + m]. The comparison order is not described in [70]. 
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We assumed that the order is from right to left as in the BM algorithm. The average 

case running time of the HOR algorithm is proven to be linear in [23]. The HOR 

heuristic is analysed in [92]. 

The Raita (RAI) algorithm [109] uses variables to represent the first, middle and 

last characters of the pattern. The process used is to compare the rightmost character 

of the pattern, then the leftmost character, then the middle character and then the 

rest of the characters from the second to the m- lth position. Using variables is more 

efficient than looking up the characters in the pattern array. The use of variables to 

represent characters in the array is known as 'Raita's trick'. This optimisation trick 

is only used in the RAI algorithm. If at any time during the procedure a mismatch 

occurs then it performs the shift as in the HOR algorithm. 

The Quicksearch (QS) algorithm [129,74] is similar to the HOR algorithm and 

the RAI algorithm. It does not use the good suffix function to compute the shifts. 

It uses a modified version of the last occurrence function. Assume that a pattern is 

aligned with the text characters T[k.. k + m]. After a mismatch the length of the shift 

is at least one. So, the character at the next position in the text after the alignment 

(T[k+m+1]) is necessarily involved in the next attempt. The last occurrence function 

determines the right most occurrence of T[k +m+ 1] in the pattern. If T[k +m+ 1] 

is not in the pattern the pattern can be shifted by m+1 positions. The comparisons 

between text and pattern characters during each attempt can be done in any order. 
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The Maximal Shift (MS) algorithm [129] is another variant of the QS algorithm. 

The algorithm is designed in such a way that the pattern characters are compared in 

the order which will give the maximum shift if a mismatch occurs. 

The Liu, Du and Ishi (LDI) algorithm [90] is a variant of the QS algorithm. The 

algorithm uses the same shifting function as the QS but changes the order in which 

the pattern characters are compared to the text. The characters are compared in 

a circular method starting at the first character in the pattern and finishing at the 

last. If a mismatch occurs then the pattern is shifted and searching restarts with the 

pattern character that mismatched. For example, if the pattern was 'string' and the 

pattern mismatched the text at the 'r' then we would search in the order 'ringst'. 

The Smith (SMI) algorithm [125] uses HOR and Quick Search last occurrence 

functions. When a mismatch occurs, it takes the maximum values between these 

functions. The characters are compared from left to right. 

The Zhu and Takaoka (ZT) algorithm [138] is another variant of the BM algorithm. 

The comparisons are done in the same way as BM (i. e. from right to left) and it uses 

the good suffix function. If a mismatch occurs at T[i], the last occurrence function 

determines the right most occurrence of T[i - 1.. i] in the pattern. If the substring 

is in the pattern, the pattern and text are aligned at these two characters for the 

next attempt. If the two character substring is not in the pattern then we shift by m 

positions. The shift table is a two dimensional array of size alphabet size by alphabet 
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size. 

The Baeza-Yates (BY) algorithm [12] is similar to the ZT algorithm. It calculates 

the shift according to the last k characters of the pattern aligned with the text. 

When k=2 the shifts are the same as ZT but without the good suffix function. The 

main differences are constructing and storing the shift table. The shift table is a one 

dimensional array of length Q2, where a is the size of the alphabet. The table is 

constructed by bit shifting the two characters to form a 16 bit number and storing 

the value of the shift at this location in the array. 

The HOR algorithm can be improved by using a transformation that increases 

the size of the alphabet being used [22]. As the size of the alphabet is increased the 

probability of a larger shift increases. The transformation concatenates a substring to 

form a new character. For example, the ith character is composed by the concatenation 

of the ith, .. i+k+ 111 characters of the original string for any k>1. This reduces 

the length of the string to m- (k + 1) and the size of the alphabet is increased to ck 

where c is the size of the original alphabet. 

3.1.3 Other one dimensional string matching algorithms 

The Karp-Rabin algorithm [80] uses a hashing function instead of comparing each 

character individually. The algorithm checks to see if a portion of the text aligned with 

the pattern is similar to the pattern. The pattern is hashed and then compared with 
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hashed portions until either a match is found or until the end of the text is reached. 

Upon a match of the hashed text portion and the hashed pattern the characters that 

are aligned are compared character by character to see if a true match is present 

at this position. The algorithm has a worst case time complexity of O(nm) and an 

expected running time of O(n + m) 

The Not So Naive algorithm (NSN) is based on the BF algorithm. The NSN is 

the BF with a constant time and space pre-processing phase added. The pattern 

is aligned with the text[i, i+ m]. The pattern can be shifted by two positions to 

the right if one of two conditions are true: pattern[O] # pattern[1] and pattern[1] = 

text[i + 1] or pattern[O] = pattern[1] and pattern[1] 54 text[i + 1]. The order in which 

the comparisons are performed is modified. The characters are compared in order 

from pattern[1] to pattern[m - 1] and then pattern[O] is compared to text[i]. The 

NSN algorithm has a worst case time complexity of 0(nm). 

Searching can be done in O(n) time using a minimal Deterministic Finite Au- 

tomaton (DFA) [20,68,46,97]. This algorithm uses O(Qm) space and O(m + o) 

pre-processing time. Where a is the size of the alphabet being used. 

The Simon algorithm [122,123] gives a more economical implementation of a 

DFA. Simon noticed that there are only a few significant edges in the a DFA. There 

are at most 2m significant edges in a DFA. Removing the least significant edges we 

can improve the preprocessing time to O(m). Upon a search at most 2n -1 text 
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comparisons are performed during a search for a pattern. A Boyer-Moore automaton 

is constructed and analysed in [19]. 

A pre-processing function is needed for all the algorithms to calculate the relevant 

shifts upon a mismatch or match except for the BF algorithm, which has no pre- 

processing. The pre-processing cost of the algorithms is an important factor in the 

speed of the algorithm with regard to the number of operations required and the 

amount of memory required. This will be most noticeable when we are searching in 

smaller texts. 

Animations of string matching algorithms can be found at [39] and more informa- 

tion about the above string matching algorithms can be found in [38,40]. 

3.1.4 Approximate string matching algorithms 

Approximate string matching allows the erroneous matching of a user defined number 

of erroneous matches, k, between the pattern and text. An error or difference can be 

one of the following three types: 

Substitution: A character of the pattern corresponds to a different character of the 

text 

Deletion: A character of the pattern corresponds to no character in the text. 

Insertion: A character of the text corresponds to no character in the pattern. 

A number of solutions exist to solve this problem [3,9,15,16,17,55,135]. Approxi- 
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mate string matching is used for many applications including aiding in the security of 

passwords [94], spell checkers and bibliographic search. Approximate string matching 

has recently been applied to approximate searching on hypertext [104] and compressed 

texts [99]. 



Chapter 4 

A new string matching algorithm 

4.1 Introduction 

The algorithms described in chapter 3 are implemented and the results are given in 

this chapter. From the findings of the experimental results we identify the best two 

algorithms. We combine these two algorithms and introduce a new algorithm. We 

compare the new algorithm with the existing algorithms by experimentation. 

4.2 Experimental results of the existing algorithms 

Monitoring the number of comparisons performed by each algorithm was chosen as 

a way to compare the algorithms. All the algorithms were coded in C, which are 

taken from [38], animations of the algorithms can be found in [39]. This collection 

of string matching algorithms were easy to implement as functions into our main 

control program. The algorithms were coded as their authors had devised them in 

their papers. The main control program was the same for each algorithm and so did 
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not affect the performance of the algorithms. Each algorithm had an integer counter 

inserted into it, to count the number of comparisons made between the pattern and 

the text. The counter was incremented by one each time a comparison was made. 

A random text of 200,000 words from the UNIX English dictionary was used 

for the first set of experiments. We decided to number each of the words in UNIX 

dictionary from 1 to 25,000. Then we used a pseudo random number generator to pick 

words from the UNIX dictionary and place them in the random text. Each word was 

separated by a space character. Punctuation was also removed as we were concerned 

with finding words and the punctuation would not affect the results obtained. We 

selected a word (pattern) from the UNIX dictionary and searched the text for the 

first occurrence of the word. 

The text was searched for each word in the UNIX dictionary and the results are 

given in Table 4.1. The first column in Table 4.1 is the length of the pattern. The 

second column is the number of words of that length in the UNIX English dictionary. 

The abbreviations at the top of the remaining columns related to abbreviations de- 

fined in Chapter 3. For example, for a pattern length of 7,4042 test cases were carried 

out and the average number of character comparisons made by the KMP algorithm 

was 197,000 (to the nearest 1000). The average was calculated by taking the total 

number of comparisons performed to find all 4042 cases and dividing this number 

by 4042. The figure given in the table is the total number of comparisons taken di- 
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vided by the number of words for the pattern length and then divided by 1000. These 

columns are arranged in descending order of the average of the total number of com- 

parisons of the algorithms. An interesting observation is that for (almost) each row 

the values are in descending order except for the last two columns. 

Ion um. F MP FA Y M G OR RAI BM S Dl S T MI 

133 

Bb 38 8 7 19 13 13 13 13 13 11 10 10 13 10 

178 2 2 0 8 3 3 3 3 2 19 19 19 2 8 

146 151 150 145 9 34 4 4 4 4 30 0 0 2 8 

852 186 185 79 38 36 6 8 36 8 3 3 2 3 0 

042 198 197 191 34 34 4 4 4 4 32 1 1 0 8 

807 05 04 197 30 32 2 1 2 1 0 9 9 7 6 

088 12 11 04 8 0 0 0 0 0 9 8 8 5 4 

10 1971 20 19 12 6 9 9 9 9 9 18 7 7 4 3 

11 1120 09 07 01 2 8 8 8 6 5 5 4 4 1 1 

12 93 18 17 10 1 b 5 b 5 5 4 4 4 1 0 

13 79 24 22 15 0 4 4 4 4 4 3 4 3 19 19 

14 116 28 27 20 19 3 3 3 3 3 3 3 3 19 19 

15 4 151 150 144 11 15 15 15 15 14 14 14 14 11 12 

16 17 27 25 17 16 0 1 1 1 0 0 1 0 18 16 

17 33 31 22 16 0 0 0 0 19 19 0 0 15 16 

18 36 34 25 15 19 0 0 0 19 19 0 0 14 16 

19 

0 1 132 131 122 10 10 10 10 10 10 10 10 7 8 

1 11 09 95 16 4 4 5 5 3 3 4 4 15 18 

2 91 86 55 3 3 3 3 3 3 1 34 
g 

" 
4 

ota l 4988 180 179 174 1 0 0 8 8 8 7 5 

Table 4.1: The number of comparisons in 1000's for searching a text of 200,000 words 
(1670005 characters). 

The algorithm with the largest number of comparisons is the BF algorithm. This 

is because the algorithm shifts the pattern by one place to the right when a mismatch 
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occurs, no matter how much of a partial or full match has been made. This algorithm 

has a quadratic worst case time complexity. However, the KMP algorithm, which has 

a linear worst case time complexity, does roughly the same number of comparisons 

as the BF algorithm. The reason for this is that in a natural language a multiple 

occurrence of a substring in a word is not common. Other linear time algorithms, 

DFA, also have roughly the same number of comparisons as the BF algorithm. We 

will see below that the other quadratic worst case time complexity algorithms perform 

much better than these linear worst case time algorithms. This is a good example 

showing that asymptotic worst case running time analysis can be indicative of how 

algorithms are likely to perform in practice, but they are not sufficiently accurate to 

predict actual performance. 

The BM algorithm uses the good suffix function to calculate the shift which de- 

pends on a reoccurrence of a substring in a word. But, it also uses the last occurrence 

function. It is this last occurrence function that reduces the number of comparisons 

significantly. In practice, on an English text, the BM algorithm is three or more times 

faster than the KMP algorithm [124]. From Table 4.1, one can see that the KMP 

algorithm takes six times as many comparisons than the BM algorithm on average. 

The other algorithms, BY, TBM, AG, HOR, RAI, LDI, QS, MS, SMI and ZT, are 

variants of the BM algorithm. The number of comparisons for these algorithms is 

roughly the same number as in the BM algorithm. 
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The SMI algorithm and the ZT algorithm do the least number of comparisons for 

pattern lengths less than or equal to twelve and greater than twelve respectively. 

4.3 The new algorithm (BR) 

From the findings of the experimental results discussed in section 3, it is clear that 

the SMI and ZT algorithms have the lowest number of comparisons among the others. 

We combined the calculations of a valid shift in QS and ZT algorithms to produce 

a more efficient algorithm, the BR algorithm [31]. If a mismatch occurs when the 

pattern P[1 .. m] is aligned with the text T[k.. k +m- 1], the shift is calculated by 

the rightmost occurrence of the substring T [k +m+L. k+m+ 2] in the pattern. If 

the substring is in the pattern then the pattern and text are aligned at this substring 

for the next attempt. This can be done shifting the pattern as shown in the table 

below. 

T[k+m+1] T[k+m+2] Shift 

* P[1] m+1 

P[i] P[i+1] m-i+1,1 <i<m-1 

P[m] * 1 

Otherwise m+2 

Figure 4.1: Values for a shift using the BR algorithm 

Let * be a wildcard character that is any character in the ASCII set. Note that if 

T [k +m+L. k+m+ 2] is not in the pattern, the pattern is shifted by m+2 positions. 
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For example, the following shifts would be associated with the pattern, 'onion'. 

T(k+m+ 1) T(k+m+ 2) Shift 

+0 6 

0n 5 

ni 4 

i0 3 

0n 2 

n* 1 

Otherwise 7 

Figure 4.2: The shift values for the pattern 'onion' using the BR algorithm 

After a mismatch the calculation of a shift in our new algorithm takes 0(1) time. 

Note that for the substrings 'ni' and 'n*' have a value of 4 and 1 respectively. This 

ambiguity can be solved by the higher shift value being overwritten with the lower 

value. We will explain this later in this section. For a given pattern P[ 1 .. m] the 

preprocessing is done as follows, and it takes O(m2+0) time, where o, is the size of the 

alphabet. The two dimensional array, ST (Shift Table), of size at most m+1xm+1 

will store the shift values for all pairs of characters. The ST will be initialised as 

m+2. As the index of the ST is of type integer, we need to convert the pairs of 

characters into pairs of integers. This is done by defining an array of ASCII character 

set size called CON with each entry initialised to 0. For each character in the pattern 

the right most position (numbering from the right, starting with 1) is entered in the 

corresponding location in CON. For example, the relative position of the character 
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'a' in the ASCII set is 97. Assume that the character 'a' is in the pattern. The right 

most position of 'a' in the pattern is entered in CON[97]. 

If the pattern was the word 'onion' then the rightmost positions of n, o and i are 

1,2 and 3 respectively. The CON for 'onion' would look like this: 

Character: ... ab ... h i j ... n o p 

ASCII value:... 97 98 ... 104 105 106 ... 110 111 112 ... 

CON: ... 00030120 

Figure 4.3: The structure of the CON table for the pattern 'onion' 

The value of a shift for the pair T [k +m+ 1] and T [k +m+ 2] is ST(CON[T[k + 

m+ 1]], CON[ T [k +m+ 2]]). 

All the entries in the ST will be initialised as 7, and the above shift values will be 

entered as follows: 

[wildcard] [o] =6 

[o] [n] =5 

[n] [i] =4 

[i] [o] =3 

[o] [n] =2 

[n] [wildcard] =1 

The ST for the pattern 'onion' would look like this after the complete insertion of 
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all the values. The rows represent the T[k +m+ 1]th character and the columns are 

the T [k +m+ 2]th character. 

0 1 2 3 

0 7 7 6 7 

1 1 1 1 1 

2 7 2 6 7 

3 7 7 3 7 

Table 4.2: The Shift Table for the pattern 'onion' 

The order of performing the steps is important in ensuring the correct values 

appear in ST. Note that the higher values have been over written by the lower values. 

We search for the pattern starting at P[m] and searching from right to left and finish 

at P[1]. To find a shift value we look up in the CON table the first two characters 

after the pattern and the text alignment window. We use these values to the find the 

correct shift value in the ST. 

We now give an example of our new algorithm in action to find the pattern 'onion'. 

The tables above, ST and CON for the pattern 'onion' were used to calculate the shift 

after a mismatch. In Tables 4.3 to 4.7, the first row shows the text and the third row 

shows the position of the pattern. The second row shows whether the aligned pattern 

and text characters match (=) or mismatch (#) as the comparisons are made. 
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w e w a n t t o t e 
Is It 

w i t h o 
In 

i o n 

0 n i o n 

Table 4.3: mismatch shift on ST(CON[n], CON[t]) = ST(1,0) =1 

w e w a n t t o t e s t w i t h o n i o n 

o n i o n 

Table 4.4: mismatch shift on ST(Con [t]J, CON[]) = ST(0,0) =7 

w e w a n t t o t e s t w i t h o n i o n 

o n i oI n 

Table 4.5: mismatch shift on ST(CON[s], CON[t]) = ST(O, 0) =7 

w e w a n 
It It 

o t e 
Is It 

w i t h o n i o 
In 

o n i o n 

Table 4.6: mismatch shift on ST(CON[], CON[o]) = ST(O, 2) =6 
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v e w a 
In 

t 
I 
t o t e 

It, It 
w i t h o n i o n 

o n i o n 

Table 4.7: So the pattern 'onion' has been matched and the test is exhausted 

So the word onion is found in 10 comparisons in a text of length 26. 

4.4 Average case analysis of the BR algorithm 

The average case time complexity of the BR algorithm is the upper bound number of 

comparisons taken by the BR algorithm given the average case input. Let a be the 

size of the alphabet, E, where E is the set of alphabets used by the text. We assume 

that the characters in the text all have an equal frequency and so the probability of a 

match between a character of the pattern and text is ö. The number of comparisons 

taken at an attempt can be 1 to m inclusive. 

Lemma 4.1: The upper bound number of comparisons at an attempt is ým Q1(ä, ) 

for an average case text. 

Proof: The probability of i pattern and text characters matching is ä, 
. 

After 

a match we must make at least one more comparison unless we have a full match. 

Therefore the probability of at least i comparisons being made is 
o, 
l 

1. The probability 

that exactly i comparisons are made is (the probability of at least i comparisons are 

made) - (probability of at least i+1 comparisons are made). The probability of exactly 
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i comparisons being made is 
a, 
l 

,-ä for all i<m. When i= in (the probability 

of the mth comparison), the equation becomes r" To find the total number of 

comparisons made we multiply each of the probabilities by i and sum the results. So 

the total number of comparisons made at an attempt is (Em' il ((ý4 - 
öý) 

x i) + 

If we expand the equation we get: 

(U ä )X1+(ä 
-ö 

)X2}... 
_}( -Q 'E)Xm-2+(7- j;; x 1+a, R_fxm) 

-1122 
m-2 m-2 m-1 m-1 m 

1 +01 } +ol+ 
o 

+a- 

m-1 1 
-ýi-0 Q" 

We assume that u>1 and therefore the above is maximised when v=2. As m 

increases the equation approaches the limit for this equation which is 2. So we expect 

to make 2 comparisons at each attempt for a text where all the characters have equal 

frequency. 

Lemma 4.2: The lower bound for a shift in an average case text is 7 
. 

Proof: To find the average shift we have to consider what values are in the shift 

table. There are a2 entries in the table. The entries are entered in order of size of 

shift from the smallest to the largest until the table is complete. 

The size of the shift is minimised when a=2 and there are Q2 = 22 =4 entries 

in the shift table. Using Figure 4.1 to calculate the shifts and assuming that the first 

two pairs of characters in the pattern don't match. Then there will be two entries 
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with a value of one and one entry for each of the values two and three. We multiply 

each shift value by its frequency in the shift table and total the results. This result is 

divided by Q2 to give the average shift. The average shift is (2 x 1) + (1 x 2) + (1 x 3) 

divided by 22 =4Q 

Theorem: The BR algorithm has a linear average case running time of O(n+m). 

Proof: The lowest average shift value for a text with equally frequent characters 

is 4. We would expect to make n= 47 attempts and expect to make 2 comparisons 4 

at each attempt. We expect to make 2x 47 = 87 comparisons. Therefore the BR 

algorithm has a linear average case running time of 0(n + m). Note that the in term 

in O(n + m) comes from the time taken for the pre-processing. Q 

4.5 Experimental results and comparisons with the BR algorithm 

We select the best eight algorithms from the results in Table 4.1, the BM algorithm 

and the KMP algorithm, and compare with our BR algorithm. Experiments were 

carried out for different random texts as described in Section 4.3. There were 2 

different texts of 10,000 words (Texts A and B), a text of 50,000 words and a text of 

100,000 words. The results are described in Tables 4.8 to 4.11 respectively. Tables 4.8 

to 4.11 show the average number of comparisons required for a search for the given 

pattern length. They are based on taking the total number of comparisons for the 

search for all the patterns of a length and dividing the number by the number of 



46 

patterns of that size to give the average and then they are divided by 1000. So for 

example, in Table 4.8 the BM algorithm takes 12,000 comparisons (to the nearest 

thousand) on average if the pattern length is seven. 

p len num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR 

2 133 6 3 3 3 3 2 2 2 3 2 2 

3 765 20 7 7 7 7 6 6 6 7 5 4 

4 2178 41 11 11 11 11 10 10 10 11 9 7 

5 3146 60 14 13 13 13 12 12 12 12 11 9 

6 3852 67 13 13 13 13 12 12 12 12 11 9 

7 4042 68 12 12 12 12 11 11 11 10 10 8 

8 3607 69 11 11 11 11 10 10 10 9 9 7 

9 3088 70 10 10 10 10 9 9 9 8 8 7 

10 1971 71 9 9 9 9 9 9 9 8 8 6 

11 1120 70 9 9 9 9 8 8 8 7 7 6 

12 593 70 8 8 8 8 8 8 8 6 7 5 

13 279 72 8 8 8 8 8 8 8 6 6 5 

14 116 69 7 7 7 7 7 7 7 5 6 5 

15 44 72 7 7 7 7 7 7 7 5 6 5 

16 17 70 6 6 6 6 6 6 6 5 5 4 

17 7 75 7 7 7 6 6 6 6 5 5 4 

18 4 87 7 7 7 7 7 7 7 5 6 5 

19 0 0 0 0 0 0 0 0 0 0 0 0 

20 1 89 7 7 7 7 7 7 7 4 5 4 

21 2 88 7 7 7 7 6 7 7 4 5 4 

22 1 89 6 6 6 6 6 6 6 4 5 4 

Total 24966 64 11 11 11 11 10 10 10 10 9 7 

Table 4.8: The number of comparisons in 1000's for searching Text A of 10,000 words 
(83360 characters) 
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p len Num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR 

