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ABSTRACT 26 

Background. Impaired skeletal muscle has been linked to the compromised exercise capacity 27 

characterizing chronic heart failure (CHF). However, how passive skeletal muscle force is affected 28 

in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the 29 

extent to which altered contractile properties and architecture affect muscle and locomotor function. 30 

Therefore, the aim of this study was to investigate passive force in a single muscle for which non-31 

invasive measures of muscle size are possible, the soleus (SOL), both in CHF patients and age- and 32 

physical activity-matched control participants.  33 

Methods. Soleus muscle force and size were obtained by means of a novel approach combining 34 

experimental data (dynamometry, electromyography, ultrasound imaging) with a musculoskeletal 35 

model.  36 

Results. We found reduced passive SOL forces (~30%) (at equivalent levels of muscle stretch) in 37 

CHF vs. healthy individuals. This difference was eliminated when force was normalized by 38 

physiological cross sectional area, indicating that reduced force output may be most strongly 39 

associated with muscle size. Nevertheless, passive force was significantly higher in CHF at a given 40 

absolute muscle length and likely explained by the shorter optimal muscle lengths measured in CHF 41 

compared to the control participants. This later factor may lead to altered performance of the SOL in 42 

functional tasks such gait. 43 

Discussion. These findings suggest exercise rehabilitation targeting muscle hypertrophy, and for the 44 

calf muscles, exercise that promotes muscle lengthening. 45 

 46 
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INTRODUCTION 52 

Growing evidence suggests that deficiencies in the skeletal muscle contributes to the limited 53 

functional capacity that characterizes chronic heart failure (CHF) and to the progression of the 54 

disease. For example, it is apparent that patients with CHF have a reduction in muscle size (Mancini 55 

et al., 1992; Minotti et al., 1993; Anker et al., 1999; Fülster et al., 2013) and strength (as determined 56 

by net joint moments) in the lower limbs (Magnusson et al., 1994; Chua et al., 1995; Harrington et 57 

al., 1997; Sunnerhagen et al., 1998; Toth et al., 2006; Toth et al., 2010; Panizzolo et al., 2015) 58 

compared to healthy age-matched individuals, and that these reductions are related to aerobic exercise 59 

capacity (Volterrani  et al., 1994; Harrington et al., 1997; Panizzolo et al., 2015). It is still not clear, 60 

however, if the reduction in muscle and functional capacity are associated primarily with reduced 61 

muscle size that is known to occur in CHF (Mancini et al., 1992; Fülster et al., 2013; Panizzolo et 62 

al., 2015) or if size-independent characteristics- muscle quality- is an important determinant. Indeed, 63 

several studies that have measured both voluntary strength and muscle size in the quadriceps suggest 64 

that muscle size alone does not account for the loss of strength (Harrington et al., 1997; Toth et al., 65 

2006; Toth et al., 2010). Resolving whether muscle size or quality is more closely linked to muscle 66 

function can prove important for guiding rehabilitation strategies in CHF. 67 

  Measurements of passive muscle forces and how they are related to muscle architecture can 68 

provide important information for understanding the mechanisms behind the alterations in skeletal 69 

muscle function associated with CHF. In particular, they can shed further light on whether motor 70 

deficits are related primarily to reductions in muscle size and the extent to which altered contractile 71 

properties and architecture affect in vivo function at a whole muscle level without introducing 72 

variability arising from voluntary and/or twitch contractions (Princivero et al., 2000; Oskuei et al., 73 

2003). Passive forces are also functionally relevant as they influence normal (Silder, Heiderscheit & 74 

Thelen, 2008) and pathological (Geertsen et al., 2015) gait mechanics.   75 



 

Our understanding of how passive skeletal muscle force is affected in CHF is currently 76 

unclear. Passive forces in cardiac muscle are altered in CHF (Van der Velden, 2011), as well as in 77 

diaphragm skeletal muscle (Van Hees et al., 2010). Surprisingly, as far as we are aware, only one 78 

study (Van Hees et al., 2010) has investigated passive forces in appendicular skeletal muscle in CHF 79 

and it has been conducted in a mouse model. This study reported unaltered passive forces in the soleus 80 

