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ABSTRACT 

Digital Holography and Optical Contouring 

Digital holography is a technique for the recording of holograms via CCD/CMOS devices 

and enables their subsequent numerical reconstruction within computers, thus avoiding the 

photographic processes that are used in optical holography. This thesis investigates the 

various techniques which have been developed for digital holography. It develops and 

successfully demonstrates a number of refinements and additions in order to enhance the 

performance of the method and extend its applicability. The thesis contributes to both the 

experimental and numerical analysis aspects of digital holography.  

Regarding experimental work: the thesis includes a comprehensive review and critique of 

the experimental arrangements used by other workers and actually implements and 

investigates a number of these in order to compare performance. Enhancements to these 

existing methods are proposed, and new methods developed, aimed at addressing some of 

the perceived short-comings of the method. Regarding the experimental aspects, the thesis 

specifically develops: 

• Super-resolution methods, introduced in order to restore the spatial frequencies that 

are lost or degraded during the hologram recording process, a problem which is 

caused by the limited resolution of CCD/CMOS devices. 

• Arrangements for combating problems in digital holography such as: dominance of 

the zero order term, the twin image problem and excessive speckle noise. 

• Fibre-based systems linked to tunable lasers, including a comprehensive analysis of 

the effects of: signal attenuation, noise and laser instability within such systems. 

• Two-source arrangements for contouring, including investigating the limitations on 

achievable accuracy with such systems. 

Regarding the numerical processing, the thesis focuses on three main areas. Firstly, the 

numerical calculation of the Fresnel-Kirchhoff integral, which is of vital importance in 

performing the numerical reconstruction of digital holograms. The Fresnel approximation 

and the convolution approach are the two most common methods used to perform 

numerical reconstruction. The results produced by these two methods for both simulated 

holograms and real holograms, created using our experimental systems, are presented and 

discussed. 

Secondly, the problems of the zero order term, twin image and speckle noise are tackled 

from a numerical processing point of view, complementing the experimental attack on 

these problems. A digital filtering method is proposed for use with reflective macroscopic 

objects, in order to suppress both the zero-order term and the twin image.  

Thirdly, for the two-source contouring technique, the following issues have been discussed 

and thoroughly analysed: the effects of the linear factor, the use of noise reduction filters, 

different phase unwrapping algorithms, the application of the super-resolution method, and 

errors in the illumination angle. Practical 3D measurement of a real object, of known 

geometry, is used as a benchmark for the accuracy improvements achievable via the use of 

these digital signal processing techniques within the numerical reconstruction stage. 

The thesis closes by seeking to draw practical conclusions from both the experimental and 

numerical aspects of the investigation, which it is hoped will be of value to those aiming to 

use digital holography as a metrology tool.  
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1 Introduction 

Optical methods have been used as metrological tools for a long time. They are non-contact, 

non-destructive and can deliver high accuracy. With the combination of computers and other 

electronic devices, they have become faster, more reliable, more convenient and more robust. 

Amongst all the various applications, surface contouring is one of great interest. In industry, 

there is a need for accurate measurement of three-dimensional (3D) shape of objects to speed 

up product development and ensure manufacturing quality. Meanwhile in the medical field, 

knowledge of the 3D shape and other biological features of the suspected objects are helping 

doctors to make correct diagnoses, choose appropriate treatments and to effectively evaluate 

such treatments. 

 

In this chapter, an overview of 3D shape measurement is initially presented. Then the 

conception and the development of holography as important tools to fulfil the task of 3D 

shape measurement are presented. The disadvantages and limitations of this technology are 

introduced later in the thesis. The objective, contribution and structure of the thesis are 

described in the last section of this chapter. 

1.1 An overview of 3D shape measurement using optical 

methods 

Various optical techniques have been developed for measuring 3D shape from a single 

position (Tiziani, 1997, Chen et al., 2000). These are summarized in Fig. 1.1. As the name 

suggests, the time-of-flight technique measures the flight time of a pulse from a laser or 

other light source to an object and back. The flight time of two pulses, one of which is 

reflected from the surface of the object to the receiving sensor and another passing through 

an optical fibre, are measured and compared to determine the distance. The typical 

resolution of this technique is approximately 1mm. Although with improvements in the 

equipment, the resolution can be better than 30µm at a stand off distance of 1m. Another 

similar technique is called light-in-flight holography. Either short temporal coherence light 

or a very short light pulse is used to generate a motion image of a propagating optical 

wavefront. The depth resolution may reach 6.5µm (Nilsson and Carlsson, 1998). 
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Fig. 1.1 Optical methods for 3-D measurements (redrawn from (Tiziani, 1997)) 

 

The active triangulation technique is a powerful tool for 3D shape measurement. A laser spot 

is projected on the surface of the object and is imaged via a Charge Coupled Device (CCD) 

or a Position Sensitive Detector (PSD). The lateral displacement of the spot image is related 

to the depth of the object. Its typical measurement range is 5mm to 250mm, and accuracy is 

about 1 part in 10,000, with a measurement frequency of 40kHz or higher (Ji and Leu, 1989, 

Keferstein and Marxer, 1998). Sensors based on the triangulation principle are suitable for 

inspection and measurement in an industrial environment. However both laser speckle and 

differences in the surface characteristics of the measured object from that of the calibration 

surface, limit the accuracy of the measurements. 