2 133 6 3 3 3 3 2 2 2 3 2 2 

3 765 21 7 7 7 7 6 6 6 7 6 4 

4 2178 42 12 12 12 12 10 10 10 11 9 7 

5 3146 59 13 13 13 13 12 12 12 12 11 9 

6 3852 66 13 13 13 13 12 12 12 11 11 9 

7 4042 68 12 12 12 12 11 11 11 10 10 8 

8 3607 69 11 11 11 11 10 10 10 9 9 7 

9 3088 70 10 10 10 10 9 9 9 8 B 7 

10 1971 71 9 9 9 9 9 9 9 8 8 6 

11 1120 70 9 9 9 9 8 8 8 7 7 6 

12 593 71 8 8 8 8 8 8 8 6 7 5 

13 279 71 8 8 8 8 8 8 7 6 8 5 

14 116 70 7 7 7 7 7 7 7 6 6 5 

15 44 64 6 6 6 6 6 6 6 5 5 4 

16 17 74 7 7 7 7 7 7 7 5 5 4 

17 7 64 6 6 6 6 5 6 6 4 4 4 

18 4 87 7 7 7 7 7 7 7 5 6 5 

19 0 0 0 0 0 0 0 0 0 0 0 0 

20 1 41 3 3 3 3 3 3 3 2 3 2 

21 2 72 5 6 6 5 5 6 5 4 4 3 

22 1 89 6 6 6 6 6 6 6 4 5 4 

Total 24966 63 11 11 11 11 10 10 10 10 9 7 

Table 4.9: The number of comparisons in 1000's for searching Text B of 10,000 words 
(83425 characters) 
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p len num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR 

2 133 9 6 6 6 6 4 4 4 6 4 3 

3 765 37 13 13 13 13 10 10 10 13 10 8 

4 2178 77 21 21 21 21 18 18 18 20 17 14 

5 3146 133 30 30 30 30 27 28 26 28 25 21 

6 3852 159 31 31 31 31 29 28 28 28 26 22 

7 4042 170 29 29 29 29 27 27 27 26 24 21 

8 3607 176 27 27 27 27 26 25 25 24 22 19 

9 3088 181 26 26 26 26 25 24 24 22 21 18 

10 1971 185 24 24 24 24 23 23 23 20 20 17 

11 1120 184 23 23 23 23 22 22 22 18 18 16 

12 593 186 21 21 21 21 21 21 20 17 17 15 

13 279 183 20 20 20 20 19 19 19 15 16 14 

14 116 194 20 20 20 20 19 20 19 15 16 14 

15 44 164 16 16 16 16 16 16 16 12 13 11 

16 17 217 20 20 20 20 20 20 20 17 16 13 

17 7 172 16 15 15 14 14 15 15 11 12 10 

18 4 147 12 13 13 12 12 13 13 9 10 8 

19 0 0 0 0 0 0 0 0 0 0 0 0 

20 1 41 3 3 3 3 3 3 3 2 3 2 

21 2 221 17 18 18 17 17 17 17 11 13 10 

22 1 397 27 27 27 27 26 28 28 18 22 18 

Total 24966 155 27 26 28 26 24 24 24 23 22 18 

Table 4.10: The number of comparisons in 1000's for searching a text of 50,000 words 
(417923 characters) 



49 

P len num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR 

2 133 13 7 7 7 7 5 5 5 7 5 3 

3 765 37 13 13 13 13 10 10 10 13 10 8 

4 2178 80 22 22 22 22 19 18 18 21 17 14 

5 3146 149 34 34 34 34 30 30 29 31 28 22 

6 3852 182 36 36 36 36 33 32 32 33 29 24 

7 4042 193 33 33 33 33 31 30 30 29 27 23 

8 3607 201 31 31 31 31 29 29 29 27 26 21 

9 3088 198 28 28 28 28 27 26 26 24 23 19 

10 1971 198 26 26 26 26 25 25 25 22 21 18 

11 1120 199 25 25 24 24 24 23 23 20 20 17 

712 593 217 25 25 25 25 24 24 24 20 20 17 

13 279 207 23 23 23 22 22 22 22 18 18 15 

14 118 180 19 19 19 19 18 18 18 14 15 12 

15 44 218 22 22 22 21 21 21 21 17 17 14 

16 17 162 15 15 15 15 15 15 15 12 12 10 

17 7 220 20 20 20 19 19 19 19 14 15 13 

18 4 208 17 17 17 17 17 18 18 12 14 11 

19 0 0 0 0 0 0 0 0 0 0 0 0 

20 1 157 12 12 12 12 12 13 13 8 10 7 

21 2 89 7 7 7 7 7 7 7 11 5 

22 1 315 21 21 21 22 22 14 18 

J 

Total 24966 173 30 30 30 

Ei Bd 

27 27 26 24 2O 

Table 4.11: The number of comparisons in 1000's for searching a text of 100,000 

words (834381 characters) 
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From these tables one can observe that the relative order of their performance is 

the same as in Table 4.1. The main observation is that the BR algorithm performs 

better than the other algorithms for all pattern lengths and for all texts used in the 

experiments. 

Table 4.12 summarises the results of Tables 4.8 to 4.11. The entries in Table 4.12 

are in percentage form and describe how many more comparisons existing algorithms 

did than our BR algorithm. The figures are an average of the four different texts 

used. To calculate the difference as a percentage between our BR algorithm and the 

existing algorithms we used the following formula. The average number of compar- 

isons was taken from the relevant cell in Tables 4.8 to 4.11 and divided by the value 

for that pattern length for our BR algorithm. This value was then deducted by 1 

and multiplied by 100 to give the percentage difference between the two algorithms. 

An interesting observation of the existing algorithms when compared with the BR 

algorithm, is that for each individual text the percentages were within 1% for each 

specific algorithm. Each value in Table 4.12 is calculated by taking the difference as 

a percentage between each algorithm and our BR algorithm for each pattern length, 

adding them together and dividing by 4. For example, for a pattern length of 4 the 

BM algorithm takes on average 51.11% more comparisons than our BR algorithm. 

Note that the figures only include direct comparisons between the text and the pattern 

and not any text comparisons made during the calculation of a shift. 
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The result of a full search for the dictionary over all four texts is given in the 

last row of Table 4.12. From this we can see that the BM algorithm took on average 

43.54% more comparisons than our BR algorithm (see 5th column, last row) for a 

complete search for all the words in the dictionary. 

pat. len num. KMP BM HO RAI TH MS LDI QS ZT SMI 

2 133 199.98 93. 94. 93. 93.81 35.9 37.2 32.9 93.9 31.4 

3 765 366.02 64.1 64.2 64.1 63.7 28.7 32.9 28.2 60.0 24.9 

4 2178 449.02 51.1 50.8 50. 50.7 28.2 31.0 25.7 43.1 19.7 

5 3146 540.11 45.0 44.5 44.4 44.7 28.3 31.5 26.4' 33.91 18.1 

6 3852 626.30 42.4 41.8 41.6 41.91 30.0 32.3 27.3: 27.7 16.4 

7 4042 719.01 41. 40.9 41. 40.7 31.4 33.5 28.8 24.9 16.0 

8 3607 807.61 40.5 40.2 40.3 39.9 32.2 34.9 30.1 21.6 15.4 

9 3088 896.18 41.5: 40.9 40.8 40.8 34.7 37.1 32.1 19.2 15.4 

10 1971 982.63 42.11 41.6 41.7 41.1 36.6 39.3 34.3 17.7 15.6 

11 1120 1067.8 44.1 43.6 43.7 42.9 38.5 42.1 37.1 17. 16.3 

12 593 1164.1 45.2 44.5 44.6 44.2 40. 44.3 39.2 16.1 17.3 

13 279 1245.5 47.8 47.2 47.3 46.3 42.2 46.6 41.8 12.6 17.5 

14 116 1322.7 46.7 46.4 46.6 45.1 42.6 48.6 42.2 11.3 17.0 

15 44 1426.0 51.2 51.5 51.5 49.2 44.7 52.8 45.2 8.72 19.0 

16 17 1527.2 49.3 50.4 50.6 47.3 46.8 52.911 49.0 24.8 20.0 

17 7 1598.5 45.21 44.5 44.5 43.4 40.2 50.2 45.01 6.72 16.9 

18 4 1700.8 50.5 53.9 54.0 48.5 50.1 59.0 53.5 6.09 22.21 

19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 1 1948.7 58.3 58.1 58.0 58.3 52.2 72.6 63.5 3.01 29.4 

21 2 1947.9 57.3 63.9 63.9 56.3 57.5 64.0 57.5 2.22 21.8 

22 1 2129.1 50.9 49.8 49.8 50.9 45.0 66.5 55.4 1.04 25.0 

Total 2499 737.56 43.2 42.8 42.8 42.65 
. 

32.0 34.5 29.7 26.0 16.6 

Table 4.12: The average (of Tables 4.8- 4.11) percentage difference in the number of 
comparisons between existing algorithms and the BR algorithm 

We also measure the user time for these algorithms as the saving in the number of 

comparisons may be paid for by some extra overhead operations. We timed the search 
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of book1 of for all occurrences of 500 words from the UNIX dictionary. The words 

are of length 2 to 11 and there are 50 words of each length. The words were chosen at 

random from the UNIX dictionary. We show the average length of a shift performed 

by each algorithm in the second column. The percentage difference between the 

existing algorithms and the BR algorithm is shown in the third column. We used a 

486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive running SUSE 

5.2. The user time includes the time taken for any pre-processing and the reading of 

the text into memory. Each algorithm was evaluated ten times and the average time 

taken is given in Table 4.13. The timing was accurate to löo of a second but was 

rounded to the nearest second. The difference between the slowest and fastest time 

for each test for an algorithm was less than 0.2 of a second. The last column shows 

the percentage difference of the user time between existing algorithms and the BR 

algorithm. 

If we list the algorithms in order of the average shift that they take from the 

highest to the lowest starting at the BM, we will get: BM, LDI, ZT, QS, MS, SMI 

and the BR. But, if we do the same for the timings we get BM, MS, SMI, LDI, 

QS, HOR, BY, RAI and the BR. The reason for the difference in the lists is due to 

overheads in traversing the data structures which are present in the algorithms for 

the calculation of the correct shift value. Therefore, we can not assume that because 

an algorithm has a higher average shift that it will be more efficient than another. 
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Algorithm average shift % difference time in secs. % difference 

BF 1.00 708.00 3402 315.89 

KMP 1.00 708.00 4727 477.87 

DFA 1.00 708.00 3057 273.72 

BY 5.61 44.03 987 20.66 

BM 5.76 40.28 1518 85.57 

AG 5.65 43.01 4396 437.41 

HOR 5.72 41.26 1042 27.38 

RAI 5.72 41.26 865 5.75 

MS 6.40 26.25 1237 51.22 

LDI 6.34 27.44 1115 36.31 

QS 6.49 24.50 1094 33.74 

ZT 6.38 26.65 1874 129.10 

TBM 5.57 45.06 2240 173.84 

SMI 7.11 13.64 1186 44.99 

BR 8.08 N/A 818 N/A 

Table 4.13: The average shift and the user time in seconds 

We then considered eight other texts, 'Book2', 'news' and the six papers from the 

Calgary corpus [37]. The number of words and the number of characters of these texts 

are shown in Table 4.15. We searched for the same 500 random words from the UNIX 

dictionary for the BM, BR, BY, HOR, LDI, QS, RAI, and SMI algorithms. The 

reason for using different texts of different sizes was to check that the pre-processing 

of the BR didn't become too expensive as the text became smaller in size. We also 

needed to check that the distribution of the characters in the text didn't affect the 

speed of the BR algorithm. 



54 

BM BR BY HOR LDI QS RAI SMI ZHU 

Paper 1 103.7 56.0 68.2 71.3 76.6 74.7 59.3 81.3 169.9 

Paper 2 161.8 86.8 106.2 111.2 120.1 116.9 92.4 126.5 247.1 

Paper 3 93.2 50.1 61.2 64.0 69.2 67.4 53.3 72.8 164.9 

Paper 4 26.7 15.5 17.6 18.2 19.8 19.2 15.1 20.9 85.5 

Paper 5 23.3 13.9 15.7 16.2 17.8 17.1 13.5 18.7 82.2 

Paper 6 74.2 40.2 48.7 51.0 54.5 53.2 42.4 58.2 143.3 

Book 2 1195.0 639.0 784.0 820.0 884.0 862.0 681.0 934.0 1485.0 

News 727.0 391.0 476.0 498.0 533.0 520.0 414.0 570.5 862.0 

Table 4.14: User times in seconds for the eight chosen texts 

number of words number of characters 

Paperl 8512 53162 

Paper2 13830 82205 

Paper3 7220 47139 

Paper4 2167 13292 

Paper5 2100 11960 

Paper6 6754 38111 

Bookl 139994 773635 

Book2 101221 610856 

News 53940 37711 

Table 4.15: The number of words and characters of the texts used in Table 4.14 
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The results documented in Table 4.14 show that the BR algorithm is faster than 

the existing algorithms when the text is large. The RAI algorithm is the fastest 

algorithm for texts 'paper 4' and 'paper 5'. This is due to the time for the pre- 

processing in BR which is not as dominant in the RAI algorithm. The tests were 

carried out for a wide range of text sizes as shown in Table 4.15. The main reason 

for the speed of our BR algorithm is the improved maximum shift of m+2. 

4.6 Conclusions 

The experimental results show that the BR algorithm is more efficient than the ex- 

isting algorithms in practice for most of the data sets from the Calgary Corpus [37]. 

Over our 4 random texts and 9 real texts where the BR algorithm is compared to the 

existing algorithms, our algorithm is more efficient for all but two of the texts. With 

the addition of punctuation and capital letters it does not affect the BR algorithm. So 

in the real world we would expect our savings to remain and make our BR algorithm 

competitive with the existing algorithms. It is also possible to apply some of our 

findings to what makes a fast algorithm to the existing algorithms. This may make 

them faster but we were concerned with the original algorithms that were devised by 

their authors. 



Chapter 5 

Two dimensional string matching algorithms 

5.1 Introduction 

Two dimensional string matching algorithms [5,6,49,50,13,14] perform as follows. 

Given a text T [1.. n1][1.. n2] find all occurrences of a pattern P [1.. m1][1.. m2] in T. 

Note that in this chapter we use square matrices for our tests and so n= nl = n2 and 

M: -- ml = m2. We describe the existing two dimensional string matching algorithms 

and describe a new two dimensional algorithm (2D-BR). We prove that the new 

algorithm has a linear average-case time complexity. We compare the new algorithm 

with the existing algorithms by experimentation. 

5.2 Existing two-dimensional string matching algorithms 

The most basic of the two dimensional string matching algorithms is the naive or brute 

force (BF) algorithm. The BF algorithm for two dimensional pattern matching works 

in a similar way to the BF algorithm for one dimensional string matching. The pattern 
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and text are aligned so that P[1][1] is aligned with T[1][1]. The comparisons are done 

from left to right. If the first row of the pattern P[1][1.. m] matches T[a][k + 1.. k + m] 

then the second row of the pattern is compared to the text starting at T [a + 1] [k + 1]. 

This continues until a complete match of the pattern and the text or a mismatch 

occurs then as before in the one dimensional case the pattern matrix is moved one 

position to the right. The BF algorithm has a worst-case time complexity of O(n2m2). 

This worst-case was improved by Bird [35] and Baker [27] to O(n2 + m2). The 

algorithm combines the Aho-Corasick multiple pattern matching algorithm [2] and the 

KMP algorithm [84] to form a two dimensional algorithm. The algorithm processes 

the text and identifies all occurrences of all pattern rows. Each row in the pattern is 

represented by a new symbol and the symbol replaces each occurrence of the pattern 

row in the text. The problem is now finding all occurrences of the string composed 

of new symbols in the text in the correct order. 

The KMP algorithm itself can be adapted to two dimensional string matching. In 

one dimensional matching the algorithm compares the text and pattern character by 

character until either a mismatch or complete match is found. Upon a mismatch the 

pattern is shifted to the right by the greatest overlap with the old pattern position. In 

the two dimensional case this can be adapted by starting in the leftmost column and 

comparing a pattern row with a text subrow of length m. Proceeding in this fashion 

until a mismatch or match occurs. Upon a mismatch or match the pattern is shifted 
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to the right for the greatest overlap with the old pattern position and comparisons 

are resumed from this new location. The worst-case running time of the modified 

KMP algorithm is O(n2m). 

The Zhu and Takaoka (ZT) algorithm [139] uses hashing to search for a pattern. 

The text is hashed into numeric values to form a one dimensional text. The pattern 

is hashed in the same way and a one dimensional pattern matching algorithm is used 

to search for the pattern. The worst-case running time is O(n2m2). 

5.3 The New Algorithm (2D-BR) 

The new algorithm (2D-BR) reduces the number of comparisons required to search 

for a pattern. In one comparison we can check whether the entire pattern matrix isn't 

present in an area of the text [61]. We create an array of length o, where o is the 

size of the alphabet set called the Frequency array. In the Frequency array we record 

the frequency of each of the characters in the pattern. We look up the character at 

positions T[(i + 1)m] [(j + 1)m] for all 0<i, j<m called the sample point in the 

Frequency array. 

Note that when one entry in the matrix is examined we are only considering a 

2m -1x 2m -1 square centred around the sample point X. 
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X X X 

X x X 

X x X 

Figure 5.1: Each X denotes a sample point (71(i + 1)m][(j + 1)m] in the matrix that 
is compared with the Frequency array where T is a6x6 matrix and P is a2x2 
matrix. 

There are three cases that arise from a comparison of the sample point and the 

Frequency array (T[(i + 1)m][(j + 1)m]) with the pattern: 

" Case 0: The character at the sample point has a frequency of 0 in the Frequency 

array and therefore doesn't occur in the pattern. We then move to the next 

sample point in the text to be considered. 

" Case 1: The character at the sample point has a frequency of 1 in the Frequency 

array. This means that there is only one occurrence of the character in the 

pattern. The pattern and text are aligned so that the occurrence of the sample 

point in the pattern is aligned with the sample point. The pattern and text are 

examined with the BF algorithm and after a partial or full match we move to 

the next sample point to be considered. 
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" Case 2: The character at the sample point has a frequency greater than one in 

the Frequency array. If case 2 occurred at T[(i+1)m][(j+1)m] then we continue 

checking the sample points until either case 0 or case 1 occurs, while j<m. For 

the distance from the first occurrence of case 2 to the last occurrence of case 2 

we use a one dimensional algorithm, the BR algorithm, to search for the first 

row of the pattern in the text. We begin the search at T [(i + 1)m - (m - 1)] [(j + 

1)m - (m - 1)] for the i, j that give the location of the first occurrence of case 

2. The search ends at T[(i+ 1)m][(j +1)m] for the i, j that give the location of 

the last occurrence of case 2. For example, we consider a pattern of size 3x3 

and a text of size 5x 30 in Figure 5.2. For each of the sample points we give 

which case that has occurred. The shaded area represents the area that would 

need to be searched by the BR algorithm for the first row of the pattern. Upon 

a full match of the first row of the pattern with the text the remaining pattern 

characters are compared with the corresponding text characters. Upon a full 

or partial match of the pattern and the text, the pattern is moved according to 

the shift value calculated by the BR algorithm. 

Figure 5.2: Shaded area is compared with the first row of the pattern using the BR 

algorithm 
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The new algorithm is called the two dimensional BR (2D-BR) algorithm. The 

worst case running time of the 2D-BR algorithm is O(n2m2). 

5.4 Average case analysis of the 2D-BR algorithm 

Let a be the size of the alphabet set, E. We assume that the characters in the text 

all have an equal frequency and so the probability of a match between a character of 

the pattern and text is ö. 

The frequency of the character at the sample point in the pattern will tell us which 

case is used. For each case we need to know 

9 The number of patterns with no occurrences of the character at the sample 

point (case 0). 

" The number of patterns with one occurrence of the character at the sample 

point (case 1). 

9 The number of patterns with one or more occurrences of the character at the 

sample point (case 2). 

Note that we only need to calculate the number of matrices for a character of the 

alphabet as each character has the same number of matrices for each of the cases. 

Lemma 5.1: The number of matrices that don't contain a specific character of 

the alphabet is (a - 1)M2 
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Proof: The number of possible matrices for an alphabet of size a is a' 2 
. 

We want 

to know the number of matrices where a character in the alphabet doesn't occur in 

the pattern matrix. This is the same as how many matrices are possible with one 

character of the alphabet set removed (Q - 1) to give (Q - 1)m2 O. 

Lemma 5.2: The number of matrices that contain one occurrence of a specific 

character of the alphabet is m2 x (Q - 1)M2-1 

Proof: If the matrix contains only one of a specific character then the other 

m2 -1 positions in the matrix contain any number of the remaining characters in 

the alphabet. The number of combinations that the remaining characters can take is 

(Q - 1)m2-1. The character that must occur only once in the matrix can be placed in 

any of the m2 positions in the matrix. Therefore there are m2 x (a - 1)M2-1 possible 

matrices. 

The number of matrices that contain more than one occurrence of a specific char- 

acter is equal to the total number of possible matrices minus the number of matrices 

that contain one or no occurrences of the specific character. To give om2 - (a - 1)M2 

-7112X 
(or 

-1)m2-1 0 

9 The probability of case 0 is the number of matrices that don't contain a specific 

character divided by the total number of possible matrices, m mz 
0 

" The probability of case 1 is the number of matrices that contain one occur- 

rence of the specific character divided by the total number of possible matrices, 
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m2X o-1 mz -1 

Qm 

" The probability of case 2 is the number of matrices that contain one or more 

of the specific character divided by the total number of possible matrices, 
222 

v 

Case 2 is dominant when a is small i. e. a< 32. When case 2 is dominant the 

algorithm then behaves as the BR plus ([ni/mi]) x ([n2/m2]) extra comparisons. As 

the pattern size increases ([ni/mi]) x ([n2/m2]) decreases. 

The average case time complexity of the 2D-BR algorithm is the upper bound 

total number of comparisons taken for the average case text. 

Lemma 5.3: The upper bound total number of comparisons taken by the 2D-BR 

algorithm ismz + 87z 

Proof: The upper bound total number of comparisons taken is the upper bound 

number of comparisons taken at an attempt multiplied by the upper bound number 

of attempts made plus the number of sample points considered. The highest amount 

of comparisons are made when case 2 is found at all of the sample points. When 

this happens we use the BR one dimensional string matching algorithm to search the 

entire text for the first row of the pattern. Upon a match of the first row of the 

pattern with the text we compare the remaining characters in the pattern with the 

corresponding text characters until we have a mismatch or a full match. The distance 

the pattern is shifted is calculated by the BR algorithm. O 
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From Lemma 4.1 in Chapter 4 we know the upper bound number of comparisons 

at an attempt for a one dimensional pattern is ;_ j=0 as 
). The number of entries in a 

two dimensional pattern is m2 and therefore we replace m with m2. The upper bound 

number of comparisons taken at an attempt for a two dimensional text is j=0 1(ä, 

If we assume that o>1, then the above equation is maximised when u=2. To 

give Emz-1 1 As m tends to infinity the equation tends to its limit of 2. The upper i_o T 

bound number of comparisons taken at an attempt is 2 comparisons. 

The upper bound number of attempts made is calculated by dividing the size of 

the text by the lower bound shift. From Lemma 4.2 in Chapter 4 the lower bound 

for a shift is 4 for the BR algorithm. This is also the lower bound shift for the two 

dimensional text as we are using the BR algorithm to shift the pattern. The upper 

bound number of attempts made is = 472 attempts. 
4 

The upper bound total number of comparisons is the upper bound number of 

comparisons made at an attempt multiplied by the upper bound number of attempts 

made plus the number of sample points considered. This gives 2x 47' + n2 - -v- + 

n2 
m2 

Theorem: The 2D-BR has a linear average case running time of 0 (N+M) where 

N and M are the sizes of the text and pattern respectively. 

