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How does bioenergy compare with other land-based
renewable energy sources globally?
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*Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK

Abstract

The potential power generation from land-based bioenergy is predicted globally using a computer model. Simul-

taneous consideration of land use, cost and carbon restrictions enables practical evaluation of net power output.

Comparisons are made with wind and solar power, and a sensitivity analysis is used to explore the effects of

different policy assumptions. Biomass is shown to offer only moderate power-generating potential, and would

satisfy less than half of current demand even if all suitable existing arable land were used to grow bioenergy

crops. However, bioenergy can be cheap to generate given current economics, and is able to remove atmospheric
carbon in some cases if coupled with carbon capture and storage. Wind turbines are able to provide more power

globally, but photovoltaic solar panels are the only source considered with the potential to satisfy existing

demand. Since land-based bioenergy is also restricted by the need to grow food for an expanding population,

and technological developments are likely to greatly increase the viability of other renewable sources, the role of

land-based bioenergy appears relatively limited and short-term.
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Introduction

Present focus on renewable energy is driven by a

combination of aims, which include reducing carbon

emissions (Schiermeier et al., 2008), increasing energy

security (Eaves & Eaves, 2007) and minimising

dependence on finite fossil fuel reserves (Mackay, 2008).

Bioenergy is a prominent component of many govern-

ment and industry strategies to exploit renewable

energy due to its ability to contribute towards these

objectives (Berndes et al., 2003; Bringezu et al., 2009).

However, renewable energy capacity remains some way

from meeting total demand, supplying just 16% of

global energy consumption in 2009 (REN21, 2011). A

major challenge is to increase power generation from

renewable sources while accounting for concerns such

as cost, carbon emissions and available land.

Recent studies have established the potential for

renewable energy sources to satisfy global demand

(Delucchi & Jacobson, 2011; IPCC, 2011; Jacobson &

Delucchi, 2011). In this article, we provide greater scru-

tiny of bioenergy by comparing it directly against other

land-based renewable sources to investigate its role at

regional and global scales. Emphasis is placed on spatial

results, which are particularly important to account for

land use competition (Ehrlich & Pringle, 2008; Smith

et al., 2010) and energy distribution (Mackay, 2008).

Computer simulations are used to map predicted

global power generation, production costs and carbon

emissions. Results for bioenergy are compared against

on-shore wind and solar power to assess the relative

importance of bioenergy. Practical potentials are esti-

mated for each source by combining model predictions

with existing land use data. The investigation is thus

able to provide a broader evaluation of the relative

importance of bioenergy than previous global studies

(Fischer & Schrattenholzer, 2001; Beringer et al., 2011),

and allows the merits of bioenergy to be assessed in

terms of different policy aims.

We restrict our consideration of bioenergy to Miscan-

thus 9 giganteus, a non-food crop which can be grown

on marginal land (Ercoli et al., 1999; Beringer et al.,

2011). Its impact on food prices – perhaps the most

serious criticism of the possible consequences of bioen-

ergy (Eggers et al., 2009) – is therefore able to be

reduced; however, for simplicity only existing arable

land is considered in the current study, as this provides

a straightforward assessment of the spatial distribution

and scale of potential power generation. Miscanthus is

widely reported to provide higher yields than other

candidate bioenergy crops over a range of conditions,

hence offering more efficient use of space, and thereby

minimising disruption of other land uses (Heaton et al.,
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2004; Tilman et al., 2006). Moreover, high levels of

biodiversity have been found in Miscanthus field studies

relative to other agricultural uses (Semere & Slater,

2007). Residues from existing crops are not considered

due to the likely negative impact on soil fertility

(Andrews, 2006); traditional sources of biomass, such as

firewood, are also neglected due to their restricted scope

for development.

This study uses an established crop model (Clifton-

Brown et al., 2000; Hastings et al., 2009a) to predict

bioenergy yields. Incident radiation in the crop model is

used to estimate solar panel power generation, and a

simple model of wind power is also presented. The aim

of the study is to use available global data to provide a

straightforward assessment of the importance of

bioenergy relative to other land-based renewables, and

the modelling approach is deliberately simple and

transparent. For simplicity, we focus on power genera-

tion rather than demand, storage and transmission. This

approach provides clear predictions on the location and

magnitude of available renewable power. While several

assumptions are necessary to facilitate the study, they

are clearly presented and their effects are also investi-

gated.

Materials and methods

Crop and solar calculations

Miscanthus yields are calculated using the crop growth model
Miscanfor (Hastings et al., 2009a), which is a development of
the Miscanmod model (Clifton-Brown et al., 2000) based on the
energy use efficiency method of Monteith (Monteith, 1977; Ew-
ert, 2004). The model uses meteorological and soil data to pre-
dict annual crop yields, and has been shown to provide good
agreement with field data for Miscanthus in Europe and North
America (Clifton-Brown et al., 2000, 2004; Khanna et al., 2008;
Dondini et al., 2009; Hastings et al., 2009a,b). Growth is calcu-
lated according to the product of intercepted photosyntheti-
cally active radiation and the empirical radiation use efficiency
(Clifton-Brown et al., 2000). Temperature and water stress are
accounted for (Hastings et al., 2009a), assuming no irrigation.

