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Abstract 

Natural oil and gas has become one of mankind’s most fundamental resources. Hence, 

the performance of mobile offshore drilling units (MODUs) under various conditions 

has received considerable attention. MODUs are designed, constructed, operated, and 

managed for harsh geographical environments, thus they are unavoidably exposed to a 

wide range of uncertain threats and hazards. Ensuring the operational safety of an 

MODU’s system is often a complex problem. The system faces hazards from many 

different sources which dynamically threaten its integrity and can cause catastrophic 

consequences at time of failure. The main purpose of this thesis is to propose a 

methodology to improve the current procedures used in the risk assessment of MODUs. 

The aim is to prevent a critical event from occurring during drilling rather than on 

measures that mitigate the consequences once the undesirable event has occurred. A 

conceptual framework has been developed in this thesis to identify a range of hazards 

associated with normal operational activities and rank them in order to reduce the risks 

of the MODU. The proposed methodology provides a rational and systematic approach 

to an MODU’s risk assessment; a comprehensive model is suggested to take into 

consideration different influences of each hazard group (HG) of an offshore system. The 

Fuzzy- analytic hierarchy process (AHP) is used to determine the weights of each HG. 

Fault tree analysis (FTA) is used to identify basic causes and their logical relationships 

leading to the undesired events and to calculate the probability of occurrence of each 

undesirable event in an MODU system. The BBN technique is used to express the 

causal relationships between variables in order to predict and update the occurrence 

probability of each undesirable event when any new evidence becomes available. 

Finally, an integrated Fuzzy multiple criteria decision making (MCDM) model based on 

the Fuzzy-AHP and a Fuzzy techniques for order preference by similarity to an ideal 

solution (TOPSIS) is developed to offer decision support that can help the Decision 

maker to set priorities for controlling the risk and improving the MODU’s safety level. 

All the developed models have been tested and demonstrated with case studies. An 

MODU’s drilling failure due to its operational scenario has been investigated and focus 

has been on the mud circulation system including the blowout preventer (BOP).   
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1 CHAPTER 1: Introduction  

Chapter summary  

This chapter provides a summary of the main purpose of this research and presents the 

background and a brief justification of the need for a comprehensive and structured 

methodology for the risk assessment and analysis of the hazards associated with the 

offshore operation systems (e.g. Mobile offshore drilling units). The objectives and 

hypotheses of the research serve to set out a coherent structure for the research, which is 

aimed at addressing the inherent problems outlined to minimise the offshore operator’s 

risk. This chapter further presents the goals of the study described in this thesis and 

provides a general characterisation of the structure of the work. This is followed by a 

brief description of the research methodology and the scope of the study, and concludes 

with a summary of the thesis structure and its contents. 

1.1 Definitions  

In the course of constructing a quantitative risk assessment model for an offshore 

operation system, definitions of the following terms are useful: 

MODU: Mobile offshore drilling unit (MODU) means a vessel capable of engaging in 

drilling operations for the exploration or the exploitation of resources beneath the 

seabed (e.g. liquid or gaseous hydrocarbons, sulphur or salt) (MODU Code, 2009)
1
. 

Mode of Operation of MODU: Mode of operation means the condition or manner in 

which an MODU may operate or function while on location or in transit. The modes of 

operation of an MODU include the following
2
: 

- Operating conditions: Conditions where an MODU is on location for the purpose of 

conducting operations, including drilling and production activities, and where 

combined environmental and operational loadings are within the appropriate design 

                                                 
1
-International Maritime Organization. 2009. MODU Code. London, United Kingdom. 

2
-Source: IMO Resolution A.1079 (28), Recommendations for the Training and Certification of Personnel 

on Mobile Offshore Drilling Units (MODUs). Adopted on 4 December 2013, International Maritime 

Organization, Regulatory Guidance. 
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limits established for such operations. The MODU may be either afloat (e.g. Semi-

Submersible) or supported on the seabed, as applicable (e.g. Jack-Up drilling unit). 

- Survival conditions: Conditions wherein an MODU may be subjected to 

environmental loadings in excess of those established by the MODU’s operating 

manual. It is assumed that routine operations will have been discontinued due to the 

severity of the environmental loading. 

- Transit conditions: Conditions wherein an MODU is moving from one geographical 

location to another. 

- Combined operations: Operations in association with, or in close proximity to, 

another mobile offshore MODU or offshore installation, where conditions on the 

other MODU or installation may have an immediate impact on the safety of the 

MODU; for example, an MODU attached to a fixed platform. 

Hazard: A physical situation with a potential for human injury, damage to property, 

damage to the environment or some combination of these is called a hazard (Kumamoto 

and Henley, 2000).  

Uncertainty: A situation in which a person does not have the proper quantitative and 

qualitative data to describe, prescribe or predict deterministically and numerically a 

system, its behaviour or other characteristics is called uncertainty (Zimmermann, 2000). 

Judgements: In the environment of risk assessment, judgements is not simply the final 

decision but is an integral part of the entire risk assessment process with the essential 

nature being the ability to make a critical assessment of evidence (Chicken and Posner, 

1998). 

1.2 Background 

The comprehensive offshore oil and gas exploration and production field is a diverse 

landscape of differing operating and business environments, national regulations and 

numerous authorities regulating offshore activities. The oil and gas industry plays one 

of the most important roles in the world. Oil and natural gas are brought to the surface 

from underground reservoirs through wells that have been drilled and completed to 

produce these fluids safely and economically. Energy exploration and production, 

particularly at the frontiers of experience in offshore operations, involve risks for which 



A Novel Engineering Framework for Risk                                                 CHAPTER 1: Introduction 
Assessment of Mobile Offshore Drilling Units  

 

  
3  

neither industry nor government has been adequately prepared. In recent years, the 

drilling of oil and gas wells has presented the industry with many problems, especially 

in offshore operations. The importance of an offshore operation system has been 

acknowledged and accepted for a long time, and substantial improvements concerning 

both design and operating procedures have been made. The offshore industry continues 

to develop new well designs for challenging reservoir circumstances. For instance, the 

industry now emphasises finding and developing the smaller/marginal fields in the 

southern part of the Norwegian continental shelf. In the search for new large and 

profitable fields, the industry moves north and into deeper water. Because of high oil 

and gas prices, new technology for increased recovery, and government incentives, it is 

now possible and profitable to extend production beyond the initially assumed design 

life. However, life extension may results in more frequent critical failures involving 

leakages in to the environment. The outcome of such leaks can be catastrophic. These 

development outcomes in production occur in more environmentally sensitive areas and 

in operations under more hostile weather conditions, and a similar development is seen 

in the world where offshore fields are being planned. In spite of these developments, 

failures still occur and will most likely continue to occur in the future. An analysis of 

past accidents and events has been performed based on the database WOAD (World 

offshore accident dataset) of DET NORSKE VERITAS (DNV). This is one of the most 

reliable and most complete databases of failures, incidents and accidents in the offshore 

oil and gas sector. WOAD currently contains 6101 records (i.e. incidents, accidents and 

near-misses). The report shows the geographical distribution of collected accidents: 

3505 in the North Sea, 1685 in the Gulf of Mexico, while only 45 in the Mediterranean 

and 866 in all other regions of the world (Africa, South America, and Australasia). 

Some of the landmark past accidents will now be briefly described. The need for 

continued focus on offshore operation system safety is represented by the gas blowout 

in 2005 on the Snorre tension leg platform (TLP) operating on the Norwegian 

continental shelf (Aven and Vinnem, 2007). The Montara Blowout accident in Timor 

sea Australia was the worst that has occurred in the offshore industrial sector and 

resulted in the third-worst sea pollution in Australian history(Li et al.,2010). On 21 

August 2009, during drilling operations at the Montara Wellhead Platform, an 

uncontrolled release of oil and gas occurred from the H1 well. All 69 personnel at the 

Wellhead Platform were safely evacuated (Li et al.,2010). 
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Subsequently, there was a disastrous accident on 20 April 2010 in the Gulf of Mexico, 

where an explosion on the drilling rig Deepwater Horizon, exploring oil and gas at the 

Macondo well about 60 km offshore from the US coast, caused the death of 11 workers, 

severe injuries to many others and massive sea pollution from the release of 5 million 

barrels of crude oil (Lavrova and Kostianoy, 2011). The fundamental cause of the 

accident was an improper safety culture of the operator (i.e. BP Operator) and its 

contractors (i.e. Transocean, Halliburton). The investigation reports reveal a series of 

organisational and safety management failures that led to the accident. Amongst them, 

the following can be stressed (Graham et al., 2011): 

- Non-existence of adequate hazard identification, in particular addressing risks 

increasing from the frontier conditions and from changes to well design and 

conditions. 

- Inadequate level of detail in procedures. 

- Lack of timely recognition of and reaction to early warning signals. 

- Lack of communication and lack of appropriate training of personnel, especially in 

reacting to emergency situations. 

- Lack of clear leadership, especially lack of a culture of leadership responsibility. 

- Lack of the ability to learn lessons from other accidents and recent near-misses. 

The investigation reports cover also recommendations for regulatory reform, since the 

Minerals Management Service (MMS) regulatory structure put in place in April 2010 

was found to be completely inadequate to address the risks of deepwater drilling 

projects like Macondo. In Norway, the NORSOK D-010 standard describes offshore 

well integrity requirements, where well integrity is “the application of technical, 

operational, and organizational solutions to reduce risk of uncontrolled release of 

formation fluids throughout the life cycle of the well” (NORSOK, 2004). Well integrity 

has always been focused on the design of new wells, but well integrity in the operational 

phase is now of increasing concern. The increased emphasis on well integrity in the 

operational phase is reflected in recent regulations and standards. In Norway, for 

example, NORSOK D-010 describes the requirements for Well Integrity in drilling and 

well operations, while the American petroleum institute (API) has recently developed a 

recommended practice for handling of annular casing pressure in the United States Gulf 

of Mexico (US GoM). Well integrity is also a major concern in the US GoM. A study 
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carried out on behalf of the MMS concluded that more than 8,000 wells in the US GoM 

Outer Continental Shelf experienced well completion leaks (Bourgoyne et al., 2003). 

Ten percent of the offshore wells in the United Kingdom continental shelf (UKCS) were 

shut-in due to well integrity problems over a five-year period (Corneliussen et al., 

2007). The article refers to a study based on interviews with 17 UKCS operators; 

approximately 83% of these operators experienced well integrity problems. This issue is 

therefore particularly important for the study of offshore drilling operation and drilling 

units (i.e. MODUs). Fundamental technology of drilling and production of oil and gas is 

common to onshore and offshore areas, but environmental conditions of the offshore 

field affect facilities and engineering works in the field. These aspects mean that 

processes for life management established for on-shore structures and equipment may 

not be applicable to the offshore operation system, where a different treatment might be 

more appropriate. 

In consideration of the magnitude of the offshore safety problems, it is clear that safety 

studies require continuous efforts aimed at eliminating or reducing hazards (Lois et al., 

2004). The task of safety analysis in this context will mainly concentrate on the 

prevention and/or mitigation or control of risks through the entire life of the project. 

This clearly resides within the concept of safety management. However, it is pertinent 

to note that risk management is not about complete removal of risks but to encourage an 

explicit decision-making process, which will be used to mitigate the potential effects of 

certain risks and facilitate approval for the project. The consensus of opinion among the 

experts on risk is unanimous in accepting the inadequacy of software-only solutions to 

the risk management problem (Raftery, 1993). The trends mentioned above indicate that 

new technology applied in more challenging fields will require continued focus on risk 

assessment and management in the future. In general, the tendency of offshore risk 

assessment is that it is not only used for verification purposes in the design and 

operational processes of marine and offshore systems, but also for making decisions 

from the early stages (Wang, 2002). Risk-based approaches are gaining currency as the 

offshore industry looks for rational, efficient and flexible approaches to managing their 

offshore installations. When applied to MODUs as industrial assets, risk-based 

approaches differ from other approaches mainly in their assessment of failure in its 

wider context and consequences. These advanced techniques provide more insight into 
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the causes and avoidance of system failure and competing risks, as well as the resources 

needed to manage them. Measuring risk is a challenge that is being met with state-of-

the-art technology, skills, knowledge and experience. In the light of the above 

development risk, analysis techniques are increasingly being deployed to assess risk and 

minimise losses in several industries such as railways, nuclear, chemical processing, oil 

& gas, etc. The tremendous benefits brought about by risk management efforts can be 

summarised as follows: 

- Provided better opportunities for collation of reliable data for further research and 

improvement in the area of analysis of risks.  

- Established the basis for making explicit decisions. 

- Discovered the full potential of risk personnel based on skills and experience. 

- Provided clearer opportunity for identification of atypical risks.  

1.3 Aims and objectives of the research  

The main objective of this thesis is to develop a novel quantitative risk assessment 

(QRA) methodology for an effective risk assessment and management of offshore 

operation systems; the kinds of offshore operation systems being considered include 

MODUs such as: Semi-Submersible, Jack-Up, Drill ship, etc. More precisely the aims 

of this research can be listed as follows:  

- To review previous studies undertaken on the MODUs. 

- To develop a novel QRA methodology for an effective risk assessment and 

management of MODUs.  

- To examine the MODU availability and associated risks  

In order to achieve such an aim, a clear understanding of the offshore operation and the 

system boundaries is an essential aspect in any analysis, including risk assessment. 

Offshore operation systems are often complex and operate in a hostile environment. 

They may be more vulnerable to failure and their failure may have different 

consequences in relation to those of their on-shore matching parts. The efficient 

management of these systems and equipment during their life to ensure fitness-for-

service is an important duty for operators. The management includes all activities that 

can affect the life of an asset (e.g. design, manufacturing, operations, monitoring, 
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maintenance, etc.). There are a diversity of approaches to life management demanding 

increasing levels of information and judgement, running from the failure and 

replacement approach at one end of the spectrum, to the relatively more advanced risk-

based approach at the other end of the spectrum. The oil and gas industry, particularly 

the offshore operation, has moved into an era of pro-active risk assessment and safety 

management where the availability of various systems and equipment has been 

enhanced by the application of risk analysis. QRA is a novel approach in offshore 

operation systems, which has developed after the occurrence of some serious accidents, 

emphasising the need to use a risk-based management system in order to proactively 

ensure a strategic and scientific oversight of offshore operation systems. A proper 

methodology for making appropriate risk assessment of offshore operation systems is 

necessary, and the development of an advanced QRA is a vital part of this thesis as it 

sets the foundation of the whole scheme. From this overall goal, this thesis has the 

following lower-level objectives in order to achieve the stated aims: 

- To develop qualitative frameworks for representing the hierarchical relationships 

of components, subsystems and entire MODUs. Frameworks of risk assessment 

are developed based on the concept of an object-oriented approach (OOA) 

(Elshorbagy and Ormsbee, 2006) and characteristics of MODUs.  

- To identify the hazard group (HG) and the concepts of hazard and causing 

events.  

- To develop a method to evaluate risks of components, subsystems and overall 

MODUs failure. The modelling techniques used to achieve the objective are a 

combination of Fuzzy risk assessment method and AHP. The integration of 

Fuzzy risk assessment and AHP addresses the problems associated when a large 

amount of subjective expert judgements is required.  

- To provide a method for assessing FTs and BBN of MODUs. The results of this 

assessment are the likelihood of the occurrence of a specific event and important 

measures of possible contributing causes. 

- Considering the risk assessment as a basis for decision-making and based on the 

above risk analysis results, a multiple attribute decision making (MADM) 

technique Fuzzy techniques for order preference by similarity to an ideal 

solution (TOPSIS) is used to rank the alternatives RCOs.  
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The objectives are also carried out to test the hypothesis of the research. This thesis is 

designed to test the hypothesis that it is possible to develop a new QRA capable of 

tackling a variety of systems in industry, with special consideration placed on MODUs. 

This hypothesis requires historical data, current data and expert judgements to be 

presented in risk-based tools and techniques.  

1.4 Limitations and statement of problem  

The MODU’s field data are mainly obtained from the daily drilling reports that record 

the activities of rigs ordered chronologically. They also comprise records of most of the 

main system and equipment (e.g. BOP, Mud system, etc.) operations at whatever time 

they interact with the drilling unit activities. However, daily drilling reports either are 

not adequate or are not prepared for risk analyses and, in some circumstances, the data 

are incomplete and some aspects of MODU failures cannot be examined entirely. The 

data are principally concentrating on the operations and equipment; also, the data 

concerned specifically with human factors are not available. On the other hand, often 

the information available suggests that aspects of failure may be associated with human 

factors. The importance of human factors has already been emphasised in this research. 

Nevertheless, given the information available they cannot be evaluated objectively in 

order to establish the effect of human error on MODU failures and their associated 

risks. As mentioned above, due to non-existence of data or incompleteness of 

information, uncertainties may considerably undermine the conclusion developed based 

on the traditional QRA techniques. Consequently, the research limitations and problem 

for this thesis are presented as follows:  

- In order to develop a QRA framework, extracting the required information from 

objective and subjective sources is one of the challenges of this research. 

- The process of gathering data, the use of existing data or confidence in expert 

judgements has been shown to be a troublesome process in terms of accuracy (Pillay 

and Wang, 2003). 

- The gathering of objective data in order to apply a modelling technique can be 

difficult as it generally requires many months or even years to attain sufficient data.  
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- The use of subjective data collected from expert judgements can often come in a 

form that requires adjustment with existing data in order to establish a consistency of 

data to give certain confidence in the modelling results. 

- The combining of both objective and subjective data requires elicitation in order to 

establish the data that are required to apply advanced modelling techniques to the 

offshore operation systems. 

Since the objective of this research is to provide a platform for risk assessment 

addressing offshore operation systems’ safety with confidence in circumstances of the 

lack or incompleteness of data, the subjective data for the test cases demonstrated in this 

study are hypothetically prepared by the author together with supervisors and experts 

specialising in the offshore industry. This is because of the difficulty of acquiring real 

industrial data due to many reasons including the confidentiality of data of this kind. 

1.5 Justification of research  

In risk assessment and safety management research, management of the effects caused 

by uncertainty and complexity of systems is an important issue. A hierarchical 

framework is an effective way to deal with complexity. It decomposes the complex 

problem into more manageable subsystems or components, and represents the 

contributions to the overall system by its components and subsystems. Thus, it has the 

ability to perform risk evaluations at both the component and system levels. As 

aforementioned, causes of uncertainty are diverse. Thus, regardless of what approaches 

are to be applied, human judgement is always required to manage such negative effects. 

In other words, the deficiencies of risk modelling resulting from lack of data or high 

level of uncertainty must be addressed up by means of the general evaluation capacity 

of humans capable of grasping the essence of an object, even if it is vague and unclear. 

One feasible way to model such a situation under a high level of uncertainty is to use 

Fuzzy set theory. Fuzzy set theory, formalised in 1965, has been applied in different 

fields. Its application in system safety and reliability analysis could prove to be useful 

since such analysis often requires the use of subjective judgements and uncertain data. 

When dealing with the safety of a system using Fuzzy set theory, the parameters 

including occurrence likelihood and severity of possible consequences can be judged 
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and described using linguistic terms and their associated memberships. Over the years 

there have been successful applications and implementations of Fuzzy set theory in 

industrial engineering (King & Mamdani, 1977). Industrial engineers face many 

problems with incomplete and vague information. FST developed by Zadeh (1965) is an 

excellent tool to solve these problems. Kahraman (2006) presents some application 

examples of Fuzzy sets in different areas of industrial engineering which Fuzzy set 

theory can contribute. These areas are Fuzzy control and reliability, Fuzzy engineering 

economics and investment analyses, Fuzzy group and MCDM, human factors 

engineering and ergonomics, manufacturing systems and technology management, 

optimization, and statistical decision-making. Washing machine is an example of 

application of Fuzzy logic control in industrial engineering. The conventional washing 

machines required the human interruption to decide upon what should be the wash time 

for different cloths. Agarwal (2007) presents the idea of controlling the washing time 

using Fuzzy logic control and also describes the procedure that can be used to get a 

suitable washing time for different cloths. These Fuzzy variables can then be 

synthesised with confidence using an AHP (Lee, 1996; Chen, 2001; Sadiq & Husain, 

2005; Zeng et al., 2007; Wang & Elhag, 2008) or some other technique such as FTA 

(Andrews & Moss, 2002; Henley & Kumamoto, 1981; or TOPSIS (Hwang & Yoon, 

1981; Chen, 2000; Li & Yang, 2004; Herrera et al., 2005). With the awareness of the 

effectiveness of hierarchies in dealing with complexity, this study adopts hierarchies, 

but based on an object-oriented approach to represent the relationships in offshore 

operation systems, and to develop frameworks for risk assessment. Meanwhile, Fuzzy 

set theory, AHP, BBN and FTA are integrated with these hierarchies to generate 

quantitative results.  

1.5.1 OOA to MODUs 

Firstly, an OOA is proposed in this research to deal with the complexity (Simons, 1982; 

Courtois, 1985) of MODUs and to generate a hierarchical structure for risk assessment. 

OOA is a method that represents engineering systems in terms of objects (Booch, 1994; 

Solomatine, 1996; Ross et al., 1992; Black & Megabit, 1995; Liu & Stewart, 2003; 

Crossland, et al., 2003; Elshorbagy & Ormsbee, 2006). Every component in an MODU 

is viewed as an object, and the overall system is viewed as a set of objects that are 
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interconnected. All risk factors about the components are considered as attributes or 

behaviours of objects. Furthermore, with the generalisation and aggregation 

relationships, object-oriented hierarchical structures can be easily formed to represent 

the whole/part relationships and interconnections between objects in an MODU.  

Aggregative risk assessment is composed of two stages, the component level and the 

subsystem level. Firstly, the diagrams of objects describe the relationships between 

hazards, object failure, and object risks, which thus provide a hierarchical framework 

for risk assessment at the component level. In this hierarchical framework, the risk of an 

object is at the top level followed by its relative failure states, which are at its immediate 

lower level. Hazards or threats are at the bottom level in this framework. This indicates 

that risks of an object are determined by its failure states, which are in turn determined 

by the threats or hazards directly related to them. This research represents each hazard 

or threat in terms of its likelihood of occurrence and severity of possible consequences, 

which are represented by Fuzzy numbers. The risk of a component is thus an 

aggregative measure that is determined by aggregating the risks of threats or hazards 

along the hierarchical structure. Secondly, for the risk assessment at the system level, an 

object-oriented whole/part relationship structure is used to determine aggregative risks 

of MODUs. In this hierarchical framework, the MODU is at the top level; its 

subsystems and components are at relatively lower levels. Therefore, the risk of the 

overall system is an aggregative measure which is contributed to by the risks of its 

subsystems and components along the hierarchical structure. With the development of 

the conceptual framework for aggregative risk assessment, Fuzzy set theory and an 

aggregation method (i.e. AHP) (Leung & Cao, 2000; Bozdağ et al., 2003; Kwong & 

Bai, 2003; Kahraman et al., 2003; Büyüközkan, 2004; Büyüközkan et al., 2004; Erensal 

et al., Huang et al., 2005; 2006; Tüysüz & Kahraman, 2006; Chan & Kumar, 2007) are 

used to produce quantitative evaluations. 

1.5.2 Fuzzy FTA of MODUs 

FTA is considered in this study to represent the cause-effect relationships in MODUs. 

FTA, a deductive reliability and risk analysis technique, can answer the question of how 

the system could produce a failure. With the help of FTA, risk analysts will know which 
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component in the system is more critical and which risk scenario is more significant 

(Pillay & Wang, 2003). Meanwhile, risk contributions and uncertainty contributions can 

also be obtained to support selection of mitigation measures (Furuta & Shiraishi, 1984; 

Shu et al., 2006) and asset management. However, the development of FTs is still as 

much an art as a science. This research uses an object-oriented approach to generate FT 

structures via two steps. Firstly, the diagram is used to generate the FTs at the 

component level. Then, interconnections between components in an MODU are used to 

develop FTs at system level. After FTs have been constructed, Fuzzy FTA (Misra & 

Weber, 1990; Liang & Wang, 1993; Cheng & Mon, 1993; Lin & Wang, 1997; Dong & 

Yu, 2005; Ping et al., 2007; Pan & Wang, 2007) is adopted to obtain quantitative 

results. 

1.5.3 Application of BBN 

Fundamental to the idea of BBNs is the concept of modularity, whereby a complex 

system is built by combining simpler parts of components that are related in a causal 

manner. A BBN is a probabilistic graphical model that represents a set of random 

variables and their conditional dependencies through a directed acyclic graph. 

Quantitative probability information is specified in the form of conditional probability 

tables (CPT). For each node the table specifies the probability of each possible state of 

node given each possible combination of states of its parents. In general, a BBN is a 

graphical representation of a probability distribution over a set of variables and it 

consists of two parts: 

- The directed network structure in the form of a directed acyclic graph. 

- A set of the joint probability distributions, one for each node, conditional on each 

value combination of the parents. 

The reasons for choosing BNs can be summarised as follows: 

- They are graphical models, capable of displaying relationships clearly and 

intuitively. 

- They are directional, and are thus capable of representing cause-effect relationships. 

- They can be used to represent indirect causation in addition to direct causation. 
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The approach is based on conceptualising a model domain or system of interest as a 

graph of connected nodes and linkages. In the graph, nodes represent important domain 

variables and a link from one node to another represents a dependency relationship 

between the corresponding variables. Given their network structuring, Bayesian 

networks successfully capture the notation of modularity (i.e. a complex system can be 

built by combining simpler parts). Due to their Bayesian probability formalism, 

Bayesian networks provide a rational technique to combine both subjective (e.g. expert 

opinion) and qualitative (e.g. monitoring data) information (Das & Teng, 2000). The 

flexible nature of Bayesian networks also means that new information can easily be 

incorporated as it becomes available. Only the conditional probabilities of the affected 

variable require redetermination. Moreover, Bayesian networks are helpful for 

challenging experts to articulate what they know about the model domain, and to join 

those influences into a dependency network. The graphical nature of Bayesian networks 

therefore facilitates the easy transfer of understanding about key linkages. In addition, 

because subjective expert opinions are made explicit in the formal structure of the 

network, they can be challenged and revised, and can also be directly evaluated to 

determine whether the results are robust. In this research, BBN analysis for the 

assessment of the risk level of MODUs is presented and a combination of a BBN 

technique and an AHP method is used to determine the degree of influence and 

importance of factors of each HG.  

1.5.4 Application of MADM in a Fuzzy environment for selection of the best 

RCO in MODUs 

Due to the complexity of MODUs, conventional QRA may not be capable of providing 

sufficient risk management information. The selection of different mitigating and 

preventive alternatives (i.e. RCOs) often involves competing and conflicting criteria 

(cost and benefit), which requires sophisticated decision-making methods. The decision-

making in this study is the analysis of multiple objectives that have both a quantitative 

and a qualitative nature. It is obvious that much knowledge in the real world is Fuzzy 

rather than precise. In an MODU ranking/selecting problem, decision data of MADM 

problems is usually Fuzzy, crisp, or a combination of the two. Hence, a useful model 

should be capable of to handleing both Fuzzy and crisp data. Since imprecision and 
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ambiguity in the calculation of a performance rating are incorporated into MADM, 

Fuzzy set theory provides a mathematical framework for modelling them. The research 

method employed is a Fuzzy TOPSIS approach (Zimmermann & Zysno, 1985; 

Teodorovic, 1985; Zanakis et al., 1998; Chen, 2001; Yong, 2006; Li, 2007). It is one of 

the techniques that have been developed to solve MADM problems.  

1.6 Logic relationships among the methods 

By using this technique, subjective judgement with uncertainty and precise data can be 

consistently modelled under a unified framework. Figure 1.1 demonstrates the logical 

relationships among the proposed methods in this PhD research. As illustrated in 

Figure 1.1, in Chapter 3 the object-oriented approach and hierarchy structure are used to 

generate conceptual frameworks for risk assessment and to demonstrate the cause-effect 

relationships for specific risk in the MODUs. 

In the next step (Chapter 4), a combination of the Fuzzy-AHP and Fuzzy FMECA 

approaches is adopted to assess the risk of each HG quantitatively and to identify the 

most critical hazards in MODUs using Fuzzy set theory. Fuzzy sets are used to 

represent likelihood, severity, vulnerability and risk associated with each hazard, AHP 

is used to obtain risk levels of events, HGs, and the overall system by performing 

aggregation along the hierarchical structure.  

In Chapters 5 and 6, Fuzzy FTA and BBN are used to quantitatively evaluate the 

proposed hierarchy structure. Finally, in Chapter 7 Fuzzy TOPSIS is used to select the 

best RCOs for MODUs: Fuzzy TOPSIS is adopted here to identify the best RCO from a 

finite number of RCOs. 
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Figure 1.1: Logic relationships among the methods used in this research 

`
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1.7 Structure of the thesis 

The scope of this research is to develop an advanced QRA methodology, utilising 

varying information from both objective and subjective sources. The purpose of the 

advanced QRA is to:  

- Present the relationships among components, subsystem and the overall offshore 

operation system. 

- Estimate risk of components, subsystem and the overall offshore operation system.  

- Identify a HG: an event or a group of events that has the highest contribution to the 

failure of the MODU.  

- Provide the best RCOs for mitigating risk of the system. 

The chapters in this thesis have been organised to express a certain flow of thought or 

line of argument. This thesis consists of eight Chapters; Figure 1.2 illustrates the 

structure of the thesis.  

Logically, the structure starts with an introductory platform chapter that sheds light on 

the much-needed risk-based approach to the offshore operation system as it is Chapter 

1. This chapter has outlined a brief introduction relating to the background of the 

research, an introduction of the research principle, a statement highlighting the 

problems currently encountered, aim and objectives of the research, limitations, 

methodology and structure of the thesis.  

Chapter 2 comprises a literature review on offshore operation systems and risk 

assessment techniques that are appropriate to the study of the MODU risk assessment. 

The shortcomings of offshore operation systems’ risk assessment techniques commonly 

applied are measured, providing a critical review for their current practices. According 

to the review, comments are studied to express the limitations associated with the 

conventional methods and to propose possible determinants overcoming these 

limitations. Then the methodology background of the current study is justified and 

briefly discussed at the end of the chapter. The basis behind this section is to explore the 

framework of the offshore operation system risk assessment. The results of the analysis 

serve to explore what has been done in offshore operation system risk assessment, to 

identify the problems generated from the current system, and to verify what is needed 

for the continual improvement of offshore operation systems. 
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Chapter 3 states the methodologies applied in the research and aims to develop 

conceptual frameworks for aggregative risk assessment of MODUs. Firstly, it 

introduces the object-oriented approach and its potential application in categorising 

complex information in MODUs. Then a hierarchical structure of MODUs is developed 

based on the concept of the offshore operation system. Transition illustrations are used 

to represent the cause-effect relationships of risks at the component level (i.e. BEs). The 

proposed methodology is capable of identifying the hazards and possible consequences, 

estimating magnitude of consequences, estimating probability of consequences and 

determining significance of the risk. 

Frameworks of aggregative risk assessment are formed based on the hierarchical 

whole/part relationships of MODU operation systems and also these frameworks can 

provide beneficial information for decision-makers in offshore operation systems.  

Chapter 4 introduces the method to quantitatively evaluate the hierarchical frameworks 

of aggregative risk assessment developed in Chapter 3. Fuzzy set theory is adopted here 

to determine the risk levels of hazards, which are at the bottom level (i.e. BEs) of the 

hierarchical structure. Fuzzy-AHP is used to determine the degree of significance of 

each HG in relation to its influence on the MODU’s failure. By using the combination 

of the Fuzzy-AHP and Fuzzy FMECA, the risks of significant items are quantified and 

the most critical event will be identified for further analysis in Chapter 5.  

Chapter 5 applies Fuzzy FTA to quantitatively evaluate the FT of the most critical 

subsystem or event. Fuzzy FTA is used in QRA to identify the basic causes leading to 

an undesired event and to identify the most critical hazards of MODUs. In the Fuzzy 

FTA method, the likelihood of a top event (TE) and the importance measures of 

contributing factors are investigated. The results of this analysis are used to prioritise 

the components and hazards for specific risks and assist risk analysts in making rational 

decisions.  
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Figure 1.2: Thesis structure showing the organisation of the chapters 

`
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Chapter 6 presents a BBN analysis for the assessment of the risk level of MODUs and a 

combination of a BBN technique and an AHP method is used to determine the degree of 

influence and importance of factors of each HG. 

Chapter 7 uses the outcomes of Chapters 4, 5 and 6 to help the analyst select the best 

RCOs for mitigating the risk of a subsystem/event of MODU. Fuzzy TOPSIS is adopted 

to identify the best RCO and MADM is used in a Fuzzy environment for selecting the 

best RCOs in an MODU operation system. A decision-maker often encounters the 

problem of selecting a solution from a given set of alternatives. The chosen alternative 

is the one that most likely meets certain predefined objectives/goals. A MADM method 

provides engineering and management decision aids in evaluating and/or selecting the 

best RCO from a finite number of alternatives which are characterised by multiple 

attributes. Recommendations for decision-making can be provided based on the level of 

cost-effectiveness for each risk control measure.  

Chapter 8 summarises the knowledge obtained from this research as a whole with 

respect to the development of a proactive risk assessment methodology, as well as the 

limitations and recommendations for future research to improve offshore operation risk 

management. 
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2 CHAPTER 2: Literature review, hazard identification and 

risk assessment technique 

Chapter Summary 

In this chapter, the current status of the offshore industry is reviewed, which provides an 

overview of technical aspects of the offshore drilling operation system that is necessary 

for appropriate understanding of the course of the MODU’s risk assessment. This 

chapter also identifies the hazards groups associated with the MODU’s operation 

system. The main purpose of this assessment is to make sure that all categories of the 

most significant hazards related to normal operational activities are identified and that 

measures will be taken to reduce risks, with reference to statistical reports, and taking 

into consideration the events in the chain together with the functions which occur in 

offshore operations for different types of units. It is essential to note that the vast 

majority of events/occurrences happen during the drilling phase. Therefore this needs to 

be taken into consideration for risk assessment purposes. The frameworks of the safety 

regulations and offshore operation safety guidelines are also discussed. The strengths 

and shortcomings of risk assessment techniques currently and commonly applied are 

observed. 

2.1 Overview of technical aspects of the MODU 

This section provides basic information on the offshore drilling operation system and 

technology that is needed for a proper understanding of the course of the MODU’s risk 

assessment.
3
 

Drilling process: offshore drilling is similar in many ways to drilling on land. It uses 

drill pipe, casing, mud, and cement in a series of carefully calibrated steps to control 

pressure while drilling thousands of feet below the seafloor. A sophisticated blend of 

synthetic fluids, polymers, and weighting agents is used to lubricate and cool the drill 

bit during drilling.
4
 Drilling mud and drill bits are used to bore a hole into the earth. The 

                                                 
3
 Oil Spill Commission, Chief Counsel's Report. 

http://www.oilspillcommission.gov/chief-counsels-report.  
4
 How to Improve Safety in Regulated Industries What Could We Learn From Each Other safety in EU” 

© ENCO - Background Material, ENCO FR-(12)-44 

http://www.oilspillcommission.gov/chief-counsels-report
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mud is pumped down through a drill pipe that connects with and turns the bit. The mud 

flows out of holes in the bit and then circulates back to the rig through the space 

between the drill pipe and the sides of the well (the annulus or annular space). As it 

flows, the mud cools the bit and carries pulverised rock (called cuttings) away from the 

bottom of the well. When the mud returns to the surface, rig equipment sieves the 

cuttings out and pumps the mud back down the drill string. The mud thus travels in a 

closed loop (Williams, 1974). 

Pore and fracture pressure: The weight of the rocks above a pay zone can generate 

significant pressure on the hydrocarbons. The principal challenge in deep-water drilling 

is to drill a path to the hydrocarbon reservoir in a manner that simultaneously controls 

these enormous pressures and avoids fracturing the geological formation in which the 

reservoir is found. In addition to carrying away cuttings, drilling mud also controls 

pressures inside the well as it is being drilled. The pore pressure is the pressure exerted 

by fluids (such as hydrocarbons) in the pore space of rock. If the pore pressure exceeds 

the downward hydrostatic pressure exerted by mud inside the well, the fluids in the pore 

spaces can flow into the well, and unprotected sections of the well can collapse. An 

unwanted influx of fluid or gas into the well is called a "kick". An uncontrolled 

discharge is known as a "blowout". The fracture pressure is the pressure at which the 

geological formation will break down or “fracture”. When fracture occurs, drilling mud 

can flow out of the well into the formation such that mud returns are lost instead of 

circulating back to the surface. Both pore pressure and fracture pressure vary by depth 

(Walsh, 1981). 

Casing and cement: At some point as the drilling proceeds, the pore pressure in the 

bottom of an open hole section will exceed the fracture pressure of the formation higher 

up in this open hole section. When this happens, the drillers can no longer rely on mud 

to control pore pressure. Casing is high-strength steel pipe that comes in 20- to 40-foot 

sections that are screwed together on the rig to make a casing string. The casing string 

serves at least two purposes: (i) it protects more fragile sections of the hole outside the 

casing from the pressure of the drilling mud inside, and (ii) it prevents high-pressure 

fluids (like hydrocarbons) outside the casing from entering the well. Once cemented in 

place, it isolates the wellbore from the previously penetrated formations and serves as a 

conduit from the wellhead to the bottom of the well for drilling and any subsequent 
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production activity. The cement flows down the drill string, out the bottom of the casing 

and back up against gravity into the annular space around the casing (between the 

casing and open holes). When cementing is complete, the cement fills the annular space 

around the casing, reinforcing the casing and creating the mechanical foundation for 

further drilling. This process continues as the hole is drilled using progressively smaller 

diameter casing and cementing. Once set, the cement does two things: it seals off the 

interior of the well (inside the casing) from the formation outside the casing, and it 

anchors the casing to the rock around it, structurally reinforcing the wellbore to give it 

mechanical strength (Thiercelin et al., 1997). 

The blowout preventer (BOP): The BOP is a giant assembly of valves that latches on to 

the wellhead. The BOP stack serves as both a drilling tool and a device for controlling 

wellbore pressures. The BOP stack is connected back to the rig by the riser. The riser is 

a sequence of large diameter high-strength steel pipes that serves as the umbilical cord 

between the rig and the BOP during all remaining drilling operations. In the completed 

well, the BOP stack is a potential barrier that can prevent hydrocarbon flow up the well 

and into the riser. This is done by using either the annular preventers, which can slow or 

stop the flow, or the blind shear rams, which shut it off completely. The annular 

preventer is a large rubber element designed to close around the drill pipe and seal off 

the annulus. Upon activation, the annular preventer expands and fills the space within 

that part of the BOP; if there is something in the annular preventer (such as a pipe), the 

annular preventer seals around it. If there is no drill pipe in the hole, the annular 

preventer can close off and seal the entire opening. The blind shear ram consists of two 

metal blocks with blades on the inner edges. It is designed to cut the drill string and seal 

off the annulus and the drill string in the well below. It can withstand and seal a 

substantial amount of pressure from below. Blind shear rams are designed to cut 

through the drill pipe. BOP rams can be activated in several ways: manually from the 

rig, automatically or by remotely operated vehicle (ROV). Electrical signals are sent to 

subsea control pods on the BOP stack. The signals electrically open or close a solenoid 

valve, which in turn sends a pilot signal that activates the hydraulic system (Holland, 

1997). 

Drilling rigs: There are three types of MODUs, which are used for different 

environment. As illustrated in Figure 2.1, drilling ships are used in the very deep sea 
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(i.e. about 2000 m water depth); for water depth between about 120 m to 1500 m, semi-

submersible rigs are used; and jack-up drilling rigs are used in shallow water less than 

about 120 m deep  (Liao et al., 2012). 

 

Figure  2.1: Drill Rigs: (a) Jack-up rig; (b) Semi-submersible rig; (c) Drilling ship 

(Source: Deutsche bank) 

 

Jack-up rigs have lattice legs that are lowered to the seabed before the floating section 

carrying the derrick is raised above sea level.  

Semi-submersible rigs float at all times, but when in position for drilling they are 

moored and ballasted to float lower in the water with their pontoons below wave-level. 

The drilling rig itself is a derrick towering above the drill floor where most of the 

human activity is concentrated. The derrick supports the weight of the drill string, which 

is screwed together from nine-metre lengths of drill pipe. Hoisting equipment in the 

derrick can raise or lower the drill string up to three pipe lengths. At the bottom of the 

drill string is a drill bit, which can vary in size and type (Williams et al., 1998) 

An offshore single hull drilling ship having the characteristics of a tanker provided with 

a vertical drill well is located near the ship’s pitching axis. A double-sectioned vertically 

adjustable work platform is located within the well and a rail-mounted hoist mechanism 

travels from a position over each section to a position over the main deck transferring 
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gear between the areas. Pressure tanks, ballast water, and drill water are stored in the 

outboard wing tanks of the hull and mud pumps, agitators, and other equipment are 

located in the centre compartments on a mid-deck or fiat. A platform above the drill 

well supports the derrick for drilling operations. A passive stabiliser is provided to roll-

stabilise the ship. Making use of the reduced size drill ship concept with enhanced 

drilling technology enables the contractor to drill deep water wells (Fossli & Hendriks, 

2008, Liao et al., 2012).  

2.2 Introduction to offshore operation risk assessment 

Offshore operation safety has developed from a reactive manner towards a risk-based 

and goal-setting system since the 1990s. It has become an important issue in the 

offshore industry due to public concern resulting from several catastrophic accidents, 

and the introduction of safety regulations. The main objective of these safety regulations 

is to ensure that risks have been reduced to be as low as possible and that the best RCOs 

to be implemented are cost-effective.  

Offshore operators have been dealing with the operational risks for many years and 

have recognised that, in order to achieve a step change in improvement of operational 

performance, there is a need to formalise their extensive knowledge, experiences and 

work practices within a well-thought-out and structured framework represented by a 

management system. The development of an effective management system is to ensure 

appropriate risk management efforts will be consistently applied by people at the 

worksite to manage major hazards and other workplace hazards to ensure safe and 

reliable operations.  

In addition, due to the industry’s competitive nature, it is essential for the development 

of new approaches, proposal of new operational procedures and invention of innovative 

technology to constantly conduct risk assessment and safety management of the 

offshore industry with respect to environment, personnel, assets and reputation. This 

certainly brings new hazards and uncertainties. Therefore, risk assessment should cover 

all possible areas including those where traditional techniques are difficult to apply. 

Consequently, risk assessment has become an essential tool by which to develop 

strategies and policies to avoid an occurrence and formulate mitigative measures. It is of 
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great relevance and applicability in offshore operation systems due to challenges in 

protection measures arising from the harsh environment. Offshore environments are 

typically known as compact areas enclosing a high density of equipment and personnel. 

In addition, mobile offshore drilling rigs are complex systems having the potential for 

unexpectedly severe consequences during an occurrence. Complexity has many facets, 

most of which are increasing in the systems, particularly interactive complexity. The 

systems are designed with prospective interactions among the components that cannot 

be thoroughly planned, understood, anticipated or protected against. The operation of a 

number of systems is so complex that it challenges the understanding of all but a few 

experts and sometimes even the experts have incomplete information about their 

potential behaviour. For that reason, the development of a variety of novel risk-

modelling and decision-making techniques capable of resolving such encountered 

difficulties is essential. Risk assessment not only determines if the risk is acceptable, but 

also identifies major risk-contributing factors for which reducing measures should be 

applied. To conduct risk assessment for an offshore operation system both the 

likelihood and consequences of potential hazards need to be estimated.  

As a part of risk assessment modelling, the stage or phase of the offshore operation for 

risk assessment needs to be determined. The reason is that the type and placement of 

safety barriers for the drilling phase differ from those of the production phase. In 

addition, in the case of drilling, shallow water or deep water drilling and exploratory or 

development drilling must be identified; for instance, dividing the drilling phase into 

sub-operations such as drilling, casing and cementing helps to better identify the 

primary causes of failure. In the present study, risk analysis is performed for the drilling 

phase, and also it is assumed that drilling is performed in deep waters and for a 

development well. Therefore, both primary and secondary barriers are present. 

2.3 History of MODU risk assessment and regulations and standards of offshore 

operation systems 

The use of structured risk management in the offshore industry began in the Norwegian 

Sector of the North Sea. Use of QRA studies in the Norwegian offshore industry dates 

back to the second half of the 1970s. Several accidents in the Norwegian Sector at this 

time, including two on the Ekofisk field, demonstrated that even this arrangement 
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involved major hazards (Engen, 2009). A few pioneer projects were conducted at that 

time, mainly for research and development purposes, in order to investigate whether 

assessment methodologies and data of appropriate superiority and strength were 

available. The Norwegian petroleum directorate (NPD) issued their “Regulations 

Concerning Safety Related to Production and Installation” in 1976 (Vinnem, 2007). The 

next step in the development of QRA came in 1981 when the NPD issued guidelines for 

safety evaluation of platform conceptual design (Vinnem, 2007). These regulations 

required QRA to be carried out for all new offshore installations in their conceptual 

design phases. These included the requirement that, if the living quarters were to be 

located on a platform where drilling, production or processing was taking place, a risk 

evaluation should be carried out. At that stage, such an evaluation would have been 

mainly qualitative. As part of the approval procedure for a new production platform in 

the Norwegian Sector, the NPD required submission of a general development plan, 

containing a safety evaluation of the platform concept. NPD published a new set of 

regulations in 2001, which replaced the risk analysis and technical regulations from 1 

January 2002. The requirement of risk analysis and other analyses were stipulated in the 

Health, Environment and safety (HES) Management regulations. These regulations have 

requirements for analysis of risk as well as requirements for the definition of risk 

acceptance criteria. The NPD was divided into two organisations from 1 January 2004 

and its safety division was separated as a new organisation, namely the Petroleum 

Safety Authority (PSA). The HES management regulations were controlled by the PSA. 

The SCRs were modified in 2005 and these revisions came into force from 5 April 2006 

(Aven and Vinnem, 2007). The resulting studies became known as Concept safety 

evaluations (CSE). The CSE is a form of overall risk assessment of a platform, 

addressing the risk of impairment of safety functions. 

In the UK sector prior to Piper Alpha, QRA tended to be applied to specific aspects of 

the design, rather than to overall risks. Consequently, it was mainly used as part of the 

detailed design when the scope for changes was limited. The Piper Alpha accident in 

1988 tragically disproved that the major accident predictions which risk analysts had 

made were indeed realistic, and it was then felt that QRA could be useful in trying to 

reduce the risks.  
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QRA techniques were then applied to many platforms in the UK sector, as operators 

attempted to discover the extent of their exposure to fire and explosion hazards. QRA 

was found to be an appropriate tool for evaluating the relevant hazards (e.g. fire and 

explosion, dropped objects, etc.). As a result of this activity, significant reductions of 

risk were achieved on many platforms by moving or installing isolation valves on risers 

and sub-sea pipelines, and by relocating accommodation in extreme cases. The 

influential Lord Cullen Report on the Piper Alpha accident recommended a major 

change to a more modern system of safety regulation in the UK sector, symbolised by 

the transfer of responsibility to the health & safety executive (HSE) (Miller, 1991). The 

effects were not confined to the UK sector, because multi-national oil companies 

applied similar safety evaluations to their offshore operations. Thus, in the few years 

following the Piper Alpha accident, QRA was applied to platforms in areas as diverse as 

Australia, New Zealand, Malaysia, Brunei and Canada (Brandsæter, 2002). 

Subsequently, the HSE Offshore Safety Division launched a review of all offshore 

safety legislations and implemented changes. The objective of this work was to seek a 

more goal-setting regime to replace legislation which was regarded as viewpoint  

(Wang, 2002). In Australia, the National Offshore Petroleum Safety Authority 2004 

(NOPSA 2004) has issued safety case guidelines. These regulations call for safety cases 

to be prepared for all installations and to demonstrate that risk has been reduced to an as 

low a level as reasonably practicable (ALARP). 

The mainstay of the regulation is the Health and Safety at Work Act, under which a 

draft of the offshore installation regulations was produced (HSE, 1991). It was then 

modified to incorporate the comments arising from public consultation. The regulation 

came into force at the end of May 1993 for new installations and November 1993 for 

existing installations. The regulation requires operational safety cases to be prepared for 

all offshore installations, including both mobile and fixed ones. In addition, all new 

fixed installations are required to have a design safety case in place. For mobile 

installations, the duty holder is the owner. The Safety Case Regulations (SCR) establish 

a clear guidance as to what a safety case should include with respect to the design and 

operation of a particular type of offshore installation. Particular requirements to be 

included in a safety case for the design, operation, abandonment and well operations of 

different installations are also given. An installation cannot legally operate without such 
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a safety case demonstration that has been approved by the Offshore Safety Division of 

the HSE.  

Risk criteria are standards that represent the regulators’ view of how much risk is 

acceptable or tolerable (HSE, 1995a). In fact, risks in the intolerable region cannot be 

justified on any grounds. In the region of ALARP, the risks must be reduced by 

presenting control measures towards the acceptable region. The residual risks remaining 

in this region will be tolerable only if further risk reduction is impracticable or the cost 

required is grossly disproportionate to the improvement gained. There is no need to 

demonstrate ALARP in the broadly acceptable region. However, it is necessary to take 

any measure to assure that the risks remain at this level. An accepted operational safety 

case must be capable of demonstrating that hazards with the potential to cause major 

accidents have been identified, and that associated risks have been evaluated and 

reduced to ALARP using appropriate measures. It is noted that since the uncertainties in 

input may be high the application of QRA may not always be appropriate (Wang, 2002). 

Therefore, the acceptance of a safety case is unlikely to rely solely on a QRA. QRA 

only provides one input to decision-making about safety issues, and most of its 

advocates recognise that it cannot be used to make the decision itself. There are other 

aspects, such as public dread of particular sources of risk, which QRA does not take into 

account at present. Decision-making about hazardous activities is legitimately 

influenced by many other economic, social and political factors besides risk, which need 

to be considered simultaneously in the decision-making process. 

2.4 Hazard identification and data collection 

This section identifies the hazards associated with the offshore operation system (i.e. 

MODU). The main purpose of this review is to ensure that all types of the most 

important hazards associated with normal operational activities are identified and that 

measures will be taken to reduce risks. The hazards identified within this research have 

been assessed to establish which ones are considered to pose a significant risk and thus 

require detailed evaluation. Hazard identification is a key provision in the regulatory-

based safety management systems (e.g., process safety management, safety and 

environmental management system). This process includes the methodical, systematic 
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examination of causes leading to potential releases of hazardous substances and 

safeguards that must be implemented to prevent and mitigate a loss of containment, 

resulting in occupational exposure, injury, environmental impact, or property loss.  

Identifying hazards is essential for ensuring the safe design and operation of an MODU. 

A number of techniques are available to identify hazardous situations, all of which 

require their rigorous, thorough, and systematic application by a multidisciplinary team 

of experts. Success rests upon first identifying and subsequently analysing possible 

circumstances that can cause occurrences with different degrees of severity. Without a 

structured identification system, hazards can be overlooked, so bringing about 

inadequate risk-evaluations and potential loss. The importance of adopting and 

implementing procedures to systematically identify major hazards arising from normal 

and abnormal operations and to assess their probability and severity is defined in Annex 

III of the Directive 2003/105/EC
5
.  

Hazard identification and analyses are mandatory for offshore operation systems (e.g. 

MODUs) that manage hazardous situations, and there are techniques for analysing 

equipment, instrumentation, utilities, human factors and external events that might 

impact on the offshore operations with the aim of identifying what can go wrong; 

therefore, identifying potential systems’ interactions and failures that could result in an 

occurrence. Hazard identification is the basis of risk assessment and should ensure 

complete risk evaluations and adequate protection barriers. While hazard identification 

may be the most important stage for risk assessment, it depends on subjectivity issues 

(e.g., human observation, good judgements and awareness, creativity, expertise, 

knowledge) which introduce bias. 

2.4.1 Introduction to hazard 

In the language of risk specialists, ‘hazard’ is mostly the preferred designation for 

something with the possibility to cause harm (HSE, 2001). A hazard is defined as a 

situation with a potential for causing harm to humans, the environment, property or 

                                                 
5
 Directive 2003/105/EC of the European Parliament and of the Council of 16 December 2003 Amending 

Council Directive 96/82/EC on the Control of Major-accident Hazards involving Hazardous Materials. 

Official Journal of the European Union, L 345/97 Brussels, 31.12.2003. 
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reputation. In practice, the term hazard is often used for the combination of a physical 

situation with particular circumstances that might lead to harm. The essence of a hazard 

is that it has the potential to cause harm, regardless of the occurrence rate of the hazard. 

Hazard Identification (HAZID) is the process of identifying hazards, which forms the 

essential first step of a risk assessment. Hazard identification is usually a qualitative 

exercise based primarily on expert judgements. Most HAZID techniques involve a 

group of experts, since few individuals have expertise on all hazards, and group 

interactions are more likely to stimulate consideration of hazards that even well-

informed individuals might overlook. There are two possible purposes in identifying 

hazards: the first is to obtain a list of hazards for subsequent evaluation using other risk 

assessment techniques. This is sometimes known as failure case selection; and the 

second is to perform a qualitative evaluation of the significance of the hazards and the 

measures for reducing the risks from them. This is sometimes known as hazard 

assessment. Hazards are diverse, and many different methods are available for hazard 

identification. While some methods have become standard for particular applications, it 

is not necessary or desirable to specify which approach should be adopted in particular 

cases. The methodology should be chosen by the HAZID leader to meet the objectives 

as efficiently as possible given the available information and expertise.  

Preliminary hazard analysis (PHA) techniques like hazard identification (HAZID), and 

hazard and operability (HAZOP) studies are the tabular hazard methods most widely 

used for operational hazard identification. HAZID studies are frequently used in 

exploration, production, and mid-stream operations, both onshore and offshore. 

However, compared to other worldwide best practices, such as HSE cases for onshore 

and offshore facilities, hazard identification by itself falls short of applying the risk 

management process.
6
 

Transferring from the identification of hazards to qualitative risk assessment is achieved 

by the use of semi-quantitative matrices, which is essentially an interaction of the three 

attributes of risk severity, likelihood and vulnerability. The exercise amounts to the risk 

                                                 
6
International Association of Drilling Contractors (IADC), Health, Safety, and Environment Case 

Guideline for Mobile Offshore Drilling Units, Issue 3.3, Houston, Texas: IADC. 1 December 2010. 

International Association of Drilling Contractors (IADC), Health, Safety, and Environment Case 

Guideline for Land Drilling Units, Issue 1.0.1, Houston, Texas: IADC, 27 July 2009. 

Dangerous Goods Safety Management Act 2001, Reprint No. 3, Queensland, Australia: Office of the 

Queensland Parliamentary Counsel, 18 December 2009. 
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ranking of these undesired events. The hazard evaluation team must identify ways to 

reduce the consequence or reduce the likelihood of high or medium risks through 

preventive or mitigation barriers to ensure that the risk level is either acceptable or as 

low as reasonably practicable. Although ALARP can be demonstrated for any system, 

regardless of design definition or focus level, complex, costly decisions often require 

more accurate information about potential consequences and frequency of occurrence. 

2.4.2 Major generic hazards list   

Major hazards (i.e. HGs) and other workplace hazards are defined as Hazards with the 

potential to result in: 

- Multiple fatalities or permanent total disabilities. 

- Extensive damage to structure at installation, MODU/rig or plant. 

- Massive effect on the environment (e.g., persistent and severe environmental damage 

that may lead to loss of commercial or recreational use, loss of natural resources over 

a wide area or severe environmental damage that will require extensive measures to 

restore beneficial uses of the environment). 

Table 2.1 shows the typical drilling contractor’s major hazards (e.g., toxic release, 

towing incidents, etc.).  

