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27 Summary

28 In gregarious species, dispersal events represent one of the most dramatic changes in social life and 

29 environment an animal will experience during life due to increased predation risk, aggression from 

30 unfamiliar conspecifics and the lack of social support. However, little is known about how individuals 

31 respond physiologically to dispersal and whether this process is stressful for the individuals involved. We 

32 therefore studied the physiological stress response during dispersal in the crested macaque, a primate 

33 species in which males often change groups. Over a period of 14 months and 14 dispersal events in 4 

34 groups, we determined faecal glucocorticoid metabolite (FGCM) levels during the process of immigration 

35 into a new group and examined a variety of factors (e.g. male age, rank achieved, number of males in the 

36 group) potentially affecting FGCM levels during this process. We found that FGCM levels were 

37 significantly elevated in the first few days upon immigration, after which levels returned quickly to 

38 baseline. FGCM response levels upon immigration were significantly and positively influenced by the 

39 number of males in the group. The rank a male achieved upon immigration, aggression received, as well 

40 as the proximity to other males did not significantly influence FGCM levels. Our data confirm previous 

41 findings on other species demonstrating that in crested macaques immigration into a new social group is 

42 associated with an acute endocrine stress response. However, given that stress hormone levels remained 

43 elevated only for a short period of time, we do not expect males to experience high physiological costs 

44 during immigration. Given our limited knowledge on the physiological responses to dispersal in animals, 

45 this study contributes to our understanding of dispersal more generally, and particularly inter-individual 

46 differences in the stress response and the potential physiological costs associated with these.
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60 Introduction

61 In gregarious animals, certain individuals leave their natal group as a consequence of selective pressures 

62 from within-group competition and inbreeding avoidance (Clutton-Brock and Lukas, 2012; Crnokrak and 

63 Roff, 1999; Henzi and Lucas, 1980; Pusey, 1987). The dispersal of an individual from one social unit to 

64 another is likely to represent one of the most fundamental shifts in social life and environment in an 

65 animal’s life (Smale et al., 1997). Dispersal is often accompanied by substantial benefits such as access to 

66 unrelated females but may also come with a number of costs to the individual involved. For instance, in 

67 comparison to philopatric individuals, conspecifics transferring from one group or territory to another 

68 often face increased predation risk and restricted access to known food resources (e.g. Alberts and 

69 Altmann, 1995; Pärt, 1995; Ridley et al., 2008). Furthermore, upon arrival in a new social group, 

70 dispersing individuals may face an elevation in aggression (Teichroeb et al., 2011; Ydenberg et al., 1988), 

71 the need to establish a permanent residency and dominance rank, and unfamiliar competitors – which 

72 require them to adapt their behaviour accordingly (Smale et al., 1997). Dispersal from a social group and 

73 immigration into a new group represent therefore potentially highly stressful and costly life-phases for the 

74 dispersing individual. To date, however, information on the physiological response and potential costs of 

75 such dispersal events and, in particular, how stressful the different phases (i.e. transition, immigration, 

76 membership in new group) associated with dispersal events are, is scarce. Such information, however, 

77 would be important to better understand the implications of this event on the health, survival and 

78 consequently the fitness of individuals. 

79 Generally, as an adaptation to cope with the new environment, increased predation risk, and 

80 social challenges during the transition period and upon immigration, dispersing individuals can be 

81 expected to show a physiological stress response, i.e. an activation of the hypothalmo-pituitary-adrenal 

82 (HPA) axis and the secretion of increased levels of stress hormone (i.e. glucocorticoid; GC) (e.g. 

83 Sapolsky, 2002). This stress response enables the mobilization of energy for immediate use (e.g. ‘flight or 

84 fight’)(Sapolsky, 2002). Enhanced cognition, analgesia, and sensory function, as well as decreased pain 

85 perception are further adaptive consequences of an acute physiological stress response increasing the 

86 chances to overcome stressful and life-threatening situations (Nelson, 2005; Sapolsky, 1992). A direct 

87 link between a physiological stress response and such situations (e.g. increased predation risk, food 

88 scarcity) has been shown in diverse taxa (e.g. amphibians: Narayan et al., 2013; mammals: Sheriff et al., 

