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ABSTRACT

MOTION DESIGN FOR HIGH-SPEED MACHINES

by
Ali Kirecci

The dynamic performance of a programmable manipulator depends on both
the motion profile to be followed and the feedback control method used.
To improve this performance the manipulator trajectory requires planning at
an advanced level and an efficient control method has to be used.

The purpose of this study is to investigate high-level trajectory planning and
trajectory tracing problems. It is shown that conventional trajectory planning
methods where the motion curves are generated using standard mathematical
functions are ineffective for general application especially when velocity and
acceleration conditions are included. Polynomial functions are shown to be
the most versatile for these applications but these can give curves with
unexpected oscillations, commonly called meandering. In this study, a new
method using polynomials is developed to overcome this disadvantage.

A general motion design computer program (MOTDES) is developed which
enables the user to produce motion curves for general body motion in a
plane. The program is fully interactive and operates within a graphics
environment.

A planar manipulator is designed and 'constructed to investigate the practical
problems of trajectory control particularly when operating at high speeds.
Different trajectories are planned using MOTDES and implemented to the
manipulator.

The precise tracing of a trajectory requires the use of advanced control
methods such as adaptive control or learning. In learning control, the inputs
of the current cycle are calculated using the experience of the previous
crcle. The main advantage of learning control over adaptive control is its
stmplicity. It can be applied more easily in real time for high-speed systems.
However, learning algorithms may cause saturation of the driving servo
motors after a few learning cycles due to discontinuities being introduced
into the command curve. To prevent this saturation problem a new approach
involving the ftltering of the input command is developed and tested.
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CHAPTER. I

INTRODUCTION

1.1 Background to the Problems

The need to increase the rate of production, to provide for quick changes

in the shape or form of a product in response to market demands and the

increasing need for automation in industry require conventional machinery

systems (cam driven and linkage mechanisms) to be more efficient and

adaptable to changes. Generally, either linkages or cams are used to obtain

non-uniform motion for the end-effector of a machine to perform the

operation. End-effector is defined here as a special device that is attached

to the output point of a mechanism to enable it to accomplish a specific

task.

Conventional mechanisms are suitable for simple motions. They usually

provide a "fixed" motion with only limited variations being possible by

altering the link lengths. However, in some cases a group of machines works

together for some processes, such as, "packaging" where usually a pick and

place mechanism operates between independent machines. Similarly there are

more complex tasks for example an assembly line on which, inspections,

welding, spray painting, machining and other operations are needed. Such

systems require synchronization of motion between the machines, therefore

the positions and sometimes velocities of these machines must be proportional
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to each other. Furthermore, the speed of the system may be required to be

adjusted to change the rate of production. A system with conventional

machines cannot satisfy these requirements easily.

Alternative systems to these conventional systems are servo motor driven

systems (programmable systems). These are highly flexible and are able to

follow a required trajectory with high precision and at high speeds. But,

these systems bring their own problems. Trajectory planning (motion design)

and trajectory tracing (trajectory control) are the major problems of these

systems.

Trqjectory planninz: The activity of converting the description of a desired

task to a trajectory by defining time sequences of configurations of the

end-effector of a manipulator between start and final positions is referred to

as trajectory planning or motion design. As the trajectory is executed, the

end-effector traces a curve and changes its orientation. Normally, the tra-

jectories of programmable systems in many industrial applications are planned

manually or by using ineffective methods with the result that the machines

are too slow to justify their use economically because of their improper

trajectories [1.1],[1.2]. Their speed and hence their productivity are limited

by the performance capabilities of their actuators. Increasing actuator size

and power is not the best solution because of the increased cost and power

consumption. A more successful approach is to design the trajectory at an

advanced level in order to increase the speed of the system and perform a

given task appropriately.

TrqjectQry rracjne: When a desired trajectory is applied to a servo-system

it responds in a characteristic fashion and follows the trajectory with an

error. The physical features of the actuators and the gain setting of the

controller and the smoothness of the required trajectory are the main

parameters that determine the response of the system. However, precise

tracing of a trajectory under different payloads require some effective control

techniques.
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The starting point of this study is based on these two problems of pro-

grammable systems. The design of an efficient program in order to plan

trajectories at advanced level is the first objective. Secondly, an experimental

prototype arrangement has been set up in order to understand the issues and

gain experience concerning the practical problems of trajectory tracing with

a programmable system. Also, an investigation of the importance of trajectory

planning on trajectory tracing at high speed is made.

1.2 Comparison or conventional and programmable systems

Although programmable systems have great advantages they are not always

the best choice because of their high cost and low efficiency of energy use.

The selection of the system types depends on the conditions to be satisfied,

one of the most important being the complexity of the motion required to

be followed by the mechanism. Two types may be considered

(i) simple motion machines

(ii) complex motion machines.

In the first group the mechanisms perform a simple process. The only critical

requirement is that the position of the mechanism be specified with respect

to time. They are not needed to co-operate with any other machine except

when acting as master machines. Conventional mechanisms can easily satisfy

these requirements with the advantages of good dynamic response at high

speeds. Servo driven systems have no advantages over these systems under

these circumstances. Fig.l.l shows examples of programmable, cam driven

and linkage mechanisms.

The second group includes those mechanisms which depend on the motion

of other machines and the position of the product. They are required to

follow a trajectory to satisfy the co-ordination condition between the machines

and to manipulate the product. Cam driven mechanisms cannot satisfy these

requirements since one of the common features of all the standard cam

motions is that they can generate only stop-go-stop type motions. Whatever
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the required velocity and acceleration boundary conditions, cam motions can

only produce zero velocity and zero acceleration at the ends of segments

of a trajectory therefore synchronization between several machines can be

extremely difficult to achieve with cam driven mechanisms. On the other

hand, satisfying even position boundary conditions can be difficult for linkage

mechanisms while the inclusion of velocity and acceleration constraints can

make the design impossible. It is clear that programmable mechanisms have

great advantages over more conventional mechanisms for the above case.

In some cases cam driven systems and programmable systems can both be

suitable for an application. Detailed investigation and analysis are then

necessary to make the best selection. Some of strategies to consider in

making this choice are given below:

(i) Programmable systems are flexible; the path of the programmable machine

can be automatically adjusted even while the system is operating. These

systems are capable of producing a variety of products with virtually no

time lost for change-over from one product to the next. There is minimum

production time lost whilst programming the system and altering the set-up.

In consequence, the system can be used to produce various combinations

and schedules of product, instead of requiring that they be made in separate

batches.

(ii) Conventional systems are cheaper and are more energy efficient [1.3].

(iii) Cam driven systems may produce inertia problems due to the masses

of the cams and their necessary balancing masses. This will limit the speed

of the machine in order to avoid excessive vibration, wear and shocks. On

the other hand, servo-driven systems with the absence of such masses are

capable of operating. at higher speeds.

(iv) The precision of the executed trajectory depends on the cam surfaces

for cam driven systems. Programmable systems can also achieve high

precision resulting from the incorporation of high-resolution optical encoders.
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(0) Programmable mechanism

(b) Com-driven mechanism

(c) Linkage mechanism

Fig.1.1. Different mechanisms to do the some job.
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Fig.1.2 shows a production line which includes a programmable machine

(slave) and two constant speed machines (masters) where it is required to

transfer the products from a conveyor to the processing machines, but the

main issue is the different distance between the products and their different

sizes. In this typical example the programmable machine is required to:

(i) determine the trajectory to be executed according to the size of

the product and transfer it to the receiving machine

(ii) activate the processing machine in time for each process

(iii) adjust its speed for the return part of the trajectory to grasp the

next product.

These conditions exhibit the importance of programmable systems and the

need for trajectory planning. The trajectory of the mechanism must provide

for co-ordination between all the machines while satisfying other requirements

such as the need for smooth, continuous, and efficient motions.

The objective of this study is directed towards the trajectory planning problem

especially for programmable, high-speed machines.
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CONSTANT SPEED WACHINE
(WASTER)

PROCRAWWABIE MACHINE
(SLAVE)
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OPTIC SENSORS

EWPTY CONTAINERS

(a) A programmable system

place point
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processing cycle

return cycle
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" pick up point

(b) Two different paths tor the above manipulator

Fig.1.2. A manipulator and its environment.
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1.3 Programmable systems

The pace of progress in the development of high-speed machinery has in-

creased interest in trajectory planning. However, problems of trajectory

planning and its implementation remain difficult for the machine designer,

particularly where machine performance is highly dependent on the reaction

of the product to accelerating force. The development of high speed machine

systems requires integration of the following areas of work:

(i) structural design

(ii) selection of actuators

(iii) trajectory planning

(iv) control system design

(v) trajectory tracing.

Trajectory planning can be divided into three stages:

The first stage is the decision for the level of the trajectory. Industrial

manipulators have limited capability constraints since they can supply only

a finite amount of force or torque. Also kinematic quantities such as ac-

celeration and jerk must be kept to reasonable limits. The manipulation task

defines the required end-effector position and orientations. Therefore, it would

be logical to perfonn the trajectory planning at the' end-effector level [1.4].

The output capabilities of actuators, however, are constrained at the joint

level. An alternative approach is initially to convert the end-effector position

and orientation requirements into their joint displacement equivalents. Path

generation may then be performed at the joint level.

The second stage is the task specification which can be described as the

process to determine the boundary conditions of the trajectory. These depend

on the kinematic and dynamic restrictions of the machine and the tolerance

of the product to the accelerating forces as well as the motion of the other

machines which co-operate in handling the product. Position, velocity, ac-
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celeration even jerk can be specified as boundary conditions at certain points

to design a good trajectory. These particular points will be called "design

points".

The third and the most important stage is the generation of motion curves.

The ideal conditions for the performance of a manipulator can be achieved

by a proper motion which is associated with a smooth, continuous and

predictable curve [1.5], and [1.6]. Motion curves, in general, can be generated

by means of time based mathematical functions. There are many mathematical

functions which can be considered as candidates to design motion curves.

These functions will be discussed in detail in Chapter 2. However, a few

of them are summarised here.

Cam motion laws have been used traditionally to produce non-uniform motion.

These functions are generally not suitable for designing general motions for

the end-effector of a mechanism especially complex trajectories because of

the difficulties previously mentioned. An example serves to clarify the

situation. Assume that two identical robot arms follow trajectories to do the

same job in the same period of time. The first trajectory is designed using

cam motion laws and the other is designed by a suitable motion law. The

definition of the suitable motion may be stated as follows. "It can be

described as a motion which satisfies a given set of boundary conditions,

producing smooth paths, which are continuous up to at least the second

derivative (acceleration). These paths do not include any abrupt changes in

their curves and importantly they exhibit low peak velocity". Now, the

question is which robot arm has the better dynamic characteristics when they

are performing these motions. If we examine the cam motion, it is continuous,

smooth and gives the expected curve. However the main disadvantage is

that the velocity and acceleration curves cannot be manipulated, thus, they

have to be zero at the end of each segment. This situation causes higher

velocity and acceleration values when compared to the other trajectory. High

9



velocity values and abrupt changes in acceleration create many problems in

mechanical systems. There is therefore a need for flexible and powerful

mathematical functions for general motion design.

Although many mathematical functions can be used to describe a trajectory,

polynomial functions have the most suitable form since they lend themselves

naturally to the solution of the types of problems involving arbitrary con-

straints [1.6]. The advantages of using polynomial functions for trajectory

design include:

(i) they give continuous functions

(ii) they are explicit functions of time

(iii) they have a unique solution and strong sign-regularity

(iv) it is easy to specify boundary conditions for any derivative of

the function

(v) they are. easy to store, manipulate and evaluate on a digital

computer.

In spite of these advantages, an important drawback with polynomials can

make their direct application unsuitable for trajectory design. Polynomials

can give curves which may oscillate between design points as their degree

increases [1.7],[1.8] becoming more pronounced as the time interval increases

[1.9]. This behaviour is known as meandering and it can be the cause of

important problems in the machine. However the effects of this drawback

can be moderated by means of a number of methods. A major method is

to divide the whole motion into smaller segments and then to apply a

number of lower order polynomial functions for these segments. Adding

segments to one another to complete the trajectory produces a segmented

polynomial solution. In order to have continuity from segment to segment

the boundary conditions at the end of preceding segment can be accepted

as boundary conditions at the beginning of the following segment. Un-

fortunately, in spite of dividing the motion into segments some of the

polynomials will still give curves which do not lie within an acceptable
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tolerance envelope. In this work a scheme has been developed to bring these

curves within the specified tolerance envelope. The strategy is to use arbitrary

powers (which may be real, integer or mixed in type) for the polynomial

functions. The shape of the curve can then be adjusted without changing

any boundary conditions. An arbitrary selection of the powers gives many

different shapes for the trajectory between the boundary conditions, however,

the best curve can be obtained by using optimization.

Another important group of functions which can be used in motion design

are the rational functions. Rational functions are formed from quotients of

two polynomials of different degrees. They have many of the advantages of

polynomial functions, but unlike polynomials they do not produce meandering.

However, they have other important drawbacks. Evaluation of this type of

function may be quite difficult especially if there are derivative boundary

conditions such as acceleration and jerk to satisfy. Another disadvantage is

that the function may have poles for some values of the input variable at

which the denominator of the function may become zero. The function is

no longer satisfactory for the motion design because it tends to infinity at

those points. The poles however may be shifted out of the relevant interval

by changing the degree of the function.

If the trajectory has been planned at the end-effector level the trajectory

must be transformed to the joint co-ordinates to determine the angular position

of each driven axis. This can be done by using the geometry and link

dimensions of the mechanism. Feasibility checks can be performed either

during the inverse solution or they can be 'done when designing the motion.

Whether the path is within the range of the mechanism or not and the

maximum torque capacities of the driving motors are the main parameters

to be checked

To implement a motion in practice it is necessary to design an appropriate

control system. A typical motion control system can be divided into three

levels. The lowest level is the control of position which is performed by a
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position control loop. The next level of control involves profile selection

and sequence generation. The highest level includes the generation of the

motion commands and the co-ordination of the motion with the overall

process control. The motion controller closes the position loop around a

servo motor .by sensing its actual position with an incremental encoder. The

motion position is decoded and compared with the command trajectory to

fonn the position error. The error signal is processed by a stabilizing filter.

The output of the filter is then amplified by the driver and then applied to

the motor.

A programmable system usually follows the required trajectory with an error.

The desired response can be obtained by a tuning algorithm. Tuning is the

process of adjusting the gains in a control loop or adjusting the command

trajectory to achieve the desired response.

1.4 Thesis structure

Chapter 2 includes an investigation of mathematical functions which can be

used for motion design. There are two general methods for generating curves

which satisfy a number of boundary conditions, curve fitting and interpolation.

With curve fitting, the curves pass usually near the boundary conditions.

With the interpolation method the curves must always pass through the

boundary conditions. For motion design precise satisfaction of the boundary

conditions is required so that the method of interpolation is appropriate.

Chapter 3 discusses motion design strategies and procedures for computer

aided generation of curves. The choice of boundary conditions, the ma-

nipulation of the interpolation functions using dummy boundary conditions,

the division of a path into smaller segments and a new method based on

using arbitrary powers for polynomials are detailed in this chapter.

Chapter 4 outlines the software developed to produce motion curves for a

mechanism, the end-effector of which moves over an X and Y plane and

rotates about its own axis. The program includes many facilities to design

12



the optimum motion. The necessary boundary conditions must be specified

to provide the main input for the software. while other interactivity is based

on mouse click selection. The user can check the motion profiles and then

may use modification menus to improve the characteristic shape of the

motion. Motion curves for all three axes can be designed simultaneously.

The program also includes a simulation option which shows how the product

moves along the trajectory. The resultant trajectory can be stored as data

to drive the servo motors or for other purposes.

Dynamic data structures have been used in writing the program. because,

with a dynamic data structure one adds storage only as it is required and

in the case of deletions the freed storage can be returned for re-use. The

availability of dynamic data structures to model dynamic situations can save

on storage and often allows a more structured approach to programming. If

a static data structure, such as arrays, is used to represent the list of

information, it must be big enough to contain all possible additions. This

can lead to an initial over estimation of the array size and be wasteful of

computer memory. Conversely underestimating the array size can fill the

array size too soon and no more information can then be added.

Chapter 5 concerns the design of the experimental rig which is capable of

following the required trajectory at high speed. A five-bar mechanism has

been used as the optimum mechanism to follow planar trajectories. Carbon

fibre linkages are used to minimize the inertia forces. The system is driven

by two D.C. brushless servo motors.

Chapter 6 details the design of control software for the experimental rig.

The host computer controls the whole system. The determination of the

starting position of the mechanism, the inverse solution, feasibility checks

and the loading of trajectories (five trajectories simultaneously) to the system

are the essential elements of the program. The parameters of the servo

control card and the speed of the system can be adjusted without interfacing
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the system. Self tuning, monitoring the command and response curves as

well as switching from one motion to another without change-over time are

the other features of the software.

Chapter 7 discusses the concept of trajectory tuning to improve the response

of the system. Depending on the parameters of the servo control system,

there is usually an error between the command and response. The error can

be improved by different methods such as:

(i) Determination of the optimum parameters at the required speed

of the system.

(ii) Adjustment of the phase lag between the response and its command

when this is appropriate.

(ill) The third alternative is to tune the command. This is a prediction

method where the current command is modified by adding the

error measured in the preceding cycle.

Several examples are examined on the experimental rig and the results are

presented and compared graphically.

Chapter 8 contains the conclusions, discussion, and recommendations for

further study.
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CHAPTER2

FUNCTIONS FOR MOTION DESIGN

2.1 Introduction

A problem associated with many engineering and statistical applications for

which only certain data values are available is to find a smooth function

whose curve passes through (not just near) the given boundary points. One

important area for such applications is the problem of motion design. This

concerns the determination of the path of the end effector of a mechanism.

It may be defined as a function of time or it may be co-ordinated to the

position of some other moving elements of the system. Values for position,

velocity, acceleration and even jerk may be set as boundary conditions. The

dynamic and kinematic constraints of the machine and the tolerance of the

product to the manipulative forces as well as the minimum time to carry

out a process effectively are the main features which determine the boundary

conditions. The main interest is with the appearance of the curve, its shape

or more precisely its Cartesian geometry, and how it may be constructed

and computed.

In this chapter some interpolation methods are discussed and their formulation

and characteristic features are illustrated diagrammatically; however their

suitability for motion design will be discussed in chapter 3.
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2.2 Interpolation Functions

A variety of mathematical forms is potentially suited to match a set of

boundary conditions. Suitable forms which can be considered as candidates

for motion design include:

(i) Exponential functions.

(li) Logarithmic functions.

(iii) Hyperbolic functions.

(iv) Inverse hyperbolic functions.

(v) Trigonometric functions.

(vi) Inverse trigonometric functions.

(vii) Fourier series (Harmonic functions).

(viii) Standard cam functions.

(ix) Power form of polynomial functions.

(x) Newton interpolating function.

(xi) Lagrange interpolating function.

(xii) Hermite interpolating function.

(xiii) Rational functions.

(xiv) Cubic spline functions.

(xv) Quintic spline functions.

After detailed investigation of the motion laws listed above it is possible to

form the conclusion that there are several strong inter-relationships between

some of these functions. However, although the names of these functions

are different their solution methods are similar and they also give similar

curve characteristics but may be in different quadrants of the co-ordinate

axes. The relationships between these functions are summarised as follows:

(v) Trigonometric functions and (vi) inverse trigonometric functions.

Sin(y) -x Sin-I(x) = y (2.1)

Cos(y) -x (2.2)
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(vi) Inverse trigonometric and (iv) inverse hyperbolic functions.

(2.3)

(2.4)

Furthermore, Fourier series and cam motions are both compositions of

trigonometric functions. Because of these similarities the above functions (iv),

(v) and (vi) may be neglected. So we may re-classify the motion laws to

be examined as follows:

(i) Exponential functions.

(ii) Logarithmic functions.

(iii) Hyperbolic functions.

(iv) Fourier series (Harmonic functions).

(v) Standard cam functions.

(vi) Power form of polynomial functions.

(vii) Newton interpolating function.

(viii) Lagrange interpolating function.

(ix) Hermite interpolating function.

(x) Rational functions.

(xi) Cubic spline functions.

(xii) Quintic spline functions.

2.3 Exponential Functions

There are many physical processes that are modelled by curves that exhibit

exponential properties, either exponential growth or exponential decay. The

problems and solution methods are described in [2.1]. They have stable curve

characteristics, that means, the curves of the function and its derivatives are

always smooth and predictable. The motion equations (displacement, velocity

17



and acceleration which correspond to the function, the first derivative and

the second derivative of the function respectively) of the exponential function

are:

(2.5)

(2.6)

(2.7)

The function can be modified to draw a certain path between two points.

Such a path is known as a segment. The exponential function can be

expressed as:

(2.8)

i(x) - a*b*ebx (2.9)

(2.10)

Where a and b are constant coefficients and x is the input variable.

Fig.2.t. (Solid line) shows the basic curve characteristics of exponential

functions. The values for derivative (velocity and acceleration) increase as

x increases. The starting and final values of the velocity and acceleration

curves for each segment depend on the values of a and b. Since each

segment has different values for these quantities, discontinuities will be seen

in the curves of velocity and acceleration between the segments (see Fig.2.2).

The discontinuities in the curves make exponential functions unsuitable for

producing acceptable motion curves. Another important drawback of these

functions is that they will not pass through more than two arbitrarily specified

boundary points.
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2.4 Logarithmic Functions

The natural forms of the logaritlunic function and its derivatives are:

f(x)'-ln(x) (2.11)

. 1
f(x) --x (2.12)

" 1
f(x) --- Xl (2.13)

The logaritlunic function can be rearranged to draw a trajectory for a segment,

such as:

f(x) - a + b*ln(x) (2.14)

. b
f(x) --x (2.15)

" b
f(x) --- Xl (2.16)

The characteristic shapes of the curves of the logaritlunic function and its

derivatives are similar to the characteristic shapes of the exponential function.

The curves of the derivatives of the function decrease inversely with the

parameter x. The disadvantages of the function for motion design are similar

to those for exponential functions. See Fig.2.1-2.2 (dashed line).

2.s Hyperbolic Functions

The hyperbolic functions are combinations of the exponential functions e'

and e -x. They have names which correspond with the names of trigonometric

functions, which are:
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(i) Hyperbolic sine functions.

(ii) Hyperbolic cosine functions.

(iii) Hyperbolic tangent functions.

(iv) Hyperbolic cosecant functions.

(v) Hyperbolic secant functions.

(vi) Hyperbolic cotangent functions.

In general, the hyperbolic functions have the same disadvantages as expo-

nential functions from the point of view of the motion designer. As an

example the hyperbolic sine function sinh(x) is examined here as the most

basic function of this group. The motion equations of the functions are:

(2.17)

(2.18)

(2.19)

The function can be modified as before to fit the curves of a specified path

by satisfying the required boundary conditions. Therefore the equations are

converted into the form:

I(x) - a + b* sinh(x) (2.20)

I(x) - b*Cosh(x) (2.21)

H

I (x) - -b* sinh(x) (2.22)

Fig.2.1 and Fig.2.2 (dotted lines) show the motion curves of a hyperbolic

sine function. Usually the function draws an arc which is more circular than
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the curves for exponential and logarithmic functions. The main disadvantage
•

of the function is the pronounced discontinuity of velocity and acceleration

curves between segments as seen in the figures.

2.6 Fourier Series

Fourier series arise from the task of representing a given periodic function

I(x) by a trigonometric series. The coefficients of the Fourier series are

determined by the Euler formulas [2.2]. These give

1 GO

I(x) - -2ao+ r. (a" Cos(nx) + b, Sin(nx»,,-I (n -1,2 ...) (2.23)

where the coefficients are determined by

(2.24)

2l'I

a. -; [ }tx) Cc:6(nx)dt (2.25)

2l'I

b. -; [ }tx)Sin(nxldr (2.26)

Obviously the infinite Fourier series are not applicable in practice so they

must be truncated to permit programming for a computer. The truncated or

finite Fourier series provides the basis for harmonic analysis.

2.6.1 Harmonic Analysis

The function given by a finite Fourier series can produce curves which are

always continuous and pass through the data points (the data has to be

periodic and equally spaced for harmonic analysis). The fmite Fourier series
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is written for 2n points in the standard interval (0 to 27t) and any

given interval can be translated into the standard interval by stretching or

shrinking the given arbitrary interval [2.3]. This standard interval then is

divided into equal sub-intervals usually consisting of 6, 12,24 or 60 terms,

2.6.2 Coeft'icients of Harmonic Analysis

Calculation of the coefficients of harmonic analysis is straight forward but

requires a lot of time. Increasing the number of boundary conditions causes

the computational time to increase by a factor equal to the square of the

number of boundary conditions. If a finite Fourier series is written for 2n
equally spaced boundary conditions over a standard interval (0 to 27t) such

that:

(2.27)

then

(2.28)

where £lo. a" and bIt are constant coefficients defined by

12n -1

ao -- r 1(8),
n '-0 (2.29)

(2.30)

(2.31)
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2.6.3 Examples of Hannonic Analysis

The harmonic analysis approach makes possible the use of Fourier series

for engineering applications, but with some restrictions. The number of

boundary conditions for harmonic analysis is directly related the accuracy of

the curves. Usually many boundary conditions are necessary to achieve good

curves, especially if they are difficult curves. The interval between successive

boundary conditions should be equal to achieve a good harmonic analysis.

