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ABSTRACT 
Recent advances in modern technology have seen the 

proliferation of low-cost commercial sensors which are 

capable of unobtrusively obtaining diverse physiological 

datasets to identify the presence of psychological stress. In 

particular, sensor-orientated smartwatches have the 

potential to assist a person in multiple facets of their daily 

life. These devices may be used as a tool for collecting 

physiological and contextual datasets in the wild. This 

paper explores the current literature on application of 

machine-learning techniques in stress system studies. This 

informs the selection of appropriate methodologies for 

data intensive research to support accurate inferences of 

the presence of stress.   

CCS Concepts 
• Applied computing~Consumer health • Applied 

computing~Health informatics. 

Keywords 
Stress; classification, physiological computing; sensor 

technology; wearable devices. 

1. INTRODUCTION 
Stress is an umbrella term that is commonly used to 

describe the bodily response when homeostasis is faced 

with a real or perceived threat. Two forms of this 

biochemical response exist, (1) acute stress, otherwise 

known as the ‘fight-or-flight’ phenomena, which 

represents a myriad of stress-responses that deal with 

emergences. Then there is (2) chronic stress, which is 

considered to be much more harmful to long-term health. 

These episodes take place over an extended period of time 

and are often triggered by long-standing stressors. Failure 

to discern chronic episodes has become a widespread 

problem as they can cause and exacerbate numerous 

stress-related diseases, such as, diabetes and coronary 

heart disease [1]. Furthermore, overuse of the stress 

response systems can produce a compromised 

immunocompetence [2], increasing the risk of developing 

various afflictions. Over recent years, there has been a 

growing body of research focusing on the problem of 

stress detection using smart technologies and sensors to 

extract physiological and contextual data. These datasets 

are then pre-processed and used as input for building 

machine-learning models that can identify the occurrence 
of stress. 

Context-aware computing is a paradigm that describes 

applications that can capture and use contextual data to 

improve performance. This concept has recently been 

investigated by the physiological computing (PC) research 

field. Additionally, there have been other areas of research 

that have explored the possibility of implementing a 

context-awareness element. For example, aside from 

physiological computing systems, recommender systems 

(RSs) have benefitted enormously from its inclusion. This 

has been demonstrated by the formation of the Context-

Aware Recommender Systems (CARS) research field. 

Context as an element is absent from traditional 

recommender algorithms, instead they only refer to users 

and items as computational variables. Verbert et al. [3] 

label context as an aggregation of various datasets that 

help describe the setting in which a recommendation is 

executed. Video and music systems, such as Netflix and 

Spotify, would benefit from utilising contextual 

components in their algorithmic schemes. For example, if 

these services were to utilise GPS data as a contextual 

component they could identify suitable music/movies for 

a user’s environment. In the case for Spotify and 

recommending suitable music, if the systems could 

confirm a persons’ location was in a library, it could then 
recommend music that aids concentration. 

In the physiological computing realm, the concept of 

providing recommendations in the form of lifestyle and 

dietary advice has only just begun. Past efforts have 

focused on using physiological data to detect the onset of 

many unfavourable states including, anxiety [4], anger  

and depression. The performance of a system is dependent 

on its ability to make accurate inferences based on the 
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parameters set by developers. Typically, developers 

follow standardised guidelines, in the case of heart rate 

(HR), a reading exceeding 100 beats per minutes (bpm) 

could be symptomatic of stress, anything below 60 bpm 

may be considered as a sign of bradycardia [5]. However, 

physiological readings are ambiguous by nature, thus, 

there may be another explanation for an exceedingly high 

heart rate. For this reason, it is important to collect 

contextual data when determining what an appropriate 

response would be. For example, consider a person 

relaying HR data that is consistently above 100 bpm as a 

result of physical activity. Without contextual data, a 

system would not be able to identify whether this is a 

concerning behaviour (stress or anxiety) or routine 
(exercising). 

There has been an abundance of research focusing on 

stress detection and classification across different 

scenarios, this includes, acoustic [6] and office [7] 

environments, on-road scenarios whilst driving [8], 

human-computer interaction [9], and even when 

undergoing laser eye surgery [10]. A common ingredient 

throughout these studies is the utilisation of a smartphone. 

