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Abstract 

Medical statistics has important applications in cancer research, in particular through 

the analysis of censored survival data. Moreover, breast cancer is responsible for 

thousands of deaths each year in Britain, and is among the leading causes of mortality 

among women. This thesis is about the robust application of neural networks to survival 

analysis of breast cancer patients, taking advantage of its non-linearity and flexibility 

but providing an automatic mechanism to prevent over fitting of the data. 

Censorship is a feature of survival data, which arises when the endpoint of interest 

cannot be observed for a particular individual. In this thesis, a Bayesian regularised 

neural network model that accommodates censorship is introduced, extending the 

"Partial Logistic Artificial Neural Network (PLANN) model". Within the neural 

network model, categorical data are treated differently from ordinal data and requires 

bias correction for the network prediction when the data distribution is heavily skewed. 

The network also uses the Automatic Relevant Determination (ARD) technique within 

the Bayesian regularisation framework, to perform a backward model elimination. The 

use of non-linear variable selection methods leads to the identification of pairwise 

interactions between covariates that may be implicitly modelled by the neural network 

or explicitly added to Cox regression, which is the most commonly used statistical 

modelling tool for survival analysis. Both methods were applied to the modelling of 

post-operative mortality with 5 years follow-up of two patients groups. The first group 

was used to design and compare the two methods, and comprises patients recruited 

between 1983-1989, The second group is used to validate the model's performance, and 

comprises patients recruited between 1990-1993. The two sets of data were divided into 

two cohorts each, according to the clinical separation criteria for low-and high-risk. The 



missing data in the data sets were treated as a separate category. Performance estimation 

for the design data set was carried out through the use of v-fold cross validation. 

Patients were also divided into mortality risk groups using the log-rank test applied to a 

prognostic index, and the predicted survivorship for prognostic groups are assessed by 

the observed survivorship, which is described by the Kaplan-Meier survival estimation. 

The robustness of Cox regression was explained by explicitly plotting the estimated 

hazard over time, showing that deviations from proportionality of the hazards are minor. 

The proposed extension of the PLANN model has successfully identified interaction 

terms that were added to the Cox regression model to improve prognostic group 

separation and attribute specificity. 
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1. Introduction 

1.1 Objectives of the thesis 

1.2 Thesis structure 



Chapter 1: Introduction 

1 Introduction 

This chapter gives an overview the issue in survival analysis that is this thesis, and the 

methodologies proposed in it, are intended to address. This is followed by a review of 

the structure of the remaining thesis chapters. 

1.1 Objectives of the thesis 

Cancer research is generally focused on improving patient survival rates, whether 

through early detection, development of new drugs, or improvements in therapy. 

However, surgery and adjuvant therapy carry with them significant side effects. 

Treatment and surgery are assigned following guidance based on standard clinical 

factor measurements, often without direct reference to accurate estimates of individual 

survivorship, Smith (2000). The main objective of this thesis is to predict the 

survivorship over time for individual patients through the use of Cox regression and 

neural network models, and to permit a clinical interpretation to be ascribed to the 

predictive results obtained from both of the models. 

Survival data have special characteristics, for instance the data are not symmetrically 

distributed with a trend to be positively skewed, that is having a longer `tail' to the right 

of time intervals. Also censorship is an inherent feature of survival data and arises when 

the end-point for particular individuals is not the event of interest, making the outcome 

beyond a fixed time point indeterminate. However, excluding these data from the model 

can introduce significant bias, Ravdin and Clark (1992) and Brown et al (1997), 
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therefore these patients must remain in the study for the time they were observed. An 

example of censorship would be an early death from a cause unrelated to the breast 

cancer, sometimes called an intercurrent death. 

The most widely used statistical modelling method for censored data is Cox regression, 

Cox (1972), which is based on the assumption that the hazards of different patient 

groups remain proportional to the baseline hazard over time. Some other well-known 

parametric statistical methods, are the Weibull model and accelerated failure time 

model, Collett (1994). Efron (1988) also proposed a flexible non-linear model using 

cubic spline and Bennett (1983) introduced log-logistic regression models for survival 

data, which require proportionality of the survival log-odds ratio, instead of the 

probability of death in a particular time interval that is the hazard ratio. 

Artificial neural networks (ANN) are non-linear, semi-parametric models that have 

recently been considered as alternative methods for analysing survival data. Radvin et 

al (1992) proposed an extension of proportional hazard model using a standard MLP 

architecture with multiple output nodes to accommodate the censorship, where each 

output node represented a time interval. However, for a monthly study, this method 

requires many output nodes. Biganzoli et al (1996) introduced the Partial Logistic 

Artificial Neural Network model (PLANN), which is a straightforward Multi-Layer 

Perceptron, MLP, where censorship is encoded via the data structure. By assigning 

target values of zero and one to each patient record while observed alive, or when event 

of interest happened in that time interval, respectively, but omitting any target values 

after censorship. A patient will remain in the population at risk only while observed, but 

is removed from the study when the outcome for that time interval is not observed. This 
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model has advantage of not requiring proportionality of the hazards overtime, and can 

implicitly model interactions between variables. However, neural networks are prone to 

over-fitting unless careful regularisation is applied. The Bayesian neural network 

approach (MacKay, 1992a, b) is commonly used to regularise binary classification 

problems without censorship including soft model selection through Automatic 

Relevance Determination (ARD) where the hyperparameters regularising the objective 

function suppress irrelevant variables. The magnitude of the hyperparameters thus 

provides a rank order that reflects the relative importance of the variables to the model 

predictions. Neural network models are often benchmarked with traditional statistical 

tools, Groves (1999), Radvin and Clark (1992), and in this study the regularised 

PLANN model is compared with Cox regression. 

In this thesis, a longitudinal study is conducted where the modelling methodologies are 

developed using a data set with 1,616 records and tested with a further 1,653 records. 

They all comprise women patients admitted to Manchester Christie Hospital during 

1983 to 1989, and 1990 to 1993, respectively, who were followed-up for at least 5 years 

after surgery. These two sets of data contain demographic information, clinical 

investigations, laboratory test results, post-surgery and treatment assignment, but do not 

include any genetic or life style information. Each of the data sets is divided into two 

cohorts on the basis of clinical staging, divided generically into low-and high-risk. 

Within these data sets, some of the variables contained large amounts of missing values. 

The attribute `missing' was treated as a separate category, although investigations were 

also carried out predicting missing values using Nominal Logistic Regression. 
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Assigning patients into prognostic risk groups is of considerable importance in the 

management of breast cancer patients. A key objective of this thesis is to partition them 

into prognostic groups based upon their risk of mortality. The observed survival for 

particular patients groups is estimated non-parametrically by the Kaplan-Meier survival 

estimation (1958). In this thesis, we propose an extension of the PLANN model to 

include the estimation of hyperparameters within the Bayesian framework. The 

extended PLANN model is then applied to two monthly studies of mortality risk 

following breast cancer re-section, with follow-up to 60 months, for each of the two 

cohorts. The patients in each cohort are partitioned into prognostic groups using a 

prognostic risk indice derived from (i) proportional hazards model analysis and (ii) the 

Bayesian implementation of PLANN. The performances of the two approaches are 

compared for the design data using 3- and 5-fold cross validation for high-risk cohort 

and low-risk cohort, respectively, and the generality of the results thus obtained is 

validated using the later cohorts. 

Forward step-wise variable selection was carried out using the proportional hazards 

model, and for the high-risk cohort additional variable selection was investigated also 

with ARD, using backward elimination. From a comparison of these two approaches to 

variable selection, specific interaction terms were identified that when integrated into 

the proportional hazards model, enhanced the differences in survivorship between the 

prognostic groups. 
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1.2 Thesis Structure 

In the next chapter, chapter (2), details of the two sets of data are described, including 

characteristics of the explanatory variables, the distribution of missing data and 

mechanism, and the process of filling-in the missing data using Nominal Logistic 

Regression and results. 

Chapter (3) summarises the literature review of the two modelling methods used to 

analysis the data, Cox regression and the Bayesian regularised neural networks. 

The data analysis results using Cox regression are reported in chapter (4) using two 

approaches, predicting the event occurrence time and predicting the survivor function 

over time for identified mortality risk groups. The event occurrence time prediction for 

individuals is defined by the cross point of the threshold value and the estimated 

survival function over time, and presented with the Receiver Operating Characteristic 

(ROC) curve, Hanley (1989). This approach is considered to be sub-optimal. Then the 

data are divided into low- and high-risk cohorts according to the clinical staging criteria 

in the second approach. In each cohort, patients are divided into mortality risk groups 

according to the risk indexes by observing the indexes natural grouping behaviour and 

the log-rank test. The accuracy of the Cox survivorship prediction for each risk group is 

assessed by comparison with the observed survivor function, which is described by 

Kaplan-Meier estimate. Model selection in both of the approaches is implemented with 

the forward elimination procedure. 
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The alternative modelling method used in this thesis is Bayesian neural networks with 

the evidence approximation. Chapter (5) reports a preliminary study of Bayesian neural 

networks handling censored survival data, using the same two approaches as used 

earlier with Cox regression. Although neural networks give betters result than the Cox 

regression for event prediction, the result cannot be concluded to be significant. This 

chapter only reports the result for the low-risk cohort from the second approach, 

survivorship prediction for risk groups, using the PLANN model. Within these sections, 

two new modelling improvement techniques are introduced, baseline population 

assignment for categorical data and marginalising network output towards the averaged 

hazard of the data, that are necessary since the data are heavily skewed. The 

proportionality of hazards between risk groups is visualised simply by displaying the 

predicted hazard for each group over time. 

A similar neural networks analysis is repeated for the high-risk cohort, which is 

summarised in chapter (6). Moreover, model selection using ARD is investigated. The 

selected models help to identify interactions between variables, which then can be 

explicitly represented in Cox regression models. The difference between the results by 

the neural networks and Cox regression for the low-risk cohort, lead to a further search 

for interaction terms. As a result, two pairs of interactions are identified, which apply 

separately to the highest and the lowest survival patients groups. However, these two 

interactions between variable pairs cannot be efficiently combined in a single Cox 

model, as they work against each other. 

In the longitudinal study, the preferred Cox regression and PLANN models are tested 

with an independent data set, the results of which are shown for both cohorts in chapter 
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(7). The results show that the data distribution and the survivorship over time of two 

data sets are different. 

The investigation of handling missing data methods is summarised in chapter (8). In this 

chapter, the results for the filled-in data using nominal logistic regression are reported. 

At this stage, the analysis is by Cox regression and variable interactions are not 

considered. The results using the previously defined models for each cohort are 

compared with the newly selected models, filling-in the missing data. The only 

difference between the predictions occurs in the high-risk cohort, since one of the data 

separation criteria contained large amounts of missing data. 

Finally, the discussion of the results between two cohorts recruited over consecutive 

time periods and the comparison of two modelling methods are summarised in the 

conclusion, chapter (9). 
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Chapter 2: Literature Review 

2. Literature Review 

2.1 Review of statistic literature on survival analysis 

In many clinical studies, it is important to estimate the probability that set intervals of 

time occur before an event of interest, which may be death ascribed to a particular 

cause, recurrence of a disease or another prescribed event. The answer to these 

questions can be described with two functions, survivor function and hazard function, 

they are of central interest for analysing survival data. Survival data are not amenable to 

standard statistical procedures used in data analysis because of censorship and the 

unsymmetrical distributions of the data. The survival time of the data often appear to be 

positively skewed, that is, having a longer `tail' to the right of the time intervals. The 

life-table and Kaplan-Meier methods (1958) are most commonly used for estimating the 

survival and hazard functions given an observed population. They are known as non- 

parametric, since they do not need a specific assumption to be made about the 

underlying distribution of the survival time or indeed any covariate dependencies. An 

other special feature of survival data is censorship, where the end point of an individual 

is not the event of interest, such as those who survived beyond the end of the study and 

those who are lost of follow-up, for instance due to death from an unrelated cause. The 

event of interest is usually either the death caused by a particular disease, or the 

recurrence of a disease. 
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The most commonly used modelling methods for survival analysis are the Cox 

Regression Model and the Weibull Model, Collett (1994). The Weibull Model was 

introduced in 1951 in the context of industrial reliability testing and depends on a 

particular form of probability distribution for the hazard function, hence it is referred to 

as a parametric model. Alternatively, Cox regression, to be described in section (2.2), 

has been used extensively for survival analysis for more than 20 years and is also 

known as the Proportional Hazards Model. This model has much flexibility and 

widespread applicability. 

Another general family of survival models is given by the proportional odds model, also 

introduced by Cox (1972). It is a parametric method if the survival times for individuals 

are assumed to have a specific probability distribution, such as log-logistic distribution. 

One of the characteristics of the log-logistic proportional odds model is the involvement 

of time as an exponential variable. 

2.1.1 Survivor and Hazard Function 

Let t be the actual survival time of an individual, which can be regarded as a single 

nonnegative random variable, T. The hazard function h(t) is the probability that an 

event happens between time t and t+ bt for that individual, conditional upon the 

individual having survived up to that time. This is defined as 

h(t)=& öP(tST 
<t+btl t5 T) 

bt 

The survivor function gives the probability that the individual survives longer than a 

particular time t, so that 

S(t) = P(T >_ t), 
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and also S(t) = exp{-H(t)), 

I 

where H(t) =f h(u)du is called the cumulative hazard, Collett (1994). 
0 

2.1.2 Kaplan-Meier Estimate Survival Function 

The Kaplan-Meier estimate (1958), also known as product-limit estimate, is a non- 

parametric method capable of describing the survivor function for discrete censored 

survival data. Time is split into several time intervals, each includes at least one event 

case. The time intervals are not necessarily uniformly distributed. There is no interval 

starting at the censored time and the censored time interval falls between the death time 

intervals. There could be more than one individual observed to experience the event of 

interest at any particular event time as illustrated in figure (2.1), where C is the censored 

data and D represents the event cases. 

D 

DCDC 9 
F---F 
to t, t2 t3 

Figure (2.1): The structure of the event time and the relationship with the censored time 

of the Kaplan-Meier estimate. 

Suppose there are n individuals observed with observed times t, , t2 ,..., t,,. There are r 

death times in total, r <_ n., so the ordered death times are tc� < t(2) < ... < t(J) , where 

j=1,2, 
..., r and d; denotes the number of death at that time interval. The probability of 
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an individual dying within that time interval is estimated by di / nj and the 

corresponding estimated survival rate for that interval is (n(j) - d(')) / n(J) . 

The probability of survival to time t is 

k nl 
Jl, S(t) 

ý 
-( 

J=l nj 
/ 

for t(k) <_ t< t(k+, ) , where k=1,2.... r, t(k+, ) is taken to be co and S(0) =l. A plot of the 

Kaplan-Meier survival estimation is a step function, the estimated probability of 

survival is constant between adjacent death times and the curve is decreased over time 

due to the multiplication of probability of survival of each time interval. The graphical 

presentation of survival curve is used widely. An example of Kaplan-Meier curves is 

illustrated in section (2.1.2.2) using the breast cancer data and also a Kaplan-Meier 

survival plot of each variable of breast cancer data is displayed in appendix (I). 

2.1.2.1 Standard Error and confidence interval of Kaplan-Meier estimate 

The Kaplan-Meier survival estimation can be written as 

S(t)=11 p; 
1=I 

for k =1,2,..., r, where pj = (nj - dj) /nj is the estimated probability that an 

individual survives from the beginning of time j through that interval. Then the number 

of individuals who survive through the interval can be assumed to have a binomial 

distribution with parameters nj and pj, where pj is the true probability of survival of 

that interval. The variance of a binomial random variable with parameters n, p is np(1- 

p) . 
Therefore, the variance for the observed number of survivors, nj -dj is given by 

k 
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var(nj -dj)=njpj(1-pj). 

The variance of p; can be estimated by pj (1- pj )/ nj . 

An approximation for the estimated standard error of the Kaplan-Meier estimate of the 

survivor function is given by 

1/L 

s. e. 
ý. S(t)}= di 

[S(t)] ý, 
i=, ni(ni - di) 

1/2 

for t(k) <_ t< t(k+l) , which is also known as Greenwood's formula, Collett (1994), chapter 

2. 

Once the standard error of the estimated survivor function has been calculated, 

confidence intervals for the estimated survivor functions can also be found. The 

confidence interval is a range of values around the estimate, gives a percentage level 

that the true underlying survivor function is included within the interval. In general a 

100(1-(x)% confident interval for the estimated survival is given by 

S(t) ± Za, 2s. e. {S(t) }. 

The ± za/2 are the upper and lower 1-a/2 points of the standard Normal Distribution 

respectively, where s. e. {S(t)} is the standard error of the estimated survivor function 

given by Greenwood's formula. 
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2.1.2.2 Illustration the use of Kaplan-Meier curves 

Table (2.1) displays the survival time and the status of 41 patients, status labelled with I 

represents the event of interest which is death due to breast cancer otherwise 0. Table 

(2.2) illustrates the necessary calculation needed to construct the Kaplan-Meier survival 

curve that displays in figure (2.2). 

Subjects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Survival 15 61 42 12 61 45 57 19 7 39 45 20 45 30 61 52 18 
time in 
months 
Status 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 

Subjects 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
Survival 57 28 32 17 26 27 61 23 44 61 27 44 52 37 8 47 61 
time in 
months 
Status 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 11 0 

Subjects 35 36 37 38 39 40 41 
Survival 61 27 61 14 61 7 24 
time in 
months 
Status 0 1 0 0 0 1 1 
Table (2.1): An example of 41 subjects with their survival time in months and status 

labelling. 
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Survival time in 
months(t) 

nj dj nj -di 
n. J 

(t) 

0 41 0 1.0000 1.0 
7 41 2 0.9756 0.9512 
8 39 1 0.9750 0.9268 
12 38 1 0.9743 0.9024 
15 37 2 0.9737 0.8774 
17 35 1 0.9722 0.8523 
18 34 1 0.9714 0.8272 

19 33 1 0.9706 0.8022 
20 32 1 0.9697 0.7771 
23 31 1 0.9687 0.7520 
24 30 1 0.9677 0.7270 
26 29 1 0.9666 0.7019 
27 28 3 0.9655 0.6267 
28 25 1 0.9614 0.6016 
30 24 1 0.9599 0.5766 
32 23 1 0.9583 0.5515 
37 22 1 0.9564 0.5264 
42 21 2 0.9545 0.5001 
44 19 2 0.9498 0.4475 
45 17 3 0.9441 0.3685 
47 14 1 0.9326 0.3422 
52 13 2 0.9283 0.2895 
57 11 2 0.9156 0.2369 

Table (2.2): Kaplan-Meier estimate of the survivor function for the data from table 

(2.1). 

ý 
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Figure (2.2): Graphically illustrates the Kaplan-Meier estimate of survivor function for 

the samples in table (2.1). 
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2.2 Statistical Modelling 

In the analysis of survival data, the centre of interest is the probability of a specific 

event occurring at some time after the recruitment date for that individual. Cox (1972) 

proposed the Proportional Hazard Model, which is referred to as "Cox regression" in 

the following context. It is the most commonly used statistical modelling method for 

discrete censored survival data, in which the hazard function is modelled directly as a 

linear summation of attribute values. The Cox regression is referred to as a semi- 

parametric model, since it does not make direct assumptions about the underlying 

distribution of the hazards in different groups, except that the hazard for different 

patient groups remains proportional to that of a pre-selected baseline population. It 

allows a non-constant hazard rate to be modelled and involves determining which 

combination of potential explanatory variables corresponds to the form of the hazard 

function and also estimates the hazard function itself for an individual. Cox regression 

can be described as predictive, whereas Kaplan-Meier estimation is descriptive. From 

the relationship between the hazard function and the survivor function, described as 

above, an estimate of survivor function can be found. Let the h� (t) be the baseline 

hazard function at time t. The general proportional hazard model for the ith individual 

can be written as 

h, (t) = exp(Ji nx1� 
)ho (t), 

where x is the explanatory variables and p is the number of explanatory variables. The 

time dependence is described in the baseline population. The A is the unknown 

coefficients of the corresponding explanatory variables and can be estimated using the 

method of maximum partial likelihood, since the likelihood function does not make 
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direct use of the actual censored and uncensored survival times. The maximum 

likelihood estimates of the #-parameters can be achieved by maximising the logarithm 

of the likelihood function, which is accomplished using the Newton-Raphson 

procedure, Collett (1994), which involves the derivative of the log-likelihood function. 

The likelihood function over all death time for the Cox regression is given by 

r eXp(ß x(i)) L(, ß) =rjý exp(/3'x, ) j_l rER(r(, p)) 

where R(t(j) ) is the set of individuals who are alive and uncensored at a time just prior 

to t(j) , called the population at risk, and x(j) is the vector of the explanatory variables 

for an individual who is observed to have died at the jth order death time. 

2.2.1 Model validation method for Cox regression 

After a model has been fitted to an observed data set, the adequacy of the fitted model 

needs to be examined. Residuals are one of the commonly used model checking 

procedures which are based on quantities for each individual. A number of residuals 

plots have been adopted in the analysis of survival data. e. g. Cox-Snell residuals, 

Martingale residuals and Deviance residuals. 

The most widely used residuals for the Cox model are the Cox-Snell residuals. It is not 

similar to the residuals in linear regression analysis, however, since Cox-Snell residuals 

are not symmetrically distributed about zero, as they cannot be negative. Alternatively, 

Martingale residuals are derived from the modified Cox-Snell residuals and take values 
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between -- and unity. Grambsch and Fleming (1990) give a comprehensive description 

of the Martingale approach to the analysis of survival data. 

A major weakness of plots based on residuals is that there is no quantitative guideline 

on what constituents a good enough fit. 

2.2.1.1 Residual calculations for Cox regression model 

2.2.1.1.1 Cox-Snell Residual 

The Cox-Snell residual is the most widely used residual in the analysis of survival data 

and is given by Cox and Snell (1968). For the ith individual, i=1,2,..., n, it is given by 

r= exp(/3'x; )Ho(t; ) 

where Ho (t; ) is the estimated cumulative baseline hazard function at time t; . 

If the fitted model is correct, the Cox-Snell residuals have approximately a unit 

ý 
exponential distribution. Let rr, denote the Cox-Snell residuals and S(rý, ) the Kaplan- 

Meier estimate of the survivor function using the residuals 1ý, . If the plot of log{- 

A 

logS(r, )} against log(r, ) is a straight line with unit slope and zero intercept, this 

indicates that the fitted survival model is correct. 



Chapter 2: Literature Review 

2.2.1.1.2 Modified Cox-Snell residuals 

Censored data leads to residuals that cannot be regarded on the same footing as 

residuals derived from uncensored data. The Cox-Snell residual needs to be modified 

taking into account the censorship , Collett (1994), chapter 5. 

The Cox-Snell residuals can be modified by the addition of a positive constant A. 

Therefore modified Cox-Snell residuals have the form 

r.,; for uncensored observations, 
r= ci rj +A for censored observations, 

where rc, is the Cox-Snell residual for the ith individual and it is suggested that 0 is 

taken to be unity, this leads to the modified Cox-Snell residuals 

_ 
rci for uncensored observations, 

ci - lrc; +1 for censored observations, 

The modified Cox-Snell residuals can be written as rcr =1-b, + rc1, where 6, is 

a censoring indicator, which takes the value zero if the observed survival of the ith 

individual is censored and unity if it is uncensored. 
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2.2.1.1.3 Martingale residuals 

The modified residuals re', have a mean of unity for uncensored observations and this 

can be relocated to have a mean of zero when an observation is uncensored. In addition, 

when multiplied by -1, this gives new residuals which are known as Martingale 

residuals as 

rMI = b, - rc; 

Fleming and Harrington (1991) gave a comprehensive account of the Martingale 

approach. Martingale residuals take values between -oo and unity, with the residuals 

for censored observations, where 5. = 0, being negative. However, the Martingale 

residuals are not symmetrically distributed about zero. Plots of the residuals against the 

survival time or the rank of the survival time can be used to detect departures from 

proportional hazards. Plots of the residuals against explanatory variables in or out of the 

model indicate whether the variables needs to be included or whether it is necessary to 

transform a variable that has already been included in the model. If the plot does not 

show any particular residuals that stand out from the rest, this confirms that the selected 

model is satisfactory. 
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2.2.1.2 Testing for time dependence of variables 

Validating the model adequacy is important but the proportional hazard assumption 

itself also needs to be examined. If the hazards for the different patient categories were 

not proportional over time, the linear component of the model would become time- 

dependent. The time dependency can be tested by introducing time parameters into the 

model and checking the significance level for interactions between time and the 

covarites, Collett (1994), chapter 5. 