Beringer et al. (2011) recently modelled global Miscanthus
yields using the LPJmL vegetation model, which was validated
globally against yield data for different crop types; results were
compared against Miscanmod in Europe, showing good agree-
ment. Miscanfor has also been successfully compared in Eur-
ope against a highly simplified crop model (Pogson, 2011),
which also shows strong agreement at a global scale (correla-
tion coefficient 0.7 for historical average yields). In the absence
of reliable global field data for Miscanthus, the agreement of
Miscanfor with different modelling approaches strongly sug-
gests it is a reliable method. It has the advantage of being sim-
pler than the LPJmL model, but with more accurate
representation of key marginal areas than the highly simplified
crop model.

Incident radiation is calculated in the Miscanfor model
according to latitude and time of year, accounting for cloud
cover (Hastings et al., 2009a). From this, usable solar power is

obtained simply by multiplying by the conversion efficiency of
a solar panel. Solar panels are assumed parallel to the Earth’s
surface; although this will underestimate light interception rel-
ative to an appropriately angled surface, the difference is not
deemed important to the investigation. No limits are placed on
maximum power output (Nelson et al., 2005), efficiency is
assumed constant with temperature, and electrical energy stor-
age is not considered. Consideration of solar panels is restricted
to standard photovoltaic (PV) cells due to their broader scope
than water heating panels and more general applicability than
concentrating solar panels; although all types of solar panel are
important, standard PV results give a good representation of
the scope for solar power. Conversion efficiency is assumed to
be 0.1 (Mackay, 2008), which is a fairly conservative estimate.

Wind turbine calculations

Wind turbines are assumed to have horizontal-axis rotors per-
pendicular to incident wind. Harnessed power is calculated
from monthly average wind speed data recorded at a fixed
height. At wind speed u, the momentum of air per unit area
perpendicular to the wind direction is equal to qu, where q is
air density. The wind power q per unit area is found as a func-
tion of wind speed by substituting momentum per unit area
for mass in the kinetic energy equation (Mackay, 2008):

qðuÞ ¼ 0:5qu3 ð1Þ
The power P generated per unit land area is therefore:

PðuÞ ¼ qðuÞBef ð2Þ
where e is the efficiency of conversion from wind to mechanical
energy, f is the efficiency of conversion from mechanical to
electrical energy and B is the area swept by the turbines per
unit land area, given by:

B ¼ pd2

4st
ð3Þ

where d is rotor diameter, s is lateral spacing of turbines and t
is longitudinal spacing.
Recorded mean wind speed l0 is adjusted for turbine height
according to the wind profile power-law method (Irwin, 1979):

l ¼ l0
h

h0

� �z

ð4Þ

where l is the mean wind speed at the rotor hub, h0 is the
height of measurement, h is the height of the rotor hub and z is
a dimensionless constant obtained empirically.
Assuming wind speed follows a Rayleigh distribution (Feijóo
et al., 1999), expected power U generated by the turbines per
unit land area is calculated as:

U ¼
Zw

v

RlðuÞPðuÞduþ PðwÞ
Zx

w

RlðuÞdu ð5Þ

where Rl is the Rayleigh distribution with mean l, v is the cut-
in wind speed, w is the rated wind speed and x is the cut-out
wind speed. Integrals are evaluated by use of the error function
(Abramowitz & Stegun, 1964). Expected energy per unit land
area is obtained by multiplying U by the time period.
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Wind turbines are assumed identical in all regions as data
are insufficient to match turbine specifications to local condi-
tions. Turbines are assumed to have rotor diameter d of 80 m,
height h of 60 m, cut-in speed v of 4 m s�1, rated speed w of
16 m s�1 and cut-out speed x of 25 m s�1, typical for a large
turbine (Vestas, 2011). Standard values are used for turbine
spacing s and t as 5d and 10d respectively (Manwell et al.,
2009). Mechanical efficiency e is assumed constant at 0.35 (Hau,
2006); although this is a fairly large simplification, the approxi-
mation only applies between the cut-in speed and rated speed,
which is where the assumption is most accurate. Electrical effi-
ciency f is also assumed constant, at 0.85 (Hau, 2006). The
empirical exponent z in Eqn (4) is assumed 1/7 (Mackay,
2008). Air density q is assumed constant at 1.23 kg m�3 (Inter-
national Organization for Standardization, 1999); variation with
temperature is beyond the scope of this study. The effect of
surface gradient is not considered explicitly, but is implicit to
the wind speed data.