Proof: For the pattern to be two dimensional m has to be greater than or equal 

to 2. The equation a7 2+ 
jr 2 is maximised when m=2. To give 87 s+4a 

= 
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39n2 Therefore the 2D-BR algorithm has a linear average case time complexity of 28 

O(N + M) where N and M are the sizes of the text and pattern respectively. Q 

alphabet 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

2 68987 75849 75300 73928 73165 72704 72405 72200 72054 

4 31775 25687 23696 21168 19046 17535 16480 15753 15277 

8 23221 15193 13642 12967 11941 10744 9652 8748 8010 

16 19441 10928 8637 8185 8160 8017 7651 7141 6662 

32 17552 8913 6134 5187 4993 5094 5248 5331 5302 

64 16594 7924 4962 3712 3183 3019 3048 3174 3329 

128 16111 7434 4416 3055 2366 2011 1846 1798 1826 

256 15869 7189 4156 2762 2019 1590 1333 1182 1100 

Table 5.1: Estimated number of comparisons taken 

For the stated o,, m and a text of 62500 characters the estimated number of com- 

parisons are given in Table 5.1. We then tested 2D-BR to see how many comparisons 

the algorithm takes in practice. The results are given in Table 5.2. 

So for larger alphabets when case 2 becomes dominant ([nl/m1]) x ([n2/m2]) 

is quite small. So for larger alphabets the difference between the 2D-BR algorithm 

and the BR algorithm would be very small. As or increases the number of actual 

comparisons is less than the estimated number of comparisons. 
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alphabet 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

2 89168 82389 75782 75008 72949 70455 67217 63843 65892 

4 31905 33265 27961 24635 21491 19267 17588 16039 15173 

8 19082 15657 15890 14824 13117 11580 10357 9267 8489 

16 16510 9223 8605 8941 9163 8642 8010 7251 6684 

32 15865 7581 5391 4821 4997 5278 5542 5508 5404 

64 15686 7101 4296 3266 2879 2845 2935 3156 3333 

128 15640 6945 3975 2704 2052 1807 1657 1721 1695 

256 15628 6904 3875 2554 1783 1394 1181 1074 976 

Table 5.2: Actual number of comparisons taken 

5.5 Practical evaluation of the algorithms 

From the theoretical evaluation of the algorithms we can see that the best algorithm is 

the Bird and Baker algorithm. We wanted to know how the algorithms performed in 

practice. We already know that the Bird-Baker and Zhu-Takaoka algorithms required 

a lot of space and preprocessing [27,35,139] which would take more time than the 

other algorithms and so these algorithms were omitted. 

For our experiments we used alphabets of size 2,4,8,16,32,64,128 and 256. For 

each algorithm we randomly generated 100 matrices for each pattern size from 2x2 

to 10 x 10 and generated a text of size 500 x 500. 

We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive 

running SUSE 5.2. Each algorithm was evaluated ten times and the average user time 

taken is given in Tables 5.3 to 5.10. The timing was accurate to 1/100 of a second. 
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The difference between the slowest and fastest time for each test for an algorithm was 

less than 0.2 of a second. 

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

BF 10.36 9.77 9.35 8.49 10.82 10.66 10.40 9.76 9.06 

BM 13.66 9.45 8.52 8.82 7.56 4.91 4.27 4.39 6.16 

BR 8.21 6.88 6.63 7.49 6.49 4.53 3.78 4.34 3.72 

KMP 4.11 4.38 14.54 14.34 13.90 14.01 14.22 16.28 16.82 

D-BR 4.24 3.53 1.15 2.55 0.77 0.43 1.89 0.52 1.67 

SMI 2.90 8.03 8.15 6.60 5.15 5.64 4.91 5.02 4.47 

Table 5.3: Time in seconds to search for 50 matrices when or = 256 

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

BF 11.28 11.54 12.34 11.24 1.49 11.47 12.17 11.48 11.98 

BM 3.51 13.51 10.12 8.19 9.80 6.83 6.89 7.00 6.42 

BR 10.93 8.35 8.40 7.80 8.61 6.59 6.14 6.89 6.18 

KMP 16.35 16.12 15.81 15.39 16.32 17.28 16.49 16.63 16.09 

D-BR 6.65 7.41 4.06 3.70 3.95 4.23 4.35 6.40 5.81 

SMI 1.72 10.46 9.35 9.00 8.52 7.91 8.20 7.41 7.16 

Table 5.4: Time in seconds to search for 50 matrices when a= 128 

From Tables 5.3 and 5.4 we can see that the 2D-BR algorithm is the fastest 

algorithm for the tests conducted. In these tests the alphabet is large and so the 

probability of case 2 is low. As cases 0 and 1 occur more frequently we get large 

shifts of m2 more often. In Table 5.5 the performance of the 2D-BR algorithm starts 

to suffer as the pattern size increases. This is due to case 2 becoming dominant. This 

observation is also true in Tables 5.6 to 5.10. 



68 

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

BF 8.99 8.75 10 10.19 . 75 9.21 9.56 . 73 10.24 

BM 12.26 9.63 . 21 8.45 . 25 5.33 4.98 . 27 7.79 

BR 9.37 6.94 . 96 6.02 . 19 4.53 4.95 . 93 4.41 

KMP 13.79 14.08 14.2 14.26 14.1 16.14 16.36 16.2 16.64 

D-BR 4.49 3.89 . 38 4.11 . 23 5.43 6.78 7.5 7.17 
I 

SMI 10.26 8.4 7.5 6.99 . 12 5.45 5.84 . 86 4.59 

Table 5.5: Time in seconds to search for 50 matrices when a= 64 

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

BF 9.14 9.05 8.80 9.19 8.81 9.67 9.52 12.49 9.43 

BM 11.29 2.07 8.19 6.19 5.45 5.34 4.77 5.96 3.03 

BR 7.03 6.89 5.37 5.34 4.48 4.62 4.40 3.62 3.63 

KMP 2.28 13.53 4.27 13.47 4.87 4.33 13.94 14.39 14.16 

2D-BR 5.26 4.22 6.05 11.96 10.40 9.68 9.14 6.51 7.10 

SMI 9.55 9.40 6.85 6.60 7.20 6.84 4.58 4.97 6.14 

Table 5.6: Time in seconds to search for 50 matrices when a= 32 

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

BF 9.88 0.76 9.96 10.06 9.75 9.47 8.92 10.80 10.04 

BM 11.96 10.06 8.96 8.52 7.72 6.28 5.48 7.20 5.80 

BR 8.72 7.83 7.59 5.90 5.99 5.88 3.76 5.66 4.59 

KMP 4.34 14.76 14.64 16.24 14.86 14.90 13.37 14.55 14.70 

2D-BR 9.59 13.02 18.68 1.78 14.77 12.02 6.93 6.21 5.28 

SMI 12.61 10.58 7.96 9.13 7.56 6.43 7.98 5.20 6.01 

Table 5.7: Time in seconds to search for 50 matrices when a= 16 
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2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

BF 10.23 9.62 9.30 8.87 10.46 10.70 11.49 10.38 9.62 

BM 2.11 10.28 7.95 10.59 7.52 7.43 6.54 6.36 6.28 

BR 8.73 8.72 7.27 6.03 6.05 6.30 5.65 5.27 5.44 

KMP 14.64 13.55 14.50 14.87 13.86 14.24 14.42 14.42 14.94 

D-BR 3.84 4.71 7.90 15.13 7.42 6.58 6.64 4.89 4.96 

SMI 11.62 8.86 9.05 8.51 6.28 7.08 8.03 5.99 6.56 

Table 5.8: Time in seconds to search for 50 matrices when a=8 

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

BF 14.03 11.62 1.95 11.76 11.18 12.67 11.51 12.28 12.81 

BM 15.54 12.08 10.51 10.70 10.26 9.04 8.77 8.32 9.43 

BR 11.72 10.96 10.45 8.41 8.31 8.51 8.41 7.45 7.91 

KMP 16.24 16.31 15.40 16.12 17.19 16.91 15.82 17.77 17.01 

D-BR 8.21 4.16 15.91 9.92 7.80 8.40 7.69 7.65 8.17 

SMI 14.97 12.43 1.26 10.28 10.38 8.93 10.55 9.48 9.59 

Table 5.9: Time in seconds to search for 50 matrices when v=4 

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

BF 15.58 15.41 15.40 14.52 14.24 13.79 13.90 14.93 13.80 

BM 17.18 16.54 15.21 13.50 11.20 10.89 8.48 8.14 7.81 

BR 0.35 19.56 16.83 16.52 15.02 14.73 13.70 15.18 15.45 

KMP 19.14 1.49 14.03 15.42 15.79 15.53 15.07 15.44 18.00 

D-BR 0.58 2.86 18.48 17.22 15.67 15.80 14.57 15.49 15.91 

SMI 0.88 18.41 16.81 
116.86 

17.22 14.12 13.54 14.60 14.8 7 

Table 5.10: Time in seconds to search for 50 matrices when or =2 
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The probability of case 2 occurring is approximately 1 when o=2. This is when 

the 2D-BR became one of the slowest algorithms. As the pattern size increases the 

algorithm performs as the BR algorithm but with some extra time taken checking the 

extra comparisons. 

The 2D-BR is the best algorithm to use when v is large. This is the case when 

searching in image files. 

5.6 Conclusions 

The reason for the speed of the 2D-BR algorithm is due to the fact that the algorithm 

exploits the characteristics of the matrices. The only disadvantage of our 2D-BR 

algorithm is that it requires a large alphabet due to its complex searching procedure. 

The large alphabet ensures that cases 0 and 1 are used for the searching phase of the 

algorithm more frequently. The 2D-BR algorithm performs best with larger alphabets 

due to the probability of case 2 being reduced. 

In our tests we used square matrices. If the pattern was a rectangle or an irregular 

shape as in [59,75] we could extend the 2D-BR algorithm to search in these texts. 



Chapter 6 

Compression algorithms 

6.1 Introduction 

The dictionary definition of compression is: "to squeeze together or compact into less 

space" [43]. Text compression [29] is exactly that, taking a file and compacting it 

so that it takes less space. How the compacting is performed and how much com- 

patting is done is the difference between the various algorithms available. Although 

the times to encode and decode texts are considered, normally we are interested in 

maximizing the factor (ratio) by which the text has been compressed. The aim of a 

text compression algorithm is to decrease the number of bits required to represent a 

piece of text. 

The compression ratio of a text is the amount of space saved by compressing the 

text. The compression ratio is calculated using the following equation: 
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compression ratio = originalsize-encodedsize 
originalsize 

When comparing compression algorithms [89] to see which gives the greater amount 

of compression we use the compression ratio. Although an algorithm may have a 

higher compression ratio than another it may take a long time to compress the text. 

Therefore compression algorithms are evaluated on their compression ratio and the 

time taken to compress a text. 

There are two types of compression algorithm, lossless compression and lossy com- 

pression. Lossless meaning that none of the information in the source file is lost when 

the file is decompressed. The file is compressed and when it is decompressed it is 

identical to the file that was compressed. In lossy compression some of the informa- 

tion may be lost during the compression. Lossy compression attempts to eliminate 

redundant or unnecessary information. Most music compression technologies, such 

as MP3, use a lossy technique. For text compression we use lossless compression 

algorithms as we need to compress the source file and decompress it to recover the 

original source file. There are many compression algorithms for text compression. 

Text compression algorithms use the statistical data and structure of the text file to 

compress the file. There are two famous compression algorithms that are used in text 

compression, Huffman Coding [73] and Lempel-Ziv encoding [134,140,141]. 
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6.2 Huffman Encoding 

Huffman encoding [73] can be used to compress data such as text or images [72]. 

Text files contains characters and formatting commands. Most text files use the 128 

characters in the ASCII character set. They are numbered from 0 to 127. Numbers 

0 to 31 and 127 are used to represent control or formatting characters and 32 to 

126 represents the alphanumeric characters in the text. Each of the characters is 

represented in the file by eight bits or one byte. Although we only need 7 bits 

to represent the numbers from 0 to 127. Numbers 128 to 255 are used for some 

characters in the text that may be from the extended ASCII character set such as 

Greek letters, math symbols and various geometric patterns. 

In Morse code [98] the more frequently used letters have shorter patterns asso- 

ciated with them. This is so that a message can be passed quickly and accurately. 

Although both the sender and recipient must know Morse code to use this form of 

signalling. This is the idea behind Huffman encoding. More frequent characters can 

be assigned shorter bit patterns and less frequent characters can be assigned longer 

bit patterns. Huffman encoding can be dynamic or static. First, we will consider 

static Huffman encoding and give an example of how the algorithm compresses a 

text. A visualisation of Huffman encoding can be found at [121]. 

To use static Huffman encoding we must first evaluate the frequencies of the 

characters in the text. To do this we must read the text character by character 
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updating the relevant frequencies from the start to the end. Consider the following 

frequency table: 

Character Frequency 

A 70 

B 33 

C 27 

D 21 

E 12 

F 7 

END 1 

Table 6.1: The frequency of each of the characters in the text. 

To construct the bit pattern for each character we build a Huffman tree (binary 

tree) and then reading the Huffman tree gives the relevant bit pattern. Let each of 

the characters in the text be a leaf in the Huffman tree. To build the tree we perform 

the following steps. 

Step 1: Pick the nodes nl and n2 that have the smallest weights. 

Step 2: Replace them with a new node whose children are nl and n2 and whose 

weight is the sum of the weights of nl and n2. 

Each time we perform these steps we will replace two nodes in the alphabet with one. 

Until only one single node remains and this node is the root of the Huffman tree. 

The two nodes with the smallest frequencies are END and F in Table 6.1. We 

make these the children of a parent node and replace them in the frequency table 
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with END, F = 8. 

[END) [f) 
Figure 6.1: END and F added to the Huffman tree 

Listing the frequencies in order we now get A=70, B=33, C=27, D=21, E=12 

and END, F=8. The two nodes with the smallest frequencies are END, F and E. We 

make these the children of a root node and replace them in the frequency table with 

END, F, E = 20. Note that the E and the root of END, F are on the same level of the 

tree. 

Figure 6.2: E added to the Huffman tree 

Listing the frequencies in order we now get A=70, B=33, C=27, D=21 and 

END, F, E=20. The two nodes with the smallest frequencies are END, F, E and D. 

We make these the children of a root node and replace them in the frequency table 

with END, F, E, D = 41. Note that the D and the root of E are on the same level of 

the tree 

Listing the frequencies in order we now get A=70, END, F, E, D=41, B=33 and 
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Figure 6.3: D added to the Huffman tree 

C=27. The two nodes with the smallest frequencies are C and B. We make these the 

children of a root node and replace them in the frequency table with C, B = 60. Note 

that the subtree containing C, B is not connected to the main tree. 

D LB C 

E 

END F 

Figure 6.4: C and B are added but not connected to the main tree 

Listing the frequencies in order we now get A=70, C, B=60 and END, F, E, D=41. 

The two nodes with the smallest frequencies are C, B and END, F, E, D. We make 

these the children of a root node and replace them in the frequency table with 

END, F, E, D, C, B = 101. Note that the C, B and D are on the same level of the 

tree 
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Figure 6.5: C and B subtree connected to the Huffman tree 

Listing the frequencies in order we now get A=70 and END, F, E, D, C, B=101. 

The two nodes with the smallest frequencies are A and END, F, E, D, C, B. We make 

these the children of a root node and replace them in the frequency table with 

END, F, E, D, C, B = 101. 

The tree is now complete and we can now read the bit patterns related to each 

character. The level which each character is on is the length of the bit pattern 

associated with it. For example E will have a bit pattern of length 4. Note that the 

root of the tree is level 0. To get the bit pattern we traverse the tree to each of the 

characters. If we traverse a left path we record a0 and if we traverse a right path 

we record a 1. If we traverse left, right and then left and we are at B. So B has a bit 

pattern of 010. Using the same method for each character we get the following bit 

patterns as shown in Table 6.2. 
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Figure 6.6: A added to the Huffman tree and the tree is complete 

Character Frequency Bit Pattern Bit Pattern Length Freq x BPL 

A 70 1 1 70 

B 33 011 3 99 

C 27 010 3 81 

D 21 001 3 63 

E 12 0001 4 48 

F 7 00001 5 35 

END 1 00000 5 5 

Table 6.2: The bit patterns and their lengths for an Huffman encoding of the frequen- 

cies in Table 6.1 
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In Table 6.2 the fourth column shows the length of each bit pattern. Multiplying 

this figure with the frequency of a character gives the number of bits required to 

represent that character using Huffman encoding. So the total number of bits required 

is 401 bits. The original file took 171 x8= 1368. 

The set of distinct characters in the text is known as the dictionary. The dictionary 

is stored as a binary sequence that allows us to reconstructed our encoding tree. If 

we let 0 represent an internal node and 1 represent a leaf then we can use a binary 

string to represent the tree. We start with a fixed 6 bit string which indicates how 

many bits each character in the original text requires to represent it. In the above 

example we are storing ASCII characters which have a value between 0 and 127. So 

we will need 7 bits to represent each character. So we will output 7 which is 000111 

to our encoded file. 

There are 7 leaves and 6 nodes in our tree in Figure 6.6. We traverse the tree in 

preorder: visit the root, traverse the left subtree, traverse the right subtree. So for the 

tree in Figure 6.6 we would get 0000011110111. Note that this does not include the 

data required to represent the characters at each of the leaves. At each of the leaves 

we have the value of the character at that position in the tree. When encoding the tree 

each time we output a1 to indicate a leaf we record the character at that leaf. In this 

example each character in the text requires 7 bits to represent it. So the 7 bits of data 

after a1 indicate the character at that leaf. The binary representations of each of the 
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ASCII characters in the dictionary are A= 1000001, B= 1000010, C= 1000011, D= 

1000100, E= 1000101, F= 1000110 and END = 0000100. So the full encoding of the 

dictionary is 00000100001001100011011000101110001000110000101100001111000001. 

To reconstruct the tree we would use a preorder traversal mapping the nodes and 

leaves, and decoding the character at the leaf each time we add a new leaf. 

So we represent the above tree using 13 bits and we use 49 bits to show the 

information stored at each of the leaves. So we used 6+ 13 + 49 = 68 bits to represent 

the dictionary. So the total number of bits required is 469 bits. The original file took 

1368 bits. So the compression ration is 1368 
8=0.65716. So we have a compression 136 

ratio of 65.72%. 

Adaptive or dynamic Huffman encoding [85,132,133] works in a similar way to 

static Huffman encoding only the Huffman tree is constantly updated. The tree is 

first populated with only the first character of the text. As the characters are read 

from the text then the tree is built and modified so that the characters that appear 

with the highest frequency have the smallest bit patterns. 

Although Huffman encoding has a good compression ratio there are a few problems 

associated with it. For example if one of the bits in the text is changed then this 

can cause the entire text to be changed or cause the wrong character to be printed. 

These errors that can occur mean that the decompressed file may not be an exact 

copy of the original. Standish [126] shows that Huffman codes should recover from 
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errors with only a partial loss of data. This recovery from errors is known as self 

synchronisation. A difficulty of self-synchronisation is that it provides no indication 

that an error has occurred. In [128] it is proven that a code is never self-synchronising 

if and only if none of the proper suffixes of the codewords are themselves codewords. 

An algorithm is introduced for constructing an optimal Huffman code for a 

weighted alphabet in [86]. An optimal Huffman code yields the best possible code 

for a collection of symbols and frequencies. The algorithm has a worst case time 

complexity of O(nL) where n is the size of the weighted alphabet and each code 

string must have a length no greater than L. 

6.3 Lempel-Ziv encoding and its derivatives 

Lempel and Ziv decided to use the structure of the text to compress it. Most texts 

contain repeated patterns, be they repeated phrases, words, suffixes, prefixs or char- 

acters. Lempel and Ziv devised three algorithms all based around a similar idea. The 

first of which was LZ77 [140) which was first documented in 1977. The algorithm 

replaced reoccurring strings of characters with pointers to earlier occurences of that 

string. 

In the LZ77 compression of a text the coding position is the position of the char- 

acter that is currently being coded. A window of size w that contains w characters 

from the coding position backwards, where the characters in the window are the last 
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w characters processed. A look ahead buffer which is the character sequence from the 

coding position to the end of the input. The algorithm searches for the longest match 

with the beginning of the look ahead buffer. Upon a match between the window 

and the look ahead buffer, a pointer is output giving the position and length of the 

match. The position is given as the distance away from the current coding position. 

It is possible that not even one character of the window will match with the character 

at the coding position. If there is no match then a null pointer and the character at 

the coding position is the output. Otherwise, after each pointer it outputs the first 

character in the look ahead buffer after the match. 

In Table 6.3 we show the positions of the characters in 'AAGTCTGTCA' and we 

show the full encoding in Table 6.4 

Pos. 1 2 3 4 5 6 7 8 9 10 

Char. A A G T C T G T C A 

Table 6.3: Position of the characters in the string 'AAGTCTGTCA' 

In Table 6.4, step is the number of times the algorithm has iterated. The position 

indicates the current coding position. Match shows the longest match with the char- 

acters in the window. Char shows the first character after the match. If there is no 

match then Char is the character at the coding position. Output shows the output in 

the form (D, L)C where D is the distance to the matching characters in the window, 

L is the length of the match and C is the character after the match or the character 
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Step Pos. Match Char Output 

1 1 NONE A (0,0)A 

2 2 A G (1,1)G 

3 4 NONE T (0,0)T 

4 5 NONE C (0,0)C 

5 6 T G (2,1)G 

6 8 TC A (4,2)A 

Table 6.4: LZ77 encoding of the string 'AAGTCTGTCA' 

at the coding position if no match exists. 

We firstly set the coding position to the beginning of the text string. We then 

search for the longest match in the window to left. As the window is empty there is 

no match and the null pointer (0,0) is output and the character at the coding position 

is 'A'. We then move to the next coding position which is the next character in the 

text string to the right that hasn't been output. In this case the second W. The 'A' 

matches with the 'A' in the window and so we output a pointer and the character 

that is after the character that matched, namely 'G'. The pointer would be (1,1) as 

the distance from the coding position to the matching character is 1 and the length 

of the match is 1. At the sixth and final step we output (4,2)A. This means that 

there is a match in the window of length 2 that is 4 positions away from the current 

coding position. The current coding position is 8 and TC is repeated 4 positions to 

the left starting at 4. The 'A' is the first character in the text string after the match. 

The window usually contains between 4,000 and 64,000 characters. Once the 
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window is full it is shifted to the right to keep it one position to the left of the 

coding position. The characters that are not in the window are not considered when 

searching for a match. This process of searching for matches can be time consuming, 

but decoding the compressed file is simple and fast. The pointers can easily be 

converted back to the characters that are represented by them. The LZ77 algorithm 

offers a very good compression ratio but the amount of time taken for the compression 

is a major drawback. 

The second Lempel-Ziv algorithm is the LZ78 [141] which uses a dictionary to 

create the pointers rather using a window. As the text string is compressed a dictio- 

nary is built containing already scanned characters and strings. We output the codes 

or pointers to the compressed file in the following format (I, C), where I is the index 

of the dictionary string that has matched with the characters at the coding position 

and C is the first character after the matching characters in the text string. If there 

is no match between the dictionary and the character at the coding position then 

we output (0, C), where C is the character at the coding position. In Table 6.6 we 

show the full encoding of the characters in 'AAGTCTGTCTCA' using LZ78. The 

positions of the characters are shown in Table 6.5 

Pos. 1 2 3 4 5 6 7 8 9 10 11 12 

Char. A A G T C T G T C T C A 

Table 6.5: The positions of the characters in the string 'AAGTCTGTCTCA' 



85 

Step Pos. Dictionary Index output 

1 1 A 1 (0, A) 

2 2 AG 2 (1, G) 

3 4 T 3 (0, T) 

4 5 C 4 (0, C) 

5 6 TG 5 (3, G) 

6 8 TC 6 (3, C) 

7 10 TCA 7 (6, A) 

Table 6.6: The LZ78 encoding of the string 'AAGTCTGTCTCA' 

In Table 6.6, step is the current iteration of the algorithm. Position is the current 

coding position. Dictionary shows what string has been added to the dictionary. The 

index for each entry in the dictionary is the step number. 

