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Abstract

Understanding and predicting the effects of land-use change to short rotation forestry (SRF) on soil carbon (C) is

an important requirement for fully assessing the C mitigation potential of SRF as a bioenergy crop. There is little

current knowledge of SRF in the UK and in particular a lack of consistent measured data sets on the direct

impacts of land use change on soil C stocks. The ECOSSE model was developed to simulate soil C dynamics

and greenhouse gas (GHG) emissions in mineral and organic soils. The ECOSSE model has already been applied
spatially to simulate land-use change impacts on soil C and GHG emissions. However, it has not been exten-

sively evaluated under SRF. Eleven sites comprising 29 transitions in Britain, representing land-use change from

nonwoodland land uses to SRF, were selected to evaluate the performance of ECOSSE in predicting soil C and

soil C change in SRF plantations. The modelled C under SRF showed a strong correlation with the soil C mea-

surements at both 0–30 cm (R = 0.93) and 0–100 cm soil depth (R = 0.82). As for the SRF plots, the soil C at the

reference sites have been accurately simulated by the model. The extremely high correlation for the reference

fields (R ≥ 0.99) shows a good performance of the model spin-up. The statistical analysis of the model perfor-

mance to simulate soil C and soil C changes after land-use change to SRF highlighted the absence of significant
error between modelled and measured values as well as the absence of significant bias in the model. Overall,

this evaluation reinforces previous studies on the ability of ECOSSE to simulate soil C and emphasize its

accuracy to simulate soil C under SRF plantations.
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Introduction

At the ecosystem scale the average total carbon (C)

stock (including soil) of temperate forest biomes is

approximately 280 t C ha�1 which is equivalent to

1030 t CO2 ha�1. (Saugier et al., 2001; Grace, 2005). To

quantify the Great Britain (GB) woodfuel resource

McKay et al. (2003) carried out a thorough assessment

of the standing biomass in GB forests. Based on the

results presented by McKay et al. (2003), Morison et al.

(2012) reported an average figure for UK woodland C

stock in trees of approximately 209 t CO2 ha�1.

Average soil C for woodland in the UK varies greatly

with soil type, but a GB average value is approximately

859 t CO2 ha�1 (down to 1 m soil depth; Morison et al.,

2012). Morison et al. (2012) also reported that the C in

the litter adds an additional 60 t CO2 ha�1, and that to

this should be added the deadwood or coarse woody

debris component, estimated at 3 t CO2 ha�1 (Gilbert,

2007). Therefore, Morison et al. (2012) suggest that the

average UK woodland C stock is 1131 t CO2 ha�1, about

10% more than the reported temperate biome value.

This figure may be surprising, as much of the woodland

area in the UK is relatively young, but it is largely

because of the large soil C stock in peatland areas

(Morison et al., 2012). Morison et al. (2012) therefore

concluded that the average soil C for GB is 778 t

CO2 ha�1, and the average woodland C stock is then

estimated at 1051 t CO2 ha�1, excluding the deep peat

C stock and areas.

Forest soils usually contain more C than equivalent

soils under cropland, due to repeated mechanical dis-

turbance during cropping, fallow periods, reduced plant

inputs under cropland compared with trees and the

removal of a large fraction of C sequestered by crop
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production in grain (e.g. Mann, 1986; Grigal & Bergu-

son, 1998). Forest soils also usually contain more C than

soils under grassland (Guo & Gifford, 2002). Further-

more, forest C sinks play an important role in the Kyoto

Protocol, both under article 3.3 for afforestation/refores-

tation/deforestation (ARD) activities, and article 3.4 for

forest management activities (Smith et al., 2005). There-

fore, increasing forest areas could help sequester C in

the soil and providing accurate estimates of changes in

forest soil C are of critical importance.

There has been long-standing interest in biomass fuel

in the UK since the 1970s oil crisis. Willow grown as

short rotation coppice (SRC) is the most common

woody perennial crop (Hardcastle, 2006), but other spe-

cies such as poplar and sycamore have also been inves-

tigated. The concept of short rotation forestry (SRF) is

distinct from SRC. The underlying principle is to grow

a plantation at close spacing (up to 5000 plants ha�1)

and then fell it when the trees reach a size that is easily

harvested and handled (Mitchell et al., 1999). Short rota-

tion forestry is considered as encompassing woody

crops grown for between 8 and 20 years, i.e. much

shorter than traditional forestry practice, but longer

than SRC. The aim of SRF is to harvest the crop at an

appropriate age and to remove only the stem wood.

Leaving the plant residues on site may have a positive

impact from the aspect of reduced nutrient removal as

the wood contains less than 10% of the nutrients of the

aboveground biomass of the trees (Hardcastle, 2006).

