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“ Learning without thought is labour lost; thought

without learning is perilous.”

(Confucius: Discourses and Dialogues, Book II)




Abstract

Medical statistics has important applications in cancer research, in particular through
the analysis of censored survival data. Moreover, breast cancer is responsible for
thousands of deaths each year in Britain, and is among the leading causes of mortality
among women. This thesis is about the robust application of neural networks to survival
analysis of breast cancer patients, taking advantage of its non-linearity and flexibility

but providing an automatic mechanism to prevent over fitting of the data.

Censorship is a feature of survival data, which arises when the endpoint of interest
cannot be observed for a particular individual. In this thesis, a Bayesian regularised
neural network model that accommodates censorship is introduced, extending the
“Partial Logistic Artificial Neural Network (PLANN) model”. Within the neural
network model, categorical data are treated differently from ordinal data and requires
bias correction for the network prediction when the data distribution is heavily skewed.
The network also uses the Automatic Relevant Determination (ARD) technique within
the Bayesian regularisation framework, to perform a backward model elimination. The
use of non-linear variable selection methods leads to the identification of pairwise
interactions between covariates that may be implicitly modelled by the neural network
or explicitly added to Cox regression, which is the most commonly used statistical
modelling tool for survival analysis. Both methods were applied to the modelling of
post-operative mortality with 5 years follow-up of two patients groups. The first group
was used to design and compare the two methods, and comprises patients recruited
between 1983-1989, The second group is used to validate the model’s performance, and
comprises patients recruited between 1990-1993. The two sets of data were divided into

two cohorts each, according to the clinical separation criteria for low-and high-risk. The




missing data in the data sets were treated as a separate category. Performance estimation
for the design data set was carried out through the use of v-fold cross validation.
Patients were also divided into mortality risk groups using the log-rank test applied to a
prognostic index, and the predicted survivorship for prognostic groups are assessed by

the observed survivorship, which is described by the Kaplan-Meier survival estimation.

The robustness of Cox regression was explained by explicitly plotting the estimated
hazard over time, showing that deviations from proportionality of the hazards are minor.
The proposed extension of the PLANN model has successfully identified interaction
terms that were added to the Cox regression model to improve prognostic group

separation and attribute specificity.
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Chapter 1: Introduction

1 Introduction

This chapter gives an overview the issue in survival analysis that is this thesis, and the
methodologies proposed in it, are intended to address. This is followed by a review of

the structure of the remaining thesis chapters.

1.1 Objectives of the thesis

Cancer research is generally focused on improving patient survival rates, whether
through early detection, development of new drugs, or improvements in therapy.
However, surgery and adjuvant therapy carry with them significant side effects.
Treatment and surgery are assigned following guidance based on standard clinical
factor measurements, often without direct reference to accurate estimates of individual
survivorship, Smith (2000). The main objective of this thesis is to predict the
survivorship over time for individual patients through the use of Cox regression and
neural network models, and to permit a clinical interpretation to be ascribed to the

predictive results obtained from both of the models.

Survival data have special characteristics, for instance the data are not symmetrically
distributed with a trend to be positively skewed, that is having a longer ‘tail’ to the right
of time intervals. Also censorship is an inherent feature of survival data and arises when
the end-point for particular individuals is not the event of interest, making the outcome
beyond a fixed time point indeterminate. However, excluding these data from the model

can introduce significant bias, Ravdin and Clark (1992) and Brown et al (1997),
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therefore these patients must remain in the study for the time they were observed. An
example of censorship would be an early death from a cause unrelated to the breast

cancer, sometimes called an intercurrent death.

The most widely used statistical modelling method for censored data is Cox regression,
Cox (1972), which is based on the assumption that the hazards of different patient
groups remain proportional to the baseline hazard over time. Some other well-known
parametric statistical methods, are the Weibull model and accelerated failure time
model, Collett (1994). Efron (1988) also proposed a flexible non-linear model using
cubic spline and Bennett (1983) introduced log-logistic regression models for survival
data, which require proportionality of the survival log-odds ratio, instead of the

probability of death in a particular time interval that is the hazard ratio.

Artificial neural networks (ANN) are non-linear, semi-parametric models that have
recently been considered as alternative methods for analysing survival data. Radvin et
al (1992) proposed an extension of proportional hazard model using a standard MLP
architecture with multiple output nodes to accommodate the censorship, where each
output node represented a time interval. However, for a monthly study, this method
requires many output nodes. Biganzoli er al (1996) introduced the Partial Logistic
Artificial Neural Network model (PLANN), which is a straightforward Multi-Layer
Perceptron, MLP, where censorship is encoded via the data structure. By assigning
target values of zero and one to each patient record while observed alive, or when event
of interest happened in that time interval, respectively, but omitting any target values
after censorship. A patient will remain in the population at risk only while observed, but

is removed from the study when the outcome for that time interval is not observed. This
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model has advantage of not requiring proportionality of the hazards overtime, and can
implicitly model interactions between variables. However, neural networks are prone to
over-fitting unless careful regularisation is applied. The Bayesian neural network
approach (MacKay, 1992a,b) is commonly used to regularise binary classification
problems without censorship including soft model selection through Automatic
Relevance Determination (ARD) where the hyperparameters regularising the objective
function suppress irrelevant variables. The magnitude of the hyperparameters thus
provides a rank order that reflects the relative importance of the variables to the model
predictions. Neural network models are often benchmarked with traditional statistical
tools, Groves (1999), Radvin and Clark (1992), and in this study the regularised

PLANN model is compared with Cox regression.

In this thesis, a longitudinal study is conducted where the modelling methodologies are
developed using a data set with 1,616 records and tested with a further 1,653 records.
They all comprise women patients admitted to Manchester Christie Hospital during
1983 to 1989, and 1990 to 1993, respectively, who were followed-up for at least 5 years
after surgery. These two sets of data contain demographic information, clinical
investigations, laboratory test results, post-surgery and treatment assignment, but do not
include any genetic or life style information. Each of the data sets is divided into two
cohorts on the basis of clinical staging, divided generically into low-and high-risk.
Within these data sets, some of the variables contained large amounts of missing values.
The attribute ‘missing’ was treated as a separate category, although investigations were

also carried out predicting missing values using Nominal Logistic Regression.
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Assigning patients into prognostic risk groups is of considerable importance in the
management of breast cancer patients. A key objective of this thesis is to partition them
into prognostic groups based upon their risk of mortality. The observed survival for
particular patients groups is estimated non-parametrically by the Kaplan-Meier survival
estimation (1958). In this thesis, we propose an extension of the PLANN model to
include the estimation of hyperparameters within the Bayesian framework. The
extended PLANN model is then applied to two monthly studies of mortality risk
following breast cancer re-section, with follow-up to 60 months, for each of the two
cohorts. The patients in each cohort are partitioned into prognostic groups using a
prognostic risk indice derived from (i) proportional hazards model analysis and (ii) the
Bayesian implementation of PLANN. The performances of the two approaches are
compared for the design data using 3- and 5-fold cross validation for high-risk cohort
and low-risk cohort, respectively, and the generality of the results thus obtained is

validated using the later cohorts.

Forward step-wise variable selection was carried out using the proportional hazards
model, and for the high-risk cohort additional variable selection was investigated also
with ARD, using backward elimination. From a comparison of these two approaches to
variable selection, specific interaction terms were identified that when integrated into
the proportional hazards model, enhanced the differences in survivorship between the

prognostic groups.
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1.2 Thesis Structure

In the next chapter, chapter (2), details of the two sets of data are described, including
characteristics of the explanatory variables, the distribution of missing data and
mechanism, and the process of filling-in the missing data using Nominal Logistic

Regression and results.

Chapter (3) summarises the literature review of the two modelling methods used to

analysis the data, Cox regression and the Bayesian regularised neural networks.

The data analysis results using Cox regression are reported in chapter (4) using two
approaches, predicting the event occurrence time and predicting the survivor function
over time for identified mortality risk groups. The event occurrence time prediction for
individuals is defined by the cross point of the threshold value and the estimated
survival function over time, and presented with the Receiver Operating Characteristic
(ROC) curve, Hanley (1989). This approach is considered to be sub-optimal. Then the
data are divided into low- and high-risk cohorts according to the clinical staging criteria
in the second approach. In each cohort, patients are divided into mortality risk groups
according to the risk indexes by observing the indexes natural grouping behaviour and
the log-rank test. The accuracy of the Cox survivorship prediction for each risk group is
assessed by comparison with the observed survivor function, which is described by
Kaplan-Meier estimate. Model selection in both of the approaches is implemented with

the forward elimination procedure.
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The alternative modelling method used in this thesis is Bayesian neural networks with
the evidence approximation. Chapter (5) reports a preliminary study of Bayesian neural
networks handling censored survival data, using the same two approaches as used
earlier with Cox regression. Although neural networks give betters result than the Cox
regression for event prediction, the result cannot be concluded to be significant. This
chapter only reports the result for the low-risk cohort from the second approach,
survivorship prediction for risk groups, using the PLANN model. Within these sections,
two new modelling improvement techniques are introduced, baseline population
assignment for categorical data and marginalising network output towards the averaged
hazard of the data, that are necessary since the data are heavily skewed. The
proportionality of hazards between risk groups is visualised simply by displaying the

predicted hazard for each group over time.

A similar neural networks analysis is repeated for the high-risk cohort, which is
summarised in chapter (6). Moreover, model selection using ARD is investigated. The
selected models help to identify interactions between variables, which then can be
explicitly represented in Cox regression models. The difference between the results by
the neural networks and Cox regression for the low-risk cohort, lead to a further search
for interaction terms. As a result, two pairs of interactions are identified, which apply
separately to the highest and the lowest survival patients groups. However, these two
interactions between variable pairs cannot be efficiently combined in a single Cox

model, as they work against each other.

In the longitudinal study, the preferred Cox regression and PLANN models are tested

with an independent data set, the results of which are shown for both cohorts in chapter
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(7). The results show that the data distribution and the survivorship over time of two

data sets are different.

The investigation of handling missing data methods is summarised in chapter (8). In this
chapter, the results for the filled-in data using nominal logistic regression are reported.
At this stage, the analysis is by Cox regression and variable interactions are not
considered. The results using the previously defined models for each cohort are
compared with the newly selected models, filling-in the missing data. The only
difference between the predictions occurs in the high-risk cohort, since one of the data

separation criteria contained large amounts of missing data.

Finally, the discussion of the results between two cohorts recruited over consecutive

time periods and the comparison of two modelling methods are summarised in the

conclusion, chapter (9).
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Chapter 2: Literature Review

2. Literature Review

2.1 Review of statistic literature on survival analysis

In many clinical studies, it is important to estimate the probability that set intervals of
time occur before an event of interest, which may be death ascribed to a particular
cause, recurrence of a disease or another prescribed event. The answer to these
questions can be described with two functions, survivor function and hazard function,
they are of central interest for analysing survival data. Survival data are not amenable to
standard statistical procedures used in data analysis because of censorship and the
unsymmetrical distributions of the data. The survival time of the data often appear to be
positively skewed, that is, having a longer ‘tail’ to the right of the time intervals. The
life-table and Kaplan-Meier methods (1958) are most commonly used for estimating the
survival and hazard functions given an observed population. They are known as non-
parametric, since they do not need a specific assumption to be made about the
underlying distribution of the survival time or indeed any covariate dependencies. An
other special feature of survival data is censorship, where the end point of an individual
is not the event of interest, such as those who survived beyond the end of the study and
those who are lost of follow-up, for instance due to death from an unrelated cause. The
event of interest is usually either the death caused by a particular disease, or the

recurrence of a disease.
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The most commonly used modelling methods for survival analysis are the Cox
Regression Model and the Weibull Model, Collett (1994). The Weibull Model was
introduced in 1951 in the context of industrial reliability testing and depends on a
particular form of probability distribution for the hazard function, hence it is referred to
as a parametric model. Alternatively, Cox regression, to be described in section (2.2),
has been used extensively for survival analysis for more than 20 years and is also
known as the Proportional Hazards Model. This model has much flexibility and

widespread applicability.

Another general family of survival models is given by the proportional odds model, also
introduced by Cox (1972). It is a parametric method if the survival times for individuals
are assumed to have a specific probability distribution, such as log-logistic distribution.

One of the characteristics of the log-logistic proportional odds model is the involvement

of time as an exponential variable.

2.1.1 Survivor and Hazard Function

Let ¢ be the actual survival time of an individual, which can be regarded as a single

nonnegative random variable, T . The hazard function A(t)is the probability that an

event happens between time ¢ and ¢+ &t for that individual, conditional upon the

individual having survived up to that time. This is defined as

: t<T<t+1t<T

h(t) =1lim il ) .
&0 ot

The survivor function gives the probability that the individual survives longer than a

particular time t, so that

SE)=PT 21),
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and also S(t) =exp{-H (1)},

where H(t) = Jh(u)du is called the cumulative hazard, Collett (1994).
0

2.1.2 Kaplan-Meier Estimate Survival Function

The Kaplan-Meier estimate (1958), also known as product-limit estimate, is a non-
parametric method capable of describing the survivor function for discrete censored
survival data. Time is split into several time intervals, each includes at least one event
case. The time intervals are not necessarily uniformly distributed. There is no interval
starting at the censored time and the censored time interval falls between the death time
intervals. There could be more than one individual observed to experience the event of
interest at any particular event time as illustrated in figure (2.1), where C is the censored

data and D represents the event cases.

A
[==]
~
~
~
.
w

Figure (2.1): The structure of the event time and the relationship with the censored time

of the Kaplan-Meier estimate.

Suppose there are n individuals observed with observed times #,,t,,...,t,. There are r
death times in total, r < n., so the ordered death times are 1, <7, <..<t, where

j=1,2,...,rand d;denotes the number of death at that time interval. The probability of
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an individual dying within that time interval is estimated by d;/n;, and the
corresponding estimated survival rate for that interval is (n;, —d;)/n.

The probability of survival to time t is

A kon,—d,
So=T1ED,

for t,, <t<t,,,, where k=1,2,...1, #,,,, is taken to be e and S(0)=1. A plot of the

Kaplan-Meier survival estimation is a step function, the estimated probability of
survival is constant between adjacent death times and the curve is decreased over time
due to the multiplication of probability of survival of each time interval. The graphical
presentation of survival curve is used widely. An example of Kaplan-Meier curves is
illustrated in section (2.1.2.2) using the breast cancer data and also a Kaplan-Meier

survival plot of each variable of breast cancer data is displayed in appendix (I).

2.1.2.1 Standard Error and confidence interval of Kaplan-Meier estimate

The Kaplan-Meier survival estimation can be written as

for k =1,2,...,r, where p, =(n;—d;)/n; is the estimated probability that an

individual survives from the beginning of time j through that interval. Then the number

of individuals who survive through the interval can be assumed to have a binomial

distribution with parameters n; and p,, where p is the true probability of survival of

that interval. The variance of a binomial random variable with parameters n, p is np(1-

p) . Therefore, the variance for the observed number of survivors, 7, — d ; 1s given by
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var(nj—dj)=njpj(1—pj).

The variance of P ; can be estimatedby p,(1-p,)/n;.

An approximation for the estimated standard error of the Kaplan-Meier estimate of the

survivor function is given by

172
sefin}= [ﬁml{Z—dL——} ,

mn(n;—d;)
for r,, <t< t a1y » Which is also known as Greenwood’s formula, Collett (1994), chapter

2.

Once the standard error of the estimated survivor function has been calculated,
confidence intervals for the estimated survivor functions can also be found. The
confidence interval is a range of values around the estimate, gives a percentage level
that the true underlying survivor function is included within the interval. In general a

100(1-0)% confident interval for the estimated survival is given by

Stz,,seS0).

The t+z,,, are the upper and lower 1-0/2 points of the standard Normal Distribution

respectively, where s.e.{8(1)} is the standard error of the estimated survivor function

given by Greenwood’s formula.
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2.1.2.2 Illustration the use of Kaplan-Meier curves

Table (2.1) displays the survival time and the status of 41 patients, status labelled with |

represents the event of interest which is death due to breast cancer otherwise 0. Table

(2.2) illustrates the necessary calculation needed to construct the Kaplan-Meier survival

curve that displays in figure (2.2).

Subjects(t 2 3 |4 |5 |6 {7 [8 [9 {10 |11 |12 |13 |14 |15 |16 |17
Survival |15 |61 |42 {12 |61 |45 {57 |19 (7 (39 |45 |20 |45 |30 |61 |52 |18
time in

months

Status 1 o 4 1 0t 1 1+ [t O (1 1 (1 1 |0 |1+ 1
Subjects |18 [19 [20 |21 |22 [23 |24 [25 (26 |27 |28 |29 |30 |31 |32 |33 |34
Survival |57 |28 |32 |17 |26 |27 |61 [23 |44 |61 |27 |44 (52 |37 |8 (47 |61
time in

months

Status |1 |1 |+ |t 1 ¢+ 0 1 (4 [0 [t 1 (1 {1 {1 {1 |0
Subjects|35 [36 {37 {38 |39 |40 |41

Survival |61 |27 |61 (14 (61 [7 |24

time in

months

Status [0 (1 |0 |0 |0 1 11

Table (2.1): An example of 41 subjects with their survival time in months and status

labelling.
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Survival time in| p. _ Sl &
months(t) ’ dj o’ d’ @)
14y
0 41 0 1.0000 1.0
7 41 2 0.9756 0.9512
8 39 1 0.9750 0.9268
12 38 1 0.9743 0.9024
15 37 {2 0.9737 0.8774
17 35 1 0.9722 0.8523
18 34 1 0.9714 0.8272
19 33 1 0.9706 0.8022
20 32 1 0.9697 0.7771
23 31 1 0.9687 0.7520
24 30 1 0.9677 0.7270
26 29 1 0.9666 0.7019
21 28 3 0.9655 0.6267
28 25 1 0.9614 0.6016
30 24 | 0.9599 0.5766
a2 23 1 0.9583 0.5515
37 22 1 0.9564 0.5264
42 21 2 0.9545 0.5001
44 19 12 0.9498 0.4475
45 17 3 0.9441 0.3685
47 14 1 0.9326 0.3422
52 18502 0.9283 0.2895
57 11 2 0.9156 0.2369
Table (2.2): Kaplan-Meier estimate of the survivor function for the data from table
g2
; K'aplan-Meiar'cuwa of ex'ample

0.8 ‘"‘mw“ e, (AL k B
g e o . |
$ ' ;
§ 22 - oy -

0.1Fr -

00 10 2;3 30 40 50 G0

Time in Months

Figure (2.2): Graphically illustrates the Kaplan-Meier estimate of survivor function for

the samples in table (2.1).
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2.2 Statistical Modelling

In the analysis of survival data, the centre of interest is the probability of a specific
event occurring at some time after the recruitment date for that individual. Cox (1972)
proposed the Proportional Hazard Model, which is referred to as “Cox regression” in
the following context. It is the most commonly used statistical modelling method for
discrete censored survival data, in which the hazard function is modelled directly as a
linear summation of attribute values. The Cox regression is referred to as a semi-
parametric model, since it does not make direct assumptions about the underlying
distribution of the hazards in different groups, except that the hazard for different
patient groups remains proportional to that of a pre-selected baseline population. It
allows a non-constant hazard rate to be modelled and involves determining which
combination of potential explanatory variables corresponds to the form of the hazard
function and also estimates the hazard function itself for an individual. Cox regression
can be described as predictive, whereas Kaplan-Meier estimation is descriptive. From

the relationship between the hazard function and the survivor function, described as

above, an estimate of survivor function can be found. Let the h, (¢) be the baseline

hazard function at time ¢. The general proportional hazard model for the ith individual
can be written as

h; (1) = exp(f , X, Yho (8)

where x is the explanatory variables and p is the number of explanatory variables. The
time dependence is described in the baseline population. The f is the unknown
coefficients of the corresponding explanatory variables and can be estimated using the

method of maximum partial likelihood, since the likelihood function does not make
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direct use of the actual censored and uncensored survival times. The maximum

likelihood estimates of the B-parameters can be achieved by maximising the logarithm

of the likelihood function, which is accomplished using the Newton-Raphson

procedure, Collett (1994),which involves the derivative of the log-likelihood function.

The likelihood function over all death time for the Cox regression is given by

o exp(Bx)
L = —
(B) QZIER(f(,P))exp(ﬂ x)

where R(? ;) is the set of individuals who are alive and uncensored at a time just prior

to #;,, called the population at risk, and X, is the vector of the explanatory variables

(N

for an individual who is observed to have died at the jth order death time.

2.2.1 Model validation method for Cox regression

After a model has been fitted to an observed data set, the adequacy of the fitted model
needs to be examined. Residuals are one of the commonly used model checking
procedures which are based on quantities for each individual. A number of residuals
plots have been adopted in the analysis of survival data. e.g. Cox-Snell residuals,

Martingale residuals and Deviance residuals.

The most widely used residuals for the Cox model are the Cox-Snell residuals. It is not
similar to the residuals in linear regression analysis, however, since Cox-Snell residuals
are not symmetrically distributed about zero, as they cannot be negative. Alternatively,

Martingale residuals are derived from the modified Cox-Snell residuals and take values
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between -« and unity. Grambsch and Fleming (1990) give a comprehensive description

of the Martingale approach to the analysis of survival data.

A major weakness of plots based on residuals is that there is no quantitative guideline

on what constituents a good enough fit.

2.2.1.1 Residual calculations for Cox regression model
2.2.1.1.1 Cox-Snell Residual

The Cox-Snell residual is the most widely used residual in the analysis of survival data

and is given by Cox and Snell (1968). For the ith individual, 1= 1,2,...,n, it is given by

r, = exp(f'x)H, )

<

where H, (t,) is the estimated cumulative baseline hazard function at time ¢,.

If the fitted model is correct, the Cox-Snell residuals have approximately a unit

exponential distribution. Let I, denote the Cox-Snell residuals and é(rq) the Kaplan-

Meier estimate of the survivor function using the residuals r, . If the plot of log{-

IogS(l’q) } against log(X, ) is a straight line with unit slope and zero intercept, this

indicates that the fitted survival model is correct.
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2.2.1.1.2 Modified Cox-Snell residuals

Censored data leads to residuals that cannot be regarded on the same footing as
residuals derived from uncensored data. The Cox-Snell residual needs to be modified

taking into account the censorship , Collett (1994), chapter 5.

The Cox-Snell residuals can be modified by the addition of a positive constant A .

