
AN ARCHITECTURE TO SUPPORT VIRTUAL
CONCURRENT ENGINEERING

by

Martin Hanneghan B.Sc. (Hons)

A thesis submitted in partial fulfilment of the
requirements of Liverpool John Moores University

for the degree of Doctor of Philosophy

Liverpool John Moores University
School of Engineering

June, 1998

The following table and
figures have been omitted on
request of the university-
Table 1.1 (p.4)

Fig 2.3 (p.20)

Fig 2.4 (p.27)

Fig 2.5 (p.30)

. Fig 3.1 (p.37)

Fig 3.2 (p.39)

Fig 3.3 (p.41)

Fig 3.4 (p.42)

Fig 3.5 (p.43)

Fig 3.6 (p.45)

Fig 4.3 (p.61)

Fig 4.4 (p.62)

Fig 4.5 (p.63)

Fig 8.1 (p.lll)

Fig 8.2 (p.112)

ABSTRACT

The continual pressure on manufacturers to be globally competitive by increasing

productivity while reducing costs and development time has been the driving force behind

the philosophy of Concurrent Engineering (CE). CE aims to systematically integrate all

aspects of the entire product life cycle to enable competitive advantage. Ironically,

contemporary CE support tools have only served to intensify the problems associated with

this integration due to incompatibilities from equipment and tool heterogeneity, lack of

support for the operation, management and co-ordination of globally dispersed teams and

the lack of globally available information sharing practices that aid concurrent development.

This thesis investigates methodologies and technologies that are suitable for application in

information technology-based support environments for Concurrent Engineering.

In an effort to solve these problems, this thesis draws on aspects from many diverse fields

and presents a new architecture that unifies and integrates these multiple disciplines to

provide a robust, computer-based environment for supporting a Concurrent Engineering

strategy. At the core of this new architecture is a viewpoint-based reference model for

Concurrent Engineering (CE-RM) that examines and supports the multiple views of all

aspects in a CE project and which provides a framework for the development of computer

systems to support CEoA computer systems middleware architecture (called CONCERT-

CONCurrent Engineering suppoRT) and an object-oriented information system (IS) model

have been devised using this framework. CONCERT enables global participation and

interaction while the IS model captures the information requirements of organisations

employing a CE strategy. A prototype support environment based on the CONCERT

architecture has been built using the Java language and is described with two case studies

that serve to show the validity and feasibility of the architecture. This thesis also highlights

how the practice of Concurrent Engineering has many parallels with other problem domains

and explores how these complementary domains can be supported using the proposed

architecture.

11

ACKNOWLEDGMENTS

I am truly indebted to a number of people, without whom this thesis would not exist.

Firstly, I would like to thank my two supervisors: Madjid Merabti and Gary Colquhoun,

whose excellent guidance throughout this research has been invaluable. Their

encouragement and support to go forth and publish my ideas has been a great impetus at all

times. In addition, their direction and enthusiasm have certainly helped me develop my

research and writing skills. In the dual role of supervisor and friend they have been a

constant source of inspiration, support and shoulder to lean on. This thesis is a testament to

their talent.

I am also indebted to the academic, technician and research staff (both past and present)

from the School of Computing and Mathematical Sciences at Liverpool John Moores

University for their support, encouragement and hospitality throughout this research.

Finally, my sincere thanks go to my family and my fiancee, Joanne. Their constant interest

in my efforts, and faith in my ability, has proved a continual source of inspiration to me.

iii

CONTENTS

Abstract ii
Acknowledgments ii
Contents iv
List of figures viii
List of Tables ix
Acronyms x

Chapter 1

1. Introduction 1
1.1 Preamble 1
1.2 Competition and the global market.. 1
1.3 The product development process 2

1.3.1 Sequential development 2
1.3.2 Concurrent Engineering 3

1.4 Definitions of Concurrent Engineering 4
1.5 Concurrent Engineering approaches 5
1.6 Problems associated with technology-based CE approaches 6

1.6.1 Sharing information effectively 6
1.6.2 Widely dispersed teams 6
1.6.3 Heterogeneity 6

1.7 Definitions of keywords in the context of this research 7
1.8 Scope of the research 8
1"9 Aims and objectives 9
1.10 Research methodology 9
1.11 Contribution to knowledge through this research 10
1.12 Summary 11
1.13 Thesis structure 11

Chapter 2

2. Background and influencing factors on this research 13
2.1 Introduction 13
2.2 Computer Integrated Manufacturing 13

2.2.1 Product information models 15
2.3 Distributed computing 16

2.3.1 Manufacturing networks 17
2.3.2 Inter-operable systems : 17

2.3.2.1 Homogeneous language-based systems 17
2.3.2.2 Heterogeneous language-based systems 18

2.4 Database models 21
2.4.1 Relational databases 21
2.4.2 Object databases 21
2.4.3 Object-relational databases 22

2.5 Computer-Supported Co-operative Working 23
2.6 Virtual teams 26

2.6.1 Problems associated with virtual team working 26
2.6.2 Practical issues for virtual CE teams 27

2.6.2.1 Team structure 28
2.6.2.2 Consensus 28
2.6.2.3 Level playing field 28

iv

2.6.2.4 Anticipating problems caused by dramatic change 29
2.7 The Internet 29

2.7.1 Internet terminology 30
2.7.2 Internet technologies 31

2.7.2.1 The World-Wide Web 31
2.7.3 Recent developments 32

2.7.3.1 Internet programming languages 32
2.7.3.2 Internet Inter-ORB Protocol (IIOP) 34

2.8 Summary ; 34

Chapter 3
3. Concurrent Engineering support environments 35

3.1 Introduction 35
3.2 State-of-the-art survey of requirements for CE support 35

3.2.1 Barriers 35
3.2.2 Architectural requirements 37
3.2.3 Software requirements 38

3.3 CE support systems and tools 39
3.3.1 BSCW shared workspace system 39
3.3.2 CE- Toolkit ~ 40
3.3.3 CM and PCB 40
3.3.4 CoConut 41
3.3.5 COMBINE 42
3.3.6 DMMS 42
3.3.7 I-CARE 43
3.3.8 iDCSS 43
3.3.9 ITED (Texas Instruments) 44
3.3.10 Madefast 44
3.3.11 MOSES 45
3.3.12 PACT 45
3.3.13 Shastra 46
3.3.14 WISE 46

3.4 Evaluation of current CE support systems 46
3.5 Summary 49

Chapter4
4. A reference model for building CE support systems 51

4.1 Introduction 51
4.2 Background 51
4.3 Identification of viewpoints to support CE 54

4.3.1 Scenario , 55
4.3.2 A Concurrent Engineering Reference Model (CE-RM) 55
4.3.3 Evaluation of the CE-RM 59

4.4 Comparison of the CE-RM with related work 60
4.5 Summary 64

Chapter 5
5. A computer systems architecture to support virtual CE teams 66

5.1 Introduction 66
5.2 Objectives of new architecture 67
5.3 Policies and considerations for support services 68

5.3.1 Conflict resolution 68
5.3.2 Data formats and translation 68
5.3.3 Group consensus 69
5.3.4 Long transactions and concurrency control 69

v

5.3.5 Project management and history 72
5.3.6 Security 73
5.3.7 Versioning 75

5.4 The CONCERT architecture 77
5.4.1 Distribution Support Service 78
5.4.2 Collaboration Support Service 78
5.4.3 Project Support Service 79
5.4.4 Repository Support Service 79
5.4.5 Data object repository 80

5.5 The CONCERT environment 80
5.5.1 The application layer 80

5.6 Objectives revisited 82
5.7 Summary 83

Chapter 6
6. A information system object model to support virtual CE teams 85

6.1 Introduction 85
6.2 Information system object modeL 85

6.2.1 Motivation for using object-orientation 86
6.2.2 Base object types 87
6.2.3 Supporting the CE-RM through the information model 90
6.2.4 Supporting the CONCERT architecture through the information model 92
6.2.5 Implications of object model on information storage 93

6.3 Summary ..•.............. 94

Chapter 7
7. System implementation 95

7.1 Introduction 95
7.2 Distributed system goals 95
7.3 Environment components 96

7.3.1 CONCERT ORB 96
7.3.1.1 Security considerations 98

7.3.2 Support services 99
7.3.3 Workbench application 100

7.4 Software components 100
7.4.1 Screen shots 102

7.5 Configuration of prototype test-bed 104
7.5.1 System operation 104

7.6 Rejected implementation candidates 106
7.6.1 CONCERT ORB versus CORBA-compliant ORB 106
7.6.2 Java versus HTML and CGI ' 106

7.7 Summary 107

Chapter 8
8. Validation and case studies 109

8.1 Introduction 109
8.2 Case studies 109

8.2.1 Case Study A: The development of a guided missile 110
8.2.1.1 Scenario 110
8.2.1.2 Characteristics of this study 111
8.2.1.3 Applying the CONCERT environment to this project 112
8.2.1.4 Anomalies in this study 115
8.2.1.5 Positive aspects of this study 115

8.2.2 Case Study B: the production and delivery of an undergraduate degree
module 118

vi

8.2.2.1 Scenario 118
8.2.2.2 Characteristics of this study 118
8.2.2.3 Applying the CONCERT environment to this project 119
8.2.2.4 Anomalies in this study 121
8.2.2.5 Positive aspects of this study 121

8.3 Evaluation 122
8.3.1 Communication 122
8.3.2 Project management 123
8.3.3 Data management 124
8.3.4 Geographic dispersion ' 124
8.3.5 Evaluation summary 125

8.4 Scope of proposed design and implementation 125
8.5 System application areas 127

8.5.1 Collaborative Engineering IManufacturing 127
8.5.2 Remote learning 127
8.5.3 Teleworking 128
8.5.4 Sensitive sources of collaboration 128

8.6 Summary 129

Chapter 9
9. Conclusions and further work 130

9.1 Introduction 130
9.2 Thesis summary · 130
9.3 Aims and objectives revisited 131
9.4 Contribution to knowledge 132

904.1 Definition of Concurrent Engineering 133
904.2 Requirements for CE support environments 133
9.4.3 Reference model 133
9.4.4 Distributed computer system architecture 134
9.4.5 Information system model 134
904.6 Reference implementation 134

9.5 Further work 134
9.S.1 Industrial trials 134
9.5.2 Agent technology 135
9.S.3 Additional collaboration services 135
9.5.4 Legacy software wrappers 135
9.5.5 Telephony 135
9.5.6 Offline access and batch processing 136
9.5.7 Performance enhancements 137
9.5.8 Data repository 137
9.5.9 Further integration with external Information Systems 138
9.5.10 Product information retrieval.. 138

9.6 Concluding remarks 139
References 95
Appendix A: Summary of Fusion object model notation 153
Appendix B: Support service system interface models 155
Appendix C: CONCERT information system object model... 166

vii

LIST OF FIGURES

Figure 1-1. A traditional sequential development process 2
Figure 1-2. Concurrent engineering development. 3
Figure 1-3. The effect of geographic location on CE teams 7
Figure 1-4. Definition of Concurrent Engineering 11
Figure 2-1. Taxonomy ofCIM applications currently in use 14
Figure 2-2. Data translation in CIM environments 15
Figure 2-3. The Object Management Architecture 20
Figure 2-4. Typical structure of the virtual team 27
Figure 2-5. The growth of the Intemet 30

. Figure 3-1. NIIIP Reference Architecture 37
Figure 3-2. Three fundamental requirements for CE tools 39
Figure 3-3. CoConut system architecture 41
Figure 3-4. The COMBINE architecture 42
Figure 3-5. Architecture of the I-CARE system 43
Figure 3-6. The MOSES architecture 45
Figure 4-1. Typical event flow for concurrent development. 55
Figure 4-2. The Concurrent Engineering Reference Model (CE-RM) 56
Figure 4-3. Example of Management viewpoint object.. 61
Figure 4-4. Support requirement matrix for the MOSES CAE architecture 62
Figure 4-5. The CIM-OSA modelling framework 63
Figure 4-6. Relationship between CE-RM and work introduced in the following chapters. 65
Figure 5-1. The CONCERT architecture overview 67
Figure 5-2. Concurrency control scenario 71
Figure 5-3. Three-tier security policy of the CONCERT architecture 75
Figure 5-4. A data object version tree 76
Figure 5-5. The CONCERT architecture 77
Figure 5-6. Sample interface for Distribution Support Service 78
Figure 5-7. The CONCERT environment. 81
Figure 6-1. Object model overview 86
Figure 6-2. Repository object diagram 90
Figure 7-1. Interface definition for the CONCERT ORB 97
Figure 7-2. Location and migration transparency within the CONCERT environment. 98
Figure 7-3. Sample Java code for accessing support service 101
Figure 7-4. Support service class hierarchy 101
Figure 7-5. Workbench interface and login dialog 102
Figure 7-6. Viewing conferences that are currently taking place 103
Figure 7-7. In a text conference and viewing user details ' 103
Figure 7-8. Viewing team details 103
Figure 7-9. Sample configuration of test-bed environment. 105
Figure 7-10. Screen shot of early prototype environment. 107
Figure 8-1. Timeline for Madefast project.. 111
Figure 8-2. Participants in the Madefast project.. 112
Figure 8-3. The process of group collaboration 115
Figure 8-4. Repository tree showing Madefast data management perspective 116
Figure 8-5. Virtual team (case study B) 120
Figure 9-1. Research gap addressed by this research 132
Figure 9-2. An example of a procedural language for task automation 137

Vlll

LIST OF TABLES

Table 1-1. Potential benefits of Concurrent Engineering 4
Table 2-1. Transparencies important in distributed computing 18
Table 2-2. Types of CSCW application 24
Table 2-3. Typical uses of groupware applications 25
Table 2-4. How the product life cycle dictates types of communication 26
Table 2-5. Why organisations are using the Internet 32
Table 4-1. Viewpoints specified in the RM-ODP 54
Table 6-1. Summary of CONCERT object classes 88
Table 8-1. Advantages and limitations of proposed system 126

ix

BPR
CAD
CAE
CAM
CE
CE-RM
CGI
CIM
CIM-OSA
CONCERT
CORBA
CSCW
DBMS
DCE
DFA
DFM
FMS
GUI
HTML
HTTP
IDL
IGES
HOP
IPD
nT
JVM
LAN
MAP
MRP
MRPH
NIIIP
ODBMS
ODP
OMA
OMG
OPT
OQL
ORB
RMI
RM-ODP
RPC
SE
SQL
STEP
TCPIIP
TOP
TQM
URL
WWW

ACRONYMS

Business Process Reengineering
Computer-Aided Design
Computer-Aided Engineering
Computer-Aided Manufacturing
Concurrent Engineering
Concurrent Engineering Reference Model
Common Gateway Interface
Computer Integrated Manufacturing
Open Systems Architecture for Computer Integrated Manufacturing
CONCurrent Engineering suppORT
Common Object Request Broker Architecture
Computer-Supported Co-operative Working
Database Management System
Distributed Computing Environment
Design For Assembly
Design For Manufacture
Flexible Manufacturing Systems
Graphical User Interface
HyperText Mark-up Language
HyperText Transfer Protocol
Interface Definition Language
Initial Graphics Exchange Standard
Internet Inter-ORB Protocol
Integrated Product Development
Just-In-Time
Java Virtual Machine
Local Area Network
Manufacturing Automation Protocol
Material Requirements Planning
Manufacturing Resource Planning
National Industrial Information Infrastructure Protocols
Object Database Management System
Open Distributed Processing
Object Management Architecture
Object Management Group
Optimised Production Technology
Object Query Language
Object Request Broker
Remote Method Invocation
Reference Model for Open Distributed Processing
Remote Procedure Call
Simultaneous Engineering
Structured Query Language
Standard for The Exchange of Product model data
Transmission Control Protocol/Internet Protocol
Technical and Office Protocol
Total Quality Management
Uniform Resource Locator
World-Wide Web

x

Chapter 1
"People can have the Model T in any colour-so long as it's black. "

Henry Ford. automotive pioneer. describing the extent of customer choice
and involvement in the production of his Model T motor car in 1908.

1. Introduction
1.1 Preamble

This research has its origin in the now global initiative to dramatically improve the product

development process in the area of product development and manufacturing known as

Concurrent Engineering (CE). Unlike our ancestors in the quotation above, modem-day

consumers have a much greater say in the goods they buy. Contrast the statement above

with Ford's current practice (Hobby 1997) of bespoke manufacturing in which vehicles are

assembled with the help of computer-generated images depicting virtual motorists. Modem

manufacturing organisations have to be able to accommodate consumers' needs more

efficiently in order to retain or capture market share.

This chapter provides a context for this research describing the market forces that have led

to the adoption of Concurrent Engineering and in particular, the problems facing

organisations employing a CE strategy. The objectives of the work are defined and the

methodology is explained. The chapter concludes by summarising the novel outcomes of

this work and provides a structure for the remainder of the thesis.

1.2 Competition and the global market

Today, just as in the past (Smith 1997) manufacturing organisations must contend with, and

aim to survive longer than, their competitors. Competition exists in various forms:

organisations selling similar product lines, aggressive pricing or mass production stealing

substantial market share. In the past, organisations have only had to endure competition

from peers in their own country. However with the advent of cheaper telecommunications

and improved transportation routes between countries I and even continents, organisations

are now faced with competition from other highly developed countries that share technical

I An obvious example of this can be seen in the Channel Tunnel linking Britain to France.

1

Concept

Manufacture

Figure 1-1. A traditional sequential
development process.

know-how and are aided by a healthy economy. This is in addition to the threat from third-

world countries that have a large, cheap labour force that can be exploited by large

multinational organisations and their highly flexible manufacturing plants. Competitive

advantage in modern organisations can therefore lie in what (Drucker 1991) describes as

'working smarter,' i.e. making better use of available resources.

Prasad (p.8-9, 1996) lists a number of factors that have led to the need for governments as

well as industries to change their way of working. These include decreasing defence

budgets, an evolving, highly competitive marketplace, recent technological advances and

closely aligned world economics and trade structures. One important area of research into

improving the competitiveness of manufacturing organisations has concentrated on the

product development process and how this can be better applied.

1.3 The product development process

1.3.1 Sequential development

Traditionally, the development of manufactured products has followed the sequential

process2 as shown in Figure 1-1. The analogy of this in the field of Software Engineering, is

what is known as the classic life cycle or 'waterfall model' (Pressman 1997; Royce 1970;

Sommerville 1996) because of the way the product development cascades from one phase to

another. Communication occurs only when a particular stage in the process is completed

and this "hand-shaking" process (Evans 1988) iterates until all parties are satisfied with the

result. Changes are inevitable during the design and development of any product. In a

sequential development process, down-stream problems are fed back up to the previous

development phase to be corrected in an iterative fashion through the disciplined use of

2 The nature and number of tasks shown in Figure I-I are hypothetical and are used simply to explain the
concept.

2

Concept

Product. design ••

Prototype

Pro.c.essdesign

Manufacture

Figure 1-2. Concurrent engineering
development.

Engineering Changes. The cost of this reworking can amount to a substantial proportion of

the total development cost. Gatenby and Foo (1990) estimate that around 80 to 90 percent of

the total life cycle cost is determined during the design phase even though the design phase

itself may only account for around 5 to 10 percent of the total product development cost.

1.3.2 Concurrent Engineering

Concurrent Engineering differs from a traditional sequential development process in that it

attempts to run as many downstream tasks as possible in parallel (see Figure 1-2). This

requires that each process has almost immediate feedback from down-stream processes and

similarly those down-stream processes begin as soon as possible using early and accurate

information from up-stream processes. Nickerson (1990) describes the difference between

sequential and concurrent engineering as " ... not what is done but when it is done."

The philosophy of Concurrent Engineering (CE) has existed in various forms since the

beginning of the twentieth century (Smith 1997). It is well documented that the pioneers of

the automotive industry such as Henry Ford, Karl Benz and Ransom Olds applied principles

which today would be characterised as Concurrent Engineering (Jo et al. 1991). In 1908,

Ford's Model T motor car was a prime example of radically different manufacturing

techniques that required not only a redesigned product but also a redesigned manufacturing

process. This combined product and process engineering is the essence of CEo The Model T

was relatively inexpensive to both manufacture and own, and thus enabled the average

person to own a motor car. Ford sold around 15 million cars before the Model Twas

discontinued in 1927. The techniques pioneered by Ford were soon adopted by many other

industries. (For a more detailed survey ofCE history the reader is referred to Smith 1997).

CE is a manufacturing philosophy as opposed to a technology (Jo et al. 1993) which has

emerged as one of the many new philosophies that is changing the way that UK. and World-

Wide manufacturers organise and control manufacturing in an attempt to remain globally

3

competitive. Other manufacturing strategies include Kanban and Just-In-Time (Jl'I') (Gupta

and Brennan 1995; Yavuz and Satir 1995), Flexible Manufacturing Systems (FMS) (WU

1995), and Optimised Production Technology (OPT) (Yenradee 1994). Some best-practice

approaches that have been applied to industries other than manufacturing include Business

Process Reengineering (BPR) (Hammer and Champy 1993) and Total Quality Management

(TQM) (Johnson and Kleiner 1995).

The philosophy of concurrent engineering has been successfully applied to a number of

different industries. Case studies have been reported in the automotive industry,

Government agencies such as the defence industry, the aerospace industry, equipment

manufacturing and the electronics industry amongst others (Coupland 1992; Zhang and

Zhang 1995). Gatenby et al. (1994) report some dramatic results on the benefits that can be

achieved by applying a well disciplined Concurrent Engineering strategy. These results are

shown in Table 1-1.

1.4 Definitions of Concurrent Engineering

There have been a number of definitions of Concurrent Engineering cited in recent

literature. They do however, all share a common theme stressing the need for team co-

operation and parallel development throughout the entire product life cycle. Some common

definitions of CE are given below.

" ... a systematic approach to the integrated concurrent design of products and their

related processes, including manufacture and support. This approach is intended to

cause the developers, from the outset to consider all elements of the product life

cycle from conception through disposal, including quality, cost, scheduling and user

requirements," (Winner et al. 1988).

" ... the concurrent development of project design functions, with open and interactive

communication existing between all team members for the purpose of reducing lead

time from concept to production launch," (McKnight and Jackson 1989).

4

"... a systematic approach to integrated product development that emphasises response

to customer expectations and embodies team values of co-operation, trust and

sharing in such a manner that decision making proceeds with large intervals of

parallel working by all life cycle perspectives early in the process, synchronised by

comparatively brief exchanges to produce consensus," (Cleetus 1992).

" ... the delivery of better, cheaper, faster products to market, by a lean way of working,

using multi-discipline teams, right first time methods and parallel processing

activities to continuously consider all constraints," (Lettice et al. 1995).

" ... an holistic methodology for the co-ordination of distributed, heterogeneous expertise

to achieve cost effective, market-driven products in minimum time scales,"

(Harding and Popplewell 1996).

The process of Concurrent Engineering has been described using many synonyms. These

synonyms include engineering such as Simultaneous Engineering (SE), life cycle

engineering, parallel engineering and producibility engineering; integration such as

Integrated Product Development (IPD), concurrent product and process design, integrated

and co-operative design and design fusion; and design for X such as design for production,

design for assembly and design for manufacturability.

1.5 Concurrent Engineering approaches

There have been many different approaches to Concurrent Engineering developed in the last

decade (Dowlatshahi 1994). These range from pure technology-based programmes which

use tools such as information systems, software systems and artificial intelligence through

semi-technologically based programmes which aim to integrate Computer-Aided Design

(CAD) and Computer-Aided Manufacturing (CAM) with more traditional approaches such

as organisational and cultural changes and techniques such as Design for Manufacturabilty

(DFM) and Design for Assembly (DFA). Molina et al. (1995a) suggest four 'enabling

technologies' that can be used to support CE which include modelling methodologies,

computer-aided decision support, information architectures and frameworks for CE

environment development.

This research focuses on the technology-based approach to CE which looks at how

computer systems can be made to inter-operate throughout the entire product life cycle and

how they can be used to better support the Concurrent Engineering process. In the

perspective of Molina et al. (1995a) this thesis considers information system architectures
and frameworks for CEo

5

1.6 Problems associated with technology-based CE approaches

Practitioners of Concurrent Engineering have encountered a number of problems. These

have emerged as a result of the new working practices that CE requires such as information

sharing, wide geographically located teams and the problems associated with integrating

inherently heterogeneous systems.

1.6.1 Sharing information effectively

Co-operative teams need to share information effectively in order to reduce data wastage.

Lewis et al. (1994) reports how sharing incompatible data among groups commonly requires

data re-entry or translation which leads to data redundancy, data duplication, data

transcription errors and data that is second-hand. This is largely due to the reliance on

legacy computer systems that are not capable of sharing information (Nickerson 1990)

either because they were not built with this feature in mind or because the data they contain

is not in a standardised format. These "islands of automation" (Koonce 1995) can seriously

hinder the CE process.

1.6.2 Widely dispersed teams

Companies employing CE come in all shapes and sizes. Using conventional means, factors

such as the ease with which team members can contact each other and with which meetings

can be arranged are all affected by the geographic dispersion of the organisation. This has

become increasingly significant as more and more companies employ CE teams with

members not only at different sites but also in different countries spanning different time

zones (Scrivener et al. 1995). The resultant difficulty involved in managing such a widely

dispersed non-collocated team is therefore higher than for collocated teams (Harding and

Popplewell 1996; Powell 1996) (see Figure 1-3.)

1.6.3 Heterogeneity

Large computer networks such as those used in modem manufacturing organisations are

inherently heterogeneous due to a number of factors. These include:

• The rapid pace of technological change-the average processing power of a

microprocessor doubles roughly every 18months according to Moore's Law', This leads

to organisations upgrading hardware constantly in an attempt to remain competitive (for

a survey of the heterogeneity of systems in CE, see Kannan et al. 1992).

3 The observation by semiconductor engineer Gordon Moore in 1964, that the amount of information storable on
a given amount of silicon has roughly doubled every year since the technology was invented. This relation
held until the late 1970s at which point the doubling period slowed to about eighteen months.

6

Level of difficulty
in managing team

Team
members in

different \
countries \

Team
members in

r the same
location

Team
----- members on

different sites

Geographic
dispersion of

team

Figure 1-3. The effect of geographic
location on CE teams.

• Reliance on legacy systems-for example a company that relies heavily on a mainframe

application to handle MRPII will be reluctant to scrap it. Also, organisations may have

spent large sums of money on existing systems that must be utilised at least until the

investment has paid off.

• Engineering trade-offs (Vinoski 1997}-the fact that there is usually more than one

acceptable solution to a complex engineering problem can lead to different departments

within an organisation choosing different solutions to similar problems.

Farooqui et al. (1995) also categorises types of heterogeneity to include equipment,

operating systems, computational (programming or database) languages, software

applications and authorities (where interaction between autonomous ownership domains is

required).

1.7 Definitions of keywords in the context of this research

The following terms will be referred to throughout this thesis, and are therefore defined

below in the context of this research.

Architecture

In the context of software engineering, architecture is the formal structure that can be used

to integrate all the elements necessary to develop a complete software system. The

architecture is the combination of system and data models along with definition of the

procedures that link each of these components.

7

Environment

An environment is the realisation of an architecture and supporting systems. In the case of

realising a computer system architecture, the environment would be the combination of

software and hardware required to implement the architecture.

Cross-functional team

A cross-functional team is a team composed of representative members from as many

aspects of the entire product life cycle as possible. In contrast to, say, a design team that is

made up purely of designers, a cross-functional team might include members from design,

production planning, production, marketing, sales, finance, maintenance, quality control and

disposal to name but a few.

Virtual working

Virtual working is hereby defined as the use of computer-based communication systems to

facilitate normal day-to-day working practices for non-collocated workers.

1.8 Scope ofthe research

This research is concerned with facilitating the Concurrent Engineering process from an

information and collaboration perspective, from initial product conception through to

disposal. It focuses on the problems of virtual team working and the underlying

infrastructure required for supporting virtual Concurrent Engineering.

The field of Computer Supported Co-operative Working (CSCW) is an interesting research

area that impinges on technology-based companies practising CEo This research

acknowledges the contribution of CSCW on CE and incorporates many of the characteristics

of CSCW in solving some of the problems encountered by CE practitioners. It does not

however, focus on the mechanisms used or the social implications of using CSCW

technology .

The research that surrounds the area of generic product information models for enabling CE

such as STEP (STandard for the Exchange of Product model data; ISO 1992b) is not the

focus of this research, although this work does consider the application of such information

models.

8

1.9 Aims and objectives

The research aims to answer a number of questions posed by CE practitioners. These

include:

1. What aspects of current computer technology are useful to Concurrent Engineering?

2. What new technologies are needed to support CE?

3. What frameworks exist for supporting CE?

4. What components are useful building blocks for next-generation frameworks?

The aim of this research is to present a global computing and information system

architecture that will facilitate the day-to-day running of Concurrent Engineering projects.

~y providing a means to efficiently undertake CE, it is believed that the dramatic reductions

in product development time and cost, along with improvements in product quality that are

attributed to CE, can at least be sustained and even improved upon. To achieve this aim the

following objectives will be pursued:

a) Acquire an understanding of current CE product development processes.

b) Review current computer-based systems used in manufacturing.

c) Develop a computer systems architecture that can be applied to manufacturing

organisations globally.

d) Develop an information systems model that can be applied to CE projects.

e) Effectively demonstrate the complete system in a live application.

1.10 Research methodology

To achieve the above objectives, the research methodology outlined below will be adopted:

a) Compile a state-of-the-art review of techniques that are used by CE practitioners.

b) Investigate information systems that have been applied to manufacturing and / or CE

problems.

c) Develop a state-of-the-art review of recent technological advances that can be used to

facilitate CEo

d) Investigate information systems and computer systems modelling techniques. Database

approaches, data modelling methods and systems building will be analysed in the context

of the unique requirements of CEo

e) Develop a computer systems architecture and information systems model that can be

used to facilitate CE projects.

f) Build a prototype CE support environment based on these models. These models will be

realised in a live software application suite.

g) Validate the environment by application in a number of case studies.

9

1.11 Contribution to knowledge through this research

The novel aspects of the work described in this thesis are:

1. A reference model for Concurrent Engineering (CE-RM) that can be used as a

foundation in the design and building of distributed computer-based support

environments has been devised (Hanneghan et al. 1998), (discussed in Chapter 4).

2. A computer systems architecture (the CONCERT architecture) that fulfils the

requirements of the CE-RM and which can be used to facilitate a Concurrent

Engineering strategy has been developed (Hanneghan et al. 1996a) and implemented

(Hanneghan et al. 1997), (discussed in Chapter 5).

3. An information system model has been developed that can be used to capture

necessary information associated with CE projects (Hanneghan et al. 1995),

(discussed in Chapter 6).

4. This work is the result of a synthesis of a number of disparate research fields

including:

a) Concurrent Engineering.

b) Global Manufacturing.

c) Inter-operable computer systems.

d) Computer-Supported Co-operative Working (CSCW).

e) Data and database management (discussed in Chapter 2).

5. A global perspective has been assumed in analysing the CE process. This has taken

into account the fact that modem organisations need to co-operate with other

organisations that may be in different countries. Organisations may themselves be

composed of a number of departments that span an entire continent.

6. The system has been designed as a generic tool that can be applied to many diverse

problem domains, not just Concurrent Engineering. As such, the system does not

enforce any particular product information model standard on a project", instead

leaving that decision to the Project Manager. This means that the system can been

more easily integrated into existing projects without causing product specifications

to be re-worked, (discussed in Chapter 8).

7. The work has produced an open environment on which to base future research. This

openness is a result of the flexibility and extensibility of the design that is uniformly

modelled using object-oriented methods, (discussed in Chapter 9).

4 It is, however, the opinion of the author that the STEP protocol is an obvious choice to enforce for
manufacturing-based projects.

10

8. The implementation of the design is a novel use of the Internet (Hanneghan et al.

1996b; Hanneghan et al. 1996c) which can be safely applied to an Internet

environment in all its current guises: i.e. the Internet, Intranets and Extranets,

(discussed in Chapter 7).

1.12 Summary

This introductory chapter has described the reasons why organisations have been compelled

to look for improvements in working practices due to increasing global competitiveness.

This chapter has described the notion of a Concurrent Engineering strategy in relation to the

traditional sequential engineering process. It has also given a number of definitions that

have been used to describe Concurrent Engineering by its practitioners. This chapter

concludes with an up-to-date definition of CE which has been formulated whilst undertaking

this research (Hanneghan et al. 1997) and which will serve as the contextual basis for the

remainder of the thesis (see Figure 1-4). It is based on the respected opinions ofleading CE

practitioners and personal observations of CE practice. Key points in the definition are

shown emboldened (in a similar vein to that used by Cleetus 1992) to emphasise their

importance and highlight the gaps in current CE research.

"Concurrent Engineering is a systematic approach to parallel development

of all product life cycle activities, from initial conception through design,

planning, production and disposal. It is an enriched communication

infrastructure which is unconstrained by geographical location that

encourages right-first-time methods through cross-functional team

working and consensus. "

Figure 1-4. Definition of Concurrent Engineering.

1.13 Thesis structure

This thesis is structured into nine Chapters. Chapter two describes the background of the

basis for current computer-based support systems looking at the role of distributed

computing environments and CSCW in addition to recent advances in product information

modelling and virtual working. To fully complete this survey, this Chapter also takes into

account a number of recent technology advances that have impacted the work of global

manufacturing organisations: initiatives such as the Internet and World-Wide Web and the

prevalence of distributed object-based systems.

11

Chapter three presents a detailed survey of current state-of-the-art in CE support systems

and describes requirements for CE support environments from the perspective of CE

practitioners and leading academics. It concludes by presenting a start-of-the-art list of

requirements for CE support systems noting key areas of research that need to be addressed.

Chapters four, five and six present the design of a new architecture to facilitate virtual

Concurrent Engineering teams. Chapter four introduces this design through a viewpoint

model that takes into consideration the various facets of CE projects and synthesises these

into a single coherent model. From this viewpoint model, a high-level computer systems

architecture which describes the various components needed to address the issues raised is

the subject of Chapter five and an information system object model which is comprised of a

detailed system model and an information systems model follows in Chapter six. These

detailed models describe the inner workings of the entire system via a set of rules,

constraints and policies. The design is consistently modelled throughout using an object-

oriented methodology.

Chapter seven demonstrates a physical implementation of the architecture described in

Chapters four, five and six and discusses the decisions made in implementing the system in

the way proposed. An evaluation of the implemented system is given in Chapter eight which

looks at its application in two case studies and this Chapter concludes with a comment on

how the proposed system can also be applied to other problem domains in addition to

Concurrent Engineering.

The thesis concludes with Chapter nine, which summarises the work done, and draws some

general conclusions. A number of interesting points are also raised here for further work and

further research based on the contribution of this research to the field of Concurrent
Engineering.

Appendix A provides an overview of the Fusion object modelling notation used to describe

the models developed in this thesis with Appendix B describing the system interfaces and

Appendix C describing the information system object model. For completeness, a list of

international journal and conference publications that have been made during the course of

this research is given in Appendix D.

12

Chapter 2
" ... it is safe to assume that anyone with any knowledge will have to acquire new knowledge every

four or five years or become obsolete. " Peter Drucker, speaking in Harvard Business Review,

September-October 1992.

2. Background and influencing factors on this research
2.1 Introduction

This chapter introduces a number of factors that have influenced this research. Although the

driving force for the research was the support of Concurrent Engineering, it became

apparent that recent advances in information technology and working practices would playa

key part in defining any new model or method for CE support. This chapter also discusses a

number of other factors that now need to be considered for development of future

environments to avoid this research becoming obsolete (see Drucker's comment above).