The first example to be considered is a square wave curve defined with 12

boundary conditions, see Fig.2.3. The shape of the displacement curve is

not however satisfactory. A much better result (dashed line) is obtained when

the number of boundary conditions is increased to 40. This demonstrates the

importance of the number of boundary conditions on the acceptability of the

solution.

A further example is illustrated in Fig.2.4 and Fig.2.S which show the

application of harmonic analysis to the Runge function which is defined as

(2.32)

This function is often used to demonstrate the problem of oscillations when

using interpolation functions [2.3],[2.4].

The first attempt with harmonic analysis is shown in the figure (dashed line)

using 12 boundary conditions. The curves especially those for the derivatives,

do not give a good match with the theoretical ones. In the second trial, 40

boundary conditions are defined and the result of the harmonic analysis is

much more acceptable, with the displacement and velocity curves in particular

matching the original curves very well.

Harmonic analysis is used extensively because of some important advantages

which are:
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(i) harmonic analysis produces continuous curves for all derivatives of

the function

(ii) the determination of the constant coefficients is simple

(iii) the error is spread over the interval instead of being small near

a single point

(iv) successive maximum errors oscillate in waves of approximately

equal amplitude.

2.7 Standard Cam Motions

Mathematically determined laws are commonly used to define cam profiles.

These have been found convenient from the stand-point of ease of layout

reproduction and the control of motion characteristics. The aim of this section

is to examine the suitability of some of the standard cam motions for general

motion design. The basic cam motions can be classified into two main

groups according to their dynamic characteristics, that is, whether they are

suited for low-speed or high-speed applications.

2.7.1 Low-speed cam motions

Some basic cam motions have discontinuities in the acceleration curves

especially at the beginning and at the ends of the curves giving rise to

infinite jerk values at these points. Therefore such cam motions are not

suitable for high-speed applications. These include:

2.7.1.1 Constant Velocity Motion (linear)

The equation describing the linear motion for a rise h with respect to e is

e
d-h-

~
(2.33)
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rov-h-
13

(2.34)

a -0 (2.35)

where d - displacement

v - velocity

a - acceleration

Cl) - angular velocity

13 - total angular rotation

2.7.1.2 Simple Harmonic Motion

Simple harmonic motion curves are widely used for cam design, since they

give profiles which are simple to design and manufacture. Smoothness in

velocity and acceleration during the stroke is the advantage inherent in this

curve. However, the instantaneous changes in acceleration at the beginning

and at the end of the stroke tend to cause vibration, noise and wear. Thus,

if inertia loads are to be overcome by the follower, the resulting forces can

cause severe stresses in the members. The motion equations are:

(2.36)

(2.37)

(2.38)
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2.7.1.3 Double Harmonic Motion

The curve is formed from the difference of two harmonics, It is an un-

symmetrical curve. The rate of change of acceleration at the beginning of

the rise period is definite but it is infinite at the end of the period. The

motion equations are:

d - ( ~ ) {( 1- ea{ X: )) - ( ~)( 1- ea{ 2;6 ))} (2.39)

v _ ( ~ ) ( x; ){S~ x:)_(~)Si~ 2;6)} (2.40)

a -( ~)[ n; r (ea{7) -ea{ 2;0)) (2.41)

2.7.1.4 Constant Acceleration Motion (bang-bang)

This motion law is most frequently used to design the motion of robot

manipulators. It is often referred as bang-bang acceleration [1.5]. The rise

motion is divided into two parts. In the first part of the period the follower

moves with constant acceleration while in the second part the motion occurs

with constant deceleration. The most important advantage of this motion

curve is that for a given angle of the rotation and rise it produces the

smallest possible acceleration. However, at both ends and mid-point of the

curve the jerk tends to infinity. The equations of the follower motion to

the cam rotation angle are:

(2.42)
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(2.43)

(2.44)

2.7.1.5 Cubic or Constant Pulse ##1Motion

The cubic #1 curve is the combination of two third order curves. There is

no abrupt change at the beginning or at the end of the curve, but infinite

jerk at the mid-point. The equations are:

O<6<[~) [£)<6<1}

d -4h[ ~r d-h -4h[ I-H
..[a)' ..[ a)'v -12h~ ~ v -12h~ 1-~

a -24h[ :)'m a --24h[: n~)

(2.45)

(2.46)

(2.47)

2.7.1.6 Cubic or Constant Pulse #2 Motion

The acceleration curve of cubic #2 curve is continuous, but at both ends

the jerk value becomes infinite. The characteristics of this curve are similar

to the simple harmonic motion case. The equations are:

(2.48)

(2.49)
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(2.50)

2.73. Cam Motions Suitable for High-Speed Application

Some basic cam motions have continuous acceleration and finite jerk values

over the length of the curve, therefore these cams can run at relatively high

speeds. Examples are given below.

2.73..1 Cycloidal Motion

The displacement curve of the cycloidal motion is equivalent to the trace

of a point on a circle rolling on a straight line without slipping. A cam

with this profile has excellent dynamic characteristics of motion [2.5]. The

maximum value of the acceleration of the follower for a given rise and

time is somewhat higher than that of the simple harmonic motion curve. In

spite of this, however, the cycloidal motion is used often as a basis for

designing cams for high-speed machinery, see Fig.2.6. The equations of

motion are:

(2.51)

(2.52)

(2.53)

Typically if : = 1.

Peak acceleration - 6.28 at a - 0.25 fi.a - 0.75 fi
Initial [erk » 39.47at6 - 0.0

Cross - Overjerk - -39.47ata - O.Sfi
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2.7.2.2 Modified trapezoidal motion

This motion is an improvement over the constant acceleration curve, see

Fig.2.7. To avoid infinite jerk values at the ends and mid-point of this

motion the rectangular shape of the acceleration is converted into a trapezoidal

form. The equations of motion are:

A-~
2+7t

(2.54)

For 0 < e < O.12S~

d -[ ~~m- 4~Su{4;O)} (2.55)

v - [ ~:; ) ( 1- eo{ 4~a)} (2.56)

a -Ah[; r su{ 4:) (2.57)

For O.12S~< e < O.37S~

d -[ A2h)[H +[ ~)[ ~-m~H!)[4- ;,) (2.58)

v -Ahw[ :2) +[ ~;)[ ;-~) (2.59)

a -Ah[; r (2.60)

For O.37S~< a < O.62S~

d - [- ~ ) eo{ 41H - 0.375)H~)[1+~ ) [ ~ ) - [ ~6) (2.61)
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(2.62)

(2.63)

For 0.625~ < a < 0.875~

(2.64)

v - -Ah1~)+[ ~ )[ 7+;)[ :) (2.65)

(2.66)

For 0.875~ < a < 1.0~

d - [ 1~~2) eo{4{ ~ - 0.875)) + [ :~ ) [ ~ ) + [ ~ ) (2.67)

(2.68)

(2.69)

For this motion:

Peale acceleration - 4.88 for 0.12S~ < e < 0.37Sp
Peale acceleration - -4.88 for 0.62Sp < e < 0.875~
Initial jerk - 76.42 at a - 0.0

Cross - Overjerk - -76.42 at e - 0.5p
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Fig.2.7 Modified trapezoidal motion curves
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2.7.2.3 Modified Sine Motion

This motion is similar to the modified trapezoidal motion. Three different

curves are combined to design the modified sine motion. See Fig.2.S. The

equations of the motion are given below.

1t2
A - -21t-b-+-2---S-b (2.70)

and b is the angle of rotation of the cam at the peak acceleration.

For 0 < 6 < b

(2.71)

(2.72)

(Cl))2 ;.J 1t6 )
a - Ah Ii SLl\2bp (2.73)

For b < 6 < 1.0 - b

d _ -Ah( 1-2b)2 Cos{1t(6/P - b)} + 2Ab6 + A (1-4b)
1t (1- 2b) 1tP 1t2

(2.74)

v _ Ah( 1 - 2b ) ( Cl)) Sin{ x(6/P - b)} + 2AbCl)
1t P (1- 2b) 1tP (2.75)

a _ Ah( Cl))2 ,...,J 1t(6/P - b) )
P ~ 1-2b

(2.76)
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For 1.0- b < e < 1

d _ Ah[ 2b)2 "'nl1t(e/~ -1.0 + b») + 2AbS + 2A(1- 4b)
1t ~ 2b 1t~ 1t2

(2.77)

v _ -2Ahb~S;.J 1t(S/~-1+ b») + 2Aboo
1t~ III 2b 1t~

(2.78)

(2.79)

For this motion:

1t2
Peak acceleration - ( b b) at 6 - b. 6 - 1.0 - b21t+l-a

Tt3
Initial jerk - at e - 0.0

(47tb' + 4b -16b')

Cross - Overjerk -
(2- 4b)(1tb + 1- 4b)
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2.7.2.4 Triple harmonic motion

The triple harmonic motion law is a general dwell-rise-dwell motion. nus
motion also has three small segments similar to the modified sine and

modified trapezoidal motion. Cancelling the second and third harmonic

converts the motion into the cycloidal form of motion. See Fig.2.9. The

equations of motion are given below.

(2.80)

(2.81)

(2.82)

where

"'2 .43A +-+-- 21tI 2 3 (2.83)

is the only constraint on the values of A" A" and A3••

at 6 -0.0

Cross - Over jerk" 21t(-AI +3A" - 3A3) at 6 - 0.513
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Flg.2.9 Triple harmonic motion curves
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2.8 Polynomial functions

One simple way of constructing a function f{x) which ensures continuity of

all its derivatives is to define it as the polynomial p(x) of degree n which

intersects (n + 1) data points.

These characteristics make polynomials eminently suitable alternatives for the

interpolation of a set of arbitrarily specified data points. However a significant

drawback in their use is the tendency of the derived curve to oscillate

between boundary conditions. In general the amount of oscillation increases

with the degree of the function.

For two data points (Xo. Yo) and (Xl' Yl)' the interpolation polynomial would

be a straight line described by the function.

(2.84)

and we require

t10 + alXo - Yo (2.85)

which have a unique solution

Yl- Yoa---
1 Xl - Xo

(2.86)

hence

P() XoYI - XIYo Yl - Yo
X - + X

Xo -Xl Xl-Xo
(2.87)

and finally

(2.88)
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Similarly, three data pairs would be interpolated by a parabola. This process

of polynomial interpolation can be extended to any number of data pairs.

If a function I(x) is defined as a polynomial of degree smaller or equal to

n and I(x) is expressed as a linear combination of (n + 1) tenus, such as

II

P(x) ... L CIB,(x) (2.89)'-0
where C, are arbitrary coefficients independent of x and B, are linearly

independent functions of x, then the set of (n + 1) functions BI(x) for

(i - O.1...n) is said to form a basis for the polynomial. Several types of

polynomial functions are examined in the following sections.

2.8.1 Power form

The most familiar basis would be the set (1.x.x2. •.x") of ascending powers

of x and such a selection would lead to the usual method of writing down

a polynomial in its power form, such that

II

P(x) - 1: C,x''-0 (2.90)

the open form of the function is

(2.91)

This form of the polynomial function allows the specification of boundary

conditions for the function and also its derivatives. This is an important

requirement for motion design. The coefficients define the trajectory in a

unique form with the number of known boundary conditions equalling the

number of coefficients which are to be found. They can thus be used to

define a motion of any complexity. Polynomials, which satisfy many boundary
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conditions can however give rise to a large number of local maxima and

minima or turning points because of their high degree. The power form of

the polynomial function is examined in more detail in the next chapter.

2.8.2 Newton interpolating polynomial

One obvious and relatively quick way of arriving at a value for a polynomial

function would result from a knowledge of the terms (CO.CIX.C~l ••••• cnX").

However, there is another similar formulation which is almost as quick to

evaluate and whose coefficients are much more readily computed. This is

Newton's form of the interpolating polynomial which can be written in the

form:

i.e.
II

PII(x) - l', bJj-O
(2.92)

Where the values (bo•b,•...• b,,) are numerical coefficients and the (Xo.xI •••• ,XII)

are the data abscissae. The polynomial can be rearranged to reduce the

computation time using nested multiplication. If we assume that the co-

efficients are known. then

PII(X) - ( •••«dll(x - XII-I) + dll_l) (X - xlI-J + dll-z) •••(X - Xl) + d,) + do (2.93)

The coefficients of the interpolation polynomial can be calculated by a

divided difference table as shown below. For example if we have four

data pairs to be interpolated (0,12). (I, 32). (2,8) and (3,19).
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TABLE 2.l.Newton·sdivided difference

X. YI

0 ll::h2

(32-12)/(I-O)-lQ:.lU

1 32 (-24-20)f(2-O)-~

(8-32)/(2-1)--24 (39.9f3)-13.1-~

2 8 (11 +24)1(3-1)-17.5

(19-8)1(3-2)-11

3 19

Derivation of an equation to calculate the coefficients for the interpolation

is rather complicated but they can be easily calculated computationally. An

algorithm is shown below to determine the coefficients of the interpolation.

The second algorithm is for nested multiplication and this can be used for

fast calculation of the coefficients of interpolation.

The Runge function (equation 2.32) is tested and Fig.2.10 is obtained, where

the degree of the interpolation is 10.

Algorithm for calculation of coefficients.

For i-O to n Do

Begin

b[i)-Y[i]

End

For j-l to n Do

For i-n downto j Do

Begin

b[i)-(b[i)-b[i-l )/(X[i)·X[i-J1)

End

46



Algorithm for nested multiplication.

For k-O to n Do

Begin

Xba.r{k)-X[O)+k*(X[n]-X[O)/n

sum=bln]

For i-(n-l) downto 0 do

Begin

sum-sum*(Xbar£k)-X[i))+b[i]

End
Newton£k)-sum

End

INPUT~.SL------------L------------~----------~------------~
-S.O -2.5 0.0 2.5 5.0

Fig.2.10. Newton interpolation for Runge function.

2.8.3 L8JP'8Dge interpolating polynomial

The interpolation polynomial can be written in a variety of forms, and among

these the Newton form is probably the most convenient and efficient.

However, the form known by the name of Lagrange can give a slightly

better interpolation [2.6]. Suppose that we want to interpolate a set of

arbitrary data points with fixed nodes (Xo,Xt .•,x,.). We define a system of n

special polynomials of degree n known as Cardinal junctions. These are

donated by (Lo. i;...L,. l-
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,.
P(X) - 1: L,(x)Yi

i-O
(2.94)

Recall equation (2.88) which is the simple form for a polynomial interpolation

between two points.

Then

[
X-X] [X-Xo]4,(x)- __ I • L(x)- --
Xo - Xl I Xl - Xo

(2.95)

This result can be generalised to (n + 1) data points

(2.96)

see [2.7] for proof, where we have the property

if i - j

The idea is to multiply each Yi by a polynomial that is 1 at Xi and 0 at

the other n nodes and then take the sum of these (n + 1) polynomials to

get the unique interpolation polynomial of degree n. The resultant formula

is called the Lagrange interpolation polynomial.

This formula indicates that L,(x) is the product of n linear factors:

L ( ) - [ X - .la ] [ X - Xl ] [X - Xi -I ] [ X - Xi + I] [X - X,. ]
I X Xi -.to Xi -XI ••• Xi -Xi-I Xi -Xl+1 ••• Xl-X,. (2.97)

Finally the equation becomes
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,. ,. ,.' (x -Xi)
P(X) - 1: Li(x)y, - 1: Il ( )y,

, - 0 , - 0 i - 0 X, - Xi
k o r

(2.98)

Fig.2.11 shows a Lagrange interpolation for the Runge function, where the

interpolation function has the same conditions given for Fig.2.10. When the

two curves are compared it can be seen that there is no significant difference.

Both methods give similar solutions for this case.

INPUT~.5~----------~----------~------------~----------~
-5.0 -2.6 0.0 2.5 6.0

Fig.2.11.Lagrange int«pOlation for Runge function.

The Lagrange polynomials are not very practical for numerical work. One

important disadvantage is that the coefficients of the function have to be

recalculated for each data point, since their values change for each point.

On the other, in the power form or Newton's form only one calculation of

the coefficients is needed for the interpolation of all the values of P(x).

Therefore computation may become laborious in the Lagrange case.

A general algorithm is given below to calculate the Lagrange interpolation

function.
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Algorithm for Lagrange interpolation

For k-O to n Do

Begin

Xbar[k)-X[O)+k*(X[n)-X[O)/n

sum-O.O

For i-O to n do

Begin

L[i)-1.0

For j-O to n do

Begin

IC(j<>i) thea L[i]-L[i)*(XbaJ{k]-XUD/(X[i)-XU])

End

sum-sum+L[i)*Y[i)

End

~e[k)-sum

End

2.8.4 Hermite Interpolating polynomial

In certain situations the values of the first derivative /(x) may also be

available in the data set to be interpolated. In these circumstances it is

sometimes useful to consider a polynomial which considers not only the

function values but also includes the first derivative values of f(x) at ap-

propriate points. Such a polynomial is the Hermite interpolation polynomial.

Let Xi(i - O.I.2 •..n) denote a set of (n + 1) distinct points and suppose that

y, and y, denote the numerical values f(x) and /(x) at x, A polynomial H

of degree (2n + 1) has a total (2n + 2) coefficients, so one might expect to

be able to choose these to satisfy the (2n + 2) conditions H(xJ) - YJ and

H(xJ) - YJ{j - O.l...n}.

The interpolating polynomial H(x) can be expressed in the fonn:

II II

H(x) - 1: ,,(x)y, + 1: Sj(x)y'-0 '-0 (2.99)

where r and s, (i - O.l...n) are polynomials of degree at most (2n + 1).

Now the condition H(xJ) - YJ is satisfied if

so



(2.100)

so that

II II

H(xj) - I Ti(Xj)Y, + I Si(Xj)Y, - Tj(Xj)Yj - Yj
, -0 '-0

(2.101)

where T,(X) and Si(X) are determined as [2.8]

(2.102)

and

(2.103)

Hence the Hermite polynomial becomes

II

H(x) - I (1- 2(x - xl)li(xl»(L;(X»2Y1 +
1-0

(2.104)

since

and its derivative would be

• II [ 1 ) II (X - Xi 1LI(x)- I -- n --
j ·0 Xi - Xj i - 0 Xi - Xi
j o I i <> I

t(>J

(2.105)

to obtain LI(x,) replace (x) by (XI) in the above equation therefore we obtain
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II [XI-Xl]II - -1
1-0 X,-Xl
1<>1
1<>}

(2.106)

and

i(x)- i[_1_)
I I }-o X,-X}

} <>1

(2.107)

Also, the condition i1(xJ) - YJ is satisfied if

(2.108)

(2.109)

Fig.2.12 shows an example of the Hermite interpolation where it is used to

draw the Runge curve. The interpolation uses 20 data points, ten of them

are position values and the other ten are the first derivative values. The

degree of the function is 19.

4.0.-----------------------------------------------~
:1 POSITION /"\I \
I \ --- RUNGE FUNCnON
j '\3.0 •••••••••••••.••. HERMITE INTERPOLATION
, I

I \ II
2.0' \ I 1

\ I i

/
, \

\ "i
b===.~.~..=...=..~~== ~ ~::~==.~...~...~..~~~P~U~T0.0 .

-5.0 -2.5 0.0 2.5 5.0

Pig.2.12.Hennite interpolation for Runge function.
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The curve for the interpolation matches the required curve better at the

middle points in comparison to the curves obtained using Newton and

Lagrange interpolation, however, larger oscillations are evident at the two

ends of the interval.

2.9 Rational interpolation

As candidates for the efficient representation of mathematical functions using

easily computed expressions, rational functions consisting of quotients of two

polynomials are often to be preferred to polynomials. Unlike polynomials,

rational functions can still be used successfully to approximate singular or

nearly singular functions, possibly over infinite intervals [2.7]. Also it has

been found that, in general, rational interpolation can achieve a smaller

maximum error for the same amount of computation than polynomial in-

terpolation.

Rational interpolation can be denoted by

P(x) Po+P.x + p.-r2 + ... + p"x"
R(x) ----------

Q(x) qo + q.x + q,.x2 + ... + qvXV
(2.110)

The first constant term in the denominator can be taken as unity without

loss of generality, since we can always convert to this form by dividing

numerator and denominator by qo. The constant qo will generally not be

zero, for in that case the function would be undefined at (x - 0).

()
P(x) Po + PtX + p~2 + ... + p"x"

R x - -- ----------
Q(x) 1+ qtX + q,.x2 + ... + q.x'

(2.111)

where u and v are the degrees of numerator and denominator, so that R(x)

satisfies for (n + 1) different support abscissae (Xo,Xl'~'''' .xlI) and given

function values (Yo. Yt. Y2. "'. y".) for the following conditions.

R(xi) - Yi (i - 0.1.2....• n)
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The number of interpolation conditions should coincide with the number of

unknown coefficients, so we must have

u+v+2-n+l (2.112)

conditions.

In Fig.2.13, the rational interpolation function is applied to the Runge

example. The curve is obtained using 20 position data points. The result is

quite acceptable. The function produces this difficult curve without any

undesirable oscillation. This example demonstrates the difference between

rational interpolation and other interpolations.

1.2 POSITION RUNGE FUNCTION
•.••••••••••••••• RATIONAL INTERPOLATION

Pig.2.13. Rational interpolation for Runge function.

It is clear that rational interpolation possesses certain powerful advantages

over polynomial interpolation since it produces curves which do not exhibit

oscillations between the boundary conditions and it can absorb certain types

of singularity.

There is, however, a need for rather greater caution in attempting to in-

terpolate using rational functions. Some drawbacks in their use include:
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(i) There are numerical difficulties which cannot be easily overcome. Rational

functions are less convenient for certain analytical manipulations, such as

differentiation and integration. In general, the interpolation function is also

required to satisfy derivative values up to the third derivative for motion

design applications. Differentiation of the rational functions may become very

difficult to perform beyond the first derivative. Let P(x) and Q(x) be the

functions for the numerator and denominator respectively. The rational

function and its derivatives then would be:

R( )
_ P(x)

x Q(x)
(2.113)

R(x) _ P(x) _ P(x)Q(x)
Q(x) Q(X)2

(2.114)

R(x) _ -2P(x)Q(x) + 2p(X)Q2(X) + P(x) _ P(x)Q(x)
Q2(x) Q3(X) Q(x) Q2(X)

(2.11S)

R(x) _ 6P(X)Q2(X) _ 6P(X)Q3(X) _ 3Q(x)P(x) _ 3P(x)Q(x)
Q3(X) Q4(X) Q2(X) Q2(X)

+ 6P(x )Q(x )Q(x) + P _ P(x )Q(x)
Q3(X) Q(x) Q2(X)

(2.116)

putting the open forms of P(x) and Q(x) into the equations makes the

solution much more difficult. For example, consider a rational function which

is required to satisfy eight boundary conditions so the number of terms in

the rational function must be equal to eight. P(x) is selected as a four

degree polynomial, that means it has five terms, and Q(x) is a two degree

of polynomial function. The rational function and its derivatives including

first second and third are given below.

(2.117)
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R(x) _ Pt + 2p"x + 3p~2 + 4P.x3 _ (ql + 2q"x) (Po + PIX + p"x2 + p~3 + p.xa.118)
qo + qlx + q"x2 (qo + q.x + q"x2)2

_ 2pz + 6p~ + 12p.x1 2(ql + 2q"x) (PI + 2p"x + 3p~1 + 4P.x3)
R(x) - 1

qo + q.x + q"x1 (qo + qlx + q"x1)

us, + 2q"xi(Po + PIX + p"x1 + p~3 + p.x4)+~~~~~~~~~~~~~-
(qo + qlX + q"xZ)3

(2qJ (PO+ P.X + p"x1 + p~3 + p,.x4)

(qo + q.x + q"x2)1
(2.119)

- 3(ql + 2q"x)(2pz + 6p~ + 12p..x1) (6P3 + 24P.x)
R(x)- + 1

(qo + q.x + q"x2)2 qo + q1x + q"x

«s.+ 2q"x)2(p1 + 2p"x + 3p~2 + 4P..x3) 6qZ(Pl + 2p"x + 3p~2 + 4p,.x3)
+ -~~--~--~~--~-

(qo + qlx + q"x'l (qo + q.x + q"x2)Z

6(ql + 2q"x)3(PO + PIX + p"x2 + p~3 + p,.x4)

(qo + q.x + q"x'l

12q,iql + 2q"x)(PO + PIX + p"x2 + p~3 + p.x4)+-----------------------~---~--------
(qo + qlx + q"x2)3

(2.120) .

The above equations show that the manipulation of rational functions for a

general solution is quite difficult. However, a computer program has been

developed (see Appendix A) for rational interpolations. This can be used to

examine the features of the function such as oscillations and smoothness for

different sets of data. The program can be used to interpolate any set of

data but for position boundary conditions only.

(ti) In contrast to polynomial interpolation it cannot be shown that a rational

interpolation function ~X) always exists that solves the interpolation problem

for an arbitrary set of given data [2.7]. For example, consider the case

where an interpolation is required between two points given by the boundary

conditions shown in Table 2.2.

Let u - 1 and v - 2
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R(x) _ P(x) _ Po +PIX
Q(x) 1+ q.x +q~2

(2.121)

putting the position boundary conditions into this equation gives

The other coefficients can be determined by taking the derivatives of the

function and making them equal to the boundary conditions shown in the

second column of Table 2.2.

Differentiating (2.121)

R(x) _ P(x) _ P(x)Q(x)
Q(x) Q'x)

(2.122)

and putting the values of Po , PI and derivative boundary conditions into

the above equation vve can obtain

ql - -2 and q2- 1

then the interpolation function can be obtained in terms of calculated co-

efficients as shown below.