Therefore modified Cox-Snell residuals have the form

’

{rc, for uncensored observations,
r.=
ci

r.; +A  for censored observations,

where 7., is the Cox-Snell residual for the ith individual and it is suggested that A is

taken to be unity, this leads to the modified Cox-Snell residuals

, Yei for uncensored observations,
r.= )
¢t \ro; +1  forcensored observations,
The modified Cox-Snell residuals can be writtenas ., = 1 = 6, + r,,, where 4, is

a censoring indicator, which takes the value zero if the observed survival of the ith

individual is censored and unity if it is uncensored.
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2.2.1.1.3 Martingale residuals

The modified residuals 7/, have a mean of unity for uncensored observations and this
can be relocated to have a mean of zero when an observation is uncensored. In addition,
when multiplied by -1, this gives new residuals which are known as Martingale
residuals as

i =0, — 1y

Fleming and Harrington (1991) gave a comprehensive account of the Martingale
approach. Martingale residuals take values between —oe and unity, with the residuals
for censored observations, where & ; = 0, being negative. However, the Martingale
residuals are not symmetrically distributed about zero. Plots of the residuals against the
survival time or the rank of the survival time can be used to detect departures from
proportional hazards. Plots of the residuals against explanatory variables in or out of the
model indicate whether the variables needs to be included or whether it is necessary to
transform a variable that has already been included in the model. If the plot does not

show any particular residuals that stand out from the rest, this confirms that the selected

model is satisfactory.
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2.2.1.2 Testing for time dependence of variables

Validating the model adequacy is important but the proportional hazard assumption
itself also needs to be examined. If the hazards for the different patient categories were
not proportional over time, the linear component of the model would become time-
dependent. The time dependency can be tested by introducing time parameters into the

model and checking the significance level for interactions between time and the

covarites, Collett (1994), chapter 5.

According to the Cox proportional hazards model, the mortality hazard at a time ¢ for

the ith of n individuals in the study can be written as
]J
h(t)= exp{z ,Bjxj‘}ho(t) ,
j=1

where X, is the value of the jth explanatory variable and does not depend on time, x /s

j = 1,2,...,p, for the ith individual, i=1,2,...,n and h (#)is the baseline hazard function.

Modifying this model to fit the situation in which some of the explanatory variables are

time dependent, the Cox regression model becomes

h(1)= exp{ﬁ Bx, (t)}ho(t)

The relative hazard A, (t) / hy(t) will therefore, also depends on time. This means that

the model is no longer a proportional hazards model.
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2.2.2 Previous studies of analysis using Cox regression

The Cox proportional hazards model can also be used to predict intervals of time in
which death is likely to occur for individual patients. ROC curves may be used to
display the accuracy of prediction with respect to different thresholds, Ohno-Machado
(1997). Williams (1985) used Cox regression to predict the local or regional recurrence
of breast cancer after a mastectomy operation. Gore er al (1984) predicted the year of
death due to breast cancer by defining a threshold which crosses the estimated survival
function and also discussed the non-proportionality of the hazard functions of the data.
Magee et al (1996) investigated the prognostic factor for breast cancer recurrence after
surgery and treatment, using Cox regression. A cubic-linear spline model is proposed by
Efron (1988) which combins the characteristics of a cubic logistic model and a logistic

regression model.

Kay (1977) Stablein et al (1981) and Gill and Schumacher (1987) and Pettitt and Daud
(1990) highlighted the need to validate the proportional hazard assumption and the use
of smoothed Schoenfeld (1982) residuals,. The stability of Cox regression can be tested
by the use of bootstrap, Altman and Andersen, (1989). Alternatively, using the
bootstrap resampling procedure for model selection in Cox regression, Sauerbrei and
Schumacher (1992) and Lagakos (1980) proposed a graphical approach to evaluate the
explanatory variables. Tibshirani (1982) demonstrated the powerful features of Cox
regression, handling a large number of continuous and categorical prognostic variables,
resembling the normal linear regression model to the analysis of survival data. Wei
(1992) proposed the accelerated failure time model, this can be an alternative to Cox

regression in survival analysis. Schoenfeld (1980), Andersen (1982) and Lin and Wei
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(1991) tested the goodness of fit of Cox regression and also Arjas (1988) tested it using

a graphical method.

Christensen (1987) demonstrated the use of prognostic indexes to separate patients into
sub groups and rank the groups from high to low risk groups, providing a convenient
way to visualise the survivorship of new patients. Prentice (1978) proposed the grouped
data version of the Cox regression to handle large grouped survival data with many tied
failure times. Prediction of breast cancer recurrence is another area that researchers are
interested in, Magee et al 1996 and McCready et al (2000) demonstrated the use of Cox
regression to identify the prognostic factors for breast cancer recurrence. Chen and
Schnitt (1998) gave a detailed review of available literature on prognostic factors for
patients with breast cancers 1cm and smaller and determined which of these prognostic
factors might be of value for the identification of low risk patients with auxiliary node
involvement and/or metastatic disease. Different regression models have been used in
the analysis of breast cancer survival, Gore et al (1984), in which a few variable
interaction pairs were found to be significant by these models and the departure from

proportionality of hazards in breast cancer was confirmed.

Altman and Lyman (1998) pointed out that many studies are carried out in an effort to
find the prognostic factors than explain the variation in prognosis of breast cancer
patients. However the quality of these studies is often in doubt, since a good study
design and analysis is less favourable for prognostic factor studies than for therapeutic
trials, some guidelines are then proposed in this paper for conducting and evaluating
prognostic factor studies to ensure the quality of research is improved. Henderson and

Patek (1998) also highlighted that the newly discovered prognostic factors for early
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breast cancer are being used before this information has been properly utilised and little
information actually helps in making a therapeutic decision in the management of

individual patients.
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2.3 Neural Network Model for Survival Analysis

Neural networks are adaptive non-linear models, and are commonly employed by
computer scientists and engineers for classification and prediction problems. Some
studies have applied neural networks to statistical problems with interesting results.
They have been used in survival analysis to model “mortality” and “time to relapse” and
claims have been made that they improve upon the accuracy of traditional statistical
methods. Neural network models for survival extend the proportional hazards model to
release the linearity and time dependence assumptions and they are usually based on the
Multi-layer Perceptron network (MLP). Multi-layer networks having either threshold or
sigmoid activation functions are generally called multi-layer perceptrons. The Bayesian
neural networks has been proposed by MacKay (1992, 1994, 1995) using Bayes’
theorem as a principled framework for regularisation of the MLP. This method included
a number of important features to over-come over-fitting, also providing a mechanism

to inhibit the influence of irrelevant input variables in the model, which as known as

Automatic Relevance Determination (ARD).

2.3.1 Neural network Model

Neural networks is the generic title given to universal non-linear function
approximation algorithms, characterised by a distributed structure with multiple non-
linear processing units. Certain types of neural network structures simulate the
associative memory function carried out by networks of neurons in the central nervous
system and, historically, neural networks were used to help understand the principles of

memory storage in biological nervous systems, as well as to build computational
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machines that can carry out complex tasks. The original model of a neuron was
proposed by McCulloch and Pitts (1943) and consists of a simple threshold activation
function. Figure(2.3) shows the structure of a MLP with three layers of nodes, namely
the input, hidden and output layers. Input nodes in the input layer represented the
explanatory variables. The hidden layer may have many nodes and there may be several
such layers, depending on the complexity of the problem. One hidden layer is sufficient
to provide a generic non-linear modelling capability, Bishop (1995). The final layer is
the output layer which calculates the output of the network, and it too may consist of

several nodes.

bias

O bias
@) O
@) O
O

Input Hidden Output

Figure (2.3): The structure of neural network model.

Feed-forward neural networks have one-way connections, from the input layer towards
the output layer, with no feedback connections permitted. Each connection has an
adjustable strength, called the connection weight. Each observation consists of a unique
input signal and the corresponding desired response (target). The network is presented
with the training sample and the network parameters, weights and bias, are modified so

as to minimise a global objective function that is intended to match the network’s
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response to the desired response, or target value. The training of the network is repeated
until the network reaches a steady state, where the changes to the network weights are
vanishingly small, or until pre-set value of the objective function is achieved, which is

know as early stopping.

2.3.2 Activation functions

The universal approximation property of neural networks is contingent upon the use of
non-linear activation in the hidden units. These functions take-in the signal received
from the proceeding layer, which is a linear combination of the network activation there

and outputs a non-linear function of this scalar variable.

2.3.2.1 Sigmoid Function

Sigmoid function is one of the most common form of activation used in the construction

of artificial neural networks. It is a saturating, monotonic exponential function, given by

1

gla)ys ———,
1+ exp(—a)

where a is the slope parameter, which is a linear sum of the weights and the output of

previous layer. By varying the parameter a, sigmoid function of different slopes can be

obtained. A sigmoid function assumes a continuous range of values from O to 1.
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2.3.3 Learning by Error Back Propagation

The terminology of back propagation was used to describe the mechanism of optimise
the network weights according to the value of network outputs and the desired target.
Let there are d input units, M hidden units and ¢ output units. The explanatory variables
feed into the input layer, through the hidden layer to the output layer, the output of the
kth output unit can be written as

M d
Ye =8 Zwkjg(zwjixi jw’
=0 i=0

/

where g(-)is transfer function and they both are sigmoid function when working with

classification problem..

‘Learning’ is the term used to demote updating the network parameters, usually by
minimising an objective function, E. Gradient descent is one of the simplest network
optimisation procedures, starting with small random values w’. The parameter w is

updated at each step 7, using slope of the error by an amount
(7) _ n
Aw'” =-nVE" |,
The parameter 7 is called the learning rate and it is a gain parameter used to stabilise

the learning process. If it is too large, the algorithm may overshoot the minimum, given
by VE =0, leading to an increase in E and possibly into divergent oscillations, which
may cause a complete breakdown in the algorithm. Or alternatively, the search proceeds
extremely slowly which is computationally expensive. The learning rate is problem
dependent and it can be adjusted manually to smooth out convergence. An alternative
procedure is to use the method of scaled-conjugate gradients (SCG), Mgllar (1993b),

which adopts the principle of line search. SCG estimates the position of the minimum
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along a series of mutually orthogonal direction. It searches each direction in weight
space in turn and adjusts the step length automatically along that direction. It is possible
to choose the step size in the conjugate gradient algorithm without having to evaluate

the Hessian matrix, which is computationally expensive.

Scaled conjugate gradient, is an alternative parameter optimisation algorithm, which

reduces the number of evaluations of error function required for convergence, and

avoids the need to specify the learning gain.

2.3.4 Error function

The error function measures the difference between the network outputs and the desired
target values. For the classification problem, the cross-entropy error, Hopfield (1987)

function is commonly used. For a particular class problem, let y be the posterior
probability of p(C,|x) belonging to the class. The posterior probability of not-
belonging to the class is then p(C, | x) =1—y. Then target labeling ¢ for the Class 1
is 1 and O for the class 2. Therefore, the probability of either target value is
ptlx)=y'A-y",

which defaults to y if t=1, and (1-y) if t=0. For n independent classes, and the form of

the error function is a penalised log-likelihood

E=-2{t" Iny* +(1-2%)In(1 - y*)}.

k=1

For a multi-layer networks, the error function is typically a highly non-linear function of

the weights, in which many minima and saddlepoints may exist and their gradient in
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weight space is zero, VE = 0. The minimum that gives the smallest value of the error
function is called the global minimum, the other minima are called local minima. In
order to find the minima for the error function, algorithms employ interactive search

mechanisms through weigh space typically using gradient descent, of the form

W = @ L AW,

for which the error function is guaranteed not to increase. The disadvantage for such
algorithms is when they reach to a local minimum they may become trapped at
saddlepoints, where the error function is flat, the algorithms may be stuck for an
extensive period of time. In practice, different values of the initial weights lead to

convergence to different local minima.
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2.3.5 Early stopping and regularisation

When the algorithms involve a succession of steps and the values calculated within the
algorithms are based of the previous values, then a stop point needs to be defined.
Otherwise the network would be over trained, leading to data over-fitting (the networks
fit the noise as well as the data). However, in reality, the best generalisation
performance might be obtained at a local minimum, which is not the global minimum of
the error function. Then the generalisation performance needs to be monitored as a
function of time during the training, and the training is halted when the optimum
generalisation performance is reached, early stopping is such a techniques. The error
generally decreases as a function of the number of iteration during the course of
training. However, the error with respect to the independent data (validation set), often
decreases during early training process, but then increases when the network is over
trained. Training is stopped at the point when the smallest error is achieved with respect

to the independent data, at which the network is expected to produce the best

generalisation performance.

Alternatively, adding a penalty term to the error function, {2, encourages smoother
network mapping in the form of

E=E+WQ,

where E is an standard error function and the penalty term £ is governed by the
parameter v the way it influences the form of the error function. When the network

gives a good and smooth fit to the training data, it gives a small value to the combined

expression for E (although either of E or vQ may be individually above their

minimum possible value).
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One of the simplest forms of the regulariser is called weight decay, which consists of

the sum of the squares of all the adaptive weights in the network, not including biases

Q=%§i:wf :

Then the cross-entropy error function including the weight decay term is in the form of
4 2
E==) (t*Iny* +(@ -t In(1-yP}+=) w] .

This is called weight decay because in gradient descent it adds a term to the weight

change, that is

VE = VE+V%9, where

w

9Q_
ow

By itself, this term makes the error reduce exponentially to zero, hence the name of this

form of regularisation.

2.4 Bayesian framework for network regularisation

The Bayesian framework was proposed by McKay (1992 a,b), in part to address the
issue of regularisation. There are a number of important features offered by a Bayesian
framework. (1) For regression problem, error bars or confidence intervals can be
assigned to the estimated outputs. (2) The regularisation coefficients can be
approximated analytically directly from the training data set. (3) Irrelevant input
variables, are ‘softly pruned’ using the technique of Automatic Relevance

Determination (ARD) (1994a, 1995), whereby, a separate regularization coefficient is
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given to each input node. If a particular coefficient is large, the corresponding weights
will be forced towards zero, so that the corresponding input variable is of little influence

upon the network output.
2.4.1 Distribution of the weights

Network training was originally described using maximum likelihood techniques, which
minimise the negative log likelihood error function by attempting to find a single best
set of values for the network weights. The Bayesian approach treats this differently, by
considering a probability distribution function over the weight space, p(w). Once the
data D have been observed, this can then be transformed to posterior distribution p(w|D)
by applying Bayes’ theorem

p(Diw)p(w) .
p(D)

p(wlD)=

The prior probability distribution for the weights was assumed to be Gaussian

distribution.

E, =-uw||2 ZW, :

_ 1 a 2
p(w) ———”—Wexp(—-z-ll wll®),

a,
where W is the number of the weights and biases in the network and the parameter o is

the regularisation coefficient, called a hyperparameter, controlling the growth of the

network weights.
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The regularisation produces a penalised log-likelihood cost function, regularised using

weight decay

N o W )
E=~{Y[t,Iny, +(1-1,)In(l- yn)]+E;w,. }.

n=l|
2.4.2 Automatic relevance determination

We assumed the weight distribution as a single Gaussian distribution. But commonly
the weights fall into a few distinct classes. Weights from different classes should be

modelled with different prior by assuming a Gaussian prior for each class. Now each

class has its own hyperparameter @, . The error function of regularisation becomes

E= —{i[t,‘ Iny, +(1-¢,)In(1- yn)]+%iac iwz, }
=1 i=1

n=l

When presenting a large amount of input variables to the network and some of them are
irrelevant to the network output. Any conventional neural network will fail to set the
coefficients of these inputs to zero. As a consequence, a finite data will show random

correlation between inputs and output.

This problem can be overcome by introducing multiple weight decay constants ¢, one
for each input node. When an input variable corresponds to a large value of &t , its value

will be depressed towards zero, making it an irrelevant input. This helps to avoid

causing significant overfitting.
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2.4.3 Marginalisation

When making an assumption of a Gaussian distribution of the weights, there will be a
contribution from the Gaussian noise to the network output distribution. For a

classification problem, the logistic sigmoid function of the form

1
1+exp(—a)

y=g(a)=
is chosen to be the activation function of the output layer since it allows the output to be
interpreted as the probability P(C, | x) of an input vector belonging to class x. As a
consequence of the sigmoid activation function, the network output no longer can be

approximated linearly by the network weights. Mackay (1992b) introduced a necessary

modification to the network output, which is marginalisation.

He assumes the activation ain the sigmoid function is locally a linear function of the
weights and since the posterior weight distribution is Gaussian, the distribution of a

will be Gaussian. The mean and variance of this Gaussian distribution can be evaluated

and gives
p(al x,D) = ———exp ——-————‘“‘““”’2)
ST (271:?2)”2 252 )

where a,,, is the most probable value of the activation, given by the usual combination

of hidden node responses, and the variance s°is given by s*(x)=g" A™ g, where A
is the Hessian matrix and g is the gradient.

It follows that

P(C, | x,D)= jg(a)p(a | x,D)da.
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However, this integral is not analytically tractable, so Mackay (1992b) suggests the

evidence approximation, which involves modulating the activation a,,, towards zero,

corresponding to P(C, | x, D) = 0.5. Hence suggests

P(C,1x,D)= g ——“L)
1+ 7s?/

2.4.4 Neural Network Model Handling Censored Survival Data (PLANN)

Hazard function is assumed to be continuous in the proportional hazards model.
However, in practice, the survival times are usually rounded to the nearest day, month
or year, therefore tied survival times arise, of which the proportional hazard model is
unable to handle. Therefore, there is a need for a discrete version of the proportional

hazards model and it takes the form

h; (1) - ho (1)
I—h () 1=hy(?)

exp(fx;) .

When the width of the discrete time intervals becomes zero, this model tends to the
proportional hazard model and also assumes that the censoring has occurred after all the
deaths at a given time, which resolves the ambiguity of which individuals should be

included in the risk set at that death time.

The implementation of this model into a neural network model is straightforward. The
input layer is the replication of the explanatory variables for all time intervals for

individuals, in which the subject is observed and including the time as a covariate, since
the value of fix; in the algorithm does not change over time. The value of the time

covariate is taken to be the mid-value of the time interval. Here, only one target variable

-37-



Chapter 2: Literature Review

is assigned to each individual, which is represented by the event indicator d; This
indicator only takes value of 1 or 0, 1 presented the event of interest happened on that

subject at that time interval and O otherwise.

The output of the network is posterior probability of death at a given time and the

estimated survival function over time for i individual is given as
J
S,y =[]a-ye,».
k=1

where y(z;)is the network output at time j.

By taking the negative logarithm of the likelihood, we obtain

P n(p)
E:—Zitp,‘ ll'ly,,,« +(1_t,,,')(1—ypi)’

p=l i=l

that is equivalent to the cross-entropy error function.

This means that the PLANN can be implemented with a standard neural network model
without any modification to the neural network structure or the calculation algorithms.

This is proposed by Biganzol (1996).
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2.4.5 Previous Neural Networks studies of survival

Neural network models have been considered as an alternative tools of conventional
statistical methods for survival analysis. At the early stage of development of neural
network model for survival data censorship was ignored, Ohno-Machado et al (1995).
Faraggi and Simon (1995) demonstrated a possible way to compare the traditional
statistical methods with neural network model. Burke et al (1997) showed that the MLP
predictions produced a better AUROC than simply assigning patients to the averaged
survival of the patients in the same TNM stage. However, Brown et al (1997) and
Radvin and Clark (1992) separately reported that excluding the censored data or treating

them as missing will incur substantial bias in the estimation of survival.

Thereby, De Laurentiis et al (1994), Ohno-Machado et al (1995), Faraggi ez al (1997)
and Ripley et al (1998) alternatively proposed different techniques to handle censorship
within the neural network models, which may require several output nodes to maintain
the separation between the dependence on time and on the patient specific vector of
covariates. A more efficient way to represent the time and using only a single output
node is proposed by Radin et al (1992), De Laurentiis et al (1994) and Liestol et al
(1994). Biganzoli et al (1998) gave a thoroughly description of the Partial Logistic
Artificial Neural Network (PLANN) which is a non-linear extension of the discrete
version of the proportional hazards model. This neural network model of survival has
proved to be stable in monthly studies over a period of time after treatment and releases
the proportionality of the hazards assumption and fitting non-linear effects, Laurentiis et

al (1994), Biganzoli et al, (1998), Lisboa et al, (2000b).
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In term of the interpretation of analysis results, Radvin et al (1992) and Christensen
(1987) divided patients into three mortality risk groups, low, medium and high,
according to their estimated survivorship. While Radvin et al (1992), Tarassenko et al
(1996) and Ripley and Ripley (1998) used the neural network model to predict the
recurrence of breast cancer. Groves et al (1999) tested the predictive power of Cox
regression and the neural networks according to the area under the corresponding ROC
curves by adding and removing factors from the model, which is an application of
Acute Lymphoblasitc Leukaemia in children. Mariani et al (1997). The neural network
model is also used to access prognostic factors for metachronous contralateral breast
cancer in terms of model predictive ability Lariani et al (1997), in which variable
interactions are also considered, and also Kappen (1993) investigated the prognostic

factors for ovarian cancer using multiple neural network models and the Cox regression.
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3. Breast Cancer Background Information and Data Description

Within this chapter, a data set that is extensively used in this thesis is described in more
detail. Two different methods of handling missing data are reported, treating of the
missing data as a separate attribute and estimating the category using Nominal Logistic
Regression. Also summarising the criteria that most likely to group the data into two

subsets representing a low-risk and a high-risk cohort, which are investigated

separately.

3.1 Breast Cancer Background Information

Like other type of cancers, the precise cause of breast cancer and the course of the
disease are unknown. Moreover, while breast cancer is often perceived as a single
disease, it is in fact a complex variety of diseases that can begin in different types of
cells within the breast. It is the leading cause of death in women, whilst it is rarely
found in men. Britain has one of the highest mortality rates for breast cancer in the
world and 80% of cases occur in post-menopausal women, the UK Breast Cancer
Awareness Campaign (1995) claimed. The mortality figures continue to decline due to
public awareness of the disease and the development of better treatments, but presently

there is still no way of curing the disease.