Table 2.1: Drilling contractor’s major hazards (typical)
7
 

 

Source: ADC (2011) 

Table 2.2 gives an example generic list of major accident hazards for an offshore 

operation system. It gives a list of major marine accident hazards including blowouts, 

                                                 
7
Reference: International Association of Drilling Contractors (IADC), 2011, HSE Case Guidelines for 

Mobile Offshore Drilling Units, Issue 3.4 (1 Nov), Houston, TX.  

Toxic Release Fire

Towing Incidents Explosion 

 Mooring Ship Collision

Major Mechanical Failure Weather / Storms 

Loss of Stability Blowout 

 Structural Failure Dropped Objects

Events from Adjacent Installations  Helicopter Crash

Typical Drill ing Contractor’s Major Hazards
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riser/pipeline leaks, transport accidents and personal accidents. This list is applicable to 

a typical offshore operation system, and may be incomplete for uncommon offshore 

operations. 

Table 2.2: An example of a generic hazard list  

 

Source: (HSE, 2001/063) marine risk assessment. 

2.4.3 Accidental events in relation to offshore operations 

As has been dramatically demonstrated not only in the Macondo accident but in a 

variety of other cases, mobile offshore drilling rig activities entail the hazard of a major 

accident with potentially severe consequences to the life and health of workers, 

pollution of the environment, direct and indirect economic losses, and deterioration of 

the security of energy supply. The main hazards include a fire after the ignition of 

released hydrocarbons, explosion after gas release, formation and ignition of an 

explosive cloud and oil release on the sea surface or subsea (Skogdalen and Vinnem, 

2012). Table 2.3 illustrates the events in a chain together with the function where they 

Blowouts Structural events

- Blowout in drilling - Structural failure due to fatigue, design error, subsidence etc

- Blowout in completion - Extreme weather

- Blowout in production (including wirelining etc) - Earthquakes

- Blowout during workover - Foundation failure (including punch-through)

- Blowout during abandonment - Bridge collapse

- Underground blowout - Derrick collapse

Marine collisions - impacts from: - Crane collapse

- Supply vessels - Mast collapse

- Stand-by vessels - Disintegration of rotating equipment

- Other support vessels (diving vessels, barges etc) Marine events

- Passing merchant vessels - Anchor loss/dragging (including winch failure)

- Fishing vessels - Capsize (due to ballast error or extreme weather)

- Naval vessels (including submarines) - Incorrect weight distribution (due to ballast or cargo shift)

- Drilling support vessel (jack-up or barge) - Icing

- Offshore loading tankers - Collision in transit

- Drifting offshore vessels (semi-subs, barges, storage vessels) - Grounding in transit

- Icebergs - Lost tow in transit

Construction accidents - accidents occurring during: Transport accidents - involving crew-change or in-field transfers

- Construction onshore - Helicopter crash into sea/platform/ashore

- Marine installation - Fire during helicopter refuelling

- Construction offshore - Aircraft crash on platform (inc military)

- Hook-up & commissioning - Capsize of crew boats during transfer

- Pipe laying - Personal accident during transfer to boat

Dropped objects - objects dropped during: - Crash of fixed-wing aircraft during staged transfer offshore

- Construction - Road traffic accident during mobilisation

- Crane operations Riser/pipeline leaks 

- Cargo transfer  - leaks of gas and/or oil from:

- Drilling Personal (or occupational) accidents

- Rigging-up derricks Attendant vessel accidents

Example Generic Hazard list (CMPT 1999)
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occurred (e.g., construction, drilling, production, etc.) in an offshore operation system 

for different types of unit. It is remarkable to note that events have occurred even in Idle 

function. With reference to blowouts, it is important to note that the vast majority have 

happened during the drilling phase with a smaller number of accidents occurring during 

the operation and throughout production (i.e. 228 vs. 86 vs. 43). It is clear that there are 

lots of drilling events, and this needs to be taken into consideration for risk assessment 

purposes.  

Table 2.3: Accidental events in a chain in relation to the function where they occurred 

Source: (Safety of offshore oil and gas operations: Lessons from past accident analysis, 

2012).http://publications.jrc.ec.europa.eu/repository/bitstream/JRC77767/offshore-

accident-analysis-draft-final-report-dec-2012-rev6-online.pdf. 

2.4.4 Proposed MODU’s HGs 

The first activity is to identify all of the potential hazards to which personnel and 

equipment of the MODU could be exposed. The HGs describe the type of event which, if 

realised, has the potential to cause serious injuries or fatalities. These HGs are the main 

areas of interest as a first step of this study, as it is their direct consequences that have 

Event (s) Construction Dri l l ing Idle Operating Other Production Support Transfer 

Anchor/mooring failure 21 117 16 27 10 13 9 8

Blowout 0 228 1 86 1 43 0 0

Breakage or fatigue 32 141 7 98 23 379 9 70

Capsizing,overturn,toppling 12 44 3 18 8 156 1 43

Collision,not offshore units 17 28 14 2 26 142 1 21

Collision,offshore units 21 130 13 18 51 98 12 35

Crane accident 29 302 4 54 4 251 2 4

Explosion 11 49 0 16 13 98 1 4

Falling load / Dropped object 38 509 4 127 14 403 3 14

Fire 27 195 5 51 43 678 21 10

Grounding 11 18 4 4 5 1 1 40

Helicopter accident 1 14 1 2 1 38 2 0

Leakage into hull 11 17 4 3 8 6 4 31

List, uncontrolled inclination 10 37 2 32 6 9 1 20

Loss of buoyancy or sinking 20 36 0 18 120 27 0 45

Machinery/propulsion failure 1 9 2 0 4 0 3 14

Other 11 65 3 11 226 121 3 6

Out of position, adrift 16 87 15 16 10 4 3 103

Release of fluid or gas 11 240 7 107 22 1499 3 4

Towline failure/rupture 3 1 0 4 0 0 0 102

Well problem, no blowout 0 353 0 152 1 50 0 0

 

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC77767/offshore-accident-analysis-draft-final-report-dec-2012-rev6-online.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC77767/offshore-accident-analysis-draft-final-report-dec-2012-rev6-online.pdf


A Novel Engineering Framework for Risk            CHAPTER 2: Literature review, hazard  
Assessment of Mobile Offshore Drilling Units     identification and risk assessment technique 

 

  
34  

the potential for significant adverse consequences. Individual HGs are described in 

Table 2.4. Hazard Sources are those systems or components which lead to the realisation 

of HGs. Generally, given adequate safeguards, they are not hazards in themselves as they 

alone do not have the capacity to cause injury, loss of life, environmental impacts, or 

extensive asset or earnings losses, but instead require subsequent events to occur in order 

for these outcomes to be reached. Individual HGs and consequences may be the initiating 

factor for other HGs (e.g. equipment failure may also result in various hazards).  

The main steps within this part of the assessment are: 

- To identify the hazards to which personnel and facilities and equipment are potentially 

exposed. 

- To estimate the consequences of these hazards. 

With respect to the requirements, either a qualitative or a quantitative analysis can be 

carried out to study the risks of a system in terms of the probability of occurrence (PO) 

of each hazard, its possible consequence severity (CS) and detection of vulnerability 

(DV). A severe hazard with a high occurrence probability requires priority attention 

whilst that which is not likely to occur and which results in negligible consequences 

typically needs least attention (Aldwinckle & Pomeroy, 1983). 

A proposed list of HGs, with reference to Tables 2.1 to 2.3 and based on in-house 

experience and expert judgements in performing risk assessments, has been used as the 

basis for this hazard identification exercise and is presented in Table 2.4. With respect to 

available data and expert judgements, considering a failure of drilling as the most 

undesired among such HGs, therefore the potential consequences of this hazard have to 

be determined and estimated. Drilling failure as a function depends on time and 

procedures, which have a wide variety of human error, natural hazard and operational 

failure. In this study, however, the emphasis is placed on probability estimation of 

operational failure as a significant influence in MODU drilling failure. 
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Table 2.4: Proposed MODU’s HGs 

 

2.4.5 Data collection 

QRA is a relatively new technique. In general, there is a lack of widely accepted and 

decided methodologies and approaches and poor circulation of data, resulting in a wide 

difference in study quality. In some areas, the data have not been collected or examined 

and no theoretical models are available so that risk estimates are unavoidably very 

unsophisticated. In other areas, availability of data and analytical techniques are being 

delivered promptly and the risk assessments have a tendency to fluctuate as a result. 

Hazard Group (HG) Description

Soil failure

Drilling Failure 

Towing failure 

Vessel Collision

Mooring Failure Mooring failure due to:

- Using of inappropriate anchor handling and inappropriate  mooring system.

- Due to insufficient capacity 

- Uncertainty in the calculation of environmental forces due to wind load

- Potential for failures due to mooring points and abrasion (especially for 

quayside moorings). 

Release of a hydrocarbon/chemical/toxic substance may be caused either by a 

failure of the containment system or due to improper operation of the 

equipment. Ignition of flammable substances may cause fire and explosion 

hazards whilst simple contact with toxic chemicals can be hazardous to health 

and life. Smoke and/or radiation generated by a fire will affect personnel either 

by presenting them with an atmosphere, which is asphyxiating, or by 

obscuring/heating walkways and escape routes and so hindering escape and 

evacuation. These factors increase the risk of injury and death hence smoke and 

radiation are taken as a separate Hazard Group.

Collisions with visiting or passing vessels or adjacent barge may have the 

capacity to cause widespread damage and loss of life.

Fire and explosion/ 

miscellaneous

Proposed MODU’s Hazard Group

In this category both punch through and seabed problem are lumped together. 

There have been several cases when the MODU (e.g. Jack-up) became a total 

loss because of soil issues. 

This covers a number of hazards events, which result in stopping of drilling 

operation, injury, fatalities, blowout and loss of structure.

Drilling failure due to:

- Operational Hazard (i.e. drilling system failure, ring control system etc.) 

- Natural Hazard (i.e. presence of high-speed wind / wave/current etc.)

- Human error (i.e. organizational, management and individual)

This covers the events leading up to the operation delay, capsize and total loss 

of a jackup under and these towing are identified and assessed.
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Because it is quantitative QRA appears to be objective. However, in reality it is a very 

important judgements. These judgements may be explicit in circumstances where data is 

unavailable. There are also many implicit judgements in the analysis and application of 

available data which are often unrecognised. Therefore, it is essential to obtain reliable 

statistical failure and repair data of equipment/components and systems. In general, 

such failure and repair data of components can be obtained from field experience, 

lifetime testing under controlled conditions in a test site and/or laboratory testing of 

similar components (Misra, 2012). However, the collection of such data based on 

lifetime tests of offshore operation systems is precluded as a very expensive and labour-

demanding operation. Extensive use is made of the data collected from laboratory tests 

and field reports on similar components. Additionally, repair data may also be amassed 

from the agreed judgementsal estimates of experts (Misra, 2012). How critical the 

reliability of the failure and the repair data is depends on the aims of the analysis. If the 

purpose of the analysis is to obtain the best absolute estimate of system safety, as may 

be required by statutory requirements, the failure and repair data are obviously critical. 

In such cases, validation of the data becomes as important as the validation of the safety 

assessments themselves, and verification procedures should be implemented to ensure 

that the obtained data for components is reliable. Great care should be taken to use 

failure and repair data obtained from data sets to reflect the environment for which the 

product is designed. When no data for a component failure mode can be obtained, it 

may be possible to express the failure in terms of fundamental and quantifiable 

parameters and to analyse it using limited state reliability analysis (Wang et al., 1993), 

although there is uncertainty about the relevant distributions. It should be noted that, for 

some components, there is fairly close agreement between different databanks and, in 

other cases, there is a wide range of failure rates (Smith, 2011). The latter may be due to 

a number of reasons. For example failure rates are affected by so many factors that a 

variation in values exists and, although nominal environmental and quality levels are 

described in some databases, the range of parameters covered by these broad 

descriptions is large. The following sources may be useful for obtaining failure and 

repair data to carry out QRA. In addition, the reliability data of the various electronic 

and non-electronic components may also be obtained from various published papers and 

books such as Smith (2011). 
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i. OREDA- Offshore reliability data (DNV, 1992):   

This document contains a collection of offshore failure rate and failure mode data 

with an emphasis on safety-related equipment. It covers a great range of components 

and equipment. 

ii. Electronic reliability data - INSPEC/NCSR (1981):   

Published in cooperation between the National Centre of Systems Reliability 

(Warrington) in 1981 and the institute of electrical engineers, this comprises simple 

multiplicative models for semiconductors and passive electronic components with 

tables from which to establish the multipliers according to the environment, 

temperature and other parameters. 

iii. FARADIP.THREE (Smith, 2011):   

The databank is a summary of many useful databases and shows, for each 

component, the range of failure values. The failure data of various components such 

as alarms, mechanical items and instruments is included in this database. 

iv. US Military Handbook 217:  

This database is formed by the Rome air development centre under contract to the 

US Department of defence and is an electronic failure databank. 

v. Handbook of reliability data for electronic components Used in telecommunications 

systems, HRD4 (1986):  

This document is produced from field data by British telecom's materials and 

components centre. 

It is also becoming useful to record and utilise data from near misses and errors. 

Furthermore, to ensure that there is an accurate applicability of the risk assessment 

carried out, novel techniques should integrate expert judgements with the obtained data 

in a formal manner. Engineering judgements and experience is essential to carry out a 

qualitative risk assessment. Measures can be taken to eliminate or control hazards based 

on the information produced from such an assessment. It should become an integral part 

of the offshore operation system process. It may be performed with one or more of the 

following purposes: 

- To identify hazards in design and operation. 

- To document and assess the relative importance of the identified hazards. 
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- To provide a systematic compilation of data as a preliminary step to facilitate 

quantitative analysis.  

- To aid in the systematic assessment of the overall system safety. 

2.5 Risk assessment techniques 

The necessity to improve and continue the performance of offshore operation systems 

has prompted the application of reliable risk analytical techniques for carrying out their 

safety and assessment studies. The importance of these techniques is that the results are 

principally required to quantify risk, and also to facilitate sound risk-based decisions. 

The quantification process also requires reliable failure and repair data input. As the 

results of many risk-based studies have led to their high usage, it is very beneficial to 

apply these risk analytical techniques effectively and efficiently. Thus, the 

understanding of the techniques will aid risk managers and decision-makers. QRA 

utilises what is known and assumed about the failure characteristics of each individual 

component to build a mathematical model that is associated with some or all of the 

following information: 

- Failure rates 

- Repair rates 

- Mission time 

- System logic 

- Maintenance schedules 

- Human error 

- System layout 

 

Typical parameters that need to be obtained in a quantitative risk analysis include both: 

- The occurrence probability of each system failure event. A system failure event 

results from simultaneous occurrence of the basic events (BEs) associated with each 

of the HGs leading to this system failure. 

 

- The magnitude of its possible consequences. The possible consequences of a system 

failure event can be quantified in terms of possible loss of lives/human injuries, 
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property damage and the degradation of the environment caused by the occurrence 

of the failure event. Experts normally quantify the parameters with respect to the 

particular operating system. 

 

The formulation of a system model can be difficult for the large and sophisticated 

offshore operation systems (e.g. MODUs) and therefore requires approximations and 

judgements. Specialist teams who know the operation system comprehensively are 

usually consulted to provide such subjective inputs. While studying the risk assessment 

of an offshore operation system, it is almost impossible to treat the system in its 

entirety. A logical approach may be to break down the system into functional entities 

comprising subsystems and components. Risk assessment modelling of these functional 

entities can be carried out to fit such a rational structure, then the interrelationships can 

be examined and finally an analysis model can be formulated to assess the risk of the 

offshore operation system. 

It is very beneficial to apply risk analytical methods effectively and efficiently in the 

risk assessment process. Chapter 3 specifies how to deal with such problems. This 

necessitates an understanding of the concepts of qualitative and quantitative risk 

analysis and the concepts of top-down and bottom-up risk assessment. A number of 

methods are useful to aid the assessments of a risk-based nature. The appropriate 

technique(s) that can be applied to carry out assessment tasks would depend on the 

clarified hazards, their available data and the stage reached in the analysis. 

 

 What-if method: The purpose of this approach is to examine questions that will 

cause a multidisciplinary team to consider potential failure scenarios and 

ultimate consequences that such failures might create. Some studies of this 

method incorporate checklists at the end of the brainstorming. This technique 

may be beneficial in the problem definition and hazard identification phases of 

the risk assessment process (Menzies and Sinsel, 2000). 

 

 Preliminary hazards analysis (PHA): The first step of a risk assessment is 

preliminary identification of the system components or events that lead to 

hazards, including consideration of the event sequences that transfer a hazard 
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into an accident, as well as corrective measures and consequences of the 

accident. A preliminary identification analysis may provide an essential basis for 

additional analysis of individual hazards, with specific reference to FTA and 

event tree analysis (Sen, et al., 1989). 

 

HAZOP: A HAZOP study is an inductive technique and can be applied by a 

multidisciplinary team to stimulate systematic thinking for identifying potential hazards 

and operability problems, particularly in the process industries. A HAZOP study 

investigates the proposed scheme systematically for every conceivable deviation, and 

looks backward for possible causes and forward for the possible consequences 

(Frosdick, 1997):  

 Event tree analysis (ETA): An event tree is an adaptation of the more general 

decision-tree method. A logic tree diagram starts from a basic initiating event 

and provides a systematic coverage of the time sequence from event propagation 

to its potential outcomes or consequences. ETA has been used in the safety and 

reliability assessment of a wide range of technological systems. The ETA may 

be qualitative, quantitative, or both, depending on the objectives of the analysis, 

and may be developed independently or follow on from FTA. An event tree is a 

logic diagram applied to analyse the effects of unintended events. Such a 

technique first expresses the probability or frequency of an accident linked to the 

safeguard measures required to be implemented to mitigate or prevent escalation 

after the occurrence of the event. Success and failure paths lead to various 

consequences with different magnitudes. The likelihood of each consequence is 

finally obtained by multiplying the probability of occurrence of the accident by 

the likelihood of failure or success in each path (Khan and Abbasi, 1998). 

 

 Cause-consequence analysis (CCA): Cause-consequence analysis is a 

diagrammatic approach and it is a marriage of FTA (to show causes) and event 

tree analysis (to show consequences). Construction of cause-consequence 

diagrams starts with a choice of a critical event. The “consequence tracing” part 

of a CCA involves taking the initial event and following the resulting chains of 
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events through the system. The “cause identification” part of a CCA involves 

drawing the FT and identifying the minimal cut sets leading to the identified 

critical event (Khan and Abbasi, 1998). 

 

 Failure mode, effects and criticality analysis (FMECA): FMECA is probably the 

most widely applied hazard identification method. It is a combination of failure 

mode and effects analysis (FMEA) and criticality analysis. Once the criticality 

numbers of the item under all severity classes have been obtained, a criticality 

matrix can be constructed to provide a means for criticality comparison. Such a 

matrix display shows the distributions of criticality of the failure modes of the 

item and provides a tool for assigning priority for corrective action. Criticality 

analysis can be performed at different system/subsystem levels and the 

information produced at low levels may be used for criticality analysis at a 

higher level (Wang, et al., 1995). 

 

 FTA: A FT is a logic diagram presenting the casual relationship between events 

which individually or collectively contribute to occurrence of a higher-level 

event. Thus, the probability of occurrence of a specific hazard can be 

determined. In addition, FTA is capable of considering common cause failures 

in systems with redundant or standby elements. It also has the capability of 

contemplating failure events or causes related to human errors. FTA is a top-

down approach, systemically considering the causes or events at levels below 

the top level. Prior to the use of quantitative FTA, the probability of occurrence 

of each basic event has to be obtained. If two or more need to occur 

simultaneously to cause the next higher-level event, a logic AND gate is 

employed to express the operation. If any of two or more lower-level events can 

cause the next higher-level event directly, an OR gate is applied to demonstrate 

such an operation. The logic gates determine the addition or multiplication of 

probabilities to obtain the values for the top event (TE).  

 

 Bayesian belief network (BBN): A Bayesian network is a modelling framework 

that has been used in many applications, such as in diagnostic systems and 
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general reliability modelling (Langseth and Portinale, 2007, Kjaerulff and 

Madsen, 2008). Bayesian networks offer a compact presentation of the 

interactions in a stochastic system by visualising system state variables and their 

dependencies. BBNs are at the cutting edge of expert systems research and 

development and also BBN has caught the interest of researchers in different 

research fields since the early 1990s. Perhaps the greatest testament to the 

usefulness of Bayesian problem-solving techniques is the wealth of practical 

applications that have been developed in recent years. Researchers succeeded in 

creating BBN models for practical applications in areas of intelligent decision, 

safety assessment, information filtering, autonomous vehicle navigation and 

computer network diagnosis. Since most real-life problems involve inherently 

uncertain relationships, BBN is a technique with enormous potential for 

application across various areas. Influence diagrams, which further extend the 

notion of BNs by including decision nodes and utility nodes, have been used in 

human reliability assessment (Humphreys, 1995). 

 

 TOPSIS: Techniques for Order preference by Similarity to an Ideal Solution 

(TOPSIS) method is one of the most effective methods and is a widely accepted 

multi-criteria decision-making technique to identify the best solution from a 

finite set of points. (Hwang & Yoon, 1981b). In the traditional TOPSIS model, 

the measurement of weights and qualitative attributes did not consider the 

uncertainty associated with the mapping of human perception to a number 

(Makridakis & Wheelwright, 1983), due to this shortcoming, the logic 

simultaneous consideration of the positive ideal and the negative ideal solutions 

and easily programmable computation procedure is extensively acknowledged. 

The basic principle is that the chosen points should have the shortest distance 

from the positive ideal solution and the farthest distance from the negative ideal 

solution. The biggest advantages of the TOPSIS concept are that it is easily 

understandable, and has good computational efficiency and the ability to 

measure the relative performance for each alternative in a simple mathematical 

form (Yeh, 2002). 
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2.6 Decision-maker and decision-making environment 

Different types of decision-makers need support that is adapted to their problem 

contexts. The greatest advantage of the risk-based approach is its simplicity of use for 

the decision-maker. This is because risk assessment provides direct input to the decision 

as such, and not simply the process of decision-making (Aven, 2010). The categories of 

decisions and their associated decision-making procedures vary a lot between different 

sectors and levels in organisations. One should consider the whole decision cycle 

including the various decision activities to understand this problem area (Power, 2002). 

In general, the typical decision context consists of four elements, such as decision-

makers, decision environment, goals and relevant alternatives and, finally, ranking of 

alternatives.  

The classification of decision-makers has been utilised in different notions, such as 

individual decision-maker, multiple decision-makers, group decision-maker and team 

decision-maker (Murphy et al., 1999). The individual decision-maker stands alone in 

the final decision process. The decision rests on his/her unique characteristics with 

regard to knowledge, skill set, experience, etc., and individual biases come to bear in the 

decision process. Multiple decision-makers comprise several people interacting to reach 

a decision. Each member may come with a unique motivation or goal and may approach 

the decision process from a different angle. They do not necessarily meet in a 

formalised manner to conduct discussions as a unit. In contrast, a group decision-maker 

is characterised by membership in a more formal structure where members of the group 

share similar interests in the decision outcome. Each member is involved in the making 

of a decision based on consensus of the group, but none possesses any more input or 

authority to make the decision than any of the others. The team decision-maker is a 

combination of the individual and group classification. The team produces the final 

decision, but the formalisation of that decision and the authority to make it rest with an 

individual decision-maker. The decision support may come from several individuals 

empowered by the key individual decision-maker to collect information. In this context 

the team produces the final decision, but the authority to make it rests with the 

individual team leader. 
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The decision environment may be both internal and external. Factors in the internal 

environment influencing decisions include (Marakas, 2003): 

- People, and their goals, experience, capabilities, and commitments.  

- Functional units, including the technological characteristics, independence, 

interdependence, and conflict among units.  

- Organisational factors including goal and objectives, processes and procedures and 

the nature of the product or service.  

The decision process typically consists of different basic steps (i.e. define the problem, 

collect information, identify and evaluate alternatives, decide, implement and finally, 

follow-up and assess) (Marakas, 2003). A well-defined problem is of great importance 

for the quality of decisions. If the problem is wrongly or not thoroughly defined, it may 

be impossible to make a decision. The complexity of many organisations sometimes 

makes it hard to identify the real problem. The most creative part of decision-making is 

the identification of the set of alternatives and determining what criteria should be used 

in the evaluation of options. A decision or choice made among alternatives is the 

culmination of one specific decision process. Decisions made under conditions of 

uncertainty are the most common types for managers. Sometimes there is not enough 

information to estimate the probability of the potential outcomes. Thus, it is termed as a 

decision under uncertainty. In well engineering the potential outcomes from main 

decisions are typically known, but the probabilities are not. Uncertainty is then related 

to the restricted information or lack of information on which to base the analyses or to 

reliably estimate the probabilities of known outcomes (Hitt et al., 1983). Decisions 

made under uncertainty are perhaps the most difficult of all decision situations.  

2.7 Conclusion  

In order to ensure the originality of the research study, this chapter has provided a 

literature review associated with analytical methods of risk assessment. It gives 

emphasis to the explanation of applying uncertainty treatment methods and techniques 

to risk assessment and decision-making in earlier studies. The offshore industry has 

been moving towards a risk-based and goal-setting regime since the 1990s. Traditional 

risk assessment techniques such as FTA and ETA are capable of providing results with 
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confidence if historical data are available. The current offshore operation risk 

assessment provides appropriate proactive approaches for ensuring improvements in the 

safe operation of offshore installations and environmental protection, though the 

overriding problem on the handling of the uncertainty issue is still not well embraced in 

such risk assessment exercises, despite the fact that the application of both well-

established and newly developed (e.g., FTA and Fuzzy logic) risk assessment methods 

can be integrated in a transparent and justifiable manner. Some of the analytical 

methods, such as PHA, what-if, FMECA and HAZOP, are most usefully applied in the 

hazard identification phase, whilst others like FTA and ETA are used mainly in 

performing risk estimation. However, they may not be applicable in circumstances 

where there is a lack of data or the information available consists of a high level of 

uncertainty. Therefore, risk analysis in such circumstances strongly relies on human 

judgements. Different techniques including AHP, FTA and BBN can be incorporated 

into risk assessment with Fuzzy set theory to facilitate the analytical performance and 

provide results with confidence. In a decision-making process, many factors need to be 

considered when evaluating the best RCOs for an offshore operation system. Under 

such circumstances where the factors considered have different attributes, the best 

RCOs will be identified using the Fuzzy TOPSIS approach.  

Identification of the HGs, which have the potential for significant adverse consequences 

to personnel, and equipment of the MODU is the main area of interest in this research. It 

is important to note that each HG contributes a different weight value to the overall 

MODU at the system level. As drilling failure is considered to be undesired among the 

HGs, therefore the potential consequences of this hazard have to be determined and 

estimated. In order to establish a platform of risk assessment, one risk analysis 

technique may be used to process the information produced by another. Risk assessment 

techniques can also be used in an integrative manner to produce a more efficient and 

convenient risk assessment. The objective of this PhD research is to establish a platform 

of risk assessment consisting of various frameworks addressing MODU safe operation 

safety without jeopardising the efficiency of offshore operation systems under 

circumstances where a lack of data exists or a high level of uncertainty is present. 
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3 CHAPTER 3: Development of the framework of the MODU 

risk assessment 

Chapter Summary 

In this chapter, the frameworks of risk assessment and hierarchy of the offshore 

operation system are developed to represent the methodology, a framework of 

aggregative risk assessment and relationships among equipment, subsystems and the 

overall MODU system. While studying the risk assessment of an MODU, it is almost 

impossible to treat the system in its entirety. A reasonable approach may be to break 

down the system into functional entities comprising equipment and subsystems. Risk 

assessment modelling of these functional entities can be carried out to develop an 

appropriate rational structure’, then the interrelationships can be examined and an 

analysis model can be formulated to assess the risk of the offshore operation system. 

The proposed framework will be used in conducting an aggregative risk assessment 

despite the fact that the latter will be used in the BBN and Fuzzy FTA in the ensuing 

chapters based on the object-oriented approach concept. 

3.1 Introduction 

The necessity to improve and continue the performance of offshore operation systems 

has encouraged the application of reliable methodology and analytical risk techniques 

for carrying out risk assessment studies. The importance of these frameworks or 

techniques is that the results are principally required to quantify risk, and also to 

facilitate sound risk-based decisions. The quantification process also requires reliable 

operation, failure, and repair data input. In most circumstances, reliable data are not 

available; therefore, it is very beneficial to apply the risk analytical techniques 

effectively and efficiently. Thus, understanding the methodology and using precise 

techniques will aid risk managers and decision-makers. This chapter is composed of 

five sections; this section presents an outline and a brief introduction relating to the 

research and the basic concepts of the object-oriented approach and its potential to deal 

with the complexity of an offshore operation system. Then, in Section 3.2, the risk 

assessment process and ordering action required in order to develop an efficient 

methodology are presented. Section 3.3 aims to develop a hierarchy to represent the 
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relationships among components, subsystems, and the overall offshore operation 

system. In addition, for the components at the lowest level in the hierarchical structure, 

BEs are used to describe the transitions due to the influences of each HG. Furthermore, 

a risk assessment methodology is developed and offered in Section 3.4 and, lastly, a 

framework of aggregative risk assessment is developed up to BEs and is presented in 

Section 3.5. Aggregative risk assessment is used to analyse the risk levels and influence 

of different HGs and events in an offshore operation system in view of their 

contribution to the failure of MODUs (e.g. component/equipment, subsystem and 

system). While FTs are used to describe the cause-effect relationships for a given risk in 

the system, these frameworks are developed at both the component/equipment and 

subsystem levels in order to meet the requirements of a comprehensive risk assessment 

and are presented in Chapter 5. Lastly, BBN is used to refer to the cause-effect 

relationships with dependency for a particular risk in the system. These frameworks are 

also established at both the component/equipment and subsystem levels in order to meet 

the necessities of a comprehensive risk assessment, which is discussed in Chapter 6. A 

Fuzzy MADM method, which is appropriate for considering group decision-making 

problems in a Fuzzy environment, is proposed for ranking of the RCOs with respect to 

cost and benefit, and is selected using a TOPSIS technique. 

The object-oriented analysis is a method that can logically represent real-world entities 

and phenomena in terms of objects. In an object-oriented modelling pattern, analysts 

can effectively manage complex engineering systems. The concept is also effective for 

classifying risk information in an offshore operation system such as an MODU. 

Applications of an object-oriented analysis have covered various areas in practice. In 

software engineering a subject-oriented pattern has been developed that enables the 

modelling of complex real-world problems, and which represents the solution of a 

major problem (Martin and Odell, 1994). This comprises development of a framework 

for decision-making (Liu and Stewart, 2004) and for presentation of pipeline networks 

(Lewandowski and Detroit, 1994). Objects are models which can be used to represent 

real-world entities with the capability of communicating with one another (Booch et al., 

1994; Martin & Odell, 1994; Embley et al., 1992). One of the most important 

characteristics of objects is summing up. This means that the attributes and behaviours 

of a component (e.g., riser, mud pump, etc.) or subsystem (e.g., drilling system, jacking 

system, etc.) are entirely summarised within the boundaries of an independent object. 
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These objects are interconnected to form a system of drilling an offshore well for 

producing hydrocarbons such as oil and gas. The entire system is thus viewed as the 

combination of individual objects with different functionalities. Meanwhile, the 

individual objects communicate with one another in a way that faithfully replicates their 

interactions in the real world (Booch et al., 1994). In an MODU, for example, a well 

can be looked at as a specific object encapsulating the attributes of an offshore 

operation system. Likewise, a drilling pipe in the drilling system can be viewed as an 

object which encapsulates attributes such as dimension, age and behaviour of delivering 

a drilling liquid like mud.  

The overall MODU is thus a compound object made up of interconnected individual 

objects including well, drilling pipes, etc. In a real operational system there are many 

objects of a specific kind. It would be extremely inefficient to repeat the use of the same 

methods in defining every single occurrence of that object. The effectiveness of using 

this approach to deal with the complexity of systems has also been illustrated in detail 

by many researchers (Weber & Jouffe, 2006;, Booch et al., 1994;, Martin and Odell, 

1994). However, its potential in risk assessment of complex systems has not been 

investigated to a significant degree in the previous research.  

All engineering systems including MODUs are designed, constructed, operated and 

managed in terms of objects. For an MODU, its performance is determined by the 

performance of the consistent components or objects. As a result, individual objects 

contribute to the overall MODU. The above discussion shows the possibility of using an 

object-oriented approach as an effective tool to organise complex risk information in the 

offshore operation system. Such awareness encourages this study to implement an 

object-oriented approach to develop frameworks of risk assessment. 

3.2 Risk assessment process 

No common definition of safety barriers can be found in the regulations concerning 

health, environment, and safety within the petroleum activities on the Norwegian 

continental shelf (NCS) issued in 2001
8
, and also no common definition of safety 

                                                 
8
 Regulations relating to management in the petroleum activities (The Management Regulations). 

3 September 2001 



A Novel Engineering Framework for Risk                   CHAPTER 3: Development of the 
Assessment of Mobile Offshore Drilling Units            framework of the MODU risk assessment 

  
49  

barriers has been found in the literature, even though different aspects of the concept 

have been discussed, are required in legislation and standards and have been applied in 

practice for several decades (Skogdalen & Vinnem, 2011; Sklet, 2006a). 

Different risk assessment approaches have been applied in various schemes but, so far, 

no approach has been commonly applied for practical purposes. Traditional quantitative 

risk analyses of offshore installation focus on consequence and the main interest has 

been to estimate the consequences of the assumed initiating event, the harm to humans 

and environment, and to assess their frequency; the identification of the most effective 

safety measures to avoid initiating events was very limited (Kafka, 2006). 

A QRA approach for an offshore operation system should be exclusive, in which any 

hypothetical risk to the system can be evaluated to reflect where there may be a need for 

possible risk reductions or design modifications. Such a risk evaluation process should 

follow on from the establishment of an occurrence probability or possibility for the 

defined hazards, and their relative consequence magnitude. QRA can make available an 

effective approach that will serve as the foundation for avoiding further offshore 

operation catastrophes. A quantitative approach for an offshore operation system risk 

assessment should be exclusive, in which any hypothetical risk to the system can be 

evaluated to reflect where there may be a need for possible risk reductions or design 

modifications.  

The purpose of a QRA is to help the designer to be conscious of the characteristics of 

the system and to provide him/her with the quantified occurrence probability of each 

critical failure condition and the associated consequences. The main focus in QRA is on 

technical safety systems and one of the weaknesses of current QRA is the missing link 

between the models applied in the analyses and human, operational, and organisational 

factors (Vinnem et al., 2003). Through risk analysis, it is possible to identify hazards, 

and evaluate and then mitigate the associated risk. Such an assessment requires the 

development of an efficient methodology, constructed upon the following ordering of 

actions: 

- Outline the operation system being considered (i.e. offshore operation system). 

- Classify/categorise the HGs and the hazard associated with those 

subsystems/equipment/components of the operation system. 
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- Data collection and estimation of the likelihood of the hazards occurring and in 

what way each might progress to different consequences and estimation of the 

consequences associated with each outcome.  

- Aggregation of the risks associated with the outcomes to produce an overall risk. 

- Analyse the risk level and check if the risk is acceptable based on the criteria. 

- With respect to the overall risk level, carry out risk mitigation for reducing or 

controlling the risk. 

- Decision-making and selecting the best RCOs. 

Once the above activities are defined, it is then possible to select from amongst the wide 

range of methods for risk assessment (Bahr, 2014). Typical ones include: 

 Hazard identification tools: 

- Judgements 

- FMECA 

- Structured what-if checklist technique (SWIFT) 

- HAZOP study  

 Risk assessment approaches: 

- Rule-based approaches  

(e.g. regulations, codes and practice and classification rules) 

- Engineering judgements 

- Qualitative risk assessment / QRA 

- Value-based approaches 

 Risk assessment techniques: 

- Qualitative (e.g. risk matrix) 

- Semi-qualitative use of structured tools (e.g. FTA, ETA, Bow-Tie approach). 

- QRA  

 Hierarchy of options approaches for risk reduction: 

- Eliminate the hazard 

- Prevent the occurrence 

- Mitigate the consequences 

- Escape, evacuation, rescue and recover 

 Decision-making: 
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- Level within organisation and tools (i.e. senior management, judgements, cost-

benefit analysis). 

Such an assessment process can formally be carried out qualitatively or quantitatively, 

conditional on how much information and data are or have been obtainable / available, 

in addition to the competence of expert judgements that can be provided to the analyst / 

risk managers or decision-makers. 

3.3 MODU’s operational system hierarchy and complexity  

An operational system is any user-defined group of components, equipment, or facilities 

that support an operational function. These operational functions are defined by mission 

criticality or by environment, health, safety, regulatory, quality, or other defined 

requirements. Most systems can be divided into unique subsystems along boundaries. 

The boundaries are selected as a method of dividing a system into subsystems when its 

complexity makes an analysis by other means difficult. Since complexity is one of the 

hurdles limiting the application of conventional risk assessment methods, it is necessary 

to explicitly discuss the potential of an object-oriented approach in dealing with the 

complexity of the MODU. In order to effectively analyse complex systems, many 

researchers have carried out extensive studies on their characteristics. Courtois (1985) 

suggested a few attributes common to all complex systems following on from the work 

of Simons (1982). Such attributes are mentioned in the following parts. The 

characteristics of the MODU make it possible to deal with the complexities effectively. 

Being one of the complex engineering systems, a general MODU inherently has these 

attributes and the following discussion is about the effectiveness of using this approach 

to deal with the MODU attributes.  

 Complexity takes the form of a hierarchy, whereby a complex system is 

decomposed of interrelated subsystems that have in turn their own 

subsystems/equipment/components until some lowest level (BEs) is reached. 

This hierarchical structure also provides a possible framework for risk 

assessment. It is obvious within the hierarchy that risk levels of an MODU are 

determined by the risk levels of its subsystems as well as the hierarchical 

relationships among them. The risk levels of a subsystem are further determined 
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by the risk levels of its own components. Once the risk levels of each individual 

component have been determined, aggregation can then be conducted along the 

hierarchy to generate risks of the subsystems and the overall system. The object-

oriented hierarchical structure depicts the whole/partial relationships in an 

MODU system, which enables us to understand, describe, and analyse the 

system and its parts better (Booch et al., 1994). 

 Hierarchical systems are usually composed of only a few different kinds of 

subsystems in various combinations and arrangements. This attribute indicates 

that complex systems have common patterns (Booch et al., 1994). This is also 

obvious in the object-oriented structure of MODUs. A general MODU is 

composed of some common elements (e.g. gas, wells, blow-out preventer, risers, 

mud treatment facilities, etc.). All these elements are further abstracted as fewer 

common element types such as pipes, compressors and tanks.  

 The collection of what components in a system are primitive is relatively 

arbitrary and is largely up to the discretion of the observer of the system. 

Primitive elements in this study are deemed as the components that are 

indecomposable and at the lowest level of a hierarchical structure. They play 

important roles in risk assessment. On the other hand, the determination of 

primitive elements is arbitrary and depends a lot on the observers of the system 

because they have different choices of what components are primitive in 

practical risk assessment. 

 Definition of the subsystem/components’ relationships. This information has the 

effect of separating the high-frequency dynamics of the components, involving 

the internal structure of the components, from the low-frequency dynamics 

involving interaction among components. This provides a clear picture of 

separating various parts of an MODU, which makes it possible to study risk 

levels of each part in relative isolation.  

 A complex system designed from scratch never works and cannot be patched up 

to make it work, and a complex system that works is invariably found to have 

evolved from a simple system that worked. This attribute indicates that an 

MODU will work successfully if all its components and subsystems work 

normally. An MODU will fail to drill the wells if some components or 

subsystems have failed. However, direct determination of risk levels of a 
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complex MODU is difficult or almost impossible. A possible solution to this is 

indirect evaluation by aggregating the risks of its subsystems (i.e. mud treatment 

system, BOP, etc.) due to their lower complexity. Therefore, risk information 

can be obtained for a complex MODU by studying the risks of simpler objects in 

an object-oriented hierarchical structure. 

The above discussions not only demonstrate the potential abilities of object-oriented 

hierarchy in dealing with all of the attributes of complex systems, but also support the 

development of risk assessment frameworks. With respect to this concept, a hierarchy 

of an MODU operation system is constructed and presented in Figure  3.1, by viewing 

all the physical elements in an MODU as objects that encapsulate specific attributes and 

behaviours and interact with one another. 

3.3.1 Proposed operational hierarchy of an MODU  

A hazard is defined as a physical situation with the potential for human injury/fatality, 

damage to property, damage to the environment, economic loss or combination of these. 

Hazards are classified according to the severity of their potential effects, either in terms 

of safety, economics or other consequences. Such classifications alone are purely 

subjective, and usually require qualification and quantification by definition of the 

precise form of the hazard, and quantified evaluation of the consequences (Warner, 

1992). The result from this investigation shows that drilling failure is a critical item 

within identified events or HGs, and so it is selected to be the decision problem and 

separated into smaller, manageable subsystems and events of different hierarchical 

levels as necessary. A four-level hierarchy of an MODU system is developed and is 

illustrated in Figure  3.1. The highest level of the hierarchy corresponds to the goal 

prioritisation of importance of the MODU’s risk, and the last layer corresponds to the 

evaluation of BEs. It starts with the MODU system’s overall analysis where the HGs 

are compared with their significance and possible effects of MODU failure are studied. 

Then, the most important HGs are summarised and their failures investigated according 

to the operational phases of the MODU. Furthermore, each MODU HG is studied 

according to its failure modes, causes and criticality. Lastly, the effect of the HG is 

examined according to failures that occurred whilst the MODU was in operation.  
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Figure 3.1: Hazard identification and MODU’s operational hierarchy model; the highest level of the hierarchy corresponds to the goal 

prioritisation of significance of the MODU’s risk, and the last layer corresponds to the evaluation of BEs.  
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3.4 Proposed risk assessment methodology 

It has been appreciated that use of the risk assessment methods in an integrated manner 

may make risk assessment comparatively efficient and convenient since safety 

information and the advantages of each method may be more efficiently explored by 

doing so (Wang et al., 1993). 

Several lessons still need to be learnt from the earlier offshore operation systems failure 

events. There is also no doubt that accidents and incidents which cause few effects, or 

which are less publicised, as well as certain unsafe acts bringing about errors and those 

of recovery occurrences, do provide equally valuable lessons from which to learn. In 

fact, it is possible that accidents may have been propagated from the latter and yet these 

are often overlooked as likely sources of the safety issue problem in the offshore 

industry. Therefore, within existing offshore operation regulations, there are several 

amendments to be undertaken that may be helpful in preventing even the likely 

occurrence of an incident from developing any further. It is extremely difficult to 

prevent events in the absence of an understanding as to how they are caused. In 

complex systems, events usually develop through relatively lengthy sequences of 

changes and errors. According to Petersen (1978), behind every accident there are 

improper contributing factors, causes and sub-causes. Hence, throughout offshore 

operation system risk assessment and in the causal modelling studies, there is a 

necessity to identify as many of these sources as possible. In order to implement the 

outlined risk assessment methodology effectively, Figure 3.4 provides a proposed 

framework for which the risk assessment settings of this research can also be achieved 

by identifying the best RCOs via a cost-effective means. The previous sections have 

outlined several risk analysis methods that are widely applied in offshore operation risk 

assessment. However, in some situations where there is a lack of data, it may be 

difficult to apply them with confidence to the assessment task.   

The selection of the outlined methods, or the decision as to which methods are more 

appropriate for risk assessment of a particular offshore operation, are primarily 

dependent on consideration of the level (e.g. system, subsystem or component level) of 

the operation system breakdown at which the hazard identification is carried out. In 

addition, it is dependent on the degree of complexity of the inter-relationships of the 
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items at the investigated level of the offshore operation system breakdown. Finally, it is 

also dependent on the degree of innovation associated with the system design (e.g. the 

availability of operation failure data for risk assessment). The outlined analytical 

methods, classified as either top-down or bottom-up event-based, may be applied to 

study the operational conditions, environmental conditions and other design 

considerations which contribute to the occurrence likelihood of the hazardous 

conditions associated with an offshore operation system and define the magnitude of 

possible resulting consequences. 

An innovative methodology framework for risk assessment of an MODU system is 

developed and demonstrated in Figure 3.4, consisting of the different stages (i.e. 5 

stages) which provide a demonstrative view of a generic framework proposed for the 

purpose of the MODU risk assessment; it comprises the following stages: 

Stage 1: 

A hierarchy model is illustrated that reflects the operational failure of the mobile 

offshore drilling units. To have a manageable risk model, a three-level hierarchy is 

developed and is illustrated in Figure  3.2. The highest level of the hierarchy 

corresponds to the goal prioritisation of significance of the MODU’s risk and the 

last layer corresponds to the evaluation of BEs. By using the combination of the 

Fuzzy-AHP and Fuzzy FMECA, the risks of significant items (i.e. HGs) are 

quantified and the most critical ones will be identified for further analysis. Fuzzy-

AHP is used to determine the degree of importance of each HG in terms of its 

contribution to the MODU’s failure. The AHP and the Fuzzy theory are combined 

in this stage by a different means. Moreover, the Fuzzy-AHP is applied in the risk 

assessment of the MODU operation system. The method includes four steps, as 

follows: 

- Establish the risk factor hierarchy model. 

- Define the basic event risk factors that consist of the BE factors; as an example: 

Rf(L3,N1) to Rf(L3,N3) for the Natural Hazard BEs and their contributory factors 

WD3N-1 to WD3N-5; Rf(L3,O1) to Rf(L3,O8) for the Operational BEs an`d their 

contributory factors WD3O-1 to WD3O-8; and Rf(L3,H1) to Rf(L3,H3) for the Human 
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BEs and their contributory factors WD3H-1 to WD3H-3 are considered and are 

illustrated in Figure 3.2. 

- Define the quantitative basis for risk factors. 

- Establish the comprehensive risk assessment model. 

The details of the combination of the Fuzzy-AHP and Fuzzy FMECA approaches are 

presented in Chapter 4. 

 

 

Figure  3.2: Hazard identification and MODU’s operational hierarchy model and a 

three-stage structural model for risk aggregation; the highest level of the hierarchy 

corresponds to the goal prioritisation of significance of the MODU’s risk, and the last 

layer (level 3) corresponds to the evaluation of BEs. 

Stage 2 & 3: 

These stages identify the relationships between subsystem, events and establishing an 

operational hierarchy system diagram with a detailed breakdown of the most 

significant HG (i.e. Drilling Failure: L1D). The hierarchical structure consists of 

different levels; the aim is to identify the sources of hazards of the top event (i.e. 

MODU failure in level 0). As presented in Figure  3.1, each HG in level 1 may 
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possibly be influenced by other subsystems or events at other levels (e.g. levels 2 to 

5). In fact, the components/subsystems and BEs describe the MODU’s operation 

system, and the failure of each component may influence another component or 

system at the different levels. 

 

Figure 3.3: Drilling system failure and its subsystem/events in levels 4 and 5 

respectively. 

As stated in stage 1 of the methodology, by using a combination of the Fuzzy-AHP 

and Fuzzy FMECA the risks of important systems/events are calculated and the most 

serious ones are acknowledged (e.g. L3D-O1-01: Drilling system failure) for further 

analysis. As shown in  

Figure 3.3, the event of drilling system failure is expanded to its subsystem and events 

in two lower levels (i.e. levels 4 and 5).  

Stage 4: 

QRA by using Fuzzy FTA and BBN to identify the basic causes leading to an 

undesired event; in order to identify the most critical hazards of MODUs, AHP theory 

is used to determine the degree of influence and importance of factors of each HG. 

L5D-O1-01-1-1 : Mud Pump #1 Failure

L5D-O1-01-1-2 : Mud Pump #2 Failure

L5D-O1-01-1-3 : Bulk Handling system Failure 

L5D-O1-01-1-4: High Pressure route failure (HP 

hoses, Standpipe Manifold, Choke and  Kill  Manifold) 

L5D-O1-01-2-1 : Shale Shaker Failure

L5D-O1-01-2-2 : Desander Failure

L5D-O1-01-2-3 : Disilter Failure

L5D-O1-01-2-4 : Degasser Failure

L5D-O1-01-2-1 : Draw Work Failure

L5D-O1-01-2-2 : Rotary Table Failure

L5D-O1-01-2-3 : Top Drive Failure

L5D-O1-01-2-4 : Pipe Handling System Failure

Level  3                        Level 4  (Sub-system)                            Level  5  (Basic Events)

L5D-O1-01-4-1 : BOP Stack Failure

L5D-O1-01-4-2: BOP control SystemFailure

L5D-O1-01-4-3 : Component Failure/Leak  

L5D-O1-01-2-4 : Drilling Control System Failure
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L4D-O1-01-02 : Mud 
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Figure  3.4: Proposed framework for implementation of the risk assessment methodology  
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By focusing on mud circulation and the BOP systems through using Fuzzy-FTA 

and BBN, the particulars of the MODU’s risk assessment methodology and 

analysis are presented in Chapters 5 and 6 respectively. 

Stage 5: 

The aim of this stage is to select the best RCO and barrier to improve the safety 

level of the MODU in the drilling and operational phase. Fuzzy TOPSIS is 

implemented to identify the best RCO and MADM is used in a Fuzzy environment 

to select the RCOs. Different RCOs and barriers with different purposes could be 

recommended. With consideration of the research findings and recommendations, 

the best RCOs with respect to cost and benefit in three different aspects are 

proposed and listed below, and the details are presented in Chapter 7. 

- Engineering (Eng-RCO)  

- Equipment redesign/replace(Equip-RCO)  

- Regulatory/Human error (Regul-RCO) 

3.5 Aggregative risk assessment framework  

A framework of aggregative risk assessment is developed up to BEs and is presented in 

Figure 3.5 in which the failure at the top level (level 1) is directly related to 

consequences or risks in different levels. Thus, the risk level is determined directly by 

the risk levels of its failure subsystem and BEs. Furthermore, the change from the 

normal state to a failure state is directly related to and driven by its specific hazard. A 

specific hazard is usually evaluated in terms of its likelihood of occurrence and severity 

of possible consequences. Then risks can be estimated for such hazards, by using Fuzzy 

aggregative risk assessment. A coding system that consists of the BE factors and their 

contributory factors has been developed and is presented in Figure 3.5. There are three 

HGs of interest, L2D-N1, L2D-O1 and L2D-H1, which belong to level 2 of the 

operational hierarchy. L2D-N1, L2D-O1 and L2D-H1 can be inferred directly from the 

BEs in level 3, which are: L3D-N1-01 to 5, L3D-O1-01 to 8 and L3D-H1-01 to 3 

respectively, while the event L3D-O1-01 was expanded to two more levels (levels 4 & 

5).  
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Figure 3.5: Proposed framework for aggregative risk assessment at component level. 

L3D-N1-01                                                          WD3N-1 Rf(L3,N1) L5D-O1-01-1-1                                                          WD5O-1-1-1 Rf(L5,O-1-1)

L3D-N1-02                                                         WD3N-2 Rf(L3,N2) L4D-O1-01-1                                                          WD4O-1-1 Rf(L4,O1) L5D-O1-01-1-2                                                        WD5O-1-1-2 Rf(L5,O-1-2)

WD2N Rf(L2,N1)

L3D-N1-03                                                        WD3N-3 Rf(L3,N3) L5D-O1-01-1-3                                                      WD5O-1-1-3 Rf(L5,O-1-3)

L3D-N1-04                                                          WD3N-4 Rf(L3,N4) L5D-O1-01-1-4                                                        WD5O-1-1-4 Rf(L5,O-1-4)

L3D-N1-05                                                         WD3N-5 Rf(L3,N5)

L3D-O1-01 WD3O-1 Rf(L3,O1) L5D-O1-01-2-1                                                         WD5O-1-2-1 Rf(L5,O-2-1)

L3D-O1-02 WD3O-2 Rf(L3,O2) L4D-O1-01-2                                                         WD4O-1-2 Rf(L4,O2) L5D-O1-01-2-2                                                       WD5O-1-2-2 Rf(L5,O-2-2)

L3D-O1-03 WD3O-3 Rf(L3,O3) L5D-O1-01-2-3                                                      WD5O-1-2-3 Rf(L5,O-2-3)

WD2O Rf(L2,O1)

WD1 Rf (L1,N) L3D-O1-04 WD3O-4 Rf(L3,O4) L5D-O1-01-2-4                                                        WD5O-1-2-4 Rf(L5,O-2-4)

L3D-O1-05 WD3O-5 Rf(L3,O5)

L3D-O1-06 WD3O-6 Rf(L3,O6) L5D-O1-01-3-1                                                         WD5O-1-3-1 Rf(L5,O-3-1)

L3D-O1-07 WD3O-7 Rf(L3,O7) L5D-O1-01-3-2                                                        WD5O-1-3-2 Rf(L5,O-3-2)

L4D-O1-01-3                                                   WD4O-1-3 Rf(L4,O3)

L3D-O1-08 WD3O-8 Rf(L3,O8) L5D-O1-01-3-3                                                       WD5O-1-3-3 Rf(L5,O-3-3)

L3D-H1-01 WD3H-1 Rf(L3,H1) L5D-O1-01-3-4                                                         WD5O-1-3-4 Rf(L5,O-3-4)

WD2H Rf(L2,H1) L3D-H1-02 WD3H-2 Rf(L3,H2) L5D-O1-01-3-5                                                      WD5O-1-3-5 Rf(L5,O-3-5)

L3D-H1-03 WD3H-3 Rf(L3,H3)

L5D-O1-01-4-1                                           WD5O-1-4-1 Rf(L3,N-4-1)

L4D-O1-01-4                                                         WD4O-1-4 Rf(L4,O4)

L5D-O1-01-4-2                                                   WD5O-1-4-2 Rf(L3,N-4-2)

L5D-O1-01-4-3                                                          WD5O-1-4-3 Rf(L3,N-4-3)

     L2D-N1:              

Natural Hazard       

L2D-O1:   

Operational hazard

    L2D-H1:        

Human error    
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The framework of risk assessment of each subsystem and the overall MODU is 

determined by the whole/partial relationships represented in an object-oriented 

structure. In this framework, primitive BEs are at the lowest level, whose risk levels are 

determined by the framework proposed for aggregative risk assessment. This 

aggregative process explicitly shows that the risk of the overall system is determined by 

the risks of its subsystems, which are in turn determined by the risks of their consistent 

events. This hierarchical assessment has the ability to model the intricate relationships 

among the BEs and subsystems and to account for all the relevant and important 

elements of risk and uncertainty, therefore rendering the assessment process more 

tractable and representative. A possible quantitative evaluation of these aggregative 

frameworks is particularly studied in Chapters 4, 5 and 6.  

3.6 Conclusion 

The current study utilises qualitative risk assessment for offshore operation systems, and 

an outline of the methodology adopted in the research is presented in this chapter. 

Before the scene of this thesis was set, the background work had revealed safety in the 

offshore operation system as being a reactive response to major accidents. A change in 

such culture provided for proactive approaches to be applied. A proposed framework for 

the risk assessment settings of this research has been developed in a generic sense to be 

effectively applicable to the offshore operation systems. The framework incorporates 

risk analysis for which data were obtained from industrial databases and/or by expert 

judgements. Fuzzy logic (FL) was utilised as the modelling tool that dealt with the 

vague/subjective uncertainties. This study has shown that an object-oriented approach is 

effective in dealing with the complexity in offshore operation systems and can be used 

to develop frameworks of risk assessment for the MODUs. Some of the analytical 

methods, such as FMECA, are most usefully applied in the hazard identification phase, 

whilst others, like FTA and BBN, are used mainly in performing risk estimation and 

probability of failure. A framework of aggregative risk assessment is used to evaluate 

the risks associated with BEs, subsystems, and the overall system. Different hierarchies 

are proposed to be used in order to represent the cause-effect relationships for specific 

undesired events in an offshore operation system. By using the effective combination of 
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the different methods as presented in the proposed methodology framework, risk 

analysts can obtain a more comprehensive view of the risks in an MODU operation 

system. In particular:  

- The proposed methodology can be used by different users. The frameworks can 

be flexibly established at different hierarchical levels according to the 

requirements of system observers and/or available information. 

