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Abstract

The dressing process and its relationship to the mechanics of grinding are analysed. It

was found that the most important parameters in single point diamond dressing are

the dressing lead, the dressing depth and the diamond width. It was also found that

the effects of dressing can be monitored by measuring grinding power and workpiece

roughness. When a large dressing lead and a large dressing depth are employed, the

grinding power decreases but surface roughness increases. It was found that a change

of the diamond shape leads to large changes in grinding behaviour. Experimental

results show that changes of the grinding performance due to diamond wear can be

compensated by appropriate adjustments of the dressing depth and the dressing lead.

To account for the inability to control diamond shape, an adaptive strategy is

proposed for adjustment of dressing conditions based on the grinding performance.

Computer simulations were designed to assist in the investigation of the grinding

process. Analysis showed that the grinding cycle behaviour can be characterised by

the system time constant. Grinding cycles were designed and simulated based on the

time constant. An adaptive control strategy was developed for maximising the metal

removal rate.

Simulation showed that inputs and outputs of the grinding process could be

synthesised based on the actions of individual grains. A methodology was proposed

to simulate the dressing and grinding process. The grinding wheel was initially

generated by means of randomly spaced grains. The shape of the grains was modified

by simulating the dressing process. The grinding forces were simulated by

calculating the force on every engaged grain. The workpiece surface was generated

by simulating the movement of every grain of the wheel through the workpiece.

Fracture of the grain, deflection of the grain centre and plastic deformation of the

workpiece were considered in the simulation of each grain interaction. The effects of
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the dressing conditions on grinding performance were simulated and compared with

experiments.

Vibration is one of the main indicators of the need for grinding wheel dressing. A

neural network was developed to identify wheel life based on vibration levels. The

signal data were pre-treated by an eight band pass filter, which covered the whole

frequency range of the grinding chatter. These pre-treated data were used as the

inputs to the neural network. By training the neural network, an objective criterion

was determined for the wheel redress life.
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Nomenclature

A
	

cross sectional area of the undeformed chip;

A0
	 interface area of a grain;

a
	

depth of cut;

ac
	 engaged length of a grain;

Ad
	 dressing area;

ad
	

dressing depth;

Am
	 mean chip cross sectional area;

A
	

area of the pile-up material;

Ar
	 real contact area between wheel and workpiece;

b
	 grinding width, radius of the projected area of grain;

b
	 cutting width of a grain;

C
	

constant;

C,
	

constant of constraint;

Co	 constant;

Cl	 static cutting edge density;

diameter of the equivalent grain contact circle;

de	 equivalent diameter;

dg
	 diameter of abrasive grain;

dgeq
	 diameter of the equivalent grain;

d5	 wheel diameter,

d
	 workpiece diameter;

E
	 energy consumption

ec
	 specific energy;

eec
	 specific cutting energy;

ef	 specific energy due to friction;

eg	 specific energy for a single grain;

f
	

constant;
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F

F1

F2

Fd

Fe

F

f

ff

F'

F'0

Fr

F'tü

tf

F'

F

G

H

h

heq

K

initial grinding force;

constant;

constant;

cutting force on a grain;

dressing force;

dressing lead;

critical grinding force at the end of the secondary grinding stage;

normal grinding force;

normal grinding force on a grain;

normal grinding cutting force;

normal grinding cutting force on a grain;

normal grinding friction force on a grain;

specific normal grinding force;

minimum specific normal grinding force to remove metal;

normal grinding sliding force;

grain retention force;

tangential grinding force;

initial specific tangential grinding force;

tangential grinding force on a grain;

tangential grinding cutting force;

tangential grinding cutting force on a grain;

tangential grinding friction force on a grain;

final specific tangential grinding force;

tangential grinding sliding force;

grinding ratio;

hardness of workpiece or wheel hardness grade number,

amplitude of the fracture sine wave in dressing simulation, or height of

plastic pile-up;

equivalent chip thickness;

constant;
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k
	 constant;

kØ	 constant;

ki
	 constant;

ka	 contact stiffness of grinding zone;

grinding force coefficient or cutting stiffness of grinding;

ke	 overall effective stiffness of the grinding system;

km	 stiffness of the wheel and grinding machine;

k
	

stiffness of the workpiece;

constant;

ik
	 kinematic grinding contact length;

is
	 the distance travelled by a grain on thewheel surface in the time the

workpiece takes to travel the distance i;

M
	 grain size number;

m
	 probability of grain fracture in a unit grinding cycle;

n
	 the number of revolutions of the workpiece;

11d
	 the number of dressing passes;

workpiece rotational speed;

ns	 wheel rotational speed;

P
	 grinding power,

specific power,

P0	 constant;

Pch
	 the chip formation component of the grinding power;

Pp1	 the ploughing component of the grinding power;

PSI
	 the sliding component of the grinding power;

p
	 average contact pressure between the wear flats and the workpiece;

Qw
	 grinding removal rate;

Q
	 grinding removal rate per unit wheel width;

R
	

force of indentation;

r
	 radius of the workpiece, exponent constant

r(t)
	

workpiece radius reduction;
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R0	 constant;

R1	 constant;

Ra	 surface roughness;

R
	

Rockwell Hardness;

theoretical peak-to-valley height of dressing trace;

S
	 wheel structure number,

T
	 period of one workpiece revolution;

t
	 grinding time or cutting depth of a grain;

tm
	 maximum cutting depth of a grain;

t
	 average depth of cut of the grains;

U
	 mean separation distance of the grains on the wheel surface;

Ud	 overlap coefficient;

Vg	 grain volume packing density;

VOL	 volume factor for wheel;

grinding wheel speed;

v,	 workpiece speed;

Vf	 wheel axis infeed rate;

X(t)	 the position of the grinding wheel axis;

x	 exponent;

y
	 exponent;

z	 exponent;

a	 proportion of grains actually cutting or coefficient of significance;

J3
	

proportion of the groove volume removed or upward flow ratio;

diamond sharpness ratio or constant;

average spacing of grains along the co-ordinate axes;

&
	 workpiece radius error;

initial workpiece roundness error;

change of infeed rate according to the size control strategy;

change of infeed rate according to the power control strategy;

6
	

deflection of the grinding system;
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oc

0rt

ow

C

local workpiece deformation;

elastic deflection of a grain in dressing;

grain tip deformation;

rotation of the grain;

deflection of the grain centre;

constant;

11
	 constant;

0
	

half-angle of the scratch or direction of action of the indent force;

grinding force ratio f Jf or Fe/Ft;

A.(t)	 cutting edge density during grinding;

cutting edge density after dressing;

Xe	 cutting edge density at the end of the secondary grinding stage;

metal removal parameter,

strength of the grinding wheel;

time constant;

it,
	 tip angle of the dressing diamond;

friction coefficient
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Chapter 1 Introduction

1.1. The Importance of the Dressing Operation

Grinding is a machining process which utilises grinding wheels containing hard

abrasive particles as the cutting medium. Grinding is one of the earliest techniques

learned by human beings, and can be traced to Neolithic times[1]. As grinding

became a precision operation, dressing techniques were developed for preparation of

the working surface of the wheel. A device for dressing a sandstone grinding wheel

was first patented by Altzschner in 1 860[1]. Basic principles of dressing and truing

grinding wheels were laid down by Norton[2J in 1905.

The dressing operation achieves two purposes. The first is to true the wheel surface

to obtain profile accuracy and the second is to resharpen or dress the abrasive grains

to improve the cutting ability. Most dressing operations combine the 'truing' and

'dressing' function as one, so the term dressing generally covers both functions. The

usual reasons for redressing a wheel are:

slow removal rate,

grinding vibration,

workpiece burn,

poor surface texture,

loss of form-holding.

Conventional grinding wheels made from alumina and silica are almost exclusively

dressed with diamond tools. This is because diamond is the only material hard

enough to dress conventional abrasives without itself suffering excessive wear.

Single point diamond dressing is commonly used for precision grinding and achieves

the best grinding results if the diamond is sharp. Multi-point diamond dressing tools
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and diamond disc dressers may be used to achieve longer dressing tool life since the

wear is distributed over a number of diamonds. For large batch sizes and formed

profiles, diamond impregnated rolls are often used. Because the diamond roll extends

the full width of the workpiece, dressing is fast. The economic advantages of a

diamond roll rely on the savings in cycle time. However diamond rolls are expensive

due to the large quantity of diamond required and the careful setting required,

particularly for proffled grinding wheels. There is therefore a continuing requirement

to employ single point diamond dressing for precision grinding in batch production.

The importance of the dressing process lies in the fact that a difference in dressing

conditions leads to different grinding behaviour. The problem of current interest is to

develop a methodology of achieving and maintaining optimal grinding behaviour of

the grinding wheel. If the dressing operation can lead to more stable behaviour of the

wheel, the variations of size error, surface roughness and possibly roundness error of

ground workpieces can be reduced[3]. Conversely an unstable cutting performance of

the grinding wheel will make the grinding process unpredictable and uncontrollable.

Stable behaviour of the grinding wheel is particularly important for operation of CNC

and automatic grinding machines[4-6]. A good dressing operation minimises

grinding force variations and makes grinding behaviour easier to control.

The dressing operation relies on the skill of the operator to establish the best cutting

performance for an operation. Because of this, trial and error is generally employed

to achieve an optimal combination of grinding and dressing parameters for a required

result in precision grinding. It was therefore decided to investigate the possibility of

developing an adaptive strategy for selecting dressing conditions. Because the single

diamond dressing method plays an important part in CNC batch production, this

research was concentrated on the single diamond dressing operation.



1.2. Aims and Objectives

The aim of the research was to develop an adaptive sirategy for the selection of

suitable dressing conditions in order to optimise the grinding process. Major

objectives of the research were to achieve

(i) a theoretical analysis of the dressing operation;

(ii) a parametric study of the effects of dressing conditions on grinding behaviour;

(iii) a simulation model of both the dressing process and the grinding process;

(iv) an adaptive strategy for selecting dressing conditions.

1.3. Scope of the Investigation

The research programme was divided into four main parts:

(i) A literature survey of grinding wheel dressing;

(ii) An investigation of the mechanics of grinding and dressing;

(iii) A simulation study of the grinding process and the dressing process;

(iv) The development and evaluation of a dressing strategy.

The first part of the research deals with a review of previous research on the dressing

operation. The review includes a description of the dressing process, effects of

dressing on grinding behaviour and optimisation of the dressing operation. Grain

fracture is found to be a basis for analysing the dressing process. The factors

affecting the grinding behaviour are discussed with particular relevance to the effects

of dressing on the wheel topography. Existing methodologies for optimising the

dressing operation are considered.

The mechanics of grinding and dressing is studied in the second part of the research.

The kinematics of dressing is employed to analyse the generation of the wheel

topography. Fracturing and dislodging of grains from the wheel surface during
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dressing are investigated. Effects of wheel sharpness on the grinding behaviour are

discussed and time constant is proposed as an appropriate parameter to represent the

combined effects of the grinding force and system compliance. Methods to measure

and control time constant are also discussed.

An experimental study was undertaken to determine the effects of the dressing

variables on grinding efficiency and productivity. Experimental results are discussed

in relation to the theoretical understanding of the process. The effects of varying

dressing lead, dressing depth, number of dressing passes and diamond shape are

discussed in relation to grinding power, workpiece surface texture, roundness, size

error and dressing power. Empirical equations for grinding force and grinding power

were established to describe the effects of the dressing conditions and grinding

conditions.

A grinding cycle simulation was undertaken to illustrate the effects of the sharpness

of the wheel on the grinding process. Further simulations of the dressing and

grinding process were developed based on the action of individual grains to illustrate

the generation of the wheel surface and the workpiece surface. The simulations were

used to interpret the effects of wheel surface topography on grinding behaviour.

Surface roughness, grinding power and time constant trends were investigated as

techniques which could be used to indicate the required changes in dressing

conditions. A methodology for selecting grinding conditions is presented. The

methodology is designed to be suitable for incorporation into a CNC as a sensor

based strategy for adaptation of dressing conditions.
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Chapter 2 The Mechanics of Dressing

The total grinding process includes dressing as well as grinding. Most grinding

research is focused on the grinding process rather than the dressing process. Because

of the random nature of the grinding wheel topography, the relationships between

dressing and grinding parameters are difficult to analyse deterministically. It can be

argued that dressing is the least understood but one of the most influential aspects of

the grinding process.

2.1. The Grinding Wheel

The behaviour of the grinding wheel depends partly on its composition and structure

and partly on the dressing conditions. The wheel specification in the standard

marking system is defined by the following characteristics:

(i) the type of abrasive;

(ii) the abrasive grain size;

(iii) the hardness grade of the wheel;

(iv) the structure of the wheel;

(v) the type of bond.

Correct selection of the grinding wheel is important for the achievement of stable

grinding behaviour and long wheel life. In particular, an appropriate rate of self-

sharpening is usually considered to be desirable[2, 7]. The following are some

considerations in the selection of the grinding wheel[8J.

(i) The type of material to be ground affects the selection of abrasive, grain size

and grade. Alumina abrasives[8] are used for grinding high tensile materials such as

steel and ferritic cast irons. Silicon carbide abrasives that are even more friable are
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used for grinding low tensile strength materials and non-metallic materials. CBN

abrasive wheels[7] are suitable for grinding high speed steel and high ahoy steels.

Carbide, ceramic, glass and plastic are often ground using diamond wheels[7]. The

harder the workpiece, the harder the grain required. For a particular grain hardness, a

hard workpiece requires a 'softer' bond than a soft workpiece[8].

(ii) The rate of stock removal and surface texture required affect the choice of

abrasive size and bond type. High stock removal rates usually require coarse grain

wheels[8]. Fine surface texture and small tolerances need a finer grain size.

Extremely fine surface texture usually requires resinoid, rubber or shellac-bonded

wheels[8].

(iii) If the cutting edges on the grinding wheel tend to glaze and are therefore less

likely to be resharpened by fracture, the grinding wheel is described as acting 'hard'.

When the wear of cutting edges on the grinding wheel is mostly due to the fracture of

the grains or bonds, the wheel is described as acting 'soft'. The effects of the

grinding condition on wheel behaviour are summarised[8] in table 2.1.

Table 2.1 Effect of grinding conditions on wheel hardness behavioui

grinding conditions 	 behaviour of wheel

high wheel speed	 hard

high work speed	 soft

high infeed rate 	 soft

(iv) The grinding contact area also affects the selection of wheel grade and

structure. A large contact area requires a wheel of soft grade and open structure.

Vitrified wheels for dry grinding need to be one or two grades softer than for wet

grinding [8]

A blunted wheel tends to increase grinding force, which may result in grinding chatter

or grinding burn[7, 9]. If the wheel needs to be dressed too frequently because the
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grinding force rapidly increases, the wheel is said to be too hard and a softer grade or

coarser grain size is required. When the surface texture and dimensional accuracy of

workpiece have deteriorated, the wheel needs to be redressed. If this happens too

frequently, the wheel is said to be too soft or too coarse and either a harder grade

wheel or a finer grain size is required.

2.2. The Dressing Process

The wheel surface profile formed by dressing is determined by the relative motion

between the diamond and the wheel, the characteristics of the wheel and the shape of

the diamond. In early research, the dressing process was described as a wheel cutting

process. Pahlitzsch[1O] suggested that the diamond cuts through the abrasive grains

to produce cutting points. It was proposed that the form of the cutting point is

determined by the combination of the diamond shape, the dressing lead and the

dressing depth. A representation of the kinematic relationship between the grinding

wheel and the dressing tool is shown in figure 2.1.

During dressing, the dressing tool moves across the wheel surface with a dressing

lead fd per wheel revolution while removing a dressing depth a. A 'fine' dressing

operation refers to the use of a small dressing lead and a small dressing depth.

Conversely, a 'coarse' dressing operation refers to a large dressing lead and dressing

depth. For a dressing diamond with a tip angle , the theoretical peak-to-valley

height of the thread proffle generated on the wheel can be written as

- ________ipv -
2 • tan (4/2)

According to this equation, a large dressing lead d and a sharp dressing tool (small 4)

should lead to a rough wheel surface. When the wheel is used for grinding, the

abrasive grains transfer their profile to the workpiece surface. This grain cutting

theory was agreed by many researchers [10-13] since the profile characteristics of the

(2.1)
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surface of the ground workpiece can be directly attributed to the dressing process.

Accordingly, the dressing traverse rate and the shape of the single-point diamond are

particularly important. Bhateja, Chishoim and Pattinson[14] recorded wheel and

workpiece profiles by stylus measurement. Dressing features clearly appeared on the

workpiece surface, but could not be detected on the surface of the wheel. They

suggested that this was probably because any grooves produced in the grain by the

dressing process are very small compared to the roughness of the wheel.

Malkin and Cook[15] examined the grain debris produced during the dressing

process. They noticed that the grain size and the wheel hardness influenced the size

distribution of the dressing particles. More significantly however, the dressing

particles for the wheels tested were not much smaller than the grains that went into

the wheels, which indicated that the dressing diamond fractured grains to produce

relatively large fragments or, possibly, dislodged whole grains from the bond.

Virtually the entire weight of material dressed off the wheel Consists of particles that

are much bigger than the dressing depth but smaller than the original grains.

Therefore it must be assumed that the wheel material is mostly removed by brittle

fracture to a depth greater than the dressing depth. Although this result throws

considerable doubt on the "grain cutting" theory proposed by Pahlitzsch[1O], the

"grain cutting" theory is still helpful in understanding the dressing process.

Abundant cracks can be found in the grain and bond on the dressed wheel surface[3,

9], which supports the conclusion that dressing is a fracture process of abrasive grains

and bond. Fracture due to dressing may occur either within a grain or at a bond as

shown in figure 2.2. Bhateja[16] suggested that the dressing process consisted of

gross fracture and levelling effects, which may be explained by macro and micro

action. The macro action cleaves grains or breaks bonds giving the gross

characteristics of the wheel working surface. The micro action refers to the micro

fractures on the grain surface. Tsuwa and Yashi[17] noticed that many of the non-

directional micro-cracks on the flat streak of the grain were fragile. The fragile layer
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has a very low mechanical strength and cannot withstand even the O.5g load of the

diamond stylus of the profilometer. This explains why the topography of the wheel

cutting surface changes so rapidly during the initial stage of grinding.

Vickerstaff[l 8] combined these two theories. Vickerstaff confirmed that the pattern

of the wheel topography produced by dressing is transferred, to some extent, to the

workpiece surface. It was assumed that when the dressing diamond passes through

the brittle wheel material it causes fracture of the abrasive grains or dislodges them

from the bond. It was considered that the wheel profile will not indicate regular

features of dressing but will probably contain some points that are coincident with the

diamond locus. In grinding, a large number of grains on the wheel profile pass

through the same section of the workpiece. If each grain profile contains some points

that are coincident with the diamond locus, a regular pattern will gradually generate

on the workpiece surface. Based on this assumption, the envelope of the wheel

profile reflects the same features as the workpiece produced by the wheel. The

relationship between grain shape and dressing locus is illustrated in figure 2.3.

As mentioned above, the locus traced by the diamond profile replicates onto the

abrasive wheel topography which in turn affects the grinding performance. Many

researchers [19-22] show that the diamond geometry has a significant effect on the

stability of the dressing process and thereby influences the useful life of the dressing

diamond and the efficiency of the grinding wheel in operation.

With continued use, a single-point diamond tends to become blunt at its tip and its

average radius becomes bigger. This increases the dressing force and the likelihood

of bond fracture instead of grain fracture, thereby leaving fewer active grains at the

wheel surface. However it is reasonable to argue[9] that when a blunt dressing tool

cuts plastically through a grain, the top of the remaining grain is flatter. As a

consequence, the wheel is less sharp. The wheel sharpness depends on whether the

prevailing effect of dressing is macrofracture or plastic deformation and
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microfracture. Fracture makes the wheel sharp while plastic deformation makes the

wheel blunt. There is therefore an uncontrolled variation between macrofracture and

plastic deformation in the dressing process, which may cause difficulties in grinding

process control, especially in automated production.

Tkhagapsoev and Khapachev[23] found that the diamond wear in dressing is mainly

attributed to abrasive wear and thermal fatigue fracture. When the diamond initially

acts on the wheel, the diamond point shatters on impact with the abrasive wheel and

the diamond loses irregularly shaped particles from the cutting point. This happens

almost instantaneously and in most instances is unpredictable. When the diamond is

in contact with the wheel and it begins to wear to a shape sympathetic to the profile

being traced out. A number of parallel scratches in the direction of the traces of the

grains on the wheel are observed. As the wear area increases, the number of cracks

on the diamond surface increases, thermal fatigue fracture becomes an important part

of the diamond wear. The change of the diamond profile will trace on to the abrasive

wheel topography which in turn affects the grinding performance. With diamond

wear, dressing chatter may occur. In the event of dressing chatter, the dressing

diamond has to be repositioned or replaced.

Malkin and Murray[24] showed that the specific energy in dressing is larger when the

dressing lead and depth are decreased. The larger specific dressing energy with finer

dressing conditions can be attributed to the reduced tendency to fracture and increased

plastic deformation of the abrasive.

2.3. Effects of Dressing on the Grinding Wheel Topography

Because of the importance of grinding wheel topography in grinding, a number of

researchers [19, 20, 25-32] focus on the description of the grinding wheel topography.

In 1971 Verkerk[25] reported a co-operative work on the characterisation of grinding
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wheel topography. The report reviewed previous research on the relationship

between wheel topography and wheel performance. Many techniques for identifying

wheel surface topography have been developed. The principal methods for measuring

wheel topography are listed below:

microscopic observation;

taper print method;

stylus measurement;

scratch method;

razor blade method;

workpiece surface trace method;

photo-electric sensing;

thermocouple measurement;

piezo-electric dynamometer method.

The last two methods can be used to monitor topography during the grinding process

and can be used to measure the number of active cutting grains under the dynamic

conditions of grinding.

Two dimensional measurement of wheel topography fails to relate to the three

dimensional functional behaviour of the surface. Stout, Sullivan, Matsui and

Tamaki[33, 34] introduced the technique of three dimensional measurement and

analysis of the grinding process to allow the entire dressing and grinding function to

be investigated.

By means of these 2D and 3D measurements the relationship of the topography of the

wheel to the dressing condition can be discovered. A number of mathematical

models[19, 35-40] were proposed to characterise the surface of the wheel. Statistical

methods[35, 38, 41] were widely used to describe the texture of the wheel surface.

The parameters commonly used for characterising the wheel topography are

the number of cutting points,

the probability density distribution of the cutting points,
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the frequency distribution of the cutting points.

Koziarski and Golabczak[19] investigated the cutting surface of the grinding wheel in

relation to the dressing operation. The influence of dressing on cutting edge

distribution was expressed as

Y1 =b0 +b1X 1 +b2X2 +... +b5X5	 (2.2)

Five dressing parameters, dressing lead width of dressing tool bd, dressing depth

ad, grain diameter dg and number of dressing passes d were represented by X 1 to X5,

where

X1=1ogf, X2=logb, X3=1ogaJ, X4=logdg, X5=logn.

The coefficients of equation 2.2 were determined by regression analysis at a

significance level a = 0.10. The vector Yj is selected in relation to the output

required. The total number of the static edges on the wheel surface per unit of the

profile length was expressed as

Y1 = 1.645 - 0.049 X 1 - 0.043 X3	(2.3)

The total number of the active edges on the wheel surface per unit of the profile

length was expressed as

Y2 = - 1.563 - 0.149 X 1 ^ 0.107 X2 + 0.113 X5	 (2.4)

The mean thickness of the undeformed chip was determined as

Y3 = 0.158 +0.174 X1 - 0.095 X2 - 0. 0093 X3X5	(2.5)

According to equations 2.3,2.4 and 2.5,

(i) an increase of dressing feed or dressing depth leads to a decrease in the total

number of static edges;

(ii) an increase of dressing depth causes the static cutting edge distribution to

penetrate further into the depth of the wheel surface and also increases the depth of

active cutting edges;

(iii) a large diamond tip width results in a concentration of static and active cutting

edges close to the nominal wheel surface and increases the number of active edges.

These equations are consistent with the hypothesis that dressing the wheel at a high
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dressing feed rate or large dressing depth or with a blunt diamond leads to a wheel

surface with more fractures of the grain or bond. Dressing a wheel at a slow dressing

feed rate, a small dressing depth or with a sharp diamond produces more grain

microfractures.

Experiments[42] showed that small grain size results in a larger proportion of bond

fracture for the same dressing conditions. The reasons given were that

(i) small grains are tougher than big ones[43, 44];

(ii) with small grains the dressing lead and depth are larger in proportion to the

grain dimensions.

Defining the active grain ratio as the ratio of the number of the active grains per unit

area to the maximum number possible, Malkin and Anderson [42] found that the

number of active grains on the wheel surface increased with a decreasing proportion

of bond fractures. The active grains were examined by using microscope. Pattinson

and Chisholm[45] confirmed the density of active grains is increased with decrease of

dressing lead, which implied that the proportion of bond fractures is decreased with

decrease of dressing lead. However Pande and Lal[46] gave contradictory results

where the proportion of bond fractures increased as dressing lead decreased. By

looking into details of their experimental conditions, it was found that the range of

dressing lead used by Partinson and Chishoim was smaller than the diameter of the

grains while Pande and Lal's was larger than the diameter of the grains. Pande and

Lal [46] also showed that the proportion of bond fracture increased as dressing depth

increased. This is possibly because increased dressing depth and dressing lead up to

the diameter of the grains increase the amount of wheel material removed during

dressing, which produces a larger dressing force on the wheel and a higher probability

of bond fracture. When the dressing lead is larger than the diameter of the grains,

increasing the dressing lead decreases the length of the dressing path on the wheel

surface and decreases the probability of bond fracture.
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Besides the influence on the active grain ratio, the dressing operation also affects the

shape of the cutting edges. The cutting edges of the wheel are shaped by the fracture

and the plastic deformation of the grains. If the bond material is strong enough

withstand the dressing force, the dressing tool will cut through the grain, leaving a

relative large plateau on the top of the grain. With finer dressing conditions, Malkin

and Murray[24] observed a larger flattened area formed by plastic deformation on the

top of the grains.

It is widely agreed[16, 19, 21, 22, 32, 36, 47-5 1] that the mechanics of the grinding

process depends on the geometry and the distribution of the cutting points. Different

dressing conditions with different dressing tools make great differences in the

topography of the grinding wheel. Pattinson and Lyon[21] noticed that big changes

occur on the wheel surface during the first few dressing passes. Further dressing

passes did not yield significant benefit to the wheel surface.

Investigation of the effects of wheel wear[14, 36] showed that cutting edges are

flattened and distributed closer to the wheel surface with increasing wear. Tsuwa[32]

illustrated the change of cutting edge distribution in the initial stage of grinding due to

different dressing conditions. The initial density of cutting edges on the grinding

wheel changes and stabilises at a steady state density of cutting edges when grinding

under particular grinding conditions. Maldno[52] postulated that optimal dressing

would make the cutting point spacing constant throughout the wheel redress life

cycle.

2.4. Effects of Dressing on Grinding Behaviour

The shape of the dressing diamond and the dressing conditions have an important

influence on the sharpness and topography of the grinding wheel, which subsequently

affects grinding force, grinding power, specific energy, grinding temperature, metal

• 14.



removal rate, grinding ratio and wheel wear. The effects of dressing may also be

manifested in the quality of the ground product, as defined by size and shape

accuracy, surface roughness and surface integrity. The most important dressing

parameters in single diamond dressing operation are dressing lead, dressing depth and

the shape of the diamond. The number of dressing passes is also important.

A number of researchers [3, 10, 12, 22, 25, 46, 53-62] discovered the effects of

dressing on grinding force, power, specific energy, metal removal rate and the

grinding system time constant. Most of the researchers concentrated on the effects of

dressing on grinding behaviour in the steady stage. Little effort has been applied to

the effect of dressing on the initial stage of grinding. As illustrated in figure 2.1, a

larger dressing lead produces a more open wheel surface, leaving sharper grains on

the wheel surface with a lower density of active cutting points. With a sharp wheel

surface, the metal removal rate is high and grinding force and temperature are low.

However, the surface roughness of the workpiece is likely to be larger than with a

small dressing lead. The effect of dressing depth on grinding behaviour is similar to

that of dressing lead. A large dressing depth produces a rough surface on the wheel

because of more macrofractures in dressing.

The effects of dressing are not only evidenced in the grinding behaviour but also in

the development of wheel wear. Pattinson and Chisholm[45] summarised the strong

influence of dressing lead on the initial stage of wheel wear. It was found that a

larger dressing lead increased the initial wear rate. However after the initial wear

stage, the wear rate is almost independent of the dressing lead. Pacitti and

Rubenstein[62] further examined the influence of the dressing depth on wheel

performance. It was found that a large dressing depth reduced the rate of wheel wear.

Pande and Lal[46] found that the wheel life is longer when the rate of bond fracture in

dressing was high. It was also concluded that flat cutting edges cause poor cutting

performance and decrease the useful life of the wheel.
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Several dressing passes may be required to stabilise the wheel topography. In multi-

pass dressing, the extant topography of the wheel surface is erased and replaced by

each successive pass of the dressing tool. Since the second and subsequent dressing

passes cannot be guaranteed to be in phase with previous passes, subsequent

variations in topography may be expected. This can affect the wheel behaviour in

grinding and will be discussed in chapter 4. Pattinson and Lyon[21] showed that

there seemed to be little merit in a large number of dressing passes. It may be

assumed that the number of dressing passes should be a minimum to achieve a

satisfactory wheel surface. The experiments by Pattinson and Lyon indicated that

four dressing passes are enough.

The shape of the dressing diamond has an important effect on wheel wear. More than

300% differences in wheel wear caused by the shape of the diamond were measured

by Verkerk [63]. Large differences in wheel wear caused by a small change of

diamond shape makes accurate prediction of grinding behaviour very difficult.

Because the shape of the dressing diamond cannot be controlled, dressing remains

subject to a large degree of variability. Furuichi, Nakayama and Doi[58] found that

dressing with a sharp diamond gives a higher G ratio, the reason being that a sharp

dressing diamond creates fewer macrofractures on the wheel surface.

The dressing operation has a strong effect on surface roughness, size error and

roundness of the workpiece[3]. Many researchers[l0, 11, 53, 57, 60, 64, 65]

concentrated on surface roughness, because surface roughness reflects the geometrical

effects of dressing. Coarse dressing gives a coarse surface texture. Scott and

Baul[66] described the effect of dressing on surface roughness by using a spectral

analysis method. An important result shown in many papers [3, 25, 53] is the

convergence of the surface roughness with grinding time towards a constant value

despite differences of the dressing conditions employed.
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2.5. Evaluation and Optimisation of the Dressing Operation

Trmal and Kaliszer[64] proposed that a good dressing condition is one that does not

induce rapid changes in surface roughness during the initial stage of grinding. This

can be interpreted as meaning that a good dressing condition should give a stable

cutting surface on the wheel and lead to a more stable grinding behaviour. The

optimum dressing condition is often determined by trials for a particular grinding

operation [46, 62]. Optimisation of the dressing conditions is therefore time

consuming and only suitable for a limited range of grinding conditions.

Buttery, Statham and Percival[67] reviewed research on single-point diamond

dressing and emphasised the effect of dressing on grinding force, specific energy,

wheel wear and surface texture of the workpiece. These authors also discussed how

to optimise the wheel condition by practical methods and how to monitor the wheel

condition. Although Fletcher [57] had previously mentioned the effect of dressing on

the efficiency of the grinding condition, dressing conditions were optimised on the

grain size and wheel characteristics without considering the grinding conditions.