(SOL) muscle of CHF-affected mice, compared to a control group, when taking into consideration 81 

muscle size. 82 

The aim of this study was to investigate the passive forces in the SOL muscle of CHF patients and 83 

age- and physical activity-matched control participants, as well as the relationship between muscle 84 

architecture [physiological cross sectional area (PCSA), muscle length, pennation angle] and passive 85 

force. The SOL was selected because it permits an estimation of passive force in a single muscle 86 

(Rubenson et al., 2012; Tian et al., 2012). Furthermore, SOL has been identified as a primary muscle 87 

in which muscle loss occurs in CHF (Panizzolo et al., 2015; Green et al., 2016) and its size is strongly 88 

correlated with the reduced exercise capacity present in CHF (Panizzolo et al., 2015) (more so than 89 

the gastrocnemius synergist) and thus is a muscle of choice for muscle-specific analysis. We 90 

hypothesized that there would be a reduction in passive force in CHF patients, compared to a healthy 91 

population. We further hypothesized that passive force would be similar after normalizing for the 92 

muscle PCSA, thus attributing any alteration to muscle size.  93 

 94 

MATERIALS AND METHODS 95 

Participants  96 

Patients with CHF and age- and physical activity-matched control participants who were free from 97 

other musculoskeletal disorders and lower limb musculoskeletal injuries were recruited for this study. 98 

The CHF group included 12 participants (7 men, 5 women) in the class II-IV of the New York Heart 99 

Association (NYHA) classification with an ejection fraction of 30.5±9.6%. (For anthropometric 100 



 

characteristics and exclusion criteria see Table 1). The control group was composed of 12 healthy 101 

participants recruited from the local community (8 men, 4 women). The CHF group underwent 102 

regular exercise activity 2-3 times per week for ~ 1 hour per session (treadmill walking and resistance 103 

weight training) as part of their standard patient care. The control participants underwent similar 104 

levels of weekly exercise. All participants read and signed an informed consent prior to participating 105 

in the study and all of the procedures were approved by the Human Research Ethics Committee at 106 

The University of Western Australia (approval ID: RA/4/1/2533) and Royal Perth Hospital (approval 107 

ID: 2011/019).  108 

 109 

Passive force estimates  110 

The procedures used to estimate passive and active SOL forces were similar to those adopted 111 

previously, with the exception that passive force was measured during continuous joint rotation 112 

(Rubenson et al., 2012). Passive moments were recorded with the participants sitting upright with 113 

their right foot and ankle positioned in a dynamometer (Biodex M3, Shirley, NY, USA) and with the 114 

knee positioned at 120 of flexion (0° knee fully extended) to mitigate the force contribution of the 115 

gastrocnemius muscles (Maganaris, 2001). The net passive ankle joint moment (𝑀𝑝) was computed 116 

by subtracting the moment generated by the Biodex rig and the weight of the foot (Rubenson et al., 117 

2012); the weight of the foot was expressed as a percentage of body mass. The 𝑀𝑝 over a joint’s range 118 

of motion passes through zero at an angle that approximates where passive muscle forces reach zero 119 

(Silder et al., 2007) (Figure 1). Moment data recorded by the dynamometer were filtered using 4th-120 

order zero-lag 2 Hz low-pass Butterworth filter (MATLAB, The MathWorks Inc., USA). To detect 121 

the inflexion point in 𝑀𝑝 where net dorsiflexion and plantarflexion moment converge on zero we first 122 

fitted the joint angle vs. 𝑀𝑝 data with a 5th-order polynomial based on visual inspection of the data 123 



 

and subsequently computed the first order derivative of this function (MATLAB, The MathWorks 124 

Inc., USA) (Figure 1).  125 

In some instances the inflexion point was slightly above or below zero moment (<1.5 Nm or 126 