Cost calculations

Production costs per unit energy are estimated for the life-cycle
of each energy source, neglecting possible changes in land
value, technology, fuel costs and infrastructure, and excluding
any subsidies. Consideration of distance to users is not made,
although an implicit assumption is made for Miscanthus that
transport costs become prohibitive if plantations are greater
than 50 km from power stations or end use.

Cost per unit energy in terms of present value V is calcu-
lated as (Smeets et al., 2009; van den Broek et al., 2000; Wang
et al., 2011):

V ¼
PM

i¼1

PN
y¼1 CiðyÞ=½1þ d�yPN

y¼1 EðyÞ=½1þ d�y ð6Þ

where M is the total of number of costs, Ci(y) is the cost of item i
in year y, N is the number of years over which costs are
incurred, d is the annual discount rate and E(y) the gross energy
yield in year N. Mean yields are used for each productive year.

Crop costs are split into one-off costs (establishment and
removal of rhizomes), annual overheads based on land area
(land rent, harvest of above-ground matter and storage) and
annual transport costs based on yield; this choice of categories
is guided in part by available data. Bauen et al. (2010) provide
these costs for Miscanthus in the UK, excluding transport, while
Hoogwijk (2004) provides transport costs, labour costs and
land costs for general bioenergy crops across global economic
regions. Fertiliser costs are neglected due to the low require-
ments of the crop (Ercoli et al., 1999).

To obtain relevant costs across all regions, the costs from Ba-
uen et al. (2010) are adjusted according to the costs presented
by Hoogwijk (2004) for each region relative to W Europe, tak-
ing the mid-point of reported values. Transport costs are taken
directly from Hoogwijk (2004). Establishment, removal, harvest
and storage costs are scaled as the transport costs of Hoogwijk
(2004), since these processes are assumed to rely heavily on
machinery, while land costs are scaled according to the land
costs of Hoogwijk (2004). The resulting costs are shown in
Table 1, and the assumptions are considered further in the Dis-
cussion section.

To calculate the average annual cost per unit energy of Mi-
scanthus, the values in Table 1 are substituted into Eqn (6),

using the mean annual energy yield for each year in the sum-
mation, except the first 3 years, where the yield is 0 (Defra,
2007). The crop lifespan is assumed to be 20 years (Beringer
et al., 2011). The discount rate is assumed to be 0.06 for all
regions (Wang et al., 2011).

Photovoltaic solar panel costs are assumed 250$ m�2 (based
on a near-term estimate by Smestad, 2008) with a lifespan of
20 years at full efficiency (Mackay, 2008). All references to $
are for USD. Dismantling costs are neglected due to the scrap
value of solar panels. Land rent is assumed one-quarter of crop
land rent due to the assumed lower value of non-cultivable
land, and the possible application of solar panels to existing
structures. No other costs are considered, such as maintenance
or energy storage.

Wind turbines (as described above) are assumed to cost 2M$
per turbine to install and 100k$ yr�1 per turbine for mainte-
nance and insurance (DTI, 2005). Land rent is assumed one-
quarter of crop land rent due to the sparse coverage of wind tur-
bines allowing other land use to some extent. Land rental costs
for wind turbines, as well as solar panels, are likely to be lower
in reality, but are used as a conservative estimate. Turbines are
assumed to have a lifespan of 20 years (Vestas, 2009); disman-
tling costs are neglected due to the scrap value of turbines.

Net power and carbon calculations

Net power and carbon emissions for Miscanthus are calculated
as described by Hastings et al. (2009b), including farming
inputs using fossil fuel-powered machinery. The crop is
assumed to provide no yield for the first 3 years following
establishment, hence mean power output of crop production is
rescaled by a factor of 17/20 to account for the full lifespan (or
the equivalent factor when considering different lifespans).
Only unavoidable energy losses are considered; for Miscanthus
this includes furnace efficiency (which is taken as a minimum
loss for all uses) and biomass losses prior to harvest.

For solar panels, energy inputs and carbon emissions of
2300 MJ m�2 and 125 kg C m�2, respectively, are spread over
the expected lifespan (Stoppato, 2008). For wind turbines,
energy inputs and carbon emissions of 72 TJ per turbine and
530 t C per turbine, respectively, are spread over the expected
lifespan, assuming current production methods, including
metal extraction and processing (Vestas, 2009).

With the exception of carbon calculations for Miscanthus
which assume previously cultivated land, carbon emissions
from land use change are not considered due to the proposed
land uses (see below); however, this could be a significant fac-
tor were other land uses considered.