- Also, the frameworks can be reused in different offshore operation systems. The 

frameworks are developed from a general point of view, encapsulating the 

common features of various offshore operations and being capable of reuse in 

any specific application.  

- It is possible to use and evaluate risks by considering multiple hazards. The 

frameworks can aggregate natural hazards and human error as well as 

operational risk along with a consistent hierarchy to generate useful risk 

information for decision-makers.  

The developed risk assessment models provide useful integrative tools for a proactive 

offshore industry but have limitations owing to the complex nature of the offshore 

operation systems. And there is still further work required to improve the frameworks 

developed in this study, which can be summarised briefly as follows: 

- A framework for vulnerability assessment needs to be developed. Vulnerability 

also plays an important role in introducing risk into an MODU. However, detailed 

study is required in order to make the assessment closer to the real world.  

- The process of generating the FMECA, FT and BBN structures at the system level 

is based on the normal flow directions of an MODU, which is a conservative 

approximation of the real cases. However, the flow directions might change in 

real cases of failures.  

- On every occasion data for risk assessment are sparse, it may become very 

challenging for the risk analyst to precisely obtain the influences of basic failure 

events in order to carry out quantitative analysis using the analytical methods 

outlined before, since a great deal of uncertainty is involved. Therefore, the need 

for models that reflect subjective reasoning or understanding will dominate which 

choices are considered. 



A Novel Engineering Framework for Risk                             CHAPTER 4: Fuzzy Risk Assessment 
Assessment of Mobile Offshore Drilling Units                      of Mobile Offshore Drilling Units 

  
64  

4 CHAPTER 4: Fuzzy risk assessment of MODUs  

Chapter Summary 

The main purpose of this chapter is to propose a methodology to improve the current 

procedures used in the risk assessment of mobile offshore drilling units; this chapter 

will develop a method that can quantitatively evaluate the frameworks of aggregative 

risk assessment for the MODUs. The failure of MODUs has been considered, focusing 

on drilling failure due to rig equipment issues including human error, operational hazard 

and natural hazard. The purpose is to prevent a critical event occurring during drilling 

rather than focusing on measures that mitigate the consequences once an event has 

occurred. The aim is achieved by using a combination of the Fuzzy-AHP and Fuzzy 

FMECA approaches. A generic hierarchy model is presented that considers the 

operational failure of the MODUs. In this chapter the risks of significant items (i.e. HGs 

and BEs) are quantified and the most critical ones will be identified for further analysis 

in Chapter 5. Two mathematical theories will be employed for these frameworks. One is 

a mathematical evaluation of risks associated with hazards and the other is the 

mathematical method that can aggregate risk estimates along the hierarchical structure 

to obtain the risks associated with an MODU. Fuzzy theory is used to represent the 

characteristics of a hazard such as likelihood of the occurrence, severity of consequence 

and detection of vulnerability consequences. A Fuzzy-AHP is used to determine the 

degree of importance of the factors and sub-factors in the model of each HG in terms of 

their contribution to the MODU’s failure. The proposed methodology provides a 

rational and systematic approach for the unit’s risk assessment and comprises a number 

of stages: 1) Identification of probable critical HGs that may lead to the unit’s 

operational failure, 2) Unique applications of a combination of a Fuzzy-AHP technique 

and Fuzzy FMECA approach are used, 3) Ranking of events using a Fuzzy-AHP to 

determine the degree of influence of each HG, and 4) Construction of a hierarchy for 

the offshore operation system. 

4.1 Introduction 

Pursuant to the reviewed cycle of potential hazards and consequence mechanisms 

associated with loss or failure of the MODUs in Chapter 3, the aim of this chapter is to 
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propose a methodology for the MODUs’ risk assessment in order to assess the overall 

risk level of the MODUs, i.e. identify the important HG and its contributory weight 

factors to classify the BEs. Due to the lack of data, the uncertainty experienced may 

considerably undermine the conclusion acquired based on the traditional QRA 

techniques. For that reason, how risk assessment is conducted with confidence under 

circumstances where a high level of uncertainty is present is still a problem for most 

academics. Therefore, the first objective of this research is to propose a framework, 

which is capable of performing risk assessment of the MODUs in situations where a 

lack or insufficiency of information exists. Thus, this chapter establishes a novel 

conceptual framework for the QRA and also proposes a methodology that addresses the 

frequency of the limitations of risk assessment techniques. The purpose of a QRA is to 

assist the decision-maker to be aware of the characteristics of the system and inform the 

designer of the quantified occurrence probability of each critical failure condition and 

the associated consequences. Additionally, it may be essential to carry out risk 

assessment based on multiple hazards which are represented in different forms, such as 

probabilistic data, experts’ opinions and linguistic representations. Traditional 

probabilistic risk assessment approaches may be deficient in the ability to deal with 

such multi-form data and information input. Therefore, there is a need to develop an 

effective method to address the above characteristics of risk assessment. In risk 

assessment under circumstances where a high level of uncertainty exists, fairly accurate 

reasoning methods using the Fuzzy rule-based technique have been demonstrated to be 

useful. However, such applications may become impractical, as there are multiple 

parameters to be evaluated, which are described by multiple linguistic terms. In this 

chapter detailed fundamentals of the Fuzzy approach are discussed to demonstrate how 

its principles have been integrated within the framework of the proposed methodology 

for the assessment of risks associated with the MODUs.  

The proposed integrated methodology can quantitatively evaluate the frameworks of 

aggregative risk assessment of the MODUs proposed in Chapter 3. Two aspects are 

required to be mathematically represented for these frameworks. The first aspect is a 

mathematical assessment of risks associated with each basic event. A basic event in a 

hierarchical framework is expressed by a trapezoidal Fuzzy number, which results from 

the composition of the likelihood of the occurrence, severity of consequence and 

detection of vulnerability consequence of an MODU operation system. Since the 
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contribution of each HG to the failure of the MODUs is not the same, the weight of 

each HG should be taken into consideration to represent its relative contribution and 

importance in terms of its capacity to lead to the failure of the MODUs. Therefore, the 

second aspect is a mathematical method that aggregates risk along the hierarchical 

structure to obtain the risks of the BEs, subsystems, HGs, and the MODU. A Fuzzy-

AHP methodology is designed to deal with an alternative selection and relative 

contribution by integrating the concept of Fuzzy set theory (FST) and hierarchical 

structure analysis. Fuzzy-AHP is then employed to calculate and introduce the weight 

factors, which indicates the magnitude of the relevant importance of a HG to its 

belongings in a risk tree. The outcomes of risk assessment of the MODUs are 

represented by the risk degrees and risk contribution factors that provide analysts, 

managers, engineers and decision-makers with useful information to improve their 

safety management and set safety standards for the MODU’s operation systems. 

The use of a Fuzzy theory based methodology allows decision-makers to incorporate 

both qualitative and quantitative data into a decision model. Decision-makers usually 

feel more confident to provide interval judgements rather than fixed-value judgements 

(Li, 2007; Chang, 1996). In this approach, Fuzzy numbers are used for the preferences 

of one criterion over another and then, by using the extent analysis method, the 

synthetic extent value of the pair-wise comparison is calculated. This chapter concludes 

with a discussion on the main aspects of the methodology and novelties tailor-made in 

the direction of effective assessment of the MODU’s associated risks. 

4.2 Literature review  

QRA techniques were first given wide application in the Norwegian offshore oil and gas 

industry in the early 1980s. QRA has traditionally been used for optimisation and 

verification of design. The focus of QRA is on technical measures and resolutions but 

substantial assumptions are made with respect to the following event processes and 

measures (Standard, 2001): 

- Organisational: Qualifications, emergency teams and staffing. 

- Operational: Procedures for transportation, lifting, installation, repair, 

maintenance and visiting marine vessels. 
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- Activities: Simultaneous operations, modification and number of helicopter visits. 

Among research subjects from the risk assessment aspects of the oil and gas drilling 

operation there are few on HSE risk management of drilling operations. During the 

period between 1970 and about 2000, there was extensive new building activity in the 

North Sea. Since 2000, the new builds have been reduced to one or possibly a couple of 

new production facilities per year in the entire North Sea, and the trend towards more 

extensive use of mobile and floating production systems, operations in the Arctic and 

deepwater suggests that operational aspects of safety will be more important in the 

future, in order to mitigate hazards and control risks. QRA is therefore of great 

importance to the oil and gas industry (Skogdalen et al., 2011). An enormous number of 

methods/approaches exist for the identification of hazards and hazard situations as well 

as for use in risk estimation. These well-established methods have seen continuous 

practice within industries because knowledge about the methods is well documented 

(Mannan, 2004). Besides, use of different techniques/methods might make it easier to 

discover events for definite hazards, e.g. using deductive logic or top-down approaches, 

and to find new hazards, e.g. using inductive logic or bottom-up methodologies and 

approaches (Hansen et al., 2002)When a complex marine and offshore system involves 

various related risk items with uncertain causes and scales, it often cannot be treated 

with mathematical thoroughness during the initial or screening phase of decision-

making (Lee, 1996). When studying the safety features of offshore structures, it is 

almost impossible to treat the system in its entirety, owing to the nature of its complex 

engineering structure (Wang, 1998). It is often challenging to assess likelihood, severity 

and detectability associated with a hazardous event using probabilistic theory. To begin 

with, some hazards may be related to many uncertain factors which are hard to express 

in terms of probabilities. All such factors are subjective and difficult to characterise by a 

single precise probability distribution function. Furthermore, historical records of some 

risk scenarios, particularly extreme hazardous events, are often incomplete and 

insufficient. Therefore, a specialist may have difficulty in developing appropriate 

probability distribution functions with limited information. Due to lack of data, risk 

analysts may be more confident with linguistic representations (e.g. very high, slightly 

low, etc.). However, probabilistic variables have limited ability to represent this 

linguistic or descriptive information. Zadeh (1965) introduced FST as an alternative to 

probabilistic theory to deal with the problems in which vagueness is present. 
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Applications of FST have been extensively studied with respect to the ambiguity and 

vagueness involved in the risk analysis in different engineering areas. FST can be used 

to represent subjective, vague, linguistic and imprecise data and information effectively. 

For example, Sadiq and Sadiq and Husain (2005) applied a Fuzzy-based methodology 

for an aggregative environmental risk assessment of drilling waste. Wang & Elhag 

(2007) used Fuzzy group decision-making for bridge risk assessment. Zeng et al. (2007) 

applied a Fuzzy-based decision-making methodology to construction project risk 

assessment. Chen (2001) used Fuzzy group decision-making for evaluating the rate of 

aggregative risk in software development. Lee (1996) applied FST to evaluate the rate 

of aggregative risk in software development.Risk assessments are required to identify 

and to document the significant risk to the environment, health and safety of employees 

and any others who may be affected by an undertaking. However, what is the main 

purpose of performing a risk assessment? The only reason for undertaking a risk 

assessment is, according to Bley, et al. (1992), to understand a risk in order to do 

something about it. Such a view, in which risk reduction is considered the main 

objective of risk assessment, is a typical misconception according to Aven (2010). Risk 

reduction is never a goal in itself. This is due to the recognition that creating value 

necessitates risk-taking. The purpose of risk assessment is thus not mainly to facilitate 

risk reduction, but to provide input to a particular decision in a larger context. The vast 

majority of references confirm this point, unanimously stating that risk assessment is a 

tool to inform decision-making in management of risk (HSE, 2001; NASA, 2002; 

NUREG, 2009; NORSOK, 2001; and IMO, 2002). Common to all situations is the 

decision-maker’s need to reduce their uncertainty regarding the outcome of a decision. 

At a deeper level, risk assessment can thus be seen as a tool to address and a language to 

express the uncertainty about the future (Bley et al., 1992). A logical approach may be 

to break down the system into functional entities comprising sub-systems and 

components, so that the interrelationships can be examined and, finally, a system safety 

model can be formulated to assess the safety parameters. This will therefore necessitate 

risk analysts to utilise some very well-dependable analytical tools and techniques in the 

formulation of the assessment model. Uncertainties in risk analysis inputs are 

propagated through the risk assessment and evaluation steps of the safety assessment to 

obtain estimates of the level of confidence in the assessment outcomes (Chauhan and 

Bowles, 2004). Such uncertainties require techniques that can handle their treatment 
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efficiently and effectively. Several techniques are used to predict how the systems 

would behave if they were to be hit by unforeseen catastrophic events such as fire, 

explosions, collisions and loss of hull integrity. Therefore, a review of related work is 

necessary for the development and application of uncertainty analysis methods that can 

appropriately deal with qualitative and quantitative factors of the risk assessment study. 

The proposed methodology in this chapter is built upon the previous development, and 

the novel parts of the proposed methodology are to combine both qualitative and 

quantitative information, and also the weight of the contribution of each hazardous 

event has been taken into consideration in order to represent its relative contribution and 

importance in terms of its capacity to lead to the MODU’s failure. Each failure mode 

can be evaluated by three factors: probability of occurrence, consequence of severity 

and vulnerability of the failure mode. By multiplying the values for these factors, a risk 

value would be obtained (Chin et al., 2008). Then the risk value of the BE will be 

aggregated along with its hierarchy by employing a Fuzzy-AHP. AHP technique 

achieves pairwise comparisons among the criteria or factors in order to prioritise them 

at each level of the hierarchy using the eigenvalue calculation. In addition to AHP, 

Analytic network process (ANP) technique is a generalization of the AHP, by 

considering the dependence between the components/systems, that allows inter-

dependencies, outer-dependencies and feedbacks among decision elements in the 

hierarchical or non-hierarchical structures(Görener, 2012). AHP and ANP are 

essentially ways to measure especially intangible factors by using pairwise comparisons 

with judgments that represent the dominance of one element over another with respect 

to a property that they share (Chung et al., 2005). Many decisions problems cannot be 

structured hierarchically because they involve the interaction and dependence of higher 

level elements in a hierarchy on lower level elements (Saaty & Özdemir, 2005). While 

the AHP represents a framework with a uni-directional hierarchical AHP relationship, 

the ANP allows for complex interrelationships among decision levels and attributes 

(Yüksel & Dağdeviren, 2007). In fact the ANP uses a network without the need to 

specify levels as in a hierarchy. Influence is a central concept in the ANP. (Anand & 

Kodali, 2009). Despite the fact, the AHP technique is appropriate and workable for the 

MODU operation system, for the reason that the relationship between the 

components/systems is possible to structure and present with a uni-directional 

hierarchy. 
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4.3 Proposed integrated methodology for the MODU risk assessment  

QRA can be implemented using many methods, such as failure mode and effects 

analysis, preliminary hazard analysis (PHA), etc. (Kirchhoff et al., 2007). In situations 

where there is a lack of data, it is required to incorporate expert judgements into the risk 

study. A framework is established based on Fuzzy set theory, which is capable of 

quantifying judgements from experts who express their opinions qualitatively. As 

shown in Figure 4.1, the proposed methodology involves many stages, starting with the 

establishment of the membership functions for the linguistic terms describing the seven 

parameters, followed by the risk calculation and aggregations. The aim of the thesis is 

an assessment of the MODU’s risk posed through its BEs and HGs by applying 

principles of QRA; and also the core of the risk assessment is an evaluation of the 

MODU’s risk with the association of failure probabilities of BEs at the lowest level by 

means of consideration of the HGs’ contribution to the failure of the MODU. Such 

assessment is required to combine methods of Fuzzy-AHP for calculation of risk 

contribution factors and Fuzzy FMECA for estimation of basic event risk factors. To 

achieve that, the proposed method would allow a combination of two sources of 

information: i) Fuzzy linguistic input typically used for quantifying BE failure and ii) 

The weight input from the magnitude of the relevant importance of an HG to its 

belongings in a risk tree from the viewpoint of its capacity to contribute to the failure of 

the MODU. 

Thus, the proposed method, which is based on Fuzzy-AHP and Fuzzy FMECA, has the 

advantage of an application of different sources of information including expert 

knowledge. The overall elements of the generic risk model are illustrated in Figure 4.1 

and show the different types of input data. Obviously, as such an approach has not been 

developed in the field of risk assessment of MODUs until now, this thesis could help an 

operator to carry out MODU risk assessment in a realistic and methodological way. The 

following steps are used in the proposed risk assessment.The first step of the proposed 

framework is to obtain the risk factors of each BE by using FST. This step includes a 

few sub-steps for the application of Fuzzy risk assessment, which are explained in the 

following sections. The magnitude of a risk can usually be assessed by considering 

three fundamental risk parameters: Probability of occurrence (PO), Consequence 
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severity (CS) and Detection of vulnerability (DV). PO defines the number of times an 

event occurs over a specified period. Risk can be obtained by Equation (4.1), where the 

risk is associated with each basic event in the MODU’s system. Rf represents the 

likelihood of the hazard and ⊗ denotes the multiplication relationship between 

likelihood, severity and vulnerability. This calculation can be performed by using Fuzzy 

operation rules. 

The second step is to calculate weight factors for each HG in the framework. Since the 

study incorporates FST into an AHP method, a set of linguistic priority terms along 

with the membership functions describing the relationship between elements in each 

hierarchy of the AHP is adopted. Thus, the pair-wise comparisons between the elements 

in each hierarchy using FST are established. The Fuzzy expressions are subsequently 

converted into a single crisp value using an appropriate defuzzification method. The 

third step is the aggregation and calculation of risk level. The magnitude of a risk can 

usually be assessed by considering the BE factors and their contribution's weight factor 

calculation so as to obtain the relative importance of the elements. By repeating the 

steps above, the risk of each element in the hierarchy is acquired based on the 

normalised weight factors calculated. Risk assessment can be carried out for each sub-

system for the MODU’s operation system.To have a manageable risk model, a limited 

number of generic operation basic hazard events are defined, covering operational risk, 

which may directly cause an event or introduce latent failures into the system which 

may cause an event at a later point in time. In this approach, a four-level hierarchy (i.e. 

Level 0 to Level 3) is developed. The highest level of the hierarchy corresponds to the 

goal prioritisation of significance of the MODU’s risk. Fuzzy-AHP is used at the higher 

levels to synthesise the weight factors that will help to prioritize the MODU’s risk. The 

Fuzzy inference system is applied at the lower levels of the hierarchy to infer the BE 

parameters. Subsequently, the scores representing the extent of risk are calculated. The 

methodology consists of many stages, providing an illustrative view of a generic risk 

assessment framework proposed for the purpose of this research upon which the 

methodology will be directed. An application of the proposed approach is demonstrated 

through a case study for the risk assessment of a Jack-up drilling rig (JDR) in Section 

4.4. 

Rf = PO ⊗ SC ⊗ DV ( 4.1) 
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Figure 4.1: Illustration of a generic risk methodology for the MODU’s risk assessment, 

which involves several stages, starting with the setting up of the membership functions, 

followed by the risk calculation and aggregations. 
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4.3.1 Fuzzy failure modes, effects and criticality analysis (FMECA) 

When assessing a risk level of a specific failure mode, the risk priority number (RPN) 

method uses linguistic priority terms to evaluate the elements of PO, SC and DV on a 

numeric scale from 0 to 1. By multiplying the values for these factors, a RPN is 

obtained. Failure modes with a higher RPN are deemed to be more risky and give a 

higher priority than those having a lower RPN. There are some shortcomings raised 

when applying the RPN calculation method, and also traditional approaches lack 

adequate data concerning the relative frequencies for causes and effects of hazardous 

events. Some criticisms have been raised with regard to the application of the RPN 

method (Deng, 1989) as follows:  

i. In situations where various sets of PO, SC and DV produce an identical value of RPN, 

the risk implication may be totally different. 

ii. There is no precise algebraic rule to assign a score to the possible failure 

occurrence rate and detection rate. The reason for that is that the relationship 

between detection rate and its corresponding score is linear, whereas the failure rate 

and its score do not follow a linear relationship. 

iii. The RPN value does not consider the relative importance between PO, SC and DV. 

FMECA under a Fuzzy environment can be regarded as another solution to prevail over 

the limitation of the traditional approach. In a Fuzzy FMECA, linguistic variables such 

as PO, SC and DV can be represented as Fuzzy membership functions and described 

using linguistic priority terms associated with corresponding membership values. In the 

course of using FST, it is possible to manage the fuzziness involved in the phrase of the 

occurrence of a basic event or a consequence. Moreover, the state of each basic event or 

consequence can be explained in a simpler way. 

4.3.2 Fuzzy analytical hierarchical process 

Since the criteria for the evaluation of the HGs have diverse significance and meanings, 

we cannot assume that each HG is of equal importance and weight in terms of its 

capacity to contribute to the failure of the MODU. Therefore, we need to consider the 
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contributory factors of each HG to the failure of the MODU. Four evaluation criteria are 

considered (i.e. 1- People, 2- Environment, 3- Asset and 4- Reputation) for the 

hierarchical structure that is used in this chapter. There are many methods that can be 

employed to determine such weights such as the eigenvector method, weighted least-

square method, entropy method, AHP and linear programming technique for 

multidimensional analysis of preference. The selection of the method depends on the 

nature of the problems. To evaluate the HGs is a complex and wide-ranging problem, 

requiring the most inclusive and flexible method. The AHP developed by Saaty (1980 

and 1996) is a very useful analysis tool in dealing with multiple criteria decision 

problems and has been successfully applied to many construction industry decision 

areas (Cheong and Lan-Hui, 2004). Saaty (2001) also suggested the use of AHP to solve 

the problem of independence of alternatives or criteria and the use of analytic network 

process (ANP) to solve the problem of dependence among alternatives or criteria AHP 

is a popular technique, which is often used to model subjective decision-making 

processes based on multiple attributes. AHP is widely used in both individual and group 

decision-making environments (Bolloju, 2001).  

Traditional methods of AHP cannot be used when improbability in data of problems is 

observed. As mentioned, in order to address such uncertainties and as an alternative 

method, Zadeh (1965) introduced the FST, which was based on the rationality of 

uncertain due to imprecision or vagueness of data available. A major contribution of 

FST is its capability to represent uncertainty knowledge. Because of the fact that the 

world around us is actually full of ambiguities and is of a Fuzzy nature, several 

researchers have combined Fuzzy theory with AHP. Van Laarhoven & Pedrycz (1983) 

proposed the first method of implementing Fuzzy-AHP, in which triangular Fuzzy 

numbers were compared according to their membership functions. Buckley (1985) 

extended Saaty’s AHP to the case where the evaluators are allowed to employ Fuzzy 

ratios in place of exact ratios to handle the difficulty of assigning exact ratios when 

comparing two criteria and deriving the Fuzzy weights of criteria by the geometric 

method. Furthermore, the relative importance derived from these pair-wise comparisons 

allows a certain degree of inconsistency within a domain. Saaty used the principal 

eigenvector of the pair-wise comparison matrix derived from the scaling ratio to 

determine the comparative weight among the criteria (Chiu et al., 2006). Therefore, 
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Fuzzy-AHP is used for the proposed methodology to determine the relative 

contribution's weight factors of each HG, sub-system and BE of the MODU and also 

will be implemented on JDR risk assessment as a case study in order to illustrate the 

applications of the proposed methods. The required steps for application of Fuzzy-AHP 

in evaluating risk factors will be described in the following sections.  

4.3.2.1  Establishing a hierarchical structure  

The purpose of this section is to establish a hierarchical structure for aggregative risk 

assessment for the MODUs. The contents include building a hierarchical structure and 

determining the evaluation of risk contribution factors at different levels. Pursuant to the 

reviewed cycle of potential hazards and consequence mechanisms and also based upon 

literature and expert opinions, the contributory factors of each HG in view of its 

capacity to contribute to the failure of the MODUs are identified and ranked with the 

Fuzzy-AHP method. The result from this analysis shows that the drilling failure (L1D-

O1-01) is a critical item within identified HGs, as shown in Figure 4.2, and it is selected 

for assessment.  

Developing the hierarchical model includes the decomposition of the complex decision 

problem into smaller, manageable elements of different hierarchical levels as necessary. 

To have a manageable risk model, a four-level hierarchy is developed and is illustrated 

in Figure 4.2. The highest level of the hierarchy corresponds to the goal prioritisation of 

significance of the MODU’s risk, and the last layer corresponds to the evaluation of 

BEs. The Fuzzy inference system is applied at the lowest level of the hierarchy to infer 

the major risk parameters. These judgements will be carried out in the form of the pre- 

defined linguistics variables which will be explained in Section 4.3.3.3. Fuzzy-AHP is 

used at the higher levels to synthesise the contributory weight factors that will help to 

prioritise the MODU’s hazards.  

The risk factors will be ranked directly as per their numerical priorities in order to show 

their significance. By use of the experts’ judgements and pair-wise comparison matrices 

the local weights of the risk factors at different levels will be determined (e.g.. in Level 

1: WD1, WT1, WS1, WM1, WF1 and WC1). The global weights for Level 0 risk  
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Figure 4.2: Hazard identification and MODU’s operational hierarchy model; the highest level of the hierarchy corresponds to the goal 

prioritisation of significance of the MODU’s hazards, and the last layer (level 3) corresponds to the evaluation of BEs. 
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factors will be calculated directly by multiplying each local contribution’s weight 

factors at each level to its risk factors. After this calculation, the scores representing the 

degree of the risk for each event. The hierarchy is structured in such a way that the 

prioritisation of significance of the MODU’s risk is the main goal and is placed on the 

top of the hierarchy, labelled main goal. 

4.3.2.2 Establishing pair-wise comparison matrices 

The procedure for determining the contributory weights factors by Fuzzy-AHP can be 

summarised as follows: 

Step 1: Construct pair-wise comparison matrices among all the HGs in the dimensions 

of the hierarchy system. Assign linguistic terms to the pair-wise comparisons by asking 

which is the more important of each pair of HGs in terms of their capacity to contribute 

to the failure of the MODU. In AHP, multiple pair-wise comparisons are based on a 

standardised comparison scale of nine levels, as illustrated in Table  4.1 (Chen et al., 

2009; Yeh & Chang, 2009). Let C = [Cj / j = 1, 2 . . . n] be the set of criteria. The result 

of the pair-wise comparison on n criteria can be summarised in an (n x n) evaluation 

matrix, A, in which every element aij (i, j = 1,2, . . . ,n) is the measure of weights of the 

criteria, as shown below:  

Table  4.1: Nine-point intensity of importance scale and its definition 

Definition Intensity of Importance 

Equally important 

Moderately more important 

Strongly more important 

Very Strongly more important 

Extremely more important 

Intermediate values 

1 

3 

5 

7 

9 

2,4,6,8 
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The mathematical procedure begins to normalise and discover the relative weights for 

each matrix. The relative weights are identified by the eigenvector (W) corresponding to 

the maximum of Eigen value ( max ), which is essentially the underlying standard scale 

for the ranking of each element in the ratio matrix. Hence, determining the rankings for 

a set of elements essentially comes down to solving the eigenvector problem (Dag et al, 

2009). 

 AW = max W ( 4.3) 

If the pair-wise comparisons are completely consistent, the matrix A has rank 1 and 

max = n. In this case, weights can be achieved by normalising any of the rows or 

columns of matrix A (Wang & Yang, 2007). 

The concept of pair-wise comparison for solving AHP is given below: 
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In real circumstances, /
i j

w w  is unknown, but /
ij i j

a w w  and 1/
ij ji

a a  (positive 

reciprocal) and as per Equation (4.2): 

i.  
nAw w 

max
( )  0A I w  (4.6) 

find max  and find w  with max , and the C.I. can be calculated by Equation (4.7), 
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The concept of pair-wise comparison for solving Fuzzy-AHP is given below: 

I.  Fuzzy [ ]
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 Inverse operation of triangular Fuzzy number:  
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where lij and uij are the lower level and upper level of the Fuzzy number respectively 

and for a triangular Fuzzy number, ( , , )
j j j j

w l m u , and ( ) ( )i

ij ij

j

w
l u

w
    in level ,  

then Fuzzy constraints: 
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4.3.2.3 Defuzzification and Fuzzy weight calculation 

The defuzzification process is capable of creating a single crisp value based on the 

Fuzzy conclusion set describing the priority level. The defuzzification process is the last 

step of the Fuzzy inference algorithm where the aggregated Fuzzy output is converted 

into a crisp number. In other words, defuzzification is a technique to translate the Fuzzy 

number into a crisp real number, or defuzzification is defined as a function mapping a 

Fuzzy set to a certain crisp number. The procedure of defuzzification is to locate the 

best non Fuzzy performance value. There are many defuzzification methods that 

convert the Fuzzy consequents into crisp values (i.e. weighted by the degree of truth at 

which the membership functions reach their maximum values (Pillay & Wang, 2002), 

the algorithm that averages the points of maximum possibility of each priority level and 

α-cut Method). This research employs the Center-of-Area method due to its simplicity 

of calling for the analyst’s personal judgement and providing sensible results 

(Abdolvand et al., 2008). The method to calculate the crisp number for a Triangular 

Fuzzy Number (TFN) is to calculate the centre of the Fuzzy number’s triangular area, 
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shown in Figure 4.3 (Mikhailov, 2004 & Karahalios, 2009). The defuzzified value of a 

Fuzzy number can be obtained from Equation (4.21). 

 
llmluBNP

umlTFN





3/)]()[(

),,(

 ( 4.21) 

  

Figure 4.3: Defuzzification of a triangular Fuzzy number 

4.3.2.4 Hierarchy consistency ratio checking 

Calculating a consistency ratio is the next stage of the AHP process in order to measure 

how consistent the judgements have been, where the Consistency Index is CI, the 

Consistency Ratio is CR, λmax is the largest eigenvalue of the pair-wise comparison 

matrix, n is the matrix order and Random index is RI. Table 4.2 shows a set of 

recommended RI values presented by Saaty (2005). 

Table 4.2: Random index (RI) 

 

When CR values are larger than 0.10 for a matrix larger than 4×4, it indicates an 

inconsistent judgement. Decision-makers should revise the original values in the pair-

wise comparison matrix. 

4.3.2.5 Risk aggregation and risk ranking 

In order to convert the linguistic expressions into Fuzzy numbers and aggregate the 

experts’ opinions, there are various methods to aggregate Fuzzy numbers. In the process 

N 2 3 4 5 6 7 8 9 10

RI 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49
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of a ranking, every measure under consideration is ranked in the direction of the 

decision-makers’ preference. To produce principle values for each HG, each factor was 

weighted according to the estimated contribution to and significance for the MODU’s 

operation system failure. Clemen & Winkler (1999) elucidated that, due to different 

opinions regarding the possibility of the BEs, it is essential to combine or aggregate the 

opinions into a single one; Figure 4.4 illustrates the basic building blocks of the 

proposed hierarchical structural model for the risk aggregation. Each basic event is 

partitioned into its contributory factors, which are the result of Fuzzy-AHP and each of 

those can be further partitioned into upper-level contributory factors. 

A coding system is considered consisting of the BE factors, i.e. Rf(L3,N1) to Rf(L3,N3), for 

the Natural Hazard BEs and their contributory factors WD3N-1 to WD3N-5, Rf(L3,O1) to 

Rf(L3,O8) for the Operational BEs and their contributory factors WD3O-1 to WD3O-8, 

and Rf(L3,H1) to Rf(L3,H3) for the Human BEs and their contributory factors WD3H-1 to 

WD3H-3. As was explained, a risk unit without contributory factors is called a BE.  

The evaluation of aggregative risk of the MODUs is carried out using a three-step 

procedure, as shown in Figure 4.4. As illustrated in Table 4.3, the BE factors is 

described by seven linguistic variables (i.e. Lf1, Lf2, Lf3, Lf4, Lf5, Lf6, and Lf7). These 

linguistic variables were defined as Very Low, Low, Mol. Low, Medium Low, Mol. 

High, High, and Very High, respectively (Chen & Hwang, 1992).  

Table 4.3: Logistics variable where the BEs are described by seven linguistic variables  

  

(Chen and Hwang, 1992) 

 

a b c d
Very Low 0.0 0.0 0.1 0.2

u(x) 0.0 1.0 1.0 0.0

Low 0.1 0.2 0.3

u(x) 0.0 1.0 0.0

Mol. Low 0.2 0.3 0.4 0.5

u(x) 0.0 1.0 1.0 0.0

Medium 0.4 0.5 0.6

u(x) 0.0 1.0 0.0

Mol. High 0.5 0.6 0.7 0.8

u(x) 0.0 1.0 1.0 0.0

High 0.7 0.8 0.9

u(x) 0.0 1.0 0.0

Very High 0.8 0.9 1.0 1.0

u(x) 0.0 1.0 1.0 0.0
Lf7

Grade linguistic variables Membership function 

Lf4

Lf5

Lf6

Lf1

Lf2

Lf3
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Figure 4.4: A three-stage structural model for risk aggregation 

L3D-N1-01                                                          WD3N-1 Rf(L3,N1)

L3D-N1-02                                                         WD3N-2 Rf(L3,N2)

WD2N Rf(L2,N1)

L3D-N1-03                                                        WD3N-3 Rf(L3,N3)

L3D-N1-04                                                          WD3N-4 Rf(L3,N4)

L3D-N1-05                                                         WD3N-5 Rf(L3,N5)

L3D-O1-01 WD3O-1 Rf(L3,O1)

L3D-O1-02 WD3O-2 Rf(L3,O2)

L3D-O1-03 WD3O-3 Rf(L3,O3)

WD2O Rf(L2,O1)

WD1 Rf (L1,N) L3D-O1-04 WD3O-4 Rf(L3,O4)

L3D-O1-05 WD3O-5 Rf(L3,O5)

L3D-O1-06 WD3O-6 Rf(L3,O6)

L3D-O1-07 WD3O-7 Rf(L3,O7)

L3D-O1-08 WD3O-8 Rf(L3,O8)

L3D-H1-01 WD3H-1 Rf(L3,H1)

L3D-H1-02 WD3H-2 Rf(L3,H2)

WD2H Rf(L2,H1) L3D-H1-03 WD3H-3 Rf(L3,H3)

     L2D-N1:              Natural 

Hazard       

L2D-O1:   Operational 

hazard

    L2D-H1:        Human error    

Level  1 Level  2 Level  3 (Basic events) 
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These linguistic variables were then defined by Trapezoidal Fuzzy Numbers (TPFNs) 

with membership functions shown in Table 4.3. The assessment matrix for risk items of 

attribute in Level-2 can be established for Rf (L2, N1), Rf (L2, O1) and Rf (L2, H1) 

individually. As shown in the Risk Aggregation Matrix in Table 4.4, for the Rf (L2, 

H1), the BEs involved are Rf (L3, H1), Rf (L3, H2) and Rf (L3, H3) while the 

corresponding contributory weight factors of risk are WD3H-1, WD3H-2 and WD3H-3 

respectively. 

Table 4.4: Risk aggregation matrix 

 

4.3.3 Assessment of Fuzzy model 

The probability of detecting a failure in advance is not a crisp event and uncertainty is 

associated with it. When performing FMECA, it may be difficult or even impossible to 

precisely determine the probability of failure events. Much information about FMECA 

is expressed linguistically, such as ‘likely’, ‘important’ or ‘very high’. This uncertainty 

can be better handled with FL using an appropriate membership function to arrive at an 

estimated appropriate possibility level. It is always difficult to evaluate these linguistic 

variables objectively and also risk is not absolutely objective in nature, but rather 

Attribute 

Level 2

Contribution 

Weight Factor

 Risk 

Factor 

Attribute 

Level 2

Contribution 

Weight Factor

 Risk 

Factor 
Basic Event

Contribution 

Weight Factor

Basic Events Risk 

Factor 

L3D-N1-01                                                          WD3N-1 Rf(L3,N1)

L3D-N1-02                                                         WD3N-2 Rf (L3,N2)

L2D-N1 WD2N Rf (L2,N1) L3D-N1-03                                                        WD3N-3 Rf (L3,N3)

L3D-N1-04                                                          WD3N-4 Rf (L3,N4)

L3D-N1-05                                                         WD3N-5 Rf (L3,N5)

L3D-O1-01 WD3O-1 Rf (L3,O1)

L3D-O1-02 WD3O-2 Rf (L3,O2)

L3D-O1-03 WD3O-3 Rf (L3,O3)

L1D-D WD1N Rf (L1,N) L2D-O1 WD2O Rf (L2,O1) L3D-O1-04 WD3O-4 Rf (L3,O4)

L3D-O1-05 WD3O-5 Rf (L3,O5)

L3D-O1-06 WD3O-6 Rf (L3,O6)

L3D-O1-07 WD3O-7 Rf (L3,O7)

L3D-O1-08 WD3O-8 Rf (L3,O8)

L3D-H1-01 WD3H-1 Rf (L3,H1)

L2D-H1 WD2H Rf (L2,H1) L3D-H1-01 WD3H-2 Rf (L3,H2)

L3D-H1-01 WD3H-3 Rf (L3,H3)

Level  1 Level  2 Level  3 (Basic events) 
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relative and subjective. It is usually a Fuzzy concept in the sense that there is not any 

unique risk associated with a hazardous event occurring in a given period (Karwowski 

& Mital, 1986). Therefore, risk assessment deals with quantities which are inherently 

imprecise and whose future values are uncertain. Linguistic categories or levels (e.g., 

very high, high, medium, low, very low), instead of absolute numbers, are adopted 

because each linguistic category or level can deal up to certain extend with the various 

and uncertain risk values by including a range or set of numbers.  

Figure 4.5 shows an overall view of the proposed Fuzzy FMECA assessment system, in 

which there are three major steps to carry out the assessment, namely fuzzification, rule 

evaluation, and defuzzification. The system firstly uses linguistic variables to describe 

the severity, frequency of occurrence, and detectability of the failure. These inputs are 

then ‘fuzzified’ to determine the degree of membership in each input class. The 

resulting ‘Fuzzy inputs’ are evaluated using a linguistic rule base and FL operations to 

yield a classification of the riskiness of the failure mode and an associated degree of 

membership in the risk class. This ‘Fuzzy output’ is then ‘defuzzified’ to give the 

prioritisation level for the failure mode.  

 
Figure 4.5: Structure of FMECA based on Fuzzy theory. 

                    Source: Ruey (2010) 

4.3.3.1 Fuzzy membership functions 

The membership function is a curve that defines how each point in the input space is 

mapped to a membership value between 0 and 1. However, the determination of a 

membership function is difficult and complicated. Any shape of a membership function 

is possible, but the selected shape should be justified by the available information. Ross 
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(2004) discussed several methods of determining membership functions. It is also 

believed that in some cases the expressions of membership functions are not the 

dominant factors in engineering applications (Klir & Yuan, 1995). 

A Fuzzy number is a Fuzzy subset of a real number and it represents an expansion of 

the confidence interval. According to Dubois and Prade’s (1978) definition, a Fuzzy 

number means a Fuzzy set and its membership function. FST has developed as an 

alternative to ordinary (crisp) set theory and is used to describe Fuzzy sets and that 

membership in a Fuzzy set is a matter of degree (Friedlob & Schleifer, 1999). 

Let X denote a universal set. Then a Fuzzy subset of X is defined by its membership 

function: )1,0(:~ x
A

  which is assigned to each element           a real number )(~ x
A

  

in the interval (0, 1), where the value, of )(~ x
A

 at x represents the grade of membership 

of x in .
~
A Thus, the nearer the value of )(~ x

A
  is to unity, the higher the grade of 

membership of  x in A
~

(Sakawa, 2002).  

A Triangular Fuzzy Number (TFN) is a special type of Fuzzy number with three 

parameters, each representing the linguistic variable associated with a degree of 

membership of 0 or 1. Since it is shown to be very convenient and easily implemented 

in arithmetic operations, the TFN is also commonly used in practice (Liou & Chen, 

2006). A TFN A
~

 is defined by a triplet (a, b, c). The membership function )(~ x
A

  of x 

is given by (Chamodrakas et al., 2009): 

 






















)(

)(

)(~

cxb
bc

xc

bxa
ab

ax

x
A

  ( 4.22) 

Suppose a Trapezoidal Fuzzy Number (TPFN), A
~

 is defined by a quadruplet (a, b, c, 

d). The membership function )(~ x
A

  of x is as below:  

Xx
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The algebraic operation for the TFN can be displayed as follows (Chiu, 2006; 

Abdolvand et al., 2008) and the same algorithm is applicable for TPFNs.  

Addition ( ):   

 ),,(),,(),,( 212121222111 uummllumluml   ( 4.24) 

Multiplication ( ): 

 ),,(),,(),,( 212121222111 uummllumluml   ( 4.25) 

Any real number of k:         

                         ),,(),,( kukmklumlk    ( 4.26) 

Subtraction (-): 

 ),,(),,(),,( 212121222111 uummllumluml    ( 4.27) 

Division (÷): 

 ),,(),,(),,( 212121222111 uummllumluml    ( 4.28) 

4.3.3.2 Linguistic variables 

According to Zadeh (1975), it is very challenging for conventional quantification to 

sensibly express those circumstances that are obviously complex or hard to define; 

therefore, the perception of a linguistic variable is essential in such situations. A 

linguistic variable is an adjustable whose values are words or judgements in a natural or 

artificial language. The concept of a Fuzzy number plays an essential role in 
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formulating quantitative Fuzzy variables. These are variables whose states are Fuzzy 

numbers. When, in addition, the Fuzzy numbers represent linguistic concepts, such as 

very small, small, medium, and are understood in a particular environment, the resulting 

hypotheses are usually called linguistic variables (Klir & Yuan, 1995). Subjective 

linguistic variables will be further defined in terms of membership functions in order to 

find out how each point in the input space is plotted to a membership value between 0 

and 1 (see Figure 4.6, Figure 4.7 and Figure 4.8) and the simplest are the TFN and 

TPFN (Li & Liao, 2007). In this chapter, it is preferred to use TPFNs to represent the 

linguistic variables shown in Table 4.3. In creating use of the FL, the experts were 

invited to define each membership function and the values using the interpretations of 

the linguistic terms referred to in Table 4.7 (Pillay & Wang, 2003). 

Estimating weights of experts 

The weighting of experts is determined according to Table  4.5. If an expert is 

considered better than others, then he/she is given a larger weight. 

Table  4.5: Experts’ weighting scores  

 

Experts’ weights are obtained by estimating weight scores and weight factors of experts. 

Weight scores and weight factors of experts can be obtained by using Equation (4.29) 

and Equation (4.30) respectively and the weight of each expert is presented in Table 4.6 

(e.g. weight factor for Expert 1 is 0.3) 
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Weight score of expert = Score of expert (F1) + Score of expert (F2) + Score of 

expert (F3)   

(4.29)    

Weight factor of expert = (Weight score of expert )/ (       Weight score of expert    ) 

 (4.30) 

 

Table  4.6: Experts’ weights estimating by using weight from Equation (4.29) and 

Equation (4.30) 

 

4.3.3.3 Linguistic risk levels 

This research uses linguistic variables to denote the risk events, i.e. PO, SC and DV, of 

each failure mode. With consideration of some limitations on our ability to treat 

information, in 1956, Miller published a paper entitled “The magical number seven, 

plus or minus two” (Miller, 1956). With respect to this, it is often suggested that the 

number of linguistic terms for judgements should be limited to between five and nine 

(Karwowski & Mital, 1986). In this research, each linguistic variable has seven 

descriptive linguistic terms and these linguistic terms can be represented quantitatively 

by a range of probabilities, as illustrated in Table 4.7. Chen & Hwang (1992) 

recommended different scales of linguistic terms for expert assessment. Scale 6, which 

encloses trapezoidal membership functions, is implemented to present mathematically 

the PO, SC and DV levels of hazards in this research.  

After the determination of the linguistic levels for PO, SC and DV, one must determine 

the appropriate mathematical expressions using membership functions for Fuzzy 

numbers. In the proposed Fuzzy FMECA approach, several experts are required to 

develop the membership functions of the three variables. Furthermore, the numbers 

associated with linguistic risk levels are also considered as an important factor in 

practical risk assessment by many researchers (Military Standard, 1993; Pillay & Wang, 

i i i

i

i i

No.
Classification / 

Organization
Score

Qualification / 

Education Level
Score

Experience / 

Service Time 

(years)

Score
Total 

Score

Weight 

Factor

Expert 1 Engineer 3 Bachelor (B.Sc.) 3  20-30 4 10 0.30

Expert 2 Engineer   3 Master (M.Sc.) 4  > 30 years 5 12 0.36

Expert 3 Junior academic 4 Master (M.Sc.) 4  10-19 3 11 0.33

Total 33 1

i


n

i 1
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2003). Experts generally use the linguistic variable to assess the importance of a 

criterion over another criterion or even to rate the alternatives with respect to different 

criteria.  

Table 4.7: Linguistic definitions of grades for PO, SC and DV  

 

A Fuzzy number describes the relationship between an uncertain quantity and a 

membership function, µ, ranging between 0 and 1. Let the PO of a failure be defined by 

TPFNPO, the SC of failure by TPFNSC and also DV by TPFNDV. Table 4.7 demonstrates a 

seven-grade qualitative scaling system for the PO, SC and DV and the membership 

functions. Experts need to select linguistic terms for presenting their opinions by their 

preference. It is not demanded that all experts must use the same linguistic terms and it 

is not required for all linguistic terms to be placed symmetrically and to have an 

outcome. Therefore, experts and decision-makers have more independent right to 

present their opinions; also, each linguistic term should be treated as a whole and the 

only concern is about its determinacy and consistency (Ma et al., 2007; Karahalios, 

2009). Based on the definition of risk, Equation ( 4.1) and seven grades for PO, SC and 

DV (Table 4.7), the relative grades of risk are obtained and demonstrated in Figure 4.6, 

Figure 4.7 and Figure 4.8. 

a b c d

Very Low Minore Very High 0.0 0.0 0.1 0.2
u(x) u(x) u(x) 0.0 1.0 1.0 0.0

Low Very Low High 0.1 0.2 0.3

u(x) u(x) u(x) 0.0 1.0 0.0

Mol. Low Low Moderate 0.2 0.3 0.4 0.5

u(x) u(x) u(x) 0.0 1.0 1.0 0.0

Medium Moderate Low 0.4 0.5 0.6

u(x) u(x) u(x) 0.0 1.0 0.0

Mol. High High Remote 0.5 0.6 0.7 0.8

u(x) u(x) u(x) 0.0 1.0 1.0 0.0

High Very High Very remote 0.7 0.8 0.9

u(x) u(x) u(x) 0.0 1.0 0.0

Very High Hazardous without warning Absolutely impossible 0.8 0.9 1.0 1.0

u(x) u(x) u(x) 0.0 1.0 1.0 0.0

Scaling system for severity of 

consequence (SC)

Scaling system for 

detection of 

vulnerability (DV)

Lf1

Membership function 
Grade

Scaling system for 

probability of 

occurrence (PO)

Lf5

Lf6

Lf7

Lf2

Lf3

Lf4
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Figure 4.6: Linguistic terms of probability of occurrence (PO) 

 

 

Figure 4.7: Linguistic terms of severity of consequence (SC) 

 

 

Figure 4.8: Linguistic terms of detection of vulnerability (DV) 

According to the definition in the standard categories of risk level can be determined as 

shown in the following example: Rf Moderate = PO Low ⊗ SC Moderate ⊗ DV Remote 

denotes Fuzzy risk variable and is presented in Figure 4.9 and Table 4.8 shows the 

qualitative scales for risk and TPFNs.  
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Figure 4.9: Linguistic terms of Rf . 

 

 

Table 4.8: Qualitative scales for risk and TPFN 

 

4.4 Case study: Fuzzy risk assessment of a JDR 

In Section 4.3 of this chapter, a methodology for the MODU’s risk assessment is 

presented and formalised. In this section, the application and how the proposed 

methodology is implemented and deployed will be discussed. A JDR, one of the most 

popular types of mobile offshore units, which plays a very important role in the drilling, 

exploration and production processes in offshore industries, is selected as a case study. 

MODUs and JDRs also share the common problems of data uncertainty. Therefore, to 

N0.

1 Very Low 0.000 0.000 0.001 0.008
U(x) 0.000 1.000 1.000 0.000

2 Low 0.000 0.001 0.008 0.027
U(x) 0.000 0.000 1.000 0.000

3 Mol. Low 0.008 0.027 0.064 0.125
U(x) 0.000 1.000 1.000 0.000

4 Medium 0.000 0.064 0.125 0.216
U(x) 0.000 1.000 0.000

5 Mol. High 0.125 0.216 0.343 0.512
U(x) 0.000 1.000 1.000 0.000

6 High 0.000 0.343 0.512 0.729
U(x) 0.000 1.000 0.000

7 Very High 0.512 0.729 1.000 1.000
U(x) 0.000 1.000 1.000 0.000

Scaling system for Rf
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obtain a general evaluation of the risk level of the JDR, it is necessary to consider the 

hazards due to operation. It must be noted that the principles used for the HAZID which 

were presented in Chapter 3 are similar to the ones for the JDR, and the same HG for 

risk assessment of the JDR is considered. The main step of the research’s practical work 

is that the hierarchy of system components of the JDR is defined and the relevant 

weight of each of the components has been calculated. As is shown in Figure 4.10, there 

are many hazards with different natures and categories but in this study only the ones 

with a high potential failure rate (i.e. Failure due to Drilling) which can directly affect 

people, the environment, asset and reputation will be examined. That means failure of 

the JDR will be regarded as an illustrative risk factor for the purpose of this case study. 

Therefore, the most critical events on the JDR operation can be mitigated in a timely 

manner before they turn to failure. 

4.4.1 Implementation and evaluation of the proposed framework 

The general Fuzzy-AHP evaluation method should be an effective approach, because 

there are many factors that have an effect on the JDR’s risk assessment and it is usually 

very difficult to fully quantify all the factors. However, there is little convincing 

technical research regarding the use of this method in the JDR’s risk assessment. On the 

basis of investigation and consulting relevant documentations and experts, the HAZID 

index is established. The data collection process consists of two stages, which are 

required to develop the Fuzzy expert judgement system, as well as collecting 

information required for model building and data for the case study of a JDR system. 

The case study is gathered and analysed to prove the concept of the developed model. 

An expert panel can determine the grade and importance of risk for each risk item. 

Expert judgement was used to develop a qualitative scale for both contributory factors 

and risk factors for BEs. With this qualitative scale, the aggregative JDR risk can then 

be determined from the hierarchical structural model shown in Figure 4.10. 

The JDR’s HG consists of six categories, i.e. L1S- Soil Failure, L1D-Drilling Failure, 

L1T-Towing Failure, L1M-Mooring Failure, L1V - Vessel Collision, L1F-Fire / 

Explosion Misc. Each category also contains many single performance indexes; for 
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example, L1D-Drilling Failure contains Natural Hazard risk (L1D-N1), Operational 

Failure risk (L1D-O1) and Failure due to Human risk (L1D-H1). 

 

Figure 4.10: JDR’s HG ranking 

The framework of the evaluation index is demonstrated in Figure 4.2. Linguistic terms 

are assigned to the pair-wise comparisons by asking which is the more important of 

each pair of HGs in terms of their capacity to contribute to the failure of the JDRs. 

Table 4.9 illustrates the pair-wise comparison matrices among all the HGs in the 

dimensions of the hierarchy system. The result of the pair-wise comparisons of HGs is 

summarised and ranked in Table 4.10. The result from this analysis shows that the 

Drilling Failure (L1D) is a critical item within the identified HGs as shown in 

Figure 4.10 and is selected for further assessment. 

 

 

 

 

 

People 0.397

Asset 0.179

Environment 0.285

Reputation 0.139

People 0.481 People 0.341 People 0.432 People 0.339 People 0.384 People 0.377

Asset 0.145 Asset 0.175 Asset 0.130 Asset 0.178 Asset 0.158 Asset 0.132

Environment 0.263 Environment 0.332 Environment 0.328 Environment 0.327 Environment 0.286 Environment 0.334

Reputation 0.111 Reputation 0.153 Reputation 0.109 Reputation 0.157 Reputation 0.173 Reputation 0.158

VC - vessel 
collision w=0.12

L1D-Drilling 

Failure w=0.22
L1S- Soil Failure  

w=0.21
L1T-Towing 

Failure w=0.19

L1F-Fire / Expl. 
Misc/ w=0.11

L1M-Mooring 
Failure  w=0.15

Mobile Offshore Drilling Failure                                                                         
[ Jack-up Drilling Rig (JDR) Failure ]  (W=1)
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Table 4.9: Pair-wise comparisons matrix of HGs of JDR 

 

 

Table 4.10: Ranking of HGs of a JDR 

 

4.4.1.1 Constructing the hierarchical framework of a JDR 

Figure 4.2 represents a hierarchical structural model of aggregative risk involving three 

major attributes of the JDR, i.e. Natural hazard (L2D-N1) with the relevant weight of 

contribution (WD2N), Operational failure (L2D-O1) with the relevant weight of 

contribution (WD2O) and failure due to Human error (L2D-H1) with the relevant 

weight of contribution (WD2H) at attribute Level-2. Each Level-2 attribute is divided 

further into its Level-3 attributes, (e.g. Failure due to Human error is divided into three 

levels: Drilling failure due to failure to follow organisational policies and procedures 
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L1S- Soil Failure  1 0.90 1.25 1.58 1.75 1.81

L1D-Drilling Failure      1.111 1 1.167 1.542 1.729 1.792

L1T-Towing Failure 0.803 0.86 1 1.450 1.675 1.750

L1M-Mooring Failure  0.631 0.65 0.69 1 1.409 1.545

L1V - vessel collision 0.570 0.58 0.60 0.71 1 1.231

L1F-Fire / Explosion Misc 0.552 0.56 0.57 0.65 0.81 1

No Ranking Value

1 L1D-Drilling Failure      0.22

2 L1S- Soil Failure  0.21

3 L1T-Towing Failure 0.19

4 L1M-Mooring Failure  0.15

5 L1V - vessel collision 0.12

6 L1F-Fire / Explosion Misc 0.11
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(L3D-H1-01), Drilling failure due to management/supervision/staff (L3D-H1-02) and 

individual competence/motivation (L3D-H1-O3)). 

The risk factors for BEs are proposed to be implemented at the lower levels of the 

hierarchy. The hierarchical model structure consists of sixteen BEs at Level 3, which 

correspond to the three main categories in level 2. The basic risk factor of level 3 will 

be combined with the results of these fifteen contributions’ weight factors of the Fuzzy-

AHP hierarchy in order to generate the risk of the JDR’s failure. The crisp defuzzified 

results of the three categories, i.e. Natural hazard (L1D-N1), Operational Failure (L1D-

O1) and failure due to Human error (L1D-H1) are combined together through a model 

hierarchy which calculates the risk of failure index of the JDR. 

4.4.1.2 Constructing a Fuzzy-AHP framework and Fuzzy judgement matrix  

Table 4.11 shows the comparison matrix for comparing dimensions in level 3 in terms 

of relative contribution and importance of their capacity to lead to the JDR’s failure. 

After each element has been compared, a paired comparison matrix is formed in 

Table 4.12 where 8 is the order of matrix. 

Table 4.11: Pair-wise comparison matrix for BEs 

 

Then the consistency property in the pair-wise comparison is examined by the stepwise 

procedure as presented in Section 4.3. 