2.2 Computer Integrated Manufacturing

Computer Integrated Manufacturing (CIM) today is based on the concepts proposed by

Harrington (1973) which aim to integrate data processing operations within a manufacturing

environment for the entire product life cycle. A number of applications that can be used to

help achieve this aim have been developed since this concept was introduced, Figure 2-1

shows a taxonomy of some of them.

This wide variety of applications, each of which usually has its own unique set of data

requirements, has given rise to interoperability problems. In the manufacture of some

product, for example, a CAD application may represent the product as a set of features

(holes, blocks, etc.) while a stress analysis application may represent the same product's

geometry as a mesh while a CAM system might represent the product in yet another format
as a tool path.

13

Q)
I/)
IV

..01/)
cb E

r----I ~~f---_-I
Q)~
~I/)
o
§

'Ow
Q)~
~8
.!oO)
~.§
:::J Q)
e.Q)
E.500)
Uc:

W

Figure 2-1. Taxonomy of elM applications currently in
use.

14

In addition to this, management information systems such as MRPII (Manufacturing

Resource Planning) systems require product information such as lead times and due dates of

component parts. It can be seen then that each CIM application can potentially have a

different view of the same product data, highlighting the product's polymorphic

characteristics.

A common form of implementing a common product information model between all CIM

applications is via data translation. Specially written software that performs the translation

between one format and another are logically configured between incompatible applications

~n the CIM environment (see Figure 2-2). This method can work (with varying degrees of

success) but can also cause data to be lost or misinterpreted since the semantics of the data

is rarely captured (Trapp et al. 1992). A number of recent efforts have begun to address the

problems of multiple information models, most notably is the STEP protocol.

2.2.1 Product information models

The Standard for The Exchange of Product model data (STEP) protocol is an extensive

product information model which covers the entire life cycle of a product and is an

internationally recognised standard (ISO 1992b). STEP provides an object-oriented

language called EXPRESS (ISO 1993) which can be used to define entities. This emphasis

on object-orientation allows the capturing of the polymorphic characteristics of product

data. STEP also provides a means for data translation between STEP and legacy formats via

the STEP Data Access Interface (SDAI).

Other related product information model initiatives include:

• IGES-Initial Graphics Exchange Standard (Smith and Wellington 1986) is a

format jointly developed by Boeing, General Electric and the USAF and is widely

used. However, it is not suitable for solid modelling or assembly operations.

• DXF-DXF (Drawing interchange Format) has its origins' on PC-based CAD

systems e.g. AutoCAD (Autodesk Inc. 1997) and become a de facto standard for

smaller companies.

CAD to. Translation to. FEA
application product featul&s -v' software product mesh 11' application

Figure 2-2. Data translation in elM
environments.

15

• CADEX, NEUTRABAS and IMPPACT-CADEX (CAD geometry EXchange),

NEUTRABAS (NEUTRal product definition dataBASe for large multi-functional

systems) and IMPPACT (Integrated Modelling of Products and Processes using

Advanced Computer Technologies) are projects initiated by the European Strategic

Programme for Research and development in Information Technology (ESPRIT)

with the goal of supporting the STEP protocol.

Many of these and other formats are currently in use by companies although most

practitioners of CE believe that the STEP protocol will be dominant in the near future.

2.3 Distributed computing

Distributed computing has been defined as "a collection of autonomous computers linked by

a computer network and equipped with distribution software" (Coulouris et al. 1994). This

statement raises a number of important points that have importance in CE support

environments:

1. Users are separate-Each user has their own personal workstation capable of running

their own set of locally available application programs as well as those that are centrally

available (for example ofa company mainframe).

2. There is autonomous operation-Users are no longer tied to sharing a central computer

where they compete for computing resources.

3. There is a reliance on a network infrastructure-The workstation can operate in

conjunction with other computers via network communications.

Distributed computing has a number of goals: separation and transparency (ANSA 1989)

and heterogeneity. Separation describes the physical characteristics of a distributed system;

each user maintains a separate existence in the system. The effect of this is that workstation

faults or errors are contained without disrupting the entire network. Separation also allows

for the parallel execution of tasks, whereby some large task can be split into smaller sub-

tasks that can be executed on a number of separate workstations simultaneously.

Transparency is defined as the concealment of separation from either the application

programmer or end-system user. The ODP (Open Distributed Processing) engineering

model (Farooqui et al. 1995) identifies a number of types of transparency that are important

in distributed systems while ANSA proposes a few additions to this list (ANSA 1989).

These transparencies are described in Table 2-1.'

16

Heterogeneity in distributed computing systems is evident in the diverse range of

architectures, programming and database languages, operating systems and application

programs (Farooqui et al. 1995; Vinoski 1997). Access transparency provides a means for

heterogeneous systems to inter-operate.

2.3.1 Manufacturing networks

The Manufacturing Automation Protocol (MAP) and Technical and Office Protocol (TOP)

have been proposed as standards for distributed manufacturing networks (Valenzano et al.

1992). MAP was developed by General Motors to tackle integration problems experienced

due to the wide heterogeneity in the computer equipment used within its networks. It has

been defined by Goscinski (pg. 62, 1991) as " ... a local network and associated

communication protocols for programmable controllers, robots and terminals within a plant

(factory). "

2.3.2 Inter-operable systems

Research into inter-operable systems emerged as a result of the problems that became

evident when heterogeneous systems needed to work together. These problems arose from

the incompatibilities of competing systems in areas such as data representation, network

transport protocol and programming language support. This inter-operability also now

needed to span organisational boundaries, not just plant wide LANs which in the view of

Nickerson (1990) failed to solve the underlying problems.

2.3.2.1 Homogeneous language-based systems

Recently, homogeneous language-based inter-operable systems such as the Remote Method

Invocation (RMI) mechanism built into the Java language (Arnold and Gosling 1996) have

become popular, This approach effectively turns the problem of heterogeneity on its head by

enforcing the use of a single language (Java in this case) which runs inside a portable

Virtual Machine core. The Java Virtual Machine (JVM) is made available on multiple

computer platforms within a distributed environment and application programs are only

ever written in Java. In this type of environment the applications are homogeneous while the

JVM is heterogeneous.

17

Table 2-1. Transparencies important in distributed
computing.

Transparency Effect for distributed computing

Access Clients are unaware of the invocation mechanisms at
the server interface (i.e. whether they are local or
remote).

Concurrency Hides from the clients the fact that there may be
several other clients concurrently accessing the
server.

Failure Clients are unaware of the failure of the server and
its subsequent reactivation.

Federation Clients need not be aware that the system spans
many organisational boundaries.

Location Clients are unaware of the physical location of the
server.

Migration Clients are unaware that the server may have been
dynamically relocated.

Performance Allows the system to be optimised to improve
performance as system load varies.

Replication Clients need not be aware that there may be multiple
replicated instances of data.

Resource Clients are unaware of the deactivation and
reactivation of the server.

Scaling Allows the system to expand and decrease in scale
without change to system structure or application
programs.

2.3.2.2 Heterogeneous language-based systems

Heterogeneous language-based systems attempt to allow more than one language (and / or

computer architecture) to inter-operate. This is usually done through the use of some

intermediate language which participating systems can use to describe their interfaces to

other services and clients. This language translates any proprietary data formats into one

common format that is used by all participants. A number of standards for this type of inter-

18

operable system have been proposed including the Object Management Architecture,

Distributed Computing Environment (DCE) and the Remote Procedure Call (RPC).

The Object Management Architecture

The OMG (Object Management Group) is a consortium of more than 700 organisations

working together to create standards to address the challenge of developing network

applications. At the core of OMG's work is the CORBA (Common Object Request Broker

Architecture) standard that defines a communication infrastructure allowing a

heterogeneous distributed collection of objects to collaborate transparently. CORBA is part

of the Object Management Architecture Reference Model (shown in Figure 2-3) which

consists of the following components:

• Object Request Broker-This enables objects to transparently make and receive

requests and responses in a distributed environment. It is the foundation for building

applications from distributed objects and for interoperability between applications

in heterogeneous and homogeneous environments.

• Object Services-These are a collection of services (interfaces and objects) that

support basic functions for using and implementing objects and which are always

independent of application domains. CORBA defines fourteen such object services

(Object Management Group 1997) which cover aspects such as Naming, Events,

Life Cycle, Persistence, Transactions, Concurrency Control, Relationships,

Externalisation, Queries, Licensing, Properties, Time, Security and Object Trading.

• Common Facilities-these are a collection of services that many applications may

share, but which are not as fundamental as the Object Services. For instance, system

management and electronic mail are classified as common facilities (Object

Management Group 1995b).

• Application Objects-these are products of a single vendor or in-house development

group which controls their interfaces. Application Objects correspond to the

traditional notion of applications, so they are not standardised by OMG. Instead,

Application Objects constitute the uppermost layer of the Reference Model.

19

CORBA makes use of an intermediate language called IDL (Interface Definition Language)

which is used to describe object interfaces in a single common format. Its structure is very

similar to the C++ programming language (Stroustrup 1991) and the OMG has produced

mappings from IDL to many popular languages such as C, C++, Java and Smalltalk. A

number of commercial and research-based computer systems have been successfully built

using the Object Management Architecture.

Other initiatives

The Remote Procedure Call (RPC) (Birrell and Nelson 1984; Coulouris et al. 1994) is a

technique which allows software application programs to call procedures or functions which

reside in software on distributed machines as simply as calling procedures local to the

application. It does this by packaging (also known as marshalling) any parameters

associated with the procedure call and transmitting these over the network where they are

un-marshalled at the receiving end. The remote procedure then executes using these

parameters and any results are passed back to the calling application in a similar fashion.

The information passed in an RPC is translated into a portable common format known as

XDR (eXternal Data Representation). The most common implementation of RPC is found

in the BSD UNIX operating system.

DCE (Open Software Foundation 1993) is a suite of integrated software services that uses

RPC. It also includes a number of key services:

20

• Security service-This authenticates the identities of users, authorises access to

resources on a distributed network and provides user and server account

management.

• Directory service-This provides a single naming model throughout the distributed

environment.

• Time service- This synchronises the system clocks throughout the network.

• Threads service-This provides applications with multiple threads of execution

capability.

• Distributed file service-This provides access to files across a network.

2.4 Database models

The product development process typically generates huge amounts of information, which

brings with it the requirement -of secure, reliable, long-term storage. Database systems are

commonly used to store and manage this type of information and a number of database

models currently exist. Early database models included the hierarchical and network

models. However, more advanced and generally easier to use models such as the relational

and object-oriented models have largely superseded these. These last two models are

therefore described in greater detail in the following sub-sections.

2.4.1 Relational databases

The relational database model has its origins in set theory and was devised by E.F. Codd in

the 1970s (Codd 1970). Entities to be stored in a relational database are usually normalised

to remove data duplication and redundancy before being stored in tables. These tables have

columns or attributes and rows or tuples. The data in these tables can be manipulated using a

relational algebra of which SQL (Structured Query Language) is the best known example.

SQL has been the subject of many standardisation efforts that have resulted in the now

universally accepted SQL92 standard. Examples of relational databases include Ingres, DB2
and Oracle 7.0. '

2.4.2 Object databases

Object databases (also known as object-oriented databases and Object Database

Management Systems or ODBMS) are defined by the Object Database Management Group

(ODMG) as: " ... a DBMS that integrates database capabilities with object-oriented

programming language capabilities" (Cattell et al. 1997); in other words, the objects in the

database appear transparently as programming language objects.

21

There are a number of reasons why object databases are more amenable to Concurrent

Engineering projects than relational databases. These include:

• Better support for abstract data types (ADTs)-Object databases can support

diverse media such as video, audio and proprietary binary information such as CAD

models as well as providing a means to support abstract data types which allows

new data types to be defined in the future. Concurrent Engineering data covers the

entire product life cycle and therefore includes many arbitrary data types.

• Better support for highly complex interconnected objects-Object-oriented

languages such as Smalltalk (Goldberg 1984) and Java (Arnold and Gosling 1996)

provide data structures that allow collections of objects to be closely interconnected

and aggregated which can result in complex tree-like structures. Object databases

can store these complex objects 'as is', whereas relational databases must first break

the structure into normalised entities before it can be stored.

• More fine-grained operations-Locking can take place at the individual object level

as opposed to the relational table or page' level resulting in more responsive

transactions for users.

Better support for distributed environments-Object databases map more naturally

into distributed environments (Wade 1995).

Early research into object databases (Kim and Lochovsky 1989) has resulted in a number of

•

commercial products including Itasca which grew from a research project called ORION

(Kim et al. 1989), GemStone (Bretl et al. 1989), ObjectStore, O2, Versant and Poet.

2.4.3 Object-relational databases

Object-relational databases have the relational model as their foundation. They typically

extend this, however, to include support for object-oriented concepts such as subtypes and

inheritance, polymorphism, object identifiers and the ability to store abstract data types and

their behaviour (Stonebraker and Kemnitz 1991). Standardisation efforts" to unify the

operation of object-relational databases has been slow, but recent efforts aim to ratify the

SQL3 query language which is a superset of SQL92 with standard object extensions.

Examples of object-relational databases include Postgres (Stonebraker et al. 1990), Illustra
and Oracle 8.0.

SA .
page IS a subset of a some data (i.e. a table) and is usually of a fixed size, e.g. 64 kilobytes.

6 BObt~ANSI (X3H2) and ISO (ISOIIEC JTCIISC2IIWG3) have standardisation committees for recommending
o uect extensions to SQL. .

22

2.S Computer-Supported Co-operative Working

Computer-Support Co-operative Working (CSCW) is the term used to describe

collaboration between multiple team members using computers. CSCW emerged in the mid-

1980s and is now a recognised interdisciplinary research field in its own right (Spurr et al.

1994). 'Groupware' is the term being given to computing products which are beginning to

provide practical examples of the tools and techniques involved in CSCW (Golfin and

Jackson 1994) and whose purpose is to 'support the collaborative activities of organisational

workgroups' (Mandviwalla and Olfinan 1994). Certain groupware applications are now

becoming common in organisations such as e-mail and calendar applications (these are

described in more detail in Table 2-2.) A more detailed review of CSCW can be found in

Greenberg (1991a).

Typical examples of groupware applications and where they are used are shown in Table

2-3. This figure is composed of both a time and space dimension: a group of people can

work at the same time or collaborate over some period of time. Furthermore these people

can either be in the same location (e.g. the same building) or physically distributed (e.g.

spread throughout an entire country). The time-scale of the product development process

also dictates the level of collaboration: shorter time-scales may require almost instantaneous

(synchronous) communication between team members while longer time-scales may allow

delayed (asynchronous) feedback. Table 2-4 gives examples of typical product development

processes and the time-scales involved.

The importance of CSCW should not be understated; results of recent studies have shown

that electronic brainstorming is superior to traditional verbal brainstorming for large groups

involved in sharing ideas (Aiken et al. 1994). This is highly applicable to Concurrent

Engineering where multiple team members aim to achieve consensus. In addition to this,

dramatic cost savings can be made by utilising electronic conferencing tools; an article in

Computing (Massey 1996) describes how one company saved its executives 750,000 miles

of business travel a year through the use of videoconferencing. However for groupware to

proactively support a CE process, the specific needs of a decentralised virtual team need to

be considered. Mandviwalla and Olfinan (1994) report that current groupware tools are

mostly 'leader' driven. As will be described in the next section, virtual teams rarely involve

a central leader, instead relying on group consensus for control.

23

Table 2-2. Types of CSCW application.

Application Description

Electronic mail
(e-mail)

Bulletin board

Group scheduler I
calendar

Workflow system

Project management

Collaborative
authoring

Screen sharing

Meeting support
system

E-mail is used to send electronic messages to individuals or
groups of individuals. Recent enhancements such as support for
MIME (Multipurpose Internet Mail Extensions) types means that
e-mail can be used to send binary data not just text.

Bulletin boards are used as electronic notice boards where users
can read and post electronic notices. An example of this can be
found in the Lotus Notes product (Lotus Corporation 1993).

Group schedulers allow managers to schedule meetings
electronically. Each user has an individual calendar that they
maintain with their own appointments. The group scheduler can
interrogate a user's calendar to determine if a meeting is possible
at a given time. In the event of a conflict, the scheduler can find
the next available meeting date when all respective participants
are free. An example is the Clockwise application (Hayes 1992).

Workflow tools aid in the monitoring and managing of state and
stage-oriented operations. An example is DEC LinkWorks (Smith
1994).

Project management tools can be used to plan and monitor the
progress of a project. The tool can be used to quickly calculate the
effect of any changes to a schedule.

Collaborative authoring occurs when more than one author
prepares a document either in real time or asynchronously. These
tools facilitate collaborative authoring by allowing multiple users
to share a common resource while preserving any changes that
are made e.g. by allowing non-destructive editing. An example
can be found in CoDraft (Kirsche et al. 1993).

Screen sharing is a technique used when multiple users need to
view changes to a document in real-time. A number of users
effectively 'share' a common screen in which the effects of
changes by any user can be seen immediately. An example is
Share (Greenberg 1991b).

Meeting support systems are used to facilitate recording and
participation in meetings. An example can be seen in the
Collaborative Management Room (Nunamaker et al. 1991).

24

Table 2-2 (continued)

Application Description

Desktop
conferencing

This is a technique for allowing multiple users to participate in a
'conference' electronically. Typically each user can view and
send text-based comments to all other users involved in a given
conference. An example is the MONET application (Srinivas et
al. 1992).

Videoconferencing A logical extension to desktop conferencing is videoconferencing
that includes the ability to use real-time video and audio.
Typically this is used to relay live visual displays of the
participants. An example of this is ISDN PC (Jager et al. 1993).

Table 2-3. Typical uses of groupware applications.

Mode of working

Simultaneous Collaborative

• Face-to-face meetings • Local area network
• Group decision support • Electronic mail

systems • Common information model-~ • Meeting support systems repositoryC)

.3 • Collaborative authoring tools
• Project management
• Workflow management

1:1 • Bulletin boards
e::~ue Wide area network Wide area network~ • •

• Common information model • Electronic mail
"0 repository • Common information model
~ • Desktop conferencing repository
.0
'5 • Videoconferencing • Project management
til • Collaborative authoring tools • Workflow management.....
Cl • Screen sharing • Collaborative authoring tools

• Real-time document • Bulletin boards
management

25

Table 2-4. How the product life cycle dictates types of
communication.

Product Life cycle time- Example Communication
scale

Daily newspaper very short Less than 24 hours synchronous

Fashion clothing short Weeks synchronous /
asynchronous

Computer software medium to long Months to years asynchronous

Aerospace long to very Many person-years asynchronous
long

2.6 Virtual teams

Trapp et al. (1992) defines the virtual team as " ... a geographically scattered team of experts

who are connected to a computer network and communicate through multiple media and

share information using groupware and other shared information models." Virtual CE teams

are composed of cross-functional members from the entire life cycle of the product. In order

for these team members to be able to effectively co-operate and share information, they

must each conform to a common product information model. An example structure of a CE

virtual team is shown in Figure 2-4. In addition to the team members shown in this diagram,

customers and suppliers also need to be considered as part of the virtual team.

2.6.1 Problems associated with virtual team working

A number of problems associated with team working over large distances have been

highlighted by Scrivener et al. (1995). These problems include cross-cultural differences

and cross-time zone differences in addition to the problems related to technology and work

practices highlighted earlier.

Cultural differences exist when teams are composed of members from more than one

country. An extreme example of this is the collaboration of an English speaking

organisation and a Japanese speaking organisation which requires translators to act as

intermediaries between the two parties. Product and project information may be stored in

one common language that may lose valuable details in translation, or in a combination of

both languages which would require translations. It has been shown that even when team

members come from countries which share a common language, e.g. England and Australia,

26

cultural differences can still exist. For a detailed investigation of these problems the reader

is referred to Scrivener (1995).

Time zone differences are a consequence of the wide geographic dispersions that are

possible in virtual teams. Problems include finding a suitable time of day to arrange

meetings or group collaborations. When team members are situated on opposite sides of the

globe, normal working hours may not coincide. For example, the time in Japan is nine hours

ahead of London so while one office is working, it is highly likely that the other is closed

and its workers sleeping.

2.6.2 Practical issuesfor virtual CE teams

Prasad (p. 211, 1996) lists six common pitfalls in Concurrent Engineering projects three of

which relate to the virtual team working paradigm. These are the risk of wasted efforts, the

build-up of errors and 'concurrent chaos'. Wasted effort occurs when team members

perform the same task in parallel unaware of each other's actions. Error build-up occurs

when team members engage in more simultaneity that necessary, taking valuable time away

from key activities such as error correction. Concurrent chaos becomes evident when

incomplete information is released early to other team members in order to improve the

concurrency of the overall project that instead intensifies the error build-up problem.

It follows then that successful virtual team working requires a systematic approach in order

to be most effective. The first, and possibly the most important step, is the formation of the

CE team. This is the collective unit that will work together to achieve a common goal. In the

27

context of this research it is considered that teams that may be made up of non-collocated

team members-so called "Virtual Teams". In order for virtual CE teams to be effective

there are a number of issues that need to be addressed, accepted and adhered to by all

members from senior executive to shop floor worker. These are described in detail below.

2.6.2.1 Team structure

The virtual CE team (henceforth referred to as 'the Team') is a cross-functional team. In

order to capture aspects from all stages of the product life cycle it must be representative of

all the requisite stages. This requires building the Team from actual stakeholders in the

product, examples include personnel from disciplines such as: executive management,

product design, marketing, sales, production, maintenance, purchasing, disposal, materials,

finance, and support. One important team member who must also be considered is the

eventual customer. In this team building exercise, it is sometimes helpful if one particular

team member acts as the 'project champion' i.e. someone who makes it their goal to ensure

the success of the project and help the project gain momentum.

2.6.2.2 Consensus

An important factor in improving product quality is to reduce the level of scrap or

reworking needed. This 'waste' arises when communication between Team members breaks

down or is simply ineffective. The Team should aim to adopt a consensus approach to

decision-making whereby all interested parties can state their approval or disapproval on a

particular aspect. This is very different from traditional sequential engineering processes

where the product passes through various production stages with little or no comment from

down-stream employees. One approach to achieving consensus is through regular product

development reviews that involve all team members and allow each member to state their

views. This could be in the form of regular conferences or disciplined group voting

available as CSCW software tools.

2.6.2.3 Level playingfield

Computer-based communication breaks down hierarchical barriers and can provide an

environment where all voices are equal. However most computer-based communication

methods are radically different from traditional methods such as face-to-face

communication and telephone calls and as such require new skills to be learned to achieve

their full potential. Cutkosky et al. (1996) cites one such example during the Madefast

project of a technically competent technician who was reluctant to speak tip during group

conferences or respond to broadcast solicitations for feedback. In this case it was deemed

more effective to consult the technician directly, thereby abandoning electronic methods. A

virtual team support environment should record contact information of all team members

28

such as their address, fax and telephone numbers to facilitate this form of communication

also.

2.6.2.4 Anticipating problems caused by dramatic change

Henry Ford was a pioneer of new manufacturing processes in the early twentieth century.

His assembly line approach greatly increased productivity (and company profits) but just six

years after production of his revolutionary Model T car began, labour turnover was at forty

to sixty percent. This was largely due to the monotony and repetition of assembly line

procedures. Workers were not accustomed to this method of working; the change was just

~oo dramatic.' This stresses the need for improved working practices perhaps in the form of

new pay structures (Ford increased stability in the workforce by doubling the industry

standard daily wage) or bonus schemes such as performance-related pay.

Smith (1997) argues that CE is the result of a summary of best practice in product

development rather than the adoption of a radically new set of ideas. However, this research

contends that when an organisation versed in the more traditional sequential product

development process is faced with implementing CE, the transition is significant. For the

degree of change to be considered insignificant, Smith's theory of best practice coalescence

assumes that an organisation has already undergone a period where it was committed to

some other product and process improvement philosophy.

2.7 The Internet

The Internet began life in 1969 when the US Department of Defense commissioned

ARPANET for computer networking research (Baran 1995). ARPANET produced a means

of linking military networks together. This 'network of networks' initially covered only

military networks in the United States but was quickly expanded to include defence-related

corporations and research institutions. In the 1980s these interconnected networks spread

widely to reach universities and other organisations throughout the world. Now, it is

Possible for the Internet to reach almost every household that has thenecessary computer

hardware and software and a telephone line. The actual number of computers connected to

the Internet is roughly doubling each year (see Figure 2-5).

7 Th~~oncePt has proved too expensive in present day motor vehicle manufacturing with manufacturers instead
m mg the transition to robot assembly to handle mundane tasks.

29

Both large and small companies can access this global inter-network relatively easily and

cheaply and there is no discrimination against who can join the Internet, as it is not owned

by any single organisation. This may be of special importance to companies in third world

and developing countries that wish to use the Internet to assist a Concurrent Engineering

strategy. Ellsworth and Ellsworth (1994) provide ten reasons why businesses are using the

Internet. and it is clear that these reasons have a lot in common with the goals of a CE

strategy (Table 2-5 describes these reasons in relation to a CE strategy.)

2. 7.1 Internet terminology

The term 'Internet' has been associated with many meanings in published literature. This

section provides some definitions of the Internet terminology that will be used in the

remainder of this thesis.

Internet-The Internet is a global infrastructure that links networks of networks, i.e. it is an

inter-network.

Intranet-An Intranet is a local and usually private network that is based on Internet

technologies (see §2.7.2). Intranets are typically used to provide a range of information

services for employees and departments within an organisation.

Extranet-The term Extranet refers to any Intranet site that can be accessed securely by an

30

external Internet site. This is used for example to enable organisations to share information

with business partners.

2.7.2 Internet technologies

A number of useful Internet technologies have been developed and standardised such as

FTP (File Transfer Protocol) which allows users to send and receive files from any

connected site (Postel and Reynolds 1985), NNTP (Network News Transfer Protocol) a

standard for the stream-based transmission of news (Kantor and Lapsley 1986) and Gopher

which is a distributed document search and retrieval protocol (Anklesaria et al. 1993). These

technologies are now widely used by the Internet community. However, possibly the most

well known Internet technology of recent years is the World-Wide Web.

2.7.2.1 The World-Wide Web

The World-Wide Web (WWW) began life in March 1989 when Tim Berners-Lee of the

European Particle Physics Laboratory in Geneva (CERN) proposed the project as a means of

transporting research and ideas effectively throughout the organisation. It initially outlined

the Useof a simple system of networked computers that would use a hypertext protocol to

communicate and transmit documents (Berners Lee et al. 1994). The technologies that

underpin the WWW include a standard for describing hypertext documents (HTML)

HyperText Markup Language (Raggett 1997); a special transport protocol for hypertext

naVigation (HTTP) HyperText Transport Protocol (Fielding et al. 1997); and a means for

server-side applications to interact with client request (CGI) Common Gateway Interface
(McCool 1994).

The WWW is a distributed architecture on which to base simple client-server applications

and a number of novel WWW-based applications are currently being used and developed to

exploit this. Examples include on-line insurance quotations, credit ratings, stocks and share

prices, home shopping malls and even the purchasing of a new car.

The WWw can be considered as a medium for delivering requested information. In a CE

environment, multiple members of a virtual team both produce and consume information:

designers and engineers create new designs or proposals and submit them into a repository

where they can be viewed, commented upon and reviewed or modified by other team

members. These team members also need to communicate with each other to share and

discuss ideas and problems (Siemieniuch and Sinclair 1994). For these reasons, a number of

researchers have explored the use of the WWW as a medium for supporting CE (these

efforts are described in detail in the following chapter.)

31

Table 2-5. Why organisations are using the Internet
(Source: Ellsworth and Ellsworth 1994).

Reason for using the Internet Concurrent Engineering analogy

Communication (internal and
external)

Corporate logistics

Levelling the playing field-
globalisation

Gaining and maintaining
competitive advantage

Cost containment

Collaboration and development

Information retrieval and
utilisation

Marketing and sales

Transmission of data

Creating a corporate presence

Effective communication is needed both internally
(i.e. between team members) and externally (i.e.
between the organisation and its external
suppliers).

A CE strategy requires systematic planning and
organisation.

This is desirable for global organisations
employing CE and smaller organisations wishing to
compete with global competitors.

This is a primary goal of CEo

This is a primary goal of CEo

CE is intrinsically a collaborative development
process.

Sharing information is a key aspect of a CE
process.

These tasks are inherent in the product life cycle.

Virtual team working always requires some method
of data transmission.

Publicising the organisation to external suppliers,
customers and markets.

2.7.3 Recent developments

This section discussed some of the key developments that have taken -place in the field of

Internet-based applications. Internet-aware applications are now being developed using the

technologies described below with the aim of linking enterprise-wide systems.

2.7.3.1 Internet programming languages

A number of programming languages have been developed recently that take advantage of

Internet connectivity allowing applications to be developed that can span distributed

computer networks. Software applications written in traditional programming languages

such as C (Kernighan and Ritchie 1988), C++ (Stroustrup 1991) and COBOL are typically

compiled to run on a specific hardware architecture. A key feature of Internet programming

32

languages is that they are interpreted on the client machine to ensure high portability of the

language. These include:

• ECMA-262-This is a standard devised by the European Computer Manufacturers

Association (ECMA). ECMA is a European-based association for standardising

information and communications systems. The standard recently approved is based on

joint submissions from Microsoft and Netscape and is similar to the JavaScript language

with a few notable enhancements.

• Java-The Java language (Arnold and Gosling 1996) is described as an " ... object-

oriented ... robust and secure... architecture neutral and portable ... high

performance .. .interpreted, threaded and dynamic" environment (Gosling and McGilton

1995). Java programs are compiled into a portable intermediate bytecode that is

interpreted by a Virtual Machine on the client.

• JavaScript-JavaScript (Netscape Communications Corporation 1996) is a scripting

language based on the Java language that allows the scripting of events, objects and user

actions within a World-Wide Web browser.

• Limbo-Limbo is a programming language developed to support the Inferno network

operating system (Lucent Technologies 1996). Limbo programs are compiled into a

portable intermediate bytecode that is interpreted by a Virtual Machine on the client.

• Tcll17c-TcllTk is an Internet scripting language from SunLabs (Ousterhout 1994). This

interpreted language is composed of two components: Tel (tool command language)

which is the core language and Tk (toolkit) which is a graphical user interface toolkit.

• VBScript-Visual Basic Scripting Edition (also known as VBScript) is a subset of the

Microsoft Visual Basic language (Microsoft Corporation 1997). It is implemented as a

fast, portable, lightweight interpreter for use in World-Wide Web browsers and other
applications.

• Weblets-Weblets are self-contained applications which can be either downloaded when

needed or run locally from a client disk (Eolas Technologies 1995). The programming

language used for these Weblets, Spynergy, is based on TcllTk and is a high-level,
interpreted language.

For a further discussion of scripting languages, the reader is referred Ousterhout (1997).

33

2.7.3.2 Internet Inter-ORB Protocol (I/OP)

With the growing popularity amongst businesses to use CORBA-based Object Request

Brokers in addition to Internet-based applications, the OMG has devised a means for ORBs

to communicate via the Internet. This communication protocol is known as nop (Internet

Inter-ORB Protocol) and uses the standard TCPIIP transmission protocols. nop helps

leverage applications which span many organisations by using the Internet as a common

medium.

2.8 Summary

!his chapter has introduced a number of key technologies that have influenced this research.

These factors include:

• existing CIM systems and the problems of integration between CIM applications

• the provision of information sharing and long-term storage

• the role that distributed computing has had on defining the way organisations inter-

operate, notably in the areas of CSCW tools and techniques, distributed object-

based computing environments and the impact of the Internet, and,

• how organisational structures suitable for CE can be captured and managed by

applying a virtual team concept.

Aspects from the technologies described here have been shown to be beneficial to the

building and operation of technology-based CE support environments. However, a number

of issues and requirements that need to be addressed are raised if these technologies are to

aid the Concurrent Engineering process. This is the subject of the next chapter, which also

looks at a number of existing CE support systems.

34

Chapter 3

3. Concurrent Engineering support environments
3.1 Introduction

This chapter provides a review of current computer systems that have been used to support a

Concurrent Engineering strategy. The chapter begins with a survey of requirements that

have been proposed and requested by researchers and practitioners in the field of Concurrent

Engineering. It then provides a survey of existing CE support tools and systems from a

broad spectrum of disciplines. The chapter concludes by evaluating these existing support

environments in the light of user requirements and presents a state-of-the-art requirements

definition for Concurrent Engineering support environments.

3.2 State-of-the-art survey of requirements for CE support

The requirements for CE support systems presented here fall into three categories: barriers

to building new systems, architectural requirements and software requirements. In

considering possible barriers and exploring the means to overcome them, requirements for

building future support environments can be obtained.

3.2.1 Barriers

The barriers considered here as those aspects which impede the development or operation of

Concurrent Engineering. Barriers exist because of reliance on legacy applications and data,

non-conformance to standards and lack of adequate supporting infrastructure. It has been

proposed by Schmitz and Desa (1993) that an ideal CE development method cannot be

feasibly implemented without a computer environment. There are many researchers and

academics Whosupport this view, but it must also be noted that any single approach to CE

cannot be considered a panacea and ideally should be used in conjunction with other

complementary approaches, such as organisational and cultural changes. A comparison of

approaches to CE can be found in Dowlatshahi (1994). It is however, unarguable that a well

deSigned and robust computer environment can help support and manage the information

proceSSing requirements associated with a Concurrent Engineering project (Adams et al.
1995).

35

Londono et al. (1992) describe a number of barriers to Concurrent Engineering. These

include organisational issues such as:

a) The need for an organisation to " ... subscribe to a open environment where co-operation

is assured."

b) Training managers to embrace computer technology that is being used to support the CE

process.

c) Tools for assessment and tracking of progress.

Additionally, technological barriers such as the ability to " ... scale up easily from small

projects with a few people to large, complex projects with a great number of people" and

providing tools to help achieve "common visibility" among team members are described.

Trapp (1992) identifies a number of technological barriers that hinder CE development.
These are:

a) A lack of viable software architectures for CEo

b) A lack of effective and transparent mechanisms to share product data and support tools

that reside on heterogeneous hardware platforms in multiple geographic locations.

c) A lack of compatible formats and representations that enable inter-operability among

multiple CAD and CAE programs.

d) A l~ck of standards and mechanisms for sharing product, process and organisation data.

e) A lack of communication and co-ordination tools which support interaction, negotiation

and conflict resolution among geographically dispersed teams.

f) A lack of mechanisms to capture design intent and product development history.

Sobolewski and Erkes (1995) also describe a number of barriers from the perspective of

agile manufacturing including lack of network-based services, lack of computer

communications facilities, the physical separation of user and data and restrictive security

procedures. They proceed to supply a number of requirements for support systems, which

specify that the system must provide:

a) Sharable design and manufacturing services.

b) A locator for the service taxonomy.

c) Understandable and organised information presentation facilities.

d) Access to distributed information from distributed computer workstations.

e) Management of security, persistence and maintenance of the information and

underlying services.

36

3.2.2 Architectural requirements

Architectural requirements help defme the infrastructure upon which support environments

can be built. Nickerson (1990) suggests three 'foundations' to successful Concurrent

Engineering as:

a) Proper organisational structure.

b) Effective product and team communication.

c) Efficient use of technology.

