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Improving accuracy of downscaling rainfall by combining predictions of 

different statistical downscale models 

 

Abstract 

A flexible framework of multi-model of three statistical downscaling approaches was 

established in which predictions from these models were used as inputs to Artificial Neural 

Network (ANN). Traditional ANN, Simple Average Method (SAM), combining models 

(SDSM, Multiple linear regressions (MLR), Generalized Linear Model (GLM)) were applied 

to a studied site in North-western England. Model performance criteria of each of the primary 

and combining models were evaluated. The obtained results indicate that different 

downscaling methods can gain diverse usefulness and weakness in simulating various rainfall 

characteristics under different circumstances. The combining ANN model showed more 

adaptability by acquiring better overall performance, while GLM, MLR and showed 

comparable results and the SDSM reveals relatively less accurate results in modelling most of 

the rainfall amount. Furthermore traditional ANN has been tested and showed poor 

performance in reproducing the observed rainfall compared with above methods.  The results 

also show that the superiority of the combining approach model over the single models is 

promising to be implemented to improve downscaling rainfall at a single site. 

 

Keywords: Downscaling; SDSM; GLM; MLR; combining model; neural networks.  

 

1. Introduction 

One of the major findings of forecasting or prediction research over the last quarter century 

has been that greater predictive accuracy can often be achieved by combining forecasts or 

predictions from different methods or sources. The combining approach generally advocates 

the synchronous use of the forecast or prediction from a number of forecasting or predicting 

models to produce an overall combined or integrated forecast or prediction which can be used 

as an alternative to that produced by a single model. The basic hypothesis made in the 

combining approach is that different models capture different aspects of the data and hence 

the combination of these aspects would produce better variable estimates than those produced 

by any one of the individual models involved in the combination.  Combination can be a 

process as straightforward as taking a simple average of the different forecasts, in which case 

the constituent forecasts are all weighted equally. Other, more sophisticated techniques are 
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available too, such as trying to estimate the optimal weights that should be attached to the 

individual forecasts, so that those that are likely to be the most accurate receive a greater 

weight in the averaging process. Within this context the current study has come by proposing 

the use of downscaled rainfall predicted by different downscaling models and combining 

them using simple average and artificial neural network methods.  

  

Use of combining approach in different fields of forecasting is well documented and goes 

back to the 17th Century. Laplace (1818) has stated, when combining results of two forecasts, 

that “In combining the results of these two methods, one can obtain a result whose probability 

law of error will be more rapidly decreasing”.  Since then different methods have been 

developed to find ‘optimal’ combinations of forecasts. Both simulation and empirical studies 

have been carried out to test the models and Bayesian interpretations have also been 

presented. The results have been virtually unanimous: combining multiple forecasts leads to 

increased forecast accuracy. This has been the result whether the forecasts are judgmental or 

statistical, econometric or extrapolation. Clement (1989); Hibon and Evgeniou (2005) have 

produced an excellent review for the methods used in combining forecasts and more 

information can be found in the named references and would not be repeated here. However, 

the methods used in the field of hydrology will be briefly discussed here. 

 

Combining forecasts of different rainfall-runoff models was first used by Shamseldin (1997) 

and Shamseldin et al. (1997). This has then been followed by several studies which have 

dealt with multi-model combination of hydrological models (e.g. Xiong et al., 2001; Abrahart 

and See, 2002; Coulibaly et al., 2005; Ajami et al., 2006; Viney et al., 2009). As the nature of 

the combination function is unknown and no theory exists to analytically derive the 

combination function from a hydrological or physical point of view, the previous studies have 

used empirical data-driven modelling to derive the combination function and such use is very 

appropriate. In all the aforementioned studies both linear and non-linear combination 

functions have been used (e.g. linear regression, neural network and fuzzy logic) to produce 

multi-model river flows. Application results from these studies have demonstrated the 

potential capabilities of the multi-model combination approach in improving the accuracy 

and reliability of hydrological modelling results and have laid the foundation for further use 

of this approach in rainfall-runoff modelling (Shamseldin, 1997; See and Openshaw, 2000; 

Xiong et al., 2001; Coulibaly et al., 2005).  The success stories of using the combining 
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approach in the field of rainfall-runoff forecasting have formed great motivations for the 

current study.  

 

Rainfall is one of the most difficult elements of the hydrological cycle to forecast (French et 

al., 1992) and great uncertainties still affect the performances of both stochastic and 

deterministic rainfall prediction models. Interesting perspectives for the future rainfall are 

offered by numerical global circulation models (GCMs), however, up until now, they 

unfortunately do not seem able to provide accurate rainfall forecasts at the temporal and 

spatial resolution required by many hydrologic applications (Brath, 1999). To overcome the 

problem of spatial and temporal data limitations, rainfall disaggregation and simulation 

approach (particularly for climate change studies) for the coarse resolution of the GCMs is 

generally used. This approach is generally referred to as downscaling.  