89 2009). Studies investigating the direct link between time spent outside a social group and its effect on GC 

90 levels are, however, scarce. To our knowledge, the only study to examine this relationship, showed that 

91 subordinate male meerkats (Suricata suricatta) show increased stress hormone levels when conducting 

92 extra-territorial forays (Young and Monfort, 2009). Elevated GC levels upon immigration into a new 
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93 social group, the second important phase individuals face during dispersal, has been reported for a 

94 number of primate species (long-tailed macaques (Macaca fasicularis): van Schaik et al., 1991; yellow 

95 baboons (Papio cynocephalus): Alberts et al., 1992; chacma baboons (Papio ursinus): Bergman et al., 

96 2005; gray-cheeked mangabeys (Lophocebus albigena): Arlet et al., 2009; but see black howler monkeys 

97 (Alouatta pigra): van Belle et al., 2009) and thus seems to be a more common pattern, at least in this 

98 taxon. 

99 However, the duration of these elevations is mostly unknown despite its potential implication on 

100 an individual’s health and fitness. Whereas a short term (i.e. acute) increase in GCs is adaptive and allows 

101 an individual to better cope with a stressful situation, long-term or frequent activation of the HPA axis 

102 may lead to chronically elevated GC levels that can lead to physiological costs and thus compromise 

103 fitness due to its diverse negative effects on health (e.g. immunosuppression, decreased growth, impaired 

104 reproduction), potentially even leading to death (Sapolsky, 1992; Balm, 1999; Nelson, 2005). As such, 

105 individuals that are better able to downregulate their physiological stress response experience diminished 

106 health and fitness impairments. If a stress response is purely adaptive, a rise in GC levels is expected to be 

107 followed by a quick return to baseline levels. 

108 Although current data on the stress response following dispersal is extremely limited due to the 

109 difficulty to predict the timing of dispersal and immigration, we expect that both intrinsic factors (e.g. 

110 fighting ability/rank achieved) and extrinsic factors (e.g. number of males in the new group, aggression 

111 received) will predict inter-individual stress responses for the dispersing males. In primates, males are the 

112 dispersing sex in the majority of species, and newly-arriving individuals of high fighting ability often 

113 challenge resident males to achieve a high rank in the new group, often at the expense of high risks such 

114 as severe injuries (Marty et al., 2016; Drews 1995). Immigrants with comparably lower fighting ability 

115 often only achieve a lower rank in the new group and develop strategies with which to circumvent 

116 contest, in this way reducing the potential costs of immigration (Clarke et al., 2008: Marty et al., 2016). 

117 Given these differences in immigration costs, males of different fighting ability can be expected to also 

118 differ in their stress hormone responses upon immigration. 

119 Once arrived in a new group, a successful competition for mates does not only depend on 

120 intrinsic factors such as fighting ability but also on the number of competitors. We assume that the 

121 number of competitors and therefore the degree of male-male competition may have an influence on the 

122 males FGCM levels. FGCM levels are expected to be positively associated with the number of 

123 competitors in the group. Alternatively, males may circumvent competition by avoiding proximity to 

124 other males and becoming peripheral (Harcourt 1987). 

125 To investigate individual stress levels during dispersal and immigration, we studied crested 

126 macaques (Macaca nigra). Crested macaques are an excellent model species as males are known to 
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127 disperse from one group to another several times in their life (Marty et al., 2016). This species has a high 

128 reproductive skew leading to high male-male competition and a steep linear hierarchy (Neumann et al., 

129 2011; Reed et al., 1997)(Engelhardt et al. under review). Reproduction in crested macaques is moderately 

130 seasonal whereby females can give birth year round. Crested macaques are endemic to the island of 

131 Sulawesi (Indonesia) and show a social system typical for cercopithecines with groups consisting of 

132 several males and females. As in most primates, females are philopatric whereas males disperse after 

133 reaching their physical prime (Marty et al., in press). Predation risk during the transition between groups 

134 seems to be low (Marty et al., 2016). Immigrations into a new group are non-random and many males are 

135 observed to immigrate into a group around the same time as other males. Males who achieve a high rank 

136 upon immigration (i.e. high fighting ability) are mainly young adult males dispersing from their natal 

137 group for the first time, immigrate independent of other males, are more likely to get injured, and can 

138 expect high future reproductive success. Males who achieve a low rank upon immigration (low fighting 

139 ability) align their immigration to a recent change in the alpha male position (exclusively conducted from 

140 new immigrants) (Marty et al., in press). 