Data inputs

Meteorological inputs used to run the Miscanfor model are
CRU TS 3.0 monthly cloud, temperature and precipitation data
on a 0.5° grid (Mitchell & Jones, 2005). Rather than using mean
meteorological data, which inherently smooth out weather con-
ditions, annual results are calculated explicitly, from which
average yields are obtained (Hastings et al., 2009a). Future
predictions use A2 scenario data from HADCM3 CRU climate
projections (Johns et al., 2003), as described by Hastings et al.
(2009b). IGBP soil data for field capacity and wilt point are
used on a 5′ grid (Global Soil Data Task Group, 2000), and
assumed constant with time. Solar power is calculated in the
model according to latitude and time of year, and is only

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 5, 513–524
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affected by cloud input data (Hastings et al., 2009a). Wind
power is calculated using CRU CL 2.0 mean wind speed data
1961–1990 on a 10′ grid (New et al., 2002); due to the difficulty
in accurately measuring and predicting wind speed, global
time-series data and future projections are unfortunately not
readily available. SAGE global land use data are used to pro-
vide the percentage land cover of arable land in the year 2000
on a 5′ grid (Ramankutty et al., 2008), as well as total land suit-
able for cultivation, and 1992 urban areas on a 0.5° grid (Rama-
nkutty & Foley, 1998; Ramankutty et al., 2002). Summations of
results assume a spherical Earth of radius 6371 km (Shirley &
Fairbridge, 1997), with the area of each grid cell calculated
according to its angular size and latitude.

Land use

Provided production criteria are satisfied in a given grid cell,
10% of any arable land is considered available for Miscanthus
(pasture land is avoided to lessen soil carbon emissions due to its
high carbon content (Davidson et al., 2002); displacement of live-
stock is not considered since this would simply shift rather than
reduce carbon emissions); 10% of any land deemed unsuitable
for cultivation is considered for solar panels; and 10% of any land
deemed unsuitable for cultivation (excluding urban areas) is con-
sidered for wind turbines. It is worth noting that much of the
land covered by wind turbines could still be used for other pur-
poses, hence competition for land between the considered energy
sources is minimal due to the imposed land use restrictions. The
value of 10% is discussed further below, but is easily adjusted
since power output scales linearly with available land (since the
land inside an individual grid cell is uniform in the model).

Land deemed suitable for cultivation which is not already
used as arable land is avoided in all cases due to the
importance of its conservation (Ramankutty et al., 2002). The
fractions are chosen as an upper bound on what might be
possible, and are used to obtain a generous estimation of the
availability of renewable power. In reality, land use would
clearly vary with location, depending on many factors. Given
existing pressures on land use, the arable land fraction may

appear particularly high, but previous studies have considered
using up to 25% of arable land (FAO, 2008). It is also worth
considering the present acceptance of highly inefficient use of
land for meat production (Erb et al., 2009), high levels of over-
consumption of food in many countries (James et al., 2001),
and that around one-third of food produced for human con-
sumption is currently wasted (Gustavson et al., 2011). This
study does not advocate that 10% of land should in fact be
used, or suggest that use of this land for bioenergy crops
would affect these issues over food availability in poorer
regions without political intervention; the purpose is simply to
establish an estimate of the technical potential so that avail-
able technologies can be compared.

The value of 10% land use is clearly somewhat arbitrary.
However, results for different land fractions can be obtained
simply by multiplying the new land fraction relative to 10%.
Furthermore, cost and carbon results are independent of frac-
tional land area, hence are unaffected by the assumption. The
value of 10% is chosen as it gives a reasonable idea of potential
power generation, and is simple to change to a different value.
The major assumption in results is the land types used for each
energy source, as opposed to the fraction of each type; this is
harder to adjust, but is also a less arbitrary assumption.

Assessment of sources

Direct comparison is made between power generation from
each source, avoiding complications of weighting energy
according to its type or storage requirements (Mackay, 2008).
Power generation is only permitted in locations where net
power is positive and production costs and carbon emissions
are below 16$ GJ�1 and 20 kg C GJ�1 gross energy, respec-
tively, equivalent to oil at 100$ per barrel, neglecting subsidies
(Sims et al., 2006).

Unlike solar and wind power generation, bioenergy crops
store chemical potential energy which is not in a directly usable
form. Although this has some advantages, such as its scope to
be converted for use by existing fossil fuel-powered machinery,
it highlights the difficulty to compare power delivery fairly

Table 1 Miscanthus production costs. Data derived from Bauen et al. (2010) and Hoogwijk (2004)

Region Establishment $/ha Removal $/ha Land $/ha/yr Harvest $/ha/yr Storage $/ha/yr Transport $/GJ

Canada 2050 9 85 117 18 0.33

USA 1930 9 185 110 17 0.31

C America 1800 8 130 103 16 0.29

S America 1800 8 130 103 16 0.29

N Africa 2490 11 30 142 22 0.4

W Africa 2490 11 25 142 22 0.4

E Africa 2490 11 25 142 22 0.4

S Africa 1930 9 85 110 17 0.31

W Europe 2800 13 150 160 25 0.45

E Europe 2360 11 80 135 21 0.38

F USSR 2360 11 35 135 21 0.38

M East 1930 9 40 110 17 0.31

S Asia 1930 9 135 110 17 0.31

E Asia 1990 9 170 114 18 0.32

S-E Asia 1620 7 160 92 14 0.26

Oceania 1620 7 30 92 14 0.26

Japan 2300 11 720 131 21 0.37
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from different sources (Mackay, 2008). Energy values for Mi-
scanthus assume it is burnt in a furnace, giving the maximum
usable energy (Hastings et al., 2009b). Further energy losses
would clearly be involved in generating electrical power; how-
ever, unlike the other sources considered, Miscanthus energy
(i.e. dry matter) could be stored for some time, and transporta-
tion of energy over large distances would require minimal
changes to existing infrastructure.