 

During the last two decades, extensive research has been conducted on downscaling methods 

and their applications. Numerous techniques and methods have been proposed and used 

which can be broadly divided into statistical and dynamical methods. Statistical downscaling 

is the most widely used method in downscaling climate variables from GCMs. It relates 

large- scale climate variables (predictors) to regional and local variables (predictands). The 

large-scale outputs of the GCM simulation are then fed into this statistical model to estimate 

the corresponding local and regional climate characteristics (Wilby et al., 2004). (In list stated 

200 

 

Different techniques for statistical downscaling (SD) have been employed including 

regression- based techniques, weather pattern classification and weather generators. The 

fundamental assumption used in the SD techniques is that the derived relationships between 

the observed predictors (climate variables) and predictand (i.e. rainfall) will remain constant 

under conditions of climate change and that the relationships are time-invariant (Yarnal et al., 

2001; Fowler et al., 2007). One of the primary advantages of SD techniques is that they are 

computationally inexpensive and thus can be easily applied to outputs from different GCM 

experiments (Wilby et al., 2004).  

 

Several regression-based techniques have been used to downscale the precipitation with 

different capabilities for each method including linear and non-linear regression. Beuchat et 

al. (2012); Fealy and Sweeney (2007) used Generalized Linear Models (GLMs) which 

perform well in reproducing historical rainfall statistics in Switzerland and Ireland, 
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respectively.  Muluye (2012) employed the hybrid (SDSM), ANN, and nearest neighbor-

based approaches (KNN) in Canada with greater skills for ANN models. Another study 

carried by Hassan and Harun (2012) shows that the SDSM model can be well acceptable in 

regards to its performance in downscaling of the daily and annual rainfall in Malaysia. 

Results from three downscaling methods (multiple linear regressions, multiple non-linear 

regression, and stochastic weather generator) were successfully used by Hashmi et al. (2012) 

in climate impact study and the outcome is encouraging any future attempts for combining 

the results of multiple statistical downscaling methods. Moreover many other studies used 

linear regression (Busuioc et al., 2008; Goubanova et al., 2010), nonparametric regression 

based on splines, generalized additive models (Vrac et al., 2007; Salameh et al., 2009) in 

downscaling rainfall for climate change impact and adaptations studies and obtained good 

results. 

  

In the present study, the multi-model combining approach has been applied to the area of 

downscaling rainfall from the outputs of GCM. The main objective is to improve 

downscaling rainfall prediction by combining predictions from different statistical 

downscaling models. The models used to downscale rainfall in the studied site are the 

Multiple Linear Regression (MLR), the Generalised Linear Model (GLM), the SDSM (Wilby 

et al., 2002). The combining models used are the Simple Average Method (SAM) and the 

Artificial Neural Network (ANN) which both compared with traditional ANN (no 

combination approach).  

 

2. Study Area and Data  

The Crewe drainage area in North West of England (NW), Figure 1, is selected for this study. 

The exposure of the NW region to westerly maritime air masses and the presence of 

extensive areas of high ground mean that the region is considered as one of the wettest places 

in the UK, with average annual rainfall over 3200mm. The rainfall in the Crewe area is 

recorded at Worelston Station (WR). 

 

Two principal data sets were employed during the calibration and validation of the daily 

rainfall downscale models. Firstly, the observed daily rainfall data set, collected from WR 

station was obtained from the Environment Agency for England & Wales, for the period 

1961–1990. Secondly, the large-scale observed climatic predictors data set was obtained from 

the National Centre for Environment Predictions (NCEP/NCAR). Originally at resolution of 
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2.50x2.50 degrees, this data was re-gridded to confirm with output of the HadCM3 GCM that 

has grid resolution of 2.50x3.750. Thus Inverse Distance Weighted (IDW) method (Willmott 

et al.1985) of interpolation was applied prior to the use of GCM output in prediction. IDW 

interpolation explicitly implements the assumption that things that are close to one another 

are more alike than those that are farther apart. To predict a value for any unmeasured 

location, IDW will use the measured values surrounding the prediction location. Those 

measured values closest to the prediction location will have more influence on the predicted 

value than those farther away. Thus, IDW assumes that each measured point has a local 

influence that diminishes with distance. It weights the points closer to the prediction location 

greater than those farther away, hence the name inverse distance weighted. 