R(x) - 1_ 2x +x2 - 0 (except for x-I)
o

(2.123)

TABLE 2.2. Constraints re. rational interpolaticm

P(x) P(x>, F(x>" F(x>," x

0.00 0.00 - - 0.0

1.00 0.00 - - 1.0
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(iii) Rational functions may have poles for some values of X, which make

the denominator of the function zero. The function tends to infinity for these

values and the resulting interpolation will in general no longer be satisfactory

for the user. However, the only constraint is (u + v + 2 - n + I) to determine

the powers of numerator and the denominator so the user may be able to

shift these poles out of the required interval by changing these powers.

Some examples are shown in Fig.2.14-15. These are also used to compare

the amount of oscillations obtained with polynomial interpolation for the

same set of data.

The first example (see Fig.2.14(a» shows the polynomial curve (solid) and

rational curve (dashed). In comparison, the rational curve is smoother than

the polynomial curve but it displays two poles causing discontinuity in the

curve. The dotted line is another rational function for the same data with

different powers. Despite using different powers for the function the pole

still remains. Changing the powers has simply altered the position of the

pole as can be seen.

The second example shows a successful attempt to shift the poles out of

the desired region. In the Fig.2.14(b) it is seen that the rational curve (shown

dashed) has two poles. These poles are shifted by using different powers

for the function with the result shown in the Fig.2.14(c). The solid line is

obtained with polynomial interpolation. The rational curve is slightly better

than the polynomial curve.

Another example is shown in the Fig.2.15(a) where a polynomial curve

(shown solid) has a large oscillation while the rational curve has a pole.

However, the pole is removed by means of changing the powers of the

function but there is nothing to be done to improve the oscillation of the

polynomial curve (see Fig.2.15(b». The same rational curve is shown with

a larger scale in Fig.2.1S(c) to show how smooth and efficient such curves

can be.
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-- POLYNOMIAL INTERPOLATION
- - RATIONAL INTERPOLATION· 1
• • - RATIONAL INTERPOLATION· 2 .: ,

' .... '\

18 POSITION

",I

INPUT

_12~----------L------------~---------~---------~~---------~---------~0.0 1.6 3.0 4.6 8.0 7.6 8.0
a) example • 1

24~-----------------------------------------------------------------------------',
18 I- - POLYNOMIAL INTERPOLATION I I

- - RATIONAL INTERPOLATION II ,I

12 l- I, I'
II I'
II ,,

6 l- I I I I
"'" ~ I

0
/

(
,
I'
I

-61.0 2.6 4.2 6.8 7.4
b) example· 2

POSITION

INPUT

8.0

3.0r-----------------------------------------------------------------------------,

- POLYNOMIAL INTERPOLATION
- - RATIONAL INTERPOLATION

POSITION

INPUT

2.6 4.2 6.8 7.4 9.0

c) example ·3

Flg.2.14 Rational and polynomial Interpolations
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170~------------------------------------------------~~
POSITION

L__ ==::::::~::====~~~~ _L ~IN~P~UT~101.0 3.3 5.5 7.8 10.0

130

90

50

--- POLYNOMIAL INTERPOLATION
- RATIONAL INTERPOLATION

a) example • 4n

170r-----------------------------------------------~--,
POSITION

L__ ~==::::~::====~~~_L ~ ~IN~P~U~T~101.0 3.3 5.5 7.8 10.0
b) example· 5

130

90

50

- POLYNOMIAL INTERPOLATION
• - - RATIONAL INTERPOLATION

POSITION46~-----------------------------------------------------,

INPUT
10~----------~----------~------------~----------~
1.0 3.3 5.5 7.8 10.0

37 f-

~
28 f-"

19 f-

/
I
I

- - - - --- - --
I
I
I
I
I
I

c) example -6

Ag.2.15 Rational and polynomial Interpolations
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In conclusion, in spite of the previously mentioned difficulties, rational

functions are more accurate and yield better results, compared with polynomial

interpolation in many cases.

2.10 Spline functions

One approach to avoid oscillations with high degree polynomial interpolation

is to divide the curve into a series of intervals. Different polynomial functions

can then be developed for each interval. The scheme is known as piecewise

polynomial interpolation. There are, however, significant disadvantages as-

sociated with the piecewise approach because for piecewise interpolation only

continuity of position can be guaranteed.

Piecewise polynomials are continuous in the function while their first de-

rivative, second derivative and even higher derivative values can be matched

at the ends of each adjoining interval. Piecewise polynomials possessing these

properties are known as splines. Although there are many spline types such

as B-splines, G-splines, quadratic splines, periodic splines etc, the cubic and

quintic forms have been covered in the study.

2.10.1 Cubic spUnes

The generation of interpolation spline curves is a useful and powerful tool

in computer-aided design. Although the cubic spline has many sophisticated

mathematical properties [1.9] and [2.8], the curves sometimes display

undesirable oscillations. Several methods have been developed to control the

shape of the cubic interpolation such as those in [2.9]-[2.16]. Cubic splines

are smooth and continuous in position, slope and curvature. Their curves

are much more predictable in comparison to curves of polynomial interpolation

because of their low degree. The term "spline" is derived from the name

of a device traditionally used by draftsmen consisting of a flexible strip of
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steel used to form a smooth curve through a set of data points. Since a

steel strip is subject to the laws of elastic deflection its shape is given by

a cubic polynomial between the data points.

A procedure to generate a series of cubic polynomials that pass through a

set of (1,2 ...n) data points and have continuity of slope and curvature is

described below. Equations for an interval which lies between two points

(x" y,) and (x, +.' y, +.) are:

y - a,ex - xl + b,(x - xi + c,(x - x,) + d, (i - 0, 1,2,3 ...n) (2.124)

taking the first and second derivative of this equation gives

j - 3ai(x - xl + 2b,(x - X,) + c, (2.125)

(2.126)

Equating the function to the two data points and substituting hi for (x, + I- x,)

gives

y, <d, (2.127)

(2.128)

Y,- C, (2.129)

(2.130)

y,- 2b, (2.131)

(2.132)

In order to satisfy the interpolation and provide continuity for the first and

second derivatives at the ends of the interval, it is most convenient to
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express the coefficients Qi,bi,c, and d, by means of the given function values

(Y" Y,-tl) and the unknown second derivatives (]" ], ..I) at the two ends of

the interval (x, - x, ...), so that

1 (_ _)
Q, - 6h, y, ..1 - Y I

d,> Y,

(2.133)

(2.134)

(2.135)

(2.136)

(1) (000) (I) (1+ 1)(i-1)

o

YI-1 ....Y,
Y,-, t V,

XI

Fig.2.16. Construction of the cubic spline.

XI+2

We can invoke the condition that the slope of the two functions which join

at (x" Y,) must be equal, see Fig.2.16. The slope of the function for the

ilb interval at the left end is

y, - c, (2.137)

In the previous interval from X,_1 to X, the slope at its right end will be

(2.138)
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Equating equations (2.137) and (2.138) and substituting for a,. b.; c, and d,

gives

Y'+I-Y' 2h,y,+h'Y'+1
i,- ~ - 6

(2.139)

Simplifying the equation we obtain

h - (2h 2h ) - h - 1y, + I - y, y, - Y,-I 1
'-IY'-1 + '-I + , Y, + 'Y'+1 - '1 h, - h,-l (2.140)

Eq.2.140 applies at each interval point from (i - 2 to i - n -1). This gives

(n - 2) equations and "n" unknown values of y,. We can get two additional

equations for the end points of the whole curve involving y1 and yII' Arbitrary
values may be specified but for a natural spline they should equal zero.

Some examples of interpolation using cubic splines are given below with

their data. Dashed and solid lines represent cubic splines and polynomial

interpolations respectively. The curves of cubic spline are smoother than the

curves of polynomial interpolation in each example.

It is possible to construct splines other than cubic, such as quadratic (with

continuity for the function and the first derivative values only) and quintic

spline (with continuity of derivatives up to and including those of fourth

degree).
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3.5~-------------------------------------------------------,
POSITION

1.4

2.8 7 DEGREEPOLYNOMIALINTERPOLATION

_ CUBICSPLINEINTERPOLATION

2.1

0.7

INPUTO.O~---------L----------L--- -L L- ~

0.00 0.28 0.56 0.84 1.12 1.40

Flg.2.17 Comparlaon of cubic spline with polynomial Interpolation.

8.0r-~~---------------------------------------------,
POSITION

-- 10 DEGREEPOLYNOMIALINTERPOLATION
• CUBICSPUNE INTERPOLATION

6.0

4.0

2.0

Flg.2.18 Comparison of cubic spline with polynomial Interpolation.

INPUT·2~--------_'----------L---------_'-- ~ ~
1.0 2.2 3.4 4.6 5.8 7.0

Flg.2.19 Comparison of cubic spline with polynomial Interpolation.
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TABLE 2.3. Data for spline interpolation (Fig.2.17)

F(x) F(x)" F(x)" F(x)- x

0.00 3.0 - - 0.0

1.00 - - - 0.2

1.CiO - - - 0.4

1.7S - - - 0.6

1.40 - -- - 0.8

2.20 - - - 1.0

2.80 - - - 1.2

3.20 2.0 - - 1.4

TABLE 2.4. Data for spline interpolation (Fig.2.18)

F(x) F(x)" F(x)" F(x)"' x

0.00 - 0.0 - 0.0

1.00 - - - 1.0

2.00 - -- - 2.0

2.10 - -- - 3.0

2.20 - -- -- 4.0

3.50 - - - S.O

2.20 -- - - 6.0

2.10 - - - 7.0

2.00 - - - 8.0

1.00 - - - 9.0

0.00 - 0.0 - 10.0
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TABLE 2.5. Data fot spline interpolation (Pia.2.19)

P(x) P(x>, P(x>" F(x)'" x

5.541 - 0.0 - 1.0

4.074 - - - 2.0

5.900 - - - 3.0

0.611 - - - 4.0

5.000 - - - 5.0

9.388 - - - 6.0

5.541 - 0.0 - 7.0

2.10.2 Quintic splines

Quintic splines are extensions of cubic splines. In addition to the condition

of continuity of the first and second derivative of the function, the third

and the fourth derivatives are also made continuous. The function can be

easily manipulated to produce distinct shapes of curves by using the ad-

vantages of free boundary conditions at the ends of the curve. Additionally

sacrificing the continuity at some points for higher derivatives allows the

user to specify some additional derivative boundary conditions at the join

positions. Because of these advantages, the quintic. spline has been used for

kinematic design, especially in cam design by MacCarthy [2.18] and [2.19].

It is shown that standard cam laws can be approximated accurately with a

small number of points and appropriate boundary conditions.

Using the notation developed earlier for the cubic spline, a scheme to generate

a series of quintic polynomials that pass through (0. 1.2...n) data points and

have continuity up to the fourth derivative is given below.

A quintic function and its derivatives which lie between the points (XI. YI)

and (x, ..I' y, ..I) are:
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(2.141)

(2.142)

- 3 2y, - 20a,h, + 12bih, + 6c,h, + 2d, (2.143)

- 2y, - 6Oa,h, + 24bih, + 6c, (2.144)

y, - 120a,h, + 24b, (2.145)

Each function for each interval has six unknown and one known variables

and furthermore we have the following properties for each point between

the end points:

(i - 2•... n -1) (2.146)

(i - 2•... n -1) (2.147)

(i-2 •... n-l) (2.148)

(i - 2.... n - 1) (2.149)

Y'-l(e) == yl(~)

y '-l(t) - Y I,,)

Y '-l(t) - Y 'Cs)

where i=segment number, e=end of a segment and s=start of a segment.

Then there are 6(n -1) unknown coefficients and 6(n - 2) + 2 equations

therefore four end conditions are necessary for the solution. These end

conditions can be stipulated at both ends of the interpolation curve in terms

of any derivative (up to the fourth derivative) of the function.

The main advantage of the quintic spline over the cubic spline is that the

quintic spline is more flexible and it tolerates more modifications. Another

important advantage is that the motion curves of the quintic spline are

continuous at least up to the second derivative through the curve, whereas

the continuity of the first and second derivative together can not be guaranteed

at the end points of the curves formed from cubic splines. Quintic splines

will be compared with the other laws at the end of the next chapter.
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CHAPTER3

POWER FORM OF POLYNOMIAL FUNCTIONS AND MOTION

DESIGN STRATEGIES

3.1 Introduction

In this chapter the power fonn of the polynomial interpolation is discussed

in detail. Although this form has many advantages, it is shown to suffer

from the major disadvantage that meandering may occur. Some techniques

to prevent meandering in the motion curves are introduced. One method to

improve interpolation curves is to use dummy boundary conditions, another

is to divide the curve into segments. A novel method is to change the

powers of the function artificially thereby gaining the freedom to obtain

different shapes of curve between the end points of segments without changing

the boundary conditions. This enables the user to manipulate the function

in order to achieve a definite shape for a motion curve.

3.2 Power form of polynomial functions

The power fonn of polynomial interpolation is the most suitable form for

motion design of all the interpolation functions. This is because with this

form it is feasible to specify arbitrary boundary conditions which may include

position, velocity, acceleration and even higher derivatives. Manipulation of

the function is easy and furthermore it can produce continuous curves up

to the required derivative. These advantages make the power form of

polynomials particularly appropriate for motion design.
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3.2.1 Calculation of boundary conditions

In general, the determination of the coefficients of a polynomial equation

which defines a motion, even with included precision points or dummy

variables other than the initial and final points, can be dealt with using

matrix formulation.The matrices encompass the imposed boundary conditions,

the corresponding times for those boundary conditions and the unknown

coefficients. The notation for the matrix form is

A -T.C (3.1)

Where T is the matrix containing the known time variables, A is the vector

containing the boundary conditions and C is the vector for the unknown

coefficients of the polynomials. The solution for C lies with the inverse of

the vector T. The multiplication of the above equation by the inverse of T

matrix gives

C - r1.A (3.2)

Consider the case where a trajectory is to be designed using a number of

design points each one of which is defined at a specified time along the

trajectory. Every design point is further specified by a number of boundary

conditions which mayor may not include values for displacement, velocity,

acceleration and jerk. The degree of the polynomial required for the motion

is n with (n + 1) coefficients requiring evaluation.

The input variable for motion equations is time which we shall denote as

t. Position, velocity, acceleration and jerk equations will be represented by

d.v. a and j respectively.

The form of the polynomial function at any design point along the trajectory

will conform to the following:

Displacement equation is
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where i is the index number of the boundary condition.

Differentiation of the displacement gives the velocity,

Differentiation of the velocity gives the acceleration

a, - 0 + 0 + 2C2 + 6C3t, + 12C4t,
2+ ••• + n(n - I)Clt,"-

2

The jerk is obtained by differentiating the acceleration

i. - 0 + 0 + 0 + 6C3 + 24C4t, + ••• + n(n - l)(n - 2)Clt,"-
3

The equations are completed for each boundary condition and then assembled

into the matrix form,

A *- T

d, t3 t4 t"
Cot2 I

1 tl I 1
I

dj t2 e t4 t." C,1 ti
, I

j,
4t,3+I

II-I
Vi+I 0 2 ntj+1 C

'
+I1 2t;+ I 3tj +1

Vj 0 1 2tj2 3t2 3t3 nt"-I C)= j j
*0

j
) 11-2 C)+Iaj+1 0 2 6tj+1 12t;+ I n(n - 1 tj+1

aA; 0 0 2 12t2 ) 11-2 CA;6tA; n(n -1 tA;
A+,

0 0
A;

0 11-3 CUI6 24tA;+1 n(n - l)(n - 2)tA;+I

j" +I
0 0 0 CII6 24tll+ I ) 11-3n(n -1)(n -2 t,,+1

(3.3)

(3.4)

(3.5)

(3.6)

C
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Although the advantages of using polynomial functions for motion design

have been mentioned before, they have an important drawback which is

known as 'meandering'. This means the interpolated curve produces oscil-

lations between the boundary conditions as illustrated in Fig.3.t.

INPUT
-0.5~----------'_----------~----------~------------
-5.0 -2.5 0.0 2.5 5.0

Fig.3.1. An example showing alCillation of the power fmn of a polynomial.

In the figure the dashed line is obtained using a ten-degree polynomial to

interpolate for eleven evenly-spaced data points which satisfy the Runge

function. The curve fails to fit the function at any points other than the

data points. The oscillations are seen to be particularly bad at the ends of

the interval.

3.3 Causes ormeandering

Several factors influence the tendency of polynomials to produce oscillations

between design points when used for motion design. It has already been

mentioned (see Chapter 1) that the amount of oscillation increases as the

degree of the interpolating polynomial is increased while equal spacing

between the data points can cause larger oscillations.

Another factor, probably the most important, is the shape of the curve to

be produced. If the data points are such that the function is forced to follow

a curve which has one or more sharp turning points, then most probably

72



undesirable oscillations will occur, especially if the function has high degree.

In general, conditions which affect the occurrence of oscillations when in-

terpolating using polynomial include:

(i) the shape of the required path

(ii) the degree of the polynomial function

(iii) values of the boundary conditions, especially derivative values

(iv) time intervals between design points

(v) round off and truncation errors.

Each one of these contributes to the tendency for a polynomial function to

oscillate or meander. The presence of a sharp turning point in the required

curve is illustrated with the Runge function shown in Fig.3.1. The inter-

polation curve shows extreme oscillations at each end of the curve.

Often, the power form of polynomial interpolation may not produce acceptable

motion curves for every case. However, the flexibility of polynomials makes

it possible to derive new forms which can be employed to obtain improved

curves. Some methods to achieve this are discussed below:

3.4 Dummy variable methods

The effect of derivative constraint values at the ends of a segment on the

interpolation is illustrated in Fig.3.2. When no derivative constraints are

specified, interpolation will give a straight line between the two design points.

When values for the first derivatives of the function are specified, the slope

of the curve at these points is constrained. The inclusion of some dummy

constraints can be used to manipulate the shape of the function between the

data points. Generally the worst oscillations occur at the beginning and at

the end of the curve, therefore these additional constraints need to be
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2.0
POSITION VELOCITIES

POSITIVE POSITIVE· . . .. . POSITIVE NEGATIVE
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~
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/ "/ "0.0 " ", " "".;;:;---- .,..

"".... ""'"..... ", INPUT- ... _--- ....
-0.50.0 0.2 0.4 0.6 0.8 1.0

Flg.3.2 The effect of derivative constraints on the interpolation curve

1.2r------------------------------------------------,
POSITION

-- POLYNOMIAL INTERPOLATION
- - RATIONAL FUNCTION0.9

0.6

0.3

-2.5 0.0 2.5 5.0

Fig.3.3 Rational function and high degree polynomial interpolation
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concentrated near those points. Fig.3.3 includes the same constraints of Fig.3.l

with the addition of ten dummy constraints specified for the first, second

and third derivatives as shown in Table 3.1.

TABLB 3.1. Constraints fc8 Pig.3.3

pes. vel. ace. jerk input

0.0384 0.00 0.00 0.00 -5.00

0.0588 0.05 0.07 - -4.00

0.1000 - - - -3.00

0.2000 - - - -2.00

0.5000 - - - -1.00

1.0000 - - - 0.00

0.5000 - - - 1.0

0.2000 - - - 2.00

0.1000 - - - 3.00

0.0588 -0.05 0.07 - 4.00

0.0384 0.00 0.00 0.00 5.00

Although the degree of resultant interpolation is 20 the resultant curve gives

a much better match to the required curve with only negligible amount of

oscillation present. Although beneficial in this case, generally the arbitrary

specification of additional constraints will not always reduce the amount of

oscillation. In some situations the amount of oscillation may be made worse.

To obtain a good curve requires some degree of trial and error. However

the technique may be useful where the interpolation may be represented by

a single function.

3.5 Segmented polynomial

This method has been used to control the profile of motion curves in [3.1]

and [3.2]. As previously mentioned the presence of turning points in the

interpolation curve can be an important cause of meandering. To overcome

this the curve can be split up into parts at these points. In this way the

amount of meandering along the curve can be better controlled. Segmented
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polynomial interpolation also requires polynomials of lower degree than would

be the case if interpolation was carried out over the complete interval. This

is also beneficial since the lower degree polynomial interpolations give better

curves. Fig.3.4 shows an example where the path is divided into two parts

at the turning point seen at the mid-point of the interval. Polynomial in-

terpolation is applied independently for each part and the total curve obtained

by adding the second part to the end of the first. The result is very effective.

In spite of the high degree (10 degree) of the polynomial used, the inter-

polation curve matches the original curve perfectly.

1.2.----------------------------------------------------------------------------------------------,POSITION

0.9

O.S

0.3

o.o~--------------------------------------------------------------------------------------------~
-5.0 -2.5 0.0 2.5 5.0

Fig.3.4. Division a curve into segments.

Although dividing a curve into segments at the turning point gave a good

result for the above example, in other cases it may not be sufficient. A

better and more practical approach is to divide the curve into intervals

between the design points and interpolate the segments with piece-wise

polynomials. To ensure continuity from segment to segment up to the required

degree, the boundary conditions at the end of the preceding segment can

be accepted as initial conditions for the next segment. This approach is

known as the segmented polynomial method. An example showing the

procedure of segmenting a path is seen in Fig.3.S where the continuity of

the motion curves is required up to the level of acceleration.
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120r---------------------------------------------------~
POSITION
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SI!GMI!NT • a SEGMENT· ..

48
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d1,
v1,.,,

0.2 0.4 0.8 0.8
d1 _ dll dll ,-da, da,_ tI4, d4,- d.,, ,

vII ,-VS, vs,_ ""', "'", - vB,V1,_ VII,.,,_ .tIl, a/Il, -.a, .a,_ •." ..,,-.., 1.0d.,
vB,a.,

Fig.3.S. Procedure for segmented interpolation.

The segmented polynomial method is a powerful tool for motion design, it

clearly prevents extreme oscillations occurring in the interpolated curves such

as that shown in Fig.3.t. However in some situations the trajectory may

still suffer from meandering due to severe velocity and acceleration constraints

being present (see Fig.3.7) In these cases further division of segments is

not possible because a segment must include at least two design points.

Since polynomial functions give unique solutions there is nothing to be done

when the boundary conditions at the design points are fixed. Another issue

is that although the interpolation curve may not include any obvious os-

cillations it may lie outside a specified tolerance envelope.

To decide whether the interpolated curve is either acceptable or not it must

be judged against any limit values which may be dictated by the requirements

for the system. However there are some basic design limits that the trajectory

should satisfy if it is be considered reasonable. These limits can be represented

by rectangular shapes between successive design points as shown in Fig.3.6

where each rectangular shape is called the maximum tolerance envelope for

a segment.
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POSITION
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72

24

0.2 0.4 0.8 0.8 1.0
Fig.3.6. Determination of tolerance envelope.

The rectangles define the limits for meandering in each segment and violation

of these limits may result in some unacceptable disturbing action by the

system. For example, consider a trajectory for the slider of a slider-crank

mechanism which crosses the tolerance envelope at the beginning of the

trajectory. See Fig.3.7 (solid line) and 3.8. The mechanism starts its motion

but curiously, because there is no constraint such as negative velocity or

acceleration at the first design point (as seen in Table.3.2), it moves

backwards for a distance and returns to the starting point then completes

the cycle. A part of the cycle time is wasted for this unnecessary motion

and since there is less time to achieve the actual motion the mechanism

has to move faster to complete the loop in time.

The cause of the meandering in this example is the poorly chosen acceleration

constraint at the second design point. The expected trend of the velocity

between these two design points is positive because an increasing positive

displacement is requited with the final velocity higher than the initial value.

Allowing a large negative acceleration constraint at the second point forms

a contradiction since it forces the velocity curve to adopt a negative slope

at that point, see Fig.3.7-b (solid line).
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1.2 POSITION

- ORIGINAL CURVE (MEANDERING) r •

0.9 - MODIFIED CURVE

0.6

0.3

INPUT_0.3L---------~-----------.----------~----------.---------~0.0 0.2 0.4 0.6 0.6 1.0

a) position

7.0VELOCITY

3.5

-3.5

INPUT.7.0~--------~--------~--------~--------~--------~
0.0 0.2 0.4 0.8 0.8 1.0

b) velocity

SOr------------------------------------------------,
ACCELERATION

INPUT~O~--------~--------~----~----~--------~--------~0.0 0.2 0.4 0.6 0.8 1.0

c) acceleration

Flg.3.7 Motion curves of. slider crank mechanism with and without meandering
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STARTING POINT

I
I
I

Fig.3.8. Meandering problem r« • slider crank mec:luu1mn driven by• servo motor.

TABLE 3.2. Constraints r« Fig.3.7

pas. vel. ace. jetk input

0.00 0.00 0.00 - 0.00

0.85 3.00 -75.0 - 0.50

1.00 0.00 -30 - 0.70

0.00 0.00 0.00 - 1.00

That means that the velocity curve has to reach a bigger value at an

intermediate point in the segment than the velocity value defined at the end

of the segment. Another curve is shown in the figure (dashed line) which

is obtained when a zero acceleration constraint is imposed at the second

design point. In this case the curve shows no undesirable meandering.

Specifying extreme acceleration values sometimes creates a supplementary

velocity area and this area must be balanced somewhere in the segment to

satisfy the position boundary conditions. These excessive areas are indicated

in Fig.3.7-b. This situation explains the reason for the negative displacement

at the beginning of the segment. From this example, it may be concluded

that the presence of oscillations in the curves obtained using the segmented

method are dependent on the values of the boundary conditions especially

those for velocity or acceleration.
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3.6 Polynomials with arbitrary powers

In order to overcome the drawbacks of motion design using the segmented

polynomial method, a new technique has been proposed. It allows the shape

of a curve to be improved without changing any given boundary constraints.