Fletcher highlighted the importance of dressing diamond geometry and suggested the

ideal dressing condition for rough grinding would be given by minimum diamond

overlap in dressing. The diamond overlap in dressing can be described by an overlap

coefficient Ud.

Ud = 
bd
'd
	

(2.6)

The overlap coefficient is a comprehensive parameter to connect diamond shape to

the dressing kinematics. Oliveira, Purquerio, Coelho and Bianchi [60] agreed that the

minimum diamond overlap should be used for rough grinding to achieve a sm.'Jl

grinding force and a small variation of surface roughness. However the diamond

shape is not completely controllable due to the wear process and the diamond overlap

is therefore difficult to control.
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Because the grinding process is not completely deterministic, the selection of dressing

and grinding conditions depends to some extent on personal experience. If there is no

experience for a particular grinding condition, many experiments of a trial and error

nature may be required. Empirical models[68, 69] have been proposed to guide the

selection of dressing conditions. Empirical models tend to be valid in a narrow range

of grinding conditions. Expert system technology has been recommended as a useful

tool for decision making in production grinding[70, 71], although the applications of

expert system technology in grinding have been limited. Nagasaka, Kita, Kitaguchi

and Tanibayashi[72] described a rule based expert system for selecting dressing

conditions. If data are available to enable a data base to be established, the selection

of dressing conditions can be approached by means of a neural network method[73]

or a fuzzy logic method[74].

Amitay, Malkin and Koren[75] pointed out the importance of dressing in adaptively

controlled grinding operations and proposed an optimising dressing procedure aimed

at achieving acceptable surface roughness at maximum removal rate. The iterative

computer optimisation developed by Malkin and Koren[68, 76] introduced grinding

and dressing parameters into the optimisation strategy. The strategy required the

measurement of grinding power and surface texture. The surface texture had to be

measured by an operator. Xiao, Malldn and Danai[69] developed the strategy further.

An autonomous model based control system was introduced to control cylindrical

plunge grinding cycles. Because this system required the wheel surface to be dressed

before every grinding cycle, the influence of initial wheel wear which has a

significant effect on the wheel topography and grinding behaviour was neglected.

Xiao, Malldn and Danai's method was therefore incapable of selecting conditions for

a long redress life or of minimising the number of dressing operations required.

Dressing operations are usually carried out before grinding commences, which means

the dressing time is non-productive. To reduce non-machining time, the method of

continuous dressing was introduced[77, 78]. By using continuous dressing, the stock
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removal rate on difficult-to-grind materials can be increased. Diamond roll dressing

was found to be more suitable for continuous dressing operations than single diamond

dressing.

2.6. Conclusion

Dressing can be described as a fracture process of grains and bonds. From the

literature, it appears that a distinction can be made to dressing conditions which lead

to microfractures in a grain and macrofractures which cleave or dislodge the grain.

This hypothesis will be used as a basis for interpreting experimental results and will

be tested for consistency in providing an interpretation of the results. The topography

of the wheel is determined by wheel structure, diamond shape and dressing

kinematics. A fine dressing condition generates more cutting edges and a higher

density of cutting points on the grinding wheel surface than a coarse dressing

condition. The cutting edge distribution is denser close to the wheel surface than with

a coarse dressing condition. A fine dressing operation produces a finer workpiece

surface texture. The literature survey has shown the importance of the dressing

operation in the grinding process and revealed the many methods proposed to

optimise dressing. However, it remains unclear how dressing conditions should be

selected and there is insufficient information available on how to change dressing

conditions according to changes of the grinding conditions. Previous research on

selection of optimum dressing conditions has largely been conducted under fixed

grinding conditions with many experiments based on trial and error. In batch

manufacture the grinding parameters are frequently changed. The dressing conditions

should therefore change to satisfy the grinding requirements. An adaptive strategy for

the selection of optimum dressing conditions has the potential to reduce the trial and

error period of testing and to maintain optimal grinding conditions.
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Chapter 3 Mechanics of Grinding

3.1 The Action of a Single Abrasive Grain

As previously discussed, the grinding process is a process where numerous grains of a

wheel pass through the workpiece surface. The kinematic relationship between the

grinding wheel and the workpiece motions apply to each cutting grain. It is therefore

proposed that analysis of the grinding process can be based on the force on an

equivalent individual grain representative of the wheel surface. Some aspects of the

process by which a grain grinds can be illustrated by the geometrical relationship

between the grain and workpiece during the grinding process. The geometry of the

undeformed chip shape is described by the theoretical path of a grain as it passes

through the workpiece. The geometry of the undeformed chip is shown in figure 3.1.

The undeformed chip shape can be characterised by the cutting path length of the

grain 1k and the maximum undefomied chip thickness hm. These parameters are often

used as geometrical and kinematical parameters in the early study of the grinding

process[79, 80].

Hahn[81] distinguished three phases in the grinding process including rubbing,

ploughing and cutting. When a grain engages with the workpiece in the rubbing stage

the grain slides on the workpiece surface with elastic deformation of the system and

negligible plastic deformation. As the stress between the grain and workpiece is

increased, plastic deformation predominates. This is called ploughing. The

workpiece material piles up to the front and to the sides of the grain to form a groove.

A chip is formed when the workpiece material can no longer withstand the tearing

stress. The chip formation process is called cutting. From the point of view of

efficient metal removal, cutting can be considered to be the most desirable

deformation process. Rubbing and ploughing are inefficient, since the energy is
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wasted in deformation and friction without contributing to metal removal.

Furthermore a high temperature results which produces an excessive rate of wheel

wear and the workpiece surface may suffer metallurgical damage.

The specific energy, defined as the energy per unit volume of material removal, is a

fundamental parameter for analysing machining processes. For plunge grinding the

specific energy is obtained by dividing the machining power P by the removal rate

Q,

e=P/Q=P/(1dvfb)	 (3.1)

where d is the diameter of the workpiece, Vf is the infeed rate and b is the grinding

width. Specific energy is much larger in grinding than in turning, milling and

drilling. In order to understand the material removal mechanics in grinding, an

abrasive grain may be considered as a cutting tool of irregular shape. Theoretical and

experimental analyses[82-84] based on the grains of an equilateral-triangular pyramid

shape, a square-pyramid shape, a conical shape and a spherical shape show that the

occurrence of rubbing, ploughing and cutting are strongly dependent on the shape of

the grain. The shape of the grain has a strong effect on the specific energy ec and the

force ratio F/F. Based on the observation of the force ratio, Graham and Baul[841

asserted that the average effective rake angle of the grain could be expected to lie

within the range -45° to -75°. They also showed that high negative rake angle, which

corresponds to a blunt grain, leads to a high force ratio F/P and a high specific

energy.

An important phenomenon in grinding is the size effect. The size effect was first

discussed by Backer, Marshall and Shaw[85], who found that the specific energy

became much larger when the undeformed chip thickness was decreased. This

observation was attributed to the fact that the small chip size reduced the defects in

the metal to be removed, and allowed the workpiece material to achieve its theoretical

strength. However, Von Turkovich[86], Nakayama and Tamura[87] threw a doubt on

Backer's description, because their researches showed that the shear strength would
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not be larger as a result of the decrease of undeformed chip thickness. It has been

suggested by Graham and Baul[84], Kannapan and Malldn[88] that the size effect in

grinding can be attributed to the occurrence of a relatively greater proportion of

sliding and ploughing energy when the undeformed chip thickness is decreased.

Another explanation due to Rowe may be given by the sliced bread analogy. The

thinner the loaf is sliced, the more energy is required to slice the whole loaf. This is

because a greater surface area is created. The energy required to deform material near

the surface is expended more times as the number of chips is increased and the

surface area of the chips is increased. For example, if a cube is cut into two equal

halves the surface area is increased by at least one third. More energy is required in

cutting the material into smaller chips because the surface area of the chips increases.

This effect is therefore too large to ignore.

Shaw [89] suggested that an abrasive grain could be modelled as a sphere. He

presented an analysis which predicted that the force per unit area of the groove will

increase as the undeformed chip thickness is reduced. Based on the sphere

assumption, Lortz[90] observed the dead zone in the contact area between the grain

and the workpiece. There is a critical depth of cut before a chip formation process

commences and metal is removed. Also using the sphere model, Malldn, Wiggins,

Osman and Smalhing[91] showed that a smaller proportion of the groove volume is

removed with a smaller undeformed chip thickness due to the material piled up at

both sides of the grain. Malkin et a! asserted that the specific energy is unequal to the

cutting force divided by the intercepted area of the groove. Only chip formation

results in material removal. The rubbing and ploughing actions in grinding do not

produce material removal. Because of the existence of rubbing and ploughing in the

grinding process, the specific energy in grinding is higher than in large chip removal

processes. The size effect in grinding can therefore be related to the relative

proportions of sliding, ploughing and cutting that occur in addition to the effect of the

greater surface area created as proposed by Rowe.
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Local elastic deflection around a grain reduces the real cutting depth of the grain. The

local deflections of the wheel when the grain is in contact with steel are of the same

order of magnitude as the undeformed chip thickness (for example, 3pm according to

[92]). Saini, Wager and Brown[92] assumed that the elastic deflection consists of

four components. The four components are local workpiece deformation O, grain tip

deformation 0g variation of deflection of the grain centre O and rotation On as shown

in figure 3.2. From their results, it was concluded that grain tip deformation 8g and

rotation On are relatively small. The local workpiece deformation was said to be

just a little more than 2 .Lm and could be considered as a part of the total workpiece

deflection. The deflection of the grain centre O was found to be up to 3 .tm. The

variation of the deflection of the grain centre O has a trend and scale similar to the

total deflection. Nakayama, Brecker and Shaw[93] described the deflection of the

grain centre as following the form of a Hertz distribution,

O = CF	 (3.2)

where C is a constant in the range 0.08 to 0.25 and has an average value 0.15, O is

the deflection expressed in microns and F is the normal force expressed in newtons.

As discussed above, only a part of the chip material at the front of a grain forms the

chip because of the elastic and plastic deformation. The remaining material will be

removed by successive grains. Figure 3.3 shows the material to be removed along a

cross section of a grain.

3.2. Empirical Grinding Process Relationships

In this section empirical grinding progress relationships are reviewed and are used

later as the basis for empirical simulation to provide a basis for selection of dressing

conditions. The grinding process is often analysed by analogy with the milling

process. An average grain is considered as a cutting point mounted on the wheel
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surface. The grain depth of cut is recognised as the most influential parameter in

grinding. Therefore the analysis of the grinding force is based on the relationship

between the grain depth of cut and the grinding control parameters. Hahn[94}

suggested that the normal grinding force is proportional to the metal removal rate.

Therefore the grinding force may be expressed as a linear function of the grinding

depth. However this model cannot take account of the size effect in grinding. An

alternative way to correlate grinding force with basic process parameters is to employ

empirical relationships. It was reported by Snoeys, Peters and Decneut[95] that the

specific grinding force in cylindrical plunge grinding may be approximated by power

function relationships of the form

F' = F1	 (3.3)

F' =F2h
	

(3.4)

where F 1 , F2 and f are constants, and heq is the equivalent chip thickness. The

equivalent chip thickness corresponds to the thickness of a continuous layer of

material being removed at a volumetric rate per unit width Q and cutting velocity V.

This parameter is also equal to the volumetric removal rate per unit area of wheel

surface passing through the grinding zone.

heq va
vs	 ys
	 (3.5)

Where v is the workspeed and a is the depth of grinding. The exponent f typically

lies in the range 0.4 - 0.9. From equations 3.1, 3.3 and 3.5 the specific energy is

e = Fi heq
	 (3.6)

As a relative measure of grinding severity, the equivalent chip thickness correlates

fairly well not only with grinding forces and energy, but also with other performance

characteristics including surface roughness and wheel wear. However these empirical

relationships tend to be of limited practical use for predicting grinding performance

because the constants depend on effects which have not been taken into account, for

instance the dressing conditions, grinding fluid, wheel type, dwell period and

workpiece material. Although it is not immediately obvious, h cannot take into

account effects of workspeed on the plunge grinding process. This is because the
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1k v
is------ (3.11)

depth of cut 'a' depends on vilvw so that heq depends on Vf and V5 but not on v.

In order to understand the effect of the grinding parameter on grinding force, Ono[96]

initially assumed that the average grinding force on a grain was proportional to the

mean chip cross sectional area of the grain Am,

= kcAm	 (3.7)

= ?dCcAm	 (3.8)

where f and f are the tangential and the normal grinding force on a grain

respectively and ? is the grinding force ratio f Jf. From a survey of experiments on

the grinding force, Ono discovered that the grinding force coefficient k can be

empirically expressed as a power function. That is

k=koA
	

(3.9)

where k0 and 1 are constant and 1 ranges from 0.25 to 0.5. In views of grinding

energy, the grinding force coefficient is commensurate with the specific grinding

energy ec. When the wheel passes through the grinding zone of contact length ik. the

workpiece material removed by the wheel is

V=blka	 (3.10)

where b is the width of the grinding zone. During the period of contact, a grain on the

wheel surface covers a distance l.

If the mean separation distance of grains on the wheel surface is u, the number of the

grains in the length l is	 Therefore the mean chip volume removed by a grain

will be

= 2
	

(3.12)

If the undeformed chip length is equal to the grinding contact length 1k'

lk—(1+) r
vs	 1 + 1

(3.13)

the mean chip cross sectional area Am is therefore
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F = K CJ [!I ]2E4 aE JC
vs

(3.20)

Am = ? = u2 (1± ) 1Va(1±1)	 (3.14)

The total tangential grinding force Ft is the sum of the forces on each individual

grain, therefore

b 'k =	
Am = 

ico blk A
	 (3.15)F=—f

u2	 u2	 u

and

F = Ico b w2hl	 J_)t2	 (3.16)v	 d d

Ono's equation 3.16 is the first attempt to interrelate the grinding parameters v, v, a,

d and d by a single exponential coefficient . Since the equivalent wheel diameter

deiS
1_1±1
deds d

equation 3.16 can be simplified to

F = k0 b u2fla12()1deh1a
vs

(3.17)

(3.18)

Werner[97] modelled the grinding force on a grain based on an empirical rule for the

turning process. The cutting force on a grain was assumed to be

= k1 A1'
	

(3.19)

where k1 is a proportionality factor, A is the cross sectional area of the undeformed

chip and n lies in the range 0 to 1. Summing the grinding forces on individual cutting

edges, the semi-empirical grinding force equation is given by

where K is a constant and C1 is the static cutting edge density. By applying the

transformation Ti = 2 - 2 e, the effects of the grinding parameters in equations 3.18

and 3.20 are the same. The difference between these two models is the spacing of the

cutting edges. Ono used the average value of the dynamic cutting edge separation u,

while Werner used the static cutting edge density C1. However these two models are

otherwise the same.
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The advantage of the Ono and Werner models is that if the effect of one parameter is

ascertained, the effect of other parameters is also known. This suggests that wheel

speed, workspeed, depth of cut, wheel diameter and workpiece diameter do not have

an independent influence on the grinding force, but are closely interrelated. By

studying the influence of one grinding parameter, for example depth of cut, the

influence of other parameters can also be understood. The deficiency of the equations

is that the mechanical significance of the exponential coefficient is not clear. Since

the models are a semi-empirical models, the relationships only work for the particular

range of grinding conditions.

Werner's model expresses the effects of control parameters and the wheel surface

condition with two coefficients e and y respectively, which may be helpful in

understanding the effect of the wheel characteristics. Werner further stated that the

theoretical values of exponential coefficients I and e lie in the ranges

0^y^l,	 0.5^c^l.

Therefore the theoretical value of r lies within the range

0^1i^1.

Combining the Ono and Werner models, equations 3.18 and 3.20 can be expressed in

the form

F = CJ b[K'idp1 [K(vwa)I1..11
	

(3.21)

At the extreme condition, y = 1 and 1 = 1,

F = CI bIiKffdV'
	

(3.22)

At this condition the grinding force is directly related to the contact area and the

specific number of the cutting edges. This may actually mean that the grinding force

is generated by friction. At the other extreme, if 1 = 0, and 1 =0,

F = b
	

(3.23)

This equation shows the grinding force is directly related to the equivalent chip

thickness. This is consistent with a situation where the grinding force is generated by

chip formation. In practice[97], 0.1 <y < 0.8, 0.65 <c <0.95 and 0.1 <1 <0.7. In a

• 27.



practical situation, equation 3.21 applies which is consistent with the description of

the size effect and the conclusion that the grinding force is a combination of a cutting

force and a friction force.

3.3. Physical Grinding Process Relationships

In this section, physical models of the grinding process are reviewed. The equations

are used later as a basis for the physical simulation of the grinding process. In order

to clarify the function of cutting and friction in grinding, Malldn[98] suggested that

almost all sliding energy is generated at the interface between the wear flat of the

grain and the workpiece. Malldn illustrated the grinding mechanics as in figure 3.4.

Both tangential and normal grinding forces consist of two components, one due to

cutting and the other due to sliding on the wear flats.

F = F + F
	

(3.24)

F = F + F
	

(3.25)

It was deduced that the cutting force components were unaffected by the size of the

wear flat. The sliding force components were assumed to be proportional to the area

of the wear flat.

Since the tangential and normal sliding forces are both linearly related to the wear flat

area, the friction coefficient ji. and the average contact pressure between the wear

flats and the workpiece were assumed to be constant. The normal friction force was

assumed to be the result of the wear flat area and the average contact pressure.

Defining Ar as the real contact area between the wheel and the workpiece, equations

3.24 and 3.25 become

F =	 + Ar p
	

(3.26)

F = F + J.L Ar P
	

(3.27)

The tangential cutting force can be obtained from the specific cutting energy, which is

defined as
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F - 2vbaH

- v a 3 cotO
(3.29)

v
e

	

	 (3.28)
v a

The normal force of cutting can be calculated if the cutting force ratio FncIF t is

known. Although Malkin's model considers the functions of sliding and cutting to be

separate in grinding, the model does not directly account for the effect of the grain

shape.

Buttery[99] considered the grinding process as an interaction between two surfaces

rather than as a conventional cutting process. He derived an expression for the

normal force from wear theory,

where H is the hardness of the workpiece, a is the proportion of the grains actually

cutting, 3 is the proportion of the groove volume removed and 0 is the half-angle of

the scratches formed on the abraded surface. This model high-lights the effects of

grain shape with the scratch angle and the distribution of the grains.

Shaw idealised a grain on the wheel surface as a sphere[89]. The normal force

applied to a grain was assumed to be similar to the force in a Brinell hardness test or a

Meyer hardness test. The deformation process is constrained by an elastic-plastic

boundary. As the sphere moves horizontally, the plastically deformed zone beneath

the surface becomes inclined. The workpiece material is squeezed upwards forming a

chip which is subsequently sheared from the surface. The model is illustrated in

figure 3.5 where the horizontal movement of a sphere at a cutting depth t is equivalent

to a sphere indented into the surface to the same depth t.

In the absence of friction at the surface between the sphere and the workpiece, the

force to indent the workpiece is independent of the direction in which it is loaded.

This implies that the projected area of the indentation is independent of the direction

of the force. If the radius of the projected area is b, the force to indent the workpiece

is
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R = it b2 H (v-)
	

(3.30)

where C' is a constraint coefficient defined as the ratio of the average pressure on

the contact area to the uniaxial flow stress Cb• In most cases of grinding, C' is about

3 [89]. The specific energy may be defined as

e =
	

(3.31)

where is the tangential component grinding force on a grain and A is the cross

section area of a undeformed chip. If A is approximated to

A=-bt

then

3 R sine
e =- 4 b t

The specific energy due to cutting may therefore be expressed as

3it	
(3.32)

According to Shaw, the friction force is assumed to be .R.cosO. Where J.L is the

mean coefficient of friction at the contact surface. The specific energy due to friction

is
3ir	 (3.33)

Therefore the total specific energy for a single grain is

eg =	 (s-) (sinO + pcosO)
	

(3.34)

Generally only a portion of the workpiece material engaged by the grain is removed

in grinding. In a hardness test, the material flows upward along the sides of the

indenter. This can be expressed by the upward flow ratio 13[89],

Volume rising above original surface	
(335)

=	 Total volume displaced

In grinding, some material is removed so that the volume rising above the original

surface is less than the total volume displaced. The volume rising above the original

surface is commensurate with the material bulge at the sides of a grain and chip
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R = A 1 - A2
A1+A3

(3.36)

formation. Therefore the upward flow ratio is a measure of the cutting efficiency of a

grain. In grinding, the upward flow ratio 13 may be expressed in terms of a cross

Section perpendicular to the path of a grain[100, 101],

where A 1 , A2 and A3 are areas illustrated in figure 3.6. The parameters in this

definition may be easily measured in laboratory.

For an upward flow ratio 13 less than one, the specific energy for a single grain is

eg =	 (c-) (sine + tcos8)
4 t13 3

(3.37)

If the average diameter of the grains is dg and the average depth of cut of the grains is

t, from figure 3.5

=J(dg)

sin e = 2b. 
= 2JãTt)

dg	 dg

050=g2 2 2	 dg24t(dgt)

dg	d

Therefore the specific energy of grinding is

3it "t (dg - )	 (2/i (dg - i)	 %/dg2 - 4i (dg - t))	
(3.38)

d
e=-4--	

133	 g	 dg

For most practical cases, dg >> t, so that

e=- ff(C..)(2+l.Ll\,[ii)	 (3.39)

The mechanics of grinding can also be investigated by monitoring and analysing the

grinding power. In plunge grinding the grinding power P can be expressed in terms

of the tangential force

P = F (v5 ± v)
	

(3.40)

The positive sign is for upcut grinding and the minus sign is for downcut grinding.

When the workpiece speed is much smaller than the wheel speed, the grinding power
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can usually be simplified with less than 2% error to

P = Fv	 (3.41)

Based on the simplification that grinding consists of rubbing, ploughing and chip

formation phases, Malkin[9] suggested that the grinding power P can be partitioned

into chip formation, ploughing and sliding components

P = 'ch + Ppi + Psi	 (3.42)

Malkin proposed that the chip formation component ch can be estimated based on a

constant specific chip formation energy. The ploughing component P 1 was assumed

to be based on a constant ploughing force per unit width. The sliding power was

assumed to be proportional to the area of the wear flats on the surface of the wheel. A

linear relationship was found between the grinding force and the area of the wear flats

on the wheel. The proportionality factor depends on the grinding conditions and the

particular wheel-workpiece-fluid combination.

3.4. Generation of the Workpiece Surface in Grinding

Generation of the ground surface of the workpiece may be illustrated theoretically

from the geometrical relationships and the mechanics of the grinding process.

Geometrical effects depend on the kinematics of the grinding situation and the

topography of the wheel surface. It is commonly agreed[52, 67, 84, 100] that the

mechanics of the grinding process depends critically on the geometry and the

distribution of the cutting points on the wheel surface, both of which are affected by

dressing. In grinding, abrasive grains transfer their profile to the workpiece surface.

When a grain passes through the workpiece surface, workpiece material is removed,

leaving a trace on the workpiece surface. Because the cutting edges are randomly

positioned on the wheel surface, the path of each grain is different. Only the

outermost active cutting edges on the grinding wheel surface actually cut through the

workpiece to generate the workpiece profile. The action leaves an irregular rough
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surface along the direction of grinding as shown in figure 3.7. The surface roughness

is therefore determined both by the grinding kinematics and the distribution of the

cutting edges on the wheel surface.

In view of the physical mechanism involved in the generation of the ground surface,

both the elastic and plastic deformations have to be considered. The side-flow

material ploughed into ridges increases the workpiece roughness, while rubbing in the

grinding zone may improve the surface roughness. Due to the elastic and plastic

deformation in grinding, only a proportion of the material in the groove is removed

by the grain as shown in figure 3.3. A rough surface can therefore be attributed to the

accumulation of grooves, which are generated according to the grinding kinematics

and the deformation which occurs in grinding.

Empirical models may also provide a basis for further understanding of the workpiece

surface generation in grinding. In cylindrical plunge grinding, the surface roughness

may be expressed approximately as a function of equivalent chip thickness[95].

Ra = R1 hq	 (3.43)

where R1 and r are constant for a particular system. The exponent r typically lies in

the range 0.15 - 0.6. Maildn and Murray[24] found that there is a logarithmic linear

relationship between specific energy and surface roughness. This indicates that the

generation of the workpiece surface cannot be fully understood without considering

the mechanics of the grinding process.

3.5. Wheel Sharpness and Wheel Wear

It is important to minimise the cutting force coefficient and to achieve optimum

grinding performance. Sharpness of the grinding wheel depends not only on the

geometry of the wheel but also on the physical process. A sharp wheel is related to

sharp grains on the wheel surface. This means the apex angle of the grains is small.

. 33.



A sharp wheel or a blunt wheel is an ambiguous concept. Sometimes in the

literature[ 13], a sharp wheel is taken to mean that a high metal removal rate can be

achieved, and other times[102] to the condition where a good surface integrity can be

obtained. However it can be argued that a sharp wheel contributes to all of the

features listed below:

• a high metal removal rate;

• alow grinding force;

• a low energy consumption;

• a small residual stock at the end of the cycle;

• a high size accuracy

• a low temperature in grinding;

• good surface integrity

Since the wheel sharpness influences grinding force, grinding temperature,

productivity, accuracy and surface integrity, the wheel sharpness is clearly very

important. Although there is no standard definition of wheel sharpness, many

parameters and methods have been proposed.

The metal removal parameter ? was introduced to describe the wheel sharpness on

the basis of grinding force and stock removal rate[103]. The metal removal parameter

is defined as:

I'w_

	

	 (3.44)
F-F0

where Q is the volumetric removal rate per unit width, F is the specific normal

grinding force, F 0 is the threshold value of the specific normal force required to

remove metal. By studying the effects of the grinding parameters, dressing

parameters and wheel characteristics, Lindsay[103] developed the following equation

for the metal removal parameter in British Imperial Units.
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()f(1+ 4) f&v8
= K	
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de (VOL)047 d8 RCT

where

(3.45)

= 0.02 1

d is the grain size,

R is the Rockwell Hardness,

VOL is a volume factor for the wheel, VOL 1.33H + 2.2S - 8,

H refers to the grade of the wheel hardness, and H =0, 1,2, etc. corresponding

to a wheel hardness of H, I, J, etc..

S is the wheel structure number, 4, 5, 6, etc..

Equation 3.45 indicates that an increase in the dressing depth improves the wheel

sharpness. The effect of dressing lead indicated in the equation is questionable. The

previous experimental results[104] showed that ? increased with increases of fd and

a. The grinding conditions also have a strong effect on wheel sharpness.

The time constant t of the grinding system is another commonly used parameter to

indicate the wheel sharpness. The time constant reflects the dynamic response of the

system. Time constant therefore represents the combined effect of wheel sharpness

and the system stiffness on grinding behaviour. A small value of time constant

corresponds to a sharp grinding wheel and a stiff machine-workpiece system.

The force ratio Fe/F t and the specific grinding energy ec are also used to indicate the

wheel sharpness. A sharp wheel corresponds to a small value of Fe/Ft and a small

value of ec.

The sharpness of a grinding wheel changes during the grinding process. This is

indicated by the wear of the grinding wheel. The wear of a grinding wheel in

grinding is the combined effect of the wear of individual grains in the wheel. When

the wheel is rotated at grinding speed and applied to the workpiece, the abrasive
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grains Cut the material and remove small chips. Under the action of the forces

imposed during grinding, flats are worn on the abrasive cutting points. This causes an

increase in friction, workpiece heating and the magnitude of the forces imposed on

the wheel. An increase in the magnitude of grinding force increasingly causes the

abrasive to fracture, exposing new cutting edges, or fractures the bond bridges to

expose fresh abrasive grains. If the fracture wear allows the wheel to remain sharp,

the grinding wheel is said to be self-sharpening. If the wheel is not self-sharpening,

the wheel has to be dressed more frequently.

Three principal mechanisms of wheel wear were commonly identified[5, 105-110] as:

(i) Attritious weal. This occurs on a microscopic scale and enlarges the wear flat

area of a grain.

(ii) Grain fracture. This is the sharpening mechanism whereby a new cutting edge is

formed by fracture of an individual grain.

(iii) Bond failure. This is a process where dull individual grains break away to reveal

fresh grains.

In grinding, the abrasive grains are subject to high temperatures and pressures. In

consequence, chemical reaction, mechanical wear and material adhesion all play a

part. The sharpness of a wheel is reduced by attritious wear of the grains and

adhesion of workpiece material. Attritious wear of the grains is attributed to chemical

corrosion and mechanical wear. Although the consumption of the wheel caused by

attritious wear is relatively small, grinding quality and productivity are affected.

Where possible, the abrasive should be considerably harder than the material being

ground and should not demonstrate chemical affinity for the workpiece material.

It is known that grain fracture wear consists principally of the detachment of

fragments from the sliding surface of the grains. The fracture properties of single

abrasive grains engaging a metal surface have been found to be different after a

number of engagements [98, 1111. This observation was made on a statistical basis
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and no physical mechanism was suggested. Furthermore fracture was found to

depend on crystallographic orientation. Because of the random orientation of grains

in a grinding wheel, prediction of grain fracture is not possible. A thermal analysis of

grinding indicates that the thermal gradient along the grain can be as high as 4x105

K°/mm[8 1, 112]. Under such extreme conditions, it is evident that thermal stress can

cause grain fracture. The occurrence of these temperature gradients during grinding

followed by rapid cooling during the free path around the wheel periphery causes

thermal fatigue. It is apparent that the fracture wear of the grains during grinding is a

complex process, which has not yet been fully explained.

In precision grinding, the wheel wear is mainly attributed to attritious wear and grain

fracture. The proportion of attritious wear and grain fracture in grinding depends on

the grinding conditions and the wheel hardness[1 13, 114]. Large stock removal rate

tends to fracture grains. Excessive bond fracture leads to a large volume of wheel

wear, which is not usually allowable in precision grinding operations. To avoid

severe bond fracture, a harder grade wheel and slower grinding conditions are used.

It is commonly accepted[5, 45, 104, 105, 115, 116] that the wheel wear process may

be divided into three stages, an initial wear stage(I), a steady stage(ll) and a final

stage where the wheel surface rapidly deteriorates(Ill). The grinding force in

different stages of wheel wear is shown in figure 3.8.

The initial stage is characterised by intensive wheel wear and the shape of the

grinding force characteristic is strongly dependent on the dressing operation. There

are many cracks in the wheel surface after dressing, which cause grains to fracture or

dislodge from the wheel surface when the wheel engages to the workpiece. In the

second stage, the wheel wear is mainly due to a combination of atiritious wear and

grain fracture. Grinding wheel wear is slower and a steady grinding behaviour is

experienced. The steady stage is desirable for predictable control of the grinding

process. The first and second wear stages represent the useful redress life of the
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grinding wheel.

In the final stage, either grinding forces become excessive or excessive vibration

develops and the wheel has to be redressed. Wheel wear in this stage is due to bond

post rupture and whole grains are dislodged from the wheel. This leads to rapid

deterioration in surface texture, workpiece form and size tolerance. If the surface

roughness, roundness and size errors of the workpiece fall outside the tolerance limits,

the wheel should be redressed.

