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ABSTRACT 

 

In this work, an ANN program has been developed to predict the indentation P-h curves 

with known properties (hyperfoam material parameter,  and ). An interactive parametric 

FE model and python programming based data extracting program has been developed and 

used to develop data for the ANN program. Two approaches have been proposed and 

evaluated to represent the P-h curve. One is using 2
nd

 order polynomial trendline approach 

(P=a2h
2
+a1h), the other is to use the forces at different indentation depth. The performance 

of the ANN based on the trendline approach is evaluated with MSE and relative error of 

the coefficient ‘a2’ and ‘a1’ and the average error in forces over different depths. A 

frequency method is used to analyse the data, which provided important data/base to 

further enhanced the accuracy of the P-h curve based on averaging multiple ANN tests. 

This approach effectively taking use of the fact that ANN prediction is not continuous 

around any property point. The ANN program with the depth based approach showed 

similar accuracy in predicting P-h curves of hyperfoam materials. The program was 

validated in blind tests with numerical data and experimental data on two EVA foams with 

known properties. Comparison with other approaches (including surface mapping and 

direct date space fitting process) showed that the ANN program is accurate and much 

quicker than some other approaches and direct FE modeling.  

 

The feasibility of using ANN to directly predict the material properties is evaluated 

including assessing its capacity to predict trained data and untrained data. The use of single 

indenter approach and dual indenter approach is assessed. It was found that the approach 

with 2
nd

 order polynomial fitting of the P-h curves is not able to predict the material 

parameters.  Using 3
rd

 order fitting showed much improvement and it is able to predict the 

trained data accurately but could not be used to predict untrained data. Works on dual 

indenter approach with R4 and R6 showed some improvement in predicting untrained data 

but could not produce data with reasonable accuracy of the full dataset.  

 

A new approach utilising the direct ANN program for P-h curve prediction is developed. A 

computerised program (with Web based interface) has been developed including data 



generation through ANN, data storage, interface for input and viewing results. A searching 

program is developed which enables the identification of any possible materials property 

sets that produce P-h curves matching the experiment data within a predefined error range. 

The approach is applied to analysis single and dual indenter methods through blind tests 

with model materials (with known material properties). A new approach using foams of 

different thickness is also proposed. The results showed that in a single indenter approach, 

there are multiple materials property sets that can produce similar P-h curves, thus the 

results are not unique. Dual indenter size approach showed a significant improvement in 

mapping out all potential material sets matching the tetsign data. The new program 

successfully identify addition material property sets that can produce P-h curve that match 

both R4 and R6 data, which was not identified previously with other inverse programs. The 

new approach proposed of using the tested data on samples of different thickness showed 

that the uniqueness of the prediction can be improved. The accuracy and validity of the 

program is firstly assessed with blind tests (using numerical data as input/target) then used 

to predict the properties of the EVA foam samples. Some key results of the real foam data 

is compared to the target and prediction results from other programs and data processing 

method, the comparison results showed that the new ANN base computer program has 

clear improvement in accuracy, robustness and efficiency in predicting the parameters of 

EVA foams. Future work is to transfer the program and methodology developed to other 

material system and testing conditions and further develop the computer program for 

material developments and research.  

 

 

  



 

Nomenclature 

Upper case 

C   Curvature of the P-h curve    

E,   Young’s Modulus (Material 1)            GPa 

F  Indentation force              N 

FM  Major loading              N  

Fm  Minor loading              N 

G  Objective function 

J   Jacobian matrix 

P  Indentation load              N 

Pav  Indentation load average            N 

Pm  Indentation peak force            N 

Pu  Unloading force              N 

R  Radius of the indenter            mm 

R
2
  Coefficient of determination  

We  Elastic work               KJ 

Wp  Plastic work               KJ 

Wt  Total  work               KJ 

 

Lower case 

a1  first order curve fitting coefficient of the P-h curve 

a2  Second order curve fitting coefficient of the P-h curve 

b  Bias in a neural network 

f  Transfer function in ANN 

h  Depth of Indentation              mm 

hp   Penetration measured at the circle of contact        mm 

hr  Residual indentation depth            mm  

hs   Maximum depth of penetration             mm 

n  Work hardening coefficients 

v  Poisson’s ratio  

uz  Vertical displacement z direction           mm 

wp  Weight factor in ANN 

 

 



Greek 

   Stress               MPa 

Ε   Young’s Modulus 

εe   The engineering measurement of strain 

1, 2, 3 Principle stretches 

elJ    Elastic volume ratio 

𝜇   Shear modulus              GPa 

 

Abbreviations 

ANN  Artificial Neural Networks 

CAE  Computer Aided Engineering 

EVA  Ethylene vinyl acetate  

FE   Finite Element 

FEM  Finite Element Models 

MLP   Multilayer perceptron 

MSE  Mean-Square-Error 

MSEREG  Mean-Squared-Error with Regularization 

P-h  Force-displacement curve 

QNA  Quasi Newton Algorithm 

TANSIG Tangent sigmoid 
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1.1 Introduction 

 

In a continuous indentation process, an indenter is pressed onto the surface of a material 

and the force and displacements are recorded. This method is increasingly being used to 

test materials, and the force/load displacement (P-h) curve represents the indentation 

resistance of the material (Nakamura et al, 2000; Ren et al 2002; Ullner etal, 2002; Tho et 

al, 2004; Li 2011). The Conventional hardness method only provides information about the 

hardness of a sample, which could not be directly used to simulate the detailed behaviours 

of the material in service. The continuous force-displacement data could direct reflect the 

deformation of the materials and, in some case, the performance of the material in service. 

In addition, the force displacement data could potentially provide data to extract material 

parameters from indentation tests. This is particular important for materials such as foams 

which has a complex material model. Close cell foams, such as Ethylene Vinyl Acetate 

(EVA) foam are widely used in engineering, sport and biomedical fields (Mills and Zhu, 

1999; Petre et al, 2007; Gu 2010). The indentation resistance of the material directly 

reflects the deformation of the material under load. Detailed properties of the foam are 

very important for both material development and design. In a product development 

process, the engineer has to select foam from a range of products; in some cases a 

combination of material has to be used. Two research areas are very important for EVA 

foams. One is to predict the performance of the material with known properties; the other 

is to extract the material parameters from indentation tests. In both cases, ANNs could 

potentially provide an effective tool.  

 

The artificial neural network (ANN) has been widely used in many engineering fields and 

recently is has been used in material research and development (Zaw et al, 2009; Esfahani 

et al, 2009; Partheepan et al 2011; Gong et al, 2012). Use of ANN in materials behaviour 

prediction or property estimation could be a complex process, in many cases, some 

physical based analysis or data process has to be implemented. Given the wide application 

of EVA and the use of indentation testing, it is important to explore the use of ANN in 

indentation testing and property estimation of EVA materials. The prediction of the 
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material behaviour represented by the P-h curve will help the engineer/researcher to 

estimate the potential performance when comparing different materials with known 

properties. Another area of the case where the nonlinear material parameters are not 

available, it will be great advantage if the material parameter can be predicted inversely 

foam indentation tests as a quick way of predicting the properties since standard tests are 

complicated and time consuming. In addition, research is also required to establish an 

effective way to further develop direct or inverse programs into a computerised program 

accessible through internet and multimedia to further expand the application these methods 

in material testing, research and development.   

Despite its successful application in many material areas, the use of ANN on hyperfoam 

materials has not been explored and established. The material represents a much more 

challenging research topic than metallic materials. For example, in testing metallic 

materials with shaped indenter, the P-h curve can be represented by a power law 

relationship (Dao et al  2001). But for EVA foams, a more complex way has to be used to 

represent the data. The choice of mathematical representation of the curve has to be 

properly selected to be able to aid the direct or inverse engineering. In addition, the 

accuracy/robustness in direct (predict indentation curves from known properties) and 

inverse (predict properties from indentation curves) has to be established. The practice in 

some of the published work in materials oriented projects has been focused a on limited 

number of testing cases, which could not satisfy the need of materials research and 

development or could not be used by material researchers with no direct experience in 

ANN. In addition, there are possible issues with nonuniquness, where more than one set 

variables fit the target data equally well; this has been a major issue in preventing wider 

application of the inverse program. One approach to improve this is to use testing data of 

different conditions (e.g. indenter size. thickness) to improve the robustness. The basic 

concept is that the true material property should match test data of different conditions. To 

evaluate these approach, a methodology and computational tool needs to be developed that 

is capable of mapping out all possible solution in a direct/inverse program, which will 

ultimately give the user the confidence in the inverse results and select the optimum 

solution, When data from multiple tests are used, an effective way of identifying the target 
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property needs to be developed, which also needs to be implemented in computing 

programs. The behaviour of EVA materials are representative of a range of materials 

including biomedical materials, so the program developed and evaluated with EVA (as a 

model material) will be transferable to other material systems in the future based on the 

research framework.  
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1.2 Aims and Objectives 

 

This work aims to investigate the use of ANN technique in studying indentation tests of 

EVA foams and establish a computational program to predict the force-displacement data 

with known properties and/or inverse identification of material parameters from 

indentation tests.  

 

Main objectives are: 

• To develop and optimise an ANN program/methodology to predict the force displacement 

curves of indentation of hyperfoams models; 

• To apply the approach to predict the P-h curves of EVA foams with known material properties 

and compare the method with other approaches; 

• To systematically evaluate the feasibility of using ANN in inverse prediction of material 

properties based on indentation tests with single and dual indenters;  

• To develop an effective method to identify material properties from indentation tests of 

different conditions and investigate the factors affecting the accuracy and robustness of the 

inverse FE indentation approach; 

• To convert the approach into a computerised program for inverse material property 

identification; 

 

Many of the work in related field of inverse material properties identification has been 

focusing on using interactive searching techniques, such as Kalman filter, interactive parameter 

changing approach, etc, which can predict the materials’ behaviour under relatively well 

defined condition. But there are still uncertainties with the completeness of solution due to the 

nature of material test or ill conditioning. The focus of the work is to develop a computational 

program to map out any possible material properties, which can give the user a full picture of 

all possible solutions in order to make a sound choice with confidence. This is more useful to 

the material characterisation practice. With such a tool, the factors that affect the accuracy and 

robustness of an inverse program can be established and new method to improve the 

performance of an inverse program can be developed though combination of different testing 
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mode or conditions. One long term focus of the work is to develop a way to represent/analyse 

the indentation data effectively to make it possible to develop a computerised program 

(potentially with multi media) to enhance the use of inverse modelling in material works. 

  

 

In this work, hyperfoam materials  (EVA) is to be used as the main test materials. Detailed 

studies of the EVA foams are very important for many product developments in particular in 

sport technology. EVA foams are widely used in sport footwear and equipment such as the 

midsole of sport shoes, providing the shock absorbing and cushioning capacity (Mills 2003; 

Ruiz-Herrero et al, 2005). The properties of EVA foams are highly nonlinear and viscoelastic 

(Verdejo and Mills, 2004). Any method to predict the P-h curves from known material 

properties will make materials tests and comparison easier as some existing model can only 

deal with elastic model with very small indentation depth. Determination of the material 

parameters is important to provide data for the simulation of their in-service performances, 

product design and quality control. The work uses hyperfoam model as a model materials, but 

in a longer term, this should be transferable to other material systems to be used as a tool to 

support material research and development or design in related fields.  
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1.3 Outline of the thesis 

 

In Chapter 2, background information and current research on indentation tests, inverse 

modelling and their applications in materials characterisation have been reviewed. It covers 

different types of indentation tests and their applications in studying different materials. A 

summary of current testing methods for foams is presented. The strain energy functions of 

foams are reviewed with key controlling material parameters highlighted. The theory of 

ANN and its application is reviewed and discussed in the context of materials testing. 

Different inverse FE modelling methods and optimisation programs are compared. The 

difficulties and challenge for the inverse FE modelling approach based the indentation tests 

are reviewed and discussed.  

 

Chapter 3 consists of two main parts of work. The first part is development of FE models 

and data processing of indentation tests. The second part involves developing an ANN 

program to predict the force indentation displacement curves with known materials 

properties ( and ) for different indenter sizes. The ANN work enables the prediction of 

force displacement data without re-running the FE modelling. The work provides a 

framework for developing an inverse material property prediction program, which is 

presented in the next chapter. In the ANN development section, two approaches of 

representing the P-h curves have been proposed and evaluated; one is to use polynomial 

trendline to represent the P-h curves (designated as trendline approach); the other is to use 

force at different indentation depth (designated as depth approach). The validity and 

accuracy of each ANN is assessed using trained data and new data (not used in training or 

validation) using Mean-Square-Error (MSE) and relative error as performance indicator 

and new approach is developed to improve the robustness of the prediction through 

frequency analysis. The sensitivity of the estimated mechanical properties to variations of 

the input parameters (e.g. potential perturbation of the load) is also investigated. 

 

Chapter 4 consists of two main parts. In the first part, the feasibility of using ANN directly 

to predict the material properties with single and dual indenter approach is evaluated. In 
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the second part of this chapter, a new approach utilising the direct ANN program 

developed (presented in Chapter 3) is proposed. The work involves developing a large data 

base using the high efficiency of ANN in predicting P-h curves. A computerised program 

(through Web interface) including data generation through ANN, data storage, interface for 

input and viewing results. A search program is developed which enables the identification 

of any possible materials property sets that  match the experiment data within a 

predefined error range. This will help the user to identify any possible materials sets that 

are a close match to the target, thus give full confidence in the inversely identified material 

properties. The program is evaluated with blind tests (i.e. using FE data) then used to 

investigate analyse real EVA foams.  

 

Chapter 5 discusses the key feature and technical improvement of the program. The P-h 

prediction is compared to other approach including surface mapping and direct data fitting. 

The key factor that may affect direct and inverse processes is discussed. The outcome of 

the work is compared to other inverse modelling approaches and the main improvements 

identified. The advantages and disadvantages of using the new approach proposed in thesis 

in dealing with data from different test condition against other approaches are identified. 

Finally, current and potential future application of the program developed in researching 

other material system/testing method is discussed.  

 

In Chapter 6, overall conclusions were given and future works were highlighted.  
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Chapter Two  

Literature Review 
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2.1 Indentation tests, its applications and characteristics of indentation curves 

 

Indentation tests have been employed to measure the material properties of engineering or 

biological materials/systems for a wide range of applications (Ren et al, 2002; Ullner et al, 

2002; Tho et al, 2004; Luo and Lin, 2007; Briody et al, 2012; Budiarsa et al, 2013). In an 

indentation test, an indenter is pressed onto a sample surface to certain depth, the resistance 

of the material to deformation could be represented by the size of the residual impression 

on the surface or the force-indentation depth data, normally designated as P-h curves 

(Figure 2.1). The main reason for the wide use of indentation tests lies in its experimental 

simplicity in terms of facilities and sample preparation requirements. The tests can be 

performed with small samples and can be conducted several times on a single specimen at 

different locations. In addition, indentation tests can also be performed at different 

environments (e.g. temperatures or humilities) with complicated loading histories (Ren et 

al 2002; Petre et al 2005).  

 

Figure 2.2 schematically shows some typical types of indenters of different shapes, these 

have been developed for different situations and materials. Sharp indenters, such as conical 

indenter and pyramidal tip, are normally used for harder materials such as metals or 

ceramics. With these materials, different hardness systems have been developed based on 

the average pressure underneath the indenters (Dao et al, 2001). Softer materials such as 

foams and biological tissues are normally tested using flat indenter and spherical indenters 

to avoid damage. For foams, the hardness is tested commonly by Shore hardness tester 

using a flat surface and a tapered tip, as shown in Figure 2.2(c). In the shore test, a dead 

load is applied, and then the depth at major and minor load is measured to represent the 

resistance of the foam to indentation (Kunz and Studer, 2006). The hardness method only 

provides indicative information about the resistance of a sample, but could not be directly 

used to simulate the material behaviours in service (Petre et al, 2007), as in modelling, 

detailed materials parameter are required (Abaqus 6.10).  

Recent developments of advanced instruments have made it possible to record 

continuously the force and displacement (as shown in Figure 2.1 (b)) rather than measuring 
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the residual impressions based on a single reading. This approach is particularly useful for 

materials such as foams and biological materials (Petre et al, 2005). These tests can 

provide much more data but the curve is not easily represented with a mathematical form 

and it is difficult to develop link between P-h curve and materials properties of physical 

meaning. Research is required to develop methods to represent the data and link the curve 

fitting coefficients to material properties. This is a general goal of this research, as only 

after a proper way of representation of the indentation curve has been developed, it can 

used in estimating the material performance if the material properties are known. On the 

other side, proper characterization of the indentation curve could help the development of 

practical inverse tools (i.e. determine the properties from nonstandard test such as 

indentation tests). This is particularly important for materials of nonlinear material laws 

with complex structures/loading conditions, such as foams (Mills and Zhu, 1999; 

Nakamura et al, 2000; Petre et al, 2007) as no robust mathematical solution is available.  

 

There are many application examples of continuous indentation (Giannakopoulos et al, 

2006; Jordan et al, 2009; Gu 2010). It can be used in material development, comparing 

materials in design, providing data for computer simulation, etc. One major application is 

in testing soft materials such as biological materials and foams. Work in this area is 

becoming more and more important in order to provide data for computer aided design in 

areas such as biomechanics, sport and medical engineering, where foams including EVA 

foams are increasing being used. Another application of indentation tests and inverse 

properties prediction is in biological materials, where standard samples cannot be made or 

are not available. Figure 2.3 (a) shows a typical application of indentation method for 

characterising soft tissues. In this work, an indenter is pressed into the liver tissue, and 

force-displacement is measured, which can provide important information on the property 

of the material or its change with medical condition through the indentation curve (Jordan 

et al, 2009). Continuous indentation based tests is also more suitable for in vivo or in situ 

tests than tests based on static hardness tests. In vivo tests are performed on biological 

tissue in its natural state with the material behaviour close to the real physiological 

condition. In vivo tests with different methods are increasingly used to study the 
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deformation of biological tissue such as human skin, biological organs, heel pad as well 

some internal organs, with indentation type of test is one of the most common one being 

explored (Tong et al., 2003; Petre et al, 2007). Figure 2.3 (b) shows a typical set-up of in 

vivo compression testing of the human foot tissue (Tong et al., 2003). The test rig used 

includes a base plate, a support frame with a see-through Perspex foot mount plate. A force 

transducer and linear variable displacement transducer (LVDT) measured the indentation 

force and displacement. Figure 2.4(a) shows the set of indentation used in testing human 

heel (Lisa 2009; Gu, 2011). In the work, the human heel pad is tested by pressing the 

indenter to the heel pad. The data can then be used to estimate the material property for 

developing finite element modelling of human foot and the interaction between human foot 

and EVA foam or sport shoes (Figure 2.4 (b)). 

 

As shown by these cases, indentation tests are promising and useful techniques. However, 

there are many technical challenges to make full use of the method. Among the technical 

challenges could be machine design, data processing and most importantly processing and 

interpretation of the force-displacement data, which is the main measurable outcome from 

continuous indentation tests representing the behaviour of the material tested. It will be 

very useful if the curve can be represented by a simple mathematical formula with curve 

fitting coefficients linked to the properties. For example, as shown in Figure 2.5(a), in 

metal material as such as steel, the curvature (C) of the force-displacement data is found to 

be linked to the yield stress and strain hardening coefficients. The loading part of an 

instrumented sharp indentation generally follows (Dao 2001). 

 

P=Ch
2
,                                                           (2.1) 

where P is the indentation load, h is the penetration depth measured from the original 

surface of the sample and C is a constant representing the curvature of the P-h curve, 

which known to be a function of the plastic materials properties (yield stress and working 

hardening coefficients) (Dao et al, 2001; Tho et al, 2004). The indentation P-h curve 

represents the resistance of the materials to elastic and plastic deformation. The existence 

of this formula and establishment of the relationship has helped to development of many 
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works associated with indentation of steel and other metal materials, including direct 

prediction of the force-displacement data from known properties and inverse property 

prediction. However, the situation with spherical indentation of soft materials such as foam 

is more complicated as a higher order fitting with more than one coefficient has to be used. 

As shown in Figure 2.1 (b) and illustrated in Figure 2.5(b), the force displacement curve 

for foam and rubber like materials are nonlinear. The loading part didn’t follow the 

equation for metals; a more complex approach has to be developed. This makes it more 

challenging in data process and analysis. Any work that could bring improvement in 

characterising the force-indentation depth data or extract to more information from the 

curve would further advance the understanding of the material behaviours. In addition, a 

way to represent the data (e.g. the loading curve) and potential way of extracting the 

materials properties will help to quantify the effect of factors such as different materials, 

temperature, humidity etc. This is part of the general direction of this project using EVA 

foam as a typical example. The methodology can then be transferred to other material 

systems 
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(a) 

 

(b) 

 

Figure 2.1 Schematic to show an indentation testing process (a) and typical load–

indentation depth data of the loading curve (b) (P-h curve).   
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(a) Conical indenter.  (b) Sharp (pyramidal tip) 

indenter; (e.g. Vickers) 

 

 

 

 

 

 

 

(c) Flat indenter.   (d) Tapered tip for Shore 

Hardness Tester. 

 

 

 

 

 

 

 

 

(e) Spherical indenter.    

 

Figure 2.2 Schematics showing different shapes of indenter tips.   
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(a) Use of indentation on testing liver.  

 

(b) The deformed finite element 

liver model. 

Figure 2.3 (a) Use of indentation tests in studying soft liver tissues (Jordan et al, 2009; 

Elkult, 2012). 

 

 

 

Figure 2.3 (b) Use of indentation tests in testing human foot (Tong et al., 2003, Gu 2010).  
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 (a) Set-up of the in vivo indentation testing on the human heel pad 

 

 

 

(b) FE models of the in vivo indentation test. 

 

Figure 2.4 In vivo indentation test and simulation of the human foot tissue (Li, 2009; Gu, 

2010).  
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Figure 2.5(a) Schematic illustration of a typical force (P) indentation depth (h) response of 

an elasto-plastic material to instrumented sharp indentation showing that the loading curve 

can be expressed by a simple mathematical expression (C is the curvature). (Dao et al, 

2001) 

 
Figure 2.5 (b) Schematic shows typical continuous indentation curves of foam/rubber 

materials.  
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2.2 Linear and nonlinear material behaviours and energy functions for EVA foams 

The behaviour of materials subject to tensile/compression forces can be described by a 

stress-strain graph. Figure 2.6 shows schematically the two main type of stress strain 

relationships of soft materials (such as rubber, foams and biological tissues) in the loading 

phase, namely linear elastic (a), elastically non-linear (b). For an elastic material, the stress 

is proportional to the strain and the strain is recoverable if the stress is removed, i.e. the 

specimen returns to its original dimensions. This occurs in the initial linear region of the 

stress-strain curve of flexible foams (open cell foam) and some rigid foam (closed cell 

foam). A linear elastic relationship (Figure 2.6(a)) between compressive or tensile stress 

() and strain () in the loading direction can be described by: 

x xE                                                          (2.2) 

where the constant E is the Young's modulus. 

 

The absolute value of the ratio of the lateral strain to the longitudinal strain is the Poisson’s 

ratio: 

y

x

v



                                                           (2.3) 

At small strain, for both compression and tension, the average experimentally observed 

Poisson’s ratio, v, of foams is very low close to 0, while the Poisson’s ratio for rubber is close 

to 0.5 (Verdejo and Mills, 2004). Foam is highly compressible while rubber is 

incompressible.  