Following afforestation, changes occur in the quality

and quantity of C inputs (Romany�a et al., 2000; Paul

et al., 2002). The capacity of afforestation to increase soil

C is highly variable, and is dependent on edaphic (e.g.

soil type), climatic (e.g. precipitation) and biotic (e.g.

species choice) factors, as well as land-use history (Paul

et al., 2001; Lagani�ere et al., 2010).

The balance between C inputs, in the form of litter and

root exudates and/or fine root turnover, and losses

through decomposition determines whether the ecosys-

tem is a sink or a source of C. Evaluating the C dynamics

of this type of system requires data on the size of the C

pool, the magnitude of the C input and output fluxes, as

well as information about the mechanisms involved in

controlling flux dynamics. To promote the C sink status

of tree plantations, it is therefore imperative to determine

the mechanisms involved in controlling soil C dynamics

and more specifically in the storage of C in the soil after

afforestation (Lagani�ere et al., 2010). Despite the consid-

erable soil C sequestration potential that afforestation

offers, many studies have reported contradictory find-

ings (McKay, 2011). The magnitude and direction of the

change in soil C after afforestation is strictly dependent

to the previous land use (arable/grassland), the soil

type (mineral/organo-mineral) and land preparation

technique (Murty et al., 2002). Hence, afforestation could

result in either a decrease (Ross et al., 1999; Farley et al.,

2004) or an increase in soil C (Del Galdo et al., 2003), or

had a negligible effect (Davis et al., 2007; Smal &

Olszewska, 2008). Nevertheless, a trend appears to

emerge: afforestation frequently shows an initial loss in

soil C during the first few years, followed by a gradual

return of C to levels comparable to those in the control

soil, and then increasing to generate net C gains in some

cases (Paul et al., 2002; Davis et al., 2007).

Short rotation plantations do not usually replace

undisturbed plant communities, but most often are

established on previously cultivated land, either those

presently under arable crops or under grass cover. In

many cases, this is characterized as ‘marginal crop

land’. Such land is likely to have lost 30% or more of

the original soil C through cultivation and associated

erosion (Grigal and Berguson, 1998). The effect of land-

use to short-rotation biomass plantations on soil C has

become relevant because of links to atmospheric CO2

enrichment, climate change, and related environmental

issues. However, there is little current knowledge of

SRF in the UK and the lack of consistent data sets on af-

forested SRF systems (Rowe et al., 2009), which in turn

is mainly due to inconsistent experimental designs,

sampling methods and/or soil analysis techniques,

results in high uncertainty on the effect of land-use

change to SRF on soil C.

Soil C sequestration is often estimated using numeri-

cal soil/ecosystem models. There are many types of soil

C decomposition models including: (i) single pool first

order decomposition rate models, (ii) food-web models

using nitrogen (N) and C interchanges between soil

organisms, (iii) cohort models describing decomposition

as a continuum and (iv) process based multicompart-

ment models such as RothC (Coleman & Jenkinson,

1999). These models have varying levels of complexity

and their utility will depend on the data sets available

for their parameterization (Dondini et al., 2010).

Several models have been developed in an attempt to

quantify C from a vast range of mineral soils. Process-

based models have been developed from an under-

standing of how soil C is affected by soil properties,

land management and weather fluctuations. Incorpora-

tion of these detailed processes and levels of under-

standing means these process-based models are

important, and often successful at predicting not just

soil C but also greenhouse gas (GHG) emissions at site

level (Bell et al., 2012). However, model testing is often

limited by a lack of field data to which the simulations

can be compared (Desjardins et al., 2010).

The requirement to simulate the C and N cycles using

minimal input data on both mineral and organic soils

led to the development of the ECOSSE model (Smith
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et al., 2010a, b). ECOSSE is a process-based model

designed to simulate soil C and N dynamics and GHG

emissions from mineral and organic soils using only

data that are commonly available at a regional scale

(Bell et al., 2012). The ECOSSE model has already been

validated and applied spatially to simulate land-use

change impacts on soil C and GHG emissions over dif-

ferent soil types, to simulate soil C change under energy

crops and to simulate soil N and nitrous oxide (N2O)

emissions in cropland sites in Europe (Smith et al.,

2010b; Bell et al., 2012). However, it has not previously

been evaluated against a range of soils with varying

organic content under SRF plantations across GB.

This article presents a field evaluation of ECOSSE and

its suitability for estimating soil C from British SRF soils

after land-use change from conventional nonwoody sys-

tems (grassland with the exception of one field site

which was arable). If measured and modelled values

are in agreement, the user can have more confidence

that the model will correctly simulate the processes.