Although only 2-10% of wheel consumption is attributed to the wear during

grinding[5], the grinding behaviour can change greatly as the wheel wears. As the

grinding wheel wears towards the third wear stage, the profile and distribution of the

active grain edges on the wheel become increasingly irregular[52, 117]. This can lead

to a loss of form accuracy. Irregular wear of the grinding wheel is often associated

with the build up of vibration on the wheel, a phenomenon known as 'wheel

regenerative chatter'. This causes poor roundness and surface roughness. Grinding

force may either be increased associated with excessive glazing or decreased

accompanied by intensive bond fracture, leading to increased size errors.

The maximum machine power may be exceeded due to a blunt wheel. The constraint

infringement may be overcome by either reducing material removal rate or redressing

the wheel. A reduction of removal rate may increase the specific energy because of

the size effect and the increased tendency towards attritious wear of the grains. This

can increase the possibility of thermal damage to the workpiece. Redressing the

grinding wheel becomes essential to restore the wheel sharpness.

3.6. Simulation of Grinding Behaviour

Simulation can be used to check the consistency of models of the grinding process
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with actual grinding behaviour. There are two kinds of models, physical and

empirical, used in grinding simulations. Though assumptions made in physical

models may introduce errors, simulations based on physical models may illustrate the

physical behaviour in grinding and express the effects of influential factors.

Simulations based on empirical models may be more easily matched with grinding

behaviour. However they cannot easily be used to control industrial

applications[l 18]. The reason may be attributed to the many tests required to

establish empirical models covering an appropriate range of conditions.

Suto and Sata[1 19] measured the number and worn area of the active cutting edges

and developed empirical models to simulate grinding behaviour. The results of the

simulations showed good agreement with experimental results. However, the grain

size was not involved as a parameter in the simulation models.

Steffens[120] simulated the grinding process based on measurements of the wheel

surface. After the cutting edge radius and the distribution of the cutting edges were

obtained from the measurement, the shape of the grinding chips were calculated.

Subsequently, the grinding force, grinding temperature and generation of the

workpiece surface were simulated. A key requirement of the simulation technique

was the need to accurately measure the wheel surface.

Due to the difficulty of measurement of the wheel surface, some researchers

generated the distribution of the cutting edges by the Monte Carlo method[36, 121-

123]. Simulations using the Monte Carlo method also showed good agreement with

experiments. However a difficulty still remained since the density function of the

cutting edge distribution is also difficult to obtain in practice. The practical

application of the simulation technique is therefore limited by the need to describe the

wheel surface.
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Chapter 4 Grinding Process Control

In this chapter, dressing and grinding are considered in terms of process control. The

relationships between grinding behaviour and process parameters are examined for

the external cylindrical plunge grinding process. The dressing and grinding process is

analysed drawing from previous work to form a basis for the later design of a process

simulation and the formulation of an objective for the optimisation of dressing

conditions. This chapter draws attention to the particular importance of time constant

as a measure of cutting efficiency and its relationship to size-holding. This provides

the basis for consideration of the use of time constant in an adaptive dressing strategy.

4.1. Basic Features of a Plunge Grinding Cycle

As illustrated in figure 4.1, a plunge grinding process is usually controlled by wheel

speed vs, workpiece speed v and wheel infeed rate Vf. As the grinding wheel grinds

the workpiece, a grinding force is induced between the wheel and the workpiece. The

faster the stock removal, the larger is the grinding force. The grinding force causes

deflection of the machine and generation of heat. The ability of the grinding wheel to

remove stock is often described in terms of wheel sharpness. When the grinding

force rises for a given infeed rate, the wheel sharpness is said to reduce. Increased

forces result in more deflection of the machine and sometimes in thermal damage or

grinding chatter.

Simplified as figure 4.1, the machine structure supports the wheel with a linear spring

of stiffness km and the workpiece with a linear spring of stiffness k. The stiffness of

the grinding wheel at the contact with the workpiece is ka. An expression for the

overall effective stiffness ke is
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kc
keflw

(4.7)

k km k ka
	 (4.1)

When the infeed rate Vf is applied to the cross slide of the machine, the wheel

advances towards the workpiece. The wheel and the workpiece mutually 'machine'

each other, generating the grinding interface force and the deflection in the grinding

system. The deflection 5 is given by

S = F I k
	

(4.2)

where F is the normal component of the grinding force and 1e is the stiffness of the

grinding system. The normal force is approximately proportional to the real depth of

cut[94]:

Fnkca=
	

(4.3)

where k is the grinding force coefficient, a is the real depth of cut, t is the rate of

reduction of the workpiece radius and n is the workpiece rotational speed. If

grinding wheel wear is neglected, the difference between the command infeed

velocity X and the actual infeed velocity can be attributed to the changing radial

elastic deflection S in the grinding system.

X-r=8
	

(4.4)

The parameter r is the reduction in radius of the workpiece and thus expresses the

radial shape. Combining equations 4.2, 4.3 and 4.4 leads to the controlling equation

of the grinding system.

X - r =_k ..
keflw

So that,

t + t = X
	

(4.6)

where 'r is the time constant of the system and is a measure of the relationship

between stiffness and grinding force coefficient.

(4.5)

The time constant is affected by the wheel speed and workpiece speed through the

rotational speed n and the grinding force coefficient lc.
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The grinding model can be readily modified to include the effect of wheel wear, if a

grinding ratio G is defined as the volumetric ratio of material removal rate to the

wheel wear rate [7]:

G= icdb =
idb* d5*

where * is the radial wear rate of the grinding wheel. If wheel wear is taken into

account, the continuity condition given by equation 4.4 is modified to

X-r-w=	 (4.9)

(4.8)

Let

1 + d
dG

and
,= x

1+ d
d8G

Equation 4.9 can then be modified to

t .i: + = X,

(4.10)

(4.11)

(4.12)

which has the same form as equation 4.6. In terms of process control, equation 4.6

and 4.12 are the same. Therefore the grinding system behaves approximately as a

first order system despite wheel wear. When the time constant is estimated from

experimental data, the result will be affected by the rate of wheel wear. When the rate

of wheel wear is small in comparison to the radial penetration rate, the wheel wear

can be neglected, enabling equation 4.6 to be used.

A commonly used grinding cycle consists of a roughing stage and a sparking-out

stage. Solving equation 4.616] for the roughing stage Q = vf) gives

r(t) = Vf { t - t [1 - exp(- .1.)] }

for the sparking out stage Q( =0) gives

r(t) = vf { ti - 'V exp(- ---)}
'V

(4.13)

(4.14)

where t is the grinding time and t1 is the rough grinding period. From equations 4.13
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and 4.14, the time constant is found to be the characteristic parameter. The removal

rate and the deflection of the grinding system are different for different values of time

constant even if the same infeed rate is applied. The rate of size change of the

workpiece in the sparking-out stage is also characterised by the time constant.

Accordingly the time constant is considered to be a valid parameter to represent the

cutting ability of the grinding system[6]. For a particular grinding system and a

particular set of grinding conditions, the only cause of variations in time constant is

the wheel sharpness. Therefore changes of the time constant of a grinding system are

indicative of changes in the grinding wheel sharpness.

4.2. Grinding as a Control System

It is proposed that the mechanism of the total grinding process may be investigated by

considering the grinding process in terms of process control. From the point of view

of control, the total grinding process includes dressing and grinding. The basic

relationships in grinding can be interpreted by the interdependency existing between

the inputs and outputs of the process as in figure 4.2. In figure 4.2, the grinding

process is assumed to be affected by the grinding wheel, the dressing tool, the

workpiece, the dressing conditions and the grinding conditions. These influential

aspects are considered as the inputs of the grinding process. The grinding behaviour

is characterised mainly by grinding force, vibration, temperature, wheel wear and

quality of the ground workpiece. These parameters may therefore be considered as

the outputs of the grinding process.

It is proposed that the grinding wheel and the dressing tool combine with the dressing

kinematic conditions to generate the wheel cutting surface. The volume of material

removed by each grain is associated with its kinematic action. The force on a single

grain depends on the characteristics of the workpiece and the cutting motion of the

grain. The relationship between the inputs and outputs of the grinding process may
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be defined from the action of a single representative grain. The grinding behaviour

results from the aggregation of the effects of each individual grain. Therefore the

basis of grinding behaviour is the performance of a single grain. Based on this

analysis, the relationships between the inputs and outputs of the grinding process can

be investigated by considering relationships with the action of a single grain.

The grinding wheel is characterised by many parameters, such as wheel grade, grain

size, structure number, grain material and bond material. The dressing conditions

affect the topography of the working surface of the wheel, which in turn affects the

grinding behaviour after dressing[3]. The diamond tip shape also affects the wheel

topography. The tip shape cannot be controlled due to the effect of diamond wear.

The effects of dressing can therefore be very different for the same dressing

conditions. A dressing strategy for CNC grinding should, therefore, be capable of

compensating for diamond wear. The characteristics of the workpiece affect the load

on the grain. The machine control parameters for plunge grinding are grinding wheel

speed, workpiece speed and wheel infeed rate. The principal grinding parameter is

the infeed rate vj which directly controls removal rate.

The outputs of the grinding process are those parameters which represent the grinding

behaviour and the workpiece quality. The grinding force and the grinding vibration

are outputs from the viewpoint of the mechanics. The grinding temperature is an

output from the viewpoint of thermal effects. The wear of the grinding wheel is an

output of the grinding process from the view point of tribology. The specific energy

of grinding is the main output from considerations of energy efficiency. Because the

specific energy is affected by grinding force, temperature, vibration and wheel wear,

it can be considered as a more comprehensive parameter of the grinding process.

Other outputs of the grinding process from the viewpoint of workpiece quality are the

size errors, roundness errors, surface roughness and surface integrity.

A key point linking inputs and outputs of the grinding process is the individual grain
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load as shown in figure 4.2. The grinding behaviour can be separated into two

aspects relating to the physics of material removal and the geometry of the grinding

process. The physical behaviour of the wheel may be related to the grinding force.

Because the topography of the wheel reflects its shape onto the workpiece surface, the

roughness of the workpiece under ideal conditions may be considered as the

geometrical expression of the behaviour of the grinding wheel. The effect of dressing

on grinding behaviour can be mainly described by the effects on the grinding force

and surface roughness.

4.3. Requirements of a Dressing Strategy

In evaluating the effects of the dressing operation on the grinding process, the

following criteria need to be satisfied.

(i) The values of surface roughness after grinding should always lie within the

product design limits. In particular the surface roughness must be less than the upper

limit. Higher values of surface roughness will be rejected. Lower values of surface

roughness are unnecessary for component function and it is possible that lower values

of surface roughness will lead to increased production costs, because of decrease in

productivity.

(ii) The values of workpiece size generated by the process with a high removal rate

should fall within the size limits.

(iii) The grinding wheel should wear as uniformly as possible across the face. The

wheel wear rate must not be too high nor too low. If the grinding wheel wears too

rapidly, the deterioration of the wheel form will occur prematurely[52]. If the

fracture process in the grinding wheel occurs too slowly, grinding chatter or grinding

bum will occur due to bluntness of the grains of the grinding wheel resulting in high

grinding forces[ 124-126].

(iv) The redress life of the grinding wheel should be as long as possible. Usually

grinding cannot be carried out at the same time as dressing is in progress. Frequent
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dressing therefore decreases productivity.

For a fixed grinding cycle these requirements imply that the working surface of the

grinding wheel should be stable. Therefore a good dressing operation is one which

leads to stable grinding behaviour. For different grinding conditions, different

dressing conditions may be required in order to optimise the grinding process.

Large variations in the initial grinding behaviour are often due to inadequate dressing

which leads to a large initial change of the wheel surface. It has been found[3, 10, 38]

that the effects of dressing in the initial stage of grinding are much stronger than in

later stages, and these effects continue until the next dressing operation. Therefore

dressing conditions should be selected to lead to stable grinding behaviour or at least

to reduce the behavioural variations in the initial stage of grinding. It may be further

argued that a good dressing operation should provide stable grinding behaviour at the

maximum material removal rate without offending the constraints of the grinding

operation.

The important influence of diamond tip width is commonly ignored when dressing

conditions are selected. The reason is due to the difficulty of measuring or

controlling the diamond tip width and also due to lack of knowledge on the effect of

the diamond shape. Due to the lack of a suitable method of controlling diamond

shape, the results of dressing become unpredictable. The objective is therefore to

achieve a dressing strategy for the selection of dressing conditions to compensate for

the effects of the variation of diamond tip width. If the variation of the shape of the

dressing diamond causes the grinding force to increase, a larger dressing depth or

dressing lead may be used to reduce the grinding force. Similarly the dressing depth

or dressing lead may be adjusted to improve the surface roughness. The methodology

of how to adjust the dressing conditions to compensate for the variation of the shape

of the dressing diamond will be detailed in following chapters.
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Chapter 5 Experimental Investigation of Dressing and Grinding

Performance

5.1 The Experimental System

The aim of the experiments was to investigate dressing and the subsequent grinding

behaviour. The grinding experiments were undertaken on a Jones & Shipman Series

10 cylindrical grinding machine with an A-B 8200 CNC. The minimum

programmable increment of the wheelhead was 0.000 1 mm and the servo input

resolution was 0.0002 mm. The resolution of the optical scale used for position

feedback was 0.1 J.Lm. The standard wheel peripheral speed was maintained at 33

rn/s. An automatic wheel balancing unit was used. The workpiece was held between

dead centres on the workhead and tailstock. The parameters V, V and Vf were

checked and found to be controlled to an accuracy approximately 1%.

A grinding wheel type A465-K5-V3OW was used. The diameter of the wheel in the

experiments varied progressively from 410 ± 1 mm to 360 ± 1 mm due to wheel wear.

The workpiece material was oil hardened cast steel with a hardness of HRC 60 - 62.

The diameter of the workpieces varied between 15 ± 0.0005 mm and 18.5 ± 0.0005

mm, depending on the number of times the specimens were ground. The width of the

workpieces was in the range of 23 mm to 25 mm. Single diamond dressing tools

were used for dressing. The coolant used for dressing and grinding was Arrow

Synthetic Cutting Fluid with a dilution ratio of 16:1.

Workpiece size measurements were carried out on a Taylor-Hobson Talymin 4-10

comparator (0.2 tm resolution). Workpiece surface texture and diamond shape were

measured on a Taylor-Hobson Form Talysurf 120. Workpiece roundness was

measured on a Taylor-Hobson Talyrond 210. The measurement accuracy of the
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Talymin, Talysurf and Talyrond were better than ± 0.5 Lm. Wheel wear was

measured by the razor blade method, by which the accuracy was judged to better than

1tm.

A schematic arrangement of the on-line measurement system is shown in figure 5.1.

During the grinding process, the workpiece size, grinding power and vibration were

logged by a multifunction, high-speed, AID, I/O expansion board (MetraByte Model

DAS-20[ 1 27]) using a personal computer. The MetraByte board enabled the

computer to be used as a high-speed, high-precision, data-acquisition and signal-

analysis instrument. The board was designed as a multilayer construction with

integral ground plane to minimise noise and crosstalk at high frequencies. The

maximum sampling rate was 100,000 samples per second. For A/D conversion, one

unit of the signal was equivalent to the full scale input range divided by 4096.

A Tektronix 2211 digital storage oscilloscope was used as a visual monitor. The

oscilloscope was capable of storing 4,000 data on each channel. The resolution was

256 units for full range. The accuracy in the range of use was better than 3%.

On-line size measurement was undertaken by using a Movomatic size gauging system

built into the Jones & Shipman Series 10 cylindrical grinding machine. The

resolution of the diameter gauging system was 0.1 pm. The accuracy of the

measurement was within ± 0.5 pm.

Grinding power was assumed to be the difference between grinding wheel spindle

power when grinding and when running under no load. The grinding power signals

were obtained from a Deemstop power meter. The power data from the Deemstop

were calibrated with a Siemens Function Meter B 1081. The calibration was found to

be linear at 0.75 W/unit at a significance level a = 0.01. The coefficient of

determination of the regression was 0.97. The accuracy in the range of use was better

than 5%.
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Where a wide frequency band vibration measurement is made, the choice of

measurement parameter is very important if the signal has components at many

frequencies. There are three main parameters for monitoring vibration, which are

acceleration, velocity and displacement. Measurement of displacement gives the low

frequency component the most weight while measurement of acceleration weights the

level towards high frequency components. The vibration of a grinding system

consists of many components in a wide frequency band. Therefore acceleration was

selected as the parameter to be monitored. A Bruel & Kjr type 4332 piezoelectric

accelerometer was used which gave a constant frequency response from 0 to 10 kHz.

An FE-128-CA Fylde Charge Amplifier was used to provide a voltage signal

indicative of the level of vibration from the accelerometer. For the range of

experiments, a typical grinding acceleration signal detected by the oscilloscope at a

sampling rate of 80 kHz is illustrated in figure 5.2. As shown in figure 5.3, the

characteristic frequency of the grinding chatter was found by spectral analysis to be

between 2.5 and 3.5 kHz, which is higher than the normally expected frequency. The

vibration frequency of the coolant pump was identified at about 350 Hz.

The grinding power and size data were sampled at 100 Hz. However, since the

characteristic frequency of the grinding chatter was about 2.5-3.5 kHz, the vibration

data were logged at a very high frequency of 10 kHz based on the Nyquist sampling

theorem. Due to the limit of the computer memory, it was impossible to log both size

and vibration data at 10 kflz for the whole grinding cycle. Therefore, the data

logging strategy shown in figure 5.4 was used. The strategy was to record vibration

signals at high frequency for a short time during the steady state period within a

grinding cycle. The steady stage was assumed to be achieved after a 3 time constant

period.

The program for data logging was written in 'C' language. The data logging process

was carried out in two ways. Slow data logging was undertaken in the foreground

during the whole grinding cycle, and fast data logging was undertaken in the
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background during steady grinding. The slow logging frequency was controlled by

the PC system clock interrupt. The fast logging frequency was controlled by the

MetraByte on-board clock. The fast logging data were transferred to memoiy using

the DMA(Direct Memory Access) method. Because only one board was available,

the slow data logging was stopped when the fast data logging was being undertaken.

The slow logging data were set to zero while the fast logging was carried out. This

allowed the successive data from the slow logging to be maintained in order as a

continuous array. The flow chart of the data logging program used is shown in figure

5 .5.

In order to prevent aliasing errors, low pass Butterworth filters were applied to all

signals before they were recorded. A Butterworth cascaded filter was used to provide

a maximally flat magnitude response in the pass band combined with a high

attenuation rate. It makes voltage control and wide-range tuning easier because it sets

the low-pass cut-off frequencies in all cascaded sections to the same frequency. The

normalised third-order low-pass active filter circuit employed is shown in figure

5.6.[128] For a low pass filter of critical frequency 4000 Hz, the parameters in figure

5.6 were R = 51, C1= 2670 pF, C2= 1050 pF and C3= 150 pF.

5.2 Experimental Procedure

Before the experimental investigation on dressing and grinding was undertaken, the

number of dressing passes required was determined. Many dressing passes were

found to be required in order to clean the wheel working surface effectively and

achieve a stable dressing result. Figure 5.7 shows the effect of the number of dressing

passes on grinding behaviour. One dressing pass was undertaken before every

workpiece grinding cycle. Grinding power became steady after approximately 8

grinding cycles. Therefore it was assumed that eight dressing passes were needed to

clean the wheel surface in this particular case. In the further grinding experiments,
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eight dressing passes were employed each time the wheel was redressed.

The diamond shape was measured before and after dressing. The diamond was

carefully replaced in its previous position after measurement so as to present the same

aspect to the grinding wheel each time dressing was performed. A typical diamond

shape measured is shown in figure 5.8. The active diamond width bd was defined as

the engaged width in the horizontal plane. The shape of the diamond can also be

characterised by the diamond sharpness ratio y, which is defined as the dressing depth

ad divided by the active width of the diamond bd as shown in figure 2.1. The

diamond shape measurement was carried out using a chisel stylus on the Talysurf. A

significant change in diamond shape was often found after dressing as shown in

figure 5.9. It was found that diamond wear can either make the diamond sharp or

make the diamond blunt which indicates that the diamond shape is unpredictable

during the dressing process.

The plateau surface of a worn diamond is very rough and irregular as illustrated in

figure 5.10. This makes it difficult to achieve accurate measurement of the active

diamond width. For this reason the measurements shown in figure 5.9 can only be

used as approximate indications.

The single diamond dressing operations were defined by dressing depth, dressing

lead, dressing diamond shape and number of dressing passes. Experiments were

carried out to examine the effects of these dressing conditions. The effects of

grinding conditions, workspeed and wheel infeed rate, were also investigated. In

relation to dressing, the shape of the dressing diamond tip and the dressing power

were measured. The diameters of the wheel and workpieces were measured for each

experiment. Grinding power, grinding vibration and size changes of the workpiece

were monitored during the grinding process. After grinding, surface texture, size

error and roundness of the workpieces were measured. The wheel wear was also

measured.
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Four fundamental experiments sets were carried Out in the research, which were

i	 effects of dressing conditions on dressing force;

ii	 effects of grinding conditions on grinding behaviour,

iii	 effects of dressing conditions on grinding behaviour;

iv	 correlation of dressing conditions and grinding conditions.

The basic dressing and grinding procedure for these experiments was as follows.

The stock removed from the workpiece was 300 ± 10 .Lm on diameter. Dressing

diamonds with different wear flats were used for dressing. Eight dressing passes were

made before each set of trials to achieve a consistent wheel surface. After the infeed

phase of the cycle was completed, the wheelhead was held stationary for a dwell

period of 5 seconds in most cases. For experiment ii, the dwell time was 10 seconds.

The number of workpieces ground in each set of trials depended on the wheel redress

life. The redress life was considered to be finished when evidence was found of

grinding chatter.

According to equation 3.5, the equivalent chip thickness is dependent on metal

removal rate and wheel speed. In plunge grinding the metal removal rate is equal to

idwvrb. Therefore in plunge grinding, the equivalent chip thickness is normally

controlled by varying the infeed rate and is independent of workpiece speed. Due to

the large momentum of the wheel in external grinding, the grinding wheel speed is

normally maintained constant. Therefore considering the comparatively weak effect

of workpiece speed on specific energy, the main grinding control parameter is the

infeed rate of the wheelhead.

Dressing and grinding conditions were decided depending on the nature of the

investigation. The effects of dressing were investigated by varying dressing depth ad

and dressing lead d under fixed grinding conditions as in experiments i and iii. The

wheel speed v5 was 33 mIs. The workspeed v was 0.25 m/s. The infeed rate Vf was
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10 inn/s. In experiment ii, the effects of equivalent chip thickness were investigated

by varying wheel infeed rate and workspeed under the dressing conditions, aj = 0.010

mm, fd = 0.10 mm/rev. In experiment iv, the effects of infeed rate and workspeed

were investigated under the fixed dressing conditions, aj = 0.015 mm, d = 0.15

mm/rev.

All dressing and grinding operations were carried out with the coolant supply turned

on fully. Maximum grinding power was read from the Function Meter. The dressing

force was determined by measuring dressing power. After grinding, the workpieces

were left to "soak" in a controlled temperature environment of 20°C for a period of 24

hours before measurement. Workpiece size error, surface roughness and roundness

were measured. Size error variations were obtained by comparing the workpiece size

with the size of the first workpiece. The size error reading was an average of 5

readings at different positions around the workpiece taken half way between the two

ends. Wheel wear was measured after each set of grinding trials using the razor blade

method. The wheel profile was replicated onto a razor blade by grinding it. The

razor blade profile was then measured using the Form Talysurf.

5.3. Experimental Results and Discussion

5.3.1. Effects of Dressing Conditions on the Dressing Force

The relationship between the dressing force and the dressing parameters was

determined and illustrated in figure 5.11. An empirical dressing force model was

obtained by least mean squares regression of the experimental results shown in figure

5.11 to a straight line. The coefficient of determination was 0.89. The significance

level of regression was 0.01. The dressing force model was thus expressed as

Fd = 724 ad•l + 0.281
	

(5.1)
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where the units of ad and d are in millimetres and the unit of dressing force is

newtons. This model shows that dressing force increases linearly with cross-sectional

area of the diamond path in the range investigated.

5.3.2. Effects of Grinding Conditions on the Grinding Process

As mentioned in chapter 3, a fairly good correlation exists between grinding force,

specific energy and surface roughness with equivalent chip thickness. In order to

evaluate the effects of equivalent chip thickness on the grinding process, the

experiments were arranged by varying workpiece speed v and wheel infeed rate vf.

The wheel speed was fixed at 33 mIs. Two dressing passes with d = 0.10 mm/rev

and ad 0.0 10 mm were completed before each trial. In order to make the wheel

surface stable ten grinding cycles were completed before making measurements. The

specific power and the specific energy are illustrated in relation to equivalent chip

thickness as in figure 5.12 and figure 5.13 respectively. Figure 5.13 demonstrates the

size effect. The specific energy decreases with increasing equivalent chip thickness.

The effect of workpiece speed is not so strong as that of equivalent chip thickness.

By curve fitting the experimental results, empirical equations were obtained

P'=3.86 O31	 (5.2)

e = 11.4 h?j'69
	

(5.3)

where the units for heq was mm, for specific power was W/mm and for specific

energy was J/rnm3.

There was no obvious effect of equivalent chip thickness and workpiece speed on

surface roughness. This is shown in figure 5.14. The reason for this may be the use

of a long dwell time which reduces the surface roughness. The wheelhead dwell time

in this particular trial was 10 seconds.
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5.3.3. Effect of Dressing Conditions on the Grinding Process

Experiments were undertaken in order to understand the effect of dressing on the

grinding behaviour throughout the redress life cycle. The effects of dressing on

grinding power, workpiece surface roughness, size error, roundness and time constant

were studied. The grinding results after dressing with sharp and blunt single point

diamonds are considered. The sharpness of the diamond was expressed by the

diamond sharpness ratio y as shown in figure 2.1. The sharpness ratios of the sharp

and blunt diamonds were approximately 0.05 and 0.02 respectively.

Figure 5.15 and figure 5.16 show the effect of dressing on grinding power. Figure

5.17 and figure 5.18 show the effects of dressing on surface roughness. It can be seen

that grinding power and surface roughness in the initial stage of grinding were

strongly affected by the dressing operation. A coarse dressing operation, large a j and

produced a sharper and more open wheel cutting surface. With a coarse dressing

operation a small initial grinding power and larger surface roughness resulted

irrespective of whether a sharp or a blunt diamond was used. Comparing figure 5.15

with figure 5.16 and figure 5.17 with figure 5.18, grinding power was smaller and

surface roughness was larger when a blunt diamond was used. It was shown that the

sharp diamond gave a more stable grinding behaviour than the blunt diamond. It was

inferred that a blunt diamond introduced more bond fractures on the wheel surface. If

coarse dressing conditions were applied, surface roughness was very rough and

unstable with a blunt diamond. This was particularly apparent under the conditions

where a =25 .Lm and d = 0.25 mm/rev in figure 5.18.

From the results of the grinding experiments, it can be seen that the effect of dressing

on grinding behaviour is strong in the early stage of grinding and reduces afterwards.

The grinding power and workpiece roughness progressed towards similar values

whatever dressing condition was applied after a large amount of metal is ground.

This is consistent with other published work[57, 61] which suggests that it may be
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generally true. This may be attributed to the self-sharpening action of the grinding

wheel. As grinding proceeds, both attritious wear and fracture wear occur in the

wheel surface and the wheel topography becomes either more open or more closed

depending on the severity of grinding[61]. If the wheel surface generated by the

dressing operation is similar to its equilibrium state, the excessive change of grinding

behaviour can be avoided and the grinding outputs will be steady.

Figure 5.19 and 5.20 show the effect of dressing on size errors. It was found that the

effect on the size can be very different using different dressing conditions.

Comparing figure 5.19 and 5.20, it was found that with a blunt diamond the size

errors increased in a positive sense, while with a sharp diamond the size errors

increase in either a positive sense or a negative sense. Workpiece size errors are

commonly attributed to wheel wear, thermal effects and variations in wheel

sharpness{6]. Wheel wear causes successive workpiece diameters to become larger.

Thermal effects cause successive workpiece diameters to become either larger or

smaller. Variations in wheel sharpness affect the final size of the workpiece because

of the effect of changing force on machine deflection. The sharper the wheel, the

smaller will be the residual stock remaining as a result of deflection. The result of

reducing deflections is to reduce the size of successive workpiece diameters. By

using a sharp diamond, the initial decrease of workpiece size can be attributed to the

fact that the effects of changes of wheel sharpness and thermal deformation are

stronger than the effect of wheel wear. This implies that the wheel wear with a sharp

diamond was relatively small. A good dressing operation is assumed to be one which

balances the effects of wheel wear, thermal expansion and wheel sharpness variations,

leading to small size errors.

Comparing the size errors with the changes of grinding power shown in figure 5.19

and 5.15, 5.20 and 5.16, it was found that the size errors in a wheel life cycle were

relatively small if the initial power was approximately equal to the final grinding

power.
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Wheel wear can be expressed by grinding ratio (G ratio), which is the ratio of the

removed volume of the workpiece to the wear volume of the wheel. The effect of

dressing conditions on G ratio are illustrated in table 5.1 and table 5.2. It was found

that G ratio decreased with increasing dressing depth. The effect of dressing lead on

G ratio was found to be relatively weak. In order to investigate the effect of diamond

shape on G ratio, a constant volume of material was ground with the wheel dressed by

different diamonds. For the dressing condition, aj = 0.015 mm, fd = 0.15 mm/rev and

the same metal volume removed by grinding, about 490 mm3/mm, the G ratio was 75

for the blunt dressing tool and 115 for the sharp dressing tool. From the results, it

appears that when a blunt dressing tool is used, the G ratio will be smaller and wheel

wear and size increase of successive workpieces will be larger. However, if the

dressing conditions are very fine, there is little difference between a sharp dressing

tool and a blunt dressing tool.

Table 5.1 Effect of dressing on G ratio (sharp dressing tool)

Experimental conditions:
Grinding Machine: Jones & Shipman Series 10
Wheel type: A465-K5-V3OW
Workpiece material: Oil hardened cast steel, HRC 60-62
Coolant: Arrow Synthetic Cutting Fluid, dilution rate 16:1
Diamond sharpness ratio: a<Jbd 0.05
v=33nils, v=250mm/s, Vf=lOpm/s
d370mm, d17n,V,=245mm/mm
N,.. Dressing

0.05 mm/r 0.15 mm/r 0.25 mm/r
Increment'N ___________ ____________ ____________

	

0.005 mm	 109.8	 97.8	 111.7

	

0.015 mm	 77.8	 92.9	 72.0

	

0.025 mm	 71.5	 66.0	 69.2
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Table 5.2 Effect of dressing on U ratio (blunt dressing tool)

Experimental conditions:
Grinding Machine: Jones & Shipman Series 10
Wheel type: A465-K5-V3OW
Workpiece material: Oil hardened cast steel, HRC 60-62
Coolant: Arrow Synthetic Cutting Fluid, dilution rate 16:1
Diamond sharpness ratio: ab d 0.02
v=33nils, v=250mm/s, vf=lOp.m/s

	

d390mm,	 17mm, 4=49Omm3/mm

N.. Dressing

DreN.	 0.05 mm/r 0.15 mni/r 0.25 mm/r
IncrementN____________ ____________ ____________

	

0.005 mm	 114.3	 84.1	 66.3

	

0.015 mm	 99.1	 75.5	 79.3

	

0.025 mm	 63.1	 52.5	 53.0

A sharp cutting surface of the wheel is obtained when a coarser dressing operation is

applied, leading to lower specific energy and temperature in grinding. With a sharp

wheel, thermal expansion was expected to be reduced. The effect of thermal

expansion in the initial stage of grinding was easily observed if the wheel wear was

small. To confirm this, an experiment was arranged with a wheel working in the

steady wear stage. In this case the wheel wear was small. The results of the

experiment are illustrated in figure 5.21, in which it can be seen that workpiece size

decreased. The variation of the distance between the wheelhead and the tailstock was

only about 1 im in the experiments as measured using dial test indicator. It was

considered that the size variations were due to thermal expansion of the wheel, which

arises because the wheel is warmed up by the additional friction in the bearings

during grinding. The trend of size variations is similar to a thermal stabiisation

process, that is the size changes rapidly at the beginning and then the change slows

down exponentially. The initial size reduction found in figure 5.19 occurred because

a sharp diamond was used, which reduced initial wheel wear. If a blunt dressing tool
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is used, the initial wheel wear is increased and the thermal effect is masked by wheel

wear. Using a blunt diamond the sizes of successive workpieces always increased as

in figure 5.20.