141 The overall aim of this study was to investigate the pattern of stress hormone output shown by 

142 dispersing males of a gregarious primate, and, by doing so, to examine whether dispersal events are 

143 associated with long-term physiological costs to these animals. We also investigated the effect of a variety 

144 of factors potentially influencing stress hormone output during immigration. Generally, we posed the 

145 following predictions: for solitary living males in the transition between two social groups (transient 

146 males), we predict that (1) they will show higher FGCM levels than individuals living in a group (resident 

147 males). Directly upon immigration, we predict (2) elevated FGCM levels in the immigrants. However, 

148 due to differences in a males’ physical condition and the target group constellation, inter-individual 

149 differences in the magnitude of the physiological stress response are expected. Specifically, we therefore 

150 predict (3) high rank achievers who usually challenge the top rank position upon immigration (Marty et 

151 al, 2016.) to initially show higher FGCM levels than males who achieve a low rank. Regarding male-male 

152 competition, we expect (4) males immigrating into groups with comparably more competitors, and males 

153 that spend more time in the vicinity of such males upon immigration (5) to experience higher FGCM 

154 levels.

155

156 Methods 
157

158 Study subjects and study site 

159 Four groups of wild crested macaques were studied from November 2011 until January 2013 (15 

160 months) in the Tangkoko Reserve in North Sulawesi, Indonesia (1°33’N, 125°10’E) as part of an on-
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161 going long term project (Macaca Nigra Project, www.macaca-nigra.org). The reserve ranges from sea 

162 level to 1350m and comprises 8867 ha of lowland rainforest (Collins et al.1991; Rosenbaum et al.1998). 

163 The groups live in a mixture of regenerating former gardens, secondary forest, and undisturbed primary 

164 forest. Two of the observed groups (R1 and R2) have been periodically studied during the last ten years 

165 (O’Brien and Kinnaird, 1997; Reed et al., 1997) and continuously since 2006 (e.g. Neumann et al., 2010), 

166 whereas the two other groups (PB and R3) were habituated in 2008 and 2010, respectively (for more 

167 details see Marty et al. 2016). All individuals were fully habituated to the presence of human observers 

168 and individually known by the observers. All dispersing males were fully adult and none of the males 

169 included in this study were considered to be of old age (i.e. worn down canines, skinny body and slower 

170 movement). 

171

172 Behaviour data collection

173 Upon the arrival of a new male in a group, 12 new immigrating males were followed all day, 

174 from one sleeping tree to the next sleeping tree. Two of these males immigrated twice into different 

175 groups (Table 1). Whenever possible, these males were followed on a daily basis for the first 14 days. 

176 Focal data were collected using all occurrence event sampling of all agonistic and affiliative behaviours 

177 with group members, as well as scan sampling every 5 minutes recording position, nearest neighbours, 

178 and activity (Altmann, 1974). The number of adult males in proximity was measured using the data on 

179 males within 10m which was collected every 5 min during a focal observation. A daily average of adult 

180 males within 10m was used for further analyses. All interactions between the focal animal and other 

181 group members were entered into handheld computers (Psion Workabout Pro G2) using spread-sheet 

182 software (PTab Spreadsheet v.3.0; Z4Soft). In addition, data on four solitarily roaming males was 

183 collected while following them for a total of 111 focal hours. Overall, behavioural data was collected 

184 during more than 2300 focal hours.