In general, patients are offered four types of treatments, namely surgery, chemotherapy,
radiotherapy and hormone therapy. Treatments are usually tailored to the individual

situation, either given alone or in any combination or even in a particular order.
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3.2 Data Description

3.2.1 General information of the Data

The analysis techniques developed and reported in this thesis are applied to a data set
consisting of 1,616 women breast cancer patients were referred to the Manchester
Christie Hospital between 1983 to 1989. All patients were treated and underwent
surgery with at least 5 years follow up and in some cases, as long as 13 years.
Censorship is an important feature of survival data and cannot be ignored. However,
Burke (1995) suggested that ignoring censorship would not significantly affect the
survival of the study. Figure (3.1) displays the survival curves of the variable oestrogen
including (left) and ignoring (right) censored data and concluded that the effect of
ignoring censorship is that the calculation of survival is underestimated. Therefore, the
event of interest in this thesis is ‘death attributed to breast cancer’. All other causes of
death and other loss of follow up were regarded as censorship. This is not always clear-
cut, since death from unrelated cancers need to be identified and are not assigned to ‘the
event of interest’. However, in cases of heart attack, for instance it can be difficult to
make a clear assignment as this may be related to systemic damage caused by prolonged
chemotherapy. For instance, patients who are surviving beyond the time fame for the
study are also censored. Since the scope of the study is a five years follow-up, all
surviving patients are censored at five years if they survived more than 5 years.
Eighteen categorical variables were collected, which can be summarised into 4

categories: 1) demographic information, 2) clinical investigations and 3) laboratory test
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results as well as 4) treatment received. No family history or genetic link was provided,

Survival Functions Survival Functions
All Data Ignoring Censorship
Oestogen 148 | Oestrogen
) —h-dissing 1.0 : 1 Tﬁlssmg
|
i 9 | s
8888 D] 8888
Bimiemm = e e b |
§ 10+ —g o IS ] ‘.:L_ i e 1 e i 10+
£ s
5 2 e e
a — - B e e e e e e e e e o
£ 0-10 & 0-10
3 o b I
2 0 2 4 6 8 10 12 14
Years Years
(a (b

Table (3.1) shows a full listing of collected variables.
Figure (3.1): Demonstration of the effect of (a) including and (b) ignoring censorship by

grouping data using variable oestrogen.
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Variable Categories Labelling
1. Menopausal status Pre-menopausal 1

Peri-menopausal 2

Post-menopausal 3
Variable Categories Labelling
2. Age Group 20-39 |

40-59 2

60+ 3
Variable Categories Labelling
3. Predominant site Upper Outer 1
(The position of tumour | Lower Outer 2
rested in the breast) Upper Inner 3

Lower Inner 4

Subareolar 5

Missing 9
Variable Categories Labelling
4. Side Right 1

Left 2

Table (3.1): List of variables assessed in each patient.
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Variable Categories Labelling

5. Maximum Diameter of | <2cm 1

Tumour (Measured before | 2-Scm 2

tumour removal) 5+cm 3
Unknown 9

Variable Categories Labelling

6. Clinical stage Tumour | TO (No Tumour) 0

(Measurement of tumour | T1 (Tumour less than 2 cm) 1

after removal) T2 (2-5 cm) 2
T3 (5+cm) 3
T4 (any size but fixed on the rib cage) | 4

Variable Categories Labelling
7. Clinical stage Nodes NO (cannot feel any node or nodes are | O
negative)

N1 (Tumour has been found under | |

arm and the same side of breast)

N2 (Fixed nodes) 2

N3 (Nodes are further inside the body | 3

and cannot be removed)

Table (3.1): List of variables assessed in each patient, continues.
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Variable Categories Labelling

8. Metastasis stage MO (negative) 0
M1(positive) 1

Variable Categories Labelling

9. Clinical stage 0 |

(also known as the |l 2

Manchester Stage, it|2 3

corresponds to different | 3 4

combination of TNM}|4 5

staging)

Variable Categories Labelling

10. Type of Surgery none 1
Incision Biopsy 2
Excision Biopsy 3
Simple Mastectomy 4
Radical Mastectomy 5
Wide Local Excision + Ancillary | 6
Clearance
Radial Mast + Auxiliary Clearance 7
Surgery  after Neo  Adjuvant |8
Chemotherapy
Missing 9

Table (3.1): List of variables assessed in each patient, continues.
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Variable Categories Labelling
11. Adjuvant | No 1
Radiotherapy Yes 2
Variable Categories Labelling
12. Adjuvant Treatment none 0
(Summarised different type | CMF 1
of drugs, including | MELPH 2
chemotherapy and | TAM 3
hormonetherapy) XRAM 4
OOPH 5
CYCLO 6
TAM + CYC 7
TAM + PRED 8
ZOLADEX 9
TAM +ZOL 10
MEGACE 11
ZOL + TAM + CMF 12
NEO ADJ-PRE SURG 13
CMF + TAM 14
FAC 15
Missing 9999

Table (3.1): List of variables assessed in each patient, continues.
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Variable Categories Labelling
13. Histology INF DUCT 1

INFLOB /LOB IN SITU 2

IN SITU / MIXED / MEDULLARY / | 3

UCOID / PAPILLARY / TUBULAR

/ OTHER MIXED IN SITU

Missing 9
Variable Categories Labelling
14, Number of Nodes |0 1
Involved (no. of nodes| 1-3 2
have been defined as |4+ 3
tumour) 98 (too many to count) 4

Missing 5
Variable Categories Labelling
15. Number of Nodes | 0-9 ]
Removed (no. of nodes | 10-19 2
have been removed) 20 + 3

98 (too many to count) 4

Missing S

Table (3.1): List of variables assessed in each patient, continues.
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Variable Categories Labelling
16. nodes ratio (number of | <=20 % 1
nodes involved / number of | 20-30% 2
nodes removed) 30-60% 3

60%+ 4

Missing 5
Variable Categories Labelling
17. Pathological Size <2cm 1

2-5cm 2

5+ cm 3

Missing 4
Variable Categories Labelling
18. Oestrogen Cytosol 0 - 10 (negative) 1

10+ (Positive) 2

8888 (Positive) 3

Missing 4

Table (3.1): List of variables assessed in each patient, continues.
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3.2.2 Missing data

Missing data are inevitable when collecting such a large scale cohort. In this data set,
some records contain several missing variables, for example: number of nodes involved
(968 missing), oestrogen (537 missing) and pathological size (452 missing). There are
only 447 complete cases histories. In some clinical studies, incomplete data was
discarded completely if the numbers were sufficiently small, Collett (1994). With this
data set, the majority of missing data cannot be discarded and the cause of missing data
is unknown. We do not know whether the data are missing at random, missing

completely at random or missing but informative.

Two different methods of handling missing data are reported in this thesis. The first,
missing data was gathered as a separate attribute, which is the simplest method to use.
The second, missing data was estimated using nominal logistic regression, which is
appropriate for categorical data. The process of filling in the missing data using nominal
logistic regression included two parts. Firstly, using the chi-square test, to infer the
relation of the complete variables and the incomplete variables. Then by determining
the a subgroup of variables (predictor variables) from the compete variables, which is
significantly related to the incomplete variables. Secondly, fitting the mode! (predictor
variables) using the nominal logistic regression, which produces a set of log ratios of
the possible categories with respect to the reference category of the incomplete variable.
From these values, the category value of missing data can be determined. Altogether 4
incomplete variables were introduced to the nominal logistic regression and table (3.2)
displays their determined predictor variables and the results are summarised in table

(3.3).

-51-



Chapter 3: Breast Cancer Background Information and Data Description

Incomplete variables

Predictor variables

Pathological size

Tumour stage, Predominant site, Surgery, Histology,

Adjuvant Treatment ,Node stage

Number of nodes involved

Adjuvant Radiotherapy, Manchester stage, Surgery,

Adjuvant treatment, predominant site, Histology

Number of nodes Removed

Adjuvant Radiotherapy, Predominant site, Histology,

Surgery, Metastasis stage

Oestrogen

Age group, Clinical stage, Histology

Table (3.2): The incomplete variables and their predictor variables.
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Variables Estimated Category Number of records
Pathological size 1(<2cms) 106
2(2-5cms) 278
3(5+cms) 0
Number of nodes involved 1(0) 623
2(1-3) 200
3(4+4) 59
4(98) 1
Number of nodes removed 1(0-9) 24
2(10-19) 1
3(20+) 0
4(98) 0
Oestrogen 0-10 173
10+ 41
8888 13

Table (3.3): Summarised the estimated values for each the incomplete variables.

Filling-in the missing data allows the whole data set to be used for data analysis. A
separate category was used for missing data and as consequence none reduced the
degrees of freedom. If an inappropriate method were used that introduces significant
bias to the prediction, the analysis would also be inaccurate. So far, there is no definite
solution available for the categorical missing data; therefore the missing data in this
data set needed to be handled carefully. Figure (3.2) displays the survival curves of
pathological size where the missing data are treated as a separate category and filled in
using the nominal logistic regression, respectively. As a result, more than 60% of the
missing records were estimated to belong to category 2 and the rest were assigned to
category 1, which explained the substantial changes that happened to the survival curve

of category 2. If the data is missing at random, the survival curves should not show
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substantial changes after being filled-in. However, the substantial difference between

the two plots in figure (3.2) suggests the missing mechanism may be informative.

Therefore, the development of survival analysis techniques in this thesis were based on

the use of a separate category for the missing data, which minimizes the bias introduced

to the analysis if the filling in method turns out to be inappropriate.

Survival Functions

Pathological size - separate category

Cum Survival

“ missing

| ]
-——q sl [T~
|
i
0 1 2 3 4 5 6
5 years time

Figure 3.2:

(a)

Survival Functions

Pathological size - filled in

1;1
Path Size

5 years time
(b)
Showing the survival curves of pathological size. (a): Treating the missing

data as separate category and (b): Filling in the missing data using nominal logistic

regression.
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3.3 Splitting data into low and high-risk cohort

The data analysis in this thesis was based on using the entire data set to predict the year
of death for individuals and splitting the data into two parts, low-risk and high-risk
cohorts, which allows precise analysis to be conducted in each cohort. In each cohort,
an estimated survival function over a fix time period was calculated for each individual,

thus grouping the patients into prognostic groups in mortality risk order.

Variables Attributes Value | Attributes Value
Metastasis 0

Tumour stage 1 2

Pathological size <2cms 2-5cms

Node stage 0 1

Table (3.4): List of variables that contributed to the low-risk cohort separation criteria

and their values using clinical staging methods.

The low-risk cohort separate criteria are summarised in table (3.4). The patients in the
low-risk cohort are at the early stages of the disease. The rest of the records were
regarded as the high-risk cohort. Therefore the numbers of subjects in the low-risk and
high-risk cohort are 917 and 633 records, respectively. A total of 66 records were
discarded owing to the tumour stage being assigned a value of 0, which appears to

indicate that no tumour is present. The low-risk cohort comprises the majority of

patients.
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4 Breast cancer survival analysis using Cox regression

This chapter investigates two possible survival analysis approaches. After modelling the
expected survival function for individual patients, there are two ways to interpret the
results. One is to predict the likelihood of the patient surviving in fixed time intervals,
the other is to group patients according to prognostic risk. In this chapter, these two

approaches are compared.

The second part of this chapter involves partitioning the data into two groups: a low-risk
cohort and high-risk cohort. For each cohort, prognostic groups are identified by means
of a ranked mortality risk score of individuals, hence predicting the survivorship over 5
years or 60 months for each group. The survival prediction based upon Cox regression

is compared with the observed survivorship which is described by the Kaplan-Meier

survival estimate.

4.1 Cox Regression analysis of the whole data set

4.1.1 Model selection

One of the important applications of Cox regression (1972) is to identify variables that
may be of prognostic importance. The approach adopted here for the choice of variable
to be included in the model is the forward selection stepwise procedure, which was
applied to the 1,616 records and the analyis is based on a yearly basis over 5 years and

on a monthly basis over 60 months. Variables were added to the model one at a time
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and assessed as to whether they significantly made improvements to the goodness of fit
value to decide which variable to include in the model, Collett (1994). Subjects who
survived more than 5 years were viewed as being censored at year 6. A total of 8
variables were selected from the original 18 variables. All of the variables were
converted to categorical format. For those variables contained large amount of missing
data, the missing data was treated as a separate category; otherwise, the records were
removed when the missing data of the variable is significantly small. Therefore, out of
the 1,616 records, 120 cases were removed, in which 115 records of missing data and 5
cases of non-positive survival times, leaving 1,496 cases for analysis. From these 1,496
records, 503 patients died of breast cancer 5 years after surgery and are thus regarded as
‘event cases’, with the remaining of 993 records being viewed as censored data. The

threshold of p-value for the acceptance of a variable is <0.05 and p >0.1 for

removal which is the default setting of Statistical Package for the Social Sciences
(SPSS). At each model selection stage, there may be more than one variable made
significant to the test statistic, only the most significant variable was selected to be
included in the model. Table (4.1) summarises the variables entering the model together

with the closest alternative variables at each stage.

Finally, eight explanatory variables were selected, namely, pathological size, node

stage, histology, surgery, age group, number of nodes involved and oestrogen.
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Variables in the model Close alternatives

f(p value less than 0.05)

Diameter Manchester Stage, Pathological Size,
Predominant Site, Age Group, Histology,
No. of nodes involved, Stage T, Stage M,
Node Stage, Surgery, Oestrogen

Diameter + Manchester Stage Oestrogen, Age Group, Histology,
Menopausal  Status, No. of nodes
involved, Pathological Size, Node Stage,

Tumour Stage, Surgery

Diameter + Manchester Stage + Oestrogen | No. of nodes Involved, Age Group,
Histology,
Pathological Size, Node Stage, Tumour

Stage, Surgery

Diameter + Manchester Stage + Oestrogen | Pathological Size, Surgery, Age Group,

+ No. of nodes involved Histology,

Node Stage, Tumour Stage

Diameter + Manchester Stage + Oestrogen | Age Group, Histology, Node Stage,

+ No. of nodes involved + Pathological Size | Tumour Stage, Surgery

Manchester Stage + QOestrogen + No. of | (Diameter is removed)

nodes involved + Pathological Size

Manchester Stage + Oestrogen + No. of | Histology, Age Group, Node Stage
nodes involved + Pathological Size +

Surgery

Manchester Stage + Oestrogen + No. of | Age Group, Node Stage, Tumour Stage
nodes involved + Pathological Size +
Surgery + Histology

Manchester Stage + Oestrogen + No. of | Node Stage, Tumour Stage
nodes involved + Pathological Size +

Surgery + Histology + Age Group

Manchester Stage + Oestrogen + No. of | Tumour Stage
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nodes involved + Pathological Size +
Surgery + Histology + Age Group + Node
Stage

Manchester Stage + OQOestrogen + No. of
nodes involved + Pathological Size +
Surgery + Histology + Age Group + Node

Stage + Tumour Stage

Manchester Stage + QOestrogen + No. of
nodes involved + Pathological Size +
Surgery + Histology + Age Group + Node
Stage

(Tumour Stage is removed)

Table (4.1): Cox regression model selection of the breast cancer data.
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4.1.2 Model validation

The Cox-Snell residual calculation is one of the most commonly used methods for
model validation, Collett (1994). Figure (4.1) displays the modified Cox-Snell residuals
plot of the entire data. The graph of the residuals is shown an approximately a straight
line with unit slope and zero intercept, indicating no real evidence against the fitted

model being adequate.

Cox-Snell Residual

-4 /

o

Log -Cumulative Hazard of residual

-6 -4 -2 0 2
Log of Cox-Snell Residual

Figure (4.1): Plot of Cox-Snell residuals of breast cancer data. It appears as a straight

line with unit slope and zero intercept, indicating no real evidence against the fitted

model being adequate.

The use of Martingale residuals is an alternative model validating method, Collett
(1994). Figure (4.2) shows plot of the Martingale residuals against the survival time
while figure (4.3) shows the plot of the Martingale residuals plot against rank of
survival time. Both of the graphs display no discernible pattern in the residuals over

time, with only two residuals indicated as potential as outliers, again suggesting no real

il
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evidence against the fitted model being adequate. The Martingale residuals can also be
plotted against the explanatory variables, since the variables are converted into

categories, therefore, there is not much information that can be extracted in this case.

Martingale Residuals plot against time

RESMART

000 0 1000 2000 3000 4000 5000 6000

Survival Times in Days

Figure (4.2): Martingale residuals versus survival time. There is no pattern in the

residuals over time, indicating no real evidence against the fitted model being adequate.
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Figure (4.3): Martingale residuals versus rank of survival time. There is no systematic
pattern in the residuals over time, indicating no real evidence against the fitted model

being adequate.
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4.1.3 Assessing the possibility of time dependency of the explanatory variables

This section tests the statistical significance in Cox regression of the time dependency

with the previously selected variables. The -2 log-likelihood, —2log L, value for the

model without time dependent variables was 7114.600 with 27 degrees of freedom.
Time dependence was only tested over the first 5 years. The results are summarised in
table (4.2) below and indicate that none of the variables display true dependent
behaviour when assessed at the 5% level of significance. With the result, there is no
evidence to prove that the linear components of the model do not vary with time,

indicating that the fitted model is adequate, Collett (1994).

Additional variables -2loglL Change of Degree of | p-value
added to the model -2 Log Likelihood | Freedom
from the previous
model

Time * Age Group 7107.198 7.402 35 0.4939
Time * Histology 7107.655 6.945 35 0.5426
Time * Manchester| 7095.575 19.025 43 0.2674
Stage

Time * Number of| 7102.981 11.619 43 0.7698
Nodes Involved
Time * QOestrogen 7104.520 10.08 39 0.6089
Time * Pathological | 7103.827 10.773 39 0.5484
Size
Time * Node Stage 7097.458 17.141 39 0.143

Table (4.2): Significant level for assessing the time dependency of the variables.
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4.2 Survivorship Prediction

4.2.1 Prediction of 5 years follow-up survivorship using Cox regression

The survival function of individual patients over a fixed time period can be estimated

using Cox regression, as Ohno-Machado (1997) has suggested. The estimated survivor

function for the ith individual at time t is given by S, (f) where

. . (B’X.)
5,0 =184 7,

for t, St<t k = 1,2,..,r-1 of r distinct death times, where S'o(t) is the

(k+1) ?

estimated baseline survival function at time ¢, [ is a vector of unknown parameters and

X, represents the vector of the values of the explanatory variables of the ith individual.

A 5 years survival curve was produced for each of the subjects. The data set was split
into two parts according to whether the record number was odd or even, to produce the

training and test set. The f and the baseline hazard function were estimated using the

training set, then applied to the test set for performance evaluation. The training and test
split was in line with the neural network approach, allowing a fair comparison of the
performance between two methods, where the network parameters are estimated from
the training set and the model is applied to the test set. Figure (4.5) shows an example
of the estimated survival curves for 10 patients over the 5 year period. By drawing a
threshold across the figure at any value on the y-axis, representing the probability of
survival, the cross points of the threshold and the survival curves were used to predict
the year of death for each patient, which are reflected on the x-axis. The ROC was used

to determine the value of threshold giving the most accurate prediction from a range of
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possible thresholds between O and 1. The calculation of the ROC involves the true
positive rate (sensitivity) divided by the false positive rate (l-specificity). The
sensitivity and specificity sometimes are called the true positive rate and true negative

rate, respectively and defined as

ailds True Positive
Sensitivity = - )
The number of positive cases

True Negative

Specificity = :
i The number of negative cases

Survival(%)

t (years)

Fig. (4.5): An example of re-estimated survival curves of 10 patients. The horizontal

line corresponds to a 0.5 probability of survival as the threshold for the prediction of

survival time after surgery for each patient.

The definition of true positive in this study is, that the patient is predicted to die of
breast cancer (positive) within a particular time interval and the patient actually does die
of breast cancer within the time interval. While the true negative in this study means the
patient is being predicted not to die of breast cancer within an time interval and the
patient actually does not die of breast cancer within this time interval. An optimal

situation would be all of the patients who are to die of breast cancer are predicted to die
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of breast cancer at the same time interval and all of the patients who are not to die of
breast cancer are not being predicted as dying of breast cancer at a particular time
interval for some values of the threshold. This is corresponds to the ROC curve passing

through the (0,1) point on the graph.

Figure (4.6) displays the ROC curves of prediction death happening up to respectively
year 1, year 2, year 3, year 4 and year 5. The calculation is based on taking the
difference between the survival functions at each time point and the one before, to
obtain the probabilities of death during each year. The time interval that contained the
greatest estimated probability of death was interpreted as the predicted year of death.
For an example, taking 0.5 as the threshold, the actual year of death is the third year and
if the highest estimated probability of death is in the third year band and is greater or

equal to 0.5, it is counted as a correct classification.

The results show that the curves reach sensitivity values above 0.6 only for relatively
high false negative rates, above 0.2. So this predictive approach is not considered to be
very informative, and a new approach for the interpretation of survival models is
proposed. This new approach is based on assigning patients into a prognostic risk

groups.
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Fig. (4.6): The ROC curves of Cox regression, predicting year of death from breast

cancer up to 5 years.

-67-




Chapter 4: Breast Cancer analysis using Cox regression

4.3 Prognostic index and Log-rank test

The hazard function for the ith individual can be written as

h.(t)=@(x)h, (1),

where ¢(x;) (>0) is a function of the vector of explanatory variables of the ith
individual that can be interpreted as the relative hazard compared with an individual for

whom x=0. The function ¢@(x;) is conventionally written as exp(7),), where

;= Pyxy + BoXyy + ot Brxp,
and p is the number of explanatory variables. The quantity 7); is called the prognostic

index or risk score for the ith individual, Collett (1994).

The prognostic index provides a score for each subject, and can indicate whether the
particular patient has a good, intermediate or bad prognosis for survival. Prognostic
indexes for a given cohort can be ranked and partitioned into prognostic groups, and
their survival curves displayed for each prognostic group. There are several different
ways to arrange the prognostic indexes into prognostic groups, by allocating significant
amount of samples into each group, Christensen (1987). Or alternatively, by observing
the natural distribution of the indexes from the prognostic indexes plot is also
considered in this thesis and also use of a well-established statistical method, such as
the log-rank test. The log-rank test determines, to a given significance level, whether the
population comprises of two subgroups with different survivorship. The disadvantage of
the first method is lack of clear guidance about the cut-off point locations. The second

method is not convincing, when the scores are crowded and leave no gap between
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groups, as they are difficult to separate by eye. Finally, the log rank test becomes the

preferred method.

The log-rank test was proposed by Peto and Peto (1972). In the two group case, the null
hypothesis is that there is no difference in the prognostic scores of the individuals in
two groups. The tenability of this hypothesis is tested by considering the difference

between the observed number of surviving individuals in the two groups at each time

points and the number expected under the null hypothesis.

Let d,; and d,; be the number of deaths at #; j=1,2,...r, in group | and group 2,

respectively, r is the number of distinct death times, and the 7,; and n,; be the number

of individuals at risk at time f; in group 1 and group 2, respectively. Therefore the

expected number of individuals e,; who die at time #;; in group 1 is given by
e, =n;d;/n;,

where d; =d,; +d,;and n; =n; +n,;.

The overall measure of the deviation of the observed values of d, ; from their expected

values is calculated by summation of the differences d, j —€,; over the total number of

time intervals, r, in the two groups. The test statistic is given by

r
U, = Z(dlj —e,;) with the variance of d,; being given by
=

n,jnzj(nj—dj) _ . r
= , so that the variance of U, is var({U, )= Y v,. =V, .
nf(”j _D) L w,) ; 1j L

v, =
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Note that U, has an approximate normal distribution when the number of death times

is not too small, Collett (1994), so that H,:U, /4/V, has approximately the standard

normal distribution and can be written as

U,

N

~N(@©,]).

U? . ST
In addition, note that —= ~ X 2, where X denotes the chi-squared distribution with
L

one degree of freedom.

The larger the value of the statistic W, =U z /V, , the greater the evidence against the

null hypothesis. A 5% significance level is used here.