 

Figure 2.6 (b) shows the non-linear relationships between stress and strain. For foam or 

biological tissues, the non-linearity occurs due to changes in its geometry at different strain 

levels (Ren and Silberschmidt, 2008). At small strains the material deforms in a linear, 

elastic manner as a result of cell wall bending. The region with lower stress (plateau region) 

increase is the buckling zone. At large strain, the cell walls rotate and align, resulting in an 

increased stiffness. Most foam materials and biological material exhibited highly nonlinear 

behaviours (Mills et al, 2003), which have to be understood based on the nonlinear 

mechanics. Many different function/material models have been developed to simulate 
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different materials (ABAQUS 6.10 User’s Manual). EVA foam used in the work was 

described by hyperfoam material model. The strain energy function (U) represented by in 

first term strain energy (ABAQUS 6.10 User’s Manual):  

 

1 2 32

2 1
3 (( ) 1elU J   

  
 

 
      

 
                           (2.4) 

Where 1, 2, 3 
are the principal stretches; elJ  is the elastic volume ratio; μ, α and β are 

the material properties representing the compressible foam behaviours. β is related to the 

effective Poisson’s ratio (ν) following 

 

1 2

v

v
 


                                                   (2.5) 

 

This energy function was widely used to describe the stress-strain response of EVA foams. 

The inverse program in this work is to predict the values for the two parameters ‘μ’ and ‘α’ 

as in many cases, the first order form is sufficient.  

As illustrated in the material model for EVA foams, the materials behaviours can be 

described with more than one material parameter. It is a challenging task to accurately 

derive these functions which are mainly mathematical based without direct physical 

meanings. Conventionally, the determination of material parameters is based on the use of 

test samples of a standardised geometry and strain state as shown in Figure 2.7, so 

particular conditions on the stress and strain field are satisfied in the sample/or part of the 

sample. Then the unknown model parameters are obtained through curve fitting from 

experimental data. These methods are inconvenient or even impossible where large scale 

standard specimens are not readily available (such as biological tissues), or for in situ 

monitoring the mechanical strength of the materials. It is important to use localised tests 

such as indentation tests, which potentially could be an effective alternative approach by 

combining experimental and numerical works. In addition, in a standard test, such as shear 

test, the sample has to be assembled to the plate using adhesives, this makes the process 

very time consuming. In addition, when testing materials in different environments (such 

as temperatures) the work becomes very difficult due to the uncertainty with the 
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deformation of the adhesives used (e.g. in shear tests). One potential approach is to 

develop a way to inversely identify the materials parameters from indentation tests through 

program in direct or inverse modelling.  
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Figure 2.6 Schematics showing linear elastic and nonlinear material behaviours in loading 

(ABAQUS manual, V6.10). 

  

  

 

     

 

(a)  Linearly elastic (b) Elastically non-linear 

 

Plateau region 
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Figure 2.7 Deformation modes of various experimental tests for defining nonlinear 

material parameters (ABAQUS Manual, V6.10)  
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2.3 Inverse problems and its application in material testing and properties prediction  

 

Parameter estimation is one form of inverse problem of optimisation, in which unknown 

material properties (or other parameters) is determined from the knowledge of response to 

given loading or boundary conditions. A successful program for predicting material 

parameter has to be accurate, efficient and robust and this depends on testing method used, 

inverse program, optimisation method etc. The performance of an inverse process has to 

consider the time/computational resources used, data process, accuracy and robustness.  

 

Figure 2.8(a) shows the structure of typical inverse modelling approach based on an 

interactive method (Meuwissen et al, 1998). In this process, the parameters to be predicted 

(e.g. material properties) are interactively changed in the FE models until the predicted 

results match the experimental results. A user defined objective function could be used to 

measure the difference between predicted and target parameters until an optimal fit 

between the simulated data to the experimental is reached. Figure 2.8(b) is a chart 

illustrating the basic process in an interactive parameter fitting with FE modelling. In this 

process, the FE modelling is repeated with changing material parameters until an optimum 

combination of material properties are found. Similar approach has been used for different 

materials including metals, polymeric foam and bio-materials (Kauer 2001; Bolzon et al, 

2004; Gerard et al, 2005; Hendriks et al, 2006). This is procedure easy to understand and 

can be developed using computer programming environments such as python (Aw, 2013). 

This approach requires re-running of the FE models during the optimisation process, which 

may take a large amount of time to reach the optimal solution, thus increasing the 

computational cost. In some cases, the work may converge at a local minimum rather than 

a global minimum. So different initial value have to be assigned to approach the target 

from different direction/domains. In some complex models, for example, fracture model of 

metals (Kong 2008); Welding model (Norbury, 2012), this process can be time consuming 

and expensive in terms of computational resources. In addition, this work requires the use 

of FE package all the time, so it could be more costly in terms of software cost and analyst 

time. 
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Another approach is a post modelling approach, i.e. the inverse is done after the FE 

modelling has been completed. In this process, a data space (simulation space) can be 

developed, then the optimum property can be found by searching through the database to 

match the experimental result without re-run the FE modelling. Several methods could be 

employed. Nakamura et al (2000) have developed a Kalman Filter method for the optimal 

inverse analysis to estimate effective material properties of functional gradient materials 

(FGMs), in which the material properties changes across the section of the sample that can 

only be measured using indentation tests. Figure 2.18 shows a flow chart showing the main 

component of inverse modelling using Kalman Filter method (Nakamura et al, 2000). 

Similar approach has been used in predicting nonlinear material properties from spherical 

indentation tests (Delalleau, 2006; Gu et al 2003; Li, 2009), it require updating the material 

parameters using the Kalman filter method. It is an effective method in the cases reported 

but it is not very good at dealing with complex data and the program could be time 

consuming in the case of complex models. For example, since the searching starts from 

one depth point and updating the data through each point, Kalman filter based program 

could not deal with indentation data at lower depth. In addition, in the program developed 

by Li (2009), different random error (noise) has to be introduced. Due to this complex 

mathematical frame work, it is not very easily used by researchers without in-depth 

programming background. In addition as the program relies on convergence to one final 

point, so there is uncertainty with the completeness of the final results. All these features 

limited its wide application and development of potential computer program to 

automatically determine the materials properties.  

 

The parametric study method is another type of post modelling method, which is easy to 

understand and follow. A typical example (Ren et al, 2006) for testing rubber materials is 

shown in Figure 2.10(a). In the test, two double sided tapes are used to apply a tension on 

the surface of soft materials, then the force-displacement data is used to represent the 

resistance of materials to deformation. The work developed a parametric approach for 

determining the results from in vivo surface testing. The method involves a two-staged 
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approach using a rough range data first and then refining the material. This method could 

effectively reduce the amount of computational works required but the approach has to be 

based on a good pre-knowledge of the materials and the testing variables has to limited to a 

few numbers.  

 

Another potential method for materials characterisation is the Artificial Neural Networks 

(ANN) (Zaw et al, 2009; Esfahani et al, 2009). The ANN method is known to be able to 

deal with complex problems with multiple parameters, which is normally the case for 

material parameters characterisation. Zaw et al (2009) has used a rapid inverse analysis 

ANN approach to identify the ‘‘unknown’’ elastic modulus (Young’s modulus) of the 

interfacial tissue between a dental implant and the surrounding bones. In 2009, Esfahani et 

al presented an ANN to model the influences of chemical composition and process features 

on the yield strength of hot strip steels, in which the ANN prediction showed good 

agreements with experimental data. The ANN method potentially can be used for 

characterising foam materials and similar materials from indentation tests. ANN programs 

are easy to use and once successfully trained, they can be packaged into a computer 

program with a proper interface allowing the user to input and extract data.  

 

A successful inverse FE modelling method requires the combination of FE modelling and 

data analysis for different applications. The suitability of each approach to be used in 

material parameter estimation based on indentation test data depends on the material 

system and the parameters being determined. The parametric approach is time consuming 

but represents the most robust approach (as it could effectively cover any possible material 

properties within the domain to be searched on) for systems with limited number of 

variables or a good pre-knowledge about the material. The main time and resource 

consuming part is in the development of the simulation space/database. The interactive 

method can be used for multiple parameters but requires significant re-running of the FE 

programs. The method is also sensitive to problem of stopping at local minimum rather 

than global minimum point. Method such as Kalman filter is an effective approach for a 

well defined problem. As the kalman filter converges on a single value, the user must 
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ensure that the result is independent of initial conditions in order to be absolutely sure of 

the final result. This study of starting point independence is not without lost. A practical 

way is to run the modelling many time with different initial guessed values (Li, 2009). 

ANNs represent a method capable of dealing with multiple variables, which can potentially 

be used to analyse complex material systems. Most of the published work in this field has 

been focused on materials with well-defined material laws having simplified geometry 

(such as metals). The suitability of these approaches for materials with nonlinear behaviour 

requires a systematic study. In addition, as this work also aims to develop a method that 

could be easy to put into a practical computer program, so an effective way of representing 

and processing also needs to be investigated and explored.  
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(a) General structure of interactive inverse approach based on updating FE modelling 

(‘u’ is the target; ‘h’ is the prediction) (Meuwissen et al, 1998).  

 

(b) A framework of interactive modelling approach.  

 

Figure 2.8 Flow chart illustrating typical procedures of an interactive inverse FE 

modelling method. 
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Figure 2.9 Flow chart of Kalman Filter procedure to determine the unknown parameters 

using instrumented indentation records (Nakamura and Gu, 2007).  
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(a) Surface tension tests where two adhesive tapes are used to test soft materials (rubber, human 

skin etc.) 

 

 

 

(b)  Parametric modelling approach to extract the material properties. 

 

Figure 2.10 A typical parametric modelling approach to extract the elastic material 

properties based on surface tension tests (Ren et al, 2006).   
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2.4. Introduction to ANN and its applications. 

 

2.4.1 The structure and working process of ANN 

 

Artificial neural networks (ANN) are non-linear mapping structures based on a working 

mechanism similar to the functions of the brain (Lek and Guegan, 1999; Lippman, 1987, 

Harkins, 1994, Sibi et al, 2013) as shown in Figure 2.11(a). The parallelism of the 

biological neural system provides an ability to deal with different tasks and processes. The 

working process of an artificial neuron is illustrated in Figure 2.11(b). The scalar input ‘p’ 

is transmitted through a connection that multiplies its strength by the scalar weight ‘w’ to 

form a scalar product ‘wp’. The scalar output ‘a’ is produced with weighted input ‘wp’ 

being the argument of the transfer function ‘f’. A scalar bias, ‘b’, of the neuron is simply 

being added to the product ‘wp’. It is well documented that a single neuron is not much use, 

in many case, a working system needs many neuron in different layers as shown in Figure 

2.11(c) to be able to process complex issues.  

 

If there are R input, the inputs on the left hand of the diagram, are multiplied by the 

weights and summed as  

𝑛 = ∑ (𝑝𝑛
𝑅
𝑛=1 𝑊𝑛)                                                   (2.6) 

The bias, b, is in the form of a constant value and is applied to the sum, so the total input to 

the transfer function becomes:  

𝑛 = 𝑊𝑝 + 𝑏                                                      (2.7) 

The final output, a, is the sum of the weighted input with the added bias transformed 

through a transfer function f (to be explained in detail in the next section). The weights of 

neurons are determined by means of training algorithms (to be detailed in the next section). 

Equation 2.8 shows the relationship between the output and inputs, weight, bias and 

transfer function as:  

𝒂 = 𝑓(𝑊𝑝 + 𝑏)                                                    (2.8) 

 

The performance of the system depends on the structure, individual neurons, activation 



32 
 

function/transfer functions, training/learning mechanism and quality of the input data 

(accuracy, diversity, validity, uniqueness etc.). Some of these are to be briefly presented in 

the next section of the thesis, these will help with deciding structure of the ANN and focus 

of the research in the context of indentation testing of nonlinear materials and related area.  

  



33 
 

 

 

(a) Schematics showing comparison between the human brain 

and ANN system.  

 

(b) A schematic model showing the working process of an 

artificial neuron (Demuth et al, 2008).  

 

(c) Structure and data of ANN system. 

 

Figure 2.11 The structure and working process of ANN. 
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2.4.2 Transfer (activation) functions for ANNs 

 

The transfer/activation function is one of the most important/critical factor for an effective 

ANN, it is used to convert the net input values to the node’s output value. An activation 

function specifies the output of a neuron for a given input state. Figure 2.12 illustrates 

different transfer functions (activation functions) (Karlik and Olgac, 2006; Demuth et al, 

2008). A hard limit transfer function (Figure2.12 (a)) is restricted to Boolean operations 

and, can only output an value of ‘0’ or ‘1’. When the neuron is on, the value is ‘1’, when 

the neuron is off, the value is ‘0’. Figure2.12 (b) illustrates a linear transfer function that 

cannot perform non-linear computations. For nonlinear problems, Sigmoid functions 

(Figures 2.12 (c&d)) are most commonly used in neural networks, this function overcomes 

the limitations of both hard limit and linear activation functions.  

 

As shown in Figure 2.12 (c), Logsig is a uni-polar sigmoid function the output value is 

between between 0 and +1 in the form of  

𝑓(𝑥) =
1

1                                                                        (2.9) 

The logistic from of the equation maps the interval (-, ) onto (0,1).  

 

Figure 2.12(d) shows the form of tangent sigmoid (Tansig), this is a bi-polar sigmoid 

function, which maps the interval (-, ) onto output value is between -1 and +1 in the 

form of hyperbolic tangent sigmoid: 

tanh(𝑥) =
sinh⁡(𝑛)

cosh⁡(𝑛)
=

  −  

                                                (2.10) 

Or in another equivalent form (Meng and Lin, 2008; Matlab Menu, 2013) as  

𝑓(𝑛) =
2

1  −2 − 1                                                 (2.11) 

This is mathematically equivalent to tanh(N). It differs in that it runs faster than the 

MATLAB implementation of tanh, but the results can have very small numerical 

differences. This function is a good tradeoff for neural networks, where speed is important 

and the exact shape of the transfer function is not (Matlab Menu, 2013). 
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The activation functions shown in Figure 2.12 are the most common ones relevant to the 

problem to be studied in this work. There are other forms of activation function such as 

Radial Basis Function, which can perform better in some other applications (Wu et al, 

2006; Karlik and Olgac, 2006).  
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(a) 

 

(b) 

  

 

(c) 

 

(d) 

 
 

 

Figure 2.12 Typical transfer (activation) functions for ANNs (Demuth et al, 2008; Neural 

Network Toolbox™ Users’ Guide) 
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2.4.3 Different types of ANN 

 

Feed-Forward and Recurrent Neural Networks 

Feed-forward neural networks provide a general framework for representing nonlinear 

functional mappings between a set of input variables and a set of output variables (Bishop, 

2006; Brescia, 2012). As illustrated in Figure 2.13(a) (Gualano, 2007), in a Feed-forward 

Artificial Neural Networks (FANNs), the input signals are fed into a first layer of neurons 

and the output(s) from these neurons are forwarded to the following layers in the ANN 

until the last layer (output layer) is reached. In this structure, information exchange only 

occurs in one direction passing through any eventual hidden layer. With a structure of a 

feed-forward neural network, both the number of layers and the number of neurons in each 

layer affects the ANN performance. Every node in the previous layer is connected to each 

of the nodes in the next layer. There is one problem for this structure; it does not have 

feedback connection, so it can only produce outputs which are directly related to the 

inputs.  

 

To overcome this problem with non-linear system modelling, past observations at the input 

and output of the feed-forward artificial neural networks (FANNs) are supplied to the 

FANNs themselves as inputs. Typical systems are in the form of a Recurrent Neural 

Network (RNN) method. As show in Figure 2.13(b), an RNN has the output(s), from one 

or more of its neurons, delayed and fed back (directly or indirectly) to the same neuron(s). 

The feedback signals include a delay of one time step for updating the variables, in other 

words, the feedback input to a neuron at a certain time ‘t’, represents the output of the 

neuron from where the feedback is generated at time ‘t-1’ (Gualano, 2007).  

 

Different method of training: Unsupervised and supervised network  

Learning is one of the most important and critical features influencing the performance of 

an ANN. There are many types of Neural Network Learning Rules. Based on the way the 

training has been conducted, it can be classified into two types: supervised learning, and 

unsupervised learning (Masters, 1993; Benchebra, 2008), which is shown Figure 2.14 and 
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2.15, respectively together with published application cases. As shown in Figure 2.14(a), in 

unsupervised learning, the weights and biases are updated in response to network input 

only. There are no target outputs used. Unsupervised learning is often used to perform 

operations such as clustering (Benchebra, 2008). In learning without supervision the 

desired response is not known; thus, explicit error information cannot be used to improve 

network behaviour. Since no information is available as to correctness or incorrectness of 

responses in a unsupervised learning, learning has to be accomplished based on 

observations of responses to inputs with marginal or no knowledge about. Figure 2.14 (b) 

shows a typical of unsupervised learning: Kohonen SOMs (self organising mapping) 

commonly used for ecological modelling (Lek and Guegan, 1999). Unsupervised learning 

can easily result in finding the boundary between classes of distributed input patterns. 

Apparently, this approach will not be suitable for materials parameters identification based 

on the indentation test as the problem to be studied in this work.  

 

In supervised learning, as shown in Figure 2.15 (a), the learning rule is provided with a set 

of examples (the training set), the network outputs are compared with the targets for given 

corresponding inputs, The learning rule is then used to adjust the weights and the biases of 

the network in order to move the network outputs closer to the targets. Supervised learning 

can be applied in either feedforward NN and feedback NN (Gualano, 2007). Figure 2.15(b) 

schematically shows a typical feedforward structure of supervised learning with a 

multilayer feed-forward neural network (Pal et al, 2008). The network will be trained with 

target data corresponding to a set of inputs before being used to predict results for trained 

data or untrained input data.  
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(a) Schematic to show a feed forward structure. 

 

 

(b) Two example of recurrent/feedback method.  

 

Figure 2.13 Feedforward and feedback system (Gulano, 2008).  
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(a) Blockdiagram to show the principal of unsupervised learning (The Categories of 

Neural Network Learning Rules; http://www.uotechnology.edu.iq/; Accessed 

12/2013)  

 

 

Figure 2.14 (b) A typical unsupervised learning networks: Kohonen SOMs 

(Self-Organizing Maps) for ecological modelling (Lek et al, 1999).  

  

http://www.uotechnology.edu.iq/
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(a) Supervised learning (The Categories of Neural Network Learning Rules); 

http://www.uotechnology.edu.iq/; Accessed 12/2013) 

 

 

(b) a multilayer feed-forward neural network for weld joint strength prediction. 

 

Figure 2.15 Supervised learning (a) and a typical supervised learning networks (b) (Pal et 

al, 2008).   

http://www.uotechnology.edu.iq/
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2.4.4 Learning rules and their applications 

 

As shown in previous sections, the learning process involving updating the weights of a 

neuron or a group of neurons in the system. Many learning rules/algorithms have been 

developed and have found applications in different areas (Maier et al, 2000; Pal et al, 2008; 

Zaw et al, 2009). These algorithms are different from each other in the way the weights in 

a network are modified/adjusted. The error-correction rule is one of the most common 

methods, which works by minimizing the error outputs generated by the network with 

respect to the targets by modifying the synaptic weights (Maier et al 2000; Mansour et al, 

2004). In supervised learning, the inputs are processed through the corresponding weights 

and neurons, the output and the target output are compared. The difference is known as the 

error that needs to be minimized to a level that is sufficiently accurate. Many methods have 

been developed to find the minimum error, including Gradient descent method, Newton 

method, Quasi Newton Algorithm method, Levenberg–Marquardt etc (Finlay, 2004; 

Adeloye and Munari,2006;). The choice of the approach should be selected within the 

context of the technical problem to be studied, nature of the input and output data including 

the accuracy and computational resources requirements.  

 

Gradient Descent Approach 

The techniques of calculating the slope of a function towards a function minimum is 

known as gradient descent (Masters, 1993; Baldi, 1995, Finlay, 2004, Gong et al, 

2012; Zhao 2013). Figure 2.16 illustrates the concept of the gradient descent 

approach. As shown in the graph of function y(x), if the changes in y due to x are 

considered small⁡𝛿𝑦 ≈ ∆𝑦, it can be shown that the gradient of the slope 
∆𝑦

∆𝑥
 can be 

evaluated following (Master, 1993): 

∆𝑥 = −𝑎 (
𝑑𝑦

𝑑𝑥
)
2
                                                (2.12) 

Where the learning rate, ‘a’ is greater than zero but small enough that 𝛿𝑦 ≈ ∆𝑦 still 

holds true. If ‘a’ is a small non-zero value, the direction of the descent is always 



43 
 

towards the minimum of the function, thus bring convergence to a minimum (at least 

locally).  

For a complex function, there are more variables:  

𝑦 = 𝑦(𝑥1, 𝑥2⁡ …𝑥𝑛)                                            (2.13) 

Partial differentiation has to be used to analyse the situation with multiple variables, 

the gradient of each variable can be determined for each variable,⁡𝑥𝑖 , following 

equation: 

∆𝑥𝑖 = −𝑎 (
𝛿𝑦

𝛿𝑥𝑖

) ⁡                                            (2.14) 

The error on output of a given neuron is a function of weights: 

𝐸 = 𝐸(𝑤1, 𝑤2, … , 𝑤𝑥).                                          (2.15) 

If the function has more than one variable (more than 1 weight), the error in terms of 

the weights can be expressed as: 

∆𝑤𝑖 = −𝑎⁡
𝛿𝐸

𝛿𝑤𝑖
                                                (2.16) 

It is known that the error in a network can be expressed in terms of the difference 

between a target and output value pair under the supervised learning (Pal et al, 2008). 

For a nonlinear problem, the error can only be expressed in terms of a selected target 

vector and a corresponding activation vector:  

𝐸 =
1

𝑁
∑

1

2
𝑁
𝑝=1 (𝑡𝑝 − 𝑎𝑝)2                                        (2.17) 

In this equation, the superscript, p, indicates the current input pattern, t, is the target 

vector and, a, is the activation output. 
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Newton and Quasi Newton Algorithm Method 

 

The most commonly used approach in engineering program is the multilayer perceptron 

(MLP) approach, the learning rule of which is the Quasi Newton Algorithm (QNA). A 

general Quasi Newton Algorithms (QNA) are variable metric methods used to find local 

maxima and minima of functions (Davidon 1968; 1991; Shanno, 1970; Gibert and 

Lemarichal 1989; Brescia, 2012 ). In the case of MLP’s, it can be used to find the 

stationary (i.e. the zero gradient) point of the learning function. QNA is based on the 

Newton method, the basis of which is finding the roots of an equation by computing 

recursive function approximations. It is a good alternative for high order functions when a 

formula for finding the roots of the function is not available (Aldrich 2002; Gualano, 2008; 

Brescia, 2012).  

 

For a function f(x), by using the equation of the straight lines defining the derivative of the 

function to the root approximations, the root xn can be approximated following equation: 

 

𝑥𝑛 = 𝑥𝑛−1 −
  (𝑥 − )

   (𝑥 − )
                                               (2.18) 

Comparing equation 2.12 and 2.18, the newton method is different from the gradient method. 

Gradient descent tries to find such a minimum ‘x’ by using information from the first 

derivative of function ‘f’, simply following the steepest descent from the current point. 

Newton's method tries to find a point satisfying f'(x) = 0 by approximating f' with a linear 

function and then solving for the root of that function. When approximating f', Newton's 

method makes use of f'' (the curvature of f). This means it has higher requirements on the 

smoothness of data of ‘f’, but it also means that (by using more information) it will 

converges faster (Aldrich 2002, Brescia, 2012). The Newton method is a very powerful 

technique for finding the roots of any-order equations in a very simple manner. The main 

drawback of the Newton rule is that the program may diverge from the true solution. When 

approximations diverge from the root of the function, another guess has to be made until 

series of Newton’s successive approximations is found, causing diverge rather than full 

convergence to the root r of the function. In practice, an ANN system may include many 
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layers and neurons. A training algorithm has to consider that more than one weights is 

associated with a neuron , and when the weights are all considered, the format of the 

Newton's rule take the form of  

𝑥𝑛 = 𝑥𝑛−1 − [𝐻𝑓(𝑥𝑛−1)]
−1 𝑓(𝑥𝑛−1)                                 (2.19) 

 

With this form, the weights could be considered all together instead of ‘one by one’, so the 

derivative f’(xn-1) in the Newton equation is replace by a gradient  f(xn-1), and (1/f’(xn-1) is 

replaced by the inverse of Hessian matrix (Hf(xn-1) of f(x) (Likas, 2000; Gualano, 2008). 