Evaluation of process-based models is often made diffi-

cult due to lack of data from suitable study sites. The

provision of data from eleven paired field sites in Brit-

ain means that the mechanistic processes of ECOSSE

can be evaluated thoroughly in this study.

Materials and methods

ECOSSE model

The ECOSSE model includes five pools of SOM, each decom-

posing with a specific rate constant. Decomposition is sensitive

to temperature, soil moisture and vegetation cover, and so soil

texture, pH, bulk density and clay content of the soil along with

monthly climate and land-use data are the inputs to the model

(Coleman & Jenkinson, 1996; Smith et al., 1997). The ECOSSE

model simulates C and N cycle for four categories of vegetation:

arable, grassland, forestry and seminatural. Short rotation for-

estry is commonly considered as encompassing woody crops,

therefore it is included in the forestry category of the model.

The soil input of the vegetation (SI) is estimated by a modifi-

cation of the Miami model (Lieth, 1972), which is a simple con-

ceptual model that links the climatic net primary production of

biomass (NPP) to annual mean temperature (T) and total pre-

cipitation (P) (Grieser et al., 2006). Separate estimates are

obtained for NPP as a function of temperature (NPPT) and pre-

cipitation (NPPP) according to empirical relationships, and the

Miami estimate of NPP is found as the minimum of these two

estimates. In the present study, NPP is rescaled for each land

cover type; for forest the rescaling factor is 7/8 of the Miami

NPP estimate (Del Grosso et al., 2008) and the SI is then esti-

mated as a fixed proportion of the NPP according to the land

cover (value for forest is 0.15; Schulze et al., 2010). The linear

rescaling of the nonlinear Miami functions is reasonable given

the near-linear behaviour of the Miami functions in the temper-

ature and precipitation range of the UK.

For a full description of the ECOSSE model refer to Smith

et al. (2010a).

The specific ECOSSE input requirements for large scale sim-

ulations are:

Climate/atmospheric data:

● 30 year average monthly rainfall, potential evapotranspira-

tion (PET) and temperature,

● Monthly rainfall, temperature and potential evapotranspira-

tion.

Soil data:

● Initial soil C content,

● Soil sand, silt and clay content,

● Soil bulk density,

● Soil pH.

Land-use data:

● Land-use for each simulation year.

The initialization of the model is based on the assumption

that the soil column is at a stable equilibrium under the initial

land use at the start of the simulation. The model uses esti-

mated yearly plant inputs and measured initial soil C to esti-

mate a soil turnover rate which would maintain this

equilibrium. Estimated plant inputs were calculated from a

combination of the net primary production (NPP) model

MIAMI (Lieth, 1972, 1973) and land management practices of

the initial land use. The decomposition rate modifier, required

to modify the overall turnover rate, was estimated by numeri-

cally solving the analytical solution of the decomposition equa-

tions (Bradbury et al., 1993). The solution was found using an

iterative method, using long-term climate data, updating the

decomposition rate modifier until the system converges to a

stable equilibrium and the change in soil carbon was zero. This

method produces relative carbon pool sizes of the decompos-

able plant material, resistant plant material, microbial biomass

(BIO) and humified organic matter, which along with immobile

soil C, is summed up to the measured soil C (Wong et al.,

2013).

Data

In 2011/2012, 11 sites were sampled in Britain using a paired

site comparison approach (Keith et al., 2013). The sites and the

relative measurements contribute to the ELUM (Ecosystem

Land Use Modelling & Soil Carbon GHG Flux Trial) project,

which was commissioned and funded by the Energy Technolo-

gies Institute (ETI). Each site consisted of one reference field

(arable or grassland, depending on the previous land-use of

the SRF fields) and one or more adjacent SRF fields, for a total

of 29 transitions to SRF (Table 1). The tree species included in

the present study are: Alder (Alnus incana and A glutinosa),

Ash (Fraxinus excelsior), Downy birch (Betula pubescens),

Hybrid larch (Larix x eurolepis), Poplar (Populus spp.), Scots

pine (Pinus Sylvestris), Shining gum (Eucalyptus nitens), Cider

gum (Eucalyptus gunni), Silver birch (Betula pendula), Sitka

spruce (Picea sitchensis) and Sycamore (Acer pseudoplatanus).

A full description of the sites can be found in Keith et al.
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(2013). The change in soil C was assumed to be the difference

in the forested and nonforested pair.