The method is not only appropriate for modifying poor trajectories which

suffer from meandering but it can also be used to refine and improve normal

curves. This technique is based on the fact that changing the powers of the

polynomial function changes the path between the design points. In this

application, the number of coefficients is equal to the number of boundary

conditions as for ordinary polynomial functions, however, the powers can be

arranged arbitrarily.

From equation (3.3) the power form of a polynomial function has the fonn:

d(t) - Co+C/ + C,/ + ••• +C"t"

It is clear that the powers of the function systematically increase for each

term and it seems that these are the only parameters which can alter the

characteristic shape of the curve while still satisfying the required boundary

conditions. The form of a polynomial function with only two position

constraints is:

d(t)-Co+C/ (3.7)

The shape of the curve for the above function is a straight line between

the two end points. However, this shape can be altered without changing

the boundary conditions. For example. increasing the power by one will turn
the function into the fonn of

(3.8)
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Here the function is of second degree and it satisfies the constraints by

following another path. Similarly third and fourth degree functions can be

derived which will also satisfy the same boundary conditions. This means

that polynomial functions can satisfy a set of boundary conditions with

arbitrarily chosen powers. The availability of computers with high processing

speeds makes it possible to scan rapidly many interpolations produced by

using arbitrary powers and to select the most suitable function which gives

the best curve. Some techniques to derive better polynomial interpolation

curves are discussed below.

3.6.1 Raising the Powers

The effect on curve interpolation using polynomials with raised powers was

investigated by Dudley [3.3] in the context of cam design for automotive

applications. Integer powers only were considered. Similar work in cam

design was later carried out by Stoddart [3.4]-[3.6], Tesar and Mathew [3.7].

An examination of numerous curves generated using computer-aided analysis

has shown that the effect of raising the powers of the polynomial produces

a constant slope in the curve of the second derivative at the start of the

segment for a period. The length of this period increases as the powers

increase. An interpolation using a five-degree polynomial for the data in

Table 3.3 is illustrated in Fig.3.9 where the curve finishes its trajectory by

crossing the required tolerance zone. The second curve is obtained (dashed

line) by increasing the powers of the last two terms in the function, it is

better than the original curve but still meandering is present. However the

trajectory is much improved when the power of the last three terms are

increased. Observation of the curve for the acceleration shows that it remains

flat for much of the interval while ending with a pronounced peak. The

result achieved is perfectly acceptable if that peak is allowable by the

designer.
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c) acceleration

Flg.3.9 Polynomial Interpolation with raised powers
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TABLE 3.3. Constraints for Fig.3.9

pas. vd. ace. jerlc input

0.00 0.00 1.00 - 0.0

1.00 5.00 2.0 - 1.0

The improvements obtained in trajectories by means of raising the powers

depend on the initial values of the first and second derivatives of the

segment. As previously mentioned increasing the powers artificially produces

an acceleration with an initial constant slope for a period. Because of this,

there are some cases where the method can not improve the trajectory. In

fact, it may worsen the degree of oscillation in the curve. For example,

Fig.3.10 shows a segment which has a positive displacement with negative

velocity and acceleration at the beginning of the segment. The data for this

example is given in Table 3.4. Raising the power of the polynomial lengthens

the period for which the acceleration remains negative. The result is to

increase the amount of oscillation in the trajectory.

TABLE 3.4. Constraints for Fig.3.10

pas. vd. ace. jerlc input

0.00 0.00 -40.0 - 0.0

10.0 40.00 0.00 - 1.0

3.6.2 Reducing the powers

The effect on the interpolation when powers of the polynomial are reduced

is also of considerable interest. Since the powers are reduced, their values

must be real. The modified polynomial with the reduced powers may be

written as

J II

d(t) - 1: C,t' + E cll
'-0 '-)+1

(3.9)
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Flg.3.10.lncreaslng the meandering due to Improper selection of the powers
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where the function includes two sub-functions. The first sub-function must

satisfy the boundary conditions which are specified at the beginning of the

segment. The powers in this function may not be changed in order to

preserve the values for the function and its derivatives when the parameter

t is equal to zero. Also in order to obtain a smooth interpolation curve

through the segments the continuity from segment to segment must be assured.

Reducing the powers of polynomial functions too much causes derivative

curves which may include step changes at the segment joining points es-

pecially in the acceleration curves. Such an example is shown in

Fig.3.11(dotted line). To meet these conditions, the minimum allowable power

which may be obtained by reduction should satisfy

q > m +0.5 (3.10)

Where

q - minimum allowable power

m - degree of derivative up to which continuity of the function is required

between segments

For example, if continuity is required up to the second derivative of the

function, the· minimum power will be q-2.5.

Although this condition is empirical, it is supported by successful results

which have been obtained for many examples. More accurate results can be

obtained by selecting the powers of the function interactively or using an

optimization method.

The effect of raising and reducing powers for the interpolation which satisfies

the conditions listed in Table 3.6 is shown in Fig.3.12. Here the solid line

is the original curve which goes out of the required tolerance zone. The

first attempt to modify the curve is to increase the powers of the function

but this approach has increased the amount of the oscillation. However, a

much better curve is obtained when the powers are reduced (dotted line).
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Flg.3.11 Discontinuous acceleration due to too low degree polynomial Interpolation
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Ag.3.12 Motion curvel of a segment with arbitrary power polynomial
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It can be seen that raising the powers forces the main undulations towards

the end of the segment in the acceleration curve. Reducing the powers is

seen to reverse this effect, that is, force the main undulation to the start

of the curve. The better interpolation curve is obtained using reduced powers

in the above case.

TABLE 3.5. Constraints fCi' Pig.3.ll

pas. vd. ace. jetk input

0.00 0.00 0.00 - 0.0

2.00 -2.00 0.00 - 0.0

1.50 2.00 0.00 - 1.0

0.00 0.00 0.00 -- loO

TABLE 3.6. Constraints fCi' Pig.3.l2

pes. vd. ace. jetk input

2.00 -12.00 10.00 - 0.0

0.00 0.00 0.00 - 1.0

3.6.3 Combination of Reduced and Raised Powers

In general it is found that oscillation in polynomials can be better controlled

if the undulations in the derivative curves are pushed towards the two ends

of the segment with the minimum amount of disturbance between. To achieve

this result a combination of reduced and raised powers are used and the

function is modified as shown below.

J I: "
d(t) - ~ Cit' + ~ cll + r C/'I

'-0 1-)+1 I-T+l
(3.11)

where

i· non-changeable powers

ql- reduced powers

ml- increased powers.
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The peak undulation is moved towards the beginning of the derivative curve

when reduced powers are used and towards the end with increased powers.

Therefore optimum motion curves can be achieved by putting limits on the

powers which may be changed. The allowable peaks in the velocity and

acceleration curves can be used to set these limits. The procedure has been

computerised and the interpolation achieved for a systematic selection of

powers.

A comparison of some motion laws is presented in Fig.3.13. These curves

show that arbitrary power polynomials functions can produce remarkably

efficient motion curves. In this example motion laws are tested for a unit

displacement with zero velocity and acceleration at the ends of the segment.

If we compare the acceleration curves the arbitrary power polynomial law

gives an average acceleration curve. Bang-bang and trapezoidal motion curves

have slightly lower peak acceleration values. However, if we compare the

velocity curves, the arbitrary power polynomial motion has the lowest peak

velocity value. In this example the powers used for polynomial function are

(0,1,2,2.52,2.54,39).

Fig.3.14 shows an example of polynomial interpolation for a four-segment

curve. The values of the constraints are listed in Tables 3.7. The solid curve

shows normal polynomial interpolation. Considerable improvements is seen

when the polynomial interpolation is modified using arbitrary powers.

In the example all the segments are modified and the powers for these

segments are:

Segment-1-(O,l,2,2.52,2.56)

Segment-2-(0, 1,2,2.56,2.72)

Segment-3-(0,l,2,2.52,2.56,26).
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Flg.3.13.Comparlson of motion law.
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Flg.3.14 Curves of trajectory by arbitrary degree polynomlallnterpolatlon
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TABLE 3.7. Constraints for Fig.3.14

pes. vel. ace. jetk input

0.0 0.0 0.0 - 0.0

10.0 0.0 nO/match - 0.2

100.0 0.0 nofmatch -- 0.6

0.0 0.0 0.0 - 1.0

3.7 Motion law selection Cor high-speed motion generation

The aim is to develop a general trajectory model which can be applicable

to any kind of motion design problem including X and Y axes. Therefore

the principal features of the mathematical form should be:

(i) The mathematical form must be an explicit function of time. This is

because in many cases the velocity and acceleration curves are also needed

to be defined specifically. These curves can be obtained by differentiating

the function with respect to time.

(li) The function must be continuous up to second order (acceleration). Any

discontinuity in the acceleration curve provokes an infinite value for the jerk

(third derivative) at the same point. Such conditions provide a source of

disturbances for a system, especially when operating at high cyclic fre-

quencies. Vibration, noise and shock are the main results.

(iii) Specification of arbitrary boundary conditions for derivatives of the

function should be both possible and simple in order to achieve the required

motion curves. One important complication is that the motion of a mechanism

may depend on the motion of other mechanisms which operate together for

the processing of a product. Therefore there must be synchronization between

the motion of these machines which requires specification of position, velocity

and acceleration boundary conditions. However. many of the mathematical

functions such as Fourier series. spline functions. logarithmic and exponential

functions are not able to satisfy arbitrary required boundary conditions.
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(iv) The solution of the function coefficients should be simple.

(v) The behaviour of the interpolation function must be predictable. Many

of these can give curves which pass through the boundary points and may

be continuous up to acceleration, however. most interpolation functions can

produce extremely large oscillations between the design points depending on

the required shape of the trajectory.

The exponential. logarithmic and hyperbolic functions have important

drawbacks when used to produce motion curves. Although these functions

may precisely satisfy position boundary conditions. the control of velocity

or acceleration curves is not possible with the result that they usually produce

discontinuous velocity and acceleration curves between the segments. (Seen

in Fig.2.2.)

The harmonic analysis method sometimes produces quite efficient interpolation

curves. however. the method has some important drawbacks from the point

of view of the motion designer. These include:

(i) Specification of boundary conditions is possible only for the function or

one of its derivatives. This means that manipulation of all motion curves

together (displacement. velocity. and acceleration) is not possible.

(ii) It may be necessary to define many boundary conditions to achieve a

good interpolation curve for some difficult motion profiles.

(iii) The calculations are straight forward but require longer time then the
other methods.

(iv) The formula in harmonic analysis is in terms of sine and cosine functions.

Since a large number of sines and cosines are used. and since the arguments

of these sines and cosines may have inherent errors. the total error may

build up considerably when many boundary conditions are included.
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Rational functions are very effective mathematical forms for interpolation of

an arbitrary data set. Unfortunately, the function is not appropriate for

differentiation. Another important disadvantages is that the function may

produce a discontinuity in the trajectory as discussed before (see section

2.9). Because of these difficulties rational functions are not recommended

for motion design.

Principally, quintic splines and segmented polynomials give similar solutions.

Because, in many cases, controlling velocity, acceleration as well as position

is necessary to obtain a specific trajectory therefore quintic splines produce

continuous curves up to the acceleration under these circumstances as does

the five-degree segmented-polynomial method.

Cubic spline functions are used traditionally to design curves. They mostly

produce satisfactory curves, but, the setting of values for the derivatives of

the function is not allowed. However they can be used for some cases where

only position constraints are important.

In practice, there is no particular interpolation method which can be applied

to motion design problems without the need for any modification. In other

words no mathematical function can satisfy all the required conditions. The

use of polynomials however offers advantages over other mathematical

functions. They can, in principle, satisfy all the requirements of motion

design, but they can suffer from the important drawback for difficult tra-

jectories known as meandering. However it has been shown that this
phenomena can be prevented by means of some novel modification methods.

The selected motion laws which have been considered as suitable forms for

general high-speed motion design software are listed below.

1) Polynomial functions

Despite many forms of polynomial function the power form is found to be

the most suitable form for motion design. The disadvantages of this function

can be modified by following methods:
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(i) segmented method

(ii) using arbitrary powers

2) Cubic spUne function

3) Standard cam motions

(i) cycloidal motion

(ii) modified sine motion

(iii) modified trapezoidal motion

(iv) triple harmonic motion

(v) dwell motion

(vi) constant speed motion

(vii) constant acceleration motion.
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CHAPTER4

TRAJECTORYPL~G

4.1 Introduction
.

The activity of converting the description of a desired motion to a trajectory

by defining time sequences of configurations of the end-effector of a ma-

nipulator between start and final positions. feasibility checks and adaptation

of the motion before implementation is referred to as motion design or

trajectory planning. As the trajectory is executed. the tip of the end-effector

traces a curve and changes its orientation. The net effect is a translation

and a rotation of the end-effector. The curve traced by the end-effector is

called a path. whereas a trajectory is a path with time constraints. that is.

it includes velocity and acceleration as well as position and orientation along

the path.

For many industrial applications. present computer controlled manipulators

are too slow to justify their use economically because of their improper

trajectories [4.1].[4.2]. Their speed and hence their productivity are limited,

by the performance capabilities of their actuators. Increasing actuator size

and power is not the best solution because of the increased cost and power

consumption. A more successful approach is to design the trajectory at an

advanced level in order to increase the speed of the system and perform a

given task appropriately.
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Computer-controlled manipulator schemes can be divided into two levels in

order to simplify the problem. The upper level is trajectory planning and

the lower level is path tracking or path control [4.3]-[4.5]. There are different

approaches for trajectory planning some of which are given below, however,

trajectory tracing is presented in Chapter-1.

Traditionally, the trajectories of robotic manipulators are planned manually

[4.6]. These paths are normally composed of simple elements, such as straight

lines and circular arcs. Typically, the path is first constructed with a number

of straight line segments and then the comer of each segment is smoothed

with a circular arc. Such planning generally fails to select the best trajectory

since no account is taken of the effect of the highly non-linear characteristics

of the motion of the manipulators.

Another common method is to design a trajectory with constant acceleration

and constant deceleration segments often known as the bang-bang method

[1.5] and [4.1]. The values of these accelerations and decelerations are

generally selected to avoid actuator saturation during the motion. However,

designing a trajectory using constant speed and constant acceleration/dece-

leration produces discontinuous acceleration and results in infinite jerk values

at the connection points of the segments. Such conditions produce large

disturbances for a system especially at high speeds.

Another general method is to plan a trajectory using spline functions. The

main advantages and disadvantages of this method have been discussed in

section 2.10.1.

A completely different method is to design the motion by means of computer

graphics. This approach would allow the user to plan manipulator strategies

while being able to watch the motion of the manipulator and its surroundings

in a graphical environment. Optimization of the trajectory by invoking dif-

ferent options in the menu and accessing a data base provides an extension

of such planning. An application of this method might be the example shown

in Fig.4.1 where the requirement is to plan the trajectory of the end-effector
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of a robotic manipulator in co-ordination with the motion of another machine.

This is a typical example of a "pick and place" mechanism. Here, the

manipulator loads empty containers to the filling machine by following the

designed trajectory.

In this chapter, some basic concepts relating to computer controlled systems

are introduced.

transferlng & filling
machine

~ the trajectory of the end-effector

/
empty container

Fig.4. LSUnulation of a robotic ann and its environment on computer.
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4.2 Basis of manipulator motion planning and control

A basic problem in a programmable system is planning motions to solve

some previously specified task, and then controlling the system as it executes

the commands necessary to achieve these motions.

The path of a manipulator for repetitive tasks can be split into two distinct

sections according to the importance of an activity.

(i) Process section: the process section is the part of the path in which

execution of a process takes place such as cutting, welding, painting etc.

However in some cases a manipulator may perform multiple tasks. For

example, consider a path on which the end-effector performs the following

processes for a product; grasping, insertion, bending and welding operations.

Each task corresponds to a part of the path. And each part can be described

by a start position, final position and corresponding orientations of the

end-effector. Additionally, the velocity and acceleration values during the

grasping, and insertion phase, the welding and bending speeds, and finally

the time intervals for each operation comprise the main constraints to be

imposed on the system.

(ii) Move and retum section: The constraints for the processing sections

may be exclusive, that means they may not be allowed to change. However,

the trajectory may include some segments in which the manipulator moves

from one point to another without doing any process. Each one of these

usually corresponds to a segment which lies between two independent process

segments. Also, there is another non-process segment (which is necessary)

when the end-effector is returned from the final point in the processing

chain to the initial point in order to start a new cycle. These segments

provide some periods of the cycle which are largely unconstrained and

therefore offer the most suitable sections for design in order to achieve

optimum trajectories. The user is therefore normally free to specify arbitrary

boundary conditions for these segments to fulfil the task.
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Usually, the information at the start and end points of a process is sufficient

to construct the segments of a trajectory. However, sometimes it is necessary

to specify the motion in much more detail than simply giving the starting

and final configurations for a segment. There may be a need, for example,

to prevent a possible collision or to obtain a specific shape for a path. One

way to include more detail in path description is to give a sequence of

intermediate points between the initial and final positions. Although referred

to as "points" they may include specifications for positions, orientations and

further information such as velocity and acceleration. These intermediate

points together with the initial and final points of a segment will be called

design points.

Manipulator motions are generally partitioned into two categories: free motion

and compliant motion [4.8]. For a trajectory planner, it is a relatively simple

matter to construct a system which will move the manipulator to any position

during a required time interval within the range of the manipulator. Any

manipulator task which can be adequately expressed as a sequence of positions

could be completed using this positioning system. However, the control of

compliant motion refers to the manipulator motion in the presence of

end-effector contact with external surfaces. In this case the motion cannot

be adequately expressed by a sequence of positions. The contact of the

end-effector with external surfaces necessitates another mode of control, one

which takes into account the force acting on the manipulator. Numerous

manipulator tasks involve compliant motion. Examples include placing an

object on a table, opening a door, grasping an object, driving a screw,

inspecting a surface by feeling it, installing a fuse or light bulb.

All compliant motion tasks are easily performed by humans, but they are

generally very difficult for robot manipulators. This deficiency is one of the

factors currently limiting the application of manipulators. Because of this,

the most common applications of manipulators today are for pick-and-place

operations, spot welding and spray painting processes which do not require

sophisticated compliant motion capabilities.
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There are two different approaches for trajectory planning: off-line and on-line

planning. Off-line planning is carried out outside the manipulator environment

and makes use of extensive software usually including computer graphics.

The development of trajectories take place without access to the manipulator

itself and without recourse to real time operation.

Off-line planning offers some potential benefits. A simulation of the ma-

nipulator can be displayed in the graphic environment, and the whole of

the planning can be carried out within the computer environment. Thus,

many of the problems peculiar to the manipulator programming tend to

diminish. Problems such as, for example, unexpected oscillations in the

trajectory (meandering) or excessive torque requirements in the planned

trajectory which may cause saturation of the actuators.

Normally, off-line planning systems serve explicitly, which means that every

action taken in the system must be performed by the user. However, explicit

planning can be extended to high-level planning the so-called task level

planning. In this system, the user may simply state goals such as "transfer

the products", "insert the bolt" and even "assemble the machine". This

extension is accomplished by providing automated solutions to various

sub-tasks as these solutions become available, and letting the programmer

use them to explore various options in the simulated environment [4.9].

On-line trajectory planning refers to the determination of the history of a

motion by means of on-board sensory equipment and then the generation

and execution of the motion in real time. That means, for a specific task,

the constraints for the trajectory including constraints for obstacles along the

path and constraints for co-ordination with other machines will be determined

be means of sensory equipment; the optimum trajectory will be generated

and this trajectory will be executed in a real time. Consider a robotic

manipulator which assembles a machine in an assembly batch. Such an

intelligent machine would have an outstanding impact in industry. Such

planning requires highly sensitive sensory equipment, high-speed computers
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and artificial intelligence capabilities. Although all these can be supported

with today's technology, nevertheless, such planning cannot be easily un-

dertaken in practice because of the inherent dynamic complexities associated

with its implementation [4.10], high cost, limited application area and

difficulties with the trajectory tracing.

However, some studies on on-line trajectory planning have been done by

[4.5] and [4.11]

4.3 Kinematics and dynamics of manipulators

An understanding of the kinematics, statics and dynamics of a manipulator

is essential for successful planning and control of a system. Kinematics is

the relationship between position, velocity and acceleration among the links

of a manipulator without regard to the forces influencing the motion. De-

scribing a path in Cartesian or joint space and producing motion curves by

means of interpolation functions lies in the area of kinematics. Also,

transformation of some parameters from joint co-ordinate systems to Cartesian

co-ordinate systems is known as direct kinematic analysis whereas trans-

formation in the opposite direction is known as inverse kinematic analysis.

Both transformations require a knowledge of the relationship between the

manipulator geometry and that of its environment.

Statics concerns the relationships of the forces and torques acting between

the manipulator and its environment and also between the links. In statics,

an equilibrium analysis of the manipulator system in a rest configuration is

performed by equating all external forces and torques acting on the links

to zero. External forces and torques arise from gravity and from environmental

interactions usually through the end-effector. Static analysis is particularly

important in the study of compliant motion. The laws of statics can be

appropriately generalized to situations where the manipulator is not at rest

by means of Newton's Second Law, which may be used to reduce a dynamic

state to a static one through the formulation of the force of inertia. nus
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principle states that the acceleration of a body generates a force of inertia

which can be considered together with other forces acting on a body. Thus

we may use equilibrium analysis even though the system is accelerating.

In order to move a manipulator along a trajectory, torques must be provided

by motors at the joints. The problem of computing the values of the torques

to apply to the joints to achieve a desired trajectory is the problem of

dynamic analysis.

4.4 Selection of the co-ordinate system

Currently, two different co-ordinate systems have been used for trajectory

planning. Joint co-ordinate system planning refers to planning a trajectory at

the joint level in terms of each actuator's a, 6 and e values. This co-ordinate

system has been used by [4.7] and [4.12]-[4.14]. However, Cartesian

co-ordinate system planning refers to trajectory planning at the end-effector

level in terms of the end-effector's position, velocity and acceleration this

system has been used by [1.1], [1.4], [4.4] and [4.15].

4.4.1 Joint Co-ordinate system planning

This is a method of trajectory generation in which the motion curves are

expressed in terms of functions of the joint angles. Usually a path is described

using Cartesian co-ordinates to specify the desired positions and orientation.

These co-ordinates can then be converted into the joint co-ordinate system

by means of inverse kinematics provided the necessary transformations are

known. Then, a smooth function may be found for each joint. The time

required for each segment should be the same for each joint so that all

joints will reach the desired design point at the same time, thus resulting

in the Cartesian position of each design point being attained. Other than

specifying the same duration for each joint, determination of the desired

joint angle function for a particular joint does not depend on the functions

for the other joints.
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The main advantage in using joint co-ordinates systems is the ability to

relate these co-ordinates directly to the actuator requirements. Although both

systems require transfonnation of some information from one system to

another, the transfonnation from joint co-ordinates to Cartesian co-ordinates

is easy and straight forward whereas transfonnation in the reverse direction

is more difficult. Moreover, using Cartesian co-ordinate systems may be quite

expensive in respect of computational effort if the trajectory planning is

required in real time. This requires the trajectory to be converted from

Cartesian co-ordinates into joints angles at the run time. Therefore, trajectory

planning in joint co-ordinate systems is more desirable for on-line trajectory

planners because of the above difficulties when using Cartesian co-ordinate

systems.

4.4.2 Cartesian co-ordinate system planning

Path shapes may be described within a Cartesian co-ordinate system in terms

of functions which compute the Cartesian motion of the end-effector as

functions of time. The trajectory can be planned directly from the user's

definition without regard to the geometry of the manipulator and therefore

no need for inverse kinematics. With this system it is relatively easy to

examine the paths to be designed.

Working within a Cartesian co-ordinate system seems more attractive for

off-line trajectory planning, because, the path is more conveniently described

in Cartesian co-ordinates and analysing the motion of the end-effector is

easy. Since all planning takes place without reference to the manipulator,

the user can plan the trajectory in much more detail. It is possible to try

different options to improve the trajectory and graphic simulation can be

used to help judge such improvements.
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In this study the Cartesian co-ordinate system is selected as the most ap-

propriate co-ordinate system. This is because a high-level trajectory design

is required and this needs the interaction of the designer with the computer

to take some decisions and make suitable modifications.

4.5 Path description

It may be assumed that once we have defined a path from a start position

to a destination, all the manipulator has to do is follow it. However, this

will ignore the many constraints which have to be considered before a path

becomes a trajectory.

Controlling the trajectories of high-speed manipulators requires a knowledge

of the complete system dynamics. Admissible velocities and acceleration-

s/decelerations along a prescribed path depend on all the forces acting along

that path as well as on the constraints given by path geometry and by

restrictions of joint torques or forces [4.16].

Thus, a trajectory planning requires an initial planning stage to determine

these constraints. The constraints can be classified into sub-groups as follows:

(i) kinematic constraints

(ii) constraints on the actuators of the system

(iii) constraints on the product.

Knowing the constraints, they can be converted into suitable parameters to

be used as inputs for the motion design. They may comprise values for

time, position, velocity and acceleration.