 

The two sets of data were needed to build the rainfall downscale model of the drainage 

area.The relationships between large scale atmospheric data and local variables are important 

for simulating future rainfall conditioned by climate projections. There are 26 large scale 

climate variables used in this study which were assessed for their influence on rainfall at the 

WR station for winter, spring, summer and autumn seasons. These variables were used for 

the purpose of constructing the rainfall model (observed). Observed daily predictor variables 

have been normalised with respect to their 1961-1990 means and standard deviations.  

 

3. Methodology  

The methodology followed in this study consists of three steps. The first step was screening 

for predictors of rainfall in the studied site using NCEP large scale climatic variables. The 

second step involved building of three seasonal rainfall models using the SDSDM, MLR and 

GLM downscale models with the data in period 1961–1975 used for calibration and that in 

period 1976–1990 used for validation. The third step involved combining of the predictions 

obtained from the three downscale models using Simple Average Method (SAM) and 

Artificial Neural Network combining method (ANN). Below is a brief description for each of 

these steps and the models used. 

 

3.1 Screening for Predictors 

Selection of appropriate predictors is the most important step in rainfall downscaling 

exercise. It would generally not be useful to include all potential predictors in a final model. 

This is because the predictor variables are almost always mutually correlated, so that the full 

set of potential predictors contains redundant information (Wilks, 1995). 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Geostatistical_Wizard%3A_Searching_Neighborhood_dialog_box
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The predictors - rainfall relations in this research are formed based on correlation coefficients 

between them. Stepwise regression is applied in the present study for selection of predictors 

from the NCEP climatic data as it has been shown as a powerful method by many previous 

studies (e.g. Huth, 1999; Harpham and Wilby, 2005). The pool of predictors used were daily 

values of 26 variables comprising surface pressure, temperature and humidity as well as 

upper air measures of wind speed and direction, vorticity, divergence, humidity, temperature 

and geo-potential height. 

 

The screening process has yielded the most powerful and parsimonious seasonal model 

possible consisting of 8 predictors presented in Table 1. In order to remove any 

inconsistencies associated with the presence of small rainfall values, a threshold of 0.3mm 

was applied to the data as rainfall values less than this threshold are considered to be dry days 

and represented with zero. Those equal to or greater than the threshold were considered wet 

days.  

 

3.2 Downscale Models 

3.2.1 SDSM 

SDSM uses a hybrid stochastic weather generator and multi-linear regression method to 

simulate local precipitation at each station conditional on regional circulation and 

atmospheric moisture predictors (Harpham and Wilby, 2005). Thus, it has the ability to 

capture the inter-annual variability better than other statistical downscaling approaches, e.g. 

weather generators, weather typing (Wilby et al., 2002). SDSM is a combination of a 

stochastic weather generator approach and a transfer function model (Wilby et al., 2002) 

needing two types of daily data. The first type corresponds to local predictands of interest 

(e.g. temperature, precipitation, etc.) and the second type corresponds to the data of large 

scale predictors (NCEP and GCM) of a grid box closest to the study area. Correlation and 

partial correlation analysis is performed in SDSM between the predictand of interest and 

predictors to select a set of predictors most relevant for the site in question (Wilby et al., 

2002). Although SDSM has its own function for predictors screening, however this function 

was not used in the present study. 

SDSM models rainfall in two steps, the first step is developing of an occurrence rainfall 

model using the screened predictors as described in equation 1 (Wilby et al., 1999): 
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O𝑖 = 𝛼0 +∑ 𝛼𝑗𝑝𝑗𝑖
𝑛

𝑗=1
                                                                                                        (1) 

The second step is rainfall amount model which uses the same screened predictors in a 

regression model as described in equation 2 (Wilby et al., 1999): 

𝑅𝑆𝐷𝑆𝑀
𝑖 = 𝛽0 +∑ 𝛽𝑗𝑝𝑗𝑖

𝑛

𝑗=1
+ 𝑒𝑖                                                                                         (2) 

where, Oi  is the conditional probability of daily rainfall occurrence on dayi, R
i
SDSM are daily 

rainfall amounts, pij are predictors, n is number of predictors, α and β are model parameters 

estimated by dual simplex algorithm and ei is modelling error. 

The version of SDSM used in this study is version 5.1.1 which is freely downloaded from the 

software website. A full description of the software, its various functions and mathematical 

formulation can be found in the User Manual (Wilby and Dawson, 2013). 