-70-



Chapter 4: Breast Cancer analysis using Cox regression

4.4 Low-risk cohort analysis of Cox regression

4.4.1 Model selection

A new variable nodes ratio was considered at this point. This is the ratio of the number
of positive nodes to the number of nodes removed. The number of positive nodes has
already been selected as an important variable, see section (4.1.1). Considering that two
patients with same number of positive nodes may have different prognoses since
clinicians tend to have different prognoses depending upon the total number of nodes
that have been removed. For example, a patient who has 5 positive nodes out of 5 nodes
removed is more severely affected than a patient who has 5 positive nodes out of 30
nodes removed. The nodes ratio variable was designed to take into account this

consideration.

By applying the low-risk cohort selection criteria described in section (3.3), a total of
917 cases were selected. A forward stepwise elimination model selection was
performed once again as described in section (4.1.1). However, four variables were
excluded from the pool of variables in order to identify the prognostic factors which
provide information on the survivorship of the patient regardless of treatment. The four
variables are namely treatment, surgery, oestrogen and adjuvant radiotherapy.
Oestrogen is a measurement of female hormone, and the remaining three variables are
decided by the doctors according to the symptoms of the patients. The selected variables
are node stage, nodes ratio, histology and pathological size. Akaike’s information

criterion (AIC), Akaike (1973), was also employed to measure and establish the
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significance of the value of —2log-likelihood, —2log L, on adding new terms into a
model or deleting existing terms from the model. The AIC statistic is
AIC==2logL+0q,

in which g is the number of unknown parameters in the model and & is a
predetermined constant that specifies the weighting between fit accuracy, which is
measured by —2log L, and model complexity and @ =3 is recommended for general
use. The final model chosen was that with the smallest value of the AIC, and in fact, the
final model contained 4 variables from the original 6, namely histology, pathological
size, node stage and nodes ratio. Vonta et al (1998) also used the AIC test statistic to
select the best subset of variables to be included in the final Cox model and found that

the lymph nodes, tumour size (pathological size) and grade (tumour stage) have

significant impact on the survival times of breast cancer as our model showed. The

details are given in table (4.3).

Model selected from SPSS ~2log [ | Parameters | AIC

in model
Node stage 3734.798 2 3740.798
Node stage + Nodes ratio 3700.972 ) 3724.872
Node stage + Nodes ratio + Histology 3680.338 10 3710.338
Node stage + Nodes ratio + Histology + | 3669.689 1 3705.689

Pathological size

Node stage + Nodes ratio + Histology + Path | 3661.818 15 3706.818

Pathological size + Age group

Node stage + Nodes ratio + Histology + Path | 3651.835 19 3708.835

Pathological size + Age group + Diameter

Table (4.3): The AIC measurement for each step of the variable selection process for

the low-risk cohort.
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4.4.2 Natural distribution of the prognostic groups of the low-risk cohort

The low-risk cohort was split into training (458 records) and test sets (459 records),
based upon the odd or even record number. A 5 years analysis was again conducted,
therefore all patients who survived more than 5 years were viewed as being censored at
year 6. The training and test split process is in line with neural networks analysis for a
fair modelling methods comparison. By considering the natural distribution of the
prognostic indexes, the test set data were partitioned into 7 prognostic groups as

illustrated in figure (4.7). The Cox regression and the Kaplan-Meier estimated survival

curves for each of the prognostic groups are displayed in figure (4.8).
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Figure (4.8): (a) The predicted survivorship for each of prognostic group using Cox
regression in the low-risk cohort and (b) the corresponding Kaplan-Meier estimate of
the survivor function, which represents the observed survivorship for each group. The
results show the estimated performance is acceptable in general by comparing the two
graphs, except for groups 2 and 6 which show an over and under estimation of the

survivorship of the groups, respectively.

When comparing the estimated survival curves using Cox regression with the Kaplan-
Meier estimated survivor functions, which are used to described the observed
probability of survival, the accuracy of the survival estimation was varied over the
prognostic groups. The smaller the value of the prognostic index, the greater the
survival probability of the subject/group will be. In addition the prognostic index has
been arranged in mortality risk order, so that the prognostic group1 to 7 are in the order
from the highest to the lowest degree of survival. However, the results show that some
of the curves overlapped or crossed. This suggests that some of the prognostic groups

potentially could be combined.
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The natural grouping approach becomes inaccurate when the separation of the
prognostic groups is not clear. We thus consider an alternative grouping method and

adopted the log-rank test for the partition of the data into prognostic groups.

4.4.3 Partitioning the low-risk Cohort into prognostic groups using Log-rank test

The log-rank test, described in section (4.3), was adopted to replace the visualisation
grouping method, in which the survival curves of two groups is compared by measuring

the significance level arising out of a test of the equality of the two survivor functions.

The process begins with choosing the cut-off point from the lowest prognostic index
value to the highest. The log-rank test was performed separately at each cut-off point;
therefore a set of p-values was obtained. The optimal cut-off was chosen at the cut-off
point with the highest p-value and the group was split only if this is significant at least
at the 5% level. A subset of patients, whose prognostic index was greater than the
optimal cut-off point, were removed from the data and regarded as one prognostic

group. The whole process was repeated until no more prognostic groups could be

defined.

Figure (4.9) displays the four groups obtained via the above log-rank test based
approach. The study was conducted with monthly time resolution over 60 months. The
performance measure was no longer only applied to the test set, but a 5-fold cross
validation was introduced. Furthermore, 95% confidence interval bands were also
included with the Kaplan-Meier curves, as this helps to identify the separation between

prognostic groups, assessing the uncertainty of the data as displayed in figure (4.10). By

-75-



Chapter 4: Breast Cancer analysis using Cox regression

displaying the variable profiles of each prognostic group as shown in figure (4.11), the
contribution of each variable is monitored, hence illustrating which variables play an

important role in each prognostic group.

Note that the number of prognostic groups obtained using this approach is fewer that the
number obtained using the previous approach and none of the survival curves crossed
over or overlapped. The log-rank test is a well-developed method for survival curves
comparison. The results indicate that it is better than visualisation grouping method, the
survival curves are well separated and also the estimated survival rate was improved for

each group.
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Figure (4.9): A total of 4 prognostic groups were aggregated by the log-rank test and

labelled from 1 to 4, contained 127, 189, 487 and 114 patients, respectively.
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Figure (4.10): (a) Each curve (labelled in turn pi 1 to pi 4) represents a Cox regression

estimated probability of survival for a prognostic group over 60 months. (b) The
corresponding Kaplan-Meier estimate of the survival functions. Each of the Cox
regression estimated survival curves fall within their confidence interval bands and thus

indicating that the per formance of the Cox regression is acceptable.
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Figure (4.11): Attribute profiles for the prognostic groups illustrating which variable

dominates the prognostic group.
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4.5 Cox regression for the high-risk cohort

4.5.1 Model selection

A total of 633 records were left after the low-risk cohort was removed from the design
data set, which are regarded as a high-risk cohort. The model selection procedure was
repeated with the AIC criterion, as described in section (4.1.1). The selected model
comprised the variables menopausal status, node stage, pathological size, clinical
staging and nodes ratio. Node stage, pathological size and nodes ratio are again being
selected as for the low-risk cohort. The details of each stage in the model selection

process and the value of the respective AIC values are displayed in table (4.4).

Vaiables in the model —2log L Degrees of | AIC
freedom value
Clinical stage 3805973 |3 3814.973
Clinical stage, Pathological size 3789.091 |6 3807.091
Clinical stage, Pathological size, nodes ratio | 3773.244 | 10 3803.244
Clinical stage, Pathological size, nodes ratio, | 3764.722 | 12 3800.722
Menopausal status
Clinical stage, Pathological size, nodes ratio, | 3754.329 15 3799.329
Menopausal status, Node stage

Table (4.4): The AIC value of each variable during the model selection process for the

high-risk cohort.
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4.5.2 Applying the selected model to the high-risk cohort

The analysis was carried out on a monthly bases for 60 months using 3-fold cross
validation. Again the log-rank test was adopted to identify the prognostic groups. The
results are summarised in the order of figures (4.12) to (4.14). Figure (4.12) displays the
log-rank test aggregated prognostic groups from the prognostic indexes, and figure
(4.13) the estimated survival curves over 60 months for each prognostic group and the
Kaplan-Meier estimate of the survivor functions. The variables profile for each
prognostic group is illustrated in figure (4.14).
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Figure (4.12): The 3 groups obtained via the log-rank test by means of prognostic

indexes and labelled from 1 to 3 as illustrated. Their sample size is displayed next to
their group labelling. Group 2 contained almost 45% of the patients in the high risk

group.
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Figure (4.13) (a): The Cox regression estimated survival curve over 60 months for 3
prognostic groups and labelled as pil, pi2, and pi3 from top to bottom. Right: Their
corresponding Kaplan-Meier estimated survival curves. The curves are well separated
on the graph and their Cox survival estimations are within their confidence bands when
compared with the observed survival curves. The small confidence interval bands

suggests that the variance within each group is small,
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Figure (4.14): A display of the variable profiles within each of the prognostic groups to
observe the category shifting behaviour of each variable. The display shows that (except
the menopausal status) the variables display a different degree of the category shifting
movement over the prognostic groups. The category 4 of pathological size represents

the missing data of the variable.
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The display of the prognostic indexes in figure (4.12) has demonstrated again the
importance of the log-rank test in this study by providing an objective criterion to assign
patients into prognostic risk groups. Figure (4.13) also suggests that the performance of
the Cox regression approach in predicting the mean actual survival for each group is
acceptable. The major variables dominating the prognostic group 1 and 2 are the node
stage and clinical stage, with the node stage changing from category O to 1 while the
clinical stage shifts from category 1 to either categories 2 or 3. The other variables also
show some degrees of category shifting behaviour as pathological size shifts from
category 1 to 2 which corresponds to <2cms and 2-5cms respectively. This shifting

sequence is continued into prognostic group 3.

The results show that the survival probability of prognostic group (pi) | after 5 years is
0.8. A question raises ‘Does this group truly belong to the high-risk cohort?” The
pathological size was one of the criteria for defining the low- and high-risk cohorts, but
itself also contained missing data on 414 out of 1,530 records. As these 414 records did
not have confirmed small tumour diameter, they were left in the high-risk cohort.
However, 203 records partially fit into the criteria of low-risk cohort on the basis of
tumour stage, in which subsets of 120, 75 and 8 records were allocated to the prognostic
group 1,2 and 3 respectively. These records probably do belong to the low-risk cohort
and it is interesting that they were identified as low-risk even using pathological size,
coding missing value as a separate attribute. The prognostic group 1 in the high-risk
cohort may correspond to the prognostic group 2 and 3 in low-risk cohort. Removing
the 120 records from prognostic group | of 171 records, leaves only S1 records, they
might be the true members of prognostic group 1. The subset of 75 records may also
correspond to the prognostic group 4 in the low-risk cohort where the survival

probability was 0.5.
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The results have demonstrated that the approach of predicting the year of death for
individuals is not informative. On the other hand, the second approach produced some
interesting results, which involved defining prognostic groups and estimating group

survivorship.

After completing the analysis for the low-risk and high-risk cohorts using Cox
regression, one further interesting point was found. The motivation behind the
separation of the data into two cohorts was to try to understand the survivorship of the
disease and to enable a precise analysis of each cohort to be made. The above analysis
has shown that there was no clean cut-off point for separating the data between low-

and high- risk cohorts. There is a group of patients which overlaps the two cohorts.

4.6 Discussion and Conclusion of Cox regression analysis of the breast cancer data

Two analytic approaches are illustrated in this chapter, prediction of ‘year of death’ and
survival prediction for prognostic groups. The unsuccessful attempt of estimating the

likely year of death is possibly caused by the large amount of censored data.

The second approach, in which the low- and high-risk cohorts are both further divided
into distinct prognostic groups, gives more promising results. The Cox regression
predicted survival for the prognostic groups agrees well with the corresponding Kaplan-
Meier estimated survivor function, and falls within the confidence bands. This is
especially true when the log-rank test is used to partition patients into prognostic

groups.
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The fact that the pathological size variable contained many missing values in the high-
risk cohort caused confusion in the cohort assignment, where the records containing
missing values of pathological size were allocated into the high-risk cohort, since
pathological size is one of the main separation criteria. The identified prognostic group
1 in the high-risk cohort appears to be a high survival group and contains a substantial
number of patients. Most of the patients in this group have the pathological size labelled
missing. It is possible that they are the patients really showing a high survivorship from
the high-risk cohort or it is the confusion caused by the number of clinical data
separation criteria containing missing data. Missing data cannot be avoided when
collecting a large amount of data and there is no definite solution or method for
handling categorical missing data without the potential for introducing bias into the
analysis. The data separation criteria may need to be redesigned to include verifying

incomplete variables against likely indictor, for example, using tumour stage when

pathological size is unavailable.
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5. Neural networks breast cancer Application

This chapter summarises the results of two survival analysis approaches using neural
networks. Due to the restrictions of the network structure, censorship is not considered
at the first approach. In this approach, the probability of death 5 years after surgery is
calculated for individuals and presents with the ROC curve, then benchmarks with the

Cox regression of the same approach.

In the second approach, the role of analysis has changed. A 5 years survival function is
predicted for individuals, in which the neural networks model is modified to be capable
of handling censorship, by implementing a partial logistic model. Also, the data are
divided into low- and high-risk cohorts. In each cohort, patients are allocated into
mortality risk groups, and the corresponding survival function is calculated by the
average of the 5 years survivorship prediction of the group. Hence, the accuracy of the
prediction is assessed by the Kaplan-Meier estimation of survival from the observations
for that group. Moreover, two different neural network approaches are adopted,
including the most commonly used MLP trained by back-error propagation and the
neural network trained with a Bayesian framework. In the Bayesian neural network
approach, the results report substantial bias introduced to the network estimation
because of the skewness of the distribution of target values, which is solved by
marginalising the outputs to the averaged hazard of the data. This chapter also
introduces the more advanced automatic relevant determination (ARD) technique which

carries out soft pruning of the model.
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5.1 Prediction of 5 years survivorship using the MLP network

Neural networks are non-linear modelling methods, with successful applications in
many fields. Medical analysis is one of the fields that adopts this method, in which the

probability of a disease occurrence is frequently the variable of interest.

In order to calculate the probability of death 5 years after surgery for breast cancer
patients, a 5 year survival curve for individuals is required. Gore et al (1984) proposed
using the cross point of a threshold that crosses the survival curve to predict the year of
death for individual patients. Two different network frameworks are used, the ordinary
MLP and the neural network trained with Bayesian framework, the details are given in

section (5.1.1) and (5.1.2), respectively.

For each neural network, the 1376 records were split into two groups of 688 records
each, selection was dependent on the odd or even record number. One set was used to
train the network for parameter generalisation and the other set was used for testing.
The number of patients who survived beyond 5 years in the training set and test set is
437 and 436 respectively. The rest of the records are spread over the other 5 years of
classes. The outputs can be interpreted as the probability of death at a particular time
interval and the cumulative probability of death for ith individual is given as
!
2

ﬁ.(t)= I=]

{

M-

n,

~
]
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for t = 1,2,....k where k is number of time intervals, #, is the network output of each

time intervals and l;,. (?) is the cumulative probability of death at particular time

interval. Figure (5.1) shows an example of estimated cumulative probability of death of
a patient over the first 5 years and beyond 5 years. To predict the year of death for this
patient, a threshold is identified for the y-axis and the predicted year of death for an
individual patient is identified by the cross-over between the cumulative probability of

death and the pre-specified threshold.

Prediction of death

G002

1 2 3 4 5 Beyond 5 years
Survival Years

Figure (5.1): An example of neural network estimated cumulative probability of death
of an individual patient over the first 5 years and beyond 5 years. Using 0.5 as the
threshold to predict the year of death, it is predicted the death is most likely happened in

year 2.
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5.1.1 MLP network with early -stopping

Six different MLP networks are employed, each network represents one-year interval of
5 years and beyond 5 years. For the patients who survived in that time interval, the
target is labeled with O, or 1 for death of breast cancer. The network consisted of 35
input nodes, one hidden layer of 8 hidden nodes, which has been tested for convergence
and performance, and 1 output node. The 35 binary input nodes were transformed from
the 8 Cox regression selected variables, reported in section (4.1.1). Since censorship
was not considered at this stage, the patients who survived beyond 5 years were

considered to be dead after 5 years and those censored before 5 years are discarded.

Early-stopping was employed to overcome the over-fitting problem, where the network
training was stopped when the smallest error was archived with respect to new data.
During a typical training session, the training data error generally decreases as a
function of the number of iterations in the algorithm, whereas the test error first reduces

than slowly increases, achieving a minimum value where generalisation is optimal.

Gradient descent was the adopted parameter optimisation algorithm for its simplicity
and efficacy and the sigmoid function was the chosen activation function for the
network of which restricted the output value to be between O and 1, and can be

interpreted as probability of death. Each network was trained for 120 iterations.

The calculation required for ROC curves was discussed in section (4.2.1), which
involved sensitivity and specificity. The network output can be read as predicting an

independent probability of death for each year, same approach as the Cox regression in
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section (4.2). Figure (5.2) displays the ROC curves for each year and the results are

similar to those obtained with Cox regression, and inconclusive.
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Fig. (5.2): The ROC curves of independent probability of death.

5.1.2 Bayesian Approach

We began with the consideration of the architecture of neural networks, number of
layers, number of hidden nodes and choice of activation function. In the conventional
maximum likelihood approach, a single ‘best’” set of weight values is determined by
minimising a suitable error function. By contrast, the Bayesian approach considers a
probability distribution function over weight space and this can be obtained by
calculating the posterior probability distribution given some prior distribution. Once the
data has been observed, the prior distribution can be converted to a posterior
distribution through the use of Bayes’ theorem. The posterior distribution can then be

used to evaluate the predictions of the trained network for new inputs, Bishop (1995),
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chapter 10. Aston’s Netlab software was used, this software is specially designed for

neural network classification problems.

In the Bayesian model with automatic relevance determination (ARD), there were 38
distinct weights decay parameters, one for the fan-out weights fan from each input
node; one for the bias of hidden nodes; one for the output node weights and the last one
for the output node bias. The network was trained until all parameters had converged.
Figure (5.3) is the ROC curves using the neural network trained with Bayesian

framework to predict the year of death of breast cancer for 5 years and beyond 5 years.

ROC curves of Bayesian approach

ROC curves of Bayesian approach
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Figure (5.3): The ROC curves of Bayesian regularised neural network for year 1, year 2,

year 3, year 4, year 5 and beyond year -k
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5.1.3 Summary of death year prediction with a neural network

By comparing the results of the Bayesian model and the conventional MLP over the
independent probability of death method, the Bayesian model shows a better
performance on year 2, 3 and 4, while the second shows better performance of
prediction in the first year after surgery. There is no apparent difference between the

performance of methods for predicting death beyond year 5.

The results also suggests that the neural networks Bayesian approach can perform as
well as the Cox regression, figure (4.6). The neural networks perform better in the
prediction of death for all time intervals except year 1, which the Cox regression shows
better prediction performance, concluding that neural networks are marginally better in
long-term outcome prediction. However, none of the results can be considered as being
significant for clinical use and some other studies have highlighted that omitting

censorship may bias the result, Brown er al (1997) and Radvin and Clark (1992),

therefore this approach was ended.

Although the results show the neural network performance is marginally better than the
Cox regression, both methods failed to produce interpretable results. At this stage,
censorship is not considered. Dealing with censorship in the development of neural
network model for survival analysis is essential. The Partial Logistic Artificial Neural
Networks (PLANN) model, Biganzoli (1996), was identified from the literature review
to be preferred solutions to handle censorship. The application of PLANN model to the

breast cancer data is summarised in the following sections.
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5.2 Neural network modelling of censored data

The new approach aims to accurately estimate the cumulative probability of survival for
each individual up to a maximum time period, putting all the subjects are partitioned
into prognostic groups via the use of prognostic indexes. A predicted mean survivorship
for each prognostic group can then be evaluated. Throughout this chapter, all survival

analyses were based on 5 years or equivalently 60 months.

5.2.1 Defining a prognostic index in neural network model
Prior to identifying distinct risk groups, it is necessary to rank all of the patients in order
of mortality risk. This ranking uses prognostic indexes that are defined separately for

both the Cox regression and the PLANN model.

In neural networks, the equivalent of the fix exponent used in Cox rgression is obtained
by treating the Multi-Layer Perceptron (MLP) structure as a non-linear extension of
logistic regression, and taking the logit of the hazard prediction. However, as this is
time-dependent, a cumulative index is obtained by averaging it over the time-span of
the study, to give

T
Y logit(y,)
=]

PI,, =S4—,
NN T

where T is the number of time intervals (Lisboa et al 2000)
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5.2.2 The preliminary test of applying the PLANN model to the neural networks using

the low-risk cohort

A conventional MLP network was first adopted to implement the PLANN model. The
data set used is the low-risk cohort which was split from the data following the criteria
given in section (3.3). The training set contained 458 samples with 459 samples in the
test set according the odd and even record number. The input variables of the networks
were the variables that Cox regression selected namely; node stage, histology, nodes
ratio and pathological size in section (4.4.1). These variables were then transformed
into 12 binary attributes, together with the time covariate, formed the input layer of the
network. Hence, the value of the time covariate was the mid-point of each time interval.
Due to the characteristic of the PLANN model, records in the training set were
replicated extensively for each time interval until the patients dropped out from the
study. The target label for an observed time interval was O where the patient was
observed alive and 1 when the event of interest occurs in that time interval. Therefore
no sample replication and target labeling was allocated to the subjects after they were
dropped out from the study. Unlike the training set, all subjects in the test set were
replicated for all time intervals. Only one output node was needed for this model, which
represented the conditional probabilities of death from breast cancer in a time interval,

therefore the model predicts the hazard mortality.

The networks contained a single hidden layer of 12 hidden nodes and adopted the scaled
conjugate gradient (SCG) algorithm as the parameter optimisation method replacing the
gradient descent algorithm. This algorithm is claimed to be faster to reach convergence

and has fewer pre-set parameters, Bishop (1995). Different values of weight decay
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parameter have been tested, finally 0.075 was chosen for the wideness range of
prognostic indexes and also better separation and grouping of mortality risk groups. In
order to overcome the over-fitting problem, early stopping was adopted. The network

was trained with only 30 loops.

5.2.2.1 Result Implementation

Since each subject in the test set was replicated 6 times with a different value for the
time covariate for a 5 years study, therefore each subject is associated with 6 output
values and 6 prognostic indexes, and each output value was independent of the others.
They are recorded independently after training, the 6 prognostic indexes are averaged to
represent the risk score (prognostic index) of an individual and the 6 output values were
transformed to cumulative probability of survival function over 5 years and the

calculation for ith individual is

. j
S;(t;)= H p(t<t, It >t, ), where jisthe number of time intervals.
k=1

Hence,

J
S. )= H(l - y(t,)), y, is the network output at time k.
k=l

By plotting a histogram of the prognostic indexes of all subjects in the test set, the
indexes are naturally gathered into a number of small groups, which can be identified
by eye, as shown in figure (5.4). Each band represents one prognostic group, 5 groups
were identified in this case. The network predicted mean survivorship for each
prognostic group together with the corresponding Kaplan-Meier estimate of the survivor

functions including 95% confidence interval are displayed in figure (5.5). The Kaplan-
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Meier estimated survivorship function is used to describe the observed survivorship for

each prognostic group, which allows assessing the accuracy of network prediction for

prognostic groups.