Comparison of cost and carbon emissions is similarly difficult
between sources. Again, results are presented simply for power
generation without consideration of its type or how it will be used.

Results

Net power, production cost and carbon emissions

Maps from global simulations of net power generation

for each source are shown in Fig. 1. Results are pre-

sented for the power density of each source without

accounting for land use, cost and carbon restrictions

(Fig. 1a–c); results are masked to show only positive net

power generation. Results are also presented accounting

for restrictions (Fig. 1d–f); results are masked according

to cost and carbon restrictions, and power density

rescaled according to available land to show the effec-

tive power density of each grid cell. The map presented

for restricted solar power (Fig. 1e) uses double the max-

imum permitted cost as otherwise all solar power is

ruled out; this is considered further below. Units are

per ha; for values per m2, multiply by 10�4.

1 W m�2 = 315.576 GJ ha�1 yr�1. Greenland is missing

from crop and solar maps due to data coverage; this is

unimportant due to its poor conditions for power

generation from these sources.

From Fig. 1a, it is evident that Miscanthus is fairly

limited in its spatial distribution, unlike solar and wind

which are able to generate power over most of the

world (Fig. 1b and c). However, production restrictions

have little effect on viable regions for Miscanthus

(Fig. 1d), in contrast with solar (Fig. 1e) and wind

(Fig. 1f) which are both drastically reduced in spatial

extent by these restrictions (note the doubling of cost

restriction in Fig. 1e as mentioned above). Although

wind and solar power have relatively high peak power

outputs in Fig. 1e and f, these are often in remote areas

(such as arctic and desert areas), hence their value is

limited. However, both are also able to generate energy

in more populated areas if restrictions are relaxed

(Fig. 1b and c). To put power generation per unit area

into context, average global demand is around

30 GJ ha�1 yr�1 and varies for each country by a factor

of up to around 10 above or below this value (Mackay,

2008).

Maps of production cost and carbon emissions are

shown in Fig. 2. Miscanthus provides generally low

costs and carbon emissions where it is able to be grown

(Fig. 2a and d). Wind is fairly expensive in many areas

(Fig. 2c), but has generally low carbon emissions

(Fig. 2f). Solar costs (Fig. 2b) and carbon emissions

(Fig. 2e) are generally high and scale very closely with

the inverse of power generation (Fig. 1b) due to the

high manufacturing cost of panels and the assumption

of one-off carbon emissions from manufacture.

Comparison of energy sources

Maps showing which sources provide the highest net

power (with and without accounting for restrictions),

lowest cost and lowest carbon emissions are shown in

Fig. 3. It is evident from Fig. 3a that solar panels are

able to provide the most power almost everywhere;

hence if cost and carbon emissions are not an issue,

solar provides the highest output and best use of space.

However, accounting for available land, cost and carbon

emissions in Fig. 3b, solar power is not currently viable,

and no suitable renewable power source exists across

large parts of the world. Miscanthus provides higher

power output than wind in many areas of Fig. 3b, but

not necessarily higher total power across whole regions

because wind tends to generate more power where it is

productive, as considered below. It should be noted for

Fig. 3c that while solar power is cheapest per unit

energy in many areas, it is still not currently economi-

cally viable, and hence does not appear in Fig. 3b; a

similar explanation holds for carbon emissions from

wind turbines in Fig. 3d. The cost of energy from

Miscanthus is generally lowest of all the sources where it

can be grown, as are carbon emissions, with the notable

exception of large parts of Europe.

Regional totals

Regional net power output, cost, carbon emissions and

required land area for each source are shown in Fig. 4,

accounting for production restrictions. Values for exist-

ing power consumption (2008) are also displayed, taken

from DOE/EIA (2011). Land use in Fig. 4a is the area of

land suitable for each source according to production

criteria, all of which is required to generate the net

power in Fig. 4d. Results for double the maximum per-

mitted cost are also presented to show the scope of

halving production costs or doubling energy prices.

From Fig. 4d it is clear that raising the maximum per-

mitted cost is necessary to satisfy existing power

demand without increasing the already high assumed

land use fraction or converting protected land. Without

raising cost restrictions, around 30% of existing global

demand is met, although much of this comes from wind

in relatively inaccessible areas (Fig 1f). The result is

around 10 times larger than the current figure for the

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 5, 513–524
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considered sources (REN21, 2011), and is around double

of what is currently provided by all renewable sources,

the vast majority being from traditional biomass (such

as wood burning) and hydroelectricity (IPCC, 2011;

REN21, 2011), which are not considered in this study.