Measurements of soil C, soil bulk density and soil pH, as

well as information on the land-use history, were collated for

each field. A full description of the field sampling approach is

described in Keith et al. (2013). Briefly, for each field, 15 soil

cores to 30 cm depth were taken using a split tube soil sampler

with an inner diameter of 4.8 cm. A further, three deep cores

to 1 m were taken using a window sampler system with an

inner diameter of 4.4 cm. Samples were analysed for %C using

a LECO Truespec CN analyser.

Air temperature and precipitation data at each location were

extracted from the E-OBS gridded data set from the EU-FP6

project ENSEMBLES, provided by the ECA&D project (Haylock

et al., 2008). This data set is known as E-OBS and is publicly

available (http://eca.knmi.nl/). For each location, monthly air

temperature and precipitation for each simulated year was col-

lated and a long-term average was also calculated (Table 2).

Monthly PET was estimated using the Thornthwaite method

(Thornthwaite, 1948), which has been used in other modelling

studies when direct observational data has not been available

(e.g. Smith et al., 2005; Yokozawa et al., 2010; Bell et al., 2012).

Soil texture data for the sites (Table 3) were extracted from

the ‘Falloon’ soil database (1 km resolution) which is a collated

soils data set for England and Wales, Scotland and Northern

Ireland described in Bradley et al. (2005), and termed ‘Falloon’

as it was first used to run RothC in support of the Land-Use

Change and Forestry (LULUCF) inventory (Falloon et al., 2006).

Model evaluation

At each site, each transition from conventional crop (arable or

grassland) to SRF was modelled and the simulated soil C was

compared with the measured soil C. Based on the site informa-

tion provided, the measured soil C at each reference arable/

grassland site was used as the starting C input to the model,

assuming that the soil at the reference site had been in equilib-

rium before the transition to SRF. All model parameters have

been maintained unvaried; therefore, the presented results are

a test of the ability of the model to simulate soil C under SRF

as well as change in soil C from grassland/arable.

The model was evaluated using input data of measured soil

C at the start of the simulation, bulk density and soil texture

from the ‘Falloon’ soil database. The simulations were done for

0–30 cm and 0–100 cm soil depth.

A quantitative statistical analysis was undertaken to deter-

mine the coincidence and association between measured and

modelled values, following methods described in Smith et al.

(1997) and Smith & Smith (2007). The statistical significance of

the difference between model outputs and experimental obser-

vations can be quantified if the standard error of the measured

values is known (Hastings et al., 2010). The standard errors

(data not shown) and 95% confidence intervals around the

mean measurements were calculated for all field sites.

The degree of association between modelled and measured

values was determined using the correlation coefficient (R).

Values for R range from �1 to +1. Values close to �1 indicate a

negative correlation between simulations and measurements,

values of 0 indicate no correlation and values close to +1 indi-

cate a positive correlation (Smith et al., 1996). The significance

of the association between simulations and measurements was

assigned using a Student’s t-test as outlined in Smith & Smith

(2007).

The average size of the error was calculated as the root

mean squared deviation (RMS) (Smith et al., 2002). This is the

average total difference between measured and modelled

Table 1 Details of vegetation type, duration of the SRF stands

since transition and location of the study sites

Site no.

Transition unit

(previous land

use in bold)

Duration of the

SRF stands since

transition to year

of sampling

(years)

Latitude,

Longitude

1 Arable 55.2, �1.5

Eucalyptus gunnii 8

Eucalyptus nitens 8

2 Pasture 52.0, �3.6

Hybrid larch 23

Sycamore 23

3 Rough pasture 54.3, �0.5

Alder 56

Scots pine 58

Silver birch 56

Beech 56

4 Rough pasture 53.34, �1.0

Eucalyptus gunnii 6

Eucalyptus nitens 6

5 Rough pasture 57.6, �3.2

Downy birch 13

Silver birch 13

Sitka spruce 12

6 Pasture 57.7, �3.3

Poplar 17

Alder 15

Ash 15

7 Rough pasture 54.0, �2.4

Alder 55

Scots pine 55

Sitka spruce 20

8 Pasture 56.9, �2.6

Sycamore 23

Scots pine 23

Hybrid larch 23

9 Pasture 55.8, �3.6

Alder 21

Poplar 21

Sitka spruce 21

10 Pasture 54.7, �2.8

Ash 4

Sycamore 4

Alder 4

11 Rough pasture 56.1, 3.6

Scots pine 4
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values and is expressed in the same units as the analysed

data. The lower the value of RMS, the more accurate was the

simulation.