185

186 Table 1: Study male ID, number of observed immigrations, ID of the group the males immigrated into, 
187 rank achieved upon immigration, and number of samples within the first 14 days following immigration. 
188

ID Group Rank no of 
samples

BN R1 0.07 10
OL PB 1.00 15
QL PB 1.00  4
UL PB 0.78 19
AN R1 0.00  5
JL PB 0.00 16
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JM PB        1.00 21
LL R1 0.63 18
PL R3 0.33 29
CN R3 0.00 26

   NL * PB 1.00  2
   NL** R3 1.00 17
   FL * PB 0.11 21
   FL** R2 0.00 14

189
190 * = first observed dispersal, ** = second observed dispersal 
191 Rank: Standardized rank between zero and one, 0.00 represents the highest rank, 1.00 the lowest
192
193

194 Determination of the dominance hierarchy

195 All displacements (approach/leave interactions) and agonistic dyadic aggressive interactions 

196 between males with a clear winner/loser outcome were considered in order to quantify dominance 

197 hierarchies. Depending on the available data, interactions within the first three to six months (depending 

198 on the group tenure of the males) after the immigration were included into analysis in order to obtain an 

199 accurate rank for the newly immigrated male. Dominance rank was assessed using corrected normalized 

200 David’s score (de Vries et al., 2006), using the package “Steepness” (Leiva and de Vries, 2011) in R (R 

201 Development Core Team, 2009) based on a matrix of proportions of wins calculated for each dyad. All 

202 ranks were standardized between 0 and 1 with the lower number representing a higher rank (see also 

203 Marty et al. 2016). 

204

205 Sample collection

206 Urine-uncontaminated faecal samples were collected from transient males, newly immigrated 

207 males, and resident males. Samples from newly immigrated males were collected continuously for the 

208 first 14 days upon immigration into the new group. If possible, one sample was collected each in the 

209 morning, noon, and late afternoon. The freshly defecated faeces were homogenized before an aliquot of 2-

210 3g was placed in a polypropylene tube (Hodges and Heistermann, 2011). Samples were directly stored in 

211 a cool box filled with ice until they were placed in a freezer (-18°C) after return to camp. Overall, 217 

212 faecal samples from immigrating males within the first 14 days upon immigration were collected. An 

213 additional 187 faecal samples were collected from the immigrating males after the initial 14 days. 

214 Furthermore, 130 samples from eight non-natal resident males were collected during the study period for 

215 comparison. Eight samples from four transient males were also collected. The first fecal samples for these 

216 transient males were collected two days after these males were detected to account for the 1-2 day lag 
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217 time in fecal glucocorticoid metabolite excretion, thus ensuring the hormone levels represent days the 

218 male was not in a group.

219

220 Hormone analyses 

221 For analysis, all faecal samples were freeze-dried and pulverized and an aliquot of 0.05 – 0.08g of 

222 the faecal powder was extracted with 3ml of 80% methanol in water (Palme et al., 2013) as described in 

223 detail by Heistermann et al. (1995). Faecal extracts were analysed for immunoreactive 11β-

224 hydroxyetiocholanolone, a major metabolite of cortisol in the feces of primates (e.g. Heistermann et al., 

225 2006; Marty et al., 2015) by using enzyme immunoassay (Ganswindt et al., 2003). The assay, carried out 

226 as described in Heistermann et al. (2004), has been validated for monitoring adrenocortical activity in 

227 numerous primate species of all major taxa, including several species of macaques (Fichtel et al., 2007; 

228 Heistermann et al., 2006; Ostner et al., 2008; Shutt et al., 2012; Weingrill et al., 2011). The assay was 

229 recently also validated for use in crested macaques by confirming the presence of high amounts of 11β-

230 hydroxyetiocholanolone in the feces of the species, and demonstrating a significant increase in levels in 

231 response to external stressors, such as injury, caught in a poachers trap or severe harassment by 

232 conspecifics (Gholib, 2011). Prior to each assay, extracts were diluted 100 to 3000 times (depending on 

233 concentration) with assay buffer to bring hormone concentrations into the working range of the assay. 

234 Sensitivity of the assays at 90% binding was 1.0 pg. Inter- and intra-assay coefficients of variation, 

235 determined by replicate measurements of high- and low-value quality controls, were 10.9% and 5.2% 

236 (high) and 14.7% and 8.1% (low), respectively. We ran each sample in duplicate and calculated mass 

237 steroid metabolite per mass fecal dried weight in ng/g. 