Hessian is a matrix of second derivatives and finding the inverse of the Hessian matrix is 

difficult, which may require a lot of computational power and is unpractical for the training 

of an ANN. The implementation of QNA is based on a statistical approximation of the 

Hessian by cyclic gradient calculation through Back Propagation method (Bishop 2006).  

 

Accordingly to (Brescia, 2012). the Newton method uses local square approximation of the 

error function to determine the minimum position. The gradient in every point w can be 

given as: 

∇E = H × (w – w*)                                                 (2.20) 

where w∗ corresponds to the minimum of the error function, which satisfies the condition: 

w∗ = w − H
−1

 × ∇E                                                (2.21) 

The vector H
−1

×∇E is known as Newton direction and it is the base for a variety of 

optimization strategies, such as for instance the QNA, which instead of calculating the H 

matrix and its inverse, uses a series of intermediate steps of lower computational cost to 

generate a sequence of matrices which are more accurate approximations of H
−1

. Details of 

the process can be found in (Brescia, 2012).  

 

Based on the Newton formula, the weight vectors on steps t and t+1 are correlated to the 

correspondent gradients by the formula known as Quasi Newton Condition.: 

 

𝑤(  1) − 𝑤( ) = −𝐻−1(𝑔(  1) − 𝑔( ))                                 (2.22) 
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The approximation of gradient G is therefore built to satisfy this condition. Details of the G 

and implementation of the process can be found in reference (Brescia 2012). General 

speaking, by using such system, the weight updating can be calculated following:  

 

𝑤(  1) = 𝑤( ) +  ( )𝐺( )𝑔( )                                         (2.23) 

 

where  is obtained by the line search.  

 

 ( ) = −
𝑑( )  ( )

𝑑( )  𝑑( )                                                  (2.24) 

 

One of main advantage of QNA, compared with conjugate gradients, is that the line search 

does not require the calculation of α with a high precision, because it is not a critical 

parameter. On the contrary, the downside is that it requires a large amount of memory to 

calculate the matrix G |w|×|w| for large |w| (Brescia 2012). 

 

Levenberg–Marquardt method 

 

Like the quasi-Newton methods, the Levenberg–Marquardt algorithm was designed to 

approach second-order training speed without having to compute the Hessian matrix 

(Hagan 1994; Mirzaee, 2009; Liu 2010). When the performance function has the form of a 

sum of squares (as is typical in training feed-forward networks), then the Hessian matrix 

can be approximated as: 

 

𝐻 =                                                             (2.25) 

 

where H is the an Hessian matrix, J is a Jacobian matrix (the matrix of all first-order partial 

derivatives of a vector-valued function) and J
T
 is the transpose of the Jacobian matrix.  

 

So equation 2.19 becomes: 

 

𝑥𝑛 = 𝑥𝑛−1 − [   ]−1∇𝑓(𝑥𝑛−1)                                        (2.26) 
 

and the gradient can be computed as:  

 

∇𝑓(𝑥𝑛−1) =   𝐸                                                   (2.27) 
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In this case, the Jacobian matrix ‘J’ contains first derivatives of the network errors with 

respect to the weights and bias; E is the vector of network errors. The Jacobian matrix can 

be computed through a standard back-propagation technique. The process is much less 

complex than computing the Hessian matrix in full scale (Mirzaee, 2009). Details of the 

process of the approximation of the Hessian matrix in the Levenberg–Marquardt algorithm 

can be found in (Mirzaee, 2009). It is reported that this algorithm appears to be the fastest 

method for training moderate-sized feed-forward neural networks (up to several hundred 

weights). (Coulibaly,2000; Gulano 2008; Altun et al, 2008; Mirzaee, 2009) 
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Figure 2.16 (a) Schematic to illustrate finding the minimum of a function (Adapted 

from Finlay, 2004).  

 

Figure 2.16(b) Typical example to illustrate the concept of The Newton Method.  

(Adapted from Gualano, 2008).  
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2.5 Testing and validation of an ANN for practical applications  

 

ANN is a useful technique in many applications, but there are limitations. One key factor 

in developing ANN is to develop a practical method to evaluate the performance in a 

problem specific way, as each different case has different requirements on the accuracy, 

robustness or reliability. The evaluation of the performance of an ANN program needs to 

cover two aspects. One is the accuracy of the training process, then, the results may need to 

be further extended into a physical meaningful way with measurable parameters. 

 

2.5.1 Parameter for testing and validation of performance of an ANN 

 

Testing and validation of an ANN is an important part in the development of an ANN. The 

most common approach is the Mean-Square-Error (MSE), which is in the form of: 

𝑀𝑆𝐸 =
1

𝑄
∑ (𝑡(𝑘) − 𝑎(𝑘))2𝑄

𝑘=1                                      (2.28) 

where Q is the number of samples of the target output set, t(k) is the output of the target 

model to a certain input, and a(k) is the output of the ANN to the same input. This function 

produces an average of the squares of the errors between the target output and the ANN 

output. The objective a training process is to minimise this. Another form is 

Mean-Squared-Error with Regularization (MSEREG) which is the SUM of the MSE and 

the mean squared weight and bias values, both of these being first multiplied by some 

"damping" factors which are arbitrary and often vary with different software 

implementations of ANN performance measurement techniques (Matlab Menu, 2013). The 

MSE function provides a measure of the prediction accuracy of the ANN by calculating a 

single value representing the mean of the squares of the errors occurring between the ANN 

output and the target system output. However, there are aspects of the ANN responses 

which cannot be assessed by using the MSE function alone. Further analysis is required in 

the context of the work and nature of the data. For example, for material testing related 

works, certain levels of error is acceptable, but the range of error for all the data should be 

within certain limits. This may require training the ANN with a different focus. This is an 

area directly relevant to this project. 
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2.5.2 Generalisation of ANN and influencing factors 

 

Generalisation with respect to neural network training refers to the ability of a network to 

produce the correct outputs for inputs in a test set (or a majority) that was not used in the 

training (Masters, 1993; Lawrence et al, 1996; Finlay 2004; Wan et al, 2009). In other 

word, the capacity of ANN in predicting results using data not used in training or 

validation. A fully generalised ANN could predict based on non-training data from the 

same class. This is a more useful feature but technically more challenging than the ability 

of the ANN to produce output of a supervised neural network to approximate the target 

values for data in the training set. In some case, 100% generation is not necessarily 

achievable depending on the nature of the problem and the way the training was designed 

and performed. This may pose a problem with materials testing as the material has to be 

100% reliable for the ANN to be useful in particular to be routinely used by users with no 

in-depth ANN experiences.  

 

There are two types of generalisations; one is interpolation and extrapolation (Barnard and 

Wessels, 1992). Interpolation applies to cases that the data are within the range or domain 

of the training cases or close to the training sets; while extrapolation situation refers to 

condition of fitting data outside the range of the training data (Lawrence et al 1996; Pala et 

al, 2007). Interpolation is much easier to achieve while extrapolation is difficult and in 

many cases impossible and unreliable, so most of the common engineering applications of 

ANN is concerned with interpolation. With FEA based data, it can always cover a wide 

range data so the ANN can be developed for interpolation problem effectively avoiding the 

need for extrapolation. So FE modelling is useful in this sense and should be used as an 

alternative method to methods purely based on experimental data. Many practical methods 

could help with achieving generalisation such as sufficient information linking the input to 

the target with desired accuracy through a general mathematic relationship (Trend). (Finlay, 

2004). It is commonly known that ANNs are data dependent. In other words, it does not 

impose functional relationship between the independent and dependent variables.  The 

functional relationship is determined by the data in the training (or calibration) process. 
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The advantage of such an approach is that a network with sufficient hidden units is able to 

approximate any continuous function to a certain degree of accuracy, if efficient training is 

performed (Coulibaly et al 2000). 
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2.5.3 Key Factors affecting the ANN performance  

 

The performance of an ANN depends on many issues and factors depending on the priority 

of the technical problem. Some key factors commonly evaluated in engineering ANNs 

included choice of number of neurons, choice of the activation function, over fitting, early 

stopping, w partition of the data, etc. (Finlay, 2004 ; Ince,2004). In most cases, MSE is 

normally the main performance indicator when evaluating the effects of these factors.  

 

As detailed in the previous sections on the structure and working mechanism of ANN, the 

number of neurons directly influence the performance and the demand on computing 

resources of an ANN system. The rule for proper selection of neuron number is that the 

number of neurons should be sufficient in producing results of acceptable accuracy in the 

meantime avoid over fitting. Many works use MSE as an indicator to assess the effect of 

number of neurons (Wu et al 2006; Meng and Lin 2008), which has been very effective 

through trial- and-error methods. A typical example of using MSE to evaluate the 

performance of ANN is shown in Figure 2.17. In this work on developing a neural network 

and real genetic algorithm combined tool for an engine test bed, the change of MSE with 

increasing number of hidden units of an NN model (from 1 to 20) is established to select 

the optimum condition. In the work, for each fixed hidden unit, several runs are arranged 

with different initial conditions for the network parameters. The optimal network structure 

is determined by the minimum error for the validation set over all these runs. In another 

work by Meng and Lin (2008), in order to clarify the effect of neuron number on the 

approximation capability, the work compared the performance of ANNs with 1–10 neurons 

in the hidden layer. Considering only the predictive performance, 90% of the entire data set 

was used to establish ANNs and the remaining 10% was used for testing the predictive 

accuracy of these established ANNs. The 90% data were further randomly divided into a 

training subset (80%) and a validating subset (10%) to meet the requirement of the 

early-stopping technique. Figure 2.18 shows a typical relationship, between MSE and the 

neuron number for both the training+validating subsets and the testing subset (Meng and 

Lin, 2008). In contrast to the persistent reduction of MSE in the training+validating subsets, 
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the MSE in the testing subset began decreasing only marginally and even stopped 

decreasing when the neuron number exceeded 4 and 6, respectively. Thus, more than 6 

neurons were considered redundant, and the ANN with 6 neurons in the hidden layer was 

accepted. 

Over training could be a major problem in ANN. In this situation even though the accuracy 

of the training may increase but the overall accuracy of the ANN will decrease in particular 

for predicting untrained data. If the complexity of the network is too high for the problem 

being considered, the NN system will learn all the details of the training patterns, 

potentially including the noise, which doesn’t reflect the nature of the material or system. 

One major condition causing over training is excessive number of neurons in the hidden 

layer. As illustrated in Figure 2.19, when the network has too much freedom (i.e. to many 

resources such as neurons) that it focus on fitting the details (even noises) of the training 

data rather than the underling trend/function (Masters, 1993). With a new set of test data, 

the ANN will try to match/find output values from the trained data rather than trying to 

interpolate to a new output values. (Finlay, 2004). Typical methods to avoid over training 

could include proper selection of number (normally through trials); partition of the data, 

incorporating early stopping mechanism, etc. (Coulibaly et al 2000; Meng and lin 2008, 

Prechelt, 1998). 
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(a) Effect of Number of hidden units on MSE with radial basis function 

(RBF)-Gaussian function.  

 

(b) Effect of Number of hidden units on MSE with radial basis function 

(RBF)-Quadratic function. 

 

Figure 2.17 Typical examples showing using MSE to assessing effect of number of hidden 

units (Wu et al 2006).  
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Figure 2.18 Typical data showing the improvement of ANN approximating capability with 

increases of the number of neurons in the hidden layer of in a feed-forward artificial neural 

network for prediction of the aquatic ecotoxicity of alcohol ethoxylate incoporating early 

stopping (Meng and Lin 2008).  

  



56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 Schematic to show the concept of fitting and over fit (Adapted from Maters 

1993; Finlay, 2004).  

 

  

Well fit model Over fit model 
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2.6 FE modelling methods and data processing  

In many engineering and material related works, FE is increasingly being used to provide 

data for NN works in addition to experimental data (Tho et al 2004; Ince 2004, Khin 2009, 

Luo et al 2007; Harsono, 2009). The advantage of FE lies in the fact, once it was validated 

with experimental data, it will be able to produce much large scale of data than pure 

experimental methods. This could potentially enhance the use of ANN in materials related 

works. However, both FE and ANN have their limitations which have to be considered to 

be able to combine these two techniques. The basic structure and theories of Finite element 

modelling is briefly summarized here, with a particular focus on the data and information 

from FE modelling at different stages. Understanding of nature of data and processing is 

important for ANN development based on FE data, post modelling database development 

and potential development of computer based program, which is directly relevant to this 

project.  

Finite Element methods are now widely used by engineers and scientists to simulate very 

complex problems (Dao et al, 2001; Tho et al 2004; Ren et al 2008; Gu, 2010; Norbury 

2014). In general, the Finite Element approach involves dividing the continuum into 

elements which are small enough for factors such as stress or displacement fields (or other 

physical parameters) to be approximated satisfying the problem’s boundary conditions. 

There are many different commercial packages available such as the ABAQUS, ANSYS 

etc. This work will focus on the data and main factors that affect the modelling process, 

which may relevant when using them in ANN, including demand on computational 

resources and time.  

 

Figure 2.20 shows the main steps in structural FE modelling. It starts with input of 

dimensions, part and assembly, material properties, meshing, boundary and loading 

conditions, then meshing. Through the meshing process, the model is discretised in space, 

i.e., converted to a discrete model of a finite number of elements, taking into consideration 

degrees of freedom (DOF), loading, boundary conditions and different material properties. 

After the problem has been discretised, the governing equations for each element are 
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calculated and then assembled to give the system equation. The details of the calculation 

process and theory can be found in many references (e.g. Fagan 1992). 

One of the main aspects of FE with ANN is data process in a FE modelling process. The 

data requirement for an FE process is complex. The input maybe dimensions, shape, 

material properties and boundaries condition such as contact, friction, etc. The accuracy of 

these is important to the accuracy of the model. The input data can be entered interactively, 

it can also be done using parametric program, or recently for ABAQUS via. A .RPY file 

based on python programming, which can systematically change the properties or 

dimensions through loop or optimisation function (ABAQUS 6.10 Manual). This 

potentially could produce a program to generate a large quantity of data covering a wide 

range of properties. This could enhance the data quality if used for ANN training. The 

calculation time of FE varies with the problem; some calculation can be done very quickly 

while some models can be very time consuming depends on the number of elements or if 

the material model is complicated. In addition, FE modelling is also an expensive process 

on software requirement in comparison with ANN based processes. ANN programs may 

take time to train but once trained the calculation could be much faster than FE modelling. 

Combining the two approaches could be advantageous. Recently, the post processing of FE 

results  is being rapidly developed; many different ways can be used to extract data 

through interactive, python or subroutine, the output can be typical materials deformation, 

force, etc., all these may potentially provide more comprehensive data for ANN than using 

pure experimental data. An effective process would be using experimental to validate the 

FE model, then use the FE model to produce more data for the training of ANN, then use 

both FE and experimental data to validate the ANN program. 
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Figure 2.20 The main steps in a Finite Element modelling process (Adapted from 

Fagan 1992).  
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2.7 Applications of ANN in engineering and indentation tests 

 

ANNs have been used in many different areas in different technical industries (Huber et al 

2000; Zaw et al 2009; Lee 1998, Scott et al 2007; Coulibaly 2000; Harsono 2009; Demir et 

al, 2008; Maier 2000; Partheepan, 2011). Many of these works is concerned or associated 

with the use ANN in material testing. A discussed in section 2.3, ANNs represent a simple 

and quick method without repeated running of FE program; this could provide a significant 

computational advantage. Zaw et al (2009) proposed a rapid inverse analysis approach 

based on artificial neural network to identify the ‘‘unknown’’ elastic modulus (Young’s 

modulus) of the interfacial tissue between a dental implant and the surrounding bones. In 

another study, Esfahani et al (2009) presented an artificial neural network to model the 

influences of chemical composition and process features on the properties (yield stress) of 

hot strip steels. In all these works, ANN approach showed significant advantages over 

other inverse and optimization approaches in dealing with complex material systems.  

 

General speaking, there are several advantages of the ANN method in comparison to other 

method such as the interactive and parametric method (Section 2.3). A major advantage of 

the use of neural networks for data modelling is that they are able to fit complex nonlinear 

models and these models do not have to be specified in advance. This is directly relevant 

on material characterisation as in many cases, the materials is unknown or may change 

with time/conditions. Neural networks are composed of elements operating in parallel, 

which allows increased speed of calculation compared to slower sequential processing, this 

can be important for complex material models or systems. As explained in section 2.6, 

some FE models may take a long time to run, if the data has been used to develop an ANN, 

the calculation will be much faster. In addition, neural networks have the ability to detect 

many possible interactions between variables: The hidden layer of a neural network gives it 

the power to detect interactions or interrelationships between all of the input variables; this 

is a commonly case as the material parameters could be interlinked in many cases. ANNs 

are robust in the sense that, should part of a network lose connectivity, the remainder will 

continue to function, thus a partial loss of function is not catastrophic in the same way it 

would be for conventional models based on the physical process. In addition, as a post 
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modelling approach, another advantage of this method is that it does not require re-running 

the FE modelling during the optimisation process. All of these features made ANN an 

attractive option for material testing either for predicting the material response or 

estimating material parameters by combining FE modelling and experimental testing, in 

particular for systems with nonlinear properties such as foams and related structures. 

 

Use of ANN in materials property estimation could be a complex process, in many case, 

the program or structure of ANN has to designed to suit the problem, this could be 

deciding what input to use or what will be used as output if the physical 

parameters/properties could not be used. Some specific data process has to be implemented. 

For example, the main measurement result in indentation in force-indentation depth curves, 

but the parameter describing P-h curves not necessary can be linked mathematically to the 

property parameters. For ANN, the more meaning for data as input the better, so sometimes, 

some factor that may not necessarily directly relevant to material work, but it can may be 

very useful to the ANN program. A typical example by Tho et al. (2004) on use of cone 

indenter in predicting material properties of metals (yield stress and work hardening 

coefficients) is shown in Figure 2.21 (a). The work requires the construction of 2 artificial 

neural networks (ANN1 and ANN2) as two stages of mapping have to be performed. Each 

ANN model created by Neural Network Toolbox (Matlab V6.5) comprises 3 layers, namely, 

(i) an input, (ii) a hidden and (iii) an output layers. The tangent sigmoid transfer function is 

employed in the hidden layer while the output layer uses the linear transfer function. In the 

work, the number of neurons in the hidden layer is calibrated based on the training and 

validation processes. The work has been successfully used to predict the plastic properties 

of a range of metals including Aluminium and steel based on dual indenter approach. 

Harsono (2009) used a single neural network approach (Figure 2.22 (a)) study the 

prediction of yield stress and work hardening coefficients based on a single indenter 

approach, while the input are the surface of ratio between work done and total energy 

(WR/Wt) and the ratio of the curvature ratio of the curves of two different indenter angles 

(C1/C2) ((Figure 2.22(b)). The comparison between the ANN predictions is listed in Table 

2.1 in comparison with the target value. The yield strength shows a good agreement but the 
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work hardening coefficients showed a very high deviation. This shows that ANN can be 

used to predict the materials properties but not necessary will achieve high accuracy for all 

the material parameters. This does not imply that program is not useful but to highlight the 

fact that when developing ANN, the goal should be try to achieve the best than can be 

achieved rather than purely to produce accurate number on limited cases. It will be 

interesting to investigate this with other more complex material models such as EVA 

foams.  

 

Table 2.1 Comparison of the predicted material properties obtained from ANNs algorithm 

with inputs for various combinations of three-sided pyramidal indenter tips. (Tho et al, 

2004) 
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(a) Angles of conical indenter (b) Force displacement curve and energy 

(work). 

 

(c) A two network system used to predict the materials properties of metals  

Figure 2.21A two ANN system used in predicting plastic properties of metals based on 

conical indentation (Tho et al 2004).  
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(a) Flow chart of proposed ANN based on a single ANN model. 

 

 

 

(b) Surface fucntion () used in the ANN inverse program.  

 

Figure 2.22 A single ANN system used in predicting plastic properties based on conical 

indentation (a) and the equations (b) (Harsono, 2009). 
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2.8 Potential application of ANN in indentation testing of EVA foams and main 

challenges 

 

Close cell foams, such as Ethylene vinyl acetate (EVA) foam are widely used in 

engineering, sport and biomedical fields (Mills et al, 2003; Moreu and Mills, 2004). EVA 

foam is made up of tiny gas bubbles, which give the material a unique mechanical 

behaviour, which is difficult to characterise. A typical application for EVA foam is in 

footwear, where a range of EVA materials of different hardness are used (Verdejo and Mills, 

2004; Gu et al 2011). As illustrated in Figure 2.23, sports shoes can be broken down into 4 

main areas; upper shoe, inserts, mid-soles and the outsole. While the upper shoe functions 

are mainly to hold the sports shoe together, it also helps to stabilize the foot during running 

(Gu et al 2011). The midsole of a sports shoe, which commonly made by EVA foam, aims 

to help spread the impact forces so the peak ground reaction force is not placed directly to 

the foot, leg and knee, which is how most injuries have occurred (Gu, 2010). The 

indentation resistance of the material directly reflect the deformation of the material under 

load and the comfort of the shoe, etc. EVA foam could provide the mid-sole cushioning 

properties. Detailed properties of the foam is very important for both material development 

and the design. In a product development process, the engineer has to select material form 

a range of product, in some case combination of material has to be used. Figure 2.24 

illustrate an example in developing midsole using different EVA foams (Gu, 2011). In this 

case, EVA foams of different hardness is used in different areas of the midsole. The effect 

of these different designs has to be simulated with finite element modelling as shown in 

Figure 2.25, which requires detailed material parameters.  

 

Given the wide application of EVA and the use of indentation testing, it is important to 

explore the use of ANN in indentation of EVA materials. Two main areas need to be 

studied for both industrial application and academic research. One area is direct estimation 

of the indentation curves for material of known properties, this will help the 

engineer/researcher to estimate the potential performance when comparing different 

materials with known properties. As explained in the hyperfoam models, the property of 
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EVA foam is governed by two parameters (equation 2.4) (as compared to metallic materials, 

the P-h curve of which can be represented by only one coefficient (equation 2.1)), so it 

very difficult to tell how the material is going to perform under indentation as the two 

parameter influence the P-h curves in a different way. FE modelling has to be performed 

which is not very convenient in particular when the software or modelling expertise are not 

available. In addition, an ANN program validated with standard indentation tests may be 

able to be transferred into more complex loading to study the effect of material properties 

such as foot-shoe interaction. Another area to be investigated is to inverse estimate the 

material parameters from indentation tests as it is much more easier than standard approach 

(i.e. combination of shear and compression tests), it will be a great advantage if the 

material parameter can be predicted inversely form indentation tests as a quick way of 

predicting the properties with full confidence. As detailed in section 2.2 and illustrated in 

Figure 2.7, use of standard tests are complicated and time consuming. In addition, it will be 

difficult to conduct materials testing at different temperatures with the setup of standard 

tests.  