In Nickerson's model, these foundations are analogous to the foundations in house building:

technology supports communication, communication supports organisation and organisation

supports Concurrent Engineering. In contrast to Schmitz and Desa (1993), Nickerson states

that CE can still be practised even without the technology component.

Molina et al. (1995a) has compiled a list of requirements for Concurrent Engineering

support architectures. These state that an architecture should:

a) Identify, co-ordinate and communicate between the different perspectives involved in

[Concurrent Engineering], whether represented by groups of people or by applications.

b) Provide information and knowledge sources that are able to represent evolving expertise

and product designs, that can be readily modified and that are easily accessible.

c) Monitor the history of the design process so as to enable future design procedures to

capture best practice and to maintain accountability.

d) Control and configure the various system elements in a way that is transparent to the

user and ensures system integration.

e) Provide an interactive, multimedia interface for the system user.

The National Industrial Information Infrastructure Protocols (NIIIP) Consortium is a team

37

of organisations that has entered into a co-operative development agreement with the U.S.

Government to develop open industry software protocols in an effort to make it possible for

manufacturers and their suppliers to effectively inter-operate as if they were part of the same

enterprise (Goldschmidt 1996). The vision of the NIIIP Consortium is: " ... to make U.S.

industrial enterprises more globally competitive through a new form of collaborative

computing that supports the formation of 'virtual enterprises'," (NIIIP Consortium 1995).

The Consortium considers virtual enterprises to be teams who are linked using technology

to achieve a common purpose, share skills and costs with each participant contributing their

core competence; a description which maps well to the definition of CEo It identifies four

technology requirements for Industrial Virtual Enterprises (see Figure 3-1):

a) Common communication protocols.

b) A uniform object technology base for system and application interoperability.

c) Common information model specification and exchange.

d) Co-operative management of integrated virtual enterprise processes.

With the backing of a number of major US manufacturers, the NIIIP architecture clearly

holds some significance for the building of future CE support architectures.

3.2.3 Software requirements

The bUilding of CE support environments is a complex software engineering task

(Hanneghan et al. 1998). Software-based support tools for CE have their own unique set of

requirements. Sohlenius (1992) specifies three fundamental functional requirements for

Concurrent Engineering software tools. These are:

a) Perspectives-This refers to each of the different life cycle aspects such as function,

structure, manufacturing and maintenance.

b) Stages-This refers to the current stage of decision-making activities, e.g. from concept

.through to detailed analysis and production.

c) Participants-This considers the number of people required to develop a given product.

38

These requirements are shown in the form of a cube in Figure 3-2. Each of the three

requirements makes up an axis of the cube. If the cube is considered to have a volume of

one, the ideal software tool to support CE would be found at the point (1,1,1). Sohlenius

argues that current tools exist primarily at the point (0,0,0) in this diagram, i.e. supporting

only single users, for single perspectives at single stages in the life cycle.

Smith (1988), cited in Sohlenius (1992), states that for Concurrent Engineering, group

productivity tools must meet the following requirements:

a) Integration of complementary engineering expertise.

b) Co-operation of multiple competing perspectives.

c) Communication of upstream and downstream concerns.

d) Co-ordination of group problem solving activities.

Cutkosky et al. (1993) reiterates these points by describing a need for tools: " ... that will

help the team members share knowledge and keep track of each others' needs, constraints,
decisions and assumptions."

3.3 CE support systems and tools

This s~ction provides a survey of fourteen existing support systems and tools that are being

used to support Concurrent Engineering. These systems are presented in alphabetical order.

3.3.1 BSCW shared workspace system

The BSCW (Basic Support for Co-operative Work) shared workspace system (Bentley et al.

1996; Bentley et al. 1995) is a WWW-based environment for sharing documents between

39

distributed collaborative team members. The documents are contained in 'workspaces' to

which can be assigned basic version and access control parameters. These workspaces are

small repositories in which users can upload and download information, hold threaded

discussions and obtain information on the activities of other colleagues using that

workspace.

Access control allows restricted access to workspaces by known members who must

authenticate themselves using a username and password combination. BSCW also monitors

'events' that occur in workspaces such as the adding of a new document, the deletion or

modification of existing documents or even the reading of a document. These details of

these events can be delivered to the user when a user enters a workspace or when requested",

The BSCW software" is written in the Python scripting language and uses a standard HTIP

server application running on UNIX operating systems.

3.3.2 CE-Too/kit

The CE-Toolkit (Erkes et al. 1996; Lewis et al. 1994) was developed as part of the DARPA

Initiative in Concurrent Engineering (DICE) programme. It is an Internet-based

environment which makes extensive use of bespoke software 'wrappers' to allow legacy

applications to be integrated via the World-Wide Web. These wrappers are created using the

TcllTk language (Ousterhout 1994) and provide a user interface for the legacy applications

so that they can be accessed remotely via the WWW. The tools include simple publishing

applications such as handbooks and catalogues and various analysis applications.

3.3.3 CM and PCB

The Communications Manager (CM) (Kannan et al. 1992) and Project Co-ordination Board

(PCB) (Londono et al. 1992) came about from work undertaken as part of the DICE

programme by the Concurrent Engineering Research Centre at West Virginia University.

The PCB is described as: " ... being developed with the aim of supporting co-ordination of

prodUct development by the virtual team" while the CM is described as: " ... a framework for

distributing messages, objects and CPU cycles in a heterogeneous networked environment."

In combination, these two technologies can be used to help support virtual CE teams.

The PCB provides facilities for common visibility and reaching of consensus via the

detection and notification of conflicts, workflow management and tracking of design

progress. It does this by means of a 'common workspace' which models product structure (a

8 This info '. .
rmation IS provided asynchronously, i.e. after the event has happened.

9 ~~~~~are is c~rrently up to version 3.0 at time of writing (for more details the reader is referred to the
orld-Wlde Web site at http://bscw.gmd.de/).

40

cross-functional view of product data), organisation structure (a representation of the virtual

team structure along with roles and duties of team members) and activities structure (details

of product development life cycle activities). The PCB uses a window-based GUI that has

been built using the X Window system (Scheifler and Gettys 1992).

3.3.4 CoConut

The CoConut (Computer support for Concurrent design using STEP) environment has been

developed by the Fraunhofer-Institut fiirGraphische Datenverarbeitung using an object-

oriented methodology. The goal of the CoConut environment is: " ... the integration of

existing technologies in CAD modelling, design, analysis, simulation, networked co-

operation and virtual reality," (Kress 1996). The architecture, shown in Figure 3-3, is

composed of three main components: a communication system, a data management system

(which uses a distributed object-oriented database) and kernel applications. A previous

incarnation of the CoConut environment (Jasnoch et al. 1994) also included a separate user

interface system that offered a generic look and feel to applications within the environment.

COConut supports the sharing of product information using the STEP protocol but also

provides a means for translating IGES files into STEP format as well as allowing the storage

of arbitrary native application file formats. The environment also incorporates CSCW

applications to enable synchronous and asynchronous communication. A standard front-end

application called the 'Cockpit' is used by team members to access the functionality of the
environment.

41

3.3.5 (7()Jk(1111Vl?

The COMBINE architecture (Merabti and Carew 1994) is described by its authors as a

"framework for co-operation". It is a distributed computer systems architecture that makes

Use of a central Collaboration Management Object (CMO). Components such as Application

Entities and Service Providers populate a Concurrent Engineering environment and perform

operations via the CMO. They do this by way of a message passing mechanism that is

handled by a Communications Object local to each entity (see Figure 3-4). The CMO acts as

a collaborative working facilitator and scheduler for entities. It also handles the access

control function of the environment and communication routing via each entity's

Communications Object.

3.3.6 DJk(Jk(S

The Design Management and Manufacturing System (DMMS) (Bounab et al. 1993) is

described as a " ... concurrent engineering manufacturing architecture based on PCTE"

(Portable Common Tool Environment). At the core of DMMS is a common data repository

which is based on PCTE but which has been extended to a NIAM (Nijssen Information

Analysis Method) representation. DMMS claims to integrate design, manufacturing

(simulation and maintenance) and management (of data and the manufacturing process) by

means of this repository. It does this by wrapping common domains of tools using a

'reference model' particular to those tools. This reference model allows data sharing to take

place between these tools. In addition to this, a central 'DMMS reference model' is

employed to allow data to be shared across tool domains. However, the authors note that the

42

"[repository model] covers partially the needs ofCIM modelling" due to the repository only

modelling the data that is shared between tools.

3.3.7 I-CARE

The I-CARE (Interactive-Computer Aided Reliability) system (Santos and Cardoso 1993) is

based on a concurrent design methodology consisting of engineering analysis, reliability,

maintainability and producibility design. The environment integrates commercial software

packages such as PATRAN and ANSYS with bespoke design sensitivity analysis software

(see Figure 3-5). For data storage, the environment uses a relational-database although

access to the database is via an object-oriented wrapper. For ease of use, a Graphical User

Interface based on the Motif windowing system is used to provide a menu-driven front-end

application. This allows access to all the tools within the environment. Some of the tools

supported include: structural modelling, finite element pre- and post-processing,

visualisation, Finite Element Analysis (FEA), sensitivity analysis, reliability analysis,

deterministic and reliability-based optimisation.

3.3.8 iDCSS

The iDCSS (Integrated Design Collaboration Support System) is a support system for co-

ordination during a CE process (Klein 1996). The iDCSS architecture contains three core

services: dependency capture, process enactment and exception management. The

dependency capture service "records the dependencies among the process and product

decisions". The process enactment service is used to deliver documents among participating

agents. The exception management service attempts to detect and avoid conflicts that occur

during process definition and enactment. In addition to these three services there is a central

repository for storing product, process and organisational information. Software agents can

interact with the architecture via special 'assistants' which are software wrappers designed

43

to create an abstraction from the architecture.

3.3.9 ITED (Texas Instruments)

. A Concurrent Engineering design environment for a printed wiring board DFM system has

been developed by Texas Instruments (Amundsen and Hutchison 1990). This system, called

!TED (Integrated Tools for Electronic Design), consists of the following components:

• a number of CAD / CAE tools including symbol editor, library browser, simulator,

timing analyser, schematic editor, DFM tools, auto-router and layout editor

• a knowledge-base inference engine which can be applied to solve design problems

• a common product representation that supports all stages of printed wiring board

design.

The key to this system is the common information model and object-oriented data

representation that supports hierarchical configuration and multiple levels of data

abstraction. This implies that any tool in the environment can access any parameter in the

development process, with changes being propagated to all other tools. When a change is

made, the inference engine will undertake any necessary calculations to ensure the integrity

of the design. The knowledge base was built by interviewing a team of experts from a

number of relevant fields and translating this expertise into rules and code. This knowledge

base can be updated and amended as and when needed. ITED is implemented in the

Common LISP language with the inference engine written in PROLOG and the software

runs on Texas Instruments Explorer machines.

3.3.10 Made/ast

Madefast is an ARPA-sponsored project to demonstrate technology developed under the

MADE (Manufacturing Automation and Design Engineering) program (Cutkosky et al.

1996). Madefast makes extensive use of the World-Wide Web for collaborating and

archiving product model information. Tools within this environment are"made accessible via

the WWw and include design, analysis, simulation and rapid prototyping. These tools can

be run as batch jobs or interactively. Special WWW-based software for synchronous and

asynchronous communication are also provided in addition to a HTML authoring system.

Documentation produced using the environment is in HTML format while product models
have no presc ib d c. .. .n e tormat relying instead on data translation between tools.

44

3.3.11 MOSES

The Model Oriented Simultaneous Engineering System (MOSES) architecture (Molina et al.

1995b) is based on two information models, a product model and a manufacturing model

linked via an integration environment (see Figure 3-6.) MOSES uses an object-oriented

database to store both of these information models. The integration environment provides

support for interactions and communication between applications that may require support

from translators or special software wrappers. The engineering moderator is " ... a specialist

manager or co-ordinating program who role is to drive concurrency within the MOSES

system" (Harding and Popplewell 1996). It is used to provide conflict notification and

negotiation. The designers claim that MOSES has been designed in a modular fashion so

that additional application domains or 'environments' can be catered for as and when is

needed.

3.3.12 PACT

The Palo Alto Collaborative Testbed (PACT) is a prototype framework for integrating

existing Concurrent Engineering systems (Cutkosky et al. 1993). At the core of this

framework are agents and facilitators. Agents are the services (systems) that can be plugged

into the framework while facilitators act as the interface between local and remote agents by

providing a message passing and agent monitoring service. Agents communicate with each

other using Knowledge Query and Manipulation Language (KQML) and Knowledge

Interchange Format (KIF) on the assumption of an explicit information model. PACT has

been implemented on a distributed messaging architecture that uses the TCPIIP transport

protocol thereby allowing collaboration over the Internet.

45

r

3.3.13 Shastra

Shastra is described by its designers (Anuparn and Bajaj 1994) as an "... extensible,

collaborative, distributed, geometric design and scientific manipulation environment." The

core of the Shastra architecture is composed of two layers or 'substrates': a collaboration

substrate and a distribution substrate. Interaction with these substrate comes from three

interfaces: a GUI interface for use by applications, an ASCII interface for shell-like front-

ends and a network interface for use by Shastra's own proprietary network protocol. The

environment is extensible via 'Toolkits' which adhere to the Shastra Application

Architecture specifications. These toolkits provide functionality to users of the environment.

3..3.14 WISE

The Web Integrated Software Environment (Callahan et al. 1995) is an Internet-based

project management and metrics tool. The WISE project is sponsored through a co-

operative research agreement between the NASA Software IV&V Facility and the

Concurrent Engineering Research Centre (CERC) at West Virginia University. It is an

automated change management system that can be used as a communication tool to provide

feedback on CE projects. At the core of WISE is a relational database that can be accessed

via the WOrld-WideWeb using standard HTML-based forms. Sitting between the database

system and the user is a set of software applications that translate information sent by users
to the database and vice versa

3.4 EValuation of current CE support systems

The barriers to CE highlighted in section 3.2.1 may well be a considerable cause of the

problems currently experienced in CE support systems, but what of the symptoms that

manifest as a result of these problems? This section provides an evaluation of existing CE

support systems to draw attention to these symptoms so that future environments can avoid
reproducing them.

Global co-operation between partner companies engaged in CE requires some means for
linki .

ng each partners' computer networks so that information can be shared across

organisation boundaries. The lack of support for inter-networking can restrict the
interoper bilia Ilty of CE organisations-I-CARE (Santos and Cardoso 1993), ITED

(Amundsen and Hutchison 1990) and iDCSS (Klein 1996) all suffer from this symptom.

The cornmon product information model is the cornerstone of successful virtual team

Working.Proprietary, non-standard information models may hinder an environment's ability

to be fully integrated with existing or new applications, e.g. by making translation
necessary I '

- -CARE (Santos and Cardoso 1993) integrates commercially available software

46

packages which invariably use proprietary data formats; PACT (Cutkosky et al. 1993),

Madefast (Cutkosky et al. 1996), BSCW (Bentley et al. 1996) and COMBINE (Merabti and

Carew 1994) require integrated applications to explicitly agree on a known format or apply

translation procedures; DMMS (Bounab et al. 1993), iDCSS (Klein 1996) and ITED

(Amundsen and Hutchison 1990)provide proprietary data formats.

Many existing support systems suffer from being tied to a single problem domain thereby

limiting their usefulness as a generic support tool for CE-I-CARE (Santos and Cardoso

1993) has only been applied to civil and mechanical engineering; CoConut (Kress 1996) is

only applicable to CAD development (although the authors claim that the concept of

CoConut can be applied to other areas); Shastra (Anupam and Bajaj 1994) is tied to the

domain of scientific design; (Amundsen and Hutchison 1990) only supports printed wiring

board design; WISE (Callahan et al. 1995) specifically addresses software development.

Environments must cater for the entire team, not just single users. Failure to adequately

address the needs of multiple users can reduce the visibility of group interactions such as

changes to a shared document-the DMMS architecture (Bounab et al. 1993) only models

shared data between tools with no consideration given to the users of the environment;

Similarly,iDCSS (Klein 1996) omits team structure from its architecture. Another hindrance

to current support environments is that they are only applicable to portions of a product's

life cycle-current environments typically only support the design phase (e.g. Amundsen

and Hutchison 1990; Callahan et al. 1995; Kress 1996), the design and analysis phases (e.g.

Cutkosky et al. 1993; Santos and Cardoso 1993) or design and manufacturing phases (e.g.

Erkes et al. 1996); systems such as BSCW (Bentley et al. 1996) only provides basic support

for collaboration WhileWISE (Callahan et al. 1995) only supports project management.

A number of environments differ in the database model used to store the product

infonnation model. Again, this can cause interoperability problems when two different

environments need to be joined for collaboration purposes-some environments (e.g.

Bounab et al. 1993; Callahan et al. 1995; Santos and Cardoso 1993) favour the relational

model while others prefer the object-oriented model (e.g. Kress 1996; Molina et al. 1995b);

others such as PACT (Cutkosky et al. 1993) and COMBINE (Merabti and Carew 1994) omit

the notion of a logically central database leaving data management to individual

applications; Madefast (Cutkosky et al. 1996) and the CE-toolkit (Erkes et al. 1996) choose

to Usemultiple data repositories at a multiple participant sites.

Environments based on open standards generally tend to provide more flexibility and

extensibility to extend existing functionality with new tools. Object-oriented environments

47

• The lack of security measures-This is evident in both the transmission of data and

authentication of users (BCS Security Committee 1995; Erkes et al. 1996).

• The lack of service guarantees-This leads to poor reliability (Erkes et al. 1996).

• The lack of quality of service (QoS) guarantees in HTTP-This prevents real-time

dynamic data, such as that produced during virtual prototyping and videoconferencing,

from being used effectively. In addition to this, there is a scarcity of protocols and tools

for sharing and collaboration using HTIP (Hanneghan et al. 1997).

The most widely used method of attempting to overcome the limitations of the WWW is to

provide non-standard 'add-in' software that must be used by all team members. This only

serves to hinder to openness of the system as a whole by tying users to specific and

sometime proprietary solutions. The WWW can perform a useful secondary role however,

for example, Wingrove et al. (1997) describe the development of a concurrent engineering

handbook using HTML. This handbook is a continuous document of the process and results

of a given CE project and imposes a rigid structure on the documentation. This handbook

concept does not lend itself to highly dynamic CE environments but can be of use as a

means for recording and browsing past project histories. Project histories are made up of a

large number of 'after-the-fact' static documents.

3.5 Summary

In the previous chapter, a number of technological considerations were introduced that

impact on how computer-based support systems are built. A number of additional issues

have been raised in this chapter for the building of the next generation of CE support

systems. These issues have arisen from the requirement to overcome the current barriers to,

and limitations of, existing CE support environments. This chapter concludes with a State-

of-the-art summary of requirements for next generation CE support systems.

This research proposes that support environments should provide at least the following
functionality:

a) Provide a communication sub-system for effective participation (both asynchronous and

synchronous) between all people involved in a CE project. This includes facilities for

controlling and tracking the project tasks and resources including people. Efforts in the

field ofCSCW (see chapter 2) are a critical success factor to this requirement.

49

b) Provide the ability to treat geographically dispersed resources as though they were local.

Virtual CE teams may share resources in different physical sites. This facility must be an

intrinsic part of any support environment.

c) Provide centralised, accountable data management facilities that can be used to store any

artefact produced during the entire product life cycle.

d) Enable transparent access to all the necessary software tools and applications needed

throughout the development process e.g. CAD, CAM, CAE and project administration

tools. Seamless integration from any location is the goal here.

e) Support a consistent user interface even across multiple computer platforms and

architectures.

f) Include the ability for the environment to be extended to include further tools and

technologies as and when they become available. This brings with it the requirement for

adoption of open standards.

g) Be sufficiently generic and portable between computer platforms to enjoy widespread

adoption and improve future maintainability. Again, this requires adherence to open

standards.

h) Cater for the large number of legacy applications already in use in order to protect

current investments. Data format translation will remain a 'necessary evil' until the

STEP community can persuade software developers otherwise.
i) Have facilities for inter-networking since this is the foundation of cross organisation

virtual team working.

With these factors in mind, the following three chapters propose and develop an architecture

that can be used to help facilitate the building of the next generation of support

environments for CEo As a basis for this new architecture and to re-examine the issues

raised here in greater detail, a robust reference model derived using the technique of

viewpOint analysis is described in the following chapter.

50

Chapter 4
"When we mean to build,

Wefirst survey the plot, then draw the model"
William Shakespeare (1564-1616) Henry N, PartTwo, 1:3

4. A reference model for building CE support systems
4.1 Introduction

Requirements analysis is a complex task. All too often, computer systems are built and

delivered that do not fulfil users' requirements. In software engineering, viewpoint analysis

(Finkelstein et al. 1992) has been proposed as a means of successfully capturing user

requirements for complex systems. Viewpoint analysis is a process that produces a synthesis

of requirements from a number of disparate and distinct perspectives. This chapter describes

such a viewpoint analysis that has been applied to the field of Concurrent Engineering. A

viewpoint reference model is proposed which draws on the experiences of a number of

existing models from fields such as manufacturing, information systems and distributed

computing. This new reference model, the CE-RM, has been designed using object-oriented

methods and has been used as a basis for building a Concurrent Engineering support

environment which is the subject of the following two chapters. The CE-RM is discussed

and compared with a number of existing models that have been proposed to capture

requirements in the manufacturing and / or engineering domain in order to validate the
viewpoint analysis approach.

4.2 BaCkground

In the design of systems, a viewpoint is the self-contained and complete perspective of a

stakeholder (person or system) that is directly affected by the system under investigation.

From an object-oriented perspective, Kotonya and Sommerville (1992) describe a viewpoint

as "an external entity that interacts with the system being analysed, but one which can exist

without the presence of the system." In modelling the requirements of any new system,

multiple ideas and perspectives must be analysed and resolved. Invariably, conflicts of

opinion and omissions cause requirements specifications to incompletely capture a system's

proposed behaViour (Gruia-Catalin 1985). Finkelstein et al. (1992) endorse viewpoint

analysis as a means for formulating requirements definitions for large and complex systems.

51

In Concurrent Engineering projects, we find what has been termed "the multiple perspective

problem" (Easterbrook et al. 1994) with many actors, sundry representation schemes,

diverse domain knowledge and differing development strategies. Smith (1988), cited in

Sohlenius (1992), also states that co-operation of multiple competing perspectives and the

integration of complementary engineering expertise are requirements for systems that intend

to support Concurrent Engineering. This research contends that viewpoint analysis can

therefore be used to help design the complex environments necessary to support Concurrent
Engineering.

Over the last decade the concept of manufacturing 'architectures' has evolved to provide

structure for the analysis and design of manufacturing enterprises. Early examples include

the European ESPRIT phase-I CIM project (Yeomans 1987) which provided flowcharts and

text descriptions of the generic activities that comprise the machining sector of

manufacturing. It is claimed to provide 'a European Computer Integrated Manufacturing

(CIM) architecture against which IT vendors could fashion CIM products'. Subsequently

much of the European ESPRIT phase-II research was aimed at developing open-systems

CIM architectures and communications to support multi-vendor environments. In the USA

the ICAM architecture (US Air Force 1981) was taking a hierarchical architectural approach

to do the same thing. The development of the ISO Manufacturing Automation Protocol

(MAP) grew from a proposal (ISO 1986) to 'create a multi-dimensional, open ended

reference architecture and provide a basis for long-range planning and standardisation

through the identification of interfaces and their characteristics, electrical, mechanical, man-

machine, information, procedural language, etc.'. Large manufacturing system vendors have

also proposed architectures (IBM 1987) as frameworks. to develop computer-based
manufacturing.

The scope of the proposed architectures is limited, in the case of ISO to 'discrete parts

manufacture'. The ESPRIT CIM project was specifically aimed at mechanical engineering

and machining operations 'because there are more manufacturing organisations within

Europe involved in machining operations than any other single type of manufacturing and

machining represents the largest market for CIM·system vendors' (Yeomans 1987). The

GRAl architecture (Doumeingts et al. 1992) is restricted to a 'production management

system'. Subsequently many 'architectures' have been proposed (Colquhoun et al. 1996;

Davis and Jones 1989; Graefe and Thomson 1989; Jorysz and Vemadat 1990; Klittich 1990;

Los et al. 1992; Scheer 1992; Weston 1995; Zachman 1987) for manufacturing enterprise
applications.

52

A common thread to these architectures is that they use graphical models to represent the

various aspects of manufacturing such as processes or functions and the logic or sequence of

information flow (documents, verbal or data) that link and control them. Such modelling

methods are characterised by a formal syntax and structured diagramming techniques and

are based on concepts from General Systems Theory and software development methods. In

practice this means that models can describe a complex manufacturing system (consisting of

people, machines, material, products, data, etc.) in easily understood, related elements using

a series of diagrams. A model can then be used as a common understanding of a complex

situation, for gaining insight, for system design or as the basis of quantitative analysis.

However, in the models described above it would appear that no single model sufficiently

addresses all the needs of Concurrent Engineering, forcing the designers of CE support

environments to use multiple, separate, and sometimes contrasting models to achieve their

goal. When using multiple models, there is the risk that information from a particular model

might be missed or misinterpreted in a following model when that information is

transcribed. The challenge then, is to produce a model that can address all the needs specific

to Concurrent Engineering yet which is also flexible enough to be extended to other
domains with relative ease.

The specific needs of CE are highlighted in the author's definition of Concurrent

Engineering given in chapter 1 and include: enriched communication between team

members, cross-functional team-working and distributed access to resources, such as

product information and software applications, to multiple team members at multiple

locations. The bounds of these functions stretches from initial concept of a product through

to its disposal so any model designed to support CE must be applicable for all stages in the
product life cycle.

An important and related effort has been targeted at the general area of Distributed Systems

and has also produced a reference model. The Reference Model for Open Distributed
Proc .

essIng (RM-ODP) (ISO 1992a) is an architectural framework which defines five

viewpoints that can be used to identify and integrate open distributed processing standards.
Each of the fiv . 0 C . E' 0 de vIewpOints: Enterprise, Information, omputation, ngtneenng an
Techn%m, is I 0 di Ob d 0

OJ a comp ete and self-contained perspective on istn ute systems m a
terminology app 0 0 f. ropnate to a particular interested party and focuses on a umque aspect 0
the system und 0 •

er investigation (see Table 4-1.)

Table 4-1. Viewpoints specified in the RM-ODP.

Viewpoint Focus

Enterprise Purpose, scope and policies for the system

Information The semantics of information and information processing
activities in the system

Computational Functional decomposition into structures suitable for
distribution

Engineering Functions to support distribution in the system

Technology The actual choice of technology to be used in the final
system

The RM-ODP is an object-based framework in that it loosely uses the concept of an object

to describe each viewpoint. Although sometimes described as such (see for example

Farooqui et al. 1995), the RM-ODP cannot really be considered as an object-oriented model

since it does not support features such as abstraction, inheritance, aggregation and

polymorphism that are present in true object-orientated models. This widely accepted model

has been shown to be useful in the design and implementation of complex distributed

systems, see for example the ANSAware software product (ANSA 1989) and (Coulson

1993).

4.3 Identification of viewpoints to support CE

A reference model describes a complex system in terms of its functions and information

content. In order to present a new reference model for CE, viewpoint partitions are

described in object-oriented terms so that object-oriented analysis techniques such as

inheritance can be used to define super and sub-types of viewpoint. This brings the

flexibility to devise separate self-contained viewpoints that can reuse, i.e. inherit, common

aspects or attributes. Object-orientation also provides aggregation to facilitate the building

of more complex viewpoints by defining smaller, more manageable viewpoints and then

combining or synthesising these to produce the whole. This approach has been influenced

by Kotonya and Sommerville (1992).

In order to illustrate the viewpoints required to support CE, the following scenario taken

from product development in the aerospace industry (Cutkosky et al. 1996) will be used.

54

4.3.1 Scenario

In the design and manufacture of a strategically important product, such as an air-to-air

missile, it is necessary for cross-functional team members to collaborate. This is illustrated

as an event flow diagram in Figure 4-1. For strategic alliances between different countries

e.g. those associated with NATO (the North Atlantic Treaty Organisation), non-collocation

is an important issue that also needs to be addressed. Any project begins by defining the

tasks that need to be performed. Multiple team members then concurrently perform these

tasks. This involves the creation of some new item, the group discussion of this item,

followed by either the acceptance of the item or a re-iteration of the process in which the

item is modified (i.e. a new version is produced) until the group arrives at consensus.

Concurrent
Development:
These steps
are iterated
until all tasks
are complete

Iterative
sub-

Figure 4-1. Typical event flow for concurrent development.

Constraining a project such as this will be a strict set of security guidelines that specify how

information should be transmitted in addition to restricting the channels in which
communication should take place.

4.3.2 A Concurrent Engineering Reference Model (CE-RM)

The viewpoints proposed in order to support CE are described below in relation to the RM-

ODP and are shown graphically in Figure 4-2; the CE-RM (Concurrent Engineering

Reference Model). Whereas the RM-ODP has only five distinct viewpoints, the CE-RM

further sub-divides or partitions these five viewpoints to cater specifically for the needs of

55

4.3.1 Scenario

In the design and manufacture of a strategically important product, such as an air-to-air

missile, it is necessary for cross-functional team members to collaborate. This is illustrated

as an event flow diagram in Figure 4-1. For strategic alliances between different countries

e.g. those associated with NATO (the North Atlantic Treaty Organisation), non-collocation

is an important issue that also needs to be addressed. Any project begins by defining the

tasks that need to be performed. Multiple team members then concurrently perform these

tasks. This involves the creation of some new item, the group discussion of this item,

followed by either the acceptance of the item or a re-iteration of the process in which the

item is modified (i.e. a new version is produced) until the group arrives at consensus.

Concurrent
Development:
These steps
are iterated
until all tasks
are complete

Iterative
sub-

Figure 4-1. Typical event flow for concurrent development.

Constraining a project such as this will be a strict set of security guidelines that specify how

infOrmation should be transmitted in addition to restricting the channels in which
communication should take place.

4.3.2 A Concurrent Engineering Reference Model (CE-RM)

The viewpoints proposed in order to support CE are described below in relation to the RM-

ODP and are shown graphically in Figure 4-2; the CE-RM (Concurrent Engineering

Reference Model). Whereas the RM-ODP has only five distinct viewpoints, the CE-RM

further sub-divides or partitions these five viewpoints to cater specifically for the needs of

55

Enterprise Team Project Product

Information

Computation

Engineering

Technology

Figure 4-2. The Concurrent Engineering
Reference Model (CE-RM).

Concurrent Engineering projects by remodelling the RM-ODP viewpoints using the

technique of object-orientation. In the CE-RM, the five RM-ODP base viewpoints (i.e.

enterprise, information, computation, engineering and technology) are retained as the

fundamental base viewpoint super-types. These are then further analysed to determine sub-

types of these viewpoints which have more specific properties concerned with the problem

domain, i.e. Concurrent Engineering. By doing this, a number of aggregate viewpoint

objects are also introduced. Viewpoints can be classified into functional and non-functional

viewpoints (Mullery 1979). Non-functional viewpoints define constraints that must be
considered in the final system design.

At the Enterprise level, the following viewpoints have been identified:

• TEAM,

• PROJECT,

• PRODUCTand

• SECURITY.

Security is an important aspect of any virtual enterprise undertaking a CE project and is

considered as a _non-functionalviewpoint, i.e. it is a constraint that must be imposed in the

final system design. The SECURITYviewpoint at the Enterprise level focuses on enterprise-

wide security policies and thus determines the level of security mandated in lower levels of

the model. The SECURITYviewpoint will be seen to be pervasive throughout the subsequent

lower levels of the model. Security issues are extremely important to organisations

employing CE in highly competitive or highly sensitive markets, for example to prevent

competitors acquiring detailed product information.

The TEAM viewpoint is concerned with the collection of participants (team members)

involved in a CE project. These team members operate with a high level of cohesion and

therefore this viewpoint is used to capture the perspective of this collective team unit. This

viewpoint accommodates not only physically collocated teams but also non-collocated

teams and teams whose structure changes dynamically, so-called Virtual Teams (Trapp et al.

1992). The characteristics of virtual teams are captured using the inherent object-oriented

capabilities of our model that supports polymorphism and inheritance. This allows teams to

be built from well-tested reusable constructs while retaining their own unique

characteristics.

The PROJECT viewpoint is concerned with not only the current CE project but also with past

projects. One desirable aspect of Concurrent Engineering is to be able to reuse project

histories, i.e. design and manufacturing information, data and procedures from previous

projects, in order to benefit the current project. Design or manufacturing problems from

previous projects needs to be avoided while solutions to problems in previous projects need

to be promoted.

The PRODUCT viewpoint takes into consideration the needs of the product through each

phase of its life cycle. An end product is composed of many sub-components. The PRODUCT

viewpoint considers these components and what happens to them during their individual

lifetimes.

At the Information level, the following viewpoints, which are aggregate components 11 of the

respective viewpoints identified at the Enterprise level, are identified:

• USER,

• TASK,

• VERSION and

• SECURITY.

II The aggregation of viewpoint object types is denoted in the CE-RM by the aggregate or whole structure
surrounding the part structure.

57

The USER viewpoint is concerned with capturing the requirements of individual team

members. This is important because within a project there may be tasks or sub-tasks that

require the services of only one person, i.e. the team member acts autonomously with no

collaboration from their co-workers. Autonomy is also a characteristic of distributed

systems where multiple autonomous agents simultaneously perform some role while

interacting with others whenever necessary.

The TASK viewpoint considers the fact that a project can be broken down and partitioned.

Large, complex projects are divided into smaller, more manageable tasks and sub-tasks.

This viewpoint and its super-type considers the system from a project management

perspective. The PROJECT and TASK viewpoints help manage the complexity of CE project

management which can be hindered by the fact that some team members could be located in

different countries.

The VERSION viewpoint and its associated super-type, PRODUCT, takes into account how a

final product is created via a process of revision, e.g. an individual component may have

been developed through many versions before a final agreement is met as to its

specification. This viewpoint needs to be considered since it would be undesirable for a

designer, for example, to work on an out-of-date version of a product specification which

could lead to a loss of data integrity and increased data redundancy (Amundsen and

Hutchison 1990).

The SECURITY viewpoint is needed at the Information level to ensure that information does

not get into the wrong hands or even to ensure that a particular team member cannot

erroneously change information without adequate authority. For example, a possibly

disastrous situation could arise if sales personnel were allowed to alter a process plan. As a

non-functional viewpoint, the SECURITY viewpoint at this level specifies access control

constraints.

The Computation level consists of the following viewpoints:

• DISTRIBUTION,

• COMMUNICATION

• DATA REPOSITORY, and

• SECURITY.

58

Successful CE requires distributed processing; the DISTRIBUTIONviewpoint takes into

consideration the fact that users and resources internal and external to the system are

geographically distributed. It considers the system as being composed of a number of

distributed nodes. The COMMUNICATIONviewpoint considers the system from the point of

view that CE team members need to communicate in order to perform collaborative work

and to behave as a virtual team. This communication can be in two forms: synchronous (i.e.

taking place at the same time, for example a telephone conversation) or asynchronous (i.e.

not at the same time, for example, mailing a letter). The DATAREPOSITORYviewpoint is

concerned with the notions that information sharing, data integrity and the prevention of

data redundancy are key aspects of CE data management (Hanneghan et al. 1995).