 

3.2.2 MLR 

Multiple Linear Regression (MLR) is one of the most widely used forms of regression. In the 

present study the rainfall is modelled in MLR as amount only (no occurrence process) by 

solving a linear model of the form: 

𝑅𝑀𝐿𝑅
𝑖 = 𝛽0 +∑ 𝛽𝑗𝑝𝑗𝑖

𝑛

𝑗=1
+ 𝜀𝑖                                                                                               (3) 

where, εi ~ N(0, σ2) is a Gaussian error term with variance σ2, all other symbols in equation 3 

have the same meaning as in equations 1 and 2.  

 

The MLR model developed in this study was programmed in MATLAB and used method of 

maximum likelihood to estimate model parameters.  The main problem with MLR model is 

that it tries to model the conditional mean, which is not best suited for predicting extremes. 

However, the focus in this study is prediction of rainfall time series not only the extremes and 

hence use of MLR is justified. 

 

3.2.3 GLM 

Generalised Linear Model (GLM) belongs to linear regression family, but differs from the 

MLR by assuming a distribution other than the normal distribution for the response variable 

Ri in equation 3 above.  The GLM form used in the present study relates the response variable 

(Ri), whose distribution has a vector mean μ = (μ1, . . .,μm) to one or more covariates (p) via 

the relationships (Fealy and Sweeney 2007): 
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𝜇 = 𝐸(𝑅)                                                                                                                                 (4)                             

𝑔(𝜇) = 𝜈                                                                                                                                  (5) 

𝑅𝐺𝐿𝑀
𝑖 = 𝜈 = 𝛽0 +∑ 𝛽𝑗𝑝𝑗𝑖

𝑛

𝑗=1
                                                                                                (6) 

A log link function, ɡ(μ), and gamma distribution were employed for the purposes of 

modelling the rainfall and β are model parameters. While the mixed exponential distribution 

has been found to provide a better fit to rainfall amounts (Wilks and Wilby, 1999) the 

relationship between the mean and variance for this distribution makes it difficult to 

incorporate into a GLM. Nonetheless, the gamma distribution GLM has been found to be a 

good fit to precipitation amounts in a number of regions (Chandler and Wheater, 2002) and 

hence used here. 

 

The GLM model developed in this study was programmed in MATLAB and used method of 

maximum likelihood to estimate model parameters. 

 

3.3 Combining models 

 

3.3.1 SAM 

The Simple Average Method (SAM) takes the arithmetic average of the forecast or prediction 

obtained from the three downscale models, treating the forecasts or prediction of each model 

of having the same weight in the combined forecast. This can be expressed as follows: 

𝑅𝑆𝐴𝑀
𝑖 =

1

3
{𝑅𝑆𝐷𝑆𝑀

𝑖 + 𝑅𝑀𝐿𝑅
𝑖 + 𝑅𝐺𝐿𝑀

𝑖 }                                                                                       (6) 

The SAM is a naïve forecast combination method, which can work very well when the 

constituent models have practically the same level of performance; it is more sensible to use 

it purely as a baseline against which the results of more sophisticated combination methods 

can be compared. 

 

3.3.2 ANN 

The Artificial Neural Network method uses the forecast or prediction obtained from the three 

downscale models as inputs to a Multi-Layer feed Forward Artificial Neural Network (MLF-

ANN) model. The structure of the MLF-ANN model used in this study consists of an input 

layer, an output layer and two “hidden” layers located between the input and the output 
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layers as shown in Figure 2. Each neuron of a particular layer has connection pathways to all 

the neurons in the following adjacent layer, but none to those of its own layer or to those of 

the previous layer (if any). Likewise, nodes in non-adjacent layers are unconnected. In the 

output layer, there is only one neuron, for the single output. The number of neurons in the 

input and output layers is determined by the number of elements in the external input array 

and output array of the network, respectively. The number of neurons in the hidden layers is 

determined by trial and error (Hammerstorm, 1993) for the best performing model as 

presented in Table 2. The final output, RANN, from the network shown in Figure 2 is obtained 

by the following equation: 

 

𝑅𝐴𝑁𝑁 = 𝑓𝑜𝑢𝑡(∑ 𝜃𝑘
𝑛
𝑘 𝑓ℎ𝑖𝑑𝑑𝑒𝑛2{∑ 𝛽𝑗𝑘𝑓ℎ𝑖𝑑𝑑𝑒𝑛1

𝑚
𝑗 (∑ 𝑅𝑖𝛼𝑖𝑗 + 𝛼0𝑗

3
𝑖 ) + 𝛽0𝑗} + 𝜃0)                       (7)                                            

Where, 

Ri  The input to the network from the primary downscale models.  

αij  The connection weights between nodes of the input and hidden layer.        

βjk The connection weights between nodes of hidden layer 1 and hidden layer 2. 

θk The connection weights between nodes of hidden layer 2 and outer layer. 