According to the Cox proportional hazards model, the mortality hazard at a time t for 

the ith of n individuals in the study can be written as 

P 

h; (t)=exp 1,8; x;, ho(t), 

j=l 

f 

where xj; is the value of the jth explanatory variable and does not depend on time, x,, 

j=1,2,..., p, for the ith individual, i=1,2,..., n and ho(t) is the baseline hazard function. 

Modifying this model to fit the situation in which some of the explanatory variables are 

time dependent, the Cox regression model becomes 

h1(t) = exp 
ißjx1; (t) ho(t) 

The relative hazard h; (t) /k(t) will therefore, also depends on time. This means that 

the model is no longer a proportional hazards model. 
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2.2.2 Previous studies of analysis using Cox regression 

The Cox proportional hazards model can also be used to predict intervals of time in 

which death is likely to occur for individual patients. ROC curves may be used to 

display the accuracy of prediction with respect to different thresholds, Ohno-Machado 

(1997). Williams (1985) used Cox regression to predict the local or regional recurrence 

of breast cancer after a mastectomy operation. Gore et al (1984) predicted the year of 

death due to breast cancer by defining a threshold which crosses the estimated survival 

function and also discussed the non-proportionality of the hazard functions of the data. 

Magee et al (1996) investigated the prognostic factor for breast cancer recurrence after 

surgery and treatment, using Cox regression. A cubic-linear spline model is proposed by 

Efron (1988) which combins the characteristics of a cubic logistic model and a logistic 

regression model. 

Kay (1977) Stablein et al (1981) and Gill and Schumacher (1987) and Pettitt and Daud 

(1990) highlighted the need to validate the proportional hazard assumption and the use 

of smoothed Schoenfeld (1982) residuals,. The stability of Cox regression can be tested 

by the use of bootstrap, Altman and Andersen, (1989). Alternatively, using the 

bootstrap resampling procedure for model selection in Cox regression, Sauerbrei and 

Schumacher (1992) and Lagakos (1980) proposed a graphical approach to evaluate the 

explanatory variables. Tibshirani (1982) demonstrated the powerful features of Cox 

regression, handling a large number of continuous and categorical prognostic variables, 

resembling the normal linear regression model to the analysis of survival data. Wei 

(1992) proposed the accelerated failure time model, this can be an alternative to Cox 

regression in survival analysis. Schoenfeld (1980), Andersen (1982) and Lin and Wei 
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(1991) tested the goodness of fit of Cox regression and also Arjas (1988) tested it using 

a graphical method. 

Christensen (1987) demonstrated the use of prognostic indexes to separate patients into 

sub groups and rank the groups from high to low risk groups, providing a convenient 

way to visualise the survivorship of new patients. Prentice (1978) proposed the grouped 

data version of the Cox regression to handle large grouped survival data with many tied 

failure times. Prediction of breast cancer recurrence is another area that researchers are 

interested in, Magee et al 1996 and McCready et al (2000) demonstrated the use of Cox 

regression to identify the prognostic factors for breast cancer recurrence. Chen and 

Schnitt (1998) gave a detailed review of available literature on prognostic factors for 

patients with breast cancers l cm and smaller and determined which of these prognostic 

factors might be of value for the identification of low risk patients with auxiliary node 

involvement and/or metastatic disease. Different regression models have been used in 

the analysis of breast cancer survival, Gore et al (1984), in which a few variable 

interaction pairs were found to be significant by these models and the departure from 

proportionality of hazards in breast cancer was confirmed. 

Altman and Lyman (1998) pointed out that many studies are carried out in an effort to 

find the prognostic factors than explain the variation in prognosis of breast cancer 

patients. However the quality of these studies is often in doubt, since a good study 

design and analysis is less favourable for prognostic factor studies than for therapeutic 

trials, some guidelines are then proposed in this paper for conducting and evaluating 

prognostic factor studies to ensure the quality of research is improved. Henderson and 

Patek (1998) also highlighted that the newly discovered prognostic factors for early 
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breast cancer are being used before this information has been properly utilised and little 

information actually helps in making a therapeutic decision in the management of 

individual patients. 
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2.3 Neural Network Model for Survival Analysis 

Neural networks are adaptive non-linear models, and are commonly employed by 

computer scientists and engineers for classification and prediction problems. Some 

studies have applied neural networks to statistical problems with interesting results. 

They have been used in survival analysis to model "mortality" and "time to relapse" and 

claims have been made that they improve upon the accuracy of traditional statistical 

methods. Neural network models for survival extend the proportional hazards model to 

release the linearity and time dependence assumptions and they are usually based on the 

Multi-layer Perceptron network (MLP). Multi-layer networks having either threshold or 

sigmoid activation functions are generally called multi-layer perceptrons. The Bayesian 

neural networks has been proposed by MacKay (1992,1994,1995) using Bayes' 

theorem as a principled framework for regularisation of the MLP. This method included 

a number of important features to over-come over-fitting, also providing a mechanism 

to inhibit the influence of irrelevant input variables in the model, which as known as 

Automatic Relevance Determination (ARD). 

2.3.1 Neural network Model 

Neural networks is the generic title given to universal non-linear function 

approximation algorithms, characterised by a distributed structure with multiple non- 

linear processing units. Certain types of neural network structures simulate the 

associative memory function carried out by networks of neurons in the central nervous 

system and, historically, neural networks were used to help understand the principles of 

memory storage in biological nervous systems, as well as to build computational 
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machines that can carry out complex tasks. The original model of a neuron was 

proposed by McCulloch and Pitts (1943) and consists of a simple threshold activation 

function. Figure(2.3) shows the structure of a MLP with three layers of nodes, namely 

the input, hidden and output layers. Input nodes in the input layer represented the 

explanatory variables. The hidden layer may have many nodes and there may be several 

such layers, depending on the complexity of the problem. One hidden layer is sufficient 

to provide a generic non-linear modelling capability, Bishop (1995). The final layer is 

the output layer which calculates the output of the network, and it too may consist of 

several nodes. 

bias 

Input Hidden 

Figure (2.3): The structure of neural network model. 

Output 

Feed-forward neural networks have one-way connections, from the input layer towards 

the output layer, with no feedback connections permitted. Each connection has an 

adjustable strength, called the connection weight. Each observation consists of a unique 

input signal and the corresponding desired response (target). The network is presented 

with the training sample and the network parameters, weights and bias, are modified so 

as to minimise a global objective function that is intended to match the network's 

-27- 



Chapter 2: Literature Review 

response to the desired response, or target value. The training of the network is repeated 

until the network reaches a steady state, where the changes to the network weights are 

vanishingly small, or until pre-set value of the objective function is achieved, which is 

know as early stopping. 

2.3.2 Activation functions 

The universal approximation property of neural networks is contingent upon the use of 

non-linear activation in the hidden units. These functions take-in the signal received 

from the proceeding layer, which is a linear combination of the network activation there 

and outputs a non-linear function of this scalar variable. 

2.3.2.1 Sigmoid Function 

Sigmoid function is one of the most common form of activation used in the construction 

of artificial neural networks. It is a saturating, monotonic exponential function, given by 

1 
g(a) _ I+ exp(-a) 

where a is the slope parameter, which is a linear sum of the weights and the output of 

previous layer. By varying the parameter a, sigmoid function of different slopes can be 

obtained. A sigmoid function assumes a continuous range of values from 0 to 1. 
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2.3.3 Learning by Error Back Propagation 

The terminology of back propagation was used to describe the mechanism of optimise 

the network weights according to the value of network outputs and the desired target. 

Let there are d input units, M hidden units and c output units. The explanatory variables 

feed into the input layer, through the hidden layer to the output layer, the output of the 

kth output unit can be written as 

Yk =g 
; 

Wkig 
±W 

ji xi 
i=0 

where g(") is transfer function and they both are sigmoid function when working with 

classification problem.. 

`Learning' is the term used to demote updating the network parameters, usually by 

minimising an objective function, E. Gradient descent is one of the simplest network 

optimisation procedures, starting with small random values w°. The parameter w is 

updated at each step z, using slope of the error by an amount 

OW(r) = -rjVE' 
I 
w(T) . 

The parameter Tl is called the learning rate and it is a gain parameter used to stabilise 

the learning process. If it is too large, the algorithm may overshoot the minimum, given 

by VE = 0, leading to an increase in E and possibly into divergent oscillations, which 

may cause a complete breakdown in the algorithm. Or alternatively, the search proceeds 

extremely slowly which is computationally expensive. The learning rate is problem 

dependent and it can be adjusted manually to smooth out convergence. An alternative 

procedure is to use the method of scaled-conjugate gradients (SCG), Mollar (1993b), 

which adopts the principle of line search. SCG estimates the position of the minimum 
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along a series of mutually orthogonal direction. It searches each direction in weight 

space in turn and adjusts the step length automatically along that direction. It is possible 

to choose the step size in the conjugate gradient algorithm without having to evaluate 

the Hessian matrix, which is computationally expensive. 

Scaled conjugate gradient, is an alternative parameter optimisation algorithm, which 

reduces the number of evaluations of error function required for convergence, and 

avoids the need to specify the learning gain. 

2.3.4 Error function 

The error function measures the difference between the network outputs and the desired 

target values. For the classification problem, the cross-entropy error, Hopfield (1987) 

function is commonly used. For a particular class problem, let y be the posterior 

probability of p(C, I x) belonging to the class. The posterior probability of not- 

belonging to the class is then p(C2 I x) =1- y. Then target labeling t for the Class 1 

is 1 and 0 for the class 2. Therefore, the probability of either target value is 

p(t l x) = y` (1- y)'-t 

which defaults to y if t=1, and (1-y) if t=0. For n independent classes, and the form of 

the error function is a penalised log-likelihood 

E=-ý{tk lnyk +(1-tk)In(lyk)}. 
k=1 

For a multi-layer networks, the error function is typically a highly non-linear function of 

the weights, in which many minima and saddlepoints may exist and their gradient in 
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weight space is zero, VE = 0. The minimum that gives the smallest value of the error 

function is called the global minimum, the other minima are called local minima. In 

order to find the minima for the error function, algorithms employ interactive search 

mechanisms through weigh space typically using gradient descent, of the form 

W(r+1) = W() + OW(r) 

for which the error function is guaranteed not to increase. The disadvantage for such 

algorithms is when they reach to a local minimum they may become trapped at 

saddlepoints, where the error function is flat, the algorithms may be stuck for an 

extensive period of time. In practice, different values of the initial weights lead to 

convergence to different local minima. 
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2.3.5 Early stopping and regularisation 

When the algorithms involve a succession of steps and the values calculated within the 

algorithms are based of the previous values, then a stop point needs to be defined. 

Otherwise the network would be over trained, leading to data over-fitting (the networks 

fit the noise as well as the data). However, in reality, the best generalisation 

performance might be obtained at a local minimum, which is not the global minimum of 

the error function. Then the generalisation performance needs to be monitored as a 

function of time during the training, and the training is halted when the optimum 

generalisation performance is reached, early stopping is such a techniques. The error 

generally decreases as a function of the number of iteration during the course of 

training. However, the error with respect to the independent data (validation set), often 

decreases during early training process, but then increases when the network is over 

trained. Training is stopped at the point when the smallest error is achieved with respect 

to the independent data, at which the network is expected to produce the best 

generalisation performance. 

Alternatively, adding a penalty term to the error function, Q, encourages smoother 

network mapping in the form of 

E=E+ vS2 , 

where E is an standard error function and the penalty term S is governed by the 

parameter v the way it influences the form of the error function. When the network 

gives a good and smooth fit to the training data, it gives a small value to the combined 

expression for k (although either of E or vS2 may be individually above their 

minimum possible value). 
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One of the simplest forms of the regulariser is called weight decay, which consists of 

the sum of the squares of all the adaptive weights in the network, not including biases 

S2 =1Iw; . 2. 

Then the cross-entropy error function including the weight decay term is in the form of 

E=-ý{tk lriyk +(1-tk)lri(1-yk) }+2I W? 
k=1 i 

This is called weight decay because in gradient descent it adds a term to the weight 

change, that is 

AO VE=VE+vaw, where 

au 
aW -=-W. 

By itself, this term makes the error reduce exponentially to zero, hence the name of this 

form of regularisation. 

2.4 Bayesian framework for network regularisation 

The Bayesian framework was proposed by McKay (1992 a, b), in part to address the 

issue of regularisation. There are a number of important features offered by a Bayesian 

framework. (1) For regression problem, error bars or confidence intervals can be 

assigned to the estimated outputs. (2) The regularisation coefficients can be 

approximated analytically directly from the training data set. (3) Irrelevant input 

variables, are `softly pruned' using the technique of Automatic Relevance 

Determination (ARD) (1994a, 1995), whereby, a separate regularization coefficient is 
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given to each input node. If a particular coefficient is large, the corresponding weights 

will be forced towards zero, so that the corresponding input variable is of little influence 

upon the network output. 

2.4.1 Distribution of the weights 

Network training was originally described using maximum likelihood techniques, which 

minimise the negative log likelihood error function by attempting to find a single best 

set of values for the network weights. The Bayesian approach treats this differently, by 

considering a probability distribution function over the weight space, p(w). Once the 

data D have been observed, this can then be transformed to posterior distribution p(wID) 

by applying Bayes' theorem 

P(D I w)p(w) 
Pýw I D) = 

p(D) 

The prior probability distribution for the weights was assumed to be Gaussian 

distribution. 

W 

EW =2IIwII2=11 w,, and 2 ; _, 

P(w) = Fýaý- 
1 

W/2 exp(- 2a 
II will), 

, 

wh ere W is the number of the weights and biases in the network and the parameter a is 

the regularisation coefficient, called a hyperparameter, controlling the growth of the 

network weights. 
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The regularisation produces a penalised log-likelihood cost function, regularised using 

weight decay 

E=-{1[t, 
l 
In y, -F-(1-ln)ln(1-yn)]+ 

ZW? 

n=1 i=1 

2.4.2 Automatic relevance determination 

We assumed the weight distribution as a single Gaussian distribution. But commonly 

the weights fall into a few distinct classes. Weights from different classes should be 

modelled with different prior by assuming a Gaussian prior for each class. Now each 

class has its own hyperparameter C t,. The error function of regularisation becomes 

lnyn +(1-tn)ln(1-yn)]+ 
lI: 

acW`i } 
p=1 

2 
c=1 i=1 

When presenting a large amount of input variables to the network and some of them are 

irrelevant to the network output. Any conventional neural network will fail to set the 

coefficients of these inputs to zero. As a consequence, a finite data will show random 

correlation between inputs and output. 

This problem can be overcome by introducing multiple weight decay constants a,., one 

for each input node. When an input variable corresponds to a large value of a, its value 

will be depressed towards zero, making it an irrelevant input. This helps to avoid 

causing significant overfitting. 
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2.4.3 Marginalisation 

When making an assumption of a Gaussian distribution of the weights, there will be a 

contribution from the Gaussian noise to the network output distribution. For a 

classification problem, the logistic sigmoid function of the form 

Y=g(a)° 
1 

1+ exp(-a) 

is chosen to be the activation function of the output layer since it allows the output to be 

interpreted as the probability P(C1 I x) of an input vector belonging to class x. As a 

consequence of the sigmoid activation function, the network output no longer can be 

approximated linearly by the network weights. Mackay (1992b) introduced a necessary 

modification to the network output, which is marginalisation. 

He assumes the activation a in the sigmoid function is locally a linear function of the 

weights and since the posterior weight distribution is Gaussian, the distribution of a 

will be Gaussian. The mean and variance of this Gaussian distribution can be evaluated 

and gives 

I 
I 

P(a l x, D) =1 exp _(a 
-a MP2 )2 

2s 
i 

where aMP is the most probable value of the activation, given by the usual combination 

of hidden node responses, and the variance s2 is given by s2 (x) = gT A- g, where A 

is the Hessian matrix and g is the gradient. 

It follows that 

P(C, I x, D) =f g(a) p(a I x, D)da. 
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However, this integral is not analytically tractable, so Mackay (1992b) suggests the 

evidence approximation, which involves modulating the activation aMP towards zero, 

corresponding to P(C1 I x, D) = 0.5. Hence suggests 

P(C1 1 x, D) =g 
amp 

1+nS2 is 

2.4.4 Neural Network Model Handling Censored Survival Data (PLANN) 

Hazard function is assumed to be continuous in the proportional hazards model. 

However, in practice, the survival times are usually rounded to the nearest day, month 

or year, therefore tied survival times arise, of which the proportional hazard model is 

unable to handle. Therefore, there is a need for a discrete version of the proportional 

hazards model and it takes the form 

hi (t) 
= 

ho (t) ) 
1-h; (t) 

eXp(, xi 
1- ho (t) 

When the width of the discrete time intervals becomes zero, this model tends to the 

proportional hazard model and also assumes that the censoring has occurred after all the 

deaths at a given time, which resolves the ambiguity of which individuals should be 

included in the risk set at that death time. 

The implementation of this model into a neural network model is straightforward. The 

input layer is the replication of the explanatory variables for all time intervals for 

individuals, in which the subject is observed and including the time as a covariate, since 

the value of fiix, in the algorithm does not change over time. The value of the time 

covariate is taken to be the mid-value of the time interval. Here, only one target variable 
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is assigned to each individual, which is represented by the event indicator d;. This 

indicator only takes value of 1 or 0,1 presented the event of interest happened on that 

subject at that time interval and 0 otherwise. 

The output of the network is posterior probability of death at a given time and the 

estimated survival function over time for i`h individual is given as 

Si (tý )_ rl (1- y(ti)), 
k=1 

where y(t ) is the network output at time j. 

By taking the negative logarithm of the likelihood, we obtain 

P n( ) 

E _-I ýtP, lnyPi +(1-tP, )(1- yPi), 
P=1 +=l 

that is equivalent to the cross-entropy error function. 

This means that the PLANN can be implemented with a standard neural network model 

without any modification to the neural network structure or the calculation algorithms. 

This is proposed by Biganzol (1996). 
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2.4.5 Previous Neural Networks studies of survival 

Neural network models have been considered as an alternative tools of conventional 

statistical methods for survival analysis. At the early stage of development of neural 

network model for survival data censorship was ignored, Ohno-Machado et al (1995). 

Faraggi and Simon (1995) demonstrated a possible way to compare the traditional 

statistical methods with neural network model. Burke et al (1997) showed that the MLP 

predictions produced a better AUROC than simply assigning patients to the averaged 

survival of the patients in the same TNM stage. However, Brown et at (1997) and 

Radvin and Clark (1992) separately reported that excluding the censored data or treating 

them as missing will incur substantial bias in the estimation of survival. 

Thereby, De Laurentiis et al (1994), Ohno-Machado et al (1995), Faraggi et al (1997) 

and Ripley et al (1998) alternatively proposed different techniques to handle censorship 

within the neural network models, which may require several output nodes to maintain 

the separation between the dependence on time and on the patient specific vector of 

covariates. A more efficient way to represent the time and using only a single output 

node is proposed by Radin et al (1992), De Laurentiis et al (1994) and Liestol et al 

(1994). Biganzoli et al (1998) gave a thoroughly description of the Partial Logistic 

Artificial Neural Network (PLANN) which is a non-linear extension of the discrete 

version of the proportional hazards model. This neural network model of survival has 

proved to be stable in monthly studies over a period of time after treatment and releases 

the proportionality of the hazards assumption and fitting non-linear effects, Laurentiis et 

al (1994), Biganzoli et al, (1998), Lisboa et al, (2000b). 



Chapter 2: Literature Review 

In term of the interpretation of analysis results, Radvin et al (1992) and Christensen 

(1987) divided patients into three mortality risk groups, low, medium and high, 

according to their estimated survivorship. While Radvin et al (1992), Tarassenko et al 

(1996) and Ripley and Ripley (1998) used the neural network model to predict the 

recurrence of breast cancer. Groves et al (1999) tested the predictive power of Cox 

regression and the neural networks according to the area under the corresponding ROC 

curves by adding and removing factors from the model, which is an application of 

Acute Lymphoblasitc Leukaemia in children. Mariani et al (1997). The neural network 

model is also used to access prognostic factors for metachronous contralateral breast 

cancer in terms of model predictive ability Lariani et al (1997), in which variable 

interactions are also considered, and also Kappen (1993) investigated the prognostic 

factors for ovarian cancer using multiple neural network models and the Cox regression. 
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3. Breast Cancer Background Information and Data Description 

Within this chapter, a data set that is extensively used in this thesis is described in more 

detail. Two different methods of handling missing data are reported, treating of the 

missing data as a separate attribute and estimating the category using Nominal Logistic 

Regression. Also summarising the criteria that most likely to group the data into two 

subsets representing a low-risk and a high-risk cohort, which are investigated 

separately. 

3.1 Breast Cancer Background Information 

Like other type of cancers, the precise cause of breast cancer and the course of the 

disease are unknown. Moreover, while breast cancer is often perceived as a single 

disease, it is in fact a complex variety of diseases that can begin in different types of 

cells within the breast. It is the leading cause of death in women, whilst it is rarely 

found in men. Britain has one of the highest mortality rates for breast cancer in the 

world and 80% of cases occur in post-menopausal women, the UK Breast Cancer 

Awareness Campaign (1995) claimed. The mortality figures continue to decline due to 

public awareness of the disease and the development of better treatments, but presently 

there is still no way of curing the disease. 

In general, patients are offered four types of treatments, namely surgery, chemotherapy, 

radiotherapy and hormone therapy. Treatments are usually tailored to the individual 

situation, either given alone or in any combination or even in a particular order. 
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3.2 Data Description 

3.2.1 General information of the Data 

The analysis techniques developed and reported in this thesis are applied to a data set 

consisting of 1,616 women breast cancer patients were referred to the Manchester 

Christie Hospital between 1983 to 1989. All patients were treated and underwent 

surgery with at least 5 years follow up and in some cases, as long as 13 years. 

Censorship is an important feature of survival data and cannot be ignored. However, 

Burke (1995) suggested that ignoring censorship would not significantly affect the 

survival of the study. Figure (3.1) displays the survival curves of the variable oestrogen 

including (left) and ignoring (right) censored data and concluded that the effect of 

ignoring censorship is that the calculation of survival is underestimated. Therefore, the 

event of interest in this thesis is `death attributed to breast cancer'. All other causes of 

death and other loss of follow up were regarded as censorship. This is not always clear- 

cut, since death from unrelated cancers need to be identified and are not assigned to `the 

event of interest'. However, in cases of heart attack, for instance it can be difficult to 

make a clear assignment as this may be related to systemic damage caused by prolonged 

chemotherapy. For instance, patients who are surviving beyond the time fame for the 

study are also censored. Since the scope of the study is a five years follow-up, all 

surviving patients are censored at five years if they survived more than 5 years. 

Eighteen categorical variables were collected, which can be summarised into 4 

categories: 1) demographic information, 2) clinical investigations and 3) laboratory test 
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results as well as 4) treatment received. No family history or genetic link was provided, 

Survival Functions 

All Data 

Survival Functions 

Ignoring Censorship 
Oestrogen 

Missing 

8888 

10. 

0-10 

Years 

(a 
Table (3. I) shows a full listing of collected variables. 