Concurrent Engineering is concerned with the wide publication and consensus of

information throughout a project. This viewpoint is influenced by the need to access and

publish data that is centrally available to all team members. The relevance of the SECURITY

viewpoint here relates to the need to prevent unauthorised viewing of data as it is passed

around the network by way of cryptography constraints.

At the Engineering level, the four viewpoints of DISTRIBUTION,COMMUNICATION,DATA

REPOSITORYand SECURITYare again present. At this point in the model, the functions

required to support these viewpoints are specified. Security considerations at this level

relate to the need to control distributed access to the system and prevent unauthorised

access.

At the Technology level, the four viewpoints DISTRIBUTION,COMMUNICATION,DATA

REPOSITORYand SECURITYagain permeate through the model. Each of these viewpoints

considers the technological choices for implementing the system. For example, in the DATA

REPOSITORYviewpoint a system designer may consider relational databases, object

databases or object-relational databases as reasonable choices for implementation.

Similarly, in the DISTRIBUTIONviewpoint, the Object Management Group's Common

Object Request Broker Architecture (CORBA) (Object Management Group 1995a) or Open

Software Foundation's Distributed Computing Environment (DCE) (Open Software

Foundation 1993) models may be considered as possible choices for implementation. For

the SECURITYviewpoint, implementation choices could consider data encryption standards

such as DES or M05.

4.3.3 Evaluation of the CE-RM

A principal part of the CE-RM is that it specifies viewpoints spanning the five ODP

dimensions. This means that each viewpoint pervades down through successive levels to

fully specify its function. For example, Security can be seen to pervade through and affect

59

the organisational, information, computational, engineering and technology viewpoints

specified in the CE-RM. Another feature, as a result of object-oriented modelling, is that

characteristics of viewpoints are inherited by viewpoint sub-classes. A major example of

this can be seen in the model as a whole, which is itself, a sub-class of the Concurrent

Engineering viewpoint (i.e. the perspective of CE as specified by its definition or the term),

Therefore, characteristics such as concurrency, process improvement, quality enhancement

and development time reductions are passed on to the various sub-classes of the model.

Returning to the scenario described in §4.3.l, the viewpoints defined in the CE-RM can now

be put in context. In a particular Project a team member (User) performs various Tasks. In

order for a User to work on some Version of a Product specification, the physical location

of the User must be taken into account and what resources that User has access to. This is

handled by the Distribution component in conjunction with the constraints laid down by

both the Security component and the Data repository component. Determining where the

actual data object is located and whether any other Team member is currently using the

same object (the Data repository component) or is likely to be affected by the operation (by

way of the Communication component in co-operation with the Distribution component) is

also necessary. Affected parties (Users) will need to be notified (using the Communication

component). Once a data item is produced, the CE Team then engage in discussion (using

the Communication and Distribution components) in an effort to achieve consensus about

the item's definition. It is essential that this entire process be secure and free from

tampering by outside agents (the role of the Security component).

4.4 Comparison of the CE-RM with related work

Zhang and Alting (1992) describe a functional model of manufacturing enterprises that

comprises three views. These views are: Management, Engineering and Fabrication. The

Management functions consider the tasks of planning, analysing and controlling, while the

Engineering functions consider definition, formulation and evaluation tasks. Finally, the

Fabrication functions consider organisation, execution and distribution.

Although not described as such, these views can be considered in object-oriented terms as

aggregate viewpoint objects. For example, the Management viewpoint object has primary

operations to Plan, Analyse and Control while its attributes (which themselves are lower-

level viewpoint objects) include Sales and marketing, Finance and accounting, Production

planning and control, Policy-making / strategic planning and Personnel. To illustrate this

example, Figure 4-3 shows the viewpoint object definition.

60

Similar view-based models can be found in the Architecture of Integrated Information

Systems (ARlS) (Scheer 1992) and Zachman's framework (Zachman 1987). There are four

views in ARlS: a Data view, a Control view, a Function view and an Organisation view

where each view is supported by a specific tool in the ARIS TOOLSET (Scheer 1996).

Zachman uses three major perspectives to describe enterprise-overlapping systems: Data

(what the system deals with,) Process (how the system works) and Network (where flows

and connections exist). Each of these views consists of six representations: Scope and

Objective, Business, Information system, Technology, Machine code and Actual system.

The combination of these views and representations creates a two-dimensional matrix where

each cell represents the intersection of an architectural representation from a certain
perspective.

The major limitation of these models when applied in a CE context is that they do not

explicitly support team interactions throughout the enterprise. Nor do they adequately

address the notion that an enterprise may exist virtually with departments situated at

different physical sites. It should also be noted that these models are strictly of a functional

nature, i.e. there is no attempt to address non-functional viewpoints. A number of

researchers have stated that non-functional or indirect viewpoints often have significant

influence within an organisation (for example Kotonya and Sommerville 1996). We agree

with this and consider the omission of non-functional viewpoints to be a limitation of

models such as those described above in the context of this research.

An analogy to viewpoints are proposed by Harding and Popplewell (1996) as a means for
requirement tur· . .s cap e In the MOSES (Molina et al. 1995b) CAE architecture. The
vie .

WpOIntsconsidered make up a three-by-three matrix as shown in Figure 4-4. Along the x-

61

axis of this matrix are the three levels of co-operation that can be achieved by team

members involved in a CE project. It considers the individual member, the team and the

organisation. Along the y-axis, it considers three dimensions that should be addressed to

support CE: distribution, heterogeneity and autonomy.

The autonomy dimension is analogous to the COMMUNICATION viewpoint of the CE-RM

discussed earlier in that they both specify support for synchronous and asynchronous

communication and decision making within CE teams. The three levels of co-operation are

also captured in the CE-RM. We explicitly define individual user and team viewpoints and

implicitly define an organisation viewpoint by encapsulating the Enterprise viewpoint. We

believe that the object-oriented sub-classing in the CE-RM makes for more robust

viewpoints since the designer is forced to think first in terms of the five fundamental RM-

ODP viewpoints and then to look at these in more detail to extract useful sub-classes.

One limitation of this matrix model however, is that it does not explicitly specify non-

functional requirements or viewpoints. The advantage of viewpoint analysis is that these

non-functional viewpoints are given equal consideration in an effort to improve the quality

of the requirements capture phase of system development. Again we believe that the

omission of non-functional viewpoints is a weakness that needs to be addressed if this

model is to be used to build robust support environments for CEo

62

The development of the Open System Architecture for Computer Integrated Manufacturing

(CIM-OSA) is a result of ESPRIT Project 688, AMICE (1989). It defines an integrated

methodology to support all phases of ~ CIM system life cycle from requirement

specification through system design and implementation to operation and maintenance. The

CIM-OSA framework can therefore be used to model organisations employing Concurrent

Engineering. The CIM-OSA modelling framework or 'CIM-OSA cube' shown in Figure

4-5, uses the three axes of a cube to represent the concept of the architecture:

a) The instantiation process is a design principle going from generic to particular and re-

uses previous solutions.

b) The derivation process is a design principle which forces analysts to adopt a structured

approach to system design and implementation, going from requirements definition to

design specification and full implementation description.

c) The generation process is a design principle that encourages users to think about the total

enterprise in terms of function, information, resources, and organisations.

CIM-OSA takes into account a number of well-accepted ideas and principles such as

63

functional decomposition and activity modelling used in SADT (Ross 1977) or IDEFO (US

Air Force 1981) and the entity-relationship model (Chen 1976). In common with other

approaches, CIM-OSA uses different views to describe a manufacturing system.

The techniques of object-orientation also cater for instantiation through the use of abstract

or generic objects which can be used to instantiate more specific sub-classes of these

objects. Object-orientation has also been shown to uniformly model requirements analysis

(Coad and Yourdon 1991a; Firesmith 1993), design (Booch 1991; Coad and Yourdon

1991b) and implementation (Goldberg 1984;Gosling and McGilton 1995; Stroustrup 1991).

.It can be seen then, that by consistently using object-oriented methods we can also achieve

derivation. This derivation is possible because the same object models and modelling

techniques can be applied to requirements analysis through design and implementation: the

system is derived by progressively enhancing the model at each stage.

4.5 Summary

Requirements analysis for complex systems can be a difficult task. The design and

implementation of systems to support Concurrent Engineering (CE) projects involving

virtual teams is one such example of this. Previous research in this field has largely

concentrated on creating architectures and reference models for Computer-Aided

Manufacturing and Engineering domains operating a purely sequential development process

which do not take specific CE needs such as enriched communication, information sharing

and distributed working into consideration. Additionally, these existing architectures and

reference models typically specify modelling methods that are different at each stage in a

project. For example, models such as the CIM-OSA model which freely allows the

developer to use a tool such Data Flow Diagrams (DFDs) for information systems

modelling yet use IDEFOfor physical system modelling. These multiple models can lead to

loss of information and clarity when transforming models from one stage to another.

To help address the shortcomings of these existing models, the technique of viewpoint

analysis has been applied in an effort to produce a more realistic and practical model. By

uniformly applying object-oriented techniques and drawing on existing work from the

manufacturing / engineering field and other related fields such as open distributed

processing, a new specific reference model for Concurrent Engineering, the CE-RM, has

been devised in which requirements capture is only part of a wider framework. By adopting

the object-oriented paradigm a consistent model can be used for specifying system

requirements, system design and implementing the actual system. This has saved effort in

development due to the fact that no transformation of the model is needed between stages

and also because objects can be reused by subsequent stages without re-definition. This also

64

improves the integrity of information, as there is less chance for information to be

misinterpreted or lost as a consequence of the model translation process. Object-orientation

also copes well when modelling distributed resources since objects communicate uniformly

using a message-passing paradigm regardless of whether those objects exist locally or

remotely at different physical sites. It is the belief of the author that the technique described

in this chapter for partitioning viewpoints into viewpoint objects can be applied to other

problem domains, not just Concurrent Engineering.

To validate the viewpoints identified in the CE-RM, a computer systems architectural model

.and an information system object model have been developed and these topics are the

subject of the following two chapters. The relation between these three chapters is shown in

Figure 4-6.

Information
system object

model

Figure 4-6. Relationship between CE-RM and work
introduced in the following chapters .

. _.6.5 .. .__

Chapter 5
concert n & v. meaning n. 1a musical performance of usu. several separate compositions. 2

agreement, accordance, harmony. 3 a combination of voices or sounds. meaning v. tr.
arrange (by mutual agreement or co-ordination).

in concert idiom. actingjointly and accordantly.

(Concise Oxford Dictionary)

CONCERT acronym". CONCurrent E.ngineering suppoRT

5. A computer systems architecture to support virtual CE teams

5.1 Introduction

This chapter describes a computer system architecture developed to support virtual

concurrent engineering teams and which is based on the CE-RM presented in the previous

chapter. The name CONCERT has been coined for this architecture as it shares a number of

meanings with the definitions given above. Concurrent engineering usually involves

' ... several separate compositions' and requires' ... agreement, accordance' and ' ... harmony'

in order to be effective. The process of concurrent engineering can be seen to be the work of

a number of team members or' ... combination of voices' ' ... actingjointly and accordantly.'

The discussion of the CONCERT architecture in this chapter will adopt a bottom-up

approach by firstly describing the policies and considerations that have been adopted by the

components of the architecture before going on to describe the actual components

themselves. Finally, the integration of the architecture with a real world environment, the

CONCERT environment is described. The relationship between the CONCERT architecture

described in this chapter and the CE-RM in the previous chapter is once again shown in

Figure 5-1.

12 I apologise to any lexicologists for associating the word 'concert' with such a poor acronym for the goal of
this research.

66

Information
system object

model

Figure 5-1. The CONCERT architecture overview.

5.2 Objectives of new architecture

The following objectives were pursued in the design of the CONCERT architecture:

• Wide availability- The architecture should be capable of being implemented in

such a way that existing engineering systems could employ the technology without

the need for heavy investment in additional resources.

• Scalability- The architecture should be capable of being used in both small and

large organisations.

• Extensibility- The architecture should allow future expansion with relative ease.

• Generality- The architecture should use open standards to enable it to be used in

conjunction with existing systems.

• Architecture neutrality- The architecture should be capable of being used

unchanged on a number of popular hardware platforms.

The notions of wide availability and architecture neutrality stem from the fact that within a

given project workgroup, there will be a broad variety of computer systems in use, ranging

from (possibly) mainframes to workstations to high-powered PCs and dumb-terminals.

Recent advances in miniaturisation and mobile communications technology has meant that

67

portable hand-held devices (sometimes mown as PDAs-Personal Digital Assistants) are

becoming commonplace within virtual teams (Finger et al. 1996; Gessler and Kotulla 1995).

In addition to this, an industry shift towards network computing and indeed the generic NC

or Network Computer (Apple et al. 1996) that is currently taking place means that these two

notions will become increasingly important in the near future.

5.3 Policies and considerations for support services

The following section discusses the policy decisions that have been formalised to govern the

new architecture. A number of factors have influenced the decisions that have been taken in

designing the CONCERT architecture. These factors relate to the complex nature of

concurrent engineering projects and include conflict resolution, data translation, group

consensus, long transactions, project management strategies, security requirements and

versioning. The architectural decisions made as a result of these factors are described in the

following sub-sections as formal policies for designers of computer systems to support CEo

5.3.1 Conflict resolution

It is widely considered that fully automated resolution of design conflicts is undesirable, and

in some cases unfeasible, (see for example Bahler et al. 1994a; Bahler et al. 1994b; Harding

and Popplewell 1996). With these factors in mind, a mediator metaphor has been chosen

with regard to solving potential conflicts between team members (Goldstein 1994; Hori et

al. 1996). When a conflict arises, the CONCERT support services should assist the parties

involved to attempt to resolve the problem using negotiation and mediation.

5.3.2 Dataformats and translation

In order to support data sharing between the large number of legacy applications (with

legacy data formats) that currently exist in CE environments there is a need for data

translation functionality that can be easily accessible by all tools within the CE support

environment. This translation should be applicable to all objects stored in the data object

repository and made centrally available to ensure consistency among users of the

environment. To support this view, the data translation policy of the CONCERT architecture

prescribes that:

I. All data translation tools be registered with a CONCERT support service.

II. These translation tools must declare an interface which describes which format they

can translate from and which format they can translate to, and be able to take as

input an arbitrary number of data bytes and return an arbitrary number of translated

data bytes.

68

An example could be a translation tool that takes a wordprocessor document and outputs a

HTML document.

5.3.3 Group consensus

Successful CE methodologies should encourage team working and promote consensus

amongst the team members. This ensures that whole life cycle issues are addressed at all

stages. The goal of the CONCERT architecture is to achieve increased awareness and better

communication between team members so that they can make empowered decisions that

take into account the entire product life cycle. A method that can be utilised to help achieve

this is through event and message channelling. This allows events such as key presses,

mouse movements and changes to user interface windows or data fields to be 'channelled'

to interested parties. This is also known as the 'publish and subscribe' metaphor: users

subscribe to shared application channels and publish information to that channel. The

information is then re-distributed to all subscribed listeners on that channel thereby allowing

group collaboration. The CONCERT architecture therefore prescribes the use of publish and

subscribe facilities.

5.3.4 Long transactions and concurrency control

Another factor that can affect information sharing within a CE organisation is that a

particular process can use information for a long period of time. An example of this could

be a design engineer who works on a CAD design for a whole day at a time. This can

prevent other team members using the same information and thus hinder concurrency. This

problem of long transactions exists in most, if not all, CE projects. Andrews and Krieger

(1993) state that a: "semantic concurrency model combined with notification locks is an

effective mechanism that supports concurrent collaborative work environments."

The concurrency control policy determines how multiple team members can access the

same object simultaneously. There are two possible actions that a team member can perform

on objects: they can view (read) the object where the intent is not modify the object's

contents, or they can edit (write) an object where the intent is to modify the actual object.

Issues that arise here are:

a) If a team member is reading an object and another team member changes that object,

the first team member will be working with an out-of-date version.

b) If two team members edit (write) an object at the same time, there will be multiple

versions of that object which may need to be reconciled into a composite object at

some later stage.

69

With these considerations in mind, the CONCERT environment stipulates the following

constraints. For a team member to work on an existing object requires the notification of an

intent to use by the team member (this is known as the check-out) and subsequent

notification of the team member's re-submission of the object (this is known as the check-

in). This constitutes a 'check-in-check-out' pairing that is necessary for the system to be

able to closely monitor and improve object concurrency. If a team member aborts an edit

session and does not want to re-submit the edited version back to the repository, they must

inform the system that this is the case in order to release any locks that exist for the given

object. If the team member neglects or simply forgets to do this, it should be possible for the

system to determine all the long transactions that a given team member is involved in and

notify the team member of any outstanding transactions.

The following statements define the concurrency control policy.

I. When a team member attempts to check-out an object, he/she must declare whether

they intend to simply view (read) or edit (write) the object.

II. If a team member wishes to edit (write) a specific object that is already in use for

writing by another team member they have the following options:

A. Create a new version of the object (see section 5.3.7-Versioning) without

affecting the current team member.

B. Enter into negotiation with the existing team member as to who should

write the object. The outcome of this negotiation process will be either:

1. the existing team member abandons or finishes their current editing

session and allows the new team member to use his/her edited

version, or

2. the new team member goes ahead and creates a new version

regardless.

III. If a team member wishes to make changes to (i.e. write) a specific object that is

already in use for reading by another team member the system should be able to

inform the reading team member that the object they are reading is about to be

updated and hence the current version of the object may change i.e. they will be

using information that could potentially be out-of-date (see §5.3.7-Versioning).

70

A typical scenario that shows this policy in use is shown in Figure 5-2. This diagram shows

the chain of possible events happening along some given timeline. At point 1, a new object

called CAD model, say, is placed in the repository. Some time later at point 2, Bob wants to

view CAD model and so checks it out of the repository for reading. Some time later at point

3, Mary decides to edit CADmodel to create a new version. While Mary is doing this, Frank

also decides to edit CAD model to create a new version (i.e. both Mary and Frank are now

editing CAD mode!). Since Mary is already editing CAD model, the system must notify

Frank that the requested object is already checked-out for writing since it is possible that

edits could be duplicated by both Mary and Frank. This duplication of effort hinders the

,Concurrent Engineering process and so should be avoided whenever possible. The options

open to Mary and Frank are as follows:

a) Frank can abort and let Mary continue her editing session.

b) Mary can abort and let Frank edit instead.

c) Mary can finish and commit her edit so that Frank can then work on Mary's new version

of CAD model.

d) Mary can carry on regardless and let Frank edit CAD model also resulting in two

versions of the same object which may need to be merged at some later stage (see

§5.3.7-Versioning).

Time System

CAD model is placed
in repository

Bob checks-out
CAD model for
reading

Mary checks-out
CAD model for
writing

Frank attempts to
check-out CAD
model for writing

Notify frank that
Mary also has this

1k':--~------1objeGtchecked..out
for writing .

Mary checks-in new
version of CAD -----j

model

Notify80b that CAD
Ij!;~l4-----modelhas a new

version

Figure 5-2. Concurrency control scenario.

71

At some later time, point 5 on the diagram, Mary finally checks-in her new version of CAD

model at which point the system must notify Bob (who is still viewing CAD model) that

there is a new version of the object he is viewing. This allows Bob to work with the most

up-to-date information if so desired. If for example, Bob was performing a Finite Element

analysis of CAD model, it might be preferable to abort his current effort and analyse the

latest design instead. It can be seen then that the CONCERT architecture supports a

semantic locking mechanism with lock notification to proactively support collaborative

group working.

5.3.5 Project management and history

In CE projects it is extremely important to be able to learn from past projects. It is believed

that by learning from, and assessing how to avoid certain types of problem, reductions in

development time and cost can be achieved. This has been reinforced by the US DARPA

Initiative in Concurrent Engineering (DICE) project, which advocates the capturing of

corporate history (for a complete description of the DICE project the reader is referred to

Cleetus and Usjio 1989). In addition to this, project management initiatives such as those

required by quality standards such as the ISO 9000 certification process impose additional

demands. ISO 9000 requires that project tasks undergo a two-stage sign-off procedure

which includes the task being checked by an independent team member (i.e. not the person

who performed the task) followed by the task being released again by an independent team

member (i.e. not the person who performed the task or checked it).

With this in mind, the following statements define the project history policy of the

CONCERT environment:

I. Once an object" has been submitted to the repository is should not be allowed to be

deleted at any time during or after completion of the project.

II. Changes to existing objects should be non-destructive, i.e. they should not actually

change the original information. This requires that a versioning mechanism be used

to create new versions of objects based on original objects (see §5.3.7-

Versioning). This versioning process is an ideal way of capturing a design history

during a project.

13 An object in this sense is any item that can be generated during the life cycle of a product and is capable of
being stored in the CONCERT repository.

72

III. All tasks (and projects) should include a two-stage sign-off procedure in accordance

with the ISO 9000 process defined above. This additional requirement makes each

step of the project fully accountable (see non-repudiation in §5.3.6 below).

5.3.6 Security

Schneier (1997) declares that it is impossible to guarantee 100% security but it is possible to

work towards a goal of 100% risk acceptance. In the field of competitive manufacturing,

security is an extremely important issue and therefore any environment used to support this

must aim to minimise risks to security infringements. This covers a number of aspects such

. as:

• Data security-Ensuring that a competitor cannot get access to product data either

by 'eavesdropping!" or by premeditated attack. This also concerns legitimate

employees erroneously changing information by accidental means or through some

deliberate action.

• System security-Ensuring outside intruders cannot access the system. There may

also be instances during product design when a manufacturing organisation might

legitimately require collaboration with external consultants or service providers, for

example the use of a service bureau to deliver Rapid Prototyping models of CAD

data (Deitz 1995). Such a bureau would need to be given controlled, restricted

access to data within a CONCERT environment to allow the retrieval of the

necessary CAD data electronically, thereby supporting concurrent processing.

• Non-repudiation-Barrett and Tangney (1995) argue that a fundamental

requirement for CSCW support is anonymous communication. Anonymity however,

is a potential security risk that conflicts with the goal of non-repudiation, whereby

each team member is made irrefutably responsible for his or her actions. This

research proposes that all communication and transactions therefore be made

publicly accountable.

This policy specifies the CONCERT architecture security model. This model has three tiers

that provide security at distinct interface points to the system. These are:

1. Network access-This level concerns team members accessing the environment over a

network. Security here is concerned with determining whether a particular user has

14 In computer networks, digital eavesdropping can be accomplished relatively easily by physically connecting a
suitable device to the network cabling and 'listening' to the data that is on the network.

73

permission to access the environment. This should be done by way of a username I

password combination entry system.

2. Data access-This level exists to ensure that each user has the necessary permissions to

perform an operation on a particular data object. This can be done using an access control

list (ACL). Every object in the data repository has an associated ACL that specifies team

members and privileges. These privileges determine whether a given team member can read

or update an object.

3. Data transmission-This level ensures that data cannot be openly viewed whilst being

transported over the network. This is achieved by applying a data encryption and decryption

'process.

The three-tier security model is shown in Figure 5-3.

The access control policy specifies which team members can access which objects. Certain

special cases exist whereby objects within the repository or indeed the whole repository

contents need to have their access blocked so that changes cannot be made. This may be

necessary for example when a particular design object is undergoing a group review process

and it is therefore undesirable for team members to be able to change this reference object.

Another example may be the locking of the entire repository when it is being backed up for

security purposes. The notions of 'freezing' an object (or the entire repository) to prevent its

contents being changed and then the subsequent 'thawing' of the frozen component is

therefore introduced.

The following statements define the access control policy.

I. Whenever a new object is submitted into the repository, it must have an associated

Access Control List (ACL). The ACL specifies:

A. Those team members who can read the object, and

B. Those team members who can write new versions of the object",

II. When a team member wishes to access a given object, the system must first check

that the team member has the necessary access permission to perform the requested

operation (i.e. read or write).

III. Only team members designated as CONCERT System Administrators have the

ability to freeze and thaw individual objects within the repository or the entire

repository. System administrators are special classes of team member who have

IS This also gives read access by default since a team member cannot change a given object unless they can read
the actual object first.

74

Team
CONCERT client lDecryption Jmember's

computer IiI I
CONCERT architecture middleware services interface

~~
CONCERT NETWORK ACCESS
host system Username I password

authentication

~

I DATA ACCESS)Access Control List

r -.....
r-; -'"

DATA TRANSMISSION II Data I
Object I I Encryption I

<, _..

Key: '----------.,1 Public network traffic

-----+ Private network traffic

Figure 5-3. Three-tier security
policy of the CONCERT

architecture.

additional privileges that enable them to perform routine maintenance tasks within

the CONCERT system.

5.3.7 Versioning

In product development, it is common for different versions of a design to coexist during a

single life cycle. An example of this is a product line based on one single common part with

several product variations, e.g. car, sports car, estate car, etc. Version control is a much used

technique in the software development industry (Rochkind 1975; Tichy 1985) and similar

techniques have successfully been applied in a concurrent engineering environment to

capture changes to a product model with the use of delta-files (Hardwick et al. 1995).

The version control policy determines how and when that new versions of objects are

created. The following statements define the version control policy.

I. To capture the design history of an object, previous versions are not deleted from

the repository. Instead they are retained forming a version tree as shown in Figure

5-4. This shows how various revisions of a design have evolved over time.

II. A data object forms a parent-child relationship with new versions of itself. This

means that when a new version of a data object is created it becomes a child of the

75

Figure 5-4. A data object
version tree.

parent data object. This child version can itself be the parent of many children

(making the original parent a grandparent and so on ad infinitum.) As an example of

this, the data object denoted by the name "1.2" in Figure 5-4 has two children:

"1.2.1" and "1.2.2"; and one grandchild: "1.2.1.1" (whose parent is "1.2.1"). In this

case, version "1.2.1.1" is a more recent version of "1.2".

III. When a data object is checked-out, it can automatically be checked-in at the correct

place in the version tree by locating the parent and adding the new data object as a

new child.

IV. The current version of an object is defined as the object that is the primary focus for

future development. All data object version trees have one current version. This is

used to denote stable product definitions that have group consensus. Any object

within a version hierarchy can be designated as the current version. If no such object

is declared, this value should default to the, highest-ranked child in the version tree,

i.e. in Figure 5-4, if "1.2.2" was not specified as the current version, it would default

to "1.2.2" anyway as this is the highest-ranked child.

When two or more team members create child versions of some object, it may be desirable

to merge these separate versions into one common composite object which has all the

changes from each version merged to create a new object (Mills et al. 1993). This merging

process requires that conflicts in each version be reconciled to produce the composite

object. For example in Figure 5-4, it may be desirable to merge version "1.2.1.1" and

version "1.2.2" creating the new object at version "2.0". If there are conflicting changes in

the two versions to be merged then this must be reconciled either manually by a process of

76

negotiation or automatically using intelligent knowledge-based rules, for example. The

CONCERT architecture supports both manual and automatic merging mechanisms.

5.4 The CONCERT architecture

The CONCERT architecture has been design using object-oriented methods in an effort to

improve the flexibility and extensibility of the architecture. CONCERT is a set of

distributed middleware services that can be used to facilitate Concurrent Engineering (see

Figure 5-5). A middleware service is a general-purpose service that sits between

heterogeneous computer platforms and applications allowing multiple platforms to interact

with a common application (Bernstein 1996). Each of these services is defined as a unique

software object that has a publicly defined interface which describes the operations that the

service can perform (see Appendix B for full details of these interfaces). The CONCERT

architecture allows Internet-based software clients (operated by virtual CE team members)

to access these object-oriented middleware services via a globally available Object Request

Broker mechanism.

The CONCERT middleware support services comprises four core components: a

distribution support component, a collaboration support component, a project support

component and a repository support component. These four loosely coupled, globally

distributed support services work together to provide the main functionality of the

architecture. In addition to the four core support components, the data object repository is

also located within this layer. The repository is a key component in a Concurrent

Engineering support system. This is where all configuration items and data objects that are

produced throughout the entire life cycle of the project are stored. It should be noted that the

only link to the data object repository is via the repository support service interface. This

precaution is used to provide a high level of protection to the data (a more detailed

discussion of security considerations is given in §5.3.6).

The following sections briefly summarise the purpose of each of the four support services.

CONCERT Middleware Support Services

Data
object

repOSitory

Distribution
Support

RepoSitory
Support

Figure 5-5. The CONCERT architecture.

77

A more detailed description of each of the services is given in Appendix B.

5.4.1 Distribution Support Service

The Distribution Support Service (DSS) is primarily concerned with providing facilities to

support distributed access to the support services. Its responsibilities include:

• maintaining a list of current valid users and their contact details

• managing the authentication of users via a secure password list

• co-ordinating session management for users

• acting as an encryption key trustee for users

.It is the DSS that handles and co-ordinates the login and logout of the support environment

and it is also called upon by the other support services to authenticate users. A subset of the

DSS system interface is shown in Figure 5-6 (for a summary of the Fusion notation used the

reader is referred to Appendix A.)

5.4.2 Collaboration Support Service

The Collaboration Support Service (CSS) is primarily concerned with providing a means for

virtual team
member

Distribution
Support Service

~login_to_enVironment---+J

~- - - - -validation_token- - - - - -l
~Change_ virtual_team_member_detail~

Time
1------Change_paSswordt-------+t·1

~get-current_use~

~- - - - 'list_of_current_users- - - - -l
~get-virtual_team'-member-details____.j

~- - - -team_member_detailS- - - - -l

~logOut_of_environmen~

Figure 5-6. Sample interface
for Distribution Support

Service.

78

co-operative working and communication within the architecture. Its responsibilities include

managing communication channels such as:

• text-based conferences (multi-user and one-to-one)

• electronic mail

• bulletin boards

• group consensus voting services to support group decision making

• message sending and broadcasting

• event sending and / or channelling

All communications between team members are handled by the CSS. This can call upon the

DSS to either find a team member's workstation details (for sending synchronous messages

direct to the members display) or e-mail address from their contact information stored by

the DSS (for asynchronous message sending).

5.4.3 Project Support Service

The Project Support Service (PSS) is primarily concerned with providing a means for

specifying, monitoring and controlling projects and tasks within the architecture. Its

responsibilities include:

• the management and administration of project plans

• monitoring of the allocation and sign-off of tasks and sub-tasks

• project management reporting

• the management of past project histories

The PSS undertakes these roles in accordance with ISO 9000 quality requirements.

5.4.4 Repository Support Service

The Repository Support Service (RSS) is primarily concerned with providing data storage

and retrieval within the architecture. Its responsibilities include:

• the storage and retrieval of data objects in the repository

• managing version control of data objects

• managing concurrency control of the data

79

• providing a means for searching the repository

• providing a means for translation of data formats

• the management and validation of access control lists (ACLs)

The RSS looks after persistent, long-term storage of data and therefore requires additional

system administration facilities such as the back up and restoration of the data and locking

of the repository contents while this is taking place.

5.4.5 Data object repository

The CONCERT architecture specifies that the repository must be capable of storing all of

the various types of data that can be produced during the product life cycle. Object

databases are the most likely candidates for this task since they can readily cope with

complex-structured data such as video, audio and proprietary binary information. In

addition, object databases are more extensible in coping with new user defined data formats

which is a desirable property of the architecture.

5.5 The CONCERT environment

The CONCERT architecture provides a number of services to the outside world. The

CONCERT environment" is the combination of this architecture with applications that

utilise these services to provide functionality to users. To achieve this, an application layer

is implemented to interface with the CONCERT architecture and which provides a platform

for user applications. It is at the application layer that user software tools are implemented

and legacy components (i.e. applications and databases) interact with the system (see Figure

5-7). This section discusses the role of the application layer in more detail.

5.5.1 The application layer

The application layer sits on top of an Object Request Broker that is used to provide a global

access to the middleware support services. It is at the application layer that the high-level

functionality of the environment is implemented (as opposed to the low-level functionality

of the support services.) Figure 5-7 shows four different types of component in the

application layer interacting with a CONCERT system. These include the CONCERT

workbench application, third-party applications, legacy applications and legacy databases.

These are described in more detail below.

16 The term CONCERT architecture is used to denote the middleware services shown in Figure 5-5 and the term
CONCERT environment to denote the combination of the CONCERT architecture, Object Request Broker and
application layer as shown in Figure 5-7.

80

.... Wrapper Wrapper
Q)
>-
til 'Workbench' Third-party Legacy Legacy_J

c: application application application database0
+=l

.~
Q.

~

Object Request Broker

The CONCERT Architecture Middleware Services

Platform 1
Operating
System

Hardware

Platform2
Operating
System

Hardware

Platformn
Operating
System

Hardware

Figure 5-7. The CONCERT environment.

a) The CONCERT workbench application-The workbench application provides a graphical

front-end to the user so that they can access the services of the environment. An example

of a tool within the workbench is the project progress-reporting tool. This uses the

functionality of the project support service to provide the information and deliver the

information to the user in a graphical tree format. Another example is the group text

conferencing tool that uses the low-level 'publish-and-subscribe' functionality of the

collaboration support service to provide a user-friendly graphical interface to

participants.

b) Third-party applications-These are applications by external software vendors that

conform to the CONCERT architecture specifications. An example of this might be a

CAD software company who have written a bespoke CAD package that can access the

CONCERT repository directly by using the repository support service instead of using

local disk storage.

c) Legacy applications -Existing legacy applications and databases can continue to be

used by 'wrapping' them in a specially written software layer which intercepts and re-

routes commands to the CONCERT support services and vice-versa. For example, the

Pro/ENGINEER CAD system (Parametric Technology Corporation 1993), provides

application developers with an Application Programming Interface called

ProlDEVELOP which allows external applications to execute operations on

Pro/ENGINEER's data and monitor user functions such as 'saving' and 'loading' of

81

designs. This wrapping technique has been used successfully in similar engineering

environments (for example Goldstein 1994; Norrie and Wunderli 1996) and is widely

used in the software engineering community to incorporate legacy systems into new

object-oriented systems (Garnett 1997).

d) Legacy databases-This is essentially the same as legacy applications except that it

covers the wrapping of existing database applications. These wrappers could enable

existing database applications to redirect requests to store and retrieve information from

some local file system to the CONCERT repository instead.

5.6 Objectives revisited

A number of objectives for the CONCERT architecture were stated in §S.2. These were:

Wide availability, Scalability, Extensibility, Generality and Architecture neutrality. These

are now revisited showing how the CONCERT architecture and environment address these

objectives.

Wide availability-The modular structure of the CONCERT architecture means that it can

be easily integrated into existing engineering systems. In addition, the concept of legacy

application and database wrappers means that existing technology can be readily integrated

to the CONCERT environment.

Scalability-Scalability within the architecture comes from the loose coupling of the four

support services and data object repository. This allows these components to be moved (or

migrated) without affecting the system as a whole. As an example of this, it is possible for

say, a constraint management service to be added without affecting the existing services.

This new service could use the functionality of the existing services but the existing services

will be unable to use the constraint service since they could not possibly know its interface

and how it could be applied. However, by sub-classing existing services, they could be re-

engineered to use the new service interface, thus extending the life span of the architecture.

Extensibility-Extensibility within the architecture is evident in two dimensions: horizontal

and vertical extension. Horizontal extension is made possible via the creation of additional

support services or sub-classing existing support services. This is a result of each of the four

support services having a publicly defined interface. It is entirely feasible therefore, for

developers to use an alternate implementation for a given service without affecting the other

services in the architecture". An example of this might be the replacement of one database

17 The only proviso being that the new service provides at least the same functionality of the one it replaces, i.e.
supports at least the same interface.