Costs in Fig. 4b are at the lower end of expected

values (IPCC, 2011) due to neglecting conversion of

biomass into usable energy, energy storage and trans-

mission. Power generation is generally very similar to

previous predictions for global totals (IPCC, 2011).

Negative carbon emissions from Miscanthus in Fig. 4c

are due soil carbon gains owing to the exclusive use of

previously cultivated land. This assumes carbon capture

and storage and a recent conversion of land to Miscan-

thus plantation; negative emissions would decrease in

magnitude with time.

Future bioenergy production vs. demand

Net power and land requirements for Miscanthus using

projected climate data are shown in Fig. 5, assuming

the same cost, carbon and land use restrictions as previ-

ously defined; projected power demand is also dis-

played, using data from DOE/EIA (2011). Regional

changes in bioenergy production largely cancel out at a

global scale, and when compared against projected

demand, it appears that bioenergy will only be able to

provide a decreasing fraction of future power consump-

tion (Fig. 5b). It is worth noting that changes in power

generation are predominantly due to changes in land

areas that are suitable for Miscanthus to grow, rather

than changes in the power output per unit area from

the crop; this is evident from the correlation of both

graphs in Fig. 5. Possible improvements due to crop

breeding are ignored.

Sensitivity to policy assumptions

To examine the effects of different technology and

policy assumptions, values for net power, land use,

mean cost and mean carbon emissions are presented in

Fig. 6 with varying lifespan (i.e. the time period each

energy source remains productive before needing

replacement), cost and carbon restrictions. Results are

presented relative to those obtained from the maximum

rescaling of each parameter. Solar panel results are only

presented for changing cost restriction because power

generation remains zero when varying other parame-

ters. Varying the land fraction has a simple linear effect

on power output, and no effect on mean cost and

carbon emissions, as discussed in the Materials and

methods section (results not shown for simplicity).

(b)

(c)

(a)

(e)

(f)

(d)

Fig. 1 Global distribution of power generation. Maps of unrestricted mean net power density (climate 1961–1990) for: (a) Miscanthus,

(b) PV solar panels and (c) wind turbines, all in GJ ha�1 yr�1; corresponding maps of mean net effective power density (climate 1961–

1990) accounting for land use, cost and carbon restrictions for: (d) Miscanthus, (e) PV solar panels (with double cost permitted) and (f)

wind turbines, all in GJ ha�1 yr�1. Grey areas indicate no power generation.
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Decreasing lifespan lowers average carbon emissions

per unit energy from Miscanthus, as the combination of

restrictions means it can only be grown in increasingly

productive areas (due to the fixed energy overhead of

unproductive initial years). Increasing lifespan causes a

large reduction of wind carbon emissions due to one-off

manufacturing emissions (a similar case would hold for

solar panels). Cost is brought down for all energy

sources by increasing lifespan, but with ever-diminish-

ing returns; power generation and suitable land area

similarly increase with lifespan. There are no downsides

to increasing lifespan (assuming increased lifespan is

not at the expense of other aspects of production, such

as manufacturing efficiency and embedded carbon), and

it is of most value in reducing carbon emissions from

wind turbines.

Increasing permitted carbon emissions has almost no

effect on wind power generation, and little effect on

bioenergy productivity. The small increase in crop

power generation is associated with a large increase in

cost, required land area and, particularly, carbon emis-

sions; the extra power evidently comes from marginal

areas which generate little power per unit area, and

hence are more expensive and less carbon efficient.

Increasing permitted carbon emissions therefore

appears to have very little benefit.

Increasing permitted cost (equivalent to reducing

production cost) has very little effect on bioenergy

above current levels, suggesting that production cost is

not a limiting factor over present conditions (for bio-

mass production, at least). With wind power, the effect

of increasing permitted cost has a fairly even effect on

power generation, cost and carbon emissions, hence

achievable wind power could be viably increased by

lowering production costs. However, solar power

displays by far the greatest response to increasing

permitted cost; power output increases vastly over a

very small range of change in cost, displaying very

large returns on relaxing cost restrictions. Within a

small percentage change in costs, solar power changes

from not being viable to being hugely productive.

Discussion

Bioenergy compared with other renewables

Miscanthus is both unable to satisfy existing demand

and generally makes the least efficient use of land

(Fig. 4). It is unlikely to increase in productivity either

through changes in policy (Fig. 6) or climate (Fig. 5); it

is also worth noting that irrigation and fertilisation have

previously been shown to be limited in scope to

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2 Global cost and carbon emissions. Maps of mean cost per unit energy up to 100$ MJ�1 for: (a) Miscanthus, (b) PVsolar panels

and (c) wind turbines, all in$ MJ�1; maps of mean carbon emissions up to 30 kg C MJ�1 for: (d) Miscanthus, (e) PV solar panels and

(f) wind turbines, all in kg C MJ�1.
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(a)

(b)

(c)

(d)

Fig. 3 Global comparison of energy sources. Maps of which source provides: (a) highest power output per unit area, (b) as (a) but

accounting for restrictions (without doubling permitted cost for solar panels), (c) lowest cost per unit energy and (d) lowest carbon

emissions per unit energy (white areas denote no suitable power source).