The bias was expressed as a percentage using the relative

error, E. The significance of the bias was determined by

comparing to the value of E that would be obtained at the 95%

Table 2 Long-term (30 years) monthly rainfall and temperature at the location of the study sites

Month

Rainfall (mm/month)

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 Site 11

January 52.6 134.5 61.2 48.3 52.0 57.1 142.7 70.2 126.0 138.9 102.7

February 44.3 104.7 47.8 37.3 51.1 53.8 102.9 61.5 96.9 98.7 72.6

March 48.4 96.5 48.6 40.6 45.9 45.3 107.8 54.5 85.2 101.1 74.2

April 47.2 82.1 47.9 45.4 44.9 47.7 82.9 54.2 61.8 68.3 52.6

May 46.1 75.7 49.3 45.2 49.1 51.3 81.3 53.7 61.8 69.4 60.9

June 58.4 75.4 55.9 60.3 55.5 57.2 87.4 58.2 67.0 72.6 60.2

July 59.3 96.4 58.5 46.6 57.2 63.0 96.6 60.6 76.6 83.8 66.6

August 62.6 97.9 68.0 53.0 62.9 63.7 117.0 66.8 86.2 94.9 76.9

September 58.1 95.3 59.4 49.2 61.9 68.2 120.3 62.7 85.2 101.2 84.4

October 62.4 144.9 60.7 55.9 79.6 80.7 141.2 97.7 121.5 134.5 100.1

November 69.0 141.8 69.5 52.6 65.8 72.0 142.6 84.4 113.0 136.0 93.8

December 58.5 138.5 64.7 52.0 55.4 58.9 150.5 67.5 112.2 138.1 91.1

Month

Temperature (°C month�1)

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 Site 11

January 6.6 3.9 2.9 4.1 3.6 3.3 2.2 2.9 3.4 2.3 2.9

February 7.0 4.1 3.0 4.4 3.8 3.5 2.3 3.1 3.9 2.6 3.13

March 9.2 5.5 4.8 6.5 5.2 4.9 4.0 4.5 5.5 4.1 4.88

April 11.5 7.3 6.9 8.6 7.3 7.3 6.3 6.4 7.8 6.3 7.16

May 14.2 10.5 9.9 11.6 9.7 9.6 9.3 9.0 10.5 9.4 9.9

June 17.0 12.8 12.8 14.5 12.3 12.3 12.1 11.8 13.0 12.0 12.8

July 19.4 14.7 14.8 16.7 14.3 14.3 13.8 13.7 14.7 14.0 14.4

August 19.2 14.7 14.9 16.5 14.1 14.1 13.6 13.5 14.6 13.6 14.2

September 16.7 12.6 12.9 14.1 12.0 12.1 11.6 11.4 12.3 11.3 11.9

October 12.9 9.7 9.7 10.6 9.0 9.0 8.6 8.2 9.0 8.3 8.9

November 9.2 6.5 5.8 6.9 5.8 5.8 5.0 5.0 5.9 5.0 5.3

December 6.9 4.1 3.7 4.4 3.2 2.9 2.9 2.6 3.0 2.8 3.2

Table 3 Measured soil C, measured bulk density, percentage of clay, silt and sand at 0–30 cm and 0–100 cm soil depth for the refer-

ence fields

Site Reference field

0–30 cm soil depth 0–100 cm soil depth

Soil C

(t C ha�1)

Bulk

density

(g cm�3) Clay (%)* Silt (%)* Sand (%)*
Soil C

(t C ha�1)

Bulk

density

(g cm�3) Clay (%)* Silt (%)*

Sand

(%)*

1 Arable 112.0 1.3 23 33 44 151.9 1.3 39 33 29

2 Pasture 76.2 0.9 23 49 29 81.0 1.0 23 51 26

3 Rough Pasture 101.4 0.6 6 29 64 115.3 1.1 4 25 71

4 Rough Pasture 54.0 1.2 8 17 75 64.5 1.4 4 9 87

5 Rough Pasture 94.6 0.8 10 24 66 169.6 1.0 10 24 66

6 Pasture 39.3 1.1 8 22 70 58.0 1.2 6 15 79

7 Rough Pasture 117.2 0.7 23 33 44 239.6 1.2 23 36 42

8 Pasture 80.7 0.7 9 33 58 90.6 0.9 8 29 62

9 Pasture 122.9 1.0 20 27 52 285.5 1.2 25 29 46

10 Pasture 83.0 1.0 19 30 51 164.8 1.0 29 32 39

11 Rough Pasture 83.2 1.2 5 56 39 123.9 1.2 5 58 37

*Data extracted from ‘falloon’ soil database.
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confidence interval of the replicated values (E95). If the relative

error E < E95, the model bias cannot be reduced using these

data.