82

technology with another to enable faster processing or increased flexibility. Of course the

new service can also extend the functionality of the existing service to include new

facilities. For example, it is beyond the scope of this research to provide an implementation

of videoconferencing within the Collaboration Support Service (CSS) but this could be

developed by a third-party who could then subclass the CSS to include support for

videoconferencing. This technique is also known as 'black-box reuse' in the software

engineering community.

Vertical extension of the environment is also possible via the development of third-party

applications within the application layer that make use of the support services' interfaces

and classes in order to address any new high level viewpoints that may arise. For example, it

would be possible to provide a shared whiteboard tool using the existing low-level publish

and subscribe facilities within the Collaboration Support Service.

Generality-In order to address this objective, existing network protocols and application

platforms must be employed. The CONCERT environment, in using the standard TCPIIP

protocol and by employing the Java Virtual Machine ensures that the environment will have

wide generality.

Architecture neutrality-Heterogeneous platforms require some means of architecture

neutrality. In the CONCERT architecture, this has been addressed by using an Object

Request Broker to allow multiple platforms to access the common core services. In addition

to this, the notion of language homogeneity through the use of the Java language further

supports this objective.

5.7 Summary

This chapter has introduced a computer system architecture (CONCERT) that can be used to

help facilitate virtual Concurrent Engineering teams. The design of this architecture is based

on objectives such as wide availability, scalability, extensibility, generality and architecture

neutrality. A number of guidelines and policies for developing support environments have

also been defined that can be used by other software developers wishing to build support

environments.

The CONCERT architecture is based on four core support services: distribution support,

collaboration support, project support and repository support (which is supported by a data

object repository). These support services have been designed using the principles of object-

orientation and are incorporated as Internet-based middleware objects to enable wide

availability, scalability and architecture neutrality. These support services are highly

83

extensible through the techniques of sub-classing and aggregation, commonly termed as 're-

use' in the software engineering community. An environment based on CONCERT is also

described which serves to show how the architecture fits into a typical real-world

application.

The following chapter describes the development of an information system object model

that can be used to support the operation or the CONCERT architecture or any other such

architecture designed to support CEo

84

Chapter 6

6. A information system object model to support virtual CE teams

6.1 Introduction

This chapter describes an object-oriented information system model devised as a result of

this research to support virtual concurrent engineering teams. This information model is

derived from the CE-RM presented in Chapter 4 and supports the computer systems

architecture developed in the previous Chapter. The relationship between the object model

and both the CE-RM and CONCERT architecture is once again shown in Figure 6-1.

The object model is presented in this chapter using plain English text for the purpose of

providing an overview of its component parts. A complete graphical object model using the

Fusion notation is given in Appendix C which shows the associations and relationships

between the objects described in this chapter (see Appendix A for a summary of Fusion

notation).

This chapter also describes how the object model provides support for both the middleware

components of the CONCERT architecture and the viewpoints identified in the CE-RM.

Finally, data storage implications for the object model are summarised and a solution based

on object databases is discussed.

6.2 Information system object model

The information system model presented in this Chapter is an object-oriented model. Before

describing the model, the motivations for choosing an object-oriented methodology are

given. This section then goes on to discuss how the proposed information model relates to

both the CE-RM in Chapter 4 and the CONCERT architecture in Chapter 5. A brief

discussion on the implications for actual physical storage of the information model

completes this section.

85

Figure 6-1. Object model overview.

6.2.J Motivation for using object-orientation

The prime motivation for using object-orientation (00) for developing the CONCERT

information system model stems from the following factors:

• Easier model to understand-Sommerville (1996) highlights the fact that for some

systems there is a clear correspondence between entities in the real world and their

respective objects in the system which serves to improve the comprehension of the

design.

• Ease with which changes can be app/ied-Objects allow changes to be localised,

i.e. happen at the individual object level as opposed to the system level.

• Greater flexibility-Evolution of object models can be more easily achieved using

the techniques of inheritance and encapsulation to produce new objects based on

existing objects with only the differences between the components needing to be

specified.

• Object reuse-The ability to reuse object specifications within a project (and even

from past or similar projects) brings productivity improvements for the system

designer resulting in models being built in a shorter time-scale.

86

• A consistent model-The same model can be used from analysis through to

implementation. Gray (pg. 6, 1994) reiterates this by describing 00 as being a

" ... more coherent development model."

• Object model can simplify implementation-For practitioners of object-orientation,

implementation of object models can be much simplified by the use of object-

oriented programming languages such as C++, Smalltalk and Java.

• Objects may be physically distributed and may execute in parallel (Sommerville

1996)- These characteristics were highlighted in the analysis given in Chapter 4 as

being of great importance in the building of CE support systems.

The core underlying theme of object-orientation is evident in all the phases of the work

proposed in this thesis: the viewpoint analysis in Chapter 4 is based on object-oriented

analysis techniques; the computer systems architecture given in Chapter 5 is built from

object-based services which are distributed and accessed using Object Request Brokering

facilities; the information model proposed in this Chapter is also object-oriented and, as will

be seen in the following chapter, the actual prototype implementation of the proposed

system is done using an object-oriented programming language. This consistency of model

throughout these stages has served to provide a clearer and swifter understanding at each

stage transition, i.e. from analysis to design and from design to implementation.

6.2.2 Base object types
In the following description and for the remainder of this Chapter, the names of classes

within the information system object model will be distinguished by the use of a different

typeface, e.g. Virtual Team Member. A summary of the base object types in the

CONCERT information system model is given in Table 6-1.

87

Table 6-1. Summary of CONCERT object classes.

Class name DescriptionSuper-type

Access Control List

Access Permission

Annotation

Bulletin Board

Bulletin Board
Message

CE Project
Configuration

Conference

Data Workspace

E-mail Message

Message

Opinion

Message

Repository
Component

Message

Specifies which users can access a given repository
component and in which mode, i.e. read or write.
This is a group of access permissions.

Holds the details of an access permission for a given
user. (See also Access Control List)

An additional reference item that can be used to
support a point of view or point to other sources of
information. This is an abstract class. Annotations
are catered for in messaging objects and repository
components.

A place where informative messages can be posted
for a given period of time. A bulletin board is an
asynchronous communication tool. (See also
Bulletin Board Message)

A generalised type of message that can expire after a
set date. (See also Bulletin Board)

The main class used to hold all configuration items
within a given CE project. This is used to store the
Project Plan, Team, Bulletin Board, Repository
and any Conferences or Problem Statement
details.

A place where CONCERT users can communicate
synchronously by sending messages. (See also
Message)

A storage folder where repository components can
be held. These are a means for grouping like objects
together.

Used for creating and sending electronic mail
messages to CONCERT users or external users or
systems.

Describes any sort of message that can be sent
between CONCERT users.

An opinion on some problem statement by a
particular user. Can be one of: in favour, against or
abstain. (See also Problem Statement)

88

Table 6-1 continued

Class name DescriptionSuper-type

Outcome

Problem Statement

Project Plan

Repository

Repository
Component

Repository Object

System
Administrator

Task

Team

Text Annotation

URL Annotation

Validation Token

Virtual Team
Member

Workstation

Repository
Component

Virtual
Team
Member

The result of a group voting session on a given
. problem. (See also Opinion, Problem Statement)

A problem expressed as a statement on which other
team members can register their vote.

Describes the project plan, i.e. it is made up of a
number of tasks and sub-tasks. (See also Task)

The holder for all Repository Components in a
given CE Project Configuration.

An abstract class used to define components that can
be stored in the CONCERT repository.

A storage class for any configuration item produced
during a project, i.e. a physical file or data item.

A special class of Virtual Team Member who can
perform additional system maintenance operations.

Describes a specific task during a given project. Can
be composed of a number of sub-tasks. (See also
Project Plan)

The grouping of virtual team members into a known
team. (See also Virtual Team Member)

Annotation A text-based annotation.

Annotation An annotation based on a Uniform Resource Locator
(URL) on the World-Wide Web.

Issued to a user only when they have successfully
logged into the CONCERT environment. This token
is then used in all service requests to validate that
user.

The class that defines individual team members.
Holds contact information that can be used by the
CONCERT environment and other users.

Holds attributes on the actual computer workstation
used by a particular CONCERT user during a
session.

89

A sample object diagram for the Repository object is given in Figure 6-2. The model has

been produced using the Fusion object modelling notation (Coleman et al. 1994) which was

developed by Hewlett-Packard. The Fusion method is the result of an amalgamation of best

practice from a number of popular object modelling notations was chosen for its clarity in

presenting object models and the ease by which practitioners of other object modelling

notations can interpret it. The notation shows aggregation by way of enclosing classes

within the aggregate object (for example the Repository Component class is an aggregate of

both an Access Control List class and the Annotation class). Relationships between classes

are depicted by a diamond (e.g. the is contained in relationship between the Repository

Component and Data Workspace classes). Inheritance is shown in Fusion models by

connecting sub-classes to the super-class using a triangle (e.g. both the Data Workspace and

Repository Object classes are sub-classes of Repository Component). For the complete

summary of the Fusion notation the reader is referred to Appendix A while the complete

information system object model is given in Appendix C.

Repository

RepOSitoryComponent
* object identifier

owner
name

* description

-
Access Control List "E

Is child
contained

J~In

I . ha
ve

Data Workspace Repository Object

size
1 original filename par

search keywords 1 I
ent

Figure 6-2. Repository object diagram.

6.2.3 Supporting the CE-RM through the information model

This section highlights the relation between the object types in the information model

presented in this Chapter and the object types identified in the CE-RM presented in Chapter

4. The information system object model primarily supports the Enterprise and Information

viewpoint classes of the CE-RM but, as will be seen in §6.2.4, also provides support for the

Computation, Engineering and Technology viewpoint classes.

90

In the CE-RM, the Enterprise and Information viewpoint classes are further partitioned into

the classes: Security, Team and User, Product and Version and Project and Task. The

relation between each of these and the information system object model is described below:

• Security- The security viewpoint is addressed firstly by the Access Control List

(and Access Permission) classes that serve to control access to data by authorised

members only. Secondly, the Validation Token class ensures that only properly

authenticated users can actually perform operations within the system.

• Team and User-The classes Team and Virtual Team Member map directly to

the viewpoint classes team and user. A Team object is composed of one or more

Virtual Team Members. These classes capture the information requirements of the

team and user viewpoints, e.g. the Virtual Team Member class holds information

such as name, address, e-mail address, telephone and fax number and a graphic

image.

• Product and Version-The CONCERT system Repository, which holds all items

produced during a CE project encapsulates the product and version viewpoint

objects. In the information system object model, the Repository Component and

its sub-classes Data Workspace and Repository Object capture the information

requirements of the Repository. Repository Objects can have child versions that

are, themselves, Repository Objects. Data Works paces can contain any number

of Repository Components, i.e. other Data Works paces or Repository

Objects. A product may undergo many revisions (i.e. have new versions created)

before it is finalised and this data structure captures this ability. Data Works paces

are a means of grouping like objects together, e.g. in the design of a motor car, a

data workspace might be created to hold all designs for a particular component such

as the dashboard. Within this data workspace, there might be another, lower-level

data workspace for holding designs associated with a particular gauge or dial within

that dashboard.

• Project and Task-The Project Plan and Task classes map directly to the CE-RM

project and task viewpoint objects. The Task class is a recursive data structure

which is capable of containing other Tasks and so on ad infinitum while the

Project Plan class holds one or more Tasks. These classes hold information such

as key dates (i.e. checking and release dates) and who carried out the task. Through

the incorporation of ISO 9001 quality requirements within these classes they can be

used to track and plan projects and tasks and provide full audit capabilities.

91

It can be seen that these classes address the Enterprise and Information viewpoints of the

CE-RM but as will be expanded in the next section, some of these classes also provide

support for the lower level viewpoints of Computation, Engineering and Technology.

6.2.4 Supporting the CONCERT architecture through the information model

This section highlights the relation between the object types in the information model

presented in this Chapter and the object-based support services identified in the CONCERT

architecture presented in Chapter 5. The information system object model provides

information support for all four CONCERT support services and provides the means for

data persistence in the data repository. The information system object classes that are

pertinent to each of the four CONCERT support services are described in more detail below:

• Distribution support service- To support the notion that users will access the

CONCERT environment from distributed computer workstations, the Workstation

class holds information regarding that user's current settings, e.g. the physical

location of the workstation and its logical position within some network, i.e. its

Internet Protocol (JP) address. Another important class is the Validation Token

which is used for security and authentication purposes and whose instances are only

ever issued by this service. Finally, the Virtual Team Member forms the basis of

user authentication and serves as a reference point for user contact information.

• Collaboration support service-This service is concerned with providing means for

synchronous and asynchronous communication between virtual team members. This

communication takes the form of message sending. The Message class and its sub-

class Bulletin Board Message are used in the Conference and Bulletin Board

classes respectively to allow virtual team members to send and receive synchronous

and asynchronous text messages. In addition to this, the E-mail Message class also

allows team members to communicate asynchronously with other internal users or

external people.

Group working assistance is also provided by this service. Three classes provide

information support for a group voting mechanism: the Problem Statement, which

is used to provide a means for generating group discussion; the Opinion, which

allows virtual team members to state their own opinion; and the Outcome, which

provides an actual record of the group voting process.

• Project support service-The CE Project Configuration is the central focus for a

given CE development project. This class is managed by this service and utilised by

the other support services as a reference point to the objects contained within. This

92

service primarily provides the means for project management and tracking via the

Project Plan and Task classes that provide the information support for this role.

• Data repository support service-The Repository is the software equivalent of the

physical storage facility within the support environment. This service requires a

suitable data structure for holding all the data that is produced during a CE project

and ensuring that access is securely administered. The Repository Component

class and its sub-classes Data Workspace and Repository Object model the

information requirements of this data structure.

Incorporating the Access Control List class within the Repository Component

class intrinsically caters for security. Because the Access Control List is a

component of the super-class, Repository Component, it means that it is

applicable to both the Data Workspace class and the Repository Object class.

This means we can restrict which team members can actually read or create new

versions of specific Repository Objects and also specify which team members can

retrieve items from or add items to a particular Data Workspace.

It can be seen that these classes provide information support to the CONCERT support

services which, in tum, enables these to support the Computation, Engineering and

Technology viewpoints of the CE-RM.

6.2.5 Implications of object model on information storage

The information model proposed above requires persistent storage-a Repository Object

produced by a Virtual Team Member needs to be retained for later sessions so that other

Virtual Team Members can access it, i.e. the lifetime of the individual objects is longer

than the lifetime of the application used to create them. A number of candidate database

technologies are available for this persistent storage task. These include:

• relational databases,

• extended or object-relational databases, and

• object oriented databases.

To store object-oriented models in relational databases, the objects must first be flattened

down into relational tables (see for example Ch.5 in Loomis 1995) i.e. by mapping the

object classes into tables. This mapping process causes a loss of semantic information in the

classes and can require many more lines of programming code to implement which

invariably leads to greater possibility for errors. A performance overhead is also incurred

while this mapping and re-mapping takes place (Cattell 1994).

93

Extended or object-relational databases include features that are akin to object-orientation,

such as using the term class instead of table and allowing tables to inherit features of other

tables. However, they are still built on relational database technology and therefore suffer

from many of the same problems as those highlighted in the previous paragraph. Object-

oriented databases, on the other hand, can store objects and their relationships and

associations directly without the need to flatten the individual components. Complex

associations between objects such as that given between the Repository and Repository

Component (and its sub-types Data Workspace and Repository Object) which involve

recursion and inter-linking can be stored without change in object-oriented databases

whereas the mapping of these classes into relational tables will incur additional

complications such as those described above. Performance in retrieving this information is

also improved in object-oriented databases which is an important issue in competitive

manufacturing where information needs to be available in a timely manner.

6.3 Summary

The object model developed in this chapter is a self-contained and complete information

system model for use by developers of computer-based CE support systems. This chapter

has also shown how this information model supports and can be integrated into one such

support system: the subject of this thesis. It does this by discussing the links between both

the CE-RM (Concurrent Engineering Reference Model) presented in Chapter 4 and the

CONCERT architecture presented in Chapter 5 with the information system object model.

In keeping with the underlying trend in this thesis, the information model described in this

chapter has been developed using an object-oriented methodology. This is consistent with

models presented in previous chapters in this thesis and will also serve as the means for the

implementation discussed in the following chapter. For the reasons highlighted in section

6.2.5, it is considered expedient to use an object-oriented database management system

(ODBMS) as the data storage system for the information model proposed in this chapter.

Using an ODBMS is in keeping with the object-oriented nature of the entire design thereby

ensuring consistency throughout the entire project.

The next chapter describes how the models proposed in this and the preceding two chapters

have been implemented into a complete computer-based support environment for virtual

concurrent engineering teams.

94

Chapter 7

7. System implementation

7.1 Introduction

This chapter gives an account of an implementation of the CONCERT architecture

described in Chapter 5 and the information system object model described in Chapter 6.

This implementation will be referred to hereinafter as the CONCERT environment. Recall

the definition of environment given in Chapter 1:

"An environment is the realisation of an architecture and supporting

systems. In the case of realising a computer systems architecture, the

environment would be the combination of software and hardware required

to implement the architecture. "

This chapter begins by describing the goals of the CONCERT environment in relation to the

goals of distributed computing environments. The CONCERT environment is an example of

a distributed system and therefore needs to address the same objectives. The individual

components of the CONCERT environment are described in detail along with details of an

actual prototype test-bed that was devised in order to evaluate the system.

7.2 Distributed system goals

The CONCERT environment is a distributed computer system. A consequence of this is that

it must support certain transparency characteristics in order to provide a level of service

suitable for use within a distributed environment. Chapter 2 introduced this concept by

describing ten types of transparency, namely access, concurrency, failure, federation,

location, migration, performance, replication, resource and scaling transparencies.

Throughout this chapter, these concepts will be highlighted again to show how the

individual components of the CONCERT environment meet these goals.

7.3 Environment components

The environment consists of the following software components":

• A globally available Object Request Broker (ORB) (hereinafter referred to as the

'CONCERT ORB').

• The four distinct CONCERT support services (i.e. Distribution, Collaboration, Project

and Repository support services).

• A client application (hereinafter referred to as the 'workbench') used to access the

services and provide high-level tools to users of the environment.

These components, when taken as a whole, constitute the CONCERT environment. Each of

these components is described in greater detail in the following sections.

7.3.1 CONCERTORB
The CONCERT ORB performs the role of registering the location of the support services

and publicising this to client applications, i.e. it performs a task similar to the Naming

Service in the Object Management Group's CORBA Common Services specification

(Object Management Group 1997). There are differences however, which relate to the

security of the overall process, which are discussed in more detail in §7.3.1.1. The

CONCERT ORB requests such as bind (which associates a service with a given name),

unbind (which removes any association) from server processes and lookup (which is used to

locate a given service using a simple name) from client applications. The interface for the

CONCERT ORB is shown in Figure 7-1.

The main role of the CONCERT ORB is to act as a service database for clients and servers

within the environment. In order to fulfil this role, it also has to perform certain

'housekeeping' chores such as periodically checking that all registered services are still

responding (i.e. the processes are still alive) in an effort to improve failure transparency

characteristics. Any 'dead' service will have its entry removed from the CONCERT ORB

database so those clients requesting that service can be better informed of its current state.

The CONCERT ORB also persistently stores its own internal state (i.e. its service database)

to disk so that, in the event of a system failure, it can attempt to gracefully recover thereby

improving overallfailure transparency within the environment.

18 These components were first introduced in Chapter 5 (see Figure 5-7 on page 81).

96

• public BindKey blnd{String serviceName, ObjectRef service) throws
AlreadyBoundException

Binds a service with a given name into the CONCERT ORB service database.

Parameters:
serviceName - the name of the service
service - a reference to the object which is the service
Returns: a unique bind key
Throws: AlreadyBoundException if the service name is already bound

• public void unbind{String serviceName, BlndKey bindKey) throws
NotBoundException, AccessException

Unbinds a service with a given name from the CONCERT ORB service database.

Parameters:
serviceName - the name of the service
bindKey - the unique key issued at bind time
Throws: NotBoundException if the service name is not bound
Throws: AccessException if the bind key is invalid

• public ObjectRef lookup{String serviceName) throws NotBoundException

Looks up a service with a given name from the CONCERT ORB service database.

Parameters:
serviceName - the name of the service
Returns: a remote object reference to the requested service
Throws: NotBoundException if the service name is not bound

Figure 7-1. Interface definition for the CONCERT ORB.

If a given service needs to move (migrate) to a new machine, it can do so in a process that

involves unbinding itself from the ORB, moving to the new machine, restarting the server

and then rebinding. When client applications contact the CONCERT ORB they will be

informed of the new location automatically. This enables the CONCERT environment to

support both migration and location transparency.

The diagram in Figure 7-2 shows the four steps that are needed for the complete

environment to function correctly. These steps are described as follows:

1) Each support service binds itself in the CONCERT ORB. The ORB allows services to

bind from any location even across company boundaries. In this way the ORB supports

the notion ofjederation transparency.

2) Client applications then look-up the location ofa support service in the CONCERT ORB

at run-time. This provides support for location transparency to applications and users.

3) The CONCERT ORB returns a remote object reference to the actual support service.

97

Repository
Support
Service

Distribution
Support
Service

Rin~--...JProject Support
Service

Collaboration
Support
Service

/,, /

~IOOkUP object
reference

Remote
Method

Invocation

/
/

Figure 7-2. Achieving location and
migration transparency within the

CONCERT environment.

4) The client application calls methods in the remote service directly using the remote

object reference. This is an example of access transparency-the user is unaware of how

the client application accesses the actual service.

One aspect of transparency that is not specified in Chapter 2 and one which I believe is

becoming increasingly important in distributed system building is security transparency.

For the purposes of this thesis, the consequence of security transparency is defined as:

"participants are unaware that communications and transactions take place securely." The

following section describes some consequences of security transparency in more detail.

7.3.1.1 Security considerations
A common way of implementing computer viruses is via a 'Trojan Horse' application".

This is where a rogue software application fools the user into thinking it is some other

legitimate application perhaps by using the same name. To ensure that services are not

unbound and replaced by rogue processes masquerading as legitimate services within the

CONCERT environment, each service that is bound in the CONCERT ORB is issued with a

unique 'bind key'. This bind key is a secret code that is sufficiently difficult to forge in

19 Trojan Horse: A program that either pretends to have, or is described as having a (beneficial) set of features but
which, either instead or in addition, contains a damaging payload. (Source: McAfee Associates:
http://www.mcafee.coml)

98

order to deter intruders. A service can only be unbound with the correct bind key, i.e. by the

service itself or some trusted third party that has been entrusted with the bind key. This

feature, in addition to the Validation Token that is issued to users who successfully login to

the CONCERT environment (see Chapter 6) provide support for security transparency

within the environment.

One interesting point worth raising at this stage is that CORBA-corripliant Object Request

Brokers allow services to rebind themselves in a single step, e.g. by calling a method such

as:

ORB.rebind(ServiceName, Service);

This allows a new service to take over the role of the existing one or it can be used to

simplify the migration process when a running service is moved to a new machine. This

approach, however, lends itself to abuse from Trojan services. In addition to this, rebinding

in this way contravenes the security constraints imposed by the CONCERT ORB since a

service can only be unbound if its BindKey is known (which a new service could not

possibly, or at least should not, know). A full description of the CONCERT ORB secure

rebinding process is given in §7.5.1.

7.3.2 Support services

Each support service is defined as a remotely accessible software object with a publicly

defined interface. Client applications can access the functionality of each service by

requesting operations via this interface. These interfaces were discussed in Chapter 5 and

are prescribed in Appendix B (Support service system interface models). The Repository

Support Service also maintains its own object database that has been custom-built in Java.

In order to address failure transparency, the support services are each capable of recovering

gracefully from system shutdowns or crashes. They do this by persistently storing the

internal state relevant to that service on permanent storage, i.e. disk. If a service should fail,

it can restart and restore its previous state from disk and resume where it left off before it

failed. If one support service should fail, the other services within the environment will not

be affected".

Each support service (and the CONCERT ORB) is also capable of responding to multiple

requests simultaneously through the use of synchronisation techniques such as semaphores

20 This is unless, of course, another service requests an operation of the failed service.

99

and monitors (Hoare 1978). In this way, it can be seen that the environment supports

concurrency transparency.

7.3.3 Workbench application

The workbench application is a client application that is used by virtual team members to

access the functionality of the support services and environment. The workbench employs a

graphical user interface (GUI) to deliver high-level functionality to users of the environment

(i.e. both CONCERT system administrators and general users). Examples of this high-level

functionality include:

• A text conferencing application that makes use of the low-level publish-and-subscribe

functionality of the Collaboration Support Service.

• A file upload application that can be used to deposit items into the CONCERT repository

and which makes use of the Repository Support Service low-level interface.

In both of these examples the low-level interfaces of the CONCERT support services

(described in Appendix B) are hidden from the user who instead sees a familiar GUI-based

work environment. In order to utilise any of the CONCERT support services, the workbench

first contacts the CONCERT ORB to determine the location of the actual services thereby

maintaining location transparency between the user and the application.

7.4 Software components

Each of the software components described above has been implemented in the Java

language (Arnold and Gosling 1996) using the mechanisms of Remote Method Invocation

(RMI) within the Java language to provide support for distribution. RMI provides a method

for request brokering between Java components by marshalling data and requests into a

form suitable for transport across a TCPIIP network. Java was also chosen for its cross-

platform capabilities in order to provide a consistent user interface on multiple platforms.

Figure 7-3 shows a section of a Java class developed to display the contents of a text

conference in a window. This code illustrates how the CONCERT ORB is used to look up

the current location of the Collaboration Support Service, which is later used to finish the

conference.

100

public class ConferenceWindow extends AppWindow implements Action~istener (
public ConferenceWindow(CONCERT_ORB ORB, ValidationCouple couple, long confID)

super ("Conference") ;
try (

css = (CollaborationSS)ORB.lookup("CollaborationSupportService");
ConferenceMessage msgs[] = css.openConference(couple, confID);
catch (Exception ex) (
InfoDialog m = new InfoDialog(this, "An error has occurred",

"Exit", true, "Please report the following error:\n"
+ "'" + ex.getMessage() + '" to your CONCERT administrator.");

m. setVisible (true) ;
dispose() ;

II
II user interface code not shown for clarity
II

}

public void actionperformed(ActionEvent e)
if (e.getSource() == finish) {
try (

css. finishConference (couple, confID);
catch (NotAuthorisedException ex) (
InfoDialog d = new InfoDialog(this,

"Not Authorised", "OK", true,
"You are not authorised to finish this conference."
+ "\nOnly the conference owner can finish a conference.");

d.setVisible(true);

Figure 7-3. Sample Java code for accessing support service.

Since the CONCERT support services share common characteristics, it is a logical step to

make these services sub-classes of some common base server object type. This makes

development of new support services an easier process since there is no wasted effort re-

coding standard methods. This has been done in this implementation of the CONCERT

environment. The class hierarchy can be seen using the Fusion notation in Figure 7-4.

The entire CONCERT environment software comprises around 150 Java classes, two fifths

of which is responsible for the portable GUI components. This totals around 30 thousand

lines of Java code (30 KLOC) but due to the compact nature of Java executable bytecode,

the complete run-time executable code for the environment is small enough to fit on a single

Support Service

A
r I

Distribution Collaboration Project Repository

Figure 7-4. Support service
class hierarchy.

lf11

3~-inch 1.44Mb floppy disk. This makes it extremely portable and able to operate on a wide

variety of devices such as workstations, PCs, laptops and even some palmtop devices or

PDAs.

7.4.1 Screen shots

The following screen shots of the CONCERT environment in use were taken using an Intel

Pentium-class PC running Windows9S with the Java Development Kit version 1.1.5.

This workstation's properties are:
Irternet address: euler
Architecture: x86
Operating system: Windows 95 version 4.0
Telephone: 01512312578
Location: Room 744, Byrom Slreet

Figure 7-5. Workbench interface and login dialog.

102

Figure 7-6. Viewing conferences that are currently taking
place.

Name:MartnHa~n
Job role: ChIef soflwere architect
Company: L.MJ
Address: Room 744, Byrom street
Telephone: 0151 231 2578
Fax: 0151 207 4594
E-MaIl: m.hllnneghanQiYjm.ac.uk
Homepege URL: http:/A1epIer.cms.lIvjm.ac.uk1

Figure 7-7. In a text conference and viewing user details .

.. All CONCERT users

I- D admilt D madj1d

CONCERT admInIstrlllor Admilistralor
Madjlcl Merabll ~

No
Yes

Figure 7-8. Viewing team details.

103

7.5 Configuration of prototype test-bed

In order to evaluate the support environment, a prototype test-bed was set-up within the

School of Computing and Mathematical Sciences at Liverpool John Moores University.

This test-bed was configured as a distributed system on top of an existing Intranet system",

The configuration consisted of the following off-the-shelf components:

• Four Sun Microsystems Inc. Spare 4 workstations running the Solaris 2.5 operating

system (one to host each of the four Support Services"),

• One Intel Pentium-class PC running the Microsoft Windows 95 operating system

(to host the global CONCERT ORB).

• A mixture of Intel Pentium-class PCs, Sun Spare workstations and Apple Macintosh

PCs acting as clients to the environment.

All these components were connected via the Internet using the standard TCPIIP protocol

(see Figure 7-9). Version 1.1.5 of the Java Development Kit was used on all machines in

this network. It should be noted that the particular hardware used was not chosen for any

particular reason. Any platform that supports a Java Virtual Machine" is capable of

performing any of the roles described above.

7.5.1 System operation
In order to facilitate global operation, the CONCERT ORB is placed at a known position on

the Internet, i.e. at a known IP address", This position can then be publicised to all

interested parties, i.e. both servers and clients. Once this is in place, the four support service

servers are executed and each support service makes itself known to the CONCERT ORB

by following the binding process described earlier in this chapter. Using the mechanisms of

Java RMI, the CONCERT ORB can be requested to provide a remote object reference for

each support service bound in its database.

21Actually a Local Area Network (LAN) that uses standard Internet-based connections (i.e. TCPIIP).

22It should be noted however that it is not necessary to dedicate a whole machine to a single support service.
Indeed, all the components described in section 7.3 could in fact be executed on the same machine, resources
permitting. However, for the purposes of evaluating the robustness of the software and improving failure
transparency, the test-bed uses individual machines for each service.

23At the time of writing this list includes various Intel! Microsoft Windows platforms, various UNIX platforms,
IBM OS!2, Apple Macintosh as well as a growing number of Network Computer (NC) devices. This accounts
for upwards of approximately 75% of all computer platforms currently in use.

24This IP address need not be fixed and can change at any time, the prerequisite being that affected parties within
the environment can be notified that such a change has occurred and modify themselves accordingly.

Project Support Service
Hostname=lister

DI----
Distribution Support Service

Hostname=ace

Hostname=napier

....................

DI---
Repository Support Service

Hostname=rimmer

Collaboration Support Service
Hostname=spanners

Not.: .11machin •• 11'0 wtthin tho
.m•.llvjrn.... uk dom.ln

Figure 7-9. Sample configuration of
test-bed environment.

Client applications then contact the CONCERT ORB at run-time to determine where the

required support services are located (see Figure 7-2 on page 98). This method of location

transparency means that both clients and servers within the environment need only ever

know one point of contact-the CONCERT ORB. The support services can be dynamically

located anywhere on the Internet since they always inform the CONCERT ORB of their

current location. This flexible configuration provides a means for the support services to

migrate to other machines relatively easily. The migration process can be achieved using the

following 3-stage procedure:

1. unbinding-first the existing service is unbound from the CONCERT ORB. This is

done by calling the unbind method in the CONCERT_ORB object, e.g.

CONCERT_ORB.unbind(ServiceName, BindKey)

Here the BindKey parameter is the unique key issued when the service was initially

bound in the CONCERT ORB.

2. moving-the service is physically moved and re-started on a new machine. In practice

this means killing the existing process on one machine and restarting it on another.

105

3. re-binding-the service is then re-bound in the CONCERT ORB. This is done by once

again calling the bind method in the CONCERT_ORB object, e.g.

CONCERT_ORB.bind(ServiceName, RemoteService)

By using the same value for ServiceName as the one that was initially bound in the

CONCERT ORB, clients can be sure to find the service again once it has been

successfully bound.

This process performs the equivalent of the rebind operation of standard ORBs but

incorporates the CONCERT architecture's unique security controls.

7.6 Rejected implementation candidates

The viewpoint analysis given in Chapter 4 introduced the notion of a Technology Viewpoint.

This viewpoint is concerned with the choice of actual technology that will be applied to a

design solution. This section describes some other possible technology candidates that could

be used to implement the CONCERT architecture. It also discusses the reasons why the

actual choices were made and gives a description of the shortcomings of the rejected

candidates.

7.6.1 CONCERT ORB versus CORBA-compliant ORB

In order for software clients to access the CONCERT middleware support services there

needs to be some intermediary that can be contacted to route requests to the appropriate

location. This is the role of the Object Request Broker. A number of options for request

brokering are discussed in Chapter 2, but for object-oriented systems the OMG CORBA and

Java RMI specifications are more appropriate.

The Remote Method Invocation protocol within the Java language is a lightweight protocol

which performs a similar task to the CORBA nop (Internet Inter-Orb Protocol). However,

it has a greatly reduced 'footprint' in software terms and is an ideal tool for prototyping

ORB-based software systems. David Curtis of the OMG (Curtis 1997) reiterates this stating

that RMI is " ... a viable alternative to CORBA for some applications," citing the overlap

between RMI and CORBA. The adoption of Java RMI does not preclude the use of CORBA

and nop since both technologies can coexist within the same system.

7.6.2 Java versus HTML and CGI

An early prototype of the CONCERT architecture was produced which used features of

HTML and CGI in an attempt to provide a heterogeneous environment for concurrent

engineering teams (Hanneghan et aI. I996b). This WWW-based implementation proved to

106

be too restrictive for many of the same reasons that were highlighted in Chapter 3 for

similar approaches. These restrictions were evident in the areas of user interface, overall

client and server flexibility, session management and server processing load and security.

It should be noted however that the current implementation is flexible enough to allow it to

be used over the WWW if so desired with little modification. The workbench application

and its associated high-level tools can be utilised using the Java applet mechanism that

allows Java applications to be downloaded and executed on client machines in a standard

WV,lW browser. Figure 7-10 shows a screenshot of the WWW-based prototype.

7.7 Summary

So far, this thesis has described three building blocks for the construction of computer-aided

support environments for CEo These are: the Concurrent Engineering Reference Model (CE-

RM) proposed in Chapter 4; the CONCERT architecture proposed in Chapter 5; and the

information system object model proposed in Chapter 6. Each of these three constituent

parts can be used in isolation or combined into one complete environment to support

Concurrent Engineering. This chapter has described one such combined application of these

components in building the CONCERT environment. The CONCERT environment is a

Figure 7-10. Screen shot of early
prototype environment.

107

distributed system built using the Java language that allows global co-operation,

communication and information sharing mechanisms. It is a realisation of the CE-RM,

CONCERT middleware architecture and the object information system that can be used as a

platform for delivering CE projects.

l 108

Chapter 8

8. Validation and case studies

8.1 Introduction

In this chapter, an evaluation of the CONCERT environment prototype is given which

provides details of two case studies of the proposed environment comparing and contrasting

this new environment. with existing work. The case study scenarios cover two diverse

subject areas: (i) the field of engineering design and manufacturing, and (ii) the field of

remote learning. Some of the limitations of this work are also described and finally in this

chapter some additional system application areas are discussed to further highlight the

generic nature of the system design.