238

239 Statistical analyses

240 Samples collected at least one month after the immigration were used to calculate baseline FGCM 

241 levels. In order to compare the mean FGCM levels between the four transient and the eight resident 

242 males, a Mann-Whitney-U Test was conducted in R (2.15.2)(R Development Core Team 2009) using 

243 mean FGCM levels per individual. Baseline values of an additional six males who immigrated during the 

244 study period were added as resident males to increase the sample size. To investigate factors determining 

245 FGCM levels upon immigration, a generalized linear mixed model (GLMM) with Gaussian error 

246 distribution was carried out. For this, FGCM levels were all ln-transformed to meet assumptions of a 

247 normal distribution. Hormone values in the immigrating males were adjusted (i.e. shifted) for two days to 

248 account for the time lag in FGCM excretion (Gholib, 2011). Each sample entered the analysis as the 

249 response variable (N=217). The predictor variables were: 1. number of days after immigration, 2. number 

250 of males in proximity (10m), 3. rank achieved upon immigration, 4. number of males in the group, 5. 
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251 daily aggression rate received from other males. Rank upon immigration entered the model as a control 

252 variable. Two males changed group twice within the study period and were accordingly given a number 

253 for the immigration event (1 for the first immigration, 2 for the second immigration). This immigration 

254 number, as well as the group identity entered the model as random factors. ID was treated as a nested 

255 random effect within day to control for multiple samples per day and individual. The model was 

256 conducted using the package “lmer” in R. 

257 We checked various diagnostics of model validity and stability (Cook's distance, DFBetas, 

258 DFFits, and Variance Inflation Factors; distribution of residuals, residuals plotted against fitted values), 

259 and none of these indicated obvious influential cases, nor obvious deviations from the assumptions of 

260 normality and homogeneity of residuals (Field, 2005; Quinn and Keough, 2002). To obtain reliable p-

261 values, a likelihood ratio test was used to compare the full model with respective reduced models using 

262 the function ‘drop1’in the package ‘car’ (Chambers, 1992). 

263 To compare FGCM levels of immigrating males with their respective baseline levels after the first 

264 four weeks following immigration, FGCM levels of each individual were averaged for the first 14 days 

265 following immigration and compared to the mean FGCM value recorded during the period 2-6 months 

266 after immigration using the Wilcoxon paired rank test was used. All significance levels were set at two-

267 tailed p-values < 0.05.

268

269 Results
270

271 Although the transition period after departure from a group was not associated with elevated 

272 FGCMs for dispersing males, entry into a new group was. During the transition period, FGCM levels of 

273 the four dispersing males sampled did not significantly differ from those recorded for resident males 

274 (N=14) (Mann-Whitney-Test, U=33, p=0.32, n=18). Upon immigration, the daily mean FGCM levels of 

275 immigrating males showed a high variation within the first seven days, but did not differ from baseline 

276 values (assessed several weeks later, see above) in the second week after immigration (Wilcoxon rank 

277 sum test, W=51, P=0.24, N=24) (Figure 1).

278 In the GLMM investigating the factors that influence FGCM levels in response to immigration, 

279 the null model was significantly different from the full model (chi²=51.19, df=12, P<0.001, effect size 

280 R2=0.76). The best predictors of FGCMs in immigrant males were time since arrival and number of other 

281 males in the group. Day after immigration was a significant predictor for FGCM levels in immigrating 

282 males (Table 2) with highest FGCM levels being recorded in the two days directly following immigration 

283 (Figure 1) and markedly declining levels thereafter. Mean FGCM levels were clearly less variable and 

284 consistently low following day 7. In addition, the number of males in the target group had a significant 
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285 influence on the FGCM levels of the immigrating males. The higher the number of males in the target 

286 group, the higher were the immigrating males´ FGCM levels (Table 2). The rank achieved upon 

287 immigration, as well as the proximity to other males did not significantly influence FGCM levels (Table 

288 2). 

289

290
291 Figure 1: Boxplot of FGCM levels of immigrating males within the first 14 days upon immigration (the 
292 lines represent the minimum/maximum whereas the rectangle represents data from the lower quartile to 
293 the upper quartile, outliers above 6000 ng/g were are not shown). Numbers in brackets represent the 
294 number of males’ sampled on the given day. All hormone data have already been adjusted for the FGCM 
295 excretion time lag of two days.  
296
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297

298
299 Figure 2: Visualization of the development of two males’ (FL, NL) FGCM levels during and after the 
300 immigration process. Each point represents the mean daily FGCM. The line represents the time of 
301 immigration. 
302

303

304 Table 2: Results of the GLMM testing the influence of the day after immigration, the agression received 

305 from males, the rank achived, and proximity to other males on the FGCM levels of immigrating males.