~7% of the peak passive moment). This can occur if the weight of the leg transmits a small moment 127 

about the Biodex axis (i.e. small misalignment of ankle center of rotation) or if the moment predicted 128 

from weight of the foot has small errors. In these cases the passive moment data was corrected for 129 

the offset. Contribution from synergist muscles are minimal at the joint postures adopted (Maganaris, 130 

2001; Silder et al. 2007; Rubenson et al., 2012).  Passive force estimates from subject-specific scaled 131 

OpenSim models (version 2.0.2) further indicated that passive force from synergist muscles were 132 

minimal at the recorded knee and ankle postures. 133 

The method described above does not account for passive moments arising from joint 134 

articulations and skin, but these are minimal compared to the passive moments arising from passive 135 

force in the Achilles tendon (Costa et al., 2006). In passive trials electromyography (EMG) from the 136 

tibialis anterior (TA), the medial and lateral gastrocnemius muscles (MG, LG, respectively) and the 137 

SOL were recorded (Noraxon wireless system, Scotsdale, AZ, USA, 2000 Hz) to ensure the muscles 138 

crossing the ankle remained inactive. For each trial, real-time root-mean-square (RMS) waves of the 139 

muscles’ activity were computed from the EMG signals (incorporating DC offset; Spike2 V7 140 

software; Cambridge Electronic Design, Cambridge, UK) (Rubenson et al. 2012). Soleus fascicle 141 

lengths and pennation angle were recorded using dynamic B-mode ultrasound (Telemed, EchoBlaster 142 

128, Lithuania; 25 Hz capture rate; 7.5 MHz 60 mm linear array probe) following the placement and 143 

image analysis procedures outlined previously (Rubenson et al., 2012; Panizzolo et al., 2013). 144 

Simultaneous measurements of ankle joint flexion/extension angles were made using a portable 3D 145 

motion capture system (Optitrack, Corvallis, Oregon, US, 100 Hz). The net joint moment, EMG, 146 

ultrasound images and joint angles were recorded synchronously (Micro1401-3; Cambridge 147 

Electronic Design, Cambridge, UK; 2000 Hz) as the ankle was cycled through its full range of motion 148 

(the most plantarflexed and most dorsiflexed position tolerated by the participant) at a constant speed 149 



 

of 5°/s over three consecutive cycles. Three initial warm-up cycles were performed prior the recording 150 

of any measurements. The SOL passive force (𝐹𝑝𝑆𝑂𝐿
) was computed continuously throughout the joint 151 

range of motion as the joint underwent dorsiflexion. Passive force was calculated as per (Rubenson 152 

et al., 2012) using the following equation: 153 

𝐹𝑝𝑆𝑂𝐿
=

𝑀𝑝

𝑟∗cos 𝜃
                                                                                                                       (1) 154 

Where r represents the Achilles moment arm data and 𝜃 the SOL pennation angle. Participant-specific 155 

Achilles moment arm data were established experimentally on a separate testing day, following the 156 

method described previously in (Manal, Cowder & Buchanan, 2010). In this method B-model 157 

ultrasound (Telemed, Echo Blaster 128, Lithuania) was used to capture Achilles tendon images in the 158 

sagittal plane from the participants while their foot was cycled passively at an angular velocity of 5°/s 159 

across its range of motion in a Biodex dynamometer (M3, Biodex, Shirley, NY, USA). The ultrasound 160 

probe (7.5 MHz, 60 mm field of view, linear array probe, 50 Hz capture rate) was placed 161 

longitudinally above the Achilles tendon using a stand-off gel pad (Aquaflex, Parker, NJ, USA). 162 

Simultaneously, the trajectories of two retro-reflective markers mounted on the ultrasound probe were 163 

recorded by means of a 3D motion capture system (Optitrack, Corvallis, Oregon, US, 100 Hz). 164 