Analysis of coincidence was undertaken to establish how

different the measured and modelled values were. The degree

of coincidence between the modelled and measured values was

determined using the lack of fit statistic (LOFIT) and its signifi-

cance was assessed using an F-test (Whitmore, 1991) indicating

whether the difference in the paired values of the two data sets

is significant. All statistical results were considered to be statis-

tically significant at P < 0.05.

Results

The model simulations of soil C showed a good fit

against the measured soil C, for both reference (Fig. 1)

and SRF fields (Fig. 2), at 0–30 cm soil depth.

All the reference sites have been simulated for a time-

period of ≥30 years without any land-use change and

using the field measurements as inputs to the model.

Based on the site histories, we assumed that all the ref-

erence sites were in equilibrium at the time of sampling.

The R value (1) of the reference sites at 0–30 cm soil

depth showed a significant (P < 0.05) association

between modelled and measured values, as well as no

significant model bias (E < E95).

Figure 2 shows the correlation between modelled and

measured soil C at the SRF fields, at 0–30 cm soil depth.

Overall, the modelled soil C is highly correlated with

the measured C (Table 4). The R value (0.93) showed a

significant (P < 0.05) association between modelled and

measured values.

The ECOSSE model simulates SRF as a single wood-

land vegetation type, but at all sites, with the exception

of Site 11, more than one SRF species was sampled.

Therefore, for each site, a single model simulation has

been correlated with more than one measurement. To

avoid the lack of consistency between the number of

model simulations and site measurements, the results of

each SRF species sampled at the same site have been

averaged and the results of the 0–30 cm soil depth pre-

sented in Figure 3.

At most of the sites, the modelled soil C at 0–30 cm

soil depth was within the 95% confidence interval of the

measured soil C (error bars in Fig. 3). At Site 1 and Site

4, the model estimated a higher soil C content compared

with the measured values (112.1 t C ha�1 vs. 95.8 t

C ha�1, 52.5 t C ha�1 vs. 43.1 t C ha�1, respectively),

while for Site 10 the model simulated a lower accumula-

tion of C compared with the site measurements taken

4 years after conversion from pasture (82.2 t C ha�1 vs.
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89.5 t C ha�1). However, modelled soil C under SRF

showed a good fit against soil measurements, with an

overall correlation value of R = 0.93 (Table 4).

The calculated statistical analysis of the model perfor-

mance indicated that there is no significant model bias

(E < E95) to simulate SRF and averaged SRF data. Simi-

larly, the LOFIT values showed that the model error

was within (i.e. not significantly larger than) the mea-

surement error (F < F (critical at 5%)).

The model simulations of the soil C at 0–100 cm soil

depth again showed a good correlation with the mea-

sured soil C, for both reference (R = 0.99, Fig. 4) and

SRF fields (R = 0.82, Fig. 5). Although the correlation

between modelled and measured soil C at the SRF sites
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Fig. 2 Comparison between modelled and measured soil C at the SRF sites at 0–30 cm soil depth. Error bars represent 95% CI of

measured values. Dotted line represents 1 : 1 correlation between measured and modelled values. SRF species are represented by

different colours.

Table 4 ECOSSE model performance at simulating soil C and soil C changes (DC) at the reference, SRF and averaged SRF fields for

two soil depths (0–30 cm and 0–100 cm). Averaged SRF represents statistical analysis on averaged soil C values of the SRF fields at

each site. Averaged DC represents averaged change in soil C of the SRF fields at each site. Association is significant for t > t (at

P = 0.05). Model bias is not significant for E < E95. Error between measured and modelled values is not significant for F < F (critical

at 5%)

R t value t value at P = 0.05 E

E

(95% Confidence Limit) F value

F value

(Critical at 5%)

0–30 cm Reference 1.00 52.02 2.26 0 24 0.00 2.03

SRF 0.93 13.48 2.05 �4 27 0.00 1.55

Averaged SRF 0.96 10.58 2.26 �4 16 0.00 2.03

Averaged DC 0.66 2.61 226 93 �2003 0.18 2.03

0–100 cm Reference 0.99 17.84 2.26 0 58 0.00 2.03

SRF 0.82 7.23 2.06 �3 72 0.01 1.56

Averaged SRF 0.87 5.39 2.26 �13 52 0.02 2.03

Averaged DC 0.72 3.15 2.26 91 �1068 0.07 2.03
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was lower for the whole 100 cm soil profile compared

with the 0–30 cm soil depth (Table 4), the statistics of

the soil C at the 0–100 cm soil depth reflected the good

model performance found for the top soil layer, with a

high correlation between modelled and measured val-

ues and no significant bias (Table 4).