The size errors are also affected by wheel sharpness. As mentioned in section 3.3.4,

the sharpness can be expressed by the time constant. A sharper wheel gives a smaller

value of time constant. Effects of time constant on the grinding cycle are illustrated

in figure 5.22. When the dwell time is unchanged, a blunt wheel with a large time

constant gives a large difference between the programmed wheel position and the

actual wheel position at the end of a grinding cycle. Consequently, variations of

wheel sharpness introduce size errors and roundness variations between each grinding

cycle. However, if the dwell period is longer than three time constants the size

variations are limited to 5% of maximum depth of cut.

Figure 5.23 and figure 5.24 illustrate the effect of dressing conditions on the time

constant. Coarse dressing conditions produce a sharp wheel and give a small value of

time constant in the initial grinding stage. It was also found that the time constant

was smaller if a blunt dressing diamond was used. This was attributed to the fact that

a blunt dressing diamond induces more macrofractures during dressing[9] thus

making the wheel sharper.

Effects of dressing conditions on roundness are shown in figure 5.25 and figure 5.26.

Large variations of roundness are found under some dressing conditions. Most of the

roundness variations occurred when a large dressing lead was used. The reason for

this effect remains unclear. The possible reason may be attributed to the fact that a

large value of d leaves more space for the diamond to make a distinctly different

groove in a succeeding pass and causes the grinding wheel to be out of round.

Figures 5.27 to 5.31 show that large differences of the grinding behaviour are

experienced when the wheel is dressed with different diamond widths. It was found
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that a sharp dressing tool generated high grinding power as shown in figure 5.27. It

might suggest that a sharp dressing tool with small active width would produce less

macrofractures, leaving more cutting edges on the wheel surface. This is consistent

with the theory that more cutting edges lead higher grinding force as discussed

previously. The rapid initial fall in grinding power might be attributed to the change

of cutting edge density in the initial wheel wear stage.

It was found in figure 5.28 that small values of time constant were obtained with both

sharp and blunt dressing diamonds. This is possibly explained by a sharp dressing

tool giving a sharp shape when it cuts through the grain. On the other hand, a blunt

dressing diamond causes grains and bonds to break, also creating sharp cutting edges.

This variability of the effect of dressing makes it difficult to control the wheel

sharpness. Comparing figure 5.28 and figure 5.29, it was found that a larger time

constant was associated with larger roundness errors. This is discussed in chapter 7.

Figure 5.30 indicated that the active width of the diamond had a strong effect on the

surface roughness. Geometrical analysis suggests that a blunt dressing diamond

should reduce surface roughness. However if the blunt dressing diamond increases

the number of bond fractures on the wheel surface, the surface roughness will be

increased. This implies that the dressing width of the diamond may not fully illustrate

the effect of diamond shape on the grinding process. Figure 5.31 shows that a sharp

diamond tends to give size errors of a negative sense, which would be expected due to

the higher initial grinding force followed by reducing forces associated with a sharp

diamond used for dressing. This condition was considered to be associated with the

thermal expansion of the wheel.

5.3.4. Correlation of Dressing Conditions and Grinding Conditions

The grinding behaviour is dominated both by dressing conditions and grinding
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conditions. Optimal grinding requires an appropriate combination of dressing

conditions and grinding conditions. A change in grinding conditions requires a

change in dressing conditions in order to achieve the required grinding behaviour.

Some effects of grinding conditions on grinding behaviour are shown in figure 5.32 to

5.35.

Figures 5.32 and 5.33 show that the specific grinding power and surface roughness

increase with increasing infeed rate Vf. The effect of Vf on surface roughness is

relatively weak, which may be due to the fact that surface roughness improves during

the dwell period. Figure 5.32 suggests that the effect of vw on the specific power at

the end of wheel life depends on vf. When Vf = 10 pm/s, the specific power decreased

with increase of workspeed. When Vf = 20 .tm/s, the specific power slightly

increased with increase of workspeed. Workpiece speed has a weak influence on

surface roughness as shown in figure 5.33.

It can be seen in figure 5.33 that the surface roughness for vj' = 20 .tm/s remained

more nearly constant throughout the wheel redress life than for vj = 10 jnn/s. In

figure 5.32, it can be seen that the initial grinding power was approximately equal to

the final grinding power for vj =20 pm/s. Accordingly, it was concluded that surface

roughness remained more closely at the same level when the initial grinding power

was approximately equal to the final grinding power in the wheel life cycle. It is

therefore proposed to use this conclusion as a basis for an optimisation strategy. If

grinding conditions change a stable grinding process can possibly be achieved by

changing the dressing conditions in such a manner as to make the initial grinding

power level in the wheel life cycle approximately equal to the final grinding power

level. Because the surface roughness is influenced both by the dressing and the

grinding conditions, it should be possible to obtain optimal results for grinding by

applying a suitable combination of dressing and grinding conditions.

The effect of grinding conditions on time constant is shown in figure 5.34. Because
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of the variations of time constant, the stock remaining on the workpiece after grinding

changes and the roundness of the workpiece also changes, as demonstrated in figure

5.35. Because the dwell time of 5 seconds was more than three times the time

constant, the roundness variations were small. As discussed previously the variance

of the time constant represents the variance of the cutting ability of the grinding

wheel. Figure 5.34 shows that the time constant decreased when grinding infeed rate

was increased. For the particular dressing conditions, a rapid decrease of the time

constant were found in the initial stage when grinding under a lower workspeed.

From the observation in this section, it is concluded that the dressing condition should

be selected according to a strategy which tends to stabilise the grinding behaviour.

5.4. Conclusion

From the results of the grinding experiments shown in this chapter, the effects of

dressing on grinding behaviour may be idealised as in figure 5.36. A very important

feature illustrated in figure 5.36 is the convergence of grinding performance for

different dressing conditions. Grinding power, time constant, surface roughness and

roundness converge with grinding time despite differences in the dressing conditions

employed. This implies that dressing has most effect on the initial grinding stage,

while the grinding conditions affect the whole wheel life cycle. Based on this

observation, it is proposed that selections of dressing conditions and grinding

conditions may be separated. The dressing conditions may be selected to adjust the

initial grinding behaviour after dressing and the grinding conditions selected to adjust

the grinding behaviour in other stages of a wheel redress life cycle. This conclusion is

considered to be important for the design of a dressing strategy.

The effects of dressing on grinding size errors can be contradictory as idealised in

figure 5.37. When dressing with very coarse conditions or with a very blunt dressing

diamond, more bond fractures are generated on the wheel surface. The result is that
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wheel wear is increased and workpiece size errors are increased in a positive sense.

After dressing with very fine conditions, the wheel wear may mainly be attributed to

attritious wear and microfracture. The wheel wear volume was small. Force and

deflection reduction and thermal expansion cause the workpiece size errors to

increase in a negative sense. It is concluded that a good dressing operation makes

grinding behaviour more stable and gives better grinding quality.

One of the most interesting aspects of the grinding process is that the grinding

behaviour can be very different even for the same value of control parameters, such as

v, v, Vf, aj and d• This is attributed to uncontrollable parameters involved in the

grinding operation. For example, the dressing width of the diamond is an

uncontrollable parameter and has a strong effect on grinding behaviour. Due to

insufficient control of the shape of the dressing diamond, it is necessary to develop a

strategy for the selection of dressing parameters ad and so that the effect of the

width of the dressing diamond can be compensated.
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Chapter 6 Empirical Models for Dressing and Grinding

Empirical equations for the grinding output parameters were required to make it

possible to control the dressing and grinding process rationally. Empirical equations

for the effect of grinding conditions were discussed in section 5.3.2. Grinding power,

specific energy and surface roughness were directly related to equivalent chip

thickness. In order to take the dressing effect into account, the grinding outputs may

also be expressed as a function of dressing parameters. Malkin[68] suggested that

surface roughness can be expressed in the form

Ra = R0 a 4 f h
	

(6.1)

where the exponent r lies typically in the range 0.15 <r < 0.6, R0 is a constant.

Similarly, because a logarithmic linear relationship exists between surface texture and

specific energy, the specific grinding power may be expressed as

P' Po a f h
	

(6.2)

where P0, x, y and z are constants.

The influence of the dressing conditions on grinding power appears to be more

complex. According to the results shown in figure 5.15 and 5.16, a large change of

grinding power can be observed in the initial stage of grinding. This means that

equation 6.2 does not apply for the whole redress life cycle. Variations of grinding

power in relation to the grinding wheel wear were idealised as shown in figure 5.36.

The trends of grinding power in the initial wear stage of grinding are dominated by

dressing. Too fme a dressing condition leads to a high initial grinding power which

rapidly decreases during the initial stage of grinding. Too coarse a dressing condition

leads to a large increase of grinding power in the initial stage. In the steady wear

stage, the grinding power gradually increases because of the attritious wear of the

grains. As grinding proceeds, the grinding power for different dressing conditions
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tends to converge to the same value. This phenomenon indicates that the effects of

the dressing conditions on grinding power are mainly experienced in the initial stage

of grinding and gradually become less obvious.

Grinding performance is dependent on the cutting surface of the grinding wheel

generated by the dressing operation. The number of cutting points on the wheel

surface will be different if different dressing conditions are used. The cutting edge

density may be defined as the number of static cutting edges per unit area of the

grinding wheel surface. Based on equation 2.3 the cutting edge density after dressing

2Lo may be expressed as

= Co aã f
	

(6.3)

Where CO3 x and y are constants. With regard to grinding force or grinding power,

the number of the active edges on the wheel surface and the mean thickness of the

undeformed chips should also be considered. According to equations 2.4 and 2.5, the

grinding force is mainly affected by the dressing lead, diamond tip width, dressing

depth and the number of non-incremented dressing passes. The effect of the diameter

of the grains is relatively insignificant.

According to the principles of grinding described in chapter 3, the grinding force is

the summation of individual grain forces. The grinding force due to an individual

grain is related to undeformed chip thickness and cutting speed. The total grinding

force is the accumulated effect depending on the density of cutting edges on the

wheel. Werner's grinding force model equation 3.20 gives two exponents, e and 'y, to

describe the effects of grinding conditions and wheel characteristics respectively. In

grinding, c lies in the range 0.5 to 0.95 and y lies in the range 0.1 to 0.8. If the

concept of equivalent chip thickness is applied and FJFt is a constant, the tangential

specific grinding force becomes

F =k C [!]1-EdlEh€
	

(6.4)
vw

where k is a constant. Based on equation 6.4, the more cutting points there are on the
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wheel surface, the larger will be the force generated in grinding. Because finer

dressing generates more cutting points on the wheel surface, a large grinding force

and a high grinding power are expected. As grinding proceeds, the grinding force or

power tends to converge to the same level as for coarse dressing. This phenomenon

of the convergence of the grinding force in grinding process was also observed in the

experimental results of Umino and Shinozald[61]. Umino and Shinozald expressed

the grinding force as,

F(t) = F0 - (Fo - Fe)(l - etmT1s t)	 (6.5)

where F0 is the initial grinding force, Fe is the critical grinding force at the end of the

secondary grinding stage, m is the probability of grain fracture in a grinding cycle and

ns is the wheel rotational speed. Changes of grinding force expressed by equation 6.5

are illustrated in figure 6.1. If F0 > Fe, the grinding force will initially decrease. If F

<Fe, the grinding force will initially increase. The reason for the convergence of the

grinding force was explained by the change of the density of the cutting edges on the

wheel surface.

Umino and Shinozaki[61] suggested that the initial cutting point density after dressing

will converge to a critical density in the grinding process. The variation of the cutting

edge density was expressed as

X(t) = Xe + (X0 - Xe)e rnflst	 (6.6)

where Xe is the cutting edge density at the end of the secondary grinding stage, X0 is

the cutting edge density after dressing. Combining equations 6.4 and 6.6, the time

dependent force may be expressed as

F = k [Xe + (Xo - Xe)em1 t]Y [ -] d h	 (6.7)
vw

Equation 6.7 has the same disadvantage as equation 6.4. The density of the cutting

edges on the wheel surface is not normally available by measurement. To overcome

this problem, two special cases may be considered. These are the grinding behaviour

at the beginning and at the end of the grinding wheel redress life cycle. At the

beginning of the wheel life cycle, the time t in equation 6.7 is zero, so the initial
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F = k0 a f [!L ]1E	 h
vw

(6.10)

specific tangential grinding force is

F = K0 ?	 ] 1-E	 h
vw

Combining equations 6.3 and 6.8,

F = K0 [C0 a f]1 [- ]1-e d h

Letkj =K 0 cx=xy and f3=yy then

(6.8)

(6.9)

At the end of the wheel life cycle, the value of e-mnst in equation 6.7 is very small and

near to zero, so that the final specific tangential grinding force is

F = ICe A. [ .:Y ]- d' he
e	 eq

Let k1 = 'ee' then

Fte = k1 [iY]1-e d 1 h6
V	 e eq

(6.11)

(6.12)

Combining equations 6.5, 6.10 and 6.12, the grinding force may be expressed as

F (t) = (k1 + [k0 a f - ki]emfls t)	 d1 he	 (6.13)e	 eq

To explain the rise of the grinding force in the steady grinding stage, Malkin[98]

observed that the grinding force was proportional to the wear flat area, which can be

expressed as equations 3.26 and 3.27. From Malldn's results[98], it can be seen that

the wear area increases linearly with the number of encounters of the wheel and the

workpiece during the steady grinding stage. Therefore it is reasonable to assume that

the grinding force increases linearly with the number of the wheel encounters with the

workpiece. Based on this assumption and equation 6.13, the time dependant grinding

force can be expressed as

F (t) = (ki + [ko	 [']hEd1hE+k2nt	 (6.14)
vw

where k2 is the constant representing the effect of wheel wear. The tangential

grinding force can be obtained from the grinding power, when the facility for
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P0 =k0 af 
[VS ] 1E d he

vw
(6.17)

Pe = k1 [-]' d hv5
vw

(6.18)

and

measuring grinding force is unavailable. The specific grinding power can be

expressed as

P'Ft'V5	(6.15)

Therefore the time dependant specific grinding power in a wheel redress cycle may be

expressed as

P'(t) = P + (P - P)e m s + k2 v n t	 (6.16)

where

Since in most grinding operations the grinding speed is constant and the value of (1 -

e) is small in this work, the specific grinding power can be expressed in the simple

form

P' (t) = [C1 + (C0 a f - C1 ) em fl t] h q + C2 n t	 (6.19)

where Co = k0 []1 d4 v, C1 = k1 [-] d4 v and C2 = k2v. At thev

beginning of grinding, where mnt is very small, the grinding power can be

approximated by

P' = C a f h	 (6.20)

which is the same as equation 6.2. After the initial stage of grinding, if mn5t is large

enough, the grinding power is given by

P'(t) = C 1 h + C2 n t	 (6.21)

By regression analysis of the experimental data in figure 5.12, the value of p is 0.83 1.

By regression analysis of the experimental data in figure 5.15, x = - 0.358 and y =

-	 -0.068. Therefore the initial specific grinding power for the experiments may be

expressed as

= Co aj°358 f°°68 h° 831d	 eq (6.22)

where Cu can be determined by measuring initial grinding power after dressing. C2 in
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equation 6.19 represents the effect of wheel wear on grinding power. C2 is

determined by the slope of the grinding power results plotted against numbers of the

wheel revolutions during the second stage of grinding. After C2 is calculated, C1 can

be obtained from equation 6.21. Once CO 3 C1 and C2 are decided, changes of

grinding power in a wheel life cycle can be matched by varying the constant m. A

particular change process of the grinding power in a wheel life cycle is illustrated in

figure 6.2. To match the change of the grinding power, the empirical model is

expressed as

-0.358 -0.068P'(t) = [26.6 + (7.31 ad	 d	 -26.6) e° 035 ] h831x1Q

+ 2.05x10 4 t (6.23)

The units used in the equation 6.23 are W/mm for P'(t), millimetres for aj, fd and h,

seconds for the time. Figure 6.2 indicates that equation 6.23 gives a good expression

of the change of the grinding power. It has been known that the wheel wear is

affected both by dressing and grinding conditions, so that the constants, m and C2,

may change if the dressing and grinding conditions change. Therefore equation 6.19

has a limited ability to illustrate of the changes of the grinding power in a wheel life

cycle. Even so, because of the convergent feature of the grinding power, equation

6.19 can still be used to give the initial and the final grinding power of a wheel life

cycle.

Because the effect of dressing is stronger at the initial stage, the process of selection

of dressing conditions should be concentrated on the initial stage. The conclusions

which can be drawn from equations 6.1 and 6.22 are that surface roughness is mainly

affected by dressing lead d and grinding power is mainly affected by dressing depth

ad. These relationships can be used to develop a dressing strategy.

The empirical equations developed here have not taken into consideration the effects

of the width of the dressing diamond. If the shape of the dressing diamond does not

change too rapidly, the equations will give a good estimate. According to equations
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2.4 and 2.5 the width of the diamond is indispensable to a description of the influence

of dressing, especially for grinding force. Due to the lack of an effective way to

measure and control the width of the diamond, it is very difficult to quantify the

effects of diamond width. Because of this difficulty, the constant C 0 in equation 6.19

has to be obtained by regression analysis between each dressing operation, so that the

influence of the diamond wear on the equations can be minimised.
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Chapter 7. Simulation of Grinding Cycles

As discussed in chapter 4, grinding power, size error and roundness are directly

affected by grinding cycle design. In order to grind workpieces accurately and

efficiently, it is necessary to determine appropriate values of feed-rate, target position

and dwell time in a grinding cycle. The selection of optimum values depends on the

deflection behaviour of the machine-workpiece system as represented by the system

time constant. In this chapter, results from simulated grinding cycles are compared

with results from experimental measurements. Simulation techniques allow the

effects of modelling assumptions on grinding behaviour to be investigated. The

objectives of employing simulation were therefore to test the extent to which

modelling assumptions can be used to predict grinding behaviour and provide a basis

for further investigation of the grinding process.

7.1. The Characteristics of a Grinding Cycle

The magnitude of the deflection between the grinding wheel and the workpiece is not

always fully appreciated. Typically the deflection is of the same order of magnitude

as the depth of cut in precision grinding[93, 129]. Sometimes the deflections

measured are considerably larger than the depth of cut. The deflection causes a delay

between the command signal for position and the system response. A basic plunge

grinding cycle consists of an infeed period and a dwell period as illustrated in figure

7.1. Deflections are generated during the transient at the beginning of the infeed

period. The deflections have to be removed during the dwell period when the

workpiece size approaches the value corresponding to the command position of the

infeed. The roundness also improves during the dwell period.
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(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

A mathematical model of the process should be broadly capable of describing these

effects, so that the controller can predict the machine-workpiece deflection and apply

the appropriate compensation in advance. In chapter 4, a cylindrical plunge grinding

process was represented as a first order linear system. Equation 4.6 gave the

relationship between command infeed rate and the rate of radius reduction of the

workpiece as

r=.L(Xr)	 (7.1)

Therefore the grinding system is characterised by the time constant of the grinding

system t and it is possible to simulate the system response. The most important

requirement is to determine an accurate value of the time constant from experiment to

characterise the system.

The time constant can be derived from a data log of either size or power level during

the dwell period by using a curve fitting technique. When the wheel infeed rate X is

selected as a constant v, the solution of equation 7.1 is:

r(t) = vf (t - t + 'r .et)	 (7.2)

If the grinding cycle is selected as in figure 7.1, the solution of equation 7.1 during

the dwell period (t > t1) is

t- ti
r(t) = Vf (t1 -	 e)

ii
r(t)=vf 'e t

If grinding speed remains as a constant, the grinding power is approximately

proportional to the normal grinding force. Therefore equation 4.3 and 7.4 lead to:

P(t)=P(t1)e t

At any time t2 on the decay curve in the dwell period

P(t2)
=e t

P(t1)

= log P(t2) - log P(t1)
t2 - t1
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An alternative method, which is convenient when used with data logging on a

computer, involves integration of the power signal. This refinement automatically

filters noise. Integration of equation 7.5 leads to

ft

	

	
I-ti

P(t) dt = r P(t1) (1 - efl
Jti

- t - Ii
When t is big enough, e T is much smaller than 1, so that the time constant can be

expressed as

.....LP(tdt
P(t1)

Equations 7.3 and 7.5 can also be used for evaluation of the time constant by means

of least mean squares regression analysis of the data from size and power

measurement.

Roundness errors mainly result from machine vibration and from geometrically

generated errors. Geometrically generated errors are primarily due to variations in the

differences between r(t) and r(t - T) expressed by equation 7.2, where T is the period

of one workpiece revolution. In the absence of significant vibrations and at high

feedrates, roundness errors are mainly caused by geometrically generated errors.

Roundness errors also occur due to the residual effects of the initial workpiece

roundness errors &. A simplified analysis of the rounding process relates roundness

errors after n workpiece revolutions to the initial roundness error. This analysis is

very much over-simplified and is only applicable if the frequencies represented by the

combined effects of the roundness errors and the workpiece speed are much lower

than the first resonant frequency of the grinding system. However the process

broadly reflects the rounding process for large low frequency errors[130].

Ar0 is denoted as an initial radius error of the workpiece. After the first revolution of

grinding, Ar0 will be reduced by a 1 The remaining error is equal to the deflection

caused by &. Therefore

(7.8)

(7.9)
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I

&o=ai+3i 
= öi '(ke+k)	

(7.10)

whereke = Fn/,andkc=Fn/a. So,

)ke+kc

Similarly,

Ar1= a2+=2'()

(7.11)

(7.12)

_____	 k )2	 (7.13)
ke+kc

Continuing the same procedure, the roundness error of the nth revolution is obtained

as
lc	 )fl

ke+kc

Combining equations 4.7 and 7.14 gives

(7.14)

1	 )fl	 (7.15)
1 +

flw

Therefore the effect of the initial workpiece roundness errors is only ir0 (

for low frequency Fourier shape harmonics and can be neglected. Here n is the

number of revolutions of the workpiece during grinding. Considering only the effects

of feed-rate and static compliance, the roundness error of the workpiece at any time in

the grinding process is approximately given by the maximum variation of r(t) - r(t - 1)

during any period T/2.

Grinding power and grinding force are important parameters of the grinding process

which can be directly controlled if the technology is available. Usually, the infeed

rate is controlled and the process monitored by sensing the spindle power. Equation

6.19 may be used to indicate the size effect. For simplicity, the equation used to

express the variation of grinding power during grinding for a simulation of a grinding

cycle was

P=ktP
	

(7.16)

where p is a constant.
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r(s)=	 1
)(s)	 s(st+1)

(7.18)

I

7.2. Development of a Simulation for Grinding Cycles

Simulation of the grinding cycle was undertaken to illustrate the effects of the various

cycle parameters. Figure 7.2 illustrates the structure of the grinding cycle simulation

developed using Simnon a commercial software package[131]. The grinding cycle

simulation mimics a CNC controller and was used to simulate various grinding cycles

with various combinations of values of grinding cycle parameters. Thus the

simulation was able to predict the final workpiece size and cycle time that a selected

cycle would achieve.

The elements of the simulation in control terms are listed below:

(i)	 The wheel axis model, which gives the axis position, is

X(s) =1
	

(7.17)

(ii)	 The workpiece size model, which gives the radius of the workpiece, derived

from equation 7.1 is

where X(s), )(s) and r(s) are the Laplace transforms of the wheel axis position, wheel

axis infeed rate and workpiece size. When the wheel wear rate is large, the 0 ratio

should be used in the size model as in equations 4.10, 4.11 and 4.12.

(iii) The power model is

If
	 (7.19)

This relationship is shown as T(P(t)) in figure 7.3. The exponent f can easily be

updated according to the grinding condition. From the power model, the variation of

grinding power during grinding can be clearly predicted. In addition, if the

information is entered to allow burn to be predicted for the materials being used[132,

133], there is the potential for the system to give a warning when damage is likely to
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occur.

(iv) Simulation control program. The simulation control program supervises the

simulation and contains the simulation algorithm. Various grinding cycles were

simulated by varying the algorithm. Flow this simulation program simulates the

grinding cycle is shown as a block diagram in figure 7.3, where T(P(t)) is the transfer

function of the grinding power model. Either a constant feedrate control strategy may

be employed or a power control strategy depending on the type of cycle to be

simulated. The constant feedrate control strategy is described by the following set of

conditional statements.

0	 If size threshold not crossed

If within coarse infeed stage

1\Zm If within the medium infeed stage

AXf	If within the fme infeed stage

Io	 If the command size is achieved

(7.20)

The power control strategy is described by the following set of conditional

statements.

0
	

If power threshold not crossed

=
	 If the initial action level is crossed 	 (7.21)

-AXh If the higher power threshold is crossed

If the lower power threshold is crossed

The above strategies are further discussed and explained in relation to simulated and

experimental results for particular grinding cycles.

7.3. Simulation for Grinding Cycle Design

A standard grinding cycle consisting of coarse infeed, medium infeed, fine infeed and

a dwell was simulated in figure 7.4. The response of the system in bringing the

workpiece to size was simulated and the overall cycle time, the final size errors and
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the final roundness were predicted. The grinding cycle was optimised to control

errors within the required tolerances for size and roundness by adjusting the infeed

rate, infeed period, overshoot and dwell period. All changes caused by adjusting

parameters were clearly evident in graphical representations of the grinding cycle. A

significant degree of accuracy in the simulation can be achieved when the grinding

system is characterised by a time constant. Figure 7.5 shows that the values of the

reduction of workpiece radius from the simulation and from experiment are in close

agreement for a plunge grinding cycle consisting of a single infeed and a dwell. The

largest size error observed in this simulation was only 1.7 .tm.

In order to fully utilise the capabilities of the simulation the time constant of the

grinding system and the maximum power to be employed have to be available. In

principle, the best strategy is to control the power level rather than the infeed rate in

order to achieve a minimum cycle time consistent with specified quality

requirements. This strategy requires that the power is increased to the set power limit

as quickly as possible and the controller adjusts the infeed rate adaptively to maintain

the power setting[75, 94, 133]. However the implementation of in-process power

control presents a difficulty, because of deflections in the system. It is difficult to

know when and how the infeed rate should be reduced to prevent the grinding power

overshooting the power setting. This problem is illustrated in figure 7.6 which

indicates that the grinding power, which should approach the power limit, takes an

appreciable time to react to decreases in infeed rate and a power "overshoot" occurs.

This situation could be unacceptable if the power limit setting has been set to avoid

poor size accuracy and possible burn. To avoid the occurrence of this phenomenon,

the infeed rate needs to be reduced at an appropriate time before the power limit is

reached. This was achieved by setting an initial action level which was lower than the

lower power threshold. When the grinding power was higher than the initial action

level, the infeed rate was decreased. In this way, the shape of the grinding power

curve was adjusted to prevent power overshoot.
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Figure 7.7 illustrates the procedure employed for simulating and developing an in-

process power control cycle. In this grinding cycle control strategy, the grinding

pmcess begins with the fastest infeed rate. When the grinding power is higher than

the initial action level, the infeed rate decreases with set change steps. When the

grinding power is between the required power control limits, the infeed rate is varied

to constrain the power within this power control band. This is achieved by decreasing

infeed rate when power is higher than the upper power threshold and increasing

infeed rate when the power is lower than the lower power threshold.

The grinding cycle was optimised by adjusting the upper power threshold, the lower

power threshold, and the initial action level together with the infeed rate change steps.

Figure 7.8 illustrates a simulation of a grinding cycle developed using the above

procedure. The grinding power was controlled to remain under the set limit of 1.5

kW. It was found that the power reached its limit in about one second with no

overshoot. Providing the data base values are appropriate the simulation indicated

that burn will not occur and the cycle time will be close to the shortest possible. In

principle, the dwell time can also be minimised, if the system time constant is known.

The effectiveness of the control strategy developed by the simulation technique was

evaluated by using the parameters determined by these means on a real machine fitted

with an appropriate adaptive control system.

Figure 7.9 illustrates the grinding process control achieved in a real grinding

experiment using the values developed by simulation. Power overshoot was avoided

and maximum power was reached in the shortest time possible for the particular

system. In this trial the wheel speed was 33 m/s and the workpiece speed was 0.25

rn/s. Because the infeed rate was frequently varied during the power control cycle,

the control of size accuracy and roundness was worse than that of the cycle using a

constant infeed rate. This means a longer dwell period was required to achieve the

same accuracy. This problem could also be solved by using an over-shoot and retract

strategy[135, 136]. However further research is required on this subject to determine
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the practical problems and benefits of attempting to achieve a controlled retraction.

It has been shown by grinding experiments and by simulations that grinding power,

size error and roundness are strongly affected by the time constant. The time constant

plays an important part in grinding cycle simulation. A stable time constant is

essential for predicting and controlling grinding cycle behaviour. Therefore it is

necessary to employ a suitable dressing operation to ensure a stable time constant in

grinding.
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Chapter 8 Simulation of the Dressing and Grinding Process

In order to clearly understand the grinding process, a basic study of the interactions

occurring between the abrasive grains and a workpiece is needed. In this chapter, a

method of simulating the dressing and grinding process is described. With the help of

computer simulation, the various phenomena in dressing and grinding can be visually

presented and understood more easily. Simulation of the grinding process requires

information concerning the wheel topography which is difficult to obtain in practice.

The wheel topography depends on both the wheel characteristics and the dressing

operation. An attempt is therefore made to describe the grain-workpiece interactions

from fundamental grinding parameters, including the spacing of effective cutting

points or grains and the geometry of undeformed chips, associated with the generation

of a representative workpiece profile.

The generation of workpiece profiles in grinding is illustrated in relation to the

fundamental grinding parameters associated with the wheel working surface profile.

The workpiece topography is represented by the surface roughness Ra. The

interaction between the wheel working surface and the workpiece is based on the

effective cutting point spacing and chip cross sectional area. The grinding force is

considered as the most important parameter to describe the grinding mechanism. The

grinding force is therefore used to evaluate the grinding process. The effect of

changes both of dressing and grinding parameters are discussed.

8.1. Generation of the Grinding Wheel Topography

In practice, wheel performance depends on the grain-workpiece interactions generated

from the grain distribution and the kinematic conditions of dressing and grinding. A
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quantitative description of these interactions is therefore used to provide a basis for an

evaluation of grinding wheel performance. The grinding wheel is composed of a

large number of grains which are randomly spaced in the wheel. For simplicity, the

grains are approximated as uniform spheres of diameter dg[89] randomly distributed

throughout the wheel volume. The grain diameter is given as[9]

dg=15.2M 1	(8.1)

where M is the grain size number. The grain volume packing density Vg as a

percentage is given by

Vg2'(32S)
	

(8.2)

where S is the structure number of the wheel. Based on the above values, the location

of the grains in the grinding wheel can be expressed by the following matrix:

() = {Gi,j,k)I XJXK	 (8.3)

where the vector	 represents the location of each individual grain centre in three

dimensional space.