The pervasive nature of these devices, coupled with their 

multi-functional capabilities marks them as a viable 

platform for stress detection. The infrastructure for a 

smartphone-led solution to combat this widespread issue 

is already in place, with approximately 33% of the world’s 

population expected to own a smartphone by 2017 [11]. 

The ubiquity of modern smartphones allows researchers to 

collect data that can be generalised to real-life settings. 

This is in contrast to traditional experimental settings that 

are artificial, meaning that the stimuli and subject 

responses are unlike those that would occur in the real 

world [12]. Nevertheless, using the aforementioned 

infrastructure to conduct observational studies overcomes 

this limitation and provides a platform for collecting more 

accurate and reliable data over a longer period of time. As 

the capability of smart technologies continue to improve, 

we can expect finer granularity and greater variety from 

our data. For this reason, Cohn et al. believe that is it 

imperative for researchers to place more emphasis on the 

intervention process, with specific focus being addressed 

to behavioural data that occurs in the moment [13]. This 

concept exists at the core of our work, using innovative 

technologies to capture ecologically valid data to make 

accurate inferences and distinctions between the different 

types of stress. This work carries the additional objective 

of using a recommender approach as a means to deliver 

interventions that recommend coping strategies, which are 

personalised to the individual and sensitive to 
geographical location.  

The structure of this paper is as follows. Section 2 presents 

the related background that places this work within the 

space of both physiological systems and context-

awareness. Section 3 illustrates the different 

methodologies that have been used or proposed in the 

development of context-aware stress monitoring systems. 

The paper is then concluded in section 4 and future 
directions of this work are presented.  

2. BACKGROUND 
This section provides an introduction to the concept of 

using physiological signals as a mode of input for 

computer systems, an overview of the past work that has 

been accomplished in stress identification systems, and an 

exploration of how contextual data can enhance the 

intelligence of physiological systems when making 

inferences. 

2.1 The Concept of Physiological 

Computing 
Physiological computing (PC) is concerned with the 

creation of adaptable systems that can accurately adjust to 

a user’s covert psycho-physiological cues [14]. The 

biocybernetic loop is responsible for managing data at all 

levels of a physiological system [15]. This concept can be 

considered as the backbone to all physiological systems, 

as it is specifically concerned with the real-time data 

processing stages of collection, analysis and translation 

that produces a form of computer input. The primary 

intention is to withdraw the use of keyboard or mouse as 

a form of input, and instead use physiological signals that 

can manipulate a system. Recent technological 

advancements have seen the creation of smart sensors, 

which are capable of accurately reading various 

physiological signals, such as heart rate (HR) and heart 

rate variability (HRV), electrodermal activity (EDA), 

cortisol levels, muscle activity and much more. The 

diversity of sensor technology has created many 

opportunities in the physiological computing research 

field. For example, Postolache et al. [16] have used 

electrocardiogram readings from sensors to extract HR 

and HRV values as part of a feedback system for 

wheelchair users. This system used multiple sensors in its 

approach, including, e-textiles electrodes, a 3D MEMS 

accelerometer and flexible force sensors, conditioning 

circuits and a microcontroller platform. Furthermore, 

transforming physiological readings into an input for a 

game is also a growing research area. Nacke et al. [17] 

have developed a biofeedback game that requires 

physiological input in the form of electrocardiogram and 

electromyogram readings. This work explored several 

mechanics of a game that utilised direct and indirect 

physiological control. Through the utilisation of multiple 

sensors, the game was able to adapt specific in-game 

features based on the player’s physiological readings. For 

example, the character’s model size of an enemy was 

dictated by the player’s respiration rate. Moreover, the 

consensus from the gathered feedback showed that people 

preferred the game with physiological input relative to a 

game with no physiological input. 

Affective computing (AC) is a subfield of PC, and is 

primarily concerned with “creating technologies that can 

monitor and appropriately respond to the affective states 

of the user in an attempt to bridge the communicative gap 

between the emotionally expressive human and the 

emotionally deficit computer” (D’Mello and Calvo 2013, 

p. 2288) [18]. A small part of the AC research has 

explored the efficacy of emotionally-aware applications 

that can recognise, interpret and process human emotions. 