8.2 Case studies

This section describes two case studies to which the CONCERT environment has been

applied. These case studies are:

• Study A-The development of a guided missile. This project was initially devised as

part of the Madefast programme (for further information about Madefast the reader is

referred to Cutkosky et al. 1996). This is described in §8.2.1.

• Study B- The development and delivery of an undergraduate degree module. This was

an application within the School of Computing and Mathematical Sciences at Liverpool

John Moores University. This is described in §8.2.2.

These particular case studies were selected to: (i) show the validity of the environment in a

traditional product development scenario that employs a Concurrent Engineering strategy;

(ii) demonstrate the environment's functionality in global scale concurrent projects; and (iii)

highlight the generic applicability of the environment to other complementary problem

domains. Each case study is presented under five general topics:

I. The study scenario (to help put the study into perspective.)

109

2. Characteristics of the study, i.e. issues that are important to the success of the project.

3. The steps that need to be taken to apply the CONCERT environment to this project.

4. Anomalies between the project before and after applying the CONCERT environment.

5. Positive aspects of the study that may prove to be a useful vehicle for future research.

In a majority of concurrent development processes, the chain of events follows a pattern"

similar to that shown in Figure 4-1 on page 55. The relevant steps shown in this diagram

will be revisited during the discussion of the following case studies.

8.2.1 Case Study A: The development of a guided missile

This case study is an application of the CONCERT environment to a modern hard

engineering problem, i.e. a relatively complex product concurrently designed and

manufactured using CAD / CAM techniques. Due to the impracticalities associated with

repeating a major industrial study, the procedures, methods and operations undertaken as

part of the Madefast project have been re-applied to the CONCERT environment. This study

should therefore be viewed as a "virtual" case study in which the mechanisms of the

proposed environment can be validated against a known reference point.

8.2.1.1 Scenario

Madefast is an ARPA-sponsored project to demonstrate technology developed under the

MADE (Manufacturing Automation and Design Engineering) program. The project was

developed to design and build a "seeker" prototype. The term seeker is used to describe a

variety of air-to-air missile that is guided by sensors that are designed to lock onto and track

a target. The seeker in the Madefast case study was a much simpler device whose purpose

was simply to track a beam oflight on a wall, but similar principles are involved. The seeker

was to be completed within the six-month time schedule shown in Figure 8-1. This timeline

clearly shows the concurrent nature of this project during both the organisation and the

design and build phases.

2S It should be noted that this is a generalisation and is not the case for all projects. For example, step 3 might not
necessarily result in any new data items being produced and therefore step 4 will not occur and step 5 will
follow step 3. However, to illustrate the concepts discussed here, it is assumed that a least one item is
produced when a task is performed.

110

The project involved a number of participants situated throughout the United States. The

participants included: CMU Engineering Design Research Centre, The Cornell Computer

Science SimLab Project, Enterprise Integration Technologies (ElT), Lockheed Artificial

Intelligence Centre, MIT Artificial Intelligence Laboratory, MSU Intelligent Systems

Laboratory (lSL), Rockwell (Palo Alto Lab), Stanford's Centre for Design Research (CDR),

Stanford Knowledge Systems Laboratory, Texas A&M Computer Aided Manufacturing

Laboratory and the University of Utah. (A diagram showing each participant and their

geographical location is shown in Figure 8-2.)

8.2.1.2 Characteristics of this study

The main characteristics of this study are:

a) The project covers the product life cycle from conception through to actual production

starting from scratch with no initial design information.

b) There are high levels of collaboration during the initial planning and design / production

phases although there is no initial physical meeting of everyone involved in the project.

Electronic collaboration methods are the preferred means.

c) There is wide geographic dispersion of the team members (covering the length and

breadth of the United States) and there is no team management structure imposed.

Instead, the team is based on a peer-to-peer structure that is commonly found in

Concurrent Engineering projects. Additionally, participants are invited to join and leave

111

the project as and when they desire. These features denote a classic virtual team

structure.

d) No tasks are assigned to individual team members. Instead, team members take them on

as and when they are capable of providing the resources to do so.

e) There is a six-month time constraint on the project.

f) Documents should be authored in HTML (Cutkosky et al. 1996) using the WWWeasel

software package (Glicksman et al. 1994). WWWeasel enables authors to write

multimedia hypertext documents that contain links to distributed information. This sets

the prescribed common information model for the project.

These characteristics are typical of modem CE projects that are heavily reliant on

technology and involve widely dispersed teams working to tight deadlines.

8.2.1.3 Applying the CONCERT environment to thisproject

There are three steps that need to be taken in order to apply the CONCERT environment to

this project. These are each described in detail in this section.

Step 1: Establishing the CONCERT support services location-In the CONCERT

environment, the four support services can either be located at some central site or

distributed among any combination of the participants' sites. In the Madefast project, the

112

primary personnel were Stanford, ElT and Lockheed" while each of the other participants

maintained their own WWW server where information was stored (Cutkosky et al. 1996).

These primary sites of the Madefast project therefore seem logical places to host the

CONCERT support services. Similarly, the location of CONCERT ORB can be determined

using similar criteria.

Step 2: Establishing a project configuration-Instantiating a new CE Project

Configuration object will create a new Repository and Bulletin Board. It will also

initialise the list of Conferences and Problem Statements for new use. The Team and

Project Plan objects are then also created (initially empty) and populated with relevant

information. Once the configuration has been created, the virtual team can be formed. This

involves creating entries for each team member (e.g. name, address, email address,

telephone number, etc.) and assigning these team members to a team i.e. creating instances

of the Virtual Team Member and adding these to the Team object. The Madefast team is a

dynamic structure that can grow or shrink as required (as specified in §8.2.1.2) and this is

modelled by the CONCERT Team object that contains one or more Virtual Team

Members.

The Project Plan details all the tasks that are required to fully specify and complete a given

project e.g. such as those specified in Figure 8-1 or in more detail as required. This entails

populating the Project Plan object with one or more Task instances. Since a CE team

should ideally have no management hierarchy, any team member can create new Tasks

within a Project Plan. One of the advantages of this formal project plan is that Quality

initiatives can be more rigorously enforced to help improve product quality (a primary goal

of Concurrent Engineering-see Definitions in Chapter 1). In accordance with DIN ISO

9000 quality standards, the CONCERT environment forbids a team member to mark a task

as checked if that team member was responsible for carrying out the task. Similarly it will

forbid a team member to mark a task as released if that team member was responsible for

either carrying out the task or marking it as checked. In the CONCERT information system

model, a Project Plan is made up of one or more Tasks and these Tasks can be composed

of zero or more sub-Tasks. This fits in well with the Madefast project where groups of

participants where allocated main tasks such as Component Design Analysis and Qualitative

Modelling" in which they could specify sub-tasks, as they deemed necessary.

26Source: http://www-ksl.stanford.edulemail-archiveslmadefast.messagesl39 .html

27Source: http://www-ksl.stanford.edulemail-archiveslmadefast.messagesl39.html

113

http://www-ksl.stanford.edulemail-archiveslmadefast.messagesl39
http://www-ksl.stanford.edulemail-archiveslmadefast.messagesl39.html

Step 3: Carry out concurrent work-Once the previous two steps have taken place, work can

begin on actually carrying out the tasks and producing the product. The activities involved

here include:

• Submission of new information to the repository-It should be noted that it is only

possible to store electronic information in the repository (for obvious reasons!) but this

can include digitised versions of media such as photographs, sounds and videos. If

physical references need to be made then the item stored in the repository might be a

document that can be used to locate the physical reference; e.g. "the stereolithography

model is kept in Bill's office."

• Checking out items from the repository (and subsequent check-in)-This is where team

members perform work on actual items and possibly produce revisions of existing items.

Items can be checked out in read-only mode when no editing needs to be performed or in

read-write mode when a new version needs to be created.

• Checking and releasing completed tasks-Once a given task has been performed it must

be checked and released as part of Project Management.

• Communication between team members-As part of the communication process (see

Figure 8-3) team members may discuss issues surrounding items that have been stored in

the repository or any other issues concerned with the project. This may entail holding

group conferences or asynchronously sending (e-mail) messages",

Step 3 is an iterative process that repeats until the project is complete (as shown in Figure

4-1 on page 55.)

28TheMadefast project was officially started via an e-mail message and e-mail was the predominant method of
communication. The reader is referred to the Madefast archives at the Internet address http://www-
ksl.stanford.edulemail-archiveslmadefast.messagesl39.html for the contents of this original e-mail message.

114

Iterative
sub-

process

Figure 8-3. The process of group collaboration.

8.2.1.4 Anomalies in this study
The main anomaly of this study which differs in perspective from that of the CONCERT

architecture is in the area of data ownership. In the Madefast project, data is owned and

maintained by each individual participant site, i.e. if a participant creates some new data

item, that participant's site is then responsible for maintaining that data item. A

consequence of this is that the collective repository of data is composed of data at multiple

sites. This differs from the CONCERT architecture view that data should be maintained and

located centrally to avoid islands of automation and reduce wasted effort through data

duplication. However, it is possible for the CONCERT architecture to still support this way

of working while reaping the benefits of both perspectives: the Madefast view of 'site

responsibility' can be achieved by designating repository Data Workspace objects on a

per-site basis. Recall that the repository is made up of a number of individual Data

Workspaces and these Data Works paces can contain zero or more Repository Objects.

In use, if for example a participant at Cornell University created a new Repository Object

called 'Design spec.', they would then place this item in the Data Workspace called

'Cornell University'. The benefit of this arrangement under the CONCERT architecture is

that each Data Workspace has a default Access Control List which can be set to allow

write access to only team members from the given site (i.e. Cornell University in this case)

and read access to all others. This configuration of the CONCERT architecture gives each

site control over individual data management and data accountancy while maintaining a

centrally held repository of all data items. This example can be seen in the tree diagram

given in Figure 8-5.

8.2.1.5 Positive aspects of this study

In applying the CONCERT environment in this case study many of the shortcomings of the

Madefast project are addressed. These shortcomings are evident in areas such as:

115

MIT

1----1 Stanford University

Data Works paces allocated to
each individual site

}

Repository Objects
created by Cornell
Universty

Design spec.

Material spec.

Figure 8-5. Repository tree showing Madefast
data management perspective.

• Security-In manufacturing projects such as Madefast, which concerns the transmission

of sensitive information (i.e. data regarding missile components), the means of this

transmission must be secure. Cutkosky et al. (1996) documents that "companies will not

send confidential information [over the Internet] if they think it can be intercepted".

Since the Madefast environment uses WWW-based tools, the risks to security in this

project are well documented. The CONCERT environment however, does not suffer

from the same problems since it has been designed with a rigorous security model from

the outset (see Chapter 4 for a more detailed explanation of the CONCERT security

model).

• Session creation and management-The World-Wide Web is a stateless and session-less

medium (Cutkosky et al. 1996; Hanneghan et al. 1996b). As an anonymous medium, the

WWW has no way of determining user characteristics except for client Internet Protocol

(IP) addresses that are used for communication. Since the Madefast prototype uses the

WWW, it too suffers from this problem. The CONCERT environment is able to record

state and session information from users since it does not use the WWW as its interface.

It manages sessions by requiring users to log in and out of the environment before they

can utilise the functionality of the support services. CONCERT achieves the same global

ease of access however since it incorporates Internet-based connectivity i.e. using

Internet Protocol (IP) addresses for location.

• Group collaboration tools--Collaboration tools that can be used over the WWW are in

short supply mainly due to the complexity of building such tools on such a weak

116

software platform infrastructure (see session management above). This is evident in the

Madefast prototype by the lack of tools such as group voting and bulletin boards. These

are two of the tools that have been successfully implemented within the CONCERT

environment and which the author believes could have helped improve communications

and productivity within the Madefast project.

• Decentralised document management-In the Madefast project, each participant site

maintains ownership and editorial control over their contribution to the project
(Cutkosky et al. 1996). In a worst case scenario, this could allow a negligent participant

to substitute a design document with a revised version in order to avoid litigation, if for

example the original design developed some costly flaw. The CONCERT environment

combats this problem with a non-repudiation policy. Firstly, it maintains a single

centrally controlled repository of all data items created during the project life cycle" and,

secondly, it forbids the removal of any item once it has been submitted to the repository

in an effort to maintain an accurate project history.

• Project management-Formal project management techniques are not present in the

Madefast prototype which instead relies on participants notifying each other when a

particular task is complete. The CONCERT environment provides a means for all team

members to determine the status of any task from one common point of contact: the

Project Support Service. This helps to improve the concurrency and collaboration

between team members working on related tasks.

• Hardware restrictions-The Madefast demonstration relies on point-to-point

conferencing and UNIX workstations running X-Window software (Cutkosky et al.

1996). The CONCERT environment has been designed to operate within heterogeneous

environments and will operate on any platform that can support a Java Virtual Machine.

The Madefast project created what Cutkosky et al. (1996) call a "living project web" i.e. a

record of all that took place during the Madefast project (e.g. email,data,reports, etc.). This

is also true of the CONCERT environment: every email message and conference created

within the CONCERT environment is automatically stored in the repository where it can be

viewed (i.e. checked-out in read-only mode) like any other data item. This provides a

common method for accessing any archive material. Cutkosky (ibid.) states that "access to

shared, comprehensive online documentation accelerates the process of reaching a

consensus" and this is a primary objective of the CONCERT environment. Cutkosky (ibid.)

29 Note that this includes all conferences, group decisions and e-mail messages sent within the environment and
that each item is uniquely traceable to a specific team member at a specific time.

117

also reports that a "project web" is useful for bringing new team members up to speed with

a project and again the CONCERT repository facilitates this method of working.

8.2.2 Case Study B: the production and delivery of an undergraduate degree module

This case study is an application of the CONCERT environment to the domain of remote

learning which aims to show the generic nature of the environment and how it can be

applied to diverse domains.

8.2.2.1 Scenario

The School of Computing and Mathematical Sciences at Liverpool John Moores University

runs a number of undergraduate and postgraduate degree programmes. Each programme is

composed of a number of prescribed modules which students must study. The development

of a module requires that a number of lecturers work together designing and writing the

learning materials that will fulfil the module syllabus. To complete the remote learning

process, it also requires that the students can then access the module material on-line and

electronically submit completed work for assessment. To explain the concepts of this case

study, a single module has been used although the entire programme of modules could also

be developed in the same way.

8.2.2.2 Characteristics of this study

The main aspects of this study which need to be addressed are:

a) There is an initial high level of collaboration and consultation period between the

lecturers while the course material is developed. This may involve many lecturers

iteratively developing the same item or concurrently developing multiple items. The

course material includes such items as lecture notes, practical session notes, slides,

diagrams, tutorial questions and answers. In addition to this, formal examination

questions must be specified and placed in a private location where students cannot

access them until the appropriate time.

b) There will be high levels of concurrency from students during course delivery as they

access the learning materials. Students may access the material from various locations

around the campus, from home, or indeed from anywhere in the world.

c) There is a need for secure submission to prevent plagiarism. When a student submits a

piece of work for assessment it must be a one-time operation. Non-repudiation is also

needed to unambiguously determine who submitted the work and at what time.

d) There needs to be some means or recording the entire process for external moderation

and assessing quality standards.

118

e) There is a need for restricted access to data items. For example a moderator must be

able to view exam questions before the exam but students should not. Also when a

student submits a piece of work, only the lecturer should be able to read it in an effort to

prevent plagiarism.

f) Documents are required to be' formatted in plain text (ASCII) or any of the Microsoft

Office™ software suite formats (i.e. Word™, Excel™, PowerPoint™, Accces™, etc.).

This sets the prescribed information model to be used within the project.

It can be seen that this scenario exhibits similar characteristics to Study A, including levels

of concurrency, widely dispersed team members (students) and security considerations.

8.2.2.3 Applying the CONCERT environment to thisproject

The same three steps that were carried out in Study A also apply to this study. To reiterate,

these were:

Step 1: Establishing the CONCERT support services location-Since the CONCERT

environment is being used to facilitate learning within a University, it is considered

reasonable to host the CONCERT support services centrally at this University. This mayor

may not involve running each service on a separate machine (as discussed in Chapter 7).

Likewise the CONCERT ORB can also be located at the University.

Step 2: Establishing a project configuration-Once again, a CE Project Configuration is

created. This time the virtual team is composed of all the stakeholders in this particular

project. These are shown in Figure 8-6 and include:

• Lecturers-These are the person(s) responsible for developing the course content

and delivering the information.

• Course Leader-This is the person with overall responsibility for the entire course.

• Administration staff-These people are responsible for enrolling students and

general administration such as informing students and staff about timetables,

examination dates, regulations, etc.

• External examiners / moderators-These people are required to ensure that the level

of course content and examination is of the required national standard.

• Students-These are the people who study on a particular course or programme.

The Repository object will be used in this case to store all the items produced during the

lifetime of the module. This includes the items produced by the lecturers and any work that

will be submitted by the students.

119

University Internal!
External boundary

Course
leader

• indicates
multiple

members

Lecturer"

CONCERT

Student· External
examiner I
moderator·

Figure 8-6. Virtual team (case
studyB).

It is not absolutely necessary to utilise the Project Plan for all types of CE project. Projects

which require plans are typically those which need to have tasks signed-off when they are

completed in order to prove that a particular milestone has been achieved, e.g. for

contractual reasons. For projects of this nature, the CONCERT environment allows a record

to be maintained that can provide details of the status and sign-off dates of any task. For this

case study, the project plan contains tasks such as write course material, set examination

question(s) and set coursework assignment(s). This enables the external moderator to clearly

see what tasks are complete and which remain. If for example the course does not need to be

externally moderated, it may be convenient to ignore the Project Plan.

Step 3: Carry out concurrent work-The activities involved here include:

• Development of course material-Initially the lecturers develop the course learning

materials using a concurrent, iterative process as described in Study A.

• Accessing learning resources-During the actual delivery of the module, the students

can checkout the learning materials from the repository in read-only mode (note that the

permissions set by course tutor). During scheduled classes, the tutor can broadcast

messages to each student's workstation to draw attention to specific events or items just

as he would in a traditional lecture.

120

• Submitting information electronically-Student must submit work to be assessed by the

tutor. This involves checking in completed work with read-write access permissions set

for the tutor. A Data Workspace can be created for each specific class, group or student

as deemed appropriate by the lecturer. At examination time the course leader can modify

the access permission for the exam script to give read access to the students.

• Communicatingfeedback-The tutor annotates the students' work with suitable feedback

comments and saves a new version in the repository that can only be read by the

appropriate student. The tutor then submits examination and assessment marks into the

repository as a spreadsheet model for the external moderator. He can also e-mail

individual students with their grade if required.

Step 3 above cycles until such time that the module is deemed complete. By concurrently

running more than one module, a whole programme of courses could be delivered using the

CONCERT environment. This could be achieved by either using a single CE Project

Configuration (and hence one Repository) for all modules within a programme, or by

using individual configurations for each module.

8.2.2.4 Anomalies in this study

Remote learning is an obvious example of a problem that would benefit from

videoconferencing (see Chapter 2 for further information on videoconferencing). The

traditional teaching method of a tutor standing in front of a class of students is difficult to

simulate electronically due to the lack of visual clues and observations of group dynamics

within a class. Videoconferencing could provide a means to begin to address these issues

and is a tool that would benefit other forms of CE (see discussion on Further work in

Chapter 9).

By using the CONCERT environment in the way described above, plagiarism (i.e. the

submission of another student's data files as one's own) cannot be avoided. It should be

noted however that this is also a problem with traditional teaching methods.

8.2.2.5 Positive aspects of this study

The capability of the CONCERT environment as a remote learning aid is further supported

by a number of positive points that have emerged as a result of this study. These include:

• Team members can participate from home which may be significant for handicapped or

less mobile people.

121

• Discussion groups can make use of the bulletin board, conferencing facilities and group

decision-making tools to provide peer help with assignments and tutorials.

• Students can study when it is most convenient for them to do so. Since all learning

materials are stored in the repository (including conferences and group decisions),

students can access them after the event if they need to catch up on a particular topic.

• External moderators and assessors can easily evaluate the quality of a course by tracing

its project history. This may be a requirement for accreditation by professional bodies.

• The flexibility of the CONCERT architecture allows the Workbench application to be

individually customised to specific domains. In this case any references to project

management could be removed from the student's Workbench application menus since

they are not relevant to the student in this case.

• Since student assessment is in electronic format, it may be possible to automatically

check work for signs of plagiarism via some special software. If this is desired it may

prove useful to implement this function as an operation available via either the

CONCERT Collaboration Support Service or Repository Support Service for example.

This case study has shown some interesting similarities between CE viewed from a

traditional manufacturing standpoint and the seemingly non-related field of education and

remote learning. It is my opinion that valuable lessons can be learned from both domains

when trying to support a single perspective.

8.3 Evaluation

Chapter 3 of this thesis described a number of barriers to providing tools to support

concurrent engineering. It also set out a number of requirements (prescribed by the author,

leading practitioners and academics) for future environments that were deemed essential

factors for success. Each of the main points raised in Chapter 3 have been re-classified in

this section and grouped under one the following. headings: communication, project

management, data management and geographic dispersion. This section will show how the

work presented in this thesis addresses each of the issues raised.

8.3.1 Communication
A number of authors cite communication factors as requirements for CE support. Examples

from Chapter 3 include:

122

• Trapp et al. (1992) describes a need for "communication and co-ordination tools which

support interaction, negotiation and conflict resolution."

• Londono et al. (1992) describes a need for tools to help achieve "common visibility"

among team members.

• The NIIIP Consortium (1995) specifies a requirement for "common communication

protocols. "

• Smith (1988) calls for "communication of upstream and downstream concerns" and "co-

ordination of group problem solving activities."

In addition to these, the author (in Chapter 3) also specifies that CE support requires "... a

communication sub-system for effective participation (both asynchronous and

synchronous)" .

The CONCERT environment addresses these issues by providing a dedicated Collaboration

Support Service which allows various high-level mechanisms such as e-mail, group problem

solving tools, synchronous text conferencing and bulletin boards. In addition if provides a

low-level protocol for allowing applications to utilise a publish-and-subscribe facility for

sharing information between multiple concurrent users.

8.3.2 Project management
Project management factors also rate highly in support system requirements. Examples from

Chapter 3 include:

• Londono et al. (1992) calls for "tools for assessment and tracking of progress."

• Trapp et al. (1992) describes a need for "mechanisms for sharing process data."

• Molina et al. (1995a) requests tools that can "monitor the history of the design process."

The author also adds "facilities for controlling and tracking the project tasks and resources"

from Chapter 3 to the above list.

The CONCERT environment addresses these Issues by providing a data model for

maintaining project management information that includes Quality aspects that are

influenced by ISO 9000. The Project Support Service additionally provides a single contact

point for obtaining such information.

123

8.3.3 Data management

Concurrent engineering produces large amounts of data that must be managed effectively.

Many authors cite data management as a major requirement, for example (from Chapter 3):

• Sobolewski and Erkes (1995)· call for "management of security, persistence and

maintenance of the information."

• Molina et aI. (1995a) describe a need for "information and knowledge sources ... that can

be readily modified and that are easily accessible."

The author adds the provision of "centralised, accountable data management facilities" and

"data format translation" (from Chapter 3) to this list.

The CONCERT environment addresses these issues by providing a unique data model that

can be used to store information produced during a CE project and by employing a 3-tier

security model that protects the information stored in the CONCERT repository. The

Repository Support Service provides a single means of access to the repository contents.

8.3.4 Geographic dispersion

Wide geographic dispersion is becoming increasingly prevalent in CE projects. Many

authors therefore cite this as a basic requirement for CE support. For example (from Chapter

3):

• Londono et al. (1992) describe the need to be able to "scale up easily from small projects

with a few people to large, complex projects with a great number of people."

• Trapp et al. (1992) reiterates this adding the need for "transparent mechanisms [to work

on] heterogeneous hardware platforms in multiple geographic locations."

• Sobolewski and Erkes (1995) describe a need for "a locator for service taxonomy" and

"access to distributed information from distributed computer workstations."

To these, the author adds "the ability to treat geographically dispersed resources as though

they were local", "generic and portable" and "facilities for inter-networking" (see Chapter 3)

as requirements which support geographic dispersion within CE teams.

The CONCERT environment addresses these issues by intrinsically supporting the notion of

transparency throughout all of its individual components. A dedicated Distribution Support

Service further emphasises the importance of this aspect in the CONCERT architectural

124

model. The CONCERT ORB provides additional support for distribution within the

environment via its dynamic service database that is used to inform clients of the current

location of services.

8.3.5 Evaluation summary
It is by no coincidence that the grouping of the points raised in the above four sections

corresponds to the functionality contained in the four CONCERT support services. The

logical grouping of the issues in this way provides a means for identifying required

operations of new CE support environments. An interesting property of this grouping shows

that as few as four support services need be devised to support the listed requirements". The

CONCERT support services provide a vehicle for performing these operations in an open,

easily accessible way. It can be seen that the CONCERT architecture and environment

provides an adequate and "viable software architecture" (Trapp et al. 1992) from which to

support CEo

8.4 Scope of proposed design and implementation

As with any major body of work, there are limitations with the proposed system design and

the current implementation. This section highlights these and suggests ways to overcome

these problems. A summary of the relative merits and limitations of the proposed system

design and implementation can be found in Table 8-1.

Having a centralised database (repository) means that there is a high dependency on the

availability of the database server, i.e. the Repository Support Service. If for some reason

the database server stops functioning, data access is forbidden. This high dependency also

creates a high load on the database server machine especially when servicing requests from

multiple users concurrently. A high load on the database server will effectively increase

response times to users resulting in user dissatisfaction with the system. In the CONCERT

environment, it is believed that this is outweighed by the fact that a centralised database

ensures that data is more secure, consistent and simpler to administrate.

)0 By comparison, the OMG CORBAServices (Object Management Group 1997) total fourteen distinct services.

125

Table 8-1. Advantages and limitations of proposed system.

Feature Limitations Advantages

• High dependency on • Data is more consistent than
database server can be achieved by
availability. integrating "islands of

Centralised automation."

database • High load imposed on
database server can • Simpler to administrate.
increase user response
times.

• The system is reliant on • The Internet is readily
the quality of the accessible to smaller
network and companies as well as
connections. organisations in developing

Internet-based
nations.

• Security fears associated
with Internet traffic. • The system can also be

applied to Intranet and
Extranet environments
without modification.

• Java is a relatively new • Freely available.
language and is

Implemented in
constantly evolving. • Java is now being

the Java language
incorporated into leading

• Java has yet to be used in Operating Systems, which
large-scale commercial will broaden its use.
applications.

Object-oriented • Software wrappers are • It is easier to apply changes
required to integrate and new features to the

model legacy systems. model.

No prescribed • The STEP protocol is a • The repository can store any
information very effective model for electronic data formats.

model CEo

In an effort to enable easily accessible, global collaboration, the CONCERT environment

uses the Internet as its communication medium. Quality of Service (QoS) and security are

the two main problems with this approach. The QoS aspect is impacted by network

bandwidth and peak access times while Internet security fears are well documented. QoS

can begin to be addressed when considered in an Intranet environment (i.e. an internal,

controlled network) where access levels can be predicted and bandwidth can be controlled.

Security considerations require additional measures to be taken when transporting sensitive

126

information over the Internet. The CONCERT environment does address the highlighted

security problems at a number oflevels (see Chapters 4,5 and 6 for more details).

The CONCERT environment does not prescribe that any particular product information

model be used. Instead, it allows any data item in electronic format (i.e. word-processed

document, CAD drawing, spreadsheet analysis, etc.) to be placed within the repository.

However, the repository structure described in Chapter 6 does provide sufficient structure

for product information models to be created in a hierarchical manner such as those used in

a Bill of Materials, or alternatively in a manner which implies functional decomposition.

8.5 System application areas
A consequence of the generic design of the CONCERT architecture and environment is that

it can be applied to a number of additional problem areas, i.e. it is not restricted to the field

of Concurrent Engineering. This section describes some of these additional application areas

in more detail.

8.5.1 Collaborative Engineering / Manufacturing

This application area has been shown in case study A (see §8.2.1) as applied to a real

concurrent engineering problem. However, collaborative engineering projects do not

necessarily have to be CE projects. In some development processes it can prove extremely

difficult to run tasks in parallel, thus forcing sequential development of the product during

certain stages. This development may still require collaborative development between non-

collocated team members, for example a manufacturing plant that awaits designs from a

foreign collaborator before production can begin. The CONCERT environment, in its

facilities for information sharing and group collaboration and communication, caters for this

scenario.

8.5.2 Remote learning
Remote learning is the process whereby a number of students access learning information

(i.e. lectures, class notes, etc.) remotely using either electronic or conventional means (such

as the postal service). The entire life cycle for this process however, encompasses

development of course material, access of learning resources, undertaking of examinations

and subsequent assessment. It can be seen that this has many parallels with the tasks

undertaken during Concurrent Engineering such as group working, concurrent remote

access from non-collocated users and information sharing. This application area has been

shown in greater detail in case study B (see §8.2.2.)

127

8.5.3 Teleworking

BT Laboratories (1995) defines Teleworking as: "... a flexible way of working which covers

a wide range of work activities, all of which entail working remotely from an employer, or

from a traditional place of work, for a significant proportion of work time. The work often

involves electronic processing of information, and always involves using

telecommunications to keep the remote employer and employee in contact with each other."

From this definition, it is apparent that Teleworking involves concurrent working from

widely dispersed team members. It also stresses the need for communications and electronic

processing. This makes Teleworking a real candidate to benefit from some form of CE

support environment such as the CONCERT environment. One difference between
Teleworking and CE can be found in the organisational structure that is imposed upon the

team. Teleworking typically maintains traditional hierarchical management structures while

CE eschews this in favour of work teams with a flattened hierarchy in which there is little or

no management presence. Both of these organisational methods are accommodated in the

CONCERT environment through the Project Support Service that provides a number of

facilities for project management.

8.5.4 Sensitive sources of collaboration

The manufacture of traditional mass-produced goods has relatively low security

requirements since the onus is on producing the goods as cheaply as possible. However, for

more sensitive items such as aerospace and weapons manufacture (case study A is such an

example), security is an important issue. Here, it is of paramount importance that designs,

plans and specifications are kept confidential from hostile countries or competitors. These

high security requirements were a primary reason for including such a stringent security

model in the CONCERT architecture since CE, by its nature, is a means of gaining

competitive advantage. The CONCERT environment is therefore suitable for application

areas such as those described here since it provides a robust security model from three

aspects: user authentication, access control and data encryption.

Additional examples of sensitive areas of collaboration include newspaper or magazine

production. This is a very competitive area where it is important to be first to print with a

leading story. Additionally there may be many collaborators on a particular story, e.g.

researcher, writer, editor, photographer and typesetter who each need to share information

and communicate with each other (generally in electronic format).

128

National or international Police collaboration, where an offence covers many jurisdictions

and involves many Police forces is another such example of sensitive collaboration. Here

there is a need to share confidential crime files and communicate with fellow officers, i.e. it

is a highly collaborative activity. Applying a Concurrent Engineering strategy to this

problem domain is desirable in an effort to reduce the cost and time it takes to catch

criminals. This is analogous to reducing the development cost and lead-time in a traditional

manufacturing sense. Existing projects in this area such as LinguaNet (Johnson 1997) and

the Schengen Information System (ibid.) exhibit many parallels to the work described here.

8.6 Summary
This chapter has shown how the CONCERT architecture and environment implementation

has been applied in two case studies. These case studies cover two very different problem

domains and yet are adequately catered for by the proposed design. A number of additional

application areas were also discussed which serve to reinforce the generic capabilities of the

proposed architecture and environment. The genericity of the CONCERT architecture and

environment is not at the expense of supporting a Concurrent Engineering strategy; instead,

it shows how the goals of CE have many parallels with other problem domains and therefore

provides a healthy basis for cross-discipline research into the many inter-related fields.

129

Chapter 9

9. Conclusions and further work
9.1 Introduction

This thesis has described the results of research into the problems of designing and building

Concurrent Engineering support environments. In particular, it has presented a prototype

support environment that can enable virtual team workers to collaborate on CE projects.

This chapter summarises the thesis and highlights its contributions to this particular research

field. Finally, some ideas for future work and concluding remarks are presented.

9.2 Thesis summary

Chapter one introduced the main theme of this thesis and described the background for this

work. It highlighted the main problems associated with CE projects and put forward a newly

proposed definition of concurrent engineering in the light of the findings of this research.

Chapter two described a number of technological factors that have had an influence on the

ideas proposed in this thesis. These included distributed computing environments and

Computer-Supported Co-operative Working (CSCW) in addition to recent advances in

product information modelling and virtual working. It also looked at a number of

complementary initiatives such as the Internet and World-Wide Web and the prevalence of

distributed object-based systems.

Chapter three presented a survey of current state-of-the-art in CE support systems and gave

a summary of the views of CE practitioners and leading academics. It concluded by

presenting a detailed and up-to-date list of user requirements for CE support environments

while noting key areas of research that need to be addressed.

Chapters four, five and six presented the design of a new architecture to facilitate virtual

Concurrent Engineering teams. Chapter four introduced this design through a novel

viewpoint-based reference model that takes into consideration the many various facets of

CE projects and synthesises these into a single coherent model. From this reference model, a

130

high-level computer system architecture which describes the various components needed to

address the issues raised was discussed in Chapter five and an object-oriented information

system model which captures the unique information requirements of CE projects followed

in Chapter six.

Chapter seven demonstrated a physical implementation of the environment described in

Chapters four, five and six and discusses the decisions made in implementing the system in

the way proposed. An evaluation of the implemented system is given in Chapter eight which

looks at its application in two quite different case studies and this Chapter concludes with

comments on how the proposed system can also be applied to other problem domains in

addition to Concurrent Engineering.

9.3 Aims and objectives revisited

Chapter 1 introduced a number of aims and objectives for this thesis. To summarise, the

main aim of this research was " ... to present a global computing and information system

architecture that will facilitate the day-to-day running of Concurrent Engineering projects."

In doing this, it was hoped that the following questions could be answered:

1. What aspects of current computer technology are useful to Concurrent Engineering?

2. What new technologies are needed to support CE?

3. What frameworks exist for supporting CE?

4. What components are useful building blocks for next-generation frameworks?

In order to achieve these aims, the following objectives were also highlighted in Chapter 1:

a) Acquire an understanding of current CE product development processes.

b) Review current computer-based systems used in manufacturing.

c) Develop a computer systems architecture that can be applied to manufacturing

organisations globally.

d) Develop an information systems model that can be applied to CE projects.

e) Effectively demonstrate the complete system in a live application.

Questions 1 and 2 (and hence Objectives a and b) posed above dictated the contents of the

literature survey presented in Chapter 2. An answer to question 3 (in relation to Objective b)

is given in Chapter 3. Chapter 4, which presented an object-oriented (component-based)

reference model for CE, proposes an answer to question 4. Objectives c and d are the subject

of chapters 5 and 6 respectively while Objective e is the topic of chapters 7 and 8.

The following section discusses these points in relation to the contribution to knowledge

offered by this work to show how it addresses the main aim of the research.

131

9.4 Contribution to knowledge

In the course of this research, some key ideas have emerged that contribute to the body of

knowledge in the field of Concurrent Engineering. Firstly, this work draws on and integrates

a number of disparate problem domains as depicted by the shaded region in Figure 9-1.