.2 0 x 4 6 

Years 

(b 

8 10 12 14 

Figure (3.1): Demonstration of the effect of (a) including and (b) ignoring censorship by 

grouping data using variable oestrogen. 
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Variable Categories Labelling 

1. Menopausal status Pre-menopausal I 

Peri-menopausal 2 

Post-menopausal 3 

Variable Categories Labelling 

2. Age Group 20 - 39 1 

40-59 2 

60+ 3 

Variable Categories Labelling 

3. Predominant site Upper Outer 1 

(The position of tumour Lower Outer 2 

rested in the breast) Upper Inner 3 

Lower Inner 4 

Subareolar 5 

Missing 9 

Variable Categories Labelling 

4. Side Right 1 

Left 2 

Table (3.1): List of variables assessed in each patient. 
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Variable Categories Labelling 

5. Maximum Diameter of <2cm 1 

Tumour (Measured before 2-5cm 2 

tumour removal) 5+cm 3 

Unknown 9 

Variable Categories Labelling 

6. Clinical stage Tumour TO (No Tumour) 0 

(Measurement of tumour TI (Tumour less than 2 cm) I 

after removal) T2 (2-5 cm) 2 

T3 (5+cm) 3 

T4 (any size but fixed on the rib cage) 4 

Variable Categories Labelling 

7. Clinical stage Nodes NO (cannot feel any node or nodes are 

negative) 

0 

Ni (Tumour has been found under 

arm and the same side of breast) 

1 

N2 (Fixed nodes) 2 

N3 (Nodes are further inside the body 

and cannot be removed) 

3 

Table (3.1): List of variables assessed in each patient, continues. 
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Variable Categories Labelling 

8. Metastasis stage MO (negative) 0 

M 1(positive) 1 

Variable Categories Labelling 

9. Clinical stage 0 1 

(also known as the 1 2 

Manchester Stage, it 2 3 

corresponds to different 3 4 

combination of TNM 

staging) 

4 5 

Variable Categories Labelling 

10. Type of Surgery none 1 

Incision Biopsy 2 

Excision Biopsy 3 

Simple Mastectomy 4 

Radical Mastectomy 5 

Wide Local Excision + Ancillary 

Clearance 

6 

Radial Mast + Auxiliary Clearance 7 

Surgery after Neo Adjuvant 

Chemotherapy 

8 

Missing 9 

Table (3.1): List of variables assessed in each patient, continues. 
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Variable Categories Labelling 

11. Adjuvant No 1 

Radiotherapy Yes 2 

Variable Categories Labelling 

12. Adjuvant Treatment none 0 

(Summarised different type CMF 1 

of drugs, including MELPH 2 

chemotherapy and TAM 3 

hormonetherapy) XRAM 4 

OOPH 5 

CYCLO 6 

TAM + CYC 7 

TAM + PRED 8 

ZOLADEX 9 

TAM + ZOL 10 

MEGACE 11 

ZOL + TAM + CMF 12 

NEO ADJ-PRE SURG 13 

CMF + TAM 14 

FAC 15 

Missing 9999 

Table (3.1): List of variables assessed in each patient, continues. 
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Variable Categories Labelling 

13. Histology INF DUCT 1 

INF LOB / LOB IN SITU 2 

IN SITU / MIXED / MEDULLARY / 

UCOID / PAPILLARY / TUBULAR 

/ OTHER MIXED IN SITU 

3 

Missing 9 

Variable Categories Labelling 

14. Number of Nodes 0 1 

Involved (no. of nodes 1-3 2 

have been defined as 4+ 3 

tumour) 98 (too many to count) 4 

Missing 5 

Variable Categories Labelling 

15. Number of Nodes 0-9 1 

Removed (no. of nodes 10-19 2 

have been removed) 20 + 3 

98 (too many to count) 4 

Missing 5 

Table (3.1): List of variables assessed in each patient, continues. 
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Variable Categories Labelling 

16. nodes ratio (number of <=20 % l 

nodes involved / number of 20-30% 2 

nodes removed) 30-60% 3 

60%+ 4 

Missing 5 

Variable Categories Labelling 

17. Pathological Size <2cm 1 

2-5cm 2 

5+ cm 3 

Missing 4 

Variable Categories Labelling 

18. Oestrogen Cytosol 0- 10 (negative) 1 

10+ (Positive) 2 

8888 (Positive) 3 

Missing 4 

Table (3.1): List of variables assessed in each patient, continues. 
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3.2.2 Missing data 

Missing data are inevitable when collecting such a large scale cohort. In this data set, 

some records contain several missing variables, for example: number of nodes involved 

(968 missing), oestrogen (537 missing) and pathological size (452 missing). There are 

only 447 complete cases histories. In some clinical studies, incomplete data was 

discarded completely if the numbers were sufficiently small, Collett (1994). With this 

data set, the majority of missing data cannot be discarded and the cause of missing data 

is unknown. We do not know whether the data are missing at random, missing 

completely at random or missing but informative. 

Two different methods of handling missing data are reported in this thesis. The first, 

missing data was gathered as a separate attribute, which is the simplest method to use. 

The second, missing data was estimated using nominal logistic regression, which is 

appropriate for categorical data. The process of filling in the missing data using nominal 

logistic regression included two parts. Firstly, using the chi-square test, to infer the 

relation of the complete variables and the incomplete variables. Then by determining 

the a subgroup of variables (predictor variables) from the compete variables, which is 

significantly related to the incomplete variables. Secondly, fitting the model (predictor 

variables) using the nominal logistic regression, which produces a set of log ratios of 

the possible categories with respect to the reference category of the incomplete variable. 

From these values, the category value of missing data can be determined. Altogether 4 

incomplete variables were introduced to the nominal logistic regression and table (3.2) 

displays their determined predictor variables and the results are summarised in table 

(3.3). 
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Incomplete variables Predictor variables 

Pathological size Tumour stage, Predominant site, Surgery, Histology, 

Adjuvant Treatment, Node stage 

Number of nodes involved Adjuvant Radiotherapy, Manchester stage, Surgery, 

Adjuvant treatment, predominant site, Histology 

Number of nodes Removed Adjuvant Radiotherapy, Predominant site, Histology, 

Surgery, Metastasis stage 

Oestrogen Age group, Clinical stage, Histology 

Table (3.2): The incomplete variables and their predictor variables. 
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Variables Estimated Category Number of records 

Pathological size 1(<2cros) 106 

2(2-5cms) 278 

3(5+cms) 0 

Number of nodes involved 1(0) 623 

2(1-3) 200 

3(4+) 59 

4(98) 1 

Number of nodes removed 1(0-9) 24 

2(10-19) 1 

3(20+) 0 

4(98) 0 

Oestrogen 0-10 173 

10+ 41 

8888 13 

Table (3.3): Summarised the estimated values for each the incomplete variables. 

Filling-in the missing data allows the whole data set to be used for data analysis. A 

separate category was used for missing data and as consequence none reduced the 

degrees of freedom. If an inappropriate method were used that introduces significant 

bias to the prediction, the analysis would also be inaccurate. So far, there is no definite 

solution available for the categorical missing data; therefore the missing data in this 

data set needed to be handled carefully. Figure (3.2) displays the survival curves of 

pathological size where the missing data are treated as a separate category and filled in 

using the nominal logistic regression, respectively. As a result, more than 60% of the 

missing records were estimated to belong to category 2 and the rest were assigned to 

category 1, which explained the substantial changes that happened to the survival curve 

of category 2. If the data is missing at random, the survival curves should not show 
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substantial changes after being filled-in. However, the substantial difference between 

the two plots in figure (3.2) suggests the missing mechanism may be informative. 

Therefore, the development of survival analysis techniques in this thesis were based on 

the use of a separate category for the missing data, which minimizes the bias introduced 

to the analysis if the filling in method turns out to be inappropriate. 

Survival Functions 

Pathological size - separate category 

Survival Functions 

Pathological size - filled in 

Path Size 

3 

ý 
ý 
' (I, E 
ý 0 

5 years time 

(a) 
5 years time 

(b) 

2 

Figure 3.2: Showing the survival curves of pathological size. (a): Treating the missing 

data as separate category and (b): Filling in the missing data using nominal logistic 

regression. 
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3.3 Splitting data into low and high-risk cohort 

The data analysis in this thesis was based on using the entire data set to predict the year 

of death for individuals and splitting the data into two parts, low-risk and high-risk 

cohorts, which allows precise analysis to be conducted in each cohort. In each cohort, 

an estimated survival function over a fix time period was calculated for each individual, 

thus grouping the patients into prognostic groups in mortality risk order. 

Variables Attributes Value Attributes Value 

Metastasis 0 

Tumour stage 1 2 

Pathological size <2cms 2-5cms 

Node stage 0 1 

Table (3.4): List of variables that contributed to the low-risk cohort separation criteria 

and their values using clinical staging methods. 

The low-risk cohort separate criteria are summarised in table (3.4). The patients in the 

low-risk cohort are at the early stages of the disease. The rest of the records were 

regarded as the high-risk cohort. Therefore the numbers of subjects in the low-risk and 

high-risk cohort are 917 and 633 records, respectively. A total of 66 records were 

discarded owing to the tumour stage being assigned a value of 0, which appears to 

indicate that no tumour is present. The low-risk cohort comprises the majority of 

patients. 
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4 Breast cancer survival analysis using Cox regression 

This chapter investigates two possible survival analysis approaches. After modelling the 

expected survival function for individual patients, there are two ways to interpret the 

results. One is to predict the likelihood of the patient surviving in fixed time intervals, 

the other is to group patients according to prognostic risk. In this chapter, these two 

approaches are compared. 

The second part of this chapter involves partitioning the data into two groups: a low-risk 

cohort and high-risk cohort. For each cohort, prognostic groups are identified by means 

of a ranked mortality risk score of individuals, hence predicting the survivorship over 5 

years or 60 months for each group. The survival prediction based upon Cox regression 

is compared with the observed survivorship which is described by the Kaplan-Meier 

survival estimate. 

4.1 Cox Regression analysis of the whole data set 

4.1.1 Model selection 

One of the important applications of Cox regression (1972) is to identify variables that 

may be of prognostic importance. The approach adopted here for the choice of variable 

to be included in the model is the forward selection stepwise procedure, which was 

applied to the 1,616 records and the analyis is based on a yearly basis over 5 years and 

on a monthly basis over 60 months. Variables were added to the model one at a time 
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and assessed as to whether they significantly made improvements to the goodness of fit 

value to decide which variable to include in the model, Collett (1994). Subjects who 

survived more than 5 years were viewed as being censored at year 6. A total of 8 

variables were selected from the original 18 variables. All of the variables were 

converted to categorical format. For those variables contained large amount of missing 

data, the missing data was treated as a separate category; otherwise, the records were 

removed when the missing data of the variable is significantly small. Therefore, out of 

the 1,616 records, 120 cases were removed, in which 115 records of missing data and 5 

cases of non-positive survival times, leaving 1,496 cases for analysis. From these 1,496 

records, 503 patients died of breast cancer 5 years after surgery and are thus regarded as 

`event cases', with the remaining of 993 records being viewed as censored data. The 

threshold of p-value for the acceptance of a variable is <_ 0.05 and p>0.1 for 

removal which is the default setting of Statistical Package for the Social Sciences 

(SPSS). At each model selection stage, there may be more than one variable made 

significant to the test statistic, only the most significant variable was selected to be 

included in the model. Table (4.1) summarises the variables entering the model together 

with the closest alternative variables at each stage. 

Finally, eight explanatory variables were selected, namely, pathological size, node 

stage, histology, surgery, age group, number of nodes involved and oestrogen. 
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Variables in the model Close alternatives 

f(p value less than 0.05) 

Diameter Manchester Stage, Pathological Size, 

Predominant Site, Age Group, Histology, 

No. of nodes involved, Stage T, Stage M, 

Node Stage, Surgery, Oestrogen 

Diameter + Manchester Stage Oestrogen, Age Group, Histology, 

Menopausal Status, No. of nodes 
involved, Pathological Size, Node Stage, 

Tumour Stage, Surgery 

Diameter + Manchester Stage + Oestrogen No. of nodes Involved, Age Group, 

Histology, 

Pathological Size, Node Stage, Tumour 

Stage, Surgery 

Diameter + Manchester Stage + Oestrogen Pathological Size, Surgery, Age Group, 

+ No. of nodes involved Histology, 

Node Stage, Tumour Stage 

Diameter + Manchester Stage + Oestrogen Age Group, Histology, Node Stage, 

+ No. of nodes involved + Pathological Size Tumour Stage, Surgery 

Manchester Stage + Oestrogen + No. of (Diameter is removed) 
nodes involved + Pathological Size 

Manchester Stage + Oestrogen + No. of Histology, Age Group, Node Stage 

nodes involved + Pathological Size + 
Surgery 

Manchester Stage + Oestrogen + No. of Age Group, Node Stage, Tumour Stage 

nodes involved + Pathological Size + 
Surgery + Histology 

Manchester Stage + Oestrogen + No. of Node Stage, Tumour Stage 

nodes involved + Pathological Size + 
Surgery + Histology + Age Group 

Manchester Stage + Oestrogen + No. of Tumour Stage 
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nodes involved + Pathological Size + 
Surgery + Histology + Age Group + Node 

Stage 

Manchester Stage + Oestrogen + No. of 

nodes involved + Pathological Size + 

Surgery + Histology + Age Group + Node 

Stage + Tumour Stage 

Manchester Stage + Oestrogen + No. of (Tumour Stage is removed) 

nodes involved + Pathological Size + 

Surgery + Histology + Age Group + Node 

Stage 

Table (4.1): Cox regression model selection of the breast cancer data. 
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4.1.2 Model validation 

The Cox-Snell residual calculation is one of the most commonly used methods for 

model validation, Collett (1994). Figure (4.1) displays the modified Cox-Snell residuals 

plot of the entire data. The graph of the residuals is shown an approximately a straight 

line with unit slope and zero intercept, indicating no real evidence against the fitted 

model being adequate. 

Log of Cox-Snell Residual 

Figure (4.1): Plot of Cox-Snell residuals of breast cancer data. It appears as a straight 

line with unit slope and zero intercept, indicating no real evidence against the fitted 

model being adequate. 

The use of Martingale residuals is an alternative model validating method, Collett 

(1994). Figure (4.2) shows plot of the Martingale residuals against the survival time 

while figure (4.3) shows the plot of the Martingale residuals plot against rank of 

survival time. Both of the graphs display no discernible pattern in the residuals over 

time, with only two residuals indicated as potential as outliers, again suggesting no real 
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evidence against the fitted model being adequate. The Martingale residuals can also be 

plotted against the explanatory variables, since the variables are converted into 

categories, therefore, there is not much information that can be extracted in this case. 

Martingale Residuals plot against time 

Survival Times in Days 

Figure (4.2): Martingale residuals versus survival time. There is no pattern in the 

residuals over time, indicating no real evidence against the fitted model being adequate. 

Martingale Residuals Plot against 
Rank of time 

21 14 ýwwwýýrwsewebera0srrim,. r. rl. 
_-- ... . wt ,. ° 

01y 
' iý 

.i 
-2 

F- -3 ý 
Q 

-4 

W 
-6 cl: 
-400 -200 

6 200 400 600 800 1000 1200 1400 1600 1800 

RANK of SURVIVAL TIME 

Figure (4.3): Martingale residuals versus rank of survival time. There is no systematic 

pattern in the residuals over time, indicating no real evidence against the fitted model 

being adequate. 
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4.1.3 Assessing the possibility of time dependency of the explanatory variables 

This section tests the statistical significance in Cox regression of the time dependency 

with the previously selected variables. The -2 log-likelihood, -2 log L, value for the 

model without time dependent variables was 7114.600 with 27 degrees of freedom. 

Time dependence was only tested over the first 5 years. The results are summarised in 

table (4.2) below and indicate that none of the variables display true dependent 

behaviour when assessed at the 5% level of significance. With the result, there is no 

evidence to prove that the linear components of the model do not vary with time, 

indicating that the fitted model is adequate, Collett (1994). 

Additional variables -2 1og L Change of Degree of p-value 

added to the model -2 Log Likelihood Freedom 

from the previous 

model 

Time *Age Group 7107.198 7.402 35 0.4939 

Time * Histology 7107.655 6.945 35 0.5426 

Time * Manchester 7095.575 19.025 43 0.2674 

Stage 

Time * Number of 7102.981 11.619 43 0.7698 
Nodes Involved 

Time * Oestrogen 7104.520 10.08 39 0.6089 
Time * Pathological 7103.827 10.773 39 0.5484 

Size 

Time * Node Stage 7097.458 17.141 39 0.143 

Table (4.2): Significant level for assessing the time dependency of the variables. 
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4.2 Survivorship Prediction 

4.2.1 Prediction of 5 years follow-up survivorship using Cox regression 

The survival function of individual patients over a fixed time period can be estimated 

using Cox regression, as Ohno-Machado (1997) has suggested. The estimated survivor 

function for the ith individual at time t is given by S; (t) where 

exp(Q'Xi) 
S1(t) _ [So (t)] 

for t(k) <_ t< t(k+u ,k=1,2,..., r-l of r distinct death times, where So (t) is the 

estimated baseline survival function at time t, A is a vector of unknown parameters and 

X, represents the vector of the values of the explanatory variables of the ith individual. 

A5 years survival curve was produced for each of the subjects. The data set was split 

into two parts according to whether the record number was odd or even, to produce the 

training and test set. The /i and the baseline hazard function were estimated using the 

training set, then applied to the test set for performance evaluation. The training and test 

split was in line with the neural network approach, allowing a fair comparison of the 

performance between two methods, where the network parameters are estimated from 

the training set and the model is applied to the test set. Figure (4.5) shows an example 

of the estimated survival curves for 10 patients over the 5 year period. By drawing a 

threshold across the figure at any value on the y-axis, representing the probability of 

survival, the cross points of the threshold and the survival curves were used to predict 

the year of death for each patient, which are reflected on the x-axis. The ROC was used 

to determine the value of threshold giving the most accurate prediction from a range of 
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possible thresholds between 0 and 1. The calculation of the ROC involves the true 

positive rate (sensitivity) divided by the false positive rate (1-specificity). The 

sensitivity and specificity sometimes are called the true positive rate and true negative 

rate, respectively and defined as 

Sensitivity = 
True Positive 

The number of positive cases 

specif iciry = 

\ 0 

N 
> 

.; 
ý 
7 
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Fig. (4.5): An example of re-estimated survival curves of 10 patients. The horizontal 

line corresponds to a 0.5 probability of survival as the threshold for the prediction of 

survival time after surgery for each patient. 

The definition of true positive in this study is, that the patient is predicted to die of 

breast cancer (positive) within a particular time interval and the patient actually does die 

of breast cancer within the time interval. While the true negative in this study means the 

patient is being predicted not to die of breast cancer within an time interval and the 

patient actually does not die of breast cancer within this time interval. An optimal 

situation would be all of the patients who are to die of breast cancer are predicted to die 
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of breast cancer at the same time interval and all of the patients who are not to die of 

breast cancer are not being predicted as dying of breast cancer at a particular time 

interval for some values of the threshold. This is corresponds to the ROC curve passing 

through the (0,1) point on the graph. 

Figure (4.6) displays the ROC curves of prediction death happening up to respectively 

year 1, year 2, year 3, year 4 and year 5. The calculation is based on taking the 

difference between the survival functions at each time point and the one before, to 

obtain the probabilities of death during each year. The time interval that contained the 

greatest estimated probability of death was interpreted as the predicted year of death. 

For an example, taking 0.5 as the threshold, the actual year of death is the third year and 

if the highest estimated probability of death is in the third year band and is greater or 

equal to 0.5, it is counted as a correct classification. 

The results show that the curves reach sensitivity values above 0.6 only for relatively 

high false negative rates, above 0.2. So this predictive approach is not considered to be 

very informative, and a new approach for the interpretation of survival models is 

proposed. This new approach is based on assigning patients into a prognostic risk 

groups. 
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4.3 Prognostic index and Log-rank test 

The hazard function for the ith individual can be written as 

h; (t) = (p (x, )h� (t) 
, 

where (p(x1) (>0) is a function of the vector of explanatory variables of the ith 

individual that can be interpreted as the relative hazard compared with an individual for 

whom x=0. The function (p (x, ) is conventionally written as exp(irj; ), where 

l7i -Ax1i +P2x2i +... +Apxpi, 

and p is the number of explanatory variables. The quantity 77; is called the prognostic 

index or risk score for the ith individual, Collett (1994). 

The prognostic index provides a score for each subject, and can indicate whether the 

particular patient has a good, intermediate or bad prognosis for survival. Prognostic 

indexes for a given cohort can be ranked and partitioned into prognostic groups, and 

their survival curves displayed for each prognostic group. There are several different 

ways to arrange the prognostic indexes into prognostic groups, by allocating significant 

amount of samples into each group, Christensen (1987). Or alternatively, by observing 

the natural distribution of the indexes from the prognostic indexes plot is also 

considered in this thesis and also use of a well-established statistical method, such as 

the log-rank test. The log-rank test determines, to a given significance level, whether the 

population comprises of two subgroups with different survivorship. The disadvantage of 

the first method is lack of clear guidance about the cut-off point locations. The second 

method is not convincing, when the scores are crowded and leave no gap between 
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groups, as they are difficult to separate by eye. Finally, the log rank test becomes the 

preferred method. 

The log-rank test was proposed by Peto and Peto (1972). In the two group case, the null 

hypothesis is that there is no difference in the prognostic scores of the individuals in 

two groups. The tenability of this hypothesis is tested by considering the difference 

between the observed number of surviving individuals in the two groups at each time 

points and the number expected under the null hypothesis. 

Let d, 
j and d2j be the number of deaths at t(j), j=1,2,... r, in group 1 and group 2, 

respectively, r is the number of distinct death times, and the n, j and n2i be the number 

of individuals at risk at time t(j) in group 1 and group 2, respectively. Therefore the 

expected number of individuals e,; who die at time t(j) in group 1 is given by 

j, e, j = njd j 
In 

where dj =dij +d2j and nj =n, j +n2j. 

The overall measure of the deviation of the observed values of d, 
j from their expected 

values is calculated by summation of the differences d, 
j - eij over the total number of 

time intervals, r, in the two groups. The test statistic is given by 

r 
UL - (d1 -ej) with the variance of d, j being given by 

j=l 

n, jn2j(nj - 
dj) r 

v, j = 2( , so that the variance of UL is var(UL Ivii = VL 
. nj nj -1) j_, 
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Note that UL has an approximate normal distribution when the number of death times 

is not too small, Collett (1994), so that Ho: UL / VL has approximately the standard 

normal distribution and can be written as 

UL 
- N(0,1) . VL 

2 

In addition, note that 
vL 

_ X; 
, where X1 denotes the chi-squared distribution with 

L 

one degree of freedom. 

The larger the value of the statistic WL = Uý /VL 
, the greater the evidence against the 

null hypothesis. A 5% significance level is used here. 



Chapter 4: Breast Cancer analysis using Cox regression 

4.4 Low-risk cohort analysis of Cox regression 

4.4.1 Model selection 

A new variable nodes ratio was considered at this point. This is the ratio of the number 

of positive nodes to the number of nodes removed. The number of positive nodes has 

already been selected as an important variable, see section (4.1.1). Considering that two 

patients with same number of positive nodes may have different prognoses since 

clinicians tend to have different prognoses depending upon the total number of nodes 

that have been removed. For example, a patient who has 5 positive nodes out of 5 nodes 

removed is more severely affected than a patient who has 5 positive nodes out of 30 

nodes removed. The nodes ratio variable was designed to take into account this 

consideration. 

By applying the low-risk cohort selection criteria described in section (3.3), a total of 

917 cases were selected. A forward stepwise elimination model selection was 

performed once again as described in section (4.1.1). However, four variables were 

excluded from the pool of variables in order to identify the prognostic factors which 

provide information on the survivorship of the patient regardless of treatment. The four 

variables are namely treatment, surgery, oestrogen and adjuvant radiotherapy. 