4.5.1 Detennination of kinematic constraints

The path can be simplified to facilitate the description of the motion of the

end-effector. For example, the designer may simply specify a number of

important locations for the processing segments (PI, P2, P3, P4) together with
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any obstacles which lie in the plane (Fig.4.2(a». This is the main part of

the path as far as the processes are concemed. In addition, there may be

some intermediate points between these which may be specified to prevent

a possible collision between the manipulator and other elements while the

system is under operation. In this case, the path has to pass through these

intermediate points as well. In Fig.4.2-(b) each straight line represents a

segment of the path. For cyclical motion the end-effector has to move to

the initial point again so the path can be formed as a closed loop as shown

in Fig.4.2-(c). Now the designer can determine the time values for these

segments (see Fig.4.2-(d». The time values for processing segments are

usually dependent on external factors such as for example, the speed of any

co-operating machine, or the limits on the processing speeds or velocities

or acceleration values which affect the product to be transferred The time

values for move and retum segments are usually dependent on the capability

of the manipulator. If the cycle time is fixed then the user can easily

calculate these values. But, if the aim is to achieve a time-optimum trajectory

(to drive the system at its highest speed) the time values for these segments

can be calculated by comparing the actuators acceleration capacities with the

generated acceleration curve in the computer environment.

The velocity and acceleration values are important for all design points

through the path. They must be continuous at the intermediate points of

segments to obtain a smooth motion. However, they may be particularly

important at the start and end points of each segment if the motion of the

end-effector is required to match the motion of another mechanism or it is

required to pick up or place a product at these points. Therefore their

velocity and acceleration values must be specifically defined to achieve a

co-ordination between the machines and also to ensure the safety of the

products as well as machines. These values may be shown on the path with

their directions. See Fig.4.2(e-f}.
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o P3,
P4,P2,

Pl'

(a) Define positions and obstacles.

P2

(b) Detennine intermediate points.

P2

(c) Complete the cycle by return segment

(d) Detennine time values for segments

v1.,v1,

(e) Specify velocities

v4.,v4,
14.,14,

pt

(f) Specify accelerations

Pig.4.2 Description of a trajectory on Cartesian co-ordinate system.

108



4.5.2 Detennination of system actuator capacities

The motion of the end-effector over certain incremental distances within a

given time determines the required torque from the motors as a function of

the motion. The relationship is given by Newton's Second Law which can

be expressed as;

T",- T, - (J", +Jp)9 (4.1)

Where Tm is the torque delivered by motors and T, is the total resistive

torque due to friction, viscosity, gravity and resistance forces. Jm is the

motor inertia and J, is the parts inertia of the moving elements expressed

at joint level and includes the inertia of the product which is transported

by the machine and e is the angular acceleration of the actuator. The angular

accelerations required for each axis can be transferred to the end-effector

point as an acceleration to check whether the designed motion exceeds the

capability of the system or not.

4.5.3 Determination of permissible acceleration for the product

In some cases the end-effector may transport a product from a source to a

destination and the product may be sensitive to accelerating forces (for

example, a liquid in a can container). Therefore the maximum permissible

acceleration and deceleration of the product are also important parameters

to be calculated. The maximum allowable acceleration and deceleration zones

due to actuator capacity and the product sensitivity are illustrated sche-

matically in Fig.4.3.
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Fig.4.3 Pcnnissiblc acceleration zone.

4.6 Generation of motion curves

The trajectory of a manipulator is usually determined by means of a

time-based mathematical function. Where the function is subject to all

necessary conditions such as desired positions, velocities, accelerations and

even jerks. In addition the permissible torque capacities of the actuators and

the reaction of the product to the accelerating and decelerating forces are

the other parameters to be satisfied.

These details are sufficient to start a computer-aided motion design. The

motion curves of the end-effector for each axis (X and Y) can be examined

independently after specifying the inputs and selecting the motion laws for

segments. The generation of motion curves in a graphical environment is

the subject of the next chapter.

4.7 Optimization

There are many different functions including arbitrary power polynomial

functions which can be used to satisfy the constraints for a given trajectory

planning. Some form of selection is needed to identify those plans which

are acceptable. An acceptable trajectory can be described as a trajectory

which satisfies the required constraints with minimum disturbances expressed

by, for example, low peak velocities and low jerk values. In order to satisfy

such conditions additional steps are needed to improve the initial design.
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These steps include examining the motion curves to see whether they satisfy

certain parameters. The parameters and their priority of importance may

change according to the operating circumstances. Most commonly, they

comprise in order to importance:

(i) position tolerance envelope

(ii) permissible acceleration and deceleration

(iii) smoothness

(iv) peak velocities.

Position tolerance enyelQpej The position curve of each segment has to lie

within a specified tolerance envelope to eliminate a possible collision of the

end-effector with any other objects in the work space or for other purposes.

However, sometimes the designer may not specify any tolerance envelopes.

In these cases the curve of each segment can be checked to lie within a

maximum tolerance envelope which is formed by the rectangular zone between

the end points of each segment. The maximum tolerance envelope is described

in detail in section 3.S.

Permissible acceleratjQn awl deceleration; The dynamic constraints of a

system are also important as well its kinematic constraints. However, putting

these values into a function as inputs may not be possible in some cases.

For example, designers usually prefer a five degree polynomial interpolation

to construct motion curves which correspond to position, velocity and ac-

celeration constraints at the ends of a segment. An acceleration curve

corresponding to a five degree polynomial segment follows an oscillatory

path (see Fig.4.3). Therefore to include actuator acceleration capacities (see

section.4.S.2 for determination of actuator acceleration capacity) and per-

missible acceleration values of the product as additional acceleration inputs

in the interpolation function is not practical. This is because the resulting

acceleration curve for the motion will most probably violate these limiting

values between the end points of a segment due to its oscillatory char-

acteristic.
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A more convenient method is to calculate the permissible acceleration and

deceleration values at the end-effector point by transforming the actuators

acceleration capacities and to check the acceleration curve against these limits.

The designer can modify the curve if it is not in the required zone by

altering boundary conditions, changing the time interval or using arbitrary

powers for the polynomial function.

Smoothness; Generally, a trajectory is required to be as smooth as possible

to reduce vibration, noise and wear effects. The degree of smoothness will

depend on the degree of the continuity of the motion curves. For example,

consider a trajectory which has a continuous velocity curve only whereas a

second trajectory gives continuous velocity and acceleration curves (Fig.4.4).

For this example, we can say that the second trajectory is smoother that

the first, This implies that smoothness is directly associated with the continuity

of the curves. The question is which derivative should the motion curves

of a trajectory be continuous up to. Since-high degree continuity requires a

high-degree polynomial interpolation the continuity of motion curves should

considered within reasonable limits. Usually continuous velocity and accel-

eration conditions which corresponds to a five degree polynomial provide

effective trajectories. In some cases, however, continuity of the jerk curve

may also be compulsory especially at high speeds.

Designing a trajectory using five or seven-degree polynomial segments needs

six or eight boundary conditions respectively. Some of these may be geometric

constraints on the system which are fixed and therefore cannot be changed.

However, others may be arbitrary boundary conditions which are specified

for the continuity of motion curves.

Maximum velocity; The peak velocity value in the curve is one of the

most important parameters which determines an optimum trajectory. A tra-

jectory should be smooth and satisfy the required conditions with the peak

velocities in the curve as low as possible. A high velocity may not be

desirable when transporting a product while it also may cause instability of
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(a) Smooth position curve

INPUT

(b) Continuous velocity curve
AOIEBIAllON

INPUT

(c) Discontinuous acceleration curve
JERK

INPUT

(d) jerk is infinite at the ends of segments

(e) Smooth position curve

VElOCnY

INPIIT

(t) Smooth velocity curve

ACCElBIATIOIj

INM

(g) Continuous acceleration curve

IHPVT

(h) Discontinuous jerk curve

Fig.4.4. Relationship between continuity and smoothness.
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the system particularly at high speeds. The ability to use dummy boundary

conditions and the availability of different motion laws, especially polynomial

interpolations together with the new arbitrary powers method, present a wide

range of potential solutions. The designer may achieve an optimum solution

by trying these options.
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CHAPTERS

GENERATION OF MOTION CURVES

5.1 Introduction

A new approach to manipulator motion planning is to generate motion curves

in a computer-graphics environment and simulate the motion of the

end-effector in an off-line manner rather than planning the trajectory in real

time. Such an approach will allow the user to analyse the motion of the

end-effector without needing to access the machine system. Therefore, the

user can modify any undesirable behaviour of the trajectory due to the

interpolation function or any other reason while in the computer-graphic

environment.

In order to fulfil this task, a motion design program called MOTDES is

developed. The program is capable of producing motion curves for the end

effector of a mechanism which can perform a body motion in a plane, that

is, the end effector can move in the (X-Y) plane and rotate about an axis

perpendicular to the plane. Several motion types have been included to

provide a wide degree of flexibility for the user. The program includes many

facilities to achieve a desired motion. The necessary boundary conditions

comprise the main input for the software; other interactivity is based on

mouse click selection. The user can examine the motion curves in a graphical

environment. If they are not appropriate then he may use modification menus

to improve the characteristic of the motion. Motion curves for all three axes
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(X,y,e) can be designed simultaneously. The program also includes a

simulation option which shows how the product moves along the trajectory.

The resultant trajectory can be saved for later purposes.

5.2 The software (MOTDES)

The motion design program is written in the Pascal programming language

under the GEM (Graphics Environment Management) for AT compatible PC

machines. GEM is selected because of its graphics input and output capa-

bilities and the efficient interface provided between the user and computer.

The program can produce motion for single or multidegree planar mechanisms.

Three dimensional motions are not included. The program consist of three
basic stages:

(i) input module for trajectory building

(ii) interactive module in order to achieve the required trajectory

(iii) simulation of the motion of the end-effector.

The program is designed to provide an efficient interface between the user

and computer such that it is possible to design a motion just by using the

mouse-click option only without needing any communication through the

keyboard. In trajectory building, the user communicates with the program in

order to specify the boundary conditions. The motion curves appear on the

screen when the first stage is finished. Smooth interactivity, easy to use and

analysis capabilities of the program allow the user to improve the trajectory

by trying different options until a satisfactory trajectory is obtained. This

may be achieved by changing boundary conditions, selecting different motion

types or other options. The motion of the end-effector can be simulated in

a Cartesian co-ordinate system at any time after finishing the draft planning.

5.2.1 Trajectory building

Some information must be supplied to the program by the user in order to

build a trajectory. On first executing the program, the curves of a default
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trajectory appear which includes four segments for each dimension (x.r.a).
Five-degree polynomial interpolationshave been used to produce the motion

curves for each of these segments. The user can easily delete or insert

additional segments to the default trajectory if necessary while any boundary

conditions may be changed in order to obtain a new trajectory. However it

should be remembered that different motion types require different inputs.

For example. the user must specify position. velocity and acceleration
boundary conditions for a polynomial function at the ends of the segments
in order to produce a continuous acceleration curve. On the other hand. cam
motions require only the specificationof positions. Cubic splines are suitable

for non-segmented solutions and velocity or acceleration values can be

specified at the ends of the curve but not in between. Therefore the user

first should select the motion type for each segments and then detail the

inputs.

The available motion types used in the program and some input menus for

them are shown in Fig.5.1(a-e)

5.2.2 Interactive trajectory generation

The selection of motion types for each segment independently and the
specification of the inputs corresponding to the boundary conditions forms

the first stage in generating a trajectory. After this. the user can examine

the resulting motion curves to see whether the trajectory is acceptable or

not. The most important factors to be checked for may be listed as follows:

(i) degree of meandering
(ii) smoothness

(iii) peak velocity values

(iv) peak acceleration values.

The significance of these factors has been described earlier in section 4.5.

If the trajectory is not acceptable the user can modify it by making use of

other options available in the program. The most important option is the
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a) motion types

b) input menu for polynomial segment c) input menu for cubic spline segment

d) input menu for cycloidal segment e) input menu for triple harmonic gment

Fig.S.l(a-e). Motion types and their input menus.
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availability of different motion types. Polynomial functions provide the most

versatile alternatives for modifying the trajectory due to their significant

flexibility. For example, the user may change the characteristics of the path

by simply altering derivative boundary conditions (velocity and/or acceler-

ation). Even specifying an additional jerk boundary condition can effect the

shape of the curves.

A novel approach which has been developed in this investigation is to use

arbitrary powers for polynomial functions. By this means, it is possible to

alter the powers to produce thousands of polynomial curves for the same

boundary conditions of a segment. It is observed that arbitrary powers can

provide curves which have lower peak velocity and/or lower peak acceleration

values than the other motion types. See Fig.3.l3. The program also provides

an option that automatically determines the powers to produce the shortest

path between the end points assuring a lower peak velocity than other motion

laws for a segment.

Another important facility of the program is that the user can adjust the

boundary conditions for the trajectory in the (X-Y) plane instead of (X-time)

or (Y-time) plane. This option makes the design much easier when the

objective is to achieve a difficult path shape.

After designing a motion it can be saved as a data file which includes four

columns of a data corresponding to position, velocity, acceleration and jerk

values. The number of data points in each column is 300. This data file

can be used as input for a programmable system or other purposes such as

to draw graphics. However, the program has another option which saves all

the infonnation related with the trajectory thus the user can load a previously

saved trajectory to the program.

5.2.3 Simulation of the motion of end-etTeetor

The path can be displayed to examine the motion of the end-effector. An

arrow is used to represent the position and angle, made with respect to the
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horizontal axis, of the end-effector along the path. The values of the

co-ordinates (X,Y,9) can also be displayed while the arrow moves along the

trajectory (see Fig.S.12). The simulation option gives an indication to the

user how the end-effector accelerates or decelerates along the path. In addition,

the corresponding velocity, acceleration and jerk curves can also be displayed.

S.3 Data structure

Normally, it is assumed that all items of data are kept within some kind

of array which is dimensioned before the program is executed. The maximum

amount of memory that would be needed for arrays should be decided when

writing a program. If the program is run for a small set of samples, then

much of the space will never be used. If the program is run for a large

set of samples, then the allocated space may not be large enough, even

when the computer memory itself is not fully used, simply because the

original bounds on the arrays were too small.

Even if the arrays are carefully declared large enough to use up all the

available memory, the program can still encounter overflow, since one array

may reach its limit while a great deal of unused space remains for others.

Since different runs of the program may cause different lists to grow or

shrink, it may be impossible to tell before the program actually executes

which lists will overflow.

To avoid the above difficulties a dynamic data structure is used to write

the program. With such a data structure we add storage only as it is required

and in the case of deletion we can return unwanted storage for re-use. There

are different types of data structures but mainly they can be divided into

two groups, list structures and tree structures.
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5.3.1 List structure

A simple list structure consists of a set of nodes linked together by a special

pointer at the head of each node. The data fields of each node contain

some sort of information and the end of the list is signalled by a node

containing a nil pointer as shown ~ Fig.S.2.

..___A __.__,II ~IL--B _.....__,IH..___c __.__,IHL--D _.....__,II
Pig.S.l. A simple list structorc.

During the execution of the program a new node can be inserted into the

list or a node can be deleted from the list as shown in Fig.S.3-4.

A _.. B f-t- c - rt-- 0

.... E -I--
Pig.S.3. Insertion c:l a node to .list.

~A I~ I~D y~c II ~~E IH,----,--,O II
Pig.S.4. Deleting. node from the list.

More complex structures can be created by adding lists to each other. Such

structures are known as linked lists. For example the structure of the

MOIDES program is based on linked lists as is shown in Fig.S.S. The

main list includes three nodes which hold information about axes (X,Y,e)

of a trajectory. Each axis has a corresponding list of nodes which contain

information about the segments associated with the axis. Furthermore, each

, segment node is formed from another sub-list of nodes in which information

at the design points such as position, velocity, acceleration and others is

stored.
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Pig.s.s. Data stJUcturc for M01DBS.
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5.3.2 Tree structure

Trees are non-linear data structures used in computer programming. There

are several ways to represent tree structures, but the most understandable

way is to sketch them graphically.

We can describe a tree structure as a finite set of one or' more nodes, one

of them is a special node called the root and the remaining nodes are

separated into disjointed sets, where each of these sets is called a sub-tree

of the root.

A tree structure is one in which items of data are related by branches. If,

in a structure, the maximum number of branches from anyone node is

always two, such a tree is called an ordered or binary tree. Trees that have

more than two branches are called general trees or descendant trees.

Their shapes resemble upside down trees. A tree structure is one in which

items of data are related by branches. Commonly trees are classified into

two different groups, ancestor and descendant, according to their objectives.

In ancestor trees, each root is considered as the child of nodes of its

sub-trees. For example, the tree in Fig.5.6 shows the ancestors of A. B and

C are the parents of A. B's parents are D and E who are also grandparents

of A.

Pig.5.6. An anoestor tree.
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In descendant trees, each node is considered as the parent of the root nodes

of its sub-trees. As an example A has two children B and C. D, E, and

F are the children of B, whereas, C has only one child G as shown in
Fig.S.7.

Pig.5.7. An descendant tree.

Some simple expression of binary trees are shown in Fig.S.S and 5.9.

Pig.S.8. Theexpressiontreefor{ A(D~.+B)+M).
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F· co+ci« +C2*f +Cl·,'+ C,.·,4+ CS.,'.

Pig.S.9. The expression for a (we degree polynomial function using binary mea. (exponentials are de-

noted by t),

More information about data structures can be found in [5.1] and [5.2]

5.4 Generation of example trajectories

Different trajectories are presented in this section to explain the problems

of motion design and solution procedures for them. The other purpose is to

introduce MOTDES using figures which are directly taken from the program.
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Example-It The first example is taken from a project currently under de-

velopment [5.4]. The problem is to insert a fuse element into a fuse cartridge.

Bending and welding of the ends of the fuse element are follow-on processes

to be performed by a manipulator. The path for the processes is shown in

Fig.5.10. The points shown on the path indicate the positions of the design

points. The structure of the insertion mechanism which comprises the ma-

nipulator, an X-Y table and welding tools is given Fig.S.ll. This complex

process is required to be carried out in 0.666 seconds (90 rpm). The path

includes eight segments. The data for this process is given in Table 5.1

where all the units are in millimetres and seconds. However, all the boundary

conditions shown in the table are not compulsory. Some of them are specified

by the user in order to obtain smooth and continuous curves.

The path for the process that is designed using the program is shown in

Fig.S.12. The motion curves for each co-ordinate axis with respect to time

are given in Fig.S.13. In the first segment, the manipulator grips the product

from the stock point (Pt) and inserts it into the fuse cartridge. After the

insertion, the bending process for the both sides of the fuse element take

place at point (P2). As seen from Fig.S.13, the bending and welding

operations are done in dwell segments. The cartridge is also manipulated by

a computer controlled X- Y table in order to provide co-ordinated motion

(see Fig.S.Il). The manipulator and X-Y table move the fuse element and

cartridge to another point (P3) for the welding operation of the right side

of the fuse. The next point (P4) on the path is for the welding operation

of the left side. By finishing the last welding operation, the manipulator

starts to withdraw the insertion tool from the inside of the cartridge (PS).

Then, the manipulator and X-Y table moves independently in order to start

another cycle. In the task specification the point (P6) is required on the

line which is between point (PI) and (P2). Since it is not functional its

position on the line is changed in order obtain smoother motion.
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TABLE 5.1. Constraints used for example 1

x-pos. x-vel. x-acc, x-jerk y-pos. y-vel. y-acc. y-jcrk lime no
0 0 0 -- 0 0 0 -- 0.000 I

150 0 0 -- 0 0 0 -- 0.129 2

ISO 0 0 -- 0 0 0 -- 0.215 3

150 0 0 -- 2 0 0 -- 0.258 4

150 0 0 -- 2 0 0 -- 0.344 5

138 0 0 -- 28 0 0 -- 0.408 6

138 0 0 -- 28 0 0 -- 0.494 7

82 -116 3920 -- 28 0 0 -- 0.537 8

75 -43 -1020 -- 6 -62 760 -- 0.580 9

0 0 0 -- 0 0 0 -- 0.666 10

V-OUTPUT
30

20

10

B

128a 29 49 69
Fig.S.12. The path of the first example.
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Fig.5.13. Motion curves of the firs; example.
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Example-2: This is an example of a smooth motion requirement where the

path is defined with a circular shape so that there are no sharp changes in

the direction of the path (Fig.S.14). This trajectory is specially selected to

test the experimental system at high speeds.

The trajectory is divided into four segments with equal intervals. Five degree

polynomial interpolation functions are used to produce the motion curves as

shown in Fig.S.IS. The position, velocity and acceleration curves are quite

smooth and also the jerk curve is continuous. These situations show that

the trajectory is feasible for high-speed applications.

The cycle time is selected as a unit (one second) for this example and also

for the remaining examples, however, the actual cycle time can be adjusted

to any value when running the system. The actual cycle time will depend

on the parameters of the controlled system. This is explained in Chapter 7.

49

X-OOTPUT

Y-OUTPUTx=90.19
69

y=12.J8 8=129.9

29

B

-29

-49

B 29 09 100 120 149
Pig.S.14. The path of second example.

131



-159

-3118

.2 .4a
b) Velocity inX-direction

l-OOTPI

2 ..

+
11111

-1l1li

-ZIIII

.2 .4 •6 .1

c) Acceleration in X-direction

K-ooTPtlT

IBIIII

Sill

-5l1li

.1

d) Jerk in X-direction

1-IIfliT
.I

.1

'-llfUT

-159

-3118

••

PIT ,-om
III

III
411

.1
ZI +

61

41
-28

2a ...
I-I T

8 .2 .4 .6 .1 I.B .Z .4 ., .1 1.1

a) Position in X-direction e) Position inY-direction
X-ooTPiT HUl~UT

311 3118

158 158

+

t.8 .Z 1.1

f) Velocity inY-direction

I-Ilflir

1.'
h) Jerk in Y-directi n
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Example-3: The path of the third example is a lOOxlOOmm square as seen

in Fig.5.16. The comers of the square are rounded in order to obtain smooth

motion curves (sharp changes in the position curve will cause discontinuous

velocity curves and corresponding infinite acceleration values). The path is

a simple geometric shape and it is obtained easily by adjusting the boundary

conditions in the (X-Y) plane (see Fig.5.17) without any initial calculations

for the velocity and acceleration values. Therefore this example is important

since it demonstrates how MOTDES is efficient for simple trajectory gen-

eration. Fig.5.18 is given to show the enlargement feature which is an

available option in the program.

The trajectory is divided into eight segments and five-degree polynomial

functions are used to produce the motion curves within each segment. The

square shape is a good example to test the behaviour of the experimental

rig since severe acceleration curves occur due to the four dwell and four

circular segments included in the trajectory. Blending the acceleration values

of these segments in order to achieve continuity requires abrupt changes in

the acceleration curves as shown in Fig.5.19 (c and g)

BB +

Y-OUTPUTx=6B.S2 y=1BO.O S=90.BB

109

60

4B

20

B

29
Fig.S.16. The path of the third example.
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Fig.S.l7. A view from MOTDES.

-5 105

4000..."..
..
-200"

-4.,011'

K-OUTPUT
15 20 35 4925 30

Fig.S.lS. An enlarged view from MOTDBS.
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Fig.S.19. Motion curves of the third example.
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Example-4:The fourth example is chosen to show the effect of using arbitrary

powers for polynomial interpolations for motion design. The required path,

shown in Fig.5.20, includes three segments and the boundary conditions for

these segments are assumed fixed. The aim is to produce a trajectory whose

velocity curves give minimum peak values.

The first try is a five degree polynomial solution which is given in Fig.5.21.

The peak velocities and peak accelerations of this solution in the X and Y

dimensions are displayed on the figure. A second solution is obtained using

an arbitrary power polynomial; the resulting curves are seen in pjg.5.22. If

we compare the peak velocities of both solutions it can be seen that the

peak velocities of the arbitrary power polynomial solution are considerably

lower than for the normal polynomial solution. These values are given on

the motion curves. It is also observed that the peak accelerations for the

arbitrary power polynomial solution are ,in general, slightly lower than these

for the other solution. However, the peak jerks for the normal polynomial

solution are much lower that for the other. This outcome proves once again

that "nothing is for free".

Y-OOTPUT
BB

6B

48

2B

B

4B
Fig.S.20. The poth of the fourth example.
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Fig.S.lI. Motion curves of the fourth example by five-de ree lynomial .
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Fig.5.22. Motion curves of the fourth example by arbitrary power tyn mial.
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Example-5: This example demonstrates the meandering effect in a trajectory.

The general shape of the required path is seen in Fig.5.23 it includes four

segments. The normal polynomial solution creates a problem in the first

segment of the position curve for the X-axis motion. As seen in Fig.5.25(a)

the trend of the curve is required to be positive but contrarily it is negative

for a time then changes its direction and completes the motion of the

segment. This undesirable meandering action of the trajectory could be an

important problem for the designer especially if the boundary conditions

cannot to be changed. Hitherto, polynomial functions provided the only means

to satisfy a set of boundary conditions which could include position, velocity

acceleration and even higher derivatives such as jerk. In such cases the

trajectory could not have been improved further.

With the new option of using arbitrary power polynomial interpolation,

thousands of different curves can be developed for the same boundary

conditions. Thus, with this greater choice, there is an improved chance of

obtaining a better solution for the above case. In the second try the curve

is produced using arbitrary power polynomials and the position curve is

much better than the position curve which is produced with normal polynomiaJ

interpolations. See Fig.5.24. It is clearly seen that the position curve has no

meandering problem any more. Two different paths are given in Fig.5.25-26

to compare the net effect of arbitrary power polynomials.

-00 UT
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48

28

8

-za Z8 6. • 1118 UI•
Fig.S.23. Path includes meandering.