\ I0,0,0 +i.Ax+Rx\

I = G	 = G 00 +j . Ay + R	 (8.4)

JG 00 + k • Az + RzJ

In the simulation, the spatial probability distribution of the grains is assumed to be

uniform, so the average spacing Ax, Ay and Az are the same. Let Ax = Ay = Az = A,

where A is determined by the density of the grains in the grinding wheel Vg then

d = Vg A3

Therefore the average grain spacing A is

(8.5)

To randomise the grain positions, the random numbers R, R and R between 0 and

A were introduced as a bias. These random numbers were generated by a standard

Turbo Pascal random number generator. So that

• 81.



I'	
+ i • + R,

{	 ) = G00 + j • i + R,
	 (8.6)

G 00 +k+Rzj

A restraint on grain location is that the distance between two grains should be larger

than the diameter of the grains dg. Following the sequence of grain allocation the

distance between shadowy grains and the black grain shown in figure 8.1 should be

larger than dg. Therefore the following rules have to be satisfied.

d(Gj,j,k ,G1_1,J_1,k_1) > dg
d(G1,j ,k ,G1 , 1 ,k) > dg
d(Gj.j,k ,G_1,_1,k^1) > d5
d(Gj,j,k ,G1,J,k1) > dg

d(G1,j,k ,G11 ,j ,k) > dg
d(Gj,j,k ,Gj_1,j,k+1) > dg
d(Gi,j,k ,Gi_1.J+1,k_1) > dg	 (8.7)
d(Gj,j,k , G11 j+1 k) > dg
d(Gi.J ,k ,Gj_1,J+1,k+1) > dg
d(G 1,j,k	 k-i) > dg
d(G1,j,k ,Gj ,j i,k) > dg
d(Gj,,k ,G1,1 kii)> dg

d(G1,,k ,Gi ,j ,k1) > dg

Where d(Gjj,ic Gi,m,i ) is the distance between the grain and grain O1,m,n. If the

rules are not all satisfied, the black grain has to be reallocated until the rules are

satisfied. The grain is reallocated by applying equation 8.6 with new random

numbers R, R, R.

To clarify the mechanism of formation of a ground surface, it is necessary to know

the distribution of the cutting edges after dressing. The cutting surface of the grinding

wheel is generated by the interaction of the dressing diamond with the grinding

wheel. A geometrical interaction was initially used as the basis of the dressing

process. Subsequently the fracture of the bonds or grains was considered. Equation

3.2 was used for the local elastic deflections of the grains in the simulations of both

dressing and grinding.

The assumptions for the simulation of dressing were as follows:
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Vibration of both the grinding wheel and the dressing tool is negligible.

• The shape of the dressing tool tip is assumed to be a paraboloid.

• The adjacent grains are mounted on springs but are uncoupled, which means that

force applied to one grain does not deflect the adjacent grains.

The contour of the wheel surface is determined both by the dressing movement and

the grain location. When a single diamond passes helically over the surface of a

grinding wheel, the shape of the resulting cutting edge is shown by the dressing trace

lines as in the figure 8.2. After several dressing passes, the shape of the grain cutting

surface is as shown by the bold lines. The final contour of the cutting edges is decided

by the largest values removed from the grain surface by the dresser.

In practice, the shape of the cutting surface after dressing can be erratic and not

conform precisely to the shape of the dressing tool due to fracture of the grains on the

wheel surface or due to vibration of either the dressing tool or the wheel. It is

assumed that only a few points of the cutting path traced by the dressing tool remain

on the surface after each dressing pass. Therefore a sine wave function

h.[sin(o)x+a)+l] with random frequency co and random initial angle a was

superimposed on the cutting edge shape. The random frequency co was selected to

fall into the range from 41t/(fd+bci) to 81t/(fd+bd) so as to ensure there are only one or

two points of the grain surface in touch with the dressing tool. The amplitude of the

sine wave h depends on the extent of the grain fracture. A large value of h represents

a large extent of grain fracture in dressing. If the cutting path traced by the dressing

tool is expressed as a function of position along the x axis, the cut surface of a grain

may be expressed as

zg(x) = f(x) + h [sin(co x + cc) + 1]	 (8.8)

-	 where f(x) is the grain cut surface after dressing according to the cutting action in

dressing and h.[sin(cox-i-cc)+l] represents the additional grain material removed by the

fracture action in dressing. The function f(x) is decided by the largest value of

dressing traces and the grain surface. The superimposed area of the sine wave is
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- (8.11)

assumed to be proportional to the nominal dressing area Aj and the overlap ratio Ud.

Therefore h is expressed as

h—k
	

(8.9)

The proportionality factor k was chosen by trial and error so as to match real grinding

results with results from the simulation. The simulation of the grain fracture is

illustrated in figure 8.3. This process is repeated for each grain in turn.

It was assumed that during dressing, the dressing force will pull out the grain if the

cutting force is larger than the grain retention strength. The retention force was

determined by the strength of the wheel, which was deduced from the dressing force

model. According to the experimental results shown in section 4.3.1, the dressing

force Fd can be considered as a composite of the friction force FM and fracture force

F. Equation 5.1 can therefore be expressed as

Fd = F&a + Fifi = aW•Ad +FM	 (8.10)

where Ad is the nominal dressing area (equal to ad .fd) and the strength of the grinding

wheel was assumed to be

Therefore o can be determined from the dressing experiments, as illustrated in

figure 5.11	 is the gradient of the dressing force curve. For the purposes ol'

simulation, the grain retention force was then calculated from

Fr =
	

(8.12)

where Aj ,1( is the cross sectional area of the grain Gi,j,i remaining on the wheel after

dressing as illustrated in figure 8.4.

8.2. Generation of a Ground Workpiece Surface

During the grinding process the grain cutting points pass through the workpiece.
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Workpiece material was assumed to be removed if the grain engages the workpiece.

The principle of generation of the workpiece topography was based on the grinding

kinematics. During grinding, the grains on the wheel cutting surface pass through the

workpiece and cut a portion of the workpiece material as shown in figure 8.5. In the

simulation when the workpiece passes through the length of the grinding contact zone

l the distance travelled by the wheel surface is l.

This means that all grits in the range of l (ACDD'C'A') engage with the cross

section of the workpiece ABB'A'. When a cutting edge passes through a cross

section of the grinding zone, the material of the workpiece higher than the cutting

edge was assumed to be removed. Assuming the grain G 1,j,k passes through the

grinding zone at abb'a', the dark area will be removed. After the grinding wheel

passes through the cross section ABB'A', the remaining surface contour is the ground

surface of the workpiece. The simulation is carried out by each grain in turn.

Local elastic deflections of the grinding wheel have a very important influence on the

chip formation process as discussed in chapter 3. Since the local workpiece elastic

deformation is approximately a constant92, it can be considered as a part of the total

workpiece deflection. The variation of the deflection of the grain centre has a trend

similar to the total local deflection[921. Therefore the deflection of the grain centre

was assumed to be the local deflection in the simulation of both the dressing and the

grinding process. The deflection of the grain centre was calculated from equation 3.2.

In grinding, only a portion of the undeformed chip material is removed by a grain.

The remaining material is plastically piled-up on the sides of the grain as shown in

figure 8.6. It was therefore assumed that the area of the material removed is

proportional to the undeformed cutting area of the grain. When a grain cuts through

the workpiece, the ratio of material removed by the grain to the volume of

undeformed chip is defined as the cutting efficiency ratio 3 in the simulation. The
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remaining material will be 1 - of the volume of the undeformed chip. For

simplicity, the shape of the displaced material was approximated by a parabola

expressed as follows.

x2 = (h - z)
	

(8.14)

The area of the remaining material is

A = a h
	

(8.15)

The remaining material is superimposed on the workpiece surface at both sides of the

grain trace.

8.3. Mechanics of Grinding in the Simulation

The grinding force acting on the grinding wheel is distributed between the individual

grains in the grinding zone. The grinding force F can be separated into a tangential

component Ft and a normal component F or into a horizontal component Fh and a

vertical component F as illustrated in figure 8.7. When the diameter of the grinding

wheel is much larger than the grinding depth, the angle a is very small. Under these

conditions the horizontal component is almost identical to the tangential component

and the vertical component is almost identical to the normal component. The

horizontal component and the tangential component were therefore assumed to be the

same. The vertical component was assumed to be the same as the normal component.

The total grinding force was obtained by integrating the grinding force on the

individual grains in the grinding zone. Due to the random distribution of the grains in

a grinding wheel, it is difficult to know the real number or the orientation of the grits

in the grinding zone. An alternative method to obtain the total grinding force is to

consider the energy consumption of the grinding process. When the area ABCD is

removed as ifiustrated in figure 8.7, the grinding energy consumption
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(8.20)

E = F sl
	

(8.16)

The energy consumption to remove area AC•& is

AB=	 f,j-tx
	

(8.17)

where is the tangential grinding force on a grain i as it passes the section AC, t is

the time for a grain to travel a distance &. To remove the area ABCD the energy

consumption is

'C	 'C fl	 fl

E = > AE =>. (>	 f 1 -zx)=	 (8.18)

	

i	 i

Combining equations 8.11, 8.13 and 8.15, the tangential grinding force is

n

F =>
	

(8.19)

The grinding force can therefore be simulated by considering the action of each

individual grain as it passes a section such as AC.

As discussed in chapter 3, Shaw deduced the specific energy in grinding using a

single grain approach. In Shaw's analysis the grain was assumed to be a sphere, each

grain was assumed to be one cutting edge. The cutting depth was assumed to be

much smaller than the diameter of the grain, an assumption which is suitable for the

case where the grain is not dressed. After dressing, the cutting edges on a grain are of

complex shape, which made it difficult to analyse grinding force on each grain.

Therefore it was proposed that the cutting edges on a grain were assumed to be

equivalent to a spherical cutting edge based on the assumption that one grain only

acts as one cutting edge[25]. As in figure 8.8, the interface area was assumed to be

equivalent to the shaded oval area, which was expressed as

where ac is the contact length of the grain and bc is the cutting width of the grain.

The equivalent spherical grain was assumed to have the same interface area as the

shaded oval area with the workpiece. So the diameter of the engaged circle of the
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equivalent grain is

d=
	

(8.21)

When the maximum cutting depth of a grain tmax is available, the diameter of the

equivalent grain dgeq can be determined as figure 8.8.

The size of the dressed grain is smaller than the original one, but the equivalent

diameter of the cutting edge may be larger or smaller than the original diameter of the

grain. The equivalent grain diameter depends on the shape of the grain and the depth

of cut of the grain as illustrated in figure 8.9.

After the diameter of the equivalent grain has been determined, equation 3.39 can be

used to determine the specific energy of the grinding. If the action of a grain in

grinding is idealised as in figure 3.5, the indentation force of the grain R can be

expressed by equation 3.30. The cutting force on a grain can be assumed to be equal

to the indentation force R acting in direction 0 as shown in figure 8.10. Therefore the

tangential cutting force on a grain is

3irb	 C'
sine

and the normal cutting force on a grain is

3itb	 C'= -- -- H (--) A cosO

(8.23)

(8.24)

where A is the area of cross section of the undeformed chip as shown in figure 8.10.

If the friction coefficient is p., the tangential and normal friction forces will be

(8.25)

3itb	 C'	
sinO
	

(8.26)

Combining the cutting and friction action, the force models for each grain were
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(8.27)

(8.28)

represented as follows.

f ,j =11H(-)(sinO +p.cosO)A

3ir
f ,j = -- 1 H (s-) (cosO - j.t sinO) A

8.4. Simulation Procedure

Simulation of dressing and grinding was carried out to demonstrate the dressing and

grinding process and to corroborate the relationships between the inputs and outputs

of the total grinding process. The simulation was developed based on the

relationships illustrated in figure 4.2. As discussed previously, the key point of a

grinding process is the load on each single grain in the wheel. Therefore the

simulation concentrated on the behaviour of each individual grain in dressing and

grinding. The final grinding behaviour was obtained by accumulation of the grinding

behaviour of all grains involved in dressing and grinding.

With specifications of the grinding wheel and workpiece, grinding conditions and

dressing conditions, the simulation was designed to simulate the dressing and

grinding process and give the outputs of grinding such as surface roughness, grinding

force and grinding power.

Three functions were represented in the simulation. The first was the simulation of

the dressing process, which provides the location of the grains and the shape of the

cutting edges. The second was the simulation of the cutting process by a grain in

grinding according to the kinematics and the deformations in the process. The third

function in the simulation was to represent the action of each individual grain as it

contributed to the total grinding process. The basic steps of the simulation are

therefore as shown in figure 8.11.
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In order to simulate a real situation of dressing and grinding, the conditions selected

for the simulation were as close as possible to measured experimental conditions. For

the grinding wheel A465-K5-V3OW, the average diameter of the grains was about

0.293 mm and the density of the grains in the wheel was approximately 54%.

Equation 5.1, which was derived empirically, was used to determine the dressing

force used in the simulation. Based on these values the strength of the wheel o from

equations 8.9 and 5.1 was approximately 724 N/mm2. To match the grinding results,

the proportionality factor k in equation 8.9 was selected as 0.25.

After the input parameters were specified, the distribution of the grains in the wheel

were determined. The co-ordinate axis system for grains in the grinding operation

was set up as in figure 8.5. The subscripts i, j and k in the grain location vector G, j, k

represent the position of the grain along the X, Y and Z axes respectively. The

number of grain layers along the X axis determined by the grinding width is 'I'.

I=-+ 1
	

(8.29)

For the simulation of the ground surface roughness and the specific grinding force

and power, a simulation along the full grinding width is unnecessary. Six layers

along the X axis were found to be sufficient. The number of grain layers along the Y

axis is 'J', which is determined according to the distance travelled by a point on the

wheel surface in contact with the workpiece.

1
	

(8.30)

The number of grain layers along the Z axis is 'K', which must ensure there are

sufficient grains for the generation of the wheel working surface. Three layers are in

most cases enough for simulation. Since the grains in the wheel are assumed to be

spherical in shape, the distribution of the grains is determined from equations 8.6 and

8.7, which give the co-ordinate positions of the centre of the grain. The distribution

of the grains in the wheel is sketched in figure 8.12.

Because adjacent grains are assumed to be independent of each other, the dressing
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and grinding process were simulated by considering each single grain in sequence.

The sequence of the grains in the simulation of dressing and grinding takes place in

order of the Z, Y and X directions. The cutting action in dressing is determined by

the engagement between the grain and the diamond according to the kinematic

relationship of dressing. The material of the grains interfering with the diamond

locus was assumed to be removed. The diamond shape assumed in the simulation

was a paraboloid which is determined by bd and aj as shown in figure 8.13. The

contour of the diamond can therefore be expressed as

Since the top point of the diamond was selected as the origin in the simulation, the

values of the co-ordinates in equation 8.31 need to be adjusted accordingly. For the

situation shown in figure 8.14, where the XOZ co-ordinate system is the same as the

co-ordinate system in figure 8.5, the dressing trace can be expressed as

Zd(X) = LZZd 
4 a4j (x - &Xcj)2
	

(8.32)
b

where Alld depends on the dressing depth. AXXd depends on the position the

diamond engages with the wheel and is expressed as

AXXd = R + fl fd	 (8.33)

where R is a random number in the range from 0 to d and n is the number of wheel

rotations when the diamond passes through. If bd is smaller than d, there will be

some parts of the wheel surface which do not engage with the diamond. This

increases uncertainty in the simulation. Therefore the overlap ratio Ud in the

simulation was assumed to be at least equal to or larger than one.

The fracture action of dressing was determined from equations 8.8 and 8.9. The

elastic deflection was determined from equation 3.2. The shape of a grain after

dressing was therefore determined by a combination of the cutting, elastic deflection

and fracture actions in dressing. Figure 8.15 illustrates the simulation of the
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generation of the grain cutting surface under the wheel co-ordinate system. The

centre of the grain Gi,,k may be expressed as (xGj,j ,k, YGi,j,k' ZGJk) in the wheel co-

ordinate system. The z values of the cutting surface of the grain are stored in an array

zg(x), where x is addressed in the range [ xGj Jk - dg/2, XGjjk + dgI2]. This allows

further dressing passes to be simulated. The cutting surface of the grain was initially

determined from the centre of the grain and the diameter of the grain.

zg(x) = zG + iJ (dS)2 - (x - XG1J	 (8.34)

Once the diamond cuts through the grain, the z values of the grain contour after

dressing are the larger values taken from the diamond contour zd(x) and the grain

contour Zg(X). Therefore

zg(x)=maxtzg(x), zd(x))	 (8.35)

The effects of fracture of the grain are added to the z values as in equation 8.8. The

elastic deflection 6d in dressing may be determined from equation 3.2 and needs to be

subtracted from the z values as shown in figure 8.15.

The chip to be cut by a grain was determined from the kinematic relationships of

grinding as shown in figure 8.5. When a grain G, j, k passes across the section

AA'B'B, the grain centre rises by a distance i, j, k in the workpiece co-ordinate

system.

A1, j, k = de - 4J d - (1 - j YG i.
	 (8.36)

Therefore the z' value for the centre of the grain in the workpiece co-ordinate system

is

Z' =ZG;jk+Aj,j,k+AZz	 (8.37)

where A' is the distance between the two system origins. Figure 8.16 shows the

grinding process of the grain under the combination of the workpiece co-ordinate

system and the wheel co-ordinate system. The cutting, the elastic deflection and the

plastic pile-up are considered. The initial workpiece surface was set into an array

z'(i'), i' = 0, 1, 2, 3, ..., where i' represents the positions of the workpiece to be

simulated. The value of each element in the array represents the z' value of the
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(8.39)

and

workpiece point i'. The number of elements in the array depends on the precision

required of the simulation. A larger number of elements give more precision. The

interval between elements used in the simulation was one micron.

The cutting process was simulated by comparing the cutting surface of the grain with

the relevant surface points of the workpiece. if a grain Gi,j,k passes through the

grinding zone, the surface points of workpiece in the area [xG lJ,k - dg/2, '¼3i,j,k + dg/2]

are involved in the cutting simulation, if the workpiece surface is higher, then the

material higher than the cutting face of the grain will be removed. Values of elastic

retrieval and plastic pile-up were assigned to the relevant workpiece points after each

grain passed through the workpiece. The compliance of the grain centre was

determined from equation 3.2 and the value selected for the compliance constant of

the equation was 0.15. The material piled up along the sides of the grain path was

given by the cutting efficiency ratio 13. The cutting efficiency ratio varies with the

cutting depth and grain shape[89]. Since a practical value was not available, 13 was

assumed to be 0.75 in the simulation. Therefore 25% of the undeformed chip remains

on the workpiece surface. The determination of the contour of the piled up material is

detailed in figure 8.17. The material was assumed to pile up in the direction of a at

both sides of the grain path, where the angle a is determined by the equivalent

diameter and the maximum depth of cut of the grain. After the area of piled up

material is determined, the parameters for determination of the contour of the piled up

material can be given as

Therefore

2 tan a .12) ,/ 3 A, tan a
z"=(l-	 x

3A	 8

Since tan a =	 then

(8.40)
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3Ab	 V	 8b	
(8.41)

The final workpiece topography is the material remaining on the workpiece after the

passage of all the engaged grains through the grinding zone. The generation of the

workpiece surface is sketched in figure 8.18, where the numbers represent the

sequence of the grains passing through the section under consideration. A simulated

ground surface is illustrated in figure 8.19.

The total grinding force is determined by summing up the loads for all grains

involved in grinding as expressed in equation 8.19. The forces on each grain were

calculated from equation 8.27 and 8.28. There were five parameters to be

determined, the grain shape ratio bit, the material hardness, the constraint factor C',

the friction coefficient t and the direction of the chip flow e. The grain shape ratio

was determined from the kinematic relationship between the grain and the workpiece

in the simulation. The material hardness was determined from a Rockwell hardness

test and was HRC 61. In most cases the cutting depth was much smaller than the

diameter of the grain. Following Shaw's assumption[89], the constraint factor C' was

assumed to be 3. The friction coefficient was assumed to be 0.4 for a reasonable

value of FnJFt. The chip flow direction determined by Shaw's spherical grain model

is shown in figure 3.8. Using the diameter and the cutting depth of a grain, the

direction of the chip flow 0 can be calculated

21t(dg_t)
0 = arcsin 2b. = arcsrn

dg	 dg
(8.42)

8.5. Simulation Results and Discussion

Following the simulation procedure, simulated results of dressing and grinding were

generated. The effects of dressing conditions on specific grinding force based on the

simulation are illustrated in figure 8.20. The effects of dressing depth on grinding
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force are found to be stronger than the effects of dressing lead. The effects of

dressing conditions on surface roughness are shown in figure 8.21. The surface

roughness increases with increase of dressing lead. The dressing depth has a

relatively weak influence on surface roughness and the nature of the influence is less

clear. The tendency of the simulation results is similar to that of the experimental

results as given by equations 6.1 and 6.22.

By changing the diamond active width only, the simulated effects of the diamond

active width on grinding force and roughness are as in figures 8.22 and 8.23. The

grinding force initially increases with increases of the diamond width and then

decreases. The surface roughness decreases with an increase in the diamond width. It

is interesting to note that the variation of the simulation results decreases with an

increase of diamond width. The dressing overlap coefficient provides the connection

between the diamond and the dressing conditions. With the same diamond shape,

different dressing conditions give different dressing overlap coefficients. As shown

in figure 8.24 and 8.25, the standard deviation of the simulation results decreases with

an increase of dressing overlap coefficient. This may attributed to the fact that a

small diamond overlap leaves more scope for variations in the diamond trace.

During the spark-out stage of the grinding cycle the grinding depth decreases, so that

the grinding power decreases. The rate of decrease of grinding depth during the dwell

period depends on the time constant of the grinding system. Decrease of grinding

depth is equal to the change in the workpiece radius in one revolution as expressed by

equation 7.15. The simulation also shows that grinding power in the dwell period

decreases following an exponential decay function as illustrated in figure 8.26. This

is in agreement with equation 7.5. Simulation results indicate that surface roughness

during dwell improves as illustrated in figure 8.27. However the improvement of

surface roughness does not follow an exponential decay as might be expected from

the power results. This tendency is in agreement with experimental results which

were found in previous work by Rowe[129].
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The values of specific grinding power from the simulation and from the experiments

illustrated in figure 8.28 show good agreement in the trends observed. Values of

surface roughness from simulation and from experiment after a dwell of 5 seconds are

illustrated in figure 8.29. The experimental results in most cases fall within the range

of values given by the simulation. For those results where the agreement is less

satisfactory, the error may possibly be attributed to the assumption of the parabolic

diamond shape in the simulation. The real diamond shape is very rough as shown in

figure 5.9 and 5.10. As illustrated in figure 8.30, the height of the dressing trace

simulated using the parabolic assumption will be different from that of the real

diamond dressing trace, when bd is much different from fd. If the overlap coefficient

Ud is very large, the assumption of a parabola gives a diamond shape which is too

smooth. If the overlap coefficient Ud is very small, the assumption of a parabola

gives a diamond shape which is too rough.

8.6. ConcLusion

The results from the simulation give good agreement for most parameters with

experimental results. Although clearly this is not a proof that the underlying

assumptions are correct, it is clear evidence that the assumptions are consistent with

the facts in so far as the investigation went. This is evidence that a reasonable

working model has been obtained for the effects of dressing on the grinding process.

It is tentatively concluded that the understanding of causation achieved so far

provides a reasonable basis for the formulation of an adaptive dressing strategy.
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Chapter 9. Formulation of Strategies for Selecting Dressing

Conditions

9.1. Fundamentals of a Sensor Based Dressing Strategy

Previous chapters show that the active width of the dressing tool has a strong effect

on grinding behaviour. Models and so-called Al techniques which do not take

account of the active width of the dressing tool will not be reliable for selection of

dressing conditions for single diamond dressing. The active width of the dressing

tool is almost uncontrollable in industry. However it can be assumed that the change

in width of the dressing tool occurs progressively. It is therefore proposed that the

grinding behaviour over a wheel redressing life cycle can be used as a reference for

selection of improved dressing conditions for the next dressing operation. Based on

this assumption, it is proposed to develop an adaptive sensor based strategy to select

and modify dressing conditions. The formulation of the sensor based dressing

strategy is discussed in the following sections.

In order to develop an adaptive strategy for selection of dressing conditions, the

ability to monitor the effects of dressing on the grinding process must first be

established. It is necessary to decide what grinding output parameters should be

selected to monitor the process. This decision relies on whether the parameters

employed to monitor the process are sensitive to the dressing operation and capable of

reliably predicting grinding performance. The selection of the initial dressing

conditions is also important. A good initial dressing condition will make optimisation

of the dressing operation more efficient. It is also important to know when the wheel

needs to be redressed because wheel life affects productivity. Key issues for the

development of a strategy are

(i) how to recognise what dressing conditions are suitable for the specified grinding
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operation;

(ii) how to utilise sensor outputs to improve the dressing operation.

The strategy for the selection of dressing conditions is discussed in three partS,

(i) selection of the initial dressing conditions,

(ii) identification of the grinding wheel life cycle,

(iii) sensor based adaptation of dressing conditions.

9.1.1. Selection of Initial Dressing Conditions

The initial dressing conditions for the first grinding operation are usually selected

according to experience. If there is no experience available, a conservative dressing

condition wifi probably be applied to satisfy quality requirements. A large dressing

depth produces an open wheel surface leading to a small grinding force. A small

dressing lead gives a good surface roughness as shown in equation 2.1. Therefore a

combination of large aj and small d may be considered to be a conservative dressing

condition in order to achieve efficient grinding and low values of surface roughness.

These conditions however remove a large amount of the wheel and require a long

dressing time.

With the development of Al technologies it is possible that initial dressing conditions

could be selected on a more rational basis. In some cases a database may be used to

decide the initial dressing conditions. If the grinding requirement is similar to a case

in the database, the dressing conditions in the database can be used as the initial

dressing condition. For a new grinding operation, a similar case may not be available

from the database. The fuzzy logic method or the neural network method may be

helpful to find a closely corresponding condition for the specific grinding

requirement. Expert systems might also be useful in selection of the initial dressing

conditions. Any of these methods could be integrated into a strategy for the selection
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of initial dressing conditions.

9.1.2. When the Wheel Should Be Redressed

Redressing the wheel at the right time is important for the optimisation of the total

grinding process. If dressing is applied too late, the material removal rate may be

reduced and the grinding quality may be worse than specified. On the other hand if

dressing is applied too often, increased wear of the diamond and the increased volume

removed from the wheel increases cost. Unnecessary dressing also increases non-

productive time which lowers productivity and increases production expense.

The grinding wheel should be redressed when any of the grinding constraints is

offended. Typical grinding constraints are as follows:

(i) machine power capacity or maximum allowable operative power;

(ii) maximum permissible surface roughness;

(iii) maximum size error;

(iv) maximum roundness error,

(v) onset of workpiece burn;

(vi) onset of grinding chatter;

Besides direct detection of the violation of grinding constraints, many indirect

methods have been proposed to identify the need to redress. Wheel wear glazes the

wheel surface, which causes a change in the relationship between the normal grinding

force and the tangential grinding force. Based on this, Pacitti and Rubenstein[62,

137] suggested that the wheel life could be determined by plotting a graph of the

-	 normal grinding force versus the tangential force, where the grinding force is

expressed as

F=-1-F+C
	

(9.1)
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A significant decrease of the friction coefficient .t was found between the second

stage and the third stage of the wheel wear process. Therefore a decrease in ji was

proposed as an objective measure of redress life. However the decrease in j.t was

obtained only when the grinding forces in both the second and the tertiary stages were

available. If the grinding wheel produces reject parts in the tertiary stage, this method

may be considered unsuitable.

Grinding force increases as flats develop on the wheel surface. This is because the

flats on the grains increase the friction force in grinding. Based on the relationship

between grinding force and total plateau area of the wheel surface, Yoshikawa[124]

proposed the plateau area as a measure of wheel life. Yoshikawa suggested the wheel

needed to be redressed when the plateau area reaches 8% of the wheel surface. The

difficulty of applying this indirect method is that the threshold for the plateau area

varies with different grinding conditions, workpiece materials and coolants.

Grinding vibration is normally considered to be an adverse condition in grinding. As

the amplitude of vibration increases, surface texture often deteriorates and errors in

workpiece form and size increase. The grinding wheel has to be redressed when

chatter develops. Based on grinding noise, an experienced operator can recognise

whether the wheel is worn or not. Identification of the onset of grinding chatter from

machine vibration was used to achieve an objective measure of redress life. This is

detailed in chapter 10.

9.1.3. Selection of Monitoring Parameters for Dressing

There are many parameters which can be used to demonstrate the effect of dressing

on the grinding process. Possibilities include grinding force, grinding power,

grinding temperature, workpiece surface texture and wheel redress life. Parameters

which represent the quality of the ground workpiece may also be chosen to evaluate
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the grinding operation. Parameters in this category may include size error, surface

roughness and roundness. These parameters demonstrate the effects of the dressing

conditions directly but only to a limited extent. For example size errors indicate the

effect of dressing on wheel wear and normal grinding force but do not give direct

information on the effect of dressing on the grinding wheel surface topography.

Grinding force was considered to be the best parameter to comprehensively reflect the

grinding behaviour and the effect of the dressing operation. Almost all grinding

behaviour can be related explicitly to the grinding force. However, force is a vector

parameter which is dependent on the position of the sensor, and the specific grinding

operation. Force measurement is therefore inflexible in operation. Furthermore to

install a grinding force sensor is expensive and often affects the stiffness of the

grinding system, which degrades the machine performance. More importantly

manufacturers are reluctant to increase the number of sensors on machines which has

implications for reliability. Grinding power is an easily measured parameter which

does not affect the grinding system. Grinding power represents the tangential

grinding force and relates well with other grinding parameters. For example, the

specific energy which may be calculated from grinding power has a logarithmic linear

relationship with surface roughness[24]. Accordingly it was decided that grinding

power would be investigated as a parameter for monitoring the dressing operation.

The time constant is another parameter which is indicative of differences in the

grinding contact condition after dressing. If the grinding wheel cutting surface is

unchanged, the interaction between the wheel and the workpiece as characterised by

the time constant should be stable. Wheel sharpness will be stable too. The results of

the experiments in chapter 5 showed minimal variations of time constant and best

grinding results were achieved when the most appropriate dressing conditions were

applied.

Both the grinding power and the time constant can be used to interpret the cutting

101•



ability of the grinding wheel. Equations 3.41, 4.3 and 4.7 show that the grinding

power is proportional to the tangential grinding force while time constant depends on

the normal grinding force. The time constant also depends on the stiffness of the

grinding system which is relevant to the contact situation between the wheel and the

workpiece. As mentioned in chapter 5, when appropriate dressing conditions are

employed, the time constant remains more nearly constant as grinding progresses.