Oestrogen is a measurement of female hormone, and the remaining three variables are 

decided by the doctors according to the symptoms of the patients. The selected variables 

are node stage, nodes ratio, histology and pathological size. Akaike's information 

criterion (AIC), Akaike (1973), was also employed to measure and establish the 
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significance of the value of -2 log -likelihood, - 2log L, on adding new terms into a 

model or deleting existing terms from the model. The AIC statistic is 

AIC = -21og L+ aq, 

in which q is the number of unknown parameters in the model and a is a 

predetermined constant that specifies the weighting between fit accuracy, which is 

measured by -2 log L, and model complexity and GY =3 is recommended for general 

use. The final model chosen was that with the smallest value of the AIC, and in fact, the 

final model contained 4 variables from the original 6, namely histology, pathological 

size, node stage and nodes ratio. Vonta et al (1998) also used the AIC test statistic to 

select the best subset of variables to be included in the final Cox model and found that 

the lymph nodes, tumour size (pathological size) and grade (tumour stage) have 

significant impact on the survival times of breast cancer as our model showed. The 

details are given in table (4.3). 

Model selected from SPSS 
-2 1og L Parameters 

in model 

AIC 

Node stage 3734.798 2 3740.798 

Node stage + Nodes ratio 3700.972 7 3724.872 

Node stage + Nodes ratio + Histology 3680.338 10 3710.338 

Node stage + Nodes ratio + Histology + 

Pathological size 

3669.689 12 3705.689 

Node stage + Nodes ratio + histology + Path 

Pathological size + Age group 

3661.818 15 3706.818 

Node stage + Nodes ratio + Histology + Path 

Pathological size + Age group + Diameter 

3651.835 19 3708.835 

Table (4.3): The AIC measurement for each step of the variable selection process for 

the low-risk cohort. 
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4.4.2 Natural distribution of the prognostic groups of the low-risk cohort 

The low-risk cohort was split into training (458 records) and test sets (459 records), 

based upon the odd or even record number. A5 years analysis was again conducted, 

therefore all patients who survived more than 5 years were viewed as being censored at 

year 6. The training and test split process is in line with neural networks analysis for a 

fair modelling methods comparison. By considering the natural distribution of the 

prognostic indexes, the test set data were partitioned into 7 prognostic groups as 

illustrated in figure (4.7). The Cox regression and the Kaplan-Meier estimated survival 

curves for each of the prognostic groups are displayed in figure (4.8). 
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Figure (4.7): Each band represents one prognostic group, labeled from I to 7, they are 

aggregated by observing the natural grouping behaviour of prognostic indexes. 
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Figure (4.8): (a) The predicted survivorship for each of prognostic group using Cox 

regression in the low-risk cohort and (b) the corresponding Kaplan-Meier estimate of 

the survivor function, which represents the observed survivorship for each group. The 

results show the estimated performance is acceptable in general by comparing the two 

graphs, except for groups 2 and 6 which show an over and under estimation of the 

survivorship of the groups, respectively. 

When comparing the estimated survival curves using Cox regression with the Kaplan- 

Meier estimated survivor functions, which are used to described the observed 

probability of survival, the accuracy of the survival estimation was varied over the 

prognostic groups. The smaller the value of the prognostic index, the greater the 

survival probability of the subject/group will be. In addition the prognostic index has 

been arranged in mortality risk order, so that the prognostic group 1 to 7 are in the order 

from the highest to the lowest degree of survival. However, the results show that some 

of the curves overlapped or crossed. This suggests that some of the prognostic groups 

potentially could be combined. 
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The natural grouping approach becomes inaccurate when the separation of the 

prognostic groups is not clear. We thus consider an alternative grouping method and 

adopted the log-rank test for the partition of the data into prognostic groups. 

4.4.3 Partitioning the low-risk Cohort into prognostic groups using Log-rank test 

The log-rank test, described in section (4.3), was adopted to replace the visualisation 

grouping method, in which the survival curves of two groups is compared by measuring 

the significance level arising out of a test of the equality of the two survivor functions. 

The process begins with choosing the cut-off point from the lowest prognostic index 

value to the highest. The log-rank test was performed separately at each cut-off point; 

therefore a set of p-values was obtained. The optimal cut-off was chosen at the cut-off 

point with the highest p-value and the group was split only if this is significant at least 

at the 5% level. A subset of patients, whose prognostic index was greater than the 

optimal cut-off point, were removed from the data and regarded as one prognostic 

group. The whole process was repeated until no more prognostic groups could be 

defined. 

Figure (4.9) displays the four groups obtained via the above log-rank test based 

approach. The study was conducted with monthly time resolution over 60 months. The 

performance measure was no longer only applied to the test set, but a 5-fold cross 

validation was introduced. Furthermore, 95% confidence interval bands were also 

included with the Kaplan-Meier curves, as this helps to identify the separation between 

prognostic groups, assessing the uncertainty of the data as displayed in figure (4.10). By 
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displaying the variable profiles of each prognostic group as shown in figure (4.11), the 

contribution of each variable is monitored, hence illustrating which variables play an 

important role in each prognostic group. 

Note that the number of prognostic groups obtained using this approach is fewer that the 

number obtained using the previous approach and none of the survival curves crossed 

over or overlapped. The log-rank test is a well-developed method for survival curves 

comparison. The results indicate that it is better than visualisation grouping method, the 

survival curves are well separated and also the estimated survival rate was improved for 

each group. 
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Figure (4.9): A total of 4 prognostic groups were aggregated by the log-rank test and 

labelled from I to 4, contained 127,189,487 and 114 patients, respectively. 
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regression estimated survival curves fall within their confidence interval bands and thus 
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4.5 Cox regression for the high-risk cohort 

4.5.1 Model selection 

A total of 633 records were left after the low-risk cohort was removed from the design 

data set, which are regarded as a high-risk cohort. The model selection procedure was 

repeated with the AIC criterion, as described in section (4.1.1). The selected model 

comprised the variables menopausal status, node stage, pathological size, clinical 

staging and nodes ratio. Node stage, pathological size and nodes ratio are again being 

selected as for the low-risk cohort. The details of each stage in the model selection 

process and the value of the respective AIC values are displayed in table (4.4). 

Vaiables in the model -2 log L Degrees of 
freedom 

AIC 

value 

Clinical stage 3805.973 3 3814.973 

Clinical stage, Pathological size 3789.091 6 3807.091 

Clinical stage, Pathological size, nodes ratio 3773.244 10 3803.244 

Clinical stage, Pathological size, nodes ratio, 

Menopausal status 

3764.722 12 3800.722 

Clinical stage, Pathological size, nodes ratio, 

Menopausal status, Node stage 

3754.329 15 3799.329 

Table (4.4): The AIC value of each variable during the model selection process for the 

high-risk cohort. 
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4.5.2 Applying the selected model to the high-risk cohort 

The analysis was carried out on a monthly bases for 60 months using 3-fold cross 

validation. Again the log-rank test was adopted to identify the prognostic groups. The 

results are summarised in the order of figures (4.12) to (4.14). Figure (4.12) displays the 

log-rank test aggregated prognostic groups from the prognostic indexes, and figure 

(4.13) the estimated survival curves over 60 months for each prognostic group and the 

Kaplan-Meier estimate of the survivor functions. The variables profile for each 

prognostic group is illustrated in figure (4.14). 

60 

40 

30 

20 

10 

Oý 
0 

50 
(I)#171 

i 

ji'l 

I 

Cox regression of HGR 

(2) #275 (3) #187 

IJIiiIhii..... 
:, ý ýý ý.. ýý,,, ý 7 

Figure (4.12): The 3 groups obtained via the log-rank test by means of prognostic 

indexes and labelled from I to 3 as illustrated. Their sample size is displayed next to 

their group labelling. Group 2 contained almost 45% of the patients in the high risk 

group. 
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(a) 

Kaplan-malar estirnntnd survival of HRG rnunthly 

(b) 
Figure (4.13) (a): The Cox regression estimated survival curve over 60 months for 3 

prognostic groups and labelled as pi 1, pi2, and pi3 from top to bottom. Right: Their 

corresponding Kaplan-Meier estimated survival curves. The curves are well separated 

on the graph and their Cox survival estimations are within their confidence hands when 

compared with the observed survival curves. The small confidence interval hands 

suggests that the variance within each group is small. 
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The display of the prognostic indexes in figure (4.12) has demonstrated again the 

importance of the log-rank test in this study by providing an objective criterion to assign 

patients into prognostic risk groups. Figure (4.13) also suggests that the performance of 

the Cox regression approach in predicting the mean actual survival for each group is 

acceptable. The major variables dominating the prognostic group I and 2 are the node 

stage and clinical stage, with the node stage changing from category 0 to I while the 

clinical stage shifts from category 1 to either categories 2 or 3. The other variables also 

show some degrees of category shifting behaviour as pathological size shifts from 

category 1 to 2 which corresponds to <2cms and 2-5cms respectively. This shifting 

sequence is continued into prognostic group 3. 

The results show that the survival probability of prognostic group (pi) 1 after 5 years is 

0.8. A question raises `Does this group truly belong to the high-risk cohort? ' The 

pathological size was one of the criteria for defining the low- and high-risk cohorts, but 

itself also contained missing data on 414 out of 1,530 records. As these 414 records did 

not have confirmed small tumour diameter, they were left in the high-risk cohort. 

However, 203 records partially fit into the criteria of low-risk cohort on the basis of 

tumour stage, in which subsets of 120,75 and 8 records were allocated to the prognostic 

group 1,2 and 3 respectively. These records probably do belong to the low-risk cohort 

and it is interesting that they were identified as low-risk even using pathological size, 

coding missing value as a separate attribute. The prognostic group I in the high-risk 

cohort may correspond to the prognostic group 2 and 3 in low-risk cohort. Removing 

the 120 records from prognostic group 1 of 171 records, leaves only 51 records, they 

might be the true members of prognostic group 1. The subset of 75 records may also 

correspond to the prognostic group 4 in the low-risk cohort where the survival 

probability was 0.5. 
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The results have demonstrated that the approach of predicting the year of death for 

individuals is not informative. On the other hand, the second approach produced some 

interesting results, which involved defining prognostic groups and estimating group 

survivorship. 

After completing the analysis for the low-risk and high-risk cohorts using Cox 

regression, one further interesting point was found. The motivation behind the 

separation of the data into two cohorts was to try to understand the survivorship of the 

disease and to enable a precise analysis of each cohort to be made. The above analysis 

has shown that there was no clean cut-off point for separating the data between low- 

and high- risk cohorts. There is a group of patients which overlaps the two cohorts. 

4.6 Discussion and Conclusion of Cox regression analysis of the breast cancer data 

Two analytic approaches are illustrated in this chapter, prediction of `year of death' and 

survival prediction for prognostic groups. The unsuccessful attempt of estimating the 

likely year of death is possibly caused by the large amount of censored data. 

The second approach, in which the low- and high-risk cohorts are both further divided 

into distinct prognostic groups, gives more promising results. The Cox regression 

predicted survival for the prognostic groups agrees well with the corresponding Kaplan- 

Meier estimated survivor function, and falls within the confidence bands. This is 

especially true when the log-rank test is used to partition patients into prognostic 

groups. 
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The fact that the pathological size variable contained many missing values in the high- 

risk cohort caused confusion in the cohort assignment, where the records containing 

missing values of pathological size were allocated into the high-risk cohort, since 

pathological size is one of the main separation criteria. The identified prognostic group 

1 in the high-risk cohort appears to be a high survival group and contains a substantial 

number of patients. Most of the patients in this group have the pathological size labelled 

missing. It is possible that they are the patients really showing a high survivorship from 

the high-risk cohort or it is the confusion caused by the number of clinical data 

separation criteria containing missing data. Missing data cannot be avoided when 

collecting a large amount of data and there is no definite solution or method for 

handling categorical missing data without the potential for introducing bias into the 

analysis. The data separation criteria may need to be redesigned to include verifying 

incomplete variables against likely indictor, for example, using tumour stage when 

pathological size is unavailable. 



Chapter 5 

"If you can one day renovate yourself; do so 

from day to day. Yea, let there be daily 

renovation. " 

n 
ý 
,ý 

3ý 

HHH 
ýýý1 

T, 
ýIlff 

(Confucius: The Great Learning. Chanter II) U 

5. Neural networks 
Breast Cancer 

Application 

T 
5.2 Handling censorship using 
conventional neural networks- 

low-risk cohort 

T 
5.3 Handling censorship using 
Bayesian neural networks, low- 

risk cohort monthly study 

5.6 Assumption of 
Proportional Hazard 

T 
5.7 Discussion of Chapter (5) 

T 
High-risk Cohort analysis 
Summarised in chapter (6) 

5.1 Predicting the year 
of death for individuals 
using neural networks 

Defining 
prognostic 
indexes 

5.4 Introducing 
Grouped ARD 

technique and defining 
the baseline attribute 

5.5 Bias correction for 
unbalanced data 

-85- 



Chapter 5: Neural Network Breast Cancer Application 

5. Neural networks breast cancer Application 

This chapter summarises the results of two survival analysis approaches using neural 

networks. Due to the restrictions of the network structure, censorship is not considered 

at the first approach. In this approach, the probability of death 5 years after surgery is 

calculated for individuals and presents with the ROC curve, then benchmarks with the 

Cox regression of the same approach. 

In the second approach, the role of analysis has changed. A5 years survival function is 

predicted for individuals, in which the neural networks model is modified to be capable 

of handling censorship, by implementing a partial logistic model. Also, the data are 

divided into low- and high-risk cohorts. In each cohort, patients are allocated into 

mortality risk groups, and the corresponding survival function is calculated by the 

average of the 5 years survivorship prediction of the group. Hence, the accuracy of the 

prediction is assessed by the Kaplan-Meier estimation of survival from the observations 

for that group. Moreover, two different neural network approaches are adopted, 

including the most commonly used MLP trained by back-error propagation and the 

neural network trained with a Bayesian framework. In the Bayesian neural network 

approach, the results report substantial bias introduced to the network estimation 

because of the skewness of the distribution of target values, which is solved by 

marginalising the outputs to the averaged hazard of the data. This chapter also 

introduces the more advanced automatic relevant determination (ARD) technique which 

carries out soft pruning of the model. 
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5.1 Prediction of 5 years survivorship using the MLP network 

Neural networks are non-linear modelling methods, with successful applications in 

many fields. Medical analysis is one of the fields that adopts this method, in which the 

probability of a disease occurrence is frequently the variable of interest. 

In order to calculate the probability of death 5 years after surgery for breast cancer 

patients, a5 year survival curve for individuals is required. Gore et al (1984) proposed 

using the cross point of a threshold that crosses the survival curve to predict the year of 

death for individual patients. Two different network frameworks are used, the ordinary 

MLP and the neural network trained with Bayesian framework, the details are given in 

section (5.1.1) and (5.1.2), respectively. 

For each neural network, the 1376 records were split into two groups of 688 records 

each, selection was dependent on the odd or even record number. One set was used to 

train the network for parameter generalisation and the other set was used for testing. 

The number of patients who survived beyond 5 years in the training set and test set is 

437 and 436 respectively. The rest of the records are spread over the other 5 years of 

classes. The outputs can be interpreted as the probability of death at a particular time 

interval and the cumulative probability of death for ith individual is given as 

r 

In! 
h, 

r=i 
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for t=1,2,..., k where k is number of time intervals, n, is the network output of each 

time intervals and h; (t) is the cumulative probability of death at particular time 

interval. Figure (5.1) shows an example of estimated cumulative probability of death of 

a patient over the first 5 years and beyond 5 years. To predict the year of death for this 

patient, a threshold is identified for the y-axis and the predicted year of death for an 

individual patient is identified by the cross-over between the cumulative probability of 

death and the pre-specified threshold. 
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Figure (5.1): An example of neural network estimated cumulative probability of death 

of an individual patient over the first 5 years and beyond 5 years. Using 0.5 as the 

threshold to predict the year of death, it is predicted the death is most likely happened in 

year 2. 
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5.1.1 MLP network with early -stopping 

Six different MLP networks are employed, each network represents one-year interval of 

5 years and beyond 5 years. For the patients who survived in that time interval, the 

target is labeled with 0, or I for death of breast cancer. The network consisted of 35 

input nodes, one hidden layer of 8 hidden nodes, which has been tested for convergence 

and performance, and 1 output node. The 35 binary input nodes were transformed from 

the 8 Cox regression selected variables, reported in section (4.1.1). Since censorship 

was not considered at this stage, the patients who survived beyond 5 years were 

considered to be dead after 5 years and those censored before 5 years are discarded. 

Early-stopping was employed to overcome the over-fitting problem, where the network 

training was stopped when the smallest error was archived with respect to new data. 

During a typical training session, the training data error generally decreases as a 

function of the number of iterations in the algorithm, whereas the test error first reduces 

than slowly increases, achieving a minimum value where generalisation is optimal. 

Gradient descent was the adopted parameter optimisation algorithm for its simplicity 

and efficacy and the sigmoid function was the chosen activation function for the 

network of which restricted the output value to be between 0 and 1, and can be 

interpreted as probability of death. Each network was trained for 120 iterations. 

The calculation required for ROC curves was discussed in section (4.2.1), which 

involved sensitivity and specificity. The network output can be read as predicting an 

independent probability of death for each year, same approach as the Cox regression in 
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section (4.2). Figure (5.2) displays the ROC curves for each year and the results are 

similar to those obtained with Cox regression, and inconclusive. 
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Fig. (5.2): The ROC curves of independent probability of death. 

5.1.2 Bayesian Approach 

We began with the consideration of the architecture of neural networks, number of 

layers, number of hidden nodes and choice of activation function. In the conventional 

maximum likelihood approach, a single `best' set of weight values is determined by 

minimising a suitable error function. By contrast, the Bayesian approach considers a 

probability distribution function over weight space and this can be obtained by 

calculating the posterior probability distribution given some prior distribution. Once the 

data has been observed, the prior distribution can be converted to a posterior 

distribution through the use of Bayes' theorem. The posterior distribution can then be 

used to evaluate the predictions of the trained network for new inputs, Bishop (1995), 
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chapter 10. Aston's Netlab software was used, this software is specially designed for 

neural network classification problems. 

In the Bayesian model with automatic relevance determination (ARD), there were 38 

distinct weights decay parameters, one for the fan-out weights fan from each input 

node; one for the bias of hidden nodes; one for the output node weights and the last one 

for the output node bias. The network was trained until all parameters had converged. 

Figure (5.3) is the ROC curves using the neural network trained with Bayesian 

framework to predict the year of death of breast cancer for 5 years and beyond 5 years. 
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Figure (5.3): The ROC curves of Bayesian regularised neural network for year I, year 2, 

year 3, year 4, year 5 and beyond year 5. 
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5.1.3 Summary of death year prediction with a neural network 

By comparing the results of the Bayesian model and the conventional MLP over the 

independent probability of death method, the Bayesian model shows a better 

performance on year 2,3 and 4, while the second shows better performance of 

prediction in the first year after surgery. There is no apparent difference between the 

performance of methods for predicting death beyond year 5. 

The results also suggests that the neural networks Bayesian approach can perform as 

well as the Cox regression, figure (4.6). The neural networks perform better in the 

prediction of death for all time intervals except year 1, which the Cox regression shows 

better prediction performance, concluding that neural networks are marginally better in 

long-term outcome prediction. However, none of the results can be considered as being 

significant for clinical use and some other studies have highlighted that omitting 

censorship may bias the result, Brown et al (1997) and Radvin and Clark (1992), 

therefore this approach was ended. 

Although the results show the neural network performance is marginally better than the 

Cox regression, both methods failed to produce interpretable results. At this stage, 

censorship is not considered. Dealing with censorship in the development of neural 

network model for survival analysis is essential. The Partial Logistic Artificial Neural 

Networks (PLANN) model, Biganzoli (1996), was identified from the literature review 

to be preferred solutions to handle censorship. The application of PLANN model to the 

breast cancer data is summarised in the following sections. 
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5.2 Neural network modelling of censored data 

The new approach aims to accurately estimate the cumulative probability of survival for 

each individual up to a maximum time period, putting all the subjects are partitioned 

into prognostic groups via the use of prognostic indexes. A predicted mean survivorship 

for each prognostic group can then be evaluated. Throughout this chapter, all survival 

analyses were based on 5 years or equivalently 60 months. 

5.2.1 Defining a prognostic index in neural network model 

Prior to identifying distinct risk groups, it is necessary to rank all of the patients in order 

of mortality risk. This ranking uses prognostic indexes that are defined separately for 

both the Cox regression and the PLANN model. 

In neural networks, the equivalent of the Aix exponent used in Cox rgression is obtained 

by treating the Multi-Layer Perceptron (MLP) structure as a non-linear extension of 

logistic regression, and taking the logit of the hazard prediction. However, as this is 

time-dependent, a cumulative index is obtained by averaging it over the time-span of 

the study, to give 

T 
11og it(y) 

PINN - =1 
T, 

where T is the number of time intervals (Lisboa et al 2000) 
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5.2.2 The preliminary test of applying the PLANN model to the neural networks using 

the low-risk cohort 

A conventional MLP network was first adopted to implement the PLANN model. The 

data set used is the low-risk cohort which was split from the data following the criteria 

given in section (3.3). The training set contained 458 samples with 459 samples in the 

test set according the odd and even record number. The input variables of the networks 

were the variables that Cox regression selected namely; node stage, histology, nodes 

ratio and pathological size in section (4.4.1). These variables were then transformed 

into 12 binary attributes, together with the time covariate, formed the input layer of the 

network. Hence, the value of the time covariate was the mid-point of each time interval. 

Due to the characteristic of the PLANN model, records in the training set were 

replicated extensively for each time interval until the patients dropped out from the 

study. The target label for an observed time interval was 0 where the patient was 

observed alive and 1 when the event of interest occurs in that time interval. Therefore 

no sample replication and target labeling was allocated to the subjects after they were 

dropped out from the study. Unlike the training set, all subjects in the test set were 

replicated for all time intervals. Only one output node was needed for this model, which 

represented the conditional probabilities of death from breast cancer in a time interval, 

therefore the model predicts the hazard mortality. 

The networks contained a single hidden layer of 12 hidden nodes and adopted the scaled 

conjugate gradient (SCG) algorithm as the parameter optimisation method replacing the 

gradient descent algorithm. This algorithm is claimed to be faster to reach convergence 

and has fewer pre-set parameters, Bishop (1995). Different values of weight decay 
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parameter have been tested, finally 0.075 was chosen for the wideness range of 

prognostic indexes and also better separation and grouping of mortality risk groups. In 

order to overcome the over-fitting problem, early stopping was adopted. The network 

was trained with only 30 loops. 

5.2.2.1 Result Implementation 

Since each subject in the test set was replicated 6 times with a different value for the 

time covariate for a5 years study, therefore each subject is associated with 6 output 

values and 6 prognostic indexes, and each output value was independent of the others. 