1-IIT",r

,·QHPYT

•

•
28

I

• 1118•
Fig.S.24. Path d 'linolud meanderin .
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Example-6: This example is given as an example of a difficult trajectory

for designing and implementation. The path of this trajectory is given in

Fig.5.27, where the design points are indicated by points. As seen in Fig.5.28,

the trajectory is divided into eight segments. The motion curves of these

segments are produced using 5-degree polynomial functions. The purpose of

the example is to achieve the specific shape of the path with smooth velocity

and continuous acceleration curves. The necessary boundary conditions are

given in Table 5.2.

TABLE 5.2 Constraints used for example 6

x-pos, x-vel, x-acc, x-jerk y-pos, y-vel, y-acc, y-jerk time no

0 0 0 -- 0 0 6 -- 0.000 1

30 1080 21617 -- 17 0 0 -- 0.070 2

105 0 0 -- 17 0 0 -- 0.150 3

110 0 0 -- 37 -125 -8600 -- 0.220 4

110 0 0 -- 35 -130 6021 -- 0.235 5

76 -117 0 -- 55 0 0 -- 0.315 6

105 0 0 -- 17 0 0 -- 0.410 7

43 -2050 34958 -- 17 0 0 -- 0.452 8

0 0 0 -- 0 0 6 -- 0.500 9

Y-OOTPUT
60

+

4D

20

a X-OOTPUT
a 2B 6B OB 11114B

Fig.S.27. The path of the sixth example.
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CHAPTER'
THE EXPERIMENTAL SYSTEM

6.1lntroduction

A prototype arrangement has been set up in order to understand the issues

and gain experience concerning the practical problems of trajectory tracing

with a programmable system. The importance of motion design on trajectory

tracing at high speed is also emphasized in the investigation.

A body motion' can be described as the motion of an object which moves

on aX. Y plane and also rotates around its own axis (6) perpendicular to

the X. Y plane. The prototype consists of a planar manipulator which was

initially planned to perform a body motion. This requires the manipulator

to have three degrees of freedom, which means the motion is controlled by

three actuators. The desired X. Y co-ordinate positions of the end-effector

were originally designed to be obtained by two servo motors with a third

servo motor controlling the orientation of the end-effector. However, due to

limitations with the available equipment only a two degree of freedom

manipulator could be built. Therefore, the manipulator has been designed for

X&Y position control without implementing the rotation of the end-effector

(6).

The servo motors are controlled by a multiple-axis servo motor controller

module. This is interfaced by an AT-PC machine using the DOS operating

system to perform I/O operations and provide communication interfaces. This

kind of control system is known as a bus-based control system.
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The system is a direct drive system which means the motors are coupled

directly to the load without the use of belts or gears. This enables high

speeds to be achieved and avoids the problems of backlash if geared drives

are used

The outline of a programmable system is discussed in this chapter. The

selection of a suitable mechanism for the system, its detailed design, the

control circuit used and the kinematic analysis employed form the main

subjects.

6.l Selection or the mechanism

There are numerous kinematic chains which are capable of producing planar

mechanisms whose output provides body motion. Udoakang [6.1] identified

some of these chains for three degree of freedom mechanisms and fonnalised

criteria to determine the optimum planar mechanism.

A selection of some of the many configurations for a planar mechanism

which provides body motion is shown in Fig.6.1. Two of these are particularly

suited for prototype development (Fig.6.1(a) and (b» because of the following

reasons:

The two mechanisms are efficient because they include simple chains of

links connected by revolute joints. The links can be built from light materials

in order to reduce their moment of inertia to a minimum. In general,

programmable systems do not have the capacity to regenerate energy because

of the non-uniform motion of the actuators. The higher the inertia of the

mechanism, the larger the size of actuator required to produce the necessary

input energy.

The other mechanisms require linear inputs which means rotational motion

has to be converted to linear motion using auxiliary components such as

screws or hydraulic elements which increase the cost and inertia of the

system.
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Fig.CS.l. Some mecbanlsms to perfonn abody motion. in a plane.
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If we compare the two mechanisms with each other, it can be seen that

both of them may have advantages and disadvantages. For example, the

five-bar mechanism has the advantage of a stiffer structure because it is

pivoted to the ground at two points, whereas, the other mechanism has the

advantages of a larger work-space due to its open chain fonn. In our case,

the criteria to select the desirable mechanism are fonnalized as follows:

(i) the end-effector should be able to move along any X-Y path

within the specified work space

(li) the mechanism has to be stiff to prevent possible oscillations at

higher speeds

(iii) the total moment of inertia of the moving elements should be as

low as possible because of the following reasons:

(a) to reduce the torque capacities and hence the motor sizes.

(b) to eliminate lower natural frequencies

(iv) the mechanism should be straight forward to manufacture.

Mer consideration of the above criteria the five-bar mechanism was selected

as the most appropriate mechanism for the manipulator.

6.3 Detailed design

A prototype has been designed and built to implement different planar motions

in the context of a computer controlled system. An isometric drawing of

the manipulator is given in Fig.6.2 where A and B indicate the axes of the

servo motor drives and the end-effector point is indicated by C. The distance

between the axes is 310 mm. Both cranks and both coupler links have the

same lengths which are 100 and 272 mm respectively. The links are made

of hollow carbon-fibre material to reduce the mass moment of inertia of the

manipulator. This material is very light by comparison with steel or aluminium

while still providing quite strong structures for the links. The dimensions of
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Fig.6.2 Isomelric drawing of lhe arrangemenl
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the links, width, depth and thickness, are large enough to prevent any

oscillation at the end-effector point. The technical drawings together with

the names of, and the material used for, the parts of the manipulator and

photographs of the arrangement are given in Appendix A.

Two aluminium bushes are used to fix the cranks to the shafts of the

motors. One end of each coupler link is pivoted to the two cranks using

journal bearings. The details of the pivots can be seen in the assembly

drawing (see Appendix A, Fig.I), The free ends of the coupler links are

pivoted to each other using a double lap joint in order to close the ma-

nipulator. To obtain the trace of the manipulator a pen holder is placed at

the centre of this pivot as shown in Fig.6.2.

The coupler links were initially pivoted to the cranks as shown below (see

Fig.6.3). This configuration of the pivots can prevent crashing of the ma-

nipulator, in the case of failure of the control software, by allowing full

rotation of the cranks to take place.

Fig.6.3. An unbalanced pivot Fig.6.4. A balanced pivot

149



However, such a configuration creates unbalanced moments on the manipulator

which can result in vibrations particularly at higher speeds. In order to

maximize the speed of the system the configuration of the pivots was later

rearranged to the balanced form shown in Fig.6.4.

6.4 Balancing of the system

Unbalanced masses on a mechanism create shaking forces and moments on

the drive bearings during the movement of the mechanism. The resulting

vibration will lead to an inaccurate tracing of the path of the end-effector.

For a proper control of the system, the shaking forces and moments on the

frames should be eliminated.

In general, a five-bar mechanism may be balanced as follows:

(i) First of all, the coupler links can be balanced by bringing their

centres of gravity to the crank-coupler joint centres by adding counterbalance

weights.

(ii) Similarly, the cranks can be balanced by bringing the centre of the

gravity of the cranks (including the weights of the coupler links at the

joints) to the pivot centres.

Fig.6.S. Balancing of a five-bar m hanlsm
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In others word, the mechanism can be balanced by bringing the centre of

gravity of the entire mechanism to the mid-point of the centre line joining

the two frame pivots as shown in Fig.6.S. (111e centre of the gravity must

be at the same point for every position of the joint angles)

These two steps assure the balancing of the mechanism in the X- Y plane,

however, the mechanism may have unbalanced couples in the X-Z plane or

Y -Z plane. In order to prevent unbalanced couples acting on the joints of

the mechanism the link ends must be interleaved so that the mass centres

of each link lies on its longitudinal axis and the bearings are placed at

equal distances about the coupler axes (see Fig.6.4).

The geometry of the carbon fibre links and the configuration of the joints

between the coupler links and the cranks do not allow counterbalance weights

for the couplers to be attached to these links. Therefore the manipulator is

partially balanced by attaching weights to the cranks only. This situation

may disturb the stability of the manipulator, but the very light material used

for the construction of the links may compensate for this imbalance.

6.5 Kinematic analysis

The joint angles of the manipulator are required to be found for given

numerical values of the end-effector coordinates in a Cartesian plane. The

problem of solving the kinematic equations of a manipulator is nonlinear.

Because of the nonlinear set of equations, the existence of solutions, multiple

solutions and the method of solution must be considered.

The existence of a solution depends on the work-space. A work-space for

a planar manipulator can be described as the area within which the

end-effector can move. Following this definition, we can say that a solution

exists if the desired positions lie in the work-space.
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Another possible problem in solving kinematic equations is the existence of

multiple solutions. Fig.6.6 show four possible modes for the same mechanism

which satisfy the same desired point in a Cartesian plane but each with

different joint angles.

Multiple solutions may cause problems because the system has to be able

to choose one of them. Relevant criteria may vary according to the situation

but a very reasonable choice would be the closest solution to the previous

joint angles. Another method would be to determine all the possible modes

of the manipulator and to choose one of them to define the working area

for the manipulator. The motion of the manipulator can then be restricted

to lie within this working area of the selected mode thereby precluding other

multiple solutions.

To achieve this end, the boundaries of the mode can be specified by

corresponding maximum and minimum values for the joint angles. As seen

from Fig.6.6, the permissible joint angles vary with respect to the position

of the end-effector, however, the important criterion is that the cranks and

their coupler links must not pass through a collinear position for any set

of joint angles. More specifically, (sec Fig.6.7), the angles (ABP) and (PCD)

must be less than or equal to 180 degrees.

In this applicetion, the mode of the manipulator is selected as that shown

in Fig.6.7 because the manipulator with this configuration normally has better

transmission angles that those for the other modes.

Mathematical relationship: The arrangement of the five-bar manipulator is

shown in Fig.6.7. The angular positions of both cranks (EH, e2) can be

calculated in terms of the position of the end-effector P and the link lengths

of the manipulator (aO, al , a2, a3 a4). The manipulator is divided into

two parts to simplify the analysis and each part will be handled independently.

The crank al and coupler link a2 and the point P determine the first half

of the manipulator. Similarly the other half is detennined by the position

of P, the second coupler link a3 and the second crank a4.
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y

P(X,y)

Pig.6. 7. Detailed five-bar manipaJalor

There is no general algorithm which may be employed to obtain an inverse

solution for a manipulator, however, the angular position of the cranks in

this case can be calculated using geometric relationships of the links of the

manipulator. The evaluation of equations for the joints angles for a five-bar

manipulator with reference to Fig.6.7 is given below:

(6.1)

(6.2)

From the Cosine theorem applied to triangle ABP
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(6.3)

(6.4)

61- rH +6b (6.5)

61 is valid if angle (ABP) ~ 180 degree.

Where 61 is the angular position of the first joint.

Using a similar relationship we can calculate the angular position of the

second joint.

(6.6)

(6.7)

Considering the triangle (DCP);

a32 - c2 + a42 - 2*e*a4* Cos(fl2) (6.8)

(6.9)

64 - 6e - fl2 (6.10)

64 is valid if angle (DCP) ~ 180 degree.

Where 64 is the angular position of the second joint.
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6.6 Control circuit

A typical motion control system can be represented in block diagram form

as shown in Fig.6.S. In such systems, the control algorithm can be divided

into two levels. The first level of control involves profile selection, the

generation of the motion commands and the co-ordination of the motion

with overall process control. The next level is the trajectory control. The

motion controller closes the position loop around the servo motors by sensing

the positions of the motor shafts with incremental encoders. The positions

are decoded and compared with the command positions, the difference forming

the position errors. The error signals are processed by a stabilizing filter.

The outputs of the filter are then amplified by the servo drivers before they

are applied to the motors.

aENI!~"TOII

HOlT

PlIoenlOIl

ITAIllIZINQ

I'ILTEII

'----I I'OIITION

OECODU
POSITION

Fig.6.S. Block diagram for a motion control system

The control circuit of the arrangement used in this investigation consists of

the following components:

(i) a PC-AT compatible 80386 16-bit 20 Mhz computer (MITAC)

(ii) Two 'Electro Craft S-series' permanent magnet synchronous motors

which have integral mounted optical encoders
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(iii) two servo digital drivers (BRU-SOO) whose control circuitry utilizes

a 16-bit microprocessor

(iv) a servo motor controller module (Warwick Computer Designs).

In the following sections, some of basic components which constitute the

hardware of a general servo system are described. The main part of the

system is the controller which converts the digital infonnation for each point

of a trajectory into an analog signal. These signals are in the form of

voltages which are sent to the servo drives as pulses which are transmitted
at regular intervals in order to control them. The job of the servo drive is

to draw electrical energy from the mains (at constant voltage and frequency)

and supply electrical energy to each motor at whatever voltage and frequency

is necessary to achieve a desired motor output. A servo motor is actually

a de-motor but with the inertia of the rotating parts minimized to provide

for rapid changes in acceleration. The feedback element is the other important

part of a servo system and this is usually attached to the servo motor. The

controller can read the position or velocity from the feedback element and

modify the command signal to prevent an error between desired position

and actual position or the rotor.

6.6.1 Servo motor controller module

The controller module is the most functional part of a servo system. It

converts a desired set of data, usually the positions or velocities of a

trajectory, to analog signals mostly in the range of (-10,+10) volts. The

outputs from the controller module are used as command signals for the

servo motors after amplification by the amplifier.

Modem controller modules generally interface with a computer. They can

be inserted into slots available on most computer expansion boards. There

are numerous controller modules available commercially most employing
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proportional-derivative (PD) or proportinal-integral-derivative (PID) control

methods. ID the following sections the controller module used for the ex-

perimental system is described.

The controller card is a general purpose motor controller capable of con-

trolling up to three axes. It provides position and velocity control for de,

dc-brushless or stepper motors. The system block diagram and internal block

diagram of the controller card are given in Fig.6.9 and Fig.6.10 respectively.

The controller receives the input command from the host processor and

position feedback from an incremental encoder with quadrature output. The

controller then compares the desired position to the actual position and

computes compensated motor commands using a programmable digital filter

which continues trying to achieve the desired position until a new command

is received from the host processor.

Fig.6.9. System block diagram of HCTL-lOOO (Warwick board).

a) va interface

The controller card assumes that the host proc or is a b nk of 8-bit

registers and the values of these registers can be chang d by th ntr 1

software at any time. The data in these registers controls the operation of
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the card. The host processor communicates to the controller over a bidi-

rectional multiplexed 8-bit data bus. Four I/O control lines execute the data

transfer.

It is important that the host computer does not attempt to perform too many

I/O operations in a single sampling period of the controller. Each I/O

operation interrupts the execution of the controller card·s internal code for

one clock cycle. However, for every unit increase in the sample time register

above the minimum limit the user may perform 16 additional I/O operations

per sample time.

PROFILE GENERATORt--l

I

r·······
:

i
r-CONfIGU--RAn-o"""'1N .J
REGISTERS 1

I _ _..
.--_I..-o-_} • r-rr:-::=-=-~ __ ---,

OOMMUTATOR fIHA ... HD
.----114 PORT

COMMANO
VELOCITY

DIGITAL

FILTER

A-PROPORTIONAL VELOCITY
CONTROL MODE

Pig.6.10. HCI'L-lOOO controller's block diagram.
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hI Encoder interlace

The controller card accepts TIL compatible outputs from 2-channel incre-

mental encoders. Channels A and B are internally decoded into quadrature

counts which increment or decrement the 24-bit position counter. For example,

a 2000-c0unt encoder is decoded into 8000-quadrature counts per revolution.

The position counter will be incremented when channel B leads channel A.

The controller card employs an internal 3-bit state delay filter to remove

any noise spikes from the encoder inputs to remain stable for three con-

secutive clock raising edges for an encoder pulse to be considered valid by

the controller's actual position counter. The user should therefore generally

avoid creating encoder pulses of less than 3 clock cycles.

cl Diiiral filter

The controller card is not a PlD controller, however, it uses a digital filter

D(z) to compensate for closed loop system stability. The compensation D(z)

has the form:

K*(Z -~)
D(z) - ( B )4* z+-2S6

where

z - the digital domain operator

K - digital filter gain

A - digital filter zero

B - "digital filter pole

The compensation is a first-order lead filter which in combination with

sample timer T affects the dynamic step response and stability of the

control system. The sample timer T determines the rate at which the control

algorithm is executed All parameters At Bt K and T are 8-bit scalars that

can be changed by the user at any time. The implementation of the digital

filter in the time domain is according to the rule below:
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where

n - current sample time

n - 1 - previous sample time

MCII - Motor command output at n

M CII-I - Motor command output at n - 1

XII - Actual command position at II

XII-1 - Actual command position at II- I

The content of this register sets the sampling period of the controller. The

sampling period is:

t - 16(T + 1)( I )
frequency of the external clock

where T-register value

There are two options for the frequency of the external clock. Its jumpers

can be set either to I-MHz or 2-MHz. The sample timer has a limit on

the minimum allowable sample time depending on the control mode being

executed. The limits are given below:

(i) Position

(ii) Proportional

Control (T-7)

Control (T-7)

(iii) Trapezoidal Profile Control (T-IS)

(iv) Integral Control Mode (T-IS)

The maximum value of T is (256). With a 2-Mhz clock, the sample time

can vary from 64 micro seconds to 2048 micro seconds. With 1-Mhz clock

the sample time can vary 128 micro seconds to 4096 micro seconds.
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Digital closed-loop systems with slow sampling times have lower stability

and lower bandwidth than similar systems with faster sampling times. To

keep the system stability and bandwidth as high as possible the controller

should be programmed with the fastest sampling time possible.

6.6.2 De-motors

There are many different types of dc-motors which may be used to provide

motion for a programmable system, however, most of the basic types are

described below.

a) steJ/per motors

Stepper motors can be controlled by a microprocessor or programmable

controller. Their unique feature is that the output shaft rotates in a series

of discrete angular intervals or steps, one step being taken each time a

command pulse is received. When 8 definite number of pulses has been

supplied the shaft will have turned through 8 known angle and this makes

the motor ideally suited for open-loop position control.

Stepper motors have the benefits of low cost, simplicity in construction and

high reliability. They are simple to drive and control since they do not have

feedback components and therefore work with an open-loop configuration.

They can provide high torque at low speeds (4-S times the continuous torque

of a brush servo motor of the same size). There are different types of

stepper motors but the most widely used type is the pennanent magnet

motor.

The main drawbacks of stepper motors include resonance effects and relatively

long settling times, rough performance at low speed and positional errors as

a result of the open-loop system. The resolution of the rotor angle is normally

in the range 1.8-90 degrees which is low in comparison to the resolution

of servo motor encoders (1-0.0001 degrees).

162



b) Dc-servo motors

The structures of servo motors are similar to conventional dc-motors, however,

servo motors are more suitable for use in applications which require rapid

acceleration and deceleration. Servo motors are usually driven under the

control of de-drives that provide varying voltages for the motors, thereby

allowing the motor position and speed to be controlled. Servo systems

comprise closed-loop systems since they incorporate feedback components.

In order to achieve exact position and speed control the feedback information

can be used to tune the gains of the system.

c) DC-brushless servo motors

These type of servo motors behave in a similar way to dc-brush servo

motors, but they have additional features. In the brushless motor, the con-

struction of the iron cored motor is turned inside out, so that the rotor

becomes a permanent magnet and the stator becomes a wound iron core.

The other advantages of the brushless motor is the elimination of conventional

commutator which is source of wear and frequent maintenance. Additionally,

they usually incorporate an integral high resolution position sensor. They

also give high torque-to-inertia ratios and hence provide high acceleration

capabilities.

d,) Hybrid servo motors

These motors have the advantages of both servo and stepper motors. They

work in a closed-loop system since they have feedback components and can

produce high torques because they are stepper motors. Also, hybrid motors

have other advantages of stepper motors, for example, they are reliable,

cheap and easy to control. Hybrid servo motors can be driven in precisely

the same fashion as servo motors but with low resolution due to the step

angles involved.
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6.6.3 Servo drives

Amplifiers for both brush and brushless servo motors are either analog or

digital. Analog drives have been used for many years but digital drives are

a relatively recent innovation.

In the traditional analog drive, the desired motor position or velocity is

represented by an analog input voltage usually in the range of + 10 volts.

Full forward velocity is represented by +10 volts, and full reverse by -10

volts. Intermediate voltages represent velocities in proportion to the voltages.

Various adjustments needed to tune an analog drive are usually made by

means of potentiometers.

The digital controlled drives are the alternative to the analog drives. These

drives work in a similar way to analog drives, but they are easier to use

and can be tuned by sending data from a terminal or computer.

Servo drives may operate with different modes of control and each control

mode has a different methodology. The control modes and their purposes

are described briefly below:

a) Current control

The purpose of the current controller is to make the actual motor current

follow the current reference signal, therefore, the motor current will be always

under control.

b) Torque control

For some applications the motor may be required to operate under specific

torque values regardless of speed and position. For example, in a wire

drawing operation the diameter of the wire is inversely proportional to the

applied torque developed by the driving motor. A high torque value is
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necessary for small diameter wires, whereas large diameter wires require a

low torque value. However, the important requirement is to keep the torque

value constant in order to maintain a unifonn wire diameter.

cl Speed control

The system operates under the speed feedback provided by a tachogenerator.

In this mode of control the difference between the actual and desired speed

is amplified, for example, if the actual motor speed is less than the desired

speed, the speed amplifier will demand current in proportion to the speed

error, and the motor will therefore accelerate in an attempt to minimize the

speed error.

"".4 Feedback sensors

Servo motor driven systems use different types of feedback sensors to close

the loop and determine the joint position or velocity. These feedback sensors

can be classified into groups according to the type of output signal.

a) Positional feedbac/c seusors

There are three primary positional feedback devices which are the poten-

tiometer, the resolver and the optical encoder. The potentiometer is a variable

resistor that provides an output voltage proportional to the angular position

of the shaft. The resolver uses magnetic coupling between transfonners to

measure rotation. Optical encoders comprise absolute and incremental types.

In both types a beam of light is interrupted by radial slots on a rotating

opaque disc to determine position.

bl Velocity feedback sensors

The tachometer is a device whose output voltaie is proportional to motor

angular velocity. This can be used in a feedback loop to provide velocity

control.
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CHAPTER. 7

TRAJECTORY TltACING

7.1 Introduction

The second stage of the control scheme for programmable systems is tra-

jectory tracing for which some control techniques are applied in order to

obtain acceptable results from a system. When a desired signal is applied

to a servo-system it responds in a characteristic fashion. The physical features

of the actuators and the gain setting of the controller are the main parameters

that determine the response of the system. The optimum gain values can be
determined by developing a mathematical model of the system or by applying

an appropriate experimental method. Controllers with fixed gain values are

effective for many conventional processes such as pick and place tasks using

slow speed manipulators. However, there are several cases where precise

tracing of a fast trajectory under different payloads requires more advanced

control techniques to ensure stability of the process where fixed parameter

control is completely inadequate. These cases require continuous tuning of

the controller [7.1].

Adaptive and learning control are two important methods of advanced control.

Self-tuning and model reference adaptive control are two different techniques

in adaptive control. In both approaches, the main idea is based on continuous

tuning of the gain values of the controller using a dynamic model of the
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system. However, learning control is based on tuning the input for the system

using the experience of past responses of the system when executing repetitive

tasks.

In this chapter, the determination of initial gain values of a controller for

a closed loop system is explained. Different adaptive learning techniques to

minimize the error between command and response are examined and dis-

cussed. In particular, the development of a new approach for leaming is

presented in detail. It has been implemented on-line for the improvement of

trajectory tracing for several examples and quite satisfactory results have

been obtained.

The main subject of the work. trajectory planning, is shown to have an

important bearing on trajectory tracing. It is shown experimentally that the

prototype gives better responses for a trajectory which is planned carefully

with high order smoothness, low peak velocity and low peak acceleration

than a trajectory planned more conventionally.

7:J.Control techniques

Advances in microprocessor technology have made digital control more at-

tractive then before. Digital control methods offer many advantages compared

with analogue control. They allow complicated control laws to be implemented

and the resulting system performance to be much more accurate [7.2].

The dynamics of a manipulator can be characterised by a set of highly

coupled nonlinear differential equations. Based on such dynamic models, the

control of manipulators has been extensively studied in recent years and two

control design approaches have been proposed, non-adaptive and adaptive

control [7.3]. Non-adaptive control is based on an exact knowledge of the

complex system dynamic equations. In other words. if the dynamics of the

process and the characteristics of the disturbances affecting it are known,

then the controller which will yield the desired performance can be designed.

However, this model usually needs more complicated control structures. thus
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incurring higher costs when put to practical use. Many parameters effect the

accuracy of the dynamic model such as link inertias, mass centres, friction

and air resistance etc. Some of these are WlCCl'tain and change with time

and therefore cannot be obtained exactly in advance. The explicit use of

these parameters may degenerate the control perfonnance and may lead to

instability.

In order to solve this problem, some adaptive control schemes for ma-

nipulators have also been proposed. Adaptive control has become one of the

most popular techniques in modem automatic control. An adaptive controller

can alter its behaviour in response to changes in a process and dynamic

disturbances unlike, an ordinary feedback system whose control action remains

fixed. Adaptive control can be defined as "a control system which con-

tinuously and automatically measures the dynamic characteristics (such as the

transfer function or state equation) of the system, compares them with the

desired dynamic characteristics, and uses the difference to modify the signal

so that the optimal performance can be maintained regardless of the envi-

ronmental changes; an alternative to such a system may continuously measure

its own parameters so as to maintain optimal performance regardless of the

environmental changes" [7.4]. One of the basic features of adaptive control

is that the system must have its own self-organizing features, if the adjustment

of the parameters is done only by direct measurement of the environment,

the system is not adaptive. Iterative leaming is another type of control which

has been applied in recent years. Its simplicity and effectiveness have made

it popular. It has great advantages over adaptive control approaches par-
ticularly if the system is driven at high speeds. In the following sections

two basic approaches using adaptive control schemes together with a new

scheme based on iterative leaming are discussed.