 

There are some challenges for both research directions (i.e. direct P-h curve prediction and 

inverse material property estimation). The material represents a much more challenging 

research topic than metal materials. The indentation curve of metals can be represented 

curvature (as in Eq. 2.1), but for EVA foams, a more complex way has to be used to 

represent the data. Polynomial fitting could be way to describe the curves, but there are 

issue of nonuniqueness in using polynomial fitting. More challengingly, the choice of 

mathematical representation of the curve has to be properly selected to be able to aid the 

direct or inverse engineering. In addition, the accuracy/robustness in direct (predict 

indentation curves from known properties) and inverse (predict properties from indentation 

curves) has to be established. The practice in some of the published work in materials 

oriented projects has been focus on limited number of testing cases, which could not 

satisfy the need of materials research and development or to be used by material 

researchers without direct experience in ANN. There may be non-uniqueness issues, where 

more than one set material parameters fit the target of P-h curves; this and the uncertainty 
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associated with this has been a major barrier in preventing wider application of inverse 

program. One direction of this work is to explore situation where testing data of different 

situation (e.g. indenter size. thickness) can be used to improve the robustness. Another aim 

on program development is to establish methodology and computational tool that is 

capable of mapping out all possible solution in a direct/inverse program, which will 

ultimate give the user the confidence in the inverse results and select the optimum/best 

available solution based on pre-knowledge or experience in case that no unique properties 

can be defined, this will be suitable for the nature of materials testing. The material 

behaviour of EVA material is representative of a range of materials including biomedical 

materials, so the program developed and evaluated with EVA as a model material will be 

transferable to other material systems in the future based on the research framework 

(including the use of different ANN tools (nftool, nntol and code based), programming 

language and curve fitting/searching approach to be established in this project). Some of 

these will be highlighted in the discussion and future work section.  
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Figure 2.23 Schematics to show the structure of the sport shoe design and the application 

of EVA materials (Nigg et al., 2006). 
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(a) Images showing the midsole and different materials.  

Figure 2.24 Manufacture of the midsole with different materials to illustrate the use of 

EVA foam (Gu et al, 2011).   
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Figure 2.25 FE model for simulating the effect of EVA foams on shoe heel interaction (Gu 

et al 2010) to highlight the importance of EVA testing and properties.  
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Chapter Three  

Prediction of indentation force displacement curves 

(P-h) of hyper foams based ANN  
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3.1 Introduction and research structure 

 

Figure 3.1 shows the main research work reported in the thesis, consisting three main parts: 

FE modelling and data process; development of ANN for direct prediction of indentation 

P-h curves and inverse material property identification. Chapter 3 consists of first two 

main parts of works. The first part is development of FE models and data processing. The 

second part involves developing an ANN program to predict the force indentation 

displacement curves with known materials properties ( and ) for different indenter sizes. 

The ANN work will enable the prediction of Force displacement data without re-running 

the FE modelling. The work will provide a base for developing inverse material property 

prediction program, which to be presented in the next chapter.  

 

In the FE modelling part, a parametric FE .inp file is developed which is able to change the 

key material properties and dimensions, including indenter size, sample size and thickness. 

This will make the data processing process a lot easier compared to interactively changing 

these in the FE model. The effects of some key modelling parameters (such as mesh 

density, etc.) on the indentation curves are investigated using parametric studies in 

ABAQUS and the optimum modelling conditions are established. The FE model is 

validated with experimental test data with EVA foam with known properties. The FE 

model is then used to map the effects of material properties on the loading curves using 

parametric studies in ABAQUS. Based on the parametric studies, simulation spaces 

covering a wide range of potential material properties are constructed. Two methods are 

used to generate the material property matrix data: one is to use regular fixed increment in 

µ and α; the other is to use increment in percentage. These provide essential systematic 

data for the ANN training, validation and test data.  

 

In the ANN part, two approaches have been proposed and evaluated to represent the P-h 

curves; one is to use polynomial trendline to represent the P-h curves (designated as 

trendline approach); the other is to use force at different indentation depth (designated as 

depth approach). The validity and accuracy of each ANN is assessed using trained data and 
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new data (not used in training or validation) using MSE and relative error as performance 

indicator. A new approach is developed to improve the robustness of the prediction through 

frequency analysis. The sensitivity of the estimated mechanical properties to variations of 

the input parameters (e.g. potential perturbation (error or noise) of the load) is also 

investigated. The prediction of ANN is extensively validated with FE data, the prediction is 

also compared to experimental testing data. The ANN approach is also compared to other 

methods including surface mapping and direct data searching programing using Matlab 

Polyfit functions. The frame work of the ANN program developed is then used to develop 

a computerised method for inverse foam properties identification (to be presented in the 

next chapter).  
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Figure 3.1 Flow chart showing the main research work of the thesis.  

  

DEVELOPMENT AND ANALYSIS OF ANN FOR DIRECT INDENTATION 

FORCE-DISPLACEMENT CURVE PREDITION WITH DIFFERENT INDENTER SIZE 

(Chapter 3) 

*Training space development and data analysis (Depths and polynomial trendline 

approach, different way of training data) 

*Optimisation and validation (activation functions selection, early stopping 

mechanism, effect of number of neurons, frequency analysis and averaging method 

to improve robustness) 

*Testing of the ANN network with trained data and untrained data  

*Comparison between ANN prediction and experimental P-h curves 

* Comparison the ANN methods with other data searching programs 

DISCUSSION AND FUTURE WORKS 

 

FE MODEL DEVELOPMENT AND DATA PROCESSING (Chapter 3) 

*Development of the parametric FE models of indentation tests of EVA foams  

*Validation of FE model with experimental data 

*Develop FE data for training and testing ANN  

INVERSE METHOD FOR PROPERTY IDENTIFICATION OF EVA FOAMS (Chapter 4) 

*Evaluation of direct inverse approach with ANN 

*Use of ANN program developed (detailed above) to produce database  

*Development of new computer program for property identification based on single 

indenter and dual indenter approach 

*Development of a new approach using data on samples of different thickness 

*Application of the approach in EVA foam characterisation in blind tests 

*Application of the inverse program in testing EVA foams  
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3.2 Experimental test and numerical models 

 

3.2.1 Experimental and typical results 

 

Figure 3.2(a) shows the testing machine used. The indentation test system used an actuator 

as the driving system mounted on a strong supporting frame and allows tests in both 

vertical and horizontal directions. A sensitive load cell (model: LCMS-D12TC-10N) is 

attached to the moving head of the actuator to monitor the forces during the test. The 

indentation tests were performed using a spherical indenter made of stainless steel. The 

machine was developed in a previous project, some modification has been made to allow 

for both tension and compression tests. Figure 3.2 (b) shows a shore hardness tester used to 

assess the hardness of the EVA foams. Tests have been performed on two EVA samples 

with indenter size, 4mm and 6mm. A typical force indentation depth data is shown in 

Figure 3.2(c) to illustrate the loading curves (P-h curves). In the test, both loading and 

unloading curve can be captured, but this work will be focusing on the loading curve only, 

which is governed by the hyperfoam parameters. Indentation test data can be used to 

validate the FE model then the FE models is used in producing input and validation data 

for the development of ANN program. All the experimental data (two samples (thickness 

20mm) and two indenter sizes) will also be used to validate the ANN programs to assess its 

accuracy in predicting indentation P-h curves, which are to be presented in later sections. 

 

3.2.2 FE indentation model and validation. 

 

As shown in Figure 3.3(a), a 2-D axial symmetric model was used due to the symmetry of 

the spherical indenter. The indenter was assumed to be an analytically rigid body as it is 

much harder than the indented material. The element type of the material used is CAX4R 

(an axisymmetric element) and finer meshes have been applied around the indenter to 

improve the accuracy. The thickness and width of the model is 20 mm and 25mm 

respectively mimicking the sample and test condition; both are about 4 times larger than 

the indenter radius to avoid potential sample size and boundary effects. The bottom base of 
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the material was fixed in all degrees of freedom (DOF). Contact has been defined between 

the indenter surface and sample surface with an coefficient of friction of 0.5. The material 

of interest is allowed to move and the contact between the indenter surface and the material 

surface was maintained at all the times.  

 

In FE modelling, the accuracy of the results is influenced by many factors such as the mesh 

density, frictional condition and validation of the boundary conditions. The most relevant 

factors for the simulation of indentation process are the mesh density and frictional 

conditions (Taljat and Zacharia, 1998). The friction coefficient used is 0.5, which is 

commonly used in indentation testing of soft materials. The potential influence of mesh 

size on the accuracy of the modelling process has all been assessed to ensure that the 

model produce accurate results and in the meantime require optimum computational time. 

This is performed by refining the mesh size in different FE models until no further 

significant influence of mesh size on the P-h curves was observed. Figure 3.3 (b) shows the 

displacement field (vertical displacement U2) under the indenter. The force at each 

indentation depth can be extracted to represent the indentation resistance of the materials. 

In the early part of the work, the P-h curve is extracted from the program interactively, 

which was time consuming and slow when generating large number of models for ANN 

training. Towards later stage of the work, a python program was developed to 

automatically extract P-h curves from multiple FE parametric simulations. This is very 

useful for developing ANN as a large number of dataset are required. Figure 3.4 compares 

the numerically predicted force-displacement curved and experimental data of a model 

EVA foam with known material properties. The properties used were determined using a 

standard approach combining compression and shear test from a previous study. Several 

tests have been performed and three test data from the same foam sample are plotted, 

which showed slight variation. This is natural for such tests, as many factors may affect the 

results such as initial contact, position accuracy, etc. The reasonably close agreement 

between the numerical and experimental result suggested that FE model was accurate for 

the purpose of generating training and test data. This validation is very important before 

using the FE for developing ANN program.   
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(a) The indentation testing system used 

to test foam specimen.  

(b) Shore hardness tester.  

 

(c) Typical force indentation depth data of foam 1 (R=4mm). 

Figure 3.2 The indentation testing system used and typical force displacement curve of a 

sample EVA foam.   
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(a) FE model of indentation process with a spherical indenter. 

 

 

(b) Typical displacement fields (R4, Vertical displacement (Y axis): U2) 

 

Figure 3.3 FE model of indentation process with a spherical indenter and typical 

displacement fields (U2, vertical direction). 
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Figure 3.4 FE model validation based on the experimental data of materials of with known 

solution.  
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3.3 ANN Program development for predicting indentation force displacement curve 

and results 

 

3.3.1 Key technical works and programs  

As highlighted in literature review in Chapter 2, the nature of the data input is critical to 

the performance of an ANN program, which requires a systematic investigation. Figure 3.5 

shows the main development and research works. In the first part, FE parametric modelling 

was developed through ABAQUS parametric, in which the multiple FE models can be run 

by defining the range of material properties. This function allows production of data for 

ANN in an effective way. It also allows the assessing the performance of ANN 

systematically rather than based on limited number of data. Table 1 lists the key parameters 

of the .inp file developed, which allows change the indenter size, sample size, mesh and 

material properties. In the program, the sample is built by different layers (4 layers in this 

case); in this work, the purpose of this approach is purely to control the mesh in a practical 

and controllable way. As far as each layer has the same materials properties, then the end 

results is the same as building the FE model as one component.  

 

Table 3.1 Defining key parameters in ABAQUS .inp files.  

*PARAMETER 

d=8 

v1 = 0 # 'X' coodinates of the start point of indenter 

w1 = 0 # 'Y' coodinates of the start point of indenter 

r=d/2 

v2=r*0.707 

w2=r+r*0.707 

dis=3.75#indenttaion depth 

t1=2# Position of the bottom line of the top layer 

t2=t1+2 # Position of the bottom line of the 2nd layer 

t3=t2+10*1 # Position of the bottom line of the 3rd layer 

t4=t3+10*1 # Position of the bottom line of the 4th layer 

x1=r/2 # area under the indenter, used to control the mesh size 

x2=25 # boundary of the sample to control sample width 

mu1=0.6# materials parameters 

alfa1=5# material parameter 

…….. 
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For ANN, a large number of data will be required. This was achieved by using ABAQUS 

parametric functions, in which multiple models can be produced by changing the materials 

properties. A python program with loop function is used for the purpose of extracting P-h 

curves from multiple models. The program will automatically open ABAQUS .odb files 

from the parametric studies, extract the P-h curve, and save them as text file, which can 

then processed using Excel or other file reading programs. This program has greatly help 

developing different data for the ANN program.  

 

As show in Figure 3.5, two approaches have been proposed to represent the P-h curves. 

One is using trendline method, the other is to use force at different depth. Details will be 

presented the next section. The use of both approaches is analysed in detail. The 

optimisation of the ANN has been focused on selection of transformation function, use of 

early stopping, number of neurons, etc. One key work is to develop an effective way of 

assessing the ANN performance to suit the specific purpose of predicting P-h curves to 

overcome the problem of nonuniquness of polynomial curve fitting. These works will 

provide a framework helping the development of inverse methodology and computer 

program, the results of which are to be presented in Chapter 4.  
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Figure 3.5 Flow chart to show the research structure and programming to predict the 

indentation force displacement curve under different conditions.  

Generate model through ABAQUS 

parametric studies.  

Extract data through a new python 

program for automatic data extraction. 

Simulation space  

Development of ANN program for 

Indentation force displacement curve 

prediction with known materials 

properties (with different indenter sizes)  

Curve coefficients based approach 

Indentation depth based approach  

Program optimisation  

 

 Validation of the program with FE and Experimental data 

 Sensitivity study on potential error in material proeprties 

 Comparison with other approaches:  

o Surface equation fitting approach (Sigmaplot);  

o Polynomial searching method (Matlab) 

 

Use of the program in finite thickness 

samples and inverse modelling (Next 

chapter) 
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3.3.2 The structure of the ANNs and input/out data for indentation P-h curves 

prediction. 

 

Figure 3.6 shows the general structure of the ANN program used in the work. The program 

used the back-propagation learning method, which is applicable to a multilayer network 

that uses differentiable activation functions and supervised training. The optimization 

procedure in the program is based on Levenberg–Marquardt (L–M) algorithm that adjusts 

weights to reduce the system error or cost function (Esfahani et al, 2009). As illustrated in 

the figure, the forward connections are used for both the learning and the operational 

phases, while the backward linkages are used only for the learning phase. Each training 

pattern is propagated forward layer by layer until an output pattern is computed. The 

computed output is then compared to a desired or target output and an error value is 

determined. The errors are then used as inputs to feedback connections from which 

adjustments are made to the synaptic weights layer by layer in a backward direction.  

The input to the ANN are the material properties ( and ), the output are the P-h curve in 

two different forms (either curve fitting coefficient for the trend line method or as for the 

different depth in the depth method). As schematically shown in Figure 3.7, two 

approaches have been analysed and their feasibilities for the material models used in this 

work were assessed. As illustrated in the figure, the two approaches were designated as 

trendline method and depth method and, respectively. In the point method, the indentation 

was divided into discrete points and the force and displacement for each point were used as 

an individual input. While for the trend line method, the whole curve was fitted with a 

second order polynomial line and each indentation curve was represented by the 

coefficients ‘a2’ and ‘a1’. Figure 3.8 shows the structure of the multilayer layer 

feed-forward neural network for trend line method (a) and point method (b). In the ANN 

for each case, there were three layers in the neural networks: input layer hidden layer and 

output layer. The main difference was the output data and the neuron numbers. The point 

method used force at different depth data; the trend line one used the coefficients of the 

trend line. The depth method has more input neurons (each curve represent by n points) 

than the trend line method (represent by number of coefficient).   



84 
 

 

 

 

Figure 3.6 Proposed feed-forward neural network with back propagation Algorithm for 

predicting the indentation force-displacement data based on material parameters (µ and α).  
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Figure 3.7 Schematic to show the two different approaches to process the indentation 

curves for the ANN (Approach 1: Depth approach; Approach 2: Trendline approach). 
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(a) The schematic diagram of multilayer neural network for trendline approach. 

 

(b) The schematic diagram of multilayer neural network for the depth based method. 

Figure 3.8 The structure of the multilayer neural networks for the Coefficient approach 

(2
nd

 order polynomial) and depth approach

bo2 

bo1 

Wpno1 

Wpno2 

Wp2o2 

Wp2o1 

Wp1o2 

Wp2hn 

Wp2h2 

Wp2h1 

Wp1hn 

Wp1h2 

Wp1h1 

bhn 

bh1 

bh2 

Input P2 

Wp1o1 

Output(a1) 

Output(a2) 

INPUT(Material 

Parameters) 

CALCULATION PREDICTED 

Coefficient of 2nd 

order 

 

Input P1 

Input (α) 

Input (μ) 

Wc1o3 

bo2 

bo1 

bh1 

Input(μ)  

Input (α) 

Wcno2 

Wcno1 

Wc2o2 

Wc2o1 

Wc1o2 

Wc1o1 

bh2 

Wc2hn 

Wc2h2 
Wc2h1 

Wc1hn 

Wc1h2 

Wc1h1 

bhn 

bo3 

INPUT (Material 

Parameters) 

CALCULATION PREDICTED force at 

different depth (1-n)  

P1 

 

P2 

 

P3 

 

P4 

Wcno3 

Wc2o3 



87 
 

3.3.3 Development of data space for ANN training, testing and validation. 

Figure 3.9 shows the main data sets used for training, validation and testing the ANNs. 

These data were obtained through finite element analyses encompassing a domain with α 

ranging between 1 and 11 and μ varying between 0.1 and 0.7. Figure 3.9(a) shows the data 

set of evenly distributed data with  changed from 0.1 to 0.7, alpha changed from 1 to 11, 

in total 77 data points (designated as Material Data Set-1). The detailed parameter values 

are listed in Table 3.3. Figure 3.9(b) illustrate a set of data with progressive increase in 

percentage, with  ranging from 0.1 to 0.7 and  ranging from 1 to 11, again 77 data being 

designated as Material data set-2. ). As shown in table 3.3, The way the percentage is 

designed so the data set will have similar range and number of data as Mat set-1. Figure 

3.9(c) illustrates a set of data similar to Material data set-1 with  from 0.15 to 0.75,  

from 1.5 to 11.5. As shown in Table 3.3, the difference between Material data set-1 and 

material data set-3 is ‘0.05’ for  and 0.5 for . Material data set-1 is to be used as the 

main training and validation data, the ANN is then assessed by using Materials dataset-2 

and 3 as the testing data. These will provide data to systematically assess the performance 

of the ANN rather than using limited property data, which may miss some key results. 

Detailed values of the three data sets are listed in Table 3.3, which is useful/required for 

checking the data properties when interpreting the error data presented in the next few 

sections.  

 

Figure 3.10 (a&b) shows some typical curves and trendlines. It is clearly shown that all the 

curves can be closely fitted by second order polynomial curve. Figure 3.10(c) plots the 

correlation coefficients for material data set -1, it is shown that all data can be fitted with 

2
nd

 order polynomial curves (also called a degree 2 polynomial, or quadratic) with the 

correlation coefficient over 98.5%. Curve fitting work has been performed on material data 

including sets 1, 2&3, generating a total of 231 P-h curves, similar level of correlation was 

observed for all curves. This suggests that 2
nd

 order polynomial fitting is sufficient to 

represent the data with the two parameters ‘a1’ and ‘a2’. Higher order fitting (3
rd

 order) has 

been tried, it increased the fitting correlation coefficients slightly but it would have made 

the ANN more complex.  
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 Table 3.3 Material parameters of the material data sets.  

  Material data set 1 (Training data) Material data set 2 (Test data) 

No.   a1 a2 No.   a1 a2 No.   No.   

1 0.1 1 0.90 0.20 40 0.5 6 2.45 0.61 1 0.1 1 40 0.37 3.3 

2 0.2 1 1.49 0.47 41 0.6 6 2.84 0.77 2 0.14 1 41 0.51 3.3 

3 0.3 1 1.81 0.81 42 0.7 6 3.25 0.92 3 0.19 1 42 0.7 3.3 

4 0.4 1 2.12 1.18 43 0.1 7 0.68 0.07 4 0.26 1 43 0.1 4.2 

5 0.5 1 2.44 1.54 44 0.2 7 1.18 0.15 5 0.37 1 44 0.14 4.2 

6 0.6 1 2.74 1.90 45 0.3 7 1.59 0.27 6 0.51 1 45 0.19 4.2 

7 0.7 1 3.07 2.27 46 0.4 7 1.98 0.40 7 0.7 1 46 0.26 4.2 

8 0.1 2 0.94 0.16 47 0.5 7 2.34 0.54 8 0.1 1.27 47 0.37 4.2 

9 0.2 2 1.47 0.38 48 0.6 7 2.72 0.68 9 0.14 1.27 48 0.51 4.2 

10 0.3 2 1.84 0.66 49 0.7 7 3.08 0.82 10 0.19 1.27 49 0.7 4.2 

11 0.4 2 2.19 0.96 50 0.1 8 0.65 0.06 11 0.26 1.27 50 0.1 5.33 

12 0.5 2 2.53 1.27 51 0.2 8 1.11 0.14 12 0.37 1.27 51 0.14 5.33 

13 0.6 2 2.88 1.58 52 0.3 8 1.51 0.24 13 0.51 1.27 52 0.19 5.33 

14 0.7 2 3.25 1.88 53 0.4 8 1.88 0.36 14 0.7 1.27 53 0.26 5.33 

15 0.1 3 0.88 0.13 54 0.5 8 2.22 0.49 15 0.1 1.61 54 0.37 5.33 

16 0.2 3 1.44 0.30 55 0.6 8 2.58 0.61 16 0.14 1.61 55 0.51 5.33 

17 0.3 3 1.83 0.54 56 0.7 8 2.94 0.74 17 0.19 1.61 56 0.7 5.33 

18 0.4 3 2.21 0.79 57 0.1 9 0.59 0.06 18 0.26 1.61 57 0.1 6.77 

19 0.5 3 2.59 1.04 58 0.2 9 1.04 0.13 19 0.37 1.61 58 0.14 6.77 

20 0.6 3 2.97 1.29 59 0.3 9 1.42 0.22 20 0.51 1.61 59 0.19 6.77 

21 0.7 3 3.37 1.55 60 0.4 9 1.74 0.34 21 0.7 1.61 60 0.26 6.77 

22 0.1 4 0.84 0.10 61 0.5 9 2.10 0.45 22 0.1 2.05 61 0.37 6.77 

23 0.2 4 1.39 0.24 62 0.6 9 2.45 0.57 23 0.14 2.05 62 0.51 6.77 

24 0.3 4 1.81 0.43 63 0.7 9 2.80 0.68 24 0.19 2.05 63 0.7 6.77 

25 0.4 4 2.21 0.64 64 0.1 10 0.56 0.06 25 0.26 2.05 64 0.1 8.59 

26 0.5 4 2.60 0.85 65 0.2 10 0.96 0.13 26 0.37 2.05 65 0.14 8.59 

27 0.6 4 3.00 1.06 66 0.3 10 1.33 0.21 27 0.51 2.05 66 0.19 8.59 

28 0.7 4 3.38 1.28 67 0.4 10 1.64 0.32 28 0.7 2.05 67 0.26 8.59 

29 0.1 5 0.78 0.08 68 0.5 10 1.98 0.42 29 0.1 2.6 68 0.37 8.59 

30 0.2 5 1.34 0.20 69 0.6 10 2.31 0.53 30 0.14 2.6 69 0.51 8.59 

31 0.3 5 1.75 0.36 70 0.7 10 2.64 0.63 31 0.19 2.6 70 0.7 8.59 

32 0.4 5 2.16 0.53 71 0.1 11 0.51 0.06 32 0.26 2.6 71 0.1 10.92 

33 0.5 5 2.55 0.71 72 0.2 11 0.89 0.13 33 0.37 2.6 72 0.14 10.92 

34 0.6 5 2.94 0.90 73 0.3 11 1.25 0.21 34 0.51 2.6 73 0.19 10.92 

35 0.7 5 3.33 1.08 74 0.4 11 1.59 0.29 35 0.7 2.6 74 0.26 10.92 

36 0.1 6 0.74 0.07 75 0.5 11 1.89 0.40 36 0.1 2.6 75 0.37 10.92 

37 0.2 6 1.25 0.17 76 0.6 11 2.20 0.50 37 0.14 2.6 76 0.51 10.92 

38 0.3 6 1.68 0.31 77 0.7 11 2.49 0.60 38 0.19 2.6 77 0.7 10.92 

39 0.4 6 2.06 0.46 
   

2.45 0.61 39 0.26 2.6 
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(a)  Materials data set-1 (μ and α) used generate the training and validation data. 

The number and arrow shows numbering system used. The data is evenly 

distributed. Detailed values and numbering can be found in Table 3.3. 

 

(b) Materials data set-2 (μ and α) used in the training and testing data. Detailed 

values and numbering can be found in Table 3.3.  
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(c) Materials data set-3 (μ and α) used as the main testing data. Detailed values and 

numbering can be found in Table 3.3.  