To simplify the myriad of emotions, researchers have 

categorised emotions into two planes: basic and non-basic 

[18]. Basic emotions include states such as anger and 

happiness, whereas non-basic emotions include states 

such as boredom and curiosity. Of the work done in this 

field so far, little attention has been directed to non-basic 

emotions, instead basic emotions have been the primary 

focus. A large body of the work has used the valence-

arousal scale to identify a person’s emotional state. For 

instance, Soleymani et al. [19] recorded facial expression 
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and other physiological features such as, EDA, skin 

temperature and blood pressure to determine a person’s 

physiological response using the aforementioned arousal-

valence scale whilst they watched a scene from a movie. 

Other work has focused on enhancing the reflection 

process to promote instances of self-learning within the 

individual. Mcduff et al. [20] presented an affective 

application entitled ‘AffectAura’ that uses numerous 

features to create a visualisation of a user’s estimated 

affective states. Participants from the study found that was 

helpful in aiding the reflection process. Another variation 

of AC research has focused on utilising methods to 

enhance the meditative experience of a user. An example 

of this exists in the form of virtual reality tool, RelaWorld 

[21], a brain-computer interface (BCI) application that 

uses electroencephalograph (EEG) technology to aid the 

meditative experience. The results from this study were 

positive and supported the applications efficacy as a 

meditative aid. These findings also support the role of 

virtual reality technology in eliciting presence and 
enhancing the overall meditative experience. 

There is much promise in using covert physiological 

signals as a form of computational input. It is necessary 

for application developers to understand the complex 

relationships between physiological measurements and 

the bodily state. With this knowledge we can take a more 

informed approach of selecting appropriate classifiers. 

This is in contrast to past attempts which have assumed 

that the more modalities used simultaneously, the more 

accurate the classifier will be.  

2.2 Using Physiological Markers to 

Identify Episodes of Stress and 

Anxiety 
Using smart technologies to identify moments of stress 

and anxiety has been at the centre of attention in many 

research domains for several years [22]. A wide variety of 

physiological sensors have been used to measure anxiety 

and stress. For instance, Miranda et al. [4] focused on 

anxiety detection using a combination of sensor 

technologies, specifically the Google Glass and Zephyr 

HxM band. This specific study focused on capturing a 

person’s spontaneous blink rate from the eyewear and HR 

from the band. Interestingly, the researchers found that 

individuals with social-anxiety disorder (SAD) tended to 

have a higher HR after a period of anxiety. This suggests 

that those with SAD endure a longer recovery time before 

their HR returns to a normal range. Bakker et al. [23] focus 

on detecting stress patterns from EDA data collected 

during a real-world study. The authors comment on the 

subjective factors that determine the quality and accuracy 

of the collected data, and emphasise that the continuity of 

contact between the skin and EDA sensor device is 

extremely important for robust data collection. However, 

failure to acquire physiological data that is a true 

representative of a person’s psychological state may lead 

to inaccurate inferences and predictions. Sano et al. [25] 

collected skin conductance amongst other types of data 

(including accelerometer, technology usage and caffeine 

intake to name a few) using a wearable sensor and 

smartphone to create a model that recognised moments of 

stress. A more unorthodox method was described in [8], 

where stress was managed by using a steering wheel to 

collect; EDA, skin temperature and hand pressure, and a 

camera that collected; facial expressions, HR and 

respiration rate. This work is still at the prototype stage, 

though interestingly the researchers note that it is 

important to consider the implications of creating such a 

system, and that it is entirely possible that using these 

methods may exacerbate a person’s stress. This 

emphasises the importance of obtaining high inference 

accuracy, the inclusion of contextual data is necessary to 

limit the occurrence of false positive outcomes. 

2.3 Using Contextual Data to Improve 

Inference Accuracy 
Context in computing has received much attention since it 

was discovered as an essential component in 

recommender systems [26]. Context can be defined as, 

“any information that can be used to characterize the 

situation of an entity. An entity is a person, place, or object 

that is considered relevant to the interaction between a 

user and an application including the user and 

applications themselves” (Dey and Abowd, p. 307) [27]. 