306

Model Estimate SE t P
Intercept 5.39 0.51 10.61      < 0.001
Day after immigration         -0.09 0.22 -4.00 0.002
Proximity to other males         -0.05 0.10 -0.52 0.604
Rank achieved 0.40 0.20 2.00  0.07
Number of males 0.20 0.04 5.62     < 0.001
Aggression received         -0.01 1.53 0.00        0.996

307

308

309
310 Discussion
311

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616



312 In the present study, we investigated in wild crested macaques the extent to which the process of 

313 male dispersal and immigration into a new group elicits a physiological stress response (i.e. increased 

314 HPA axis activity as measured by faecal glucocorticoid (FGCM) levels) in the dispersing individuals. We 

315 also, more specifically, examined the relative importance of several factors on a male’s glucocorticoid 

316 excretion upon immigration. Opposite to what we expected, there was no indication that males show 

317 elevated FGCM levels during the transition between groups. Males demonstrated, however, elevated 

318 FGCM levels during the first few days after immigration into the new group, indicating that this critical 

319 phase of the dispersal process elicits a physiological stress response. However, the period of elevated 

320 FGCM levels was relatively short even in newly immigrating males, with FGCM levels dropping to 

321 baseline already in the second week after immigration. Inter-individual variation of FGCM levels upon 

322 immigration was mainly modulated by the number of potential competitors in the new group. A high 

323 number of males in the target group was associated with comparably higher FGCM levels, suggesting a 

324 more marked stress response in the immigrating individuals under such conditions. 

325 The combination of the absence of social partners, an increased risk of being attacked by 

326 conspecifics and predators, and life in an unknown environment is usually considered to represent a 

327 stressful situation for a dispersing individual (Smale et al., 1997; Young and Monfort, 2009). 

328 Interestingly, in our study species, dispersing individuals during the transition phase of their dispersal did 

329 not show increased FGCM levels compared to resident males. The lack of elevated FGCM levels in our 

330 roaming males may be ascribed to the small samples size that limits statistical power; thus the results 

331 need to be treated with caution. Alternatively, however, the relatively low FGCM levels in our roaming 

332 males may be related to the low predation pressure that macaques face on Sulawesi. The risk of predation 

333 in crested macaques may in principle be low for both group living animals as well as for those roaming 

334 alone. If so, our limited results suggest that the primary stressor for male crested macaques in this 

335 population may be social in nature rather than ecological (i.e., predation). In addition, aggression from 

336 conspecifics towards strangers is common also in dispersing male crested macaques and severe injuries 

337 inflicted by attacks on solitary males have been observed (personal observation). The four roaming males 

338 followed in this study, however, did not face such potentially stressful and harmful attacks during the 

339 observation time, which may add to the reasons for why FGCM levels were not elevated in these 

340 individuals. Whether the lack of encounters with other potentially threatening males was due to active 

341 avoidance strategies of the dispersing males, or just a matter of chance, remains unclear. In the few cases 

342 where we observed attacks towards solitary males, these occurred only when transient males approached 

343 a group for immigration. These attacks may therefore be part of the immigration process rather than of the 

344 transition period. However, as already mentioned, our sample size here is inherently small and results thus 

345 need to be confirmed, ideally by studying dispersing individuals prior to and during the dispersal process. 
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346 This will be an extremely challenging task though as the timing of dispersal is not predictable and 

347 following roaming males for extended periods of time is inherently difficult to do. 

348 As expected, and corroborating findings for other primate species (Alberts et al., 1992; Arlet et 

349 al., 2009; Bergman et al., 2005), FGCM levels of male crested macaques were significantly elevated upon 

350 immigration indicating that this critical step of dispersal represents a stressful event also for our study 

351 species. Excreting stress hormones during a challenging period is clearly adaptive as it enables the 

352 mobilization of energy for immediate use (e.g., the ‘flight or fight’ response) (Sapolsky, 2002), 

353 presumably to cope with a new uncertain environment with potential challengers/competitors. 