The results of each SRF species sampled at the

same site have been averaged and the results are pre-

sented in Figure 6; the modelled and measured soil C

at 0–100 cm soil depth followed the same correlation

among sites as for the 0–30 cm soil depth. The only

exceptions are Site 5, Site 6, Site 9 and Site 11. The

model underestimates the soil C at Site 5 and 9 by

about 15–20% of the measured values; whereas for

Sites 6 and 11 the model overestimates the soil C at

0–100 soil depth by about 50% and 30%, compared

with the measured values.

The change in soil C (DC) has been calculated as the

difference between the soil C at the SRF and the soil C at

the reference site and the results are presented in

Figures 7 and 8. These results are important as they

directly show the effect of the land-use transition itself.

At 0–30 cm soil depth, the DC was within the 95% confi-

dence intervals of the measured values (Fig. 7). Site 1

was the only site where the DC was not accurately

simulated by the model. At Site 1, the land-use change

from arable has led to a decrease in soil C (16.3 t C ha�1)

after 8 years of land-use conversion to SRF; whereas, the

results of the model simulations at Site 1 showed a small

increase in soil C (0.6 t C ha�1) after the transition.

Overall, at 0–100 cm, the DC simulated by the model

followed the same direction of soil C change as the sim-

ulated values (Fig. 8). The DC simulated by the model

is within the 95% confidence intervals of the measured

values at four sites (Site 3, Site 7, Site 8 and Site 9;

Fig. 8). The seven sites where the model did not match

the measurements have all been established recently

(2004–2008).

Despite a lower correlation between modelled and

measured soil C changes compared with the soil C,

the simulated changes in soil C are well-associated

with the measured values, with a correlation factor of

0.66 and 0.72, at 0–30 cm and 0–100 cm soil depth,

respectively. Furthermore, the statistical analysis on

the DC showed no model bias (E < E95) and a good

coincidence [F < F (critical at 5%)] between modelled

and measured changes in soil C after transition to SRF

(Table 4).
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Discussion

The results of the present work revealed a strong corre-

lation between modelled and measured soil C and soil C

changes to SRF plantations, at two soil depths (Table 4).

Smith et al. (2010a) presented an evaluation of the ECOS-

SE model to simulate soil C at national-scale, using data

from the National Soil Inventory of Scotland. This data

set provided measurements of soil C and soil C change

for the range of soils, climates and land-use types found

across Scotland. The results of the present work are in

agreement with the publication of Smith et al. (2010a),

which reported a high degree of association of the EC-

OSSE modelled values with the measurements in both

total C and change in C content in the soil.

As for the SRF plots, the soil C at the reference sites

have been accurately simulated by the model. The extre-

mely high correlation for the reference fields shows a

good performance of the model spin-up. The spin-up is

used by the model to reach a state of equilibrium under

the specified inputs. However, it is important to stress

that it does not confirm that the reference sites are in an

equilibrium condition. Together, these results confirm

the good performance of the initialization method and

the efficiency of the ECOSSE model in simulating soil C

under SRF.

Previous studies on ECOSSE have used large spatial

data sets (Smith et al., 2009, 2010a, b) to evaluate the

model accuracy to simulate soil C. The present work is

the first study to utilize measured soil C at 11 different

paired-sites in GB, to accurately test the ECOSSE model

performance in simulating soil C and soil C changes to

SRF plantation. The statistical analysis on results at both

soil depths (0–30 cm and 0–100 cm soil depths) revealed

no significant error between modelled and measured

soil C and soil C changes, as well as no model bias,

which suggests that the model cannot be further

improved with the available data.

This is a promising result, given that this work is an

independent evaluation of ECOSSE and therefore, the

model had not been further improved or parameterized

to produce the outputs presented in this article.

Despite the good overall results, the analysis of the

correlation between modelled and measured soil C at

specific sites showed that the model under/overesti-

mated the measured soil C at some of the SRF sites

(Fig. 3 and 6). Since the change in soil C was deter-

mined as the difference between the soil C at the SRF

sites and the paired reference sites, such error was also

propagated in the soil C changes values (Fig. 7 and 8).

This low correlation between measured and modelled

soil C is particularly manifested when comparing the
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soil C values of the whole soil profile (0–100 cm soil

depth). One reason of the higher model inaccuracy at 0–

100 cm compared with the 0–30 cm soil depth is the dif-

ference between the soil sampling procedures. In fact,

only three soil replicates were taken at one meter depth,

which generated a higher measurement uncertainty

compared with data presented for the 0–30 cm soil

depth (n = 15).