7.2.1 Self-tunilll

A recent development gaining increasing importance is so-called self-tuning

control. This is an adaptive control method designed to control a process
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(see Fig.7.1) which mayor may not be contaminated with noise and wh e

parameters are unknown but are either constant or varying slowly with tim

[7.5]. Unknown parameters can be estimated using a parameter identification

algorithm such as the recursive least squares method. As soon as n w

parameters have been obtained they are employed in a controller synthesis

stage which produces the coefficients of the controller (gains). For example,

these parameters correspond to proportional, integral and derivative gains if

the controller is based on a PID control system.

(Design) 1I (modelling)I
Synthesis r--J Parameter
rule ® Identifier .~

(Implement ~on)

r ®- Controller(3j u y
System

Fig. 7 .1. Self-tuning controller.

Once the new control input has been calculated by means of th contr 11r

parameters, and applied to the system, then the algorithm waits for th n xt

sampling pulse before taking another input value and repeating the param t t

estimation process. To ensure good stability and convergenc char ct ri i ,

certain conditions must be satisfied and a number of assumpti n

made about the process and its environment [7.6]. Specific 11y, th ic

aim of self-tuning control is the automatic adjustment of the f

a digital controller to meet a particular requirem nt with th minh urn

compulsory knowledge of the dynamic state of a contr 11d pr [7.7 .

This is done through the adjustment of the coeffici nts of the c rre ndin

controller.
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In order to simplify the design procedure for a self-tuning system, the

principal stages can be sequenced as follows:

IlModeUini: The dynamic model of the system (manipulator) is formed at

this stage. Most of the parameters of the model are unknown apart from

the input and the output for the system. The unknown parameters are then

estimated using a parameter estimation method.

2)Desiin: The mathematical model is manipulated in order to synthesize the

controller using one of the design methods, such as pole assignment control,

minimum variance control etc. The design stage is completed with the

determination of the coefficients of the controller.

3 )Implementation: The coefficients are directly implemented to the controller

to maintain a required performance.

Self-tuning can be divided into two fonns: explicit and implicit control. Both

schemes require a valid digital model to represent the system under control.

In explicit control, the parameters of the system are directly estimated. Then,

the controller parameters are computed based on the selected control law,

and on the digital system model. On the other hand, with the implicit

method, the controller parameters are in~ctly identified. Hence, the implicit

method requires less computational effort as compared to the explicit method.

Since the parameters are calculated in real time, the saving in computational

time is important in fast response applications [7.8].

The adaptive controller, based on a least squaros estimation method, was

rust described by Kalman in 1958 [7.9]. A similar controller, based on least

squares estimation and minimum-variance method, in which the uncertainties
of the estimation were considered, was published by Peterka in 1970 [7.10].

However, the rust actual self-tuning controller was introduced by Astrom

and Wittenmark in 1973 [7.11].
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There are several new methods for self-tuning and they can be classified

into the following three groups:

(i) general pole placement self-tuning (OPP)

(ii) self-tuning robust controller

(iii) hybrid self-tuning.

For more information about these methods the following publlcatlons are

recommended [7.12]-[7.20]

Despite its advantages, it has also been found that in some cases self-tuning

may introduce problems. For example, the response of a system with an

offset between the command and the response can be a major problem with

self-tuning [7.12] and [7.21].

7.2.2 Model reference adaptive control (MRAC)

Model reference adaptive control is another approach to adaptive control.

The aim is to express the desired performance in terms of a reference model,

which specifies the desired response of the control system. The feedback of

the system is used to calculate the error which is the difference between

the model output and the system output. The parameters of the controller

are adjusted according to the adaptation rule and the error. The overall aim
is to tune the controller so that the system output follows the reference

model output closely. Fig.7.2 illustrates this approach.

The model reference adaptive method is a general approach for adjustins

the parameters of a controller so that the closed-loop transfer function will

be close to a prescribed model [7.22]. The performance of the model is

described by a mathematical model which may be linear or non-linear. The

parameters of the model may be unknown in which case they can be

estimated similarly to those given for the self-tuning method. This model

can be solved using a digital controller design method such as pole placement

design •.The new parameters are then adjusted in order to minimize the error.
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(Dulgn)

Ym

r

Pig. 7.2. Model reference adaptive control.

The following design procedure can be fonnalized:

Y

1)ModeUing: The dynamic model of the reference model is fotmed at this

stage. Most of the parameters of the model are unknown and they are

estimated by using a parameter estimation method.

2 )Desien: The mathematical model is manipulated in order to synthesize the,

controller using one of the available design methods, such as pole assignment

control, minimum variance control etc. The design stage is completed with

the determination of the coefficients of the controller.

lJlmplementation: The coefficients are directly implemented to the controller

to maintain a required perfonnance.

The MRAC technique was first proposed by Whitaker [7.23]. Several

modifications were later proposed for MRAC in following studies. These

may be divided into three main approaches. The fJrst is Whitaker's approach

which is often called the MIT rule since the work was done at the In-

strumentation Laboratory at MIT. The MIT rule has been very popular due
to its simplicity in practical implementation, although it may require a large

number of sensitivity filters for multiparameter adjustments [7.24). The need

for sensitivity filters is avoided in the investiaation by Dressler [7.25].
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Another rule is suggested by Butchard and Shackcloth in which the Lyapunov

function is used to satisfy the system conditions [7.26]. The main advance

of this approach is that system stability is guaranteed for all inputs. However,

the entire state vector must be available for measurement which it is often

not possible [7.25].

Passivity theory is another approach for MRAC, as suggested by MonopoU

[7.27] in which the number of differantiators is reduced in order to modify

the adaptation mechanism.

7.2.3 Learning

In general, it is very difficult for a programmable system to follow a desired

trajectory perfectly due to the existence of dynamic interferences among the

mechanical links and other unknown disturbances. To overcome these

difficulties, control methods such as self-tuning and reference model adaptive

control can be considered. However, these methods require a series of

calculations to be made, for example, parameter estimation for the dynamic

model and the determination of gain values for the controller. The complexity

of the adaptive control algorithm limits the real time use of the adaptive

control approach in a trajectory tracking control task especially for systems

which are required to follow trajectories at high-speeds. In addition, such

approaches are found to be inappropriate when handling trajectory tasks since
adaptive control does not guarantee that the system outputs meet the desired
values along the entire length of the trajectory, due to the asymptotic

convergence property [7.28].

Iterative learning provides a new approach for the control of repetitive

programmable machine systems. The method can be easily applied to systems

which are non-linear and time variant for which even the mathematical model

is unknown. The block diagram for the learning control is illustrated in
Fig.7.3. In this scheme, the inputs for the system are tuned systematically

until the desired outputs from the system are achieved. To do this, the
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inputs for the present cycle are modified using the experience of the previous

cycle, therefore the method is called Hleaming". The learning operation

continues until the response approaches the desired output within an acceptable

tolerance band. Unlike adaptive control, a dynamic model of the system is

not needed and the parameters of the controller are not changed. As a

consequence, leaming control can be applied more easily in real time for

high-speed systems.

~=.:..,~}
~ ·Ic-i J System I y

'I 1

Pls.7.3. I..eamirlg control.

The common feature with adaptive control and learning is that the

modification of the input is based on the output of the system for both

methods. However, there are also some important differences such as the

requirement in adaptive control to adjust the parameters of the controller

whereas in learning control the input command only is adjusted. Adaptive

control also needs a mathematical model of the system which it is not the

case in learning control.

Leaming control has been suggested by several authors [7.29]-[7.33]. But,

it was originally developed by Arimota and his colleagues for pm type

controllers [7.34]-[7.36]. Although the method has many advantages over

other approaches it may suffer from saturation problems for the actuators

after a few cycles depending on the complexity of the trajectory being
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followed [3.1] and [3.2]. In this investigation, a learning method is proposed

that is based on Aritomo's iterative learning method, however, the method

is modified in order to prevent saturation of the actuators occurring.

AB mentioned before, the gains of the controller are constant for learning

control. However, the response of the system is directly related to the values

set for the gains. In practice, the gains are initially preset to some values

for the standard controller, however they are not the best values since the

gains depend on the dynamics of the driven mechanism. Thus, the parameters

of the controller have to be initially adjusted in order to get optimum

performance from the system and so to reduce the number of learning cycles.

This process is known as tuning.

7.2.3.1 Tuning the gains or the controller

Most controller modules for closed loop servo systems are usually based on

PID (proportional, integral and derivative) systems. The parameters of these

controllers can be tuned in order to force the system to follow the command

closely. Tuning can be described as the process of adjustment of the gains

of a servo system in order to decrease the error between input and output

without running into instability. In general, the values of the gains determine

how hard the system tries to reduce the error. A servo mechanism and its

load both have inertia which the motors must accelerate and decelerate while

attempting to follow a change in the input. The inertia effects will tend to

result in over-correction, with the system oscillating either side of the target

(see Fig.7.4). This oscillation must be dampened but too much damping will

cause the response to be sluggish. Therefore, the gains of the system should

be adjusted to achieve the fastest response with little or no overshoot for

proper tuning.

It is commonly the case that once they are tuned manually the parameters

remain constant with respect to time, and this is often found to be sufficient

to produce a reasonable control action. The initial values for the gains can
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be determined by deriving a mathematical model of the system as in adaptive

control and then applying one of the control system design methods such

as root locus, compensation or frequency response. However, if the math-

ematical model is too complicated an analytical approach may not be possible.

Then the designer must apply an experimental approach to detennine the

gain values.

OUTPUT

/

Underdamped response

r: Ideal response
/ Crltlcal .... pan ..

~ Overdamped response

TIME

Pig.7.4. Response of. system Wlder dltTermt damping factors.

Each gain makes a different contribution to the overall reduction in the

amount of the error. For example, in a PID controller the proportional gain

affects the positional error of the system. Also, it controls the overall response

of the system and the magnitude of the positional following error. The

integral gain controls the positional error of the system in the steady state

condition, as well as affecting the final accuracy and stiffness of the motors.

Finally, the derivative gain controls the positional error due to the velocity

of the system and also it controls the damping affect of the motor shafts
due to high acceleration rates.

Ziegler and Nichols [7.37] proposed rules for detennining values of the gains

for PID controller based on the transient response characteristics of a given

system. They aimed at obtaining a 25% maximum overshoot for a step

response. The response of the system for a unit step can be obtained

experimentally. If the system has neither integrator(s) nor dominant com-
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plex-conjugate poles, then such a unit-step response may look like an S-shaped

curve [7.4], as shown in Fig.7.S. The S-shaped curve may be characterized

by two constants, the delay time L and the time constant T. These two

constants can be obtained graphically by drawing a tangent line at the

inflection point of the curve. The interval between the origin of the

co-ordinate axis and intersection point of the tangent line with the time axis

gives the time delay L. T is the interval which starts from the end of the

time delay and ends at the intersection point of the tangent line with the

line c(t)-K as shown in Fig.7.2. In the Ziegler-Nichols method, it is rec-

ommended to set the values of proportional gain-1.2T/L, integral gain-2L

and derivative gain-O.SL

K
__,. tangent line at inflection point

C(t)

t

L

Pig.7.S. Response of a systemfor a unit step-input withoutbltepor and complelt • con.Iuaate.

In the prototype used for this investigation the controller was not based on

PID control and there were therefore no established guide-lines for the initial

tuning of the gain values of the controller. Despite this, a method based on

trial an error was applied to tune the gain values of the controller and a

satisfactory result was obtained. After the tuning operation, the resulting

response of one of the servo-motors for a unit step input appeared as shown

in Fig.7.6.

For this step-response the following parametets were used:
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Digital filter gain, K - 50

Digital filter zero, A - 256

Digital filter pole, B - 250

Sample time, t - 416 microseconds

140 OUTPUT

-
- r-.

I
~...."'"

-
-
l- I
l- f

TIME

uo
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80
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20

0.0

0.00 0.03 0.06 O.OG 0.12 0.16

Fig.7.6. Response of • servo motor for • &tep-input.

7.2.3.2 Iterative learnin& control algorithm

Using the Lagrangian formulation, the dynamic equation of a manipulator

which has n joints driven by n actuators, can be expressed by

l{e)ij +N{e. 8) +G(6) - u (7.1)

Where

I - manipulator inertia matrix

6 - vector of joint co-ordinates

N - matrix of manipulator Corion. and centrifugal coefficients

G - vector of gravitational coefficients

u - vector of joint torques

The input for the system u can be determined by calculatina the above

parameters where the joint angles and their derivatives are calculated either

using the motion equations of the end-effector or using co-ordinates which
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are pre-planned and stored in a data base using the motion design software.

However, there may be still a small deviation of the system response with

the desired motion due to friction and other unknown disturbances. Therefore,

an additional term e(O) must be introduced to the control function in order

to reduce this deviation. Arimoto's leaming algorithm [7.34] is based on

this additional term. This term is calculated from the difference between the

previous response and the ,reference input. The above control function then

can be rearranged to

1(0)6 +N(O, 6) + G(O) + e(O) - u (7.2)

This equation is used in adaptive control in order either to calculate the

parameters of the controller or to calculate the input torque values of a

system that is under torque control. However, the dynamic equation of the

manipulator is not necessary when using learning control and inputs for

learning control can be directly calculated from the end-effector trajectory.

The learning algorithm for position control can be simplified in the following

way:

u; - ",,_I + e (7.3)

Where

u - position input for actuator in terms of encoder counters

e - error factor is based on the experience of the previous cycle.

The error factor e is expressed [7.36] as:

(7.4)

Where

r - reference input (desired output)
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y - actual output of the system

A - learning gain where 0 < A< 1

n - index for cycle number.

Since the cycle includes a number of data the algorithm can be rewritten

for each data point of the trajectory as:

",.., - "II -I.' + 'A/..." - y,. -I,,) (7.S)

Where

i-index for data number in a cycle.

The effectiveness of the above learning algorithm depends on the selection

of the learning gain. The servo motors of the system may achieve a saturation

point after a few learning cycles if the learning gain is improper [7.38],

[3.1] and [3.2]. However, it is observed experimentally that whatever the

gain values, the servo motors achieve saturation after 7-10 cycles.

The main reason for the saturation of the actuators is abrupt changes in the

shape of trajectory after tuning using the learning algorithm. For example,

the motion curves of Fig.7.7 are produced from a polynomial function and

the curves are smooth and continuous up to the acceleration. The position

curve of this trajectory is used in order to control the system and the above

learning algorithm is applied to tune the position curve in order to obtain

the desired response from the system. In this case, the learning gain value

is selected as A- 0.3 and the speed of the system is 150 rpm. After nine

cycles of learning the tuned command (dashed) curve is obtained as shown

in the figure. It is obvious that this learning algorithm is a simple addition

and subtraction. As a result of this calculation, the smoothness of the position

curve is disturbed. Since even small discontinuities in the velocity curve

may cause extremely large changes in the acceleration curve saturation will

result no matter how large the actuator sizes.
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560 OUTPUT (Encoder counters)

INPUT-1~~------'_------'_------~------~------~
0.00 0.08 0.18 0.24 0.32 0.40

Pig. 7. 7. Saturation of an actuat<X' after nine teaming cycles.

In order to prevent saturation, the inputs must be filtered after each application

of the leaming algorithm using a digital filter. A digital (titer can be described

as a process that generates a cleaned output from a contaminated input. The

purpose of filtering is to remove extraneous components from the input, for

example, extraneous noise can be easily cleaned from data by a filtering

operation. Some other curve fitting methods such as least mean squares can

also be used to re-smooth the inputs, but curve fitting methods either give

unique solutions which may not match the delicate turning points in the

required curve or they may need more calculations than for a filtering

operation. Filtering is simple and can produce various outputs when different

cut-off frequencies are applied.

Non-recursive and recursive filters are commonly used digital ftlter types. A

non-recursive filter is a function of the given inputs producing its output

by simply weighting the inputs by constants and then summing the weighted

inputs. The constants are called coefficients and these determine the filter.

However, a recursive filter is not only a function of inputs, but also dependt

on the past outputs. In this study a non-recursive filter has been applied

for data smoothing. A non-recursive filter can be expressed as [7.39]-[7.41]:

(7.6)
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Where

Cl; = coefficients of the filter

m • half length of the filter

i • index for filtered data

k - index for filter coefficients.

Fig.7.8 is given to explain more easily the algorithm of a non-recursive

filter, As seen in the figure the length of the filter is 2m. A longer filter

generates more faithful output because it uses more data. However, since

the operation is required in real time the number of the coefficients must

be restricted. The coefficients of the filter are detennined as [7.38]:

1
C --I; 27t

where

.r---- Length of the filter ---'+
UI+m InputIIUIon1 U~t U. UI+.

x x x Multtplyx x
Cot C. 0, Cm Coefflolents

u. Output

Pig. 7.8. Nem-reclUSive mterlna alg<rithm.

- ..!.Sin(ID k)be e
(7.7)

IDe - cut-off frequency for the filter (rad/s),

Computing the zeroth term is sensitive because both the denominator and

numerator are zero. It is determined as:
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(7.8)

The length of the filter depends on the applied cut-off frequency. It can be

determined from the following equation:

(7.9)

The summation term in equation (7.9) may not always be equal to one.

Therefore, the summation is continued until the value is greater or equal to

one. However, an error results if the summation is not equal to one. Therefore,

a remainder term is used to compensate for this error.

III

R - 1: Cl; -1
1;--111

(7.10)

Hence, the filter equation becomes

(7.11)

An application of filtering to the noisy data set used in Fig.7.7 is illustrated

in Fig.7.9.

INPUT.1400 L.- "-- .._ -'- -'- -J

0.00 0.08 0.18 0.24 0.31 0.40

Pig.7.9. Piltering of. noisy data.
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As seen from the figure the filter produces quite smooth outputs. In this

particular example the filtering is applied to data which is the output of the

system after nine learning cycles. Normally, the filtering operation is applied

after each learning cycle. Therefore, the output of the filter will be much

smoother in a real application than that seen in the figure. In this example,

the cut-off frequency was selected as 16 rad/s.

The learning algorithm is combined with the above fIltering algorithm in

order to prevent saturation of the actuators. The following algorithm is then

obtained:

/ R (7.12)

In order to clarify the process of learning control two three-dimensional

graphs are used (see Fig.7.10 and Fig.7.11). The first graph shows the

improvement of the tracking error cycle by cycle for one axis of the

manipulator. The actual motion of this axis can be seen in Fig.S.13(a).

Nonnally, the axis responds to the command with an error shown in the

first cycle in the graph. However, the error of the axis has been reduced

dramatically by learning control. The maximum value of the tracking error

is about (lO-lS) encoder counts after S3 learning cycles. The encoder res-

olution is 8000 counts/cycle. Despite the high speed of the manipulator (160

rpm) and the large number of learning cycles, saturation is not observed.

The second example is given to compare the response of the system for

smooth and difficult motions. This graph displays the tracking errors of the

same axis but the command curve is much smoother then the command

used in the first example. The actual command for this axis can be seen

in Fig.S.1S(a). Both examples have the same speed and the sizes of the

paths are similar however the tracking error is modified in 21 learning
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cycles. Normally, a few learning cycles (8-10) are enough for reasonable

tracking, but it can be continued for several additional cycles to achieve

more precise tracking.

7:J System control software

One of the objectives of this study is to examine experimentally the response

of the system for different trajectories and different speeds particularly high

speeds. Therefore, control software has been designed in order to manipulate

the servo system. The software is a general rather than a specific control

program, such that all the parameters including the trajectories are changeable

on-line (in real time). Furthermore, the user can examine the curves which

correspond to the command input and response of the system. In the following

sections, the features of the control software are explained and some examples

of trajectory tracing are presented graphically.

7:J.l Initialization of the system

The system is initialised under the control of the user. The program reads

the position data of the trajectories from the described path. Five different

trajectories can be loaded simultaneously having previously been planned and

stored using the motion design package "MOIDESN
• The next step is to

detect marker positions on each of the drive axes to determine the initial

start up position for the manipulator. To accomplish this, the user can rotate

the shafts of the servo motors slowly in both directions by pressing left

and right keys (+- - ) on the keyboard until the encoders register the

marker positions. This position is called the "home" position for the system.

The system is reset at this position in order to make the encoder values

zero. However, this position may not be a good starting point from which

to follow the trajectories. Therefore, the mechanism has to be moved to a

more suitable starting point. The starting point of the system is either

detennined automatically by pressing the key (A) or the user is allowed to

do it manually using the arrow keys.
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Fig.7.10. Improvement of tracing errors by the application of learning control for S3 cycles,

C?Gb ....
Fig.7.11. Improvement of tracing errors by the npplicari n f learning ntrol f r 21 ycl
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7:3.2 Inverse solution and feasibility checks

The program determines the inverse solution in order to calculate the joint

co-ordinates of the axes while at the same time makes feasibility ohecb

for all the trajectories. Position co-ordinates of the end-effector. link lengths

and the initial position of the manipulator are the basic parameters needed
for inverse solution. The feasibility check is performed by examinina the

end-effector positions of the trajectories and checking whether they lie within

the work-space of the manipulator. If the checb are valid the system is
then ready to execute the motions.

7:3.3 Changing the system parameters

All the parameters of the system can be displayed on the monitor and their

values can be changed at any time by the user using the function keys on

the keyboard without interrupting the operation of the system. These para-

meters consist of the sample time and gain values of the controller which

control the response of the system.

The gain values of the controller are tuned initially in order to obtain the

best response from the system as if for a normal feedback control mode.

However, it is found experimentally that learning gives better results when

the system is under-damped which depends on the speed of the system and

the characteristics of the followed trajectory. ThClefore, the parametOl'l of

the controller are allowed to be changed by the user when necessary. The

function keys to adjust the system parameters on-line are liven below:

Axis -1

Diaital Filter Zero (A) *ArA
Diaital Filter Pole (B) *BrB

Digital Filter Gain (K) *CrC

Sample time • • • . •• *D/"D

Axis ·2

Diaital Filter Zero (A) "'Bra
Digital Filter Pole (8) "'prp

Diaital Filter Gain (K) "'OrO
Sample time • • • • •• *Ht'H
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For example, pressing *A (Alt-A) increases the Digital Filter Zero for one

unit whereas AA (CrI-A) decreases the same parameter for one unit.

As previously noted the program is capable of executing up to five different

motions which have been previously designed using MOTDES. The inverse

kinematic solution for each trajectory has been calculated within the program

and is ready to be used as input commands. Each motion can be executed

by the manipulator without it stopping i.e, motions can be switched Hon the

fly". The motions are introduced using the five function keys (Fl,_,Fs).

However, the user can also switch the motion after stopping the manipulator.

The action of the system can be stopped by pressing the (Delete) key and

reactivated by the (Insert) key.

The program displays the curves of the followed path automatically when

a new trajectory is activated.

7.3.4 Monitoring and switching of motions

The motion of the axes are displayed graphically on the monitor screen in

order to observe the response of the system to see whether it follows the

required curve or not. nus is especially vital for learning operations since

the process is terminated by the user when the response of the system is

close enough to the reference input. Therefore, the curves of each axis can

be monitored independently using the keys (Alt-X, Alt-Y and Alt-T). Where,

(Alt-X) and (Alt-Y) show the curves of the rust and second axes respectively.

However, the actual path followed by the end-effector is shown on the

monitor when the (Alt-T) key is pressed. The user can see three different

curves for each axis, they represent the reference curve, command curve and

the response of the axis. In fact, the reference curve and command curve

are identical initially, but then the command curve starts to deviate from

the reference curve in order to reduce the error between the reference and

response curves with the application of the learning process.
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Another key, (8) is used to activate the learning process for one cycle. One

cycle is selected deliberately, because saturation of the servo motors may

happen and therefore the system may go out of control at high speeds if

the gain values are not appropriate. The leaming process continues as long

as the key (8) is pressed. Another key (Home) initialises the current

command. This key is needed when restarting the learning process, for

example, if after a number of learning cycles the user wishes to restart the

learning process with different gain values the command must be re-initialised.

7.3.5 Adjusting of the speed of the system

Adjusting the speed of the system in real time is one of the very useful

features of the control software. The current speed is displayed on the

monitor all the time. There are several methods for adjusting the speed of

the system and they are given below:

1) Chaneine the sampline time,'

rpm <t * n ." 60 (7.13)

Where

t - sample time in seconds

n - number of data points on the trajectory.

In this equation the adjustable parameter is the sampling time t. But, there

are some limitations with the sampling time, for example, it is restricted to

a value between 64-2048 micro seconds for the control card used. Fur-

thermore, it is suggested by the manufacturer of the control card that the

sample time should be set near to the minimum value for stability of the

system.

2) CMU;", the number 0/ data in the trQiector$

In the above equation the number of data n can also be changed to adjust

the speed of the system. However, changing the number of data is not an
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easy task in real time. First of all, it needs a large number of data points

to achieve quite slow speeds and ·the memory of the host computer for

static data is limited (6S kb maximum). Also, this approach is expensive in

terms of computer time which adversely affects real time operation.