They are recorded independently after training, the 6 prognostic indexes are averaged to 

represent the risk score (prognostic index) of an individual and the 6 output values were 

transformed to cumulative probability of survival function over 5 years and the 

calculation for ith individual is 

Si (t1) _ At <_ tk It> tk_I) 
, where j is the number of time intervals. 

k=1 

Hence, 

Si (tj) _ (1- y(tk )) , Yk is the network output at time k. 
k=l 

By plotting a histogram of the prognostic indexes of all subjects in the test set, the 

indexes are naturally gathered into a number of small groups, which can be identified 

by eye, as shown in figure (5.4). Each band represents one prognostic group, 5 groups 

were identified in this case. The network predicted mean survivorship for each 

prognostic group together with the corresponding Kaplan-Meier estimate of the survivor 

functions including 95% confidence interval are displayed in figure (5.5). The Kaplan- 
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Meier estimated survivorship function is used to describe the observed survivorship for 

each prognostic group, which allows assessing the accuracy of network prediction for 

prognostic groups. 
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Figure (5.4): Subjects were divided into five mortality risk groups by the eyeballing 

method from the ranked prognostic indexes 
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Figure (5.5): The neural network SCG approach predicted survivorship over 5 years for 

prognostic groups, together with the corresponding Kaplan-Meier estimate of the 

survivor functions. In general, the performance of the neural network survival 

estimation was acceptable, except group 4, the probability of survival was under 

estimated by 0.13 at year 5. 
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The results show that some of the survival curves are close together and their 

confidence intervals actually overlapped, suggesting that some of the prognostic groups 

can be potentially combined, i. e. group I and 2, group 3 and 4. The combined results 

are displayed in figure (5.5), finally 3 prognostic groups are left, each contains 194,221 

and 44 subjects, respectively. The confidence interval bands for group 1 and 2 are clear, 

with no serious over-lapping, and also the accuracy of the estimated survivorship for 

prognostic groups compared with that observed has been improved. The result after 

combining specific prognostic groups has given strong statements that the neural 

network model is capable of handling censored data, and give accurate survival 

predictions with small confidence intervals. 
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Figure (5.5): The predicted survivorship for the 3 prognostic groups after combining 

some of the groups from figure (5.4) and the corresponding Kaplan-Meier estimate of 

the survivor functions. The results display better prognostic group separation and 

survival estimate accuracy. 
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5.2.2.2 Discussion of the first neural network model handling censored survival data 

The Cox regression, is the most commonly used conventional statistical tool for 

survival analysis, and its the high popularity is due to commercial availability and its 

robustness and ease of interpretation. Whereas, the neural network model produced 

some interesting results which are different from those of the Cox regression. Using the 

same approach, with fewer prognostic groups, and more accurate survival estimation for 

prognostic groups. One disadvantage of the neural network approach is the time spent 

on obtaining the optimal network structure, the correct number of hidden nodes and the 

weight decay value. Even though a good network design is not always guaranteed the 

result will be better than the conventional statistical method, it should be at least as 

good as it. So far, it is only a preliminary test of the potential use of neural networks for 

censored survival data and the result has given a positive agreement. The next stage is 

to repeat the SCG approach but implement it with the 5-fold cross validation method, 

then applying the PLANN model to the neural networks trained with a Bayesian 

framework, which is an alternative approach to the network weights optimisation 

method. 

5.2.3 SCG approach of low-risk cohort using cross validation procedure 

The SCG training and test split approach has suggested that the neural network PLANN 

model is capable of handling censored survival data. The analysis was repeated once 

again using the SCG approach but trained with a 5-fold cross validation procedure, 

which allowed better understanding og the nature of this data in general. The results are 

summarised in figure (5.6) - (5.7) as in sequence of, dividing mortality risk groups by 
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eye judgement, the network predicted survivorship for each prognostic group together 

with the corresponding Kaplan-Meier estimate of the survivor functions. 
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Figure (5.6): The five partitioned mortality risk groups using visualisation grouping 

method from ranked prognostic indexes which is calculated by the network over 5 fold 

cross validation sets. 

SCO, cancer data, mid-point of real time, 12 hidden nodes 
11 

K-M of SCG, cancer data, mid-point of real time, 12 hidden nodes 

1 
0.911 

0e 

0.7 

0.5 
w 0.4 

03 

02 
0.1 F 

- PI1 

PI 3 
P14 

6 PI5 

, 
0 
00 

06 

05 

C 0.4 

0.3 

02 

01 

0 

- PI 1 

PI 3 
P14 

-A- P15 

-I 

oaDb 0_..,. u11 
01234ýo Time in Years 

Time in years 

Figure (5.7): The neural network predicted mean survivorship for each of the prognostic 

groups and the corresponding Kaplan-Meier estimate of the survivor functions. The 

curves are nicely separated and the survival estimation gives a good agreement. 
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The result shows that the five prognostic groups are nicely separated. Moreover, the 

prognostic group 3 and 4 have the potential to be combined and more interestingly, 

prognostic group 1 shows a 100% of survival chance over 5 years. The accuracy of the 

estimated survival has not been improved by the cross-validation method but the 

confidence intervals for each prognostic group are narrower than the training and test 

split approach. 

The SCG approach has already produced some useful results. The next step will test the 

PLANN model with the neural network Bayesian approach, since it overcomes the 

over-fitting naturally and the ARD technique can be added on to tune down the 

irrelevant input variables from affecting the network calculation. 

5.3 Bayesian framework for the PLANN model 

The evidence approximation to the Bayesian neural network is an alternative parameter 

regularisation framework. This approach uses a hyperparameter that controls the 

strength of weight decay. Only a single value of hyper-parameter a is considered at this 

stage, in which all input variables share same value of alpha. Multiple alpha values will 

be considered later in the ARD approach, reported in section (5.4). The input variables 

were those selected by the Cox regression which allows comparison over different 

weight optimisation approach. A single layer of eighteen hidden nodes was adopted for 

better network estimates, wider range of prognostic indexes and better mortality group 

separation. One output node was used. The analysis was completed with a 5-fold cross 

validation and yearly bases of 5 years. The result of prognostic group partitioning was 

that the network predicted survivorship for prognostic groups and the corresponding 
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Kaplan-Meier estimate of the survivor functions are summarised in the figure (5.8) - 

(5.9), respectively. 
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Figure (5.8): The neural network Bayesian approach evaluated prognostic indexes of 

917 low-risk cohort data, 5 prognostic groups were partitioned by visualisation 

grouping method. 
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Figure (5.9): The network predicted survivorship for each of the prognostic groups and 

the corresponding Kaplan-Meier estimate of the survivor functions. 

Figure (5.9) shows that the survival curves of 5 prognostic groups are nicely separated 

between 0.97 to 0.3 at year 5. The majority of patients are partitioned into groups 2 and 

3. The SCG approach aggregated highest survival group which showed a 100% 

survivorship has disappeared, the predicted survival of the newly formed prognostic 

11 
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survivorship has disappeared, the predicted survival of the newly formed prognostic 

group 1 is 0.97, still a very high survival group. In term of the accuracy of survival 

prediction, the Bayesian approach is marginally better than the SCG approach in 

general. 

The result is comparable with the conventional statistical tools, the Cox regression in 

this study. Another special feature of the Bayesian framework is the use of the ARD 

technique where the input variables that are least relevant to class differentiation can be 

determined. Although the input variables were selected by Cox regression and have 

been proved to be effective in prediction, neural networks may act differently on these 

variables since they are non-linear methods unlike linear Cox regression. 
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5.4 The PLANN model of Bayesian framework using ARD 

The ARD technique was based on the use of a separate hyper-parameter for each input 

variable. Each alpha controls the optimisation of the network weights that fan out from 

the each input variable. The assumption is that irrelevant, or noisy covariates, develop 

large hyperparameter values that penalise the objective function, E, driving down the 

values of the regression coefficients (or weights) associated with them. Therefore, the 

bigger value of the alpha, the smaller value of the corresponding weights to be. In other 

word, the alpha value is a measurement that determines the irrelevant input variables 

and minimises their influence towards the network output. This is called soft pruning. 

The network input variables were those by selected Cox regression. The role of 

hyperparameters in here is to examine how these variables have been handled in the 

network. 

5.4.1 Group ARD Concept 

Owning to the structure of categorical data, each of the input variables was transformed 

into several binary input attributes in the network. Originally, the ARD technique 

assigns a single value of the hyperparameter alpha to each input variable. In this new 

approach, instead of assigning a value of alpha to the group of weights which fan out 

from each input node, a single value of alpha is associated with the weights that fan out 

from all of the input attributes which correspond to a single variable. This is called the 

grouped ARD technique. 
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This approach was applied to the low-risk cohort and implemented with a 5-fold cross 

validation again and same input variables were used. Different numbers of hidden nodes 

were tested, the best network output estimation was given by 18 hidden nodes. The 

results are summarised in figure (5.10) - (5.11). 
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Figure (5.10): Prognostic indexes that evaluated by the grouped ARD Bayesian 

approach for the low-risk cohort and five prognostic groups were partitioned by 

visualisation grouping method. 
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Figure (5.11): The grouped ARD network predicted mean survivorship for prognostic 

groups and the corresponding Kaplan-Meier estimate of the survivor functions. The 

separation of prognostic groups over 5 prognostic groups is better than the single alpha 

ARD approach and also better survival estimation for each of the prognostic groups. 

The results show that the grouped ARD technique is successful and the accuracy of the 

estimated survival for prognostic groups have also been improved. However, the value 

of alpha hyper-parameters for each input variable are strangely large, further 

investigation will be reported in section (5.4.2). Hence, the neural network analysis will 

be based on the use of grouped ARD technique and also the prognostic groups 

partitioning method. We will be using the log-rank test to choose the optimal position of 

the thresholds to aggregate prognostic groups from the ranked prognostic index values. 
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5.4.2 Baseline attributes determination 

The value of alpha hyper-parameter in the single alpha approach was around 6. 

However, the alpha values of the grouped ARD approach varied between 22.57 to 

84.71. The two sets of alpha were very different. The value of alpha corresponds to an 

inverse variance, as the bigger the posterior variance of weights, the smaller value of 

alpha would be, which leads to higher significant influence of the corresponding input 

variable to the output estimation. 

The large value of grouped ARD suggests some redundancy between the group of 

attributes corresponding to a single input variable. After all, the attributes for each 

variable must sum to one, imposing a constraint on their values. 
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5.4.2.1 Applying the conventional ARD technique 

The network setting has not been changed, still trained with 18 hidden nodes, each of 

input variable was received a separate hyper-parameter alpha. Table (5.1) displays the 

values of alpha of each attribute. 

Histology 1 2 3 

Alpha value 11.94 1513.8 70.216 

Pathological size 1 2 

Alpha value 14.789 461.5 

Node stage 0 1 

Alpha value 14.726 369.03 

Nodes ratio <=20% 20-30% 30-60% 60%+ Unknown 

Alpha value 11.149 2082.2 2030 12.759 8447.2 

Table (5.1): The reading of alphas that are corresponding to each of the input nodes. 

One of the alpha values within a variable is distinguishably large. 

It is clear that for each variable one attribute may be regarded as irrelevant. In order to 

maintain the consistency, the attribute becomes the baseline is same as the Cox 

regression, the lowest hazard attribute of the variable, the value of the baseline for that 

variable is coded by all remaining attributes equal to zero. 
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5.4.2.2 Adding the baseline attribute assumption to the training criteria 

By considering the baseline attribute approach, the network was retrained with the 

grouped ARD technique and included the baseline attributes assumption. The chosen 

baseline attribute for each variable was same as the baseline category for Cox 

regression. The results show that the alpha value of each variable has been significantly 

reduced. The new reading of alphas are 1.4353,1.1534,1.6545,3.0963 and 2.6333 for 

variables histology, pathological size, node stage, nodes ratio and time respectively. 

The prognostic indexes are still within the range of -4.5 to -1 as displayed in figure 

(5.12) and the distribution of samples are similar to our previous results, the 917 

samples have been successfully partitioned into 4 prognostic groups by the log-rank 

test, as illustrated in figure (5.13). Their predicted mean survivorship at year 5 is varied 

between 0.97 to 0.22 and each respectively contains 75,341,460 and 41 number of 

subjects. The network survival predictions in general can be concluded as acceptable. 

Although the network estimation for group I and group 4 show a small deviation from 

the corresponding Kaplan-Meier estimate of the survivor functions, the curves are still 

being included within the confidence interval bands, considering that their confidence 

interval bands are bigger than the other two groups. 

The results show there is a need to define baseline population when handling 

categorical data. The baseline attributes are given values of zeros and the same attribute 

in each variable is allocated to both of the neural networks and the Cox regression. 
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Figure (5.12): The neural networks computed prognostic indexes using the grouped 

ARD technique and baseline attributes assumption. Four prognostic groups were 

divided by the log-rank test. 
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Figure (5.13): The network predicted mean survivorship for prognostic groups after 

applying the grouped ARD technique and the baseline attributes assumption and the 

corresponding Kaplan-Meier estimate of the survivor functions. The curves are well 

separated and the network prediction is acceptable. 
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5.4.2.3 Displaying the attribute profiles of each prognostic group 

Since the techniques of data analysis using neural networks has been refined, it is 

necessarily to determine the characteristic of each prognostic group, in which the 

variables that play a leading role of in each prognostic group are examined. Therefore, 

the variable attribute histogram for each prognostic group is displayed in figure (5.14). 

Clearly, particular attributes of variables are dominated in particular prognostic group. 

Group I is the highest survival group of the data, the attribute of histology moves from 

attributes 2 and 3 to mainly attribute 1 from group 1 to 2. Over the 4 prognostic groups, 

the pathological size and node stage move gradually from attribute I to 2 and attribute 0 

to 1, respectively. Finally, all the variables are concentrated on their particular attribute 

that creates prognostic group 4, which is the lowest survival group. 
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Figure (5.14): The attribute profiles of prognostic groups which generated by the neural 

networks with the application of grouped ARD technique and the baseline attribute 

assumption in which the behaviour of each variable over prognostic groups can be 

monitored. 
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5.5 Bias correction of network output due to heavily skewed binary data 

The Bayesian framework does not take account of the skewed distribution of target 

labels in binary classification problems, with the consequence that all network outputs 

are marginalised to the mid-range of the value. In the evidence approximation to the 

integral of 

P(c, I x, D) =J g(a)P(a I x, D)da, then 

%iS2 
P(c, I x, D) g (1 +8 )-1/2 aMP 

ý 

where s2 is the variance of the sample distribution, a -- N(aMPIs 2) 
. The P(c, I x, D) 

is the probability of class membership c, given the data x and training data set D. 

For a two classes problem, the network output is adjusted to minimise the probability of 

misclassification of the given input data with the decision boundary, corresponding to a 

network output of p(C, I x, D) = 0.5 
. The form of the logistic sigmoid activation 

function determines that aMP (x, WMP) =0. The p(C, I x, D) = 0.5 statement is no 

longer held when the data are heavily skewed. Some modifications to the network error 

and estimates have been proposed, Lisboa et al (2000). Firstly, by weighting the cost 

function using Bayes' theorem so the network is as if trained with an equal prior. In 

applying Bayesian neural networks to the modelling of censored data, it is necessary to 

re-weight the error function to equalise the heavily skewed distribution of mortality 

indicator indexes follows 
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LL = -ý 1og(Y� ) r" 
+ log(1- yn ). 

1- tn 

n 2d 12(1-d) 
ý 

where d represents the frequency of death, t, is the target labels and yn is the network 

outputs. This modification also applies to the gradient and the Hessian calculations in 

the similar manner. 

The conditional network estimates are then compensated using Bayes' theorem, to take 

account of the true prior distribution for the target labels, resulting in conditional 

network estimates that marginalise to the priors, d, which is the averaged hazard in this 

study, i. e. 

T,, (x)d 
y f; 

(x) 
yk (x)d + (1- yR (x))(1- d) ' where Yg (x) is the network output. 

When yg (x) = 0.5, it follows that 

_ 
0.5d 

=d. (x) 
0.5d + (1- 0.5)(1- d) 

So, yx (x) marginalises to 0.5 while yg (x) marginalises to d. 

The calculation of the averaged hazard involved two parts, (i): the probability of death 

at each time interval is the total number of death within the time interval divided by the 

total number of patients at risk at the beginning of the time interval, (ii): then averaging 

the probabilities of death by the number of time intervals. 
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5.5.1 Demonstration of the effect of network output marginalising towards class prior 

The breast cancer analysis was repeated using the PLANN model, but refined into 

monthly bases. The network estimates were marginalised towards the averaged hazards 

of the data, which was calculated by averaging the hazard of each time interval. The 

network was still using 18 hidden nodes, the grouped ARD technique and baseline 

attributes assumption were also applied, mortality risk groups were partitioned by the 

log-rank test, finally, the analysis was implemented using the 5-fold cross validation. 

The calculation of cumulative survivorship involves a series of network output 

multiplication, described in section 5.2.2.1. Therefore, any bias in the calculation of 

each hazard rate causes a huge bias after multiplication over several time intervals. 

Figure (5.15) - (5.16) demonstrate the effect of marginalisation towards midpoints and 

the class priors. Figure (5.15) displays four different network outputs, the original 

output, the network output marginalised towards midpoint; the network output 

marginalised towards averaged hazard from the original output; and marginalised 

towards averaged hazard from the network output had marginalised towards midpoint. 

Nevertheless, the top 4 curves in figure (5.16a) are the network survival prediction for 4 

prognostic groups which marginalised towards averaged hazard and the lower 4 curves, 

the corresponding network prediction marginalised towards midpoint. Figure (5.16b) is 

the corresponding Kaplan-Meier estimate of the survivor functions. The network 

outputs are seriously damaged when the bias correction is not applied. 
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Figure (5.15) (a): The original output predicted by the neural network (-) and the 

marginalised output (*), averaged from all patients in low-risk cohort. (b): the original 

network output marginalised towards averaged hazard directly (-) and the midpoint 

marginalised result marginalised towards averaged hazard (*). 
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Figure (5.16), (a): The top 4 curves are the network survival prediction which 

marginalised towards averaged hazard and the lower 4 curves are the survival prediction 

which marginalised towards midrange and (b) is the corresponding Kaplan-Meier 

estimate of the survivor functions. 

- 115- 



Chapter 5: Neural Network Breast Cancer Application 

5.5.2 Complete the low-risk Cohort analysis into monthly study 

After defining the necessary techniques to correct the marginalisation to take account of 

the skewness of the target distribution, still using 18 hidden nodes, the network was 

retrained, same input variables as before and with grouped ARD. The time intervals 

have been refined into a monthly study over 60 months. Thus, data were replicated 

more frequently than the yearly study and the mean hazard per time interval was 

correspondingly smaller. For the individuals who survived more than 60 months were 

censored at month 61. 

Figure (5.17) demonstrates when the log-odds ratio, ä (x, WMP) , is zero, the 

marginalisation of yg (x) is toward 0.5 as if the case of network trained with equal 

priors. After compensation for the time value of the prior, yg, (x) marginalises to the 

averaged hazard in this case 0.0032. The new range of prognostic indexes lies between 

-3 and 5. Four prognostic groups are partitioned by the log-rank test and the patients 

allocation is 56,359,460 and 42 respectively, with a majority of patients still allocated 

to group 3, as illustrated in figure (5.18). 

Only the network predicted mean survivorship for the lowest survival group is not 

accurate showing 0.16 error when comparing figure (5.19a) and (5.19b). However, all 

survival curves are included within the Kaplan-Meier estimated confidence interval 

bands. Since the network outputs were marginalised toward the mean hazards, thence, 

the mean survival rate at year 5 is around 0.7, therefore the error generated by 

prognostic group 4 can then be explained. One solution to solve this situation is to 

model each prognostic group separately, which would allow accurate prediction of 
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survival for the patients in each group, given the prognostic group allocation already 

decided on the basis of the most likely values of a, namely aMp . 

There is a significant difference observed from the attribute profiles over prognostic 

groups in figure (5.20), when comparing with the Cox regression approach in figure 

(4.14). The profile of variables in each prognostic group is more highly concentrated on 

a particular attribute, thus reducing the overlap between prognostic groups. 
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Figure (5.17): The network outputs and their associated prognostic index in four format, 

namely original network output (Output), network output marginalised towards 

midpoint (Output & Marginal), network output marginalised towards average hazard 

using the outputs marginalised towards midpoint (Output & Marginal & Corr) and 

network output marginalised towards average hazard directly (Output & Corr). 
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Figure (5.18): The log-rank test partitioned 4 prognostic groups or the low-risk cohort, 

the network outputs are marginalised towards the averaged hazard of the data. 
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Figure (5.19): The network estimates mean survivorship for prognostic together with 

the corresponding Kaplan-Meier estimate of the survivor functions. The network is 

trained with bias correction technique and the outputs are marginalised towards 

averaged hazard. The survival prediction for prognostic groups is concluded as 

accurate, except group 4. 
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Figure (5.20): The attribute profiles for prognostic groups, which the network outputs 

are marginalised towards averaged hazard. The distribution of patients has been 

changed significantly from the previous neural network result, they are more 

concentrated on particular attribute in each variable. 

When the analysis has been refined to a monthly study, more detailed information can 

be extracted from the data, including a smooth prediction of the hazard, shown in figure 

(5.21). The results so far indicate that a small group of 42 patients in this cohort has a 

relatively low survival. This group of patients will be examined further and the results 

are summarised in section (6.4). 
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5.6 Assumption of proportional hazard 

The proportional hazards model allows a non-constant hazard rate to be modelled 

without making any assumption about the underlying distribution of the hazards in the 

different groups, but is requires the hazards in the groups remain proportional over time. 

Therefore, the time dependence of the hazard is that observed for the baseline 

population. This assumption was assessed by the commonly used Cox-Snell residual 

plot or some other residual plots, all methods have confirmed no significant evidence 

that the data were not fitted into the proportional hazard assumption, as reported in 

section (4.1.2). However, such residual plots are not precise in verifying hazard 

proportionality between prognostic groups. 

Handling censorship is a main feature of the PLANN model; nevertheless it is also 

capable of generating a smooth hazard rate over time. Figure (5.21) displays the mean 

hazard for each of the 4 prognostic groups over time and shows that the hazard of each 

prognostic group was not uniformly proportional to each other. The peak hazard for 

each group is retarded slightly as the hazard increases, indicating only a minor deviation 

from the proportionality assumption over the time frame of the study. Gore et al (1984) 

confirmed that if time to peak hazard is earlier in some prognostic groups than in others, 

then the proportional hazard assumption is no longer sustained and has been the case in 

breast cancer. 
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Neural network model testing the proportional hazard assumption 

10 30 40 
Time in months 

50 CIO 

Figure (5.21): The network predicted hazard probability of the 4 prognostic groups over 

60 months for the low-risk cohort. The arrow point at each curve is where the 

corresponding peak hazard occurred. 

5.7 Discussion of chapter (5) 

In this chapter, it was demonstrated the PLANN model is capable of handling censored 

survival data and can be adopted easily by a standard neural network model for 

classification problem. The Bayesian neural network has performed as well as the Cox 

regression, although they responded differently and produced slightly different 

allocations into the prognostic groups, the neural network being more specific in 

attribute profiles in each risk group. Moreover, the robustness of the Cox regression has 

also been demonstrated when the non-proportionality of hazard has been confirmed 

within the data. 

The same data analysis will be repeated for the high-risk cohort which is summarised in 

chapter (6). Variable interactions are also investigated using the neural network model 

regularised with ARD for high-risk cohort. 
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6 High-risk cohort 

The high-risk cohort contains all the remaining subjects who did not fit into clinical 

separation criteria for the low-risk cohort. This includes any occurrence of large 

tumours, fixed affected nodes in the axilla, and distant metastases. However, it also 

includes the subjects with pathological size coded unknown, making a total of 633 

subjects. The following sections contain the neural network analysis using different 

models, Cox selected variables and ARD selected variables. All of the analyses for the 

high-risk cohort are implemented with a 3-fold cross validation, in order to reduce the 

computational time, rather than a 5-fold cross validation as for the low-risk cohort, 

which still leaves significant amount of samples for network training. 

An analysis of the high-risk patient group identified from the low-risk cohort by the 

neural network in previous chapters, was also included, with the aim of determining the 

characteristics of survivorship in this group. Additionally, variable interactions are 

investigated in this chapter, by identifying variables with ARD then including explicit 

interactions into Cox regression. 

6.1 Neural networks analysis using the Cox selected variables 

Forward-stepwise elimination was again employed to select the optimal Cox model for 

the high-risk cohort from the original 18 variables, the details are summarised in table 

(4.4). The selected variables and the time variable formed the network input layer, 

altogether 16 input nodes when the baseline attribute is removed. The baseline 
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low-risk cohort 

population was chosen as in the Cox regression, to be the lowest hazard categories. A 

single hidden layer of 18 hidden nodes was used for consistency with previous results. 

The single output node represented the hazard rate of an individual at a particular time 

interval. Grouped ARD was also used. 

The analysis consisted of a monthly study over 5 years, marginalising the hazards 

towards the average hazard of the training data. The log rank test was, again, employed 

to define prognostic groups. After completing the network training process, the final 

values of the hyper-parameter alpha were ranked and used to identify the main 

contributing variables, which are menopausal status, node stage, pathological size, 

clinical stage and nodes ratio. 