α0j β0j and θ0 are neuron thresholds (or baseflow) in hidden 1, hidden 2 and output layers, 

respectively. 

m and n are numbers of neurons in hidden layer 1 and hidden layer 2. 

fhidden1, fhidden2 and fout are the logistic, logistic and identity transfers functions for hidden layer 

1, hidden layer 2 and output layer, respectively.  

 

The weights and threshold values constitute the parameters of the network, which are usually 

estimated by calibrating (or training) of the network. This is usually achieved by minimizing 

the sum of the squares of the differences between the network output series (RANN), and the 

corresponding observed rainfall, Robs, using nonlinear optimization algorithms. In the present 

research, the faster back-propagation algorithm of Levenberg-Marquardt (Yadav et al., 2010) 

of MATLAB 7.11 was used, which was designed to speed up the training process.  

 

Moreover, traditional ANN with same predictors inputs as in the three models SDSM, MLR 

and GLM has been applied and trained with same training algorithm of CANN. This will 

investigate its own capabilities compared with the other methods and the combining 

approaches. 
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4. Results and Discussion 

The methodology described above was sequentially followed. Observed daily rainfall time 

series obtained for Worleston (WR) station for 30 years was used together with the large-

scale observed climatic variables of NCEP data; correspond to the North Wales Grid (NW) of 

HadCM GCM, to establish seasonal predictant –predictors relationship in the studied site. 

Using the method of stepwise regression, the appropriate predictors for daily rainfall in this 

station are presented in Table 1. The predictors were found to be the same for all four 

seasons.  

 

Stepwise linear regression is a method of regressing multiple variables while simultaneously 

removing those that aren't important which has been done through SPSS. Stepwise regression 

essentially does multiple regression a number of times, each time removing the weakest 

correlated variable. At the end the variables that explain the distribution best will be left.  

Results in Table 1a show R (correlation), R2 (coefficient of determination), F-value and 

significance level of that F-value.  The F-value is statistically significant with typically p 

< .05, this signifies that the models did a good job of predicting the outcome variable and that 

there is a significant relationship between the set of predictors and the dependent variable 

(rainfall). 

 

After the evaluation of the F-value and R2, it is important to evaluate the regression beta 

coefficients: unstandardized and standardized.  The beta coefficients can be negative or 

positive, have a t-value and significance of that t-value associated with it. If the beta 

coefficient is not statistically significant (i.e., the t-value is not significant), no statistical 

significance can be interpreted from that predictor. If the regression beta coefficient is 

positive, the interpretation is that for every 1-unit increase in the predictor variable, the 

dependent variable will increase by the unstandardized beta coefficient value. Results for the 

model coefficients and their significant have been presented in Table 2b-e which show Sig. 

figures below 0.05. Then the selected predictors were then used to build primary rainfall 

downscale models using each of the modelling methods described in Section 3.2.  

 

The observed daily rainfall data set (1961-1990) with corresponding selected predictors have 

been divided into two sets comprising calibration (period 1961-1975) and verification (period 

1976-1990) sets. All of the primary models were calibrated and verified using the same 

calibration and validation periods. Having built the three SDSM, MLR and GLM primary 

downscale models for each season, the combining SAM and CANN seasonal models were 
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built using outputs from these primary models as inputs. The SAM model was built as simple 

arithmetic average of the three primary downscale models, whereas the ANN model was 

developed using the network structure shown in Figure 2. Two types of activation functions 

have been used, the log-sigmoid for the hidden layer and linear transfer function in the output 

layer. Appropriate numbers of neurons in each of the two hidden layers of the network are 

presented in Table 2a for each seasonal model. The two hidden layers have been used after 

many trials because one layer failed to give best fit for the data and hence it leads to a lesser 

accurate model. Moreover, same preditors that used in the three statistical downscale models 

were directly applied to ANN which results in network structures in Table 2b (traditional 

ANN). Performance estimates such as cross-validation by splitting the data into calibration 

and validation dataset has been used in both traditional ANN and CANN models with 90% of 

the data were selected randomly for calibration and 10% for validation in Matlab. 

 

Capabilities of CANN and traditional one in terms of generalization and avoiding overfitting 

have been also investigated by comparing the number of models parameters (connections 

weights and biases) with number of data points set that used to train the network. Table 2 a-b 

showed that the ANNs used less parameters than the data used which increase the confidence 

of using the ANNs for simulation and prediction. Furthermore the early stopping approach 

has been used to prevent overfitting and improve the generalization during the training so the 

run automatically will stop the training if ANN experience any overfitting. 