L2D-O1    
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L3D-O1-01 1.00 1.26 1.37 1.47 1.53 1.58 1.68 1.63 WD3O-1 0.17

L3D-O1-02 0.8 1.00 1.14 1.29 1.4 1.43 1.57 1.5 WD3O-2 0.15

L3D-O1-03 0.7 0.88 1.00 1.2 1.25 1.3 1.50 1.4 WD3O-3 0.14

L3D-O1-04 0.7 0.78 0.86 1.00 1.10 1.20 0.60 0.80 WD3O-4 0.11

L3D-O1-05 0.66 0.74 0.80 0.91 1.00 1.11 1.33 1.22 WD3O-5 0.11

L3D-O1-06: 0.63 0.70 0.8 0.83 0.9 1.00 1.25 1.1 WD3O-6 0.11

L3D-O1-07 0.59 0.64 0.67 1.7 0.75 0.8 1.00 0.83 WD3O-7 0.10

L3D-O1-08 0.61 0.67 0.71 1.25 0.82 0.89 1.20 1.00 WD3O-8 0.11

Ranking alternatives for L2D-O1: Operational 

Contribution 

weight Factor
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Table 4.12: Weights of contributory factors for BEs  

 

 

Figure 4.11: A three-stage structural model for risk aggregation of a JDR 

 

Figure 4.11 shows the building blocks of the JDR’s hierarchical structural model for 

risk aggregation. Each BE is partitioned into its contributory factors, which are the 

result of Fuzzy-AHP, and each of those can be further partitioned into upper-level 

contributory factors. Each factor was weighted according to the estimated significance 

of the JDR’s failure. 

Basic Event Basic Event

L3D-O1-01 WD3O-1 0.17 L3D-N1-01                                                          WD3N-1 0.08

L3D-O1-02 WD3O-2 0.15 L3D-N1-02                                                         WD3N-2 0.37

L3D-O1-03 WD3O-3 0.14 L3D-N1-03                                                        WD3N-3 0.26

L3D-O1-04 WD3O-4 0.11 L3D-N1-04                                                          WD3N-4 0.09

L3D-O1-05 WD3O-5 0.11 L3D-N1-05                                                         WD3N-5 0.20

L3D-O1-06 WD3O-6 0.11 L3D-H1-01 WD3H-1 0.33

L3D-O1-07 WD3O-7 0.10 L3D-H1-02 WD3H-2 0.33

L3D-O1-08 WD3O-8 0.11 L3D-H1-03 WD3H-3 0.33

AHP-Weight AHP-Weight

Crisp Value
      Risk      

(Level 3)

      Risk      

(Level 2)

      Risk      

(Level 1)

L3D-N1-01                                                          WD3N-1 0.08 0.44 0.036

L3D-N1-02                                                         WD3N-2 0.37 0.64 0.236

WD2N 0.20

L3D-N1-03                                                        WD3N-3 0.26 0.46 0.119

L3D-N1-04                                                          WD3N-4 0.09 0.44 0.040

L3D-N1-05                                                         WD3N-5 0.20 0.42 0.084

L3D-O1-01 WD3O-1 0.17 0.38 0.064

L3D-O1-02 WD3O-2 0.15 0.47 0.070

L3D-O1-03 WD3O-3 0.14 0.43 0.060

WD2N 0.35 L3D-O1-04 WD3O-4 0.11 0.53 0.059

WD1 0.22

L3D-O1-05 WD3O-5 0.11 0.59 0.065

L3D-O1-06 WD3O-6 0.11 0.41 0.045

L3D-O1-07 WD3O-7 0.10 0.38 0.038

L3D-O1-08 WD3O-8 0.11 0.47 0.052

L3D-H1-01 WD3H-1 0.45 0.58 0.263

L3D-H1-02 WD3H-2 0.30 0.56 0.168

WD2N 0.45 L3D-H1-03 WD3H-3 0.25 0.56 0.140

L2D-O1: Operational   WD2O 

L2D-H1:   Human      WD2H

0.103

0.158

0.257

0.114

L2D-N1:             Natural 

Hazard       

Level  1 Level  2 Level  3 (Basic events) 
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4.4.2 The estimation of the risk and decision-making 

The full view of the hierarchical Fuzzy model is shown in Figure 4.2, which details the 

processing of the observed characteristics of the JDR system. The proposed framework 

is capable of quantifying judgements from experts who express their opinions 

qualitatively. The first step of the proposed framework is to obtain the risk of each 

hazard by using FST.  

The second step is to calculate weight factors for each hazard in the framework. Since 

the study incorporates FST into a Fuzzy-AHP method, a set of linguistic priority terms 

along with the membership functions describing the relationship between elements in 

each hierarchy of the AHP is adopted. Thus, the pair-wise comparisons between the 

elements in each hierarchy using FST are established. The linguistic variables which 

were defined by Rf s with membership functions are shown in Table 4.13. Then, the 

Fuzzy expressions are subsequently converted into a single crisp value using an 

appropriate defuzzification method. This is followed by the weighting contributory 

factors calculation so as to obtain the relative importance of elements illustrated in 

Table 4.14. By repeating the steps above, the risk of each element in the hierarchy is 

acquired based on the normalised weight factors calculated.  
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Table 4.13: Linguistic definitions of grades for PO, SC and DV  

 

PO High 0.7 0.8 0.9 0.303 Mol. High 0.5 0.6 0.7 0.8 0.364 Medium 0.4 0.5 0.6 0.333

SC Low 0.1 0.2 0.3 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Very Low 0 0 0.1 0.2 0.333

DV Medium 0.4 0.5 0.6 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Very Low 0 0 0.1 0.2 0.333

PO Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 Medium 0.4 0.5 0.6 0.333

SC Very High 0.8 0.9 1 1 0.303 Very High 0.8 0.9 1 1 0.364 Very High 0.8 0.9 1 1 0.333

DV Low 0.1 0.2 0.3 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Medium 0.4 0.5 0.6 0.333

PO Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Medium 0.4 0.5 0.6 0.333

SC High 0.7 0.8 0.9 0.303 Medium 0.4 0.5 0.6 0.364 High 0.7 0.8 0.9 0.333

DV Low 0.1 0.2 0.3 0.303 Low 0.1 0.2 0.3 0.364 Low 0.1 0.2 0.3 0.333

PO High 0.7 0.8 0.9 0.303 Mol. High 0.5 0.6 0.7 0.8 0.364 Medium 0.4 0.5 0.6 0.333

SC Low 0.1 0.2 0.3 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Very Low 0 0 0.1 0.2 0.333

DV Medium 0.4 0.5 0.6 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Very Low 0 0 0.1 0.2 0.333

PO Low 0.1 0.2 0.3 0.303 Medium 0.4 0.5 0.6 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333

SC High 0.7 0.8 0.9 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 High 0.7 0.8 0.9 0.333

DV Low 0.1 0.2 0.3 0.303 Low 0.1 0.2 0.3 0.364 Low 0.1 0.2 0.3 0.333

PO Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Mol. Low 0.2 0.3 0.4 0.5 0.333

SC Low 0.1 0.2 0.3 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Medium 0.4 0.5 0.6 0.333

DV Medium 0.4 0.5 0.6 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Medium 0.4 0.5 0.6 0.333

PO Medium 0.4 0.5 0.6 0.303 Mol. High 0.5 0.6 0.7 0.8 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333

SC Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 High 0.7 0.8 0.9 0.333

DV Low 0.1 0.2 0.3 0.303 Very Low 0 0 0.1 0.2 0.364 Low 0.1 0.2 0.3 0.333

PO Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Medium 0.4 0.5 0.6 0.333

SC Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333

DV Low 0.1 0.2 0.3 0.303 Very Low 0 0 0.1 0.2 0.364 Low 0.1 0.2 0.3 0.333

PO High 0.7 0.8 0.9 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333

SC Mol. High 0.5 0.6 0.7 0.8 0.303 High 0.7 0.8 0.9 0.364 Very High 0.8 0.9 1 1 0.333

DV Low 0.1 0.2 0.3 0.303 Very Low 0 0 0.1 0.2 0.364 Low 0.1 0.2 0.3 0.333

PO High 0.7 0.8 0.9 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333

SC Very High 0.8 0.9 1 1 0.303 Very High 0.8 0.9 1 1 0.364 Very High 0.8 0.9 1 1 0.333

DV Low 0.1 0.2 0.3 0.303 Very Low 0 0 0.1 0.2 0.364 Low 0.1 0.2 0.3 0.333

PO Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.333

SC Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333

DV Low 0.1 0.2 0.3 0.303 Very Low 0 0 0.1 0.2 0.364 Low 0.1 0.2 0.3 0.333

PO Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Mol. Low 0.2 0.3 0.4 0.5 0.333

SC Low 0.1 0.2 0.3 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Medium 0.4 0.5 0.6 0.333

DV Medium 0.4 0.5 0.6 0.303 Mol. Low 0.2 0.3 0.4 0.5 0.364 Medium 0.4 0.5 0.6 0.333

PO Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Medium 0.4 0.5 0.6 0.333

SC High 0.7 0.8 0.9 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333

DV Low 0.1 0.2 0.3 0.303 Very Low 0 0 0.1 0.2 0.364 Low 0.1 0.2 0.3 0.333

PO Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 High 0.7 0.8 0.9 0.333

SC High 0.7 0.8 0.9 0.303 Mol. High 0.5 0.6 0.7 0.8 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333

DV Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Medium 0.4 0.5 0.6 0.333

PO Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 High 0.7 0.8 0.9 0.333

SC Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 High 0.7 0.8 0.9 0.333

DV Very Low 0 0 0.1 0.2 0.303 Low 0.1 0.2 0.3 0.364 Low 0.1 0.2 0.3 0.333

PO Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 High 0.7 0.8 0.9 0.333

SC Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 High 0.7 0.8 0.9 0.333

DV Very Low 0 0 0.1 0.2 0.303 Low 0.1 0.2 0.3 0.364 Low 0.1 0.2 0.3 0.333

L3D-H1-01 0.18

L3D-H1-03 0.17

L3D-H1-02 0.17

L3D-O1-08 0.14

L3D-O1-07 0.11

L3D-O1-06 0.12

L3D-O1-05 0.18

L3D-O1-04 0.16

L3D-O1-03 0.13

L3D-O1-02 0.14

L3D-O1-01 0.11

L3D-N1-05                                                        0.13

L3D-N1-04                                                         0.13

L3D-N1-03                                                         0.14

L3D-N1-02                                                         0.19

L3D-N1-01                                                          0.13

Linguistic 

terms 

Level 3                

(BE)

Risk 

Element

Linguistic 

terms 

Linguistic 

terms 
Expert (1) Expert (2) Expert (3)

Crisp 

No.
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Table 4.14: Weights of contributory factors and crisp value of BEs  

 

4.4.2.1 Risk aggregation and risk ranking matrix 

As illustrated in Table 4.15, the risk aggregation matrix for the JDR is established and 

as showed in Figure 4.12 the contributory factors as well as the BE calculated factors 

for all three levels are presented. 

Table 4.15: Risk aggregation matrix  

 

Basic Event Fuzzy-Crisp Value

L3D-N1-01                                                          WD3N-1 0.08 0.44

L3D-N1-02                                                         WD3N-2 0.37 0.64

L3D-N1-03                                                        WD3N-3 0.26 0.46

L3D-N1-04                                                          WD3N-4 0.09 0.44

L3D-N1-05                                                         WD3N-5 0.20 0.42

L3D-O1-01 WD3O-1 0.17 0.38

L3D-O1-02 WD3O-2 0.15 0.47

L3D-O1-03 WD3O-3 0.14 0.43

L3D-O1-04 WD3O-4 0.11 0.53

L3D-O1-05 WD3O-5 0.11 0.59

L3D-O1-06 WD3O-6 0.11 0.41

L3D-O1-07 WD3O-7 0.10 0.38

L3D-O1-08 WD3O-8 0.11 0.47

L3D-H1-01 WD3H-1 0.33 0.58

L3D-H1-02 WD3H-2 0.33 0.56

L3D-H1-03 WD3H-3 0.33 0.56

AHP-Weight

Attribute 

Level 2

Contribution 

Weight Factor

 Risk 

Factor 

Attribute 

Level 2

Contribution 

Weight Factor

 Risk 

Factor 
Basic Event

Contribution 

Weight Factor

Basic Events Risk 

Factor 

L3D-N1-01                                                          0.08 0.44

L3D-N1-02                                                         0.37 0.64

L2D-N1 WD2N 0.20 L3D-N1-03                                                        0.26 0.46

L3D-N1-04                                                          0.09 0.44

L3D-N1-05                                                         0.20 0.42

L3D-O1-01 0.17 0.38

L3D-O1-02 0.15 0.47

L3D-O1-03 0.14 0.43

L1D-D WD1N 0.22 L2D-O1 WD2O 0.35 L3D-O1-04 0.11 0.53

L3D-O1-05 0.11 0.59

L3D-O1-06 0.11 0.41

L3D-O1-07 0.10 0.38

L3D-O1-08 0.11 0.47

L3D-H1-01 0.33 0.58

L2D-H1 WD2H 0.45 L3D-H1-01 0.33 0.56

L3D-H1-01 0.33 0.56

Level  1  Level  2  Level  3 (Basic events) 
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Figure  4.12: Risk aggregation hierarchy and risk ranking  

Crisp Value
      Risk      

(Level 3)

      Risk      

(Level 2)

      Risk      

(Level 1)

L3D-N1-01                                                          WD3N-1 0.08 0.44 0.036

L3D-N1-02                                                         WD3N-2 0.37 0.64 0.236

WD2N 0.20

L3D-N1-03                                                        WD3N-3 0.26 0.46 0.119

L3D-N1-04                                                          WD3N-4 0.09 0.44 0.040

L3D-N1-05                                                         WD3N-5 0.20 0.42 0.084

L3D-O1-01 WD3O-1 0.17 0.38 0.064

L3D-O1-02 WD3O-2 0.15 0.47 0.070

L3D-O1-03 WD3O-3 0.14 0.43 0.060

WD2N 0.35 L3D-O1-04 WD3O-4 0.11 0.53 0.059

WD1 0.22

L3D-O1-05 WD3O-5 0.11 0.59 0.065

L3D-O1-06 WD3O-6 0.11 0.41 0.045

L3D-O1-07 WD3O-7 0.10 0.38 0.038

L3D-O1-08 WD3O-8 0.11 0.47 0.052

L3D-H1-01 WD3H-1 0.45 0.58 0.263

L3D-H1-02 WD3H-2 0.30 0.56 0.168

WD2N 0.45 L3D-H1-03 WD3H-3 0.25 0.56 0.140

L2D-O1: Operational   WD2O 

L2D-H1:   Human      WD2H
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0.158
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0.114

L2D-N1:             Natural 

Hazard       

Level  1 Level  2 Level  3 (Basic events) 

L1
D

-D
ri

ll
in

g
 

F
a

il
u

re
   

   



A Novel Engineering Framework for Risk                             CHAPTER 4: Fuzzy Risk Assessment 
Assessment of Mobile Offshore Drilling Units                      of Mobile Offshore Drilling Units 

 

  
102  

4.5 Results and discussion 

In this study, a model is established in order to assess the MODU’s risk level. This 

model is based on determining the most significant HG that may cause failure of the 

MODUs. Risk assessments of MODUs provide valuable information to the decision-

maker regarding the risk level of an operation system, although the quality of risk 

assessment not only relates to the scientific building blocks of the assessments but is 

also dependent on the role of the assessments in the decision-making process.  

The application and how the proposed methodology takes into account the challenging 

characteristics of the MODU’s risk assessment effectively provides information for 

decision-makers as well as a reduced risk to the MODU, by estimating risk levels and 

assessing their significance. This helps decide whether the risks need to be reduced, 

whist identifying the main contributors to the risk, helps in understanding the nature of 

the hazards and suggests possible targets for risk-reduction measure. Evaluating risk 

reduction measures can be linked to a cost-benefit analysis and help choose the most 

cost-effective ways of reducing the risk. 

4.6 Conclusion 

QRA is a necessary and critical task for offshore operations. Understanding risk 

assessment entails understanding the underlying factors that contribute to the MODU’s 

failure, which are often the same regardless of the nature of the offshore installation 

activities. In this study, Fuzzy set theory is used to represent the characteristics of a 

hazard such as likelihood of occurrence and consequence severity, and Fuzzy-AHP is 

used to determine the degree of importance of the factors and sub-factors in the model 

of each HG in terms of its contributions to the MODU’s failure. In risk assessment, the 

issue of how to manage uncertainty is a major concern. However, the causes of 

uncertainty are diverse. Thus, regardless of what approach is to be applied, it is always 

dependent upon human judgement to manage such negative effects. In other words, the 

deficiencies of risk modelling resulting from the lack of information or a high level of 

uncertainty must be addressed by means of the general evaluation capacity of humans, 
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who are able to grasp the essence of an object, even if it is vague and unclear. 

Therefore, the experience of experts consulted is crucial, since the cornerstone of such 

uncertainty treatment is the professional judgement of such personnel. The risk 

assessment frameworks proposed and based on FST in this study are capable of 

handling imprecise, ambiguous and qualitative information from experts in a consistent 

manner. These can be regarded as reliable reasoning processes with the capability of 

quantifying the judgement from experts who express their opinions qualitatively. The 

frameworks have been developed in a generic sense to be applicable to deal with both 

engineering and managerial problems. It is also believed that these methods can be 

tailored to practical applications of dealing with safety problems in other industries, 

especially in situations where a high level of uncertainty exists. The implementation of 

the described approaches could have a highly beneficial effect in real life. More 

importantly, these frameworks can be integrated to formulate a platform to facilitate risk 

assessment of the MODU’s operations system without jeopardising the efficiency of 

operations in a variety of situations where traditional techniques may not be applied 

with confidence. In offshore safety, under circumstances where a lack of data or a high 

level of uncertainty exists, a large number of assumptions, judgements and opinions are 

involved subjectively in the reasoning process. Other than an approximate reasoning 

approach, new approaches capable of addressing uncertainty and combining expert 

judgement and empirical data should be developed. 
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5 CHAPTER 5: Fuzzy FTA for MODU’s risk assessment 

Chapter Summary 

Risk is a quantitative value which reflects the adverse outcome of an activity or event in 

terms of the probability of occurrence. Probabilistic risk assessment is a comprehensive, 

structured method for identifying hazards and assessing risk in complex systems. Many 

techniques and methodologies are available to conduct both qualitative and QRA. FTA 

is used in qualitative risk assessment to identify the basic causes leading to an undesired 

event, to represent the logical relationships of these basic causes in leading to the event, 

and finally to calculate the probability of occurrence of this event in a system. A new 

methodology for the assessment of the risk level of the MODUs is presented that 

considers in detail the operational failure of the drilling systems focusing on mud 

circulation and the BOP systems. The main purpose is to propose a methodology to 

improve the present procedures used in the risk assessment of Mobile MODUs. The 

proposed methodology comprises a number of stages: i) Identifying critical events that 

may lead to the MODU’s operation system failure, ii) Establishing an operational 

hierarchy system diagram with a breakdown of the events in detail for the most 

significant HG, iii) Translating into FT and performing the analysis in order to identify 

areas for further safety improvement, and iv) Determination of minimal cut sets (MCSs) 

probability analysis and measures to rank the MCSs according to their contributions to 

the failure of MODU systems. FTA is a widely used reliability assessment tool for 

complex engineering systems. However, due to the inherent imprecision and uncertainty 

of the available data, it is often impossible to obtain an exact estimation of the rate of 

occurrence of an event or its probability distribution function. To reduce the ambiguity 

and imprecision arising from the subjectivity of data, a Fuzzy approach may be used 

with the FTA method. The aim is to prevent a critical event occurring during drilling 

rather than focusing on measures that mitigate the consequences once an event has 

occurred. For the purpose of developing a risk analysis and decision support model, a 

realistic and practical approach has been chosen. 
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5.1 Introduction  

Offshore installation and operations involve a very complicated process with attendant 

risks to people, the environment and property or economic assets. As an offshore 

operation system, an MODU faces hazards from many different sources which threaten 

its integrity; thus, it is exposed to a wide range of uncertain threats and hazards. 

Therefore, its performance under various conditions has received considerable attention. 

Ensuring the system’s operational safety is often a complex problem. The main purpose 

of this chapter is to introduce a methodology to improve the current procedures using 

risk assessment and to facilitate decision-making for reducing risk. The traditional 

methods of carrying out risk assessment during construction or after the occurrence of 

accidents have proved to be costly and often lack the flexibility to apply alternative 

remedial options (Khan & Amyotte, 2002). This chapter presents a comprehensive and 

transparent study on the evaluation of the risk assessment of an MODU using the Fuzzy 

FTA technique. A methodology for quantification and evaluation of the FT in a Fuzzy 

environment is proposed. Frameworks of risk assessment are developed based on the 

concept of object-oriented assessment and characteristics of MODUs, together with an 

object-oriented hierarchy to represent the relationships between components, sub-

systems, and the overall system. 

Risk assessment provides a logical and qualitative and/or quantitative base for analysing 

the circumstances that can lead to the system’s failure and for sub-dividing them down 

into system and component contributions to this failure. Therefore, a risk assessment 

approach provides a platform for identifying, structuring, and evaluating safety 

performance measures at different stages of design, construction, transportation, 

installation and operation. Also, risk assessment provides a convenient basis for linking 

safety performance with reliability. The objectives of this research are to ensure the 

achievement of the above through the various steps. The safe performance of any 

operation and/or production system is to a great extent reliant upon the condition of its 

components. Closely monitoring the condition of the critical components and carrying 

out timely system analysis would help to reduce the risk and the frequency of failures. 

Several analytical methods of reliability analysis and risk management are available. 

Probabilistic risk assessment (PRA) is a comprehensive, structured and logical approach 
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aimed at identifying hazards and assessing the risks of complex systems (Mohaghegh et 

al., 2009), of which FTA is one technique (Figure 5.1). The purpose of each method and 

its individual or combined applicability in evaluating the reliability and availability of a 

given system or component should be examined by the analysts before starting any 

analysis, and consideration should also be given to the results available from each 

method. 

 

Figure  5.1: Relationship between probabilistic risk assessment and risk  

FTA is widely used to evaluate the reliability of complex engineering systems from 

both qualitative and quantitative perspectives. It provides a graphical representation of 

combinations of component failures leading to an undesired system failure (Haasl et al., 

1981b). However, in many situations, the behaviours of components in a complex 

system and their interactions, such as failure priority, sequentially dependent failures, 

functional dependent failures and dynamic redundancy management, cannot be 

adequately addressed by traditional FTA due to its limited modelling capability. An 

FTA is a technique for analysing the Top event (TE), which causes the system failure. It 

is a top-down, deductive analysis structured in terms of events leading to the occurrence 

of the top event (Ericson, 2005). The FT is useful for understanding the mode of 
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occurrence of an accident. Furthermore, given the failure probabilities of the BEs, i.e. 

system components, the occurrence probability of the TE can be calculated. In the 

conventional approach, the probability of the BEs is considered either as a precise point 

value or as a random, time-dependent variable. However, due to the inherent 

imprecision and uncertainty of the available data, it is often impossible to obtain an 

exact estimation of an event’s occurrence rate or its distribution function. In such cases, 

the Fuzzy approach is among the best choices for analysing the system (Sallak et al., 

2008). In addition, in calculating the likelihood of a top-level event, FTA also shows the 

contributions of each of the BEs. There are a number of approaches to FTA, among 

them minimum cut set is widely used. For a complex FT, thousands of MCSs may be 

possible. Even if the MCSs can be successfully determined, there exists another 

problem, which is to rank the MCSs according to their contributions to the top event. 

The method that is presented in this chapter considers measures of both risk and 

uncertainty importance associated with each of the BEs. Therefore, a new importance 

distribution function during the defuzzification process is proposed. Furthermore, the 

proposed method extends the conventional minimum cut sets, Fussell-Vesely 

importance measures and risk reduction measures into the Fuzzy environment. These 

importance measures can be effectively used for the ranking of the minimum cut sets 

and the BEs according to their contribution to the top event probability (Aksu et al., 

2007).  

A new methodology for the risk assessment of the MODUs is presented that considers 

the operational failure of the drilling systems, concentrating on the high-pressure mud 

circulation including the blow-out preventer system, in which the mud column is the 

primary barrier and the secondary barrier is the blowout preventer, which protects the 

well from a disaster as the last resort (NORSOK D-010, 2004). The proposed 

methodology provides a rational and systematic approach for risk assessment. The main 

steps in the methodology start with identifying the probable critical events that may lead 

to operational failure, followed by establishing an operational hierarchy system 

diagram, and breaking down the events in detail with respect to the main function and 

then finally translating the operational hierarchy to FT and performing the analysis to 

identify areas for safety improvement.  
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5.2 Literature review 

FTA is one of many symbolic analytical techniques used in operations research and 

system reliability. This review is conducted to establish a basis for this research, 

particularly in identifying the areas where gaps exist as well as supporting decisions 

about the most appropriate modelling processes to be developed for processing data in 

order to achieve the objectives. FTA was first introduced in 1961 by H. A. Watson of 

Bell Telephone Laboratories in connection with a US Air Force contract to study the 

Minuteman missile launch control system (Watson, 1961). It was implemented 

relatively quickly into other fields, such as the reliability analysis of computing and 

electrical systems (Nieuwhof, 1975; Dugan et al., 1993). It was also adopted and 

extensively applied by the Boeing Company. Another early user was the National 

aeronautics and space administration (NASA). NASA began using risk analysis by 

conducting simple analysis of observed failures, and then progressed over time to the 

use of probabilistic models to predict probability of failures within their systems (Paté-

Cornell & Dillon, 2001). One of the main handbooks of FTA, the "Fault Tree 

Handbook", was written by the US nuclear regulatory commission (NRC) in 1981 to 

serve as a reference text for the system safety and reliability course (Haasl et al., 

1981a). The technique has also been frequently used for accident investigation, as it 

identifies the relations between causes and their logic. It is a typical tool for system 

engineering, designed for safety and reliability applications, which has gradually been 

used in several industrial sectors such as the offshore industry (Umar, 2010).  

Probability risk assessment is commonly used to assess uncertainty within a system. 

One of the strengths of the approach is that it provides a systematic means of 

quantifying the effect of uncertainties by combining probability estimates for different 

possible failure mechanisms within the system so that an overall probability of system 

failure can be assessed. FTA emphasises the causes of failure for a system as a series of 

individual BEs and provides a visual representation of the series of events that can lead 

to failure of that system. FTA is useful as not only does it give a visual representation of 

the system but it also provides a basis for identifying and combining the probabilities of 

events impacting on system failure through Boolean logic statements (Bedford & 

Cooke, 2001). Boolean algebra of probability theory and mathematical statistics are the 
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basis of FTA. However, the environmental fuzziness and the imprecision of data have 

an impact on the probability of the event’s occurrence. Thus, it is difficult to estimate 

the probability of the event’s happening by using an exact value. As a result, it is 

necessary to introduce the Fuzzy concept into FTA (Markowski et al., 2009). The Fuzzy 

extension principle combined with the FT approach makes it possible to determine the 

occurrence probability of a top event (Mentes & Helvacioglu, 2011). Singer (1990) 

reported the analysis of Fuzzy reliability using Fuzzy numbers. In order to facilitate the 

calculations in Singer’s method, Chen et al. (1995) presented revised methods to 

analyse the FT by specifically considering the failure probabilities of BEs as triangular 

Fuzzy numbers. Huang (2004) adopted probability theory to analyse a Fuzzy FT and 

Shu et al. (2006) used intuitionistic Fuzzy methods to analyse an FT in a study on a 

printed circuit board assembly. He et al. (2007) avoided the deficiency in the traditional 

FT approach by using a Fuzzy FT approach that was based on probability measures and 

FL.  

These approaches have proven to be very effective in modelling of the risks in complex 

systems, where causal relations among binary probabilistic events are deterministic 

(Crowl and Louvar, 2001). However, those causal relationships are often uncertain and 

non-deterministic. This has led to increased interest in expanding the FT methods to 

incorporate non-deterministic causal factors. Therefore, a new formal approach is 

required to capture the fuzziness and imprecision of likelihoods of multiple hazards. 

With respect to this inadequacy of the conventional FTA, extensive research has been 

performed by using Fuzzy set theory in FT analysis. The pioneering work on this 

belongs to Tanaka et al., (1983), who treated probabilities of BEs as TPFNs, and 

applied the Fuzzy extension principle to determine the probability of a top event. Based 

on work of Tanaka et al., (1983), further extensive research has been performed (Misra 

& Weber, 1990; Liang & Wang, 1993). Their analysis is based on the possibility 

distribution associated with the BEs and a Fuzzy algebra for combining these events. 

Parallel with this, Singer (1990) analysed Fuzzy reliability by using L-R type Fuzzy 

numbers. In order to facilitate the calculation of Singer’s method, Cheng & Mon (1993) 

& Chen (1994) proposed revised methods to analyse the FT by specifically considering 

the failure probabilities of BEs as triangular Fuzzy numbers. Yuhua & Datao (2005) 

used a hybrid method to analyse failure probability of oil and transmission pipelines. 
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Sawyer and Rao (1994) applied α-cuts to determine the failure probability of the top 

event in Fuzzy FTs of mechanical systems. Kai-Yuan et al. (1991), Cai et al. (1991) and 

Huang et al. (2004) adopted possibility theory to analyse Fuzzy FTs. Shu et al. (2006) 

used intuitionistic Fuzzy methods to analyse FTs on a printed circuit board assembly.  

It is obvious from the above reviews that Fuzzy FT analysis has been extensively 

studied for a long time and effectively applied to many engineering problems. However, 

its application in risk assessment of mobile offshore drilling units is rarely considered. 

As stated in Chapter 4, the complex nature of MODUs is associated with high-level risk 

arising from continuous expansion and the increased level of innovation demanded by 

the offshore industry. Many researchers have written about the need for risk assessment 

but fail to adequately satisfy risk mitigation. Lois et al. (2004) stated that the scale of 

the offshore safety problems requires continuous efforts with a view to eliminating or 

reducing hazards. The task of risk assessment in this context will mainly concentrate on 

the prevention and/or mitigation or control of risks through the entire life of the project. 

Wang et al. (1995) described the risk correlated with marine systems as a measure of 

exposure to the possibility of economic or financial loss, physical damage or injury or 

delay as a consequence of the uncertainty associated with the pursuance of a particular 

course of action. In considering this topic, a combination of several factors – such as the 

importance of the subject of safety management for an offshore platform and its overall 

importance in the oil and gas industry, as well as the applicability of the proposed 

research work to enhance QRA in the field – provides the basis for the topic. Based on 

the review conducted so far, it is evident that most efforts made previously are still 

grappling with the issue of uncertainties associated with data on most marine systems 

such as MODUs. In this chapter, therefore, the risk assessment methodology to be 

proposed will deal with such uncertainties to enable informed decision-making based on 

cost-benefit evaluation. Even though Fuzzy FTA has been applied extensively in many 

engineering problems, it is still necessary for this study to consider specific 

characteristics of the MODU systems. One of the most important characteristics is 

failure dependencies in MODU systems. This indicates that the failure of a component 

in an MODU system can be either independent or dependent on the failure of another 

component. Therefore, for proper risk assessment it is necessary to simultaneously 

consider independency and dependency. Hence, in this chapter the Fuzzy FTA method 
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has been considered for independent failure of a component, and the BBN technique is 

employed to deal with dependency of events in the process of risk assessment for 

MODUs in Chapter 6. 

5.3 A proposed integrated Fuzzy FTA methodology of MODUs  

The information generated through the evaluation of different methods of QRA will be 

used to establish a firm basis for the development of an appropriate modelling technique 

to allow for the efficient and effective analysis and assessment of the MODU failure 

data. The method is critical for the assessment of risk information related to the MODU 

operation system, especially with consideration of its associated uncertainties; the 

choice of processing techniques needs to be well thought out. This lays the foundations 

on which to base a framework for modelling the risk assessment of the system. Many 

tools and methodologies have been developed in order to assess and analyse risk, either 

qualitatively or quantitatively, in an extensive variety of disciplines. The particular 

method used eventually depends upon the environment in which the risk is placed, and 

upon the system under consideration. The proposed methodology uses the Fuzzy FT 

technique to express the causal relationship between events, their influence and their 

contribution to the failure of the system. The methodology focuses on the assessment of 

the failure of offshore operational systems (i.e. MODUs) posed through the HGs and 

their BEs. The risk analysis process includes hazard identification from a vulnerability 

analysis at the start point and is followed by adapting an operational hierarchy of the 

system into the FT. This allows representation of the MODU operation system with its 

HGs at different levels of detail. The proposed methodology is created via an object-

oriented approach to develop frameworks of FT at the component level by extracting 

the logic relationships between negative consequences, failure events and hazards, so 

that it graphically represents the system down to the lowest component level and also 

describes the influence of hazards. The quantitative solution of the Fuzzy FTA is also 

presented in order to quantitatively evaluate the cause-effect relationships in an MODU 

operation system and to facilitate decision-making. This is achieved through detailed 

examination of related risks, and a review of relevant literature and traditional safety 

assessment methods. After hazard identification and construction of an operational 
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hierarchy model, a framework is established which is capable of quantifying the 

judgements from experts.  

Since the criteria for the evaluation of the HGs have diverse significance and meanings, 

it cannot be assessed that each HG is of equal importance and weight in terms of its 

capacity to contribute to the failure of the MODU. Therefore, it is necessary to consider 

the contributory factors of each HG to the failure of the MODU. The proposed 

methodology framework, as illustrated in Figure 5.2, consists of the different stages 

which provide an illustrative view of a generic Fuzzy FTA framework proposed for the 

purpose of the MODU risk assessment, and comprises the following: 

- Identifying risk contribution factors for each HG which can contribute to the 

occurrence of the potential risk. This was performed by the Fuzzy-AHP technique 

described in Chapter 4. The Fuzzy-AHP technique is employed for hazard ranking 

and also for hazard and operability studies for identifying the probable critical 

events that may lead to the MODU’s operational failure.  

- Identifying the relationships between events and establishing an operational 

hierarchy system diagram with a detailed breakdown of the most significant HG. 

- Data collection (using input from experts where there is a lack of data). After 

hazard identification and construction of an operational hierarchy model, a 

framework is established which is capable of quantifying the judgements from 

experts. 

- Translating the operational hierarchy system diagram into a detailed Fuzzy FT, 

which depicts all possible routes for the occurrence of the probable risk, commonly 

referred to as the TE, and performing the analysis in order to identify areas for 

further safety improvement. 

- MCS determination, probability analysis and importance measures to rank the 

MCSs according to their contributions to the failures of the MODU system. 

The top event probability is calculated using both a probabilistic approach and a FL 

approach. The details have been structured from the definition of the research aim 
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Figure  5.2: Structure of the proposed methodology for MODU’s risk assessment  
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and objectives to data collection and analyses leading up to the development of a 

proposed risk assessment model. In a real system, the amount of analysis required may 

be enormous because of the number of nodes and links of the entire system and 

associated HGs. Because of the complexity of integrating the information, and in order 

to simplify the assessment processes, a manageable group of hazards has been 

considered. Each HG may be broken down into a number of simpler system 

components in different levels, as illustrated in Figure 5.3. This model will then go 

through practical application of the drilling failure of an MODU, focusing on the high-

pressure mud circulation systems including the blow-out preventer. The data are 

collected from the industry in order to validate its efficiency based on the results 

obtained. The data collection methods involve surveys, interviews and questionnaires, 

which together constitute vital information required for testing the model and 

conducting preliminary validation studies with regard to MODU risk assessment.  

5.3.1 The hierarchical structure of the proposed methodology  

Complexity is one of the hurdles limiting the application of conventional risk 

assessment methods. It is therefore necessary to explicitly discuss the potential of an 

object-oriented assessment in dealing with complexity of the MODU. In order to 

effectively analyse complex systems, a hierarchical structure of the proposed 

methodology is developed in a few different stages and presented in Figure 5.3. The 

hierarchical structure consists of different levels. The aim is to identify the sources of 

hazards of the TE, in this case Drilling Failure: L1D-O1-01 is positioned at the highest 

level, while in the second level, three HGs (i.e. Natural hazard: L2D-N1, Operational 

hazard: L2D-O1 and Human error: L2D-H1) are presented, and in level 3 the sub-

systems and the BEs are listed. Each component in this level may be influenced by 

another event or system at levels 4 and 5, in which the components/systems and BEs 

describe the MODU’s operational system, and the failure of each component may 

influence another component or system at the different levels (e.g. Drilling Control 

System Failure (L5D-O1-01-2-4) in level 5 has consequences for Drilling Equipment 

Failure (L4D-O1-01-03) at level 4 and Drilling System Failure (L3D-O1-01) at level 3
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Figure  5.3: Hazard identification and MODU operation system hierarchy diagram   
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and finally to Operational Failure (L2D-O1) at level 2). The process follows an 

investigation of the successive combinations of failures of the components until 

reaching the BEs. In circumstances where a lack or incompleteness of data exists, there 

is a need to incorporate expert judgements. A framework is proposed based on the 

Fuzzy set theory and the FTA method that is capable of quantifying the judgement from 

experts who express opinions qualitatively. 

5.3.2 Fuzzy FTA  

Fundamentally, a FTA consists of a top-down analysis structured in terms of certain 

specific causes leading to the occurrence of the top event of interest, through a 

deductive process that, from a predefined undesired event, searches for the possible 

causes of such an event. In conventional reliability analysis, the outcome of the top 

event is certain and specific as long as the assignment of the BEs originates from 

reliable information. However, in a real operation system the information is rather 

imprecise and incomplete. In this case, Fuzzy set theory can be used to define the 

probabilities of various BEs. The probability of the TE calculated thus takes into 

account the uncertainties associated with the BEs. The great popularity of the FTA 

results is basically due to the following features: 

- The large flexibility of the graphical representation of a complex operation system 

proportionate to the specific symbology. 

- The large computational easiness in function for the probabilities calculation. 

5.3.2.1 FTA 

FTA is based on boolean algebra and probability theory and is consistent with 

conventional reliability theory. FTA has traditionally been used in large complex 

systems in order to find fault-sensitive constructions, e.g. single points of failures that 

lead to a dangerous or unacceptable event (FTA, 2006). It assumes that the probabilities 

of events are given and sufficient failure data are available. However, it is often very 
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difficult to obtain sufficient failure data to estimate precise failure rates or failure 

probabilities. Based on this description, the system is analysed with a top-down 

approach that starts with the hazardous or unacceptable event, called TE, from which a 

graphical logical tree is created that consists of independent lower-level BEs combined 

with logical operators such as AND or OR. The analysis is carried out in iterations until 

a desired level of detail is achieved in different steps (e.g. single component failure). It 

assumes that the causes are in a lower level which cannot be sub-divided (i.e. BEs). The 

first step in a FTA is the selection of the TE, which is a specific undesirable system 

state or failure. Then the experts analyse the system or process to discover logical 

dependencies between the TE and all BEs. To represent logical dependencies, basically 

the AND or OR logical gates and so-called intermediate events can be used. As 

illustrated in Figure 5.4-a, the AND logical gate should be used if an output event 

occurs only if all input events occur simultaneously. If an output event occurs or if any 

of the input events occurs, either alone or in any combination, the OR logical gate 

should be used, as shown in Figure 5.4-b. A combination of BEs which leads to the 

hazard is called a cut set. An MCS is a cut set which cannot lead to the top-level hazard, 

if only one event of the set is prevented in Figure 5.5. This information helps to identify 

failure events whose elimination secures the system. If, for example, one event occurs 

in different MCSs, the occurrence probability of the top-level hazard will significantly 

decrease, if this event can be excluded. Traditionally, it is always assumed that the BEs 

contained in a FT are independent and could be represented as probabilistic numbers 

(Andrews, 2002; Henley & Kumamoto, 1981). 

In the above formulation, P denotes the probability of the TE, pi denotes the occurrence 

probability of BEi and n is the number of BEs associated with the “OR” gate. The OR 

gate event probability is presented by Equation (5.1)-b, and similarly for an AND gate 

event, its probability is obtained by Equation (5.1)-a. 
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Figure  5.4: a) Structure of an “AND” event           b) Structure of an “OR” event 

                (a)                                                                                                (b) ( 5.1) 
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uncertainties of each given failure event and then perform a mathematical operation to 

evaluate system reliability. The failure events are modelled to be trapezoidal Fuzzy sets 

(Tanaka et al., 1983). These Fuzzy sets are considered as the possibilities of occurrence 

of the failure events. Therefore, the problem is to calculate the possibility of failure of 

the TE as a Fuzzy set, given the occurrence possibilities of the BEs. FL can be 

described as a type of mathematical logic in which truth value is assumed to belong to a 

continuum of values ranging between 0 and 1  

5.3.2.3 Input failure rate and data collection  

As illustrated in Figure 5.2, this stage of the methodology is to separate hazards with 

known failure rate from vague hazards. Failure rates of some hazards are available in 

certain sources. By using this data, it is possible to separate hazards with a known 

failure rate from vague hazards associated with MODU. 

5.3.2.3.1 Obtaining failure probability of hazards with known failure rate 

Failure rates of some hazards are available in different sources. Offshore drilling takes 

place in a unique operating environment and has several industry-specific components. 

As a result, publicly accessible reliability data may be unavailable or may be invalid for 

deep, subsea conditions. However, one public report on the reliability of subsea BOPs 

provided some useful failure data (Holand, 1999). If having ample reliability data is 

necessary, the OREDA handbook can be purchased. Another valuable source of data is 

the Bureau of Ocean Energy Management, Regulation and Reinforcement (Bureau of 

ocean energy management, Regulation and enforcement, 2010). The PDS Data 

handbook also provides reliability data estimates for components of control and safety 

systems. Data for field devices (e.g. sensors and valves) and control logic (electronics) 

are presented, including data for subsea equipment.  

5.3.2.3.2 Calculation of failure probability  

The available failure rate should apply to the particular application of a component, its 

operating environment, and its non-operating environment. There are three main 
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methods that could be used to determine the occurrence probability of an event, namely  

the Statistical method, the extrapolation method and expert judgement (Preyssl, 1995). 

The statistical method uses the treatment of direct test of experience data and the 

calculation of probabilities. The extrapolation method involves the use of model 

prediction and similar condition or using the standard reliability handbook. The expert 

judgement method uses direct estimation of probabilities by specialists. A dimension of 

the quality of a product’s design or a process is reliability. Reliability refers to the 

probability that the product or process will be functional when used. For example, 

reliability of a product being 93% means that 93 out of 100 products produced will 

perform as intended for a stated period of time under specified operating conditions. 

Failure rate is a measure used to ascertain reliability of a product or a process. For 

products that must be replaced because they fail, a relevant measure of interest is the 

mean time to failure (MTTF), and for products that may be repaired and put to service 

again, a relevant measure of interest is the mean time between failures (MTBF). In 

order to calculate MTTF and MTBF, ideally, a large number of products would be 

operated and tested until failure and the time of the failure for each would be recorded. 

The information about MTTF and MTBF helps ascertain reliability. However, it is time-

consuming and costly to collect enough data to build a probability distribution and 

cumulative distribution curve of time to failure or time between failures. One way we 

can deal with this problem is by analysing a smaller set of data and identifying a 

distribution that approximates the distribution of time to failure, such as the 

Exponential, Weibull, or Gamma distributions. Once we have identified a distribution, 

we can easily calculate failure rate, MTTF, etc. A component is tested periodically with 

test interval. A failure may occur at any time in the test interval, but the failure is only 

detected in a test. This is a typical situation for many safety-critical components, like 

sensors and safety valves. If an event failure is of a kind which can be inspected, the 

component failure probability can be obtained from Equation (5.2) (Spouge, 1999; 

Høyland & Rausand, 2009). The following notation is used: 

= Component failure rate  

P(t) = Component failure probability at t 

R(t) = Reliability )(1)( tPtR    
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= Inspection interval 

 

( 5.2) 

In the case that the distribution functions are approximated by an exponential 

distribution P(t) is determined from Equation (5.3) 

 
( 5.3) 

5.3.2.4 Fuzzy failure assignment for the failure probability 

As an alternative to using the failure rate in probability, a Fuzzy modelling approach is 

used to assign the failure rate in the FTA. Several experts are required to develop the 

membership functions of the failure rates. The numbers associated with linguistic risk 

levels are also considered an important factor for the failure rate. Experts usually use 

linguistic variables to assess the importance of one criterion or event over another to 

rate alternatives with respect to various criteria. With consideration of some limitations 

on the capacity for processing information, Miller (1956) proposed a magical number of 

seven, plus or minus two. With respect to this, it is often recommended that the number 

of linguistic terms for judgements should be restricted to between five to nine 

(Karwowski & Mital, 1986). In this research, each linguistic variable has seven 

descriptive linguistic terms and these can be represented quantitatively by a range of 

probabilities, as shown in Figure  5.15. Chen et al. (1992) proposed different scales of 

linguistic terms for expert assessment. After the determination of the linguistic levels 

for each hazard failure rate, one must determine the relevant mathematical expressions 

using membership functions for Fuzzy numbers. Expert knowledge is influenced by 

individual perspectives and goals (Ford and Sterman, 1998). Therefore, complete 

impartiality of expert knowledge is often difficult to achieve. An important 

consideration in the selection of experts is whether to use a heterogeneous group of 

experts (e.g. both scientists and workers) or a homogenous group of experts (e.g. only 
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scientists). The weighting factors of experts are determined according to Table 4.5 and 

Table 4.6. 

Scale 6 in Chen et al. (1992), which contains trapezoidal membership functions, is 

adopted to present mathematically the failure rates of hazards in this research. 

Therefore, the conversion scale of 6, which contains seven verbal terms, is selected for 

performing the subjective assessment of hazards with an unknown failure rate. 

Figure 5.15 introduces the Fuzzy linguistic scale that is used in this study to determine 

the judgements of experts with respect to hazards with unknown failure rate. 

5.3.2.5 Aggregating algorithm for linguistic terms 

In this stage, all ratings are aggregated for each subjective basic event. Since each 

expert may have a different opinion according to their experience and expertise in the 

relevant field, it is necessary to aggregate experts’ opinions to reach a consensus. Hsu 

and Chen (1996) presented an algorithm to aggregate the linguistic opinions of a 

homogeneous or heterogeneous group of experts. Suppose each expert,  

 expresses their opinion on a particular attribute in a specific context 

using a predefined set of linguistic variables. The linguistic terms can be converted into 

corresponding Fuzzy numbers. The detailed algorithm is described as follows: 

a) Calculate the degree of agreement (degree of similarity)  of the opinions 

of a pair of experts, and , where . According to this 

approach,  and  are two standard TPFNs. The 

degree of similarity between these two Fuzzy numbers can be obtained by the similarity 

function of , which is defined as:  

 
( 5.4) 
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where . The larger value of , the greater similarity between two 

Fuzzy numbers and  

b) Calculate the AA degree, , of the experts.  

 

 

 

( 5.5) 

c) Calculate the relative agreement (RA) degree, , of expert Eu (u=1,2,…orM) 

 

 

 

( 5.6) 

d) Estimate the consensus coefficient (CC) degree, , of expert, Eu (u=1,2,…or

M): 

 ( 5.7) 

 where   is a relaxation factor in the proposed method. It shows the 

importance of over .When , no importance has been given to the 

weight of an expert and hence a homogeneous group of experts is used. When , the 

consensus degree of an expert is the same as its importance weight.  

e) Finally, the aggregated result of the experts’ judgements, , can be obtained as 

follows:  
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5.3.2.6 Defuzzification process 

Defuzzification is the process of producing a quantifiable result in FL. Fuzzy number 

defuzzification is an important procedure for decision-making in a Fuzzy environment. 

The centre of area defuzzification technique is used here. This technique was developed 

by Sugeno (1985) and Spouge (1999). This is the most commonly used technique and is 

the most accurate. This method can be expressed as: 

 

(5.9) 

where X
*
 is the defuzzified output, 𝜇𝑖(𝑥) is the aggregated membership function and x 

is the output variable. The above formula can be shown as follows for triangular and 

TPFNs. Defuzzification of Fuzzy number A= (a1 ,a2.,a3) is: 

 

 

( 5.10) 

Defuzzification of trapezoidal Fuzzy number  can be obtained by 

Equation (5.11). 

 

(5.11) 

5.3.2.7 Converting crisp failure possibility of BEs into failure probability 

There is inconsistency between failure probabilities of certain hazards and crisp failure 

possibility (CFP) of vague events. This issue can be solved by transforming CFPs of 

vague events into failure probabilities. This transformation can be performed by using 

Equation (5.12). Onisawa and Nishiwaki (1988) proposed a function which can be used 
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for converting CFP to failure probability. This function is derived by establishing some 

properties such as the proportionality of human sensation to the logarithmic value of a 

physical quantity. The probability rate can be obtained from the possibility rate, as 

follows (Onisawa, 1990; Lin & Wang, 1997): 

,               

      

( 5.12) 

5.3.3 Scheming the MCSs and calculation of top event occurrence   

Based on its description, the system is analysed with a top-down approach that starts 

with the dangerous or unacceptable event, called the top-level event, from which a 

graphical logical tree is created that consists of lower-level events (i.e. BEs) combined 

with logical operators such as AND or OR. The analysis is carried out in iterations until 

a desired level of detail is achieved (e.g. single component failure). Causes in this level 

are called BEs; an example of an FT is shown in Figure 5.5. If the FT is traversed from 

the top, it can be seen that, in order to trigger the top-level event, either IE-1 or IE-2 

must occur. In order to trigger IE-1, both events BE-1 and BE-2 need to occur, whereas 

either event BE-3 or event BE-4 triggers event IE-2. A set of BEs which together 

activate the top-level event is called a cut set. In Figure 5.5 the encircled basic event 

(BE-4) is a cut set. In total there are three minimal cut sets (i.e. BE-1 to BE-4). In the 

right branch of the FT there are two minimal cut sets of size 1, which means that they 

are single points of failure. In the left branch of the FT there is one minimal cut set of 

size 2, which means that one fault is tolerated without compromising the safety 

function. Thus, the minimal cut set sizes have a natural correspondence to the fault 

tolerance of the system. FTA leads to all possible minimum combinations of basic 

human, operation, instrument and equipment failures, called MCSs, which could lead to 

the occurrence of the TE. When FTs have BEs which appear more than once, the 

methods most often used to obtain the TE probability utilise MCSs.  
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Figure  5.5: Minimal cut set 

An MCS is a collection of BEs. If all these events occur, the TE is guaranteed to occur. 

However, if any BE does not occur, the TE will not occur. Therefore, by using Equation 

(5.13) if a FT has nc MCSs (MCSi ,i=1,…,nc) then the TE “T” exists if at least one MCS 

exists (Andrews & Moss, 2002). A quantification of the TE occurrence likelihood can 

be obtained by Equation (5.14). 
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where P(MCSs) is the occurrence probability of MCS  and  is the number of MCSs. 

Any FT will consist of a finite number of MCS that are unique for that TE. Single-

component MCSs, if there are any, represent those single failures that will cause the TE 

to occur. Two-component MCSs represent the double failures that together will cause 
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the TE to occur. TE can be obtained from MCSs by using Equation (5.14). The analysis 

gives the system designers or decision-makers a set where the effort in improvement 

can be best focused to reduce the risk taking into consideration the costs and benefits. 

The MCSs can be prioritised according to their importance. 

Prioritisation is the recognition that we cannot solve multiple problems simultaneously 

due to the lack of infinite resources (i.e. operation, equipment, human factor, etc.). 

Therefore, it is necessary to have a foundation in order to evaluate the reliability and 

availability of the system. FTA uses failure rates, mean time between failure (Dhillon, 

1999, Bedford and Cooke, 2001) and minimal cut sets to evaluate the reliability and 

availability of the system in question (Tang & Dugan, 2004). One of the most important 

outputs of an FTA is the set of importance measures that are calculated for the TE. Such 

importance measures establish the significance for all the MCSs in the FT, in terms of 

their contributions to the TE probability. Both events as well as MCSs can be prioritised 

according to their importance. Importance measures can also be calculated that yield the 

sensitivity of the TE probability to an increase or decrease in the probability of any 

event in the FT. Two types of TE importance measure can be calculated for each MCS 

in the FT and are described as follows:  

Risk reduction measures the decrease in the probability of the TE if a given MCS is 

certain not to occur. This importance measure can also be called the top decrease 

sensitivity. Risk reduction measures for a MCS show the decrease in the probability of 

the TE that would be obtained if the MCS did not occur. Therefore, the risk reduction 

measure can be calculated by redoing the FT with the probability of the given MCS set 

to 0. Thus, it measures the maximum reduction in the TE probability. A risk reduction 

measure’s value is determinable for every MCS in the FT.  

The Fussell-Vesely importance measure is the contribution of the MCSs to the TE 

probability and is determinable for every MCS modelled in the FT. This provides a 

numerical significance for all the FT elements and allows them to be prioritised. The 

importance is calculated by summing all the causes (MCSs) of the TE involving the 

particular event. This measure has been applied to MCSs to determine the importance of 

individual MCSs. The importance measure can be quantified as per Equation (5.15) 
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(Modarres, 2006), where )(t
i

Q is the contribution of MCSi to failure of the system, and 

also )(t
s

Q  is the occurrence probability of TE due to all MCSs.  

  

( 5.15) 

5.4 Application of proposed Fuzzy FTA methodology in MODUs  

In order to illustrate how the proposed methodology is applied, and also to have a 

manageable risk model, a limited number of generic BEs are defined, covering the 

MODU’s operations risk which may directly cause an event or introduce latent failures 

in a system which may cause an event at a later point in time. In this section the 

application of the Fuzzy FTA is described; in particular, the application of the proposed 

research methodology for risk assessment of the MODU’s operation system is 

presented. In conjunction with PRA, FTA specifically focuses on the causes of failure 

for a system as a series of individual BEs and provides a visual representation of the 

series of events that can lead to failure of that system. Application of the Fuzzy FTA 

method consists of stages such as the following: 

- Hazard identification and elicitation of failure rate data to the events. 

- Establishment of an operational hierarchy system diagram which includes the 

breakdown of a complex decision problem into smaller, manageable elements of 

different hierarchical levels as necessary. 

- Construction of the Fuzzy FTA model in line with the MODU’s operational 

hierarchy 

-  Establishment of calculations and identifying the area for further safety 

improvement. 

In this study, a five-level hierarchy, illustrated in Figure 5.3, is developed. The highest 

level of the hierarchy corresponds to the occurrence probability of the TE (i.e. L1D-O1: 

Drilling failure due to drilling system failure) and the last layer corresponds to the 

evaluation of the BEs.  
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According to the requirement of the Norwegian oil and gas regulations (NORSOK D-

010, 2004) pertaining to well integrity during drilling activities, all phases of offshore 

operations must have two separate and independent barriers. An application of the 

proposed approach is demonstrated through a specific system failure. Well drilling 

completion is an appropriate example, in which the mud column is the primary barrier 

and the secondary barrier is the BOP, which protects the well from a disaster as the last 

resort. In overbalanced processes, the mud column is the primary well barrier and 

should function within the drilling margin pressure (i.e. a pressure greater than the hole 

pressure and lower than the fracture gradient). The secondary barrier shall be active on 

the detection of an influx and the well should be closed, and this also prevents further 

unwanted flow in the case of failure of the primary well barrier (PSA, 2008). As an 

instance, the Macondo (BP, 2010) was planned to be abandoned and left underbalanced 

by replacing drilling mud with sea water, and with two cement barriers in place 

(Commission, 2010b). 

Mud and BOP control are the operation functions and loss of control can lead to an 

emergency situation. Well control systems are defined in the NORSOK standard (D-

001, 2004) defined as the mechanical well control and associated equipment and 

system. This includes BOP, choke & kill system, rise, and the control system for the 

BOP. As explained, the mud system and BOP are the key components of the system 

that provide the well integrity. Therefore, the simple process diagram of the mud 

circulation and mixing including BOP system, as illustrated in Figure 5.6, is considered 

in levels 4 and 5 of the MODU’s operational hierarchy, as in Figure 5.3. 

Drilling mud is the primary requirement to start drilling operations and the mud mixing 

system provides appropriate mud in an adequate combination of dry cement and water. 