Additional anatomical landmarks (first metatarsal, calcaneus, medial malleoli and knee medial 165 

condyle) were tracked to calculate the ankle flexion/extension joint angle. A 2D customized graphical 166 

interface was developed in Matlab to display both the ultrasound images and the ultrasound probe 167 

and the medial malleoli markers in the same coordinate system. The line of action of the Achilles 168 

tendon was digitized in this common coordinate system and the moment arm was computed as the 169 

perpendicular distance between the tendon line of action and the medial malleoli, which was used as 170 

an estimate of the ankle joint center. This procedure was performed at 10 ankle joint angles that 171 

spanned the joint’s range of motion. A 10-point moment arm-joint angle curve was obtained for each 172 

participant by using a polynomial fit of the moment arm-joint angle data. 173 



 

 We defined the fascicle slack length (𝐿𝑠𝑙𝑎𝑐𝑘) as the length where passive SOL forces are first 174 

generated, estimated as the point where the net passive dorsiflexion and plantarflexion moments 175 

converge on zero, and the fascicle length at the maximum tolerated dorsiflexion angle as the maximal 176 

fascicle length (𝐿𝑚𝑎𝑥). Absolute and normalized passive SOL force-length (F-L) curves were 177 

established for each participant. Absolute passive F-L curves used the measured 𝐹𝑝𝑆𝑂𝐿 in Newtons 178 

and fascicle lengths (𝐿) in mm. Normalized passive F-L curves were created by dividing each 179 

participant 𝐹𝑝𝑆𝑂𝐿  by their SOL PCSA (Equation 1) and by dividing 𝐿 by 𝐿𝑠𝑙𝑎𝑐𝑘 (normalized length 180 

referred to here as 𝐿𝑛𝑜𝑟𝑚). The PCSA was determined from underwater 3D ultrasound scans 181 

(Telemed, EchoBlaster 128, Lithuania; Stradwin, Medical Imaging Research Group, Cambridge 182 

University Engineering Department, UK) following (Panizzolo et al., 2015). To enable the 183 

comparison of absolute 𝐹𝑝𝑆𝑂𝐿  between groups, 𝐹𝑝𝑆𝑂𝐿 was determined at a percent fascicle stretch of 184 

0%, 20%, 40%, 60%, 80% and 100% of the maximum fascicle stretch, where percent fascicle stretch 185 

was defined as ((𝐿 − 𝐿𝑠𝑙𝑎𝑐𝑘) ÷ (𝐿𝑚𝑎𝑥 − 𝐿𝑠𝑙𝑎𝑐𝑘)) ∗ 100. The same procedure was done to compare 186 

passive moment data over both angle and muscle length ranges. Passive fascicle stiffness was 187 

computed for each participant as the slope of the absolute F-L curves between 𝐿𝑠𝑙𝑎𝑐𝑘 and 40% stretch 188 

(𝑘1) and between 60% - 100% stretch (𝑘2). In order to compare the normalized passive F-L curves 189 

we evaluated the normalized 𝐹𝑝𝑆𝑂𝐿 at a set of 𝐿𝑛𝑜𝑟𝑚 between 1.0 and 1.4 (i.e. strain of 0 - 40%) using 190 

intervals of 0.05. A peak 𝐿𝑛𝑜𝑟𝑚 was set to 1.4 as this represented the average maximum 𝐿𝑛𝑜𝑟𝑚 that 191 

the participants achieved at their end range of ankle dorsiflexion. The normalized 𝐹𝑝𝑆𝑂𝐿  was 192 

computed for each individual for the interval described above by fitting the normalized 𝐹𝑝𝑆𝑂𝐿 and 193 

𝐿𝑛𝑜𝑟𝑚 data using a 1st-order exponential equation (Gollapudi & Lin, 2009). In some circumstances 194 

where the set range exceeded the experimental 𝐿𝑛𝑜𝑟𝑚 the normalized 𝐹𝑝𝑆𝑂𝐿  values were extrapolated 195 

from the exponential equation. Stiffness was computed between 𝐿𝑛𝑜𝑟𝑚 of 1.0 and 1.2 (𝑘1𝑛𝑜𝑟𝑚) and 196 

1.2 and 1.4 (𝑘2𝑛𝑜𝑟𝑚). 197 

 198 



 