This definition can be considered as quite broad, covering 

the inclusion of both implicit and explicit data. The 

powerful sensors embedded in modern-day smartphones 

enables a large portion of contextual data acquisition to be 

implicit. Regarding the issue of stress detection, data 

derived from the GPS or accelerometer of a smartphone 

can be used to characterize the fluctuations within a 

physiological dataset. Thus, by utilising contextual data, 

physiological systems are more informed and sufficiently 

equipped to draw inferences. Moreover, the concept of 

context-awareness has seen the development of systems 

that can adapt and change their behaviour based on various 

pieces of data that describe the user’s situation [28]. It is 

now commonplace for these built-in sensors to 

collectively produce these heterogeneous datasets that can 

potentially yield valuable insight on an individual’s 

wellbeing. These datasets contain four core components 

that can work in synergy, however, it is possible for the 

smallest contextual detail from a specific module to 

provide an explanation for a specific behaviour. These 
datatypes can be identified as: 

 Environmental Context. This data can be taken from 

a GPS sensor and can provide information as to where 

an activity or physiological development has taken 

place. For example, should a system detect an 

abnormal heart rate (HR), a GPS could reveal that the 

user is in gym. Upon discovering this information, it 

is logical to assume that physical exercise has caused 

a HR spike, rather than a stress response in the form 

of a hormonal cascade [29].  

 Personal and Temporal Context. This is different in 

that it does not require the utilisation of a sensor, but 

access to the calendar application or student timetable. 

Using the scenario of a student completing 

coursework, on the day of the deadline, it is likely for 

this person to demonstrate unequivocal symptoms of 

stress, anxiety and even depression. Upon 

confirmation of this occurrence, it is important for the 

system to respond appropriately, for example, 

reminding the student to take timely breaks and to stay 

hydrated. 

 Physical Context. This can be extracted from sensors 

such as accelerometers and gyroscopes to identify 

whether a person is ascending/descending, which 
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suggests that a person is walking up/down a set of 

stairs. Furthermore, they can be used to identify the 

user’s locomotion, i.e. whether the person is walking 

or running, which will dramatically effect a person’s 
physiological signals.  

Allowing applications to process contextual data in the 

decision-making process increases the probability of an 

adequate response being generated. Additionally, it is 

important for the end-user to have an element of control in 

the ultimate action that is taken [30]. Extra functionality 

can be attained from the inclusion of an option to provide 

user feedback on the recommended coping strategy, e.g. 

‘the suggestion that was provided helped me cope with the 

situation’, or ‘the suggestion did not help me cope with the 

situation’. This allows the user to shape the application to 

suit their personal preferences, thus, the user is controlling 

how the application interacts with them. Literature in this 

research area supports the importance of user control. For 

example, Barkhuus et al. [31] argue that to maintain the 

perception of user control there must be a degree of 

personalisation involved on the HCI level, and that when 

using a passive or active context-aware application it is 

lost. Furthermore, the authors state that despite 

personalised context-awareness requiring a higher 

interaction cost, the consensus that users prefer this type 

of context-aware computing (CAC) system remains. 

It has been proven that contextual data can be used to 

enhance the accuracy of a physiological system. We want 

to investigate the usage of physiological features with 

multiple contextual sources that are relevant for the 

purpose of stress identification. Furthermore, we hope to 

obtain an understanding of which contextual sources have 
the most impact when making a stress inference. 

3. METHODOLOGY AND 

MATERIALS 
We plan to do experiments that focus on the effect of 

coursework deadlines and subjective stress levels.  

3.1 Overview 
Recent technological advancements have seen the 

development of unobtrusive wrist bands equipped with 

multiple pervasive sensors. This has seen an increase in 

the number of studies using these commercial sensors as a 

data collection tool. Our study adopts a similar approach; 

as we decided to utilise the Microsoft Band 2 (see Figure 

1) to extract HR, EDA and accelerometer values. The 

Band is composed of a thermoplastic elastomer silicone 

vulcanite with an adjustable clasp, this ensures that the 

device can be worn by a wide range of people. 

Furthermore, this sensor device contains an embedded li-

polymer battery that can last up to 48 hours depending on 

its usage. This is a significant benefit, as a common 

bottleneck for past real-world studies is the longevity of 

the data collection tool being used. To extract these values 

and store them on the smartphone, we have developed an 

application that writes to a .csv file. The Band 

communicates with a smartphone via Bluetooth and 

Microsoft’s Health app, which is responsible for 

synchronising the two devices. Additionally, we have 

created an Android application that continuously writes a 

person’s GPS coordinates to a .csv files along with a 

timestamp. This approach uses the GPS sensor from a 

smartphone to find the users current location, this is 

frequently refreshed and changed by determining whether 

the last known location is different to the current known 

location. 