A total of 3 prognostic groups were identified, containing 248,174 and 211 patients, 

respectively. The thresholds determined by the log-rank test are indicated in the plot of 

the prognostic indexes, figure (6.1). The network predicted mean survivorship for 

prognostic groups and the corresponding Kaplan-Meier estimate of the survivor 

functions are shown in figure (6.2). Good survival prediction for all groups is obtained, 

as with the low-risk cohort. There is a minor inaccuracy in the estimates of survival for 

prognostic group 2, which is the consequence of the network output marginalisation 

towards the mean hazard for all of the groups. The overall mean hazard has been 

suppressed towards 0 due to the patients in the lower risk group, prognostic group 1. 

The highest survival group is highly populated with node stage 0, representing negative 

node, and pathological size coded as unknown. The remaining variables used for the 

clinical data separation criteria indicate they may belong to the low-risk cohort. 
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Finally figure (6.3) shows the attribute histograms for each of the prognostic groups. In 

each prognostic group, one or two variables are most prominent, thence each of the 

variables contributes differently to each group. However, the menopausal status and 

pathological size do not show clearly differentiated attribute profiles over the three 

prognostic groups. Moreover, apparently, the menopausal status was given the largest 

value of alpha, and its profile is similar across all of the prognostic groups. This 

indicates that menopausal status contributes to the survivorship estimation through 

interactions with the other variables. 
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Figure (6.1): Prognostic index plot of high-risk cohort and the log rank test partitioned 

prognostic groups. 
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Figure (6.2): (a) Neural networks predicted survivor function for prognostic groups 

using the 5 independent Cox regression selected variables and (b): The corresponding 

Kaplan-Meier estimate of the survivor functions. 
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Figure (6.3): The high-risk cohort attribute profiles of network trained with Cox 

regression selected variables for prognostic groups. 
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6.2 Neural networks model selection using ARD technique 

When the regularisation coefficient assigned to a particular input grows large, the 

attached network weights are damped down towards zero. This is how the technique of 

Automatic Relevant Determination (ARD) controls the irrelevant input variables from 

damaging the network output performance. 

The process of model selection begins with including all of the independent variables in 

the model, resulting in a set of values for the hyper-parameter a. In this case, a group of 

attributes corresponding to same variable shares same value of alpha. The network 

output marginalisation to the mean hazard ratio and baseline attributes were also used. 

The variable removal criterion consists ranking the alpha values by size, then gradually 

removing the input variables with significantly large alpha values from the model, until 

no more variables could be removed without substantial detriment to model 

performance. This amounts to backward stepwise elimination. 

The model selection for the high-risk cohort using the ARD started with all the 14 

variables, excluding the four surgical variables, as described in section (4.4.1). 

Although the time covarates are given a large value of alpha, they are not considered as 

candidate for variable selection and kept in the model. Removing time from the input 

variables would result in a survival model with time independent hazard. Therefore 

survival would be exponential to time. diameter, pathological size, clinical stage and 

number of nodes involved were the first set of variables to be removed from the model. 

Finally, 6 variables were left, namely, menopausal status, predominant site, tumour 
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stage, node stage, histology and nodes ratio. The details were summarised in table (6.1). 

The ARD selected variables are slightly different from those selected by Cox regression 

for this cohort, the common variables of two models being menopausal status, node 

stage and nodes ratio. Even though the rest of variables from two models are different, 

some of the variables represent similar kinds of information such as tumour stage and 

pathologic size. Only the predominant site and histology are selected differently in the 

ARD model. These newly selected variables will be tested for their predictive power in 

section (6.2.1). 
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Variables Value of Alpha 

(iststage) (2° stage) (3r stage) Final Model 

Menopausal Status 7.0357 2.9952 3.1 6.443 

Age Group 4.3999 3.9710 8.3102 

Predominant Site 7.6109 4.6426 3.4912 6.6387 

Side 5.3807 11.7232 

Diameter 20.9377 

Tumour Stage 5.2955 2.4935 1.9996 5.1673 

Node Stage 8.7874 2.6625 4.155 4.4299 

Metastasis Stage 5.29336 10.54498 

Pathological Size 12.8370 

Manchester Stage 12.3407 

Histology 5.4018 2.5584 3.5155 6.3668 

Nodes Involved 10.7831 

nodes ratio 5.1505 2.6657 3.3531 4.4423 

Table (6.1): The value of alpha of variables involved in the different stages of' ARI) 

model selection process. 
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6.2.1 Network trained with the ARD selected model 

The network was re-trained with the ARD selected variables, still with 18 hidden nodes, 

and with bias correction terms to marginalise the network output towards the average 

data hazard. The results are displayed in figure (6.4) to (6.6). Three distinct mortality 

risk groups are identified containing 244 171 and 218 patients, and the observed 

survivorship at month 60 are 0.72,0.4 and 0.21 respectively. Although each of the 

network predicted mean survivorship falls into the confidence interval bands estimated 

by Kaplan-Meier, the survival estimation of prognostic group 2 is not as accurate as for 

the other groups, owing to the effect of marginalisation towards the overall averaged 

hazard. This can be solved by modelling each prognostic group separately. Also, the 

survival curves are not as well separated as with the neural network using Cox selected 

variables. However, the model is still useful to identify candidate variables that may act 

through interactions with other variables. 

These are the variables that have similar attribute profiles for different prognostic 

groups, namely, menopausal status, predominant site and histology. A further analysis 

base on these variables for variable interactions is summarised in section (6.3). 
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Figure (6.4): The 3 partitioned prognostic groups using the ARD selected variables for 

the high-risk cohort. 
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Figure (6.5): The neural network predicted survivor function using the 6 ARt) selected 

variables for the prognostic groups and the corresponding Kaplan-Meier estimate of the 

survivor functions. 
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Figure (6.6): The attribute profiles of network trained with ARD selected variables for 

prognostic groups. 
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6.3 Assessing pairwise interactions for the high-risk cohort 

Although the network trained with the ARD selected variables did not produce better 

results than the network trained with the Cox selected variables, the variables selected 

differ and this may indicate the presence of variable interactions, which influence the 

constitution of prognostic groups, and the prediction of survival for individuals. 

It is very difficult to determine explicitly the functional form of the implicit interaction 

between variables in the neural network model. Cox regression allows interaction terms 

to be included explicitly in the model, and hence tested for their statistical significance. 

The 6 ARD selected variables were divided into 2 categories, specific and non-specific 

variables. Non-specific variables have similar attribute profiles for different prognostic 

groups in figure (6.6), which specific variables show a gradual transition in the 

univariate profiles across the prognostic groups. The variables classified as non-specific 

variables are predominant site, menopausal status and histology. The process of 

identifying interactions term for the high-risk cohort using Cox regression was divided 

into three stages. Firstly, the 3 pairwise interactions between the non-specific variables 

were used alone to model the data; then the 3 pairs of specific variables were used as 

interaction terms; finally, the 9 cross-terms from the two sets of variables were used to 

model the data. The results from these studies are listed in table (6.2). 
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Significant interaction Significant interaction Significant interaction 

terms between non- terms between specific terms between non- 

specific variables variables specific and specific 

variables 

Histology * Predominant Nodes ratio * Node stage Menopausal status 

site tumour stage 

Hsitology* Menopausal Nodes ratio * Tumour Menopausal status 

status nodes ratio 
stage 

Histology * Tumour stage 

Histology * node stage 

Table (6.2): The significant interaction terms of ARD selected variables for high-ris 

cohort. 

Following this preliminary pre-filtering of candidate interaction pairs, the 8 pairs of 

variable interaction terms were put together with the 14 independent variables and the 

optimal Cox model was identified by forward stepwise model selection. This resulted in 

a final model comprising an independent variable, clinical stage, together with the 

pairwise interaction between nodes ratio * tumour stage. 

The results of Cox regression fitted with this optimal model with a 3-fold cross 

validation are summarised in figures (6.7) to (6.9). The Cox prognostic indexes, 

including a contribution from the interaction term, and the Cox predicted and Kaplan- 

Meier estimates of the mean survival function for each the 3 partitioned mortality risk 

groups, are shown together with the variable attribute histograms for each of prognostic 

group. Furthermore, figure (6.10) displays the values of tumour stage for each value of 

nodes ratio in each of the 3 prognostic groups, to show the interaction between these 
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two variables. There is an improved separation between the expected survival of 

prognostic groups, and the patients allocated to each group are, 214,278 and 139, 

respectively. Moreover, the survivor probability at 60 months for the highest risk group 

has gone down below 0.1. Also all of the variables show clearly different attribute 

profiles over prognostic groups, as shown in figure (6.9). The results have confirmed 

that a variable interaction is present in the data and the interaction term twnnour stage 

nodes ratio contributes to the identification of high-risk prognostic group. 

The ARD technique is a useful tool for seeking variable interactions in the data and 

combining with the Cox selected independent variables, yields a powerful predictive 

model. The predictive power of the ARD selected model for high risk patients can also 

be tested once more by introducing the network identified special high-risk patients 

group from the low-risk cohort to the high-risk cohort. The analysis is reported in the 
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Figure (6.7): Cox regression defined prognostic groups involving a pairwise interaction 

between variables tumour stage and nodes ratio for the high-risk cohort. 
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Cox predicted cum survival (or HRG, invoMng t'node ratio 

(a) 

KM estimated cum sunmal for HRG. involving t'node ratio 

(b) 
Figure (6.8) (a): The Cox regression predicted survival function involving the 

interaction term tumour stage * nodes ratio for prognostic groups from high-risk cohort 

and (b) the corresponding Kaplan-Meier estimates survival function. The prognostic 

groups are well separated and the survivorship of prognostic group 3 has driven toward 

below 0.1. 
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Cox regression involving t'-de ratio, HRG, Prognostic Index Group 1 
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Figure (6.9): The variable profiles of Cox regression involving variable interaction term 

turmour stage and nodes ratio for high-risk cohort. Each of the variables has shown a 

clear attribute profile over the prognostic groups. 
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Patients distribution for the prognostic groups of high-risk cohort 
involving interaction nodes ratio * tumour stage 
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Figure (6.10): Distribution of patients for prognostic groups over the interaction term 

tumour stage and nodes ratio, where nodes ratio 5 represents the missing data attribute. 
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6.4 Inclusion of the highest risk group from the low-risk cohort into the high-risk 

cohort 

The predictive models fitted to the high-risk cohort were also applied to the high 

mortality group from the low-risk cohort. Both the ARD selected variables, and the Cox 

selected variables were used with neural network, in order to compare the predictive 

power of each set of variables for these patients. The analysis does not involved 

retraining of the network, simply re-uses the weights calculated by the network trained 

previously with the ARD and Cox selected variables with 3-fold cross validation. The 

estimated hazards for this high mortality group of each model were gathered and 

averaged over 3 set of results. Then the mean estimated survivorship over 60 months 

was projected each onto the graph along with the other prognostic groups generated by 

the ARD and Cox selected model for the high-risk cohort. 

Figures (6.11) - (6.12) display network predicted survivor function for the high 

mortality group together with the original prognostic groups and the corresponding 

Kaplan-Meier estimates of survival using Cox and ARD selected variables respectively. 

The figures show that the Cox selected variables do not accurately predict the 

survivorship of these 42 patients. In contrast, the ARD selected variables show an 

accurate prediction and similar prediction to the PLANN model developed for the low- 

risk cohort. The survival curve of these patients crosses over the survivorship of the 3 

prognostic groups in the high-risk cohort that ARD generated. During the first 7 months 

following surgery, this group of patients displays a similar survivorship as group I, then 

the survival gradually decreases from month 8 to month 42 where it crosses over group 
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2, and finally joins with group 3 from month 42 onward, reducing survival probability 

to 0.26 at month 60. 

When examining the three sets of models carefully, the Cox selected for the low-risk 

cohort, the Cox and ARD selected for the high-risk cohort, only the histology existed in 

both of the ARD selected model and the Cox model for the low-risk cohort, but was 

absent in the Cox selected model for the high-risk cohort. The histology could be one of 

potential variables that describe the survivorship of the high mortality group, or indeed, 

a variable interaction could be the alternative possibility. Further investigation is 

summarised in section (6.5.1). 

Included P's ep group to MRG. Bayesian network using Cox variables Kapl-Marar aal-. lad aunmal, mcludW IM ap group lu MHV 

-- -JU ýU ! 41 LII 
Tune ýn Mnnlh" 

(a) (h) 
Figure (6.11): (a) The neural networks predicted survivor function for the high-risk 

cohort prognostic groups and the specific group using Cox selected variables and (h): 

the corresponding Kaplan-Meier estimate of the survivor functions. 
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Figure (6.12): (a) The neural networks predicted survivor function for the high-risk 

cohort prognostic groups and the special group using ARD selected variables and (b): 

the corresponding Kaplan-Meier estimate of the survivor functions. 
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6.5 The key variable to model the high mortality group in the low-risk cohort 

Previous results suggested that histology is the factor that best separates this special 

high mortality group from the rest of the low-risk cohort. The following contents in this 

section are the test of this statement and to consider possible variable interaction terms 

within the low-risk cohort. 

6.5.1 Detecting the variables that histology interacted with 

The 3 possible pairwise interaction terms from the Cox selected variables for the low- 

risk cohort, histology* node stage, histology * pathological size and histology * nodes 

ratio were included to the Cox regression model selection procedure alone to model the 

data, and resulting that they were all significantly responded to the survivorship of the 

data. These three pairs of variables were then entered into the model selection process 

again, together with the 14 independent variables. The final model contains 

pathological size, histology, nodes ratio and histology * node stage. Figure (6.13) 

displays the Cox partitioned prognostic groups using this model. The Cox predicted 

survivorship for the mortality risk groups are displayed in figure (6.14) together with 

the corresponding Kaplan-Meier estimate of the survivor functions. The attribute 

histograms of prognostic groups are displayed in figure (6.15) and figure (6.16) shows 

the attribute histograms within the interaction term. 
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Prognostic indexes of Cox regression calculated involving histý n 

Figure (6.13): Cox regression partitioned mortality risk groups for the low-risk cohort 

involving the interacted variables histology * node stage and contained 61,207,579 and 

68 patients respectively. 
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Figure (6.14): (a) Cox regression predicted survivor function for the 4 prognostic 

groups of low-risk cohort involving the interacted variables histology * node stage and 

(b) the corresponding Kaplan-Meier estimate of the survivor functions. 
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Figure (6.15): Attribute histograms of the model involving histology " tiode stage 

interaction term over prognostic groups for the low-risk cohort. The prognostic group I 

contained fewer patients and the profile is similar to the result of neural networks using 

Cox selected variables for the low-risk cohort. 
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Patients distribution for the prognostic groups of low-risk 
cohort involving interaction histology * node stage 
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Figure (6.16): Distribution of patients over the interaction term histology and node 

stage. 
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The results show that histology * node stage actually is not the main factor that 

describes the survivorship of the high mortality group as expected, even though 

histology is one of the predictive variables being selected. However, histology * node 

stage contributes to the highest survival group when comparing the expected 

survivorship of prognostic groups with the result without involving the interaction term. 

The expected survivorship involving, histology * node stage of prognostic group I has 

been improved better, closer to 1, and also the corresponding attributes profiling even 

more specific and contained less patients, as illustrated in figure (6.17)-(6.18). 
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Figure (6.17): (a) The Cox predicted survivor function for the prognostic groups 

involving histology * node stage and (b) without involving interaction term. 
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Figure (6.18): (a) Attribute histograms of prognostic group 1 involving interaction term 

histology * node stage and (b) without involving interaction term. 
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6.5.2 Determine the interaction term that describes the survivorship of the high 

mortality group in the low-risk cohort 

Since the histology is not the factor that describes the survivorship of the high mortality 

group, the remaining possible interaction terms from the ARD selected model for the 

high-risk cohort are nodes ratio * node stage, nodes ratio * pathological size and 

pathological size *node stage. The results show that nodes ratio * node stage and 

pathological size * node stage were both significant to the survivorship of the data. The 

final model selected with forward stepwise elimination contained three independent 

variables, namely, node stage, pathological size and histology, and an interaction term 

nodes ratio * node stage. 

This model is fitted to the Cox regression with 5-fold cross validation again. Figure 

(6.19) displays the Cox partitioned prognostic groups involving interaction term nodes 

ratio * node stage. The Cox regression predicted survivor function for the mortality risk 

groups with the corresponding Kaplan-Meier estimate of the survivor functions are 

displayed in figure (6.20). The attribute profiles for prognostic groups are shown in 

figure (6.21). 

The results indicate that the interaction term nodes ratio * node stage is the factor that 

best differentiates the survivorship of the high mortality group. The attribute profiles are 

more specific over the prognostic groups. However, the attribute histograms for the 

prognostic group 1 is not as specific as the model involving histology * node stage. 

Including the two interaction terms together in a model may retain good differentiation 

for the highest survival group, which histology * node stage contributed to, and the 
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lowest survival group, where the interaction between nodes ratio * node stage is 

significant. 
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Figure (6.19): The Cox regression partitioned mortality risk groups for the low-risk 

cohort using the model involved interaction term nodes ratio * node stage and 

contained 116,331,427 and 43 patients respectively. 
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Figure (6.20): (a) Cox regression predicted survivor function for the 4 prognostic 

groups in low-risk cohort involving the interaction term nodes ratio * node stage and 

(b) the corresponding Kaplan-Meier estimate of the survivor function. 
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Figure (6.21): Attribute histograms of the prognostic groups involving nodes ratio 

node stage interaction for the low-risk cohort. 
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Patients distribution for the prognostic groups of low-risk 
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Figure (6.22): Distribution of patients over interaction term nodes ratio and node stage, 

where nodes ratio 5 is represents the missing data attribute. 
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6.5.3 Modelling both interaction terms together for the low-risk cohort 

A new model was selected for the low-risk cohort, which contained the interaction 

histology * node stage and nodes ratio * node stage, in addition to histology and 

pathological size. Forward stepwise elimination was employed once again. The Cox 

regression results are presented in figure (6.23) to (6.25) in the same sequence as the 

previous study but not including the cross distribution of the interacting variables. 

The results with Cox regression including 2 interactions terms are poorer than with the 

neural network using the same base variables. In other words, the ARD model with 

histology, pathological size, node stage and nodes ratio has a better separation between 

the prognostic groups. In the Cox model with two interaction terms, the prognostic 

group I and 4 contained more patients and were less specific. It appears that in the 

linear Cox regression model, the two interaction terms are working against each other. 

Although the factors that describe the survivorship of the highest survival and lowest 

survival groups have been identified individually, their power cannot be merged and 

expanded using Cox regression. It demonstrated the strength of neural networks in 

applying the interactions selectively to different prognostic groups. 



Chapter 6: Analysis of interaction terms in the high-risk cohort and for the high mortality group in the 

low-risk cohort 

PI of Cox regression calculated involving. hist-n 8. nodes ratio ý it 

Figure (6.23): Cox regression partitioned mortality risk groups involving the two 

interaction terms nodes ratio * node stage and histology * node stage, contained 134, 

313,399 and 71 patients respectively. 
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Figure (6.24): (a) Cox regression predicted survivor function for the prognostic groups 

involving the interaction terms nodes ratio * node stage and histology * node vloi, 'e and 

(b) the corresponding Kaplan-Meier estimate of the survivor functions. The outcome 

does not meet the expectation. Neither the specified low survival nor the high survival 

group was displayed. 
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Figure (6.25): The attribute histograms for the prognostic groups which involving 

interaction terms nodes ratio * node stage and histology * node wage for the low-risk 

cohort. 
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6.6 Conclusion 

In this chapter, the power of neural network ARD model selection towards seeking and 

handling variable interactions has been demonstrated. It was also combined with Cox 

regression, to find an optimal model for each of the cohort that separates well the 

prognostic groups and has specific attribute profiles. 

In the high-risk cohort, the final model only contained one independent variable, 

clinical stage, together with the ARD identified interaction term tumour stage* nodes 

ratio. Note that clinical stage is a composite variable, combining tumour, node and 

metastasis stages. The survival predictions generated by this model are the best among 

all models for the high-risk cohort. 

The situation in the low-risk cohort is not straightforward. Although the interaction 

terms contributing to the highest and lowest mortality groups have been identified 

separately, the results show that they cannot be put together into a single Cox model. 

The best result is given by the neural network model trained with Cox selected variables 

for the low-risk cohort. 
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7 Effectiveness of predicting missing data using logistic regression 

In section (3.2.2), nominal logistic regression was proposed to predict missing data 

from a set of complete variables, using feed forward variable selection. 

Within this chapter, the effectiveness of the predicted values is evaluated. The process 

starts by modelling each of the cohorts using Cox regression. Variable interactions are 

not considered at this stage. The substantial improvement is sought for accuracy of 

survivorship prediction, differentiation between the survival of prognostic groups, and 

characteristic attribute profiles. Finally, the Cox regression analysis was benchmarked 

with the Bayesian PLANN model using the high-risk cohort, where interactions 

between predictor variables have caused difficulties for Cox regression. 

7.1 Cox regression analysis of filled-in missing data using previously selected 

models 

7.1.1 Cox regression analysis of the low-risk cohort with missing data filled-in using 

nominal logistic regression 

The 4 variables listed in section (3.2.2) were the variables that contained large amount 

of missing values. Some of the other variables also contain missing data, but only a 

small fraction, these cases (77 cases) were discarded, in order to be used to predict the 4 

variables contained missing values, leaving 1473 completed cases. 
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Since pathological size is a clinical criterion for patient cohort allocation, predicting it 

changes the composition of the low and high-risk cohorts, as follows 

Before filling-in missing 

data 

After filling-in missing 

data 

Low-risk cohort 917 1070 

High-risk cohort 633 403 

Table (7.1): Patients allocation of each cohort before and after filling-in missing data. 

The model used for the initial analysis was the Cox selected model for the original low- 

risk cohort, using 5-fold cross validation. Figure (7.1) displays the ranked prognostic 

indexes and the 3 mortality risk groups that the log-rank test partitioned, containing 

contained 215,645 and 210 patients respectively. The distribution of the prognostic 

indexes has shifted to lower values when compared with the original results in figure 

(4.9). Figure (7.2) shows the Cox predicted mean survivorship for each prognostic 

group with the corresponding Kaplan-Meier estimate of the survival functions. The 

survivorship of the highest and lowest survival group at 5 years is 0.9 and 0.52. 

The attribute histograms for the prognostic groups are displayed in figure (7.3). The 

survival prediction for the prognostic groups is a slightly better match of the Kaplan- 

Meier curves than the previous Cox results where the missing data were treated as 

separate categories. The confidence intervals calculated by Kaplan-Meier estimation for 

each prognostic group are smaller and the attribute histograms also show better 

profiling, except for histology, where the profile is less specific than previously. 
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Figure (7.1): Cox calculated prognostic indexes for the filled-in low-risk cohort and log- 

rank test partitioned prognostic groups. 
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Figure (7.2): (a) The Cox the Cox predicted mean survivorship for prognostic groups 

with (b) the corresponding Kaplan-Meier estimate of the survival functions. 
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Figure (7.3): The attribute histograms of prognostic groups for the filled-in low-risk 

cohort. 

The original 4 prognostic groups were merged into 3 groups. Table (7.2) displays the 

allocation of sujects from the original prognostic group into the 3 new groups. In the 

prognostic group I of the original low-risk cohort, 80 records of nodes ratio were 

labelled as missing and were predicted as category 1 (<=20% of positive nodes from 

removal). There are 125 nodes ratio missing values in the prognostic group 2 and 3 

records were deleted in the prediction process, 118 of the remaining missing values 

were predicted as category I and the rest were predicted as category 2 (20%-30%). A 

total of 258 records were predicted out of the original 268 nodes ratio missing values in 

the prognostic group 2, the number of records predicted to be nodes ratio category 1,2, 

3 and 4 are 248,4,1 and 5 respectively. Finally in the prognostic group 4,17 and 14 

records were predicted as category I and 4 respectively, I record was deleted. The 
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Chapter 7: Analysis of the results of filling-in the missing data 

following table (7.3) summarises the attribute details of the variables in the model and 

the allocation of the predicted records of nodes ratio in the filled-in low-risk cohort 

analysis, The reallocation of unknown nodes ratio was followed a specific pattern. 