Active forces estimates  199 

As an ancillary comparison of the muscle lengths, we also analyzed peak active muscle forces at 200 

different ankle angles (and thus muscle lengths) to generate an active force-length relationship. The 201 

optimal muscle length coinciding with maximal peak active force (L0) is known to correspond well 202 

with 𝐿𝑠𝑙𝑎𝑐𝑘, both in human and non-human studies (Azizi & Roberts, 2010), including the human SOL 203 

(Rubenson et al., 2012) and can thus serve as an additional test for differences in fascicle lengths 204 

between groups. The protocol used in this study to obtain predictions of moments and force generated 205 

by the SOL (as well as the moments and force generated by synergist muscles and by the co-206 

contraction of dorsiflexor muscles) expands on the procedures established in (Rubenson et al., 2012). 207 

It uses a combination of experimental net moment measurements from dynamometry, ultrasound 208 

fascicle imaging, electromyography and a scaled participant-specific musculoskeletal model in 209 

OpenSim 2.0.2 (Delp et al., 2007).  Predictions were performed with the knee in a flexed position 210 

(>120°) and over a range of ankle angles from ~ -30° dorsiflexion to 30° plantarflexion (the ankle 211 

range of motion varied between individuals). The muscle length that corresponded with the maximal 212 

peak active force was designated as L0. 213 

First, a generic lower-limb model (Arnold et al., 2010) was scaled using each participant’s 214 

joint axes and centers determined via motion capture data (8-camera VICON MX motion capture 215 

system, Oxford Metrics, UK; 100 Hz) from participants in a standing posture as well as dynamic joint 216 

motions (Besier et al., 2003). From these trials, an inverse kinematics algorithm was run on the 217 

position of 26 retroreflective spherical markers placed on anatomical landmarks and on functionally 218 

determined joint centers (Besier et al., 2003), that minimized the distance between the OpenSim 219 

model markers and the retroreflective and the functionally determined markers. 220 

The moment generated by the plantarflexors (𝑀𝑝𝑙𝑎𝑛𝑡) during the maximal voluntary isometric 221 

plantarflexion contractions (𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡) was calculated as: 222 

            𝑀𝑝𝑙𝑎𝑛𝑡 = 𝑀𝑝𝑒𝑎𝑘 − ∆𝑀𝑝 + 𝑀𝑑𝑜𝑟𝑠𝑖                                                                                           (2) 223 



 

where 𝑀𝑝𝑒𝑎𝑘 is the peak net ankle joint moment (calculated as the difference between the Biodex 224 

recorded moment during 𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡 and the moment at rest), ∆𝑀𝑝 represents the difference in the 225 

estimated passive SOL moment during the 𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡 and the passive SOL moment at rest prior to the 226 

contraction, and 𝑀𝑑𝑜𝑟𝑠𝑖  is the moment generated by the co-contraction of the dorsiflexors muscles. 227 

∆𝑀𝑝 was calculated as: 228 

           ∆𝑀𝑝 =  (𝐹𝑝𝑆𝑂𝐿
𝑐𝑜𝑛𝑡𝑟 ∗ cos 𝜃𝑐𝑜𝑛𝑡𝑟 ∗ 𝑟𝑐𝑜𝑛𝑡𝑟) − (𝐹𝑝𝑆𝑂𝐿

𝑟𝑒𝑠𝑡 ∗ cos 𝜃𝑟𝑒𝑠𝑡 ∗ 𝑟𝑟𝑒𝑠𝑡)                                    (3) 229 

where 𝐹𝑝𝑆𝑂𝐿
 was obtained for both the fascicle length at the 𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡 and the fascicle length during 230 

the rest period just prior to contraction using a linear interpolation of the passive F-L relationship 231 

(rest and contr superscripts designate rest or 𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡, respectively). 𝑟𝑐𝑜𝑛𝑡𝑟 was estimated by 232 

increasing the value predicted from the experimental Achilles moment arm- joint angle equation 233 

(described above) by 20% to take in account the increase in moment arm distance reported during 234 

𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡 with respect to length at rest (Maganaris et al., 1998).  235 