 

Figure 1. The Microsoft Band 2 Interface 

During the study we also aim to conduct four 

questionnaires; Cope Scale, Penn State Worry Scale, 

Social Readjustment Scale (SRC) and the Perceived Stress 

Scale (PSS). We believe that the answers obtained from 

these questionnaires will provide insight to the mentality 

of the participants whilst taking part in our study. 

Furthermore, it is possible to use some of the questionnaire 

answers as markers in the acute-chronic stress 

identification problem. For example, the SRC looks at 

events that occurred over the past 12 months, the results 

of this particular survey could provide data that can be 

used to detect the occurrence of chronic stress.  

4. METHODS FOR DEVELOPING 

SENSOR BASED CONTEXT-

AWARE STRESS MONITORING 

SYSTEMS 
Miniaturisation of sensor technology has enabled 

manufacturers to develop a series of unobtrusive devices, 

which contain considerable processing power and are 

capable of extracting multiple physiological and 

contextual features that are suitable for the purpose of 

stress monitoring. However, the collected data must go 

through the multiple processes involved in a machine-

learning model, before an inference can be made. There is 

a trade-off between the sensitivity of a measure (its 

sensitivity to changes in stress) and intrusiveness of the 

sensor apparatus required to capture the measure. For this 

reason, sensitive measures may not be used in the field 

because the apparatus is too cumbersome or 

uncomfortable.  

4.1 Data Acquisition 
To determine the occurrence of stress it is necessary to 

collect physiological signals that can provide insight to a 

person’s internal state. For this reason, there have been 

many attempts to identify stress using physiological 

signals such as HR, HRV, EDA, electroencephalogram 

(EEG), electrocardiogram (ECG) and skin temperature 

(ST) amongst others.  

The acquisition of contextual data can be defined as being 

either; implicit, explicit or inferred. Verbert et al. [3] 

produced a categorisation of the sources that can provide 
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contextual insight. Included in this list are several data 

types that can provide rich insight to the mental and 

physical state of the user. For example, location context 

can be collected implicitly via the GPS sensor of a 

smartphone. Cross-referencing data that places a person in 

a university lecture with higher heart rate readings 

suggests that a user is suffering from a type of stress and/or 

anxiety. Moreover, we can use activity context when the 

GPS is unavailable, this is usually acquired explicitly 

through QR or RFID scanning or text input. A further 

contextual data source that is not discussed in this study is 

the accelerometer and/or gyroscope of a smartphone. It is 

possible to use the X, Y, Z coordinates of a smartphone to 

determine the physical activity of a user, for example, they 

could be used to identify if a person is running or walking. 

This piece of information may explain why a user has 

accelerated ECG signals as without this context, 

physiological datasets can be ambiguous and difficult to 

dissect.  

4.2 Pre-processing 
Raw physiological data extracted from wearable sensors 

is not suitable as a direct input because of existing 

artefacts, errors and missing pieces of data. For this 

reason, it is important to prepare the data in such a way 

that increases the likelihood of a machine-learning 

algorithm solving the problem. This includes 

implementing either an automated or manual cleaning 

method that removes any unnecessary chunks of data. 

Furthermore, most researchers prefer to define the data 

granularity, this is commonly achieved by applying 

filtering techniques to create a refined dataset.  

(a) 

 

(b) 

(c) 

Figure 2. Three examples of the raw data collected 

from our pilot tests of (a) heart rate, (b) galvanic skin 

response and (c) accelerometer signals in original form 

before undergoing several iterations of preprocessing.  

A combination of high-pass [33], low-pass [16] and band-

pass [34] based filters have been used on physiological 

signals, the selection of a particular method is usually 

dependent on the signal quality as stated in [35]. Alberdi 

et al. [7] utilise a spatial-spectral filter in numerous 

frequency bands to compute spatial-spectral EEG 

components. Additionally, many studies have investigated 

the efficacy of implementing k-nearest neighbour (K-NN) 

based methods for handling artefacts, specifically HRV 

analysis [36].   