  

Figure 3.9 The data matrix of training and testing data for the ANN program. 
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(a) Typical FE indentation data and curve fitting, =0.5, =3, 5, 7, 11; 

 

 

(b) Typical FE indentation data and curve fitting, =0.5, =3, 5, 7, 11; 
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(c) Correlation coefficients of with 2
nd

 order polynomial fitting of material data set 1 

(Figure 3.10a, evenly distributed data as in Figure 3.9(a).  

 

Figure 3.10 Typical FE indentation data and curve fitting with 2
nd

 order polynomial 

trendline.  
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3.3.4 Optimisation of the activation functions, number of neurons and development of 

early stopping mechanisms 

 

The effectiveness of the ANN is directly affected by the activation functions, number of 

neurons and the stopping criterions. These were assessed using the corresponding mean 

square of the network errors (MSE) calculated by 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑡𝑘 − 𝑎𝑘)

2𝑁
𝑖=1                                         (3.1)           

where N is the total number of training data, tk is the target/desired value, and ak is the 

network output value. This has been used to determine the optimal conditions for the 

ANNs for extracting material parameters from indentation tests. Figure 3.11 shows the 

training and validation curves based on different activation functions in the hidden and 

outer layer. Among the four activation function (Figure 2.12), the hard limit activation is 

not suitable as it generates an output of ‘0’ or ‘1’. The linear function in the output layer 

was chosen since, when a regression problem is tackled by a neural network; all the 

neurons in the output layer should have a linear activation function (Haykin, 1994). This 

allows the range of the network outputs to be outside the range [0- 1] or [-1-+1] of the 

sigmoid function. Previously work (Maier and Dandy, 2000; Finlay 2004) suggested that 

using sigmoid-type functions in the hidden layer and linear functions in the output layer 

can be an advantage when it is necessary to extrapolate beyond the range of training data. 

This is directly relevant to the problem being investigated in this work. Figure 3.11 shows 

the structures with logistic (logsig) and tansig in the hidden layer and typical results for the 

training performance. The choice of activation function in the hidden layer (Figure 3.11(c)) 

showed some effect on the training process of the ANNs, but there were no major 

differences. Given the for a force-displacement data, the polynomial coefficient should not 

be negative (this is also confirmed with the curve fitting data of all three data sets) a logsig 

was used.  

 

During the training process the error between the desired output and the actual output will 

continuously decrease until the error is close to a minimum. Ideally, the training should be 

stopped at the point where the error is at a minimum. However, this is not always the case 
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in real applications. At some point in the training the error in the test data stops falling and 

could even start to rise, causing over training and the network is starting to overfit. In many 

cases, the generalization curves could have more than one local minimum reducing the 

accuracy of the training and the prediction results. One way to improve this situation is to 

develop suitable early stopping mechanisms to ensure the training stops at a robust/stable 

minimum position to balance ANN performance and avoid over training. In this work, two 

methods have been tested/evaluated and their efficiency was compared . One method is to 

stop when the MSE values for training and verification, distinguished by the index T and V, 

respectively, are comparable, i.e. MSET=MSEV . However, preliminary work showed that 

this did not always provide consistent result/accurate results. Another approach is to use a 

post minimal point by stopping the training process after a certain number of epochs to 

ensure the minimal is sustainable. In this method the training was stopped when the 

validation MSE start to continuously increase over several epoch. As shown in Figure 

3.12(a), this validation process exhibited several increasing steps after the first local 

minimum and then reaches an improvement of validation set performance by second point. 

The result clearly showed that the new approach with defined stopping was able to 

accurately predict the real minimum point, therefore is much more robust than the 

approach which stops at the first unstable minimum point. This allows the assessment the 

effect of the number of neurons on the performance of the ANN more accurately.  
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(a) ANN program with a ‘tansig’ activation function in the hidden layer for the 

trendline fitting method. 

 

(b) ANN program with a ‘logsig’ activation function in the hidden layer for the trend line 

fitting method. 

 

(c) The training performance of the trend line approach with different activation 

functions. 

Figure 3.11 Typical training curves to show the influence of different activation functions 

in the hidden layer. (Sample thickness t=20mm, R=4mm). 
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3.4 ANN prediction result with the trendline approach: Results and analysis 

 

In the trendline based approach, the inputs are the material parameters ( and ) and the 

output is the curve fitting coefficients (a1 and a2). A range of FE models has been 

conducted and the a1 and a2 values of the three data sets (as shown in Figure 3.9) were 

determined and used as training or test data. Materials data set-1 was used as the training 

and validation data, and materials data set-2 and set-3 as the test data; Most of the results 

reported is based on this case where four validation data has been picked from the dataset, 

73 data was used as training data. Other format has been checked, which showed similar 

results. The effect of number of neuron is assessed and the ANN prediction accuracy when 

using trained data and untrained data as the test data is assessed.  

 

As shown in the Figure 3.12, the training and validation data showed a similar trend. One 

key issue in practical application of ANN for this case is to establish a practical way to 

represent the performance of the ANN for the specific problem being investigated. This 

started with investigating the effect of neurons on the MSE of training and validation. To 

establish the effect of neurons on the performance of the ANN, a series of ANNs with 

different numbers of neuron were run multiple times and the MSE analysed and established. 

Figure 3.13 shows the effect of the number of neurons on the MSE. The results clearly 

show that the MSE is influenced by the number of neurons in the hidden layer. The best 

performance is found to be with the case of 20 neurons. This shows that MSE is a good 

indicator, however, for the problem studied in this work it will be easier to present the error 

in a more physically meaningful way in order to clearly tell the performance of the ANN 

when assessing the accuracy of the ANN tested with trained data and data not used in 

either the training or validation. To make it easier to understand the physically meaning in 

a simple way, the relative error between the predicted parameter (‘a2’ and ‘a1’) and target is 

calculated  

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒⁡𝐸𝑟𝑟𝑜𝑟 =
𝑎𝑃𝑟𝑒𝑑𝑖𝑐 −𝑎 𝑎𝑟𝑔𝑒 

𝑎 𝑎𝑟𝑔𝑒 
    (3.2) 

Figure 3.14 shows the relative error in the predicted results using the same data for ANN 
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training/testing (Material Data set 1) of 77 data from ANN with different neuron numbers. 

In all the cases, most the error level is low (within 0.05), but there are some material points 

with higher error values (over 0.1). To have a robust ANN for characterising materials, the 

maximum error value is the key to avoid causing problem even though it only appears at 

limited numbers. Comparing the three data, as shown in Figure (a), there are about 6 

material points with error level over 10% for neuron number of 10 and relative error for 

one of them is over 0.2; while for Neuron number 20 (Figure (b), there is five cases of 

error over 10%.  

For the case with neuron number of 25, there are only three data points having error over 

10% but the maximum error value is much higher than the case of neuron 20. This higher 

error may cause problem when using the material to deal with real test data, so it is not 

suitable for this application.  

 

Figure 3.15 shows the relative error of the predicted results using the data that has not been 

used in training (Material Data set 3) of 77 data from ANN with different neuron numbers. 

In all the cases, most of the error level are higher than the case for predicting trained data 

as shown in Figure 3.14. The case for neuron 20 is slightly better with maximum error 

within 15%  but there are still a few data with error level over 10%. In the case of 

neuron=10, the error for several material point are above 20%. In the case of the 

neuron=25, the maximum error become as high as 100%.  

 

Another key issue needs to be evaluated/established is the repeatability of the prediction as 

each ANN may randomly produce different output for the same input in different ANN 

simulation/test. The range of variation could be critical to the reliability/stability of the 

system. This can be assessed by re-running of the ANN (each run is a new simulation, the 

weighting values for previous ANN simulation is cleared by the program automatically). 

Figure 3.16 shows some typical examples showing the relative error of ANN simulation 

with neuron number of 20 (which shows the lower error from the study on the effects of 

neuron numbers). As shown in Figure 3.16, the predicted results showed a similar value 

range, but there is clear variation between each ANN test. Most of these tests have a few 
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material points with error over 10%. To further investigate the implication of this variation, 

repeatability of the ANN simulation was further evaluated by doing 5 tests for each neuron 

numbers, then the average relative error and maximum error values were determined, the 

results are shown in Figure 3.17. All the five tests were run under identical condition with 

the same input; the value represents the average value and the error bar for the maximum 

error value. The maximum error is used rather than the standard deviation, as this will 

show the worst case even though it only occurs once. This is important for material tests to 

eliminate any possible mis-prediction. As shown in the figure, in both cases, most of the 

average values are relatively low within 5%, but in the case of neuron 10, there are several 

data have error between 5%-10% and as indicated by the error bar, there are more data 

point with high error values than the case for ANN with neuron number of 20. This 

suggests that the approach using average data potentially could improve the ANN 

prediction accuracy when using un-trained data.  

 

For the material problem being investigated, the relative error of the curve fitting 

coefficients is a better indication than the MSE as it is more relevant to the parameters 

associated with the P-h curves. It can directly tell how close the curve parameter to the 

corresponding target. But one problem with polynomial fitting is that the two parameters 

may have different effects on the curve, so it is still could not directly represent the 

accuracy of the indentation force displacement curve. a1’ and a2’ influence the curve in 

different way and it is known that the values of the curve fitting parameters are not unique. 

How this may affect the indentation force-displacement curve needs to be established. One 

way is to use the predicted curve fitting data to predict the force values, then use the 

comparison between the forces at some selected depth as the performance criterion. 

Further analysis is made to direct compare the indentation force displacement data based 

on the predicted values of a1 and a2. With a given pair of polynomial coefficients predicted 

from ANN, the force displacement data (at selected depth) can be calculated, then the 

difference between the curve produced and the target curve using objective function:  
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𝐺 =
∑ (𝑁

𝑖= 

𝐹𝐴  −𝐹 𝑎𝑟𝑔𝑒 

𝐹 𝑎𝑟𝑔𝑒 
)

𝑁
                                           (3.3) 

Where N is the indentation depth data, FAnn is the force at an indentation depth point based 

on the curve fitting parameters (a2 and a1) predicted from ANN (averaged over 5 ANN 

tests), FTarget is the force data based on the original FE simulation. Relative error is used as 

it is directly more physically meaningful. In this work, 4 force depth points were used, 

more data point has been tried, which showed a similar results/accuracy.  

 

Figure 3,18 (a) illustrated the process using the first five material data point of material 

data set-3 as example. Each bar represents the force at different indentation depth, with 

which the average error in the indentation force (over the four points) can be determined 

following Equation 3.3. The four displacement points used at 1,2,3,4 mm in depth 

respectively. The average error of the force over these four points are used to represent the 

error between ANN predicted P-h curve and the corresponding target. Figure 3.18 (b&c) 

shows average error in force for ANN with neuron 20 and 10, respectively. Most of the 

data is within 5% present, while a few data point has error values over 10%, which error 

value is less than that of the relative error of the a1 and a2 (the relative error of a1 and a2 

could go over 20% as shown in Figure 3.17). Comparing the average value in Figure b & c, 

no major difference between ANN with 10 and 20 neurons. The results suggest that the 

average data approach is a reasonable to assess match between ANN predicted and target 

values. However, it can be seen on the error bars (maximum error), there are still a few 

data with high relative error which is not acceptable, and potentially causing problem in 

the reliability when using this in real material tests where the target is not known. This is to 

be assessed by looking at the frequency of occurrence for each ANN test data. Any ANN 

system (e.g. neuron number) which less likely produce prediction with high error will be a 

more reliable one.  

 

The frequency is calculated following equation: 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑛𝑢𝑚𝑏 𝑟⁡𝑜 ⁡𝑚𝑎  𝑟𝑖𝑎𝑙⁡𝑑𝑎 𝑎⁡𝑤𝑖 ℎ⁡ 𝑟𝑟𝑜⁡𝑙𝑜𝑤 𝑟⁡ ℎ𝑎 ⁡𝑢𝑝𝑝 𝑟⁡𝑙𝑖𝑚𝑖 

 𝑜 𝑎𝑙⁡𝑛𝑢𝑚𝑏 𝑟⁡𝑜 ⁡𝑑𝑎 𝑎
             (3.4) 
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The result is shown in Figure 3.19. The vertical axis represents the percentage of data 

which will fall within a certain error range for each ANN test. As shown in the Figure, in 

the case of 20 neurons, over 90% prediction is within 5% error, 95% prediction within 10% 

and almost 100% predicted data is within 12%. The case for Neuron 10 (curves in blue) is 

slightly different, it showed more scatter in the data but it is almost 100% within 12%. 

Frequency analysis has been conducted on more data, the trend is similar and the result is 

not shown to preserve clarity. For the test studied in this work, prediction data with 5% will 

be ideal, 10% error is probably acceptable given the large deformation involved in the test. 

This suggest that the ANN could produce accurate prediction and can be used to predicted 

P-h curves of hyper foam. However, it will be of significant importance to see if the 

prediction accuracy of the data with relatively high error could be further improved. One 

approach is to average the forces from multiple ANN tests; the other approach is to average 

the curve coefficients (a2 and a1). A typical example is shown in Figure 3.20. Figure 3.20(a) 

shows the indentation force displacement data for a selected material set with high error 

(mu=0.15, alpha=7.5, the maximum error is 12%, see Figure 3.18b). Figure 3.20(b) 

shows the comparison between force data following the two average approaches and the 

target data, it is clearly shown that, both averaging approach could effectively improve the 

ANN prediction. This is probably due the fact the ANN results is discrete rather than 

continuous, so the error will not frequently repeat at one data point, then more data will 

eventually increase the accuracy. Trials for the materials set showed that repeating 5 times 

is able to produce reliable data.  

 

The approach established using mat set 3 as the testing data was further applied to Material 

data sets-2, which is data domain with gradient increment rather than evenly spaced, but 

the general range is the same. In this set of data, the µ is increased by about 38% each 

increment and α is increased by 27% each increment. This will ensure that the data will not 

coincident with the training data. It is also exploring a proper way of generating data 

mapping through materials property domain with gradient change that can be more 

useful/practical in producing material database. As in many cases, it is the relative 

accuracy rather than absolute value in materials that is useful. This will further assess the 
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accuracy of the ANN program developed. Some typical results are shown in Figures 

3.21-22. Figure 3.21 shows the average of curve coefficients ‘a1’ and ‘a2’ based on five 

ANN tests and the maximum and minimum values. The range of maximum error is very 

similar between neuron 10 and neuron 20. Figure 3.22 plots the average error and 

maximum values of force following equation 3.3. It is clearly shows that maximum error is 

within 10% and most of the data is within 5%. It also shows that the data for neuron 10 has 

more data with higher error (over 5%) Figure 3.22(c) shows the frequency of the error 

ranges. In the case of neuron 20, over 95% material; dat sets reached within error of 10%, 

while only 85-90% reached within 10% error for neuron 10. So it is reasonable to conclude 

with confidence that the ANN with 20 neuron is a better choice. 

 

Sensitivity to Error in Material properties 

For assess the robustness of the program, the effect of potential error or perturbation in the 

material properties. A prediction results need to be able to stable without jumping with 

error in the input. In this process, two error (5% and 10%) were introduced in the two 

materials parameters (µ and α), then the property is used as input in the ANN (20 neurons) 

and the curve coefficients (a1 an d2) is predicted, which then used to calculate the change of 

the force displacement data based properties with certain error/perturbation. A typical 

example is shown in Figure 3.23. The P-h curve changed to a certain extent but no 

significant move away from the target. This shows that the approach is robust. 
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Figure 3.12 Typical ANN training and validation curve with early stopping (trendline 

approach, material data set-1, R4mm). The first dipping (labelled with the arrow) shows 

the effect of the setting of early stopping. 
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Figure 3.13 MSE for training and validation showing the effect of the number of neurons 

(material data set-1, Figure 3.9(a)). (Early stopping set at 6 epochs in the program) 
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(a) Relative error in a2 and a1 (neuron number 10) 

 

(b) Relative error in a2 and a1 (neuron number 20) 

 

(c) Relative error in a2 and a1 (neuron number 25) 

 

Figure 3.14 Error of the 2nd and 1
st
 order fitting coefficient (a2 and a1) using the training 

data (Material data set-1) as test data.  
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(a) Relative error in a2 and a1 (neuron number 10) 

 

(b) Relative error in a2 and a1 (neuron number 20) 

 

(c) Relative error in a2 and a1 (neuron number 25) 

 

Figure 3.15 Typical Error of the 2
nd

 and 1
st
 order coefficient using the un-trained data (Mat 

data set3) as test data.  
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(a) Relative error in a2 and a1 (neuron number 20),  ANN test-1. 

 

 

 

 

Figure 3.16 Typical data showing the variation of ANN predicted data in different ANN 

tests using untrained data as test data (Materials data set 3).   
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(a) Neuron=10 

 (b) Neuron=20 

Figure 3.17 Averaged relative error and maximum error of a2 and a1 based ANN with 10 

and 20 neurons (Test data Material data set 3) showing neuron 20 data is better/robust as 

the maximum error is low.   
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Figure 3.18 (a) Sample data showing the predicted force at different indentation depth 

based on the ANN predicted curve coefficients (a1 an a2). (Neuron number 20). 

 

Figure 3.18 (b) Average error (among 4 depth) in the forces based on ANN predicted 

curve coefficients (a1 and a2) with maximum error (Neuron 10). (The error bars represent 

the maximum error among the 5 ANN simulations/tests) (Test data: material set 3). 
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Figure 3.18 (c) Average error in the forces based on ANN predicted curve coefficients (a1 

and a2) with maximum error.(Neuron 10). (Test data: Materials data set -3).  
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Figure 3.19 Frequency of prediction results of different error range. For relative error 

within 10%, ANN with 20 neurons achieved over 95%; ANN with 10 neurons is below 

95%. Showing the ANN with 20 neuron is more robust than ANN with 10 neuron.    
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(a) Comparison between indentation force displacement curves based on the ANN 

predicted curve coefficients (a1 and a2) with high relative error in forces (Relative 

Error 0.122) between multiple ANN tests.(property mu=0.15, alpha=7.5).  
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(b) Comparison between indentation force and target data. One approach is to average 

the force data (in (a)) and another approach is to average curve parameters (a1 and 

a2) before produce the force data. (property mu=0.15, alpha=7.5) 

 

Figure 3.20 Comparison between average force-displacement curve based on ANN 

predicted parameters and FE data showing that prediction accuracy of ANN can be further 

improved by using average data from multiple ANN tests. 
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Figure 3.21(a) averaged relative error of the ANN predicted curve coefficient (a2 and a1) 

with maximum and minimum value of the all the test data. (Neuron number=20, Training 

data: Material set-1; test data: Materials data -2, gradient data). 

 

Figure 3.21(b) Relative error of the ANN predicted curve coefficient (a2 and a1) with 

maximum and minimum value of the all the test data. (Neuron number=10; Training data: 

Material set-1; Test data: Materials data -2, gradient data).  
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Figure 3.22 (a) Relative error of indentation force based on ANN predicted curve fitting 

parameter for materials Data set-2. (20 neurons).   

 

Figure 3.22 (b) Relative error of indentation force based on ANN predicted curve fitting 

parameter for materials Data set-2. (10 neurons).  
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Figure 3.22(c) Frequency of error range for predicting gradient data (data set-2) with 

neuron 10 and 20. For relative error within 10%, ANN with 20 neurons achieved over 95%; 

ANN with 10 neurons is below 90%.   
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Figure 3.23 Typical data showing the influence of error (5% or 10%) in material properties on the ANN 

predicted indentation force-displacement curve illustrating the ANN based approach for P-h curve 

prediction is robust. (Property mu=0.65, Alpha=8.5) 
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3.5 ANN program based on the force at depth approach and results. 

As shown earlier in Figure 3.8(b), in the force at depth data approach, the output is force 

values at different indentation depth. In this work, the main depth was used 1, 2, 3 4mm. 

Given the curves are fitted with 2
nd

 order polynomial; 4 point should be sufficiently 

accurate. This could balance the accuracy of the ANN prediction and the computational 

resources requirement, as when the number of depth increase, the computational time will 

increase. Figure 3.24 shows typical training process and regression results. In both cases 

with neuron number 10 and 20, the training and validation reach a sufficiently high 

accuracy. The training and validation is using material data set-1, then use material data 

sets 2&3 as the testing data.  

 

Figure 3.25 shows some typical ANN predicted results (the first 7 materials points of data 

set-3) to show the concept and data processing process. Figure 3.25(a) plots the force at 

depth of 1, 2,3 and 4 mm. The relative error between the predicted force and target values 

is plotted in Figure 3.25 (b). It is clearly shown that the overall error is relative low, within 

6% in all the cases. It would be naturally expected the relative error will be high at lower 

indentation depth as the force will be low, but error are random without a clear trend. This 

could be an advantage of ANN to avoid systematic error as the prediction between each 

point is not continuous. Similar data processing procedure is applied to larger material 

domains cover all the 77 material data points in the material data set-3. Figure 3.26 shows 

the relative error of the 77 points of materials data set-3 as the testing data. The figure is 

not very clear due to the large number of data present, material data point will be in the 

same format as in the previous figure (Figure 3.25(a)). The main info from these figure are 

the maximum error range. It is clearly shown that with neuron number=5, the maximum 

error is over 15% which is not acceptable. With neuron number 10, it reduced to within 6%; 

with neuron number 20, the error is slightly higher within 8%, both are acceptable. Further 

increase of the neuron number to 25, the error become much higher within 20%. Different 

form the trendline ANN approach, the outcome is force, which is directly meaningful to the 

material sets. From these, both neuron number 10 and 20 have produced acceptable results, 

with neuron 10 condition is slightly better. Repeatability test of the ANN prediction is 
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systematically assessed, the result for neuron 10 is shown in Figure 3.27.  

 

The average error for each material point was calculated by averaging the relative error 

over the four depth data. As shown in Figure 3.28, the average error of predicted 

indentation forces is within 5% and the maximum error is 8%. Figure 3.28(b) compared the 

frequency of different error range, 95% data of the ANN with 10 neurons reaches an error 

within 6%; the frequency become close to 100% within an error range of 10%. But for the 

ANN with 20neurons, less than 85% reaches error range of 6%, and only over 90% reaches 

error within 10%. This clearly shows that the ANN with 10 neurons is better than the ANN 

program with 20 Neurons. Figure 2.9 shows the typical comparison between predicted 

indentation force data and the target. Figure (a) is for the first point on the Material data 

set-3 with an error range within 3% (as shown in Figure 3.28(a)). Figure (b) shows the 

force-displacement data for data 71, which has the highest error. The results is still 

reasonable close and acceptable for EVA materials. Similar ANN simulation has been 

conducted with Materials data set-2 as the testing data, the results is similar to the accuracy 

for that of material data set-3 presented. The ANN prediction of the forces is within 8%. 

The result is not shown to avoid repeating data of similar nature. These results show that 

the depth approach is a feasible method to predict indentation P-h curves but as robust as 

the trendline approach. The running time for each ANN simulation is also much longer 

than the trendline approach.  
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(a) Training  (Neuron number =10) (b) Training data (Neuron number=20) 

 

(c) Regression data (neuron  number=10) 

 

(d) Regression data (Neuron=20) 

Figure 3.24 Performance and regression based on the depth approach using material set-1 

as the training data (Neuron number =10 and 20).  
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(a) Typical force at displacement of 1,2,3, 4 mm  predicted by ANN (for the first 7 point of 

Material data set-3).  

 

 

(b) Relative error of ANN (neuron 20) predicted force and the target values at different indentation 

depth (for the first 7 points in material set-3 only).  

Figure 3.25 Typical ANN (neuron 20) predicted forces at different indentation depth and 

relative error to illustrate the way the data processing method.   
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(a) Neuron number=5 

 

(b) Neuron number =10 

 

(c) Neuron number=20 
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(d) Neuron number = 25 

Figure 3.26 Error in the forces at different depth using untrained data (data set-3) showing 

the effect of number of neurons. The data illustrate that the error varies with material point 

but no significant variation with different depth for the same material property point.  
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(a) ANN test-1. 