Neural networks Bayesian approach, 5 years prediction for the test set of LRG
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Figure (5.4): Subjects were divided into five mortality risk groups by the eyeballing

method from the ranked prognostic indexes
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Figure (5.5): The neural network SCG approach predicted survivorship over 5 years for
prognostic groups, together with the corresponding Kaplan-Meier estimate of the
survivor functions. In general, the performance of the neural network survival
estimation was acceptable, except group 4, the probability of survival was under

estimated by 0.13 at year 5.
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The results show that some of the survival curves are close together and their
confidence intervals actually overlapped, suggesting that some of the prognostic groups
can be potentially combined, i.e. group 1 and 2, group 3 and 4. The combined results
are displayed in figure (5.5), finally 3 prognostic groups are left, each contains 194, 221
and 44 subjects, respectively. The confidence interval bands for group 1 and 2 are clear,
with no serious over-lapping, and also the accuracy of the estimated survivorship for
prognostic groups compared with that observed has been improved. The result after
combining specific prognostic groups has given strong statements that the neural
network model is capable of handling censored data, and give accurate survival

predictions with small confidence intervals.
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Figure (5.5): The predicted survivorship for the 3 prognostic groups after combining
some of the groups from figure (5.4) and the corresponding Kaplan-Meier estimate of
the survivor functions. The results display better prognostic group separation and

survival estimate accuracy.
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5.2.2.2 Discussion of the first neural network model handling censored survival data

The Cox regression, is the most commonly used conventional statistical tool for
survival analysis, and its the high popularity is due to commercial availability and its
robustness and ease of interpretation. Whereas, the neural network model produced
some interesting results which are different from those of the Cox regression. Using the
same approach, with fewer prognostic groups, and more accurate survival estimation for
prognostic groups. One disadvantage of the neural network approach is the time spent
on obtaining the optimal network structure, the correct number of hidden nodes and the
weight decay value. Even though a good network design is not always guaranteed the
result will be better than the conventional statistical method, it should be at least as
good as it. So far, it is only a preliminary test of the potential use of neural networks for
censored survival data and the result has given a positive agreement. The next stage is
to repeat the SCG approach but implement it with the 5-fold cross validation method,
then applying the PLANN model to the neural networks trained with a Bayesian

framework, which is an alternative approach to the network weights optimisation

method.

5.2.3 SCG approach of low-risk cohort using cross validation procedure

The SCG training and test split approach has suggested that the neural network PLANN
model is capable of handling censored survival data. The analysis was repeated once
again using the SCG approach but trained with a 5-fold cross validation procedure,
which allowed better understanding og the nature of this data in general. The results are

summarised in figure (5.6) - (5.7) as in sequence of, dividing mortality risk groups by
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eye judgement, the network predicted survivorship for each prognostic group together

with the corresponding Kaplan-Meier estimate of the survivor functions.

Frequency

a0

80

70

60

50

40

30

20

10

o

-5

SCG, cancer data, mid-point of real time, 12 hidden nodes

1

-4.5

2

-4 -3.5

|

-3 2.5 -2

pi value

4

Figure (5.6): The five partitioned mortality risk groups using visualisation grouping

method from ranked prognostic indexes which is calculated by the network over 5 fold

cross validation sets.
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Figure (5.7): The neural network predicted mean survivorship for each of the prognostic

groups and the corresponding Kaplan-Meier estimate of the survivor functions. The

curves are nicely separated and the survival estimation gives a good agreement.
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The result shows that the five prognostic groups are nicely separated. Moreover, the
prognostic group 3 and 4 have the potential to be combined and more interestingly,
prognostic group 1 shows a 100% of survival chance over 5 years. The accuracy of the
estimated survival has not been improved by the cross-validation method but the

confidence intervals for each prognostic group are narrower than the training and test

split approach.

The SCG approach has already produced some useful results. The next step will test the
PLANN model with the neural network Bayesian approach, since it overcomes the
over-fitting naturally and the ARD technique can be added on to tune down the

irrelevant input variables from affecting the network calculation.

5.3 Bayesian framework for the PLANN model

The evidence approximation to the Bayesian neural network is an alternative parameter
regularisation framework. This approach uses a hyperparameter that controls the
strength of weight decay. Only a single value of hyper-parameter o is considered at this
stage, in which all input variables share same value of alpha. Multiple alpha values will
be considered later in the ARD approach, reported in section (5.4). The input variables
were those selected by the Cox regression which allows comparison over different
weight optimisation approach. A single layer of eighteen hidden nodes was adopted for
better network estimates, wider range of prognostic indexes and better mortality group
separation. One output node was used. The analysis was completed with a 5-fold cross
validation and yearly bases of 5 years. The result of prognostic group partitioning was

that the network predicted survivorship for prognostic groups and the corresponding
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Kaplan-Meier estimate of the survivor functions are summarised in the figure (5.8) -

(5.9), respectively.
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Figure (5.8): The neural network Bayesian approach evaluated prognostic indexes of

917 low-risk cohort data, 5 prognostic groups were partitioned by visualisation

grouping method.

Bayesian Approach, mid-point of real time, 10 hidden nodes K-M of Bayesian Approach, mid-point of real time, 10 hidden nodes

1 ™ T

14
08 ' 4
507 g 07 *
B0 ol o TR e i R et SPS 3
» 06 { 08
°
% 06 i E 06}
‘E‘ PI1 é
1) 0.4 = J L i &
& o PI2 é a4 A
03} PI3 | 03} .
Pl 4 A ’;:i o
02t - PI5 J 0.2 & PI5
01 | 01 ]
0 = = A - 4 0 " " A i 2
0 1 2 £ 09 4 B € 0 1 2 3 : s .
heia yaers Time in Years

Figure (5.9): The network predicted survivorship for each of the prognostic groups and

the corresponding Kaplan-Meier estimate of the survivor functions.

Figure (5.9) shows that the survival curves of 5 prognostic groups are nicely separated
between 0.97 to 0.3 at year 5. The majority of patients are partitioned into groups 2 and
3. The SCG approach aggregated highest survival group which showed a 100%

survivorship has disappeared, the predicted survival of the newly formed prognostic
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survivorship has disappeared, the predicted survival of the newly formed prognostic
group 1 is 0.97, still a very high survival group. In term of the accuracy of survival

prediction, the Bayesian approach is marginally better than the SCG approach in

general.

The result is comparable with the conventional statistical tools, the Cox regression in
this study. Another special feature of the Bayesian framework is the use of the ARD
technique where the input variables that are least relevant to class differentiation can be
determined. Although the input variables were selected by Cox regression and have
been proved to be effective in prediction, neural networks may act differently on these

variables since they are non-linear methods unlike linear Cox regression.
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5.4 The PLANN model of Bayesian framework using ARD

The ARD technique was based on the use of a separate hyper-parameter for each input
variable. Each alpha controls the optimisation of the network weights that fan out from
the each input variable. The assumption is that irrelevant, or noisy covariates, develop
large hyperparameter values that penalise the objective function, E, driving down the
values of the regression coefficients (or weights) associated with them. Therefore, the
bigger value of the alpha, the smaller value of the corresponding weights to be. In other
word, the alpha value is a measurement that determines the irrelevant input variables

and minimises their influence towards the network output. This is called soft pruning.

The network input variables were those by selected Cox regression. The role of

hyperparameters in here is to examine how these variables have been handled in the

network.

5.4.1 Group ARD Concept

Owning to the structure of categorical data, each of the input variables was transformed
into several binary input attributes in the network. Originally, the ARD technique
assigns a single value of the hyperparameter alpha to each input variable. In this new
approach, instead of assigning a value of alpha to the group of weights which fan out
from each input node, a single value of alpha is associated with the weights that fan out

from all of the input attributes which correspond to a single variable. This is called the

grouped ARD technique.
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This approach was applied to the low-risk cohort and implemented with a 5-fold cross
validation again and same input variables were used. Different numbers of hidden nodes
were tested, the best network output estimation was given by 18 hidden nodes. The

results are summarised in figure (5.10) - (5.11).

Prognostic indexes of Bayesian approach, grouped ARD
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Figure (5.10): Prognostic indexes that evaluated by the grouped ARD Bayesian
approach for the low-risk cohort and five prognostic groups were partitioned by

visualisation grouping method.
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Kaplan-Meier estimated survival, grouped ARD, LRG
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Figure (5.11): The grouped ARD network predicted mean survivorship for prognostic
groups and the corresponding Kaplan-Meier estimate of the survivor functions. The
separation of prognostic groups over 5 prognostic groups is better than the single alpha

ARD approach and also better survival estimation for each of the prognostic groups.

The results show that the grouped ARD technique is successful and the accuracy of the
estimated survival for prognostic groups have also been improved. However, the value
of alpha hyper-parameters for each input variable are strangely large, further
investigation will be reported in section (5.4.2). Hence, the neural network analysis will
be based on the use of grouped ARD technique and also the prognostic groups
partitioning method. We will be using the log-rank test to choose the optimal position of

the thresholds to aggregate prognostic groups from the ranked prognostic index values.
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5.4.2 Baseline attributes determination

The value of alpha hyper-parameter in the single alpha approach was around 6.
However, the alpha values of the grouped ARD approach varied between 22.57 to
84.71. The two sets of alpha were very different. The value of alpha corresponds to an
inverse variance, as the bigger the posterior variance of weights, the smaller value of
alpha would be, which leads to higher significant influence of the corresponding input

variable to the output estimation.

The large value of grouped ARD suggests some redundancy between the group of

attributes corresponding to a single input variable. After all, the attributes for each

variable must sum to one, imposing a constraint on their values.

- 106 -



Chapter 5: Neural Network Breast Cancer Application

5.4.2.1 Applying the conventional ARD technique

The network setting has not been changed, still trained with 18 hidden nodes, each of

input variable was received a separate hyper-parameter alpha. Table (5.1) displays the

values of alpha of each attribute.

Histology 1 2 3

Alpha value 11.94 1513.8 70.216

Pathological size | 1 2

Alpha value 14.789 | 461.5

Node stage 0 1

Alpha value 14.726 369.03

Nodes ratio <=20% | 20-30% | 30-60% | 60%+ Unknown
Alpha value 11.149 | 2082.2 2030 12.759 | 8447.2

Table (5.1): The reading of alphas that are corresponding to each of the input nodes.

One of the alpha values within a variable is distinguishably large.

It is clear that for each variable one attribute may be regarded as irrelevant. In order to
maintain the consistency, the attribute becomes the baseline is same as the Cox

regression, the lowest hazard attribute of the variable, the value of the baseline for that

variable is coded by all remaining attributes equal to zero.
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5.4.2.2 Adding the baseline attribute assumption to the training criteria

By considering the baseline attribute approach, the network was retrained with the
grouped ARD technique and included the baseline attributes assumption. The chosen
baseline attribute for each variable was same as the baseline category for Cox
regression. The results show that the alpha value of each variable has been significantly
reduced. The new reading of alphas are 1.4353, 1.1534, 1.6545, 3.0963 and 2.6333 for
variables histology, pathological size, node stage, nodes ratio and time respectively.
The prognostic indexes are still within the range of 4.5 to -1 as displayed in figure
(5.12) and the distribution of samples are similar to our previous results, the 917
samples have been successfully partitioned into 4 prognostic groups by the log-rank
test, as illustrated in figure (5.13). Their predicted mean survivorship at year 5 is varied
between 0.97 to 0.22 and each respectively contains 75, 341, 460 and 41 number of
subjects. The network survival predictions in general can be concluded as acceptable.
Although the network estimation for group 1 and group 4 show a small deviation from
the corresponding Kaplan-Meier estimate of the survivor functions, the curves are still
being included within the confidence interval bands, considering that their confidence

interval bands are bigger than the other two groups.

The results show there is a need to define baseline population when handling
categorical data. The baseline attributes are given values of zeros and the same attribute

in each variable is allocated to both of the neural networks and the Cox regression.
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Figure (5.12): The neural networks computed prognostic indexes using the grouped
ARD technique and baseline attributes assumption. Four prognostic groups were

divided by the log-rank test.
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Figure (5.13): The network predicted mean survivorship for prognostic groups after
applying the grouped ARD technique and the baseline attributes assumption and the
corresponding Kaplan-Meier estimate of the survivor functions. The curves are well

separated and the network prediction is acceptable.
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5.4.2.3 Displaying the attribute profiles of each prognostic group

Since the techniques of data analysis using neural networks has been refined, it is
necessarily to determine the characteristic of each prognostic group, in which the
variables that play a leading role of in each prognostic group are examined. Therefore,

the variable attribute histogram for each prognostic group is displayed in figure (5.14).

Clearly, particular attributes of variables are dominated in particular prognostic group.
Group 1 is the highest survival group of the data, the attribute of histology moves from
attributes 2 and 3 to mainly attribute 1 from group 1 to 2. Over the 4 prognostic groups,
the pathological size and node stage move gradually from attribute 1 to 2 and attribute 0
to 1, respectively. Finally, all the variables are concentrated on their particular attribute

that creates prognostic group 4, which is the lowest survival group.
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Bayesian approach of LRG, ARD with baseline in yearly bases, Pl Group 1
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Figure (5.14): The attribute profiles of prognostic groups which generated by the neural
networks with the application of grouped ARD technique and the baseline attribute
assumption in which the behaviour of each variable over prognostic groups can be

monitored.
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5.5 Bias correction of network output due to heavily skewed binary data

The Bayesian framework does not take account of the skewed distribution of target
labels in binary classification problems, with the consequence that all network outputs

are marginalised to the mid-range of the value. In the evidence approximation to the

integral of

P(c,x,D)= J' g(a)P(al x, D)da, then

mz
P(c,\x,D) = g[(l +—8—>‘”2aw )
/

where s is the variance of the sample distribution, a ~ N(a,p, s? ). The P(c, | x, D)

is the probability of class membership ¢, given the data x and training data set D .

For a two classes problem, the network output is adjusted to minimise the probability of

misclassification of the given input data with the decision boundary, corresponding to a

network output of p(C, I x,D)=0.5. The form of the logistic sigmoid activation

function determines that a,,(X,w,,;)=0. The p(C,|x,D)=0.5 statement is no
longer held when the data are heavily skewed. Some modifications to the network error
and estimates have been proposed, Lisboa et al (2000). Firstly, by weighting the cost
function using Bayes’ theorem so the network is as if trained with an equal prior. In
applying Bayesian neural networks to the modelling of censored data, it is necessary to

re-weight the error function to equalise the heavily skewed distribution of mortality

indicator indexes follows
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- f ) ot -y 2702
LL= ;[log(y"){fld )+10g(1 y"){2(l—d)l’

where d represents the frequency of death, £, is the target labels and y, is the network

outputs. This modification also applies to the gradient and the Hessian calculations in

the similar manner.

The conditional network estimates are then compensated using Bayes’ theorem, to take
account of the true prior distribution for the target labels, resulting in conditional
network estimates that marginalise to the priors, d , which is the averaged hazard in this
study, i.e.

¥, (0d
Y (0d+1=F, (N1 -d)’

Yo (x)= where ¥, (x) is the network output.

When ¥, (x) =0.5, it follows that

0.5d _
0.5d +(1-0.5)(1-d)

Y (x)=

So, ¥, (x) marginalises to 0.5 while y, (x) marginalises to d .

The calculation of the averaged hazard involved two parts, (i): the probability of death
at each time interval is the total number of death within the time interval divided by the
total number of patients at risk at the beginning of the time interval, (ii): then averaging

the probabilities of death by the number of time intervals.
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5.5.1 Demonstration of the effect of network output marginalising towards class prior

The breast cancer analysis was repeated using the PLANN model, but refined into
monthly bases. The network estimates were marginalised towards the averaged hazards
of the data, which was calculated by averaging the hazard of each time interval. The
network was still using 18 hidden nodes, the grouped ARD technique and baseline
attributes assumption were also applied, mortality risk groups were partitioned by the

log-rank test, finally, the analysis was implemented using the 5-fold cross validation.

The calculation of cumulative survivorship involves a series of network output
multiplication, described in section 5.2.2.1. Therefore, any bias in the calculation of
each hazard rate causes a huge bias after multiplication over several time intervals.
Figure (5.15) — (5.16) demonstrate the effect of marginalisation towards midpoints and
the class priors. Figure (5.15) displays four different network outputs, the original
output, the network output marginalised towards midpoint; the network output
marginalised towards averaged hazard from the original output; and marginalised
towards averaged hazard from the network output had marginalised towards midpoint.
Nevertheless, the top 4 curves in figure (5.16a) are the network survival prediction for 4
prognostic groups which marginalised towards averaged hazard and the lower 4 curves,
the corresponding network prediction marginalised towards midpoint. Figure (5.16b) is
the corresponding Kaplan-Meier estimate of the survivor functions. The network

outputs are seriously damaged when the bias correction is not applied.
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Figure (5.15) (a): The original output predicted by the neural network (-) and the

marginalised output (*), averaged from all patients in low-risk cohort. (b): the original

network output marginalised towards averaged hazard directly (-) and the midpoint

marginalised result marginalised towards averaged hazard (*).
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Figure (5.16), (a): The top 4 curves are the network survival prediction which
marginalised towards averaged hazard and the lower 4 curves are the survival prediction

which marginalised towards midrange and (b) is the corresponding Kaplan-Meier

estimate of the survivor functions.
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5.5.2 Complete the low-risk Cohort analysis into monthly study

After defining the necessary techniques to correct the marginalisation to take account of
the skewness of the target distribution, still using 18 hidden nodes, the network was
retrained, same input variables as before and with grouped ARD. The time intervals
have been refined into a monthly study over 60 months. Thus, data were replicated
more frequently than the yearly study and the mean hazard per time interval was
correspondingly smaller. For the individuals who survived more than 60 months were

censored at month 61.

Figure (5.17) demonstrates when the log-odds ratio, @(x,w,,) , is zero, the
marginalisation of ig (x) is toward 0.5 as if the case of network trained with equal

priors. After compensation for the time value of the prior, y, (x) marginalises to the

averaged hazard in this case 0.0032. The new range of prognostic indexes lies between
-3 and 5. Four prognostic groups are partitioned by the log-rank test and the patients
allocation is 56, 359, 460 and 42 respectively, with a majority of patients still allocated

to group 3, as illustrated in figure (5.18).

Only the network predicted mean survivorship for the lowest survival group is not
accurate showing 0.16 error when comparing figure (5.19a) and (5.19b). However, all
survival curves are included within the Kaplan-Meier estimated confidence interval
bands. Since the network outputs were marginalised toward the mean hazards, thence,
the mean survival rate at year 5 is around 0.7, therefore the error generated by
prognostic group 4 can then be explained. One solution to solve this situation is to

model each prognostic group separately, which would allow accurate prediction of
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survival for the patients in each group, given the prognostic group allocation already

decided on the basis of the most likely values of a, namely a,,;.

There is a significant difference observed from the attribute profiles over prognostic

groups in figure (5.20), when comparing with the Cox regression approach in figure
(4.14). The profile of variables in each prognostic group is more highly concentrated on

a particular attribute, thus reducing the overlap between prognostic groups.
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Figure (5.17): The network outputs and their associated prognostic index in four format,
namely original network output (Output), network output marginalised towards
midpoint (Output & Marginal), network output marginalised towards average hazard
using the outputs marginalised towards midpoint (Output & Marginal & Corr) and

network output marginalised towards average hazard directly (Output & Corr).

- 117 -



Chapter 5: Neural Network Breast Cancer Application

Prognostic indexes of Bayesian approach, Cox salected, monthly, LRG
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Figure (5.18): The log-rank test partitioned 4 prognostic groups or the low-risk cohort,

the network outputs are marginalised towards the averaged hazard of the data.
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Figure (5.19): The network estimates mean survivorship for prognostic together with
the corresponding Kaplan-Meier estimate of the survivor functions. The network is
trained with bias correction technique and the outputs are marginalised towards
averaged hazard. The survival prediction for prognostic groups is concluded as

accurate, except group 4.
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Figure (5.20): The attribute profiles for prognostic groups, which the network outputs

are marginalised towards averaged hazard. The distribution of patients has been

changed significantly from the previous neural network result, they are more

concentrated on particular attribute in each variable.

When the analysis has been refined to a monthly study, more detailed information can

be extracted from the data, including a smooth prediction of the hazard, shown in figure

(5.21). The results so far indicate that a small group of 42 patients in this cohort has a

relatively low survival. This group of patients will be examined further and the results

are summarised in section (6.4).
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5.6 Assumption of proportional hazard

The proportional hazards model allows a non-constant hazard rate to be modelled
without making any assumption about the underlying distribution of the hazards in the
different groups, but is requires the hazards in the groups remain proportional over time.
Therefore, the time dependence of the hazard is that observed for the baseline
population. This assumption was assessed by the commonly used Cox-Snell residual
plot or some other residual plots, all methods have confirmed no significant evidence
that the data were not fitted into the proportional hazard assumption, as reported in

section (4.1.2). However, such residual plots are not precise in verifying hazard

proportionality between prognostic groups.

Handling censorship is a main feature of the PLANN model; nevertheless it is also
capable of generating a smooth hazard rate over time. Figure (5.21) displays the mean
hazard for each of the 4 prognostic groups over time and shows that the hazard of each
prognostic group was not uniformly proportional to each other. The peak hazard for
each group is retarded slightly as the hazard increases, indicating only a minor deviation
from the proportionality assumption over the time frame of the study. Gore et al (1984)
confirmed that if time to peak hazard is earlier in some prognostic groups than in others,

then the proportional hazard assumption is no longer sustained and has been the case in

breast cancer.
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Neural network model testing the proportional hazard assumption
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Figure (5.21): The network predicted hazard probability of the 4 prognostic groups over
60 months for the low-risk cohort. The arrow point at each curve is where the

corresponding peak hazard occurred.

5.7 Discussion of chapter (5)

In this chapter, it was demonstrated the PLANN model is capable of handling censored
survival data and can be adopted easily by a standard neural network model for
classification problem. The Bayesian neural network has performed as well as the Cox
regression, although they responded differently and produced slightly different
allocations into the prognostic groups, the neural network being more specific in
attribute profiles in each risk group. Moreover, the robustness of the Cox regression has

also been demonstrated when the non-proportionality of hazard has been confirmed

within the data.