4.3 Feature Extraction 
Feature extraction is the process of converting raw signals 

into usable datasets that can be used as feature inputs for 

ML algorithms. The selection of appropriate features is an 

important task that can have a great impact on the overall 

success of a classifier. Multiple signal processing 

techniques have been used to extract features from 

physiological datasets (HR, HRV and GSR). Fourier 

Transformation (FT) is a popular technique for 

transforming physiological signals from a time to 

frequency domain. Liu et al. [24] utilised a variation of FT 

known as the Lomb periodogram, to generate frequency-

based HRV features such as, total spectral power of all RR 

intervals up to 0.04 Hz and total spectral power of all RR 

intervals in discrete bands (0-0.003 Hz and 0.003-0.04 Hz 

etc.). Wavelet Transformation (WT) is another method 

that has been used to transform physiological signals from 

time to frequency domains. Chęć et al. [37] used a 

wavelet-based peak detector that was originally developed 

by [38] that obtained 91.4% accuracy and 95.9% precision 

for detecting peaks in ECG signals. Principal Component 

Analysis (PCA) is a technique used to identify variables 

from large datasets and has been referred to as a 

dimensionality reducer [39]. PCA methods have been 

used in numerous studies, specifically, in fall detection 

when determining the direction of the main axis of the 

human body [40] and in reducing the number of EEG 

features when modelling the stress of people in the 

scenario of playing computer games [41]. Independent 

Component Analysis (ICA) is another feature extraction 

technique that has used for reducing unwanted features. 

Past studies have used this approach to remove eye 

movement artefacts from EEG data [41] and to identify 
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underlying amplitude waveform of blood volume pulse 

signals [42]. 

4.4 Classification 
In stress monitoring systems the classifier is built using a 

combination of physiological and contextual data to 

determine the mental state of the user. A large body of past 

work has adopted a binary classification approach with the 

output either identifying a person as (0) not stressed or (1) 

stressed. However, there has been a plethora of work that 

has investigated the efficacy of ML techniques with 

numerous features as reliable biomarkers of stress. For 

example, Muaremi et al. [43] use HRV features to build 

general and user-specific logit models, obtaining 

accuracies of 52% and 59% respectively. Additionally, a 

classifier was built using the HRV features alongside 

several smartphone features such as, no. of calls, audio 

length and mean call length. The addition of smartphone 

features saw a slight increase in the classifiers 

performance achieving accuracies of 53% and 61%, 

respectively. Support vector machines (SVMs) have been 

the go-to method for identifying stress with varying 

degrees of accuracy, which is ultimately dependent on the 

features used. The SVM method is a discriminative 

classifier that transforms data to a higher representation, 

and is then separated by a hyperplane. A linear SVM 

approach was used in [25] to recognise stress using 

features such as, mobile phone usage, survey results, 

accelerometer and distance travelled. After conducting 

several tests, the system achieved an average accuracy of 

75% using data derived from phone usage and ambulatory 

sensors. Zhai et al. [44] use a linear SVM to perform a 

classification between “relaxed” and “stressed” states 

using features generated from cardiac and electrodermal 

activity datasets. Interestingly, when pupil diameter (PD) 

was removed from the model the classification accuracy 

fell by circa 30%, whereas, when removing features such 

as GSR and BVP the accuracy fell by only 1-2%. This is 

surprising as there has been little work that has followed 

on from this and further investigated the efficacy of PD as 

a marker of stress. It may be because of the unobtrusive 

methods that are required to obtain this data. However, as 

technology advances, devices such as Google Glass will 

create more opportunities for researchers to unobtrusively 

acquire features such as, PD and spontaneous blink rate 

(SBR).  

Other methods such as Fuzzy Logic (FL) and Artificial 

Neural Networks (ANN) have shown promise, but have 

not yet received a great detail of attention. Sierra et al. [45] 

developed a FL model using HR and GSR features, 

achieving 99.5% accuracy for true stress detection and 

97.4% for true nonstress detection using HR and GSR 

features. The proposed system relies on two temporal 

parameters; template time and acquisition time. Allowing 

a longer period of time for these two parameters to be 

acquired increases the accuracy of a system. However, 

real-life application of this system requires the production 

of a classification result in a timely manner. Other areas of 

the research domain have looked at using ANNs for the 

purpose of stress classification and prediction. Hosseini et 

al. [46] developed an emotional stress recognition system 

that used a two-layer back propagation neural network 

with features derived from EEG signals. The researchers 

focused on several classification problems, but for the 

issue of emotional stress an accuracy of 79.2% was 

achieved using a five-fold cross validation method. 