The prepared mud, stored in mud pit(s), will be pumped by mud pump(s) through the 

standpipe manifold into the drill string. The mud pump provides adequate pressure to 

overcome the mud column static pressure at the bottom of the drilled hole. Mud returns 

through the annular casing, and then the returned mud is directed to the shell shakers via 

the mud ditch to remove earthen impurities such as sharp rocks. At a later stage, the 

returned mud will pass through Desander, Desilter and Gas Separator in order to 

remove smaller impurities as well as mixed gas trapped in the mud. At the last stage, the 
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treated, returned mud will go back to the mud pits for further circulation. This 

circulation process is repeated throughout the course of drilling. The returned mud 

pressure is continuously measured by BOP sensors and, in case of over-pressure, the 

normal circulation line will be blocked and the high-pressure mud will be led to the 

choke/kill manifold, which is designed for higher pressure, in order to reduce the 

pressure of the pumped mud going to the atmospheric level. In case of kick (high 

pressure in the return line because of entry of water, gas, oil, or other formation fluid 

into the wellbore), the very high-pressure mud will be injected into the well through the 

kill line by an additional pump. The cement pump is also connected to the choke/kill 

manifold. It should be noted that the “kick” pressure is lower than the “choke” pressure. 

As the bit “drills ahead”, a specially formulated drilling fluid or mud is continually 

pumped or circulated from the surface to the bottom of the well, and then back to the 

surface to cool the bit and remove the cuttings, as illustrated in Figure 5.6.  

As is shown in Figure 5.6, the mud and cementing circulation system is composed of 

the following: bulk and storage system, high-pressure mud pumping system, mud 

treatment system and cementing system. The BOP, which is one of the major pieces of 

equipment for drilling, is comprised of the following: BOP stack failure, control system 

and components. The BOP system stack is made up of a series of pipe rams and annular 

preventers in charge of sealing and shearing the drill pipe. A common subsea stack is 

shown in Figure 5.7 and was also the control system of the Macondo Deepwater 

Horizon, as illustrated in Figure 5.9. In ultra-deepwater drilling operations, the drilling 

platform is connected to the BOP, installed at the wellhead on the seabed by the drilling 

riser. 

.  
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Figure  5.6: Schematic diagram of mud circulation and mixing system/equipment in levels 4 and 5. 
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The drilling riser is a steel tube containing the drill string which enables the flow of 

drilling fluids. In most drilling systems, the drilling fluid is pumped into the well 

flowing through the drill string and returns to the surface by flowing up through the 

annular space between the drilling riser’s internal wall and the outer circumference of 

the drill string. The BOP could be installed on the platform (surface) for a fixed 

platform or on the seabed (subsea) for a floating platform where the wellhead is 

attached to the seabed (Figure  5.8). 

  

Figure  5.7: BOP control system in the 

Macondo Deepwater Horizon (Gröndahl 

et al., 2010) 

 Figure  5.8: Typical position of subsea 

BOP (Image provided by BP). 

The BOP is a critical part of the safety system of an MODU, as proven in the 2010 

Macondo accident (Deepwater Horizon). Blowout preventers act as a safety barrier in 

emergencies or undesired events by controlling reservoir pressures and fluids in the well 

(Tumer, 2010). A great challenge for the oil and gas industry is to decide what to do 

when there are indications of failures in the BOP. 

Drilling Rig

Rise

Wellhead

BOP Stack
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Figure  5.9: BOP control system in Macondo Deepwater Horizon (Gröndahl et al., 2010) 

The closing of rams is controlled by the BOP control system, which is driven mainly by 

hydraulic power. An accumulator attached to the subsea control pod operates the 

hydraulic system used to close the rams. It passes through a regulator, SPM (Stand Pipe 

Manifold) valve and a shuttle valve. The closing of the blind shear rams starts when 

hydraulic fluid from the control pod passes through the shuttle valve and pushes both 

pistons inward. The BOP control system is a critical component in a BOP stack because 

this is the heart of a system that drives preventers and rams to close and open with or 

without using primary rig power. After the explosion of the Deepwater Horizon oil rig, 

investigators focused on the failure of a component on the well’s BOP that was 
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supposed to close-off a well spewing out of control. The device, called a blind shear 

ram, is the only part of the blowout preventer that can completely seal the well. Minutes 

after the explosion, at least one rig worker hit an emergency button, which is supposed 

to trigger the blind shear ram within about 30 seconds and then disconnect the rig from 

the well. However, that night the blind shear ram never fully deployed. A typical blind 

shear ram system is shown in Figure 5.10 and also a usual configuration of a subsea 

BOP system is shown in Figure 5.11. 

 

 

 

Figure  5.10: Blind shear rams closing 

(Gröndahl et al., 2010) (Rig Train, 2001) 

Figure  5.11: BOP stack used for 

the FTA (Holand, 1999) 

5.5 Hazard identification and potential hazard sources/sub-sources 

A complete system-level risk assessment is greatly dependent on properly identifying 

the key events of the area of interest. In particular, the identification of potential hazard 

sources within the structure of the problem domain should be considered as a 

fundamental step in operation system risk assessment. The fundamental concept of the 

proposed methodology consists of the translation of a physical system in a structuralised 
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logical diagram, in which certain specific causes lead to a top event of interest. In 

Chapter 4, the contextual information on the MODU HGs and the objectives of the 

application were provided and also a novel methodology was introduced for HGs 

classification with particular emphasis on drilling failure (L1D-O1-01). A model in 

association with the circulation and mixing system is developed in Level 4 with special 

focus on analysis failures of the mud system caused by its HGs. As was shown in 

Figure 5.3, there are three HGs of interest, L2D-N1, L2D-O1 and L2D-H1, which 

belong to level 2 of the operational hierarchy. L2D-N1, L2D-O1 and L2D-H1 can be 

inferred directly from the BEs in level 3, which include: L3D-N1-01 to 5, L3D-O1-01 

to 8 and L3D-H1-01 to 3 respectively, while the event L3D-O1-01 was expanded in two 

more levels (levels 4 & 5) and is dependent on the existence of lower-level events. The 

following illustrates four of the intermediate events in Level 4, each of which has its 

own BEs in Level 5,:  

 L4D-O1-01-01: High-Pressure Mud System Failure  

-  L5D-O1-01-1-1: Mud Pump #1 Failure  

-  L5D-O1-01-1-2: Mud Pump #2 Failure 

-  L5D-O1-01-1-3: Bulk Handling System Failure 

-  L5D-O1-01-1-4: High-Pressure Route Failure  

                                (HP hoses, Standpipe Manifold, Choke and Kill Manifold) 

 

 L4D-O1-01-02: Mud Treatment System Failure 

- L5D-O1-01-2-1: Shale Shaker Failure 

- L5D-O1-01-2-2: Desander Failure 

- L5D-O1-01-2-3: Disilter Failure 

- L5D-O1-01-2-4: Degasser Failure   

  

 L4D-O1-01-03: Drilling Equipment Failure  

- L5D-O1-01-3-1: Draw Work Failure 

- L5D-O1-01-3-2: Rotary Table Failure 

- L5D-O1-01-3-3: Top Drive Failure 

- L5D-O1-01-3-4: Pipe Handling System Failure 

- L5D-O1-01-3-5: Drilling Control System Failure 
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 L4D-O1-01-04: Drilling Failure due to Blow out Preventer (BOP) System Failure/ 

Drilling Failure due to Failure of Managed Pressure Drilling Stack 

- L5D-O1-01-4-1: BOP Stack Failure  

- L5D-O1-01-4-2: BOP Control System Failure  

- L5D-O1-01-4-3: Component Failure/Leak  

5.6 Input failure rate and data collection 

The process of full application of a Fuzzy FTA involves a number of stages, which start 

with the definition of a major hazard of the MODU at its system level (i.e. level 1); this 

is followed by development of the sub-system (i.e. intermediated events) at the next 

levels; and then a development of a hierarchy up to the BEs is the subsequent stage of 

this methodology. As stated, the probabilistic FTA is a quantitative analysis method 

used to calculate the probability of the TE from given failure probabilities of the 

system’s BEs. The estimation of probability of failure has an important role in correctly 

prioritising the risks involved and also applying adequate corrective measures. Accurate 

statistical data is vital to most existing techniques but the statistical data of the system 

and equipment are hardly available. With consideration of availability of failure rates 

data, the BEs with known failure rates are separated from those BEs with vague failure 

rates. Therefore, the data collection involves two stages: in the first, the known failure 

rate required to build the model is collected. In the second stage, an expert system is 

developed to estimate the failure rate of MODU operational system events. Therefore, 

to determine the failure rate of an event, utilisation of Fuzzy set theory may be 

necessary. A Mamdani Fuzzy rules system is used to develop the Fuzzy model.  

5.6.1 Scheming of the probabilities of failure of events  

At this stage, the real data collected from the industry will be used to test the 

performance of the proposed model. Limited data such as failure frequency for different 

equipment are available in different sources (i.e. the OREDA handbook, SINTEF report 

etc.); however, more accurate data may be available within different companies but 
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have not been presented to the market. Failure probability analysis determines the 

likelihood of an event occurring. A failure rate should apply to the particular application 

of a component, its operating environment, and its non-operating environment. The 

component failure probability can be obtained from Equation ( 5.3) (Spouge, 2000; 

Rausand, 2004). Calculating the failure probability will require considerable 

engineering judgement. Since the failure probability has a strong influence on the 

prioritisation process, it should either be based on validated data or be assessed 

conservatively.  

 
Figure  5.12: Computing of Bulk handling system probability of failure (OREDA, 2002). 

In some cases, however, either the data were unavailable for a specific event or the data 

could not be broken down to the model level of detail. In these cases, expert judgement 

was used to estimate failure rates for events; however, most of the equipment failure 

rates used in the quantification of the overall failure probability are time-dependent. The 

data include failure frequency information and expert responses to the interviews and 

questionnaires, which together establish the necessary input for gathering information 

required for test-running the model and its preliminary validation studies with regard to 

offshore platform risk assessment.  
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Figure 5.13: Calculating probability of failure of BOP (SINTEF report, 1999)  

As illustrated in Figure 5.12 to Figure 5.14, the failure rates were assigned to each BE 

and its component based on the available detailed data from the OREDA-2002 and 

SINTEF report-1999. With consideration of the logic of P-Tanks failure (i.e. 4 out of 6), 

the bulk handling system’s probability of failure is 4.14E-4 (Figure 5.12), the 

probability of failure of the BOP is 3.79E-3 (Figure 5.13), and the power generation 

system’s probability of failure with the logic of 4 out of 5 main generators is 3.04E-7 

(Figure 5.14).  
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Figure  5.14: Computing of Power generation system’s probability of failure with the logic of 4 out of 5 main generators failing (OREDA, 

2002).
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As mentioned, the FTA is a tool for risk assessment that can combine quantitative 

information of different accuracy and qualitative data. Risk assessment of the MODU 

operational system is mostly held up by the absence of appropriate and reliable data. In 

most circumstances, only descriptive information on the offshore operation system and 

very limited failure data for components becomes available but quantitative data about 

cause-effect relations are still missing. To understand these cause-effect relationships 

expert judgement remains the only available choice. Taking this into account, it is 

necessary to introduce the probability of BEs in their entirety, so a model with this 

purpose has been developed using FL. This theory is employed to incorporate expert 

knowledge, gathered through a questionnaire. Experts usually use the linguistic variable 

to assess the importance of one criterion over another criterion or even to rate the 

alternatives with respect to various criteria. The linguistic terms of Figure 5.15 are in 

the form of both triangular and TPFNs. All of the triangular Fuzzy numbers can be 

converted into the corresponding TPFNs for ease of analysis. Table  5.1 presents all the 

Fuzzy numbers of Figure 5.15 in the form of TPFNs. 

 

Table  5.1: Logistics variable, ((Chen & 

Hwang (1992)) 

 
Figure  5.15: Fuzzy linguistic conversion 

scale 6 (Chen and Hwang (1992)) 

 

A heterogeneous group of experts is employed to perform the judgement for the vague 

events. The experts’ weights can be obtained by using Table  4.5. 

a b c d

Very Low 0 0 0.1 0.2

u(x) 0 1 1 0
Low 0.1 0.2 0.3
u(x) 0 1 0
Mol. Low 0.2 0.3 0.4 0.5
u(x) 0 1 1 0

Medium 0.4 0.5 0.6

u(x) 0 1 0

Mol. High 0.5 0.6 0.7 0.8

u(x) 0 1 1 0

High 0.7 0.8 0.9

u(x) 0 1 0

Very High 0.8 0.9 1 1

u(x) 0 1 1 0
Lf7

Grade
linguistic 

variables 
Membership function 

Lf1

Lf2

Lf3

Lf4

Lf5

Lf6
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Three experts are employed for performing the judgements. Table 5.2 shows the 

experts’ weights.  

Table  5.2: Experts’ weight factor 

 

As illustrated in Table  5.3 and Table  5.4, in the assessment process, verbal statements 

are used to describe the occurrence probabilities of BEs.  

Table  5.3: Occurrence probabilities of BEs (Experts’ knowledge) in level 3 

 

According to these linguistic variables a value on a numerical scale is assigned to each 

BE. The occurrence probability of each of the MODU operation hazards is calculated 

on the basis of occurrence probabilities of the BEs. A common approach to deal with 

these values is the use of semi-quantitative estimation methods, which rely on linguistic 

No.
Classification / 

Organization
Score

Qualification / 

Education Level
Score

Experience / 

Service Time 

(years)

Score
Total 

Score

Weight 

Factor

Expert 1 Engineer 3 Ph.D 5  20-30 4 12 0.34

Expert 2 Engineer   3 Master (M.Sc.) 4  > 30 years 5 12 0.34

Expert 3 Senior academic 4.5 Master (M.Sc.) 4  10-19 3 11.5 0.32

Total 35.5 1

L3D-N1-01 Very Low 0.1 0.2 0.34 low 0.1 0.2 0.3 0.34 Very Low 0.1 0.2 0.32 0.10

L3D-N1-02 Very Low 0.1 0.2 0.34 low 0.1 0.2 0.3 0.34 Very Low 0.1 0.2 0.32 0.03

L3D-N1-03 Very Low 0.1 0.2 0.34 low 0.1 0.2 0.3 0.34 Very Low 0.1 0.2 0.32 0.03

L3D-N1-04 Very Low 0.1 0.2 0.34 low 0.1 0.2 0.3 0.34 low 0.1 0.2 0.3 0.32 0.04

L3D-N1-05 Very Low 0.1 0.2 0.34 low 0.1 0.2 0.3 0.34 Very Low 0.1 0.2 0.32 0.03

L3D-O1-01

L3D-O1-02 low 0.1 0.2 0.3 0.34 low 0.1 0.2 0.3 0.34 low 0.1 0.2 0.3 0.32 0.05

L3D-O1-03 Mol. Low 0.2 0.3 0.4 0.5 0.34 Medium 0.4 0.5 0.6 0.34 Mol. Low 0.2 0.3 0.4 0.5 0.32 0.12

L3D-O1-04 very low 0.1 0.2 0.34 low 0.1 0.2 0.3 0.34 Medium 0.4 0.5 0.6 0.32 0.06

L3D-O1-05 very low 0.1 0.2 0.34 very low 0.1 0.2 0.34 very low 0.1 0.2 0.31 0.03

L3D-O1-06 very low 0.1 0.2 0.34 very low 0.1 0.2 0.34 low 0.1 0.2 0.3 0.32 0.03

L3D-O1-07 Mol. Low 0.2 0.3 0.4 0.5 0.34 Mol. Low 0.2 0.3 0.4 0.5 0.34 Mol. Low 0.2 0.3 0.4 0.5 0.32 0.12

L3D-O1-08 very low 0.1 0.2 0.34 low 0.1 0.2 0.3 0.34 very low 0.1 0.2 0.32 0.03

L3D-H1-01 Medium 0.4 0.5 0.6 0.34 Very High 0.8 0.9 1 1 0.34 Medium 0.4 0.5 0.6 0.32 0.18

L3D-H1-02 high 0.7 0.8 0.9 0.34 Very High 0.8 0.9 1 1 0.34 high 0.7 0.8 0.9 0.32 0.23

L3D-H1-03 high 0.7 0.8 0.9 0.34 Medium 0.4 0.5 0.6 0.34 Medium 0.4 0.5 0.6 0.32 0.14

This event of drilling is expanded to its subsystem and events in two lower levels (i.e. level 4 and 5)

Basic Event 

(Level 3)

Experts

Crisp No.Linguistic 

terms 
Factor

Linguistic 

terms 
Factor

Linguistic 

terms 
FactorExpert 1 Expert 2 Expert 3
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judgements of experts. However, these linguistic terms are related to different kinds of 

uncertainties (i.e. stochastic, lexical and, informal uncertainty).  

Table  5.4: Occurrence probabilities of BEs (Experts’ knowledge) in level 5 

 

5.6.2 Aggregation scheming of the BEs and defuzzification process  

In order to obtain more information for making better judgements, the assessments are 

performed by three experts. For group evaluation, it is necessary to aggregate different 

expert opinions into one. The aggregation is a result of the union of two or more 

membership functions.  

 

 

 

 

L5D-O1-01-1-1 low 0.1 0.2 0.3 0.34 High 0.7 0.8 0.9 0.34 High 0.7 0.8 0.9 0.32 0.14

L5D-O1-01-1-2 Low 0.1 0.2 0.3 0.34 Medium 0.4 0.5 0.6 0.34 Mol. High 0.5 0.6 0.7 0.8 0.32 0.13

L5D-O1-01-1-3 Mol. Low 0.2 0.3 0.4 0.5 0.34 Low 0.1 0.2 0.3 0.34 Medium 0.4 0.5 0.6 0.32 0.10

L5D-O1-01-1-4 Low 0.1 0.2 0.3 0.34 Very Low 0.1 0.2 0.34 Low 0.1 0.2 0.3 0.32 0.04

L5D-O1-01-2-1 Low 0.1 0.2 0.3 0.34 Low 0.1 0.2 0.3 0.34 Low 0.1 0.2 0.3 0.32 0.05

L5D-O1-01-2-2 Medium 0.4 0.5 0.6 0.34 Medium 0.4 0.5 0.6 0.34 Mol. Low 0.2 0.3 0.4 0.5 0.32 0.12

L5D-O1-01-2-3 Mol. Low 0.2 0.3 0.4 0.5 0.34 Low 0.1 0.2 0.3 0.34 Medium 0.4 0.5 0.6 0.32 0.10

L5D-O1-01-2-4 Low 0.1 0.2 0.3 0.34 Medium 0.4 0.5 0.6 0.34 High 0.7 0.8 0.9 0.32 0.12

L5D-O1-01-3-1 Low 0.1 0.2 0.3 0.34 Very Low 0.1 0.2 0.34 Low 0.1 0.2 0.3 0.31 0.04

L5D-O1-01-3-2 Low 0.1 0.2 0.3 0.34 Low 0.1 0.2 0.3 0.34 Low 0.1 0.2 0.3 0.32 0.05

L5D-O1-01-3-3 Mol. Low 0.2 0.3 0.4 0.5 0.34 Low 0.1 0.2 0.3 0.34 Medium 0.4 0.5 0.6 0.32 0.10

L5D-O1-01-3-4 Medium 0.4 0.5 0.6 0.34 High 0.7 0.8 0.9 0.34 Medium 0.4 0.5 0.6 0.32 0.14

L5D-O1-01-3-5 Low 0.1 0.2 0.3 0.34 Medium 0.4 0.5 0.6 0.34 Mol. High 0.5 0.6 0.7 0.8 0.32 0.13

L5D-O1-01-4-1 Medium 0.4 0.5 0.6 0.34 Mol. High 0.5 0.6 0.7 0.8 0.34 Medium 0.4 0.5 0.6 0.32 0.15

L5D-O1-01-4-2 High 0.7 0.8 0.9 0.34 Mol. High 0.5 0.6 0.7 0.8 0.34 Mol. High 0.5 0.6 0.7 0.8 0.32 0.21

L5D-O1-01-4-3 High 0.7 0.8 0.9 0.34 High 0.7 0.8 0.9 0.34 Medium 0.4 0.5 0.6 0.32 0.17

Basic Event 

(Level 5)

Experts

Crisp No.Linguistic 

terms 
Factor

Linguistic 

terms 
Factor

Linguistic 

terms 
FactorExpert 1 Expert 2 Expert 3
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Table  5.5: Aggregation calculations for the BE of “L5D-O1-01-01-01” 

 

Aggregation is used to merge associated ratings for BEs. As an instance, the 

aggregation calculations for BE of “L5D-O1-01-01-01” are given in Table 5.5.  is 

considered as 0.5 in the aggregation scheme. These scheming contain characteristic-

based aggregation calculations such as average degree of agreement (AA) and relative 

degree of agreement (RA) of each expert. Table 5.6 presents the results of calculations 

for aggregation for all the BEs. Based on the features of the commonly used 

defuzzification techniques, the centre of area defuzzification method is employed to 

calculate the defuzzification of all the subjective Bes. 

 

 

 

 

 

 

 

 

BE

Expert 1 (E1) low 0 0.1 0.2 0.3

Expert 2 (E2) High 0 0.7 0.8 0.9

Expert 3 (E3) High 0 0.7 0.8 0.9

S (E1&E2) 0.55 AA (E1) 0.775 RA (E1) 0.333 CC (E1) 0.336

S (E2&E3) 1 AA (E2) 0.775 RA (E2) 0.333 CC (E2) 0.336

S (E1&E3) 0.55 AA (E3) 0.775 RA (E3) 0.333 CC (E3) 0.329

Total 2.325 1 1.000

Aggregation for BE
L

5
D

-O
1

-0
1

-0
1

-0
1

0.000 0.499 0.599 0.699

0.34

0.34

0.32

Relative 

Agreement 

Consensus 

Coefficient 

Aggregation calculations for the BE

Linguistic terms 

Degree of similarity
Average 

Agreement 

Expert weight 

factor (Ewf)
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Table  5.6: Aggregation calculations and defuzzification of the BEs 

 

Basic Events (BEs) Crisp No.

L3D-H1-01  0.056 0.190 0.223 0.256 0.175

L3D-H1-02 0.023 0.045 0.078 0.112 0.065

L3D-H1-03 0.023 0.079 0.112 0.146 0.089

L3D-N1-01 0.090 0.223 0.257 0.279 0.206

L3D-N1-02 0.267 0.300 0.333 0.333 0.307

L3D-N1-03 0.023 0.088 0.122 0.155 0.095

L3D-N1-04 0.000 0.167 0.200 0.234 0.142

L3D-N1-05 0.000 0.200 0.233 0.266 0.164

L3D-O1-02 0.000 0.033 0.067 0.100 0.050

L3D-O1-03 0.056 0.190 0.223 0.256 0.175

L3D-O1-04 0.023 0.045 0.078 0.112 0.065

L3D-O1-05 0.023 0.079 0.112 0.146 0.089

L3D-O1-06 0.054 0.121 0.154 0.188 0.128

L3D-O1-07 0.023 0.188 0.222 0.255 0.164

L3D-O1-08 0.000 0.033 0.067 0.100 0.050

L5D-O1-01-1-1 0.000 0.499 0.599 0.699 0.424

L5D-O1-01-1-2 0.023 0.088 0.122 0.155 0.095

L5D-O1-01-1-3 0.023 0.122 0.155 0.189 0.119

L5D-O1-01-1-4 0.110 0.177 0.211 0.244 0.184

L5D-O1-01-2-1 0.000 0.200 0.233 0.266 0.164

L5D-O1-01-2-2 0.000 0.022 0.055 0.089 0.042

L5D-O1-01-2-3 0.000 0.133 0.167 0.200 0.119

L5D-O1-01-2-4 0.054 0.189 0.222 0.255 0.174

L5D-O1-01-3-1 0.000 0.022 0.055 0.089 0.042

L5D-O1-01-3-2 0.054 0.223 0.256 0.289 0.197

L5D-O1-01-3-3 0.143 0.244 0.277 0.300 0.236

L5D-O1-01-3-4 0.000 0.022 0.055 0.089 0.042

L5D-O1-01-3-5 0.054 0.223 0.256 0.289 0.197

L5D-O1-01-4-1 0.267 0.300 0.333 0.333 0.307

L5D-O1-01-4-2 0.000 0.022 0.055 0.089 0.042

L5D-O1-01-4-3 0.023 0.088 0.122 0.155 0.095

Aggregation calculations for each subjective BE
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5.6.3 Converting CFP of BEs into failure probabilities 

By using Equation (5.12) the CFP of the BEs can be transferred into failure 

probabilities and the results of all BEs are presented in Table 5.7. 

Table 5.7: Converting CFP into failure probability  

 

5.6.4 Scheming the MCSs and calculation of TE 

Based on the FT hierarchical model, each BE’s occurrence probability must be provided 

in order to measure the occurrence probability for the TE. The BE probabilities can be 

propagated upward using MCSs. The failure probability of each MCS is presented in 

Table 5.8. Furthermore, the occurrence probability of the TE is obtained by using 

Equation (5.14). 

Level 5 (BEs) Factor (K)

Failure 

probability 

(FP)

L5D-O1-01-1-1 4.3934206 4.04E-05

L5D-O1-01-1-2 1.7934061 1.61E-02

L5D-O1-01-1-3 2.0995299 7.95E-03

L5D-O1-01-1-4 1.9093527 1.23E-02

L5D-O1-01-2-1 2.1282295 7.44E-03

L5D-O1-01-2-2 2.2126602 6.13E-03

L5D-O1-01-2-3 1.8476367 1.42E-02

L5D-O1-01-2-4 2.2325504 5.85E-03

L5D-O1-01-3-1 1.8334902 1.47E-02

L5D-O1-01-3-2 1.8334902 1.47E-02

L5D-O1-01-3-3 2.3754289 4.21E-03

L5D-O1-01-3-4 2.2126602 6.13E-03

L5D-O1-01-3-5 2.2325504 5.85E-03

L5D-O1-01-4-1 1.7280464 1.87E-02

L5D-O1-01-4-2 1.7280464 1.87E-02

L5D-O1-01-4-3 1.7280464 1.87E-02



A Novel Engineering Framework for Risk                                              CHAPTER 5: Fuzzy FTA for 
Assessment of Mobile Offshore Drilling Units                                       MODU’sriskassessment 

 

  
146  

Table  5.8: Failure probability and importance level of each MCS 

 

5.6.5 Prioritising the MCSs according to their importance 

This prioritisation process by definition requires an assessment of each individual 

MCSs. An unsafe condition may be defined with various specific words but, in general, 

it refers to any component failure which has the potential to be the cause of a TE. An 

important objective of many reliability and risk analyses is to identify those components 

or MCSs that are the most important from a reliability or risk viewpoint so that they can 

be given priority with respect to improvements. The ranking of MCSs based on their 

calculated importance levels is presented in Table 5.8 

MCSs

Occurrence 

probability 

of MCS

F-VIM
Ranking 

of MCS

MCS1 4.04E-05 0.0003 14

MCS2 1.61E-02 0.1052 4

MCS3 7.95E-03 0.0520 11

MCS4 1.23E-02 0.0805 10

MCS5 7.44E-03 0.0487 13

MCS6 6.13E-03 0.0401 6

MCS7 1.42E-02 0.0928 9

MCS8 5.85E-03 0.0383 12

MCS9 1.47E-02 0.0854 3

MCS10 1.47E-02 0.0959 2

MCS11 4.21E-03 0.0275 8

MCS12 6.13E-03 0.0401 1

MCS13 5.85E-03 0.0383 5

MCS14 1.87E-02 0.1223 7

MCS15 1.87E-02 0.0040 8
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5.6.6 Risk modelling and analysis of an MODU’s operation system 

Risk modelling and analysis has a fundamental role in the identification of hazard cause 

potentials, the understanding of the fundamental causal events, the likelihood 

assessment of these events, the severity evaluation of the potential consequence of 

catastrophes and the prioritisation of mitigations. The HG hierarchy of the MODU’s 

operation system as illustrated in Figure 5.1 is converted into an FT. For instance, 

drilling failure due to Drilling System Failure (L3D-O1-01) is converted to the 

corresponding parent nodes and the consequence of BOP Stack Failure (L5D-O1-01-4-

1) is converted to the corresponding root node. The link between L4D-O1-01-04 and 

L5D-O1-01-04-01 is converted to a corresponding link in the FT. Each category of 

events consists of some different sub-events that affect the performance of the MODU’s 

operations, as presented in Figure 5.16. For instance, Drilling control system failure 

(L5D-O1-01-3-5) is the source of failure of L4D-O1-01-3. Likewise, the L5D-O1-01-2-

1 (Shale shaker failure) and L5D-O1-01-2-2 (Desander failure) contribute to L4D-O1-

01-02 (Mud Treatment system failure) to a certain degree. Figure 5.17 illustrates the 

results for the FT model of L2D-H1 (Human Error) and Figure 5.18 illustrates the 

results for the FT model of L2D-N1 (Natural Hazard).  
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Figure 5.16: FT model of the MODU’s drilling system  

Ref. Figure 5.18 Ref. Figure 5.17 

FT of L3D-O1-01  

(Ref. to Appendix 1)  
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Figure  5.17: FT model of L2D-H1 (Human Error)                Figure  5.18: FT model of L2D-N1 (Natural Hazard) 
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5.7 Validation and sensitivity analysis 

Validation is an important aspect of a model for the reason that it affords a sensible 

amount of confidence in the results of the model. It is very useful to be able to compare 

a model against actual data to verify that the model adequately corresponds to reality 

and to assess its usefulness as a predictive tool. In this case, in order to carry out a 

validation of the model, the parameters used need to be closely monitored for a period 

of time. For MODU system operations, it is obviously an impractical exercise due to the 

lack of offshore operations data. For validation of the proposed methodology and 

modelling, three basic principles are considered and should be satisfied. First, a minor 

oscillation in the prior probability of each parent node should certainly be the result of a 

relative fluctuation of the posterior probabilities of child nodes. Second, fluctuation in 

the probability distributions of an individual parent node and its consequent gradation to 

child node values should be kept steady. Lastly, the size of the entire effect of the group 

of probabilities’ variations from the values of attributes should constantly be more than 

that from the set of A-b (b ∈A) features (Cai et al., 2013). Validation is the assignment 

of representations that the model is a realistic demonstration of a real system and is an 

important aspect of a methodology because it provides a reasonable amount of 

confidence in the result of the model. Due to lack of real data, the model should at least 

satisfy the three basic principles as mentioned above. From the above, it can be 

concluded that increasing each influencing node satisfies the three basic principles, 

therefore providing a partial validation of the model. 

Risk reduction measure (RRM) is employed to conduct sensitivity analysis. The RRM 

can be calculated by setting an MCS probability to 0. It is expected that elimination of 

the MCS that has the highest contribution to the occurrence of TE should result in 

reducing the occurrence rate of the TE more than other MCSs. Therefore, ranking of 

RRM values is expected to be the same as the ranking result of MCSs in Table 5.8. As 

shown in Table 5.9, MCS13 has the highest contribution to the TE occurrence 

probability. Therefore, the RRM value of MCS13 must be the largest. As demonstrated 

in Table  5.9, the RRM value of MCS13 is 0.0248, which is the highest, as expected. 



A Novel Engineering Framework for Risk                                              CHAPTER 5: Fuzzy FTA for 
Assessment of Mobile Offshore Drilling Units                                       MODU’sriskassessment 

 

  
151  

Table  5.9 shows the ranking result, which remains the same as the one in Table  5.8. The 

proposed model satisfies the aforementioned expectations. 

Table  5.9: Failure probability and importance level of each MCS 

 

5.8 Results and discussion 

MODU risk assessment and probability of failure has made limited improvement 

compared to analysis methods developed for other offshore structures’ probability 

estimation. Estimation of probability of failure and analysis of the consequences for 

MODU operation systems can be facilitated by FTA, as presented in this chapter, 

allowing modelling with respect to its HG features. This chapter has presented the 

modelling aspects, including hazard identification and its consequences for MODU 

failures and offered a methodology for MODU risk assessment which supports a 

structured approach to all tasks involved in the failure of MODUs due to their HG 

No of MCSs

Occurrence 

probability of 

MCSs

F-VI M MCSs rank New TE
RRW=TE-

New TE
RRW rank

MCS1 0.002 0.066867246 5 0.0519 0.0019 5

MCS2 0.0004 0.013373449 11 0.0534 0.0004 11

MCS3 0.003 0.100300869 4 0.0509 0.0029 4

MCS4 0.0006 0.020060174 9 0.0532 0.0006 9

MCS5 0.00000001 3.34336E-07 15 0.0537 0.00001 15

MCS6 0.00066 0.022066191 7 0.053 0.0008 7

MCS7 0.00035 0.011701768 12 0.0535 0.0003 12

MCS8 0.0002 0.006686725 13 0.0536 0.0002 13

MCS9 0.002 0.066867246 5 0.0519 0.0019 5

MCS10 0.005 0.167168115 3 0.049 0.0048 3

MCS11 0.001 0.033433623 8 0.0531 0.0007 8

MCS12 0.014 0.468070723 2 0.0404 0.0134 2

MCS13 0 0 1 0.029 0.0248 1

MCS14 0.0001 0.003343362 14 0.0537 0.0001 14

MCS15 0.0006 0.020060174 9 0.0532 0.0006 9
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failure. The presented methodology can easily be extended to include other HGs and the 

processes should they be considered simultaneously; also, it is possible to propagate 

uncertainties for different HGs and their BEs through modelling and analysis so that the 

overall system failure can be indicated in a probabilistic approach (i.e. probability 

distribution or higher and lower confidence limits). This will benefit the decision-

maker, who would appreciate the changeability and sensitivity of failure possibility 

estimates, which would not be so understandable if a risk assessment was offered as 

single point estimates only.  

5.9 Conclusion 

This chapter has presented a methodology for risk analysis and decision support and 

examined the probability of failure of an MODU operation system by using a Fuzzy 

FTA. This methodology is used for risk assessment through a unique application of 

Fuzzy theory, and the proposed methodology can be used as a process for developing a 

set of decisions for understanding and identifying the range of consequences and trade-

offs of actions within an uncertain atmosphere, which allows representation of offshore 

operation systems such as MODUs in different levels of detail. Risk analysis is 

performed by assigning probabilities to a certain event failure or evolution, in which a 

hierarchical breakdown is used to decompose one single component into a more detailed 

representation of the component. It is assumed that an MODU’s system failure is carried 

out by a series of simple occurrences, each affecting a different component. An event 

failure can be seen as a path through the evolutionary graph from a start point to an end 

point. 

Risk assessments are subject to many sources of uncertainty and data limitations that 

hamper the description of model input and the selection of an appropriate model 

structure. Conceptual model uncertainty and lack of system understanding is 

demonstrated to have a great impact on risk assessments. FTAs have the advantage that 

they are based on a logical framework of cause-effect relations. These relations are 

based on existing knowledge or experience. As little knowledge is available about the 

individual relations, many assumptions have to be made. For these assumptions expert 

knowledge is essential. Risk assessment for an offshore operation system with Fuzzy 



A Novel Engineering Framework for Risk                                              CHAPTER 5: Fuzzy FTA for 
Assessment of Mobile Offshore Drilling Units                                       MODU’sriskassessment 

 

  
153  

FTA concepts often involves a portion of information in order to achieve a useful BBN 

model, especially in the case of an MODU risk assessment, when a large amount of data 

is vague. Therefore, a combination of various data and information resources is 

essential. This chapter has proposed a new approach for FTA construction by 

employing a Fuzzy theory combining domain knowledge from experts where there are 

limited data. Expert knowledge with Fuzzy set theory was used to estimate the BE 

failure probability table. 

The quantification and assessment of probability of failures allows an engineered design 

of MODUs and adjustment of an offshore operation system so that risk is appropriately 

controlled. The largest concern of operators is the disruption of hydrocarbons of 

delivery to the departure point. An MODU failure has previously caused interruptions in 

drilling; therefore, operators could use the Fuzzy FTA model to quantify loss frequency, 

mitigation measures, and mitigation to control or to avoid a specified risk of HGs. By 

doing so, the expected loss of hydrocarbons and expected costs of construction 

(depending on the acceptable risk level to the operator) can be determined for 

establishing budgets for design, construction and installation, and also for operations 

and maintenance. From this study, it can be concluded that this has the following 

advantages:  

- Assistance in understanding the mitigation process for rare or extreme events, and 

providing an analysis and structure for strategy creation in situations of uncertainty 

and risky events. 

- When insufficient information concerning the occurrence frequencies of hazardous 

events is available, a Fuzzy FT methodology for evaluation seems to be a viable 

alternative solution. 

- It can be useful in the process of MODU risk analysis  

- By using linguistic variables, it is possible to handle the ambiguities involved in the 

expression of the occurrence of a hazard (BE).  

- It helps the decision-maker as a decision support tool and can be used for cause and 

effect analysis by, for example, simulating the consequences of a decision. 
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The validation results show that the proposed model calculates the failure probability of 

MODUs. However, in spite of their remarkable power and potential in addressing 

inferential processes, there are some inherent limitations and liabilities in FTA (i.e. the 

BEs are considered as independent in this chapter), so it is required to develop a method 

for taking into account dependency between hazards. 
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6 CHAPTER 6: Risk assessment of MODUs based on BBNs 

Chapter summary 

The main purpose of this chapter is to propose a methodology to improve the current 

procedures used in the risk assessment of MODUs. A new methodology for the 

assessment of the risk level of MODUs is presented. An operational hierarchy of an 

MODU is translated into a BBN using a Fuzzy-AHP to determine the degree of 

influence and importance of factors of each HG in terms of their contributions to the 

system’s failure. The associated values emphasise the chance of occurrence or 

importance, which is based on prior information that is incorporated into the model. The 

methodology is developed using a commercial computer-based modelling system to 

demonstrate how a BBN can facilitate a comprehensive assessment of the risk level of a 

complex MODU system. A generic model is presented that considers the operational 

failure of the drilling systems and the focus has been on mud circulation including the 

BOP system that is implemented to predict the failure of an event during drilling, rather 

than on measures that mitigate the consequences once an event has occurred. In the 

model, failure is influenced by the high-pressure mud system, mud treatment system, 

equipment failure, BOP and the other influences of the BEs shown in level 5 of the 

model which are involved in operation failure. The proposed methodology provides a 

rational and systematic approach for the unit’s risk assessment and comprises a number 

of stages: i) Identification of probable critical events that may lead to the unit’s 

operational failure, ii) Unique applications of a combination of a BBN technique and an 

AHP method are used, iii)Ranking of events using a Fuzzy-AHP to determine the 

degree of influence of each HG and calculation of the conditional probability table 

(CPT), and iv) Construction of hierarchy for the offshore operation system and 

translation into a BBN. The drilling failure of an MODU has been considered, focusing 

on the mud circulation systems including the blow-out preventer. The aim is to prevent 

a critical event occurring during drilling rather than on measures that mitigate the 

consequences once an event has occurred. The study proposes a methodology for 

developing such an assessment. For the purpose of developing a risk analysis and 

decision support model, a relatively realistic and practical approach has been chosen. 
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6.1 Introduction 

Ensuring the operational safety of systems used in the offshore industry is often a 

complex problem. An offshore system faces hazards from many different sources which 

dynamically threaten its integrity and operators have to be aware of the current and 

future states of the system in order to make an appropriate decision. QRA techniques 

have been widely applied to offshore operations to reduce the probability of failure. The 

conventional FT is one of several deductive logic techniques which have been used 

extensively for accident investigation, hazard identification and risk analysis of process 

systems (Khan et al., 2002). Standard fault are assumed to be independent although this 

assumption is not always valid in many offshore systems. 

BBNs have emerged as an alternative technique in risk assessment (Bobbio et al., 

2001). Conventional failure assessment techniques such as FTA are often incapable of 

handling changes in uncertainty which are significant in the operation risk assessment 

of offshore systems such as MODUs (Aquaro et al., 2010; Lecklin et al., 2011; Helle et 

al., 2011). A BBN is a graphical technique used to express the causal relationships 

between variables. It can be used to either predict the probabilities of events or to 

update the probabilities of events given the state of other evidence, through the process 

of probability propagation (Mahadevan et al., 2001). The network can perform forward 

or predictive analyses, and backward or diagnostic analyses. New information can 

easily be incorporated as it becomes available, as only the conditional probabilities of 

the affected events require redetermination.  

AHP is a technique often used to model subjective decision-making processes based on 

multiple attributes, and can be applied to both individual and group decisions (Bolloju 

2001). The Fuzzy-AHP method has been applied in order to identify and measure the 

relative importance of the events. It allows input from experts based on previous 

experience to determine the degree of importance and dependency factors of each event 

in the model in terms of their contributions to other failure events. The pairwise 

comparison scheme used in AHP is ideally suited to estimating the relative importance 

of an event for multiple criteria. The occurrence of a hazardous situation may lead to a 

range of consequences. It cannot be assumed that each HG is of equal importance and 

weight in terms of its influence on the failure of the MODU. Therefore, it is necessary 
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to consider the contributory factors of an individual HG to failure. AHP is used to 

define the consequence of a failure and its contribution to and influence on other events. 

In the proposed model, a Fuzzy-AHP is used to determine the relative contribution 

weight factors of events in terms of their effect on system failure. This overcomes the 

shortcomings of conventional methods and effectively produces a final decision. The 

values used throughout the analysis are selected based on their high probability of 

occurring and/or the high importance of potential impact. The proposed methodology 

provides a rational and systematic approach for the risk assessment of offshore units. A 

comprehensive model is proposed which takes into consideration the different 

influences which impact on the operation of the offshore system. The main steps in the 

development of this methodology include:  

- Identifying the probable critical events that may lead to operational failure, ranking 

the events in terms of their influence to other events and relative importance of the 

events with respect to system failure, and calculating the conditional probability table 

of each node. 

- Establishing an operational hierarchy system diagram and breaking down the events 

in detail with respect to the main function.  

- Translating the operational hierarchy to a BBN.  

6.2 The case for decision support systems for offshore systems 

A MODU comprises a large number of complex sub-systems, which makes decision-

making in a time-critical situation extremely difficult. The development of effective 

decision support systems is an important field of investigation (Lu et al., 2008). Most 

disasters in offshore operations are not caused by a single event or failure but by a 

combination of human errors, operational issues and equipment failures. Statistical 

results have indicated that human actions/errors play a significant role in offshore and 

marine operation failures. Studies indicate that human failures are responsible for over 

70% of the causes in marine and offshore accidents and only 30% are attributed to 

technical failures (Trucco et al., 2008). The fundamental human issues that have an 
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impact on offshore operations may be at the organisational and individual level (i.e. 

competence level, stress, and motivation). 

In the last several years, human factors have been widely researched using various QRA 

methods. In the Macondo Well on April 20, 2010, for example, a series of 

organisational and human errors and hydraulic and mechanical failures resulted in a loss 

of well control, which finally led to a blow-out, leading to fatalities, damage and a 

substantial amount of hydrocarbon spill. The fire and explosions that followed the 

blow-out finally caused the Deepwater Horizon (DWH) semi-submersible drilling rig to 

explode and sink in the northern Gulf of Mexico on April 20, 2010, killing 11 crew 

members and initiating the largest marine oil spill in US history (Cleveland et al., 2010, 

Hickman et al., 2012). The results from the investigations showed that the DWH 

accident was a result of failures on different levels of a social and technical system 

involved in the control of safety (i.e. staff; management; company; regulators and 

associations at government level). According to the BP investigation, a chain of events 

was to blame for the loss of well control (e.g. poor cementing caused a kick to occur, 

the failure of the blow-out preventer to close the well, failure to notice the kick 

indications and wellbore pressure (Skogdalen et al., 2011, Cleveland et al., 2010, 

Hickman et al., 2012).  

Risk assessment is a process that comprises several stages, starting with identification 

of the variables (hazards) from vulnerability analysis and expressing relationships as 

conditional probabilities to formulate a risk mitigation measure. Probability theory is 

the technique of choice for dealing with uncertainty in numerous sciences and for a 

complex system (Newman, et al. 2005).  

6.3 Proposed methodology for MODU risk assessment  

BBNs are increasingly used to model complex domains for which knowledge and data 

are uncertain (Henriksen et al., 2007; Cai et al., 2013; Uusitalo, 2007). They have 

proven effective for capturing and integrating quantitative and qualitative information 

from various sources (Smith, et al. 2007). They have the ability to support decisions 

where there is a shortage of empirical data and can be easily updated when new 

evidence becomes available (Henriksen & Barlebo, 2008). 
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The proposed methodology uses the BBN technique to express the causal relationships 

between variables and to combine the evidence from different sources for a QRA of 

offshore systems. The BBN is used to represent the links between unsophisticated 

available information and to foresee the occurrence likelihood of events that may have 

consequences in the operation of the MODU systems. The methodology presented uses 

a hierarchical model to describe dependencies among the systems or components. A 

hierarchical relation exists in the model that is analysed on different levels (e.g. level 2 

and level 3). A BBN model of a system (i.e. MODU) is the compact representation of a 

joint probability distribution of the variables or events comprising the system. An 

MODU’s system operation is represented by a combination of the various sub-systems, 

which comprise both discrete and continuous variables. However, when it comes to 

modelling uncertainty and to performing probabilistic assessment of a unit’s operation 

system, what BBNs have to offer is quite limited. The reasons for choosing BBN 

graphical models are their capability of establishing relationships between hazardous 

events and capacity to show cause and effect relationships of the events by their 

directional capability. Since decision-making in a real MODU operation system is 

extremely complicated, the intention of the proposed methodology is to support 

offshore operators in making rational decisions in uncertain circumstances or hazardous 

situations and to address all HGs and their root cause issues. The proposed new method 

concentrates on the assessment of the failure of offshore operational systems (i.e. 

MODUs) posed through the HGs and root causes (BEs) and presents a novel context to 

implement a methodology that matches probability theory with the AHP technique to 

perform assessment with BBN. As presented in Figure 6.1, the proposed methodology 

comprises the following four important tasks: 

 HG identification. 

 Data collection (using input from experts where there is a lack of data). 

 Identifying the relationships between events and establishment of a suitable 

hierarchy.  

 Expression of events’ relationships and influences as conditional probabilities with 

importance factors. 

After hazard identification and construction of an operational hierarchy domain, a 

framework is established which is capable of quantifying the judgements from experts. 
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Figure  6.1: Proposed BBN methodology for the MODU risk assessment 
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This is followed by establishment of their membership functions for the linguistic terms 

for the BEs. A conditionally probability table is established using AHP to calculate the 

importance of contributing factors and the weights of the relevant importance of each 

HG in its  risk tree from a viewpoint of their contribution to the failure of the MODU 

and, finally, BBN calculation.  

The risk analysis process includes hazard identification from a vulnerability analysis at 

the start point and is followed by adapting an operational hierarchy of the MODU’s 

system into the BBN. This allows representation of the MODU operation system with 

its HGs at different levels of detail. This aims to detect the failure of equipment or 

systems as well as to support risk mitigation measures (Baiardi et al., 2009). In a real 

system, the amount of analysis required may be enormous because of the number of 

nodes and arcs of the entire system and associated HGs. Because of the complexity of 

integrating the information, and in order to simplify the assessment processes, a 

manageable group of hazards has been considered. Each HG may be broken down into a 

number of simpler system components in different levels, as illustrated in Figure 6.2. 

Three HGs (i.e. Natural hazard: L2D-N1, Operational hazard: L2D-O1 and Human 

error L2D-H1) are modelled to the BBN, in which the components and routes describe 

the MODU’s operation system. The failure of each component may influence another 

component or system at the same level or a different level (e.g. ESD System Failure 

(L3D-O1-06) in level 3 has a consequence for Drilling System Failure (L3D-O1-01) at 

the same level, as well as Operational Failure (L2D-O1) at level 2).  

A BBN can be considered as a representation of static cause-effect relations among the 

events. The line between two nodes denotes dependencies or direct contributing 

influences between them. The strength of these dependencies is represented by 

conditional probabilities. The operational hierarchy model is developed based on the 

BBN to model the unsafe conditions of the MODU based on occurrence of BEs. A 

structural hierarchy model with a list of the MODU’s hazardous events employed in this 

model is shown in Figure 6.2. The set of values for each event is also given along with 

the relevant code of reference to be used throughout. This method of assessment can 

help the operator to carry out the MODU risk evolution in a realistic and 

methodological way.  
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Figure 6.2: Hazard identification and MODU’s operational hierarchy 
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L3D-N1-03:Wellbore influx / Kick                                    WD3N-3 

L3D-N1-04:Punch Through                                                WD3N-

L3D-N1-05:Ground movement                                         WD3N-

L3D-O1-01: Due to Drilling System  Failure              WD3O-1

L3D-O1-02: Due to Power System Failure                     WD3O-2

L3D-O1-03: Due to  Rig Control System Failure            WD3O-3

L3D-O1-05: Due to Water Handling System Failure    WD3O-5

L3D-O1-04: Due to Jacking System Failure                    WD3O-4

L3D-O1-06: Due to  ESD System Failure                         WD3O-6

L3D-H1-02: Management / Supervision / Staff             WD3H-2

L3D-H1-03: Individual- Competence/Motivation WD3H-

L3D-N1-01:Present of high speed wind/wind/Current WD3N-1                                            

L3D-N1-02:Hole instability                                                WD3N-2    

L3D-O1-07: Due to Fuel System Failure                         WD3O-7

L3D-O1-08: Due to  Air/Hydraulic System Failure        WD3O-8

L4D-O1-01-03 : Drilling 
Equipment Failure

WD4O-1-3

L4D-O1-01-04 : Drilling 
failure due to Blow out 
Preventor (BOP) system 
failure  / Drilling failure 

due to failure of managed 
pressure drilling stack            

WD4O-1-4

L4D-O1-01-01 : High 
Pressure Mud System Failure      

WD4O-1-1

L4D-O1-01-02 : Mud 
Treatment System Failure       

WD4O-1-2

L5D-O1-01-1-1:Mud Pump #1 Failure      WD5O-1-1-1

L5D-O1-01-1-2:Mud Pump #2 Failure                      WD5O-1-1-2

L5D-O1-01-1-3:Bulk Handling Suystem Failure       WD5O-1-1-3

L5D-O1-01-1-4::  High Pressure route Failure (HP hoses, 
Standpipe Manifold, Choke and Kill Manifold)       WD5O-1-1-4

L5D-O1-01-2-1:Shale Shaker Failure                          WD5O-1-2-1

L5D-O1-01-2-2:Desander Failure                               WD5O-1-2-2

L5D-O1-01-2-3:Disilter Failure                                   WD5O-1-2-3

L5D-O1-01-2-4:Degasser Failure                                WD5O-1-2-4

L5D-O1-01-3-1:Draw Wrok Failure                           WD5O-1-3-1

L5D-O1-01-3-2:Rotary Table Failure                        WD5O-1-3-2

L5D-O1-01-3-3:Top Drive Failure                                  WD5O-1-3-3

L5D-O1-01-3-4:Pipe Handling System Failure            WD5O-1-3-4

Level  1 Level  2 Level  3 Level 4 Level  5

L5D-O1-01-4-1 : BOP Stack Failure                             WD5O-1-4-1 

L5D-O1-01-4-2: BOP Control System Failure            WD5O-1-4-2 

L5D-O1-01-4-3 : Component Failure/Leak               WD5O-1-4-3  

L3D-H1-01: Organizational , Polices and Procedures   WD3H-1

L5D-O1-01-3-5:Drilling Control System Failure      WD5O-1-3-5
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6.4 The BBN concept and theory 

The BBN methodology was introduced in the 1980s and the theory is based on the 

Bayes rule, proposed by Sir Thomas Bayes (Carlin and Louis, 1997; Cheeseman, 1983; 

Strauss & Sadler, 1989; Dale, 1999). BBNs have a strong similarity to FTA in many 

respects. FTA is an effective method in probabilistic failure assessment but is limited to 

modelling simple static systems. The distinct advantages of BBNs are their capability to 

explicitly represent the dependencies among the events, updating probabilities, flexible 

structure compared to FTA and is appropriated for risk assessment and analysis of 

offshore operation systems (Wang et al., 2011; Ren et al., 2008).  

BBNs are increasingly used to model complex domains for which knowledge and data 

are uncertain (Henriksen et al., 2007). They provide both diagnostic and predictive 

capabilities and allow for updating the probability distributions when new evidence 

becomes available (Henriksen and Barlebo, 2008); (Pearl, 2000). However, the 

calculations involving large numbers of variables are complex and appropriate tools are 

required (Cheng and Druzdzel, 2000). Bayes’ theorem is one that has been proven to be 

an understandable method of mathematically expressing a decrease in uncertainty 

gained by an increase in information (Bayes, 1763). A BBN is a directed graph 

consisting of a set of nodes and links among them. Uncertain variables are associated 

with each node where the probability of the failure expresses the certainty of the various 

events consequences and is conditionally subject to the status of the parent nodes at the 

entering boundaries. BBNs obviously accommodate uncertainty and inconsistency in 

model predictions because of the probabilistic presentation (Uusitalo, 2007), and they 

have proven effective for capturing and integrating quantitative and qualitative 

information from various sources (Smith et al., 2007).  

BBNs are excellent tools for managing and understanding complex processes compared 

to other methods of risk assessment for the reason that they represent the process 

graphically; each node in the network represents either the prior or conditional 

probability of the parameter of interest. As mentioned, BBNs offer several advantages 

over conventional risk assessment techniques (Woodberry et al., 2005):  
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- A process is presented graphically and the intuitive visual presentation showing 

causal relationships can be sensibly understood. 

- BBN models would be a valuable decision support tool. 

- Different sources of information can be employed concurrently in the model.  

- Dependent relationships between the events can be described by directing links. 

- The data can be simply updated with new knowledge. 

6.4.1 BBN theory 

Bayes’ theorem provides a means for creating probability calculations. In order to 

generate probability statements about the model’s parameters, the analysis must start 

with providing an initial or prior probability approximation for specific outcomes or 

events of interest. The objective of this chapter is to apply a probabilistic model for an 

MODU’s risk assessment; this is defined as a translation of information that permits us 

to evaluate every sophisticated decision in line with the following three axioms as 

presented in Equation (6.1) (Pearl, 2000):  

Causal BBNs express causal relationships between random variables and involve nodes 

connected by directed edges. Essentially, it is a relation among conditional and marginal 

probabilities. Conditional probabilities are essential to a fundamental rule of probability 

calculus, the product rule. As presented in Equation (6.2), the product rule defines the 

probability of a conjunction of events (i.e., for two events, A and B):  

 P(A|B)P(B) = P(A,B) = P(B|A)P(A) ( 6.2) 

In Bayesian probability, the concept of inference plays an important role. The rule of 

updating probabilities is given by Equation (6.3), which is the theorem conventionally 

known as Bayes’theorem(Strauss and Sadler, 1989;, Dale, 1999): 

• 0 ≤ P(A) ≤ 1 

• P(sure proposition) = 1 

• P(A or B) = P(A)+P(B) where A and B are exclusive events              ( 6.1) 
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 P(A|B) =  ( 6.3)  

Term P(A|B) in Equation (6.3) is called the posterior probability of A given the 

assumption that B is known. It is posterior in the sense that it is resulting from or 

entailed by the specified value of B, and this is called the conditional probability. When 

P(A|B) = P(A), A and B are said to be independent. In Bayesian probability, conditional 

probability is not defined in terms of joint events; A|B is rather seen as A in the context 

specified by B. The term P(B) is the prior or marginal (total) probability of B but also 

one that provides evidence of interest for the probability update of A. Its inverse is 

usually regarded as a normalising constant. With this terminology, Figure 6.3 shows a 

graphical illustration of Bayes’ theorem (Press and Press, 1989). 

 

Figure  6.3: A graphical illustration for terms of Bayes’ theorem 

The term P(A) is named the prior probability of A and is also called the marginal 

probability of A. It is prior in the sense that it precedes any information or knowledge 

about B, what is called data, and this is what grounds all the arguments. In light of this 

new information providing a new data belief, it is desirable to improve the state of 

knowledge and thus the prior probability values are updated by calculating revised 
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probabilities, referred to as the posterior probabilities. The term P(B|A), for a specific 

value of B, is called the likelihood function for B given A, where the vertical bar “|” 

indicates “given that” (Pearl, 2011). 