To compress 'AAGTCTGTCTCA' we start with an empty dictionary and start 

at position 1 in the text string. We search the dictionary for the character at the 

coding position, 'A', but the dictionary is empty and so we don't find a match. We 

put 'A' in the dictionary and it has an index of 1 which is the step number. We 

output (0, A) to the compressed file. We then move to position 2 and search for 'A' in 

the dictionary. We find a match and try to extend the match. The string 'AG' is not 

in the dictionary and so the longest possible match is 'A'. We output (1, G) as the 

index of the dictionary entry 'A' is 1 and the first character after the match is 'G'. 

We also enter 'G' into the dictionary and it has an index of 2. The next two coding 

positions are not in the dictionary and both single characters are entered into the 
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dictionary with 'T' and 'C' having indexes of 3 and 4 respectively. We output (0, T) 

and (0, C) to the compressed file. When we check for a match with the next coding 

position 6 equal to 'T' and the dictionary we get a match. We try to extend the 

match but 'TG' is not in the dictionary and so we enter 'TG' into the dictionary and 

give it an index of 5. We output (3, G) to the compressed file as 3 is the dictionary 

index for 'T'. We continue this process on to the end of the string. Note that for step 

7 we search the dictionary for 'T' and get a match and then try to extend the match 

to 'TC' which also matches. We then search for TCA' which is not in the dictionary. 

We enter 'TCA' into the dictionary and give it an index of 7 and output (6, A) to the 

compressed file as 6 is the index for TC. 

The decoding process is simple and the dictionary is rebuilt in a similar way to 

that used to encode the text string. The compression ratio is very good. 

The third Lempel-Ziv algorithm is a modified version of the LZ78 algorithm. The 

LZW algorithm [105,134] was devised by Lempel, Ziv and Welch. The algorithm 

removed the need for characters in the compressed file. The compressed file is a string 

of numbers related to the entries in the dictionary and their indexes. As there are no 

characters in the compressed file then the dictionary cannot be empty at the beginning 

of the compression process. The dictionary contains each character in the alphabet 

being used in the text string and each entry is indexed in the dictionary from 1 to 

the alphabet size. As in LZ78 we build a dictionary of strings that have already been 
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scanned. As before we try to find the longest possible match from the coding position 

in the dictionary. When we get a mismatch we output the index of the last string 

to match the characters in the dictionary. The string that didn't match is entered 

into the dictionary and is indexed with (the alphabet size + current iteration/step 

number). Unlike in LZ78 the next coding position is the character that caused the 

mismatch between the characters in the text string and the dictionary. This process 

continues until there are no more characters to be compressed. In Table 6.7 we 

show how 'AAGTCTGTCTCA' would be compressed using LZW. The positions of 

the characters is the same as in Table 6.5. Note that there are 4 characters in the 

alphabet and so they would be assigned the numbers 1 to 4 as follows: A=1, C= 

2, G=3andT=4. 

Step Pos. Dictionary Index Output 

1 1 AA 5 1 

2 2 AG 6 1 

3 3 GT 7 3 

4 4 TC 8 4 

5 5 CT 9 2 

6 6 TG 10 4 

7 7 GTC 11 7 

8 9 CTC 12 9 

9 11 CA 13 2 

10 12 n/a n/a 1 

Table 6.7: The LZW encoding of the string 'AAGTCTGTCTCA' 
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In Table 6.7 step is the number of iterations that the algorithm has performed. 

Position is the current coding position. Dictionary is the strings that have been 

entered into the dictionary and index is the number that has been assigned to them. 

Output is what is written to the compressed file. 

When compressing 'AAGTCTGTCTCA' we start with a dictionary containing 

the four characters A, C, G and T numbered as above. We then scan in 'AA' which 

is not in the dictionary and so we enter it in the dictionary with index equal to 5. We 

output the value of 'A' (1) to the compressed file. We then move to position 2 and 

search for 'AG' in the dictionary. It isn't there so we enter it into the dictionary with 

an index of 6. We output the value of 'A' (1) to the compressed file. We then move 

to position 3 and search for 'GT' which is not in the dictionary. We enter it into the 

dictionary with an index of 7. This process is repeated to the end of the text string. 

Note that for step 7 we search for 'GT' and we find a match. We try to extend the 

match by searching for 'GTC' but that is not in the dictionary. We enter 'GTC' in 

the dictionary with an index of 11. We output the index of 'GT' to the compressed 

file which is equal to 7. 

So we have compressed 'AAGTCTGTCTCA' to the numbers 1,1,3,4,2,4, 

7,9,2 and 1. Each of the numbers are represent by a 12 bit binary string in the 

compressed file. So our compressed file would take 10 x 12 =120 bits to store the 

compressed file. The original file took 12 x8= 96 bits to store it. Although the 
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compressed file from this example is larger than the original file for larger texts we 

achieve much improved compression ratios. 

An improvement to LZW encoding is shown in [71] which improves the compres- 

sion ratio without a significant loss in speed. In [30] a method is described that 

decreases the amount of time required to build the encoding dictionary. This is done 

by comparing the available data structures and introducing two new data structures 

designed specifically for the task of Lempel-Ziv compression. 

Once a text has been compressed we still need to be able to access the data 

contained in the text. This has led to the development of compressed string matching 

algorithms. These algorithms allow the user to search for a pattern in a text without 

the need to decompress the text [7,100,96,118]. As the compressed text is smaller 

than the original text this can increase the speed of the search. Compressed string 

matching has been performed in a number of compressed texts and is not limited to 

one type of compression. 

A theoretical analysis of searching in the Lempel-Ziv compressed files is given in 

[58,65,66,67,78]. A practical evaluation of string matching in the Lempel-Ziv file 

is given in [83,102,116]. The problem of multiple matching in the LZW compressed 

text is discussed in [81]. Multiple pattern matching [47,101,136] is searching for 

multiple patterns in one pass of the text. Existing string matching algorithms have 

also been adapted to search in the compressed Lempel-Ziv compressed file. The Shift- 
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AND algorithm is adapted and used in [82]. The Boyer-Moore algorithm is adapted 

and used in [103,119]. 

6.4 Byte pair encoding 

Byte pair encoding compresses two characters in the text in one byte. In English 

texts the characters in the special ASCII set (numbers 128-255) are normally not 

used. This means that for each character in the text 8 bits are being used to store 

information that can be stored using 7 bits. This means we have 128 characters that 

are unused. The frequency of pairs of characters or digrams are taken and the most 

frequent pairs or digrams are assigned to use ASCII values (128 to 255). Optimal 

compression would produce a compressed file that would be 50% of the size of the 

original. This method is used in [93,117] and a method is explained for searching in 

the compressed file. 



Chapter 7 

String matching in an efficiently stored DNA text 

7.1 Introduction 

String matching and Compression are two widely studied areas in computer science 

[47]. String matching is detecting a pattern P of length m in a larger text T of length 

n. Compression involves transforming a string into a new string which contains the 

same information but whose length is as small as possible. These two areas naturally 

lead to Compressed String Matching, i. e. searching for a pattern in a compressed 

text. This method will save both space and time. 

In this chapter we describe a String Matching algorithm to search for a pattern 

in an efficiently stored text. A DNA text (or molecule) encodes information, which 

by convention is represented as a string over the DNA alphabet, {A, C, G, T}. 

String Matching in an efficiently stored DNA text is useful for the following reasons. 

Although the cost of memory is reducing, the sizes of DNA databases are growing ex- 

ponentially. A typical question in molecular biology is whether a pattern (boundary) 

91 
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occurs in a DNA text, i. e. we don't need to view the text. 

Optimal efficient storage will devote two bits to represent each DNA character, if 

each character is drawn uniformly at random from the DNA alphabet and that all 

positions in the text are independent [91). 

7.2 Efficient storage of a DNA text 

In the DNA alphabet, E, there are four characters, namely A, C, G and T. As there 

are only 4 possible characters in a DNA text we can represent the characters with 

the function, f: E -+ [0 .. 3], such that f(A) = 0, f (C) = 1, f (G) = 2, and f (T) = 3. 

After we replace the characters in a text with 2 bits per character, it is possible 

to replace eight consecutive bits in the binary text with its corresponding ASCII 

character. These eight consecutive bits are called a block. The decimal value of a 

block is the code of the block given by the following function g. 

g: ExExExE-*[0.. 255], 

g(a, 3-y6) = (f(a) x43) + (f(, ß) x 42) + (f(ry) x 41) + (f(6) x 4°) 

A DNA text-block will be represented by 32-bits in the original DNA text, as each 

character needs 8-bits. Using the function g we can represent a text-block with 8-bits. 

As the function g is a bijective function, we can efficiently store any text block into 

8-bits and it is possible to reconstruct the original DNA text exactly. 

This efficient storage method will guarantee to efficiently store the DNA text in 
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25% of the space required for the original text. 

7.3 Comparison with existing compression algorithms 

In this section we compare the well known text compression methods, Lempel-Ziv 

encoding [134] and Huffman encoding [73] with our efficient storage method. Note 

that our method requires 2 bits per DNA character. 

In Lempel-Ziv (LZ) encoding [140,141] the file may be compressed to less than 

2 bits per character but requires re-occurring strings of length at least 6. This is 

because each of the strings that are output to the compressed file are of 12 bits in 

length. Also the strings length less than 6 that have been written to the compressed 

file have to be offset. The experiments in [91] show that LZ encoding compresses a 

DNA text to 2.14 bits per character for their chosen text, which is worse than our 

method 

The LZ encoding and its derivative LZW encoding [134] are used in UNIX utilities, 

compress and gzip. We selected DNA texts of different sizes from a database in [57] 

and compressed the texts using these utilities. Table 7.1 shows that our compression 

method is comparable to these methods. The third and fourth columns show the size 

of the compressed file as a percentage of its original size. 
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DNA text Original size (bytes) gzip % compress % 

Text 1 100000 28.523 27.264 

Text 2 100000 28.758 27.347 

Text 3 100000 28.886 27.348 

Text 4 100000 28.659 27.283 

Text 5 172000 29.167 27.335 

Text 6 217000 28.992 27.143 

Text 7 253505 29.098 27.193 

Text 8 287000 29.065 27.217 

Text 9 319000 29.141 27.183 

Text 10 995000 28.994 26.911 

Table 7.1: The size of the compressed generated when using compress and gzip 

The Huffman encoding determines the length of the bit representation of the 

characters according to their frequency. The Huffman encoding compressed the texts 

used in Table 7.1 to 25% of their original size. Although Huffman encoding gives a 

figure that is the same as ours, the Huffman encoding requires the dictionary from 

the encoding for the decoding process. Our method is also simpler than the Huffman 

encoding, as our method does not require any pre-computation to compress a DNA 

text 

7.4 Searching in the efficiently stored file - the DS algorithm 

In this section we describe an algorithm to find all exact occurrences of a pattern in an 

efficiently stored DNA text. The original DNA text contains four DNA characters, 
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namely A, C, G and T. The pattern may be composed of more than these four 

characters. These extra characters are wildcards, which can represent two or more 

DNA characters. For example [4], 

B=C, GorT D=A, GorT 

H=A, CorT 

M =A or C 

R=AorG 

K=GorT 
N= A, C, G or T 
S=CorG 

V=A, CorG W=AorT 
Y=CorT 

A substring of the pattern may overlap between consecutive text-blocks and a 

pattern may start in a text-block at any one of four positions. For example, efficient 

storage of a DNA text ACCGGTAGAGGC will divide the text into blocks, ACCG, 

GTAG and AGGC. The pattern CGGTAGA occurs in the consecutive blocks as 

shown in bold fonts and the pattern starts at the third position in the first text-block. 

During the search we need to look whether a substring of the pattern matches a 

text-block, and whether a prefix (or suffix) of a pattern is a suffix (or prefix) of a 

text-block. Due to this problem we have to look for four different expressions in the 

efficiently stored text. For example, the pattern CGGTAGA will have the following 

expressions, where N can be any DNA character, A, C, G or T. 
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Expression 0: NNNC (0) GGTA (4) GANN (8) 
Expression 1: NNCG (1) GTAG (5) ANNN (9) 
Expression 2: NCGG (2) TAGA (6) 

Expression 3: CGGT (3) AGAN (7) 

Figure 7.1: The expressions for the pattern CGGTAGA 

Each expression is made up of pattern-blocks of length four. There will be m+3 

pattern-blocks (see Figure 7.2), where m is the length of a pattern. We number the 

pattern blocks as above (shown in brackets) starting from 0 at the top left to 9 in the 

bottom right. 

For a pattern P1P2.. P,,, we can construct the expressions as follows, where m 

mod 4=0. The pattern-block numbers are shown in brackets. 

Expression 0: NNNP1 (0) 
""""""". " 

Pm-ePm-6Pm-4Pm-3 (m - 4) Pm-7Pm-1PmN (m) 

Expression 1: NNP1P2 (1) 
""""""""" 

Pm-6Pm-4Pm-3Pm-Z (m -3) Pm_IPmNN (m + 1) 

Expression 2: NP1P2P3 (2) """"""""" Pm-4Pm-3Pm-2Pm-1 (+n - 2) PmNNN (m + 2) 

Expression 3: P1P2P3P4 (3) 
""""""""" 

Pm-3Pm-2Pm-1Pm (m - 1) 

Figure 7.2: The expressions generated for a general pattern 

The naive algorithm will compare a text-block with the first pattern-blocks in 

each expression. If any of these pattern-blocks matched with the text-block, we need 

to compare the consecutive text-blocks with the rest of the pattern-blocks in the 

expression. If a pattern-block contains a wildcard, we need to compare a text-block 

with all the possible pattern-blocks by considering the DNA characters represented 

by the wildcard. 
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The DNA Search (DS) algorithm first constructs a table called the Block Table. 

The Block Table has 256 columns and m+3 rows as there are 256 possible blocks in a 

DNA text and m+3 is the number of pattern-blocks. The table is initialised to 0. The 

(i, j)th entry in the table is defined as follows, where i, 0<i<m+2, is the pattern- 

block number and j, 0<j< 255, is the code for a block of DNA characters. Block 

Table(i, j) =1 if j matches the value for pattern-block i, otherwise Block Table(i, j) 

= 0. Suppose that the pattern-block does not have a wildcard character, the (i, j) th 

entry is 1, if the code for pattern-block i is equal to j. If there is one or more wild 

cards in the pattern-block, we consider all the possible blocks by considering the 

DNA characters represented by the wildcard. For example, if the ith pattern-block is 

NAWT, the (i, j)th entry is equal to 1 for all j, where j is the code for AAAT, AATT, 

CAAT, CATT, GAAT, GATT, TAAT or TATT. 

For each expression we only have to compare one pattern-block with a text block, 

and if these two match then we compare the rest of the pattern-blocks in the ex- 

pression with the corresponding text-blocks. We choose a pattern block (from each 

expression) which has the minimum number of possibilities of matching with a text- 

block. For each pattern-block the number of possibilities of matching a text-block 

can be found by adding the values in the row of the pattern-block in the Block Table. 

For example, the pattern ACAC will have the following expressions. 
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Expression 0: 

Expression 1: 
Expression 2: 

Expression 3: 

NNNA (0) - 64 
NNAC (1) - 16 
NACA (2) -4 
ACAC (3) -1 

CACN (4) -4 
ACNN (5) - 16 
CNNN (6) - 64 

Figure 7.3: The expressions generated for the pattern ACAC 

The pattern-block numbers and the number of possibilities are stated with the 

pattern-block. The pattern-block numbers are in brackets. The pattern-blocks will 

be chosen as follows, 

Expression 0: 

Expression 1: 

Expression 2: 

Expression 3: 

CACN (4) -4 
NNAC (1) - 16 

NACA (2) -4 
ACAC (3) -1 

Figure 7.4: The pattern blocks that would be chosen for the pattern ACAC 

From these we construct a Search Table of dimensions 4x 256, and it is initialised 

to -1. In the first row of the Search Table, we enter the chosen pattern-block numbers 

at the jth column, for all j, 0<j< 255, if j is the code for these pattern-blocks. A 

column number may be the code for more than one of the chosen pattern-blocks. In 

this situation we enter only one pattern block number in each row of that column. 

As there are only four expressions we need a maximum of four rows. In the above 

example, the chosen pattern-blocks from Expression 0 and 2, CACN and NACA, 

will both match the block CACA. We enter the pattern-blocks (CACN and NACA) 

numbers 4 and 2 in the first and second rows respectively of the column k, where k 
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is the code for CACA. 

We begin the search at the beginning of the efficiently stored DNA text and 

compare the text-blocks with chosen pattern-blocks in the Search Table. We check 

the jth column in the Search Table, where j is the code of the text block. If the 

entry is -1 then we check the next text-block. Otherwise we know that the text-block 

is in the pattern. We compare the rest of the pattern-blocks in the expression with 

the corresponding text-blocks until either full match or mismatch is found using the 

Block Table. Adding or subtracting 4 from the pattern-block numbers can easily 

identify the rest of the pattern-blocks of that expression. Before we move to the next 

text-block, we check if the entry in the next row of the Search Table is -1. We repeat 

this process if the entry is not -1, otherwise we check the next text-block. 

7.5 The average running time of the DS algorithm 

The pre-processing of the DS algorithm takes O(m) time, as the Block table and 

the Search Table can be constructed in O(m) time and 0(1) time respectively. The 

worst case for the search will take O(mn) time. In this section we will show that the 

algorithm does on average O(n) comparisons. From this we can say that the average 

running time of the algorithm is O(n + m). We also justify this with experiments. 

A block is a string of four characters. If the size of the alphabet set is 4, then we 

have only 256 different blocks. If we assume that each of the 256 blocks occurs in the 
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text with equal frequency, then we have Lemma 7.1. 

Let I'PB (j) be the probability of a pattern-block j matches a text-block. 

Lemma 7.1: If a character in pattern-block i is either A, C, G, T or N (the wildcard 

character N represents A, C, G and T), then FPB (j) =4, where w is the number 

of wildcard character N in the pattern-block. 

Recall that when we compare a text-block with a pattern-block, we choose a 

pattern-block (from each expression) which has the minimum number of possibilities 

of matching with a text-block (i. e. the pattern-block with minimum number of wild- 

card character N). For example, consider the expressions for the pattern ACGTAT 

(shown below with pattern-block numbers in brackets). 

Expression 0: NNNA (0) CGTA (4) TNNN (8) 
Expression 1: NNAC (1) GTAT (5) 

Expression 2: NACG (2) TATN (6) 

Expression 3: ACGT (3) ATNN (7) 

Figure 7.5: The expressions generated for the pattern ACGTAT 

The following shows the value of w in the above pattern-blocks. 

Expression 0: 3 (0) 0 (4) 3 (8) 
Expression 1: 2 (1) 0 (5) 

Expression 2: 1 (2) 1 (6) 
Expression 3: 0 (3) 2 (7) 

Figure 7.6: The number of wildcards in pattern-blocks, for m=6 
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The pattern-blocks 4,5,2 and 3 have minimum values of w in expressions 0,1,2 

and 3 respectively. We would choose these pattern-blocks for the first comparison. If 

any of these pattern-blocks matches with the text-block, then we choose the pattern- 

block with the minimum number of wild cards among the remaining pattern-blocks 

in the expression. In an attempt, for each expression we repeat this step until either 

a full match or mismatch is found. 

Suppose m= 16, the following shows the values of w in a pattern-block for each 

expression (pattern-block numbers are in brackets). 

Expression 0: 3 (0) 0 (4) 0 (8) 0 (12) 1 (16) 

Expression 1: 2 (1) 0 (5) 0 (9) 0 (13) 2 (17) 

Expression 2: 1 (2) 0 (6) 0 (10) 0 (14) 3 (18) 

Expression 3: 0 (3) 0 (7) 0 (11) 0 (15) 

Figure 7.7: The number of wildcards in pattern-blocks, for m= 16 

There are three columns having all zeros. In general, for all m, if m mod 4 54 3, 

there are A= L'4 3i number of columns will have all zeros. If m mod 4=3, we will 

have A-1 columns with all zeros, and the last one with three zeros in a column and 

the fourth zero in another column. For example, if m= 15 (i. e. m mod 4= 3) we 

will have 2 (i. e. A- 1) columns with all zeros, and the last one with three zeros in a 

column and the fourth zero in another column (shown in bold font): 
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Expression 0: 3 (0) 0 (4) 0 (8) 0 (12) 2 (16) 

Expression 1: 2 (1) 0 (5) 0 (9) 0 (13) 3 (17) 
Expression 2: 1 (2) 0 (6) 0 (10) 0 (14) 

Expression 3: 0 (3) 0 (7) 0 (11) 1 (15) 

Figure 7.8: The number of wildcards in pattern-blocks, for m= 15 

From this observation we have Lemma 7.2. 

Let c= be the probability of i number of pattern-blocks matching with the text- 

blocks in an expression at an attempt. In other words ci is the probability of the 

algorithm making at least i+1 comparisons at an attempt. 

Lemma 7.2: For all m and for all i, 1<i<A, (D_ =4x 256, , where A= [m 43 

Proof: For all m, each expression has A number of pattern-blocks with w=0. At an 

attempt, we can choose pattern-blocks with w=0 from each of the four expressions 

for the first A comparisons. From Lemma 7.1 we have I'PB(j) = 1/256 if w=0. In 

a comparison we compare a text-block with the four pattern-blocks (one from each 

expression). Probability of any of these pattern-blocks (i. e. with w= 0) matching in 

a comparison is 4/256 which is c1. In an attempt we will have the ith comparison only 

if i number of pattern-blocks matches the corresponding text-blocks. The probability 

of i matches for an expression is 256, and there are four expressions and so (Di is 256, 

for all i. Q 

In an attempt, for all m>8, after A comparisons the pattern-blocks which have 
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not yet been compared will be similar to the expressions for patterns of length m', 

4< m' < 7, where m' = (m mod 4) + 4. In other words, if we remove all the A 

columns with all zeros from the expressions of pattern length m>8, the number of 

wildcards in pattern-blocks will be the same as in the expressions of pattern length 

m'. For example, if we remove 3 (i. e. A) columns of all zeros from the number 

of wildcards in pattern-blocks, for m= 16 (see above), we will get the number of 

wildcards in pattern-blocks, for m' =4 as below. 

Expression 0: 3 (0) 1 (16) 

Expression 1: 2 (1) 2 (17) 

Expression 2: 1 (2) 3 (18) 

Expression 3: 0 (3) 

Figure 7.9: The number of wildcards in pattern-blocks, for m' =4 

Lemma 7.3: For 2<m<7, I1 and 12 are as follows: 

pattern length 01 02 

2 1/ 

3 1/ 

4 3/3 

5 5/12 

6 7/25 1/102 

7 1/6 1/204 

Figure 7.10: The probability of the algorithm making at least 1 or 2 comparisons at 
an attempt. 