 

The efficiency and ability of each primary and combining model to predict rainfall amount 

that best match the observed rainfall are expressed here in terms of correlation coefficient (R) 

and root mean square error (RMSE) and presented in Table 3. Table 3 shows that, without 

exception, the ANN combining model (CANN) produces daily rainfall estimates that possess 

a higher correlation coefficient (R) with the observed rainfall and a lower RMSE than the 

correlation coefficient values associated with the primary models and even the SAM 

combining model (CSAM). The SAM combining approach is relatively unskilful compared 

to the CANN approach and even to the other three methods while traditional ANN showed 

least skilful compared to all. Among the primary downscale models, the GLM and MLR 

primary models perform better than the SDSM in estimating daily rainfall at the station. 

 

In addition to the statistics and efficiency results presented in Table 3, five more diagnostic 

tests are performed on the three primary, two combining downscale models and traditional 
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ANN to ensure their suitability for downscaling future rainfall in the study site. These are 

demonstrated in figures 3, 4, 5, 6 and 7 for calibration and validation data set. Figure 3 shows 

comparison plots of the average monthly rainfall amount between the observed and rainfall 

simulated by the five models for the whole period 1961 – 1990. The plots demonstrate a good 

degree of agreement between the observed and simulated average monthly rainfalls by the 

combining ANN model. It can clearly be deduced from these plots that the combining ANN 

model is able to reproduce the monthly rainfall and therefore it is an improvement over the 

other primary downscale models. 

 

Figure 4 shows the inter-annual variability for rainfall in the studied site, between the 

observed and simulated series for the whole period 1961-1990. The total yearly values would 

appear to have been adequately captured by the combining ANN model better than the other 

three primary models, the combining SAM model and traditional ANN. Therefore these 

results, together with those in figure 3, demonstrate that the combining ANN (CANN) model 

is more reliable in reproducing the observed rainfall which is an important requirement when 

assessing climate impacts on hydrological systems. 

 

In figure 5 the Daily Box plots of the simulated seasonal rainfall characteristics is represented 

as small vertical bars showing some statistics of rainfal series simulated by different 

downscale models.  The plotted statistics are measures of how much spread there is around 

the average; with closeness of the simulated statistic value to the corresponding observed 

statisitc value indicates good representation for the observed spread of the data.  By viewing 

the daily box plots of the seasonal rainfall in figure 5, the error bars correspond to the CANN 

model appear much closer to the observed ones for all seasons. Those correspond to the MLR 

model rank the lowest. This is a clear indication that the combining CANN model produces 

rainfall much similar to the observed one in terms of data spreading around the mean. It is an 

additional evidence that combining predictions from different dowscale models can produce 

better results.  

 

Figures 6a and 6b show annual average dry and wet spells, resepctively, yielded by different 

downscale models in comparison to the observed one. A thresold of 0.3 mm is used to 

distinguish a dry day from a wet one. In figure 6a the average seasonal dry spells computed 

from the rainfall simulated by the SDSM, MLR, GLM, CSAM and traditional ANN models 

are lower than the observed ones, whereas the average seasonal dry spells computed from the 
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combining ANN model is much closer to the obserserved one. Conversly, in figure 6b, the 

average wet spell computed from the raifall simulated by the MLR, GLM, traditional ANN 

and CSAM models are significantly overestimated the observed ones, whereas the SDSM and 

the combining ANN produced an average seasonal wet days reasonably matching the 

observed ones. The closeness of the average seasonal dry and wet spells produced by the 

combining ANN model to the observed ones, is another desireable property needed in 

downscaling model results when used in climate impact modelling. 

 

The last diagonistic test for examing the performance of the different primary models and the 

combining ones is the the probability desnsity functions, pdf,  for the simulated annual 

maximum  rainfall serie (AM) obtained from each  model. Figures 7a, 7b, 7c, 7d, 7e and 7f, 

show shapes of the pdf produced the AM series by each model. Concerning the shape of the 

distribution, it can be observed that the pdf of the observed rainfall skews slightly to the left 

while those from the SDSM and GLM skew to the left more than the observed one while 

CSAM skew to left with less degree compared to observed one. The pdf of the MLR and 

traditional ANN model tends to resemble the normal distribution, whereas that of the 

combining ANN skews slightly to the left similar to the pdf of observed rainfall. Similarly, 

the boundaries of the extremes (along the x-axis) are different for different downscale 

models, with those of the observed and the combining ANN are much closer to each other. 

The analogy in skewness of the pdf shape and closeness in the extremes boundaries between 

the observed and the combining ANN suggest that the variability of rainfall produced by the 

combining ANN is much similar to those of the observed ones. . 