6.4.2 Definition and properties of BBN 

The BBN is the common technique used to measure posterior probabilities’ distribution 

given the prior probabilities. This type of inference can use simulation techniques and 

subjective opinions to obtain fairly accurate probability values. Likelihood estimation is 

the proportion of occurrence between the various states of the variable. A BBN consists 

of a set of nodes for representing variables and a set of directed edges representing 

causal influences between variables (Cowell, 1998; Smyth, 1997). Each variable has a 

finite set of mutually exclusive states. Figure 6.4 shows a typical BBN or directed 

acyclic graph where A is the observed variable, because it is a node with no child node. 

This node A is an uncertain variable; its value is influenced by B, which is the 

parameter of interest in this problem; we observe A (with n specified), and use this 

information to infer possible values for B. The dashed region at the top of the graph, 

labelled Data, clarifies the type of prior distribution used for B that is entered by the 

analyst. 

 

Figure 6.4: Typical BBN (Directed acyclic graph) 

As mentioned, a significant benefit of the Bayesian paradigm is that additional 

parameters can easily be added to a model without seriously adding to the complexity of 

the statistical analysis, provided that those parameters fit into a conditional 

independence structure. This means that, provided the dependence of the new 

A

B

Data

n



A Novel Engineering Framework for Risk                     CHAPTER 6: Risk Assessment of MODUs 
Assessment of Mobile Offshore Drilling Units              based on BBNs 

 

  
167  

parameters on the existing data and parameters can be made explicit, assessing the new 

parameters is often a simple matter of additional computing time. 

6.4.3 Joint probability distribution (JPD)  

In the general case, a JPD over a set of variables, A = [A1, A2,…,An], can be defined 

recursively using the product rule as presented in Equation (6.4) (Pearl, 1988): 

 

P(A1, A2,…,An) = P(A1|A2,…,An)P(A2,…,An) 

              = P(A1|A2,…,An)P(A2|A3,…,An)P(A3,…,An) 

 = P(A1|A2,…,An)P(A2|A3,…,An)…P(An–1|An)P(An)  

( 6.4) 

 

Equation (6.5) illustrates an application of BBN for (A1, A2, B, C, D) for the graph 

given in Figure 6.5. 

 

 

Figure 6.5: Typical BBN (Directed acyclic graph) 
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( 6.5)  

This factorisation property of JPDs is referred to as the chain rule of probabilities and is 

one that allows any ordering of variables in the factorisation. Such a rule is especially 

significant for BBNs because it provides a means of calculating the full JPD from 
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conditional probabilities, which is what a BBN stores. For example, the JPD for three 

events, a1, a2, and a3, can be expressed more compactly as: 

 P(a1| a2, a3)P(a2, a3) = P(a1, a2, a3) = P(a2| a1, a3)P(a1, a3) ( 6.6) 

Then, in applying Equation (6.7), Bayes’ theorem specifies the probability of an event 

a1, given the condition that an event a2 and an event a3 both occur as: 
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aaaaaP
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Thus, risk assessment of events can be carried out on this basis to enhance reasoning 

that will enable reliable decision-making. Generally, Bayes’ rule can be considered for 

the problem of estimating values of j parameters (causes), A = [a1,…,aj], using i 

observations (effects), B = [b1,…,bi]. In the rule then, given the observations B = 

[b1,…,bi], the posterior probability distribution on A can be computed as: 
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Figure  6.6: An illustration of probability update via Bayes’ theorem 
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Bayesian inference proceeds by summarising the posterior distribution, P(A|B). As 

depicted in Figure 6.6, after observing the data, the wide prior distribution is converted 

into the more narrow posterior distribution using Bayes’ rule. The process of Bayes’ 

theorem is repeated every time when new or additional information becomes available 

(Lindley and Smith, 1972). Bayes’ theorem has been particularly useful in estimating 

knowledge about the frequency of rare events or making reliability predictions where 

there is sparse or no directly applicable data (Hall et al., 2009). 

6.4.4 Marginalisation of probabilities 

The probability distribution P(A) can be calculated from a table P(A, B) of probabilities, 

P(ai, bj). Let ai be a state of A. There are exactly m different events for which A is in 

state ai, namely the mutually exclusive events (ai, b1),…,(ai, bm). Therefore: 

 P(ai) =  =  ( 6.9) 

In other words: 

  =  ( 6.10) 

This calculation is called marginalisation (summing out) and expresses the fact that the 

variable B is marginalised out of the JPD, P(A, B) (resulting in P(A)) (Sandholm and 

Suri, 2003; Russell and Norvig, 2003). The notation is: 

 P(A) =  =  ( 6.11) 

In a similar way, if P(B, A) is a CPT over A and B, then a CPT over the state space of 

just B can be produced by marginalising over A, so that, for example: 
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 P(b1) =  = P(b1|a1) P(a1) + P(b1|a2) P(a2) ( 6.12) 

Marginalisation is of utmost importance for all inference in Bayesian probability: 

integrating out all superfluous variables derives the information about a subset of the 

system’s variables. Furthermore, the process of marginalisation tackles the problem of 

decision uncertainty explicitly, by preventing overoptimistic predictions (Vellido and 

Lisboa, 2001). 

6.4.5 Conditional probability distribution  

A BBN allows the analytical evaluation of all the probabilities of interest and also 

represents the quantitative relationships between the modelled variables. It provides us 

with probabilities information and makes it possible to recognise system failure or 

weaknesses. The BBN comprises different variables (i.e. independent and dependent), 

the links represent how the variables are related and each node is described by a 

probability distribution. Underlying each dependent variable is a conditional probability 

table that specifies the probability of each state conditional on other variables. A 

conditional probability is a probability of one event given that another event has 

occurred, i.e. the conditional probability of a parameter, a1, given an observed 

parameter, b1, would be written as P(a1| b1).  

There are some differences depending on the level to which the node belongs. As per 

hazard identification and an MODU’s operational hierarchy, shown in Figure 6.2, a 

framework was chosen to model the system and each dependent node is described by a 

conditional probability distribution. In level 5, CPT evaluation is reduced to the 

definition of prior probabilities of occurrence of adverse events. This can be done by 

relying on historical data and expert opinion; as an example, the conditional probability 

table associated with the event High-Pressure Mud System Failure (L4D-O1-01-01) 

being directly dependent on the Mud Pump #1 failure (L5D-O1-01-1-1). Another 

important characteristic of conditional probability is the nature of failures that can 

happen within a system and how that may affect other dependent systems or equipment. 

In this respect, the conditional probability table mainly specifies the logical connection 




2

1

1),(
i

i baP



A Novel Engineering Framework for Risk                     CHAPTER 6: Risk Assessment of MODUs 
Assessment of Mobile Offshore Drilling Units              based on BBNs 

 

  
171  

between services or equipment, i.e. the event of Drilling System Failure (L3D-O1-01) 

in level 3 is conditional on the event of Power System Failure (L3D-O1-02). 

Principally, a typical conditional probability table is a matrix of conditional 

probabilities and knowledge of CPT is an integral and essential part in understanding 

numerical evaluation of probabilities. As illustrated in Table 6.1, a CPT in level 4 is 

described for four nodes by its matrix format containing two states of each specified 

event (i.e. Risky & Consistent). Thus, Consistent represents a certain state for each 

event whilst Risky stands for a failure state. The importance factors which are outputs 

of the AHP analysis are shown in the second column of each related node and the 

cumulative states are presented in the last two columns.  

Table  6.1: CPT in level 4 of four nodes containing two states of specified events  

 

An additional class of dependencies that is even harder to identify is associated with the 

operators’ management system and dependencies among the different organisations of 

the MODU’s operation system (i.e. managing different subcontractors for different 

activities). A failure in one organisation (e.g. Cementing subcontractor) can cascade 

through dependencies to other parts of the MODU’s operation system. A dependency 

model needs to be flexible enough to capture dependencies at different levels within an 

operation system. 

States

Importance 

Factor 

WD4O-1-1 

States

Importance 

Factor 

WD4O-1-2

States

Importance 

Factor 

WD4O-1-3 

States

Importance 

Factor 

WD4O-1-4

Risky Consistent

Risky 0.220 Risky 0.271 Risky 0.175 Risky 0.335 1.000 0.000

Risky 0.220 Risky 0.271 Risky 0.175 Consistent 0.665 0.335

Risky 0.220 Risky 0.271 Consistent Risky 0.335 0.825 0.175

Risky 0.220 Risky 0.271 Consistent Consistent 0.490 0.510

Risky 0.220 Consistent Risky 0.175 Risky 0.335 0.729 0.271

Risky 0.220 Consistent Risky 0.175 Consistent 0.394 0.606

Risky 0.220 Consistent Consistent Risky 0.335 0.555 0.445

Risky 0.220 Consistent Consistent Consistent 0.220 0.780

Consistent Risky 0.271 Risky 0.175 Risky 0.335 0.780 0.220

Consistent Risky 0.271 Risky 0.175 Consistent 0.445 0.555

Consistent Risky 0.271 Consistent Risky 0.335 0.606 0.394

Consistent Risky 0.271 Consistent Consistent 0.271 0.729

Consistent Consistent Risky 0.175 Risky 0.335 0.510 0.490

Consistent Consistent Risky 0.175 Consistent 0.175 0.825

Consistent Consistent Consistent Risky 0.335 0.335 0.665

Consistent Consistent Consistent Consistent 0.000 1.000

L4D-O1-01-1   L4D-O1-01-2   L4D-O1-01-3 L4D-O1-01-4  CPT  (Symmetric model)
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6.4.6 Conditional independence and dependency 

A BBN also represents the quantitative relationship among the modelled variables and it 

represents the JPD among them. Any probability of interest can be calculated from the 

JPD of the variables. However, a BBN not only outputs the graphical representation of a 

joint probability of the variables, but also captures properties of conditional 

independence (i.e. missing arrows that imply no direct influence) between variables. 

Conditional independence has the advantage of representing joint probabilities more 

compactly and efficiently, before the actual conditional probability distributions are 

numerically specified. Combination of quantitative information with qualitative 

information of numerical parameters makes probability theory easy to express; the 

above mixture leads to reduction in complexity of the probability computation and also 

simplifies probabilistic inference of the network. 

Conditional independence also reduces the size of CPTs. As an example, given two 

events, A and B, A is independent of B if P(A|B) = P(A). Independence is symmetric, 

and therefore it follows that P(B|A) = P(B). The independence of A and B can also be 

expressed as P(A,B) = P(A)P(B). Also, A is conditionally independent of B given 

another event, C, if P(A|B,C) = P(A|C). Conditional independence is symmetric, and 

therefore it follows that P(B|A,C) = P(B|C). Now, when many variables are 

conditionally independent, as in the case of Equation ( 6.6), calculation of joint 

probabilities using the chain rule can be simplified significantly. As a simple example, 

if A is conditionally independent of B given C, then P(A,B,C) = P(A|B,C)P(B|C)P(C) = 

P(A|C)P(B|C)P(C). 

6.5 Applications of research methodology for MODU risk assessment 

In this section, the application of the BBN is emphasised, in particular, the application 

of the proposed research methodology for risk assessment of the MODU’s operation 

system is presented. The BBN technique is used to determine the probability of the 

MODU’s failure in the course of an offshore operation. The proposed methodology 

benefits from the inclusion of different complex variables of a hybrid nature in the 

offshore operation. Application of the BBN method consists of three stages. It starts 
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with hazard identification and construction of the BBN model in line with the MODU’s 

operational hierarchy and is followed by elicitation of probabilities to nodes and, 

finally, the establishment of calculations. The objective of this chapter is to demonstrate 

the modelling aspects of the BBN with regard to its ability to update probabilities as 

well as its various modelling features such as incorporation of variables, dependent 

failures and expert opinion, which are frequently encountered in risk assessment of 

operational systems like MODUs.  

In spite of the BBN’s attraction and widespread attention for modelling complex large-

scale marine and offshore operations (i.e. MODU risk assessment), there are a number 

of concerns in relation to the construction of the hierarchy model and the incorporation 

of data. The person who creates the models needs to be aware of these concerns, such as 

distinguishing the variables appropriate to the MODU’s operation system, recognising 

the relationships between these variables and expressing these relations as a conditional 

probability distribution table. A hierarchy model is regulated by variables and their 

interactions.  

The requirement and guidelines pertaining to well integrity during drilling activities and 

operations are specified in the Norwegian oil and gas regulations (NORSOK D-010, 

2004). According to this standard, all phases of offshore operations must have two 

separate and independent barriers. Well drilling completion is a good example, in which 

the mud column is the primary barrier and the secondary barrier is the blow-out 

preventer BOP, which protects the well from a disaster as the last resort. The primary 

barrier is the first stumbling block against undesirable flow from the source (Hauge et 

al., 2011). In overbalanced processes, the mud column is the primary well barrier and 

should function within the drilling margin pressure (i.e. a pressure greater than the hole 

pressure and lower than the fracture gradient). Mud control is an operation function and 

loss of control can lead to an emergency situation. The mud and cementing circulation 

system is composed of the following: bulk and storage system, high-pressure mud 

pumping system, mud treatment system and cementing system. The secondary barrier 

should be active on the detection of an influx and the well should be closed, and this 

also prevents further unwanted flow in the case of failure of the primary well barrier 

(PSA, 2008). Macondo (BP, 2010) was planned to be abandoned and left 

underbalanced, by replacing drilling mud with sea water, and with two cement barriers 
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in place (Commission, 2010b). Well control systems are defined in the NORSOK 

standard (D-001, 2004) as the mechanical well control and associated equipment and 

system. This includes BOP, choke & kill system, rise, and the control system for the 

BOP. As explained previously, the mud system and BOP are the key components of the 

system to provide the well integrity. Therefore, the simple process diagram of the mud 

circulation and mixing system as illustrated in Figure 6.7 is considered in levels 4 and 5 

of the MODU’s operational hierarchy (Figure 6.2). Drilling mud is the primary 

requirement to start drilling operations and the mud mixing system provides appropriate 

mud by an adequate combination of dry cement and water (diesel oil or brine may be 

used to provide viscidity). Drilling mud is made and stored in mud pit(s). Mud pumped 

through the standpipe manifold into the drill string will pump the prepared mud stored 

in the mud pit. The standpipe design pressure is in line with the mud pump capacity 

(typically 7,500 psi). The mud pump provides adequate pressure to overcome the mud 

column static pressure at the bottom of the drilled hole.  

Mud returns through the annular casing, and then the returned mud is directed to the 

shell shakers via the mud ditch to remove earthen impurities such as sharp rocks. At a 

later stage, the returned mud will pass through Desander, Desilter and gas separator in 

order to remove smaller impurities as well as mixed gas trapped in the mud. At the last 

stage, the treated, returned mud will go back to the mud pits for further circulation. This 

circulation process is repeated through the course of drilling. The returned mud pressure 

is continuously measured by BOP sensors and, in the case of over-pressure, the normal 

circulation line will be blocked and the high-pressure mud will be led to the choke/kill 

manifold, which is designed for higher pressure (typically 10000 psi), in order to reduce 

the pressure of the pumped mud on the atmospheric level. In the case of kick (high 

pressure in the return line because of entry of water, gas, oil, or other formation fluid 

into the wellbore), the very high-pressure mud (10000 psi) will be injected into the well 

through the kill line by an additional pump (normally cement pump). The cement pump 

is also connected to the choke/kill manifold. It should be noted that the “kick” pressure 

is lower than the “choke” pressure. As the bit “drills ahead”, a specially formulated 

drilling fluid or mud is continually pumped or circulated from the surface to the bottom 

of the well, and then back to the surface to cool the bit and remove the cuttings, as 

illustrated in Figure 6.7.(For the system’s components description refer to Appendix 2) 
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Figure  6.7: Schematic diagram of mud circulation and mixing system/equipment in levels 4 and 5 
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6.5.1 Hazard identification and potential hazard sources/sub-sources 

In the previous chapters (Chapters 4 & 5), the contextual information on the MODU’s 

HGs and the objectives of the application were provided and also a novel methodology 

was introduced for HG classification with particular emphasis on Drilling Failure (L1D-

O1-01). In the hazard identification, the MODU’s operational hierarchy is illustrated, 

beginning with the BEs (root causes) in level 5, followed by the intermediate nodes in 

levels 3 and 4, also called hinge nodes, and ending up with the target node in level 1. 

Figure 6.7 illustrated the schematic diagram of the mud system. A model in association 

with the circulation and mixing system is developed in level 4 with special focus on 

analysis of failures of the mud system caused by its HGs. 

A comprehensive system-level risk analysis is heavily dependent on appropriately 

identifying the key events of the area of interest. In particular, the identification of 

potential hazard sources within the structure of the problem domain should be 

considered as a fundamental step in operational system risk assessment. Within this 

context, for drilling failure (L1D-O1-01) a HG was developed and, based on its 

classification and analysis, three main category hazard sources were identified and 

labelled as: Human (L2D-H1), Operational (L2D-O1) and Natural (L2D-N1). A 

hierarchy model, represented as a directed graph, as shown in Figure 6.2, is used to 

assess the goals of L1D-O1-01 (Drilling failure) due to its associated HGs in different 

levels by disintegration into measurable sub-systems and events. 

The analysis starts by identifying the importance of BEs and parent notes in different 

levels that can influence the goal level (i.e. level 1). In the next step, the exploratory 

approach is adopted in order to explain the importance of events and their consequences 

at different levels through application of the AHP technique based on expert judgement. 

The pairwise comparison scheme in the AHP is an ideal solution to work out the 

relative importance of an event, providing an explanation for multiple criteria in 

evaluating important consequences. By employing the pairwise comparison of the AHP 

technique, the interactive relationships expressed between the risk events through causal 

and logical dependency and a relative contributions weight factor were introduced. A 

Fuzzy-AHP is used to determine the importance factors of each event, which interprets 
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their influence on and contributions to the MODU’s operational system failure. As an 

example, in level 4 of the operational hierarchy importance factors (WD4O-1-1 to 4) are 

considered as the relative weight factors for the nodes L4D-O1-01-01 to 4 respectively. 

These factors then explain the significance of the event in comparison with the others in 

a particular process. The corresponding importance factors as a conditional probability 

are identified and ranked by the Fuzzy-AHP method, as illustrated in Figure 6.8. 

The higher levels (i.e. levels 2, 3 and 4) can also affect indirect root causes and 

consequently their associated hinge nodes from other hazard sources. Several events can 

exist in parallel or the existence of one event can comprise the existence of another 

event. As shown in Figure 6.8, there are three HGs of interest, L2D-N1, L2D-O1 and 

L2D-H1, which belong to level 2 of the operational hierarchy. L2D-N1, L2D-O1 and 

L2D-H1 can be inferred directly from the BEs in level 3 which include: L3D-N1-01 to 

5, L3D-O1-01 to 8 and L3D-H1-01 to 3 respectively. While the event L3D-O1-01 was 

expanded in two more levels (levels 4 & 5) and is dependent on the existence of lower-

level events (i.e. level 4: L4D-O1-01-1 to 4) and BEs in level 5, as listed below: 

 L4D-O1-01-01: High-Pressure Mud System Failure  

-  L5D-O1-01-1-1: Mud Pump #1 Failure  

-  L5D-O1-01-1-2: Mud Pump #2 Failure 

-  L5D-O1-01-1-3: Bulk Handling System Failure 

-  L5D-O1-01-1-4: High-Pressure Route Failure  

          (HP hoses, Standpipe Manifold, Choke and Kill Manifold) 

 L4D-O1-01-02: Mud Treatment System Failure 

- L5D-O1-01-2-1: Shale Shaker Failure 

- L5D-O1-01-2-2: Desander Failure 

- L5D-O1-01-2-3: Disilter Failure 

- L5D-O1-01-2-4: Degasser Failure   

 L4D-O1-01-03: Drilling Equipment Failure  

- L5D-O1-01-3-1: Draw Work Failure 

- L5D-O1-01-3-2: Rotary Table Failure 

- L5D-O1-01-3-3: Top Drive Failure 

- L5D-O1-01-3-4: Pipe Handling System Failure 

- L5D-O1-01-3-5: Drilling Control System Failure 
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 L4D-O1-01-04: Drilling Failure due to Blow out Preventer (BOP) System Failure/ 

Drilling Failure due to Failure of Managed Pressure Drilling Stack 

- L5D-O1-01-4-1: BOP Stack Failure  

- L5D-O1-01-4-2: BOP Control System Failure  

- L5D-O1-01-4-3: Component Failure/Leak  

As illustrated in Figure 6.8, a coding system with event importance factors was 

considered, i.e. in level 3 of the hierarchy model the importance factors WD3N-1 to 

WD3N-5 are designated to Natural Hazard (L2D-N1) BEs and, similar to that, WD3O-1 

to WD3O-8 are designated to the Operational (L2D-O1) BEs. Also the importance 

factors WD3H-1 to WD3H-3 are designated to the Human (L2D-H-1) BEs. In the same 

manner, in levels 4 and 5 the importance factors were calculated and are illustrated in 

Figure 6.8.  

6.5.2 Application of AHP for prioritising of risk in the hierarchy 

In the real world, events or combinations of events that lead to MODU operation system 

failure are not well recognised. An integrative model incorporates both failure data and 

the importance factor of each event based on its contribution to the MODU failure, 

which is necessary for analyses. When statistical data or expert judgement is presented 

for prior probabilities, there is a need to identify the consequences and effects of the 

failure of one system or component on another system. This relation is known as the 

conditional dependency. The Fuzzy-AHP technique is employed to deal with the 

importance factor of dependency and ranking of each considered event with its 

contribution to the failure of the target goal. Table 6.2 shows the pairwise comparison 

of sub-nodes of L3D-O1-01 and, in a similar way; Table 6.3 presents the pairwise 

comparison of sub-nodes of node L2D-O1. 
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Figure  6.8: A hierarchy model of the MODU system’s HG factors
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Table  6.2: AHP pairwise comparison for nodes L4D-O1-01-1 to 4 

 
 

In Figure 6.8, three categories of HGs at different levels of hierarchy are defined for 

determination of the relative importance of risk events according to their consequence 

with respect to other events in view of their contribution to the MODU’s failure. 

Interactive relationships were then expressed between risk events through causal 

diagrams. Once the risk quantities are inputted by the user, the challenge then is to 

modify the influence of these inputs towards risk items that need a higher priority as 

determined by the use of the simultaneous engineering design and operation philosophy, 

previous management, organisational experiences, and best practices and standards. 

Table  6.3: AHP pairwise comparison for nodes L3D-O1-01 to 8 

 
 

L3D-O1-01     

L4
D

-O
1-

01
-1

L4
D

-O
1-

01
-2

L4
D

-O
1-

01
-3

L4
D

-O
1-

01
-4

L4D-O1-01-1 1.00 1.30 1.25 0.80 WD4O-1-1 0.26

L4D-O1-01-2 0.77 1.00 1.10 0.65 WD4O-1-2 0.21

L4D-O1-01-3 0.80 0.91 1.00 0.55 WD4O-1-3 0.19

L4D-O1-01-4 1.25 1.54 1.82 1.00 WD4O-1-4 0.33

Ranking alternatives for " L3D-O1-01: Drilling System  Failure"             

Importance Factor
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L3D-O1-01 1.00 1.26 1.37 1.47 1.53 1.58 1.68 1.63 WD3O-1 0.17

L3D-O1-02 0.79 1.00 1.14 1.29 1.36 1.43 1.57 1.50 WD3O-2 0.15

L3D-O1-03 0.73 0.88 1.00 1.17 1.25 1.33 1.50 1.42 WD3O-3 0.14

L3D-O1-04 0.68 0.78 0.86 1.00 1.10 1.20 0.60 0.80 WD3O-4 0.11

L3D-O1-05 0.66 0.737 0.80 0.91 1.00 1.11 1.33 1.22 WD3O-5 0.11

L3D-O1-06: 0.63 0.70 0.75 0.83 0.9 1.00 1.25 1.13 WD3O-6 0.11

L3D-O1-07 0.59 0.64 0.67 1.67 0.75 0.8 1.00 0.83 WD3O-7 0.10

L3D-O1-08 0.61 0.67 0.71 1.25 0.82 0.89 1.20 1.00 WD3O-8 0.11

Ranking alternatives for L2D-O1: Operational 

Importance Factor
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This, in turn, leads to highlighting of the relatively high-risk HG (i.e. Drilling Operation 

failure) and makes up the first pass of risk assessment in a specific phase. The objective 

form of the BBNs is the same as the causal diagram for that HG. 

6.5.3 Node probability data gathering and expert judgement  

In the process of developing the risk analysis methodology, the estimation of 

probability of failure has an important role in correctly prioritising the risks involved 

and also applying adequate corrective measures. Accurate statistical data are vital to 

most existing techniques but the statistical data of the system and equipment are hardly 

available. Therefore, to determine the prior probability of an event, utilisation of Fuzzy 

set theory may be necessary.  

The probability of occurrence of each of the MODU’s operation hazards is calculated 

based on prior probabilities of the BEs and the conditional probabilities of nodes, 

although the prior probabilities and event relationships are not always obvious and 

usually require expert knowledge.  

Table  6.4: Probabilities of occurrence of BEs (Experts’ knowledge) in level 3 

 

L3D-N1-01 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L3D-N1-02 Low 0.1 0.2 0.3 0.303 Medium 0.4 0.5 0.6 0.364 Mol. High 0.5 0.6 0.7 0.8 0.303 0.15

L3D-N1-03 Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Mol. Low 0.2 0.3 0.4 0.5 0.303 0.13

L3D-N1-04 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L3D-N1-05 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L3D-O1-01 

L3D-O1-02 High 0.7 0.8 0.9 0.303 Mol. High 0.5 0.6 0.7 0.8 0.364 Medium 0.4 0.5 0.6 0.303 0.25

L3D-O1-03 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L3D-O1-04 Low 0.1 0.2 0.3 0.303 Medium 0.4 0.5 0.6 0.364 Mol. High 0.5 0.6 0.7 0.8 0.303 0.15

L3D-O1-05 Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Mol. Low 0.2 0.3 0.4 0.5 0.303 0.13

L3D-O1-06 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L3D-O1-07 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L3D-O1-08 Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Mol. Low 0.2 0.3 0.4 0.5 0.303 0.13

L3D-H1-01 Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 High 0.7 0.8 0.9 0.303 0.37

L3D-H1-02 Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 Medium 0.4 0.5 0.6 0.303 0.31

L3D-H1-03 Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.303 0.25

This event of drilling failure is expanded to its subsystem and events in two lower levels (i.e. Levels 4 and 5)

Expert 1 Expert 2 Expert 3

BE                

(Level 3)

Experts judgement

Crisp No.Linguistic 

terms 
Factor

Linguistic 

terms 
Factor

Linguistic 

terms 
Factor
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As mentioned, the BBN is a tool for risk assessment that can combine quantitative 

information of different accuracy and qualitative data. Risk assessment of the MODU’s 

operational system is mostly held up by the absence of appropriate and reliable data. In 

most circumstances, only descriptive information of the offshore operation system and 

very limited failure data for components become available, but quantitative data about 

cause-effect relations are still missing. For understanding these cause-effect 

relationships, expert judgement remains the only available choice. A manageable 

number of hazards are required in order to have a comprehensive risk assessment for the 

different operational conditions (i.e. Human error, Operational and Natural hazard). 

Taking this into account, it is necessary to introduce the probability of BEs in their 

entirety, so a model with this purpose has been developed using FL. This theory is 

employed to incorporate expert knowledge, gathered through a questionnaire. As 

illustrated in Table 6.4 and Table 6.5 in the assessment process, verbal statements are 

used to describe the occurrence probabilities of BEs. According to these linguistic 

variables, a value on a numerical scale is assigned to each BE.  

Table  6.5: Occurrence probabilities of BEs (Experts’ knowledge) in level 5 

 

A common approach to deal with these values is the use of semi-quantitative estimation 

methods, which rely on linguistic judgements of experts. However, these linguistic 

terms are related to different kinds of uncertainties (i.e. stochastic, lexical and, informal 

uncertainty). Various approaches have been developed to decrease the uncertainties in 

L5D-O1-01-1-1 Low 0.1 0.2 0.3 0.303 Low 0.1 0.2 0.3 0.364 Low 0.1 0.2 0.3 0.303 0.12

L5D-O1-01-1-2 Low 0.1 0.2 0.3 0.303 Medium 0.4 0.5 0.6 0.364 Mol. High 0.5 0.6 0.7 0.8 0.303 0.15

L5D-O1-01-1-3 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L5D-O1-01-1-4 Low 0.1 0.2 0.3 0.303 Very Low 0 0 0.1 0.2 0.364 Low 0.1 0.2 0.3 0.303 0.11

L5D-O1-01-2-1 Low 0.1 0.2 0.3 0.303 Low 0.1 0.2 0.3 0.364 Low 0.1 0.2 0.3 0.303 0.12

L5D-O1-01-2-2 Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Mol. Low 0.2 0.3 0.4 0.5 0.303 0.13

L5D-O1-01-2-3 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L5D-O1-01-2-4 Low 0.1 0.2 0.3 0.303 Medium 0.4 0.5 0.6 0.364 Mol. High 0.5 0.6 0.7 0.8 0.303 0.15

L5D-O1-01-3-1 Low 0.1 0.2 0.3 0.303 Very Low 0 0 0.1 0.2 0.364 Low 0.1 0.2 0.3 0.303 0.11

L5D-O1-01-3-2 Low 0.1 0.2 0.3 0.303 Low 0.1 0.2 0.3 0.364 Low 0.1 0.2 0.3 0.303 0.12

L5D-O1-01-3-3 Mol. Low 0.2 0.3 0.4 0.5 0.303 Low 0.1 0.2 0.3 0.364 Medium 0.4 0.5 0.6 0.303 0.09

L5D-O1-01-3-4 Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Medium 0.4 0.5 0.6 0.303 0.21

L5D-O1-01-3-5 Low 0.1 0.2 0.3 0.303 Medium 0.4 0.5 0.6 0.364 Mol. High 0.5 0.6 0.7 0.8 0.303 0.15

L5D-O1-01-4-1 High 0.7 0.8 0.9 0.303 Mol. High 0.5 0.6 0.7 0.8 0.364 Medium 0.4 0.5 0.6 0.303 0.25

L5D-O1-01-4-2 Medium 0.4 0.5 0.6 0.303 Mol. High 0.5 0.6 0.7 0.8 0.364 Mol. High 0.5 0.6 0.7 0.8 0.303 0.23

L5D-O1-01-4-3 Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Medium 0.4 0.5 0.6 0.303 0.21

Expert 2 Expert 3

BE                

(Level 5)
Crisp No.Linguistic 

terms 
Factor

Linguistic 

terms 
Factor

Linguistic 

terms 
Factor

Experts judgement

Expert 1
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different fields of risk assessment; one popular solution is the use of FL (Darbra and 

Casal, 2009). If the data for a risk event is sufficient to enable quantitative reasoning, 

then the form of the information such as frequency of occurrence of the BEs can be 

converted into a probability distribution for the assessment.  

6.5.4 Conditional probability table  

A conditional probability table (CPT), which relates states of the parent nodes to those 

of a child node, includes entries for all possible combinations of the child and parent 

node states. In a Bayesian network, the number of probability distributions required to 

aggregate a CPT grows exponentially with the number of parent-nodes associated with 

that table. The input to the methodology consists of a set of weight factors that quantify 

the relative strengths and influences of the parent nodes with consideration of their 

contribution to the MODU’s operation failure by using expert knowledge. A Fuzzy-

AHP is used for calculation of the CPTs for the entire parent nodes to determine the 

degree of influence and importance of factors.  

As shown in Figure 6.9, a failure in one system or equipment such as High-Pressure 

Mud System Failure (L4D-O1-01-01) will affect other systems or equipment like Mud 

Treatment System Failure (L4D-O1-01-02). Another important characteristic of 

dependencies is the natures of failure that can occur within a system and how they may 

spread to other dependent component(s). 

The dependencies among an MODU’s components present a major challenge for 

modelling. Dependencies among components can occur in any part or organisational 

level of an MODU’s operation system. The probability of the MODU’s drilling failure 

due to an operational issue is set between 0 and 1 for the Consistent and Risky 

(hazardous) states, and it is presumed that the situation is initially consistent.  
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Figure 6.9: Schematic dependency among systems/equipment in level 4 

The probable values of importance factor for the Consistent and Risky states are shown 

in the second column of Table 6.1. As is illustrated in Figure 6.10, Drilling System 

Failure (L3DO101) is mainly affected by four categories of events (i.e. L4DO1011 to 

4). An AHP methodology was used to show the relative importance factor (i.e. WD4O-

1-1 to 4) of each parent node for its associated child node. As a result, for each node the 

conditional probability of that node taking a certain value and the cumulative values of 

the entire node is presented in the last two columns of Table 6.1. Note that a probability 

is provided for each combination of events (64 in this case). The CPTs for different 

levels are established in a similar way and presented in Appendix 3. 

Direct dependence of each BE node to its associated node is quantified by assigning 

each BE node a CPT by using a symmetric model. In the symmetric model, the experts’ 

opinion is distributed by relative importance of each parent node for its associated BEs. 

The strength of direct dependence of each BE to its associated parents is indicated by 

their normalised weights (Riahi et al., 2014). This CPT is actually the conditional 

probability of each event given the other variables or events. 

.

L4D-O1-01-03 : Drilling 
Equipment Failure

WD4O-1-3

L4D-O1-01-04 : Drilling failure 
due to Blow out Preventor 

(BOP) system failure  / Drilling 
failure due to failure of 

managed pressure drilling stack            
WD4O-1-4

L4D-O1-01-01 : High Pressure 
Mud System Failure          

WD4O-1-1

L4D-O1-01-02 : Mud Treatment 
System Failure                    

WD4O-1-2
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Figure 6.10: BBN model for drilling system failure (L3DO101) 
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6.5.5 Risk modelling and analysis of the MODU’s operation system 

Risk modelling and analysis has a fundamental role in the identification of hazard cause 

potentials, the understanding of the fundamental causal events, the likelihood 

assessment of these events, the severity evaluation of the potential consequence of 

catastrophes and the prioritisation of mitigations. The HG hierarchy of the MODU’s 

operation system as illustrated in Figure 6.8 is converted into a BBN. For instance, 

drilling failure due to Drilling System Failure (L3D-O1-01) is converted into the 

corresponding parent nodes and the consequence of Mud Pump #1 Failure (L5D-O1-01-

1-1) is converted into the corresponding root node. The arc between L4D-O1-01-01 and 

L5D-O1-01-01-01 is converted into a corresponding link in the BBN. Each category of 

events consists of some different sub-events that affect the performance of the MODU’s 

operations, as presented in Figure 6.11. For instance, the Pipe Handling System Failure 

(L5D-O1-01-3-4) is the source of failure of L4D-O1-01-3. Likewise, the L5D-O1-01-4-

1 (BOP Stack Failure) and L5D-O1-01-4-2 (BOP control system failure) contribute to 

L4D-O1-01-04 (Drilling failure due to BOP system failure/drilling failure due to failure 

of managed pressure drilling stack) to a certain degree. 
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Figure 6.11: BBN model of the MODU’s drilling system 
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Detailed failure statistics for the various BOP systems are presented in the Sintef report, 

in which the main information source from the study has been the daily drilling reports 

(Holand, 1999). The probability that there will be L4D-O1-01-4 (BOP control 

system/stack/component failure) can be calculated as shown in Figure 6.12.  

  
Figure  6.12: BBN model of L4D-O1-01-4 (BOP control system/stack/component 

failure)  

 

Figure 6.13 illustrates the results for L5D-O1-01-4-1 (BOP stack failure). As would be 

expected, the probability of drilling failure due to BOP stack failure increases from 

45.8% to 68.3%, when BOP stack failure has been observed. This update is due to 

diagnosis (i.e., bottom-up) inference from the L5D-O1-01-4-1 node to the “evidence” 

node. 

  

Figure  6.13: Propagated results for BOP control system/stack/component failure when 

BOP stack failure has been observed) 
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As illustrated in Figure 6.14 the probability of drilling failure due to BOP stack failure 

decreases from 68.3% to 28.3%, when BOP stack is 100% consistent. 

 

Figure 6.14: Propagated results for BOP control system/stack/component failure, when 

BOP stack is 100% consistent 

6.6 Validation and sensitivity analysis 

Validation is an important aspect of a model for the reason that it affords a sensible 

amount of confidence in the results of the model. It is very useful to be able to compare 

a model against actual data to verify that the model adequately corresponds to reality 

and to assess its usefulness as a predictive tool. In this case, in order to carry out a 

validation of the model, the parameters used need to be closely monitored for a period 

of time. For MODU system operations, it is obviously an impractical exercise due to the 

lack of offshore operations data. For validation of the proposed methodology and 

modelling, three basic principles are considered and should be satisfied. First, a minor 

oscillation in the prior probability of each parent node should certainly be the result of a 

relative fluctuation of the posterior probabilities of child nodes. Second, if there is any 

fluctuation in the probability distributions of an individual parent node, its consequence 

gradation to child node values should be kept steady. Lastly, the entire effect 
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than that from the set of A-b (b ∈A) features (Cai et al., 2013). Validation is the 

assignment of representations that the model is a realistic demonstration of a real 
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satisfaction of the principles, the BBN for drilling system failure node, L3DO101, is 

considered, as illustrated in Figure 6.10. 

For instance, in the parent nodes of L3DO101 (Drilling system failure), as illustrated in 

Table 6.6 and also as shown in Figure 6.15, when the risky probability of L5DO1-01-1-

4 (High Pressure route failure HP hoses, Standpipe Manifold, Choke and Kill Manifold) 

is set to 100%, as would be expected, the probability of consistent operations of node 

L4DO1011 (High-Pressure Mud System Failure) decreases from 87.8% to 70.9%.  

Table  6.6: Probability failure of L5DO10114 (High-pressure route failure - HP hoses, 

                 standpipe manifold, choke and kill manifold) is set to 100% 

 

Accordingly, as presented in Table 6.7 and illustrated in Figure 6.16, when the risky 

probability of L5DO10135 (Drilling control system failure) is set to 100%, in the parent 

nodes of L3DO101 (Drilling System Failure), the probability of operational consistency 

decreases from 85.1% to 82.7%. Furthermore, in the node of L4DO1013 (Drilling 

Equipment Failure) the probability of operational consistency decreases from 86.9% to 

78.3%.  

 

 

 

 

 

Risky Consistent Risky Consistent

11% 89% 100% 0%

L1D: Drilling Failure 29.7 70.3 30.1 69.9

L2DO1: Operational 14.2 85.8 15.3 84.7

L3DO101: Due to Drilling System Failure 14.9 85.1 20.7 79.3

L4DO1011: High Pressure Mud System Failure 12.2 87.8 29.1 70.9

L5DO10114: High Pressure route failure (HP hoses, 

Standpipe Manifold, Choke and Kill Manifold)
Nodes
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Table 6.7: Probability failure of L5DO10135 (Drilling control system failure) is set to 

100% 

 

Lastly, in the node of L4DO1014 (Drilling failure due to BOP system failure/Drilling 

failure due to failure of managed pressure drilling stack), when the node of L5DO10121 

(BOP stack failure) is set to 100%, the probability of operational consistency decreases 

from 77.3% to 58.6%, as presented in Table 6.8 and also illustrated in Figure 6.17. 

Table  6.8: Probability failure of L5DO10141: BOP stack failure is set to 100% 

 

From the above it can be concluded that increasing each influencing node satisfies the 

three basic principles, therefore providing a partial validation of the model. 

 

 

Risky Consistent Risky Consistent

15.0% 85.0% 100.0% 0.0%

L1D: Drilling Failure 29.7 70.3 29.9 70.1

L2DO1: Operational 14.2 85.8 14.6 85.4

L3DO101: Due to Drilling System Failure 14.9 85.1 17.3 82.7

L4DO1013: Drilling Equipments Failure 13.1 86.9 21.7 78.3

Nodes

L5DO10135: Drilling Control System 

Failure

Risky Consistent Risky Consistent

25% 75% 100% 0%

L1D: Drilling Failure 29.7 70.3 30.0 70.0

L2DO1: Operational 14.2 85.8 15.0 85.0

L3DO101: Due to Drilling System Failure 14.9 85.1 19.0 81.0

L4DO1014: Drilling failure due to Blow out Preventor (BOP) system failure/ 

Drilling failure due to failure of managed pressure drilling stack

22.7 77.3 41.4 58.6

Nodes

L5DO10141: BOP stack failure
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Figure 6.15: BBN of an MODU drilling system failure when the probability failure of L5DO10114 (High-pressure route 

                  failure - HP hoses, Standpipe Manifold, Choke and Kill Manifold) is set to 100% 
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Figure 6.16: BBN of an MODU drilling system failure when the probability failure of L5DO10135 (Drilling control system 

                   failure) is set to 100% 
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Figure 6.17: BBN of an MODU drilling system failure when the probability failure of L5DO10141 (BOP Stack failure) is 

                   set to 100% 
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The evaluation of the test case shows how change in one or more specific variables would 

change the belief in the target node L3DO101. This evaluation also revealed the effect of 

conditional dependence between variables. Further, the test case indicated that Netica is a 

suitable tool to be used in the calculations of a real-world scenario.  

6.7 Results and discussion 

MODU risk assessment and probability of failure has made limited improvement compared to 

analysis methods developed for other offshore structures’ probability estimation. Estimation of 

probability of failure and analysis of the consequences for the MODU operation system can be 

facilitated by a BBN, as presented in this chapter, allowing modelling with respect to its HG 

features. This chapter has presented the modelling aspect, including hazard identification and its 

consequences for MODU failures and offered a methodology for MODU risk assessment, which 

supports a structured approach to all tasks, involved in the failure of MODUs due to their HGs 

failure. The Netica Ver (4.16) software is used for propagation of the BBN model and the 

outcome of assessment offers constructive information in preventing an event’s recurrence in the 

future. The BBN format also allows the establishment of a common model for the entire MODU 

system, considering all HGs, but in this chapter only a manageable HG is considered. The 

framework is demonstrated through the assessment of a case study that shows the probability of 

failure of responses in BBN circumstances and the model is shown in Figure 6.12. Furthermore, 

many failure-reducing measures influence the risk from other hazards; therefore, for proper risk 

assessment of an operation system one must consider the risk and associated consequences of 

those risks from all operation processes. 

The presented methodology can easily be extended to include other HGs and the processes 

should be considered simultaneously; also, it is possible to propagate uncertainties for different 

HGs and their BEs through modelling and analysis so that the overall system failure can be 

indicated in a probabilistic approach (i.e. probability distribution or higher and lower confidence 

limits). This will benefit the decision-maker, who would appreciate the changeability and 

sensitivity of failure possibility estimates, which would not be so understandable if a risk 

assessment was offered as single point estimates only. Still, it is then uncertain whether or not 

the acceptable risk level should be compared with the mean, intermediate levels or some higher 

confidence limit of the system. Some decision-makers may wish to work this out by using a 
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higher confidence limit, resulting in the conservative use of risk acceptance criteria. Such an 

approach may not always be usual but it does mean that the decision-maker with consideration 

of the whole aspect (i.e. environmente issues, cost, time and quality) needs to make a sensible 

and proper decision. 

6.8 Conclusion  

This chapter has presented a methodology for risk analysis and decision support and examined 

the probability of failure of an MODU operation system by using a BBN. This methodology is 

used for risk assessment through a unique application of Fuzzy-AHP and BBN techniques to 

assess the consequences of risk events based on prior knowledge and accounting for influences 

on each other to determine the probability of risk events. The proposed methodology can be used 

as a process for developing a set of decisions for understanding and identifying the range of 

consequences and trade-offs of actions within an uncertain atmosphere, which allows 

representation of offshore operation systems such as MODUs in different levels of detail. Risk 

analysis is performed by assigning probabilities to a certain event failure or evolution, in which a 

hierarchical breakdown is used to decompose one single component into a more detailed 

representation of the component. It is assumed that an MODU’s system failure is carried out by a 

series of simple occurrences, each affecting a different component. An event failure can be seen 

as a path through the evolutionary graph from a start point to an end point. 

Risk assessments are subject to many sources of uncertainty and data limitations that hamper the 

description of model input and the selection of an appropriate model structure. Conceptual model 

uncertainty and lack of system understanding is demonstrated to have a great impact on risk 

assessments. Bayesian networks have the advantage that they are based on a logical framework 

of cause-effect relations. These relations are based on existing knowledge or experience. As little 

knowledge is available about the individual relations, many assumptions have to be made. For 

these assumptions expert knowledge is essential. Risk assessment for an offshore operation 

system with Bayesian concepts often involves a portion of information in order to achieve a 

useful BBN model, especially in the case of MODU risk assessment, when a large amount of 

data is vague and, therefore a combination of various data and information resources is essential. 

This chapter has proposed a new approach for BBN construction by employing a Fuzzy-AHP 

and combining domain knowledge from experts where there are limited data. Expert knowledge 
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with Fuzzy set theory was used to estimate the BE failure and conditional probability table. From 

a theoretical point of view, the methodology has constructed a Fuzzy-AHP of Bayesian learning 

and a case study is presented showing the practical application.  

The quantification and assessment of probability of failures allows an engineered design of 

MODUs and adjustment of an offshore operation system so that risk is controlled. The largest 

concern for operators is the disruption of hydrocarbons of delivery to the departure point. 

MODU failure has previously caused interruptions in drilling; therefore, operators could use the 

BBN model to quantify loss frequency, mitigation measures, and mitigation to control or to 

avoid a specified risk of HGs. By doing so, the expected loss of hydrocarbons and expected costs 

of construction (depending on the acceptable risk level to the operator) can be determined for 

establishing budgets for design, construction and installation, and also for operations and 

maintenance. 

From this study, it can be concluded that the model has the following advantages:  

- The proposed model can take into consideration uncertainty and dependency in different HGs. 

-  Modelling and simulation are seen as key elements to better understanding of dependencies.  

- Assistance in understanding the mitigation process for rare or extreme events. 

-  It can be useful in the process of MODU risk analysis (i.e. vulnerability assessment). 

- Helps the decision-maker as a decision support tool and can be used for what-if analysis by, 

for example, simulating the consequences of a decision. 

- Provides an analysis and decision structure for strategy creation in situations of uncertainty 

and risky events. 

 

The validation results show that the proposed model calculates the failure probability of 

MODUs. Furthermore, the BBN model is uniquely capable of directly computing the posterior 

probabilities of variables which are most valuable for the enhanced system risk assessment. 

However, in spite of their remarkable power and potential in addressing inferential processes, 

there are some inherent limitations and liabilities in BBNs such as: 

- The elicitation of CPTs to the nodes and edges can be done as a brainstorming exercise by the 

expert group. In general, this means that, for each node, the expert group has to assess the 

conditions of probability (i.e. failure of events and the effect of the events on others). They 
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cannot easily incorporate unobserved variables, owing to the fact that the size of the internal 

CPT for a child node can very quickly become quite large. 

- There is computational complexity/difficulty (filling in of details of numerical recipe, 

computer time, convergence monitoring), which is exponential with the increase in the 

number of present nodes. 

 

The prior probability is relatively easy to assess. Based on available data or expert judgement, 

and experience in Netica development and evaluation, it can be done by ranking the importance 

of the different events, giving them probabilities from a predefined set. The complexity of 

inference is usually associated with large probabilistic dependencies recorded during inference. 

However, a large model is preferable to a smaller one only if it provides a sufficiently large 

improvement of fit to offset the penalty for its additional complexity. 

 

 

 

 



A Novel Engineering Framework for Risk           CHAPTER 7: Fuzzy MCDM and Fuzzy TOPSIS  
Assessment of Mobile Offshore Drilling Units    for cost-benefit analysis and decision-making 

 

 
199 

7 CHAPTER 7: Fuzzy MCDM and Fuzzy TOPSIS for cost-

benefit analysis and decision-making 

Chapter summary 

The main objective of this chapter is to propose a methodology for assessment of the 

relative importance of criteria and the performance ratings of alternatives of an offshore 

operation system with respect to the criteria. The proposed methodology offers a 

quantitative decision model that can help the decision-maker to set priorities, the RCOs, 

and gain the most benefits for controlling the risk of the MODU’s operation system. 

The purpose is to find the most appropriate alternative(s) from a discrete set of feasible 

alternatives with respect to a limited set of criteria. A Fuzzy MCDM model based on 

Fuzzy-AHP and Fuzzy TOPSIS is used for construction of the model and composition 

of weighting scheme and implementation. In real situations, the decision-makers have to 

combat curiously vague and conflicting criteria. This controversy increases empirical 

uncertainties, disputes, and the resulting consequences of these decisions. A Fuzzy 

MCDM method, which is suitable for treating group decision-making problems in a 

Fuzzy environment, is proposed for ranking the RCOs from a cost-benefit point of view 

and to aggregate the conflicting opinions. The proposed methodology with respect to 

cost and benefit has been implemented in an MODU’s operation system intended for 

decreasing/controlling of the operational risk level of the MODU. A generic model is 

presented that considers the operational failure of the drilling systems and the focus is 

on human error and the BOP system that is implemented to propose barriers for 

reducing the MODU’s operational risk. The proposed methodology provides a rational 

and systematic approach and the main steps in the development of this methodology 

include: i) Defining and describing the alternatives, ii) Computing the criteria 

weightings, iii) Evaluating the performing of alternatives against the criteria, iv) 

Converting the criteria performance values to commensurable units and normalised 

values, v)Performing the analysis and applying the selected MCDM technique(s), vi) 

Ranking the RCOs from a cost-benefit point of view, and vii)Evaluating the results and 

making the final decision. 
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7.1 Introduction 

The main purposes of this chapter are to develop and implement an integrated Fuzzy 

MCDM model based on Fuzzy-AHP and Fuzzy TOPSIS and construct a composite 

weighting scheme appropriate to enhance the quality of solving MCDM problems.  

The MCDM techniques generally enable a problem to be structured clearly and 

systematically. With this characteristic, decision-makers have the possibility to easily 

examine and scale the problem in accordance with their requirements (Isiklar and 

Buyukozkan, 2006). MADM is a significant part of modern decision-making which can 

offer a quantitative decision model that can support the decision-maker to set priorities 

and achieve the most benefits for reducing and controlling the risk level of the system 

(Shyur and Shih, 2006).  

The aim of the MCDM/MADM is to obtain the optimum alternative that has the highest 

degree of satisfaction for all of the relevant attributes. The decision-maker may express 

or define a ranking for the attributes in terms of importance/weights. The aim is to 

obtain the optimum alternative that has the highest degree of satisfaction for all of the 

relevant attributes (Yang and Huang, 2000). The purpose of this chapter is to suggest 

and implement an integrated Fuzzy MADM model based on Fuzzy-AHP and Fuzzy 

TOPSIS and construct a combined weighting scheme composed of appropriate 

subjective weights, and then present an experimental sample to illustrate the 

applicability of the proposed methodology. This model is used to improve the current 

techniques used in assessment of the relative importance of criteria and is applied for 

the evaluation and ranking of the MODU’s operational barriers. The results gained from 

it show the preference order. MCDM refers to finding the best opinion from all of the 

feasible alternatives in the presence of multiple, usually conflicting, decision criteria 

(Torfi et al., 2009) 

In the traditional formulation of the TOPSIS, personal judgements are represented with 

crisp values. However, in many practical cases the human preference model is uncertain 

and decision-makers might be reluctant or unable to assign crisp values to the 

comparison judgements (Chan & Kumar, 2007). In many real-world situations, crisp 

data are not adequate and sufficient to model some decision-making problems (Chen, 
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2000; Chen & Lu, 2001; Chen et al., 1992). This is because most of the criteria are 

difficult to measure by crisp values, and so they are frequently neglected during the 

evaluation course. In the real world, crisp data are not adequate and sufficient to model 

the decision-making problems in the decision-analysis process (Chen, 2000; Chen & 

Lu, 2001; Chen et al., 1992). To resolve this problem, Fuzzy set theory has been used 

and is implemented herein. Fuzzy set theory attempts to select, prioritise or rank a finite 

number of sequences of action by evaluating a group of pre-set criteria. The proposed 

methodology is able to handle both Fuzzy and crisp data; in general, each expert’s 

opinion for a given attribute may be different from those of the others, but the proposed 

model is able to aggregate the conflicting opinions.  

Numerous qualitative and quantitative criteria may have an equal effect when assessing 

alternatives, which may make the selection process difficult and challenging. AHP is a 

technique often used to model subjective decision-making processes based on multiple 

attributes, and can be applied to both individual and group decisions (Bolloju, 2001). 

The Fuzzy-AHP method has been applied in order to identify and measure the relative 

importance of the barriers, in order to prevent a critical event occurring during the 

drilling operation of the MODUs. It allows input from experts based on previous 

experience to determine the degree of importance of each barrier in the model in terms 

of their contributions to control and reduce the MODU’s risk level. The pair-wise 

comparison scheme used in AHP is ideally suited to estimating the relative importance 

of an event for multiple criteria. Weighting the criteria and evaluating the performance 

of alternatives against the criteria are two of the most important and difficult aspects of 

applying the MCDM methodology and are potential sources of considerable uncertainty 

(Larichev & Moshkovich, 1995; Roy and Vincke, 1981).  

In order to prevent the occurrence of a hazardous situation, it may be necessary to put in 

place a range of barriers and it cannot be assumed that each barrier is of equal 

importance and weight in terms of their influence in preventing a hazard. Therefore, it is 

necessary to consider the contributory factors of an individual barrier in preventing a 

failure. AHP is used to define the effect of a barrier and its contribution to and influence 

on other barriers. In the proposed model, a Fuzzy-AHP is used to determine the relative 

contribution of weight factors of barriers, in terms of their effect in preventing system 
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failure. This overcomes the shortcomings of conventional methods and effectively 

produces a final decision. The values used throughout the analysis are selected based on 

their high probability of occurring, and/or the high importance of the potential outcome.  

In this chapter, the barriers preventing drilling failure of an MODU have been 

considered, focusing on the human error and the BOP including the BOP control 

system. The aim is to prevent a critical event occurring during drilling by assignment of 

barriers. The study proposes a methodology for developing such an assessment. The 

decision-maker may express or define a ranking for the attributes in terms of 

importance/weights. The aim of the MADM/MCDM is to obtain the optimum 

alternative that has the highest degree of satisfaction for all of the relevant attributes 

(Yang & Huang, 2000). The purpose is to find the most desirable alternative(s) from a 

discrete set of feasible alternatives with respect to a finite set of attributes.  

Defining the alternatives as well as figuring out the criteria weighting, applying the 

selected MCDM technique(s), ranking, assessing the result and, as an outcome, making 

the final decision are the main steps in the development of this methodology. The 

decision process of selecting an appropriate alternative usually has to take many factors 

into consideration; for instance, organisational needs and goals, risks, benefits, limited 

resources, etc. Because of the vagueness of human thought, the selection is often based 

on inadequate information or personal judgements. Decision-makers may find it 

difficult to identify the best choice due to the lack of systematic methods to deal with 

multi-criteria problems.  

7.2 Literature review 

MCDM refers to the problem of selecting among alternatives associated with multiple 

criteria. The association of weights in multiple criteria problems is a serious step of the 

entire decision-making process. In conventional MCDM, alternative rating and weights 

are measured in crisp numbers. Conventional MCDM methods require the 

determination of alternative ratings and criteria weights are made which are subject to 

decision-makers’ judgements. Crisp values are usually used to represent those ratings 

and weights. However, in practice, alternative ratings and criteria weights cannot be 
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assessed accurately (Yeh & Deng, 1997). It is shown that calculation of the criteria 

weights is serious and it may change the ranking results. In a MCDM problem-solving 

process, weights can practically change the outcome of the whole process. Criteria 

weighting plays an important role in most MCDM approaches because the evaluation 

result is often greatly affected by the criteria weights used in the evaluation process. For 

the reason that the evaluation of criteria entails diverse opinions and meanings, it cannot 

be assumed that each evaluation criterion is of equal importance (Tzeng & Ding, 2003). 