 

(b) ANN Test-3 

 

(c) ANN Test-5 

 

Figure 3.27 Typical ANN test data with neuron=10 showing the repeatability of each ANN 

simulation. (Training: material set-1; Test: materials set-3).  
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Figure 3.28 (a) Plot of average error (each test 4 depth points over 5 tests) for different 

material data point (Depth approach, Test data: material data set-3).  

 

 

Figure 3.28 (b) Frequency of the error range with neuron 20 and neuron 10 based on the 

depth method. For ANN with 10 neurons, over 95% material data point reaches within an 

error 5%; For ANN with 20 neurons, over 85% material data reaches an error within 10%.   
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(a) Typical data showing the comparison between ANN predicted (Depth Approach) and target 

Force displacement data with lower relative error (Material Point 1, Mu=0.15, Alfa=1.5). 
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(e) Comparison between ANN predicted (Depth Approach) and target Force displacement data for 

material  properties with higher error(b). The zero point for some tests  were not plotted to 

show data more clearly).  

 

Figure 3.29 Comparison of predicted force-displacement curves with material sets of 

different level of relative error. 
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3.6 Use of ANN in the prediction of P-h curves of EVA foams of known properties. 

 

Sections 3.4 and 3.5 has evaluated the ANN program based numerical data and a workable 

procedure including the optimum number of neurons and average of multiple ANN tests 

was shown to be able to predict the P-h curves. All results presented in sections 3.4-66 is 

based on indenter size of R4. Similar work has been done with indenter size R6mm, the 

results showed a similar level of accuracy using the three material data set as the training 

and validation data. The results are not shown to preserve clarity and avoid repeating 

information of similar nature.  Both ANN for R4 and R6 was used to test experimental 

data. The program has been used to analyse EVA foams with known properties determined 

from combined compression and shear tests. The results are shown in Figure 3.30. In each 

case, the ANN predicted curve is compared to the experimental data and the FE predicted 

data. The properties for foam is =0.62, =8; the properties for foam 2 is =0.75, =6. In 

the FE model, the property is input in the FE model with different indenter sizes (R4 and 

R6) and the P-h is directly predicted. In the ANN program, the material properties is used 

as input, then the coefficient ‘a2’ and ‘a1’ was predicted following the ANN procedure 

developed with the trendline method. In the ANN, material data set-1 was used as the 

training and validation data, then input the material properties of Foams1&2 as test data, 

re-run the ANN 5 times, then the average of prediction of ‘a2’ and ‘a1’ is determined, the 

P-h curve for the two foams is plotted. The results for foam1 with indenter size 4mm is 

shown in Figure (a); results for foam 1with indenter size of 6mm is shown in Figure (b). In 

both cases the ANN perdition showed a good agreement with the experimental and FE 

prediction. Figures (c&d) shows the results for foam 2, again, the Ann prediction showed a 

good agreement with the experimental data and FE prediction The depth based ANN 

approach is also evaluated and showed similar level of accuracy. These results further 

validate the ANN program developed.  
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(a) EVA Foam-1 (R4). 

 

 

(b) EVA Foam 1 (R6) 
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(c) EVA Foam 2 R4. 

 

(d) EVA Foam 2, R6.  

 

Figure 3.30 Comparison between ANN predicted P-h curves with the testing data of R4 

and R6. EVA-1 and EVA-2. 
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3.7 Summary 

In this chapter, an ANN program has been developed to predict the indentation P-h curves 

with known properties (hyperfoam material parameter,  and ). An interactive parametric 

FE model and python programming based data extracting program has been developed and 

used to develop matrix data for the ANN program. Two approaches have been proposed 

and evaluated to represent the P-h curve. One is using 2
nd

 order polynomial trendline 

approach (P=a2h
2
+a1h), the other is to use the forces at different indentation depth. The 

ANN program is developed with early stopping mechanism, the effect of the transfer 

function and number of neurons was systematically analysed using three set of material 

matrix data. The performance of the ANN based on the trendline approach is evaluated 

with MSE and relative error of the coefficient ‘a2’ and ‘a1’ and the average error in forces 

over different depths. A frequency method is used to analyse the data, which provided 

important data/base about the robustness of the ANN program. It also helped with 

developing an approach to further enhanced the accuracy of the P-h curve based on 

averaging multiple ANN tests. This approach effectively taking use of the fact that ANN 

prediction is not continuous around any property point. Sensitivity tests with purposely 

introduced error in the input to ANN showed that the approach is accurate and robust. The 

ANN program with the depth based approach showed similar accuracy in predicting P-h 

curves of hyperfoam materials. The work used matrix of different structure to access the 

accuracy rather than single data point, all the test data showed good results. The work was 

initially developed based on indenter size of 4mm, it was then transferred to an indenter 

size of 6mm, both were then used to predict P-h curves and compared directly to 

experimental data on two EVA foams with known properties. The ANN prediction showed 

very good agreement with the FE prediction and experimental testing data.  

 

Some of works has also been conducted in using surface mapping approach and direct 

interactive data search (similar to interpolation) as comparison to the Ann approach. 

Comparing with these approaches, the ANN approach is a much more accurate approach. 

Detailed are to be presented in the discussion chapter to highlight the significance of the 

work established in direct and inverse analysis of indentation data. The ANN program is 
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also extremely quicker than FE modelling, this provided a new tool to generate data over a 

wide range of material data. It is to be packaged into a computer program to predict P-h 

curves of different foams. Some of these are to be presented in the next chapter together 

with a new inverse program developed using the direct ANN program presented in this 

chapter. In addition, from the experience in developing data and ANN for different indenter 

sizes, it potentially can be easily/quickly transferred to other sample size (such as different 

thickness) if necessary, in particular the polynomial trendline approach, which is very 

flexible in fitting complex data. This will provide an important tool in analysis of form 

testing and development of new computerized inverse program, which are to be present in 

Chapter 4.   
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Chapter Four  

Inverse Materials Parameters Identification Based 

on Indentation Tests 
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4.1 Introduction  

Following the successful establishment of the ANN method to predict the indentation 

force-displacement data presented in the last chapter, this chapter looks at developing a 

method to predict the material properties/parameter ( and ) when the indentation force 

displacement data is known. The work in the previous chapter showed that the P-h curves 

can be effectively represented by polynomial curve fitting coefficients; this potentially will 

make it easier to develop inverse modelling programs through Neural Network as the input 

become simpler as the curve can be represented by coefficients numbers. As explained in 

the literature review, the inverse prediction of material properties is very useful as, once the 

properties are predicted, it can provide direct input to a simulation programs (e.g. 

ABAQUS model) to predict the behaviour of products or structure made of the material. 

Indentation test is simpler than other standard methods (e.g. combination of compression 

and shear tests), it can be routinely used in relatively small samples, which is an advantage 

in materials development and comparison. In addition the ability of the program to 

identify/map out all the possible material properties will help to analyse the full picture 

with inverse modelling which previously could not be done with other programs.  

 

As listed in Figure 4.1 the work in this chapter consists of two main parts. In the first part, 

the feasibility of directly using ANN to predict the material properties is evaluated. Two 

main areas are investigated: one is to assess its capacity to predict trained data; the other is 

to predict untrained data, i.e. data not used in the training or validation. Both approaches 

can be relevant to materials testing. The use of 2
nd

 order and 3
rd

 order polynomial curve 

fitting of the force displacement curve is compared. In addition, the use of single indenter 

approach and dual indenter approach is assessed. The dual indenter approach has been 

reported to be able to improve the robustness of inverse program in different materials. It is 

necessary to assess if this will improve the performance of the ANN program and, to 

establish what is the most effective way to deal with data from different tests. Potential 

influences of some issues such as neuron numbers was systematically established, which 

will provide a clear understanding of the situation (such as uncertainty of the predicted 
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results) about the use of ANN in inverse material property prediction with EVA foams.  

 

In the second part of this chapter, a new approach utilising the direct ANN program 

developed (presented in Chapter 3) is proposed. The work involves developing a large data 

space using the high efficiency of ANN. A computerised program (with Web interface) is 

developed including functions of data generation through ANN, data storage, interface for 

input and viewing results. A searching program is developed which will enable the 

identification of any possible materials property sets that may match the experiment data 

within a predefined error range. This will be able to help the user to identify any possible 

materials sets that has a close match to the target, thus has full confidence in the inversely 

identified material properties. The approach is applied to analysis data from single and dual 

indenter methods through blind tests (with known material properties). The problem with 

both approaches was identified as the new program has the capacity to map out all the 

potential material set, so it is able to identify some problem which could not be identified 

in other methods and previous works. A new approach using foam of different thickness is 

then proposed, as EVA foams are normally supplied in different thickness. This is based on 

a hypothesis/assumption that with the same indentation depth, the deformation/strain level 

within the foam may be different with different foam thickness. This may generate a 

situation that the data from different thickness tests will provide extra information to 

predict the material properties. In addition, it is more convenient to use sample of different 

thickness rather than changing the indenter sizes. Potential approach using both different 

indenter size and sample thickness is also presented. To assess this approach, series ANN 

for different indenter size and thickness has been developed following the procedure 

reported in Chapter 3. With both approaches, dual indenter and the newly proposed dual 

thickness approach, a major research focus is to work out an effective way to identify the 

material data set that match testing data from both conditions. This is very important for 

the development of inverse modelling in particular for developing computerised process.  

 

The accuracy and validity of the program is firstly assessed with blind tests (using 

numerical data as input/target) then used to predict the properties of the EVA foam samples. 
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This is not only further validating the program and method but also identifying issue with 

real material test data as they are not as perfect as FE generated data. Some key results of 

the real foam data is compared to the target and predictions from other programs and data 

processing method towards the end of the chapter. Some further analysis is to be presented 

in the discussion section. 
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Figure 4.1 Flow chart showing the research in inverse prediction of material properties. 

 

  

Discussion and future works 

 

 

Development of database and computer program for inverse material properties 

identification combing ANN direct P-h prediction and data mapping 

 Development of a computer program incorporating the P-h curve prediction of 

ANN 

 Evaluation of single indenter approach 

 Evaluation of dual indenter approach with new data identification method 

 Development of ANN for finite thickness foams and dual thickness approach to 

predict material properties 

 Use of the inverse program in testing EVA foams and comparison with other 

approaches 

 

 

Evaluation of the feasibility of using ANN in inverse prediction of the nonlinear 

material parameters with different indenter size: 

 3
rd

 order and 2
nd

 order polynomial curve fitting,  

 Effect of data density in the training data,  

 Single and dual indenter approach 
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4.2 Evaluation ANN based inverse approach to predict material properties based on 

indentation curves.  

 

4.2.1 Structure of the ANN and data process 

 

Figure 4.2 shows the general structure of the ANN program used in the work. The program 

used the back-propagation learning method, which is applicable to multilayer network that 

uses differentiable activation functions and supervised training. The optimization 

procedure in the program is based on Levenberg–Marquardt (L–M) algorithm that adjusts 

weights to reduce the system error or cost function (Esfahani et al, 2009). As illustrated in 

Figure 4.2, the forward connections are used for both the learning and the operational 

phases, while the backward linkages are used only for the learning phase. Each training 

pattern is propagated forward layer by layer until an output pattern is computed. The 

computed output is then compared to a desired or target output and an error value is 

determined. The errors are then used as inputs to feedback connections from which 

adjustments are made to the synaptic weights layer by layer in a backward direction. For 

the trend line method, the whole curve were fitted with a polynomial trendline and each 

indentation curve was represented by the coefficients. The output is the material 

parameters, µand α. The work in Chapter 3 with the direct analysis, 2
nd

 order polynomial 

fitting is sufficient to represent the P-h curves, However, in an inverse process, there is a 

situation that two input parameters are used to fit two parameters. Another approach is to 

use 3
rd

 order fitting as illustrated in Figure 4.3. This will generate a situation where three 

input and two output which may potentially enhance the performance of the ANN program. 

Figure 4.4 shows the structure of the multilayer layer feed-forward neural network for 

trend line method (b). In each case, there are three layers in the neural networks: input 

layer hidden layer and output layer.  

 

Figure 4.5 shows the main data used in the evaluating the effect of ANN. As explained in 

section 4.1, the development of ANN can be used in two ways. One is to predict trained 

data, which can be used in materials testing by using a training data with high density, so 
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the properties determined will in certain way represent the material data set within a certain 

range of error. Another more ideal situation is to develop an ANN which is able to predict 

the properties of untrained data. This is technically ideal, but not necessarily able to 

achieve full homogenisation, this has to be investigated to be certain with the prediction 

results. Different form of data sets used in Chapter 3 for the P-h curve prediction, apart 

from materials data sets 1-3 (same as the data in Chapter 3), one additional high density 

(Figure d) has been developed by combining materials data set-1 and materials data set-3. 

Figure 4.6 shows typical curve fitting illustrating the accuracy of fitting with 3
rd

 order 

polynomial fitting. Both 2
nd

 order and 3
rd

 are used, the results for the second order fitting is 

not shown as it is the same as the result in Chapter 3. In all cases, all the FE data of P-h 

curves can be fitted by 3
rd

 order polynomial with a correlation coefficient over 98%. This 

suggests that the curve can be represented by the 3
rd

 order polynomial fitting.  
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Figure 4.2 Proposed feed-forward neural network with back propagation Algorithm for 

estimating the material parameters (µ and α) based on indentation test data.  
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Figure 4.3 Schematic to show the two polynomial fitting approach. 

  

Approach 2: Trendline method 

2
nd

 order polynomial fitting:  

P=a2h^2+a1h 

3
rd

 order polynomial fitting: 

P=a3h^3+a2h^2+a1h 
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Figure 4.4 The structure of the multilayer neural networks for the trend line method.  
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(a)  Materials data set-1 (μ and α) used generate the training and validation data. The 

number and arrow shows numbering system used. The data is evenly distributed. 

Detailed values and numbering can be found in Table 3.1.  

 

 

(b) Materials data set-2 (μ and α) used in the training and testing data. Detailed values 

and numbering can be found in Table 3.1. 
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(c) Materials data set-3 (μ and α) used as the main testing data. Data used in testing and 

evaluate the accuracy and robustness of the ANN as untrained data. Detailed values and 

numbering can be found in Table 3.1.   

 

(d) High density data (data set-1 and data set-3) 

  

Figure 4.5 The matrix of training data for the ANN program.  
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(a) Typical FE indentation curves (mu=0.5, alpha=1,3,5,7,9,11) fitted with 3
rd

 order 

trendline. 

 

(b) Typical FE indentation curves (mu=0.2, 0.3, 0.5, 0.7, alpha=5) fitted with 3
rd

 

order trendline. 
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(c ) Correlation coefficients of with 3
rd

 order polynomial fitting (Material data set 

-1, distributed data as in Figure 4.6(a). (77 data) 

 

Figure 4.6 Typical FE p-h curves fitted with 3
rd

 order polynomial equation. (2
nd

 order 

polynomial fitting was shown in Figure 3.10)  
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4.2.2 Preliminary evaluation of the ANN using nftool and comparison between 2
nd

 

and 3
rd

 order polynomial fitting. 

 

Due to the uncertainty of potential outcome of the inverse program, the nftool in MATLAB 

is used to evaluate the potential outcomes. nftoool offers some useful function such as 

automatic partition of the data between training, testing and validation. It also has a direct 

re-training function, which will allow the determination of an optimum/best MSE for each 

situation. This suits the work as the two main purposes in using ANN for prediction with 

trained data and untrained data rather than going through a complex process using ANN 

code. Some typical results are used to demonstrate the characteristics of the nature of 

inverse prediction.  

 

Figure .4.7 shows a typical fitting performance with material data set-1 (77 data, 70% 

training, 15% validation and 15% testing) based on data of second order polynomial 

coefficients. The data clearly showed that the regression is very poor, which suggest that 

the ANN could not be used for this. Further trials have been made to increase the number 

of neurons, but the MSE remains very high, as shown in Figure 4.8. Each of these data of 

MSE is determined by repeatedly re-training the ANN (at least 10 times) and the minimum 

value of MSE is used to represent the best possible conditions. The data clearly suggests 

that the 2
nd

 order curve fitting coefficient approach could not be used. Also plotted in 

Figure 4.8 are the best MSE for trials where the P-h curves are represented by the 3
rd

 order 

polynomial curve fitting coefficients. It is clearly shown that the output of the 3
rd

 order 

fitting results are much better in particular in training with high number of neurons. A 

typical set of data is shown in Figure 4.9. With neuron number of 10, the regression is of 

very poor quality for both training and validation. But with neuron of 100, the regression 

quality of the training has been dramatically increased; but the regression of the validation 

data is still very poor. This work used relatively low number of data for validation (5%). If 

we increase the data percentage for validation, the performance will be even poorer. These 

work shows that 2
nd

 order polynomial fit is not suitable for representing the P-h curves in 

the inverse parameters identification process, but potentially, the 3
rd

 order coefficients 
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potential can be used to predict trained data. This is further checked by running an ANN 

with 100 neurons using the trained data (Material data set-1) as the input. The relative error 

of the predicted material parameters ‘µ’ and ‘α’ is plotted in Figure 4.10(a), most of the 

error for the 77 data are within 0.05 (less than 5%), with a few data lower than 0.1. While 

the error for the case to predict untrained data is all very high between up to 50% or 100%. 

Most likely, this is an over fitting situation, in which predicted data has been converged to 

the closest trained data, so the error in the data are very high. These results confirms that 

the ANN could only be used to predict trained data. 
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(a) Screenshot showing the function of the partition of data between training, validation and 

test and retrain functions (using 2
nd

 order polynomial data). 

 

(b) Regression data. 

 

Figure 4.7 Typical result data when using nftool function in NN box with second order curve fitting 

coefficients. (Materials data set-1, Training data 70%, Validation data: 15%, Testing data: 15%).  
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Figure 4.8 Effect of neuron number on the training MSE. (nfttool) based on 2
nd

 and 3
rd

 order fitting 

data. 
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(a) Error Histogram (Neuron=10) (b) Error Histogram (Neuron=100) 

 

(c) Regression (Neuron=10) 

 

(d) Regression (Neuron=100). 

Figure 4.9 Typical data showing the effect of neuron numbers on the training results with 3
rd

 order 

polynomial fitting showing the training accuracy can be improved but the validation accuracy is not 

improved.   
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(a) Typical ANN prediction data of trained data (materials data set 1) showing the prediction 

is reasonable for predicting trained data. 

 

(b) Predict the untrained data showing that the prediction is not accurate.  

Figure 4.10 Typical results with Material data set-1 as the training data (Neuron 100) to show that it can 

be used to predict train data (a) but can’t be used for untrained data (b).  
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4.2.3 ANN based inverse with different data density. 

 

The preliminary works shows that with 3
rd

 order fitting, the prediction of trained data is 

possible while inverse with data not used in the training is not feasible. When using the 

function of ANN in predicting trained data in material properties identification, the density 

of the data has to be fine/dense enough to make this meaningful. The training data has to 

effectively cover the material data range (within a predefined error), then the ANN can be 

used as a prediction tool for new data. These are assessed by using material data set-4 

(Figure 4.5d) in the ANN program; It was used as training data first, then used as the test 

data. The relative error between the predicted parameters and the target material parameter 

is calculated. Figure 4.11 (a) shows the regression results of the training and validation 

(5%) with neuron of 100. The x-axis is the material data point, the vertical axis is the 

relative error of the predicted material parameters. It shows that the regression with dense 

data set (154 data) is not as good as the one with 77 data (Figure 4.9). Figure 4.11(b) 

compared the relative errors with a ANN using 100 neurons, most of the material data 

showed lower error but there are a few with higher error range (over 10%). Similar results 

can be observed/repeated when re-run the ANN. The number of neuron is further increased 

for the dense data, Figure 4.11(c) shows the relative error of the predicted material 

properties when the neuron number is increased to 200. It is clearly shown that the quality 

of the prediction has been increase; with only one predicted material point has an error of 

over 10%. This clearly shows that the number of neuron is critical when using the ANN to 

predict trained data.  

 

These results with different material data sets (Figure 4.10(a) and Figure 4.11(c)) suggest 

that it is potentially feasible to train the ANN with high density data and then use the 

trained ANN (without re-run of FEA) to predict the material parameters through a proper 

selection/matching process. To this aspect, the gradient data process may represent a better 

way to provide the training data as it can clearly control the relative error range of the 

material properties. Figure 4.12 (a) shows the MSE change with the number of neurons 

using materials data set -2 as the training data. With lower neurons, the MSE is very high, 
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and it reaches a reasonable level with Neuron number of 60-100. Figure 4.12(b) shows the 

relative error with neuron number of 100. Most of the predictions are within 5%. Further 

increasing the goal (form 0.01 to 0.0001) shows little improvement in terms of the 

accuracy. Further work has been conducted on training data with finer materials properties. 

A typical set is shown is shown Figure 4.13(a), in which both the parameter ‘’ and ‘ is 

increased by an increment of 10%. (as compare to ~30% in increment in Material data 

set-2). Figure 4.13(b) shows the ANN predicted trained data. Most of the prediction is 

within 5%, this suggests that the prediction is accurate even with high density data. With 

such data, it is possible to use the data to predict the materials properties within 10% or 

even finer.  
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Figure 4.11(a) Typical regression for training with high density data (Materials data set 4, 

154 point, 90% used in training, 5% used in validation and 5% used in testing). (Neuron 

100). 

 

 

 

Figure 4.11(b) Typical ANN prediction data of trained data with high density data. 

(Materials data set 4, Neuron =100).  
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Figure 4.11(c) Typical ANN prediction data of trained data with high density data. 

(Materials data set 4, Neuron =200). 

 

Figure 4.11 Typical ANN prediction results with trained high density data (Materials data 

set 4) and different neuron number showing that the neuron number needs to be increased 

when use high density data.  
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(a) Effect of neuron number on the training MSE with graident data (material data set2). 

(nfttool).  
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(b) Typical relative error when using gradient data as the training data. (neuron100, goal=0.01) 
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(c) Typical relative error when predict training data. (neuron100, goal=0.00001) 

Figure 4.12 Typical results of ANN using the gradient data (Materials data set-2) in predict 

trained data showing the effect of neuron number on MSE and the value of goal on the 

prediction accuracy.   
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(a) Typical fine data with 10% increase of materials properties. 

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

R
e

la
ti

ve
 E

rr
o

r

Material Dataset Number

ANN prediction based on trained data with 10% increase of  properties. 

Parameter 'mu'

Parameter 'alpha'

(b) Relative error of the predicted properties using trained data.  

 

Figure 4.13 Typical fine training data with 10% increase and ANN prediction results 

showing this approach could be used to inversely predict the material parameters based on 

trained data.  
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4.2.4 ANN prediction of material parameters based on dual indenter approach 

 

Most of the data reported in the last few section is based on data from single indenter 

(R4mm in radius) data. As discussed in 4.1, using data from additional indenter size as 

input may potentially improve the results. Figure 4.14(a) shows the ANN structure with 

dual indenters. In this process, the input includes the 3
rd 

order polynomial curve fitting 

parameters for two indenter sizes, one is radius of 4mm (designated as R4) and one is 

radius of 6mm (designated R6). The predicted outcome is material parameter ‘’ and ‘ ’. 

Figure 4.14(b) shows a typical regression data with nftool. Compared to the single indenter 

approach (Figure 4.9), the regression of the training data is not as good as the single 

indenter approach, but the regression of the test data is much better. Figure 4.15(a) shows 

the MSE of ANN with different number of neurons with the dual indenter approach. 

Different from the single indenter approach, there is no clear trend showing the effect of 

number of neurons. Figure 4.15(b) shows typical relative error of the ANN predicted of the 

training data. Compared to the results with the ANN data for the single indenter approach 

(Figures 4.10. 4.11, 4.12 and 4.13) in predicting trained data, the accuracy is not as good, 

several of the data has error over 10%. Figure 4.15(c) shows the prediction of untrained 

data, the error is still high (maximum value over 30%), but it is much better than the single 

indenter approach (Figure 4.11(b)) where the error is as high as 100%. However, even 

though the accuracy is increased, it is still not accurate enough to be used for material 

testing and characterisation. A new approach is required to use ANN or related method to 

predict untrained data.  
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(a) The schematic diagram of multilayer neural network for the trend line method with dual 

indenters (R4 and R6). 