Proof: In an attempt, for 2<m<5 and 6<m<7 we have at most 2 and 3 
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comparisons respectively. Hence we only need to know the values of c1 for 2<m<5, 

and (Dl and 42 for 6<m<7. Q 

We show how the 4)1 and 4102 are calculated with an example for m=6. First 

we will select the pattern-blocks 4,5,2, and 3 (see above for the expressions for the 

number of wildcards in pattern-blocks, for m= 6). 

'Di = rPB(4) + rPB(5) + rPB(2) + rPB(3) 
1 

= 44 0+44 0+44 1+44 0 
(Lemma 7.1) 

= 1/256 + 1/256 + 1/64 + 1/256 

= 7/256 

For 02 we only need to consider the first expression. We can have at least 3 com- 

parisons, iff pattern-blocks 4 and (assume we select) 0 match with the corresponding 

text-blocks. 

gD2 = rpB (4) x rPB (O) 

= T41 ox 44 3 
(Lemma 7.1) 

= 1/256 x 1/4 

= 1/1024 

Note that in any attempt for all m, we can have at most A+2 matches if m mod 

4=2 and m>3, otherwise A+1 matches. For in > 8, to calculate (Da+l and (I)A+2, 

we only need to know the values of (D1 and CF2 for m, 4<m<7. From these values 

we can have the following Lemma. 
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Lemma 7.4: For m>4, 

ý%+l = (1/256)` X ab and 

4%+2 = (i/256)ß` x , 
ßb, 

where ab and ßb are the values of bth base case in the first and second columns in the 

table below respectively and b=m mod 4. 

base case a ß 

0 3/32 

1 5/128 

2 7/256 1/1024 

3 1/2048 

Figure 7.11: The number of wildcards in pattern blocks, for m' =4 

Let Ti be the probability of making exactly i comparisons at an attempt. Using 

we can have an equation for Ti: 

llýi = 4'i+1+wi+2+''' 

From this equation we have 

Ti - 4loi-i - 4ýj 

We know that we will make at least one comparison in every attempt. So (Do is 1. 

For all m, the maximum number of comparisons in any attempt is p=[ 

which is equal to A+3 if m mod 4=2 and m 54 2, otherwise A+2. So ci is 0 for all 

i>µ. This gives: 
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41i =1- (D1 

Tj = (Di-, - iDi, 2<i<p-1 

IIµ = II)µ-1 

Lemma 7.5: The total number of comparisons, WTotal, is less than or equal to 2n' 

on average, where n' is the number of text-blocks in the efficiently stored file. 

Proof: 

µ 
WTotal =nXX Wi 

i=l 

= n' X 111 -4)+ 2(4ý1 - ýN)+ 3((1)2 -4)3 )+ 

= n' x (1 +4ýD1 +(D2 +.... +l5µ-1) 

= n' x (1 +4+ 1a+i + 4a+2) (Lemma 7.2) 
i-1 256' 

< 2n' 

From Lemmas 7.2,7.3 and 7.4 we can see that E1 256, + 4ýa+l + (k\+2 <1 Cl 

From these Lemmas we have the following Theorem. 

Theorem: The average running time of the DS algorithm is O(n + m). 

To show this is also true in practice we counted the number of comparisons by 

running the DS algorithm when searching for the patterns without wildcards. Ta- 

ble 7.2 shows the estimated number of comparisons (WTotat) and the actual number 

of comparisons. We used the same texts as in Table 7.1. The patterns are the cutting 

locations or boundaries for enzymes and are taken from [4]. There are 104 cutting 
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locations or boundaries for enzymes given in [4], 62 of them don't contain a wildcard 

and 42 of them contain at least one wildcard and are shown in Figures 7.12 and 7.13 

respectively. 

AAGCTT AATATT ACGCGT ACTAGT 
AGATCT AGCGCT AGCT AGGCCT 
AGTACT ATCGAT ATGCAT ATTAAT 
CACGTG CAGCTG CATATG CATG 
CCATGG CCCGGG CCGG CCGCGG 
CCTAGG CCTGCAGG CGATCG CGCG 
CGGCCG CGTACG CTCGAG CTGCAG 
CTTAGG GAATTC GACGTC GAGCTC 
GATATC GATC GCATGC GCCGGC 
GCGCGC GCGC GCGGCCGC GCTAGC 
GGATCC GGCC GGCCGGCC GGCGCC 
GGGCCC GGTACC GTAC GTCGAC 
GTGCAC GTTAAC TACGTA TCATGA 
TCCGAA TCCGGA TCGA TCGCGA 
TCTAGA TGATCA TGCGCA TGGCCA 
TTCGAA TTTAAA 

Figure 7.12: The 62 patterns that don't contain a wildcard 

CACNNNGTG CAGNNNCTG CCANNNNNTGG 
CCANNNNNNTGG CCANNNNNNNNNTGG CCTCNNNNNNN 
CCTNNNNNAGG CCTNAGG CCSGG 
CCWGG CCWWGG CGGWCCG 
CMGCKG CTNAG CYCGRG 
GAATGCN GAAGANNNNNNN GACGCNNNNN 
GACNNNGTC GACNNNNGTC GANTC 
GCCNNNNNGGC GCTNAGC GDGCHC 
GGATGNNNNNNNNN GGCCNNNNNGGCC GGNCC 
GGTGANNNNNNNN GGTNACC GGWCC 
GGYRCC GRGCYC GTMKAC 
GTYRAC RCATGY RCCGGY 
RGATCY RGCGCY RGGNCCY 
RGGWCCY YGGCCR 

Figure 7.13: The 42 patterns that contain one or more wildcards 

We use the 62 patterns that don't contain a wildcard shown in Figure 7.12 to 

calculate the number of comparisons taken by the DS algorithm. For each pattern 

length, the actual number of comparisons in the table is the total number of compar- 

isons divided by the number of patterns of that length. There are 9 patterns of length 

4,50 of length 6 and 3 of length 8. The text length is the length of the efficiently 
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stored file. 

pattern lengths of 4 pattern lengths of 6 pattern lengths of 8 

ext no. n' Totai Actual Total Actual Total Actual 

1 25000 27344 26874 25706 25588 25398 25289 

2 25000 27344 26952 25706 25592 25398 25312 

3 25000 27344 26857 25706 25592 25398 25274 

4 25000 27344 26829 25706 25581 25398 25256 

5 43000 47031 46269 44218 44064 43688 43349 

6 54250 59326 58446 55786 55600 55118 54696 

7 63377 69319 68193 65172 64946 64390 63936 

8 71750 78477 77444 73782 73549 72897 72425 

9 79750 87227 85926 82003 81720 81025 80411 

10 48750 72070 268106 55774 254942 52728 250885 

Table 7.2: The number of comparisons performed by the DS algorithm for each of the 
10 efficiently stored DNA texts 

From Table 7.2 we can see that the number of comparisons performed by the DS 

algorithm is slightly more than the efficiently stored text size. Note that the algorithm 

takes fewer comparisons than the estimate suggests. 

7.6 Comparison with existing string matching algorithms 

In this section we compare the existing string matching algorithms with our DS 

algorithm. All searches with the DS algorithm were conducted on efficiently stored 

DNA texts. The texts used for these experiments are the same texts used in Table 7.1 

and the patterns are taken from Figures 7.12 and 7.13. For each of the 10 texts we 
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measure the total (user) time (including pre-computation time) in seconds to search 

for all 104 patterns. 

For each text we give the total time taken in seconds and the time taken for each 

algorithm divided by the time taken by the DS algorithm (Ratio). We used an Intel 

486-DX2-66 processor based machine with 8 megabytes of RAM and a 100 megabyte 

hard drive running S. u. S. E. Linux 5.2 to conduct the experiments. All the algorithms 

were coded in C. 

Tables 7.3 and 7.4 show the time taken to search for the 62 patterns that don't 

contain a wildcard (Figure 7.12). The existing algorithms searched in the original 

DNA text and the DS algorithms searched in the efficiently stored DNA text. 

text1 text2 text3 text4 text5 

Time do Time do Time do Time Ratio Time Ratio 

BR 9.09 2.34 9.14 2.37 19.11 2.41 0.00 2.49 2.56 2.65 

BM 0.48 3.74 0.48 3.78 34.44 4.35 0.51 3.80 2.38 4.26 

OR 5.51 3.13 6.51 3.29 5.46 3.21 5.59 3.19 3.37 3.53 

QS 6.45 3.24 6.38 3.27 6.45 3.34 6.52 3.31 5.13 3.67 

RAI 4.32 2.98 4.28 3.01 4.43 3.08 4.31 3.03 1.42 3.37 

DS 8.15 1.00 8.06 1.00 7.92 1.00 8.02 1.00 12.28 1.00 

SMI 6.15 3.21 6.15 3.24 6.15 3.30 6.19 3.26 4.76 3.64 

Table 7.3: Time in seconds to search for all the patterns without wildcards in the 

given texts 
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text6 text7 text8 text9 text10 

Time Ratio Time Ratio Time do Time do rime Ratio 

BR 1.14 2.75 8.05 2.77 4.39 2.84 0.30 2.93 191.7 3.17 

BM 5.66 4.39 6.70 4.43 6.96 4.54 8.88 4.80 01.1 4.98 

OR 5.41 3.70 4.10 3.70 2.97 3.81 0.35 3.90 54.1 4.20 

QS 6.98 3.81 6.40 3.83 6.39 3.99 3.49 4.05 64.7 4.38 

RAI 2.23 3.49 0.93 3.52 9.22 3.62 6.65 3.72 43.7 4.03 

DS 14.96 1.00 17.33 1.00 19.14 1.00 0.60 1.00 60.5 1.00 

SMI 6.42 3.77 6.69 3.85 4.67 3.90 2.86 4.02 62.0 4.33 

Table 7.4: Time in seconds to search for all the patterns without wildcards in the 
given texts 

textl text2 text3 text4 text5 

rime Ratio Time Ratio rime Ratio Time Ratio rime Ratio 

BR 319 39.13 319 39.58 320 40.40 317 39.52 804 65.46 

BM 131 16.07 131 16.26 131 16.54 131 16.33 354 28.82 

OR 233 28.58 226 28.04 228 28.79 225 28.05 566 46.08 

QS 286 35.08 277 34.37 312 39.39 280 34.91 694 56.51 

RAI 222 27.23 236 29.28 222 28.03 238 29.67 558 45.43 

DS 8 1.00 8 1.00 8 1.00 8 1.00 12 1.00 

SMI 354 43.42 355 44.05 354 44.70 353 44.01 898 73.12 

Table 7.5: Time in seconds to search for all the patterns with wildcards using bit 
masking in the given texts 
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text6 text7 text8 text9 textlO 

Time do 'rime do Time do Time do rime Ratio 

BR 911 60.90 1008 58.18 544 28.43 698 33.89 3155 52.18 

BM 376 25.13 417 24.07 233 12.18 294 14.27 1354 22.40 

OR 673 44.99 716 41.32 386 20.17 488 23.69 2241 37.07 

QS 791 52.87 990 57.14 471 24.61 595 28.89 2730 45.16 

RAI 636 42.51 704 40.63 380 19.86 478 23.21 2207 36.50 

DS 15 1.00 17 1.00 19 1.00 21 1.00 61 1.00 

SMI 1017 67.98 1131 65.27 612 31.98 767 37.24 3522 58.26 

Table 7.6: Time in seconds to search for all the patterns with wildcards using bit 
masking in the given texts 

The algorithms were modified so that they would search in the efficiently stored 

text using bit masking. By bit masking we mean that we read in an 8 bit ASCII 

character and masked out the bits that we didn't want. We did this by manipulating 

the ASCII character so as to reveal the character that we were comparing to the 

pattern. We used the same method when calculating the value of a shift. 

As can be seen from the results in Tables 7.5 and 7.6, we can see that searching in 

the efficiently stored file with the existing algorithms for a pattern is not as efficient 

as searching in the original DNA text. This is due to the cost of having to use bit 

masking to return the character that we are interested in comparing. 

Due to the massive difference in time between searching in the efficiently stored 

DNA text and the original DNA text we will compare in the original DNA text for 

the tests conducted using patterns that contain wildcards. 
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The existing string matching algorithms (except the BM algorithm) that are con- 

sidered in this section could be adapted to search for patterns with wildcards. 

We assign prime numbers to the DNA characters, A=2, C=3, G=5 and T=7. 

The wildcard characters can be expressed as a product of its possible prime numbers. 

For example, the value for K is 35 (5 x 7) as K can be G or T. Using prime numbers 

ensures that any value given to a wildcard character is unique. We compare a text 

character and a pattern character by dividing the value of the pattern character by 

the value of the text character. If the remainder is zero then these two characters 

match. 

After a mismatch we need to consider the wildcard characters when calculating the 

position of the rightmost occurrence of the mismatched text character. For example, 

in the pattern ACTWG, where the wildcard character W is A or T, the rightmost 

occurrences of A and T are at W. 

From Tables 7.3 to 7.8 we can see that our DS algorithm is faster than the existing 

exact string matching algorithms for the chosen data. As the size of the original file 

increases, the Ratio increases. This is because the factor of four difference between 

the original and efficiently stored DNA texts becomes more significant. 
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text1 text2 text3 text4 texts 

Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio 

BR 7.44 4.09 7.23 4.12 8.61 4.30 9.00 4.31 8.42 4.78 

OR 0.92 4.61 0.37 4.59 2.66 4.91 2.82 4.88 4.90 5.43 

QS 2.79 3.40 1.41 3.24 6.19 3.93 6.21 3.90 4.28 4.38 

RAI 0.46 4.54 0.69 4.64 8.37 4.26 8.42 4.23 9.08 4.85 

DS 6.71 1.00 6.61 1.00 6.66 1.00 6.72 1.00 10.12 1.00 

SMI 3.10 3.44 2.24 3.36 5.41 3.82 5.54 3.80 4.18 4.37 

Table 7.7: Time in seconds to search for all the patterns with wildcards in the given 
texts 

text6 text7 text8 text9 textlO 

Time do Time Ratio Time do Time do Time do 

BR 8.55 4.87 8.69 4.98 1.59 5.25 6.32 5.26 79.7 5.67 

OR 5.92 5.49 3.75 5.34 2.10 5.93 7.04 5.92 17.0 6.43 

QS 8.68 4.05 0.22 4.36 4.27 4.78 1.51 4.36 55.8 5.18 

RAI 4.52 5.37 4.27 5.38 1.84 5.27 5.56 5.83 83.3 5.74 

DS 12.02 1.00 13.80 1.00 15.53 1.00 16.40 1.00 49.3 1.00 

SMI 0.53 4.21 6.35 4.08 2.45 4.66 8.25 4.77 48.8 5.04 

Table 7.8: Time in seconds to search for all the patterns with wildcards in the given 
texts 
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7.7 Conclusions 

Using the DS algorithm one can keep texts (with an alphabet of four characters) 

efficiently stored indefinitely and perform the search for a pattern. These methods 

will save both time and space. The experimental results show that our algorithm is 

more efficient than the existing algorithms for the chosen data sets. 

Even though the DS algorithm takes O(nm) time for the worst case, we prove that 

the average time taken by the algorithm is O(n + m). We also justified our average 

running time by experiments. 



Chapter 8 

A linear time string matching algorithm on average with 

efficient text storage 

8.1 Introduction 

In this Chapter we extend our efficient storage method from Chapter 7 to include the 

storage of texts with alphabets of size, a< 128. The storage method will efficiently 

store the text in F1092 
8° of the space required for the original text. We describe a 

new string matching algorithm to search for a pattern in the efficiently stored text. 

We prove that on average this string matching algorithm takes O(n + m) time. We 

compare our new string matching algorithm with other well known existing string 

matching algorithms by experimentation. 

115 
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8.2 Efficient storage of a text 

We assume that the size of the alphabet set, a, is in the range 1<u< 128 and 

that we are representing each character in the alphabet with one byte. There are 

redundant bits in each byte as we only need 11092 al bits to represent a character. 

After we replace the characters in a text with 11092 Ql bits, it is possible to replace 

eight consecutive bits in the binary text with its corresponding ASCII character. 

These eight consecutive bits are called a block. The decimal value of a block is the 

code of the block. This representation will reduce the storage space to 108 al n, where 

n is the size of the original text. 

For example, consider the text T= CACDABEB with the alphabet set E= 

{A, B, C, D, E}. This text T of eight characters can be represented with three char- 

acters T' = AOa. First we represent the characters with A= 000, B= 001, C= 

010, D= 011 and E= 100. This will give the binary representation of the text T: 

010000010011000001100001 

The first bit in each block are shown in bold font. The codes for the text blocks 

are 65,48 and 97 and their corresponding ASCII characters are 'A', '0', and 'a' 

respectively. 
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8.3 Comparison with existing compression algorithms 

The method described in section 8.2 is not compression as in the literature but does 

reduce the size of the original text. In this section we compare the well known text 

compression methods, Huffman encoding [73] and Lempel-Ziv encoding [102,134,141] 

with our method. 

The Huffman encoding determines the length of the bit representation of the 

characters according to their frequency. It assigns smaller codes to high frequency 

characters and larger codes to low frequency characters. 

In Lempel-Ziv (LZ) encoding [141 the file may be compressed to less than Pog2 Ql 

bits per character but requires re-occurring strings. Each of the repeated strings and 

each of the characters in the alphabet are represented by 12 bits. The gains from 

this method are reliant on there being enough repeated strings to counter the 12 bits 

which are used to represent each of the compressed strings. 

The LZ encoding and its derivative LZW encoding [134] are used in UNIX utilities, 

compress and gzip. Another variation of LZ encoding (NR) is described in [102]. 

Table 8.1 shows that our efficient storage method is comparable to these methods. 

Although our method is not very good for text files with large alphabets, the method 

is competitive for DNA, RDNA and hexadecimal files. Note that the main purpose 

of this method is not compression, but for the searching of a pattern in a efficiently 

stored file. 
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o Our method Huffman Compress Gzip NR 

2 62500 62500 71579 79644 121110 

3 125000 104107 110629 118776 178706 

4 125000 125000 136945 146402 215764 

5 187500 149935 161641 168813 244192 

8 187500 187500 209053 211543 297634 

9 250000 201313 223571 226617 310964 

16 250000 250000 288546 285834 373658 

17 312500 257293 294476 290854 377491 

32 312500 312500 367527 330150 449265 

33 375000 316232 370975 332592 451570 

64 375000 375000 461069 378224 493981 

Table 8.1: Compressed text sizes for a random text of 500,000 bytes 

8.4 Searching in a text with efficient storage 

In this section we describe an algorithm to find all exact occurrences of a pattern in a 

text. Here we assume that the text is stored as described in Section 8.2 and a< 128. 

We describe the algorithm for o=2, we will see later that the algorithm can be easily 

adapted for a>2. 

A substring of the pattern may overlap between consecutive text-blocks and a 

pattern may start in a text-block at any one of eight positions. During the search 

we need to look whether a prefix (or suffix) of a pattern is a suffix (or prefix) of a 

text-block. Due to this problem we have to consider eight different expressions. Each 



119 

expression is made up of pattern-blocks of length eight bits. There will be m+7 

pattern-blocks in total (see Figure 8.1), where m is the length of a pattern. 

For a pattern P1P2.. Pm we can construct the expressions as shown in Figure 8.1. 

Here we consider the case for m mod 8=0. We number the pattern-blocks starting 

from 0 at the top left corner to m+6 in the bottom right corner as shown in brackets. 

The wildcard character N represents either 0 or 1, and P1.. ß represents Pi.. Pj_1P;, for 

1<i<j<m. 

ExpO: NNNNNNNP1 (0) ......... Pm-14.. m-7 (rn-8) Pm-6.. mN (m) 

Expl: NNNNNNPI.. 2 (1) ......... Pm-13.. m-6 (m-7) Pm-s.. mNN (m + 1) 

Exp2: NNNNNP1.. 3 (2) ......... Pm-12.. m-s (m-6) Pm-4.. mNNN (m + 2) 

Exp3: NNNNP1.. 4 (3) ......... Pm-11.. m-4 (m-5) Pm-3.. mNNNN (m + 3) 

Exp4: NNNP1.. s (4) ......... Pm-10.. m-3 (m-4) Pm-2.. mNNNNN (m + 4) 

Exp5: NNP1.. 6 (5) ......... Pm-9.. m-2 (m-3) Pm-1�mNNNNNN (m + 5) 

Exp6: NP1.. 7 (6) ......... Pm-8.. m-1 (m-2) PmNNNNNNN (m + 6) 

Exp7: P1.. 8 (7) ......... Pm-7.. m (m-1) 

Figure 8.1: Expressions for a pattern P1P2.. Pm when m mod 8=0 

The naive algorithm will compare a text-block with the first pattern-blocks in 

each expression. If any of these pattern-blocks matched with the text-block, we need 

to compare the consecutive text-blocks with the rest of the pattern-blocks in the 

expression. 

Our algorithm first constructs a table called the Block- Table. The Block-Table 

has 256 columns and m+7 rows as there are 256 possible blocks in a text and m+7 
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is the number of pattern-blocks we need to consider. The table is initialised to 0. 

The (i, j)th entry in the table is defined as follows, where i, 0<i<m+6, is the 

pattern-block number and j, 0<j< 255, is the code for a block. Suppose that the 

pattern-block does not have a wildcard character, the (i, j)th entry is 1, if the code for 

pattern-block i is equal to j. If there is one or more wild cards in the pattern-block, 

we consider all the possible blocks. For example, if the ith pattern-block is NN111000, 

the (i, j)th entry is equal to 1 for all j, where j is the code for 00111000,01111000, 

10111000 or 11111000. 

For each expression we only have to compare one pattern-block with a text-block, 

and if these two match then we compare the rest of the pattern-blocks in the ex- 

pression with the corresponding text-blocks. We choose a pattern-block (from each 

expression) which has the minimum number of possibilities of matching with a text- 

block. We build the Order-Table of dimensions 8 by [Z1 which contains the order 

in which to examine the pattern-blocks for each expression. For each pattern-block 

the number of possibilities of matching a text-block can be found by adding the values 

in the row of the pattern-block in the Block-Table. 

From these we construct a Search- Table of dimensions 8x 256, and it is initialised 

to -1. In the first row of the Search-Table, we enter pattern-block numbers from the 

first column of the Order-Table. If j is the code for these pattern-blocks, we enter the 

pattern-block numbers at the jth column, for all j, 0<j< 255. A column number 
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may be the code for more than one of the chosen pattern-blocks. This is because a 

text-block can match pattern-blocks from more than one expression. As there are 

only eight expressions we need a maximum of eight rows. For example, the chosen 

pattern-blocks, 110011NN and NNO01100, will both match the block 11001100. We 

enter the pattern-blocks (110011NN and NNO01100) numbers in the first and second 

rows respectively of the column k, where k is the code for 11001100. 

We begin the search at the beginning of the text and compare the text-blocks with 

chosen pattern-blocks in the Search-Table. We check the jth column in the Search- 

Table, where j is the code of the text-block. If the entry is -1 then we check the next 

text-block. Otherwise we know that the text-block is in the pattern. We compare 

the rest of the pattern-blocks in the expression with the corresponding text-blocks 

until either full match or mismatch is found using the Block-Table and Order-Table. 

Before we move to the next text-block, we check if the entry in the next row of the 

Search-Table is -1. We repeat this process if the entry is not -1, otherwise we check 

the next text-block. 