The same data analysis will be repeated for the high-risk cohort which is summarised in

chapter (6). Variable interactions are also investigated using the neural network model

regularised with ARD for high-risk cohort.
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low-risk cohort

6 High-risk cohort

The high-risk cohort contains all the remaining subjects who did not fit into clinical
separation criteria for the low-risk cohort. This includes any occurrence of large
tumours, fixed affected nodes in the axilla, and distant metastases. However, it also
includes the subjects with pathological size coded unknown, making a total of 633
subjects. The following sections contain the neural network analysis using different
models, Cox selected variables and ARD selected variables. All of the analyses for the
high-risk cohort are implemented with a 3-fold cross validation, in order to reduce the
computational time, rather than a 5-fold cross validation as for the low-risk cohort,

which still leaves significant amount of samples for network training.

An analysis of the high-risk patient group identified from the low-risk cohort by the
neural network in previous chapters, was also included, with the aim of determining the
characteristics of survivorship in this group. Additionally, variable interactions are
investigated in this chapter, by identifying variables with ARD then including explicit

interactions into Cox regression.

6.1 Neural networks analysis using the Cox selected variables

Forward-stepwise elimination was again employed to select the optimal Cox model for
the high-risk cohort from the original 18 variables, the details are summarised in table
(4.4). The selected variables and the time variable formed the network input layer

altogether 16 input nodes when the baseline attribute is removed. The baseline
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low-risk cohort

population was chosen as in the Cox regression, to be the lowest hazard categories. A
single hidden layer of 18 hidden nodes was used for consistency with previous results.
The single output node represented the hazard rate of an individual at a particular time

interval. Grouped ARD was also used.

The analysis consisted of a monthly study over 5 years, marginalising the hazards
towards the average hazard of the training data. The log rank test was, again, employed
to define prognostic groups. After completing the network training process, the final
values of the hyper-parameter alpha were ranked and used to identify the main

contributing variables, which are menopausal status, node stage, pathological size,

clinical stage and nodes ratio.

A total of 3 prognostic groups were identified, containing 248, 174 and 211 patients,
respectively. The thresholds determined by the log-rank test are indicated in the plot of
the prognostic indexes, figure (6.1). The network predicted mean survivorship for
prognostic groups and the corresponding Kaplan-Meier estimate of the survivor
functions are shown in figure (6.2). Good survival prediction for all groups is obtained,
as with the low-risk cohort. There is a minor inaccuracy in the estimates of survival for
prognostic group 2, which is the consequence of the network output marginalisation
towards the mean hazard for all of the groups. The overall mean hazard has been
suppressed towards O due to the patients in the lower risk group, prognostic group 1.
The highest survival group is highly populated with node stage 0, representing negative
node, and pathological size coded as unknown. The remaining variables used for the

clinical data separation criteria indicate they may belong to the low-risk cohort
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Finally figure (6.3) shows the attribute histograms for each of the prognostic groups. In
each prognostic group, one or two variables are most prominent, thence each of the
variables contributes differently to each group. However, the menopausal status and
pathological size do not show clearly differentiated attribute profiles over the three
prognostic groups. Moreover, apparently, the menopausal status was given the largest
value of alpha, and its profile is similar across all of the prognostic groups. This
indicates that menopausal status contributes to the survivorship estimation through

interactions with the other variables.
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Figure (6.1): Prognostic index plot of high-risk cohort and the log rank test partitioned

prognostic groups.
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Figure (6.2): (a) Neural networks predicted survivor function for prognostic groups

using the 5 independent Cox regression selected variables and (b): The corresponding

Kaplan-Meier estimate of the survivor functions.
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Figure (6.3): The high-risk cohort attribute profiles of network trained with Cox

regression selected variables for prognostic groups.
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6.2 Neural networks model selection using ARD technique

When the regularisation coefficient assigned to a particular input grows large, the
attached network weights are damped down towards zero. This is how the technique of
Automatic Relevant Determination (ARD) controls the irrelevant input variables from

damaging the network output performance.

The process of model selection begins with including all of the independent variables in
the model, resulting in a set of values for the hyper-parameter o. In this case, a group of
attributes corresponding to same variable shares same value of alpha. The network
output marginalisation to the mean hazard ratio and baseline attributes were also used.
The variable removal criterion consists ranking the alpha values by size, then gradually
removing the input variables with significantly large alpha values from the model, until
no more variables could be removed without substantial detriment to model

performance. This amounts to backward stepwise elimination.

The model selection for the high-risk cohort using the ARD started with all the 14
variables, excluding the four surgical variables, as described in section (4.4.1).
Although the time covarates are given a large value of alpha, they are not considered as
candidate for variable selection and kept in the model. Removing time from the input
variables would result in a survival model with time independent hazard. Therefore
survival would be exponential to time. diameter, pathological size, clinical stage and
number of nodes involved were the first set of variables to be removed from the model.

Finally, 6 variables were left, namely, menopausal status, predominant site, tumour
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low-risk cohort

stage, node stage, histology and nodes ratio. The details were summarised in table (6.1).
The ARD selected variables are slightly different from those selected by Cox regression
for this cohort, the common variables of two models being menopausal status, node
stage and nodes ratio. Even though the rest of variables from two models are different,
some of the variables represent similar kinds of information such as rumour stage and
pathologic size. Only the predominant site and histology are selected differently in the

ARD model. These newly selected variables will be tested for their predictive power in

section (6.2.1).
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Variables Value of Alpha

(1"stage) | (2" stage) | (3" stage) Final Model

Menopausal Status | 7.0357 29952 3 6.443
Age Group 4.3999 3.9710 8.3102

Predominant Site | 7.6109 4.6426 3.4912 6.6387
Side 5.3807 11,7232

Diameter 20.9377

Tumour Stage 52955 2.4935 1.9996 5.1673
Node Stage 8.7874 2.6625 4.155 4.4299
Metastasis Stage 5.29336 10.54498

Pathological Size 12.8370

Manchester Stage 12.3407

Histology 5.4018 2.5584 3.5155 6.3668

Nodes Involved 10.7831

nodes ratio 5.1505 2.6657 3.3531 4.4423

Table (6.1): The value of alpha of variables involved in the different stages of ARD

model selection process.

- 129 -



Chapter 6: Analysis of interaction terms in the high-risk cohort and for the high mortality group in the

low-risk cohort

6.2.1 Network trained with the ARD selected model

The network was re-trained with the ARD selected variables, still with 18 hidden nodes,
and with bias correction terms to marginalise the network output towards the average
data hazard. The results are displayed in figure (6.4) to (6.6). Three distinct mortality
risk groups are identified containing 244 171 and 218 patients, and the observed
survivorship at month 60 are 0.72, 0.4 and 0.21 respectively. Although each of the
network predicted mean survivorship falls into the confidence interval bands estimated
by Kaplan-Meier, the survival estimation of prognostic group 2 is not as accurate as for
the other groups, owing to the effect of marginalisation towards the overall averaged
hazard. This can be solved by modelling each prognostic group separately. Also, the
survival curves are not as well separated as with the neural network using Cox selected

variables. However, the model is still useful to identify candidate variables that may act

through interactions with other variables.

These are the variables that have similar attribute profiles for different prognostic
groups, namely, menopausal status, predominant site and histology. A further analysis

base on these variables for variable interactions is summarised in section (6.3).
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Figure (6.4): The 3 partitioned prognostic groups using the ARD selected variables for

the high-risk cohort.
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Figure (6.6): The attribute profiles of network trained with ARD selected variables for

prognostic groups.
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6.3 Assessing pairwise interactions for the high-risk cohort

Although the network trained with the ARD selected variables did not produce better
results than the network trained with the Cox selected variables, the variables selected
differ and this may indicate the presence of variable interactions, which influence the

constitution of prognostic groups, and the prediction of survival for individuals.

It is very difficult to determine explicitly the functional form of the implicit interaction
between variables in the neural network model. Cox regression allows interaction terms

to be included explicitly in the model, and hence tested for their statistical significance.

The 6 ARD selected variables were divided into 2 categories, specific and non-specific
variables. Non-specific variables have similar attribute profiles for different prognostic
groups in figure (6.6), which specific variables show a gradual transition in the
univariate profiles across the prognostic groups. The variables classified as non-specific
variables are predominant site, menopausal status and histology. The process of
identifying interactions term for the high-risk cohort using Cox regression was divided
into three stages. Firstly, the 3 pairwise interactions between the non-specific variables
were used alone to model the data; then the 3 pairs of specific variables were used as
interaction terms; finally, the 9 cross-terms from the two sets of variables were used to

model the data. The results from these studies are listed in table (6.2).
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Significant interaction | Significant interaction | Significant interaction
terms between  non-|terms between specific | terms  between non-
specific variables variables specific and  specific

variables

Histology * Predominant | Nodes ratio * Node stage | Menopausal  status  *

site tumour stage

Hsitology*  Menopausal | Nodes ratio * Tumour | Menopausal  status ~ *

nodes ratio
status stage

Histology * Tumour stage

Histology * node stage

Table (6.2): The significant interaction terms of ARD selected variables for high-risk

cohort.

Following this preliminary pre-filtering of candidate interaction pairs, the 8 pairs of
variable interaction terms were put together with the 14 independent variables and the
optimal Cox model was identified by forward stepwise model selection. This resulted in
a final model comprising an independent variable, clinical stage, together with the

pairwise interaction between nodes ratio * tumour stage.

The results of Cox regression fitted with this optimal model with a 3-fold cross
validation are summarised in figures (6.7) to (6.9). The Cox prognostic indexes,
including a contribution from the interaction term, and the Cox predicted and Kaplan-
Meier estimates of the mean survival function for each the 3 partitioned mortality risk
groups, are shown together with the variable attribute histograms for each of prognostic
group. Furthermore, figure (6.10) displays the values of tumour stage for each value of

nodes ratio in each of the 3 prognostic groups, to show the interaction between these
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two variables. There is an improved separation between the expected survival of
prognostic groups, and the patients allocated to each group are, 214, 278 and 139,
respectively. Moreover, the survivor probability at 60 months for the highest risk group
has gone down below 0.1. Also all of the variables show clearly different attribute
profiles over prognostic groups, as shown in figure (6.9). The results have confirmed
that a variable interaction is present in the data and the interaction term tumour stage *

nodes ratio contributes to the identification of high-risk prognostic group.

The ARD technique is a useful tool for seeking variable interactions in the data and
combining with the Cox selected independent variables, yields a powerful predictive
model. The predictive power of the ARD selected model for high risk patients can also
be tested once more by introducing the network identified special high-risk patients

group from the low-risk cohort to the high-risk cohort. The analysis is reported in the
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Figure (6.7): Cox regression defined prognostic groups involving a pairwise interaction

between variables fumour stage and nodes ratio for the high-risk cohort,
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Figure (6.8) (a): The Cox regression predicted survival function involving the
interaction term tumour stage * nodes ratio for prognostic groups from high-risk cohort
and (b) the corresponding Kaplan-Meier estimates survival function. The prognostic
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below 0.1.
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Figure (6.9): The variable profiles of Cox regression involving variable interaction term
turmour stage and nodes ratio for high-risk cohort. Each of the variables has shown a

clear attribute profile over the prognostic groups.
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Patients distribution for the prognostic groups of high-risk cohort
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Figure (6.10): Distribution of patients for prognostic groups over the interaction term

tumour stage and nodes ratio, where nodes ratio 5 represents the missing data attribute.
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6.4 Inclusion of the highest risk group from the low-risk cohort into the high-risk

cohort

The predictive models fitted to the high-risk cohort were also applied to the high
mortality group from the low-risk cohort. Both the ARD selected variables, and the Cox
selected variables were used with neural network, in order to compare the predictive
power of each set of variables for these patients. The analysis does not involved
retraining of the network, simply re-uses the weights calculated by the network trained
previously with the ARD and Cox selected variables with 3-fold cross validation. The
estimated hazards for this high mortality group of each model were gathered and
averaged over 3 set of results. Then the mean estimated survivorship over 60 months

was projected each onto the graph along with the other prognostic groups generated by

the ARD and Cox selected model for the high-risk cohort.

Figures (6.11) - (6.12) display network predicted survivor function for the high
mortality group together with the original prognostic groups and the corresponding
Kaplan-Meier estimates of survival usiﬁg Cox and ARD selected variables respectively.
The figures show that the Cox selected variables do not accurately predict the
survivorship of these 42 patients. In contrast, the ARD selected variables show an
accurate prediction and similar prediction to the PLANN model developed for the low-
risk cohort. The survival curve of these patients crosses over the survivorship of the 3
prognostic groups in the high-risk cohort that ARD generated. During the first 7 months
following surgery, this group of patients displays a similar survivorship as group 1, then

the survival gradually decreases from month 8 to month 42 where it crosses over group
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2, and finally joins with group 3 from month 42 onward, reducing survival probability

to 0.26 at month 60.

When examining the three sets of models carefully, the Cox selected for the low-risk
cohort, the Cox and ARD selected for the high-risk cohort, only the histology existed in
both of the ARD selected model and the Cox model for the low-risk cohort, but was
absent in the Cox selected model for the high-risk cohort. The histology could be one of
potential variables that describe the survivorship of the high mortality group, or indeed,

a variable interaction could be the alternative possibility. Further investigation is

summarised in section (6.5.1).
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Figure (6.11): (a) The neural networks predicted survivor function for the high-risk

cohort prognostic groups and the specific group using Cox selected variables and (b):

the corresponding Kaplan-Meier estimate of the survivor functions.
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Figure (6.12): (a) The neural networks predicted survivor function for the high-risk

cohort prognostic groups and the special group using ARD selected variables and (b):

the corresponding Kaplan-Meier estimate of the survivor functions.
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6.5 The key variable to model the high mortality group in the low-risk cohort

Previous results suggested that histology is the factor that best separates this special
high mortality group from the rest of the low-risk cohort. The following contents in this
section are the test of this statement and to consider possible variable interaction terms

within the low-risk cohort.

6.5.1 Detecting the variables that histology interacted with

The 3 possible pairwise interaction terms from the Cox selected variables for the low-
risk cohort, histology* node stage, histology * pathological size and histology * nodes
ratio were included to the Cox regression model selection procedure alone to model the
data, and resulting that they were all significantly responded to the survivorship of the
data. These three pairs of variables were then entered into the model selection process
again, together with the 14 independent variables. The final model contains
pathological size, histology, nodes ratio and histology * node stage. Figure (6.13)
displays the Cox partitioned prognostic groups using this model. The Cox predicted
survivorship for the mortality risk groups are displayed in figure (6.14) together with
the corresponding Kaplan-Meier estimate of the survivor functions. The attribute

histograms of prognostic groups are displayed in figure (6.15) and figure (6.16) shows

the attribute histograms within the interaction term.
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Figure (6.13): Cox regression partitioned mortality risk groups for the low-risk cohort

involving the interacted variables histology * node stage and contained 61, 207, 579 and

68 patients respectively.
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Figure (6.14): (a) Cox regression predicted survivor function for the 4 prognostic
groups of low-risk cohort involving the interacted variables histology * node stage and

(b) the corresponding Kaplan-Meier estimate of the survivor functions.
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Figure (6.15): Attribute histograms of the model involving histology * node stage

interaction term over prognostic groups for the low-risk cohort. The prognostic group 1
contained fewer patients and the profile is similar to the result of neural networks using

Cox selected variables for the low-risk cohort.
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Figure (6.16): Distribution of patients over the interaction term histology and node

stage.
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The results show that histology * node stage actually is not the main factor that
describes the survivorship of the high mortality group as expected, even though
histology is one of the predictive variables being selected. However, histology * node
stage contributes to the highest survival group when comparing the expected
survivorship of prognostic groups with the result without involving the interaction term.
The expected survivorship involving, histology * node stage of prognostic group 1 has
been improved better, closer to 1, and also the corresponding attributes profiling even

more specific and contained less patients, as illustrated in figure (6.17)-(6.18).
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Figure (6.17): (a) The Cox predicted survivor function for the prognostic groups

involving histology * node stage and (b) without involving interaction term.
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Figure (6.18): (a) Attribute histograms of prognostic group 1 involving interaction term

histology * node stage and (b) without involving interaction term.
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6.5.2 Determine the interaction term that describes the survivorship of the high

mortality group in the low-risk cohort

Since the histology is not the factor that describes the survivorship of the high mortality
group, the remaining possible interaction terms from the ARD selected model for the
high-risk cohort are nodes ratio * node stage, nodes ratio * pathological size and
pathological size *node stage. The results show that nodes ratio * node stage and
pathological size * node stage were both significant to the survivorship of the data. The
final model selected with forward stepwise elimination contained three independent

variables, namely, node stage, pathological size and histology, and an interaction term

nodes ratio * node stage.

This model is fitted to the Cox regression with 5-fold cross validation again. Figure
(6.19) displays the Cox partitioned prognostic groups involving interaction term nodes
ratio * node stage. The Cox regression predicted survivor function for the mortality risk
groups with the corresponding Kaplan-Meier estimate of the survivor functions are

displayed in figure (6.20). The attribute profiles for prognostic groups are shown in

figure (6.21).

The results indicate that the interaction term nodes ratio * node stage is the factor that
best differentiates the survivorship of the high mortality group. The attribute profiles are
more specific over the prognostic groups. However, the attribute histograms for the
prognostic group 1 is not as specific as the model involving histology * node stage.
Including the two interaction terms together in a model may retain good differentiation

for the highest survival group, which histology * node stage contributed to. and the
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lowest survival group, where the interaction between nodes ratio * node stage is

significant.
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Figure (6.19): The Cox regression partitioned mortality risk groups for the low-risk
cohort using the model involved interaction term nodes ratio * node stage and

contained 116, 331, 427 and 43 patients respectively.
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Figure (6.20): (a) Cox regression predicted survivor function for the 4 prognostic
groups in low-risk cohort involving the interaction term nodes ratio * node stage and

(b) the corresponding Kaplan-Meier estimate of the survivor function.
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Figure (6.21): Attribute histograms of the prognostic groups involving nodes ratio *

node stage interaction for the low-risk cohort.
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Figure (6.22): Distribution of patients over interaction term nodes ratio and node stage,

where nodes ratio 5 is represents the missing data attribute.
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6.5.3 Modelling both interaction terms together for the low-risk cohort

A new model was selected for the low-risk cohort, which contained the interaction
histology * node stage and nodes ratio * node stage, in addition to histology and
pathological size. Forward stepwise elimination was employed once again. The Cox
regression results are presented in figure (6.23) to (6.25) in the same sequence as the

previous study but not including the cross distribution of the interacting variables.

The results with Cox regression including 2 interactions terms are poorer than with the
neural network using the same base variables. In other words, the ARD model with
histology, pathological size, node stage and nodes ratio has a better separation between
the prognostic groups. In the Cox model with two interaction terms, the prognostic
group | and 4 contained more patients and were less specific. It appears that in the
linear Cox regression model, the two interaction terms are working against each other.
Although the factors that describe the survivorship of the highest survival and lowest
survival groups have been identified individually, their power cannot be merged and
expanded using Cox regression. It demonstrated the strength of neural networks in

applying the interactions selectively to different prognostic groups.
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Figure (6.23): Cox regression partitioned mortality risk groups involving the two

(] 2

interaction terms nodes ratio * node stage and histology * node stage, contained 134,

313, 399 and 71 patients respectively.
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Figure (6.24): (a) Cox regression predicted survivor function for the prognostic groups
involving the interaction terms nodes ratio * node stage and histology * node stage and
(b) the corresponding Kaplan-Meier estimate of the survivor functions. The outcome
does not meet the expectation. Neither the specified low survival nor the high survival

group was displayed.
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Figure (6.25): The attribute histograms for the prognostic groups which involving

interaction terms nodes ratio * node stage and histology * node stage for the low-risk

cohort.
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low-risk cohort

6.6 Conclusion

In this chapter, the power of neural network ARD model selection towards seeking and
handling variable interactions has been demonstrated. It was also combined with Cox
regression, to find an optimal model for each of the cohort that separates well the

prognostic groups and has specific attribute profiles.

In the high-risk cohort, the final model only contained one independent variable,
clinical stage, together with the ARD identified interaction term tumour stage* nodes
ratio. Note that clinical stage is a composite variable, combining tumour, node and

metastasis stages. The survival predictions generated by this model are the best among

all models for the high-risk cohort.

The situation in the low-risk cohort is not straightforward. Although the interaction
terms contributing to the highest and lowest mortality groups have been identified
separately, the results show that they cannot be put together into a single Cox model.

The best result is given by the neural network model trained with Cox selected variables

for the low-risk cohort.
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7 Effectiveness of predicting missing data using logistic regression

In section (3.2.2), nominal logistic regression was proposed to predict missing data

from a set of complete variables, using feed forward variable selection.

Within this chapter, the effectiveness of the predicted values is evaluated. The process
starts by modelling each of the cohorts using Cox regression. Variable interactions are
not considered at this stage. The substantial improvement is sought for accuracy of
survivorship prediction, differentiation between the survival of prognostic groups, and
characteristic attribute profiles. Finally, the Cox regression analysis was benchmarked
with the Bayesian PLANN model using the high-risk cohort, where interactions

between predictor variables have caused difficulties for Cox regression.

7.1 Cox regression analysis of filled-in missing data using previously selected

models

7.1.1 Cox regression analysis of the low-risk cohort with missing data filled-in using

nominal logistic regression

The 4 variables listed in section (3.2.2) were the variables that contained large amount
of missing values. Some of the other variables also contain missing data, but only a

small fraction, these cases (77 cases) were discarded, in order to be used to predict the 4

variables contained missing values, leaving 1473 completed cases.
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Chapter 7: Analysis of the results of filling-in the missing data

Since pathological size is a clinical criterion for patient cohort allocation, predicting it

changes the composition of the low and high-risk cohorts, as follows

Before filling-in missing | After filling-in missing

data data
Low-risk cohort | 917 1070
High-risk cohort | 633 403

Table (7.1): Patients allocation of each cohort before and after filling-in missing data.

The model used for the initial analysis was the Cox selected model for the original low-
risk cohort, using 5-fold cross validation. Figure (7.1) displays the ranked prognostic
indexes and the 3 mortality risk groups that the log-rank test partitioned, containing
contained 215, 645 and 210 patients respectively. The distribution of the prognostic
indexes has shifted to lower values when compared with the original results in figure
(4.9). Figure (7.2) shows the Cox predicted mean survivorship for each prognostic
group with the corresponding Kaplan-Meier estimate of the survival functions. The

survivorship of the highest and lowest survival group at S years is 0.9 and 0.52.

The attribute histograms for the prognostic groups are displayed in figure (7.3). The
survival prediction for the prognostic groups is a slightly better match of the Kaplan-
Meier curves than the previous Cox results where the missing data were treated as
separate categories. The confidence intervals calculated by Kaplan-Meier estimation for
each prognostic group are smaller and the attribute histograms also show better

profiling, except for histology, where the profile is less specific than previously.
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Prognostic indexes of Cox regression for the filled missing data, LRG
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Figure (7.1): Cox calculated prognostic indexes for the filled-in low-risk cohort and log-

rank test partitioned prognostic groups.
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Figure (7.2): (a) The Cox the Cox predicted mean survivorship for prognostic groups

with (b) the corresponding Kaplan-Meier estimate of the survival functions.
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Cox regression of filled-in missing data LRG, Pl Group 1

Cox regression of filled-in missing data LRG, Pl Group 2
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Figure (7.3): The attribute histograms of prognostic groups for the filled-in low-risk

cohort.