(a) (c)

(b) (d)

Fig. 4 Regional totals. Graphs of regional totals (climate 1961–1990) – note that the Asian region includes Russia, Oceania and the

Middle East – for: (a) land use, (b) cost per unit energy, (c) carbon emissions per unit energy and (d) net power (n.b. log scale) (hatch-

ing denotes double maximum cost restriction; white bars in Fig. 4d show power demand from DOE/EIA (2011)).
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improve yields (Ercoli et al., 1999; Beringer et al., 2011).

Using 10% of suitable arable land to grow Miscanthus

(which equates to around 6% of all arable land) gener-

ates less than 5% of total power demand (Fig 4). Hence,

if all suitable arable land were converted to grow

Miscanthus, it would provide less than half of current

demand. However, it can in some cases remove atmo-

spheric carbon in the initial years of establishment

(Fig. 4; the effect of this would be permanent if com-

bined with carbon capture and storage technology), is

cheap to grow (Fig. 3), and may be of use at a local

scale for heat or power generation or a combination of

both. Since many of the most productive areas for

Miscanthus occur in less developed countries, it is possi-

ble that bioenergy crop farming could aid sustainable

development (Mathews, 2007). However, because areas

of high yield also largely coincide with natural forests,

it is essential that natural habitats are not converted (as

avoided in this study), as this would not only reverse

carbon benefits but would also result in many other

harmful consequences (Searchinger et al., 2008). Predic-

tions of potential benefits for developing areas must

also be balanced by the current situation of biofuels

often benefitting developed countries at huge detriment

to people in poorer areas (Rice, 2010). Although only

Miscanthus has been considered in this study, we

believe that the use of other bioenergy crops to exploit

local conditions would have only a small effect on

overall yield relative to total demand (Beringer et al.,

2011).

It should be noted that the cost estimates for Miscan-

thus are particularly lenient. Fairly old values have been

used, which will tend to underestimate actual costs,

especially due to rising fuel prices. Fertilisation costs

have also been neglected, although they are likely to be

relatively low. Furthermore, results for carbon emis-

sions have assumed the use of carbon capture and

storage, which is not only an immature technology but

would also significantly increase production costs and

reduce available power, neither of which has been

accounted for in this study.

Our prediction of total yield from a dedicated bioen-

ergy crop is at the low end of many previous global

estimates. Due to our land use restrictions, and consid-

eration of net rather than gross energy, we predict just

under 25 EJ yr�1 from bioenergy, compared with some

previous estimates exceeding 100 EJ yr�1 (Beringer

et al., 2011; Haberl et al., 2011; Nijsen et al., 2011). Our

estimate assumes the use of 10% of suitable arable

land, while previous studies have considered partial

conversion of natural land and forests. Since Beringer

et al. (2011) showed good agreement between their crop

model and the present one, the large differences in

yields are down to land use assumptions rather than

modelling disparities. The totals obtained in previous

studies may be achievable, but the discrepancies

highlight the scale of cultivation required for land-based

bioenergy to generate a significant fraction of global

demand, as our land use assumptions are already high.

Nijsen et al. (2011) predicted yields of 32 EJ yr�1 from

degraded land excluding land currently used for arable,

pasture or forest, while Erb et al. (2012) estimated yields

as low as 26 EJ yr�1 without conservation-related con-

straints, which would lower their prediction further.

This raises the question of whether it is sensible to con-

centrate on using vast areas of land to grow dedicated

bioenergy crops; in comparison to other land-based

renewable energy sources, which generally require less

land per unit energy and have greater power-generating

potential, the value of large scale production of bioener-

gy from dedicated crops is highly debatable. The

limited scope for bioenergy presented here is in line

(a)

(b)

Fig. 5 Future Miscanthus energy. Graphs of future climate pre-

dictions relative to 1961–1990 mean for: (a) land requirement

for Miscanthus, and (b) net power (dashed lines indicate pro-

jected demand, using data from DOE/EIA (2011); note that

Asian and S American projected power demands coincide).
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with the conclusions of other recent studies (German

National Academy of Sciences Leopoldina, 2012).

Wind power is able to provide more power than

Miscanthus and generally uses land more efficiently. It

has higher production costs and carbon emissions per

unit energy (Fig. 4), although these are still relatively

low. While it is more limited in its spatial distribution

than Miscanthus with current restrictions on cost and

carbon emissions, it has the potential to be productive

over far greater areas with these restrictions reduced

(Figs 1 and 6). It should be noted that modelling inaccu-

racy is likely to be the largest for wind power.