If o, > 2, we have to convert the pattern into a binary string by mapping the 

characters into 11092 al bits as we did in Section 8.2. Here we don't have to consider 

all the expressions. This is because in the pattern-blocks 0,1, .., 7 (from expressions 

0 to 7 respectively) the pattern starts at positions 7,6, .., 0 respectively (see 

Figure 8.1). The positions are numbered from left to right in a pattern-block. 
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Bit Length 1 2 3 4 5 6 7 

1-2 1 1-8 

3-4 2 1,3,5,7 

5-8 3 1,4,7 0,3,6 2,5 

9-16 4 3,7 

17-32 5 2,7 O's 3 1,6 4 

33-64 6 1,7 3 5 

65-128 7 7,0 1 2 3 4 5 6 

Table 8.2: The expressions considered at each comparison 

We can show that for all o,, in a comparison we need at most r 1092 13 
I expressions. 

The number of expressions that are considered at a comparison are determined by 

the length of the pattern being searched for. If a=8 then we know that we need 3 

bits to efficiently store each character of the alphabet. When performing the search, 

occurrences of the pattern are limited to beginning every 3 bits. In other words at 

positions 0,3,6,9,12, etc. in the text. So at the first comparison we need only to 

consider expressions 7,4 and 1, at the second comparison, expressions 6,3 and 0 and 

at the third comparison, expressions 5 and 2 (see Figure 8.1). 

In Table 8.2, o, is the size of the alphabet being used and Bit Length is the number 

of bits used in the efficiently stored text to represent each of the characters of the 

alphabet. The numbers 1 to 7 are the first to seventh comparison of the pattern and 

text. The values given for each value of o are the expressions considered for each 

comparison. From this table we can see that if o=4 then we consider expressions 1, 
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3,5 and 7 at each comparison. 

8.5 The average running time 

The pre-processing of our algorithm takes O(m) time, as the Block-Table, Order- 

Table and the Search-Table can be constructed in O(m) time. The worst case for the 

search will take O(mn) time. In this section we will show that the algorithm performs 

on average at most 2n comparisons. From this we can say that the average running 

time of the algorithm is O(n + m). We also justify this with experiments at the end 

of this section. 

At the end of section 8.3 we showed that we need to consider all eight expressions 

only when a=2. First we prove that the average number of comparisons for this 

worst case. 

There are only 256 possible different blocks. If we assume that each of the 256 

blocks occurs in a text with equal frequency, then we have the following lemma. Let 

I'PB (j) be the probability of a pattern-block j matches a text-block. 

Lemma 8.1: I'PB (j) = 281 W, where w is the number of wildcard character N in the 

pattern-block. 

Recall that when we compare a text-block with a pattern-block, we choose a 

pattern-block (from each expression) which has the minimum number of possibili- 

ties of matching with a text-block (i. e. the pattern-block with minimum number of 
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wildcard character N). If any of these pattern-blocks matches with the text-block, 

then we choose the pattern-block with the minimum number of wild cards among the 

remaining pattern-blocks in the expression. In an attempt, for each expression we 

repeat this step until either a full match or mismatch is found. 

For example, consider the expressions for m= 34. Figure 8.2 shows the values of 

w in a pattern-block for each expression (pattern-block numbers are in brackets). 

ExpO: 7 (0) 0 (8) 0 (16) 0 (24) 0 (32) 7 (40) 

Expl: 6 (1) 0 (9) 0 (17) 0 (25) 0 (33) 

Exp2: 5 (2) 0 (10) 0 (18) 0 (26) 1 (34) 

Exp3: 4 (3) 0 (11) 0 (19) 0 (27) 2 (35) 

Exp4: 3 (4) 0 (12) 0 (20) 0 (28) 3 (36) 

Exp5: 2 (5) 0 (13) 0 (21) 0 (29) 4 (37) 

Exp6: 1 (6) 0 (14) 0 (22) 0 (30) 5 (38) 

Exp7: 0 (7) 0 (15) 0 (23) 0 (31) 6 (39) 

Figure 8.2: The number of wildcards in pattern-blocks for m= 34 

There are three columns with all zeros which are the first three columns in the 

Order-Table. In general, for all m, if m mod 8 7, there are A= lm8 7] number of 

columns will have all zeros. If m mod 8=7, and m> 15 we will have A-1 columns 

with all zeros, and the remaining one with seven zeros in a column and the eighth 

zero in another column. For example, Figure 8.3 shows the number of wildcards in 

pattern-blocks for m= 23 (i. e. m mod 8=7. ). We can see that there is one (i. e. 

A- 1) column which is the second column with all zeros. The remaining column of all 

zeros is the fourth column with seven zeros and the eighth zero is in the first column 
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(shown in bold font). 

ExpO: 

Expl: 

Exp2: 

Exp3: 

Exp4: 

Exp5: 

Exp6: 

Exp7: 

7 (0) 

6 (1) 

5 (2) 

4 (3) 

3 (4) 

2 (5) 

1 (6) 

0 (7) 

o(8) 
0 (9) 
0 (10) 

0(11) 

0(12) 

0 (13) 

0 (14) 

0 (15) 

0(16) 

0 (17) 

0 (18) 

0 (19) 

0 (20) 

0 (21) 

0 (22) 

1 (23) 

2 (24) 

3 (25) 

4 (26) 

5 (27) 

6 (28) 

7 (29) 

Figure 8.3: The number of wildcards in pattern-blocks for m= 23 

From this observation we have Lemma 8.2. Let ti be the probability of i number 

of pattern-blocks matching with the text-blocks in an expression at an attempt. In 

other words ci is the probability of the algorithm making at least i+1 comparisons 

at an attempt. 

m8 7 Lemma 8.2: For all m and o, = 2,1 <i<A, Ibt =8x 256, , where A 

Proof: For all m, each expression has A number of pattern-blocks with w=0. At an 

attempt, we can choose pattern-blocks with w=0 from each of the eight expressions 

for the first .\ comparisons. From Lemma 8.1 we have FPB (j) = 1/256 if w=0. In 

an attempt we will have the i+ 1" comparison only if i number of pattern-blocks in 

an expression matches the corresponding text-blocks. The probability of i matches 

for an expression is jr 2, and there are eight expressions and so '= is 
256, ,1<i<A. 

0 
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In an attempt, for 2<m<9 and 10 <m< 14 we have at most 2 and 3 

comparisons respectively. Hence we only need to know the values of '1 for 2<m<9, 

and 4 and 12 for 10 <m< 14. We can calculate these values easily. For example, 

the following shows the values of w in a pattern-block for each expression (pattern- 

block numbers are in brackets) for m= 10. First we will select the pattern-blocks 8 

to 11 and 4 to 7. 

ExpO: 7 (0) 0 (8) 7 (16) 

Expl: 6 (1) 0 (9) 

Exp2: 5 (2) 1 (10) 

Exp3: 4 (3) 2 (11) 

Exp4: 3 (4) 3 (12) 

Exp5: 2 (5) 4 (13) 

Exp6: 1 (6) 5 (14) 

Exp7: 0 (7) 6 (15) 

Figure 8.4: The number of wildcards in pattern-blocks for m= 10 

FPa(8) + rPa(9) + FPB(10) + I'Pa(11) + I'PB(4) + 1'Pa(5) + rPa(6) + rPa(7) 

s o+ +++++ao (Lemma8.1) = 8-0+ - 88 88-1 88-2 88-3 88-2 8- 8- 

= 1/256 + 1/256 + 1/128 + 1/64 + 1/32 + 1/64 + 1/128 + 1/256 

= 23/256 

For 11ý2 we only need to consider the first expression. We can have at least 3 com- 

parisons, iff pattern-blocks 8 and (assume we select) 0 match with the corresponding 

text-blocks. 
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(P2 = rPB (8) X rPB (o) 

= 8s ox 88 7 
(Lemma 8.1) 

= 1/256 x 1/2 

= 1/512 

In an attempt, for all m> 15, after A comparisons the pattern-blocks which have 

not yet been compared will be similar to the expressions for patterns of length m', 

7< m' < 14, where m' = (m mod 8) +8 if m mod 807. Otherwise m' = 7. In other 

words, if we remove all the A columns with all zeros from the expressions of pattern 

length m> 15, the number of wildcards in pattern-blocks will be the same as in the 

expressions of pattern length m'. For example, if we remove (i. e. A) columns of all 

zeros from the number of wildcards in pattern-blocks, for m= 34 (see Figure 8.2), 

we will get the number of wildcards in pattern-blocks, for m' = 10 (see Figure 8.4) 

as in Figure 8.5. 

Note that in any attempt for all m, we can have at most A+1 matches before 

we make the last comparison, if m mod 8=0,1 or 7, otherwise A+2. For m> 15, 

we need to know (Da+l and 4%+2. From the above observation we can calculate these 

values from the values of (D1 and '2 for m, 7<m< 14. From these base values we 

can have Lemma 8.3. Note that A=0 for all m< 14. 
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ExpO: 7 (0) 0 (32) 7 (40) 

Expl: 6 (1) 0 (33) 

Exp2: 5 (2) 1 (34) 

Exp3: 4 (3) 2 (35) 

Exp4: 3 (4) 3 (36) 

Exp5: 2 (5) 4 (37) 

Exp6: 1 (6) 5 (38) 

Exp7: 0 (7) 6 (39) 

Figure 8.5: The number of wildcards in pattern-blocks, for m' = 10 

Lemma 8.3: For m>7, 

ý%+l = (1/256)' x ab and 

4'a+2 = (1/256)A x Ob, 

where ab and ßb are the values of bth base case in the first and second columns in 

Table 8.3 respectively and b=m mod 8. 

base case a 

0 11/64 

1 15/128 

2 23/256 1/512 

3 1/16 1/512 

4 13/256 1/512 

5 5/128 3/2048 

6 9/256 5/4096 

7 7/32 

Table 8.3: The associated probabilities for a and 0 for each base case 
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Let 'Y; be the probability of making exactly i comparisons at an attempt. Using 

ci we can have an equation for WY=: 

4N = 4'i+l + 4'i+2 +''' 

This gives 
'fi't = 4ýj-1 - 4bt 

We know that we will make at least one comparison in every attempt. So 4cDo is 1. 

For all m and a=2, the maximum number of comparisons in any attempt is 

18 
, which is equal to A+2 if m mod 8=0,1 or 7, otherwise A+3. So 1, is 

0 for all i>p. This gives: 

W1 =1- '1 

Wi = 4Pi_1 - 4)i, 2<i< it -1 

Tµ = 4tµ-1 

Lemma 8.4: For a=2, the total number of comparisons, WTotal, is less than or 

equal to 2n' on average, where n' is the number of text-blocks in the text. 
µ 

Proof: WTotal = n' xixW; 

= n' x ((1-(D1)+2(c1-42)x-... +Fý-1((Dµ-2-'CPµ-1)+11iµ-1) 

= n' x (1+4ýD1+... -ý-(Dµ-2+4)µ-1) 

= n' x (1 + 2561 + 4D, \+i + 4ýA+2) (Lemma 8.2) 

< 2n' 

This is because 1 256, + 4ýA+l + ('ýA+2 <1 (Lemmas 8.2 and 8.3) Q 
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Lemma 8.5: For or > 2, the total number of comparisons, 'YTotal, is O(n), where n 

is the size of the original text. 

Proof The probability of more than one comparison in an attempt is J+"""+ 

4bµ_2 + cµ_1 (see Lemma 8.4), where [m l0 
80 +71. Note that m Pog2 Q] is the 

length of the pattern when we convert it into a binary string. We show in section 8.4 

that in an attempt we only need to consider a maximum of 11X0: 
2 of expressions when 

or > 2. Hence, for a>2, C+"""+ (Pµ_2 + iµ_1 is less than the value given for a=2. 

0 

From these Lemmas we have the following Theorem. 

Theorem: The average running time of our algorithm is 0(n + m). 

To show this is also true in practice we counted the number of comparisons by 

running our algorithm. Tables 8.4 and 8.5 shows the estimated number of comparisons 

(WTotal) and the actual number of comparisons. We used the same texts for each o, as 

in Table 8.1. For each pattern length we use 100 random patterns. The actual number 

of comparisons in Tables 8.4 and 8.5 is the total number of comparisons divided by 

the number of patterns of that length. The pattern length given in Tables 8.4 and 8.5 

is the length of the original pattern. 
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alphabet of 2 alphabet of 4 alphabet of 8 

Pat Len. Totat Actual at Len. Total Actual at Len. Total Actual 

5 5938 5413 2 156250 156258 2 07031 55959 

10 8237 8276 4 135742 136513 4 190795 191710 

20 4556 4446 8 127288 126999 6 189632 189931 

30 4460 54460 12 26962 126962 8 189462 189537 

40 4460 4467 18 126960 126962 12 189460 189898 

50 4460 4473 24 126960 126962 16 189460 189551 

Table 8.4: Estimated versus actual number of comparisons of our BRS algorithm 

alphabet of 16 alphabet of 32 alphabet of 64 

at. Len. Totos Actual at Len. Total Actual at Len. 'Total Actual 

2 60742 65331 2 18237 322155 2 378296 378678 

4 52288 52013 3 14507 314567 3 377132 376990 

6 51960 51956 4 314556 314581 4 76962 376980 

8 51960 51962 6 314460 314509 5 76962 376965 

10 51960 51957 8 14460 314297 7 76960 76482 
1 

12 51960 51959 10 14460 14348 9 76960 76503 

Table 8.5: Estimated versus actual number of comparisons of our BRS algorithm 

8.6 Comparison with existing string matching algorithms 

In this section we compare the existing string matching algorithms with our algorithm, 

the BRS algorithm. There are a number of string matching algorithms available in 

the literature. We have chosen seven of them, BR, BM, HOR, QS, RAI, SMI, RF and 
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NR algorithms which can be found in [31,36,70,129,109,125,48,102] respectively. 

The first six algorithms were found to be fast in [31]. Animations of these algorithms 

can be found at [39] and more information about the algorithms can be found in [38). 

The experiments were carried out for all the algorithms on an un-compressed 

text, except for our BRS algorithm and the NR algorithm [102). The text used for 

these experiments was the same text as in Table 8.1. The patterns used in these 

experiments are generated randomly. For each a and m, we tested 100 patterns and 

we measured the total (user) time (including pre-computation time) in seconds to 

search for all 100 patterns. We repeat each test 10 times and take the average. We 

used an Intel 486-DX2-66 processor based machine with 8 megabytes of RAM and 

a 100 megabyte hard drive running S. u. S. E. Linux 5.2 to conduct the experiments. 

All the algorithms were coded in C. The results of the experiments are in Tables 8.6 

to 8.10. 

Pat. Length BRS BR BM HOR QS RAI SMI RF NR 

5 14.2 29.1 31.3 31.5 31.1 28.7 31.8 32.6 30.7 

10 5.3 27.0 24.7 30.9 31.0 27.7 31.4 22.0 30.5 

20 4.4 27.3 20.4 28.8 32.4 26.6 31.0 18.2 29.5 

30 4.2 27.3 18.3 31.2 31.2 28.0 31.4 16.0 27.5 

40 4.2 28.3 17.3 29.7 31.3 27.9 30.7 13.5 28.5 

50 5.2 26.5 16.4 30.5 30.0 27.7 31.1 15.0 28.4 

Table 8.6: Times in seconds to search for 100 random patterns in each given text with 
Q=2 
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Pat. Length BRS BR BM HOR QS RAI SMI RF NR 

4 8.6 15.3 20.5 20.9 20.3 20.2 23.8 21.3 21.6 

8 5.3 13.1 17.6 18.1 19.3 18.7 19.5 17.3 20.7 

12 5.7 12.5 19.3 18.8 18.7 18.0 18.3 15.3 17.6 

16 5.7 12.9 17.4 15.8 17.4 17.3 17.7 13.6 18.4 

20 5.7 12.0 17.2 18.5 17.6 17.9 18.5 14.1 20.5 

24 5.7 12.5 16.7 17.7 18.6 16.6 18.1 12.7 20.2 

Table 8.7: Times in seconds to search for 100 random patterns in each given text with 
a=4 

Pat. Length BRS BR BM HOR QS RAI SMI RF NR 

3 9.9 15.7 22.6 18.6 17.6 16.9 19.3 18.0 28.9 

4 14.0 17.0 25.8 21.2 18.7 21.1 21.3 18.9 27.6 

6 8.6 13.7 19.7 16.9 16.0 16.5 16.0 15.8 23.5 

10 8.5 12.7 15.7 14.1 15.1 14.9 15.1 14.1 25.5 

14 8.7 12.0 15.7 12.4 14.2 13.3 13.8 13.0 25.2 

18 8.4 11.1 15.0 13.6 14.0 12.7 13.4 13.2 25.5 

Table 8.8: Times in seconds to search for 100 random patterns in each given text with 
or =8 

Pat. Length BRS BR BM HOR QS RAI SMI RF NR 

2 14.1 19.4 33.0 25.8 21.0 24.4 24.4 19.6 33.4 

4 9.8 15.2 21.7 17.8 17.0 17.9 17.7 16.2 31.5 

6 9.8 13.4 16.6 14.0 14.6 13.6 15.0 13.4 31.5 

8 9.7 12.3 16.2 14.4 13.9 13.2 13.8 13.2 27.7 

10 9.7 12.1 14.2 13.2 13.6 12.3 13.0 13.6 29.6 

12 9.9 11.1 14.3 13.0 12.3 13.0 13.4 12.9 31.1 

Table 8.9: Times in seconds to search for 100 random patterns in each given text with 
o= 16 
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Pat. Length BRS BR BM HOR QS RAI SMI RF NR 

2 66.5 18.6 33.0 23.6 19.5 23.8 22.3 19.0 39.1 

3 42.1 16.3 24.0 20.2 17.7 19.8 20.3 16.6 40.1 

4 31.9 14.8 21.2 17.1 15.5 15.4 17.5 15.0 37.2 

6 39.7 12.3 17.5 13.2 14.7 14.6 15.5 14.1 36.2 

8 37.9 12.3 15.5 13.4 13.4 13.2 13.9 13.5 38.8 

10 48.2 11.5 15.0 12.4 11.8 12.5 13.7 13.0 34.2 

Table 8.10: Times in seconds to search for 100 random patterns in each given text 
with a= 32 

8.7 Conclusions 

The method described in Section 8.2 to store a text will reduce the original text size 

to P092 
8°n. 

Although this method is not compression as in the literature, it reduces 

the space and it is comparable with the existing methods. 

The main aim of this Chapter is string matching in an efficiently stored text. Our 

string matching algorithm compares two blocks, checks whether a prefix (or suffix) 

of a block is a suffix (or prefix) of the other block. This takes constant time and 

uses byte processing. In practice, byte processing is much faster than bit processing 

because bit shifting and masking operations are not necessary at search time. We 

prove that the average time taken by our algorithm is O(n + 7n). We also justified 

our average running time by experiments. 

Using our algorithm one can keep texts (with an alphabet of 2<Q< 128 char- 

acters) efficiently stored indefinitely and perform the search for a pattern. These 
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methods will save both time and space. The experimental results show that our al- 

gorithm is more efficient than the existing algorithms for or < 16. Texts with such a 

small alphabet are DNA, RDNA and hexadecimal files. One can improve our algo- 

rithm so that it performs well for large alphabet sets. 



Chapter 9 

String matching via pre-processing the text 

9.1 Introduction 

In the previous chapters we have pre-processed the pattern before searching for it 

in the text. Using this method we make m and n attempts for the best case and 

worst-case respectively, for finding a pattern in a text where n is the length of the 

text and m is the length of the pattern. In this Chapter we show that the number 

of attempts can be reduced by pre-processing the text. This method takes 2n + 2Q 

space to store all the information required compared to a suffix tree that requires 4n 

to store it. 

When comparing a pattern and text at an attempt we get partial matches. The 

number of partial matches depends on the frequency of the pattern characters in the 

text. The more frequent the pattern characters the more partial matches we achieve. 

The number of attempts can be decreased by considering positions in the text where 

the least frequent pattern character occurs. To calculate the positions of the least 

136 
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frequent pattern character we pre-process the text and record the positions of each 

character in the text. 

9.2 The algorithm 

The following algorithm records the frequency, the first position and next position of 

the characters of the text. This can be done in one pass of the text. 

The position of the next occurrence of a character is stored in an array of size n 

called Next. We use an array of length o, called Freq to record the frequency of the 

characters of the alphabet in the text where a is the size of the alphabet set. We use 

another array of length o, called First to record the first occurrence of each character, 

starting from the beginning of the text. Next[i] is the position in the text of the next 

occurrence of the character at position i in the text. First[a] is the first position in 

the text of the character, a and Freq[a] is the frequency of the character, a. 

The text is stored in an array. The start of the text being at the leftmost end of 

the array. We start from the end of the text or the rightmost end of the text array. 

The Next array is aligned with the text array and the array First is set to -1 and Freq 

is set to zero. 

We consider the last character in the text array first and consider character from 

right to left until we are at the first character in the text. When we are at position i 

in the text and the character at this position is a, we do the following steps: 
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Step 1: Increase Freq[a] by one 

Step 2: Copy First[a] into Next[i] 

Step 3: First[a] =i 

For example, consider the string BAABA, there are two characters and so Freq 

and First are of length two. Figure 9.1 shows the initial state of the arrays Freq, First 

and Next. The Next array is empty and is aligned with text as shown. 

Pos. 0 1 2 3 4 
Text B A A B A 
Next 1 1 L 

i 
Fr uenc First Pos. 
A B A B 
0 0 -1 -1 

Figure 9.1: The initial values for Next, Freq and First 

We start at the last position (position 4) of the text. The last character in the text 

is an A and Freq[A] is incremented by one. First[A] is copied into Next[4]. Therefore 

Next[4] = -1 and we update First and thus First[A] = 4. This is shown in Figure 9.2. 

Pos. 0 11 2 3 4 
Text B A A B A 
Next -1 

Fre uenc First Pos. 
A B A B 
1 0 4 -1 

Figure 9.2: The values for Next, Freq and First after considering the A at position 

The next character in the text is aB and so the frequency of B is incremented 

by one. The value for B in the First array is entered into the Next array. Therefore 

Next[3J = -1 and we update First and thus First[B] = 3. This is shown in Figure 9.3. 
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Pos. 0 1 2 3 4 
Text B A A B A 
Next -1 -1 

Fr uenc First Pos. 
A B A B 
1 1 4 3 

Figure 9.3: The values for Next, Freq and First after considering the B at position 3 

The next character in the text is an A and so the frequency of A is incremented 

by one. The value for A in the First array is entered into the Next array. Therefore 

Next[2] =4 and we update First and thus First[A] = 2. This is shown in Figure 9.4. 

Pos. 0 1 2 3 4 
Text B A A B A 
Next 4 -1 -1 

Fr uenc First Pos. 
A B A B 
2 1 2 3 

Figure 9.4: The values for Next, Freq and First after considering the A at position 2 

The next character in the text is an A and so the frequency of A is incremented 

by one. The value for A in the First array is entered into the Next array. Therefore 

Next[l] =2 and we update First and thus First[A] = 1. This is shown in Figure 9.5. 

Pos. 0 1 2 3 4 
Text B A A B A 
Next 2 4 -1 -1 

Fr uenc First Pos. 
A B A B 
3 1 1 3 

Figure 9.5: The values for Next, Freq and First after considering the A at position 1 

The next character in the text is aB and so the frequency of B is incremented 

by one. The value for B in the First array is entered into the Next array. Therefore 

Next[O] =3 and we update First and thus First[B] = 0. This is shown in Figure 9.6. 