Original 

Prognostic Group 

Prognostic Group 

after Prediction 

Number of records 

1 1 75 

1 2 50 

1 3 1 

2 1 70 

2 2 105 

2 3 6 

3 1 2 

3 2 390 

3 3 72 

4 1 0 

4 2 1 

4 3 110 

Total: 882 

Table (7.2): Patient allocation to prognostic groups after filling-in missing data. 
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Chapter 7: Analysis of the results of filling-in the missing data 

7.1.2 Cox regression analysis of filled-in missing data for the high-risk cohort 

The filled-in high-risk cohort now contains only 403 records since some of the filled-in 

values for pathological size have placed patients into the low-risk cohort. A total of 188 

cases were transferred to the filled low-risk cohort after following the clinical cohort 

separation criteria applied to the predictions of pathological size. Within these records, 

89 and 99 records were filled with values 1 and 2 respectively. Furthermore, 68,99 and 

21 out of 188 records were allocated into prognostic group 1,2 and 3 by the prognostic 

index for the low-risk cohort with the missing data filled-in. The predictive modelling 

for the filled high-risk cohort was carried out with 3-fold cross validation using the 

previously selected Cox model for the high-risk cohort, without interactions term. The 

patients were partitioned into 3 mortality risk groups with 105,167 and 131 patients, 

respectively, as shown in figure (7.4). A similar proportion of patients was allocated to 

each prognostic group as for the previous Cox model for this cohort. The results in 

figure (7.5) also show a better prediction of the survivorship function for each 

prognostic group. The mean survivorship of the 3 groups at 5 years is 0.60,0.35 and 

0.12. The attribute histograms, figure (7.6), show similar profiles to using missing 

values as separate attributes except for pathological size and nodes ratio, which do not 

show well differentiated profiles. 
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Figure(7.4): The partitioned prognostic groups for the filled-in high-risk cohort using 

Cox regression estimated surmorship for the filled missing data, HRG 
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Figure (7.5): (a) The Cox predicted survivorship for prognostic groups of filled-in high- 

risk cohort and (b) the corresponding Kaplan-Meier estimate of the survivor functions. 
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Figure (7.6): The attribute histograms for prognostic groups of filled-in high-risk 

cohort. 

Table (7.4) displays the location of patients in the original prognostic groups and after 

the filling-in of pathological size and nodes ratio. In the Cox selected original model, 

pathological size and nodes ratio contained missing values is 196 and 257 cases, 

respectively. Table (7.5) and (7.6) summarise the number of records of each predicted 

value and their position in the new prognostic groups. A total of 6 missing values of 

pathological size were filled with value I and 190 records were filled with value 2. As 

expected, all the missing values of nodes ratio in this cohort were filled with value 1. 

Cox regression of filled HRG, orig model, monthly, PI group 3 

A 
23d 

Nude ieliu 

a121231234 
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Chapter 7: Analysis of the results of filling-in the missing data 

Original prognostic 

group 

Prognostic group after filling-in the 

missing value 

Number of 

records 

1 1 47 

1 2 1 

1 3 0 

2 1 43 

2 2 146 

2 3 2 

3 1 5 

3 2 48 

3 3 111 

Total: 403 

Table (7.4): The patients allocation to prognostic groups after filling-in the missing 

data. 

Predicted value of 

pathological size 

Prognostic group after filling-in the 

missing value 

Number of 

records 

1 I I 

I 2 4 

I 3 I 

2 1 27 
2 2 83 

2 3 80 
Total: 196 

Table (7.5): The predicted value of pathological size and their location in prognostic 

groups. 

Table 

Predicted value of 

nodes ratio 

Prognostic Group after filling-in the 

missing value 

Number of 

records 
1 1 50 
1 2 117 
1 3 90 

Total: 257 
(7.6): The predicted value of nodes ratio and their locat ion in nrnannct is groups. 

- 165- 



Chapter 7: Analysis of the results of filling-in the missing data 

7.1.3 Discussion of the filled-in missing data analysis using Cox regression 

Patients in the low-risk cohort were merged into 3 prognostic groups from the original 4 

groups, which leads to allocation of patients differently to prognostic groups from the 

previous result. Hence, the attribute profiling looks more specific than the previous 

result in the low-risk cohort analysis. The different allocation of patients and the better 

attribute profiling are also repeated in the filled-in high-risk cohort analysis. In general, 

the accuracy of survival prediction was improved for the two sets of result and the 

filled-in values have not affected the distribution of the attributes in each prognostic 

group. However, some of the variables are not showing clearly differentiated attribute 

profiles. This possibly indicates that some of the variables in the models are no longer 

relevant to the data, hence, searching for a new optimal model for each of cohort is 

needed and summarised in section (7.2). Or else, it shows that interactions between 

variables are becoming more important, reported in section (6.5). 
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7.2 Independent model selection for the filled-in data 

7.2.1 Model selection for the filled-in low-risk cohort 

The Cox selected model for the low-risk cohort with missing data filled-in is similar to 

the Cox selected model for the low-risk cohort where the missing data were treated as 

separate category. Variable age group was selected additionally and nodes ratio was 

replaced by the number of nodes involved, which is a related variable. The new model 

contains node stage, histology, pathological size and number of nodes involved as well 

as age group. This was selected by forward stepwise elimination without variable 

interactions. Table (7.7) summarises the log likelihood and AIC values as each variable 

is entered into the model. The age group was the last variable entering the model and 

the reduction of AIC value from the last model was also the smallest. If there is a need 

of reducing the number of variables in the model, the age group would be the potential 

candidate. 

Variables entering the model -2 log L values Degrees of 

freedom 

AIC value 

Number of nodes involved 3421.25 3 3430.25 

Node stage 3404.01 4 3416.01 

Pathological size 3387.233 5 3402.233 

Histology 3378.392 7 3399.392 

Age group 3371.784 9 3398.784 

Table (7.7): The log likelihood and AIC value of each variable entering to the model 

which is selected for the completed low-risk cohort. 
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Chapter 7: Analysis of the results of filling-in the missing data 

The prediction of survivorship was carried out with Cox regression using a 5-fold cross 

validation. As a result, a total of 4 prognostic groups are partitioned as showed in figure 

(7.7). Figure (7.8) displays the Cox predicted mean survivorship for prognostic groups 

with the corresponding Kaplan-Meier estimate survivor function and also, the attribute 

histograms for prognostic groups are shown in figure (7.9). 

The predictions from the newly selected model are almost identical to those predicted 

with missing values treated as separate attributes. By including the age group in the 

model, one more prognostic group was partitioned, compared with figure (7.1). The 

mean survivorship of prognostic groups at 5 years is 0.9,0.73,0.75 and 0.4. The 

attribute profiles also show that the attribute profiling for each variable is more specific, 

when compared with figure (7.3). 
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Figure (7.7): The partitioned prognostic groups by the Cox regression using the newly 

selected model for the completed low-risk cohort. 
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Figure (7.8): The Cox predicted survivorship for the prognostic groups of completed 

low-risk cohort using the newly selected model and the corresponding Kaplan-Meier 

estimate survivor function. 
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Figure (7.9): The attribute histograms of the prognostic groups using the newly selected 

model for the completed low-risk cohort. 
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7.2.2 Model selection for the completed high-risk cohort 

7.2.2.1 The effect of sample size in the high-risk cohort 

Figure (7.10-7.12) displays three different sets of survival curves of clinical stage from 

three different sample conditions for the high-risk cohort. Figure (7.10) discards all the 

cases with pathological size value missing are discarded, that is assuming that the 

missing mechanism is at random and therefore the data distribution remains unaffected 

after missing values are removed. Figure (7.11) includes the cases where treating the 

pathological size missing values as a separate attribute, and figure (7.12) has the 

missing pathological size missing values predicted. Clearly, the survival curves of 

figure (7.11) are very different from the other two. From the highest to lowest 

survivorship, the clinical stage categories is in an order of 1,2,3 and 4, whereas the 

order was shown as 2,1,3 and 4 in the other two figures. 

It is concluded that representing missing values of pathological size as a separate 

attribute, results in the most differentiation between different prognostic risk groups, 

when compared to two alternative strategies. 
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Str% val Functions of Clinical Stage 

Figure (7.10): The survival 
function of clinical stage 
from the high-risk cohort 
where the pathological size 
labelled as missing, were 
left out, only contained 209 

records. 
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Figure (7.11): The survival 
function of clinical stage 
from the high-risk cohort, 
coding pathological size 
missing values as a separate 
attribute, contained 633 
records. 

Figure (7.12): The survival 
function of clinical stage 
from the completed high- 
risk cohort where the 
missing pathological size 
has been predicted, 
contained 403 records. 

7.2.2.2 Model selection for the completed high-risk cohort 

The Cox selected model for the high-risk cohort estimating the missing values 

contained only 3 variables, namely age group, node stage and clinical stage. This was 

selected by forward stepwise elimination procedure and variable interactions were not 

considered. None of these variables contain missing data. 

Since the sample size is smaller than the other data set, the analysis is completed with a 

4-fold cross validation in order to have significant number of samples for training and 
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the results are displayed in figure (7.13) - (7.15) using the newly selected model. The 

results are shown in the order of prognostic groups partitioning, the Cox predicted 

survivorship with the Kaplan-Meier estimate of the survivor functions for each of the 

prognostic group and the corresponding attributes histograms. Note that four different 

prognostic groups were identified, one more than previously. Prognostic group 1, the 

highest survival group, only contains 30 patients, where the Kaplan-Meier estimation 

shows the mean survivorship is kept constant at the value of 1 for the first 19 months 

after surgery, then starts to decline gradually to the value of 0.83, remaining constant 

from month 39 onwards. The remaining groups contains 164,130 and 79 patients 

respectively and the corresponding survivorship after 5 years is 0.44 0.27 and 0.045. 

The predicted survivorships for all of the groups are consistent with the Kaplan-Meier 

confidence intervals. The highest survival group also shows a distinctive characteristic 

from the attribute profiles, where the attributes are concentrated on age group 3, node 

stage 0 and clinical stage 2. Then the age group changes from attribute 3 to loosely 

spread between 1 to 3, while clinical stage gradually moves from 2 to a sequence of 1,3 

and 4. Finally the node stage moves from 0 to 3 over the rest of prognostic groups. The 

variables clinical stage and node stage show clear differentiated attribute profiles from 

prognostic group 3 to 4 but the age group does not. 

-172- 



Chapter 7: Analysis of the results of filling-in the missing data 
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Figure (7.13): The partitioned prognostic groups by the Cox regression using the newly 

selected model for the completed high-risk cohort. 
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Figure (7.14): The Cox predicted survivorship for the prognostic groups of completed 
high-risk cohort using the newly selected model and the corresponding Kaplan-Meier 

estimate survivor function. 
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Figure (7.15): The attribute histograms of the prognostic groups using the newly 

selected model for the filled-in high-risk cohort. 
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7.3 Applying the Bayesian PLANN model to the original high-risk cohort using the 

Cox selected by filling-in the missing values for the high-risk cohort 

The Bayesian PLANN model was applied to the variables selected by Cox modelling of 

the completed high-risk cohort, aiming to investigate the possibility of variable 

interactions, and allow performance comparison with Cox regression. The network was 

evaluated with a 4-fold cross validation to define the prognostic index boundaries for 

the mortality risk groups. A total of 403 records were considered. The 3 variables 

selected by the Cox regression from the completed high-risk cohort were transformed 

into 9 binary input variables in the usual way, which together with the time variable 

formed the input layer, 18 hidden nodes were used and the single output node 

represented the conditional probability hazards in particular time intervals. Baseline 

attributes and grouped ARD technique were also used. 

The network was then applied to the 633 records of the original high-risk cohort which 

contained missing pathological size. Figure (7.16) displays the distribution of 

prognostic indexes from these 633 records and the pre-defined positions where 

aggregate mortality risk groups. The network predicted survivorship for each mortality 

risk group together with the corresponding Kaplan-Meier estimate of the survivor 

functions are displayed in figure (7.17), and the attribute profiles of prognostic groups 

are shown in figure (7.18). 

The highest survival group, prognostic group 1, contains 31 patients and appears to be a 

specific group of age group 3, nodes stage 0 and clinical stage 2 which is identical to 

the Cox partitioned prognostic group 1 in figure (7.14a). Prognostic groups 2,3 and 4 
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contain 384,142 and 76 patients, respectively, which are different from the Cox 

partition. However, there is no significant survivorship and attribute profiling difference 

from the results with Cox regression, suggesting that variable interactions between the 3 
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Figure (7.16): The calculated prognostic indexes for the original high-risk cohort which 

were gathered from network trained by the completed high-risk cohort using the Cox 

selected model from it. 
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Figure (7.17): (a): The network predicted survivorship for the prognostic groups in 

figure (7.16) and (b) the corresponding Kaplan-Meier estimate of the survivor 

functions. 
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Figure (7.18): The attribute histograms for the prognostic groups in figure (7.19), 

pathological size and tumour stage are also displayed to monitor the distribution of the 

patients with pathological size missing. 
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7.4 Discussion the adaptability of the regression method for missing data 

prediction 

In terms of the improvement to the survival prediction accuracy after filling-in the 

missing data, the survival predictions have been improved slightly but not significantly. 

For the low-risk cohort, the models selected before and after filling-in the missing data 

are very much the same, except that age group was selected additionally and nodes 

ratio was replaced by number of nodes involved, considering that the samples size of 

the two data sets are different. There is one more prognostic group is partitioned from 

the filled-in low-risk cohort analysis using the model selected from it, when comparing 

with the results obtain from the original data. The 5 years survivorship of the lowest 

survival group reduced from 0.52 to 0.4. 

The filled-in high-risk cohort contained much less samples, less than 2/3 of the original 

high-risk cohort. Figure (7.10-7.12) displays the different behaviour of clinical stage at 

the change of sample conditions, excluding the cases with the values of pathological 

size missing, including these cases as a separate attribute, and having them predicted. 

The model selected from the completed high-risk cohort only contained 3 variables. 

Two of them were already in the original model, but age group was added to the model. 

Again, an additional prognostic group was partitioned when using the model selected 

from the filled-in data and this group contained very few patients with very high 

survivorship. This group of patients was apparent again when this model was tested by 

the original data set. As a result, the 5-year survivorship of some of the other groups 
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was raised, which is the result of the existence of the records with pathological size 

missing in the data. These 3 variables are capable of identifying a very high survival 

group in the high-risk cohort, which the original model could not. Nevertheless, the 

Bayesian PLANN model analysis confirmed that there is no indication of significant 

variable interactions. 

It is concluded that filling-in the missing values in the data results is a more detailed 

breakdown of the prognostic risk groups than was possible from the original data set. 

This was due, in part, to the change in the allocation of records between the low- and 

high-risk cohort. 
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Chapter 8 

8. Validation of selected 
models with a new 

cohort of patient data 

I 
8.1 Test data Description 

8.2 Low-risk Cohort 

8.2.1 Cox regression analysis 
using Cox selected model without 

involving interaction term 

8.3 High-risk Cohort 

8.3.1 Cox regression analysis 
using Cox selected model without 

involving interaction term 

T+ 
8.2.2 Neural network analysis 

using Cox selected model 

T 

8.2.3.1 Cox regression analysis 
involving interaction term 

histology * node stage 

8.2.3.2 Cox regression analysis 
involving interaction term nodes 

ratio * node stage 

8.2.3.3 Cox regression analysis 
involving histology * node stage 

and nodes ratio * node stage 

8.3.2 Neural networks analysis 
using ARD selected model 

T 
8.3.3 Cox regression analysis 

involving interaction term 
Tumour Stage * nodes ratio 
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Chapter 8: Validation of selected models with a new cohort of patient data 

8. Evaluate modelling methods using a prospective test data set 

Cox regression and neural networks have been extensively applied in many medical 

applications. In particular, Cox regression has used for more than 20 years in medical 

survival analysis. Previous chapters have demonstrated the use and strength of each 

method. 

To investigate the robustness of each method further, the models fitted to a patient 

cohort recruited during 1983-89 were applied to a second cohort recruited between 1990 

- 93. These data acted as a validation set to evaluate the predictive value of the 

prognostic indexes derived by the Cox regression and the neural network model. For 

each method, the network weights and the cut-off points for prognostic group 

partitioning follow previously defined for the first patient cohort. 

8.1 Description of the validation data set 

The validation set comprises records from1653 new patients. Within these records, 388 

were discarded due to missing data, leaving 1265 cases for model validation. The data 

were divided into low- and high-risk cohorts, following the same separation criteria as 

used for the design data, resulting in 931 and 334 cases in each group, respectively. 

The population distribution of the two data sets is slightly different, as the validation 

data contains a higher proportion of low risk patients. Originally, there were 59% and 

41% of patients allocated to low-risk and high-risk cohort from the entire data set, but 
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for the second cohort these figures become 73.6% and 26.4%, respectively. Moreover, 

this characteristic also reflects in each of the variables as illustrated in appendix (II). For 

each of the variables, more patients are under the low-risk attributes than the first data 

set, the design data. 

Missing data were still a feature of the validation data set. Some of the variables even 

contain a higher portion of missing data than the design data, such as predominant site 

and histology in the high-risk cohort. However, the number of records contained 

missing data in nodes ratio has been reduced for both of low- and high-risk cohorts. 

8.2 Test data set low-risk cohort analysis 

8.2.1 Validating the Cox regression modelling method using low-risk cohort of 

validation set 

Previously, the low-risk cohort was implemented with 5-fold cross validation. All 

subjects in the low-risk cohort of validation set acts as a test set for each cross 

validation set of network weights, then five sets of results are collected and averaged as 

the final result for the low-risk cohort of validation set. The model fitted to the Cox 

regression is the Cox selected model for the low-risk cohort of design data, no 

interaction involved. The results for this cohort are displayed in figure (8.1) - (8.3). The 

Cox calculated prognostic indexes are shown in figure (8.1). The predicted mean 

survivorship for the prognostic groups is displayed in figure (8.2), together with the 

corresponding Kaplan-Meier estimate survival functions. The attribute histograms for 

each prognostic group are displayed in figure (8.3). 
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The Cox regression produces similar kind of survival prediction and attribute profiles as 

for the low-risk cohort of design data. However, the Kaplan-Meier estimates confirm 

that the survivorship of the low-risk cohort of the validation set is better than the Cox 

estimated for each prognostic group. The Cox estimation for each group contains 

around 0.1 error over 60 months on average. This is discussed further at the end of this 

chapter. 
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Figure (8.1): Cox regression calculated prognostic indexes for the low-risk cohort of 

validation set using the Cox regression selected variables for the original low-risk 

cohort, without involving interaction term. 
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Figure (8.2): The Cox regression predicted mean survivorship for prognostic groups, 

and the corresponding Kaplan-Meier estimate survivor functions. The Kaplan-Meier 

estimates confirm that the survivorship of the low-risk cohort of the validation set is 

better than Cox estimated. 
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Figure (8.3): The attribute profiles for prognostic groups of the low-risk cohort of the 

validation set using the Cox regression. The results show no distinguishable difference 

from the results for the low-risk cohort of design data with Cox regression. 
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8.2.2 Validating the neural networks modelling method using low-risk cohort of 

validation set 

The results for the low-risk cohort of the validation set were generated in the same way 

as with the Cox regression, by averaging predictions from 5 cross-validation networks. 

The network outputs were still marginalised toward the averaged hazard of the low-risk 

cohort of design data and the same prognostic index intervals were used for prognostic 

risk groups. The results are presented in figure (8.4) - (8.6), showing the partitioned 

prognostic groups using the intervals defined for the low-risk cohort of design data, the 

mean survivorship predicted by the network for each prognostic group and the 

corresponding Kaplan-Meier estimates of the survivorship functions, finally, the 

attribute histograms. 

The network predicted survivorship for the different prognostic groups is similar to the 

result for the low-risk cohort of design data using same approach in figure (5.19), and 

the corresponding observed survivorship has showed a better result except group 4, of 

which the observed survival rate is poorer than the predicted. Moreover, the attribute 

profiles show no distinguishable difference from previous result, figure (8.6). 

Results for the test data set can also be obtained by modelling the entire design data and 

tests by the validation set. Results from both approaches show no significant differences 

as illustrated in figure (8.7). The first approach does not require retraining with the 

complete data set, which is expensive computationally and maintains the consistency 

and fairness for result comparison. Therefore, all the results generated for the validation 

data set is completed by the first approach. 
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Figure (8.4): The neural network calculated prognostic indexes for the low-risk cohort 

of validation set. 
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Figure (8.5): (a) The neural network predicted survivorship the pre-defined prognostic 

groups and (b) the corresponding Kaplan-Meier estimate of the survivor functions. 
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(d) 
Figure(8.6): The variable histograms for prognostic groups of low-risk cohort of 

validation set using the neural network. The results show no distinguishable difference 

from the results for low-risk cohort of design data on the same approach. 
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Figure (8.7): The network was trained with the design data and tested by the test set. 

(a): The network predicted survivorship for the pre-defined prognostic groups and (b): 

the corresponding Kaplan-Meier estimate of the survivor functions, resulting that no 

difference was made from the combined results for 5 cross validation sets, figure (8.5). 
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8.2.3 Validating the Cox regression method using the low-risk cohort of validation set 

involving interaction term 

The following is the analysis of Cox regression for the low-risk cohort of validation set 

involving different interaction terms. Details of the interaction terms and their effect on 

the survivorship of each group are listed in table (8.1). The predicted survivorship is 

similar with the results of the design data. 

Interaction term Effect 

Histology * node stage The highest survival group in the low- 

risk cohort has a survival rate > 0.95. 

nodes ratio * node stage The lowest survival group in the low- 

risk cohort has survival rate < 0.3. 

Histology * node stage, together with Lost the capability to accurately identify 

nodes ratio * node stage the lowest and the highest survival 

group. 

Table (8.1): Identified interaction terms for the low-risk cohort of design data and their 

effect on the group survivorship. 
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8.2.3.1 Inclusion of a pairwise interaction involvin histolo and node stcai'e e 7 

The low-risk cohort of validation set is fitted with a model consisting of pathological 

size, histology, nodes ratio and histology * node stage, shown for the design data in 

section (6.5.1) and Cox results for the validation data are summarised in figures (8.8) - 

(8.10), showing that the specification of two groups f population is lost, group I and 

group 4. They are corresponding to the highest and the lowest survival group in the low- 

risk cohort of design data. 

Prognostic indexes of new LRG. Cox ivolved hist"n 

Figure (8.8): The Cox regression calculated prognostic groups involving interaction 

term, histology and node stage, only two prognostic groups are recorded. 



Chapter 8: Validation of selected models with a new cohort of patient data 

1: 
Cox regression involved interaction hist'n, new LRG 

'tä`ýýS+pEtOcJCý 
i 

09 

Kaplan-Meier estimated survival for new LRG involving hist n 

09 

08 

07 

06 

d 05 

04 

03 

0,2 

01 

T- pi2 
pi 3 

0 0 10 20 30 40 50 50 
Time in Months 

(a) 

pi2 
pi 3 

10 20 30 40 
Time in Months 

(b) 

60 

Figure (8.9): The Cox regression predicted survivorship for the 2 prognostic groups 

involving interaction term, histology and node stage, and the corresponding Kaplan- 

Meier estimate of the survivor functions. The observed survivorship for both groups is 

better than predicted by Cox regression. 
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Figure (8.10): The attribute histograms for the prognostic groups of Cox regression 

involving interaction term. The results show no distinguishable difference from the low- 

risk cohort of design data result involving interaction term, histology and node stage, on 

the same approach. 