354 Competition is often associated with elevated levels of physiological stress, whereby individuals do not 

355 only show elevated stress levels during, but already prior to the competitive event (e.g. Macaca 

356 fascicularis: Girard-Buttez et al. 2009; humans: Aubets and Segura, 1995). However, our results also 

357 show that the elevation in stress hormone output associated with immigration is not maladaptive as the 

358 increase only lasted a few days at most, helping the individual to cope with the energetic challenges 

359 associated with this process but not leading it into allostatic overload (McEwen 1998). Thus, detrimental 

360 and long-lasting effects on an individual´s health as seen under chronic conditions of stress (e.g. 

361 Sapolsky, 2002) are unlikely to occur in male crested macaques as a consequence of dispersal, at least not 

362 if immigrations are successful as they all were in our study. In recent years, it has been debated whether 

363 or not animals suffer from chronic stress in a wild environment at all or if our knowledge is too much 

364 influenced by biomedical research on captive animals (e.g. Boonstra, 2013; Wingfield and Ramenofsky, 

365 2011). Research on fitness consequences of prolonged or chronic physiological stress in a natural setting 

366 is very limited in comparison to the overwhelming literature in biomedical research (Boonstra 2013). It 

367 has, however, been shown that the risk of extended periods of elevated stress hormone levels might affect 

368 an individual’s behavioural strategy leading it to withdraw from a challenge (Girard-Buttoz et al. 2014). 

369 Our finding that dispersing between groups does not pose a long-term stressor to male crested macaques 

370 does not only show the absence of a maladaptive stress response but might also facilitate male dispersals 

371 in this species and thus explain the many immigration events we observed even for males entering at the 

372 lower end of the hierarchy. 

373  On an individual level, our results show that differences in the magnitude of the stress response 

374 are linked to the number of potential challengers/competitors in the target group. Males who immigrated 

375 into groups with a higher number of adult males showed comparably higher FGCM levels than males 

376 who immigrated into groups with fewer potential competitors. Interestingly, not males who are actually at 

377 the highest risk of getting injured (high rank achievers) but males with the highest potential for being 

378 attacked (number of competitors) show higher FGCM levels. Even though immigration into a group with 

379 a comparable high number of males elicits a stronger physiological stress response, male crested 
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380 macaques do not preferentially immigrate into groups with a lower number of competitors (Marty et al., 

381 2016). This supports our assumption that the stress response upon immigration is purely adaptive with no 

382 negative consequences on the males’ fitness. The stress response probably simply prepares the individual 

383 for upcoming potential or real challenges. The initial strong stress response may come along with rank 

384 uncertainties upon immigration and may return to homeostasis as soon as the potential of challenges 

385 declines with an increase in rank certainty. The higher the number of competitors in a group is, the longer 

386 it may take to consolidate the rank a male achieved. 

387 Even though dispersal is often accompanied by cost in terms of injuries, predation, or starvation 

388 (e.g. Alberts and Altmann, 1995; Cheney and Seyfarth, 1983; Pärt, 1995) and represents one of the most 

389 stressful periods in a male’s life (Smale et al., 1997), physiological costs might be overestimated. Both on 

390 an individual and a population level, the stress responses we observed to immigration followed the pattern 

391 expected for an adaptive response to an acute stressor. Our results do not provide any evidence of chronic 

392 stress or a prolonged stress response. Individuals in the wild may have adapted to stressful situations such 

393 as dispersal and immigration over time by using strategies to reduce costs (Marty et al., 2016). Our results 

394 suggest that inter-individual differences in the stress response are likely to be adaptive due to varying 

395 external conditions during and upon immigration. 

396 Overall, our study demonstrates that the physiological stress response to migration shown by male crested 

397 macaques is adaptive and does most likely not carry any physiological costs. Interestingly, we did not 

398 find any statistically significant individual differences in the males’ stress response suggesting that 

399 immigration is similarly stressful in this species whether males try to achieve a high or a low rank. This 

400 might explain why dispersal in crested macaques is highly dynamic with males migrating even frequently 

401 when the prospect for reproductive benefits achieved in the new group is bad. Similar studies on other 

402 species are now needed to better understand in how far duration of and inter-individual differences in the 

403 physiological stress response influence a species’ migration dynamic.
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