The arrays are now complete. 
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Pos. 0 1 2 3 4 
Text B A A B A 
Next 3 2 4 -1 -1 

Fr uenc First Pos. 
A B A B 
3 2 1 0 

Figure 9.6: The values for Next, Freq and First after considering the B at position 0 

Once we have the list of the positions of the characters in the text we can search 

for a pattern. For a given pattern we chose the character in the pattern that appears 

in the text the least number of times. If there are two characters with equal lowest 

frequency then we choose the character that is leftmost in the pattern. The frequency 

of this character is the number of attempts required to search for the pattern. The 

pattern and text are aligned so that the least frequent character in the pattern is 

aligned with the first occurrence of that character in the text. We can find this 

position from the array, First. Then we compare the text and pattern characters 

from left to right. 

Upon a mismatch or match we shift the pattern so as to align the next occurrence 

of the least frequent character in the pattern with its matching text character. This 

position can be found from the array, Next. 

For example, if we were to search for the pattern, BA, using the above arrays 

then we first check which character has the lowest frequency. In this case B has the 

lowest frequency. As the character B only occurs twice then we will only make two 

attempts at matching the pattern and text characters. Using first we know that the 

first occurrence of B is at position 0. So we align the B in the pattern with the 
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corresponding B in the text and begin our attempt: 

Text B A A B A 

Comparison 

Pattern B A 

Both of the pattern characters match the text and we have a full match. The 

pattern now has to be shifted. The value of Next at position 0 is 3, we shift the 

pattern as shown: 

Text B A A B A 

Comparison = = 

Pattern B A 

The value of Next at position 3 is -1 and so we know that there are no more 

occurences of B in the text. 

The pre-processing can be done using an extra n+ 2Q space. Where a is the size 

of the alphabet set. This pre-processing can be done in O(n) time. 

The worst-case is that we have to make n attempts and compare m characters at 

each attempt. Therefore the new algorithm has a worst-case run time of O(nm). 

9.3 Average case analysis 

If we assume that each character in the text occurs with equal frequency. Then the 

probability of a match between a text character and a pattern character is ö. When 

we construct the list of the positions of the characters in the text there are going to 

be o lists each of length ä 
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Lemma 9.1: The upper bound number of attempts is 2 for an average case text. 

Proof: When we search for a pattern, all of the characters in the pattern will 

have the same frequency. We will choose the first character in the pattern as it is the 

leftmost character in the pattern. The least likely character in the pattern occurs 2 

times and so we have to make attempts. If we assume that a 2. This means that 

at most we will make 2 attempts. Q 

From Lemma 4.1 we know that the upper bound number of comparisons at an 

attempt is EO 1(a) for an average case text. The equation is maximised when a=2. 

As m increases the equation approaches the limit for this equation which is 2. So we 

expect to make at most 2 comparisons on average at each attempt. 

So upon an attempt we expect to make at most 2 comparisons and to make at 

most 2 attempts. If we multiply these two values we get n. This gives the following 

Theorem. 

Theorem: The new algorithm has an average case running time of O(n). 

9.4 Recording the positions of more than one character 

The algorithm described in Section 9.2 can be expanded to record the positions of 

strings of characters rather than just single characters. The array of size n containing 

the positions of the characters or strings remains the same length as we record the 

positions of the start of the strings. From these positions we can calculate the starting 
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position of a possible match between the text and the pattern. When we increase 

the size of the strings to be recorded, the Freq and First arrays increase in size 

quadratically. So to store strings of length x we require n+ 2Qx space. When a is 

small we can store the positions of longer strings. When o is large the amount of 

space required grows very quickly as x increases. 

If the characters in the text are approximately equal then we would expect an 

even distribution of the possible Qx strings throughout the text. When searching for 

a pattern we expect to make approximately äy attempts. So to decrease the amount 

of attempts required to search for a pattern we increase the size of the strings that 

we record. 

9.4.1 Comparing the pre-processing algorithm with x=1 and x=2 

Using the pre-processing algorithm we compare the time taken for searching for pat- 

terns recording strings of lengths 1 (x = 1) and 2 (x = 2). The searches were 

conducted on different texts with different sizes of a. From these times we will be 

able to see if the length of the string to be recorded in the Next array affects the 

amount of time taken by the algorithm. The main application of searching is in text 

files. So we will use eight English texts from [37]. The texts range in size and are 

the same as those used in Chapter 4.1. We searched the English texts for the 24,966 

words in the UNIX dictionary. 
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We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive 

running SUSE 5.2. The user time includes the time taken for any pre-processing and 

the reading of the text into memory. Each algorithm was evaluated ten times and 

the average time taken is given in Table 9.5. The difference between the slowest and 

fastest time for each test for an algorithm was less than 0.2 of a second. 

Text (size) Total Preprocessing search search / no. of pats. 

x=1 x=2 x=1 x=2 x=1 x=2 x=1 x=2 

book 1 (773635) 667.5 107.8 74.3 78.8 593.2 29.0 0.02359 0.00124 

book 2 (610856) 540.8 85.3 58.4 59.7 482.4 25.6 0.01919 0.00091 

paper 1 (53162) 33.9 11.2 5.2 5.2 28.7 6.0 0.00114 0.00030 

paper 2 (82205) 64.1 15.2 7.7 8.3 56.4 6.9 0.00224 0.00029 

paper 3 (47139) 30.9 11.0 4.4 4.7 26.5 6.3 0.00105 0.00031 

paper 4 (13292) 9.2 6.6 1.3 1.4 7.9 5.2 0.00031 0.00027 

paper 5 (11960) 8.5 6.4 1.2 1.3 7.3 5.1 0.00029 0.00029 

paper 6 (38111) 22.0 9.1 3.6 3.7 18.4 5.4 0.00073 0.00025 

Table 9.1: Time taken (in seconds) to search for the UNIX dictionary in the given 
texts 

In Table 9.1, the second row shows the length of the strings that were recorded. 

Column 1 shows the text used from [37]. The number of characters in the text is given 

in brackets. Columns 2 and 3 show the total time taken when searching for the UNIX 

dictionary (24966 words) in the given texts. Columns 4 and 5 show the time taken 

for preprocessing such as reading the text into the text array and building the Next, 

First and Freq arrays. Columns 6 and 7 show the amount of time taken to search for 
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the dictionary. This is calculated by deducting the time for the preprocessing from 

the total time taken. Columns 8 and 9 show the average time taken to search for a 

pattern in the text. 

From Table 9.1 we can see that recording strings of length 2 are the best method, 

especially when the text is large. When the time taken for the pre-processing is 

removed from the total time, we can see that the actual search for the patterns in 

the text is quicker when we record the positions of longer strings. This is due to the 

number of attempts and comparisons being reduced as the length of the strings we 

record increases. 

Text (size) Number of comparisons Number of attempts 

x=1 x=2 x=1 x=2 

book 1 (773635) 323282898 20215522 226448219 11106768 

book 2 (610856) 264843964 15997981 187032763 9044580 

paper 1 (53162) 22889598 1209387 16303290 664394 

paper 2 (82205) 39086347 2125583 27979108 1186094 

paper 3 (47139) 20544541 1322385 14709200 829796 

paper 4 (13292) 5804608 330685 4089852 168079 

paper 5 (11960) 4821030 264370 3425096 126769 

paper 6 (38111) 14426883 758209 10201079 413144 

Table 9.2: The number of attempts and comparisons taken when searching for the 
UNIX dictionary in the given texts 

From Table 9.2 we can see that if we increase the size of the strings that we record 

then the number of comparisons and the number of attempts are reduced. 
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9.5 Comparing the new algorithm with the existing algorithms 

From Chapter 4, we found that the 2 fastest string matching algorithms were the 

HOR [70] and the BR algorithm [31]. Both algorithms read the text into an array of 

length n and all searches are performed upon the text array. We searched the texts 

used in Table 9.1 for the 24996 words in the UNIX dictionary using the HOR and 

BR algorithms. The results are given in Table 9.3. 

Text (size) Total time taken search search / no. of pats. 

read in BR HOR BR HOR BR HOR 

book 1 (773635) 74.05 2812.00 3514.00 2737.95 3439.95 0.10890 0.13682 

book 2 (610856) 57.87 2215.00 2780.00 2157.13 2722.13 0.08579 0.10827 

paper 1 (53162) 5.12 147.76 228.00 142.64 222.88 0.00567 0.00886 

paper 2 (82205) 8.12 259.06 307.00 250.94 298.88 0.00998 0.01189 

paper 3 (47139) 4.46 131.95 129.00 127.49 124.54 0.00507 0.00495 

paper 4 (13292) 1.26 40.87 38.41 39.61 37.15 0.00158 0.00148 

paper 5 (11960) 1.14 35.28 33.81 34.14 32.67 0.00136 0.00130 

paper 6 (38111) 3.17 108.08 105.17 104.91 102.00 0.00417 0.00406 

Table 9.3: Time taken (in seconds) to search for the UNIX dictionary in the given 
texts using the HOR and BR algorithms 

In Table 9.3, the second column shows the amount of time required to read the 

text into the text array ready for searching. Columns 3 and 4 show the total time 

taken for the given texts. Columns 5 and 6 show the time taken to search for the 

dictionary in the given texts. This is calculated by deducting the time taken to read 

the text into the text array from the total time. Columns 7 and 8 show the average 
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time required to search for a pattern. Note that the time taken is only fractions of a 

second. The scanning of the text takes the bulk of the time. For the preprocessing 

method to be better than the HOR and BR algorithms the time taken to build the 

Next, First and Freq arrays has to be offset. 

The time taken to build the Next, First and Freq arrays is the time taken for the 

preprocessing in Table 9.1 minus the time taken for reading the text into the text 

array. In Table 9.4 we shows the time taken to build Next, First and Freq for the 

eight texts used. 

Text (size) Preprocessing preproc. - scan in 

read in x=1 x=2 x=1 x=2 

book 1 (773635) 73.52 74.30 78.8 0.78 5.25 

book 2 (610856) 57.87 58.40 59.7 0.53 1.83 

paper 1 (53162) 5.11 5.36 5.2 0.25 0.09 

paper 2 (82205) 7.22 7.70 8.3 0.48 1.08 

paper 3 (47139) 4.40 4.51 4.7 0.11 0.30 

paper 4 (13292) 1.26 1.40 1.4 0.14 0.14 

paper 5 (11960) 1.12 1.22 1.3 0.10 0.18 

paper 6 (38111) 3.17 3.60 3.7 0.43 0.53 

Table 9.4: Time taken to build Next, First and Freq 

In Table 9.4, column 2 shows the amount of time required to read into the text 

array each of the given texts. Columns 3 and 4 show the amount of time taken to pre- 

process the given texts as shown in Table 9.1. By taking the time taken for reading 

the text into the text array from the total time for pre-processing we get the time 
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taken for building the arrays Next, First and Freq, which are given in columns 5 and 

6 

Due to the time taken to build the arrays Next, First and Freq the new algorithm 

is not always better than using the HOR and BR string matching algorithms. If 

we are searching for a low number of patterns then the HOR and BR algorithms 

will be better. We can calculate how many patterns need to be searched for the 

pre-processing method to become the fastest algorithm for the task. 

The pre-processing algorithm is the fastest algorithm once the time taken to build 

the arrays Next, First and Freq is offset. The method using x=2 is faster for all 

searches that search for more than 

time taken to build the Next, First and Freg arrays 
(HOR or BR average search) - (pre-processing (x=2) average search) 

All answers must be rounded up as we cannot search for a fraction of a pattern. 

In Table 9.5, column 2 shows the amount of time required to build the arrays Next, 

First and Freq. Columns 3 and 4 show the average amount of time taken to search 

for a pattern using x=2 and the BR one dimensional string matching algorithm. 

Column 5 shows the difference between the BR and x=2 average search. Column 

6 shows the number of patterns that need to be searched for the x=2 method to 

be faster than the BR string matching algorithm. The figure is found by dividing 

column 2 by column 5. This is the same as the equation above. 
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Text (size) construct arrays x=2 search BR search BR -x=2 number of patterns 

book 1 (773635) 5.25 0.001240 0.108895 0.107655 49 

book 2 (610856) 1.83 0.000914 0.085794 0.084881 22 

paper 1 (53162) 0.09 0.000299 0.005673 0.005374 17 

paper 2 (82205) 1.08 0.000293 0.009981 0.009687 112 

paper 3 (47139) 0.3 0.000312 0.005071 0.004759 64 

paper 4 (13292) 0.14 0.000271 0.001575 0.001305 108 

paper 5 (11960) 0.18 0.000287 0.001358 0.001071 169 

paper 6 (38111) 0.53 0.000254 0.004173 0.003918 136 

Table 9.5: Number of patterns that are required to be searched for, for the x=2 
method to be the fastest 

When the text is long we only need to search for a small number of patterns for 

the x=2 method to become the best. When the text is shorter we need to search 

for more patterns to get faster times with the x=2 method. We can choose which 

algorithm to use depending on the number of patterns and the length of text being 

searched. 

9.6 Pre-processing DNA using a mapping function 

When we pre-processed the English texts in the previous section we used a one di- 

mensional array to record the Next array. If we are to record longer strings we have 

to use a mapping function to map each of the possible strings to a unique location in 

a linear array. Using the mapping function we can then update the Next, First and 

Freq arrays. 
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The easiest mapping function to use is based on the number of characters in the 

text and the length of the strings being recorded. We can assign a value to each 

string in a similar way to that which is used to assign values to each of the ASCII 

characters. We firstly number each of the characters in the alphabet from 0 to o, - 1. 

If we let each of characters in the string to be recorded to be numbered from 1 to 

in numbering from left to right. Then the value of a string is E i'-=, string[i] x Qý-ti, 

where string[i] is the numeric value of the characters at the ith position in the string. 

We can then enter the position of the string into the relevant arrays. There are o 

possible strings to be recorded. 

For example if x=5 and a=4 (DNA alphabet) and consider the string GATC- 

TAGACAC, the first string we would record is GACAC. As we are recording the 

strings from right to left the last string to be recorded is GATCT. Calculating this 

string we firstly replace the characters with their numeric equivalents, A=0, C=1, 

G=2 and T=3 as in Chapter 7. To give GACAC = 20101. We now need to find the 

value of the string filling in the values in the equation we have: Ei 1 string[i] x 45-i 

To give : 

i=1: string[1] x 45-1 =2x 44 = 512 

i= 2 string[2] x 45-2 =0x 43 =0 

i=3: string[3] x 45-3 =1x 42 = 16 

i= 4: string[4]x45-4=0x41=0 
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i=5: string[5]x45-5=1x4°=1 

The total for GACAC = 512 +0+ 16 +0+1= 529. 

The next string to be calculated is AGACA. We can calculate the value represented 

by this string by using the above method or we can modify the above total to give us 

the next total. We need to remove the value of the last character in the string away 

from the total. In the above case this would be 1 which is the value of the second C 

in GACAC. This makes the total 528. We now move each of characters to the right. 

This makes each of the characters decrease in value by a factor of 4. So we divide 

the total by 4 to get 132. We now add the value of the new character multiplied by 

44 =0* 256 = 0. So the value of AGACA is 132. We can check this using the above 

method which gives 0+ 128 +0+4+0= 132. Using this method we reduce the 

number of mathematical operations from 5 to 3. No matter how long the strings that 

we record are we always make 3 mathematical operations. 

Using this mapping function we were able to search in texts recording longer 

strings in the text. Using 5 of the DNA texts used in Chapter 7 we searched for 

patterns of different lengths and used different values of x for the building of the arrays 

Next, First and Freq. The sizes of the texts can be found in Table 7.1 in Chapter 7. In 

our first experiment using DNA we searched for the unique 256 patterns of length 4. 

In Table 9.6, the numbers in the first row show the length of the strings that 

we are recording. In Column 1 we give the number of the text and the number of 
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characters in that given text is given in brackets. The texts used are the same as 

those used in Chapter 7. We can see that recording strings of length 4 is the fastest 

method for all 5 texts searched. This is due to the amount of text that is not searched 

when searching for a pattern. As we are searching for strings of length 4 and we are 

recording strings of length 4 we have recorded the positions of all possible matches. 

Searching for the patterns is simply the printing of the list of recorded positions for 

that pattern. 

Text (size) x=1 x=2 x=3 x=4 

1 (100000) 20.6 13.5 11.7 11.0 

3 (100000) 20.5 13.5 11.8 11.1 

5 (172000) 49.9 34.0 27.9 26.4 

7 (253505) 62.3 42.9 35.4 34.0 

9 (319000) 42.8 28.8 25.8 23.0 

Table 9.6: Time taken in seconds to search for the 256 possible DNA patterns of 
length 4 including any pre-processing time. 

Text(size) x=1 x=2 x=3 x=4 x=5 x=6 

1 (100000) 163.49 46.21 19.84 13.95 12.09 11.90 

3 (100000) 160.49 45.74 19.98 13.97 12.23 11.66 

5 (172000) 392.25 135.40 53.89 34.42 28.82 27.47 

7 (253505) 511.93 176.63 68.90 42.40 36.06 35.57 

9 (319000) 344.96 117.79 46.49 29.28 25.28 24.27 

Table 9.7: Time taken in seconds to search for the 4096 possible DNA patterns of 
length 6 including any pre-processing time 
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In Table 9.7, we show the time taken to search for all 4096 possible strings of length 

6. We can see that recording strings of length 6 are the best method for searching for 

the patterns. This method ensures that the least amount of text possible is searched 

for the patterns. Again the length of the strings recorded is the same as the length 

of the strings we are searching for. This means that we have a recorded list of all 

possible matches and to search for all occurrences of a pattern is just a case of printing 

out the list of recorded positions for that pattern. 

Text(size) x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8 x=9 

1 (100000) 162.7 53.5 22.6 14.5 12.6 12.1 12.1 11.8 11.9 

3 (100000) 159.0 52.8 22.4 14.7 25.4 11.8 11.7 11.6 12.0 

5 (172000) 389.9 162.0 54.5 34.2 28.4 27.5 27.3 26.9 26.8 

7 (253505) 507.7 184.0 77.6 43.8 37.0 34.5 33.5 33.9 33.3 

9 (319000) 418.0 122.9 56.5 29.2 21.4 23.4 23.7 23.6 24.0 

Table 9.8: Time taken to search for 5000 DNA patterns of length 10 including any 
pre-processing time 

In Table 9.8, we can see that recording strings of length 9 is not the best method 

for all the texts that we used. Using strings of lengths 8,8,9,9 and 5 are the test 

methods for each of the texts 1 to 9 respectively. This may be due to the chosen 

patterns not occurring very frequently in some of the texts and it could also be 

possible that prefixs of the patterns don't occur in the text. For patterns of length 10 

it is difficult to choose a single length of string to record for all the texts. Recording 

patterns from length 6 to 10 for each of the texts, the times for a search differ by 
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a very small amount. As the length of the strings being recorded is increased it is 

possible that the time taken for the pre-processing is degrading the savings made in 

the search phase of the algorithm. 

text 1 2 3 4 5 6 7 8 9 

1 (100000) 10.4 10.6 11.0 10.5 10.8 10.5 10.8 10.6 11.0 

3 (100000) 10.9 10.8 11.0 10.8 10.9 10.9 10.8 10.8 10,9 

5 (172000) 26.6 26.4 25.5 25.7 25.8 26.0 26.0 26.7 26.1 

7 (253505) 31.8 32.2 32.2 32.5 32.6 31.6 32.6 32.6 32.5 

9 (319000) 22.1 22.2 23.1 22.2 22.5 22.2 22.9 22.5 23.2 

Table 9.9: Time taken in seconds for pre-processing 

From Table 9.9, we can see that as we increase the value of x the time taken are 

all within a second of each other. This due to the way in which we calculate the 

mapping function for recording the positions of the strings in the text. 

9.7 Conclusions 

From the experiments performed, we have found that indexing the positions of strings 

of varying lengths can be faster than traditional string matching. Although this new 

method is only faster when the number of patterns to be searched for is quite large. If 

we are searching for only a few patterns then the traditional algorithms are the lest. 

algorithms to use. This is due to the amount of time that is required to build the 

required arrays in the new method. The preprocessing in the new method requires 
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more memory and time to record the positions of the chosen length strings in the text. 

We have to search for enough patterns to offset the time taken building the arrays 

Next, First and Freq. The length of the text is linked with the number of patterns 

that need to be searched. Rom Table 9.5 we can see that for the larger texts (books 

1 and 2) the number of patterns that need to be searched to offset the time taken 

to build the arrays Next, First and Freq is less than those required for the smaller 

files (papers 1-6). This is due to the larger percentage of text not compared with the 

pattern when the larger texts are searched. 



Chapter 10 

Searching in an Efficiently Stored DNA Text Using a 

Hardware Solution 

10.1 Introduction 

In this Chapter we describe a hardware solution that searches in the efficiently stored 

DNA text used in Chapter 7. We also describe an algorithm coded in the programming 

language C that will be synthesized into hardware. A DNA text (or molecule) encodes 

information which by convention is represented as a string over the DNA alphabet 

A, C, G and T. 

10.2 Investigation into a hardware only solution to the string matching 

problem 

The string matching algorithm illustrated in Figure 10.1 was devised to investigate 

the feasibility of performing computational algorithms in hardware. String matching 
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was chosen as one of the areas to be tested as such algorithms typically involve many 

hardware manipulations of words of binary data. These manipulations are invoked 

by the machine code instructions, which constitute the program and performed by 

the general-purpose hardware within the microprocessor itself. So called software to 

hardware synthesis techniques aim to accelerate algorithm execution by first of all 

removing the need for machine instructions and by also performing computational 

and logical operations on bespoke hardware. 

while (match In 0 A& word-count Im 0) 
result - current i mask; 
match a result - target; 
if (match !- 0) { 

current - current » 2; 
tamp a buffer « 14; 
current a current tamp; 
if (shifted a- 7) { 

word__count--; 
shifted - 0; 
butter - *ptr; 
ptr++; 

} 
else { 

buffer a buffer >> 2; 
shitted++; 

} 
} 

Figure 10.1: The C code for searching for occurrences of a single pattern in a given 
text 

The example code shown works on a word size of 16 bits and can detect a pattern 

of up to 8 DNA characters in length. However, the algorithm is by no means limited 

to this word size. 

The algorithm works by shifting the input stream through the variable current. 

When the data is shifted, it is shifted two bits at a time to the right. It is shifted two 
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bits at a time because this is more efficient as the algorithm are searching for DNA 

features which are encoded into two bit patterns. Each time current is shifted to the 

right it is checked for a match with the target pattern. This concept is illustrated in 

Figure 10.2. 

target 
ACGT 

W 00011011bi, o 
comvad. on 

ban 1001 ®i9ý®01 10001 1 l01 1 brt0 
Input data stream 

Direction of shift 

Figure 10.2: Comparison of input stream against target 

When shifted, the two least significant bits (LSBs), which are bits 1 and 0, are lost 

and the two most significant bits (MSBs), which are bits 15 and 14, become empty. 

These two null MSBs are filled with the two LSBs of buffer. The variable buffer is a 

pre-fetch word, which will contain word i+1 with current containing word i. This is 

necessary if current is to kept full at all times. During initialisation, the first word 

of data is copied to current from the input buffer and buffer is filled with the second 

word of data. 