These include the fields of Computer Supported Co-operative Working (CSCW) and

distributed computing which have led to the relatively new topic of virtual team working;

object technology and interoperable systems which more recently has expanded to include

emergent Internet technologies; data storage and management which includes product

information models; and finally manufacturing systems.

The proposed system provides a uniform environment for users to store, access and process

information from the entire product life cycle as opposed to succumbing to the weight and

complexity of multiple 'islands of automation' (Koonce 1995).1t does this while supporting

both collocated and non-collocated collaboration transparently by employing the Internet as

a global information medium and providing a means for both synchronous and

asynchronous communication.

The main contributions of this work can be summarised by the following points. It provides:

• A new working definition of Concurrent Engineering.

Figure 9-1.
Research gap

addressed by this
research.

132

• A state-of-the-art set of user and system requirements for CE support environments.

• A new reference model for designing CE support systems.

• A distributed computer system architecture.

• An information system model.

• A working reference implementation.

Each of these aspects is described in more detail in the following sub-sections.

9.4.1 Definition of Concurrent Engineering
There have been many definitions of CE over the past decade. The following definition

attempts to reconcile previous terminology in light of recent work and by incorporating the

findings of this thesis.

"Concurrent Engineering is a systematic approach to parallel development

of all product life cycle activities, from initial conception through design,

planning, production and disposal. It is an enriched communication

infrastructure which is unconstrained by geographical location that

encourages right-first-time methods through cross-functional team working

and consensus. "

This definition serves to provide meaning to modem CE practitioners and the next

generation of support environment designers.

9.4.2 Requirements for CE support environments

Chapter 3 highlighted nine fundamental system and user requirements for CE support.

These requirements are based on experienced CE practitioners' views and leading academic

contributions. In addition, consideration has been given to recent technological advances

that make CE more accessible to organisations.

9.4.3 Reference model
The Concurrent Engineering Reference Model (CE-RM) proposed by the author and

described in Chapter 4, provides a framework for building CE support systems. The CE-RM

is a viewpoint-based reference model which draws on existing work on distributed

133

computing systems and expands this into the area of Concurrent Engineering support

systems. Designed using object-oriented methods, this reference model can be easily

adapted or extended to accommodate future viewpoints.

9.4.4 Distributed computer system architecture

The CONCERT architecture developed as a result of this research, is an object-oriented

midd1eware architecture that enables distributed clients and servers to inter-operate. Once

again designed using object-oriented methods, this midd1eware architecture employs an

Object Request Broker to enable transparent participation regardless of physical location,

9.4.5 Information system model
The CONCERT information system is a stand-alone object-oriented model that captures the

information requirements of CE projects. When used in conjunction with the CONCERT

architecture, it provides a complete support solution for CE development.

9.4.6 Reference implementation
The CONCERT environment is a realisation of the CONCERT architecture components.

Built using the Java language, it provides a reference platform for future work and enables

CE practitioners to evaluate CE support tools, for example new and existing collaboration

schemes.

9.5 Further work
In this section, a number of paths are described from which the further exploitation of the

work in this thesis can proceed. Undoubtedly there is scope for extension of the existing

support services and this task is eased by the fact that the CONCERT architecture has been

designed in an open manner. Firstly however, the application of the CONCERT

environment to real world industrial applications is described.

9.5.1 Industrial trials
The Madefast case study described in Chapter 8 is typical of the type of project that can

benefit from an environment such as CONCERT. Since this particular case study was

performed virtually, additional industrial applications are required to further develop this

work. It is therefore important for the further success of this research to encourage industry

to use the ideas presented in this thesis with the goal of further developing the CONCERT

environment software perhaps by exploiting the ideas for further work presented in this

section.

134

9.5.2 Agent technology

Case and Lu (1996) argue that software agents should playa key functional role in

collaborative design environments and Petrie (1996) documents a number of projects that

employ agent technology for engineering. The CONCERT architecture does already support

the concept of agents when required for certain tasks. For example, the Repository Support

Service will act as an agent to resolve version conflicts. It does this by informing both

conflicting parties of the situation and mediating the resolution. Having said this, it might be

also be feasible to implement an additional Agent Support Service or 'agent shell' (Williams

and Taleb-Bendiab 1997) that would handle all agent traffic and correspondence

autonomously on behalf of the other support services. The support services could then

delegate responsibility of agent-based tasks to the Agent support service. This would

certainly reduce the workload of the other services if this were a determining factor.

9.5.3 Additional collaboration services

There is scope within the environment for further enhancement to the Collaboration Support

Service in particular. The work done in the field of CSCW (see Chapter 2 for more details)

is very promising for assisting a CE process. While the current tools provided by the

Collaboration Support Service give an adequate level of collaboration support, additional

tools such as shared whiteboards, brainstorming tools and videoconferencing would also

prove useful. To provide these tools within the CONCERT environment is beyond the scope

of this thesis, however, to open design of the architecture allows additional tools such as

these to easily incorporated in a process that is transparent to the user.

9.5.4 Legacy software wrappers

Much research, especially by the object-oriented community, in the area of software

wrappers has provided a means for legacy system integration. Organisations that have

reengineered processes typically need to retain legacy applications. Concurrent Engineering

is one such reengineering example. Within the CONCERT environment, the use of wrappers

has been promoted as a means for integrating both legacy applications and legacy database

systems. What is beyond the scope of this research is the specification of a formal means for

wrapping these legacy systems. One area of future research could be to provide computer-

aided support tools for wrapping legacy software. These tools could be used to

automatically generate a software wrapper that could be used to integrate legacy

components into the CONCERT environment.

9.5.5 Telephony
Growing interest in the area of Computer / Telephony Integration (CT!) within business

organisations (Clegg 1997) could also prove of use to organisations employing CEo The

135

transition from traditional to computer-based communications technology can sometimes be

a difficult and painful process for some team members. The telephone however is a much-

used tool in business. cn integrates the telephone with computer technology making the

telephone a more effective tool. Examples of how this technology could be used within the

CONCERT environment include:

• Displaying team member contact information on screen when an incoming call is

received.

• Automatic call redirection based on a team member's current location (as

determined by the environment).

• Extending the Collaboration Support Service to enable multi-way conference calls

to be initiated based on contact information maintained by the environment.

9.5.6 Offline access and batch processing

Another area that could be investigated is that of providing a procedural language that could

be parsed by the CONCERT support services in order to carry out certain tasks in an

automated fashion. In its current guise, the CONCERT environment utilises interactive

communication with users, via the Workbench application, in order to fulfil a request. A

language could be devised so that various tasks could be automated, for example uploading

a constantly changing price list on a weekly basis. This language would be able to specify

what operation needs to be done, what data to include and what alternative action to take in

case of conflict. In this sense, the language would need to incorporate features of database

query languages such as SQL or OQL and fourth-generation languages (4GL).

A hypothetical example to store a regularly updated document in the repository is shown in

Figure 9-2. This procedural code could be either written by hand (for knowledgeable users)

or generated by a software application that could guide the user through the steps they wish

to automate.

136

Description "Current design",

LOGIN AS ("John", "password");
USING CONCERT.RepositorySupportService

UPDATE RepositoryObject WHERE OlD = 8192233
WITH DataFile = "C:\DESIGNS\CURRENT.DOC",

ReadAccess = (ALL),
WriteAccess = ("John, Dave, Mary")

ON ERROR NOTIFY VIA E-MAIL AND NEXTLOGINi
ENDUSING

ENDLOGIN
Figure 9-2. An example of a procedural language for task

automation.

9.5. 7 Performance enhancements

The current implementation of the CONCERT environment is sufficiently powerful to

support Concurrent Engineering, yet simple enough to allow proof of concept without

running over budget or time. There are however, a number of improvements that could be

made to enhance the performance of the current system implementation. These include:

• Service replication-to allow more than one instance of a support service to run

simultaneously thereby providing better response times to users.

• Data repository replication-to allow team members to access data from a local

site rather than some remote site.

By incorporating these features, users could be automatically directed by the CONCERT

ORB to the closest physical service to improve network response. Both these measures

would improve system response times for team members using the system, but would

increase the complexity of the current software due to the increased level of synchronisation

that is needed for replication. This complexity however, is a development issue (i.e. it

remains transparent to the user) and therefore could be implemented without affecting users

of the system.

9.5.8 Data repository
The current repository is a simple object database that was developed purely to accomplish

the tasks required within the architecture. It is simple, yet effective but provides none of the

advanced facilities of a true Object Database Management System (ODBMS). Further work

would ideally look to using an ODBMS in place of the current repository. The benefits of

this are twofold: firstly the Repository support service would be able to delegate some of its

137

processing to the ODBMS engine thus easing its workload. Secondly the ODBMS would be

able to provide object replication as standard" (see §9.5.7 for further details).

9.5.9 Further integration with external Information Systems

The information produced during the life cycle of a concurrently engineered product may

account for a small proportion of the total information produced by an enterprise. Enterprise

information provision seeks to produce quality information from across the board of all the

enterprise's information systems. Ideally, this information needs to be gathered

transparently and with no human involvement. It would therefore be useful if the

CONCERT environment could be extended to gather enterprise information from

complimentary manufacturing Information Systems such as financial systems, MRPII

systems and Executive Information Systems.

9.5.10 Product information retrieval

A consequence of storing data concerned with the entire product life cycle is that the

repository quite quickly fills up with a sea of information. 'Fishing' for an item from this

'sea' relies on the searcher's knowledge of the structure of the repository, i.e. which item

they are looking for, in what project and in what workspace. This doesn't really facilitate the

searching of past project histories in which the searcher has no knowledge of this structure.

Further research could concentrate on developing new techniques to search, navigate or

visualise the data in the repository (Keim and Kriegel 1996). Examples of areas that could

be explored include:

• The use of Virtual Reality Modelling Language (VRML) (Bell et al. 1995) to

visualise, and navigate through, complex data hierarchies.

• The application of Artificial Intelligence (AI) techniques to locate information from

past project histories based on natural language processing for example.

In addition to this there is much scope for research into the data mining of Concurrent

Engineering data. Data mining has been described as knowledge discovery in databases and

a "process of nontrivial extraction of implicit, previously unknown and potentially useful

information," (Chen et al. 1996). CE projects generate substantial amounts of information

whose structure and inter-relationships can be extremely difficult for humans to process and

understand. Data mining techniques could therefore be a useful tool in analysing past CE

projects.

31 Object replication is a feature commonly found in commercial object database systems, (see for example the

138

9.6 Concluding remarks

Technology has been an enabling factor in the success of many CE projects during the past

decade. For global organisations to effectively collaborate and share information, they need

to utilise common tools and adhere to a prescribed framework. This framework must be

open and flexible to allow it to evolve at the same pace as the organisation. This thesis

addresses the unique needs of CE support environments in a consistent way using object-

oriented methods by providing four key building blocks; (1) the CE-RM: a reference model

for building CE support systems; (2) CONCERT: a middleware-based support architecture;

(3) an information system object model for CE; and (4) a reference platform implementation

written in the Java language. These components serve to advance the body of knowledge in

the field of CE research. It is the author's belief that environments such as CONCERT

proposed in this thesis are valuable tools that can aid the CE process and serve as useful

infrastructures for building the next generation of support systems.

The philosophy of Concurrent Engineering has been extensively applied to the fields of

engineering design and manufacturing; many of the sources of literature cited in this thesis

stem from these domains. However, the work proposed in this thesis has also highlighted a

number of additional domains that have many parallels with the ethos of CE including

education, office integration, te1eworking, and global group collaboration. This thesis has

drawn on many aspects of these multidisciplinary areas to provide a platform for wide-

ranging integration and support for Concurrent Engineering.

Itasca ODBMS, IBEX Corporation 1995).

139

REFERENCES

Adams, D. A., Ferguson, Ci-L, and Irgens, C. (1995). "Information Provision to the
Concurrent Engineering Environment," in Proceedings of 11th International
Conference on Computer-Aided Production Engineering, The Institution of
Mechanical Engineers, London, The Institution of Mechanical Engineers, pp.29-34.

Aiken, M., Krosp, 1., Shirani, A., and Martin, 1. (1994). "Electronic Brainstorming in Small
and Large Groups," Information & Management, 27(3), pp. 141-149.

Amundsen, M., and Hutchison, K. K. (1990). "Concurrent Engineering Environment for
Electronic Circuit Design," in Proceedings of Second National Symposium on
Concurrent Engineering, Morgantown, WV, pp. 60-75.

Andrews, T. A., and Krieger, D. (1993). "Concurrency Control for Workgroups," Object
Magazine, 2, pp. 38-45.

Anklesaria, F., McCahill, M., Lindner, P., Johnson, D., Torrey, D., and Alberti, B. (1993).
"The Internet Gopher Protocol: Internet RFC 1436," available on the World-Wide
Web at the URL <ftp:llds.internic.netirfc/rfc1436.txt>.

ANSA. (1989). The ANSA Reference Manual Release 1.00, A.P.M. Cambridge Ltd,
Po seiden House, Castle Park, Cambridge, CB3 ORD, UK.

Anupam, V., and Bajaj, C. (1994). "Shastra - an Architecture For Development Of
Collaborative Applications," International Journal Of Intelligent & Cooperative
Information Systems, 3(2), pp. 155-172.

Apple, IBM, Netscape, Oracle, and Sun. (1996). "NC Reference Profile," available on the
World-Wide Web at the URL <http://www.nc.ihost.comlnc_ref_profile.html>.

Arnold, K., and Gosling, 1. (1996). The Java(tm) Programming Language, Addison-Wesley,
Reading, MA.

Autodesk Inc. (1997). "AutoCAD homepage," available on the World-Wide Web at the
URL <http://www.autodesk.coml>.

Bahler, B., Dupont, C., and Bowen, J. (1994a). "An Axiomatic Approach That Supports
Negotiated Resolution of Design Conflicts in Concurrent Engineering," in Artificial
Intelligence in Design '94, J. S. Gero and F. Sudweeks, eds., Kluwer Academic
Publishers, New York, pp. 363-379.

Bahler, D., Dupont, C., and Bowen, 1. (1994b). "Mediating Conflict InConcurrent
Engineering With a Protocol Based On Utility," Concurrent Engineering: Research
and Applications, 2(3), pp. 197-207.

Baran, N. (1995). "Special Report: Internet & Beyond," BYTE, July, pp. 68-86.

Barrett, S., and Tangney, B. (1995). "Aspects - Composing CSCW Applications," in
Proceedings ofOOIS'95 - The 1995 International Conference on Object-Oriented
Information Systems, Dublin, Ireland, 1. Murphy and B. Stone, eds., Springer-Verlag,
pp.51-56.

140

BCS Security Committee. (1995). "Internet Security," The BCS Computer Bulletin, 7(6), pp.
16-17.

Bell, G., Parisi, A., and Pesce, M. (1995). "The Virtual Reality Modeling Language:
Version 1.0 Specification," available on the World-Wide Web at the URL
<http://vrml.wired.comlvrmLtechlvrmll 0-3 .html>.

Bentley, R., Busbach, U., and Sikkel, K. (1996). "The Architecture of the BSCW Shared
Workspace System," in Proceedings of 5th ERCIMIW4G Workshop ofCSCW and the
Web, Sankt Augustin, GMD, pp.31-42.

Bentley, R., Horstmann, T., Sikkel, K., and Trevor, J. (1995). "Supporting Collaborative
Information Sharing with the World Wide Web: The BSCW Shared Workspace
System," in Proceedings of the 4th International World-Wide Web Conference,
Boston, MA, O'Reilly & Associates, pp.63-74.

Berners Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., and Secret, A. (1994). "The
World-Wide Web," Communications of the ACM, 37(8), pp. 76-82.

Bernstein, P. A. (1996). "Middleware: A Model for Distributed System Services,"
Communications of the ACM, 39(2), pp. 86-98.

Birrell, A. D., and Nelson, B. J. (1984). "Implementing Remote Procedure Calls," ACM
Transactions of Computer Systems, 2, pp. 39-59.

Booch, G. (1991). Object-Oriented Design with Applications, Benjamin Cummings, Menlo
Park, CA.

Bounab, M., Derniame, J., Godart, C., and Morel, G. (1993). "DMMS: A PCTE Based
Manufacturing Environment," in Proceedings of PCTE'93 Conference, Paris, France,
I.Campbell, ed. Syntagma Systems Literature, pp. 431-449.

Bretl, R., Maier, D., Otis, A., Penney, D. J., Schuchardt, B., Stein, J., Williams, E. H., and
Williams, M. (1989). "The GemStone Data Management System," in Object-Oriented
Concepts, Databases, and Applications, W. Kim and F. H. Lochovsky, eds., ACM
Press and Addison-Wesley, pp. 283-308.

BT Laboratories. (1995). "An Overview of Teleworking," available on the World-Wide
Web at the URL
<http://www.labs.bt.comlinnovate/teleworkireports/contents/anover.htm> .

Callahan, J. R., Ramakrishnan, S., and Wei, S. (1995). "Web Integrated Software
Environment Home Page (WISE)," available on the World-Wide Web at the URL
<http://research.ivv .nasa.gov/projectsIWISE/index.html>.

Case, M. P., and Lu, S. C. Y. (1996). "Discourse Model For Collaborative Design,"
Computer-Aided Design, 28(5), pp. 333-345.

Cattell, R. G. G. (1994). Object Data Management: Object-Oriented and Extended
Relational Database Systems (Revised Edition), Addison-Wesley, Reading, MA.

Cattell, R. G. G., Barry, D., Bartels, D., Berler, M., Eastman, J., Gamerman, S., Jordan, D.,
Springer, A., Strickland, H., and Wade, D., eds. (1997). The Object Database
Standard: ODMG 2.0, Morgan Kaufmann Publishers, San Francisco, CA.

141

Chen, M.-S., Han, 1., and Vu, P. S. (1996). "Data Mining: An Overview From a Database
Perspective," IEEE Transactions On Knowledge and Data Engineering, 8(6), pp. 866-
922.

Chen, P. P.-S. (1976). "The Entitiy Relationship Model- Toward a Unified View of Data,"
ACM Transactions on Database Systems, 1(1), pp. 9-36.

Cleetus, J., and Usjio, W. (1989). The Red Book of Functional Specifications For The DICE
Architecture, Concurrent Engineering Research Center, Morgantown, WV, USA.

Cleetus, K. J. (1992). "Definition of Concurrent Engineering," Report Number CERC-TR-
RN-92-003, Concurrent Engineering Research Center, West Virginia University,
Morgantown, WV.

Clegg, B. (1997). "Ringing in the Changes," PCWEEK, 3 June 1997, pp. 28-29.

Coad, P., and Yourdon, E. (1991a). Object-Oriented Analysis, Prentice Hall, Englewood
Cliffs, N1.

Coad, P., and Yourdon, E. (1991b). Object-Oriented Design, Yourdon Press.

Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks,"
Communications of the ACM, 13(6), pp. 377-387.

Coleman, D., Arnold, P., Bodoff, S., Dollin, c., Gilchrist, H., Hayes, F., and Jeremaes, P.
(1994). Object-Oriented Development: The Fusion Method, Prentice Hall, New
Jersey.

Colquhoun, G. J., Baines, R. W., and Crossley, R. (1996). "A Composite Behavioural
Approach to Manufacturing Systems Modelling," International Journal of Computer
Integrated Manufacturing, 9(4), pp. 327-338.

Coulouris, G., Dollimore, J., and Kindberg, T. (1994). Distributed Systems: Concepts and
Design, (2nd ed), Addison-Wesley Publishing Company, Wokingham, England.

Coulson, G. (1993). "Multimedia Application Support in Open Distributed Systems," PhD
Thesis, Computing Department, Lancaster University, UK.

Coupland, 1. W. (1992). Concurrent Engineering: An Information Pack, IEE Technical
Information Unit, London.

Curtis, D. (1997). "Java, RMI and CORBA: A White Paper," available on the World-Wide
Web at the URL <http://www.omg.orglnews/wpjava.htm>.

Cutkosky, M. R., Englemore, R. S., Fikes, R. E., Genesereth, M. R., Gruber, T. R., Mark,
W. S., Tenenbaum, J. M., and Weber, J. C. (1993). "PACT: An Experiment in
Integrating Concurrent Engineering Systems," IEEE Computer, 26(1), pp. 28-37.

Cutkosky, M. R., Tenenbaum, J. M., and Glicksman, J. (1996). "Madefast: Collaborative
Engineering over the Internet," Communications of the ACM, 39(9), pp. 78-87.

Davis, W. J., and Jones, A. T. (1989). "A Functional Approach to Designing Architectures
for CIM," IEEE Transactions on Systems, Man and Cybernetics, 19(2), pp. 164-173.

Deitz, D. (1995). "Service Bureaus For Concurrent Engineering," Mechanical Engineering,
117(10), pp. 20.

142

Doumeingts, G., Chen, D., and Marcott, F. (1992). "Concepts, models and methods for the
design of production management systems," Computers in Industry, 19, pp. 89-111.

Dowlatshahi, S. (1994). "A Comparison Of Approaches to Concurrent Engineering,"
International Journal Of Advanced Manufacturing Technology, 9(2), pp. 106-113.

Drucker, P. F. (1991). "The New Productivity Challenge," Harvard Business Review,
November-December, pp. 69-79.

Easterbrook, S., Finkelstein, A., Kramer, J., and Nuseibeh, B. (1994). "Coordinating
Distributed Viewpoints: The Anatomy of a Consistency Check," Concurrent
Engineering: Research and Applications, 2(3), pp. 209-222.

Ellsworth, J. H., and Ellsworth, M. V. (1994). The Internet Business Book, John Wiley &
Sons, New York.

Eolas Technologies. (1995). "Eolas Technologies Home Page," available on the World-
Wide Web at the URL <http://www.eolas.com/>.

Erkes, J. W., Kenny, K. B., Lewis, J. W., Sarachan, B. D., Sobolewski, M. W., and Sum, R.
N., Jr. (1996). "Implementing Shared Manufacturing Services on the World-Wide
Web," Communications of the ACM, 39(2), pp. 34-45.

ESPRIT Consortium AMICE. (1993). CIMOSA: Open System Architecturefor CIM, Project
68815288, vol. 1, (2nd revised and extended ed), Springer-Verlag, Berlin.

Evans, B. (1988). "Simultaneous Engineering," Mechanical Engineering, 110(2), pp. 38-39.

Farooqui, K., Logrippo, L., and de Meer, J. (1995). "The ISO Reference Model for Open
Distributed Processing: an Introduction," Computer Networks and ISDN Systems,
27(8), pp. 1215-1229.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and Bemers-Lee, T. (1997). "Hypertext
Transfer Protocol - HTTP/1.1," available on the World-Wide Web at the URL
<http://www .w3 .org/Protocols/rfc2068/rfc2068>.

Finger, S., Stivoric, J., Amon, C., Gursoz, L., Prinz, F., Siewiorek, D., Smailagic, A., and
Weiss, L. (1996). "Reflections On a Concurrent Design Methodology - A Case-Study
In Wearable Computer Design," Computer-Aided Design, 28(5), pp. 393-404.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and Goedicke, M. (1992).
"Viewpoints: A Framework for Integrating Multiple Perspectives in System
Development," International Journal of Software Engineering and Knowledge
Engineering, 2(1), pp. 31-58.

Firesmith, D. G. (1993). Object-Oriented Requirements Analysis and Logical Design: A
Software Engineering Approach, Wiley, New York.

Garnett, L. (1997). "Wrapping Objects," Journal of Object-Oriented Programming, 9(8),
pp.38-43.

Gatenby, D. A., and Foo, G. (1990). "Design for X (DFX): Key to Competitive, Profitable
Products," AT&T Technical Journal, 69(3), pp. 2-13.

143

Gatenby, D. A., Lee, P. M., Howard, R. E., Hushyar, K., Layendecker, R., and Wesner, J.
(1994). "Concurrent Engineering - An Enabler For Fast, High-Quality Product
Realization," AT&T Technical Journal, 73(1), pp. 34-47.

Gessler, S., and Kotulla, A. (1995). "PDAs as Mobile WWW Browsers," Computer
Networks and ISDN Systems, 28(1&2), pp. 53-59.

Glicksman, J., Kramer, G. A., and Mayer, N. P. (1994). "Internet Publishing via the World-
Wide Web," in Proceedings of Groupware '94, San Jose, California, pp.431-442.

Goldberg, A. (1984). Smalltalk-80: The Interactive Programming Environment, Addison-
Wesley, Reading, MA.

Goldschmidt, A. (1996). "Technical Opinion: Report on NIIIP," Communications of the
ACM, 39(3), pp. 100-103.

Goldstein, D. (1994). "An Agent-Based Architecture For Concurrent Engineering,"
Concurrent Engineering: Research and Applications, 2(2), pp. 117-123.

Golfin, N. G., and Jackson, M. (1994). "Groupware Trial In BT," BT Technology Journal,
12(3), pp. 51-55.

Goscinski, A. (1991). Distributed Operating Systems: The Logical Design, Addison-
Wesley, Sydney.

Gosling, J., and McGilton, H. (1995). "The Java Language Environment," White Paper, Sun
Microsystems Inc., Mountain View, CA.

Graefe, U., and Thomson, V. (1989). "A Reference Model for Production Control,"
International Journal of Computer Integrated Manufacturing, 2(2), pp. 86-93.

Gray, N. A. B. (1994). Programing with Class: A Practical Introduction to Object-Oriented
Programming with C++, John Wiley & Sons, Chichester.

Greenberg, S. (1991a). "An Annotated Bibliography of Computer Supported Cooperative
Work," SIGCHI Bulletin, 23(3), pp. 29-62.

Greenberg, S. (1991b). "Personalizable Groupware: Accomodating Individual Roles and
Group Differences," Research Report, Report Number 90/404/28, Dept. of Computer
Science, University of Calgary, Alberta, Canada.

Gruia-Catalin, R. (1985). "A Taxonomy of Current Issues in Requirements Specification,"
Computer, 18(4), pp. 14-21.

Gupta, S. M., and Brennan, L. (1995). "Implementation Of Just-In-Time Methodology In a
Small Company," Production Planning & Control, 6(4), pp. 358-364.

Hammer, M., and Champy, J. (1993). Reengineering the Corporation: A Manifesto for
Business Revolution, Harper Collins, Inc.

Hanneghan, M., Merabti, M., and Colquhoun, G. (1995). "The Design Of An Object-
Oriented Repository To Support Concurrent Engineering," in Proceedings ofOOIS'95
_ The 1995 International Conference on Object-Oriented Information Systems,
Dublin, Ireland, J. Murphy and B. Stone, eds., Springer-Verlag, pp.200-215.

144

Hanneghan, M., HeB, P., Hubel, H., Merabti, M., and Colquhoun, G. (1996a). "Concurrent
Engineering Effizient Nutzen - Unterstutzende Ansatze aus der Datenverwaltung
(Using Concurrent Engineering Effectively - Supporting Approaches from Data
Management)," VDI-Z Integrierte Produktion, 138(3), pp. 51-54.

Hanneghan, M., Merabti, M., and Colquhoun, G. (1996b). "The World-Wide Web as a
Platform for Supporting Interactive Concurrent Engineering," in Proceedings of
Advanced Information Systems Engineering - 8th International Conference,
CAiSE'96, Heraklion, Crete, Greece, P. Constantopoulos, J. Mylopoulos, and Y.
Vassiliou, eds., Springer-Verlag, Lecture Notes in Computer Science, 1080, pp.301-
318.

Hanneghan, M., Colquhoun, G., and Merabti, M. (1997). "A Scalable Intranet-Hosted
Support Environment For Concurrent Engineering," in Proceedings of lEE
Colloquium on Internet Technology and the Integrated Enterprise, Savoy Place,
London, J. Boardman, ed. Institution of Electrical Engineers, Digest No: 97/149, pp.
9/1-9/4.

Hanneghan, M., Merabti, M., and Colquhoun, G. (1998). "A Viewpoint Analysis Reference
Model for Concurrent Engineering," to appear in Computers in Industry: An
International Journal.

Hanneghan, M., Merabti, M., Colquhoun, G., and Mills, B. (1996c). "Computer-Aided
Concurrent Engineering Using The Internet," poster presented at Graduate School
Promotion Launch, Liverpool John Moores University, Liverpool.

Harding, J. A., and Popplewell, K. (1996). "Driving Concurrency In a Distributed
Concurrent Engineering Project Team - A Specification For an Engineering
Moderator," International Journal Of Production Research, 34(3), pp. 841-861.

Hardwick, M., Downie, B. R., Kutcher, M., and Spooner, D. L. (1995). "Concurrent
Engineering with Delta Files," IEEE Computer Graphics and Applications, 15(1), pp.
62-68.

Harrington, J., Jr. (1973). Computer Integrated Manufacturing, (Reprint 1979 ed), Robert E.
Krieger Publishing Co., New York.

Hayes, F. (1992). "The Groupware Dilema," UnixWorld, 2, pp. 46-50.

Hoare, C. A. R. (1978). "Communicating Sequential Processes," Communications of the
ACM, 21(8), pp. 666-677.

Hobby, J. (1997). "Driving Ambition," Computing, 5th June 1997, pp. 50-51.

Hori, M., Shinoda, Y., and Ochimizu, K. (1996).. "Shared Data Management Mechanism for
Distributed Software Development Based on a Reflective Object-Oriented Model," in
Proceedings of Advanced Information Systems Engineering - 8th International
Conference, CAiSE'96, Heraklion, Crete, Greece, P. Constantopoulos, J. Mylopoulos,
and Y. Vassiliou, eds., Springer-Verlag, Lecture Notes in Computer Science, 1080,
pp. 362-382.

IBEX Corporation. (1995). "ITASCATM Distributed Object Database Management System:
Technical Summary Release 2.3.5," IBEX Corporation, SA, Archamps, France.

IBM. (1987). Computer Integrated Manufacturing: the IBM Experience, Findlay
Publications (for IBM UK Scientific and Industrial centre), Horton, Kent.

145

ISO. (1986). "The Ottawa Report on Reference Models for Manufacturing Standards,
Version 1.1," Report Number ISO TC 184/SC5IWG 1, International Standards
Organisation.

ISO. (1992a). "Draft Recommendation X.903: Basic Reference Model of Open Distributed
Processing," Report Number ISOIIEC ITClISC21 N7055, International Standards
Organisation.

ISO. (1992b). "Industrial Automation Systems - Product Data Representation and Exchange
_Part 1: Overview and Fundamental Principles," Report Number ISO CD 10303-1,
International Standards Organisation.

ISO. (1993). "Industrial Automation Systems - Product Data Representation and Exchange -
Part 11: Descriptive Methods: The Express Language Reference Model," Report
Number ISO CD 10303-11, International Standards Organisation.

Jager, M., Osterfeld, U., Ackerman, H. J., and Hornung, C. (1993). "Building a Multimedia
ISDN PC," IEEE Computer Graphics and Applications, 13(5), pp. 24-33.

Jasnoch, U., Kress, H., Schroeder, K., and Ungerer, M. (1994). "The CoConut
Environment," Technical Report, Report Number FIGD-94iOOl, Fraunhofer-Institut
fur Graphische Datenverarbeitung, Darmstadt, Germany.

Jo, H. H., Parsaei, H. R., and Sullivan, W. G. (1993). "Principles of Concurrent
Engineering," in Concurrent Engineering: Contemporary issues and modern design
tools, H. R. Parsaei and W. G. Sullivan, eds., Chapman & Hall, pp. 3-23.

Jo, H. H., Parsaei, H. R., and Wong, J. P. (1991). "Concurrent Engineering: The
Manufacturing Philosophy for the 90's," Computers & Industrial Engineering, 21(1-
4), pp. 35-39.

Johnson, E. (1997). "LinguaNet Project Summary," available on the World-Wide Web at
the URL <http://www2.echo.lullangeng/enllelllinguanet!summary.html>.

Johnson, R., and Kleiner, B. H. (1995). "Technical Report - New Developments In Total
Quality Management," International Journal Of Vehicle Design, 16(2-3), pp. 282-
291.

Jorysz, H. R., and Vernadat, F. B. (1990). "CIM-OSA Part 1: Total Enterprise Modelling
and Function View," International Journal of Computer Integrated Manufacturing,
3(3-4), pp. 144-156.

Karman, R., Reddy, Y. V., and Cleetus, K. J. (1992). "Support Environment for Network
Computing," Technical Report, Report Number CERC-TR-RN-91-007, Concurrent
Engineering Research Center, West Virginia University, Morgantown, WV.

Kantor, B., and Lapsley, P. (1986). "Network News Transfer Protocol: Internet RFC 977,"
available on the World-Wide Web at the URL <fip:llds.internic.net!rfc/rfc977.txt>.

Keirn, D. A., and Kriegel, H.-P. (1996). "Visualization Techniques for Mining Large
Databases: A Comparison," IEEE Transactions On Knowledge and Data
Engineering, 8(6), pp. 923-938.

Kernighan, B., and Ritchie, D. (1988). The C Programming Language, (2nd ed), Prentice
Hall, Englewood Cliffs, NJ.

146

Kim, W., Ballou, N., Chou, H.-T., Garza, J. F., and Woelk:, D. (1989). "Features of the
ORION Object-Oriented Database System," in Object-Oriented Concepts, Databases,
and Applications, W. Kim and F. H. Lochovsky, eds., ACM Press and Addison-
Wesley, pp. 251-282.

Kim, W., and Lochovsky, F. H., eds. (1989). Object-Oriented Concepts, Databases, and
Applications, ACM Press and Addison-Wesley.

Kirsche, T., Lenz, R., Luhrsen, H., Meyerwegener, K., Bever, M., Schaffer, U., and
Schottmuller, C. (1993). "Communication Support for Cooperative Work," Computer
Communications, 16(9), pp. 594-602.

Klein, M. (1996). "Core Services for Coordination in Concurrent Engineering," Computers
in Industry, 29(1-2), pp. 105-115.

Klittich, M. (1990). "CIM-OSA Part 3: CIM-OSA Integrating Infrastructure - the
Operational Basis for Integrated Manufacturing Systems," International Journal of
Computer Integrated Manufacturing, 3(3-4), pp. 168-180.

Koonce, D. A. (1995). "Information Model Level Integration for CIM Systems - A Unified
Database Approach to Concurrent Engineering," Computers & Industrial
Engineering, 29, pp. 647-651.

Kotonya, G., and Sommerville, I. (1992). "Viewpoints For Requirements Definition,"
Software Engineering Journal, 7(6), pp. 375-387.

Kotonya, G., and Sommerville, I. (1996). "Requirements Engineering with Viewpoints,"
Software Engineering Journal, 11(1), pp. 5-18.

Kress, H. (1996). "Integration Factors within a Virtual Prototyping Environment,"
International Journal of Flexible Automation and Integrated Manufacturing, 4(1), pp.
29-41.

Lettice, F., Smart, P., and Evans, S. (1995). "A Workbook-Based Methodology For
Implementing Concurrent Engineering," International Journal Of Industrial
Ergonomics, 16(4-6), pp. 339-351.

Lewis, J. W., Bernstein, B. M., Kenny, K. B., Mohr, G., Ostrowski, M. C., Sarachan, B. D.,
and Sum, R. N. (1994). "The Concurrent Engineering Toolkit: a Network Agent for
Manufacturing Cycle Time Reduction," inProceedings ofCE'94: Concurrent
Engineering Research and Applications, Pittsburgh, PA, A. J. Paul and M.
Sobolewski, eds., Concurrent Technologies Corporation, pp. 521-528.