Numerous methods for solving MADM problems require definitions of quantitative 

weights for the attributes (Wang & Chang, 2007; Torfi et al., 2009; Al-Kloub et al., 

1997; Gass, 1986; Goh et al., 1996; Srdjevic et al., 2004; Wang & Lee, 2009; Yeh & 

Deng, 2004; Olson, 2004; Diakoulaki et al., 1995; Deng et al., 2000). Identifying the 

means by which to measure the weights of decision-makers is a motivating research 

topic. Each factor has its own contribution to the evaluation. The weight values of 

evaluation criteria are the most influential coefficients in a system. The higher the 

weight value, the more significant is the criterion. Usually the weight value depends on 

the decision-maker’s subjectivity, which may result in some errors or mistakes.  

Different criteria weight values are used to evaluate a task, which will not lead to the 

same assessment outcomes (Pilavachi et al., 2006; Afgan et al., 2007). Different criteria 

weights have an important role in the decision-making process. The way in which to 

arrange the decision weights should be deliberated in the evaluation process. Many 

methods have been proposed to determine the weights of decision-makers. Chen and 

Fan (2007) proposed a factor score method for obtaining a ranking of the assessment 

levels of experts in group-decision analysis. Ramanathan and Ganesh (1994) proposed a 

simple and intuitively appealing eigenvector-based method to intrinsically determine the 

weights of group members by using their own subjective opinions. Xu (2008) gave a 

direct technique to determine the weights of decision-makers by using the deviation 

measures between additive linguistic preference relations. Yue (2011a) developed a 

method for determining weights of decision-makers with interval numbers. 

In various circumstances where performance rating and weights cannot be given 

accurately, the Fuzzy set theory is introduced to deal with the uncertainty of human 

judgements, and such problems are known as Fuzzy multiple criteria decision-making. 
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The Fuzzy set theory can make available a decision context that incorporates imprecise 

judgements in the decision-making process (Dursun & Karsak, 2010). 

The use of Fuzzy set theory (Zadeh, 1965) allows the decision-makers to incorporate 

unquantifiable information, incomplete information, non-obtainable information and 

partially unknown facts into the decision model (Kahraman, 2005). Bellman and Zadeh 

(1970) first incorporated Fuzzy set theory into MCDM as an approach to effectively 

deal with the inherent inaccuracy, vagueness and ambiguity of the human decision-

making process. Since then, many researchers have been working on the process with 

unreliable data. Chen (2000) extended the TOPSIS of Hwang and Yoon (1981) to a 

Fuzzy environment and developed a technique to calculate the distance between two 

Fuzzy numbers and defined a closeness coefficient to determine the ranking order of all 

alternatives by concurrently calculating the distances to both the Fuzzy positive-ideal 

solution and Fuzzy negative ideal solution. 

TOPSIS and its extensions are developed to solve ranking and justification problems. 

Although it is a popular and simple concept, this method is often complained about for 

its lack of ability to appropriately handle the inherent uncertainty and imprecision 

associated with the mapping of the decision-maker’s perception to crisp values (Yong, 

2006; Chen & Tsao, 2008, Kahraman et al., 2007; Wang & Elhag, 2006; Shyur and 

Shih, 2006). Yue (2011b) developed a new approach for determining weights of 

decision-makers in a group decision environment based on an extended TOPSIS by 

proposing the positive ideal solution as the average of the group decision. The negative 

ideal solution includes two parts, left and right negative ideal solutions, which are the 

minimum and maximum matrixes of the group decision, respectively.  

7.3 A proposed integrated Fuzzy MCDM and Fuzzy TOPSIS methodology 

In this chapter, an approach for multi-criteria recommendation is proposed. The 

proposed methodology uses the Fuzzy MCDM and Fuzzy TOPSIS techniques to 

express the causal relationships between a hazard from different sources and its 

proposed barriers in an offshore operation system. An MODU’s operation system is 

represented by a combination of the various sub-systems and the methodology 
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presented uses a hierarchical model to describe reliance among the hazard and its 

suggested barriers.  

The proposed method concentrates on the assessment of the recommended barriers to 

prevent the failure of offshore operation systems (i.e. MODUs) posed through the HGs 

and their root causes (i.e. BEs). The accuracy of assessment in a multi-criteria 

environment can be improved by a combination of the recommended techniques, FL 

and MADM methods. Since decision-making in a real MODU’s operation system is 

extremely complicated, the intention of the proposed methodology is to support offshore 

operators in making sensible decisions through introducing the barriers in order to 

prevent the occurrence of an event and to decrease the MODUs’ risk level. As 

graphically represented and illustrated in Figure 7.1, the proposed MCDM methodology 

shows how this method can be applied, and comprises the following stages: 

- Performing the analysis and applying the selected MCDM technique(s)  

- Calculating the weighting of the criteria  

- Defining and describing the alternatives  

- Evaluating the performing of alternatives against the criteria  

- Construction of a decision matrix  

- Establishment of the aggregated weight scheme  

- Obtaining the decision matrix to identify the criteria with respect to alternatives  

- Evaluating the result and making the final decision (by anyone involved in the 

decision analysis process) 

- Normalising the decision matrix in order to make each criterion comparable  

- Calculation of the overall performance evaluation for each alternative  

- Finally, determine the positive ideal solution and the negative ideal solution and 

calculate the closeness coefficient, in order to rank each alternative in descending 

order 

Based on prior discussion on the unavailability of data, FL is used to accumulate the 

data; the experts were asked to evaluate interrelations between given criteria and 

provide multi-criteria ratings for selected alternatives. After defining and describing the 

alternatives and calculation weighting of the criteria, the performance of the alternatives 
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was evaluated against the criteria. Each expert expressed his/her opinion about the 

identified subjective criteria. The expert opinions are in the form of linguistic terms or 

verbal statements and this subjective judgements can be demonstrated by a Fuzzy 

number. The weights of criteria are obtained using Fuzzy-AHP and experts’ weights are 

estimated. Then, a criteria-based aggregation method for grouping experts’ judgements 

is employed. One may conclude that the various experts are not equally important. After 

assigning a weight for each expert, all ratings are aggregated for each subjective 

criterion.  

In the resulting step, all aggregated Fuzzy numbers are converted into numeric ratings 

using the centre of gravity method. The result of the last phase is a decision matrix, 

which contains Fuzzy data. Consequently, the alternatives in hand are ranked by Fuzzy 

TOPSIS by following these steps: 

a) Construct a decision matrix 

b) Calculate aggregate weights for each criterion 

c) Normalise the Fuzzy decision matrix 

d) Calculate overall performance evaluation for each alternative 

e) Determine the positive c deal solutions (PIS) and negative ideal solutions (NIS) 

f) Calculate distance from Fuzzy PIS and Fuzzy NIS 

g)  Calculate CC  and determine the best alternative 

The conceptual model of the proposed method is illustrated in Figure 7.1. This method 

of assessment can help the operator to carry out the MODU’s risk evaluation and to 

propose the best risk control option in a realistic and methodological way. As 

demonstrated in Figure 7.1, the decision process in a MADM method contains four 

main parts, namely: i) alternatives and criteria for evaluating of risk control option, ii) 

calculating the weights for the criteria, iii) performance measures of alternatives with 

respect to the criteria, and vi) ranking and decision-making for selection of the best 

RCOs. The goal of the MCDM is either to design the optimal alternative or to choose 

the best one from the predefined alternatives, and can be classified in two categories: 

i.e. MODM and MADM Figure 7.1 describes the features of the two classes. 
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Figure  7.1: Proposed methodology for Fuzzy MCDM and Fuzzy TOPSIS  
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TOPSIS is a MCDM technique that ranks different alternatives through numerical 

assessments and this chapter proposes an extension of the Fuzzy TOPSIS approach 

which integrates subjective weight. The benefit of the proposed methodology is that it 

not only benefits from decision-makers’ know-how, but also involves the offshore 

operators in the entire decision-making process; moreover, it has the following 

advantages (Chu and Lin, 2002):  

- The method is rational and easy to understand. 

- The calculation involved is simple. 

- It is capable of finding the best alternatives for each evaluation criterion depicted in a 

simple mathematical form.  

- The concept allows both subjective and objective weights to be aggregated in the 

decision-making process and the weights can be specified for each criterion, in order 

to introduce a measure of the relative importance felt by the decision-maker 

(Gamberini et al., 2006). 

7.3.1 Definition and classification of barriers 

Based on experience from a literature survey concerning the understanding of the term 

barrier in various industries, it is clear that different terms with similar meanings  have 

been used to define the word (e.g. protection layer, safety barrier, etc.). A barrier or 

protection layer is implemented to protect people/crew, the environment and assets from 

hazards. In order to properly define the concept of barrier, it is first necessary to define 

the term barrier function, which is what is needed to assure, increase and/or promote 

safety and decrease the risk level (De Dianous & Fiévez, 2006)  

Sklet (2006b) defines safety barrier function as: a barrier function is a function planned 

to prevent, control, or mitigate undesired events or accidents. “Prevent” means 

reduction of the likelihood of an undesired event, control means limiting the extent 

and/or duration of the event to prevent escalation, and mitigate means reduction of the 

effects of the undesired event. The classification of barriers (i.e. barrier functions and 
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barrier systems) is shown in figure Figure 7.2. Xue et al. (2013) divide safety barrier 

functions into proactive and reactive functions depending on whether their service time 

is before or after a particular undesired event. Barriers that are intended to function 

before an undesired event are proactive, while barriers that are intended to function after 

the event are reactive. 

 

Figure 7.2: Classification of barriers, barrier functions and barrier systems 

A passive protection layer (i.e. physical, operational and human) is a protection layer 

that does not have to take action to achieve its function in reducing risk. An active 

protection layer is required to move from one state to another in response to a change in 

a measurable process property (e.g. temperature or pressure), or a signal from another 

source (such as a push-button or a switch). A well barrier can be viewed as a protection 

layer whose objective is to prevent flow from the reservoir. A well barrier will, 

however, be a combination of passive and active protection layer basics.  

The requirements and guidelines pertaining to well integrity during drilling activities 

and operations are specified in the Norwegian oil and gas regulations (NORSOK D-010, 

2004). According to this standard, all phases of offshore operations must have two 
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separate and independent barriers. Well-drilling completion is a good example, in which 

the mud column is the primary barrier and the secondary barrier is the BOP, which 

protects the well from a disaster as the last resort. In addition to the two well-barrier 

necessities, it is expected that the primary barrier must continuously be intact. The 

primary barrier must be intact to allow for isolation of the well in the event of an 

external event harmful to the oil and gas platform. 

A failure is dependent on one or several BEs and a system is functioning if and only if 

all of its components are functioning. The MODU’s operation system is functioning if 

there is a connection either through the secondary or the primary well barrier, or both.  

The BOP system for the Deepwater Horizon, Figure 7.3 (a), was located on the seabed 

on the wellhead. A riser pipe extended from the top of the system to the drilling rig so 

that drilling mud could circulate between the well and the drilling unit. As illustrated in 

Figure 7.3  (b), on top of the five rams of the BOP stack was a blind shear ram. The 

BOP system also had a spare/emergency cut-off system that would facilitate the drilling 

unit to move away from the well once the blind shear ram was activated. As a last 

remedy in a hierarchy of well-control schemes, the two opposing blades of the blind 

shear ram were designed to cut through the drill pipe and seal the well. At the time of 

the Macondo blowout, rig personnel could not recapture control of the well by using the 

BOP because the blind shear ram did not cut the drill pipe and seal the well. In addition, 

the emergency-disconnect system failed to detach the Deepwater Horizon from the well 

(NAE-NRC Report, 2011)
9
 

The primary barrier is the first stumbling block against undesirable flow from the source 

(Hauge et al., 2011). In overbalanced processes, the mud column is the primary well 

barrier and should function within the drilling margin pressure. If the pressure exerted 

by the drilling mud in the wellbore becomes too great, it can cause a fracture in the 

exposed rock at any point in the wellbore. Drilling mud would then flow from the 

wellbore into the fracture and could no longer exert sufficient pressure to prevent an 

influx of reservoir fluids. Like pore pressure, the pressure at which a fracture occurs 

                                                 
9
 NAE/NRC (National Academy of Engineering/National Research Council). Macondo Well–Deepwater Horizon 

Blowout: Lessons for Improving Offshore Drilling Safety. Washington, D.C.: The National Academies Press. Avail-

able online at http://www.wellintegrity.net/Documents/NAE-NRC%20Report%202011-12-14.pdf. 
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usually increases with drilling depth, although actual pressures can be either higher or 

lower than anticipated (Bommer, 2008). 

 

 

 

 

 

 

Figure  7.3 (a): An overview of the drilling 

system for the Deepwater Horizon; BOP was 

located on the seabed on the wellhead (Source: 

CSB-FINAL REPORT-MUX(06-02-2014) 

Figure 7.3 (b): Principle 

indication of BOP stake system 

with four blind rams and one 

shear ram 

As illustrated in Figure 7.4, another aspect of the definition is whether such a wide-

ranging definition undermines the concept. It is essential to distinguish among the 

barriers that may prevent or mitigate the event, in which the risk influencing factors 

prompt the barrier performance. In addition, it is vital to specify the barrier function in 

order to clarify at which level different barriers influence the event. A commonly used 
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categorisation is to distinguish between physical and non-physical barriers (Johnson, 

1980; ISO: 17776, 2000; DoE, 1997). As shown in Figure 7.4, the barriers may be 

physical or non-physical, or a combination thereof (PSA, 2002). Physical barriers are 

incorporated into the design of a structure or platform, technical barriers are initiated if 

a hazard is understood, while administrative barriers are integrated into administrative 

systems and procedures. Svenson (1991) classified barrier systems as physical, 

technical, or human factors-organisational systems, while Neogy et al. (1996) classified 

barriers as physical, procedural or administrative, or human action.  

 

Figure  7.4: Barrier analyses of a combination of physical, procedural or administrative, 

or human action 

Human/organisational barrier functions can be seen as planned into the process but in 

the end executed by humans with the support of an organised organisation controlling 

the refuelling work process. The DoE (1997) distinguishes between physical and 

management barriers. The management barriers may exist at three levels within the 
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organisation, the activity level, the facility level, and the institutional level. 

Management barriers may be seen as a kind of organisational control.  

The typical circumstances and the examples of possible failures in barrier functions and 

systems are just meant to provide a helpful start for the scenario development. By 

combining the scenarios with different failures and consequences, most operator 

assistances can be verified in all of the typical scenarios. In the case of an MODU’s 

operation system, different failure scenarios can be defined and tested in all of the 

typical situations. 

7.3.2 Main well barriers during drilling operations 

During drilling operations it must be ensured that hydrocarbons do not migrate from the 

reservoir into the well. To maintain well control, barriers to prevent influx are therefore 

implemented. In addition to the static physical components of the well, such as casing 

and cement, two main barriers are implemented during drilling: the drilling mud column 

and the BOP. There are colour coding principles for the different categories of barrier 

failure, and colour designations for the different groups are presented in Table 7.1 and 

Table 7.2 shows an example of the principles for colour designation and the well barrier 

element (WBE) as well as the well condition (e.g. the principle of the colour red is for 

one barrier failure and the other is degraded/not verified, or a leak to the surface and its 

WBE and condition). 

Table  7.1: The principles and colour designations for the different categories 

Category  Principle 

Red  One barrier failure and the other is degraded/not verified, 

or a leak to the surface  

Orange  One barrier failure and the other is intact, or a single 

failure may lead to a leak to the surface  

Yellow  One barrier degraded, the other is intact  

Green  Healthy well – no or only a minor issue  
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Table  7.2: Principles for colour designation and well barrier element (WBE)  

 
 

7.3.3 MODU’s operational hierarchy and proposed barriers  

A four-level operational hierarchy of the MODU is used to identify the root causes of a 

failure. Different methods might be used to identify root causes of operational failure in 

Category An example sketch Principle WBE Condition 

DHSV or deep set plug 
Leak rate within 

acceptance criteria 

Christmas tree ESD valves 

and annulus valves 

Leak rate within 

acceptance criteria 

Tubing hanger and internal 

wellhead seals 
Leak tight 

Completion and casing 

string 
Leak tight 

Production packer Leak tight 

DHSV or deep set plug 
Leak rate within 

acceptance criteria 

Christmas tree ESD valves 

and annulus valves 

Leak rate within 

acceptance criteria 

Tubing hanger and internal 

wellhead seals 

Leak rate within 

acceptance criteria 

Completion and casing 

string 

Leak rate within 

acceptance criteria 

Production packer 
Leak rate within 

acceptance criteria 

DHSV or deep set plug 
Leak rate outside 

acceptance criteria 

Christmas tree ESD valves 

and annulus valves 

Leak rate outside 

acceptance criteria 

Tubing hanger and internal 

wellhead seals 

Leak rate outside 

acceptance criteria 

Completion and casing 

string 

Leak rate outside 

acceptance criteria 

Production packer 
Leak rate outside 

acceptance criteria 

DHSV or deep set plug 
Degraded/not verified, 

or leak to surface 

Christmas tree ESD valves 

and annulus valves 

Degraded/not verified, 

or leak to surface 

Tubing hanger and internal 

wellhead seals 

Degraded/not verified, 

or leak to surface 

Completion and casing 

string 

Degraded/not verified, 

or leak to surface 

Production packer 
Degraded/not verified, 

or leak to surface 

Green 
Healthy well, no 

or minor issue 

Red 

One barrier 

failure and the 

other is 

degraded/not 

verified, or leak 

to surface 

Orange 

One barrier 

failure and the 

other is intact, 

or a single 

failure may 

lead to leak to 

surface 

Yellow 

One barrier 

degraded, the 

other is intact 
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a specific offshore operation system like an MODU. Because of the complexity of real 

offshore operations and in order to simplify the assessment processes, a manageable 

group of hazards and their root causes (i.e. BEs) for the MODU’s operation system has 

been considered. The objective is to propose the best RCOs for offshore drilling failure 

due to its HGs. As illustrated in Figure 7.5, each HG may be broken down into a 

number of simpler system components in different levels. Operational hazard: L2D-O1 

and Human error: L2D-H1 are the most serious HGs in the offshore operation, in which 

the system/subsystem and routes describe the MODU’s operation system and failure of 

each system/subsystem may influence and have consequences for drilling failure (L1D-

O1-01). Efficient measures to prevent and control the MODUs’ operation system failure 

are important. This section proposes a few new barriers to prevent and control the 

MODUs’ operation failure.  

The Macondo blowout accident in the Gulf of Mexico is used and analysed as a case 

study to show how the proposed methodology can be used to understand the 

development of the events leading to the failure. The methodology can also be used to 

support the decision-maker to prevent future failure or to control the escalation of 

events. With reference to the results of Chapters 5 and 6, literature reviews assessing the 

Macondo blowout accident, and based on expert judgements for the occurrence 

probability of failures of each BE, the following barriers are introduced for the three 

critical BEs, in order to control the MODUs’ operation failure and reduce the risk level. 

i. Introducing a barrier in level 2 of the operational hierarchy, in order to control the 

Management/supervision/staff failure (L3D-H1-02). 

ii. Introducing a barrier in level 5 of the operational hierarchy, in order to control the 

BOP stack failure (L5D-O1-01-4-1)  

iii. Introducing a barrier in level 5 of the operational hierarchy, in order to control the 

BOP control system failure (L5D-O1-01-4-2). 

The occurrence probability of the BE failures can be used as guidance for the MODUs’ 

operators to become conscious of the vulnerabilities of the safety barrier system, and to 

analyse and assess the risk associated with the barriers. As mentioned earlier, the 

barriers can be proposed in different categories such as physical, technical, 

human/organisational, and regulatory. The Fuzzy TOPSIS technique is used to assess  
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 Figure 7.5: Hazard identification and MODU’s operational hierarchy 
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the possible consequences and effects, and to propose the best risk control option. 

Recommendations for decision-making can be provided based on the level of cost-

effectiveness for each risk control measure that is deemed appropriate and feasible on 

the risk-reduction scale of the ALARP principle framework. 

7.3.4 Fuzzy MCDM basic concept 

Decision-making with more than one criterion to be considered occurs frequently in our 

daily lives. Though these MCDM problems are diverse, they share some mutual 

characteristics (Hwang & Yoon, 1981a). There are two types of weighting approaches: 

objective and subjective methods (Shemshadi et al., 2011; Wang & Lee, 2009). The 

techniques developed take into account both the subjective input from the experts and 

the objective factor resulting from the data that the companies/operators themselves 

collect (Kao & Hung, 2007). The weights of criteria are determined by the subjective 

opinion of the decision-makers as well as by the inherent objective properties of the 

criteria (Zeleny, 1982). The objective weighting approach explains the evaluation in 

data, but occasionally the weight factors of some indexes disagree slightly on actual 

significance of these criteria if there are few criteria or data, and moreover it is more 

difficult to clarify intuitively than the subjective weighting method (Wang et al., 2003). 

As mentioned in a previous section, the subjective weights are determined entirely 

according to the preference or judgements of decision-makers. To determine the overall 

assessment of each decision-maker, a few mathematical techniques can be applied such 

as: the eigenvector method (Saaty, 1977), the weighted least square method (Chu et al., 

1979), and the Delphi method (Hwang & Lin, 1987). Even so, the subjective weighting 

methods cast serious concerns on the reliability of the outcomes (Triantaphyllou & 

Sanchez, 1997). 

7.3.5 Fuzzy TOPSIS techniques for order preference of the alternatives 

Among many well-known MADM methods, TOPSIS is a practical and useful technique 

for ranking and selection of a number of possible alternatives through measuring 

Euclidean distances. It has many advantages such as intuitive analytical principle, 

simple calculation and small sample required and, in practice, TOPSIS has been 
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effectively applied in assessment, selection and evaluation of problems with a limited 

number of alternatives (Yong, 2006; Teodorović, 1985). Hwang & Yoon (1981a) 

developed the TOPSIS method based upon the concept that a chosen alternative should 

have the shortest distance from the PIS (i.e. the solution that maximises the benefit 

criteria and minimises the cost criteria), and the farthest distance from the NIS (i.e. the 

solution that maximises the cost criteria and minimises the benefit criteria). This 

technique ranks alternatives according to their distances from the positive and the 

negative ideal solutions. The positive ideal solution is identified with a hypothetical 

alternative that has the best values for all considered criteria, whereas the negative ideal 

solution is recognised with a hypothetical alternative that has the worst criteria values. 

Moreover, TOPSIS is based on a solid logical basis that reflects the rationale of human 

choice (Sinha and Meller, 2007). A methodology for defining the aggregating function 

based on a Fuzzy set representation of the distance to the PIS and NIS is proposed. The 

methodology proposes the aggregating function to be demonstrated as the membership 

function of the intersection of two Fuzzy sets, the Fuzzy set of the alternative that has 

the shortest distance from the ideal solution and the Fuzzy set of the alternative that has 

the farthest distance from the negative ideal solution. Therefore, it provides the 

mathematical foundation for demonstrating the idea of closeness to the PIS and the NIS 

and allows a proper explanation of the relationship between the closeness of the PIS and 

the NIS. It has been demonstrated to be one of the best approaches in addressing the 

issue of rank problem (Zanakis et al., 1998). However, for the selection of risk control 

option which is often not crisply defined due to absence of data (Zimmermann, 1986), 

many scientists have recommended Fuzzy extensions of the TOPSIS method in order to 

reduce the vagueness that is essential in the corresponding assessment problems (Yong, 

2006, Chen, 2001).  

As illustrated in Figure 7.6, usually the MCDM problems are considered by n attribute 

(or criteria); however, here the criteria are reduced from n dimension problems to two 

dimensions in order to comprehend the operation of this method. As illustrated in 

Figure 7.6, a two-dimensional criterion  is considered as an example to show the 

evaluation process for an MCDM problem. As shown in Figure 7.6, alternative  has 

shorter distances both to the ideal solution  and to the negative ideal solution  than 

the other alternative, . Then it is very difficult to justify the selection of . TOPSIS 

1 2( , )X X

1A

*A A

2A 1A
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takes an alternative, called the compromise solution, which has the weighted minimum 

Euclidean distance to the ideal solution in a geometric sense and also has the maximum 

Euclidean distance to the negative ideal solution. Sometimes the chosen alternative, 

which has the weighted minimum Euclidean distance to the ideal solution, has the 

shorter distance to the negative ideal solution than the other alternative(s). Two criteria 

 are considered in order to show the evaluation process of the best performance 

value, in which, the ideal solution is composed of the best performance value on both 

criteria, and the negative ideal solution is composed of the worst performance values on 

both criteria. As illustrated in Figure 7.6, alternative  has shorter distances both to the 

ideal solution  and to the negative ideal solution  than the other alternative, . 

Then it is very difficult to justify the selection of .  

 
Figure  7.6: TOPSIS to find the compromise solution for a two-dimensional case 

(Marković, 2010) 

7.3.6 Construction of decision matrix and Fuzzy TOPSIS algorithm 

The decision matrix in a MADM method with the Fuzzy TOPSIS algorithm comprises 

different steps; the following steps can express the basic information involved in a 

MADM model: 

a) Construct a decision matrix 

b) Determination of the weight 

c) Normalisation  

d) Calculation of relative significance rate and data collection 
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- Estimating weights of experts 

e) Aggregation  

- Calculation of the degree of similarity 

- Calculation of the AA  

- Calculation of the RA degree  

- Estimation of the consensus coefficient degree 

- Result of aggregation of the experts’ judgements 

f) Defuzzifying 

g) Evaluation, Ranking the alternatives and selection 

h) Weights for each normalised criterion 

i) The positive ideal and negative ideal solutions 

j) Calculate the distance from the positive ideal solution and the negative ideal 

solution for each alternative 

k) Calculation of the CC 

7.3.6.1 Construct a decision matrix 

Assume there m alternatives  miAi ,...,2,1  which decision-makers indicate to be 

evaluated against n selection criteria  njC j ,...,2,1 , in which each alternative 

performance is measured. Assume the aggregation rate of alternative  miAi ,...,2,1  for 

criteria  njC j ,...,2,1  is ijy  therefore the matrix can be described by Equation (7.1). 

Subjective assessments are to be made by the decision-maker to conclude the following: 

 

i. The weighting vector   
nj wwwwW ,...,...,, 21  

By using the linguistic terms as presented in Table 4.3 (Chen and Hwang, 

1992), the weighting vector W  signifies the relative importance of n selection 

criteria  njC j ,...,2,1  for the problem.  

ii. The decision matrix   njmiyY ij ,..,2,1;,...,2,1,   

The matrix represents the utility ratings of alternative iA  with respect to selection 

criteria
jC . Given the weighting vector W  and decision matrix Y , the objective of the 
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problem is to rank all the alternatives by giving each of them an overall value with 

respect to all selection criteria. The decision matrix can be expressed as follows. 
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               nj wwwwW ,...,...,, 21  

( 7.1)  

7.3.6.2 Determination of the weight 

The alternatives in a MADM method are frequently described by qualitative selection 

criteria. When no selection criteria data exist, the preferred approach is to assign 

numerical values to qualitative data scaling (i.e. linguistic terms). The weights of 

various attributes and the ratings of each alternative with respect to each criterion are 

considered as linguistic variables. A Fuzzy set approach is a sustainable method for 

dealing with this problem. An expert’s opinion can be in the form of linguistic terms 

such as low, medium or high. The experts express their estimations for each alternative 

with respect to each criterion. This can be done by asking experts for their opinions for 

each alternative by considering a subjective criterion. These linguistic variables are 

expressed in Table 4.3 (Chen and Hwang, 1992). The concept of linguistic variables is 

very useful in dealing with situations which are too complex or too hard to be defined or 

to be reasonably described by a conventional quantitative expression (Zadeh, 1965).  

7.3.6.3 Normalisation  

It is necessary to normalise the decision matrix in order to make each criterion value 

limited between 0 and 1, so that each criterion is comparable. Criteria ratings are usually 

normalised to eliminate computational problems caused by different measurement units 

in a decision matrix. The normalisation procedure attempts to obtain comparable scales, 

allowing attribute comparisons. The initial data with respect to each criterion will be 

normalised by dividing the sum of criterion values. For Fuzzy data denoted by 



A Novel Engineering Framework for Risk           CHAPTER 7: Fuzzy MCDM and Fuzzy TOPSIS  
Assessment of Mobile Offshore Drilling Units    for cost-benefit analysis and decision-making 

 

 
222 

trapezoidal/triangular Fuzzy number as  ijijijij dcba ,,, , the normalised values for benefit-

related criteria and cost-related criteria are calculated as follows. 

Linear normalisation: this procedure divides the ratings of a certain criterion by its 

maximum value. The normalised value of Yij can be obtained by Equation ( 7.6).  
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   rij=Yij / Yij
*
                 ,      ,           i=1,…,m;  j=1,…,n  ( 7.5) 

 

where Yij
*
 is the maximum value of Yij and the values of rij vary between 0 and 1. 

. 

Vector normalisation: this method divides the ratings of each attribute by its norm, so 

that each normalised rating of Yij can be obtained by Equation ( 7.6).  
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The normalised decision matrix can be expressed by Equation  (7.7). 

 

 



















 

mnm2m1

2n2221

1n1211

m

2

1

nmij

n21

rrr

rrr

rrr

 

A

A

A

 )(r D

C          C      C                             













   

( 7.7) 

 

 

 10  ijr



A Novel Engineering Framework for Risk           CHAPTER 7: Fuzzy MCDM and Fuzzy TOPSIS  
Assessment of Mobile Offshore Drilling Units    for cost-benefit analysis and decision-making 

 

 
223 

7.3.6.4 Calculation of relative significance rate and data collection 

Consider   experts in a decision-making process. Each element in a Fuzzy pair-wise 

comparison can be calculated as follows: 
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Where     is the relative importance by comparing attribute  with attribute  by               

experts, and      is the   th expert’s judgements on the comparison of attribute  with 

attribute  in a Fuzzy number format. The typical trapezoidal Fuzzy number 

 denotes the lower bound     , median      and upper bound      values of 

 Equation ( 7.10) presents a  Fuzzy pair-wise comparison matrix where  can 

be obtained as follows: 
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Weight factors can be estimated by using the geometric mean technique (Saaty, 1990; 

Tang et al., 2000; Mikhailov, 2004) and can be calculated by Equation ( 7.12). 
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In Equation ( 7.12), 
~

iw is the Fuzzy weight factor of the th criteria and
~

if is the 

geometric mean of the th row in the Fuzzy pair-wise comparison matrix and. As the 

outputs of the geometric mean method are triangular Fuzzy weight factors, 

defuzzification is applied in order to convert triangular Fuzzy weight factors into the 

corresponding crisp weight factors. A defuzzification approach used in Fuzzy-AHP is 

expressed by Equation ( 7.13) (Mikhailov, 2004):   

 
             ( 7.13) 

where   is the defuzzified mean value of a Fuzzy weight factor. The normalised 

weight of attribute i ( iw ) can then be calculated by using Equation ( 7.14). 

 

             ( 7.14) 

 Estimating weights of experts 

The weighting of experts is determined according to Table 4.5. Experts’ weights are 

obtained by estimating weight scores and weight factors of experts. Weight scores and 

weight factors of experts can be obtained by using Equation (4.29) and Equation (4.30) 

respectively and weight of each expert is presented in Table 4.6. 

7.3.6.5 Algorithm for aggregation 

Based on the experts’ experience and expertise in the relevant field, each expert may 

have a different opinion. It is necessary to aggregate the experts’ opinions to reach a 

consensus. Presume the experts  express their opinions on a specific 

criterion against a particular situation by a predefined set of linguistic variables. The 

linguistic terms can be converted into corresponding Fuzzy numbers. Hsu and Chen 

(1994) presented an algorithm to aggregate the linguistic opinions of a 
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homogeneous/heterogeneous group of experts and the detailed algorithm is explained in 

the following steps: 

 Calculation of the degree of similarity 

Where for the calculation of degree of similarity  of the opinions 

of a pair of experts, and , and . According to this method, 

 and  are two standard TPFNs. Then the degree of 

similarity between these two Fuzzy numbers, i.e. and 

, can be obtained by the similarity function of , which is defined as:  

              ( 7.15) 

where . The larger the value of , the greater the similarity between 

two Fuzzy numbers of and  

• Calculation of the AA  

Calculate the AA degree  of the experts. 

 
             ( 7.16) 

 Calculation of the Relative Agreement (RA) degree  

Calculate the RA degree,  of the experts. 

      as         
             ( 7.17) 
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Estimate the CC degree, , of expert :  

                 ( 7.18) 

where   is a relaxation factor of the proposed method. It shows the 

importance over . When , no importance has been given to the 

weight of an expert and hence a homogeneous group of experts is used. When , the 

consensus degree of an expert is the same as its importance weight. The consensus 

degree coefficient of each expert is a good measure for evaluating the relative 

worthiness of each expert's opinion. It is the responsibility of the decision-maker to 

assign an appropriate value to  

 Result of aggregation of the experts’ judgements 

Lastly, the aggregated result of the experts’ judgements, , can be obtained as 

follows:  

                 ( 7.19) 

7.3.6.6 Defuzzifying 

After carrying out the aggregation of different experts’ opinions of each alternative 

under each subjective criteria, these opinions have been aggregated for each alternative 

under each subjective criterion up to this stage. Therefore, all the aggregated Fuzzy 

numbers must be defuzzified in order to rank the alternatives of the problem. As a 

result, all the components of the decision matrix are crisp numbers and any classical 

method can be used at the selection stage. Each subjective element of matrix 

 can be converted to its corresponding crisp value by using Equation 

(5.10) and (5.11). 
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7.3.6.7 Evaluation, ranking and selection of the alternatives  

 Weights for each normalised criterion 

Calculate the overall performance evaluation for each alternative and construct weighted 

normalised by multiplying the aggregate weights for each normalised criterion, which 

can be obtained by Equation ( 7.21). 
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 The positive ideal and negative ideal solutions 

Define the positive ideal and negative ideal solutions, which can be determined 

in terms of the weighted normalised values by Equations ( 7.22) and ( 7.23), where  

and  are the set of the benefit and cost attributes respectively. 
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 Calculate the distance from the positive ideal solution and the negative ideal solution 

for each alternative 

 

The distance between two Fuzzy numbers  11111 ,,, dcbaA   and  22222 ,,, dcbaA  , and also 

the distance of each alternative from positive ideal solution 

id and negative ideal 

solution 

id , can be calculated by Equations (7.24) and (7.26) respectively (Bojadziev 

& Bojadziev, 1995). 
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 Relative closeness coefficient (RCC) 

Calculate the RCC to the ideal solution and rank each RCC of each alternative in 

descending order. This allows the decision-makers to choose the most rational 

alternative. The alternative with the highest RCC value will be the best choice and RCC 

can be calculated by Equation  (7.27). 
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 or farther from A

-
, then RCCi goes towards 

“1”. In addition, if the alternative goes towards A
-
 or farther from A

+
, then RCCi goes 

towards “0”. However, it should be noted that the notion of RCC may lead to 

inconsistency (Li, 2007). Given two alternatives, i and k, then alternative i is better than 

 if:  

 ki RCCRCC    or  











 kk

k

ii

i

dd

d

dd

d  ( 7.28) 

 Equation (7.28) holds if one of the following three conditions (i.e. a, b and c) is 

satisfied: 

 
  ki dd    and   

  ki dd  ( 7.29) 

k
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a) This condition relates to the basic principle of the TOPSIS method that the chosen 

alternative (i.e. alternative i) is better than alternative k as it should have the shortest 

distance from the positive ideal solution and the farthest distance from the negative 

ideal solution. 

 
  ki dd    and   

  ki dd    but    



 


k

ik
i

d

dd
d  ( 7.30) 

b) Allows alternative i to be better than alternative k even though alternative i is farther 

from the positive ideal solution than alternative k.  

   ki dd    and     ki dd    but    



 


k

ik
i

d

dd
d  ( 7.31) 

c) Allows alternative i to be superior to alternative k even though alternative i is closer 

to the negative ideal solution than alternative k. 

The normalisation procedure attempts to obtain comparable scales, allowing attribute 

comparisons. The initial data with respect to each criterion will be normalised by 

dividing the sum of criterion values. For Fuzzy data denoted by trapezoidal/triangular 

Fuzzy number as  
ijijijij dcba ,,, , the normalised values for benefit-related criteria and 

cost-related criteria are calculated as follows. 

As stated, TOPSIS ranks the alternatives according to their distances from ideal and 

negative ideal solutions; in the earlier section, it is presented that this statement is vague 

in the sense that it does not provide an accurate definition of the relative closeness to the 

negative and ideal solutions.  

In order to overcome this difficulty, a model is proposed to solve the issue. In this 

circumstance, the model suggested by Zimmermann and Zysno (1985) is used to 

determine the membership of the alternative that has the shortest distance from the ideal 

solution and that of the alternative that has the farthest distance from the negative ideal 

solution. With reference to this model, the membership of the previous set is defined as 

a function of the distance 

id between a given alternative i and the ideal solution, and it 

is represented by Equation (7.32) and 

id is measured by the Euclidean distance. 
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id1

1
     ( 7.32) 

The membership of the alternative from the negative ideal solution can also be defined 

as a simple extension of the Zimmermann and Zysno (1985) model. Distance 


id

between the given alternative i and the negative ideal solution is given in Equation 

(7.33): 

 













i

i

i d

d

d 11

1
1

  
( 7.33) 

Yager (1980) proposed a class of intersection connectives as follows. Assume that A 

and B are subsets of Y with membership values of and  respectively. A general 

class of intersections is defined as follows: 

 where  ,  
( 7.34) 

The following properties can be concluded from this definition: 

i. In Zadeh connective, if , then  

ii. In Lukasiewicz connective, if , then  

The parameter is inversely related to the strength of the “and” operation.  is an 

inverse measure of how strong the operation is meant. It must be noted that  is 

a monotonically decreasing function of . Thus, as  decreases, the strength of the 

“and” operation increases (Yager, 1980). According to the intersection connectives 

suggested by Yager (1980), RCC can be achieved by Equation (7.35). 

  1,])1()1(,1min[1 /1   PRCC PPP   (7.35) 

where and  are defined by Equations (7.32) and (7.33) respectively. Different 

values of  are associated with different behaviour patterns of decision-makers’ 

A B

CBA  PPBPAc

1
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uncertainty. In particular, higher values of  correspond to circumstances where 

decision-makers increasingly take into account the worst characterisation of an 

alternative, whereas lower values of  correspond to situations where decision-makers 

consider closeness to the best characterisation of an alternative with increasing strength. 

As an example, assume the case of two alternatives, i and j, with membership of 

and  respectively. Then the ratings that would be produced 

for different values of parameter P, as presented in Table 7.3. 

As illustrated in Table 7.3, if  a decision-maker would rank alternative Ci higher 

whereas if  a decision-maker would rank alternative Cj higher. Consequently, the 

proposed class of methods includes an extreme occurrence corresponding to 

circumstances where decision-makers take into account only the worst characterisation 

of an alternative; that means decision-makers have preference alternatives that create as 

much profit as credible. 

Table  7.3: Different values of P for illustration of ranking of two alternatives  

P Ci = (0.3, 0.6) Cj= (0.2, 0.9) 

1 0.000 (2) 0.100 (1) 

2 0.194 (1) 0.194 (1) 

∞ 0.300 (1) 0.200 (2) 

7.4 Case study and implementation of the proposed methodology  

In this section, a case study is provided to demonstrate how the proposed methodology 

can be applied to select the best risk control option for an MODU’s operation system. 

As understood, the BOP, which is installed at the seafloor and connected to the marine 

riser, is the last line of protection against a blowout. The BOP is essentially a system of 

valves designed to be closed in the event of anomalous wellbore pressure (such pressure 

is sometimes referred to as a kick). At the depth and pressures encountered by the 

Deepwater Horizon well, regulations require at least four such valves, or rams, which 

must be remote controlled and hydraulically operated during offshore operations. 

P

P

)6.0,3.0(iC )9.0,2.0(jC

P

1P

)( P

http://www.eoearth.org/articles/view/163052/
http://www.eoearth.org/articles/view/161185/
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During the Deepwater Horizon blowout, all of the rams on the BOP failed to close 

properly. In this circumstance, a report was prepared in response to a demand from the 

Secretary of the Interior by the National Academy of Engineering (NAE) and National 

Research Council (NRC) and was released in December 2011with the title of: Macondo 

Well Deepwater Horizon Blowout, Lessons for Improving Offshore Drilling Safety. On 

the basis of this investigation, the working group/committee perceived that a number of 

imperfect decisions had led to the blowout and explosions, indicating a lack of effective 

safety management among the companies involved in the tragedy. Some of the main 

technical causes of the Deepwater Horizon accident are as follows:  

• Well integrity was not established or failed 

- Annulus cement barrier did not isolate hydrocarbons 

- Shoe track barriers did not isolate hydrocarbons 

• Hydrocarbons entered the well undetected and well control was lost 

- Negative pressure test was accepted although well integrity had not been 

established 

- Influx was not recognised until hydrocarbons were in riser 

- Well control response actions failed to regain control of well 

• Hydrocarbons ignited on the Deepwater Horizon 

- Diversion to mud gas separator resulted in gas venting onto rig 

- Fire and gas system did not prevent hydrocarbon ignition 

• Blowout preventer did not seal the well 

- Blowout preventer emergency mode did not seal well 

It is evaluated that approximately five million barrels of hydrocarbons were released 

into the sea due to the well blowout and consequent explosions and fire on the 

Deepwater Horizon drilling rig on April 20, 2010, which led to the deaths of 11 workers 

and 16 serious injuries (Liu et al., 2011). It was felt that a concerted effort by all 

participants would be necessary to overcome the reputational damage caused by this 

event. All members in the industry and regulatory communities have an obligation: i) to 

ensure that such considerations reflect a factual assessment of the risks, and ii) to do all 

that they can to minimise those risks through technology development, personnel 

training, and management systems. Neither objective is likely to be achieved if the risks 

and the responsibility for addressing them are not recognised and accepted. Envisioning 

http://www.eoearth.org/articles/view/163052/
http://www.eoearth.org/articles/view/161185/
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failure is key to the safe development and operation of systems, particularly systems 

that incorporate the complexity of deep water well. Risks must be recognised, 

quantified, and mitigated. Designers, developers, operators, and regulators must know 

and understand that the risks are real and conduct themselves accordingly (NAE/NRC, 

2011). 

Neither industry nor US regulators appear to have foreseen the risks of a Macondo-scale 

event. The lack of adequate, previously planned capping and containment techniques 

evidences a failure to foresee an incident of the type or magnitude experienced at 

Macondo. Nowadays, industry and regulators are both stating their good intentions. 

Industry is investing significant resources in capping and containment systems, and 

regulators are making significant organisational and process changes. The question 

remains as to whether these efforts are a start towards recognition, acceptance, and 

active management of the risks inherent in offshore operation industry development or 

whether they represent a transitory response.  

7.4.1 Recommendations for controlling and decreasing the risk level of the MODU  

The committee developed recommendations for industry and regulators, identifying 

measures that would decrease the likelihood and mitigate the effects of future blowouts. 

The following paragraphs summarise some of the committee’s major 

recommendations
10

. 

- Because operating companies are the only ones that can oversee all aspects of well 

integrity, they should have ultimate responsibility and accountability for well design 

and well construction, as well as for assessing the suitability of the drilling rig and 

safety equipment.  

- The companies that share an offshore drilling lease should ensure that the operating 

company conducts activities in a way that keeps risk as low as is reasonably 

practicable.  

                                                 
10

 Macondo Well Deepwater Horizon Blowout, Lessons for Improving Offshore Drilling Safety. National 

  Academy of Engineering (NAE) and National Research Council (NRC) December 2011. 
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- As drilling operations are carried out and wells are made ready for temporary 

abandonment, there are safety-critical points (e.g. determining the integrity of 

cemented barriers placed in the well) at which poor decisions are likely to increase 

hazards.  

- Guidelines should be established for incorporating adequate margins of safety into 

the operating company’s approach to well design.  

- To improve regulatory effectiveness, the regulatory programme should be expanded 

to a goal-oriented risk management system that incorporates explicit regulatory 

review and approval of the safety-critical points in the drilling operation. As offshore 

drilling operations proceed into deeper waters, the Bureau of safety and 

environmental enforcement (BSEE) and other regulators should identify the safety-

critical points that warrant explicit regulatory review and approval before operations 

can proceed.  

- BOP systems should be redesigned, rigorously tested, and maintained to operate 

reliably under all foreseeable conditions in which they may be deployed. 

- Proper training in the use of these systems in the event of an emergency is also 

essential.  

- Instrumentation and expert system-decision aids should be integrated into the 

offshore drilling unit to provide personnel with timely warnings of a loss of well 

control.  

- Industry and regulators should significantly increase the formal education and 

training in implementing safety systems provided to offshore drilling personnel. 

- Industry should also increase its research and development on improving the safety 

of offshore drilling (well design, equipment, human operational failures, and 

management approaches). 

7.4.2 Implementation of recommendations and evaluation for the best RCOs 

A well barrier can be viewed as a protection layer whose objective is to prevent flow 

from the reservoir. A well barrier will, however, be a combination of passive and active 
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protection layers. As mentioned earlier, three barriers are introduced in different levels 

for the three critical BEs (i.e. L3D-H1-02, L5D-O1-01-4-1 and L5D-O1-01-4-2), as 

shown in Figure 7.5. Different RCOs and barriers with different purposes could be 

recommended to improve the safety level of the MODU in the drilling and operational 

phase. With reference to the committee findings, which are presented in the second 

column of Table 7.4, three different barriers in the course of the assessment phase are 

considered in order to prevent the MODU operation drilling failure. The barrier must be 

intact to prevent the occurrence of an event. With consideration of NAE/NRC’s (2011) 

findings and recommendations, as illustrated in Table 7.4, three different RCOs (i.e. 

Engineering, Equipment redesign/replace and Regulatory/Human error) for the MODU 

system are considered. They are named Eng-RCO, Equip-RCO and Regul-RCO, and are 

presented in the last three columns of Table 7.4. Their purpose is to prevent well 

leakage and blowout during the operational phase. The objective is to select the best risk 

control option with respect to cost and benefit.  
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Table  7.4: Description of findings and recommendations for the RCOs 

 

No.

1

2

3

Regulatory                                             

(Regul-RCO)

Recommendation / Risk Control Option (RCO) (Ref. NAE/NRC, 2011)Basic Event 

(Level 3 & 5) Finding (Ref. NAE/NRC, 2011)

L3D-H1-02 

Management / 

Supervision / 

Staff

L5D-O1-01-4-1 

BOP stack 

failure 

L5D-O1-01-4-2 

BOP control 

system failure 

Engineering                                                            

(Eng-RCO)

Equipment redesign/Test                                                                                             

(Equip-RCO)

BOP systems should be redesigned 

to provide robust and reliable 

cutting, sealing, and separation 

capabilities for the drilling 

environment to which they are being 

applied and under all foreseeable 

operating conditions.

A BOP system with a critical 

component that is not operating 

properly, or which loses redundancy 

in a critical component, should cause 

drilling operations to cease. Drilling 

should not resume until the BOP’s 

emergency operation capability is 

fully cured.

Test and maintenance procedures 

should be established to ensure 

operability and reliability appropriate 

to their environment of application.

BOP systems should be redesigned 

to provide robust and reliable 

cutting, sealing, and separation 

capabilities for the drilling 

environment to which they are being 

applied and under all foreseeable 

operating conditions of the rig on 

which they are installed.

The regulators should identify 

and enforce safety-critical 

points during well construction 

and abandonment that 

warrant explicit regulatory 

review and approval before 

operations can proceed.

The regulators should 

undertake efforts to expand 

significantly the formal 

education and training of 

regulatory personnel engaged 

in offshore drilling roles to 

support proper 

implementation of system 

safety.

The regulators should foster an 

effective safety culture through 

consistent training, adherence 

to principles of human factors, 

system safety, and continued 

measurement through leading 

indicators.

A single government agency 

should be designated with 

responsibility for ensuring an 

integrated approach for 

system safety for all offshore 

drilling activities. 

Although data were being transmitted to 

shore, it appears that no one in authority 

was required to examine test results and 

other critical data and render an opinion 

to the personnel on the rig before 

operations could continue.

The decision to proceed to displacement 

of the drilling mud by seawater was made 

despite a failure to demonstrate the 

integrity of the cement job even after 

.multiple negative pressure tests. This 

was but one of a series of questionable 

decisions in the days preceding the 

blowout that had the effect of reducing 

the margins of safety, and that evidenced 

a lack of safety-driven decision making.

The BOP system was neither designed nor 

tested for the dynamic conditions that 

most likely existed at the time that 

attempts were made to recapture well 

control. Furthermore, the design, test, 

operation, and maintenance of the BOP 

system were not consistent with a high-

reliability, fail-safe device.

At the time of the Macondo blowout, rig 

personnel could not regain control of the 

well by using the BOP because the blind 

shear ram did not cut the drill pipe and 

seal the well. In addition, the emergency-

disconnect system failed to separate the 

Deepwater Horizon from the well.

Industry should undertake efforts to expand 

significantly the formal education and 

training of industry personnel engaged in 

offshore drilling to support proper 

implementation of system safety.

Existing codes and standards should review 

to determine which should be improved 

regarding requirements for: (a) use of state-

of-the art technologies, especially in areas 

related to well construction, cementing, 

BOP functionality,  and alarm and 

evacuation systems, among others, and (b) 

approval and certification incumbent to 

management of changes in original plans for 

well construction.

Operator training for emergency BOP 

operation should be improved to the point 

that the full capabilities of a more reliable 

BOP can be competently and correctly 

employed when needed in the future.

Industry should greatly expand R&D efforts 

focused on improving the overall safety of 

offshore drilling in the areas of design, 

testing, modeling, risk assessment, safety 

culture, and systems integration. Such 

efforts should encompass well design, 

drilling and marine equipment, human 

factors, and management systems.



A Novel Engineering Framework for Risk           CHAPTER 7: Fuzzy MCDM and Fuzzy TOPSIS  
Assessment of Mobile Offshore Drilling Units    for cost-benefit analysis and decision-making 

 

 
237 

7.4.3 Establishment of decision hierarchy for selection of the best RCOs  

Selection of the best RCO is made on the basis of four subjective criteria; three different 

RCOs (i.e. Engineering (Eng-RCO), Equipment redesign/replace (Equip-RCO) and 

Regulatory/Human error (Regul-RCO)) are selected, because they are regarded as the 

most significant attributes associated with the MODU operational barriers based on 

NAE/NRC’s (2011) findings and recommendations. Since it is useful to develop a 

hierarchical structure showing the overall objective, the criteria and alternatives in such 

a hierarchy for selection of the best RCO are shown in Figure 7.7. Three alternatives as 

presented in Figure 7.7 (i.e. Eng-RCO, Equip-RCO and Regul-RCO) are considered and 

evaluated against four selection criteria (i.e. Crew safety/People, Asset/Resources, 

Environment and Reputation) with which each alternative performance is measured. 

Decision hierarchy for selection of the best RCO associated with the MODU operational 

barriers based on NAE/NRC’s (2011) findings and recommendations is illustrated in 

Figure 7.7.  

 

Figure  7.7: Decision hierarchy for selection of the best RCOs associated with the 

MODU operational barriers based on NAE/NRC’s (2011) findings and 

recommendations. 

In an MCDM problem, the attributes can be divided into two categories. The first is cost 

(the larger, the less preferred) and the second is benefit (the larger, the more preferred). 

Crew Safety/People (CS)

Regulatory 

(Regul-RCO) 

Equipment 
redesign /replace 

(Equip-RCO)

Asset /Resources (AS)

Environmental (EN)

Reputation (RE)

Engineering 

(Eng-RCO)

Objective AlternativesCriteria

Assessing for 
optimal risk 

control option
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In Table 7.5, the criteria properties such as the class of criteria and type of assessment 

are summarised and illustrated. 

Table 7.5: Criteria properties and type of assessment of the case study 

 

As shown in Table 7.5 for the criteria CS, EN and RE, the higher more preferable, for 

the criteria AS, the lower, the better.  

7.4.4 Calculation of relative rate and data collection 

With consideration of the unavailability of field data and with respect to the subjective 

criteria, the alternatives in the case study are evaluated by a group of three experts and 

the experts’ linguistic judgements are transformed into their corresponding Fuzzy 

numbers by using Table 4.3. It should be noted that the AS must be considered to be the 

same as the cost of replacing them. For CS, EN and RE, the experts express their 

opinions with respect to each barrier and they should be considered as benefits; the three 

experts’ judgements are presented for different alternatives (i.e. Eng-RCO, Equip-RCO 

and Regul-RCO) in Table 7.6 to  

Table 7.8 respectively. As presented in Table 7.6, for the basic event of L3D-H1-02, the 

opinion of Expert 1 for the Eng-RCO risk control option with respect to the CS criterion 

is “Very High” and is presented in the second column. Likewise, the opinions of 

Experts 2 and 3 for the same risk control option are “Mol. High” and “High” 

respectively. In the last column, the three experts’ opinions are aggregated and 

converted to the Crip No. (i.e. 0.235). 

No.Description 

(Criteria)

Class of Criteria Nature of criteria Assessment data

1 CS Safety (Benefit) Safe (the higher more preferable) Subjective (Expert Judgment)

2 AS Costs Cost (the lower, the better) Subjective (Expert Judgment)

3 EN Safety (Benefit) Safe (the higher more preferable) Subjective (Expert Judgment)

4 RE Benefit The higher more preferable Subjective (Expert Judgment)
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Table  7.6: Experts’ opinions for Eng-RCO risk control option with respect to CS criteria 

 

 

 

Table  7.7: Experts’ opinions for Equip-RCO risk control option with respect to CS criteria 

  
 

Table  7.8: Experts’ opinions for Regul-RCO risk control option with respect to CS criteria 

 

B-L3D-H1-02 Very High 0.8 0.9 1 1 0.303 Mol. High 0.5 0.6 0.7 0.8 0.364 High 0.7 0.8 0.9 0.333 0.235

B-L5D-O1-01-4-1 High 0.7 0.8 0.9 0.303 Medium 0.4 0.5 0.6 0.364 Very High 0.8 0.9 1 1 0.333 0.203

B-L5D-O1-01-4-2 Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Very High 0.8 0.9 1 1 0.333 0.207

Crisp 

No.Linguistic 

terms 

Expert 

Factor

Linguistic 

terms 

Expert 3

Experts Judgment for Engineering risk control option (Eng-RCO)with respect to (CS)

Expert 2
Basic Event 

(Level 3 & 5) Expert 

Factor

Expert 1 Expert 

Factor

Linguistic 

terms 

B-L3D-H1-02 Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333 0.177

B-L5D-O1-01-4-1 Medium 0.4 0.5 0.6 0.303 Medium 0.4 0.5 0.6 0.364 Very High 0.8 0.9 1 1 0.333 0.182

B-L5D-O1-01-4-2 Mol. High 0.5 0.6 0.7 0.8 0.303 High 0.7 0.8 0.9 0.364 Medium 0.4 0.5 0.6 0.333 0.174

Expert 

Factor

Linguistic 

terms 

Expert 3 Expert 

Factor

Expert 1 Expert 

Factor

Linguistic 

terms 

Expert 2
Basic Event 

(Level 3 & 5)

Experts Judgment for Equipment redesign/Test risk control option (Equip-RCO) with respect to (CS)
Crisp 

No.Linguistic 

terms 

B-L3D-H1-02 Very High 0.8 0.9 1 1 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333 0.234

B-L5D-O1-01-4-1 Medium 0.4 0.5 0.6 0.303 High 0.7 0.8 0.9 0.364 Mol. High 0.5 0.6 0.7 0.8 0.333 0.177

B-L5D-O1-01-4-2 Mol. High 0.5 0.6 0.7 0.8 0.303 Mol. High 0.5 0.6 0.7 0.8 0.333 Medium 0.4 0.5 0.6 0.333 0.178

Expert 

Factor

Linguistic 

terms 

Expert 3 Expert 

Factor

Expert 1 Expert 

Factor

Linguistic 

terms 

Expert 2
Basic Event 

(Level 3 & 5)

Experts Judgment for Regulatory risk control option (Regul-RCO) with respect to (CS)
Crisp No.Linguistic 

terms 
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7.4.5 Fuzzy-AHP  estimation process and determination of the weight factors  

Fuzzy-AHP determines weighting factors by conducting pair-wise comparison. Fuzzy 

set theory and AHP have been used to estimate the weights of all the criteria by 

conducting pair-wise comparison. The comparison is based on an estimation scheme, 

which lists the strength of importance using qualitative descriptors. Table 7.9 has been 

used to create a pair-wise comparison; five linguistic terms are used fluctuating from 

equal importance to absolute importance. Each qualitative descriptor has a 

corresponding Fuzzy number that is employed to transfer experts’ judgements into a 

comparisons matrix, and corresponds to the lower and upper values of a range to 

describe qualitative. A      pair-wise comparison matrix is developed to obtain the 

weights of all the criteria.  is the pair-wise comparison matrix expressing the 

quantified judgements with regard to the relative importance of the criteria. 