The original 4 prognostic groups were merged into 3 groups. Table (7.2) displays the
allocation of sujects from the original prognostic group into the 3 new groups. In the
prognostic group 1 of the original low-risk cohort, 80 records of nodes ratio were
labelled as missing and were predicted as category 1 (<=20% of positive nodes from
removal). There are 125 nodes ratio missing values in the prognostic group 2 and 3
records were deleted in the prediction process, 118 of the remaining missing values

were predicted as category 1 and the rest were predicted as category 2 (20%-30%). A
total of 258 records were predicted out of the original 268 nodes ratio missing values in

the prognostic group 2, the number of records predicted to be nodes ratio category 1, 2,
3 and 4 are 248, 4,1 and 5 respectively. Finally in the prognostic group 4, 17 and 14

records were predicted as category 1 and 4 respectively, 1 record was deleted. The
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Chapter 7: Analysis of the results of filling-in the missing data

following table (7.3) summarises the attribute details of the variables in the model and
the allocation of the predicted records of nodes ratio in the filled-in low-risk cohort

analysis, The reallocation of unknown nodes ratio was followed a specific pattern.

Original Prognostic = Group | Number of records
Prognostic Group | after Prediction

1 1 75

1 2 S0

1 3 1

2 1 70
2 2 105
2 3 6

3 1 2

3 2 390
3 3 72
4 1 0

4 2 |

4 3 110
Total: 882

Table (7.2): Patient allocation to prognostic groups after filling-in missing data.
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Chapter 7: Analysis of the results of filling-in the missing data

7.1.2 Cox regression analysis of filled-in missing data for the high-risk cohort

The filled-in high-risk cohort now contains only 403 records since some of the filled-in
values for pathological size have placed patients into the low-risk cohort. A total of 188
cases were transferred to the filled low-risk cohort after following the clinical cohort
separation criteria applied to the predictions of pathological size. Within these records,
89 and 99 records were filled with values 1 and 2 respectively. Furthermore, 68, 99 and
21 out of 188 records were allocated into prognostic group 1,2 and 3 by the prognostic
index for the low-risk cohort with the missing data filled-in. The predictive modelling
for the filled high-risk cohort was carried out with 3-fold cross validation using the
previously selected Cox model for the high-risk cohort, without interactions term. The
patients were partitioned into 3 mortality risk groups with 105, 167 and 131 patients,
respectively, as shown in figure (7.4). A similar proportion of patients was allocated to
each prognostic group as for the previous Cox model for this cohort. The results in
figure (7.5) also show a better prediction of the survivorship function for each
prognostic group. The mean survivorship of the 3 groups at 5 years is 0.60, 0.35 and
0.12. The attribute histograms, figure (7.6), show similar profiles to using missing

values as separate attributes except for pathological size and nodes ratio, which do not

show well differentiated profiles.
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Pl of Cox regression for the filled missing data, HRG
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Figure(7.4): The partitioned prognostic groups for the filled-in high-risk cohort using

Cox regression estimated survvorship for the filled missing data, HRG Kaplan-Meier estimated survivorship for the filled rmissing data, HRG
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Figure (7.5): (a) The Cox predicted survivorship for prognostic groups of filled-in high-

risk cohort and (b) the corresponding Kaplan-Meier estimate of the survivor functions.
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ng data

Cox regression of filled HRG, orig. model, monthly, Pl group 1
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Figure (7.6): The attribute histograms for

cohort.

Cox regression of filled HRG, ong. model, monthly, Pl group 2

s &l

123
Meno

5

01
Node stage

123
Path. size

(b)

1234 1
Clinical

2 3 4
Node ratio

prognostic groups of filled-in high-risk

Table (7.4) displays the location of patients in the original prognostic groups and after

the filling-in of pathological size and nodes

ratio. In the Cox selected original model,

pathological size and nodes ratio contained missing values is 196 and 257 cases,

respectively. Table (7.5) and (7.6) summarise the number of records of each predicted

value and their position in the new prognostic groups. A total of 6 missing values of

pathological size were filled with value 1 and 190 records were filled with value 2. As

expected, all the missing values of nodes ratio in this cohort were filled with value 1.
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Chapter 7: Analysis of the results of filling-in the missing data

Original prognostic Prognostic group after filling-in the Number of
group missing value records
1 1 47
1 2 1
1 3 0
2 | 43
2 2 146
2 3 2
3 I 5
3 2 48
3 3 11

Total: 403

Table (7.4): The patients allocation to prognostic groups after filling-in the missing

data.
Predicted value of Prognostic group after filling-in the Number of
pathological size missing value records
1 1 l
1 2 4
1 3 1
2 I 27
2 2 83
2 3 80
Total: 196

Table (7.5): The predicted value of pathological size and their location in prognostic

groups.
Predicted value of Prognostic Group after filling-in the Number of
nodes ratio missing value records
i 1 50
1 2 17
1 3 90
Total: 257

Table (7.6): The predicted value of nodes ratio and their location in prognostic groups.
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Chapter 7: Analysis of the results of filling-in the missing data

7.1.3 Discussion of the filled-in missing data analysis using Cox regression

Patients in the low-risk cohort were merged into 3 prognostic groups from the original 4
groups, which leads to allocation of patients differently to prognostic groups from the
previous result. Hence, the attribute profiling looks more specific than the previous
result in the low-risk cohort analysis. The different allocation of patients and the better
attribute profiling are also repeated in the filled-in high-risk cohort analysis. In general,
the accuracy of survival prediction was improved for the two sets of result and the
filled-in values have not affected the distribution of the attributes in each prognostic
group. However, some of the variables are not showing clearly differentiated attribute
profiles. This possibly indicates that some of the variables in the models are no longer
relevant to the data, hence, searching for a new optimal model for each of cohort is
needed and summarised in section (7.2). Or else, it shows that interactions between

variables are becoming more important, reported in section (6.5).
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7.2 Independent model selection for the filled-in data

7.2.1 Model selection for the filled-in low-risk cohort

The Cox selected model for the low-risk cohort with missing data filled-in is similar to
the Cox selected model for the low-risk cohort where the missing data were treated as
separate category. Variable age group was selected additionally and nodes ratio was
replaced by the number of nodes involved, which is a related variable. The new model
contains node stage, histology, pathological size and number of nodes involved as well
as age group. This was selected by forward stepwise elimination without variable
interactions. Table (7.7) summarises the log likelihood and AIC values as each variable
is entered into the model. The age group was the last variable entering the model and
the reduction of AIC value from the last model was also the smallest. If there is a need

of reducing the number of variables in the model, the age group would be the potential

candidate.
Variables entering the model —2log L values | Degrees of | AIC value
freedom

Number of nodes involved 3421.25 3 3430.25
Node stage 3404.01 4 3416.01
Pathological size 3387.233 5 3402.233
Histology 3378.392 7 3399.392
Age group 3371.784 9 3398.784

Table (7.7): The log likelihood and AIC value of each variable entering to the model

which is selected for the completed low-risk cohort.
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Chapter 7: Analysis of the results of filling-in the missing data

The prediction of survivorship was carried out with Cox regression using a 5-fold cross
validation. As a result, a total of 4 prognostic groups are partitioned as showed in figure
(7.7). Figure (7.8) displays the Cox predicted mean survivorship for prognostic groups
with the corresponding Kaplan-Meier estimate survivor function and also, the attribute

histograms for prognostic groups are shown in figure (7.9).

The predictions from the newly selected model are almost identical to those predicted
with missing values treated as separate attributes. By including the age group in the
model, one more prognostic group was partitioned, compared with figure (7.1). The
mean survivorship of prognostic groups at 5 years is 0.9, 0.73, 0.75 and 0.4. The

attribute profiles also show that the attribute profiling for each variable is more specific,

when compared with figure (7.3).

Pl of Cox regreesion for the filled-in data using newly selected modeal, HRG
v v v v v v v =

Frequency

1.8 =2 2.6 3.6
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Figure (7.7): The partitioned prognostic groups by the Cox regression using the newly

selected model for the completed low-risk cohort.
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K-M estimated survivorships using newly selected model for completed LRG
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Figure (7.8): The Cox predicted survivorship for the prognostic groups of completed

low-risk cohort using the newly selected model and the corresponding Kaplan-Meier

estimate survivor function.
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Figure (7.9): The attribute histograms of the prognostic groups using the newly selected

model for the completed low-risk cohort.
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7.2.2 Model selection for the completed high-risk cohort

7.2.2.1 The effect of sample size in the high-risk cohort

Figure (7.10-7.12) displays three different sets of survival curves of clinical stage from
three different sample conditions for the high-risk cohort. Figure (7.10) discards all the
cases with pathological size value missing are discarded, that is assuming that the
missing mechanism is at random and therefore the data distribution remains unaffected
after missing values are removed. Figure (7.11) includes the cases where treating the
pathological size missing values as a separate attribute, and figure (7.12) has the
missing pathological size missing values predicted. Clearly, the survival curves of
figure (7.11) are very different from the other two. From the highest to lowest
survivorship, the clinical stage categories is in an order of 1, 2, 3 and 4, whereas the

order was shown as 2, 1, 3 and 4 in the other two figures.

It is concluded that representing missing values of pathological size as a separate
attribute, results in the most differentiation between different prognostic risk groups,

when compared to two alternative strategies.
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7.2.2.2 Model selection for the completed high-risk cohort

The Cox selected model for the high-risk cohort estimating the missing values

contained only 3 variables, namely age group, node stage and clinical stage. This was
selected by forward stepwise elimination procedure and variable interactions were not

considered. None of these variables contain missing data.

Since the sample size is smaller than the other data set, the analysis is completed with a

4-fold cross validation in order to have significant number of samples for training and
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Chapter 7: Analysis of the results of filling-in the missing data

the results are displayed in figure (7.13) - (7.15) using the newly selected model. The
results are shown in the order of prognostic groups partitioning, the Cox predicted
survivorship with the Kaplan-Meier estimate of the survivor functions for each of the
prognostic group and the corresponding attributes histograms. Note that four different
prognostic groups were identified, one more than previously. Prognostic group 1, the
highest survival group, only contains 30 patients, where the Kaplan-Meier estimation
shows the mean survivorship is kept constant at the value of 1 for the first 19 months
after surgery, then starts to decline gradually to the value of 0.83, remaining constant
from month 39 onwards. The remaining groups contains 164, 130 and 79 patients

respectively and the corresponding survivorship after 5 years is 0.44 0.27 and 0.045.

The predicted survivorships for all of the groups are consistent with the Kaplan-Meier
confidence intervals. The highest survival group also shows a distinctive characteristic
from the attribute profiles, where the attributes are concentrated on age group 3, node
stage 0 and clinical stage 2. Then the age group changes from attribute 3 to loosely
spread between 1 to 3, while clinical stage gradually moves from 2 to a sequence of 1,3
and 4. Finally the node stage moves from 0 to 3 over the rest of prognostic groups. The

variables clinical stage and node stage show clear differentiated attribute profiles from

prognostic group 3 to 4 but the age group does not.

-172 -



Chapter 7: Analysis of the results of filling-in the missing data

Pl of Cox regreesion for the filled-in data using newly selected modeal, HRG
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Figure (7.13): The partitioned prognostic groups by the Cox regression using the newly
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selected model for the completed high-risk cohort.
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Figure (7.14): The Cox predicted survivorship for the prognostic groups of completed
high-risk cohort using the newly selected model and the corresponding Kaplan-Meier

estimate survivor function.
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Cox regression for filled-in HRG, using newly selected model, Pl Group 1
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Figure (7.15): The attribute histograms of the prognostic groups using the newly
selected model for the filled-in high-risk cohort.
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7.3 Applying the Bayesian PLANN model to the original high-risk cohort using the

Cox selected by filling-in the missing values for the high-risk cohort

The Bayesian PLANN model was applied to the variables selected by Cox modelling of
the completed high-risk cohort, aiming to investigate the possibility of variable
interactions, and allow performance comparison with Cox regression. The network was
evaluated with a 4-fold cross validation to define the prognostic index boundaries for
the mortality risk groups. A total of 403 records were considered. The 3 variables
selected by the Cox regression from the completed high-risk cohort were transformed
into 9 binary input variables in the usual way, which together with the time variable
formed the input layer, 18 hidden nodes were used and the single output node

represented the conditional probability hazards in particular time intervals. Baseline

attributes and grouped ARD technique were also used.

The network was then applied to the 633 records of the original high-risk cohort which
contained missing pathological size. Figure (7.16) displays the distribution of
prognostic indexes from these 633 records and the pre-defined positions where
aggregate mortality risk groups. The network predicted survivorship for each mortality
risk group together with the corresponding Kaplan-Meier estimate of the survivor

functions are displayed in figure (7.17), and the attribute profiles of prognostic groups

are shown in figure (7.18).

The highest survival group, prognostic group 1, contains 31 patients and appears to be a

specific group of age group 3, nodes stage 0 and clinical stage 2 which is identical to

the Cox partitioned prognostic group 1 in figure (7.14a). Prognostic groups 2,3 and 4
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contain 384, 142 and 76 patients, respectively, which are different from the Cox
partition. However, there is no significant survivorship and attribute profiling difference
from the results with Cox regression, suggesting that variable interactions between the 3
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selected variables are not significant.

Figure (7.16): The calculated prognostic indexes for the original high-risk cohort which

were gathered from network trained by the completed high-risk cohort using the Cox

selected model from it.
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Figure (7.17): (a): The network predicted survivorship for the prognostic groups in

figure (7.16) and (b) the corresponding Kaplan-Meier estimate of the survivor

functions.
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Figure (7.18): The attribute histograms for the prognostic groups in figure (7.19),
pathological size and tumour stage are also displayed to monitor the distribution of the

patients with pathological size missing.
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7.4 Discussion the adaptability of the regression method for missing data

prediction

In terms of the improvement to the survival prediction accuracy after filling-in the

missing data, the survival predictions have been improved slightly but not significantly.

For the low-risk cohort, the models selected before and after filling-in the missing data
are very much the same, except that age group was selected additionally and nodes
ratio was replaced by number of nodes involved, considering that the samples size of
the two data sets are different. There is one more prognostic group is partitioned from
the filled-in low-risk cohort analysis using the model selected from it, when comparing
with the results obtain from the original data. The 5 years survivorship of the lowest

survival group reduced from 0.52 to 0.4.

The filled-in high-risk cohort contained much less samples, less than 2/3 of the original
high-risk cohort. Figure (7.10-7.12) displays the different behaviour of clinical stage at
the change of sample conditions, excluding the cases with the values of pathological
size missing, including these cases as a separate attribute, and having them predicted.
The model selected from the completed high-risk cohort only contained 3 variables.
Two of them were already in the original model, but age group was added to the model.
Again, an additional prognostic group was partitioned when using the model selected
from the filled-in data and this group contained very few patients with very high
survivorship. This group of patients was apparent again when this model was tested by

the original data set. As a result, the 5-year survivorship of some of the other groups
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was raised, which is the result of the existence of the records with pathological size
missing in the data. These 3 variables are capable of identifying a very high survival
group in the high-risk cohort, which the original model could not. Nevertheless, the

Bayesian PLANN model analysis confirmed that there is no indication of significant

variable interactions.

It is concluded that filling-in the missing values in the data results is a more detailed
breakdown of the prognostic risk groups than was possible from the original data set.

This was due, in part, to the change in the allocation of records between the low- and

high-risk cohort.
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8. Evaluate modelling methods using a prospective test data set

Cox regression and neural networks have been extensively applied in many medical
applications. In particular, Cox regression has used for more than 20 years in medical

survival analysis. Previous chapters have demonstrated the use and strength of each

method.

To investigate the robustness of each method further, the models fitted to a patient
cohort recruited during 1983-89 were applied to a second cohort recruited between 1990
- 93. These data acted as a validation set to evaluate the predictive value of the
prognostic indexes derived by the Cox regression and the neural network model. For
each method, the network weights and the cut-off points for prognostic group

partitioning follow previously defined for the first patient cohort.

8.1 Description of the validation data set

The validation set comprises records from1653 new patients. Within these records, 388
were discarded due to missing data, leaving 1265 cases for model validation. The data
were divided into low- and high-risk cohorts, following the same separation criteria as

used for the design data, resulting in 931 and 334 cases in each group, respectively.

The population distribution of the two data sets is slightly different, as the validation
data contains a higher proportion of low risk patients. Originally, there were 59% and

41% of patients allocated to low-risk and high-risk cohort from the entire data set, but
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for the second cohort these figures become 73.6% and 26.4%, respectively. Moreover,
this characteristic also reflects in each of the variables as illustrated in appendix (II). For

each of the variables, more patients are under the low-risk attributes than the first data

set, the design data.

Missing data were still a feature of the validation data set. Some of the variables even
contain a higher portion of missing data than the design data, such as predominant site
and histology in the high-risk cohort. However, the number of records contained

missing data in nodes ratio has been reduced for both of low- and high-risk cohorts.

8.2 Test data set low-risk cohort analysis

8.2.1 Validating the Cox regression modelling method using low-risk cohort of

validation set

Previously, the low-risk cohort was implemented with 5-fold cross validation. All
subjects in the low-risk cohort of validation set acts as a test set for each cross
validation set of network weights, then five sets of results are collected and averaged as
the final result for the low-risk cohort of validation set. The model fitted to the Cox
regression is the Cox selected model for the low-risk cohort of design data, no
interaction involved. The results for this cohort are displayed in figure (8.1) - (8.3). The
Cox calculated prognostic indexes are shown in figure (8.1). The predicted mean
survivorship for the prognostic groups is displayed in figure (8.2), together with the
corresponding Kaplan-Meier estimate survival functions. The attribute histograms for

each prognostic group are displayed in figure (8.3).

- 182 -



Chapter 8: Validation of selected models with a new cohort of patient data

The Cox regression produces similar kind of survival prediction and attribute profiles as
for the low-risk cohort of design data. However, the Kaplan-Meier estimates confirm
that the survivorship of the low-risk cohort of the validation set is better than the Cox
estimated for each prognostic group. The Cox estimation for each group contains
around 0.1 error over 60 months on average. This is discussed further at the end of this

chapter.
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Figure (8.1): Cox regression calculated prognostic indexes for the low-risk cohort of

validation set using the Cox regression selected variables for the original low-risk

cohort, without involving interaction term.
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Figure (8.2): The Cox regression predicted mean survivorship for prognostic groups,
and the corresponding Kaplan-Meier estimate survivor functions. The Kaplan-Meier

estimates confirm that the survivorship of the low-risk cohort of the validation set is

better than Cox estimated.
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Cox regression of new data, LRG , Pl Group 1
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Figure (8.3): The attribute profiles for prognostic groups of the low-risk

cohort of the

validation set using the Cox regression. The results show no distinguishable difference

from the results for the low-risk cohort of design data with Cox regression.
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8.2.2 Validating the neural networks modelling method using low-risk cohort of

validation set

The results for the low-risk cohort of the validation set were generated in the same way
as with the Cox regression, by averaging predictions from 5 cross-validation networks.
The network outputs were still marginalised toward the averaged hazard of the low-risk
cohort of design data and the same prognostic index intervals were used for prognostic
risk groups. The results are presented in figure (8.4) - (8.6), showing the partitioned
prognostic groups using the intervals defined for the low-risk cohort of design data, the
mean survivorship predicted by the network for each prognostic group and the

corresponding Kaplan-Meier estimates of the survivorship functions, finally, the

attribute histograms.

The network predicted survivorship for the different prognostic groups is similar to the
result for the low-risk cohort of design data using same approach in figure (5.19), and
the corresponding observed survivorship has showed a better result except group 4, of
which the observed survival rate is poorer than the predicted. Moreover, the attribute

profiles show no distinguishable difference from previous result, figure (8.6).

Results for the test data set can also be obtained by modelling the entire design data and
tests by the validation set. Results from both approaches show no significant differences
as illustrated in figure (8.7). The first approach does not require retraining with the
complete data set, which is expensive computationally and maintains the consistency

and fairness for result comparison. Therefore, all the results generated for the validation

data set is completed by the first approach.
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Figure (8.4): The neural network calculated prognostic indexes for the low-risk cohort

of validation set.
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Figure (8.5): (a) The neural network predicted survivorship the pre-defined prognostic

groups and (b) the corresponding Kaplan-Meier estimate of the survivor functions.
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Figure(8.6): The variable histograms for prognostic groups of low-risk cohort of

validation set using the neural network. The results show no distinguishable difference

from the results for low-risk cohort of design data on the same approach.
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Figure (8.7): The network was trained with the design data and tested by the test set.
(a): The network predicted survivorship for the pre-defined prognostic groups and (b):
the corresponding Kaplan-Meier estimate of the survivor functions, resulting that no

difference was made from the combined results for 5 cross validation sets, figure (8.5).
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8.2.3 Validating the Cox regression method using the low-risk cohort of validation set

involving interaction term

The following is the analysis of Cox regression for the low-risk cohort of validation set
involving different interaction terms. Details of the interaction terms and their effect on

the survivorship of each group are listed in table (8.1). The predicted survivorship is

similar with the results of the design data.

Interaction term Effect

Histology * node stage The highest survival group in the low-

risk cohort has a survival rate > 0.95.

nodes ratio * node stage The lowest survival group in the low-

risk cohort has survival rate < 0.3.

Histology * node stage, together with | Lost the capability to accurately identify
nodes ratio * node stage the lowest and the highest survival

group.