 

(a) Typical regression data.  

 

Figure 4.14 The structure of the multilayer neural networks for dual indenter approach (a) 

and typical regression data (b). (Materials data set-1). 
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Figure 4.15 (a) Effect of neuron on MSE based on dual indenter approach.  

 

 

Figure 4.15(b) Predict trained data with dual indenter ( 3
rd

 order training data, neuron 60).  
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Figure 4.15 (c) Predict untrained data with dual indenter (3
rd

 order training data, neuron 60) 

showing that dual indenter approach could improve the accuracy than single indenter but 

the results are still not good enough.  
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4.3 Material properties identification based on data mapping approach, computer 

program and results 

 

To be able to identify all the potential material parameters for a P-h curve and develop a 

method to determine unique material parameter by combining data of different testing 

conditions, a new computer based approach is proposed and designed. The program used  

the function of direct ANN method established (chapter 3) to generate detailed data over a 

wide range, then search the database to establish potential material properties that produce 

P-h curves close to the target. This allows the mapping out of any potential materials sets. 

Further work is conducted to establish a proper method of filtering/matching data when 

indentation data from indenters of different sizes or sample of different dimensions. 

 

4.3.1 Structure of the inverse materials parameter identification approach and 

computer program. 

 

Figure 4.16 is a flow chart showing the inverse material properties identification process 

based on ANN predicted P-h curve and fitting parameters. The program consists of three 

main parts. In the first part, a range of materials parameters are used as input to the direct 

ANN program to predict P-h curve parameters as detailed/validated in Chapter 3. The 

range of  and  can be changed by the user through a computer interface. The P-h curves 

are automatically analysed, and stored in a database forming a simulation space. A program 

is developed based on an objective function comparing the P-h curves based on input data 

(curve fitting coefficients) and the p-h curves of all the data in the simulation space. The 

simulation space included a group of P-h curves from the ANN prediction covering a wide 

range of material properties. Given the calculation speed of ANN is very fast, so the data 

can be as fine as possible (very small increment of material properties can be used). This is 

a significant advantage of ANN based P-h curve generation than FE based approach. In the 

searching process, the program calculates the difference between the P-h curve of the input 

data and all the P-h data in the simulation. In other words, it maps out all the materials data. 

In each case the optimum material parameters (for a user input error range), which 
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produces the P-h curves matching the input results within a certain error range were 

determined by mapping the objective function. In this case, the absolute value of relative 

error averaged over a large number of different indentation depth is used.   
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where : 

• G is the objective function that needs to be minimised. 

• eFi,  is the experimental force of the indenter at the observation i and nFi, is the 

numerical model force of the indenter at the observation i.  

• The number of observation (indentation depth) is n. 

 

The simulation space (i.e. all the P-h curves) was produced using the established ANN 

program presented in Chapter 3. Compared to FE modelling, the process is much quicker 

with lower requirement on computational resources, allowing the development of much 

dense data (i.e. data with close properties or small increment). The predicted outcome form 

the ANN is the curve fitting parameters, which were then recorded and stored into a 

database to form a simulation space. Several computing language is used for different 

function in the program including effective searching and data storage technique. In the 

searching process, the P-h data was transformed into a discrete form with evenly spaced 

points against the indentation depth (termed indentation points). At each indentation point, 

the objective function values are calculated. The inverse program was evaluated using 

blind tests with numerical experimental data (numerical results with known material 

properties). This is a commonly used practice in developing inverse programs (Delalleau et 

al, 2006). It allows the uniqueness, accuracy and sensitivity of these inverse methods to be 

systemically investigated.  

 

Figure 4.17&18 shows the interface of the program defined. In the first part, the user is 

able to produce the P-h curves using the ANN program. The user can decide the range as 

well as density (i.e. increment) of the material property data. The data is then stored in a 
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searchable database/space In the searching part, the user needs to define the 2
nd

 order 

polynomial curve fitting coefficients of the input P-h curve, and the error range for the 

property prediction. The program will automatically identify all the materials data set 

which gives P-h curves close to the input/target within the error range as illustrated in 

Figure 4.18. The advantage of this specially developed program is to give the user the 

ability to deal with all the potential materials rather than just give one final value of the 

lowest error; this will produce a more comprehensive picture for the situation. This can be 

useful for material testing to produce all potential material parameters, further research is 

then conducted to establish a proper procedure to process data when using testing data 

form different conditions. In this work the use of data from single indenter, dual indenter or 

dual thickness are to be explored.  
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Figure 4.16 Flow chart showing the inverse FE modelling approach based on the data from 

ANN direct p-h curve prediction. 
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Figure 4.17 Screen shot to illustrate the data generating function of the computer program 

developed based on the ANN direct p-h curve prediction.  

 

 

Figure 4.18 Screen shot to show the structure, input and error setting of the computer 

program developed.   
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4.3.2 Inverse FE modelling based on the test data of a single indenter 

 

This section briefly present the process and results when using the single indenter approach. 

In the simulation space, the parameter ‘’ was varied from 0.1 to 0.7 with an increment of 

5% each time. The parameter ‘’ used were from 1 to 11, with an increment about 5%. The 

program can produce data of any density, but this relative large increment (upper limit of 

acceptable material variation for EVA foams based on experience) could test the accuracy 

of the program effectively. The input data was transformed into a discrete form with evenly 

spaced points against the indentation depth (termed indentation points). In this work the 

input numerical experiment curve was divided into 100 points. For each indentation depth, 

there is a corresponding simulation space (force) over a potential range of material 

properties. At each indentation point, the objective function value is calculated using 

predefined program in the database for each set of material properties (y, n), then the 

average of the objective function averaged over the whole indentation curve was 

determined.  

 

Figure 4.19(a) is a typical numerical P-h curve with known material properties (=0.3;=6) 

used as numerical experimental data in the blind test. Figure 4.19 (b) plots the material 

points with lower objective function values (relative error) of different range. As labelled 

by the legends, the material data are grouped based on the relative error between the 

numerical P-h curve and the input data within 1% (not including 1%); within 1-3% (not 

including 1%); 3-5% then 5-10%. The error used is average error for all the depth points. It 

is clearly shown that the data with lower objective error are distributed along a stripe with 

mu and alpha increasing/decreasing at the same direction. Please note that as shown in 

Figure 4.6, the force will increase with increasing ‘ , while decrease with increasing ‘’. 

So such a trend shown in Figure 4.19(a) is reasonable. As the effect of these two 

parameters may cancelled each out, so there are material properties totally different in 

value but could produce similar P-h curves. Multiple FE models have been developed with 

the three different material properties with relative error lower than 1% (as circled on the 

figure) and the P-h curves are compared with the input numerical experiment data. As 
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shown in Figure 4.19 (c), these P-h curves are very close to the input data. This suggests 

that these material sets have different material properties but very close P-h curves, in 

other words, the material property could not be determined uniquely using single indenter 

data only.  

 

The same approach has been applied to other indenter sizes with the same sample thickness 

(t20mm). A typical example is shown in Figure 4.20 with the same input (R6, mu=0.3, 

alpha=6). Figure 4.20 shows the properties which give relative error within different ranges 

for R6. Similar to the case for R4mm, there are several material data point points which 

has lower relative error. One difference is that the number of material properties which 

have a very low error (e.g. within 1%) is different from that for R4. There is only one point 

has error below 1% while for R4 (Figure 4.19), there are several points producing relative 

error within 1%.  But there are still a large number of material data have relative error 

within 3% for R6, which will all have P-h curves very close to the target. It could not be 

proper/practical if only pick the one with lowest error. Similar to the practice for the R4 

data, a few points with lower relative error has been picked to compare the P-h curve 

directly and the result is shown in Figure 4.20(b). All the curves are very close to the 

input/target P-h curves suggesting that the prediction is not unique. In other words, it is 

difficult to pick the optimum property based on a single indenter data. Similar approach 

has been performed on several other material properties, similar output was obtained; this 

suggests that the use of single indenter is not unique, difficult to be conclusive in deciding 

a single property.  
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Figure 4.19 (a) Typical input data and curve fitting coefficients used to evaluate the 

inverse computer program. 

 

 

 

Figure 4.19(b) Data with different relative error. The labelled data are used to compare 

indentation curves. 
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Figure 4.19 (c) Comparison of the P-h curves of the materials sets with lower relative error 

(labelled in Figure 4.19(b) to show that the P-h curves are very close to each other and the 

prediction is not unique.  

 

Figure 4.19 Typical prediction data with R=4mm using a FE data as input (mu=0.3, 

alpha=6).  
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(a) Data with different relative error. The labelled data are used to compare indentation 

curves. 

 

(b) Comparison of the P-h curves of the materials sets with lower relative error (labelled in 

Figure 4.20(a) to show that the P-h curves are very close to each other and the prediction is 

not unique.   

Figure 4.20 Typical prediction data with R=6mm using a FE data as input (mu=0.3, 

alpha=6).  
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4.3.3 Inverse FE modelling based on data from dual indenters of different sizes 

One approach potentially could improve this is to use data from different testing conditions. 

For indentation, a easy way is to use indenter of different sizes. As the indenter size 

changed, the deformation of the material may change, which potentially could help 

generating data of different state. However, one main challenge is to establish a proper way 

to process the data. An optimum way of choosing the criteria of the data for comparison 

and the way to determine the final value will be critical. The methodology used will also 

influence the automation/programming progress to be able to do this with a computer 

program rather than rely on human judgement which may vary between subjects. 

 

To achieve this goal, one natural approach is to plot the material data which have the same 

range of relative error in P-h curve, then try to look at the coincident data (i.e. data 

appeared in both cases). In an ideal situation, the true materials material property is more 

likely to appear in the materials sets with lower errors in both cases with the minimum 

error, but it will not be reliable if the choice of materials is decided on the only one data 

with the lowest error as there may be factor/noise that may accidentally influence the 

outcomes. So different approaches is to be tested. Figure 4.21 plots the material data with 

P-h curves within 3% of the target for R4 and R6. It is clearly shown that there is a zone 

(labelled in red circle) where more data matching/overlap between data for R4 and R6. But 

there is still another zone (blue circle) where there are obviously overlapping points. The 

data in the most likely zone (red zone) is close to the target (=0.3, =6), but it difficult to 

be conclusive, as it is difficult to eliminate several data in the blue circle. This probably 

due to the fact that the as far as the error is within 3%, the material data will appear on the 

chart then it is difficult to distinguish the closeness of the predicted P-h to the target P-h 

curves. For example the way the data has been plotted could not tell 1% from 3% error. 

One approach might be to plot much smaller error range, but this will cause another 

problem. If there is any noise in one or both input data, then there may be no data with 

very low error. If the input is experimental data, it will be even more difficult to ensure that 

there will be any material that give error as low as 1 or 2%. Based on this analysis, 3% is a 

much reasonable range.  
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To avoid this problem with fixed error range, another approach is explored. In this case, 

rather than picking data based on the relative error range, the data is going to be picked 

based on those that has a relatively lower error rather than the absolute value. The relative 

error value will be influenced by factors such as materials, indenter size and noise. For 

example, the indentation force in R6 is higher than for R4, all these will influence the 

relative error directly. Since we are using 2
nd

 polynomial curve fitting, it is still an 

approximation process, then this may introduce systematic noise due to the fitting process, 

the noise may in turn influence the level of calculated relative error. To avoid these 

uncertainties, the data to be picked will be based on their relative performance. It is 

reasonable to say that, irrespective of any factors influencing the level of relative error, the 

true material properties should have a relatively low relative error among the other material 

properties for the same condition (for example, same indenter size). This assumption 

would always be reliable rather than saying that the data must produce an error within 

certain range. Once the more likely material property set(s) is identified, it can then be 

further assessed easily to confirm if it is the true material property. Following this model, 

Figure 4.22 (a, b and c) plots the top 15, 10 and 5 material properties that has lower 

relative error. The outcome becomes much clearer with much less number of materials 

shown on the figure than the cases based on the 3% error rule. Based on the frequency of 

overlapping, it is reasonable to say that materials region 1 on Figure 4.22b is most likely to 

be the predicted value, which is very close to the target. To work out the value of the 

material, one approach is to average all the coincidental data within a focused region to 

determine the material properties, which will give a value close to the target. However, in 

all the three cases (Figure 4.22a-c), there conclusion could not be 100% certain, as there 

are still another property (blue circle, materials region-2) that match both indenter size. As 

shown in Figure 4.23, analysis show that the P-h curve of material data-2 (point in the blue 

circle in figure (b)) are almost the same as the input P-h curve for R4 and R6. This suggest 

that the material data is different from the target in value, but the P-h curves are very close. 

This situation will cause uncertainty in the approach, but the extra set of material point 

could not be identified when using other inverse programs such as the Kalman filter 

method. A more robust approach is required.  
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Figure 4.21 Dual Indenter approach (R4+R6) using data within predefined error (within 

3%) showing that it is difficult to be predict the best material data set which match both 

indenter data.  

 

 

 
 

(a) Data showing the dual indenter approach using the first 15 points with lower 

relative error to identify the optimum material property sets.  
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(b) Data showing the dual indenter approach using the first 10 points with lower 

relative error to identify the optimum material property sets.  

 

(c) Data showing the dual indenter approach using the first 5 points with lower relative 

error to identify the optimum material property sets.  

Figure 4.22 Typical result with approach using limited number of material point with 

lower error for the dual indenter approach showing that it works better than using the data 

within a given error range (in comparison with Figure 4.21). It shows that based on 

frequency of overlapping, the target can be predicted, but there are still multiple material 

property sets match both indenter data.   
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Figure 4.23 FE P-h curves using materials data point 2 in Figure 4.22 showing that there is 

still an additional materials property sets (not the target) that can match both indenter 

indentation data showing that it is not 100% unique. 
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4.4 Inverse FE modelling based on the tests data on samples of different thickness and 

dual thickness approach 

 

A new approach explored in this work is to use data from test of different thickness. Many 

types of foam are supplied with limited thickness. When testing a thin foam, the supporting 

base may affect the force data, this may help to provide an condition to extract the material 

parameters if tests on thicker foam and thin foam is combined. This could potentially be an 

improved alternative to the dual indenter approach, which were found not able predict the 

property in a unique way. In addition, the use of dual indenter requires re-calibration with 

the change of indenters, which could be technically complicated; while change of sample 

with different thickness is much easier. To test the dual thickness approach, a new FE 

model corresponding to the new thickness needs to be produced and the suitability of using 

curve fitting needs to be researched using the ANN program reported in Chapter 3.  

 

The procedure for producing the simulation space of the thin sample involves firstly 

developing FE model of a thinner model, in this case t=12mm (the thicker sample used is 

t20mm data). A typical example of FE model is shown in Figure 4.24(a). The inp file used 

in the modelling allows the change of thickness in the program by setting the thickness 

values (Table 3.1). The boundary condition is similar to the model with thicker samples. As 

shown in Figure 4.24(a), a 2-D axial symmetric model was used due to the symmetry of 

the spherical indenter. The indenter was assumed to be analytically rigid body as it is much 

harder than the indented material. The element type of the material used is CAX4R (an 

axisymmetric element) and finer meshes have been applied around the indenter to improve 

the accuracy. The thickness and width of the model is 12 mm and 25mm, respectively. The 

bottom face of the material was fixed in all degrees of freedom (DOF). Contact has been 

defined between the indenter surface and sample surface with an coefficient of friction of 

0.5. The material of interest is allowed to move and the contact between the indenter 

surface and the material surface was maintained at all the times. Mesh sensitivity tests has 

been performed to ensure that the results are consistent. Figure 4.24 (b) shows the strain 

field, which shows that the supporting base is interacting with the materials as the sample 
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is much thinner.  

 

A typical force-displacement data (mu=0.3, alpha=6) is shown in Figure 4.24(c). The P-h 

data can be fitted with 2
nd

 order polynomial equation with high correlation coefficients. 

Figure 4.25 shows the correlation coefficients for 2
nd

 order polynomial fitting for all the 77 

material data (Materials set-1, Figure 4.22(b)), which shows that 2
nd

 order polynomial 

fitting is suitable to represent the curves. The lowest coefficient is over 99.5%. The data 

used in training the ANN and validation is similar to the work presented in Chapter 3. The 

whole process and results for using ANN to predict P-h curves of the thin sample are not 

shown to preserve clarity and avoid repeating. 

 

The inverse process followed a similar procedure as that for the thick samples. The ANN 

program to predict P-h curves from known material properties are incorporated in the 

inverse program and database. Figure 4.26 (a) shows a typical prediction results based a 

known materials set (0.3, 6). Similar to the case of thicker sample (Figures 4.19 and 4.20), 

there are several material property sets producing P-h curves close to the target data. Figure 

4.26 (b) plots the P-h curves based a few selected material data sets in Figure (b) and the 

target P-h curves. It is clearly shown that all these properties could produce P-h curves 

close to the target input.  

 

Figure 4.27 (a&b) plots the materials properties with P-h curves of relative error of 3% for 

sample of thickness of 20 and 12 mm. As highlighted in the circle, the main region with 

high frequency of data overlapping, as circled on the figure, is close to the range of the 

target property. But there are data over other region also showing some overlapping to a 

limited extent. Figure 4.27 (b) plots the first 10 material data with lower relative errors for 

the two thickness cases, the data show that this approach is more effective/clearer as there 

is only one main region with high data overlapping frequency, which is close to the target 

value point. This shows that the dual thickness approach is a viable method. Comparing to 

the dual indenter size approach, only one region exist in the dual thickness approach, 

which is an improvement from the dual indenter approach. Figure 4.28 shows the situation 
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when plotting data with lower error from different thickness and indenter size. It is clearly 

shown that the method can be used to predict the properties. The average of these data 

point is close to the target data.  

 

Several different material properties have been used as input data to assess the capacity of 

the program in dealing with different materials. Typical results were listed in Table 4.1.  

The results clearly show that the dual indenters could produce accurate results. In the case 

of the dual indenter approach, only the high overlapping frequency region is picked.  

 

Table 4.1 Typical predicted results by inverse FE modelling based on the dual thickness 

and dual indenter approach on hyperfoam materials. 

Target value Dual 

thickness 

approach 

Dual 

indenter 

approach* 

Thickness and dual 

indenter approach 

          

0.5 1.6 0.49 1.55 0.48 1.63 0.48 1.59 

0.7 1.6 0.69 1.50 0.58 1.60 0.73 1.54 

0.1 3.7 0.09 3.60 0.12 3.75 0.11 3.66 

0.3 3.7 0.28 3.68 0.28 3.70 0.28 3.48 

0.5 3.7 0.51 3.68 0.52 3.68 0.53 3.43 

0.7 3.7 0.70 3.70 0.72 3.73 0.69 3.65 

0.1 5.8 0.11 5.81 0.11 5.87 0.09 5.74 

0.5 5.8 0.51 5.79 0.49 5.81 0.58 5.60 

0.7 5.8 0.70 5.80 0.67 5.59 0.71 5.54 

0.1 7.9 0.09 7.83 0.085 7.95 0.085 7.82 

0.3 7.9 0.29 7.68 0.29 7.95 0.32 7.78 

0.7 7.9 0.69 7.93 0.68 7.94 0.67 7.85 

0.1 10 0.10 9.97 0.09 10.06 0.09 9.81 

0.3 10 0.31 9.85 0.30 9.92 0.28 9.86 

0.5 10 0.49 9.78 0.55 9.9 0.53 9.62 

0.7 10 0.70 10.00 0.69 10.10 0.71 9.94 

*Pick the region with high overlapping frequency only.  
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Figure 4.24 (a) FE model of thinner foams (t=12mm). 

 

 

 

Figure 4.24(b) Strain field of the deformed model of thin EVA foam (t=12).  
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Figure 4.24 (c) Typical indentation force depth data (FE data). This is used as the input.  
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Figure 4.25 Correlation coefficients for 2ndorder polynomial fitting of force-displacement 

curves of a thin EVA foam (t=12mm) showing that 2
nd

 polynomial fitting is sufficient to fit 

the data) (Materials data ste-1, 77 data). 
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Figure 4.26 (a) Data with different relative error range of thin foam (t12mm, R4). The 

labelled data are used to compare indentation curves.  

 

Figure 4.26 (b) Comparison between the FE P-h curves based on the material properties 

predicted and the target data.   
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(a) Dual thickness approach (R4, t12 and t20mm), material data that produce P-h 

curves within 3% average error.  

 

(b) Combination of t204R4 and t12R4, first 10 material data that produce P-h curves 

with lower average error.  

Figure 4.27 Typical predicted results based on dual sample thickness data (t12 and 

t20mm) and two different approaches to identify the optimum material properties: 

fixed error range approach (a) and fixed data number approach.  
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(a) Combination of t204R4, t20R6 and t12R4, first 10 material data that produce P-h 

curves with lower average error.  

 

 

(a) Combination of t204R4, t20R6 and t12R4, first 5 material data that produce P-h 

curves with lower average error.  

Figure 4.28 Combination of t24R4, t24R6 and t12R4 with different number of materials 

sets of lower relative error showing that the dual thickness approach is potentially more 

robust, but the 5 point approach is less conclusive.  
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4.5 Prediction of EVA foam properties based on experimental data  

The ANN program is used in predicting the properties of EVA foams based on 

experimental data. A typical set of results are shown in Figures 4.29-30. Figure 4.29 shows 

the identified materials parameters for different indenter sizes (R4 and R6) for EVA foam 1. 

In both case, the material property sets with relative error of 1%, 1-3% 3-5% and5-10% is 

plotted. It is clearly shown that there are multiple material property sets that have very low 

error. This confirms that the single indenter approach could not produce unique material 

properties. Figure 4.30 (a) plots the materials data for both R4 and R6 with the first 10 

points with lower relative error. The region with overlapping data is marked by the circle. 

Figure 4.30(b) plots the identified materials data for t20 and t12 with the first 10 points 

with lower relative error. The region with high frequency of overlapping is highlighted by 

the circle. Figure 4.30(c) plots the data for R4t20, R4t12, R6t20, it is clearly shown that the 

there is a region with high overlapping frequency, which represents the properties of the 

foam. Figure 4.31 compared the predicted properties based on different approaches in 

comparison with the standard experimental data (combination of compression and shear). 

Results shows that the properties predicted based the dual indenter (R4+R6) and dual 

thickness approach are in reasonable agreement with the standard test data. Also plotted is 

the dual indenter approach based on the Kalman filter method developed based on the 

work in a previous project. It shows that the new ANN based approach is more accurate. 

The property predicted by interception point of trendline approach also illustrated in 

Figure.31. The process of using the approach is shown in Figure 4.32, in which the 

interception point is treated as the predicted properties. This approach has been used by 

other researchers (Kong et al, 2009). However, in this case, the property predicted with the 

dual indenter approach is lower than the true value, while the value for the dual thickness 

method is higher (illustrated in Figure 4.32(b)). In some cases, the trendline is not 

applicable. An example is shown in Figure 4.33, where the data for Foam 2 could not be 

fitted with a trendline, but the prediction based the over lapping approach proposed in this 

work showed a good agreement with the experimental data. In addition, this overlapping 

method is also easier to be implemented in a computer searching progress, which is to be 

discussed in the next chapter and explored in future works.   
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(a)Foam 1 R4 

 

(b) Foam R6 

 

Figure 4.29 Material properties with different error range for Foam 1 using the 

experimental as input. (Target: =0.62; =8).  
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(a) Dual indenter approach for Foam 1 (10 Material data with lower average error).  

 

 

(b) Dual thickness approach for Foam 1 (first 10 points with lowest average error). 

The average within the range in the circle is identified as the predicted 

properties (Target: =0.62; =8) 
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(c) Dual thickness and indenter approach for foam 1 with mixed indenter size and 

sample thickness.  