3) UsiOZ delqy time.'

rpm - (t + 1') * n * 60 (7.14)

Where

T - delay time in seconds

In this method it is not necessary to change either the sample time t or

number of data n in order to adjust the speed of the system. A delay time

T is used to adjust the speed of the system. A specific cycle time can be

achieved by using the above equation or it can be done on-line by changing

the delay time T systematically using the keys (Alt-N/Ctrl-N). Here, pressing

the keys (Alt-N) increases cycle time and the keys (Ctrl-N) decreases the

cycle time.

In the experimental arrangement, the first and third methods are used together.

To this end, the user is required to keep pressing the appropriate keys while

observing the displayed speed of the system until it reaches the desired

value. Alternatively, the sample time is changed.

7.4 Implementation of example trajectories

Several example trajectories have been implemented using the experimental

system. These have been planned and presented graphically in the Chapter

S. In this section the responses of the system for these trajectories are

examined.
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Since position control only is used in the arrangement, the velocity or

acceleration values of the trajectory are not needed. nus situation allows

the freedom of adjustment of the speed of the system. Clearly, the shape

of the position curves do not change by changing the cycle time.

E1ample-l nus example is one of the severe trajectories to be implemented

in this study. Four operations are planned to be carried out in a cycle and

each operation is required to be executed with the end-effector stationary.

Stopping of the manipulator at some points when following a trajectory

causes abrupt changes in its motion as seen in Fig.S.13 particularly in the

acceleration curve. Therefore, such trajectories are not easily implemented

especially at high' speeds.

The output of the system is given in Fig.7.12 where the speed of the system

is 90 rpm. The first two figures (a) and (b) in the first column show the

command (solid) and the response (dashed) for each axis of the system. The

third figure (c) displays the desired path and the actual path at the end-effector

level. It is seen that the system responds to the command with a noticeable

amount of error when normal feedback control is applied. An acceptable

execution of the job process cannot be expected from the system with this

amount of error.

The second column of Fig.7.12 presents another output for this example

with the same format but this time with learning applied to control the

tracing error. All the figures in this column (d), (e) and (t) indicate that

the response is much better than before.

ExiUQP1e-2 In contrast to the first example, the curves of this trajectory are

very smooth. They can be seen in Fig.S.IS where the continuity of the

curves between the segments is maintained up to the level of jerk.

When this motion is implemented on the system, the manipulator follows

the desired command perfectly at slow speeds (60-70 rpm) using normal

feedback control. However, as the speed is increased (180 rpm) the response
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deviates from the command as seen in the Fig.7.13 (a-c). Activating learning

for a few cycles improves the response of the system and it matches with

the desired path as shown in Fig.7.13(d-f).

The same motion is performed at higher speed (400 rpm). The normal output

of the system is given in Fig.7.14 (a-c). As seen, the response is far away

from the desired output. The tuning of the command using the learning

control technique improves the response as seen in Fig.7.14. (D-f) however

some error still remains.

As a conclusion of this example we can say that the response of a pro-

grammable system depends on the characteristics of the motion curves (i.e.

smoothness), the control technique used and the speed of the system. A

programmable system can be easily controlled with normal feedback tech-

niques and quite acceptable responses can be obtained at slow speeds,

however, the system can be very sensitive when its speed is increased.

Therefore, the smoothness of the planned trajectory can become the most

important factor affecting the control of a programmable system at higher

speeds.

hamplN The manipulator is tested for a square path which is planned in

Fig.S.19. The comers of the square are rounded in order to obtain smooth

motion curves.

The output of the system is given in Fig.7 .15 which is obtained when the

manipulator is running at 180 rpm. The first and second columns show

respectively the outputs of the system with and without learning control.

Despite the difficulty of the motion, a satisfactory result is obtained at this

speed, when learning is used.

Example-4 An interesting output of the system is presented in Fig.7.16 and

Fig.7.17. They correspond to trajectories planned earlier (see' Fig.S.21 and

5.22) to show the effect of the arbitrary power polynomial which has been

developed.
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These paths are tested at different speeds and it is observed that the system

responds better to the trajectory produced using arbitrary power polynomials

at lower speeds. When the speed of the system is increased to 180 rpm

very similar output is produced for both trajectories. However, if the speed

is increased further (350-400) then the system becomes more sensitive and

gives a better response for the command which is produced using a normal

polynomial function. This can be explained by the smoothness of trajectories.

The curves of the trajectory which are produced using normal polynomial

interpolation are smoother than the motion curves of the other trajectory.

ExampJe-5 The meandering model is illustrated in this example. Its trajectory

is planned in Fig.5.25 to show the meandering of a polynomial function.

As shown in the figure the effect of interpolation is to produce longer paths

than expected. This drawback had been improved by using an arbitrary power

polynomial function (see Fig.5.26).

When these two trajectories are applied to the system, the outputs support

the results which are obtained in example-s. The results are given in

Fig.7.18-19.

Example-6 This is an example of another complex trajectory. However, it

is successfully planned (see Fig.5.27) and implemented by the system. The

responses which are obtained with and without learning are displayed in

Fig.7.20.

193



450 POSmON

a) Motion of axis-I before tuning.

14111 POSmON

b) Motion ofaxis-2 before tuning.

1~r-----------------------------~
Y·AXIs( rff!1l

100

se

40

.i.:....u • .\

X-AXISC .... l-~~--~----~--~----~--~--~-20 10 40 70 100 130

c) Path of the end-effector before tuning.

COMMAND ---- RESPONSE

460 POSITlON

d) Motion of axis-I after tuning.

1400 POSmON

~M~L- __~ ~ ~ ~ __~
0.00 0.13 0.21 0.411 0.53 0.61

e) Motion ofaxis-2 after tuning.

1~r-----------------------------~
HXJ5(rff!1l

100

se

160

40

20 _j \
0

X-AXIS! "..)
-~ 100 130 160-20 10 40 70

f) Path of the end-elf ctor after tuning.

POSITION:Encodcr counts, INPUT:Sec nds.

Fig.7.12. Command and Response of the system for example-f.

194



500 POSITION

NPUT
_1500

'
'----.L---.L---.L----'------'

o.oa 0.07 0.13 0.2) 027 O.SS

a) Motion of axis-I before tuning.

1500 POSITION

tI\JT
~~ __ ~ _L ~ ~ __ ~

0.00 0.07 0.13 0.20 0.21 O.SS

b) Motion ofaxis-2 before tuning.

~r-----------------------~
Y-AXIS( "",) ..- .. _- .......... .......-.

'-,,,,
\,,,

40
~,,.,, .. ,,

,/

//
I,
I
I
I

20

e

-20

-40

X-AXIS( nml
-~1~0---1~4---~~---~~----~-'-------110

c) Path of the end-effector before tuning.

COMMAND ---- RESPONSE

~ POSITION

N'IIT
_15OOL-----1-----...I-----L.-----1---___.j

0.00 0.07 0.13 0.20 0.21 0.33

1500 POSITION

d) Motion of axis-I after tuning.

1000

500

t.flIT
~L---_J-----L----~----~--~

0.00 0.07 0.13 0.20 0.27 0.33

~~--------------------------~
Y-AXIs( ,."v

e) Motion ofaxis-2 after tuning.

40

20

o

-20

-40

_~L---__j_----~----~--~----~-10 14 ~ ~ B6 110
f) Path of th end-eff ctor after luning.

POSITION:Encoder counts, INPUT:Sec nd s.

Fig.7.13. Command and Response of the system for exam pl -2.

195



700POSITION

INPUT
·14OO'---_..jL-----l----L--_..L--_J

0.00 o.OS 0.01 0.11 0.12 0.15

a) Motion of axis-I before tuning.

INPIIT
·700L-----l----L----~ ~ __~

0.00 0.D3 O.~ 0.01 0.12 0.15

b) Motion ofaxis-2 before tuning.

~r-----------------------------_.
Y·AX1S( rnn)

40

20

e

-20 <.
" " ............ - .. _-_ ......... , ... " ...

-40

X-AXIS( ",.)
_~'----~---L-----L-----L---~

·10 14 62 86
c) Path of the end-effector before tuning.

COMMAND -.. - RESPONSE

700 POSInON

N'UI'·ICOOL.._---l --L --L. -L- __ .J

0.00 om 0»1 0.11 0.12 0.15

d) Motion of axis-I after tuning.

1400 POSITION

e) Motion ofaxis-2 after tuning.

~~---------------,
Y·AX1S( nm)

40

20

9

-20

-49

X-AXIs! ...J

110 -~IL0-----1~4----~~------~~--~8~6----~110

1) Path of the end-effector after tuning.

POSITION:Encoder counts, INPUT:Scc nd .

Fig.7.14. Command and Response of the system for examplc-2.

196



·1000

·1500

INPUT
~~ __ ~ _L ~ L- __ _J

o.oa 0.07 a." 0.2) 0.27 0-'3

2000 POSITION

a) Motion of axis-I before tuning.

o~----~----L-----L-----L---~
0.00 0.07 0.13 0.20 0.27

116r--------------------------------,
Y-AX1S( ""')

66

40

15

b) Motion ofaxis-2 before tuning.

";; .. ,,.'-_ ..--- .........
,
I
I

,
I
I
I

,
-.--. ·-·1(:~ISI:""')

I
I
I
I

_10L-- ""="" -L... __ ~ --I __ ___J

-40 -15 10

c) Path of the end-effector before tuning.

35

COMMAND ---- RESPONSE

o POSITION

IIPJT~L- __ -L L- __ ~ ~ __ _J

0.00 0.07 O.IS 0.20 0.27 0.33

cl) Motion of axis-I after tuning.

2000 POSITION

0.33
oL---~-----L----~----~--~
0.00 0.07 0.13 0.20 0.27 0.33

e) Motion ofaxis-2 after tuning.

116r-----------------------------,
Y-AXIS( ..ru

90
I
I
I
I

65

40

15

-1_04L0----_..1..,5-----',0----J5_,__--..J.f:Ja--~85

f) Path of the end-effector after tuning.

POSITION:Encoder counts, INPUT:Sec nds.

Fig.7.I5. Command and Response of the system for example-S.

197



460 POSITION

G.1S 0.3) 027

a) Motion of axis-I before tuning.

1200 POSITION

0.07 0.13 020 017

b) Motion ofaxis-2 before tuning,

~-----------------------------,
Y-AXJS< nrnl

,,,,

10

X-AXIS( .....v

,
I
I

",/
.'

_10L- J-------:"..,:'::---.I....----'-------J
-20 16 '" 88 124 16e

c) Path of the end-effector before tuning.

COMMAND ---- RESPONSE

0.33

0.33

~ POSITION

mrr~L- __ ~ ~ ~ L- __ _J

0.00 0.07 0.13 0.20 0.27 0.33

d) Motion of axis-l after tuning.

1200 POSITION

0.07 0.27 0.330.13 0.20

e) Motion ofaxis-2 after tuning.
~~ __------ --,

Y-AXIS( IMll

70

le

X-AXIS( .....v
-10'L----'-----'----...I----I---.I
-20 16 5:1 88 124 160

J) Path of the end- ffecto.r after luning.

POSITION:Encoder c unts, INPUT:Seconds.

Fig.7.16. Command and Response of the system for exnmple-4.

198



460 POSITION

NP\IT~~ __~ -L ~ L- ___J

o.oa 0.07 0.13 Ul 027 0.33

a) Motion of axis-I before tuning.

1200 POSITION

b) Motion ofaxis-2 before tuning.

~r---------------------------~
Y-AX1SC !!Ill)

,,"''',, \

/,/ '

,,
,,,,

/,,,,
,,,,,

10

X-AXIS( ...,,)
.1_02'=0:-----:1~6---5..J.2-----LBB---l...12-4----1160

c) Path of the end-effector before tuning.

_COMMAND ---- RESPONSE

450 POSITION

d) Motion of axis-I after tuning.

1200 OllTPlIT

0.07 0.20 0.330.270.13

~r-----------------------------,
¥-AX1SCnm)

e) Motion ofaxis-2 after tuning.

70

10

X-AXIst ...,)
10'---.l..-.----"':-----:::'::------:'------'
-20 16 52 88 124 160

f) Path of the end-effector after tuning.

POSITION:Encoder counts, INPUT:Seconds.

Fig.7.17. Command and Response of the system for example-s.

199



400 POSITION

o·

-400

.III)

·1200

·IIJIO

~
0.00 o.ar D.IS 0.2) 027

a) Motion of axis-I before tuning.

17Sl POSITION

1400

700

INP\IT~L- __ ~L- __ ~ ~ ~ ~
0.00 0.07 0.13 0.211 027 0.33

b) Motion ofaxis-2 before tuning.

~Ir---------------------------~
Y·AX1s( 11m)

70

". ..-_ ..----- ..- ......
"""'\

,,
I
I
I

10 ,
,/

__....... ..-"'tI'
..... --_ ... --_ ...._-- .._- .. _

X-AXIS( ""'"
-1_021...0---1...o.0--__J40---7"'0---1..!.00--~130

c) Path of the end-effector before tuning.

___ COMMAND ---- RESPONSE

400 POSITION

0J3

N'IJT~.L- __ ~L- __ ~ ~ _"' ~
0.00 0.07 0.13 0.211 0.27 0.33

1750 POSITION

1400

700

d) Motion of axis-I after tuning.

~Ir---------------------------~
Y-AX1S( om)

e) Motion ofaxis-2 after tuning.

70

X-AX]s( ... 1
-101L,_----..__----..__----..._---~--__:
-20 10 40 70 100 130

f) Path of the end-effector after tuning.

POSITION:Encoder counts, INPUT:Seconds.

Fig.7.18. Command and Response of the system for example-S.

200



10 10
I
I. ------- ... _-- ,

----,
X-AXIStrftl!ll X-AXIS( .,..)

10 -10-20 10 40 70 lOO 130 -20 10 40 70 lOO 130

400 POSITION

o •

-400

.«IQ

·1200

·I~

-m
OJIO 0.07 0.1' 0.21 027

a) Motion of axis-I before tuning.

175] POSITION

1400

100-

360

b) Motion ofaxis-2 before tuning.

~r-----------------------------~
Y-AX1S( II'1II1

,,
r

r

\
\
\

70
,
I
I

I
I
I
I
I
J
I

c) Path of the end-effector before tuning.

_COMMAND ---- RESPONSE

O.SS

400 POSITION

0

..coo

~

·1200

·1800

-2000
0.00 0.07 O.U 0.20 0.33027

d) Motion of axis-I after tuning.

1750 POSITION

N'UT
~~ __ ~ -L ~ ~ __ ~

~ ~ " ~ W ~

e) Motion of axis-Z after tuning.

~r----------------------------'
Y-AX1Sl nwnl

70

f) Path of the end-effector after tuning.

POSITlON:Encoder counts, INPUT:Seconds.

Fig.7.19. Command and Response of the system for example-S,

201



~ POSmON

a) Motion of axis-I before tuning.

1201 POSmON

o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o.

o :.... NP\1T
o~--~----_J----~----~----~
0.00 0.10 0.500.2(1 0.30 '.«1

b) Motion ofaxis-2 before tuning.

70'r-------------------------------
Y-AXISe "",I

c) Path of the end-effector before tuning.

_COMMAND ---- RESPONSE

1200 POSITION

300 POSITlON

0.10 0.20 0.40 0.500.30

d) Motion of axis-I after tuning.

N'\lToL___ -L J_ L- __-L ~
O.DO 0.10 0.20 0.30 0.40 0.50

70'r-----------------------------.
Y-AXIS( IMIl

e) Motion ofaxis-2 after tuning.

10 , 10
I
I
I
I

X-AXIse ""'" X-AXIS( ""'"
-10 -10
-20 8 36 64 92 120 -20 8 36 64 92 120

f) Path of the end-effector after tuning.

POSITION:Encoder counts, INPUT:Seconds.

Fig.7.20. Command and Response of the system for example-d,

202



CHAPTERS

CONCLUSIONS AND RECOMMENDATIONS

The dynamic performance of a programmable system depends on both the

motion profile to be followed and the feedback control method applied. In

order to improve the performance of a system, more specifically to increase

the cycle speed and reduce the tracing errors, the trajectory has to be planned

at an advanced level and an efficient control method has to be employed.

Traditional trajectory planning methods, such as manual planning, using

standard cam motions or spline functions are not very effective methods

since they either cannot realise the task specification or they cause high

peak velocity or accelerations in the curves. Therefore, progmmmable systems

cannot justify their use economically because of these improper trajectories.

When planned manually, the path is normally composed of simple elements,

such as straight lines and circular arcs. Such planning generally fails to

produce a good trajectory since no account is taken of the effect of the

highly non-linear characteristics of the motion of the manipulators.

Cam motions, especially those with constant acceleration motion (bang-bang)

are commonly used for the trajectory planning of industrial manipulators.

The values of the accelerations and decelerations are generally selected to

avoid actuator saturation during the motion. However, designing a trajectory

using constant acceleration and deceleration segments produces a discontinuous

acceleration curve and results in infinite jerk values at the connection points

of the segments. Such conditions produce large disturbances for a system

especially at high speeds.
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Cubic spline functions mostly produce satisfactory curves, but, one important

complication effecting their use is the common requirement that the motion

of a manipulator may depend on the motion of another manipulator which

operate together in processing a product. In such cases there must be

synchronization between the motion of the machines that may require

specification of position, velocity and even acceleration boundary conditions.

Specification of arbitrary boundary conditions for derivatives of the function

is not possible with cubic spline functions.

Many mathematical functions have been investigated in order to determine

whether an appropriate function may be used in a general trajectory planning

study. As a result, it was found that every function has its own drawbacks.

However, the use of polynomials offers advantages over other mathematical

functions. They give the freedom of specifying arbitrary boundary conditions

for any derivative of the function, thus the user can use velocity and

acceleration boundary conditions as well as position boundary conditions to

solve the synchronization problem and to improve the motion curves. In

spite of these advantages, polynomials functions may produce undesirable

oscillations between design points. Turning points in the motion profile, the

degree of the function used and the severity of the boundary conditions

specified were determined as the causes of undesirable oscillations.

However, the effects of this drawback can be prevented by means of a

number of methods. The rust method was to use dummy boundary conditions.

Contrarily, using dummy velocity and acceleration boundary conditions in-

creases the degree of the function but at the same time they provide control

for the slope and curvature of the function where they are applied and

therefore they can prevent oscillations in the motion curves. Practically,

however this method is difficult to apply.

The second method was to divide the whole motion into smaller segments

and then to apply a number of lower order polynomial functions for these

segments. Adding segments to one another to complete the trajectory produces
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a segmented polynomial solution. If the curve is divided into segments at

turning points an improved result is always retained. However, dividing a

curve into segments between the design points was found to be more practical

for computer application.

Unfortunately, in spite of dividing the motion into segments polynomials

may still produce curves which do not lie within acceptable tolerance en-

velopes. A method has however been developed to bring these curves within

the specified tolerance envelopes. The method is not only appropriate for

modifying poor trajectories which suffer from meandering but it can also

be used to improve normal curves.

This technique was based on the fact that changing the powers of a

polynomial function changes the path between the design points. Normally,

the powers of a polynomial function start from zero and increase one by

one. This rule has been changed and real numbers were used instead of

integer numbers so that the powers of the function could be varied with

small intervals such as 0.1 or 0.01 or with any other value. Reducing the

powers artificially shows an important characteristic that it forces the main

undulations towards the start of the segment in the acceleration curve while

the remaining part of the curve stays flat.

Similarly, the powers of a polynomial function can be replaced with large

numbers. This approach reverses completely the effect of low order poly-

nomial, that is, it pushes the main undulation to the end of the curve.

In general, it was found that oscillation in polynomials can be better controlled

if the undulations in the acceleration curves were pushed towards the two

ends of the segment with the minimum amount of disturbance between.

Therefore the combination of reduced and raised powers was used in order

to achieve this result. Also, it has been shown that polynomial functions

with arbitrary powers produce the lowest peak velocity curve among the
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motion laws for the same conditions. The other advantage of arbitrary powers

is that the shape of a curve can be adjusted without changing any boundary

conditions.

There are two approaches for trajectory planning, namely on-line and off-line

planning. On-line trajectory planning refers to the determination of the history

of a motion by means of on-board sensory equipment and then the generation

and execution of the motion in real time. This means that the constraints

for the trajectory including constraints for obstacles along the path and

constraints needed for co-ordination of motion with other machines will be

determined by means of sensory equipment. In practice, such planning cannot

be easily undertaken because of the inherent dynamic complexities associated

with its implementation, high cost and limited application areas.

In the off-line planning the development of trajectories takes place without

access to the manipulator itself and without recourse to real time operation.

Off-line planning offers some potential benefits. Since every action taken in

the planning is performed by the user, many of the problems peculiar to

trajectory planning can be controlled within the computer environment. For

example, unexpected oscillations in the trajectory, high peak velocity and

acceleration values and discontinuities in the motion curves are such problems

which are tackled.

An off-line motion design program has been developed, this program is

capable of producing motion curves for the end-effector of a mechanism

which can perform a body motion in a plane. Several motion types have

been included to provide a wide degree of flexibility for the user. The

program includes many facilities to achieve a desired motion. The necessary

boundary conditions comprise the main input for the software. Other inter-

activity is based on mouse click selection. The generated motion curves are

displayed on the monitor all the time. This allows the user to examine the

motion curves and modify any undesirable behaviour of the trajectory while

in the computer-graphic environment. The trajectories of all three axes (X,Y,S)
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can be designed simultaneously. The program also includes a simulation

option which shows how the end-effector moves along the path without

needing to access the machine system.

A prototype has been designed and built to implement different motions in

the context of a computer controlled system. The objective was to investigate

the practical problems of trajectory control particularly when the system was

running at high speeds.

In general, it is very difficult for a programmable system to follow a desired

trajectory perfectly due to the existence of dynamic interferences among

mechanical links and unknown disturbances. When a desired signal is applied

to a servo-system it follows the command with an error. The gains' settings

of a controller are the main parameters that determine the response of the

system. The gains' values can be optimized, however, controllers with fixed

gains are not always efficient. There are several cases where precise tracing

of trajectory under different payloads require more advanced control tech-

niques. Adaptive control and learning are the two main methods applied for

trajectory control problems of programmable systems. There are two main

approaches for adaptive control, these are self-tuning and model reference

adaptive control.

Self-tuning is based on the idea of continuous tuning of the gain values of

the controller. It is supposed to control a process whose parameters are

unknown and they are either constant or slowly time varying. The unknown

parameters of the dynamic model of the system are estimated using a

parameter identification method.

In the model reference adaptive control, the desired performance is expressed

in term of reference model. The feedback of the system is used to calculate

the error which is the difference between the model output and the system

output. The parameters of the controller are adjusted according to the

adaptation rule and the error. The overall aim is to force the controller so

that the system output follows the reference model output closely.
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Iterative learning is another type of control for repetitive tasks that has been

developed in recent years. Its simplicity and effectiveness have made it

popular. The input of the present cycle is calculated using the experience

of the previous cycle so the response approaches the desired output slowly

but positively. The main advantages of this system over adaptive control is

that a dynamic model of the system is not needed and the parameters of

the controller are not changed. Therefore, learning control can be applied

more easily in real time for high-speed systems. A problem with a learning

algorithm however is that saturation of the servo motors after a few learning

cycles may occur due to a lack of smoothness in the command curve caused

by the learning algorithm. In order to avoid saturation a new approach has

been developed. This is achieved by filtering the input for the system after

the application of each learning cycle using a digital filter.

It was found that trajectory control is more difficult when the speed of the

system was increased. This implies that adaptive control methods are even

less suitable for high-speed systems due to the need for additional calculations.

Furthermore such motions can be inappropriate for handling trajectory tasks

since adaptive control does not guarantee that the system output meets the

desired one along the entire period of trajectory. In this context, learning is

a much simpler and effective control technique compared with adaptive

control. Therefore, it has been applied exclusively for trajectory control in

this work with good results having been obtained for several widely varying

examples.

Recommendations

In this study it is found that rational interpolation is one of the most

important interpolation methods. It can produce smoother curves that those

obtained with other interpolations. However, it is not included in the motion

design software because of difficulties with the manipulation of this type of

function. It may be possible to improve their use in future work.
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Off-line trajectory planning can be extended to high-level planning. In such

a system, the user can design the manipulator and its environment by selecting

them from a menu and specifying their dimensions and co-ordinates using

the computer-graphics environment. Then, the user may state only the ob-

jective instead of taking every action. Examples of objectives could be

"transfer the products" or "paint the objects". All the remaining work can

be performed by the computer. This can be achieved by providing automated

solutions to various sub-tasks and letting the programmer use them to explore

various options in the simulated environment.

In order to improve the trajectory tracing of the manipulator, learning control

is applied and satisfactory outputs are obtained in all cases. However, the

effect of changing of the payload has not been investigated. This is further

work which needs to be done.
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APPENDIX-A

Table A.I materials for the mechanism

Part no Description Quantity Material

1 Bolt 2 Mild steel

2 Balancing mass 2 Mild steel

3 Spacer 1 Aluminium

4 Connecting bush 2 Aluminium

5 Screw 16 Mild steel

6 Connecting arm 2 Carbon-fibre

7 Coupler link 2 Carbon-fibre

8 Pivot

9 Connecting rod 2 Mild steel

10 Allen bolt 4 Mild steel

11 Washer 2 Aluminium

12 Bush 8 Brass

13 Spacer 2 Aluminium

14 Sleeve 4 Mild steel

15 End-effector pivot (double lap pivot)

16 Bush 1 Brass

17 Connecting bloek-I 2 Aluminium

18 Connecting block-2 1 Aluminium

19 Cir-clip 1 Carbon steel

20 Pen-holder 1 Mild steel
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