 

5. Conclusions 

Three statistical downscaling primary models have been compared with two combining 

models in terms of their ability to downscale daily rainfall over a selected site in Northwest 

England.  Daily observed rainfall data for the period 1961 – 1990, together with the observed 

NCEP data, was used to calibrate and verify the models.  A number of diagnostic tests or 

parameters was used to measure the ability and performance of each primary and combining 

model to downscale the daily rainfall. The statistical results showed the combining ANN 

models performed better in downscaling seasonal rainfall much closer to the observed series 

than the primary SDSM, GLM and MLR models, traditional ANN and the combining SAM 

model. The other diagnostic tests of monthly average rainfall, the inter-annual variability, the 

daily box plots, the annual average dry/wet spells and the probability density function plots, 
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which are important requirements for assessing climate change impact, have all revealed that 

the combining ANN model generally performs better in reproducing the inter-annual 

variability and magnitude of the rainfall in comparison to the other primary and combining 

models. While SDSM show much closer performance to CANN in term of reproducing wet 

and dry spell length however it is significantly overestimate the annual variability, average 

monthly, and daily statistics of the rainfall. This means that SDSM can be able to simulate the 

occurrence properly but not the amount unlike CANN which is good for both. 

 

Overall, this paper highlights the importance of acknowledging limitations and advantages of 

different statistical downscaling methods, and also implies that there is a room for 

improvements by combining these models. The results obtained for this studied catchment 

are promising as well as encouraging and can be extended to multiple site and regions in the 

future.  
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Table 1a: Stepwise regression models performance summary for the four seasons 

 

 R R Square F Sig. 

JFD 0.516 0.267 167.720 0.000 

MAM 0.448 0.200 117.807 0.000 

JJA 0.454 

 

0.206 

 
139.226 0.0000 

 
SON 0.473 0.224 134.045 0.000 

 

 

 

 
Table 1b: Stepwise regression coefficients and significance for each predictor in Winter at 5% significance 

level 

 

Input parameters 

  

Unstandardized Coefficients 
Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) 1.694 0.195   8.670 0.00000 

Lagged mean sea level -1.074 0.074 -0.406 -14.545 0.00000 

Surface specific humidity 2.443 0.491 0.466 4.976 0.00000 

Air flow strength at 500hp 0.503 0.048 0.167 10.464 0.00000 

Surface vorticity 0.689 0.061 0.225 11.370 0.00000 

Geopotential height at 850hp 0.753 0.090 0.268 8.381 0.00000 

Relative humidity at  500hp 0.330 0.052 0.109 6.300 0.00000 

Temp -2.406 0.526 -0.391 -4.571 0.00001 

Surface relative humidity -0.345 0.115 -0.065 -2.998 0.00273 

 

 

Table 1c: Stepwise regression coefficients and significance for each predictor in Spring at 5% significance 

 

 Input parameters 

  

Unstandardized 

Coefficients   

Standardized 

Coefficients 
t 

  

Sig. 

  B Std. Error Beta 

(Constant) 2.100 0.073   28.599 0.00000 

ncepmslpeu+1 -0.920 0.095 -0.259 -9.719 0.00000 

ncepr500eu 0.563 0.057 0.169 9.875 0.00000 

ncepp__zeu 0.683 0.071 0.199 9.663 0.00000 

ncepp850eu 0.620 0.119 0.171 5.232 0.00000 

ncepp5_feu 0.173 0.054 0.048 3.184 0.00147 

ncepshumeu 1.919 0.286 0.368 6.716 0.00000 

nceptempeu -1.720 0.283 -0.342 -6.077 0.00000 

nceprhumeu -0.575 0.124 -0.165 -4.640 0.00000 

 

 

 

 

 

 

 

 



19 
 

 

Table 1d: Stepwise regression coefficients and significance for each predictor in Summer at 5% significance 
level 

 

 Input parameters 

  

 

Unstandardized Coefficients 

  

Standardized 

Coefficients t 

  

Sig. 

  

B Std. Error Beta 

(Constant) 2.852 0.175   16.317 0.00000 

Lagged mean sea level -1.836 0.159 -0.290 -11.538 0.00000 

Relative humidity at  500hp 0.589 0.070 0.137 8.459 0.00000 

Surface vorticity 0.822 0.099 0.168 8.336 0.00000 

Surface specific humidity 2.081 0.255 0.387 8.176 0.00000 

Temp -3.321 0.395 -0.412 -8.417 0.00000 

Geopotential height at 850hp 1.222 0.203 0.199 6.021 0.00000 

Surface relative humidity -0.837 0.161 -0.205 -5.186 0.00000 

Air flow strength at 500hp -0.941 0.153 -0.201 -4.172 0.00000 

 

 

 

 
Table 1e: Stepwise regression coefficients and significance for each predictor in Autumn at 5%  

significance level 

 

 Input parameters 

  

Unstandardized Coefficients 

  

Standardized 

Coefficients 
t 

  

Sig. 