Table  7.9: Qualitative descriptions and their corresponding Fuzzy numbers  

 

As an example, two experts estimated that the criterion of CS compared to the criterion 

of AS is of “Strong Importance” and their judgements are then translated to a Fuzzy 

number of (4,5,6). One expert considered that CS is of “Very Strong Importance” in 

comparison with event AS, which corresponds to Fuzzy number (6,7,8). Using Equation 

(7.8), elements in  and  pair-wise comparison can be obtained as follows: 

A
~

Qualitative descriptoin 

(Strength of importance) 

Fuzzy numbers  

(Triangular) 

Descriptions 

Equal Importance (EI) (1,1,2) Two attributes or experts 

contribute equally to the event. 

Weak Importance (WI) (2,3,4) Judgment and experience to 

some extent favour an attribute 

or expert over another. 

Strong Importance (SI) (4,5,6) Judgment and experience 

strongly favour an attribute or 

expert over another.

Very Strong Importance (VSI) (6,7,8) An attribute or expert is 

favoured strongly over another. 

Absolute Importance (AI) (8,9,9) The evidence favouring an 

attribute or expert over another 

is of the highest order of 

assertion. 

13
~a 31

~a

44
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A  Fuzzy pair-wise comparison matrix  can be constructed as follows: 

 

 ( 7.36) 

Using the geometric mean technique, each criterion’s weight can be calculated by using 

Equations (7.12) and (7.11) and the weights of all the attributes/criteria are presented in 

Table 7.10. 
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~

( 1.00 1.00 1.00 ) ( 4.67 5.67 6.67 ) ( 2.00 2.33 3.33 ) ( 4.67 5.67 6.67 )

( 0.15 0.18 0.21 ) ( 1.00 1.00 1.00 ) ( 0.17 0.20 0.25 ) ( 1.00 1.00 2.00 )

A=
( 0.30 0.43 0.50 ) ( 0.30 0.43 0.50 ) ( 1.00 1.00 1.00 ) ( 4.00 5.00 6.00 )

( 0.15 0.18 0.21 ) ( 0.50 1.00 1.00 ) ( 0.17 0.20 0.25 ) ( 1.00 1.00 1.00 )

CS

AS

EN

RE

                       CS AS EN RE
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Table 7.10: Fuzzy weight of attributes/criteria  

 

 

Table 7.11: Defuzzified and normalised weight of criteria 

 

7.4.6 Estimating weights of experts 

Three experts are selected to make judgements with respect to the subjective attributes. 

The experts’ weights can be obtained by using Table  4.5.and. Table  4.6. 

7.4.7 Normalising of data and aggregation 

In this step, all the ratings are aggregated for each criterion. As mentioned earlier, the 

subjective criteria are CS, AS, EN and RE. The aggregation calculations for CS, AS, 

EN and RE are given in Table 7.12 to Table 7.16 respectively. Aggregation of each risk 

control option with respect to CS is performed in two stages. The first stage is to obtain 

rating of judgements of each expert for each RCO, and in the second stage, the 

aggregation of the three experts’ judgements for RCO 1 with respect to criteria needs to 

be obtained. As an example, in Table 7.12, the judgements of Expert 1 for Eng-RCO for 

different barriers is given with respect to CS and also the aggregation calculations 

including degree of similarity, average agreement, relative agreement and closeness 

coefficient are presented. 

= (2.57, 2.94, 3.49) = (0.45, 0.61, 0.86)

= (0.40, 0.43, 0.57) = (0.07, 0.09, 0.14)

= (0.77, 0.98, 1.11) = (0.14, 0.20, 0.27)

= (0.33, 0.43, 0.48) = (0.06, 0.09, 0.12)

Fuzzy weight of attributes 

CSf
~

ASf
~

ENf
~

CSw~

ASw~

ENw~

REw~
REf

~

= 0.642 =  0.620

= 0.100 =   0.097

= 0.204 = 0.197

= 0.089 = 0.086

Normalized weight of 

criteria
Defuzzified weight

DF
CSw

CSw

DF
ASw

ASw

DF
ENw

ENw

DF
REw REw
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Table 7.12: Aggregation of judgements of Expert 1 for Eng-RCO with respect to CS 

 

 

Table  7.13: Aggregation of judgements of Expert 2 for Eng-RCO with respect to CS 

 

 

Table 7.14: Aggregation of judgements of Expert 3 for Eng-RCO with respect to CS 

 

B-L3D-H1-02 (B1) Very High 0.8 0.9 1 1

B-L5D-O1-01-4-1 (B2) High 0.7 0.8 0.9

B-L5D-O1-01-4-2 (B3) Medium 0.4 0.5 0.6

S (B1  &  B2) 0.675 AA (B1) 0.725 RA (B1) 0.382 CC (B1) 0.342

S (B2  &  B3) 0.775 AA (B2) 0.613 RA (B2) 0.322 CC (B2) 0.313

S (B1  &  B3) 0.45 AA ( B3) 0.563 RA ( B3) 0.296 CC (B3) 0.300

Total 1.900 1.000 0.955

0.274 0.647 0.742 0.803

Aggregation calculations 

Degree of similarity Average agreement Relative agreement Consensus coefficient 

Result of aggregation

B
as

ic
 E

ve
n

t 
(L

ev
el

 3
 &

 5
)

Judgment of Expert 1 for Eng-RCO with respect to  (CS)
Expert weight factor 

(Ewf)

0.303

0.303

0.303

B-L3D-H1-02 (B1) Mol. High 0.5 0.6 0.7 0.8

B-L5D-O1-01-4-1 (B2) Medium 0.4 0.5 0.6

B-L5D-O1-01-4-2 (B3) High 0.7 0.8 0.9

S (B1  &  B2) 0.725 AA (B1) 0.750 RA (B1) 0.326 CC (B1) 0.345

S (B2  &  B3) 0.775 AA (B2) 0.788 RA (B2) 0.342 CC (B2) 0.353

S (B1  &  B3) 0.8 AA ( B3) 0.763 RA ( B3) 0.332 CC (B3) 0.348

Total 2.300 1.000 1.045

0.172 0.591 0.696 0.801Result of aggregation

B
as

ic
 E

ve
n

t 
(L

ev
el

 3
 &

 5
)

Judgment of Expert 2 for Eng-RCO with respect to (CS)
Expert weight 

factor (Ewf)

0.364

0.364

0.364

Aggregation calculations 

Degree of similarity Average agreement Relative agreement Consensus coefficient 

B-L3D-H1-02 (B1) High 0.7 0.8 0.9

B-L5D-O1-01-4-1 (B2) Very High 0.8 0.9 1.0 1.0

B-L5D-O1-01-4-2 (B3) Very High 0.8 0.9 1.0 1.0

S (B1  &  B2) 0.675 AA (B1) 0.838 RA (B1) 0.356 CC (B1) 0.345

S (B2  &  B3) 1 AA (B2) 0.838 RA (B2) 0.356 CC (B2) 0.345

S (B1  &  B3) 0.675 AA ( B3) 0.675 RA ( B3) 0.287 CC (B3) 0.310

Total 2.350 1.000 1.000

0.524 0.831 0.931 0.966Result of aggregation

0.333

Aggregation calculations 

Degree of similarity Average agreement Relative agreement Consensus coefficient 

B
as

ic
 E

ve
n

t 
(L

ev
el

 3
 &

 5
)

Judgment of Expert 3 for Eng-RCO with respect to (CS)
Expert weight 

factor (Ewf)

0.333

0.333
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The aggregation of the three experts’ judgements for Eng-RCO with respect to CS is 

presented in Table 7.15. 

Table 7.15: Aggregation of three experts’ ratings for Eng-RCO with respect to CS 

 

The aggregation of the three experts’ judgements for Equip-RCO with respect to CS is 

presented in Table 7.16. 

Table 7.16: Aggregation of three experts’ ratings for Equip-RCO with respect to CS 

 

The aggregation of the three experts’ judgements for Regul-RCO on CS is shown in 

Table 7.17. 

 

 

 

 

 

 

 

 

Expert 1 (E1) 0.274 0.647 0.742 0.803

Expert 2 (E2) 0.172 0.591 0.696 0.801

Expert 3 (E3) 0.524 0.831 0.931 0.966

S (E1 & E2) 0.949 AA (E1) 0.850 RA (E1) 0.340 CC (E1) 0.321

S (E2 & E3) 0.752 AA (E2) 0.778 RA (E2) 0.311 CC (E2) 0.337

S (E1 & E3) 0.804 AA (E3) 0.876 RA (E3) 0.350 CC (E3) 0.342

Total 2.504 1.000 1.000

0.325 0.691 0.791 0.858

Consensus coefficient 

Result of aggregation for Eng-RCO

Linguistic terms 
Expert weight 

factor (Ewf)

0.303

0.364

0.333

Aggregation calculations 

Degree of similarity

E
n

gi
n

ee
ri

n
g 

(E
n

g
-R

C
O

)-
w

it
h

 r
es

p
ec

t 
to

 
(C

S)

Average agreement Relative agreement 

Expert 1 (E1) 0.164 0.447 0.543 0.638

Expert 2 (E2) 0.625 0.730 0.834

Expert 3 (E3) 0.418 0.625 0.725 0.793

S (E1 & E2) 0.819 AA (E1) 0.851 RA (E1) 0.339 CC (E1) 0.321

S (E2 & E3) 0.884 AA (E2) 0.846 RA (E2) 0.337 CC (E2) 0.350

S (E1 & E3) 0.808 AA (E3) 0.813 RA (E3) 0.324 CC (E3) 0.329

Total 2.511 1.000 1.000

0.190 0.568 0.668 0.758

Average agreement Relative agreement Consensus coefficient 

Result of aggregation for Equip-RCO

E
q

u
ip

m
en

t 
re

d
es

ig
n

/T
es

t 
(E

q
u

ip
-R

C
O

) 
w

it
h

 r
es

p
ec

t 
to

  (
C

S)

Linguistic terms 
Expert weight factor 

(Ewf)

0.303

0.364

0.333

Aggregation calculations 

Degree of similarity
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Table 7.17: Aggregation of the three experts’ judgements for Regul-RCO with respect 

to CS 

 

The decision matrix, aggregation of subjective ratings for each RCO with respect to 

different criteria, is shown in Table 7.18. 

Table 7.18: Decision matrix of subjective ratings 

 

All the subjective data are converted into crisp values for each RCO, as presented in 

Table 7.19. 

Table 7.19: Crisp value of decision matrix 

 

Expert 1 (E1) 0.398 0.596 0.692 0.756

Expert 2 (E2) 0.177 0.696 0.801 0.905

Expert 3 (E3) 0.329 0.531 0.631 0.731

S (E1 & E2) 0.855 AA (E1) 0.845 RA (E1) 0.321 CC (E1) 0.312

S (E2 & E3) 0.835 AA (E2) 0.890 RA (E2) 0.338 CC (E2) 0.351

S (E1 & E3) 0.945 AA (E3) 0.900 RA (E3) 0.342 CC (E3) 0.337

Total 2.636 1.000 1.000

0.297 0.609 0.710 0.800

Average agreement Relative agreement Consensus coefficient 

Result of aggregation for Regul-
RCO

 R
e

g
u

la
to

ry
 (

R
e

g
u

l-
R

C
O

) 
w

it
h

 r
e

sp
e

ct
 

to
 (

C
S

)

Linguistic terms 
Expert weight factor 

(Ewf)

0.303

0.364

0.333

Aggregation calculations 

Degree of similarity

Description

Eng-RCO ( 0.325 , 0.691 , 0.791 , 0.858 ) ( 0.133 , 0.400 , 0.500 , 0.600 ) ( 0.202 , 0.634 , 0.734 , 0.823 ) ( 0.062 , 0.456 , 0.556 , 0.657 )

Equip-RCO ( 0.190 , 0.568 , 0.668 , 0.758 ) ( 0.110 , 0.449 , 0.549 , 0.649 ) ( 0.190 , 0.568 , 0.668 , 0.758 ) ( 0.059 , 0.423 , 0.524 , 0.624 )

Regul-RCO) ( 0.297 , 0.609 , 0.710 , 0.800 ) ( 0.110 , 0.441 , 0.542 , 0.642 ) ( 0.118 , 0.646 , 0.746 , 0.846 ) ( 0.052 , 0.424 , 0.524 , 0.625 )

CS                                      

Safety (Benefit)

AS                                             

Costs  

EN                                                        

Safety (Benefit)

RE                                              

Benefit

Description

Eng-RCO

Equip-RCO

Regul-RCO) 0.592 0.421 0.562 0.391

0.649 0.399 0.578 0.415

0.529 0.425 0.529 0.392

CS                                      

Safety (Benefit)

AS                                             

Costs  

EN                                                        

Safety (Benefit)

RE                                              

Benefit
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7.4.8 Normalisation of the decision matrix 

The TOPSIS procedure is applied to the four criteria to obtain the best RCO and ranking 

orders. In this step, the normalisation is carried out for the decision matrix shown in 

Table 7.19. The normalised attributes can be obtained using Equation (7.6). The 

normalised decision matrix is shown in Table 7.20. 

Table 7.20: Fuzzy normalised decision matrix 

 

The weighted normalised Fuzzy decision matrix can be obtained by employing 

Equation  (7.21). For example, the weighted normalised CS of Eng-RCO is obtained as 

follows: 

392.0620.0633.0 ijv
 

The weighted normalised Fuzzy decision matrix is shown in Table 7.21. 

Table  7.21: Weighted normalised decision matrix 

 

 

Obtaining the distances of an alternative from ideal and negative ideal solutions 

Determination of the positive ideal solution can be easily made by taking the largest 

element for each benefit attribute and the smallest element for each cost attribute. The 

Description

Eng-RCO

Equip-RCO

Regul-RCO) 0.577 0.585 0.583 0.564

0.633 0.555 0.599 0.600

0.516 0.591 0.549 0.567

CS                                      

Safety (Benefit)

AS                                             

Costs  

EN                                                        

Safety (Benefit)

RE                                              

Benefit

Description

Eng-RCO

Equip-RCO

Regul-RCO) 0.358 0.057 0.115 0.049

0.392 0.054 0.118 0.052

0.320 0.057 0.108 0.049

CS                                      

Safety (Benefit)

AS                                             

Costs  

EN                                                        

Safety (Benefit)

RE                                              

Benefit



A Novel Engineering Framework for Risk           CHAPTER 7: Fuzzy MCDM and Fuzzy TOPSIS  
Assessment of Mobile Offshore Drilling Units    for cost-benefit analysis and decision-making 

 

 
247 

negative ideal solution is simply the opposite formation of the positive ideal solution. 

The positive and negative ideal solutions are given in Table 7.22. 

Table 7.22: PIS and NIS 

 

The distances and closeness membership functions from each RCO to PIS and NIS are 

calculated for all the alternatives by employing Equations (7.25), (7.26), (7.32) and 

(7.33). An example highlighting the calculation process for Eng-RCO is given below 

and the results for all the RCOs are shown in Table 7.23 and Table 7.24. 

892.0

)052.0564.0()118.0583.0()054.0585.0()392.0577.0( 2222









d

d
 

529.0
892.01

1



u  

Table 7.23: Distance and closeness values of each alternative from PIS and NIS 

 

 

 

Description PIS NIS

CS                                          

Safety (Benefit)
0.392 0.320

AS                                               

Costs  
0.054 0.057

EN                                                

Safety (Benefit)
0.118 0.108

RE                                               

Benefit
0.052 0.049

Description

Eng-RCO 0.000 0.073 1.000 0.068

Equip-RCO 0.003 0.000 0.997 0.000

Regul-RCO 0.892 0.039 0.529 0.037

dd
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Table  7.24: Distance and closeness values of each alternative from PIS and NIS 

 

7.4.9 Computing the RCC of each alternative from the ideal solution  

The risk control values of the four RCOs at P =1,2,3,… can be obtained by using 

Equation ( 7.34) and the result is shown in Table 7.25.  

Table  7.25: RCC values of the RCOs 

 

It can be seen from Table 7.25 that each instance of the proposed method yields 

different values for RCOs corresponding to different behavioural patterns of decision-

makers. Indeed, when P (e.g. P=1000), Eng-RCO is ranked as the best alternative 

followed by Regul-RCO and Equip-RCO respectively. Eng-RCO is characterised by the 

maximum negative membership value of 0.0684, corresponding to decision-makers who 

prefer alternatives that make not only as much profit as to the extent of practically 

possible but also as much as risk reduction possible.  

7.5 Validation  

In the first condition, sensitivity analysis is performed by investigating the values and 

ranking of the alternatives due to the weight changes. The weights of all the attributes 

Description

1.000 0.997

0.068 0.000

0.529

0.037

0.0000 0.003

0.073 0.000

0.892

0.039

Eng-RCO Equip-RCO Regul-RCO

d
d




P Eng-RCO Equip-RCO Regul-RCO

1 0.06842 0.0000 0.0000

2 0.06842 0.00018 0.0000

3 0.06842 0.00019 0.00083

4 0.06842 0.00019 0.02356

5 0.06842 0.00019 0.03174

… … … …

1000 0.0684 0.0002 0.0371
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are considered to be of equal importance (i.e. 250.0 REENASCS wwww ). 

Table 7.26 shows that the values of the RCOs are changed due to the weight changes.  

Table 7.26: Rating of RCOs by considering equal weights for attributes 

 

In the second condition, the weights of 1 and 0 are considered for positive attribute (CS, 

EN and RE) and negative attribute (AS) respectively. The alternatives (RCOs) with 

higher Eng-RCO values should have better ranking results. Therefore, the ranking result 

must be that Eng-RCO is ranked as the best alternative followed by Regul-RCO and 

Equip-RCO. The results in Table 7.27 confirm the aforementioned expectation.  

Table 7.27: Ranking results considering a weight of one for REL and zero for negative 

attribute 

 

In the third condition, model validation is investigated by considering six instances for 

(1, 1.5, 2.5, 4.5, 7 and 50).Table 7.28 demonstrates that each instance results in different 

rating values. Six instances are selected randomly. 

 

 

 

 

 

P Eng-RCO Equip-RCO Regul-RCO

1 0.07844 0.0000 0.0000

2 0.07844 0.00135 0.0000

3 0.07844 0.00135 0.03268

4 0.07844 0.00135 0.03973

5 0.07844 0.00135 0.04134

… … … …

1000 0.0784 0.0014 0.0419

P Eng-RCO Equip-RCO Regul-RCO

1 0.11704 0.0000 0.0000

2 0.11704 0.00215 0.0000

3 0.11704 0.00218 0.04657

4 0.11704 0.00218 0.05989

5 0.11704 0.00218 0.06379

… … … …

1000 0.1170 0.0022 0.0656
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Table 7.28: Rating value considering different  instances 

 

RCOs’ ranking in Table 7.28can satisfy the expectation. 

7.6 Conclusion 

The offshore industry should greatly expand research and development efforts focused 

on improving the overall safety of offshore operation systems in the areas of design, 

testing, modelling, risk assessment, safety culture, systems integration and regulation. 

The basic principle of the TOPSIS method is that the chosen alternative should ideally 

have the farthest distance from the NIS and shortest distance from the PIS. However, 

such chosen alternative is not always closest to the ideal solution and it may not be the 

farthest from the NIS either. This chapter presents an effective Fuzzy MCDM method, 

which is suitable for solving multiple attribute group decision-making problems under a 

Fuzzy environment where the information available is subjective and imprecise. The 

proposed method enables a group of decision-makers to incorporate and aggregate 

subjective opinions. This chapter has identified a set of suggestions for how barriers can 

be modelled in risk assessment. By using the model developed and presented here, 

offshore operators can choose the best RCO based on the requirements of multiple 

criteria. Such a Fuzzy MCDM can be employed as an alternative tool for use in 

situations where both qualitative and quantitative data have to be synthesised.  

 
 
 
 
  

P

P Eng-RCO Equip-RCO Regul-RCO

1 0.06842 0.0000 0.0000

1.5 0.06842 0.00010 0.0000

2.5 0.06842 0.00019 0.00000

4.5 0.06842 0.00019 0.02863

7 0.06842 0.00019 0.03617

… … … …

50 0.0684 0.0002 0.0371
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8 CHAPTER 8: Conclusion 

Chapter summary 

This chapter briefly outlines that the risk assessment and decision-making 

methodologies and techniques offered in this research would be of support in safe 

MODU operation and management. Several powerful and efficient tools and 

techniques were employed in the development of integrative risk assessment 

analytical models for the offshore operation system application. It is concluded that 

the developed methodology can be integrated to formulate a platform to facilitate 

risk assessment of the MODU operations without jeopardising the efficiency and 

performance of system operations. The development phases for the models that had 

to be provided with data and uncertainties were handled through inference processes 

that are based on sound theorems or logic. The proposed methodologies were also 

enabled via case studies in order to demonstrate their practicality. The areas which 

require more effort to be paid in order to improve the developed approaches for 

further work are outlined; also, this chapter reviews the goals achieved in this 

research. 

8.1 Introduction 

On the basis of the reviewed different analytical concepts, a proposed framework for 

the risk-based assessment settings of this research has been developed in a generic 

sense to be effectively applicable to all offshore operation systems and their 

components/subsystems. The framework incorporates risk analysis for which data 

were obtained from industrial databases and/or by expert judgements. Where it is 

difficult to describe the basic failure events of a system using probabilistic risk 

analysis methods, subjective reasoning analysis has been deemed more appropriate to 

assess the safety of the system. FL was utilised as the modelling tool that dealt with 

the vague/subjective uncertainties in offshore operation systems. In addition, the 

information from one implemented technique, such as a risk contribution hierarchy, 

can be used to process the information produced using another technique, such as a 

FTA. Therefore, the use of well-established risk assessment analytical techniques 

(e.g., FT and BBN) and the developed risk-based analytical tools (e.g., FL) in an 
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integrated manner may make risk assessment comparatively more efficient and 

convenient, since the advantages of each method may be more efficiently explored. 

In this review of the research conducted within this thesis, it can be confirmed that 

not only has the work followed a logical sequence, but that, most importantly, the 

aims and objectives of this thesis have been successfully achieved.  

8.2 Aims and objectives of this research 

The stated aims of this research was to develop a novel QRA methodology for an 

effective and efficient risk assessment of an offshore operation system. The research 

has followed and accomplished and the set of following objectives has been 

achieved: 

 Through a review of the literature, the case for the application of the offshore 

operation system risk assessment principles is examined. This has been 

achieved by carrying out a review of the available literature as pertaining to 

cases for the application of risk assessment on the MODU’s operation system. 

 A novel engineering framework for risk assessment of the MODU is 

developed, which is also applicable to other offshore operation systems at a 

similar stage of risk assessment implementation. The framework development 

was undertaken by representing the MODU’s specific operational 

requirements and the particular stage of risk assessment within the case study 

was applied to a framework incorporating the wider stages.  

 The concept of MCDM as a decision support tools in an MCDM environment 

is examined, through a review of the literature, the most appropriate 

techniques is being used for developing the required decision support models. 

Because of the multitude of factors involved in carrying out of an offshore 

operation system risk assessment, prioritisation of which barrier schemes to 

implement is therefore the key instrument for the optimisation of the 

available resources. MCDA, as the process of analysing, choosing, ranking 

and sorting appropriate actions, is used effectively in resolving decision 

problems in an offshore operation system. In this process, it should be 
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recognised that the decision-making involving prioritisation and optimisation 

of the available resources is based on balancing conflicting criteria using the 

practice of trading-off between them to arrive at a decision that is considered 

most advantageous or optimum. 

8.3 Research limitations 

The developed risk assessment analytical models provide useful integrative tools for 

a proactive offshore operation system world but have limitations owing to the 

complex nature of offshore installations. As with all research, there are limitations 

within issues affecting the research methodology, the analytical techniques and 

processes adopted, and the interpretation of the results, particularly when attempting 

to make generalisations based on the empirical or analytical research. The most 

significant limitations considered to affect this research are discussed here based on 

their relevance to each of the research components. 

  Eliciting conditional probabilities is more difficult, especially if the probability 

is conditioned on several states. Besides, many of the probabilities required to 

quantify a BBN cannot be derived from databases and scientific literature, 

therfore they may need to be elicited from domain experts, based on their 

knowledge and experience. 

  Lack of industrial failure data. 

  Sensitivity analysis is generally deterministic and limited to one- and two-way 

analyses. Thus, only a partial sensitivity analysis could be conducted for the 

MODU. 

  Although FL is widely used today to solve very complex problems in risk 

assessment applications in different fields including science, engineering and 

management, a major limitation of FL is that, for many applications, the 

information that describes desired system behaviour is held in data sets, and the 

designer may have to develop the rules (e.g. "IF THEN") from the data sets 

manually. This is a major task for large data sets. 

  Some limitations introduced into the research scope are generally associated 

with case studies, as discussed in Chapter 4 of this thesis. Such limitations are 
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related to the complexity of the MODU system, and also that a single case 

provides little basis for systematic generalisation. 

These limitations did not mitigate the efficacy of the conclusions and generalisations 

of the conducted research. Nonetheless, tackling these limitations should enable the 

advancement of the integrative risk assessment modelling.  

8.4 Conclusion 

The thesis has been successful in meeting its aim of developing a novel QRA 

methodology for an effective and efficient risk assessment and management of an 

offshore operation system. It is also believed that these methods can be tailored to 

practical applications of dealing with risk assessment in other industries, especially 

in situations where a high level of uncertainty exists. The implementation of the 

defined methodologies could have highly beneficial effects in real life. 

The practicality of the developed methodology can be justified for the risk 

assessment of real-life offshore applications. Envisioning failure is key to the safe 

development and operation of systems, particularly systems that incorporate the 

complexity of an MODU. Risks must be recognised, quantified, and mitigated. 

Designers, developers, operators, and regulators must know and understand that the 

risks are real and conduct themselves accordingly. Offshore operation safety has 

evolved in a reactive manner towards a risk-based goal-setting approach recently due 

to public concern following several catastrophic disasters. Traditional risk 

assessment techniques are capable of handling risks with confidence on the principle 

that historical data are obtainable. On the other hand, such techniques may not 

genuinely reflect risk results in situations where a lack of data exists or the 

information available consists of a high level of uncertainty. Therefore, it is essential 

for a study of safe operation in an offshore operation system such as an MODU, to 

enable the addressing of higher-risk areas where data are scarce. In risk assessment, 

the issue of uncertainty management is a most important concern. However, the 

causes of uncertainty are diverse. Thus, regardless of what methodology is to be 

applied, it is always dependent upon expert judgements to manage such adverse 

effects. In other words, the deficiencies of risk modelling resulting from the lack of 
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information or a high level of uncertainty must be made up by means of the general 

evaluation capacity of experts who are able to understand the essence of the system, 

even if it is vague and unclear. For that reason, the knowledge of experts consulted is 

very important, since the basis of such uncertainty treatment is the professional 

judgements of such personnel. 

The risk assessment frameworks proposed based on Fuzzy set theory in this study are 

capable of handling imprecise, ambiguous and qualitative information from experts 

in a consistent manner. These can be observed as reliable reasoning processes 

capable of quantifying the judgements from experts who express their opinions 

qualitatively. In addition, the linguistic terms employed in assessments are developed 

by consensus. Such harmonious assessments with regard to linguistic terms provide 

compatibility throughout the risk assessment process. 

Following the identification of the research needs, this PhD study has developed 

analytical models capable of performing risk assessment with confidence under the 

said circumstances. Such frameworks have been demonstrated by three 

corresponding test cases with regard to the safe operation of an MODU. The 

frameworks have been developed in a generic sense to be applicable to deal with 

both technical and managerial problems. They provide the basis for the generation of 

the various risk analysis methods and decision-making processes. These methods and 

techniques can be summarised as follows: 

 Using an object-oriented approach to deal with the complexity of MODUs and to 

provide a hierarchical structure of risk assessment, and using a framework of 

aggregative risk assessment to represent the relationships of components, 

subsystems and the overall MODU. 

 Applying Fuzzy-AHP to evaluate and rank the risks of the HGs and their 

subsystems with regard to their capacity to the failure of the MODU. 

 Employing Fuzzy FTA to identify critical components in an MODU. 

 Employing a BBN to represent the links between unsophisticated available 

information and to foresee the occurrence likelihood of events that may have 

consequences in the operation of the MODU systems.  

 Using Fuzzy TOPSIS to select the best RCO for an MODU operation system. 
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Different mathematical theories are combined for assessing the risk frameworks in 

Chapter 4. Fuzzy set theory is used to represent the characteristics of a hazard such 

as likelihood of occurrence, consequence severity and vulnerability. AHP is used to 

rank the risks together with the hierarchical structure to obtain the weight factor to 

estimate the risk associated with each equipment/component, subsystem and the 

overall MODU. Risk analysts can use this information to compare risk levels of 

components and subsystems that contribute to the final aggregated risk. By 

considering the risk value and weight of each component/equipment and subsystem, 

the most critical subsystem can be identified. Offshore drilling failure is selected as 

the most critical HG for further investigation. The next step is to apply Fuzzy FTA to 

identify the most important MCSs of the most critical subsystem of the Drilling 

system. 

In the absence of precise data, it is necessary to work with subjective probabilities. 

Under these conditions, it is inappropriate to use conventional FTA. Therefore, 

Fuzzy FTA is proposed to capture the subjectivity. The results of Fuzzy FTA are the 

likelihood of occurrence of specific hazards and importance measures of potential 

contributing factors. Application of Fuzzy FTA in Chapter 5 shows that it is useful to 

identify critical MCSs for a specific risk ranking. 

BBNs are increasingly used to model complex domains for which knowledge and 

data are uncertain. The proposed methodology uses the BBN technique to express the 

causal relationships between variables and to combine the evidence from different 

sources for a QRA of offshore systems. The BBN is used to represent the links 

between unsophisticated available information and to foresee the occurrence 

likelihood of events that may have consequences in the operation of the MODU 

systems. The methodology presented uses a hierarchical model to describe 

dependencies among the systems or components. The reasons for choosing graphical 

BBN models are their capability of establishing relationships between hazardous 

events and capacity to show cause and effect relationships of the events by their 

directional capability. BBNs have a strong similarity to FTA in many respects. FTA 

is an effective method in probabilistic failure assessment but is limited to modelling 

simple static systems. The distinct advantages of BBNs are their capability to 

explicitly represent the dependencies among the events, their updating probabilities, 
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their flexible structure compared to FTA, and that they are suitable for a 

comprehensive range of risk assessment and analysis as well as offshore operation 

systems. Such a technique is also capable of dealing with conditional probability 

problems. 

The results of Chapter 4, Chapter 5 and Chapter 6 can help the analyst to select 

RCOs for mitigating risk of the most critical subsystem and the overall MODU. 

However, it is not financially possible to select all the proposed RCOs. Therefore, 

MADM by using Fuzzy TOPSIS is tailored to select the best RCO from a finite 

number of RCOs. When dealing with RCO ranking/selecting, decision data available 

for MADM are usually Fuzzy, crisp, or a combination of the two. Fuzzy TOPSIS is 

proposed to handle both Fuzzy and crisp data. When evaluating RCOs (i.e. Eng-

RCO, Equip-RCO and Regul-RCO) for enhancing the safe performance of an 

MODU, there are many parameters that need to be considered. On the basis of the 

test case in Chapter 7 involving the elements of CS, AS, EN and RE, it is reasonable 

to judge that the decision-making model developed is capable of handling such 

MADM problems. The proposed method is particularly useful in circumstances 

where multiple experts are involved in a decision-making process. 

Since the case study in this study provides reasonable results, it is felt that the 

analytical models developed have the potential to improve the safe performance of 

the MODUs. Such models can be applied individually by the offshore industry, 

particularly in circumstances where a lack of data exists or the data for use are 

associated with a high level of uncertainty. More importantly, these frameworks can 

be integrated to formulate a platform to facilitate risk assessment of MODU 

operations without jeopardising the efficiency of operations in a variety of situations 

where traditional techniques may not be applied with confidence. 

8.5 Recommendations for further research 

While they go a long way to proactively ensuring offshore operation safety and 

environmental protection at the highest level, it may be beneficial if the novel 

techniques developed in this research could be further applied to facilitate risk 

assessment modelling and decision-making. Since the methodologies proposed in 
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this research are generic in nature, such frameworks can be further verified for risk 

assessment outside the offshore industry. This will provide an added value to the 

promotion of their use in different industries. Any such practical application can thus 

be examined through the exploration of a specific case study of relevance to the 

safety-critical system or component and via the use of the most reliable real-life data 

and competent expert judgements. 

When assessing risks under situations of lack of data, possibly due to the high level 

of costs associated with conducting a full-scale carrying-out of tests, the use of 

computer simulation may be hypothetically useful. It is meaningful to note that some 

computer software enables the data compilation process. 

This PhD research formulates a platform for offshore operation systems such as 

MODUs to improve the risk assessment and risk management of their processes. The 

principal implication of this is that the offshore operation system will have to collect 

data for each component with regard to safe operation based on daily operations with 

the objective of continuous improvement of safe performance and efficiency. 
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Appendices 

Appendix 1 

 

Figure A1: FT model for L3D-O1-01   
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Appendix 2 

Description of drilling equipment and systems: 

 Mechanical system - driven by electric motors  

 hoisting system - used for lifting heavy loads; consists of a mechanical winch 

(drawworks) with a large steel cable spool, a block-and-tackle pulley and a 

receiving storage reel for the cable  

 turntable - part of the drilling apparatus  

  Rotating equipment - used for rotary drilling  

 swivel - large handle that holds the weight of the drill string; allows the string 

to rotate and makes a pressure-tight seal on the hole  

 kelly - four- or six-sided pipe that transfers rotary motion to the turntable and 

drill string  

 turntable or rotary table - drives the rotating motion using power from electric 

motors  

 drill string - consists of drill pipe (connected sections of about 30 ft / 10 m) 

and drill collars (larger diameter, heavier pipe that fits around the drill pipe 

and places weight on the drill bit)  

 drill bit(s) - end of the drill that actually cuts up the rock; comes in many 

shapes and materials (tungsten carbide steel, diamond) that are specialized for 

various drilling tasks and rock formations  

 turntable - The principal component of a rotary, or rotary machine, used to 

turn the drill stem and support the drilling assembly.  

 Top Drive - A mechanical device on a drilling rig that provides rotary torque 

to the drill string to facilitate the process of drilling a borehole. 

 Circulation system - pumps drilling mud (mixture of water, clay, weighting material 

and chemicals, used to lift rock cuttings from the drill bit to the surface) under 

pressure through the kelly, rotary table, drill pipes and drill collars  

 pump - sucks mud from the mud pits and pumps it to the drilling apparatus  

 pipes and hoses - connects pump to drilling apparatus  

 mud-return line - returns mud from hole  

 shale shaker - shaker/sieve that separates rock cuttings from the mud  

http://science.howstuffworks.com/motor.htm
http://science.howstuffworks.com/pulley.htm
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 shale slide - conveys cuttings to the reserve pit  

 reserve pit - collects rock cuttings separated from the mud  

 mud pits - where drilling mud is mixed and recycled  

 mud-mixing hopper - where new mud is mixed and then sent to the mud pits   

 Derrick - support structure that holds the drilling apparatus; tall enough to allow new 

sections of drill pipe to be added to the drilling apparatus as drilling progresses   

 Blowout preventer - high-pressure valves (located under the land rig or on the sea 

floor) that seal the high-pressure drill lines and relieve pressure when necessary to 

prevent a blowout (uncontrolled gush of gas or oil to the surface, often associated 

with fire)  
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Appendix 3 

CPT of nodes containing two states of specified events for different nodes in different levels. 

Table  A3-1: CPT in level 1 of four nodes  L1D containing two states of specified events  

 

Table  A3-2: CPT in level 4 of four nodes L4DO1011 containing two states events  

 

 

Risky 0.200 Risky 0.350 Risky 0.450 1.000 0.000

Risky 0.200 Risky 0.350 Consistant 0.550 0.450

Risky 0.200 Consistant Risky 0.450 0.650 0.350

Risky 0.200 Consistant Consistant 0.200 0.800

Consistant Risky 0.350 Risky 0.450 0.800 0.200

Consistant Risky 0.350 Consistant 0.350 0.650

Consistant Consistant Risky 0.450 0.450 0.550

Consistant Consistant Consistant 0.000 1.000

L2D-N1 L2D-O1 L2D-H1 CPT

Risky 0.249 Risky 0.168 Risky 0.325 Risky 0.259 1.000 0.000

Risky 0.249 Risky 0.168 Risky 0.325 Consistant 0.741 0.259

Risky 0.249 Risky 0.168 Consistant Risky 0.259 0.675 0.325

Risky 0.249 Risky 0.168 Consistant Consistant 0.417 0.583

Risky 0.249 Consistant Risky 0.325 Risky 0.259 0.832 0.168

Risky 0.249 Consistant Risky 0.325 Consistant 0.573 0.427

Risky 0.249 Consistant Consistant Risky 0.259 0.508 0.492

Risky 0.249 Consistant Consistant Consistant 0.249 0.751

Consistant Risky 0.168 Risky 0.325 Risky 0.259 0.751 0.249

Consistant Risky 0.168 Risky 0.325 Consistant 0.492 0.508

Consistant Risky 0.168 Consistant Risky 0.259 0.427 0.573

Consistant Risky 0.168 Consistant Consistant 0.168 0.832

Consistant Consistant Risky 0.325 Risky 0.259 0.583 0.417

Consistant Consistant Risky 0.325 Consistant 0.325 0.675

Consistant Consistant Consistant Risky 0.259 0.259 0.741

Consistant Consistant Consistant Consistant 0.000 1.000

L5D-O1-01-1-4                                                        L5D-O1-01-1-3                                                      L5D-O1-01-1-2                                                        L5D-O1-01-1-1                                                          CPT



A Novel Engineering Framework for Risk                                                                                     Appendices  
Assessment of Mobile Offshore Drilling Units                                                                                                       
 

 
281 

 

Table  A3-3: CPT in level 4 of four nodes L4DO1011 containing two states events  

 

 

 

Risky 0.190 Risky 0.170 Risky 0.230 Risky 0.200 Risky 0.210 1.000 0.000

Risky 0.190 Risky 0.170 Risky 0.230 Risky 0.200 Consistant 0.790 0.210

Risky 0.190 Risky 0.170 Risky 0.230 Consistant Risky 0.210 0.800 0.200

Risky 0.190 Risky 0.170 Risky 0.230 Consistant Consistant 0.590 0.410

Risky 0.190 Risky 0.170 Consistant Risky 0.200 Risky 0.210 0.770 0.230

Risky 0.190 Risky 0.170 Consistant Risky 0.200 Consistant 0.560 0.440

Risky 0.190 Risky 0.170 Consistant Consistant Risky 0.210 0.570 0.430

Risky 0.190 Risky 0.170 Consistant Consistant Consistant 0.360 0.640

Risky 0.190 Consistant Risky 0.230 Risky 0.200 Risky 0.210 0.830 0.170

Risky 0.190 Consistant Risky 0.230 Risky 0.200 Consistant 0.620 0.380

Risky 0.190 Consistant Risky 0.230 Consistant Risky 0.210 0.630 0.370

Risky 0.190 Consistant Risky 0.230 Consistant Consistant 0.420 0.580

Risky 0.190 Consistant Consistant Risky 0.200 Risky 0.210 0.600 0.400

Risky 0.190 Consistant Consistant Risky 0.200 Consistant 0.390 0.610

Risky 0.190 Consistant Consistant Consistant Risky 0.210 0.400 0.600

Risky 0.190 Consistant Consistant Consistant Consistant 0.190 0.810

Consistant Risky 0.170 Risky 0.230 Risky 0.200 Risky 0.210 0.810 0.190

Consistant Risky 0.170 Risky 0.230 Risky 0.200 Consistant 0.600 0.400

Consistant Risky 0.170 Risky 0.230 Consistant Risky 0.210 0.610 0.390

Consistant Risky 0.170 Risky 0.230 Consistant Consistant 0.400 0.600

Consistant Risky 0.170 Consistant Risky 0.200 Risky 0.210 0.580 0.420

Consistant Risky 0.170 Consistant Risky 0.200 Consistant 0.370 0.630

Consistant Risky 0.170 Consistant Consistant Risky 0.210 0.380 0.620

Consistant Risky 0.170 Consistant Consistant Consistant 0.170 0.830

Consistant Consistant Risky 0.230 Risky 0.200 Risky 0.210 0.640 0.360

Consistant Consistant Risky 0.230 Risky 0.200 Consistant 0.430 0.570

Consistant Consistant Risky 0.230 Consistant Risky 0.210 0.440 0.560

Consistant Consistant Risky 0.230 Consistant Consistant 0.230 0.770

Consistant Consistant Consistant Risky 0.200 Risky 0.210 0.410 0.590

Consistant Consistant Consistant Risky 0.200 Consistant 0.200 0.800

Consistant Consistant Consistant Consistant Risky 0.210 0.210 0.790

Consistant Consistant Consistant Consistant Consistant 0.000 1.000

L5D-O1-01-1-4                                                          L5D-O1-01-1-3                                                        L5D-O1-01-1-2                                                      CPTL5D-O1-01-1-1                                                       L4D-O1-01-2                                                         
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Table  A3-4: CPT in level 4 of four nodes L4DO1012 containing two states events  

 

 

 

 

 

 

 

 

 

 

Risky 0.430 Risky 0.150 Risky 0.230 Risky 0.190 1.000 0.000

Risky 0.430 Risky 0.150 Risky 0.230 Consistant 0.810 0.190

Risky 0.430 Risky 0.150 Consistant Risky 0.190 0.770 0.230

Risky 0.430 Risky 0.150 Consistant Consistant 0.580 0.420

Risky 0.430 Consistant Risky 0.230 Risky 0.190 0.850 0.150

Risky 0.430 Consistant Risky 0.230 Consistant 0.660 0.340

Risky 0.430 Consistant Consistant Risky 0.190 0.620 0.380

Risky 0.430 Consistant Consistant Consistant 0.430 0.570

Consistant Risky 0.150 Risky 0.230 Risky 0.190 0.570 0.430

Consistant Risky 0.150 Risky 0.230 Consistant 0.380 0.620

Consistant Risky 0.150 Consistant Risky 0.190 0.340 0.660

Consistant Risky 0.150 Consistant Consistant 0.150 0.850

Consistant Consistant Risky 0.230 Risky 0.190 0.420 0.580

Consistant Consistant Risky 0.230 Consistant 0.230 0.770

Consistant Consistant Consistant Risky 0.190 0.190 0.810

Consistant Consistant Consistant Consistant 0.000 1.000

L5D-O1-01-3-4                                                     L5D-O1-01-2-3                                                        L5D-O1-01-2-2                                                       L5D-O1-01-2-1                                                         CPT
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Table  A3-5: CPT in level 4 of four nodes L4DO1013 containing two states events  

 

Risky 0.102 Risky 0.183 Risky 0.250 Risky 0.330 Risky 0.136 1.000 0.000

Risky 0.102 Risky 0.183 Risky 0.250 Risky 0.330 Consistant 0.864 0.136

Risky 0.102 Risky 0.183 Risky 0.250 Consistant Risky 0.136 0.670 0.330

Risky 0.102 Risky 0.183 Risky 0.250 Consistant Consistant 0.535 0.465

Risky 0.102 Risky 0.183 Consistant Risky 0.330 Risky 0.136 0.750 0.250

Risky 0.102 Risky 0.183 Consistant Risky 0.330 Consistant 0.614 0.386

Risky 0.102 Risky 0.183 Consistant Consistant Risky 0.136 0.420 0.580

Risky 0.102 Risky 0.183 Consistant Consistant Consistant 0.285 0.715

Risky 0.102 Consistant Risky 0.250 Risky 0.330 Risky 0.136 0.817 0.183

Risky 0.102 Consistant Risky 0.250 Risky 0.330 Consistant 0.681 0.319

Risky 0.102 Consistant Risky 0.250 Consistant Risky 0.136 0.488 0.512

Risky 0.102 Consistant Risky 0.250 Consistant Consistant 0.352 0.648

Risky 0.102 Consistant Consistant Risky 0.330 Risky 0.136 0.567 0.433

Risky 0.102 Consistant Consistant Risky 0.330 Consistant 0.431 0.569

Risky 0.102 Consistant Consistant Consistant Risky 0.136 0.237 0.763

Risky 0.102 Consistant Consistant Consistant Consistant 0.102 0.898

Consistant Risky 0.183 Risky 0.250 Risky 0.330 Risky 0.136 0.898 0.102

Consistant Risky 0.183 Risky 0.250 Risky 0.330 Consistant 0.763 0.237

Consistant Risky 0.183 Risky 0.250 Consistant Risky 0.136 0.569 0.431

Consistant Risky 0.183 Risky 0.250 Consistant Consistant 0.433 0.567

Consistant Risky 0.183 Consistant Risky 0.330 Risky 0.136 0.648 0.352

Consistant Risky 0.183 Consistant Risky 0.330 Consistant 0.512 0.488

Consistant Risky 0.183 Consistant Consistant Risky 0.136 0.319 0.681

Consistant Risky 0.183 Consistant Consistant Consistant 0.183 0.817

Consistant Consistant Risky 0.250 Risky 0.330 Risky 0.136 0.715 0.285

Consistant Consistant Risky 0.250 Risky 0.330 Consistant 0.580 0.420

Consistant Consistant Risky 0.250 Consistant Risky 0.136 0.386 0.614

Consistant Consistant Risky 0.250 Consistant Consistant 0.250 0.750

Consistant Consistant Consistant Risky 0.330 Risky 0.136 0.465 0.535

Consistant Consistant Consistant Risky 0.330 Consistant 0.330 0.670

Consistant Consistant Consistant Consistant Risky 0.136 0.136 0.864

Consistant Consistant Consistant Consistant Consistant 0.000 1.000

L5D-O1-01-3-5                                                      L5D-O1-01-3-4                                                         L5D-O1-01-3-3                                                       L5D-O1-01-3-2                                                        CPTL5D-O1-01-3-1                                                         
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Table  A3-6: CPT in level 4 of four nodes L4DO1014 containing two states events  

 

Table  A3-7: CPT in level 3 of four nodes L4DO101 containing two states events  

 

Risky 0.400 Risky 0.350 Risky 0.250 1.000 0.000

Risky 0.400 Risky 0.350 Consistant 0.000 0.750 0.250

Risky 0.400 Consistant 0.000 Risky 0.250 0.650 0.350

Risky 0.400 Consistant 0.000 Consistant 0.000 0.400 0.600

Consistant 0.000 Risky 0.350 Risky 0.250 0.600 0.400

Consistant 0.000 Risky 0.350 Consistant 0.000 0.350 0.650

Consistant 0.000 Consistant 0.000 Risky 0.250 0.250 0.750

Consistant 0.000 Consistant 0.000 Consistant 0.000 0.000 1.000

L5D-O1-01-4-1                                           L5D-O1-01-4-2                                                   L5D-O1-01-4-3                                                          CPT

Risky 0.220 Risky 0.271 Risky 0.170 Risky 0.340 1.000 0.000

Risky 0.220 Risky 0.271 Risky 0.170 Consistant 0.660 0.340

Risky 0.220 Risky 0.271 Consistant Risky 0.340 0.830 0.170

Risky 0.220 Risky 0.271 Consistant Consistant 0.490 0.510

Risky 0.220 Consistant Risky 0.170 Risky 0.340 0.730 0.270

Risky 0.220 Consistant Risky 0.170 Consistant 0.390 0.610

Risky 0.220 Consistant Consistant Risky 0.340 0.560 0.440

Risky 0.220 Consistant Consistant Consistant 0.220 0.780

Consistant Risky 0.271 Risky 0.170 Risky 0.340 0.781 0.219

Consistant Risky 0.271 Risky 0.170 Consistant 0.441 0.559

Consistant Risky 0.271 Consistant Risky 0.340 0.611 0.389

Consistant Risky 0.271 Consistant Consistant 0.271 0.729

Consistant Consistant Risky 0.170 Risky 0.340 0.510 0.490

Consistant Consistant Risky 0.170 Consistant 0.170 0.830

Consistant Consistant Consistant Risky 0.340 0.340 0.660

Consistant Consistant Consistant Consistant 0.000 1.000

L4D-O1-01-1                                                          L4D-O1-01-2                                                         L4D-O1-01-3                                                   CPTL4D-O1-01-4                                                         
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Table  A3-8: CPT in level 2 of four nodes L4D1 containing two states events  

 

 

 

Risky 0.082 Risky 0.368 Risky 0.260 Risky 0.091 Risky 0.199 1.000 0.000

Risky 0.082 Risky 0.368 Risky 0.260 Risky 0.091 Consistant 0.801 0.199

Risky 0.082 Risky 0.368 Risky 0.260 Consistant Risky 0.199 0.909 0.091

Risky 0.082 Risky 0.368 Risky 0.260 Consistant Consistant 0.710 0.290

Risky 0.082 Risky 0.368 Consistant Risky 0.091 Risky 0.199 0.740 0.260

Risky 0.082 Risky 0.368 Consistant Risky 0.091 Consistant 0.541 0.459

Risky 0.082 Risky 0.368 Consistant Consistant Risky 0.199 0.649 0.351

Risky 0.082 Risky 0.368 Consistant Consistant Consistant 0.450 0.550

Risky 0.082 Consistant Risky 0.260 Risky 0.091 Risky 0.199 0.632 0.368

Risky 0.082 Consistant Risky 0.260 Risky 0.091 Consistant 0.433 0.567

Risky 0.082 Consistant Risky 0.260 Consistant Risky 0.199 0.541 0.459

Risky 0.082 Consistant Risky 0.260 Consistant Consistant 0.342 0.658

Risky 0.082 Consistant Consistant Risky 0.091 Risky 0.199 0.372 0.628

Risky 0.082 Consistant Consistant Risky 0.091 Consistant 0.173 0.827

Risky 0.082 Consistant Consistant Consistant Risky 0.199 0.281 0.719

Risky 0.082 Consistant Consistant Consistant Consistant 0.082 0.918

Consistant Risky 0.368 Risky 0.260 Risky 0.091 Risky 0.199 0.918 0.082

Consistant Risky 0.368 Risky 0.260 Risky 0.091 Consistant 0.719 0.281

Consistant Risky 0.368 Risky 0.260 Consistant Risky 0.199 0.827 0.173

Consistant Risky 0.368 Risky 0.260 Consistant Consistant 0.628 0.372

Consistant Risky 0.368 Consistant Risky 0.091 Risky 0.199 0.658 0.342

Consistant Risky 0.368 Consistant Risky 0.091 Consistant 0.459 0.541

Consistant Risky 0.368 Consistant Consistant Risky 0.199 0.567 0.433

Consistant Risky 0.368 Consistant Consistant Consistant 0.368 0.632

Consistant Consistant Risky 0.260 Risky 0.091 Risky 0.199 0.550 0.450

Consistant Consistant Risky 0.260 Risky 0.091 Consistant 0.351 0.649

Consistant Consistant Risky 0.260 Consistant Risky 0.199 0.459 0.541

Consistant Consistant Risky 0.260 Consistant Consistant 0.260 0.740

Consistant Consistant Consistant Risky 0.091 Risky 0.199 0.290 0.710

Consistant Consistant Consistant Risky 0.091 Consistant 0.091 0.909

Consistant Consistant Consistant Consistant Risky 0.199 0.199 0.801

Consistant Consistant Consistant Consistant Consistant 0.000 1.000

L3D-N1-05                                                         L3D-N1-04                                                          L3D-N1-03                                                        L3D-N1-02                                                         CPTL3D-N1-01                                                          
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Table  A3-9: CPT in level 2 of four nodes L4DO1 containing two states events  

 

 

 

 

 

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Risky 0.150 Risky 0.132 Risky 0.140 Risky 0.080 1.000 0.000

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Risky 0.150 Risky 0.132 Risky 0.140 Consistant 0.920 0.080

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Risky 0.150 Risky 0.132 Consistant Risky 0.080 0.860 0.140

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Risky 0.150 Risky 0.132 Consistant Consistant 0.780 0.220

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Risky 0.150 Consistant Risky 0.140 Risky 0.080 0.868 0.132

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Risky 0.150 Consistant Risky 0.140 Consistant 0.788 0.212

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Risky 0.150 Consistant Consistant Risky 0.080 0.728 0.272

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Risky 0.150 Consistant Consistant Consistant 0.648 0.352

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Consistant Risky 0.132 Risky 0.140 Risky 0.080 0.850 0.150

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Consistant Risky 0.132 Risky 0.140 Consistant 0.770 0.230

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Consistant Risky 0.132 Consistant Risky 0.080 0.710 0.290

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Consistant Risky 0.132 Consistant Consistant 0.630 0.370

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Consistant Consistant Risky 0.140 Risky 0.080 0.718 0.282

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Consistant Consistant Risky 0.140 Consistant 0.638 0.362

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Consistant Consistant Consistant Risky 0.080 0.578 0.422

Risky 0.119 Risky 0.089 Risky 0.110 Risky 0.180 Consistant Consistant Consistant Consistant 0.498 0.502

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Risky 0.150 Risky 0.132 Risky 0.140 Risky 0.080 0.820 0.180

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Risky 0.150 Risky 0.132 Risky 0.140 Consistant 0.740 0.260

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Risky 0.150 Risky 0.132 Consistant Risky 0.080 0.680 0.320

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Risky 0.150 Risky 0.132 Consistant Consistant 0.600 0.400

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Risky 0.150 Consistant Risky 0.140 Risky 0.080 0.688 0.312

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Risky 0.150 Consistant Risky 0.140 Consistant 0.608 0.392

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Risky 0.150 Consistant Consistant Risky 0.080 0.548 0.452

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Risky 0.150 Consistant Consistant Consistant 0.468 0.532

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Consistant Risky 0.132 Risky 0.140 Risky 0.080 0.670 0.330

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Consistant Risky 0.132 Risky 0.140 Consistant 0.590 0.410

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Consistant Risky 0.132 Consistant Risky 0.080 0.530 0.470

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Consistant Risky 0.132 Consistant Consistant 0.450 0.550

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Consistant Consistant Risky 0.140 Risky 0.080 0.538 0.462

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Consistant Consistant Risky 0.140 Consistant 0.458 0.542

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Consistant Consistant Consistant Risky 0.080 0.398 0.602

Risky 0.119 Risky 0.089 Risky 0.110 Consistant Consistant Consistant Consistant Consistant 0.318 0.682

L3D-O1-03 L3D-O1-02 L3D-O1-01 L3D-O1-08 L3D-O1-07 L3D-O1-06 L3D-O1-05 L3D-O1-04 CPT