Although it appears that solar power is generally not

economically viable given current production costs (as

described in the Materials and methods section), it has

by far the greatest potential of the renewable sources

considered in terms of the magnitude, density and

distribution of power (Figs 1 and 4), and is also the

cheapest power source in many areas (Fig. 3c). With

small increases in permitted maximum cost (equivalent

to falling production costs), realisable power generation

increases rapidly (Fig. 6), and easily satisfies existing

demand at double the cost (Fig. 4), using 10% of suitable

non-cultivable land. However, the distribution of pro-

duction would be highly concentrated in few areas at

this cost limit (Figs 1e and 4d), and because energy

transmission is not accounted for here, it would remain a

significant barrier; this is evidently of major importance,

along with the issue of energy storage. Solar panels are,

however, the only power source considered that has the

ability to satisfy current demand, and could deliver

energy across the globe if cost restrictions were over-

come. The large potential of solar power also means that

it could meet projected future demand (Figs 1a and 5b).

Unlike dedicated bioenergy crops, which use land that is

valuable for many other uses, the proportion of land

used for solar panels could realistically be increased in

many areas, resulting in up to 10 times the productivity

reported here in some regions. Since a large proportion

of existing energy demand is for heating, the usefulness

of water heating solar panels should be noted, which are

significantly cheaper and more efficient than PV panels;

the use of concentrating solar panels to maximise power

output from strategic locations is also important to con-

sider. The study has been conservative in certain aspects

of its estimates of available solar power by assuming

non-angled panels and a fairly low conversion efficiency.

Although solar power has by far the highest carbon

emissions of all the energy sources considered, these are

still on average less than half of fossil fuel emissions per

unit energy (and electric engines are far more efficient

than combustion engines, which would reduce relative

demand; Mackay, 2008), hence its high power delivery

means it has a large potential to mitigate carbon emis-

(a)

(b)

(c)

Fig. 6 Effects of changing lifespan, carbon and cost restric-

tions. Graphs of the normalised effect on each source for

power, cost, carbon emissions and land use by changing: (a)

lifespan, (b) maximum permitted carbon emissions and (c)

maximum permitted cost (solid, total net power; dashed, mean

cost; dotted, mean carbon; dash-dotted, total land). Results only

plotted where rescaling permits power generation.
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sions. However, growth in energy demand may offset

much of this (EMF, 2011).

Power supply

Because carbon emissions and production costs are

mainly overheads which are independent of generated

power for all energy sources, lower prices and lower

carbon emissions per unit energy are closely correlated,

and hence areas of high yield are trebly valuable for

renewable power sources since they minimise land use

requirements, costs and carbon emissions. However,

benefits of distributing renewable sources more evenly

include greater local energy security, shared burden

of land use, and cheaper and more straightforward

transmission of energy. Fluctuations in power supply

are beyond the scope of this study, but it is worth

noting that biomass is reasonably suited to providing a

store of energy, which could compensate for short-term

fluctuations in conditions. Although harvested each

year, the difference in seasons between northern and

southern hemispheres means that globally there would

be two harvests per year.

Future prospects

Given current trends of rapidly increasing population

size and energy usage per capita across the world

(International Energy Outlook, 2011), and the related

need for increased food production (Smith et al., 2010),

it is unlikely that power demand will decrease or that

more land (or even anywhere near as much land) could

be used for bioenergy than considered here without

converting protected land.

Production costs for many aspects of renewable

power are likely to decrease as technologies mature,

and it is likely that policies which target the effects of

carbon emissions will also effectively reduce the cost

of renewable sources due to their potential for carbon

mitigation. While it is possible to obtain relatively

cheap energy from renewable sources, more expensive

energy is required to meet existing demand. It there-

fore seems that the price to users should not be con-

stant, but should increase with usage; this would help

to reduce the cost of energy for those least able to

afford it.

The high sensitivity to cost restrictions for achievable

power from solar panels means that both subsidies

and investment in technology would be particularly

valuable, with advances in conversion efficiency,

lifespan, production methods (Pala et al., 2009) and

reduced land rental all able to vastly increase the

viability of solar power. This would further decrease

the role of bioenergy at a global scale.

This study has emphasized the challenges of

decarbonising the use of energy and the adoption of

land-based renewables. Key areas for further research

include the reduction of cost per unit of energy of solar

and wind power, increasing their lifespan and reducing

their embedded carbon. Bioenergy, while limited in

global output, could be important for well-distributed

small-scale energy use. Furthermore, since land avail-

able for growing bioenergy feedstocks is a major

limiting factor in its production, the exploitation of bio-

energy should focus on uses that produce the highest

net energy per unit area of land. It therefore follows that

research should focus on plant breeding and agronomy

that produces the largest yields per unit area.
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