Figure 4.30 Predicted results based on different range. (Target based on experimental tests: 

mu=0.62, alpha=8).  
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(a) Predicted parameter ‘’ 

 

(a) Predicted parameter ‘’ 

Figure 4.31 Comparison between the predicted properties based on the ANN methods, 

experimental data and results from other methods.  
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(a) Interception of trendline approach (Dual indenter) 

 

(b) Interception point of dual thickness approach. (R4, t20 and t12).  

 

Figure 4.32 Typical Interception point of trendline approach for the dual indenter and dual 

thickness approach.   
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(a) Materials points with relative error within 3% (Foam 2, Dual indenter approach)  

  

(b) First 10 points with lower relative error.(Foam 2, Dual indenter approach). Target 

(mu=0.75, alpha=6) 

Figure 4.33 Sample property identification results showing a situation that the 

trendline approach is not feasible, while the prediction using overlapping point showed 

good agreement with standard experimental data.  
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4.6 Summary 

 

In the first part of this chapter, the feasibility of using ANN to directly predict the material 

properties is evaluated including assessing its capacity to predict trained data and untrained 

data. The use of 2
nd

 order and 3
rd

 order polynomial curve fitting of the force displacement 

curve is compared. In addition, the use of single indenter approach and dual indenter 

approach is assessed. It was found that the approach with 2
nd

 order polynomial fitting of 

the P-h curves is not able to predict the material parameters. Using 3
rd

 order fitting showed 

some improvement and it is able to predict the trained data accurately but could not be 

used to predict untrained data. Works on dual indenter approach with R4 and R6 showed 

some improvement in predicting untrained data but could not produce data with reasonable 

accuracy of the full dataset.  

 

In the second part of this chapter, a new approach utilising the direct ANN program 

developed is proposed. A computerised program (with web interface) has been developed 

including data generation through ANN, data storage, interface for input and viewing 

results. A searching program is developed which will enable the identification of any 

possible materials property sets that may match the experiment data within a predefined 

error range. The approach is applied to analyse single and dual indenter methods through 

blind tests with known material properties.. A new approach using foams of different 

thickness is also proposed. The results showed that, with the single indenter approach, 

there are multiple materials property sets that can produce similar P-h curves, thus the 

results are not unique. Dual indenter size approach showed a significant improvement, but 

the new program successful identify addition material property sets that can produce P-h 

curve that match both R4 and R6 data. This suggest the dual indenter method with 

hyperfoam model is not 100% unique, this new finding had not been identified with other 

inverse program. The new approach proposed of using the tested data on samples of 

different thicknesses showed that the uniqueness of the prediction can be improved. The 

accuracy and validity of the program is firstly assessed with blind tests (using numerical 

data as input/target) then used to predict the properties of the EVA foam samples. This is 
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not only further validating the program and method but also identify issue with real 

material test data as they are not as perfect as FE generated data. Some key results of the 

real foam data is compared to the target and prediction results from other programs and 

data processing method, the comparison showed that the new ANN base computer program 

has clear improvement in accuracy, robustness and efficiency in predicting the parameters 

of EVA foams.  
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Chapter Five Discussions 
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5.1 Use of ANN in prediction of P-h curves based on different approaches and its 

applications 

In the first part of the work, an ANN based program has been developed and compared 

with the FE data and experimental data. The work is initially started with thick foam 

(chapter 3), then extended to thinner foam where the boundary condition will directly 

influence the force (Chapter 4). The prediction of P-h curve itself could be very useful as it 

can tell the resistance of the foam, which is associated with foam properties. In some cases, 

the P-h can be linked to the perception of foam performance (e.g. comfortness). With the 

ANN program large quantity data can be generated with limited computing time and 

resource, this can potentially help some other research work in materials, where such data 

is required. For example, Ren and Su (2014) is trying to use the data sets produced to 

develop an analytical solution based on effective Young’s modulus.  

The P-h curves prediction from known material properties using ANN is potentially a 

challenging process, in particular trying to develop a method which has to be 100% robust 

for material applications. There are 3 key aspects has been addressed in the work. 1) The 

key is to establish the approach to represent the experimental data (i.e. P-h curves);  2) 

how to assess the accuracy of the prediction; 3) Given this is a program aims at real 

application, so robustness is very important, while full generalisation is always a problem 

with ANN. A method has to be developed to ensure that the program will be able to 

produce consistent results.  

Regarding to challenge (1), two approaches have been established, one is to use 

polynomial curve fitting, the other is to use force data at different depth. As shown in 

Chapter 3, both approaches showed a reasonable accuracy in predicting the results, with 

the 2
nd

 Polynomial approach being a more practical approach. Advantage of the trendline 

method lies in its ability to represent the P-h curve with two simple coefficients, which is 

later proven to be very useful in developing a computerised database and searching 

program for inverse modelling. The simple curve coefficients make it easy to store the data 

with minimum requirement on computational resources. The coefficient for any 

experimental data can be processed using program Excel by the user or if the full 

indentation curve is input, then it can be processed through a program using C or java 
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using least square approach, it is easy to be coded in the program. The efficiency and 

accuracy of the ANN has been compared with other approach such as 3D surfacing, and 

interpolation approach and showed better performance, the results is to be present in 

section 5.2.   

The challenge (2) is mainly relevant to the trend line fitting approach. The work 

systematically analysed the use of MSE in assessing the performance of the ANN program. 

It was found that MSE could be used as a primary indication but could not directly tell the 

performance of the ANN program with different neuron numbers. In addition, the direct 

use of the error in the polynomial coefficient (a1 and a2) is also not physically meaningful, 

as for polynomial fitting, the coefficients is not necessarily unique, i.e. different 

combination of a1 and a2 may produce similiar P-h curves, so the closeness of the 

prediction to the target value is not necessarily represents a physical condition why the 

force at a depth close to the true value. As shown in Figures3.14-16, the most effective way 

is to directly use the P-h curves based on polynomial coefficients predicted to assess the 

performance of the prediction. This is the most valid one to determine the outcome 

including establishing the optimum number of neurons as shown in Figure 3.14. The 

advantage of using 2
nd

 order polynomial fitting lies that fact it is easy to program to 

calculate the force at different depth automatically, thus make the comparison very easy to 

achieve through averaging the relative error.   

Regarding to challenge (3), as pointed out in the literature review (section 2.5.2) and other 

publications (Masters, 1993; Lawrence et al, 1996; Finlay 2004; Wan et al, 2009), it is 

difficult to achieve full generalisation with ANN. An approach has to be developed that is 

statistically robust for material related works. From the frequency analysis (Figure 3.19 

and 3.22), each ANN prediction could produce around 95% of prediction of acceptable 

accuracy (within 5%). The work showed that if the ANN is run more than 5 times, then the 

result could be fairly accurate and repeatable. The average can be done either by averaging 

the coefficients or average the force directly as shown in Figure 3.20. The new approach 

proposed and assessed is based on the fact that ANN produces discrete results for the 

different input data and ANN simulation, so it is unlikely that the inaccurate results will 

repeatedly appear at the same material data point. Based this understanding, the accuracy 
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of the predication can be improved by running the ANN several times. The program is set 

to clear all initial value and start completely from a new set of initialised data. This method 

is able to produce prediction data with consistence accuracy (e.g. Figure 3.16). This has 

laid a good frame work in predicting P-h curves based known material properties. The 

detailed results for ANN P-h curve prediction with other condition (such as R6, thickness 

t12mm, etc.) was not shown to preserve clarity and avoid repeat, but all the tests have 

showed similar trend in terms of accuracy, repeatability.  

The ANN program is an important development as it can produce P-h curves over a wide 

range of properties in a quick and convenient way, which in itself could give the user a 

direct perception of the indentation resistance of the foam (thick or thin). The approach has 

been tested on several thicknesses (10, 12, 15, 20, 30mm) and indenter size (including R6, 

R4 and R2mm) has been tested, in all cases the ANN is able to predicted the P-h curves 

close to the FE simulation. Most of the work reported in this thesis has been focused on R4 

and R6 as these two testing conditions are easier to control in the test. With R2, the results 

become much more sensitive to the testing condition as the indenter is small. The ability of 

predicting the indentation curve of foam with different thickness is also useful as foam can 

be supplied/used in a variety of thicknesses. As detailed in Chapter 3, the performance of 

ANN is evaluated through a detailed process in particular the effect of neuron number 

including using MSE,  the relative error, neuron number of 20 was found to be the 

optimum number. This was found to be applicable to all the thickness case. The frequency 

analysis is found to be an effective way to analyse the data, as for material testing, 

robustness is crucial. In a real test case, maybe only the P-h for one material property is 

needed, it has to be 100%. The approach tested using the average of 5 ANN test showed 

consistent results. This has make use of the fact that ANN prediction is discontinuous. 

One typical application of the ANN program is shown in Chapter 4 in developing inverse 

material property identification programs. The ANN direct program has provided a much 

quicker way to provide extensive data for the development of a new computerised inverse 

modelling approach (post FE modelling) to map/predict material parameter from multiple 

indentation tests. This allowed the dual indenter approach to be extensively investigated to 

establish the data distribution to given user a full picture thus improve the confidence in 
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the inverse results. As a new finding, it was find that with dual indenter, the majority of 

predicted data will be confined to a local zone close to the target data, but there are other 

areas where the material parameter can match both R4 and R6. This is a key fact that was 

not identified by other approach such as interactive searching or Kalman filter (Li, 2009; 

Aw et al, 2014). Based on ANN program, a new approach has been developed to use 

samples of different thicknesses rather than different indenter sizes, which could 

effectively avoid the requirement on change of indenters that is complex and requires 

calibration of the system. Both approaches (i.e. dual indenter size or dual thickness) are 

fully validated against blind tests (using numerical data as target) and experimental data 

(Chapter 4). The approach is currently being assessed to be used in testing the effects of 

temperatures of on EVA foam and rubber like materials, which is difficult with other 

approaches.  
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5.2 Comparison of the ANN approach with other methods (data file: EVA_Foam_3) 

For predicting P-h curves, preliminary work has been conducted using surface plotting 

approach (sigma plot) and interpolation approach (Matlab). In the surface mapping 

approach, the force at different depth were fitted with an equation using simgaplot, then 

P-h curve is predicted. Figure 5.1 shows a typical surface plot at depth of 1mm based on 

materials data set 1 (mu0.1-0.7, alpha 1-11) with the Lorentizian equation. Several other 

equations are available, including Paraboloid, Gaussian and Lorentizian. As shown in the 

figure, the Lorentizian equation is not able to fit the data as the standard deviation of some 

coefficient is very high. For example, the parameter ‘y0’ and ‘a’ and ‘c’  in the equation 

are all very high which suggest that the approach is not feasible.  

Another approach explored in the early stage of the project is using line interpolation rather 

than surface fitting. The concept is illustrated in Figure 5.2(a). In this process, the P-h 

curve was divided into 100 evenly distributed points along its depth. In the second stage, at 

each alpha value used in the matrix (in this case alpha=1, 2, 3, 4, 5, 6, 7, 8,9, 10,11), the 

force vs ‘’ is fitted with a high order polynomial function; then the force for material with 

a given ‘ value (same as the input data) but different ‘alpha’ can be determined (, 1 to 11) 

with 11 points. Then another fit with polynomial function can be determined, which can be 

used to predict the value for the input (=x1,=y1). This process is repeated over all the 

depth point, then the full P-h curve can be determined. Figure 5.2(b) shows a typical results 

with materials parameter (mu=0.5, alpha=6), the program used the same number of P-h 

curves and data range as the ANN program (Material data set-1 with 77 data). As shown in 

the figure, the predicted P-h curve is reasonably close to the target (FE data), but not as 

good as the ANN prediction. During the process of exploring this method, it was found that 

more data has to be used in the building the simulation space to further improve the 

accuracy. In addition, the simulation speed of the polynomial fitting is much slower than 

the ANN process. The polynomial program typically need a few minutes to simulate one 

curve, while the ANN can produce thousands of data in a few minutes. This clearly shows 

that the ANN approach is a better option. In terms of comparison between ANN and FE, 

the ANN is post modelling method which doesn’t require re-run of the FE model, this is a 

significant advantage in terms demand on FE related resource, which can be costly in 
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terms time and resource. An FE job of similar nature typically runs typical 2-5 minutes, 

which is much slower the ANN program established.  
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(a) Surface plot and equation for fitting force vs material properties (, ).  

 

(b) Typical results and error data. 

 

Figure 5.1 Sample figure to illustrate the process of 3D surface mapping and typical data 

showing the error range. The data shows that the process is not suitable for predicting 

indentation curve of hyper foam model.  
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Figure 5.2 (a) Program for polynomial point fitting.   

 

Prepare the 77 force- displacement data) µ=0.1,…0.7; α=1…11 

(Material (data set-1, Figure 3.9) 

Set up 100 standard displacements over the depth 

Assume the material set to be predicted is =x1, =y1 

dis(n)=1 

µ=0.1                            µ=0.7 

F
o

rce 

Fixed the α, use least-square approach 

(matlab-polyfit) to calculate the coefficient of 

force with each displacement point, and output 

a new force- displacement curve: µ=x1,α=1.  

Repeat this procedure at α=2,3,4,5,6,7,8,9,10,11, consecutively.  

Calculate the force in each cycle of different value of , i.e. at point (x1,1), 

(x1,2),….(x1,11).  

Based on the data, use least-square approach to establish the polynomial curve/data fitting 

function;  

Use the function, output a new force- displacement curve: µ=x1,α=y1at the indentation 

depth studied. 

Repeat the procedure at all indentation depth data points to produce the force 

displacement data (P-h curve) 
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Figure 5.2(b) Comparison between the original FE P-h curve, ANN predicted and curve 

predicted directly though polynomial point fitting.    
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5.3 Inverse modelling and data analysis method 

As shown in Figures 4.7-15, the use of ANN in inversely identifying the material 

properties are much more complicated than predicting the P-h curves. Given the 

uncertainty with inverse modelling, the use of nftool is shown to be very effective in 

establishing/exploring the possibility/feasibility when using P-h curves to identify the 

material parameters. The use of 2
nd

 order polynomial and 3
rd

 order polynomial and depth 

data are all explored. The results show that using polynomial curve fitting coefficients 

could not explicitly predict the material data for untrained data. This is probably due to the 

fact that the relationship between the curve and properties are not unique. i.e. one P-h 

curve (or force at a given depth) could be closely correlated to many different set of 

properties; this is approved by later program mapping through detailed materials. As 

shown in Figures 4.19, 4.20 and 4.26, for one input P-h curve parameters, there are many 

material property sets that can produce P-h curve closely matching the input data. This 

made is not possible to produce a working ANN to predict untrained data. In a direct ANN 

prediction process, each material set only corresponds to one p-h curve, so the direct 

process works OK. The results show that only way to use ANN is to train the ANN with 

extensive training data of very small increment of properties and large number of neurons, 

then the program can be used as an inverse tool. In some cases, this can be a useful feature; 

however, this requires the running of large amount of FE models, which will be time and 

resources consuming and not practical.  

The new approach proposed and evaluated made use the function of ANN in direct P-h 

curve prediction, then use a computer searching program to effectively identify all the 

possible materials property sets that can produce P-h curve within a certain error range. 

The work on blind tests (using FE data) and experimental works showed that the method is 

an effective approach. The focus of the approach is to identify any possible materials 

properties set rather than only using limited data. The advantage of the approach in 

comparison with other methods such as interactive methods lies in the fact that it can 

identify/map out all potential material properties set, to give the user a full confidence. 

While interactive method may end up converge to a local minimum rather than a global 

minimum (Aw 2014). The new approach developed in this work, is also improvement from 
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some post modelling approach. For example, in the work on using Kalman filter approach 

(Li, 2009), several initial input value (over 10) has to be assigned to repeat the inverse 

program to avoid ill conditioning, which is time and resource consuming and could not 

achieve full confidence. So ANN program fits the situation for indentation and material 

related research better than for these situation where the identification of the full range is 

crucial, then the property search can be further improved through combination of tests 

(such dual indenter size, dual thickness etc.) or through pre-knowledge.  

 

The idea behind using tests under different conditions is an effective way to improve the 

robustness of the prediction. The establishment of using ANN to predict the P-h curves 

opened up a new way of enhancing the use of this method through combining different 

tests. Dual indenter method is widely regarded as a good approach (Luo and Lin 2008; Tho 

et al, 2004), which is easy to implement. However, it do require the change of indenter, for 

some tests on soft material (in particular in testing at different environments, such as 

temperature, humidity), change of indenter can be complicated and requires calibration the 

system each time. The new approach proposed using dual thickness is much simpler. Once 

the potential material sets have been identified using the computer program, it is still a 

challenging task to combine the data from different conditions (such as indenter size or 

thickness). The results in this work showed that the material sets can be identified by 

plotting the material with lower objective function/relative error, then identify the 

overlapping points. This is probably better than some other methods. Other approaches 

assessed is to use the sum of the objective functions for different condition.  For example 

for dual indenter, the average/sum of the error or objective function for indenter size 4 and 

6 can be used. The use of sum of the objective functions is easier to implement 

mathematically, however, since the force value could be quite different in some situation 

(e.g. indenter size), then error in one condition may become much higher than the other 

condition, so one set of data become more dominant, thus cause error in the prediction. For 

example, the force in R6 is much higher than R4. As presented in Chapter 3 as a 

comparison to the approach using overlapping points, another approach is to plot the 

trendlines for the material sets with lower objective functions, the cross point between the 
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two set of data is assumed to be the true/best material properties. This method has been 

used in studying the combination of dual sharp indenters on metal materials (e.g. Luo and 

Lin 2007). However, this method is not suitable for hyperfoam materials. As shown in 

Figure 4.32, the data for R4 and R6 can be approximated as linear line and there is clear 

cross point. The point is close to the target value but not very accurate (Figure 4.31). In 

some case with experimental data, the trendline intersection point is not always available 

as shown in Figure 4.32(b) or Figure 4.33. To this aspect, the new approach by using 

overlapping point is a better methodology. From programming point of view, this approach 

is much easier to implement in computerised program.  

 

Based on detailed research, the ANN program and the inverse program can be directly used 

in material research works. For example, the direct P-h prediction ANN is currently used to 

help the development of analytic models of hyperfoam P-h curves (Ren and Su, 2014). The 

inverse approach is also being transferred to other material testing processing and 

engineering problems, for example indentation bending tests of rubber (Aw,  2013), 

prediction of the temperature in the heat affected zones of spot welded joints (Norbury, 

2013). Work is also to be conducted to use the program to test EVA foam at different 

temperatures using different indenter sizes and thicknesses with the program established.  
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6.1 Summary and conclusions 

 

In this project, an ANN program has been developed to predict the indentation P-h curves 

with known properties (hyperfoam material parameter,  and ). An interactive parametric 

FE model and python programming based data extracting program has been developed and 

used to develop data for the ANN program. Two approaches have been proposed and 

evaluated to represent the P-h curve. One is using 2
nd

 order polynomial trendline approach 

(P=a2h
2
+a1h), the other is to use the forces at different indentation depth. The ANN 

program is developed with early stopping mechanism, the effect of the transfer function 

and number of neurons was systematically analysed using three set of material matrix data. 

The performance of the ANN based on the trendline approach is evaluated with MSE and 

relative error of the coefficient ‘a2’ and ‘a1’ and then, the average error in forces over 

different depths. A frequency method is used to analyse the data, which provided important 

data/base to further enhance the accuracy of the P-h curve prediction based on averaging 

multiple ANN tests. This approach effectively taking use of the fact that ANN prediction is 

not continuous around any property point. Sensitivity tests with purposely introduced error 

in the input to ANN showed that the approach is accurate and robust. The ANN program 

with the depth based approach showed similar accuracy in predicting P-h curves of 

hyperfoam materials. The work is initially developed based on indenter size of 4mm, it was 

then transferred to an indenter size of 6mm, both were used to predict P-h curves and 

compared directly to experimental data of two EVA foams with known properties. 

Comparison with other approaches (including surface mapping and direct data space fitting 

process) showed that the ANN program is accurate and much quicker than some other 

commonly used approach and direct FE modeling. This will provide an important tool in 

analysis of foam testing and development of new computerized inverse program.  

 

The feasibility of using ANN to directly predict the material properties was evaluated 

including assessing its capacity to predict trained data and untrained data. The use of 2
nd

 

order and 3
rd

 order polynomial curve fitting of the force displacement curve is compared. 

In addition, the use of single indenter approach and dual indenter approach is assessed. It 
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was found that the approach with 2
nd

 order polynomial fitting of the P-h curves is not able 

to predict the material properties.  Using 3
rd

 order fitting showed some improvement and 

it is able to predict the trained data accurately but could not be used to train untrained data. 

Works on dual indenter approach with R4 and R6 showed some improvement in predicting 

untrained data but could not produce data with reasonable accuracy of the full dataset.  

 

A new inverse material parameter identification approach utilising the direct ANN program 

established is developed. A computerised program (with web interface) has been developed 

including data generation through ANN, data storage, interface for input and viewing 

results. A searching program is developed which enables the identification of possible 

materials property sets that match the experiment data within a predefined error range. The 

approach is applied to analysis single and dual indenter data through blind tests with model 

materials (with known material properties). A new and novel approach using foam of 

different thickness is also proposed to further improve the robustness of the program. The 

results showed that in a single indenter approach, there are multiple materials property sets 

that can produce similar P-h curves suggesting that the results are not unique. Dual 

indenter size approach showed a significant improvement but the new program successful 

identify additional material property sets that can produce P-h curve that match both R4 

and R6 data. This suggests the dual indenter method with hyperfoam model is not 100% 

unique, this was not identified previously with other inverse program. With the new 

approach proposed, using the tested data on samples of different thickness showed that the 

uniqueness of the prediction can be improved. A new approach to identify materials 

properties through analysing overlapping data is also analysed and showed clear 

improvement than other approaches (e.g. sum of objective function methods, and trendline 

intercepting point method) when dealing with data from different testing conditions. The 

accuracy and validity of the program is firstly assessed with blind tests (using numerical 

data as input/target) then used to predict the properties of the EVA foam samples. This is 

not only further validating the program and method but also identify issue with real 

material test data in comparison with blind tests, as experimental data are not as perfect as 

FE generated data. Some key results of the real foam data is compared to the target and 
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prediction results from other approaches and data processing method, the comparison 

results showed that the new ANN base computer program has clear improvement in 

accuracy, robustness and efficiency in predicting the parameters of EVA foams.  

 

The outcome of work has contributed new knowledge in materials characterisation and 

inverse modelling in particular in the development of a new ANN approach to predict the 

indentation P-h curves of hyperfoam materials and establishment of a new computerised 

program to inversely predict the material parameters from indentation tests of different 

conditions. The program and the results on EVA foams have laid a solid platform for future 

works.  

 

6.2 Recommendations for future works 

One area is to use the approach to study other material systems and testing method such as 

rubber, PU foam etc, All these materials are widely used. The methodology developed 

represents a general approach which can be used in many other materials testing systems. 

One particular test of interest is indentation bending tests in which an indenter is pressed 

onto a thin film (e.g. rubber, biological tissues) clamped onto a tube; In another project, the 

frame work of ANN has helped with predicting the temperature history of the heat affected 

zones in resistance spot welding using remote thermal couples.  

 

One area is to apply the method in testing foam at different environments such temperature 

effects, as mentioned in the literature review, it is difficult to be performed the standard 

shear tests at different environments. Another area to be explored is to use the program as a 

quick way of identifying the sample properties in material development of foam or rubber 

with different composition. With this method, many small samples can be made with 

different thickness, and then the property can be estimated using the program developed. 

This could represent significant cost and time saving. In situations like these, the range 

change of property can be further narrowed/estimated through pre-knowledge. A special 

function can be incorporated in the computer program to allow the user to do it.    
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Some of the practical techniques in programming and data analysis established have made 

it easier to convert the program into a computer system. Future work will incorporate more 

material systems in the computer program to cover different types of indenter shape and 

tests.  
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