In order to copy the two LSBs of buffer to the two MSBs of current, buffer is 

first copied to a variable temp, which is then shifted 14 bits to the left. This shift 

operation results in the two least significant bits of buffer (1 and 0) being moved to 

the two most significant bits (15 and 14), with the remainder of the word (bits 13 to 
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0) being filled with 0's. The contents of temp is then ORed with current resulting in 

the two most significant bits of current being replaced with the two least significant 

bits of buffer. 

In order to make sure that buffer always has at least two bits available for current, 

a count is kept of how many times current has been shifted to the right. This count 

is stored in the variable shifted, which is initialised to 0 and then incremented each 

time shifted is shifted to the right and the two MSBs replaced with the two LSBs of 

buffer. If after a comparison shifted is less than 7, then buffer is shifted two bits to 

the right in order to replace the two LSBs which have been moved to current and 

the variable shifted is incremented. If shifted reaches 7, then the last two bits of data 

have moved from buffer to current and buffer requires re-filling. When this occurs, 

shifted is set back to 0 and buffer is loaded with a complete new word from the input 

stream. 

The next byte to be fetched from the input stream is pointed to by the pointer 

variable ptr, which is incremented once buffer has been refilled with a word from data 

buffer named data-buffer. 

To ascertain whether current contains a match for the bit pattern being searched 

for, current is first ANDed with a variable named mask. The purpose of mask is to 

mask out those bits of current which are not required for the comparison. To ignore 

a bit during the comparison between target and current, then the associated bit of 
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mask should be 0. Likewise, to include a bit in the comparison, then that bit of the 

mask should be set to 1. As illustrated in Figure 10.3 below, the pattern 'ACGT' is 

being searched for, which is only an 8 bit pattern. Hence the remaining upper eight 

bits can be ignored during the comparison and are thus set to 0. 

target ACGT 
r 

bit 15 000000000001111011 1 bit0 

mask 

buffer 

result 

Figure 10.3: The use of the mask to reduce the number of bits compared 

When current is ANDed with the mask, the result of the logical AND is stored in 

result. A bit of result will only be set to 1 if both the corresponding bits of mask and 

current are 1, otherwise the bit will be set to 0. A match with the target can now be 

determined by subtracting target from result. If the result of this subtraction is all 

0's, then both result and the target must have contained the same values and hence 

a match has been found. This process is illustrated in Figure 10.4. 
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Equal Not Equal 

Figure 10.4: The steps required to determine whether the target matches the current 
data 

The program has been written to locate patterns of DNA up to and including 

eight two bit codes. Hence, all words are 16bits in length and are declared as being of 

type unsigned short. However, the program could easily be amended to locate longer 

patterns by simply changing the variable types and program constants. 

10.3 Searching for multiple strings 

The example algorithm illustrated in Figure 10.1, simply searches an input stream 

for all occurrences of a single string. The program can be easily modified to search 

an input stream for all occurrences of many strings by reading in many targets from 
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a file and storing them in an array. This way, each time current is shifted, it may 

be compared with many targets before it is once more shifted. In order to do this, a 

second array must be created to store the masks for each of the targets. These masks 

may be automatically generated from the targets as they are read in. 

whil. (ahifta>O) ( 
for (i=0; i<40-of-targets; i+a) { 

result - current i aaak_array[i]; 
natab - result - tarq. t_array[ij; 
if (match - 0) { 

watch found 
} 

current - current » 2; 

shifts-; 
top - buffer < 14; 
current " current I temp; 

if (shifted "- 7) 
shifted - 0; 
buffer - *ptr; 
ptr++; 

also 
buff " buff » 2; 
shifted++; 

Figure 10.5: An algorithm to search for multiple patterns in a single text 

Apart from this simple modification, the program remains relatively unchanged. 

This is the version of the program, which will be the subject of the investigation into 

hardware acceleration of string matching. 
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: 1011 11 

TTACCGr-°- 

TTGTG ý.... 

ATTGCCTG- 01' 

GCATG r.... C 

AAATTGI.... 

ACGT 

target 

mask 

Logical AND 

if. 

result 

Subtraction 

match 
Figure 10.6: Illustration of Figure 10.5 
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10.4 Hardware acceleration 

Over the past decade hardware synthesis has been explored as a method of accel- 

erating computing tasks at which conventional general-purpose microprocessors are 

inefficient. The problem is that current microprocessors, although being suitable for 

many tasks, are not particularly efficient at performing any one task. This is because 

they are designed to be applicable to as many problem areas or tasks as possible. 

Therefore, through necessity they possess many features which although utilised by 

one application may never be used by another application. Another problem with 

conventional machines is the stored program concept whereby and algorithm is ex- 

ecuted by the microprocessor obeying a series of commands, which are stored in 

memory. These commands are the machine code instructions, which the micropro- 

cessor fetches, decodes and then executes one at time. This fetching and decoding 

takes comparatively vast amount of time due to the slow speed of memory and the 

numerous instructions within the instruction set of the processor. Even the execution 

phase is by no means efficient. The execution circuits of a processor are finite and 

although some resources are replicated, many must be shared. This resource con- 

tention slows execution times. Additionally, the execution circuits of microprocessors 

are designed to perform many tasks, making them less efficient. 

Hardware and software co-design or hardware to software synthesis is a process 

whereby computing algorithms expressed in high-level languages, are compiled to pro- 
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duce either an executable program and a hardware circuit design or just a hardware 

circuit. In the case of hardware and software co-design [107,108], the majority of 

the program is turned into an executable binary for execution on a microprocessor, 

whilst the remainder of the algorithm is synthesised to hardware. The portion synthe- 

sised to hardware would be the section of the algorithm at which the microprocessor 

would be least efficient. The hardware portion is usually programmed into a Field 

Programmable Gate Array (FPGA) [137], which then acts as a co-processor to the 

host microprocessor. Producing programs for such architectures is usually performed 

using a hybrid programming language and appropriate compilers and synthesis tools 

[106]. Such programming languages tend to be based on C, with extensions being 

added to express the hardware-only components for the FPGA. 

With pure software to hardware synthesis [10,11], an attempt is made to map the 

entire algorithm into an FPGA, resulting in a digital circuit, which is functionally 

identical to and directly derived from an algorithm, which was originally expressed in a 

programming language. Such approaches tend to use hardware description languages 

such as VHDL [76], which are exclusively used for expressing the function of hardware 

circuits. 

Synthesis to a hardware only solution offers the greatest potential increase in 

speed, removing the need for instructions and a conventional fetch-decode-execute 

cycle. However, it is also the most difficult to achieve. The difficulty arises from the 
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design features of current FPGAs, which were originally intended for implementing 

digital circuits. Although suitable for the prototyping and implementation of gen- 

eral circuits comprising of digital logic, they are not well suited for implementing 

algorithms. This is because algorithms require data storage for variables, buses for 

register to register and register to execution unit transfers. Data storage and buses 

are not available within an FPGA and must be created using the FPGAs resources, 

such as macro-cells and signal lines. What makes the situation worse is that both 

registers and buses are expensive in terms of FPGA resources, which ultimately limits 

the size of the algorithm that may be implemented in hardware. 

As part of the research into implementing string matching algorithms in hardware- 

solutions, recommendations will be made regarding the development of a new FPGA 

architecture, which will be more suited to the purpose of implementing software in 

hardware. 

10.5 Hardware Implementation of string Matching 

The research currently being undertaken aims to overcome the limitations of current 

FPGAs, with regards to configurable computing. First of all, it aims to do this 

by recommending a new configurable device architecture, which lends itself more to 

the mapping of software to hardware. The device will feature the bussing systems, 

areas of storage and synchronization circuits required to facilitate both effective and 
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efficient hardware generation. Secondly, software tools are being developed which will 

process standard C programs and as their output, will produce configuration files for 

the programmable device. 

Because of the low-level nature of the task of string matching, it is an ideal candi- 

date for such acceleration techniques. At the hardware level, the most efficient method 

of searching a string for a sub-string is as illustrated in Figure 10.2. The stream to 

be searched is passed through a register, shifting one bit at a time. Each time the 

register is shifted, the register is compared with the sub-string being searched for. 

This is the same method as employed in the C algorithm discussed previously. The 

number of register bits to be compared need only be equal in length to the number 

of bits in the sub-string, with any additional bits simply being masked out or ignored 

in the same way as the C algorithm. Additionally, the register being searched need 

not only be shifted one bit at a time. In the case of searching for occurrences of bit 

patterns consisting of two bit sub-patterns, it is more efficient to shift the register 

two bits before a comparison with the target is made. 

Figure 10.7, illustrates a simplified diagram of the components to be implemented 

in hardware. Missing are the hardware components responsible for shifting both 

current and buffer to the right. Also missing are the circuits required for synchronizing 

the activities of the components in order to perform the operations of the algorithm 

in the correct order. 
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MM 

Figure 10.7: Simplified version of the components to be implemented in hardware 

The memory labelled data-buffer holds the data to be searched for a sub-string. 

The width of the words contained in data-buffer is immaterial and may be of any 

width. 

The registers labelled ptr and buffer are associated with the fetching of the words 

from memory. The register buffer is the same width as the words contained in 

data-buffer. This register is used to contain a pre-fetch word. The register ptr is 

used as a pointer to reference the words contained in data-buffer. As such, its width 

need only be sufficient to reference all of the words in data-buffer. 

The register current contains the current bit pattern to be matched against a 
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sub-string bit pattern. It is a shift register, with the data contained in the register 

being shifted right two bits at a time, with the two least significant bits being lost 

and the two most significant bits being replaced with the two least significant bits of 

buffer. This is the purpose of buffer, to keep current full of bits. Only once all the 

bits contained in buffer have been shifted into current, will new data be loaded into 

buffer from data-buffer. 

As with the C algorithm, the mask register is used to contain a bit pattern to 

mask off the bits of current, which are not to be compared. When ANDed with the 

contents of current, then the resulting word is stored in the register result. It is the 

contents of result, which will be compared with the target to determine whether or 

not a matching bit pattern has been located. To ascertain whether the contents of 

result and target do match, result is subtracted from target. Again, if the result of the 

subtraction is zero, then a match has been located. 

10.6 Conclusions 

Using the storage method described in Section 10.2 we can store DNA text files in 

25% of space required for the original DNA text file. Using algorithms such as the 

DS and BK algorithm we can keep DNA texts efficiently stored and perform searches 

on them. Thus saving both time and space. 

The hardware synthesis of the BK algorithm into a hardware only implementation 
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is expected to produce a solution that we estimate to be significantly faster than even 

the DS algorithm. 



Chapter 11 

Conclusions and Further Work 

11.1 Applications of Algorithm Engineering 

The topic of algorithms is a topic that is central to computer science. Measuring 

an algorithm's efficiency is important because your choice of algorithm for a given 

application often has a great impact. Although the efficient use of both time and space 

is important, inexpensive memory has reduced the significance of space efficiency. The 

main problem with memory has become the speed of the transfer of data from memory 

to the CPU. Thus we generally focus on time efficiency (see Chapter 2). 

The efficiency of an algorithm can be measured both theoretically and practically. 

The theoretical evaluation of algorithms is usually performed using asymptotic anal- 

ysis, which doesn't consider the constant factors that are hiding behind the Big-Oh 

notation. Asymptotic analysis doesn't show the breakpoint where an asymptotically 

slow algorithm with a small constant factor is faster than an asymptotically fast al- 

gorithm with a large constant factor. Also the asymptotic analysis focuses primarily 
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on worst-case inputs that may not be representative of the typical input for a cer- 

tain problem. The algorithm may also be too complicated to allow us to effectively 

bound its performance. In such cases experimentation can often help us perform our 

algorithm analysis. 

In performing an experiment we must decide what to measure. We can measure 

the actual time taken by the algorithm. This can be difficult as the time taken can 

be affected by other factors such as other programs running on the same computer, 

how the computer makes use of memory cache and whether or not there is enough 

memory available. In our experiments we used a standalone computer, which was 

only running the desired algorithm that is being evaluated. 

An alternative approach is to count the number of times a basic operation is 

executed. This can be the number of comparisons taken as in our string matching 

algorithms. As found in our experiments this may give an indication of speed but 

an algorithm may take less basic operations but take more time to perform the same 

task. 

The necessary step of coding up our algorithm correctly and efficiently involves 

a certain amount of programming skill. If we are comparing two algorithms against 

each other then we must be sure to code up the competing algorithm using the same 

level of skill as is used for our algorithm. The degree of code optimisation between 

the algorithms must be as close as possible, achieving a level playing field for the 
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algorithms being compared. Ultimately we should strive to make sure that our results 

are reproducible by other programmers with similar skills. We must also include the 

computer architecture of our chosen computer. 

We have used Algorithm Engineering to modify and improve algorithms mainly 

in the field of string matching. Within this field there are many more string related 

problems and other fields, which would benefit from practical as well as theoretical 

evaluation. From the practical evaluation it may be possible to improve the algorithms 

and identify the features that determine the speed of the algorithms. Although the 

new algorithms may not improve their theoretical evaluations the practical gains 

should not be dismissed. The trend of improving the worst-case time complexity has 

delivered a number of groundbreaking algorithms. But no claims were made about 

their practical performance. 

11.2 Algorithm Engineering and String processing 

We have described the existing one-dimensional string matching algorithms and eval- 

uated their performance both in theory and in practice. We found that the theoretical 

evaluation of each of the algorithms could be divided into two categories. Algorithms 

with a linear worst-case time complexity of (O(n + m)) which were mainly based on 

the Knuth-Morris-Pratt (KMP) algorithm. The remaining algorithms mainly had a 

quadratic worst-case time complexity of O(nm) and were mainly based on the Boyer- 
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Moore algorithm. 

Implementing the existing algorithms and counting the number of comparisons 

performed by the algorithms on a number of texts it was interesting to find that the 

Boyer-Moore based algorithms took less comparisons than the KMP based algorithm 

although their worst-case time complexities would indicate the opposite. This is due 

to the pattern being shifted to the right by a greater distance in the Boyer-Moore 

based algorithms. The KMP based algorithms reduce the number of times that a 

character in the text can be compared again to the text, although this feature doesn't 

reduce the number of comparisons much more than a Brute Force search of the text. 

From the results of our evaluation we developed a new string matching algorithm, 

the BR algorithm, which is described in Chapter 4. The BR algorithm is the combi- 

nation of two existing algorithms the Zhu-Takeda and the Quicksearch algorithm. We 

use the features of both algorithms that give them their speed. We have shown that 

the BR algorithm has a worst-case time complexity of 0(nm) and have proven that 

it has a linear average case time complexity. When the BR algorithm was compared 

to the existing algorithms in practice we found that the number of comparisons taken 

by the BR algorithm is fewer than those taken by any of the existing algorithms. Also 

the shift of the BR algorithm is greater than the existing algorithms. When timing 

each of the algorithms over a range of different English texts and using words from 

the UNIX English dictionary as patterns we found that the BR algorithm was faster 



175 

than the existing algorithms. 

Two-dimensional string matching is considered in Chapter 5 and we describe a 

new algorithm, the 2D-BR algorithm. In one dimensional string matching we are 

only trying to match a single row of text. In two-dimensional string matching both 

the pattern and text are a matrix composed of rows and columns and for a full match 

we must match the entire pattern matrix with the text matrix. 

When comparing the text matrix and pattern matrix, if we find that the current 

character to be compared is not in the pattern then no portion of the pattern matrix 

can overlap this mismatched character. If we compare a sample point of the text 

matrix with the elements in the pattern matrix then we can quickly tell whether the 

sample point is in the pattern matrix at any location. This will allow the use of 

sample points to search in a larger area than just the pattern matrix at an attempt. 

In fact we can check a (2m1-1) x (2m2 - 1) area to see if it possible for the pattern 

matrix to occur at that location (where ml and m2 are the dimensions of the pattern 

matrix). This method could increase the size of the shift made although it requires an 

extra "1 x" comparisons (where nl and n2 are the dimensions of the text matrix). It ml xm2 

was found that the lower the probability of a match between the sample point and the 

pattern the faster the algorithm ran. When the probability of a match between the 

pattern and sample point was high then the algorithm was slower than the existing 

algorithms. The 2D-BR algorithm is more efficient when the size of the alphabet is 
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large. We proved that the 2D-BR algorithm had a linear average case time complexity. 

When performing the practical evaluation for our texts in Chapter 4, it was notice- 

able that the main portion of the time taken was used reading the text into memory. 

Reducing the size of the text would reduce the time taken to read the text into mem- 

ory. The texts could not be changed and the data contained within the text must 

remain in the same order. The texts were reduced by efficiently storing the text. In 

Chapter 7 we consider DNA texts and show how they can be reduced to a quarter 

of their original size by assigning a2 bit string to each of the 4 characters of the 

alphabet. This meant that 4 characters could be combined to form one byte (8 bits). 

Once the text is efficiently stored an algorithm, the DS algorithm, was developed 

to search in the efficiently stored text. This was done so that a DNA text can be 

efficiently stored indefinitely and still search for a pattern. The DS algorithm has a 

worst-case time complexity of 0(nm) and was proven to have a linear average case 

time complexity of O(n + m). For the practical evaluation we searched for enzyme 

cutting locations in DNA texts. The times recorded showed that the DS algorithm 

was roughly 3 times or more faster than the existing algorithms. The increase in 

speed was due to the reduction in the size of the original text. Others have also made 

savings by compressing the text and searching in the compressed text. 

The DS algorithm was expanded to consider alphabets of any size < 128 and is 

described in Chapter 8. Each character in an alphabet would take 11092 al bits per 
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character where o, is the size of the alphabet. A new algorithm was developed that 

searched on the efficiently stored text. The algorithm also made use of the fact that 

a character that required x bits in a pattern then the pattern may only start every x 

bits in the text. 

The algorithm has a worst-case time complexity of O(nm) and was proven to have 

a linear average case time complexity of O(n + m). In practice the algorithm was 

found to be fast when o, was small < 32. This is due to the reduction in the size of the 

text not being as important a factor as the speed of the algorithm that is performing 

the search. 

When performing a search if the number of comparisons and attempts made could 

be reduced then the time taken could also be reduced. In Chapter 9 we record the 

positions of characters or strings of characters in the text. This allows us to make 

attempts where one or more of the characters of the pattern have matched the text. 

This reduces the amount time taken to search for a pattern. The algorithm has a 

worst-case time complexity of O(nm) and was proven to have a linear average case 

time complexity of O(n + m). 

In practice we found that the algorithm needed to perform a larger amount of 

pre-processing than the existing algorithms. The actual search for a pattern was 

many times faster than the existing algorithm due to the amount of text characters 

not considered during a search. Although to make this algorithm efficient we must 
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search for a number of patterns to offset the amount of pre-processing required by 

this algorithm. The number of patterns that are required for the algorithm to become 

efficient are also dependent on the size of the text being searched. We found that 

the larger the text the fewer the number of patterns required to be searched for the 

algorithm to become efficient. We adapted the algorithm to search in DNA files using 

a mapping function. 

In Chapter 10 we investigated the feasibility of performing computational algo- 

rithms in hardware. String matching was chosen as one of the areas to be tested 

as such algorithms typically involve many hardware manipulations of words of bi- 

nary data. These manipulations are invoked by the machine code instructions, which 

constitute the program and performed by the general-purpose hardware within the 

microprocessor itself. So called software to hardware synthesis techniques aim to ac- 

celerate algorithm execution by first of all removing the need for machine instructions. 

We expect to produce a solution that we estimate to be significantly faster than even 

the DS algorithm. 

From the work undertaken in this thesis we have devised a number of novel new 

algorithms that solve a number of distinct string matching problems. The new algo- 

rithms have been theoretically and practically evaluated and compared to the existing 

algorithms. An average analysis has been conducted of the new algorithms and where 

performed they have all been found to have a linear average case time complexity. 
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Through the implementation of theoretical ideas and algorithms and practical 

evaluation of the ideas and algorithms it is possible to develop improved algorithms. 

Considerable experimentation and fine-tuning is typically required to get the most out 

of a theoretical idea. Algorithms and ideas discovered by the theoretical community 

should be implemented, tested and refined to the point where they can be usefully 

applied in practice. 

We propose to create a software library of efficient string processing algorithms. 

These algorithms will enable many of the basic operations of string processing to he 

performed. The aim of the library is to provide a library of tools and data structures 

for managing sequences of symbols. The algorithms will have to be adaptable to 

different data types such as trees, arrays, multi-dimensional arrays and graphs. An 

architecture for such a library is described in [54]. 

11.3 Memory Management 

A typical computer has several different levels of storage. Each level of storage has 

a different speed, cost, and size. These levels form a storage hierarchy, in which the 

topmost levels (those nearest the processor) are fastest, most expensive and smallest. 

The fastest type of storage is most typical main memory usually RAM (Random 

Access Memory) or ROM (Read Only Memory). Memory or storage is where data 

and instructions are stored ready for it to be transferred to the CPU (Computer 
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Processing Unit) for processing. 

A processor also usually has its own memory in addition to any RAM connected 

to the computer and it is called cache memory. Cache memory is a small piece of fast, 

but more expensive memory, usually static memory used for copies of parts of main 

memory. It is automatically used by the processor for fast access to any data that 

currently contained in it. Access to the cache typically takes only a few processor 

clock cycles, whereas access to main memory may take tens or even hundreds of 

cycles. 

Any cache uses a cache policy to decide which data to store. A cache policy is an 

attempt to predict the future, so that the cache will provide swift responses to future 

requests. 

Cache policy may be implemented in hardware, software, or a combination of 

both. Some systems allow programs to influence cache policy, by giving hints or di- 

rections about future use of data. There are three main aspects of cache behaviour, 

which the cache policy can affect: 

" Fetch policy - This determines which data is fetched into the cache, usually as 

a result of receiving a request for data that isn't cached. 

" Eviction policy - This determines which data is discarded from the cache to 

provide space for newly fetched data. 
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" Write policy - This determines how and when modifications to cached data are 

synchronized with the underlying storage. 

If the CPU requests the contents of a main memory location and the value of that 

location are held in some level of cache then the CPUs request is answered by the 

cache itself (a cache hit). Otherwise the request is answered by main memory (a cache 

miss). A cache hit has no penalty (1-3 cycles is typical) but a cache miss requires a 

main memory access and is therefore very expensive. To amortise the cost of a main 

memory access in the case of cache miss, an entire block of consecutive main memory 

locations containing the required request is brought into cache on a miss. A program 

that exhibits of accesses memory locations near those that it accessed previously will 

incur fewer cache misses and will consequently run faster. 

In the experiments undertaken when calculating the time taken by an algorithm, 

cache memory was disabled so that it wouldn't affect the times recorded. By devising 

a new cache management policy it may be possible to improve the speed of string 

matching algorithms by storing more frequently requested data at the cache level. 

The design of algorithms could be modified so as to make more utilisation of cache 

memory. 
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11.4 Hardware implementation of string processing algorithms 

We intend to fully implement the algorithm described in Chapter 10 into a hard- 

ware solution and practically evaluate the new solution. We expect the hardware 

implementation to be many times faster than the software implementation. From the 

results received from the experiments we expect to learn more about the features that 

are responsible for the increase in speed. We intend to use any information we learn 

from the experiments to improve the existing algorithms. The information learnt 

from this hardware implementation will allow us to improve other string matching 

algorithms. 
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