The 𝑀𝑑𝑜𝑟𝑠𝑖 was predicted by the participant-specific OpenSim model. First, the OpenSim 236 

maximal isometric forces of all the dorsiflexors (tibialis anterior, extensor digitorum longus, extensor 237 

hallucis longus, peroneus tertius) were adjusted by the same percentage increase or decrease so that 238 

the predicted model’s peak isometric dorsiflexion moment at 100% activation (𝑀𝑉𝐶𝑑𝑜𝑟𝑠𝑖) matched 239 

that of the participant’s experimental maximum 𝑀𝑑𝑜𝑟𝑠𝑖  recorded in the Biodex dynamometer at 10° 240 

plantarflexion, the angle that corresponds approximately to optimal dorsiflexion moments (Silder et 241 

al., 2007). The 𝑀𝑉𝐶𝑑𝑜𝑟𝑠𝑖 were performed only at this joint angle to reduce the total numbers of 242 

contractions performed and time spent in the experimental protocol by each participant. This was an 243 

important consideration because of the general high fatigability of CHF patients. In this procedure, 244 

the OpenSim model was positioned to match the participant’s optically recorded ankle and knee joint 245 

posture. In subsequent measurements of 𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡 the 𝑀𝑑𝑜𝑟𝑠𝑖 was predicted by the OpenSim model 246 

by prescribing an activation to all of the dorsiflexors equal to the ratio of the TA’s peak EMG (linear 247 



 

envelope) during the 𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡 to its peak EMG (linear envelope) from the 𝑀𝑉𝐶𝑑𝑜𝑟𝑠𝑖 trial; i.e. this 248 

assumed the same activation level for all dorsiflexors. 249 

To take into account the contribution of synergist muscles we predicted the relative percentage 250 

contribution of each plantarflexors muscle to the total plantarflexor moment in OpenSim (𝑀𝑆𝑦𝑛) by 251 

prescribing the recorded ankle and knee angles and 100% activation of all plantarflexor muscles 252 

(peroneus longus, peroneus brevis, flexor hallucis, tibialis posterior, flexor digitorum, MG, LG and 253 

SOL). The percent contribution of the OpenSim SOL to the total predicted moment was applied to 254 

the experimental 𝑀𝑉𝐶𝑝𝑙𝑎𝑛𝑡 to define the moment generated by the participant’s SOL (𝑀𝑎𝑆𝑂𝐿
). Lastly, 255 

peak voluntary active SOL force production (𝐹𝑎𝑆𝑂𝐿
) was calculated as:  256 

𝐹𝑎𝑆𝑂𝐿
=

𝑀𝑎𝑆𝑂𝐿

𝑟𝑐𝑜𝑛𝑡𝑟 ∗cos 𝜃𝑐𝑜𝑛𝑡𝑟                                                                                                          (4) 257 

These active force trials were performed only by the participants that were able to tolerate a 258 

prolonged protocol (n = 7 and n = 8, for control and CHF participants, respectively).   259 

 260 

Statistical analysis  261 

Differences in the absolute (non-normalized) passive moment-angle, moment-length and F-L curves 262 

were assessed by testing if 𝐹𝑝𝑆𝑂𝐿 were different between groups (CHF and control), and if passive 263 

joint angles and/or fascicle lengths were affected, by using a two-way (CHF/control) repeated 264 

measures (0% 20%, 40%, 60%, 80% and 100% of angular excursion or muscle stretch, respectively) 265 

ANOVA, with Bonferroni post hoc tests. Similar two-way repeated measures ANOVAs were also 266 

performed on the normalized F-L curves using the 𝐿𝑛𝑜𝑟𝑚 set range (1.0 - 1.4). A two-tailed unpaired 267 

Student’s t-test with significance level of p < 0.05 was used to determine significant differences in 268 

the 𝐿𝑠𝑙𝑎𝑐𝑘, 𝐿𝑚𝑎𝑥  , the maximal fascicle stretch, and 𝐿0, as well as in the passive fascicle stiffness 269 

(𝑘1, 𝑘2, 𝑘1𝑛𝑜𝑟𝑚 and 𝑘2𝑛𝑜𝑟𝑚) between the groups. Statistical analysis was performed in SPSS (IBM, 270 