Further investigative work into the different modelling 

techniques for the purpose of stress monitoring and 

detection is required. Additionally, there must be 

comparisons between the performances of stress models 

using various features to determine the most suitable. 

Past efforts in modelling stress have used ad-hoc methods 

for both, the determination of metrics and performance. 

Despite using different metrics, the results have suggested 

that it is possible to create somewhat reliable models of 

stress. However, there is room for improvement and with 

further research the realisation of a low-cost, unobtrusive 

and highly-accurate stress monitoring system will be met.   

4.5 Discussion 
Our pilot testing has revealed the great potential for using 

commercial sensors in uncontrolled environments. 

However, there are several obstacles that must be 

addressed before we proceed to begin our data collection 

study. Firstly, we have discovered the commercial sensor 

can easily lose contact with the skin and quality of data 

suffers as a result, this can have detrimental impact on the 

sensor readings (see the GSR graph in Figure 2). 

Considering this, we believe that it is necessary to inform 

participants on how to fit the sensor correctly and the study 

protocol. Additionally, these sensors have limited battery 

life (the band has an average duration of 48 hours) and 

require the participants to actively place the device on 

charge at a suitable time and in a swiftly manner. Upon 

analysis of the physiological data it is clear to see that 

there is ambiguity that can prevent accurate observations 

of patterns that may correspond to stress. Thus, additional 

data sources are required to improve the potential of stress 

identification inferences. We believe that data sources 

such as, accelerometer and GPS, are sufficient choices that 

can elevate the accuracy of a stress model. In the case of 

accelerometers, we can use the recorded coordinates to 

determine the physical activity of a user. This information 

can be used to allow a system to isolate the contribution of 

movement to a physiological record. 

5. SUMMARY AND FUTURE 

WORK 
This review is the starting point for future work and is 

concerned with the collaboration of context-awareness 

and physiological computing. Early results suggest that it 

is possible for low-cost commercial smart sensors, such as 

the Microsoft Band, to operate as data collection tools. 

There are many benefits from the development of an 

autonomous and unobtrusive stress monitoring and 

classification system. For example, it can have a direct 

positive impact in working and educational environments. 

As sensor technologies continue to advance the reliability 

of physiological data will continue to improve, potentially 

enhancing the classification accuracy of future stress 

detection systems. As it stands, collecting these datasets in 

real-life settings is difficult as the data can be unreliable as 
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it can be difficult to determine the existence of noise and 

artefacts.  

It is not possible to directly identify stress; but we can 

make inferences of stress by using psychophysiological 

measurements. In order to identify stress, traditional 

systems require the completion of subjective 

questionnaires and hormonal extraction techniques, which 

is often disruptive. However, modern smartphone-

orientated stress systems can make informed decisions 

using unobtrusively collected physiological data to 

provide a just-in-time intervention. Nevertheless, there are 

further considerations when determining the underlying 

cause of a physiological change as often these signals can 

be ambiguous. For this reason, we require the acquisition 

of contextual data to build a model that understands the 

underlying motives behind a physiological dataset. 

Contextual data can exist in many forms, the most 

discussed in the literature are derived from, GPS, 

accelerometer and temporal data features. 

We believe that the multiple datatypes that we are able to 

collect from future commercial devices will translate too 

many ML adaptations. Ultimately, we will be able to 

determine the efficacy of different feature combinations 

with different ML approaches. Future work aims to build 

on the work presented in this paper by undertaking a full 

data collection study to examine stress in the everyday 

lives of undergraduate university students. This will be 

used to identify patterns that represent a person’s 

emotional stress state with reference to specific markers 

that could induce stress, such as coursework deadlines. 

Furthermore, it may be possible for this system to explore 

the different psychological effects that specific markers 

have on an individual and the reasoning behind this state. 
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