The grinding power, however, initially decreases with time and then increases. The

difference in behaviour for the two parameters is partly because time constant can

indicate the grinding contact situation but power cannot. The other reason is that time

constant depends on the normal force and power depends on the tangential grinding

force. The variation of the grinding force ratio F/F in the wheel life cycle was

observed by many researchers[57, 62, 138]. Rubenstein[137] gave equation 9.1 for

the relationship between F and Ft. In equation 9.1, C is a constant under stable

conditions. C depends on the geometric characteristics of the wheel surface, the

hardness of the workpiece, the strength of the workpiece, the friction coefficient

between the grit and/or bond sliding against the workpiece, the grinding contact area

and the grinding conditions. According to Rubenstein's equation, if C ^ 0, the

grinding force ratio changes with the tangential grinding force. The initial stage of

grinding is characterised by a high rate of wheel wear. A rapid change in the

topography of the wheel surface results in a considerable change in the grinding force

ratio, leading to a change in the constant C.

Surface roughness of the workpieces reflects the influence of the dressing and

grinding conditions as well as the geometric characteristics of the wheel surface. Too

coarse or too fine a dressing operation induces a large change of surface roughness in

the initial stage of wheel wear as shown in chapter 5. A small variation of surface

roughness in a narrow band can only be realised when suitable dressing conditions are

applied. Hence the surface roughness is assumed to be one of the most sensitive

parameters for monitoring the dressing operation. Surface roughness values are

usually provided by an operator. Therefore it is inconvenient to rely completely on
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surface roughness. However, it is reasonable for an operator to indicate when the

surface roughness is too rough or too smooth and enter Ra values. It is not usually

necessary to make frequent measurements of surface roughness. Occasional

measurements are usually sufficient to check the surface roughness quality.

The analysis above shows that grinding power, time constant and surface roughness

can be used to demonstrate the effects of dressing on grinding behaviour and these

three parameters will therefore be used in the evaluation of dressing strategies.

9.2. Development of Dressing Strategies

Adaptive sensor based learning strategies for selection of dressing conditions should

aim to make the grinding process stable and satisfy the quality requirements. The

grinding power and surface roughness should not be so high as to degrade grinding

quality, nor so small as to lead to a loss of productivity. The parameters most often

used to control grinding are those parameters which are most easily adjusted. For

plunge grinding, the main control parameter is the infeed rate Vf, because of its strong

effect on grinding process. In dressing, the control parameters are the dressing lead d

and the dressing increment ad. Other parameters are chosen from experience. For

example, the type of wheel is often selected from experience and in many case is

rarely changed after the wheel is mounted on the machine. Some input parameters

are not subject to control. Parameters in this category include the shape of the

diamond dressing tool and the character of the workpiece.

A large dressing lead reduces the dressing time. This implies that the dressing lead

should be as large as possible. However if the dressing lead is larger than the average

diameter of the grains, some grains on the wheel surface will not be dressed.

Therefore the dressing lead must not be larger than the average diameter of grains. A

large dressing lead and dressing depth will lead to a large value of surface mughness.
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Dressing lead and dressing depth should be selected so that the resulting values of

surface roughness lie within the specified range. Consumption of the wheel is due

much more to dressing than wheel wear[139]. Therefore the depth of dressing should

be as small as possible to reduce the wheel consumption. The constraint on the depth

of dressing is that dressing should make the apertures in the wheel surface big enough

to contain the grinding chips. It has been argued that if the pores in the wheel surface

are not large enough to contain the grinding chips, the grinding power will be very

high[140]. Therefore a constraint on minimum dressing depth could relate to a

constraint on grinding power. Based on the above discussion, constraints on the

dressing operation are illustrated in figure 9.1. The dressing conditions in shadowed

area are applicable.

9.2.1. A Strategy Based on Stabilising the Time Constant

As shown in chapter 4, a good dressing operation gives a smaller variation of the time

constant in the initial grinding stage. This implies a stable grinding wheel working

surface after dressing. The strategy proposed here is to minimise the variation of the

time constant during the initial stage of grinding. Variations of time constant in the

initial grinding stage are illustrated in figure 9.2. The standard deviation a and the

residual deviation acf of a straight line fit of the measured values of time constant

during the initial stage of wear are defined as

(ti -)
	

(9.2)

=v'	
-j)
	

(9.3)

where n is the number of workpieces ground during the initial stage of wheel wear, i

refers to the sequence of workpieces ground, 'r is the mean value of time constant in

the initial stage of wheel wear, j is the estimated value of time constant from the

straight line fit. At the end of the wheel life, the standard deviation of the time
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constant c and the residual deviation cf of the time constants during the initial stage

of wear were calculated. If a ^ a Cf, no trend is apparent in the time constant series.

This means the wheel sharpness is stable and the dressing operation is acceptable. If

a> Gcf, there is a trend in the time constant series, which means the dressing

operation could be either too coarse or too fine. If the time constant trend has a

negative slope, the dressing is too fine and an increase of dressing lead or dressing

increment should be applied. If the time constant trend has a positive slope, the

dressing is too coarse and a decrease of dressing lead or dressing increment should be

applied.

The strategy for selecting optimal dressing conditions to minimise the variation of the

time constant is shown in the figure 9.3. The initial dressing conditions may be

determined from experience or by one of the methods discussed previously. The

strategy for selection of dressing conditions should not only make the time constant

trend level, but should also minimise the variation of the time constant. It is

reasonable to assume that a larger value of cf means more bond fractures in dressing,

because the variation of time constant arises from the variation in the density and

shape of the cutting edges on the wheel surface. A good dressing operation should

minimise the bond fractures in the dressing operation and make the time constant

steady. Pande[46] found that the proportion of bond fractures during dressing was

increased with an increase of dressing depth or a decrease of dressing lead. Based on

Pande's observation, a small dressing depth or a large dressing lead might be

expected to reduce the variation of time constant, because these conditions introduced

less fractures on the wheel surface. It was found in figure 5.23 that the effect of

dressing depth on the time constant is stronger than that of dressing lead. Therefore it

was proposed that the time constant trend was to be adjusted by varying dressing

depth. Larger dressing depth gives a more open wheel surface and decreases the

initial time constant. Decreasing the dressing depth increases the time constant and

reduces the wheel consumption. On the other hand the surface roughness is to be
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adjusted by varying dressing lead. A smaller dressing lead gives a better surface

roughness. If the values of surface roughness are far smaller than its upper limit, the

dressing lead should be increased to reduce the dressing time and to reduce the

number of bond fractures.

The strategy of minimising the variations of the time constant is suitable where the

grinding conditions remain the same and the grinding power level is not crucial. The

efficiency of the strategy is dependent on how accurately the time constant can be

measured. Normally when the initial wear stage of the wheel finishes is determined

by experience. This is a disadvantage of the strategy of minimising the variations of

the time constant.

9.2.2. Strategy of Stabilising the Grinding Power

As discussed previously the error of the estimation of the time constant limits the

ability to demonstrate the effects of the dressing operation. The changes in grinding

power were found to be much larger than the changes in time constant as shown in

chapter 5. The grinding power can therefore be concluded to be more sensitive to the

dressing operation than the time constant. The strategy of stabilising grinding power

is to minimise the changes of grinding power in the grinding wheel cycle, so that the

grinding behaviour will be stable.

It was observed that the grinding power initially decreased then gradually increased

until the end of the wheel life cycle as shown in figure 9.4. Changes of grinding

power depend on the dressing operation. If the initial grinding power is equal to the

grindIng power at the end of the wheel life cycle, the change of grinding power is

approximately at a minimum, and the grinding performance can be considered to be

approximately constant. Similarly the iritia1 surface roughness should be controlled

so as to be at the same level at the beginning and the end of the wheel life. If
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empirical models of surface roughness and grinding power, such as equations 6.1 and

6.2, are available, the dressing conditions may be directly determined.

When the surface roughness is not critically important, good dressing conditions may

be defined by the conditions which achieve steady grinding power and stable grinding

behaviour. For a specific power level, combinations of ad and d to be used follow

the loci shown in figure 9.5. Combinations of dressing parameters follow a different

locus if the specified grinding power level is changed. For low wheel consumption

and short dressing time, dressing with small ad and large d should be employed.

Furthermore, as mentioned previously, the combination of small a and large fd

creates less fractures on the wheel surface, which may make grinding behaviour more

stable. If a maximum surface roughness constraint is involved, the dressing

conditions should be selected within the boundary for surface roughness. The best

dressing conditions correspond to the point B in figure 9.1.

Because of the wear of the dressing tool, the boundaries of dressing conditions for

maximum surface roughness and power control locus may shift. This makes it

difficult to use the models to determine the dressing conditions. However based on

the assumption that the change of the width of the dressing tool occurs progressively,

the outputs of the grinding behaviour in a wheel redress life cycle can be used as a

reference for selection of the next values of dressing conditions. Therefore the effects

of a change in dressing conditions can be gained from equations 6.1 and 6.2 obtained

from real grinding data. Based on the empirical grinding power model, equation 6.22,

the effects of the dressing depth ad is stronger than the effects of the dressing lead d•

The dressing depth is therefore selected as the main parameter for controlling

grinding power. Because the dressing lead d has a stronger influence on surface

roughness than dressing depth ad according to equation 6.1, the dressing lead is

selected as the main parameter to control the surface roughness. Therefore the

grinding power and surface roughness may be controlled separately.
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A gradual approach to selection of dressing conditions is proposed as shown in figure

9.6. Because the objective of selection of the dressing conditions is to obtain the

required quality with a stable grinding process, selection of dressing lead takes

priority over selection of dressing depth to ensure the surface roughness falls just

below the limit. The first layer controls the dressing feed rate to achieve the required

surface roughness. The second layer controls dressing depth to minimise the

variations of grinding power.

The procedure for achievement of the strategy is as follows. The first step is the

selection of the initial values of dressing parameters. This relies on experience or on a

method discussed in section 9.1.1. After dressing and grinding with the initial

dressing conditions, the surface roughness is examined and the grinding power is

recorded. The dressing lead is adjusted until the surface roughness is acceptable,

which means the surface roughness should be just below its tolerance limit. If the

surface roughness is too coarse, the dressing lead should be decreased. If the surface

roughness is too fine, the dressing lead should be increased.

By reference to the optimal grinding power change locus, it is possible to decide

whether the dressing operation is too fine or too coarse. If the initial grinding power

is much higher than the final grinding power in the wheel life cycle, the dressing

operation is too fine, and the dressing depth needs to be increased. Conversely, if the

initial grinding power is much lower than the final grinding power in the wheel life

cycle, the dressing operation is too coarse, and the dressing depth needs to be

decreased. When the initial grinding power level is similar to the final grinding

power level in the wheel life cycle, and the surface roughness is acceptable, the

dressing conditions employed are acceptable.

Consideration should be given to the maximum power threshold for the onset of

grinding bum. The dressing depth and dressing lead may have to be adjusted when

the grinding power and surface roughness are larger than their constraints. In this
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situation, dressing depth has to be increased to reduce grinding power and the

dressing lead has to be decreased to improve surface roughness. The changes of the

dressing conditions should be small enough to ensure the grinding behaviour changes

progressively and grinding qualities are acceptable.

By using the strategy shown in figure 9.6, dressing conditions were adjusted step by

step to achieve optimal conditions. In order to determine the optimum dressing

conditions more effectively, empirical equations for grinding power and surface

roughness can be used. If the shape of the dressing tool does not change severely,

equations 6.1 and 6.2 will be sufficiently accurate to assist in the selection of the

dressing conditions. The constants in the empirical equations are updated with the

data extracted from the most recent grinding results. By consulting the empirical

equations, the dressing lead and dressing depth can be adjusted more rationally.

The adjustments of dressing depth and dressing lead in the strategy can, in most

cases, be made either for the same wheel life cycle, or for separate wheel life cycles.

However if the initial values of surface roughness and grinding power are both larger

than their values at the end of the wheel life cycle, the increase of a and the decrease

of d will need to be applied at the same time to prevent the violation of grinding

constraints. By applying the strategy, dressing conditions are shifted according to the

grinding behaviour. When the recommended dressing lead is smaller than the

machine capability or the recommended dressing depth is too large leading to

excessive wheel consumption, the diamond has to be relocated.

Compared with the strategy of minimising the time constant, the strategy of

stabilising the grinding power is more sensitive, though the wheel life has to be

detected because the grinding power at the end of the wheel life cycle is involved in

the strategy. The wheel life cycle time can be determined either by experience or by

the techniques mentioned in section 9.1.2 and will be further discussed.
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9.3. Combination of the Dressing Strategy with Grinding Strategy

The dressing strategies developed in the previous section are based on the situation

where the grinding conditions do not change. If the grinding conditions change

according to the adaptive optimisation of the grinding operation, the dressing

conditions may also need to be changed. For example in order to maximise the

grinding productivity, the grinding process should be carried out with the maximum

power available, providing chatter or thermal damage do not occur. Therefore an

adaptive dressing strategy of maximising stable grinding power is needed to achieve

an optimal grinding process within the maximum grinding power constraint.

Dressing mainly affects grinding in the initial stage of the wheel life. No matter what

dressing conditions are employed, the grinding power at the end of the wheel redress

life cycle is not of much difference if the grinding conditions remain the same. When

the grinding power level at the end of the wheel redress life cycle is much lower than

the machine power capacity or the grinding power constraint of grinding burn, the

grinding conditions might need to be changed to improve the grinding productivity.

Figure 5.32 shows that the grinding power level at the end of the wheel redress life

cycle changes with the grinding conditions. When the grinding conditions change,

the dressing conditions should also be changed to make the initial grinding behaviour

the same as the final grinding behaviour of the grinding wheel life cycle in order to

achieve the most stable grinding behaviour between two dressing operations.

According to equation 6.22, the grinding power level at the end of the wheel life cycle

can be adjusted to its constraint by changing undeformed chip thickness heq. For

plunge grinding, the infeed rate Vf is usually used as the control parameter to adjust

the undeformed chip thickness. Dressing conditions can be selected in the same way

as described in section 9.2.2.
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The strategy of maximising stable grinding power is achieved by combining the

grinding condition adjustment into the power stabilising strategy as shown in figure

9.7. The first wheel redress life cycle is run conservatively with parameters

recommended by experience or from a data base. These parameters ensure the

grinding operation is within the constraints of the grinding power and the grinding

quality. After grinding to the end of the wheel life cycle, the power stabilising

strategy shown in figure 9.6 is applied to achieve the stable grinding performance

within the grinding constraints. Then the grinding conditions are adjusted to make

the grinding power at the end of the wheel life cycle just below the maximum power

allowable. Thereafter, the power stabilising strategy is used to make initial grinding

power equal to final grinding power and the surface roughness remain constant. The

optimal dressing and grinding conditions are obtained when the grinding operation

produces a maximal metal removal rate and a constant acceptable surface roughness

at the maximum power allowable.

The dressing and grinding conditions may more efficiently be selected according to

equation 6.1 and 6.22. If the constants in the empirical equations are not available for

a new set of grinding conditions, the changes of dressing and grinding conditions can

only be taken in small steps, so that the constraints of the grinding process will not be

violated. After several adjustments of dressing and grinding conditions, the constants

of the empirical equations may be obtained by curve fitting from the grinding results.

The grinding power constraint may be dominated by the maximum power available

from the machine. It is known that the specific grinding energy is more ilevant than

power in prevention of grinding bum. By using the constraint of the specific grinding

energy to substitute for the grinding power constraint, the strategy might be linked

with the CNC adaptive control strategy for grinding. The key issue might then be

how to monitor the effects of dressing and grinding separately.
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Chapter 10 Evaluation of the Dressing Strategy

It is proposed that the strategy of stabilising grinding power is the most efficient

strategy for stabilising grinding performance. An essential part of the strategy is how

to determine the wheel redress life. In this chapter, the determination of the wheel

redress life is discussed and the strategy of stabilising grinding power is evaluated.

10.1. Determination of the Redress Life of the Grinding Wheel

The grinding wheel should be redressed when grinding behaviour becomes poor due

to wheel wear. The wheel redress life needs to be determined for the dressing

strategy. During the course of the investigation, it was found that grinding chatter

was the main determinant of the need for wheel dressing. Therefore the wheel redress

life was determined by monitoring the onset of grinding chatter.

The workpiece and the grinding wheel tend to wear in the form of a polygon[1 17].

Wheel regenerated grinding chatter is related to the development of a polygonal shape

on the wheel. The predominant vibration frequency of the grinding chatter depends

on a characteristic frequency of the grinding system. Because a non-linear

relationship exists between the deflection of the wheel and the grinding force, the

contact stiffness of the grinding wheel could not be a constant. It was found that the

chatter frequency of the grinding system increases with radial force between the

wheel and workpiece[ 1411. Therefore when the grinding force increases due to wheel

-	 wear, the chatter frequency increases too. A decrease of the grinding force is often

found when chatter occurs[61, 103, 139, 142]. It was found that as grinding chatter

develops, the predominant vibration frequency shifts from a low value to a high value

and then from high to low[61, 141-143]. It can be assumed that when the amplitude
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of vibration at the characteristic frequency begins to increase, grinding chatter has

begun. When the amplitude of the vibration at the characteristic frequency increases

to an unacceptable level, the wheel has to be redressed. Szekeres[1411 proposed that

the vibration amplitude-time function could be used to measure the wheel life. The

second inflection point of the amplitude-time function was assumed to mark the end

of the wheel life.

Grinding chatter due to wheel wear is a gradually developing vibration process.

Figure 10.1 shows the difference of acceleration signals between the chatter and non-

chatter conditions, where a is the acceleration signal and the sampling rate is 10 kHz.

By means of FFT data processing, the distribution of the acceleration density is

obtained as illustrated in figure 10.2. In figure 10.2 the distribution of the

acceleration density is varying with the time. The average acceleration density

distribution is illustrated in figure 10.3. It can be seen that the characteristic

frequency of grinding chatter in the experimental system is around 3100 Hz. When

the grinding chatter developed, the acceleration density at the characteristic frequency

increased. When this acceleration density increased to a certain level, the wheel had

to be dressed. By monitoring the grinding vibration in the characteristic frequency

zone, the need to redress the wheel can be determined. Figure 10.4 shows a typical

pattern of development of grinding chatter, where a' is the acceleration density at the

characteristic frequency of the chatter. By setting an acceptable acceleration density

level at the characteristic frequency, the wheel redress life could be determined.

However it is difficult to decide on an objective basis for the vibration level at which

the wheel should be dressed.

A neural network is a powerful tool for process identification[144]. It was therefore

- proposed that grinding chatter might be identified objectively by using a neural

network technique. The distribution of acceleration density in the frequency domain

provides useful information concerning grinding chatter and was used to derive inputs

to the neural network. Combining FFT analysis and neural network techniques, Mori,
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Kasashima and Yamane[145] established a system to identify the type of grinding

vibration. In their system, 106 selected values from the FFT spectrum were used as

inputs to the neural network.

The number of inputs to the neural network affects the speed of the network in

operation. Though more inputs may give more information about the chatter process,

the speed of the neural network will reduce. For real-time monitoring of a vibration

situation, a huge number of calculations are often undesirable. The problem here is

only to identify when grinding chatter begins and therefore the number of inputs to

the neural network may be reduced. In order to reduce the number of inputs without

losing the ability to identify chatter, the acceleration signal was taken through a small

number of band pass filters covering the frequency range of interest. For a set of 16

samples, a FFT process can act as eight band pass filters of equal band width. For the

sampling rate of 10 kHz, the filter covers the frequency range between 0 - 5000 Hz.

Using the filter, the acceleration signals are distributed into eight bands. With the

same signals in figure 10.3, the distributions of acceleration density in eight band

filter are changed as shown in figure 10.5. The difference between chatter and non-

chatter is manifest. In figure 10.5, the acceleration density in the lowest band

included DC signal. The distribution of acceleration density at each band provides

important information for determining the wheel redress life. Though the 8 band pass

filter was realised by FFT processing in experiment, the physical hardware approach

is easier and cheaper.

The software package 'NeuralDesk'[146] was used to establish a neural network to

determine the wheel redress life. The recommended structure using NeuralDesk is

shown in figure 10.6. The network is of the feedforward type with a back-

propagation learning structure. The acceleration densities from the eight band pass

filter are used as inputs to the network. There is only one output from the network,

which displays whether grinding chatter has begun or not. There is one hidden layer

of four artificial neurons in the neural network.
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Judgement of the existence of grinding chatter was initially identified based on

experience. Seventy five cases of vibration were used to train the neural network.

Where grinding chatter was identified, the output of the neural network was set to

one, otherwise the output was set to zero. After training, the filtered grinding

vibration signals are fed into the network. If the value of the network output is larger

than 0.5, grinding chatter is assumed to have commenced. Analysing the example for

the case shown in figure 10.4, the output of the neural network is illustrated in figure

10.7. According to the output value from the neural network, the acceleration density

threshold for objective identification of chatter is about 8 m/(s2Hz). After the

acceleration density at the characteristic frequency reaches this level, the vibration

begins to increase significantly and erratically.

Development of grinding chatter due to wheel wear can be expressed as the increase

of the vibration amplitude in the characteristic frequency zone. By measuring the

increase of the acceleration in a narrow band of characteristic frequency, the

development of chatter can be monitored. However the monitoring frequency zone

has to shift due to the characteristic frequency differences with different grinding

systems. Although the FFT data process can give the spectrum of the vibration, it

requires a huge amount of calculation. By distributing the vibration signals into an

eight band pass filter which covers the whole frequency range of the vibration, a

neural network can easily recognise when chatter begins. Because the neural network

works as a black box, which can be trained for each particular situation, it can adjust

itself when the characteristic frequency changes. The other advance of the neural

network technique is that neural networks can more clearly recognise when chatter

begins.

10.2. Evaluation of the Strategy of Stabilising Grinding Power

A series of experiments was carried out to evaluate the strategy of stabilising grinding
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power. The trials were undertaken on a Jones & Shipman Series 10 cylindrical

grinding machine. The grinding wheel, workpieces and coolant used in the trials

were as described in chapter 5. The grinding conditions were fixed: V =33 mIs, v, =

250 mm/s and Vf = 10 p.m/s. At the beginning of chatter under these grinding

conditions the specific grinding power was about 32.6 W/mm and surface roughness

was about 0.3 16 p.m based on the observation in chapter 5. Therefore the target of the

dressing strategy was to make grinding performance stable, which means that the

initial specific grinding power should be approximately 33W/mm and the initial

surface roughness Ra approximately 0.31 p.m.

The dressing conditions in the trials were determined by the strategy shown in figure

9.6. Initial dressing conditions were selected according to the experience from the

trials described in figures 5.15 and 5.17. The initial dressing depth was 15 im. The

initial dressing lead was 0.15 mm/rev. The average grain diameter of the wheel type

A465-K5-V3OW was 0.293 mm, so the maximum dressing lead was 0.29 mm to

avoid non-dressing of some grains. To avoid excessive change of grinding behaviour

in the evaluation trials, the change in dressing depth was limited to 0.005 mm and the

change in dressing lead was limited to 0.05 mm/rev.

To make the strategy more efficient, equations 6.1 and 6.2 were used to assist

selection of dressing conditions. Therefore the constants in equations 6.1 and 6.2

were required to be determined. Since the grinding conditions remained constant in

the trials, equations 6.1 and 6.2 were simplified as

Ra = R0 a t
	

(10.1)

F = P a' f'2
	

(10.2)

The exponents of dressing depth and dressing lead in the equations were determined

by curve fitting the data from the experiments shown in figures 5.15 and 5.17.

Therefore

	

Ra0797 Q.113 fO.290
	

(10.3)

	

7.34 aO.358 f- 0.068	
(10.4)
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Employing the initial dressing conditions to dress the wheel, the grinding behaviour

was as illustrated in figure 10.8. To match the grinding performance the constants in

equations 6.1 and 6.2 were determined by using the constants obtained from curve

fitting the grinding performance in the last wheel redress life cycle. To match the

grinding performance in figure 10.8, it was found that R0 = 0.724 and Po = 7.38, so

that

Ra 0.724 .113 .0.290	 (10.5)

P' = 7.38 0358	 0.068	 (10.6)

New dressing conditions were recommended by equations 10.5 and 10.6. Because

the surface roughness after dressing in figure 10.8 was far smaller than 0.31 jim and

had a trend to increase, the dressing lead was required to be increased. To achieve

initial surface roughness values similar to those at the end of the wheel redress life,

the recommended dressing conditions were a = 0.015 mm and d = 0.20 mni/r.

Following this procedure, a series of dressing conditions were determined according

to grinding behaviour. The selected dressing conditions are illustrated in figure 10.9.

The specific grinding power and surface roughness were measured during these trials.

Diamond shape was measured between the tests. The constant P0 and R0 were

calculated. The results are shown in the table 10.1. The estimated specific grinding

power P' and the estimated surface roughness R are also expressed in table 10.1.

Table 10.1 grinding results and constant for equations

No	 ad	 fd	 Ra	 Ra	 10
_____ (mm) (mm/rev) (W/mm) (j.mi) (Wfmm) (jim) _____ _____

1	 0.015	 0.15	 37.56 0.274 37.76 0.260	 7.38	 0.724

2	 0.015	 0.20	 37.03 0.282 28.76 0.3 12	 573	 0.800

3	 0.013	 0.20	 30.26 0.307	 33.50 0.267	 6.35	 0.696

4	 0.013	 0.24	 33.12 0.282 34.47 0.307	 6.61	 0.759

5	 0.014	 0.23	 33.67 0.306 23.74 0.427	 4.66	 1.059

6	 0.014	 0.18	 24.14 0.398 27.18 0.302	 5.25	 0.804

7	 0.009	 0.18	 31.86 0.287	 34.63 0.322	 5.71	 0.902
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Errors in estimating the grinding power and surface roughness can be observed in

table 10.1. The errors may be due to the random nature of the grinding process and

may also be attributed to the fact that the empirical equations are only valid over a

limit range of experimental conditions. Table 10.1 also shows that constants P and

R have considerable variations in the trials. These variations are the reflection of the

effects of the diamond wear and introduce a considerable error in the estimation of the

grinding behaviour. Because of this uncertainty of the grinding behaviour, the

empirical equations can only be used as a guide. Therefore the extent of change of

dressing parameters has to be limited within a certain range to avoid excessive change

of grinding performance from one batch to the next. The optimal dressing conditions

can only be achieved progressively. For a more efficient selection of dressing

conditions, the exponents of the empirical equations need to be updated according to

the grinding performance.

Trials 1 to 4 show how the procedure led to recommendations for better dressing

conditions without degrading grinding performance. The grinding performance under

the dressing conditions No. 2 to No. 4 is illustrated in figure 10.10. It can be seen that

the variations of grinding performance are similar, since the effect of the change of

diamond shape was compensated by adjustments of dressing conditions. In figure

10.10, the values of the specific power after dressing were found to be approximately

equal to those at the end of the wheel redress cycle. The surface roughness Ra

stabilised at approximately 0.3 tm. The new dressing conditions result in shorter

dressing time and less wheel consumption.

When the grinding behaviour deteriorates due to diamond wear, the strategy can also

recommend new dressing conditions to bring the grinding performance back to

normal. Figure 10.11 shows the surface roughness in trial 5 was too high with a

0.014 mm and fd = 0.23. The surface roughness decreased during the wheel redress

cycle and the specific power after dressing was much lower than at the end of the
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wheel life. Based on the procedure mentioned previously, the dressing conditions

were suggested as shown for trial 6 and then trial 7. As shown in figure 10.12, the

surface roughness and grinding power were brought back to stable conditions.

Experimental results discussed in this chapter demonstrated that the grinding power

stabilising strategy can compensate for the effects of the variation of diamond shape

and make grinding behaviour stable. In the maximum power stabilising strategy

shown in figure 9.7, the key element is the power stabilising strategy. Therefore

there should be little problem to execute the maximum power stabilising strategy.
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Chapter 11. Conclusions

Grinding behaviour with single point diamond dressing is not fully controllable

without consideration of the dressing operation. The dressing diamond shape was

found to have a strong influence on both dressing and grinding. The variation of the

dressing diamond shape is uncontrollable in practice, hence the grinding behaviour

can be very different even when the same kinematic dressing and grinding conditions

are applied.

The dressing conditions have an important influence on the grinding wheel

performance. Empirical models were established to assist in the selection of dressing

conditions.

A strategy for selecting dressing conditions to compensate for variation of diamond

width was developed. The strategy selected the dressing conditions according to the

grinding wheel performance in the previous wheel redress life cycle to stabilise

grinding performance. The aim of the strategies developed was the efficient selection

of dressing conditions to achieve an optimal stable grinding behaviour within the

grinding constraints. With given grinding conditions, the recommended dressing

operation will give a stable grinding behaviour without losing grinding productivity.

Simulation of grinding cycles shows that the time constant of the grinding system is

important for controlling grinding performance. A stable time constant makes

grinding performance more predictable. The simulation technique is also useful in

determination of an adaptive control strategy. With the help of the simulation, an

adaptive power control strategy achieved the maximal removal rate in grinding at the

maximal power threshold.
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In order to understand the dressing and grinding process, a methodology was

developed to simulate the dressing and grinding process. The simulation was based

on the behaviour of each grain on the wheel surface in the dressing and grinding

operations. The simulated results were found to be similar to the experimental results

in most cases.

A neural network method was developed to identify grinding chatter and hence wheel

redress life objectively.
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Chapter 12. Recommendations for Further Work

The following areas need further investigation:

All the dressing strategies developed in this research are concerned with situations

where the grinding conditions remain the same between two dressing operations. If

changes of the grinding conditions are required within a wheel redress life cycle, a

new method is required to identify the effects of dressing and grinding conditions on

grinding behaviour separately, so that the recommended dressing operation can match

the wheel self-sharpening action and maintain the grinding wheel behaviour stable.

The methodology for simulating the dressing and grinding process needs to be further

modified. The grains of the wheel in the simulation were assumed to be a constant

diameter. For further research the diameters of the grains should conform to the real

distribution of the diameters of the grains. As mentioned previously, the parabola

assumption may introduce large errors in the simulation. Therefore the measurement

of the diamond shape and simulation with the real diamond shape should improve the

results. For simulation of the grinding process, the wear process of the grains needs

to be further studied. The model for the effect of grinding conditions on the grinding

force of a single grain needs to be investigated further.

• 122.



Appendices

A.!. References

[1] Woodbury, Robert S., History of the Grinding Machine, The Technology

Press, Massachusetts Institute of Technology, 1959.

[2] Norton, C. H., Emery Wheel 'Dresser' and Grinding Wheel 'truing',

American Machinist, 1905, 2, 142-143.

[3] Rowe, W. B., Chen, X., Morgan, M. N., The Identification of Dressing

Strategies for Optimal Grinding Wheel Performance, Proceedings of the 30th

mt. MATADOR conference, 1993, 195-202.

[4] Kegg, R. L., Industrial Problems in Grinding, Annals of the CIRP, 1983, v.

32, 2, 559-561.

[5] Loladze,T.N., Bokuchava, G.V., Tribological Aspects of the Grinding

Process, ASME,PED, 1985, v. 16,401-407.

[6] Chen, X., Allanson, D., Thomas, A., Moruzzi, J. L., Rowe, W. B., Simulation

of Feed Cycles for Grinding Between Centres, mt. J. Mach. Tools Manufact.,

1994, v. 34, 5, 603-616.

[71 King, R. I., Hahn, R. S., Handbook of Modern Grinding Technology,

Chapman and Hall, 1986.

[8] The Grinding Data Book, Universal Grinding Wheel Company Limited,

1992.

[9] Malkin, S., Grinding Technology - Theory and Applications of Machining

with Abrasives, Effis Horwood Limited, 1989.

-	 [10] Pahlitzsch, G., Appun, J., B., Effect of Truing Conditions on Circular

Grinding, Industrial Diamond Review, 1954, v. 14, 185-189, 212-217.