Statistics 21, USA). 271 

 272 



 

RESULTS 273 

No main effect of group was found in the joint angle between the CHF and control groups (p = 0.42) 274 

(Figure 2). A main effect of group on net passive ankle joint moment was found (p = 0.014) with 275 

lower passive moment in the CHF group compared to the control group at equivalent levels of angular 276 

excursion and fascicle stretch, although no statistically significant interaction effect was found (p = 277 

0.398) between group and moment (Figure 2).  278 

A main effect of group on absolute 𝐹𝑝𝑆𝑂𝐿 (N) was found (p = 0.027) with lower absolute 279 

𝐹𝑝𝑆𝑂𝐿 in the CHF group compared to the control group at equivalent levels of fascicle stretch, although 280 

no statistically significant interaction effect was found (p = 0.11) between group and level of stretch. 281 

No differences were found in 𝑘1 and 𝑘2 between the groups (p = 0.32; ES = 0.51 and p = 0.85; ES = 282 

0.09) (Figure 3a). The 𝐿𝑚𝑎𝑥 was significantly shorter in the CHF group compared to the control group 283 

(p = 0.046; ES = 0.96), although no statistically significant differences were found in 𝐿𝑠𝑙𝑎𝑐𝑘 (p = 0.11; 284 

ES = 0.76) and in the maximal fascicle stretch (𝐿𝑚𝑎𝑥 − 𝐿𝑠𝑙𝑎𝑐𝑘) (p = 0.34; ES = 0.44) (Table 2) or 285 

maximal fascicle strain (p = 0.7; ES = 0.09).   286 

No main effect was found in the PCSA-normalized 𝐹𝑝𝑆𝑂𝐿 (N cm-2) between the CHF and 287 

control groups when using the 𝐿𝑛𝑜𝑟𝑚 strain range of 1.0-1.4 (p = 0.46) (Figure 3b), nor was there an 288 

interaction effect between the PCSA-normalized 𝐹𝑝𝑆𝑂𝐿  and normalized lengths (p = 0.52). 289 

Normalized passive fascicle stiffness (𝑘1𝑛𝑜𝑟𝑚 and 𝑘2𝑛𝑜𝑟𝑚) were not significantly different between 290 

the groups (p = 0.42; ES = 0.44 and p = 0.54; ES = 0.33) (Figure 3b).  291 

 𝐿0 determined from the active force-length data was significantly shorter (~22%) in the CHF 292 

group compared to the control group (p = 0.039; ES = 0.96) (Table 2). The voluntary forces were 293 

derived at a range of ankle joint angles, and therefore over a range of fascicle lengths. The maximal 294 

𝐹𝑎𝑆𝑂𝐿 and corresponding  𝐿0 occurred at approximately 10° dorsiflexion. The 𝐹𝑎𝑆𝑂𝐿 at both shorter and 295 

longer fascicle lengths relative to  𝐿0 decreased, characteristic of the muscle force-length relationship 296 



 

(Figure 4).  𝐿0 was not significantly different from  𝐿𝑠𝑙𝑎𝑐𝑘 in either the control or CHF groups (p = 297 

0.33 and p = 0.39, respectively; Table 2).  298 

 299 

DISCUSSION 300 

The present study provides, to the best of our knowledge, the first estimate of in vivo passive human 301 

skeletal muscle force-length properties in CHF. As predicted, higher absolute 𝑀𝑝 and  𝐹𝑝 𝑆𝑂𝐿 were 302 

produced in the control group for a given amount of muscle stretch (Figure 2, 3). Also in agreement 303 

with our hypothesis, passive force is not different after normalizing by muscle PCSA, nor is passive 304 

muscle stiffness affected, indicating that muscle size rather than intrinsic muscle properties is a major 305 

factor influencing passive force and stiffness in CHF SOL muscle. This finding stands in contrast to 306 

previous work reporting stiffer cardiac muscle due to alterations in the titin structure (Wu, 2002) or 307 