08 
07 

06 
; 05 

04 

U 
03 

02F 

a1 

- 192 - 



Chapter 8: Validation of selected models with a new cohort of patient data 

8.2.3.2 Inclusion of a pairwise interaction involving nodes ratio and node stage 

A model comprising node stage, pathological size, histology and nodes ratio * node 

stage identifies the lowest survival group in the low-risk cohort, of which the 

survivorship is below 0.3 as shown in the Cox's prediction for the low-risk cohort of the 

validation set, figure (8.12). This suggests that the interaction between nodes ratio * 

node stage is important to the group with very low survival. The Cox prediction and 

attribute profiles show no different from previous results using same model as in section 

(6.5.2), except that the observed survivorship for each patient group has improved 

compared to the model predictions in figure (8.12). Clearly, group I and 2 are brought 

closer together towards a probability of 1. 

Prognostic indexes of new LRG, Cox ivolved node ratio "n 

Figure (8.11): The Cox regression partitioned prognostic groups involving interaction 

term nodes ratio and node stage. 
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Figure (8.12): The Cox regression predicted survivorship involving interaction term 

nodes ratio and node stage for the prognostic groups of low-risk cohort of validation set 

and their corresponding Kaplan-Meier estimate of the survivor functions. 

Co. regreuion of new LRG, mvoMng retio'n. PI Group I 

llisl oan 
r, iI.. ý, 

(c) 
untle 'by. r6,: Iaa . b. 

H. " 

20 
10 

1L 

14 

ý ýý, 

Co. regreesinn of new I fif, i vnMi,, I ra i, )., i'I Group 7 

Co. ý. pýýNm d nw l PG, invoMnp ýNia'n, PI Gaip 4 

I ý, I i ý11, ýiirl" ý "iý. 

(d) 

I.. 

i raýýie. ia, ýý 

Figure (8.13): The attribute histograms for the prognostic groups of Cox regression 

involving interaction term nodes ratio and node stage. The results show no 

distinguishable difference from the previous result on the same approach. 
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8.2.3.3 Inclusion of interaction terms histology * node stage together with nodes ratio * 

node stage 

The model containing two interaction terms comparises histology, pathological size, 

histology * node stage and nodes ratio * node stage. Previous results have shown the 

individual characteristics of these two interaction terms cannot be merged by bringing 

them together into a single model, section (6.5.3). This applies also to the new data set, 

as the results show no significant difference from previous results in section (6.5.3), 

including the attribute profiles. The observed survivorship for each patient group is 

again higher than for the design data. 

Prognostic indexes of new LRG. Cox ivolved node rMio" n. hist'n 
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Figure (8.14): The Cox regression partitioned prognostic groups involving interaction 

terms histology and node stage, nodes ratio and node stage 
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Figure (8.15): The Cox regression predicted survivorship for the prognostic groups 

involving interaction terms histology and node stage, nodes ratio and node stage and 

the corresponding Kaplan-Meier estimate of the survivor functions. The observed 

survivorship of the four prognostic groups is better than estimated. 
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Figure (8.16): The attribute histograms for the prognostic groups of Cox regression 

involving interaction terms histology and node stage, nodes ratio and node stage. The 

results show no distinguishable difference from the previous result on the same 

approach. 
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8.3 validation data set high-risk cohort analysis 

8.3.1 Validating the Cox regression modelling method using the high-risk cohort of 

validation data set 

The Cox regression results for the high-risk cohort of validation set were averaged over 

the 3 cross-validation sets with a model comprising menopausal status, predominant 

site, tumor stage, node stage, histology and nodes ratio. The results are presented as the 

follows: figure (8.17) illustrates the distribution of prognostic indexes, the Cox 

regression predicted survivorship for each prognostic groups are displayed in figure 

(8.18) together with the corresponding Kaplan-Meier estimates survival function, and 

the attribute histograms for prognostic groups are displayed in figure (8.19). 

The predicted survival rates remain consistent with those expected from the design data, 

but the highest risk group now shows an increase in 5-year survival to around 0.3. This 

indicates that there may have been a significant improvement in the effectiveness of 

care for this patient group. 
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Figure (8.17): The Cox regression calculated prognostic indexes and divided prognostic 

groups for the high-risk cohort of validation set. 
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Figure (8.18): The Cox regression predicted survivorship for prognostic groups and the 

corresponding Kaplan-Meier estimate of the survivor functions. The survival prediction 

for prognostic group 3 contains 0.2 error. 
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Figure (8.19): The attribute histograms for the prognostic groups. The results show no 

distinguishable difference from the results on the same approach. 
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8.3.2 Validating the neural network model with the high-risk cohort of validation set 

A similar study to that carried out for Cox regression, was performed also with the 

PLANN model. Figure (8.20) shows distribution of the prognostic indexes and its 

partition into different groups using the same intervals as are shown in figure (6.1). 

Figure (8.21) illustrates the network predicted survivorship for prognostic groups and 

the Kaplan-Meier estimate of the survivor functions. Finally, the attribute profiles for 

the prognostic groups are displayed in figure (8.22). The results with the ARD selected 

model are presented in figure (8.23) - figure (8.25) in the same order. Both sets of 

results show similar survival predictions as for the high-risk cohort in the design data 

and no distinguishable difference is observed in the attribute profiles. As for Cox 

regression, there is a noticeable improvement in survival for the group at highest 

mortality risk. 

Prognostic indexs of validation set HRG 

Figure (8.20): The neural networks calculated prognostic indexes and partitioned 

prognostic groups using the Cox selected model for the original high-risk cohort 
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Bayesian networks estimated survival of validation set. Cox selected, HRG Kaplan-Meier estimated survival of validation net. Cox selected. HRG 

Figure (8.21): The neural networks predicted survivorship for the prognostic groups 

using the Cox selected model and the corresponding Kaplan-Meier estimate of the 

survivor functions. Only the performance of prognostic group 3 is not met the 

expectation as the other groups. 
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Figure (8.22): The attribute histograms for the prognostic groups using Cox selected 

model. The results show no distinguishable difference from the results for high-risk 

cohort of design data on the same approach. 
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Figure (8.23): The neural networks calculated prognostic indexes and prognostic groups 

using the ARD selected model for the original high-risk cohort. 
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Figure (8.24): The neural networks predicted survivorship for the prognostic groups 

using the ARD selected model and the corresponding Kaplan-Meier estimate of the 

survivor functions. Both of the prognostic group I and 3 have shown a higher 

survivorship than the neural networks predicted. 
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Figure (8.25): The attribute histograms for the prognostic groups of neural networks 

using the ARD selected model. The results show no distinguishable difference from the 

result for the high-risk cohort of design data on the same approach. 
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8.3.3 Validating the Cox regression method using the high-risk cohort of validation 

set involving interaction term 

As shown in section (6.3), the best model for the high risk cohort consists of clinical 

stage, and the pairwise interaction nodes ratio * tumour stage. The results of the high- 

risk cohort of validation set fitted to this model are displayed in figures (8.26) - (8.28), 

combining the predictions from 3-fold cross validation. The Cox predicted survivorship 

for each prognostic group is as accurate as the Kaplan-Meier estimates and similar 

proportion of patients allocated to prognostic groups to the previous results in section 

(6.3). However, the results show that the predicted survivor function for prognostic 

groups 1 and 3 are different from the results shown in figure (6.8a). The predicted 

survival for prognostic group I has reduced from 0.78 to 0.66 and for group 3 it has 

increased from 0.08 to 0.3.. 
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Figure (8.26): The Cox regression partitioned prognostic groups involving interaction 

term tumour stage * nodes ratio. The three prognostic groups contained 130,138 and 

66 patients respectively. 
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Figure (8.27): The Cox regression estimated survival curves for each of the prognostic 

groups involving interaction terms nodes ratio * tumour stage and their corresponding 

Kaplan-Meier estimated survival curves. 
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Figure (8.28): The attribute histograms for the prognostic groups of Cox regression 

involving interaction terms tumour stage * nodes ratio. 
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8.4 Discussion of test data set analysis 

From the results for the validation data, it can be concluded that the overall survivorship 

improved since the previous cohort and the survival prediction by different modelling 

methods for the test data set is similar with the prediction made for the design data. The 

results also show change of population where the predicted survivorship is similar with 

the Kaplan-Meier estimate but they are different from the results for the design data, as 

shown in the high-risk cohort interaction analysis in section (8.3.3). In both models, the 

Cox regression and PLANN, the attribute profiles have not shown significant 

differences between the training and validation cohorts, with the exception of the high- 

risk cohort with a pairwise interaction term. The survivorship of breast cancer for the 

high-risk patients improved since the early of 90's at least by 0.2. On the other hand, the 

survivorship for the patient groups in the low-risk cohort has also improved but not as 

much as for the high-risk cohort. Moreover, the two sets of data have shown a different 

population distribution with fewer patients at the high risk. 
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Chapter 9: Summary and Conclusions 

9.1 Summary 

9.1.1 The changes of breast cancer prognosis within 10 years 

Two sets of breast cancer data were considered in this thesis. They are cohorts of 

patients recruited by Christie Hospital during 1983 to 1989, and 1990 to 1993 each time 

with five years of follow-up. The attribute distributions in the two sets of data are 

different. There are fewer high-risk patients in the second cohort, and their 5-years 

survivorship is improved compared with same prognostic groups in the earlier cohort. 

This may reflect improvements in patient care, summarised in chapter (8). 

Missing data are unavoidable, and this is present also in the second data set, even 

though the quality of the data provided is excellent. If there is only a relatively small 

amount of missing data in the entire data set, then those records can be simply 

discarded. Otherwise, they need to be handled carefully. Using the mean value of the 

variable is one of the commonly used methods to fill the missing values for continuous 

data. However, the situation becomes complicated in the case of categorical data. 

Within this thesis, we suggested using Nominal Logistic Regression to predict missing 

values, which required the identification a set of complete predictor variables for each 

variable with missing data. However, the values predicted by logistic regression may 

not be free of bias and there is no significant change to the survival predictions. Ripley 

(1998) also reported that filling in missing data using regression or other methods may 

not result in significant improvements to the data analysis. Therefore, treating the 

missing data as a separate category within the variable is a safe and efficient way to 

handle categorical missing data. 
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9.1.2 Results obtained with Cox regression and Kaplan-Meier estimation 

9.1 21 Kaplan-Meier estimation 

Kaplan-Meier estimation is a non-parametric model of survivorship. The role of this 

estimation in the thesis is to describe the survivorship of patients in different prognostic 

groups generated by the Cox regression or the neural networks, and hence to ascertain 

the accuracy of the survival predictions made by each modelling method. A 95% 

confidence interval is calculated for each survival curve. 

9.1.2.2 Cox re rem ssion 

Cox regression has been the method of choice in medical survival modelling since it 

was first proposed in 1972. The robustness, flexibility and commercial availability of 

software are some of the factors that contribute to the popularity of this method. Within 

this thesis, Cox regression was used both for variable selection and as a direct 

modelling methodology. The neural networks approach confirmed that the data are only 

slightly off the proportional hazard assumption. Cox models selected with the AIC 

criteria were still capable of producing good differentiation and accurate survival 

prediction for prognostic groups by mortality risk. 
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9.1.3 Neural network modelling with PLANN 

In this thesis, the use of a Bayesian framework to regularise the Partial Logistic 

Artificial neural network with in the evidence approximation is demonstrated to be able 

to model censored survival data accurately on a monthly basis. The marginalisation 

procedure has to be improved because the output variable is not balanced between class 

labels, which involves a modification to the cost function, and the gradient and the 

Hessian calculations. This moderates the network towards the best unconditional 

estimate of the output which for us, is the mean hazard. Then Bayes' theorem is used to 

refer the estimates of the predicted hazard back to the true priors. Categorical data also 

has be handled differently in the PLANN network, by assigning one of the attributes as 

the baseline. Then the rest of the attributes corresponding to each variable share the 

same value of regularisation coefficient, and ARD is used for variable selection. 

Variable interactions can be naturally mapped within the network structure, but the 

explicit relationship between variables is difficult to trace. 

The potential of the Bayesian regularisation framework applied to PLANN was 

explored in this thesis and it was concluded that the network performance in prognostic 

group differentiation and survival prediction is comparable to that of Cox regression, 

having the further advantage that: 

" The proportionality of the hazards need not be observed. 

  The network output is a smoothed hazard over time. 

Since the Bayesian PLANN model is capable of handling non-linearity in the data, it is 

further capable of: 

- 210 - 



Chapter 9: Summary and Conclusions 

  Handling arbitrous interactions. 

  Handling non-linear covariate time dependencies. 

  Supporting variable selection, using ARD. 

9.1.4 Performance comparison of Cox regression and the neural networks analysis 

The neural network model and Cox regression separate patients into prognostic groups 

differently, as summarised in appendix (III). The neural network prognostic groups 

whose attribute profiles are more specific than the Cox regression without variable 

interactions. The ARD technique can be used for model selection, which has been 

demonstrated in the analysis of high-risk cohort, summarised in chapter (6) in which the 

selected variables implicitly take into account of variable interactions. 

In the low-risk cohort, PLANN provided candidate terms for pairwise interactions, from 

which Cox regression found two pairs that contribute to two different prognostic 

groups, as described in section (6.5). However, these two pairs of interacting variables 

work against each other in Cox regression, but lead to better prognostic group 

separation if modelled with PLANN. 
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However, training the neural network for such large data set is computational time 

consuming and the ARD model selection process is also not straightforward. The 

weight decay hyper-parameters computed for each variable are not consistent when the 

network was trained repeatedly with different initial conditions, causing changes to their 

rank order. In this thesis, the network was trained with all available input variables at 

the beginning, then gradually eliminated the variables with the largest value of the 

weight decay parameter, alpha, until no more variables can be discarded without serious 

reduction in performance. There is no clear guidance to assist in the use of ARD for 

model selection. Moreover, the network predictions become less accurate when the data 

uncertainty is large, since they are marginalised towards averaged hazard of the data. 

For its part, Cox regression is widely available in commercial and it is easy to use. Also 

the demand of computational time is limited. As the analysis of the validation data set in 

chapter (8) showed, the Cox regression is not much affected by the data uncertainty and 

produces good estimation of survivorship for each prognostic group. Moreover, it 

captures the shape of a survivor function over time in better detail. 

The Cox regression performed well even when the proportional hazards assumption is 

not strictly observed and showed similar results when the method was tested by the 

validation data set, which has demonstrated the robustness of this approach. 

However, the Cox regression in variable interactions must be pre-specified, but it is 

difficult to include all the combination of variable interactions for model selection when 

many variables are present. 
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Differentiation has been observed for the models with interaction terms for both cohorts 

in the design data, in which the prognostic groups are less overlapped and the accuracy 

of survival predictions for each group is considerably more accurate. On the other hand, 

the overall improvement of survivorship is apparent for all groups in the low-risk cohort 

of validation data set. However, there is no evidence suggested a systematic 

improvement in the high-risk cohort for any prognostic groups. Particularly for the 

lowest survival group, identified either by the models with or without interaction terms, 

has shown a clear survivorship improvement for each model but not the case for the 

other groups. Only the model with interaction term is capable of providing an accurate 

survival prediction for the lowest survival group while the other models suggest a lower 

survivorship should be for this group according to the covariate values. 
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9.2 Conclusions 

Smith (2000) points out that an increasing number of patients do not benefit from 

systemic therapy, when systemic therapy is only offered to patients with tumours larger 

than lcm in diameter. With the widespread use of mammographic screening programs, 

the average tumour is now in the 1.5-cm range at diagnosis. Throughout this thesis, the 

survivorship of prognostic groups in each cohort modelled in detail, in which a high risk 

patient group in the low-risk cohort was identified. A low risk patient group in the high- 

risk cohort was also identified, who might have gone through the rigors treatments 

unnecessarily. 

In terms of the development of the neural network methodology for censored survival 

data, in chapter (5), the PLANN model was extended with regularisation within a 

Bayesian approximation for the hyperparameters. This gives an automatic determination 

of suitable values for the regularisation parameters requiring adjustments only to the 

number of nodes in the hidden layer. It results in smooth estimates of the discrete time 

hazard and allows for non-proportionality and non-linear interactions between 

covariates. In order to handle the categorical data more effectively, the ARD technique 

was modified to suit the data structure, in which several inputs corresponding to same 

variable share same value of alpha hyperparameter, and also the baseline attributes 

referral. The target distribution is very unbalanced, which requires a modification to the 

training algorithms and to the estimation of the conditional hazard with the result that 

the network outputs are marginalised towards the data averaged hazard. The use of 

ARD technique for soft pruning are also demonstrated, which is useful to determine a 

parsimonious neural network model. 

- 214 - 



Chapter 9: Summary and Conclusions 

In terms of the data analysis technique, we proposed dividing patients into prognostic 

groups using the log-rank test to group the calculated prognostic indexes into mortality 

risk group. This was interpreted by displaying the attribute profiles for each prognostic 

group using the selected variables. The extended Bayesian PLANN model and Cox 

regression were optimised by a monthly analysis of 5 years for two cohorts of patients, 

defined by clinical staging to be low- and high-risk cohort. In each cohort, prognostic 

indexes for mortality risk groups are formulated. For each method, the mean 

survivorship for each prognostic group is estimated and compared with the Kaplan- 

Meier estimate derived from the observed survival of those patients. It is summarised in 

chapters (4) and (5). Using PLANN to identify candidate pairwise interactions to 

include in a Cox regression model, a term involving nodes ratio * tumour stage was 

found to be useful in determining a specific high mortality group within the high-risk 

cohort, and for the low-risk cohort, two pairwise of interaction terms are also found, 

each corresponding to a high mortality group and a low mortality group separately. It is 

reported in chapter (6). 

A second cohort of patients was used to validate the methodologies and their 

corresponding results for the first data set, which is summarised in chapter (8). Results 

showed that the population characteristics of two sets of data are different, for instance 

the two groups of patients identified by the interaction term histology * node stage from 

the low-risk cohort is no longer present in the second data set, appendix (III). A 

comparison of the model prediction with the Kaplan-Meier estimates shows an 

improvement in survival for the validation data set. 
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It was also proposed to use nominal logistic regression to predict the categorical 

missing data. However, the efforts have not been rewarded with significant 

improvement to the analysis. Therefore, treating the missing data as a separate category 

is the sage and most efficient way to handle categorical missing data, as summarised in 

chapter (7). 
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9.3 Further Work 

The study could be extended to ten years allowing a more detailed study of possible 

deviations from the proportional hazards assumption over longer periods of time. 

Accurate survival estimation would provide useful information to enable the clinicians 

and patients to make better informal discussion and decision regarding treatments and 

surgery. 
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Kaplan-Meier estimate of the survival functions for the low-risk cohort of design 
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Appendix (il) 

The variation of sample distribution for the selected variables of the design and the 

validation data set. 

Low-Risk Cohort of the Design Data 

Clinical Node Stage 
Category Frequency Percentage 
0 734 80 
1 183 20 
total 917 100 

Pathologic I Size 
Category Frequency Percentage 
1 383 41.8 
2 534 58.2 
total 917 100 

Histology 
Category Frequency Percentage 
1 724 79 
2 95 10.4 
3 98 10.7 
total 917 100 

Nodes Ratio 
Category Frequency Percentage 
<20% 256 27.9 
20-30% 18 2.0 
30-60% 40 4.4 
60+% 98 10.7 
Missing 505 55.1 
total 917 100 

Low-Risk Cohort of the Validation Data 

Clinical Nod e Stage 
Category Frequency Percentage 
0 800 85.9 
1 131 14.4 
total 931 100 

Pathological Size 
Category Frequency Percentage 
1 541 58.1 
2 390 41.9 
total 931 100 

Histology 
Category Frequency Percentage 
1 633 68.0 
2 111 11.6 
3 187 20.1 
total 931 100 

Nodes Rati o 
Category Frequency Percentage 
<20% 624 67.0 
20-30% 28 3.0 
30-60% 51 5.5 
60+% 43 4.6 
Missing 185 19.9 
total 931 100 



High Risk Cohort of the Design data 

Meno ausa l Status 
Cate or Fre uenc Percenta e 
1 177 28.0 
2 36 5.7 
3 420 66.4 
Total 633 100 

Clinical Node Stage 
Category Frequency Percentage 
0 355 56.1 
1 186 29.4 
2 48 7.6 
3 44 7.0 
Total 633 100 

Clinical Sta e 
Category Frequency Percentage 
1 184 29.1 
2 171 27.0 
3 165 26.1 
4 113 17.9 
Total 633 100 

Predominan t Site 
Category Frequency Percentage 
1 256 40.4 
2 54 8.5 
3 103 16.3 
4 38 6.0 
5 158 25.0 
Unknown 24 3.8 
Total 633 100 

Tumour Stage 
Category Frequency Percentage 
1 68 10.7 
2 186 29.4 
3 156 24.6 
4 223 35.2 
Total 633 100 

High-Risk Cohort of the Validation data 

Menopausa l Status 
Category Frequency Percents e 
1 107 32.0 
2 16 4.8 
3 211 63.2 
total 334 100 

Clinical Node Stage 
Category Frequency Percentage 

0 199 59.6 
1 100 29.9 
2 25 7.5 
3 10 3.0 
total 334 100 

Clinical Sta ge 
Category Frequency Percentage 
1 57 17.1 
2 109 32.6 
3 79 23.7 
4 89 26.6 
total 334 100 

Predomina nt Site 
Category Frequency Percentage 
1 143 42.8 
2 17 5.1 
3 40 12.0 
4 14 4.2 
5 59 17.7 
Unknown 61 18.3 
Total 334 100 

Tumour Sta ge 
Category Frequency Percentage 
1 57 17.1 
2 109 32.6 
3 79 23.7 
4 89 26.6 
Total 334 100 



High Risk Cohort of the Design data 

Pathological Size 
Category Frequency Percentage 
<2cm 14 2.2 
2-5cm 134 21.2 
5+cm 71 11.2 
Missing 414 65.4 
Total 633 100 

Histology 
Category Frequena Percentage 
1 362 57.2 
2 78 12.3 
3 189 29.9 
Missing 4 0.6 
total 633 100 

Nodes Ratio 
Category Frequency Percentage 
<20% 91 14.4 
20-30% 5 0.8 
30-60% 28 4.4 
60+% 92 14.5 
Missing 417 65.9 
total 633 100 

High-Risk Cohort of the Validation data 

Pathological Size 

_Category 
Frequency Percentage 

<2cm 12 3.6 
2-5cm 51 15.3 
5+cm 51 15.3 
Missing 220 65.9 
Total 633 100 

Histology 
Category Frequency Percentage 
1 164 49.1 
2 33 9.9 
3 97 29.0 
Missing 40 12.0 
total 334 100 

Nodes Ratio 
Category Frequency Percentage 
<20% 102 30.5 
20-30% 17 5.1 
30-60% 22 6.6 
60+% 45 13.5 
Missing 148 44.3 
total 334 100 



Appendix (III) 

The number of patients in each prognostic group of design data for Cox regression and 

neural network models. 

Low-risk cohort: D- Design data (917 cases), T- Test data (931 cases) 

Prognostic Prognostic Prognostic Prognostic 

group 1 group 2 group 3 group 4 

D T D T D T D T 

Cox Regression 127 229 189 355 487 237 114 110 

Neural Networks using 56 126 359 461 460 328 42 16 

Cox Model 

Cox Regression Involving 61 0 207 610 579 321 68 0 

Interaction Term 

(Histology *Node Stage) 

Cox Regression Involving 116 237 331 375 427 303 43 16 

Interaction Term 

(Nodes ratio*Node Stage) 



High-risk cohort: D- Design data (613 cases), T- Test data (334 cases) 

Prognostic Prognostic Prognostic 

group 1 group 2 group 3 

D T D T D T 

Cox Regression 171 126 275 129 187 78 

Neural Networks using Cox 248 125 174 69 211 140 

Model 

Neural Networks ARD model 244 99 171 87 218 148 

Cox Regression Involving 214 130 278 138 139 66 

Interaction Term 

(nodes ratio*tuinour stage) 