  B Std. Error Beta 

(Constant) 1.996 0.072   27.681 0.00000 

Lagged mean sea level -1.219 0.105 -0.306 -11.554 0.00000 

Relative humidity at  500hp 0.537 0.066 0.136 8.099 0.00000 

Surface vorticity 0.770 0.083 0.195 9.232 0.00000 

Air flow strength at 500hp 0.479 0.061 0.122 7.845 0.00000 

Geopotential height at 850hp 0.665 0.134 0.163 4.971 0.00000 

Temp -2.030 0.352 -0.359 -5.761 0.00000 

Surface specific humidity 1.517 0.299 0.326 5.067 0.00000 

Surface relative humidity -0.460 0.145 -0.088 -3.166 0.00156 
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Table 2a: Structure of combining ANN model in terms of number of hidden neurons for 8 inputs and one out 

puts  

Season 

Hidden layer 

Neurons 

Total No. of model 

parameters 

(connections/biases) 

Total No. of data 

points in training 

set 

JFD 25, 25 901 1353 

MAM 20, 15 511 1380 

JJA 25, 25 901 1380 

SON 

 

20, 20 601 1365 

 

 

 

 

 

 
Table 2b: Structure of traditonal ANN model in terms of number of hidden neurons for 8 inputs and one out 

puts  

 

Season Hidden layer Neurons Total No. of model 

parameters 

(connections/biases) 

Total No. of data 

points in training set 

JFD 7 71 1335 

MAM 13 131 1380 

JJA 16 161 1380 

SON 

 

10 91 1365 
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Table 3: Models Statistics and Efficiency for Calibration and Validation periods 

 
 

 

 

 

 

 

 

 

 

 

 

 

Model Winter   Spring Summer Autumn 

Mean STD Skewness R RMSE Mean STD Skewness R RMSE Mean STD Skewness R RMSE Mean STD Skewness R RMSE 

OBSER 1.91 3.35 3.27 ─ ─  1.72 3.39 3.96 ─  ─  1.87 4.25 4.60 ─  ─  2.13 3.96 3.36 ─   ─ 

SDSM 2.42 4.20 2.88 0.33 4.45 2.35 4.40 3.77 0.23 4.93 2.56 5.51 3.76 0.25 6.09 3.10 5.37 2.90 0.25 5.90 

MLR 2.01 1.69 0.61 0.53 2.84 1.86 1.56 0.68 0.24 3.37 2.15 1.99 1.00 0.45 3.80 2.32 1.92 0.69 0.48 3.48 

GLM 1.90 2.47 3.29 0.55 2.88 1.74 1.93 3.15 0.21 3.53 1.97 2.92 6.61 0.45 3.94 2.23 2.56 3.42 0.44 3.65 

CANN 2.00 2.33 2.77 0.62 2.63 1.83 1.73 2.12 0.36 3.16 2.00 2.88 3.68 0.55 3.55 2.31 2.58 2.20 0.57 3.26 

CSAM 2.11 2.44 2.13 0.50 3.01 1.98 2.06 2.13 0.29 3.43 2.23 2.98 3.12 0.40 4.11 2.55 2.84 2.08 0.40 3.87 

ANN 3.60 5.06 1.90 0.21 6.28 2.67 3.92 1.88 -0.11 5.29 2.05 3.33 2.42 -0.09 5.46 3.25 4.61 1.69 -0.11 6.26 
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Figure 1. Crewe study area in North West of England 

 

 

 

 

 

 

 

 

 

                                                    Figure 2. Combined ANN structure 
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Figure 3. Average monthly rainfalls during the whole period 1961-1990 

 

 

 
Figure 4.  Annual rainfall total of the five models compared with observed rainfall 
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Figure 5. Daily Box plot of the seasonal rainfall (a) winter, (b) spring, (c) summer and (d) autumn for the different 

modelling methods showing the statistics: maximum, upper quantile, mean, lower quantile and minimum 

 

 
                              (a) 

 
(b) 

Figure 6. Average wet (a) and dry (b) spell length for the four seasons during calibration and verification period 

1961-1990 
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Figure 7. Probability density function of daily extremes rainfall for (a) observed, (b) SDSM, (c) MLR, (d) GLM, (e) 

Combining ANN (f) Combining SAM and (g)  traditional ANN during calibration verification period 1961-1990  
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