decreased passive force of the diaphragm, due to titin loss (Van Hees et al., 2010) in CHF. On the 308 

other hand, our results do corroborate data from passive skeletal muscle properties in the mouse SOL, 309 

in which passive forces from CHF-affected animals were likewise not altered after normalizing to 310 

muscle cross sectional area (Van Hees et al., 2010).  311 

It was surprising, however, that for a given absolute muscle length, passive force was 312 

significantly higher in CHF SOL compared to the control group. This unexpected finding stems from 313 

the fact that over the same ankle range of motion the passive muscle lengths are shorter in CHF 314 

patients, in particular at maximal stretch (Figure 2, 3). The result is that for the same absolute muscle 315 

length (above 𝐿𝑠𝑙𝑎𝑐𝑘) the CHF muscle has undergone greater strain, thus generating greater force in 316 

titin and other passive load bearing muscle components. Previous experimental studies (Azizi & 317 

Roberts, 2010; Winters et al., 2011; Rubenson et al., 2012) have shown agreement between the onset 318 

of passive force generation (𝐿𝑠𝑙𝑎𝑐𝑘) and 𝐿0 (optimal length for active force production). The estimate 319 

of 𝐿0 in the present study was similar to 𝐿𝑠𝑙𝑎𝑐𝑘 for both groups and significantly (p < 0.05) shorter in 320 

the CHF group (Table 2). The shorter 𝐿𝑠𝑙𝑎𝑐𝑘 and 𝐿0 in CHF patients indicates that the SOL has 321 



 

undergone a loss of in-series sarcomere numbers, a contributing factor to the reduced muscle size 322 

(Panizzolo et al., 2015). It was also surprising that, despite their shorter muscle fascicles, CHF 323 

patients underwent the same ankle range of motion and a similar SOL muscle strain across this range 324 

of motion (Figure 2, Table 2). The Achilles moment arms were similar between the control and CHF 325 

group suggesting that greater Achilles strain might explain the similarity in joint and muscle 326 

excursions. This is partially supported by the smaller tendon cross sectional area reported in CHF 327 

(Panizzolo et al., 2015).   328 

 329 

Functional implications  330 

Our results are consistent with the observation that muscle size dictates functional deficits in CHF 331 

(Magnusson et al., 1994). Exercise that promotes hypertrophy should therefore be a focus for 332 

restoring functional capacity in leg muscles. Exercise prescription for CHF is becoming 333 

commonplace, but programs that include specifically designed lower limb resistance training might 334 

be especially promising (Maiorana et al., 2000).  335 

Our results also offer insight into the gait mechanics of CHF patients (Panizzolo et al., 2014). 336 

The combination of the shorter SOL muscle fascicles in CHF patients and their greater dorsiflexion 337 

during mid-stance of gait (Panizzolo et al., 2014) may cause significantly greater SOL strain. This 338 

might lead to the muscle operating on to the descending limb of the F-L curve where large passive 339 

forces develop (Rassier, MacIntosh & Herzog., 1999; Rubenson et al., 2012). In this scenario CHF 340 

patients would rely more on their passive forces to support the plantarflexion moment during walking, 341 

which has the benefit of reducing metabolically expensive active force development. This may help 342 

explain why CHF patients rely proportionately more on their ankle for powering walking as speed 343 

and metabolic demand increases (Panizzolo et al., 2014). However, whilst metabolically 344 

advantageous, this mechanism might lead to greater lengthening-induced muscle damage. The 345 

muscle’s F-L operating range depends on multiple factors, including tendon stiffness, and a detailed 346 

understanding will require further in vivo analyses.  347 



 

 348 

CONCLUSION  349 

This work suggests that a primary factor leading to lower passive forces in the SOL is likely a 350 

reduction in muscle size. However, shorter muscle fascicles in CHF results in greater passive forces 351 

for a given absolute muscle length, and might be linked to changes in CHF gait (Panizzolo et al., 352 

2014). Exercise that promotes calf muscle hypertrophy and serial sarcomerogenesis may prove 353 

particularly beneficial in CHF patients.  354 
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