Table (8.1): Identified interaction terms for the low-risk cohort of design data and their

effect on the group survivorship.
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8.2.3.1 Inclusion of a pairwise interaction involving histology and node stage

The low-risk cohort of validation set is fitted with a model consisting of pathological
size, histology, nodes ratio and histology * node stage, shown for the design data in
section (6.5.1) and Cox results for the validation data are summarised in figures (8.8) -
(8.10), showing that the specification of two groups f population is lost, group 1 and
group 4. They are corresponding to the highest and the lowest survival group in the low-

risk cohort of design data.
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Figure (8.8): The Cox regression calculated prognostic groups involving interaction

term, histology and node stage, only two prognostic groups are recorded.
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Figure (8.9): The Cox regression predicted survivorship for the 2 prognostic groups
involving interaction term, histology and node stage, and the corresponding Kaplan-
Meier estimate of the survivor functions. The observed survivorship for both groups is

better than predicted by Cox regression.
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Figure (8.10): The attribute histograms for the prognostic groups of Cox regression

1 2 3

involving interaction term. The results show no distinguishable difference from the low-

risk cohort of design data result involving interaction term, histology and node stage, on

the same approach.
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8.2.3.2 Inclusion of a pairwise interaction involving nodes ratio and node stage

A model comprising node stage, pathological size, histology and nodes ratio * node
stage identifies the lowest survival group in the low-risk cohort, of which the
survivorship is below 0.3 as shown in the Cox’s prediction for the low-risk cohort of the
validation set, figure (8.12). This suggests that the interaction between nodes ratio *
node stage is important to the group with very low survival. The Cox prediction and
attribute profiles show no different from previous results using same model as in section
(6.5.2), except that the observed survivorship for each patient group has improved

compared to the model predictions in figure (8.12). Clearly, group 1 and 2 are brought

closer together towards a probability of 1.
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Figure (8.11): The Cox regression partitioned prognostic groups involving interaction

term nodes ratio and node stage.
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Figure (8.12): The Cox regression predicted survivorship involving interaction term

nodes ratio and node stage for the prognostic groups of low-risk cohort of validation set

and their corresponding Kaplan-Meier estimate of the survivor functions.
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Figure (8.13): The attribute histograms for the prognostic groups of Cox regression

involving interaction term

distinguishable difference from the previous result on the same approach.

nodes ratio and node stage. The results show no
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8.2.3.3 Inclusion of interaction terms histology * node stage together with nodes ratio *

node stage

The model containing two interaction terms comparises histology, pathological size,
histology * node stage and nodes ratio * node stage. Previous results have shown the
individual characteristics of these two interaction terms cannot be merged by bringing
them together into a single model, section (6.5.3). This applies also to the new data set,
as the results show no significant difference from previous results in section (6.5.3),
including the attribute profiles. The observed survivorship for each patient group is

again higher than for the design data.
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Figure (8.14): The Cox regression partitioned prognostic groups involving interaction

terms histology and node stage, nodes ratio and node stage
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Figure (8.15): The Cox regression predicted survivorship for the prognostic groups

involving interaction terms histology and node stage, nodes ratio and node stage and

the corresponding Kaplan-Meier estimate of the survivor functions. The observed

survivorship of the four prognostic groups is better than estimated.

Cox regression of new LRG, involving hist*n, ratio*n, Pl Group 1

Cox regression of new LRG, involving hist*n, ratio*n, PI Group 2

250
350
200 300
250
..150
o
g g 20
z &
g &
100 Y 150
100
50
50
0
T 2.3 SR R 12 348 LRy 1" 2 |1 o 13 3 48
Hist Path Node stage Nodes ratio Hist Path Node stage Nodes ratio
(@)
Cox regression of new LRG, involving hist*n, ratio*n, Pl Group 3 Cox regression of new LRG, invoiving hist*n, ratio*n, P Group 4
250 X
2%
200
5 e
§ 150 §
3
3 g
s = e
100
10
50
5
; e B | 0o Y 1.2 3 4 & - I Pk 0 1
1 @ % &4 °$
Hist Path. Node stage Nodes ratio Hist Path Node stage Nodes ratio

(c)

Figure (8.16): The attribute histograms for the prognostic groups of Cox regression

involving interaction terms histology and node stage, nodes ratio and node stage. The

results show no distinguishable difference from the previous result on the same

approach.
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8.3 validation data set high-risk cohort analysis

8.3.1 Validating the Cox regression modelling method using the high-risk cohort of

validation data set

The Cox regression results for the high-risk cohort of validation set were averaged over
the 3 cross-validation sets with a model comprising menopausal status, predominant
site, tumor stage, node stage, histology and nodes ratio. The results are presented as the
follows: figure (8.17) illustrates the distribution of prognostic indexes, the Cox
regression predicted survivorship for each prognostic groups are displayed in figure
(8.18) together with the corresponding Kaplan-Meier estimates survival function, and

the attribute histograms for prognostic groups are displayed in figure (8.19).

The predicted survival rates remain consistent with those expected from the design data,
but the highest risk group now shows an increase in 5-year survival to around 0.3. This

indicates that there may have been a significant improvement in the effectiveness of

care for this patient group.
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Figure (8.17): The Cox regression calculated prognostic indexes and divided prognostic

groups for the high-risk cohort of validation set.
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Figure (8.18): The Cox regression predicted survivorship for prognostic groups and the

corresponding Kaplan-Meier estimate of the survivor functions. The survival prediction

for prognostic group 3 contai

ns 0.2 error.
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Figure (8.19): The attribute histograms for the prognostic groups. The results show no

distinguishable difference from the results on the same approach.
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8.3.2 Validating the neural network model with the high-risk cohort of validation set

A similar study to that carried out for Cox regression, was performed also with the
PLANN model. Figure (8.20) shows distribution of the prognostic indexes and its
partition into different groups using the same intervals as are shown in figure (6.1).
Figure (8.21) illustrates the network predicted survivorship for prognostic groups and
the Kaplan-Meier estimate of the survivor functions. Finally, the attribute profiles for
the prognostic groups are displayed in figure (8.22). The results with the ARD selected
model are presented in figure (8.23) - figure (8.25) in the same order. Both sets of
results show similar survival predictions as for the high-risk cohort in the design data
and no distinguishable difference is observed in the attribute profiles. As for Cox

regression, there is a noticeable improvement in survival for the group at highest

mortality risk.
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Figure (8.20): The neural networks calculated prognostic indexes and partitioned

prognostic groups using the Cox selected model for the original high-risk cohort
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Figure (8.21): The neural networks predicted survivorship for the prognostic groups
using the Cox selected model and the corresponding Kaplan-Meier estimate of the

survivor functions. Only the performance of prognostic group 3 is not met the

expectation as the other groups.
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Figure (8.22): The attribute histograms for the prognostic groups using Cox selected

model. The results show no distinguishable difference from the results for high-risk

cohort of design data on the same approach.
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Figure (8.23): The neural networks calculated prognostic indexes and prognostic groups

using the ARD selected model for the original high-risk cohort.
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Figure (8.24): The neural networks predicted survivorship for the prognostic groups
using the ARD selected model and the corresponding Kaplan-Meier estimate of the

survivor functions. Both of the prognostic group 1 and 3 have shown a higher

survivorship than the neural networks predicted.
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Figure (8.25): The attribute histograms for the prognostic groups of neural networks
using the ARD selected model. The results show no distinguishable difference from the

result for the high-risk cohort of design data on the same approach.
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8.3.3 Validating the Cox regression method using the high-risk cohort of validation

set involving interaction term

As shown in section (6.3), the best model for the high risk cohort consists of clinical
stage, and the pairwise interaction nodes ratio * tumour stage. The results of the high-
risk cohort of validation set fitted to this model are displayed in figures (8.26) - (8.28),
combining the predictions from 3—fold cross validation. The Cox predicted survivorship
for each prognostic group is as accurate as the Kaplan-Meier estimates and similar
proportion of patients allocated to prognostic groups to the previous results in section
(6.3). However, the results show that the predicted survivor function for prognostic
groups 1 and 3 are different from the results shown in figure (6.8a). The predicted

survival for prognostic group 1 has reduced from 0.78 to 0.66 and for group 3 it has

increased from 0.08 to 0.3..
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Figure (8.26): The Cox regression partitioned prognostic groups involving interaction

term fumour stage * nodes ratio. The three prognostic groups contained 130, 138 and

66 patients respectively.
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Figure (8.27): The Cox regression estimated survival curves for each of the prognostic

groups involving interaction terms nodes ratio * tumour stage and their corresponding

Kaplan-Meier estimated survival curves.
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Figure (8.28): The attribute histograms for the prognostic groups of Cox regression

involving interaction terms fumour stage * nodes ratio.

- 205 -



Chapter 8: Validation of selected models with a new cohort of patient data

8.4 Discussion of test data set analysis

From the results for the validation data, it can be concluded that the overall survivorship
improved since the previous cohort and the survival prediction by different modelling
methods for the test data set is similar with the prediction made for the design data. The
results also show change of population where the predicted survivorship is similar with
the Kaplan-Meier estimate but they are different from the results for the design data, as
shown in the high-risk cohort interaction analysis in section (8.3.3). In both models, the
Cox regression and PLANN, the attribute profiles have not shown significant
differences between the training and validation cohorts, with the exception of the high-
risk cohort with a pairwise interaction term. The survivorship of breast cancer for the
high-risk patients improved since the early of 90’s at least by 0.2. On the other hand, the
survivorship for the patient groups in the low-risk cohort has also improved but not as

much as for the high-risk cohort. Moreover, the two sets of data have shown a different

population distribution with fewer patients at the high risk.
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9.1 Summary

9.1.1 The changes of breast cancer prognosis within 10 years

Two sets of breast cancer data were considered in this thesis. They are cohorts of
patients recruited by Christie Hospital during 1983 to 1989, and 1990 to 1993 each time
with five years of follow-up. The attribute distributions in the two sets of data are
different. There are fewer high-risk patients in the second cohort, and their 5-years
survivorship is improved compared with same prognostic groups in the earlier cohort.

This may reflect improvements in patient care, summarised in chapter (8).

Missing data are unavoidable, and this is present also in the second data set, even
though the quality of the data provided is excellent. If there is only a relatively small
amount of missing data in the entire data set, then those records can be simply
discarded. Otherwise, they need to be handled carefully. Using the mean value of the
variable is one of the commonly used methods to fill the missing values for continuous
data. However, the situation becomes complicated in the case of categorical data.
Within this thesis, we suggested using Nominal Logistic Regression to predict missing
values, which required the identification a set of complete predictor variables for each
variable with missing data. However, the values predicted by logistic regression may
not be free of bias and there is no significant change to the survival predictions. Ripley
(1998) also reported that filling in missing data using regression or other methods may
not result in significant improvements to the data analysis. Therefore, treating the

missing data as a separate category within the variable is a safe and efficient way to

handle categorical missing data.
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9.1.2 Results obtained with Cox regression and Kaplan-Meier estimation

9.1.2.1 Kaplan-Meier estimation

Kaplan-Meier estimation is a non-parametric model of survivorship. The role of this
estimation in the thesis is to describe the survivorship of patients in different prognostic
groups generated by the Cox regression or the neural networks, and hence to ascertain
the accuracy of the survival predictions made by each modelling method. A 95%

confidence interval is calculated for each survival curve.

9.1.2.2 Cox regression

Cox regression has been the method of choice in medical survival modelling since it
was first proposed in 1972. The robustness, flexibility and commercial availability of
software are some of the factors that contribute to the popularity of this method. Within
this thesis, Cox regression was used both for variable selection and as a direct
modelling methodology. The neural networks approach confirmed that the data are only
slightly off the proportional hazard assumption. Cox models selected with the AIC

criteria were still capable of producing good differentiation and accurate survival

prediction for prognostic groups by mortality risk.
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9.1.3 Neural network modelling with PLANN

In this thesis, the use of a Bayesian framework to regularise the Partial Logistic
Artificial neural network with in the evidence approximation is demonstrated to be able
to model censored survival data accurately on a monthly basis. The marginalisation
procedure has to be improved because the output variable is not balanced between class
labels, which involves a modification to the cost function, and the gradient and the
Hessian calculations. This moderates the network towards the best unconditional
estimate of the output which for us, is the mean hazard. Then Bayes’ theorem is used to
refer the estimates of the predicted hazard back to the true priors. Categorical data also
has be handled differently in the PLANN network, by assigning one of the attributes as
the baseline. Then the rest of the attributes corresponding to each variable share the
same value of regularisation coefficient, and ARD is used for variable selection.

Variable interactions can be naturally mapped within the network structure, but the

explicit relationship between variables is difficult to trace.

The potential of the Bayesian regularisation framework applied to PLANN was
explored in this thesis and it was concluded that the network performance in prognostic
group differentiation and survival prediction is comparable to that of Cox regression,
having the further advantage that:

s The proportionality of the hazards need not be observed.

= The network output is a smoothed hazard over time.

Since the Bayesian PLANN model is capable of handling non-linearity in the data, it is

further capable of:
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s Handling arbitrous interactions.
s Handling non-linear covariate time dependencies.

» Supporting variable selection, using ARD.

9.1.4 Performance comparison of Cox regression and the neural networks analysis

The neural network model and Cox regression separate patients into prognostic groups
differently, as summarised in appendix (III). The neural network prognostic groups
whose attribute profiles are more specific than the Cox regression without variable
interactions. The ARD technique can be used for model selection, which has been
demonstrated in the analysis of high-risk cohort, summarised in chapter (6) in which the

selected variables implicitly take into account of variable interactions.

In the low-risk cohort, PLANN provided candidate terms for pairwise interactions, from
which Cox regression found two pairs that contribute to two different prognostic
groups, as described in section (6.5). However, these two pairs of interacting variables

work against each other in Cox regression, but lead to better prognostic group

separation if modelled with PLANN.

-211 -



Chapter 9: Summary and Conclusions

However, training the neural network for such large data set is computational time
consuming and the ARD model selection process is also not straightforward. The
weight decay hyper-parameters computed for each variable are not consistent when the
network was trained repeatedly with different initial conditions, causing changes to their
rank order. In this thesis, the network was trained with all available input variables at
the beginning, then gradually eliminated the variables with the largest value of the
weight decay parameter, alpha, until no more variables can be discarded without serious
reduction in performance. There is no clear guidance to assist in the use of ARD for
model selection. Moreover, the network predictions become less accurate when the data

uncertainty is large, since they are marginalised towards averaged hazard of the data.

For its part, Cox regression is widely available in commercial and it is easy to use. Also
the demand of computational time is limited. As the analysis of the validation data set in
chapter (8) showed, the Cox regression is not much affected by the data uncertainty and

produces good estimation of survivorship for each prognostic group. Moreover, it

captures the shape of a survivor function over time in better detail.

The Cox regression performed well even when the proportional hazards assumption is
not strictly observed and showed similar results when the method was tested by the

validation data set, which has demonstrated the robustness of this approach.

However, the Cox regression in variable interactions must be pre-specified, but it is

difficult to include all the combination of variable interactions for model selection when

many variables are present.

-212 -



Chapter 9: Summary and Conclusions

Differentiation has been observed for the models with interaction terms for both cohorts
in the design data, in which the prognostic groups are less overlapped and the accuracy
of survival predictions for each group is considerably more accurate. On the other hand,
the overall improvement of survivorship is apparent for all groups in the low-risk cohort
of validation data set. However, there is no evidence suggested a systematic
improvement in the high-risk cohort for any prognostic groups. Particularly for the
lowest survival group, identified either by the models with or without interaction terms,
has shown a clear survivorship improvement for each model but not the case for the
other groups. Only the model with interaction term is capable of providing an accurate
survival prediction for the lowest survival group while the other models suggest a lower

survivorship should be for this group according to the covariate values.

-213 -



Chapter 9: Summary and Conclusions

9.2 Conclusions

Smith (2000) points out that an increasing number of patients do not benefit from
systemic therapy, when systemic therapy is only offered to patients with tumours larger
than lcm in diameter. With the widespread use of mammographic screening programs,
the average tumour is now in the 1.5-cm range at diagnosis. Throughout this thesis, the
survivorship of prognostic groups in each cohort modelled in detail, in which a high risk
patient group in the low-risk cohort was identified. A low risk patient group in the high-

risk cohort was also identified, who might have gone through the rigors treatments

unnecessarily.

In terms of the development of the neural network methodology for censored survival
data, in chapter (5), the PLANN model was extended with regularisation within a
Bayesian approximation for the hyperparameters. This gives an automatic determination
of suitable values for the regularisation parameters requiring adjustments only to the
number of nodes in the hidden layer. It results in smooth estimates of the discrete time
hazard and allows for non-proportionality and non-linear interactions between
covariates. In order to handle the categorical data more effectively, the ARD technique
was modified to suit the data structure, in which several inputs corresponding to same
variable share same value of alpha hyperparameter, and also the baseline attributes
referral. The target distribution is very unbalanced, which requires a modification to the
training algorithms and to the estimation of the conditional hazard with the result that
the network outputs are marginalised towards the data averaged hazard. The use of

ARD technique for soft pruning are also demonstrated, which is useful to determine a

parsimonious neural network model.
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In terms of the data analysis technique, we proposed dividing patients into prognostic
groups using the log-rank test to group the calculated prognostic indexes into mortality
risk group. This was interpreted by displaying the attribute profiles for each prognostic
group using the selected variables. The extended Bayesian PLANN model and Cox
regression were optimised by a monthly analysis of 5 years for two cohorts of patients,
defined by clinical staging to be low- and high-risk cohort. In each cohort, prognostic
indexes for mortality risk groups are formulated. For each method, the mean
survivorship for each prognostic group is estimated and compared with the Kaplan-
Meier estimate derived from the observed survival of those patients. It is summarised in
chapters (4) and (5). Using PLANN to identify candidate pairwise interactions to
include in a Cox regression model, a term involving nodes ratio * tumour stage was
found to be useful in determining a specific high mortality group within the high-risk
cohort, and for the low-risk cohort, two pairwise of interaction terms are also found,

each corresponding to a high mortality group and a low mortality group separately. It is

reported in chapter (6).

A second cohort of patients was used to validate the methodologies and their
corresponding results for the first data set, which is summarised in chapter (8). Results
showed that the population characteristics of two sets of data are different, for instance
the two groups of patients identified by the interaction term histology * node stage from
the low-risk cohort is no longer present in the second data set, appendix (III). A

comparison of the model prediction with the Kaplan-Meier estimates shows an

improvement in survival for the validation data set.
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It was also proposed to use nominal logistic regression to predict the categorical
missing data. However, the efforts have not been rewarded with significant
improvement to the analysis. Therefore, treating the missing data as a separate category

is the sage and most efficient way to handle categorical missing data, as summarised in

chapter (7).
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9.3 Further Work

The study could be extended to ten years allowing a more detailed study of possible

deviations from the proportional hazards assumption over longer periods of time.

Accurate survival estimation would provide useful information to enable the clinicians

and patients to make better informal discussion and decision regarding treatments and

surgery.
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Appendix ()

Kaplan-Meier estimate of the survival functions for the low-risk cohort of design

data
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Kaplan-Meier estimate of the survival functions for the high-risk cohort of design

data.
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Appendix (ll)

The variation of sample distribution for the selected variables of the design and the

validation data set.

Low-Risk Cohort of the Design Data Low-Risk Cohort of the Validation Data

Clinical Node Stage Clinical Node Stage

Category | Frequency | Percentage Category | Frequency | Percentage
0 734 80 0 800 85.9

1 183 20 1 131 14.4

total 917 100 total 931 100
Pathological Size Pathological Size

Category | Frequency | Percentage Category | Frequency | Percentage
1 383 41.8 1 541 58.1

2 534 58.2 2 390 41.9

total 917 100 total 931 100
Histology Histology

Category | Frequency | Percentage Category | Frequency | Percentage
1 724 79 1 633 68.0

2 95 10.4 2 111 11.6

3 98 10.7 3 187 20.1

total 917 100 total 931 100

Nodes Ratio Nodes Ratio

Category | Frequency | Percentage Category | Frequency | Percentage
<20% 256 279 <20% 624 67.0
20-30% 18 2.0 20-30% 28 3.0
30-60% 40 4.4 30-60% 51 5.5

60+% 98 10.7 60+% 43 4.6
Missing 505 55.1 Missing 185 19.9

total 917 100 total 931 100




High Risk Cohort of the Design data

Menopausal Status

Category | Frequency | Percentage
1 177 28.0

2 36 5.7

3 420 66.4

Total 633 100
Clinical Node Stage

Category | Frequency | Percentage
0 355 56.1

1 186 294

2 48 7.6

3 44 7.0

Total 633 100
Clinical Stage

Category | Frequency | Percentage
| 184 29.1

2 171 27.0

3 165 26.1

4 113 17.9

Total 633 100
Predominant Site

Category | Frequency | Percentage
1 256 40.4

2 54 8.5

3 103 16.3

4 38 6.0

5 158 25.0
Unknown | 24 3.8

Total 633 100
Tumour Stage

Category | Frequency | Percentage
] 68 10.7

2 186 294

3 156 24.6

4 223 35.2

Total 633 100

High-Risk Cohort of the Validation data

Menopausal Status

Category | Frequency | Percentage
1 107 32.0

2 16 4.8

3 211 63.2

total 334 100
Clinical Node Stage

Category | Frequency | Percentage
0 199 59.6

1 100 29.9

2 25 7.5

3 10 3.0

total 334 100
Clinical Stage

Category | Frequency | Percentage
1 57 17.1

2 109 32.6

3 79 23.7

4 89 26.6

total 334 100
Predominant Site

Category | Frequency | Percentage
1 143 42.8

2 17 5.1

3 40 12.0

4 14 4.2

5 59 17.7
Unknown | 61 18.3

Total 334 100
Tumour Stage

Category | Frequency | Percentage
1 57 17.1

2 109 32.6

3 79 23.7

4 89 26.6

Total 334 100
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High Risk Cohort of the Design data

Pathological Size

Category | Frequency | Percentage
<2cm 14 2.2

2-5cm 134 21.2

S+cm 71 11.2
Missing 414 65.4

Total 633 100
Histology

Category | Frequency | Percentage
1 362 57.2

2 78 12.3

3 189 29.9
Missing 4 0.6

total 633 100

Nodes Ratio

Category | Frequency | Percentage
<20% 91 14.4
20-30% 5 0.8
30-60% 28 44

60+% 92 14.5
Missing 417 65.9

total 633 100

High-Risk Cohort of the Validation data

Pathological Size

Category | Frequency | Percentage
<2cm 12 3.6

2-5cm 51 15.3

S5+cm 51 15.3
Missing 220 65.9

Total 633 100
Histology

Category | Frequency | Percentage
1 164 49.1

2 33 9.9

3 97 29.0
Missing 40 12.0

total 334 100

Nodes Ratio

Category | Frequency | Percentage
<20% 102 30.5
20-30% 17 5.1
30-60% 22 6.6

60+% 45 13.5
Missing 148 443

total 334 100
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Appendix ()

The number of patients in each prognostic group of design data for Cox regression and

neural network models.

Low-risk cohort: D — Design data (917 cases), T - Test data (931 cases)

Prognostic | Prognostic | Prognostic | Prognostic

group 1 group 2 group 3 group 4

D T D T D T D ;3

Cox Regression 127 ER28c! 189 [e38sed 487 [B03% 114 [ 3i0

Neural Networks using | 56 126 | 359 461 460 328 42 16
Cox Model

Cox Regression Involving | 61 0 207 | 610 | 579 | 321 68 0

Interaction Term

(Histology*Node Stage)

Cox Regression Involving | 116 | 237 | 331 | 375 | 427 | 303 | 43 16

Interaction Term

(Nodes ratio*Node Stage)
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High-risk cohort: D — Design data (613 cases), T - Test data (334 cases)

Prognostic Prognostic Prognostic
group 1 group 2 group 3
D 4 1 D T D T
Cox Regression 171 126 275 129 187 78
Neural Networks using Cox | 248 125 174 69 211 140
Model
Neural Networks ARD model 244 99 171 87 218 148
Cox Regression Involving | 214 130 278 138 139 66
Interaction Term
(nodes ratio*tumour stage)
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