[11] Vickerstaff, T. J., Diamond Dressing - Its Effect on Work Surface

Roughness, Industrial Diamond Review, July, 1970, v. 30,260-267.

• 123'



[12] Lindsay, R. P., Dressing and Its Effect on Grinding Performance, Am. Soc.

Tool Manuf. Eng., Technical Paper, MR 69 - 568, 1969.

[13] Hahn, R. S., Lindsay, R., The Influence of Process Variables on Material

Removal, Surface Integrity, Surface Finish and Vibration in Grinding,

Proceedings of 10th mt. MTDR Conference, The Macmillan Press, 1969, 95-

117.

[14] Bhateja, C. P., Chishoim, A. W. J., Pattinson, E. J., The Influence of Grinding

Wheel Wear and Dressing on the Quality of Ground Surfaces, Proceedings of

the International Grinding Conference, 1972, 685-707.

[15] Malkin S., Cook, N. H., The wear of grinding wheels, Part 2 - Fracture

Wear, Journal of Engineering for Industry, Trans. ASME, 1971., v. 93, 1129-

1133.

[16] Bhateja, C. P., On the Mechanism of the Diamond Dressing of Grinding

Wee(	 Proceeciins of the International Conference on Production

Etrgthethng, 974, 733-739.

[17] Tsuwa, H., Yasui, H., Micro-Structure of Dressed Abrasive Cutting Edges,

Proceedings of the International Grinding Conference, Pittsburgh,

Pennsylvania, 1972, 142-160.

[18] Vickerstaff, T. J., The Influence of Wheel Dressing on the Surface Generated

in the Grinding Process, mt. J. Mach. Tool Des. Res., 1976, v. 16, 145-152.

[19] Koziarski, A., Golabczak, A., The Assesssment of the Grinding Wheel

Cutting Surface Condition After Dressing with the Single Point Diamond

Dresser, [nt. J. Mach. Tool Des. Res., 1985, 25, 4, 3 13-325.

[20] Fletcher, N. P., Maden, H., The Influence of Diamond Geometry on the

Stability of the Grinding Wheel Dressing Process, Proceedings of 19th hit.

MTDR Conference, 1979, 607-614.

[21] Pattinson, E. J., Lyon, J., The Collection of Data for the Assessment of a

Grinding Wheel Dressing Treatment, Proceedings of 15th mt. MTDR

Conference, The Macmillan Press, 1975, 3 17-323.

[22] Matsui, S., Tamald, J., Effect of Dresser Type on the Surface Topography of

124.



Grinding Wheel, Bull. Japan Soc. of Precision Engineering., 1986, v. 20, 2,

135- 137.

[23] Tkhagapsoev, Kh. G., Khapachev, B. S.,..Diamond Wear in Dressing

Abrasive Wheel, Soviet Journal of Superhard Materials, 1987, v.9,2, 38-44.

[24] Malkin, S., Murray, T., Comparison of Single Point and Rotary Dressing of

Grinding Wheels, Proceedings Fifth North American Metalworking Research

Conference, 1977, 278-283.

[25] Verkerk, J., Final report concerning CIRP Cooperative work on the

characterization of grinding wheel topography, Annals of the CIRP, 1977, v.

26, 2, 385-395.

[26] Huang, Y.Y., Wu, S. M., Grinding Surface Characterization by CEST, Tnt. J.

Mach. Tool Des. Res., 1986, v. 26,4,431-444.

[27] Yoshida, T., Nagasaka, K, Kita, Y., Hashimoto, F., Identification of a

Grinding Wheel Wear Equation of the Abrasive Cut-off by the Modified

GMDH, mt. J. Mach. Tool Des. Res., 1986, v. 26, 3,283-292.

[28] Matsui, S., Study on Measurement of Grinding Wheel Surface Topography

- Razor Blade Method, Technology Reports, Tohoko Univ., 1987, v. 52, 1,

1-14.

[29] Matsui, S., Tamaki, J., Studies on Measurement of Wheel Surface

Topography (5th Report) - Termal-couple Method, J. Japan Soc. Prec.

Engg., 1987, v. 53,2, 301-307(in Japanese).

[30] Matsui, S., Tamaki, J., Studies on Measurement of Wheel Surface

Topography (3th Report) - Razor Blade Method, J. Japan Soc. Prec. Engg.,

1983, v. 49, 12, 1652-1657(in Japnese).

[31] Matsui, S., Tamaki, J., Study on Measuring Method of Wheel surface

Topography - Stylus Method, Technology Report, Tohoku Univ., 1984, v.

49, 2, 129-145.

[32] Tsuwa, H., An Investigation of Grinding Wheel Cutting Edges, Trans of the

ASME, Journal of Engineering for Industry, 1964, v. 86, 37 1-382.

[33] Stout, K. J., Sullivan, P. J., The Analysis of the Three Dimensional

125.



Topography of the Grinding Process, The Annals of the CIRP, 1989, v. 38, 1,

545-548.

[34] Matsui, S., Tamald, J., Measurement of Grinding Wheel Surface Topography

Using Three-dimensional Stylus Instrument, J. Japan Soc. Prec. Eng.

Seimitsu Kogaku Kai Shi, 1988, v. 54,5, 871-876(in Japnese).

[35] Stralkowski, C. M., Wu, S. M., DeVor, R. E., Characterization of Grinding

Wheel Profiles by Autoregressive-Moving Average Models, mt. J. Mach.

Tool Des. Res., 1969, v. 9, 145-163.

[36] Baul, R. M., Shilton, R., Mechanics of Metal Grinding with Particular

Reference to Monte Carlo Simulation, Proceedings of the 8th International

MTDR Conference, Pergamon Press, 1967,2, 923-946.

[37] Baul, R. M., Graham, D., Scott, W., Characterization of the working surface

of abrasive wheels, Tribology, 1972, 8, 169-176.

[38] Verkerk, J., Pekeiharing, A. J., The Influence of the Dressing Operation on

Productivity in Precision Grinding, Annals of the CIRP, 1979, v. 28, 2, 487-

495.

[39] Pandit, S. M., Suratkar, P. T., Wu, S. M., Mathematical Model of a Ground

Surface Profile with the Grinding Process as a Feedback System, Wear, v. 39,

2, 205-2 17.

[40] Sathiamoorthy, P., Rathakrishnan,V., Rehman, J. F., A Stochastic Analysis

of Grinding Wheel and Workpiece Surfaces, Wear, v. 54, 2, 303-3 13.

[41] Bhateja, C. P., Chishoim, A. W. J., Pattinson, E. J., A Computer-Aided Study

of the Texture of the Working Surfaces of Grinding Wheels, Proceedings of

the 12th mt. MTDR Conference, The Macmillan Press, 1971, 535-541.

[42] Malkin, S., Anderson, R. B., Active Grains and Dressing Particles in

Grinding, Proceedings of the International Grinding Conference, Pittsburgh,

Pennsylvania, 1972, 161-181.

[43] Brecker, J. N., The Fracture Strength of Abrasive Grains, Trans. of the

ASME, J. of Eng. for md., 1974, 11, 1253-1257.

[44] Goepfert, G. J., Williams, J. L., The Wear of Abrasives in Grinding, ASME

126.



Paper 58-A-157, 1-5.

[45] Pattinson, E. J., Chishoim, A. W. J., The Effect of Dressing Techniques on

Grinding Wheel Wear, Proc. Tnt. Conf. on Manufacturing Technology, A. S.

T. M. E., Univ. of Michigan, 1967, 601-616.

[46] Pande, S. J., Lal, G. K., Effect of dressing on grinding wheel performance,

Tnt. Jnl MTDR, 1979, v. 19, 171-179.

[47] Bhateja, C. P., Chishoim, A. W. J., Pattinson, E. J., The Influence of Grinding

Wheel Wear and Dressing on the Quality of Ground Surfaces, Proceedings of

the International Grinding Conference, 1972, 685-707.

[48] Yoshikawa, H., Pekienik, J., Three Dimensional Simulation Techniques of

the Grinding Process - II. Effect of grinding Conditions and Wear on the

Statistical Distribution of Geometrical Chip Parameters, Annals of the CIRP,

1970, Vol. XVffl, 361-365.

[49] Makino, H., Suto, T., Fukushima, E., An Experimental Investigation of

Grinding Process, Journal of Mechanical Laboratory of Japan, 1966, v.12, 1,

17-25.

[50] McAdams, H. T., The Role of Topography in the Cutting Performance of

Abrasive Tools, Trans. of the ASME, Journal of Engineering for Industry,

1964, v. 86, 75-8 1,

[51] Hasegawa, M., Statistical Analysis for the Generating Mechanism of Ground

Surface Roughness, wear, 1974, 29, 1, 31-39.

[52] Makino, H., Roughness of Finished Surface in Grinding Operation of

Hardened Steel, Bull, the Japan Soc. of Prec. Engg., 1965, v. 1, 4, 281-286.

[53] Challdey, J. R., Jennings, C. P., Some Observations on the Working Surfaces

of Grinding Wheels, Proceedings of 18th Tnt. MTDR Conference, The

Macmillan Press, 1978, v. 18, 43 1-438.

[54] Dhawan, U. P., Sachdev, A. S., Rao, U. R. K., Power Measurement as a

Criterion for Appropriate Selection of Grinding Conditions, 12th AIMTDR

Conference, liT Delhi, Tata McGraw-Hill Pub. Co. Ltd., New Delhi, 1986,

343-346.

127.



[551 Hahn, R. S., The Effect of Wheel - Work Conformity in Precision Grinding,

Trans. ASME, 1955, v. 77, 1325-1329

[56] Fielding, E. R., Vickertaff, T. J., The prediction of grinding forces in

cylindrical plunge grinding, mt. J. Prod. Res., 1986, v. 24, 1, 167-186.

[57] Fletcher, N. P., Single Point Diamond Dressing of Aluminium Oxide

Grinding Wheels and Its Influence in Cylindrical Traverse Grinding, mt. J.

Mach. Tool Des. Res., 1980, v.20, 55-65.

[58] Furuichi, R., Nakayama, M., Doi, T., Influence of Dressing Conditions of

Grinding Wheel on Grinding Fluid Performance in Free Infeed Plunge

Grinding, Bulletin of JSME, 1967, v. 10, 38, 411-417.

[59] Foellinger, H., Optimum Parameters for Dressing Process of Conventional

Grinding, Superabrasives 85 Proceedings, 8,22-37.

[60] Oliveira, J. F. G. Dc., Purquerio, B. De. M., Coelho, R. T., Bianchi, E. C.,

Grinding Process Dominance by Means of the Dressing Operation,

Proceedings of the 29th mt. MATADOR conference, 1992,547-550.

[61] Umino, K., Shinozaki, N., One Aspect of Variation of Grinding Wheel

Surface Based on Grinding Force Analysis - Studies on Wear and Redress

Life of Grinding Wheel (1st report), Semishu Kikai, 1976, v. 42, 4, 299-

305(in Japanese).

[62] Pacitti, V., Rubenstein, C., The Influence of the Dressing Depth of Cut onthe

Performance of a Single Point Diamond Dressed Alumina Grinding Wheel,

mt. J. Mach. Tool Des. Res., 1972, v. 12,267-279.

[63] Verkerk, J., Characterization of wheelwear in plunge grinding, Annals of the

CIRP, 1977, v. 26, 1, 127-131.

[64] Trmal, 0., Kaliszer, H., Optimization of a Grinding Pmcess and Criteria for

Wheel Life, Proceedings of 15th mt. MTDR Conference, The Macmillan

Press, 1975, 311-315.

[65] Hahn, R. S., Graham, 0., An Application of Force-Adaptive Grinding, Tech.

Pap. Soc. Mnuf. Eng., MR84-530, 1984.

[66] Scott, W., Baul, R. M., Relationship Between Wheel and Workpiece Surface

• 128.



Topographies in Plunge Grinding, The third International Conference on

Manufacturing Engineering 1986, National Conference Publication - Inst.

Engineers, Australia, 198611, 44-48.

[671 Buttery, T. C., Statham, A., Percival, J. B., Some Effects of Dressing on

Grinding Performance, Wear, 1979, v. 55,2, 195-219.

[68] Malkin, S., Practical Grinding Optimization, Proceeding of Abrasive

Engineering Society 24th International Grinding conference, 1986,93-103.

[69] Xiao, G., Malkin, S., Danai, K., Intelligent Control of Cylindrical Plunge

Grinding, Proc. American Control Conf., 1992, v. 1,391-398.

[70] Venk, S., Govind, R., An Expert System Approach to Optimization of the

Centerless Grinding Process, Annals of the CIRP, 1990, v. 39, 1,489-492.

[71] Venk, S., A Systems Approach for Decision Making in Production Grinding,

Annals of the CIRP, 1991, v. 40, 1,445-449.

[72] Nagasaka, K., Kita, Y., Kitakuchi, Y., Tanibayashi, A., The Construction of

Expert System for Grinding Process, J. Japan Soc. Precis. Eng. Seimitsu

Kogaku KaiShi, 1991, v. 57,9, 1661-1666(in Japanese).

[73] Sakakura, M., Inasald, I., A Neural Network Approach to the Decision-

Making Process for Grinding Operations, Annals of the CIRP, 1992, v. 41, 1,

353-356.

[74] Sakakura, M., Inasaki, I., Intelligent Data Base for Grinding Operations,

Annals of the CIRP, 1993, v.42, 1, 379-382.

[75] Amitay, 0., Malldn, S., Koren Y., Adaptive Control Optimization of

Grinding, Journal of Engineering for Industry, 1981, v. 103, 103-108.

[76] Malkin, S., Koren, Y., Off-Line Grinding Optimization with a Macro-

Computer, Annals of the CIRP, 1980, v. 29, 1, 2 13-216.

[77] Pearce, T. R. A., The Effect of Continuous Dressing on the Occurrence of

Chatter in Cylindrical Grinding, mt. J. Mach. Tool Des. Res., 1984, v.24, 2,

77-86.

[78] Andrew, C., Howes, T. D., Pearce, T. R. A., Creep Feed Grinding, Holt,

Rinehart and Winston Ltd, 1985.

129•



[79] Guest, J. J., Grinding Machinery, Edward Arnold, London, 1915.

[80] Alden, Geo. I., Operation of Grinding Wheels in Machine Grinding, ASME

Trans., 1914, v. 36,451-460.

[81] Hahn, R. S., On the Nature of the Grinding Process, Proc. of the 3rd MTDR

Conf., 1962, 129-154.

[82] Goddard, J., Wilman, H., A Theory of Friction and Wear During the Abrasion

of Metals, Wear, 1962, v. 5, 114-135.

[83] Sedriks, A., Muihearn, T. 0., Mechanics of Cutting and Rubbing in

Simulated Abrasive Processes, Wear, 1963, v. 6, 457-466.

[84] Graham, D., Baul, R. M., An Investigation into the Mode of Metal Removal

in the Grinding Process, Wear, 1972, v. 19, 301-3 14.

[85] Backer, W. R., Marshall, E. R., Shaw, M. C., The Size Effect in Metal

Cutting, Trans. ASME, 1952, v. 74, 61-72.

[86] Von Turkovich, B. F., Shear Stress in Metal Cutting, Trans. ASME Journal

of Engineering for Industry, 1970, v. 92, 151-157.

[87] Nakayama, K., Tamura, K., Size Effect in Metal-Cutting Force, Trans. of the

ASME, Journal of Engineering for Industry, 1968, v. 90, 119-126.

[88] Kannappan, S., Malldn, S., Effects of Grain Size and Operating Parameters

on the Mechanics of Grinding, Journal of Engineering for Industry, Aug.

1972, 833-842.

[89] Shaw, M. C., A New Theory of Grinding, mt. Conf. Proc. Sci. in md.,

Australia, 1971, 1-16.

[90] Lortz, W., A Model of the Cutting Mechanism in Grinding, Wear, 1979, v.

53, 115-128.

[91] Malldn, S., Wiggins, K. L., Osman, M., Smalling, R. W., Size Effects in

Abrasive Processes, Proceedings of 13th mt. MTDR Conference, The

Macmillan Press, 1973, 291-296.

[92] Saini, D. P., Wager, J. G., Brown, R. H., Practical Significance of Contact

Deflections in Grinding, Annals of the CIRP, 1982, v. 31, 1,215-219.

[931 Nakayama, K., Brecker, J., Shaw, M. C., Grinding Wheel Elasticity, Trans.

.130.



of the ASME, Journal of Engineering for Industry, May,1971, 609-614.

[94] Hahn, R. S., Controlled-Force Grinding - a New Technique for Precision

Internal Grinding, Trans. ASME, Journal of Engineering for Industry, 1964,

v. 86, 287-293.

[95] Snoeys, R., Peters, J., Decneut, A., The Significance of Chip Thickness in

Grinding, The Annals of the CIRP, 1974, v. 23,2,227-237.

[96] Ono, K., Analysis on the Grinding Force, Bulletin of the Japan Society of

Grinding Engineers, 1961, 1, 19-22.

[97] Werner, 0., Influence of Work Material on Grinding Force, The Annals of

the CIRP, 1978, v. 27, 1, 243-248.

[98] Malldn, S., Cook, N. H., The wear of grinding wheels, Part 1 - Attritious

Wear, Journal of Engineering for Industry, Trans. ASME, 1971, v. 93, 1120-

1128.

[99] Buttery, T. C., Grinding Force Predictions Based on Wear Theory,

Proceedings of 13th mt. MTDR Conference, The Macmillan Press, 1973, 283-

289.

[100] Hemed, M. S., Grinding Mechanics - Single grit Approach, PhD Thesis,

Leicester Polytechnic, 1977.

[101] Torrance, A. A., The Correlation of Process Parameters in Grinding, Wear,

1990, v. 139, 383-40 1.

[102] Hahn, R. S., On the Loss of Surface Integrity and Surface Form due to

Thermoplastic Stress in Plunge Grinding Operations, The Annals of the

CIRP, 1978, V. 25, 1,203-207.

[103] Lindsay, R., Principles of Grinding, Handbook of Modern Grinding

Technology, composed by R. I. King and R. S. Hahn, Chapman and Hall,

1986, 30-71.
[104] Lin, Z. B., Chen, X., Monitoring of Grinding Wheel Sharpness, Abrasive

and Grinding, 1989, 5, 7-12(in Chinese).

[1051 Graham, W., Voutsadopoulos, C. M., Fracture Wear of Grinding Wheels, hit.

J. Mach. Tool Des. Res., 1978, v. 18, 95-103.

131.



[1061 Grisbrook, H., Hollier, R. H., Varley, P. G., Related Patterns of Grinding

Forces, Wheel Wear and Surface Finish, mt. Jnl. of Prod. Res., 1962, v. 1, 3,

57-74.

[107] Backer, W. R., Merchant, M. E., On the Basic Mechanics of the Grinding

Process, ASME Paper No 56-A-43, 1957, 1-6.

[1081 Koloc, J., On the Wear of Grinding wheels, MicroTechnic, 1959,v. 8, 1, 13-

15.

[109] Yoshikawa, H., Fracture Wear of Grinding Wheels, International Research in

Production Engineering, 1963, 209-217.

[110] Bhattacharyya, S. K., Grisbrook, H., Moran, H., Analysis of grit fracture with

change in grinding conditions, Microtechnic, 1968, v. 22, 114-116.

[111] Tsuwa, H.; Yasui, H., Micro-Structure of Dressed Abrasive Cutting Edges,

Proceedings of the International Grinding Conference, Pittsburgh,

Pennsylvania, 1972, 142-160.

[112] Wetton, A. G., A Review of Published Fundamental Research of the Grinding

of Metals, Research Report No. 38, The Machine Tool Industry Research

Association (MTIRA), 1970.

[113] Bhattacharyya, S. K., Moffatt, V. L., Characteristics of Micro Wheel Wear in

Grinding, mt. J. Mach. Tool Des. Res., 1976, v.16, 325-334.

[114] Chen, X., Lin, Z. B., Probe into the Characteristic of the Wear of Grinding

Wheel, Journal of Fuzhou University, 1989, 2, (in Chinese).

[115] Rowe, W. B., Stout, K. J., Review of Grinding-Process Parameters,

Engineers' Digest, 1971, v. 32, 10, 41-48.

[116] Pande, S. J., Halder, S. N., Lal, G. K., Evaluation of Grinding Wheel

Performance, Wear, v.58,2, 237-248.

[117] Landberg, P., Experiments on Grinding, Microtechnic, 1957, v. 11, 1, 18-25.

-	 [118] Tönshoff, H. K., Peters, J., Inasaki, I., Paul, T., Modelling and Simulation of

Grinding Processes, Annals of the CJRP, 1992, v. 41,2, 677-688.

[119] Suto, T., Sata, T., Simulation of Grinding Process Based on Wheel Suface

Characteristics, Bull. Japan Soc. of Prec. Engg., Mar. 1981, v. 15, 1,27-33.

.132.



[120] Steffens, K., König, W., Closed Loop Simulation of Grinding, Annals of the

CIRP, 1983, v. 32, 1,255-259.

[121] Yoshikawa, H., Sata, T., Simulated Grinding Process by Monte Carlo

Method, Annals of the CIRP, 1968, VoL XVI, 297-302.

[122] Yoshikawa, H., Pekienik, J., Three Dimensional Simulation Techniques of

the Grinding Process —II. Effect of grinding Conditions and Wear on the

Statistical Distribution of Geometrical Chip Parameters, Annals of the CIRP,

1970, VoL XVIII, P.361-365.

[123] Law, S. S., Wu, S. M., Simulation Study of the Grinding Process, Journal of

Engineering for Industry, Transaction of the ASME, Nov. 1973, V. 95, 972-

978.

[124] Yoshikawa, H., Criterion of Grinding Wheel Tool Life, Bull. Japan Soc. of

Grinding Engineers, 1963, v. 3,29-32.

[125] Yoshikawa, IL, Process of Wear in Grinding Wheel with Fracture of Bond

and Grain, Semishu Kikal, 1960, v.26, 11, 691-700(in Japanese).

[126J Malyshev, V. L, Levin, B. M., Kovalev, A.V., Grinding with Ultrasonic

Cleaning and Dressing of Abrasive Wheels, Soviet Engineering Research,

1990, v. 19, 9, 111-114.

[127] DAS-20 Manual, MetraByte Corporation, 1989.

[128] Tompkins, W. J., Webster, J. U., Interfacing Sensors to the IBM PC,

Prentice-Hall Inc., 1988.

[129] Rowe, W. B., An Experimental Investigation of Grinding Machine

Compliance and Improvements in Productivity, Proceedings of thel4th liii.

MTDR Conference, 1974,479-486.

[130] Rowe, W. B., Wilimore, J. L, Hulton, L J., A Technique for Simulation of

Cylindrical Grinding Processes by Hybrid Computation, mt. J. Mach. Tool

Des. Res., 1973, v. 13, 111-121.

[1311 Elmqvist, H., Astrom, K. J., Schönthal, T., Wittenmark, B., Simnon User's

Guide for MS-DOS Computers, SSPA Systems, Sweden, March 1990,.

[132] Rowe, W. B., Bell, W. F., Brough, D., Limit charts for high removal rate

133.



centreless grinding, mt. Jnl Mach Tools Manuf., 1987, v 27, 1, 15-25.

[133] Rowe, W. B., Pettit, J. A., Boyle, A., Moruzzi, J. L., Avoidance of thermal

damage in grinding and prediction of the damage threshold, The Annals of

the CIRP, 1988, 37, 1, 327-330.

[134] Malldn, S., Thermal Aspects of Grinding, Part 2, - Surface temperatures and

workpiece burn, ASME Trans. Journal of Engineering for Industry, 1974, 11,

1184-1191.

[135] Malkin, S., Koren, Y., Optimal Infeed Control for Accelerated Sparking-out

in Plunge Grinding, Trans. ASME, Journal of Engineering for Industry, Feb.

1984, v. 106,70-74.

[136] Chung, Y., Inasaki, I., A study on Time Constant in Grinding Process, J.

Japan Soc. Precis. Engg. Semishu Kikai, 1984, v. 50, 6, 67-71(in Japanese).

[137] Rubenstein, C., The Mechanics of Grinding, mt. J. Mach. Tool Des. Res.,

1972,v. 12,127-139.

[138] Davis,C.E., The Dependence of Grinding Wheel Performance on Dressir

Procedure, mt. J. Mach. Tool Des. Res., 1974, v. 14, 33-52.

[139] Hornung, A., Tool Life Variation of Grinding Wheel as a Function of

Vibration Amplitude, Proceedings of the 10th mt. MTDR Conference,

Pergamon Press Ltd.,1970, 127-135.

[140] Tawakoli, T., High Efficiency Deep Grinding, Mechanical Engineering

Publications Limited, London, 1993.

[141] Szekeres, F., Objective Method for Dtermining Grinding Wheel Life,

Proceedings of 12th mt. MTDR Conference, The Macmillan Press, 1972,229-

233.

[142] Chen, X., Study on the Sharpness of Grinding Wheel, Master Thesis, Fuzhou

University, 1989(in Chinese).

[143] Makino, H., Chattering Phenomena as the Criterion of Redress life of

Grinding Wheel: a Study on the Establishment of Optimum Operational

Condition in Precision Grinding of Hardened Steel, Proceedings of the 15th

International MTDR Conference, 1974, 325-332.

.134.



[1441 Schalkoff, R. J., Pattern Recognition: Statistical, Structural and Neural

Approaches, John Wiley & Sons, Inc., 1992.

[145] Mori, K., Kasashima, N., Yamane, T., Nakai, T., An Intelligent Vibration

Diagnostic System for Cylindrical Grinding, Japan/USA Symposium on

Flexible Automation, ASME, 1992, 2, 1097-1100.

[1461 NeuralDesk User's Guide, Nueral Computer Sciences, 1992.

• 135.



A.2. Computer Program for Simulation of Dressing and Grinding

I*****************************************************************************4*************
DRESSING AND GRINDING SIMULATION PROGRAM_by XUN CHEN

17th November, 1994.
file name: xphdsimu.c

The following processes can be simulated:
Topography of the wheel after dressing;
The successive cutting point length;
The dressing force, the model comes from experiments;
The surface texture Ra during grinding;
The effects of dwelling on Ra
The grinding force;

The following functions have been consided
grains pull off
grain broken
plastic pile-up
elastic deflection

# include <stdlib.h>
# include <time.h>
# include <stdio.h>
# include <string.h>
# include <alloc.h>
# include <math.b>
# include <graphics.h>
# include <conio.h>
# include <dos.h>

# define P13.1415927

typedefstruct	 (
float x, y, z;
) grit_matrix;

grit_matrix huge *gp;

float *dres.
mt *xrar4
mt max_x, max_y;
float wear_top, kd, kdO, bd, dg, ds, dw, fd, ad, vf, vs, vw, kel, kpl, kchip;

float get_datum(char parameter[], char flle_name[]);
void dresser_shape(float *dies, float dies_top);
void init_grit_posicion(int I, mt J, mt K, float dlta);
void grit_position(int I, mt J mt K, float dita);
float dstn(float xl, float yl, float zi, float x2., float y2, float z2);
float grit_strength(int ii, mt nd);
float grit_force(float cutJncre, mt nd, Inc ii, inc xrand, float wly, float far *workslJi.face,

float far *whcel_surfc_x, float FO, float if, mt iwr, float gpof, float *F1);
float Ra(float far *, mtn);
float grit_length(float far *wel_f, mt n, float cut);
intgrainface(float *cu hit ixb, hit ixe, hit n, hit id, float gpof, hit xrand);
void wheelcutface(float far *whcel surface, float dita, jut wlx, jut I, ht I, int K); f* produce wheel	 */
void pileup(int ixb, jut ixe, mt iwr, float heap_area, float kslp, float far *werk_surface);
lot set_graph(void);
void calc_coords(void);
void draw_background(void);
void draw_graph(float far yy, jut ii, float x...gain, float y_gain);
void draw_Ra(fioat far yy, hit n);
void get_key(void);

void main (hit argc, char *argv[])

float far *whcel surface, far *work surface, far *wheeLsurf_x;
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if (set_graph() !=1)

printf ("This programme needs EGA or VGA !'n");
exit (0);

calc_coordsO;
draw_backgroundO;

setcolor(1);
draw_graph(&work_surface[O], iwr, 0.1,0.1);
draw_Ra(&work_surface[dg], (I-3)d1ta);

setcolor(5);
draw_.graph(&dresser[0J, fd, 0.1,0.1);

if(ii==0)

wheelcutface(&wheeLsurface[O], dita, wix, I, I, K);
setcolor(57);
draw_graph(&wheel_surface[O], 5000,0.1,0.1);
setcolor(4);
draw_graph(&wheel._surface..x[0], iwr, 0.1,0.1);

get...keyO;
closegraphO;

/*..___....__.Qrinding Process flnished_____*/

cut_depth= circa_top + ap;
printf ('Successive cutting point length: %f um\n", grit_length(&wheel_surface[0], min(J*dlta,5000), cut_depth));

cut_depth= dres_top + ap;
printf ("wheelhead dweliing'n");

1*------ surface texture vorsus dwelling
	

I'
dwell_No = dwell_time * nw;
api= ap;
for (ii =0; ii < dwell_No; ii+^)

api=api/(1+1/(tau*nw));	 /* depth of cut by the decrease of
1/(1+1/(tau*nw))=Kc/(Kc+Ke),

*nw_Kc/Ke
tan is the time constant got from trial */

cut_depth = api;

*1

i=0;
do

work_surfacelil += cut_depth;
)while (i-i-,-, i< iwr);

lc= 2*sqrt(api*de);
ls=lc*vs/vw;
J=ls/dlta+1;

init_grit_position(1, J, K, dita);

grit_position(1, J, K, dha);

FORCE = 0;
Fn =0;
ix = fd;
z = random(ix);
for (i=1; 1<1; i-H-)

for (j=1; j<J; j++)

for (k=1; k<K; k-H-)

/* -----judge if grit pull-off

1* positioning workpiece surface, 1um/mit *1

/ contact length *1

/* wheel cutting length *1

/*locating grits position*/
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n_j*J*K+j*K+k;
gpof= grit_strength(n, nd);
if (gpof <= Fd)

/* grain dug out when truing *1

gp[n].z = 5*dg;	 /* depend on bond strength /
continue;

1* -----produce workpiece surface------ *1

cut_incre = ic - lc*(gp[n].y/ls); f* kinematic cutting increment of grain /
cut_incre = de - sqrt(de*de.cut_incre*cut_incre);
gf = grit_force(cut_incre, nd, n, z, wly, &work_surface[O], &wheel_surface_x[01, FO, if, iwr, gpof, &F1[O]);
FORCE -t= gf;
Fn-i-= F1[O];

if (set_graphO !=1)

printf ('This programme needs EGA or VGA Ni");
exit (0);

calc_coordsO;
draw_backgroundO;
setcolor(1);
draw_.graph(&workjurface[0], iwr, 0.1, 0.1);
draw_Ra(&workjurface[dg], 500);

getjeyO;
closegraphO;