Londono, F., Cleetus, K. J., Nichols, D. M., Iyer, S., Karandikar, H. M., Reddy, S. M.,
Potnis, S. M., Massey, B., Reddy, A., and Ganti, V. (1992). "Coordinating a Virtual
Team," Technical Report, Report Number CERC-TR-RN-92-005, Concurrent
Engineering Research Center, West Virginia University, Morgantown, WV.

Loomis, M. E. S. (1995). Object Databases: The Essentials, Addison-Wesley, Reading,
MA.

Los, R., Beziau, D., Brodda, J., and Marzi, J. (1992). "Development and use of an Integrated
Reference Model for one-of-a-kind Construction Site Manufacturing," in 'One-of-a-
kind' Production: New Approaches, B. E. Hischand and K. D. Thoben, eds., Elsevier,
North Holland, pp. 329-340.

147

Lotus Corporation. (1993). Lotus Notes. Lotus Corporation, Lotus Park, The Causeway,
Staines, Middlesex, TW18 3AG, UK.

Lucent Technologies. (1996). "The Inferno Network Operating System and Programming
Environment," available on the World-Wide Web at the URL
<http://inferno.lucent.comlinferno/index.html>.

Mandviwalla, M., and Olfman, L. (1994). "What Do Groups Need? A Proposed Set of
Generic Groupware Requirements," ACM Transactions on Computer-Human
Interaction, 1(3), pp. 245-268.

Massey, J. (1996). "Video Nation," Computing, 25th January, pp. 20-21.

McCool, R. (1994). "CGI Specification," available on the World-Wide Web at the URL
<http://hoohoo.ncsa.uiuc.edulcgi/>.

McKnight, S., and Jackson, J. K. (1989). "Simultaneous Engineering Saves Manufacturing
Lead Time, Costs and Frustration," Industrial Engineering, 21(1), pp. 25-27.

Merabti, M., and Carew, M. (1994). "The COMBINE: A Distributed Support Environment
for Concurrent Engineering," in Proceedings of 1994 Engineering Systems Design
and Analysis Conference (ESDA), London, M. M. Tanik, A. Ertas, and 1. 1. Esat, eds.,
64-5, pp. 89-96.

Microsoft Corporation. (1997). "Microsoft VBScript," available on the World-Wide Web at
the URL <http://www.microsoft.comlvbscriptl>.

Mills, J. J., Graham, J. K., Elmasri, R. A., and Weems, B. P. (1993). "The Virtual
Manufacturing Workbench - Representation and Interface Issues," IF!P Transactions
B-Applications In Technology, B-I0, pp. 231-244.

Molina, A., Alashaab, A. H., Ellis, T. 1. A., Young, R. 1.M., and Bell, R. (1995a). "A
Review Of Computer-Aided Simultaneous Engineering Systems," Research In
Engineering Design - Theory Applications and Concurrent Engineering, 7(1), pp. 38-
63.

Molina, A., Ellis, T. 1. A., Young, R. 1.M., and Bell, R. (1995b). "Modelling Manufacturing
Capability to Support Concurrent Engineering," Concurrent Engineering: Research
and Applications, 3(1), pp. 29-42.

Mullery, G. P. (1979). "CORE - A Method for Controlled Requirements Specification," in
Proceedings of 4th International Conference on Software Engineering, Munich,
Germany, IEEE Computer Society, pp.126-135.

Netscape Communications Corporation. (1996). "Java Script Authoring Guide," available on
the World-Wide Web at the URL
<http://www.netscape.comleng/mozillal3.0Ihandbookljavascriptl>.

Network Wizards. (1996). "Internet Domain Survey," available on the World-Wide Web at
the URL <http://www.nw.coml>.

Nickerson, D. P. (1990). "Introduction to Concurrent Engineering in Design," in
Proceedings of Electro/90 Conference, Boston MA, pp. 174-179.

148

NIIIP Consortium. (1995). "NIIIP Reference Architecture: Concepts and Guidelines,"
Report Number NTR95-01, National Industrial Information Infrastructure Protocols
Consortium, (available on the WWW at http://www.niiip.org/).

Norrie, M. C., and Wunderli, M. (1996). "Agent-Based Tool Integration for Distributed
Information Systems," in Proceedings of Advanced Information Systems Engineering
- 8th International Conference; CAiSE'96, Heraklion, Crete, Greece, P.
Constantopoulos, J. Mylopoulos, and Y. Vassiliou, eds., Springer-Verlag, Lecture
Notes in Computer Science, 1080, pp.383-401.

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R., and George, J. F. (1991).
"Electronic Meeting Systems to Support Group Work," Communications of the ACM,
34(7), pp. 40-61.

Object Management Group. (1995a). "The Common Object Request Broker: Architecture
and Specification (Revision 2.0)," Technical Document, Report Number PTC/96-03-
04, The Object Management Group, Framingham, MA.

Object Management Group. (1995b). "CORBAfacilities: Common Facilities Architecture
(revision 4.0)," Report Number 97-06-15, The Object Management Group,
Framingham, MA.

Object Management Group. (1997). "CORBAservices: Common Object Services
Specification," Report Number 97-06-01, The Object Management Group,
Framingham, MA.

Open Software Foundation. (1993). OSF DCE Application Development Guide (Rev. 1.0),
Prentice Hall, Englewood Cliffs, NJ.

Ousterhout, J. K. (1994). Tel and the Tk Toolkit, Addison Wesley Publishing Company.

Ousterhout, J. K. (1997). "Scripting: Higher Level Programming for the 21st Century,"
White Paper, Sun Microsystems Laboratories, Mountain View, CA.

Parametric Technology Corporation. (1993). Pro/ENGINEER User Manuals, Parametric
Technology Corporation, 128 Technology Drive, Waltham, MA 02154.

Petrie, C. J. (1996). "Agent-Based Engineering, the Web, and Intelligence," IEEE Expert-
Intelligent Systems & Their Applications, 11(6), pp. 24-29.

Postel, J., and Reynolds, J. (1985). "File Transfer Protocol (FTP): Internet RFC 959,"
available on the World-Wide Web at the URL <ftp:llds.internic.netlrfc/rfc959.txt>.

Powell, D. (1996). "Group Communication," Communications of the ACM, 39(4), pp. 50-
53.

Prasad, B. (1996). Concurrent Engineering Fundamentals: Integrated Product and Process
Organization, vol. 1, Prentice Hall, New Jersey.

Pressman, R. S. (1997). Software Engineering: A Practitioner's Approach (European
adaptation), (4th ed), McGraw-Hill, Inc., New York.

Raggett, D. (1997). "HTML 3.2 Reference Specification: W3C Recommendation 14-Jan-
1997," available on the World-Wide Web at the URL <http://www.w3.orgITRlREC-
htm132.html> .

149

Rochkind, M. J. (1975). "The Source Code Control System," IEEE Transactions on
Software Engineering, SE-1(4), pp. 364-370.

Ross, D. T. (1977). "Structured Analysis (SA): A Language for Communicating Ideas,"
IEEE Transactions on Software Engineering, SE-3(1), pp. 16-24.

Royce, W. W. (1970). "Managing the Development of Large Software Systems: Concepts
and Techniques," in Proceedings of IEEE WESCON, Los Angeles, CA, IEEE Press,
pp. 1-9.

Santos, J. L. T., and Cardoso, J. B. (1993). "Computer Aided Mechanical Engineering
Design Environment for Concurrent Design Process," in Proceedings of the 1993
ITEC Workshop: Simulation in Concurrent Engineering, Wembley, UK, R. Reddy
and S. Medhat, eds., SCS, San Diego, pp.71-83.

Scheer, A. W. (1992). "Architecture ofIntegrated Information Systems, ARIS," IDS Prof.
Scheer GmbH, Saarbriicken.

Scheer, A. W. (1996). "Scheer Magazine Special," IDS Prof. Scheer GmbH, Saarbrucken.

Scheifler, R., and Gettys, 1. (1992). X Window System, (3rd ed), Digital Press.

Schmitz, 1., and Desa, S. (1993). "The Development of Virtual Concurrent Engineering and
its Application to Design for Producibility," Concurrent Engineering: Research and
Applications, 1(3), pp. 159-169.

Schneier, B. (1997). "Cryptography, Security and the Future," Communications of the ACM,
40(1), pp. 138.

Scrivener, S. A. R., Harris, D., Clark, S. M., Rockoff, T., and Smyth, M. (1995). "Designing
at a Distance Via Real-Time Designer-to-Designer Interaction," in Groupwarefor
Real-Time Drawing: A Designer's Guide, S. Greenberg, S. Hayne, and R. Rada, eds.,
McGraw-Hill, London, pp. 5-23.

Siemieniuch, C. E., and Sinclair, M. A. (1994). "Concurrent Engineering and CSCW: The
Human Factor," in Computer Supportfor Co-operative Work, K. Spurr, P. Layzell, L.
Jennison, and N. Richards, eds., John Wiley and Sons Ltd, Chichester, pp. 111-125.

Smith, B. (1994). "Blazing the Path: DEC's LinkWorks is an open design for multiplatform
work flow," BYTE, August, pp. 147-150.

Smith, B., and Wellington, 1. (1986). "Initial Graphics Exchange Specification (IGES)
Version 3.0," Report Number NSBIR 86-3359, National Institute of Standards.

Smith, P. G. (1988). "Winning the New Products Rate Race," Machine Design, May 12.

Smith, R. P. (1997). "The Historical Roots of Concurrent Engineering Fundamentals," IEEE
Transactions On Engineering Management, 44(1), pp. 67-78.

Sobolewski, M., and Erkes, 1. (1995). "CAMnet - Architecture and Applications," available
on the World-Wide Web at the URL <http://camnet.ge.com!camnetlpapers/camnet-
ce95.ps>.

Sohlenius, G. (1992). "Keynote Paper: Concurrent Engineering," Annals of the CIRP, 41(2),
pp. 645-655.

150

Soley, R. M., ed. (1993). Object Management Architecture Guide, (2nd ed), The Object
Management Group, Framingham, MA.

Sommerville, I. (1996). Software Engineering, (5th ed), Addison-Wesley Publishing
Company, Wokingham, England.

Spurr, K., Layzell, P., Jennison, L., and Richards, N., eds. (1994). Computer Supportfor Co-
operative Work, John Wiley & Sons, Chichester.

Srinivas, K., Reddy, R., Babadi, A., Kamana, S., Kumar, V., and Dai, Z. (1992). "MONET:
A Multimedia System for Conferencing and Application Sharing in Distributed
Systems," Report Number CERC-TR-RN-91-009, Concurrent Engineering Research
Center, West Virginia University, Morgantown, WV.

Stonebraker, M., and Kemnitz, G. (1991). "The Postgres Next-Generation Database
Management System," Communications of the ACM, 34(10), pp. 78-92.

Stonebraker, M., Rowe, L. A., and Hirohama, M. (1990). "The Implementation of
POSTGRES," IEEE Transactions On Knowledge and Data Engineering, 2(1), pp.
125-142.

Stroustrup, B. (1991). The C++ Programming Language, (2nd ed), Addison Wesley,
Reading, MA.

Tichy, W. F. (1985). "RCS - A System for Version Control," Software - Practice and
Experience, 15(7), pp. 637-654.

Trapp, G., Lawson, M., and Burkett, B. (1992). "Workshop on Concurrent Engineering," in
Proceedings of 13th Annual Conference & Exposition: CAD (Computer-Aided
Design) and Engineering 92 / Business Graphics 92, Anaheim, CA, pp. 766-792.

US Air Force. (1981). "Integrated Computer-Aided Manufacturing (ICAM) Architecture
Part II, Volume IV - Functional Modelling Manual (IDEFO)," Report Number
AFW AL- TR-81-4023, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio
45433.

Valenzano, A., Demartini, C., and Ciminiera, L. (1992). MAP and TOP Communications:
Standards and Applications, Addison-Wesley, Wokingham, England.

Vinoski, S. (1997). "CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments," IEEE Communications Magazine, 35(2), pp. 46-55.

Wade, A. E. (1995). "The ODBMS role in Distributed Client Server Computing," White
Paper, Objectivity, Inc., Mountain View, CA.

Weston, R. H. (1995). "An Academic Perspective on Structured Methods and Tools for the
Life-cycle Engineering of Information Systems," MSI Research Institute,
Loughborough University of Technology, Loughborough.

Williams, M. J., and Taleb-Bendiab, A. (1997). "A Toolset for Architecture Independant,
Reconfigurable Multi-Agent Systems," in Proceedings of First International
Workshop on Mobile Agents (MA '97), Berlin, K. Rothermel and Popescu-Zeletin,
eds., Springer-Verlag, pp.210-222.

Wingrove, S. J., Boardman, J. T., and Sagoo, J. S. (1997). "Development ofa Concurrent
Engineering Handbook Using Intranet Technology," in Proceedings of lEE

151

Colloquium on Internet Technology and the Integrated Enterprise, Savoy Place,
London, J. Boardman, ed. Institution of Electrical Engineers, Digest No: 97/149, pp.
8/1-8/8.

Winner, K. E., Pennell, J. P., Bertrand, H. E., and Slusarzuk, M. M. G. (1988). "The Role of
Concurrent Engineering in Weapons System Acquisition," Report Number R-338,
Institute for Defense Analysis, 'Alexandria, Virginia.

Wu, P. L. (1995). "A Case-Study In FMS Production Planning and Dispatching,"
International Journal Of Flexible Manufacturing Systems, 7(4), pp. 361-372.

Yavuz, I.H., and Satir, A. (1995). "Kanban-Based Operational Planning and Control-
Simulation Modeling," Production Planning & Control, 6(4), pp. 331-344.

Yenradee, P. (1994). "Application Of Optimized Production Technology In a Capacity
Constrained Flow-Shop - a Case-Study In a Battery Factory," Computers & Industrial
Engineering, 27(1-4), pp. 217-220.

Yeomans, R. W. (1987). "Design Rules and Development Guidelines for CIM Projects," in
Proceedings of 4th European Conference on Automated Manufacturing, IFS
Conferences Ltd, pp.395-412.

Zachman, J. A. (1987). "A Framework for Information Systems Architecture," IBM Systems
Journal, 26(3), pp. 276-292.

Zhang, H. C., and Zhang, D. (1995). "Concurrent Engineering: An Overview From
Manufacturing Engineering Perspectives," Concurrent Engineering: Research and
Applications, 3(3), pp. 221-236.

Zhang, H.-C., and Alting, L. (1992). "An Exploration of Simultaneous Engineering for
Manufacturing Enterprises," International Journal of Advanced Manufacturing
Technology, 7, pp. 101-108.

152

APPENDIX A: SUMMARY OF FUSION OBJECT MODEL NOTATION

The notation used in the models described in this thesis is the Fusion object modelling

notation (Coleman et al. 1994) which was developed by Hewlett-Packard. The Fusion

method is the result of an amalgamation of best practice from a number of popular object

modelling notations was chosen for its clarity in presenting object models and the ease by

which practitioners of other object modelling notations can interpret it.

Figure Al provides a summary of the diagramming notation used to describe interfaces

between classes of objects (as used in Appendix B). Figure A2 provides a summary of the

Fusion notation used to develop the object models given in Appendix C.

Time

Fusion system interface diagram notation

~---~;:;P::~~--l
I I
I I
I I
I I
I I

f---system operation---.i
I I

I :
I I

I :

r---SYSlem event----- '

.---- time-line

repetitive
.---- time-line

Figure A 1. Fusion system interface diagram notation.

153

Class
Class name

attribute

Relationship
Class_1 Class_2

Role_1 ~ Role 2

C ~ C

Aggregation

attribute

Aggregate Class name

CLJ
Class

Zero or more -----,

Generalisation (subtyping inheritance)
Superclass

/\
I J

Subclass Subclass

Class

Numeric range

Subclasses may
overlap (non-

disjoint). Possibly
more subclasses

Subclasses
partition

superclass
Total marker

Class

All members
participate--.'"

System object model boundary

Figure A 2. Fusion object model notation.

154

APPENDIX B: SUPPORT SERVICE SYSTEM INTERFACE MODELS

Bl. Introduction

This appendix provides a complete specification of the system interfaces of each of the four

support services within the CONCERT architecture. This specification consists of the

operations that can be requested of each service along with the corresponding return results.

A summary of the Fusion object model notation used is given in Appendix A.

B2. Distribution support service

virtual team
member

Distribution
Support Service

~Change_virtual_team_member_details---+l

Time
f------Change_paSSWord----+l~1

~1090ut_of_environment__1

Description:
A team member will login to the environment via the Distribution Support Service (DSS).

On doing this they will be issued with a validation token which must be supplied in every
opreation request to any CONCERT support service for security reasons. The DSS will be called
upon to validate this token by the other support services.

Once logged on successfully, the team member can issue requests to change his I her
member details (contact information) or password. They can aiso find out who else is currently
using the environment and retrieve their contact information.

Users must issue a logout request to end their session using the CONCERT
environment.

Figure B 1. Distribution support service system interface -
virtual team members.

system
administrator

Distribution
Support Service

Time

r-add_virtuaueam_member_details--1

~---Ipromote_team_member ~I
~----'demote_administrator ~I

~1090ut_0f_enVironment~

Description:
The CONCERT system administrator is a special class of virtual team member who

can perform the same set of operations but who also has permission to perform system-
level operations within the CONCERT environment.

Once logged on successfully, the administrator can issue requests to change not
only their own member details (contact information) or password but other team members'
details and passwords as well. Administrators can also add new virtual team members to
the DSS user database and promote I demote existing team members to I from
Administrator status.

Figure B 2. Distribution support service system interface-
system administrators.

156

other support
service

Distribution
Support Service

Time

~get_user_wOrkstation_details-------.j

r--------------·user_wOrkstation_details----------------j

Description:
Other CONCERT support services will call upon the Distribution Support Service

(DSS) to perform token validation (since every call to a method in any support service must
involve validation of the caller). In response to a validation_token request, the DSS will issue
a proceed or stop value.

Support services may occasionally need to know more specific details about a user
currently logged into the environment such as their workstation type or network address.
This can be obtained by a call to the DSS which maintains this information.

Figure B 3. Distribution support service system interface-
requests from collaborating support services.

It should be noted that for security reasons, all support service requests must first be

validated by the DSS (i.e. with a validate _token request). This is not shown in the following

diagrams to aid clarity.

157

D3. Collaboration support service

virtual team
member

Time

Collaboration
Support Service

collaboration
application

f-----get_channel_info---~

------------channel_information·-------------

f----subscribe_to_channel---+I

------------------tool_location-------------------

i--------publish information to channel--------~- - - ,, ,
j.--information_to_be_published~, , ,

~-----------published information------------J !
l -! !

~""," __ oh,"""I~ !

Description:
Collaboration applications that wish to use the publish and subscribe features of the CONCERT

environment register themselves as a channel via the Collaboration Support Service (CSS). This allows
virtual team members to poll the CSS to see which channels are currently available. When a virtual team
member subscribes to a particular channel, the CSS will give the user the actual location of the collaboration
tool so that they can interact directly with the application. The collaboration tool channels all events and
messages via the CSS which in turn re-clistributesthe information to all subscribed virtual team members.

To end a channel session, the virtual team member informs the CSS that they wish to unsubscribe.
This will stop the transmission of information to that user from that channel.

Figure B 4. Collaboration support service system interface
- event and message channelling.

158

Time

virtual team
member

Collaboration
Support Service

~create_group_problem---1

~----------,"~~::;::.----------~
, vote_on_problem :

Description:
The Collaboration Support Service (CSS) allows virtual team members to

perform gruop voting on problems that they encounter during a CE development
process. First a team member creates (or proposes) and new group problem in the
form of a statement. Other team members can then retrieve group problems via the
CSS and register their vote (either in favour, against or abstain). Users can change
their vote will the voting process is still active.

The outcome of a group problem can be obtained only after the voting
process has concluded (i.e. when the expiry date of the problem has elapsed).

Figure B 5. Collaboration support service system interface
- group voting.

159

Time

virtual team
member

Collaboration
Support Service

conference
participants

I---create_conference ~I
~get_conference_details4

r----------conference_detai~s.-----------~

r--jOin conference___'

r--------·all_messages_so_far----------1 '

f--add_message_to_conference-+! i
: -------------------·message -----------------~

~Ieave-conference---+l i
~finish-conference---+l

Description:
The Collaboration Support Service (CSS) is used to instantiate multi-user conferences.

First a virtual team member creates a new conference after which other team members can
retrieve conference details from the CSS. Team members must explicitly join a conference
upon which they will receive all messages that have been added to that conference by other
members before prior to their joining. On joining a conference, a team member can add new
messages to that conference. When a new message is added, the CSS broadcasts the
message to all participants currently subscribed to that conference (l.e, all members who have
joined).

Team members must specify that they wish to leave a conference (they may return at
any time as long as the conference is still running.) The conference must be explicitly finished
to formally end the conference and prevent team members adding new messages.

Figure B 6. Collaboration support service system interface
- conferences.

160

virtual team
member

Collaboration
Support Service

other team
member(s)

Time isend-messagef ·message-----------------~

isend-e-mailf ·e-mail-------------------~

'

broadcast_message__' j
, '
~----------·broadcast_message---------~, ,

Description:
The Collaboration Support Service (CSS) is used for messaging services. These

include sending or broadcasting messages to other team members' CONCERT workstations
and e-mail. A message is synchronously 'Sent' to a single user or 'Broadcast' to all current
users (provided that those users are actually logged into the CONCERT environment at the
time). E-mail is sent to a specific e-mail address asynchronously.

Figure B 7, Collaboration support service system interface
- messaging services.

161

other bulletin
board users

virtual team
member

Collaboration
Support Service

i-open bulletin board4

r--------a~~_current_messages.---------~

~post-new-message--+: 1
: Ii ~----new-bulletin_board_message·--
: :

~clos.-b""eti"-bo."'--1

Time

Description:
Bulletin boards are another form of messaging service in the Collaboration Support

Service (CSS). Virtual team members 'open' the project bulletin board via the CSS which send
the team member all the currently active messages stored on the bulletin board. The team
member can then add new messages to the bulletin board which will automatically be re-
distributed to all other users who currently have the same bulletin board open.

To end a bulletin board session, users must inform the CSS so that broadcasts are no
longer sent to that user.

Figure B 8. Collaboration support service system interface
- bulletin boards.

162

B4. Project support service

virtual team
member

Project
Support Service

Time 1-------create_project-----+l~1

!!-----add_task_to_project----~

I------check_task------+I

I------release_task-----+I

Description:
The Project Support Service (PSS) is called upon to manage projects and related

tasks. The first step is to actually create a new project object and then populate this with one
or more task Objects.Users of the CONCERT environment can then retrieve these project
details and actually perform the set tasks. This leads to some virtual team member checking
the task (i.e. marking it finished) and then some other virtual team member releasing the
task (i.e. marking it as complete).

Figure B 9. Project support service system interface.

163

B5. Repository support service

system
administrator

Repository
Support Service

Time ~freeze_data_Object-4

~thaw_data_Object------+j

~freeze_repositOry------+j

t---thaw_repositOry-------+l

Description:
System administrators can perform additional operations in the Repository Support

Service (RSS). These include the freezing of individual data objects upon which the object is
not allowed to be checked out of the repository for writing, and the subsequent thawing of
the same data object. In addition, system administrators can freeze and thaw the entire data
object repository in a similar way.

Figure B 10. Repository support service - system
administrators.

164

Time

virtual team
member

Repository
Support Service

~store_data_Object----1

checkout_translated_object_for_readin

----------------translated_data_object·-----------------

I-----'finished_reading----~

,t_trar"'.ted_o~.d_""_"",,,, ~
translated_data_ object-----------------

checkin_new_version

Description:
The Repository Support Service (RSS) Is called upon by virtual team members to

perform data repository functions. Team members can store new objects Into the repository
after which there are three things that can happen to that object:

1) Users can search the repository for the object,
2) Users can checkout the object for reading, or
3) Users can checkout the object for writing.
Searching the repository will return a list of matching data objects (which may be

empty). (For clarity, the checkout of data objects assumes no access control violations.)
When a user has finished reading or writing a checked-out data object they must

inform the RSS so that (in the case of reading) notification locks can be released and (in the
case of writing) a new version can be generated.

Translation of data is also performed by the RSS. The team member must first
determine which formats can be translated by polling the RSS. Raw data can be translated
by sending It to the RSS. Alternatively, team members can check out existing data objects in
translated format for reading and writing. When a translated object is checked out for
writing, the RSS must ensure that it is translated back into the correct format on return to
the repository.

Figure B 11. Repository support service - virtual team
members.

165

APPENDIX C: CONCERT INFORMATION SYSTEM OBJECT MODEL

The diagrams on the following pages are depicted in the Fusion notation. To fully appreciate

the diagramming conventions of the Fusion method, the following excerpt, from the authors

of Fusion, may be of use to the reader:

"Diagrammatic notations can be difficult to understand if the diagrams get

large and sprawl. The object model notation is no exception, so we allow a

diagram to be broken into several sub-diagrams. The complete object model

is just the union of all the sub-diagrams.

If two class boxes, with the same name, appear in the same object model,

they denote the same class. The attributes of the class are formed by taking

the union of all the attributes of the individual boxes. Thus each appearance

need only contain the attributes needed for its immediate context.

Relationships are treated in a similar way. Two diamonds with the same

name, connecting the same classes, and with the same role names denote a

single relationship that is formed by taking the union of all the attributes. "

(pg. 22-23, Coleman et al. 1994)

166

Figure C 1. Overview of object model.

167

Repository

Repository Component
*

object identifier
owner
name

* description

.---
Access Control List * Annotation

Is child
contained JIn ~

I * h
ve

Data Workspace Repository Object

size
1 original filename par

search keywords 1 I

A
T

ent

Description:

A Repository is the place where actual configuration items are stored for the life-time of the
project. The Repository is capable of holding two different classes of object: Data Works paces :ii,
which are folders used to conveniently group like items together and Repository Objects which l~:
are actual data objects created during the project.

Data Workspaces can contain any number of Repository Components (of which Data 1\
Workspace and Repository Object are sub-classes). Repository Components contain an
Access Control List and any number of Annotations and have the attributes: object identifier
which uniquely identifies each component; owner which is the username of the team member
who created the item; and a name and description used for descriptive purposes.

Repository Objects have the additional attributes: size (in bytes), original filename Ie;
(which is used when team members edit the object) and search keywords (which can be used to
quickly locate objects of a given type). One final aspect of Repository Objects is that they can iii'
contain child versions of themselves (i.e. they maintain a version tree).:

:'

Repository
Martin Hanneghan(2/12197 12:32)

Figure C 2. Repository object model.

168

username

Access Control List

Virtual Team Member Access Pennission

read only
f----< isgranted >-_~ read and write

Description:

An Access Control List is the means by which the CONCERT environment controls access to
Repository Components. It is a list of the Virtual Team Members who can access a given
object and the Access Permission or type of access they are allowed: i.e. read only or read
and write access.

.:

Access Control List
Martin Hanneghan(2/12/97 12:24)

Figure C 3. Access Control List object model.

169

Annotation

description

/\

~ I
Text Annotation URL Annotation

text uri

Description:

An Annotation is an additional descriptive reference used to support a given point of view. An
Annotation can be one of a number of sub-types: e.g. Text Annotation, i.e. paragraph{s) of
plain text, or URL Annotation, i.e. the annotation refers to information that is available at the
given URL (Uniform Resource Locator) on the Internet.

Other possible type of Annotation include graphical annotations, audio annotations and
video annotations (not shown here).

Annotations
Martin Hanneghan(2/12/97 12:31)

Figure C 4. Annotations object model.

170

• Bulletin Board Message

Bulletin Board

Description:

Bulletin Boards are used for storing temporal information or notices generated within a given
CE Project Configuration. It can contain zero or more Bulletin Board Messages. Each CE
Project Configuration has one Bulletin Board.

Document title:
Last edited by:

Bulletin Board
Martin Hanneghan(5/12197 11:28)

Figure C 5. Bulletin Board object model.

171

CE Project Configuration

project name
customer
creation date
created by member

Project Plan

Team

Repository * Problem Statement

Description:
,

A CE Project Configuration is the one single place which holds all the configuration
information for a given CE project. It is here that the Project Plan, the Repository for all
configuration items, the details of this project Team, the project Bulletin Board, zero or more
related Problem Statements and zero or more Conferences are stored.

A CE Project Configuration is for a specified customer and is given by its creator (created by
member') a unique descriptive project name at its creation date.

Bulletin Board * Conference

CE Project Configuration
Martin Hanneghan(3/1219711:16)

Figure C 6. CE Project Configuration object model.

172

Message

sender
date sent
message body

* Annotation

/\

E-mail Message Bulletin Board

to
Message

ee expiry date

bee

Description:

This model show the various types of Message that exist within the CONCERT environment.
Each Message contains information about the usemame of the sender, the date sent and the
actual message body. It can also contain zero or more Annotations.

The E-mail Message sub-class contains additional information such as who the
message is to, the cc recipients (carbon-copy) and bee recipients (blind carbon-copy).

The Bulletin Board Message sub-class contains the additional attribute expiry date
which is used to invalidate the message after a given time.

Document title:
Last edited by:

Messages
Martin Hanneghan(2112/97 15:54)

Figure C 7. Messages object model.

173

Team

Virtual Team Member
+

name
username
e-mail address
homepage URL
telephone number
fax number
address
company name
graphic image

~~

System Administrator

promoter
promotion date

Description:

A Team is composed of one or more Virtual Team Members. Each Virtual Team Member
records details of their name, CONCERT usemame, e-mail address, homepage URL, telephone
number, fax number, address, company name and an optional graphic image. These details are
used as contact information by both users of the CONCERT environment and the system itself.

One special sub-class of Virtual Team Member, the System Administrator has
additional privileges which allow him I her to perform system functions within the CONCERT
environment. Due to the nature of the functions that a System Administator can perform, only
other System Administators can promote Virtual Team Members to this role (hence we have
promoter and promotion date attributes for each administrator).

Team and Virtual Team Members
Martin Hanneghan(2/12/97 13:11)

Figure C 8. Team and Virtual Team Members object
model.

174

Project Plan

start date
expected end date
check date
checked by member
release date
released by member *J sub-task

+ Task

start date
performed by
expected end date
check date
checked by member pal
release date 1
released by member

alns

ent

Description:

The Project Plan records the series of Tasks that need to be be undertaken in order to
complete a given CE project. In accordance with 1509000 requirements both the Project Plan
and individual Tasks must be both checked and released by independent Virtual Team
Members (i.e. by someone whom the actual task was notperfonned by).

Each Task ean contain an optional number of sub-Tasks and so on ad infinitum.

Project Plan
Martin Hanneghan(3/12197 11:37)

Figure C 9. Project Plan object model.

175

Problem Statement

problem description Opinion
proposing member value
date proposed team member
closing date

1 + date given

stimulates
1 Outcome * Annotation

number in favour
number against
number of abstentions

Description:

.;

~..

This object model describes the decision making process within the CONCERT environment. A
Problem Statement is proposed by a Virtual Team Member (proposing membe". Other
Virtual Team Members within that Team can then express their Opinion on the statement, i.e.
by specifiying a value: either whether they are in favour, against or abstain. Each Opinion may
optionally contain a number of Annotations to support a given value.

Each Problem Statement records a problem description, the date proposed and a !
closing date when no more votes shall be allowed and the totals should be counted. A Problem
Statement will produce one Outcome which records the number in favour, number against the
motion, and the number of abstentions.

Problem Statements
Martin Hanneghan(3/12197 11:30)

Figure C 10. Problem Statements object model.

176

• Message

Conference

title
purpose
creator
start date
end date

Description:

Conferences are used as a means of allowing multiple Virtual Team Members to communicate
synchronously. They do this by adding Messages to a particular conference. Each CE Project
Configuration can contain any number of Conferences.

A Conference has a title and a purpose which describes the context for the discussion. It
also has a creator (which is the usemame of the Virtual Team Member who started the
Conference) and a start date and an end date (when it has concluded).

Document title:
Last edited by:

Conference
Martin Hanneghan(5/1219711:31)

Figure C 11. Conference object model.

177

Workstation

operating system Virtual Team Member
architecture 1 1
network address

username
login

physical location
telephone number

Description:

In order to use the CONCERT environment, Virtual Team Members must login from a
Workstation. This is the physical computer terminal which is used to access the software
components of the environment.

Each unique Workstation has attributes such as the operating system it uses, the
hardware architecture and network address, the physical location of the machine and a
telephone number that can be used to contact the operator of that Workstation. These details
can be used by the CONCERT environment and other Virtual Team Members for
communication purposes.

Document title:
Last edited by:

Workstation
Martin Hanneghan(5/12197 13:33)

Figure C 12. Workstation object model.

178

Appendix D: Publications resulting from this research

1. Hanneghan, M., Merabti, M., and Colquhoun, G. (1998). "A Viewpoint Analysis
Reference Model for Concurrent Engineering," to appear in Computers In Industry:
An International Journal.

2. Hanneghan, M., Merabti, M., and Colquhoun, G. (1998). "CONCERT: A
Middleware-Based Support Environment for Concurrent Engineering," in
Proceedings of 2nd International Symposium on Tools and Methods for Concurrent
Engineering (TMCE'98), Manchester Metropolitan University, UK, I.Horvath and A.
Taleb-Bendiab, eds., pp. 446-455.

3. Hanneghan, M., Colquhoun, G., and Merabti, M. (1997). "A Scalable Intranet-Hosted
Support Environment For Concurrent Engineering," in Proceedings ofIEE
Colloquium on Internet Technology and the Integrated Enterprise, Savoy Place,
London, J. Boardman, ed. Institution of Electrical Engineers, Digest No: 97/149, pp.
9/1-9/4.

4. Hanneghan, M., Merabti, M., and Colquhoun, G. (1996). "The World-Wide Web as a
Platform for Supporting Interactive Concurrent Engineering," in Proceedings of
Advanced Information Systems Engineering - 8th International Conference,
CAiSE'96, Heraklion, Crete, Greece, P. Constantopoulos, J. Mylopoulos, and y.
Vassiliou, eds., Springer-Verlag, Lecture Notes in Computer Science, 1080, pp.301-
318.

5. HeB, P., Hubel, H., Merabti, M., Colquhoun, G., and Hanneghan, M. (1996).
"Concurrent Engineering Effizient Nutzen - Unterstiitzende Ansatze aus der
Datenverwaltung (Using Concurrent Engineering Effectively - Supporting
Approaches from Data Management)," VDI-Z Integrierte Produktion, 138(3), pp. 51-
54.

6. Hanneghan, M., Merabti, M., Colquhoun, G., and Mills, B. (1996). "Computer-Aided
Concurrent Engineering Using the Internet," poster presented at Graduate School
Promotion Launch, Liverpool John Moores University, Liverpool.

7. Hanneghan, M., Merabti, M., and Colquhoun, G. (1995). "The Design Of An Object-
Oriented Repository To Support Concurrent Engineering," in Proceedings of 00IS'95
- The 1995 International Conference on Object-Oriented Information Systems,
Dublin, Ireland, J. Murphy and B. Stone, eds., Springer-Verlag, pp.200-215.

8. Hanneghan, M., Colquhoun, G., and Merabti, M. (1995). "Concurrent Engineering
Support Environments," poster presented at 11th International Conference on
Computer Aided Production Engineering, Institute of Mechanical Engineers, London.

9. Hanneghan, M., Colquhoun, G., and Merabti, M. (1995). "Computers in Concurrent
Engineering: An Enabling Technology," poster presented at lEE Colloquium on
'Concurrent Engineering: Getting it right first time!', Institution of Electrical
Engineers, London.

179