The young age of SRF plantations is also a factor that

affected the simulation of the soil C. The majority of

transitions were less than 24 years old and four of the

eleven sites were less than 9 years old (e.g. Site 1, 4, 10

and 11). The decrease in the model accuracy to simulate

the soil C at some sites could therefore be caused by the

imprecision of the processes described in the model to

capture the fast decrease in soil C that occurs during

the first years of cultivation. Similar issues to capture

the decrease in soil C after afforestation were reported

for the parent model, RothC, by Romany�a et al. (2000).

Romany�a et al. (2000) concluded that the soil organic C

that has become physically protected before land-use

change loses its protection from decomposition when

the soil is converted to a new vegetation cover.

This process is not sufficiently described in the ECOS-

SE model, and could explain the loss in soil C after

land-use change measured at some experimental sites.

It is important to notice that at each sampled site, differ-

ent SRF species have been sampled and this could have

also led to differences in soil C accumulation/depletion

compared with the model simulations, which in turn

led to differences in soil C changes values. At Site 5, for

example, the soil was sampled on a Sitka spruce site

together with two birch sites. The Sitka spruce site accu-

mulated an extremely high amount of soil C in 11 years,

especially at the 30–100 cm soil depth (122 t C ha�1),

but such high C content in deep soil layers was not cap-

tured by the model. Previous studies on the effect of

conversion from pasture to forest on soil C have shown

contrasting results on the direction and rate of change

in soil C after land-use change (Guo & Gifford, 2002;

Poeplau et al., 2011; Poeplau & Don, 2013). A meta

analysis on the influence of land use change on soil C

concluded that when established pastures switch to for-

est, soil C stocks decline under pine plantation, but are

unaffected by broadleaf plantations and that the time

since conversion occurred influences the soil C stocks

(Guo & Gifford, 2002). A recent review of 95 studies on

the dynamics of soil C after land use change in temper-

ate zone (Poeplau et al., 2011) reported that the cultiva-

tion of grassland or forest caused rapid soil C losses

and the accumulation of soil C was a slow and continu-

ous process after establishment of grassland and affor-

estation of cropland. Finally, Poeplau & Don (2013)

used a paired side approach on selected sites across

Europe to measure changes in soil C after different land

use change types. In particular, they found a significant

accumulation of soil C after conversion of cropland to

forest and no significant effect on the soil C converting

grassland to forest.

Another common source of error when studying soil

C, and particularly soil C changes after transition to a

new vegetation system, is the selection of paired sites

(Davis and Condron, 2002). Inexact pairing is a frequent

source of discrepancy, which is mainly due to the lack

of information on the land-use history of fields (Goidts

et al., 2009). In our study, 29 transitions have been simu-

lated based on extended information on the selected

sites. The only improper pair was found at Site 6. At

this site the reference field was an arable crop, which

was converted to pasture in 1994. The pasture site was

sampled as a reference site, but was planted at the same

time as the SRFs (1994–1996), therefore it is not a good

reference for this site. In fact, the measurements showed

a lower soil C under the SRFs compared with the refer-

ence site, while the model predicted around the same C

content at the two paired sites.

In the present study, a range of SRF species has been

modelled, including Eucalyptus (Site 1 and 4). However,

the results of the modelled soil C did not agree with the

measured values at either Eucalyptus sites or at either

soil depth. In addition, at site 1, the establishment of

Eucalyptus species involved the use of strip plastic

mulch mats for weed suppression, which may have led

to a reduction in volume of leaf litter material being

incorporated into the humic soil horizon. There is very

little research from Europe and GB on Eucalyptus litter

and soil chemistry effects (Hardcastle, 2006). It has,

however, been reported that the various species of Euca-

lyptus have widely different canopy density and poten-

tial growth rate (Pryor, 1976), which affect the soil C

behaviour under this SRF species. The ECOSSE model

has previously been parameterized for forest as a land

use category (Smith et al., 2010a), but no parameteriza-

tion have been made for exotic species such as Eucalyp-

tus. It is therefore likely that the model does not

describe the soil C behaviour under Eucalyptus as well

as under the other SRF species reported in the present

work. Further model developments are therefore needed

to include this vegetation type in the model parameters.

This article reinforces previous studies on the ability

of ECOSSE to simulate soil C and N and test its accu-

racy to simulate changes in soil C after land-use change

to SRF. The use of this process-based model is an

improvement on empirical models, with simulations of

aggregate monthly data producing high degrees of asso-

ciation with measured data. With further modification

to capture the decrease in soil C which often occurs in

the early stage of a new transition and with better
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parameterization for Eucalyptus and coniferous species,

ECOSSE would be expected to be a very useful tool for

quantitatively predicting the impacts of future land-use

on soil C, GHG emissions and climate change.
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