FORCE 1= (I1)*dlia/1000;	 1* N/mm *1

Fn 1= (11)*dIta/1000
printf ("Ft= %6.4f N/mm, Fn= %6.4f N/mm, P= %74f W/mm, ",FORCE, Fn, FORCE*vs*1e6);
ra= Ra(&workjurfaceldg], (I3)*d1ta);
printf("Ra= %53f urn, time= %4.2f s."n", Ta, ((float)ii-4-1)/nw);

printf ("Press any key to continue");
getchO;
printf('\n");

if(set_graphO !=1)

printf ('This programme needs EGA or VGA !'n");
exit (0);

calc_coordsO;
drawj,ackgroundØ;

setcolor(1);
draw_graph(&work_surfacet0], iwr, 0.1,0.1);
draw_Ra(&work_surface[dg], 500);

get..key;
closegraphO;

farfree(wheel..surface);
farfree(wheel_surface_x);
farfree(work_surface);
free(dresser);
free(x_rand);

main programme finished

- DATA INPUT _*/
float get_datum(char *parameter, char *file name)

FILE *in;
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hit i;
char para[12];
float value;

if ((in=fopen(file_nanie, "r"))=NULL)

pTintf ("Cannot open the Data File\n");
exit(1);

value=O;
i=O;
do	 (

i-H-;
if (fscanf (in,'%s %Nf, &para, &value) = EOF)

(prinif ("paramet& %s was not found",parameter);
break;

)while (stricmp(para, parameter)!=O);
printf (%lOs %8g ",para, value);
fclose(in);
retum(value);

void dressershape(float	 float dres top)

intidx;
floath, x;
h = adad*fd*fd/(bd*bd);
h=max(h, 0);
h = dres3op-h
for (idx= 0; idx<= fd; idx-f-i-)

x=idx-fd/2;
dresser[idxj = (h + ad - 4*ad*x*/(M*));

/* initialing grit position *1
void hilt_.grit.. position(int I, mt J, hit K, float dita)

inti,j,k,n

for (i=O; i <I; i-H-)
(for(j=0;j<J;j^^)

(for (k=O; k <K k-i-*-)

n=iJK+jK+k;
gp[n].x=i*dlta
gp[n].y=j*dlta
gp[n].z=k*dlta

void grit_position(int I, hit J, mt K, float dita)

float dl, d2, d3, d4, d5, d6, d7, dS, d9, dlO, dli, d12, d13, dm1, x, y, z;
iat i, j, k, n, in, rdt

dmi=dg;	 /* limit of grit distance /
rdt=dlta
for (i=1; id; i-i-i-)

r(j=1; j<J;

for (k=1; k<K; k-s--i-)
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n=i*J*K+j*K^k;
x=gp[n].x;
y=gp[nJ.y;
z=gp[nl.z
if (j=J-1)

do

gp[n] .x= random(rdt) + x;
gp[n} .y= random(rdt) + y;
gp[n].z= random(rdt) + z;
m=(i1)*J*K+(j1)*K+k1;
dl=dstn(gp[n].x, gp[n] .y, gp[n] .z, gp[m] .x, gp[m] .y, gp[m].z);

d2dstn(gp[n1.x, gp[n] .y. gp[n].z, gp[m] .x, gp[m] .y, gp[m].z);
m=(i..1)*J*K+(j1)*K+k+1;
d3=dstn(gp[nJ.x, gp[n] .y, gp[n].z, gp(m] .x, gp[m] .y, gp[m].z);
m=(i1)*J*Kij*Kik+1;
d4=dstn(gp[n].x, gp[nJ.y, gp[n].z, gp[m] .x, gp[m] .y, gp[m].z);
m=(i.1)*J*K+j*K+k;
d5=dstn(gp(n.x. gp[n.y, gpnI .z, gp 1mJ .x, gp[ml .y, gpIml.z);
m=(i1)*J*K+j*K+k1;
d6=dstn(gp[nl.x, gp[n] .y, gp[nl.4 gp[m] .x, gp[m] .y, gp[m].z);
m=i*J*K+(j1)*K+k1;
dlO=dstn(gp[n].x, gp[n] .y, gp[n].z, gp[m] .x, gp[m}.y, gp[m].z);

dll=dstn(gpinj .x, gp[n].y, gp(n].z, gp[m].x, gp[m].y, gp[m].z);
m=i*J*K^(j1)*K^k+1;
d12=dstn(gp[n].x, gp[nl .y, gp[nl.z, gp[mI .x, gp[nil.y, gp[m].z);
m=i*J*K+j*K+k.1;
d13=dstn(gp[n].x, gp[n] .y, gp[n].z, gp[mJ .x, gp[mJ.y, gp[m].z);
I while ((dl<dmi) II (d2<dxni) II (d3<dmi) U (d4<dmi) U (d5<dmi) U

(d6<dmi) H (dlO<dmi) U (dll<dxnj) U (d12<dmi) II (d13<dmi));
else

if (k=K-l)
do

gPtn] .x random(rdt) + x;
gp[nJ .y= random(rdt) + y;
gp[nJ.z random(rdt) + z;

dlzdstn(gp[n] .x, gp[n].y, gp[n].z, gp[m] .x, gp[m].y, gp[mJ.z);
m(i1)*3*K+(jl)*K4k;
dZ=dstn(gp[n] .x, gp[n] .y, gp[n].z, gp[m] .x, gp[m].y, gp[m].z);
mr(i1)*J*K+j*K+k
d5=dstn(gptn].x, gp[n] .y, gp[nI .z, gp[m].x, gp[m].y, gp[m]z);

d6=dsin(gp[nJ .x, gp[n] .y, gp[nJ .z, gp[m].x, gp[m].y, gp[m.z);
m__(i1)*J*K+(j+1)*K+k;
d8=dstn(gp[n].x, gp[n].y, gp[n]., gp[m] .x, gp[m].y, gp[m].z);
m=(il)*J*K+(j+l)*K+kl;
d9=dstn(gp[n].x, gp[n] .y, gp[n].z gp[m].x, gp[m].y, gp[m].z);
m=i*J*Ki(j1)*K+k1;
dlO=dsm(gp[n].x, gp[n).y, gpin).z, gp[mJ.x, gplmJ.y, gp[m].z);
m=i*J*KI(jl)*K+k;
dll=dstn(gp(n].x, gp[n].y, gp[n].z, gp[mJ.x, gp[mJ.y, gp[ml.z);

d13=dstn(gp[n].x, gp[n] .y, gp[n].z, gp[m].x. gp[mJ .y, gp[m].z);
} while ((dl<dmi) H (d2<dmi) U (dS<zdmi) U (d6<dmi) U (d8<dmi)
U (d9<zdmi) II (dlO<dxni) II (dll<dmi) II (d13<dzni));

else
do

gp[n] .x= random(rdz) + x;
gp[n] .y= random(rdt) + y;
gp[n] .z= random(rdt) + z;
zn=(il)*J*K^(j1)*K+k1;
dbrdstn(gp[n].x, gp[n].y, gp[n].z, gp[m].x, gp[m].y, gp[m}.z);
m=(il)*J*KI(j.l)*K+k;
d2—_dstn(gp[n]; gp[n].y, gp[n] .z, gp[mJ .x, gp[m].y, gp[m].z);
m=(i1)*J*K+(j1)*K+k+1;
d3=dstn(gp[nJ.x. gp[n}.y, gp[nJ .z, gp[m] .x, gp[m].y, gp[mJ.z);
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m=(i1)*J*K+j*K+k+j;
d4=dstn(gp[n] .x, gp[n].y, gp[n] .z, gp[m] .x, gp[mJ.y, gp[mJ.z);m=(i1)*J*K+j*K+k;
d5=dstn(gp[n].x. gp[n].y, gp[n] .z, gp[m] .x, gp[m].y, gp[m].z);
m=(i_l)*J*K+j*K+k_l;
d6=dstn(gp[n].x, gp[n] .y, gp[n].4 gp[m] .x, gp[m] .y, gp[m].z);
m=(i1)*J*K+(j+1)*K1k+1;
d7=dstn(gp[n] .x, gpEn].y, gp[nJ.z, gp[m] .x, gp[m].y, gp[m].z);
m=(i1)*J*K+(j+1)*K+k;
d8=dstn(gp[n] .x. gp[n].y, gp[n] .z, gp[m] .x, gp[m].y, gp[m].z);
m=(i_1)*J*K+(j+l)*K^kl;
d9=dstn(gp[n] .x. gp[n]y, gp[n] .z. gp[m].x, gp[m] .y, gp[m].z);m=i*J*K+(j1)*K+k1;
dlO=dstn(gp[nJ .x, gp[ri] .y, gp[n].z, gp[m].x, gp[m].y, gp[ni].z);
m=i*J*K+(j1)*K+k;
dll=dstn(gp[n].x, gp[n] .y, gp[nl.z, gp[m] .x, gp[m].y, gp[mJ.z);
m=i*J*lC+(jl)*K+k+1;
d12 =dsm(gp[n] .x, gp[n] .y, gp[nJ.z, gp[mJ.x, gp[m].y, gp[m].z);m=i*J*K+j*K+k1;
d13=dstn(gp[n] .x, gp[n] .y, gp[n].z, gp[m].x, gp[m] .y, gp[mI.z);while ((dlczdmi) II (d2<dnii) II (d3<dmi) II (d4<drnj) II (d5<dmi)
(d6<drni) II (d7<drni) II (d8<dmj) II (d9<dmi) II (dlO<dmi) II
(dll<dmi) H (d12<dmi) II (d13<dmi));

/**** distance between two grain cenes **/
float dstn( float xl, float yl, float zi, float x2, float y2, float z2)

return

float grit_strength(int n, mt nd)

inti;
float dresser_top, dp, thta, Agrit

dresser_top = 0;
i=0;
while (i<fd)

(dresser_top = max(dresser_top, dresser[i]);

dresser top += ad*kcbip*bdIfd+nd);
1* chipping area is assumed to be proportional to dressing force and overlap ratio,
therefore chipping depth = [kchip*(ad*fd)*(bd/fd)]Jfd *1

dp = dresser_top gp[n]z;
if (dp>=dgt2)	 flOfl dressing *1

return(0);
if (dp<=-dgt2)	 1* dressing */

return(kd*PI*dg*dgf4);
thta = 2*acos(fabs(2*dp/dg));
Agrit = dg*dg*(thtasin(thta))I8;
if(dpO)

retum(kd*Agrit);
dse

return(kd*(PI*dg*dgI4Agrit));

/ produce wheel peripheral surface */
void wheelcutface(float far *w1 surface float dlta, jut wix, hit I, hit I, mt K)

hit i, J, k, H, n, idx, iy, ib, ie
float cut_depth, iz;
div_t xf

LI = min(J, 5000/dlta);
for (i=1; i4; 1^-i-)

.144.



for (j=1; j<JJ; j+-i-)

for (k=1; k<K; k-s-i-)

fl_j*J*K+j*K+k;
iz = gp[n] .y - dgt2;
ib = max(0, iz);
iz = gp[n].y ^ dgt2;
ie = min(JJ*dlta, iz);
for (iy=ib; iy<ie; iy-s--i-)

if (iz<0)
cut_depth= 5*dg;

else

cut_depth= gp[n]z - 3qrt(iz);
xf = div((wIxsfd*iy/(PI*ds)),fd);
idx = xf.rem
cut_depth = max(cut_depch, dresser[idx]);
wheel_surface[iy] = min(wheel_surface[iy], cut_depth);

/ end of wheelcutface */

mt set.graph(void)

mt graphdriver = DETECT, graphrnode, error_code;
if (registerbgidriver(EGAVGA_driver)<0)

/* Initialize graphics system must be EGA or VGA */

exit(1);	 /* LINK with graph driver */

initgraph(&graphdriver, &graphmode, "");
error_code = graphresultØ;
if (error_code 1= grOk)

return(-1);	 /* No graphics hardware found */
if ((graphdriver = EGA) && (graphdriver 1= VGA))

closegraph;
return 0;

return(1);	 / Graphics OK, so return "true" /

void calc_coords(void)

/* Set global variables for drawing */
max_x = getmaxxO;	 / Returns maximum x-coordinaie */
max_y = getmaxyO;	 / Returns maximum y-coordinate /

void get_key(void)

outtextxy(50, max_y - 20, "Press any key to continue");
getchØ;

void draw_background(void)

color code for EGA
black 0; blue 1; green 2 cyan 3; red 4; magenta 5; lightgray 7; brown 20; darkgray 56;
lightblue 57; lightgreen 58; lightcyan 59; lightred 60; lightmagenta 61; yellow 62; white 63.
*1

setbkcolor(7);
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setcolor(62);
outtextxy(200, 20, "The Workpiece Surface ");
outtextxy(29, 40, "A
outtextxy(max_x-31, rnax.y-4l.">");
outtextxy(40, maxy-36, 0");
outtextxy(140, max_y-36, "1000");
outtextxy(240, max..y-36, "2000");
outtextxy(340, max_y-36, "3000");
outtextxy(440, max. .y-36, "4000");
outtextxy(540, max_y-36, "5000 urn");
line(40,max. y-40, 40,40);
line(40, 440, max_x-20, 440);
line(37, 140,40, 140);
line(37, 240,40, 240);
line(37, 340,40, 340);
line(37, 440,40,440);

void drawgraph(float far *yy, mt1, float x_gain, float y_gain)

t i, *, *y;

if ((x= calloc(n, sizeof(float)))==NULL)

closegraphO;
printf ("error allocating x\a1");
exit(0);

ii ((y= calloc(n, sizeof(float))>==NULL)

c1osegraph;
prinif ('error allocating y'n");
exit(0);

for(i0; kn; u-i-)

x[i]=4O+i*x_gajn;
y[i]=44Oyy[i]*y_gain;

for(inl; i'zn; 1+4-)

line(x[i-1 ], y[i-1J. x[iJ, y[i]);

free(x);
free(y);

void draw_Ra(float far *yy, iitt n)

ml, *, *y;
floatrn;

if (O= calloc(n, sizeof(floai)))=NULL)

closegraphØ;
printf ("error allocating x'n");
exit(0);

if (('= calloc(n, sizeof(float)))==NULL)

closegraphØ;
printf ("error allocating i");

In4000;
for (l4J knj++)

r
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for(i=0; kn; i+^)

x[i}=40+i;
y[i]=440(yy[i]m)*10;

setcolor(1);
for(i=1; in; i++)

line(x[i-1], y[i-1], x[i], y[iD;

free(x);
free(y);

float Ra(float far z, mt n)

float ra, meanz;
mi;

mean z=0;
for (i=0; kn i++)

mean_z -i-= z[i];

inean_z/=n;
ra=0;
for (1=0; i<n i-t-+)

ra -f= fabs(z[i}-mean_z);

return (rain);

float grit_length(float far *we1_fe, hit n, float stock)

mi, j, k, flag;
float length;

j=0, k=0;
length=0;
flag=1;	 / 1 means cut, 0 means uncut */

1=0;
do	 (	 /*findfirstcuttingpoint*/

i++;
while (stock>weI_face[i]i*vf/vs);

j=i;
for (i=j; i.cn-2; i-H-)

if (wel_face[i-2] >= wel_face[i-1] && wel_face[j-1] >= weLface[i]
&& wel_face[i] <= wel_face[i+1] && wel_face[i-i-1J <= weLface[i+2])

if (fiag=0)

if (stocb.wel_face[jJj*vfvs)	 1* cutting *1

length = length + (i-j);
stock = wel_face[j]j*vfJvs;
J=';
k++;
flag=1;

else

if (stock<wel_face[i] i*vf/vs)	 non cutting *1
flag=0;

)
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printf ("Cutting point nuniber: %cf'n"k);
if (k==0) k=-1;	 / to avoid devided by zero
length= length/k;
return (length);

/* end of grit_length() 1/

mt grainface(float *cLI t, bit [xl,, mt ixe bit n, bit Id, float gpof, hit xrand) 	 /* dressing process /

div_t xf;
float iz, *dcut, *p, dflect, gchip, id, Fda, Darea, maxchip, ixd, thta, omiga
inti,j, ib, ix, ie, flag;
sizej s;

ie=ixe-ixb;
if (ie <= 0)

retunl(ixe);
ixd = xrand+x_rand[id]4fd*gp[n].y/(PI*ds);
s= fd+1;
if ((dcut= calloc(s, sizeof(floax)))==NULL)

printf ("error allocating dcut in grainface\n");
if ((cp= calloc(s, sizeof(float)))=NULL)

printf ("error allocating cp in grainface'n");

ib=0
Darea =
maxchip = ad;
id = (fd-i-bd)/2;
flag = id;
gchip = 2*PI*random(flag)/ld;

for (1=0; kie; i-i-i-)

ix = ixb+i;
xf = div((ix+ixd), fd);
if (cutfi] <dresser[xf.rem] +id*ad)

I" dressing */
in = dg*dg/4 - (gp[n].xix)*(gp[n].xix);
if (iz<=0)

dcut[ib]=0;
cut[i] = 5*dg;
continue;

iz = gp[n] .z + sqrt(iz);	 / top of the grain surface */
if (dresser[xf.rem] + id'ad> in)

if (ix> cut[i])
dcut[ib] = ix - cut[i];

else
dcut[ib] = 0;

cutli] = 5*dg;
I

else

dcut[IbJ = dresser[xf.rem] + id*ad - cut[i];
cut[i] = dresser[xf.rem] + id*ad;

Darea-i= dcut[ib];

else
non dressing *1

dcut[ib] =0;

ib++;
if(xfrem==0 II i=ie-1)

j = ib;
maxchip = kchipt2*Darea*bd/fd/fd;
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omiga random(20)f20 + 1;
for(ib=0;ib'izj;ib+.+-)

thta gçhjp+*P1*omiga*ib/ld

cp[ib] = maxchip*(l+Sin(thta));

Fdg = kd * Darea + kdO;	 /* dressing force /

if (Fdg >0)

dflect = lcel*pow(Fdg, 0.6667);
for (ib=0; ib<j; ib-H-)

if (dcut[ib] > 0)

if (dcut[ib] > dflect)
cut[i+l-j-4-ib}+=cp(ibj-dflect;

else
cut[i+1-j-i-ibj+=cp[ib]-dcut[ib];

if(Fdg>gpof)	 /*nbrk*/

free(dcut);
free(cp);
ib = i-i-ixb-fdfl;
ib = max(ixb, ib);
gp[n].z =5*dg;
retum(ib);

gchip thta
ib=0;
Darea =0

free(dcut);
free(cp);
return(ixe);

float gritforce(float cutjncre, mt nd, mn, mt xrand, float wly, float far *wor_f,

float far *whi surface_x, float P0, float if, mt iwi, float gpof, float *Fl)

mid, ixb, ixe, ix, i, cn, nc;
float cut_position, heap_area, kslp, kslpi, kslp2, hi, bg, Ig, lgg, gdg, actangle, Iz, avcut, maxcijt, cut_area
double F, Fn, B, heq;
float *
size_ta;

id—dg+fd;	 /* initial grain cutting surface *1

s=id+1;
if ((cut = calloc(s, sizeof(float)))==NIJLL)

printf ("error allocaung cut in grit_force'in");

cn=0;
ixb = max(O,(gp[n].x-dgf2..fd));	 1* initial grain surface *1
for (1=0; i<id; i+^)

ix=ixb+i;

ix = dg*dg/4 - (gp[1] .xix)*(gp[n] .X iX) - (gp[n].ywly)*(gp[n1.ywly);
if (iz>O)

I*grainshapeatWlypOSitlon*I
wheel_surface_X{iXl = ntin(wfteel_surface_x[ixj, gp(nJ.z-sqrt(iz));
cn=i;	 /*rightendofthesurface*/

ix dg*dg/4 - (gp[n].XmX)*(gP[fl].xiX);
if (iz<=0)
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if (ixe <= ixb)

free(cut);
return(0);

/* dressed grain drop */

else

else

cut[i]=5*dg;

else

cut[i] = gp[n]z - sqrt(iz);
cut[i] = (float) max(cut[i], 1.5*dg+kchip);

ixe ixb+id;
ixe = min(ixe, iwr);
for (id=0; id<nd; id+-i-)

1* dressing *1
ixe = grainface(&cut[O], ixb. ixe, n id, gpof, xrand);

if (abs(gp[n].y-wly)<dgt2)
/ grain shape at wly position after dressing *1

for (1=0; i<ixe-ixb; i-H-)
{
if (cut[iJ.5dg)
wheel_surface_x[ixb+i] = max(wheLsurface_x[ixb.i-iJ,cut[i]);

for (i=ixe-ixb; i<cn i-H-) wheel_surface_x[ixb-i-i] = 5*dg;

Id = ixb
	

/ left end of the grain */
ixb = 0;
cut_area = 0;
nc=0;
cn=0;
heq=0;
F=0;
Fl [01=0;
Fn=0,
kslpl=0;
kslp2=ixe;
Ig = 0

/ grinding */
for (i=0 kixe-id; i-f-f)

f
ix= id+i;
cut_position = cut[i] + cutjncre
lgg = dg*dg/4 - (cut[i]gp[n] .z)*(cut i] gp[n] .z) -
if (work_surfacex]>cut_posItion)

if (ixb==O) ixb = ix;
if (lgg>0)

Ig = max(lg. sqrt(1gg
cuti]=work_surface[ix]-cutposition;
cut_area += cutli];
cn

cutli]=0

cut[i]=0
if (cut_area>0)

eq += cutarea
nc4=ai
if(kslpl==O)

1* max contact length of the gra*/
/*cut depth*/
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kslpl=ixb;
kslp2 = ix;
CT' =0;
cut_area0;

if(kslpl==0)
ixb = id

else
ixb = kslpl;

ixe = kslp2;
cut_area = heq;
maxcut =0;

for (i=ixb-id; i<ixe-id; i-i-+)

maxcut = max(maxcut, cut[i]);

/ left end of cutting *1

1* right end of cutting *1

I maximal depth of cut *1

heq= maxcut
nc = max(nc, 1);
avcut = maxcut;
bg = ixe - ixb;
if(cut_area>0 && bg>O) 	 1* prevent divide 0 *1

ig = sqrt(lg*bgt2);
kslp = 2*avcut/lg;
gdg = avcut + 1g*1g/avJt
actangle = asin(2*lg/gdg);
E = 0.00l*0375*Pl*lg/avcUt*F0;
Fn = cut_area*E*(cos(actangle)ffsin(actangle));
Fn = max(Fn,0);
Fl[0]= Fn;
F = E*(sin(actangle) + ff*cos(actangle));
if (F>kd)	 / grain fracture *1

F=0;
Fl [0] = F;
free(cut);
retum(F);

else
F --= cut...area*F;

if (gpof<F)
/ grain pull out /

Fn = Fn*gpofIF;
F = gpof;
Fl[0]=Fn;

hl= kel*pow(Fn, 0.6667);	 /* 2 is Fn/Ft, 2/3=0.6667 */
heap_area =0;
if (maxcut> 0)	 I create workpiece surface */

for(i=ixb-id; kixe-id; i-i-i-)
/ elastic reflection *1

cut[i] = cut[i] - hi;
if (cut[i] >0)

work_surface[i+id] -= cut[i];
heap_area += cut[i];

heap_area = heap_area - cut_area*kpl;
if(heap_area>0)

pileup(ixb, ixe, iwr, heap_area, ks]p, &work_surface[0]);

151•



/* left side plastic defonu /

/* 0.1875=3/16 *1

/* 0.75=3/4 *

free(cut);
return(F);

/*** plastic pile up
void pileup(int ixb, hit ixe, hit iwr, float heap_aiea, float kslp, float far *wk_surfce)

float hi, b2, al, a2, kslpi, kslp2, haai, haa2;
intnn, ix, ixx;

kslpl= kslp;
kslp2 kslpi;

/*	 formular of parabola:
xA2 (hy)*aA2lh, y=h(h/aI2)*xA2, parabola_area = 4*a*b/3,
y'= 2*h/a = 3*parabola_area/(2*a*a).

*1

if (kslpl>O && heap_area>O)

hi= sqrt(0.i875*heap_area*kslpi);
ai= 2*hl/kslpi;
al = niax(al, 0.1);
haal= hl/(al*ai);
nfl = ixb-2a1;
nn = max(O, nn);
for (ixx=nn-i-1; ixx<ixb;ixx-i--s.)

work_surface[ixx] -i-= hi(ixxixb+a1)*(ixxixb+ai)*haai;

I right side plastic deform */if Os1p2>0 && heap_area>0)

ix=ixe;
b2= sqrt(0.i875*heap_area*kslp2);
a2 2*h2Ikslp2;
a2 = max(a2, 0.1);
haa2h2/(a2*a2);
nn= ix+2"a2;

/* 0.75=3/4 */

nn=min(nn, iwr);
for (ixx=ix; ixxcnn; ixx+-s-)

wo&surface[ixx] += h2(ixxixa2)*(ixx..ixa2)*haa2;
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Figure 3.1 Three stages of chip generation

Figure 3.2 Grit deflection in grinding
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Figure 5.4 Data logging strategy

rubbing power
no load power



start

initialize the data
logging programme

input the file name,
batch size and the time
when the fast-log starts

write data into files

batch finished?

no
	 end

no
cycle start?

yes

initialize DAS 20 board

install interrupt clock
for slow logging

no
interrupt required?

yes

call mode 6
fast-log St--ø for fast-log

no

DMA active? >—' j set slow-log data 0

no

call mode 3 for slow-log	 (L cycle finish?

Figure 5.5 Flow chart of the data logging programme



V0

Figure 5.6 The Butterworth filter circuit

Experimental conditions:
Machine: Jones & Shipman Series 10
Wheel:	 A465-K5-V3OW
Workpiece: Oil hardened cast steel, HRC 60-62
Coolant: Arrow Synthetic Cutting fluid, dilution 16:1
d= 18.9mm, d5 =4l8mni, ad=0.OlOmm
v=33m/s, v=250mn's, vf=lOJLnIIs
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Figure 5.8. Measurement of dressing diamond shape
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Figure 5.11 Effect of dressing condition on dressing force

Machine: Jones & Shipman Series 10
Wheel:	 A465-K5-V3OW
Material: Oil hardened cast steel, HRC 60-62
Coolant:	 Arrow Synthetic, dilution 16:1
d5 =4l7rnm, d=18.8mm, v=33m/s
aj=0.OlOmm, fd=0.l0mmlrev, nj=2
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Figure 5.12 Effects of equivalent chip thickness on specific power



0.3-

- - _... -----

Machine: Jones & Shipman Series 10
Wheel:	 A465-K5-V3OW

ioo	 Material: Oil hardened cast steel, HRC 60-62
Coolant: Arrow Synthetic, dilution 16:1
d=417nim, d=l8.8mm, v=33m/s
a=0.010mm, fd=0.lOmm/rev, d=2

90	 —W— =5 ni/mm
.	 v=10m/nhin

---..--. v=15m/min
80	 --0-- v=20m/min

S.-
1

Y7

60

504
	 h (x10 5 irun)

0	 1	 2	 3	 4	 5

Figure 5.13 Effects of equivalent chip thickness on specific energy

Machine: Jones & Shipman Series 10
Wheel: A465-K5-V3OW
Material: Oil hardened cast steel, HRC 60-62
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Figure 5.14 Effects of equivalent chip thickness on surface roughness
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Figure 5.15 Effects of dressing condition on grinding power (sharp diamond)
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Figure 5.16 Effects of dressing condition on grinding power (blunt diamond)
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Figure 5.18 Effects of dressing conditions on ground surface roughness
(blunt diamond)
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Figure 5.19 Effects of dressing conditions on size error (sharp diamond)
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Figure 5.20 Effects of dressing condition on size error (blunt diamond)
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Figure 5.22 Size error generated due to variation of wheel sharpness
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Figure 5.23 Variation of time constant with workpiece number in
grinding for various dressing conditions (sharp diamond)
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Figure 5.24 Variation of time constant with workpiece number in
grinding for various dressing conditions (blunt diamond)
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Figure 5.25 Effects of dressing condition on roundness (sharp diamond)
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Figure 5.26 Effects of dressing condition on roundness (blunt diamond)
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Figure 5.27 Grinding power with width of dressing diamond
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Figure 5.28 Time constant with width of dressing diamond
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Figure 5.30 Surface roughness with width of dressing diamond
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Figure 5.31 Size error with width of dressing diamond
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Figure 5.32 Effect of grinding conditions on grinding power



0.6 Ra Qim)	 0.6 Ra (p.m)

0.5	 0.5
.	 .

S	 •..	 UU

0.4	 •.j. . • . _1#.:	 0.4 .:_..".:..	 .
U	 • ••• J i U# • St .	 • - I U

'— 0.3 •u% .'	 •	 0.3	
•• •. .s....:..•.

0.2	 0.2

- -	 v; (mm3/mm)	 V; (nim/mm)

Ra (p.m)	 0.6j Ra (p.m)

	

0.5	 0.5

	

10.4	 0.4

	

0.3	 0.3

	

0.2	 0.2
\T (tnm/mm)	 (mmnm)

0 100 200 300 400 5000 100 200 300 400 500

v=O.15mIs	 v=0.25nVs

Machine: Jones & Shipman Series 10
Wheel:	 A465-K5-V3OW
Material: Oil hardened cast steel, HRC 60-62
Coolant:	 Arrow Synthetic, dilution 16:1
Diamond sharpness ratio: a1/bd 0.05
ad=O.Ol5mm, fd=O.l5mm,nd=4
d365mm, d16mm

Figure 5.33 Effect of grinding conditions on surface roughness
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Figure 5.34 Effect of grinding conditions on time constant
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Figure 5.35 Effect of grinding conditions on roundness



Power

- too fine

optimal
too coarse

stock removed

Surface texture (Ra)

coarse

too fine
stock

time constarn

( too fine

optimal
too coarse

stock removec

Roundness

A.
yw,e

stock removei

Figure 5.36 Idealized effects of dressing conditions on grinding behaviour

Size error
	 too fme by blunt diamond

too coarse
	 optimal

stock removed

too fine by sharp diamond

Figure 5.37 Idealized effect of dressing conditions on size error



35

3o

25

F(t)
F(t) = Fo - (F0 - F)(1 - emnst)

Fo>F

F0 >F

t

Figure 6.1 ChangeS of grinding force with grinding time

- 0.358 - 0.068 - 26.6) e 0.035 t] l.031 x104 + 2.05 x104 t
P'=[26.6+(7.31 ad	 d

40,

rn

D	 - Empirical model

grinding time (s)
20	 .	 •	 •	 -r----	 •	 •	 1

0	 200	 400	 600	 800	 1000	 1200

Figure 6.2 Changes of grinding power during wheel redress cycle



0	 ti	 timet
Figure 7.1 Conventional plunge grinding cycle

Figure 7.2 The structure of grinding cycle simulation package
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in-process power control strategy
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Figure 8.27 Simulated surface roughness variations in the dwell period





bA

(Up> 1)

(Ud<< 1)

real diamond shape

assumed diamond shape

Figure 8.30 The difference between the parabola assumption and
the real diamond



ad4

surface roughnes
. :const.ajnt

/

grinding power
constraint	 4

Figure 9.1 Constraints on the dressing condition

time constant

stock

Figure 9.2 Variation of the time constant in the initial stage of grinding



Hc&tv1 L0

ing with paran
from data base

too	 coarse down
	 up

	

[fadi

	
ad

Dressing with new parameters

Figure 9.3 A strategy of minimizing time constant

grinding power

1-4

L
	

dressing too fine

'I)

bO

dressing too coarse

-	 I	 stock removed

Figure 9.4 Variation of grinding power in a redress life cycle



ad

g

Figure 9.5 Relationship between the grinding power and dressing conditions

Initial dressing parameters from data base

Grinding results

'- too coarse
—<Za acceptable?>-1

I Dress with new
I	 I parameterstoo fine

$d	 I	 I	 d

=final> fin	 ••al power..?-

<fmal power

4ad I	 I fad

figure 9.6 Stategy to stabilise grinding power level
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