 

Structured light techniques may also be categorized amongst the active triangulation 

methods, as they project either coded light or sinusoidal fringes onto the object. The height 

distribution of the surface of the object is encoded into a deformed fringe pattern, which is 

captured by an image acquisition sensor (Srinivasan et al., 1984). Then shape is directly 

decoded from this recorded image according to the calibrated system parameters. This 

technique is easy to implement in an industrial environment. By use of a computer controlled 

projector and camera, no moving parts have to be used and the full field measurement can be 

done within less than a second. In an optimized structured light projection system, the 

measurement accuracy may achieve 1 part in 20,000. However, the problem of shading, 
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which is inherent to all triangulation techniques, is also a limitation of structured light 

techniques. 

 

Moiré can be traced back over many years as a measurement technique. The key to this 

technique is the moiré effect. When two sinusoidal gratings, i.e. a master grating and a 

reference grating, are superposed with a small angle between the grating lines, a fringe 

pattern of much lower frequency than the individual gratings can be generated and resolved 

by a CCD camera. It is often termed as mechanical interference, because the mathematical 

description of a Moiré pattern is the same as for the interference pattern formed by 

electromagnetic waves. Rapid image acquisition and phase shifting techniques have been 

introduced to Moiré systems to overcome environmental perturbations and to analyze the 

fringe pattern produced (Kujawinska et al., 1991, van Haasteren and Frankena, 1994). The 

typical measurement range of the phase shifting Moiré method is 1mm to 500mm with a 

resolution similar to that of structured light projection at 1/10 to 1/100 of a fringe. 

 

Laser interferometry is probably one of the most commonly used techniques in metrology 

for high-resolution and high-precision measurement. The idea behind interferometric shape 

measurement is that the fringes are formed by variation of the sensitivity matrix that relates 

the geometric shape of an object to the measured optical phase. The matrix contains four 

variables, wavelength, refractive index, and illumination and observation directions. From 

these, three methods are derived. These are the dual or multiple wavelength methods (Haines 

and Hildebrand, 1965), the refractive index change methods (Zelenka and Varner, 1969), and 

the illumination direction variation/two sources methods (Abramson, 1976). The resolution 

of the two-wavelength method depends on the equivalent wavelength (Λ) and the phase 

resolution (Λ/200) which will be discussed later in this thesis. For example, two wavelengths 

of a tunable laser system (0.635µm and 0.633µm) will provide an equivalent wavelength of 

201µm and a resolution of about 1µm. The resolutions of two-refractive-index method and 

two-illumination-source method also depend upon the parameters used in both methods. 

This will be discussed in detail in Chapter 5. Another interferometric measurement 

technique is heterodyne interferometry using a frequency shift. The relative phase increases 

linearly with time and is measured electronically at the beat frequency of the reconstructed 

wavefields. It offers a high spatial resolution and interpolation up to 1/1000 of a fringe. 

However, it usually requires more sophisticated electronic equipment and mechanical 

devices to scan the fringe pattern. 
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There are also other methods for optical 3-D shape measurement, such as laser speckle 

pattern sectioning (Dresel et al., 1992), photogrammetry, laser tracking systems and 

confocal microscopy (Wilson, 1990). The interested readers can find relevant articles in the 

bibliography. 

 

Different methods have been developed to fulfil the requirements of various applications. 

For optically rough surfaces, the Moiré and fringe projection methods are widely used as 

they are less sensitive to environmental effects and can perform fast full field measurements. 

Also their measurement range is much larger than that of interferometry. However, if the size 

of the object is smaller than a few centimetres and the high accuracy is needed, 

interferometry is a more appropriate option. It was a barrier for holography that there was a 

necessary intermediate photographic recording set-up and wet-chemical processing stage. 

But with the advent of digital holography, holography can be performed nearly in real time 

and there is no longer any requirement for this time-consuming photographic process 

involved. 

 

Before specifically describing the application of digital holography to the measurement of 

the surfaces of real objects, the latter part of this chapter will firstly present the background 

of this relatively young technology. 

1.2 The conception and principle of holography 

The word holography is derived from the Greek words, ‘holos’ which means ‘whole’ or 

‘entire’ and ‘graphein’ which means ‘to write’. Holography is a method which records and 

reconstructs not only the irradiance of each point in an image, but also the direction in which 

the wave is propagating at that point. That is what its name means, i.e. a whole record, as 

compared to photography which only records the intensity of the optical wave at each point. 

Before a historical review of holography, it is helpful to know how to record an object by use 

of holographic technology. People often confuse the concepts of photography and 

holography, however, if the different ways that photography and holography work are 

correctly understood, the fundamental difference between them can be easily discerned. 

 

Photography is a process that enables us to record and retain almost any scene perceived by 

the human eyes, which means it records the two dimensional irradiance distribution of an 

image. Each scene includes many reflecting or radiating points of light. The waves from 
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these elementary points all contribute to the object wave. Through the optical lens in the 

camera, this complex object wave is transformed into an image of the object and recorded on 

the photographic emulsion or other imaging devices. 

 

Holography is quite different. It does not record an image of the object wave, but the object 

wave itself. Since all recording media, for example photographic emulsions or photonic 

detectors, only respond to irradiance, it is necessary to convert the phase information of the 

object wave into variations of irradiance. This makes holography an essentially different 

process from that of photography. 

 

 

Fig. 1.2 The basic procedures of holography: (a) hologram recording; (b) hologram 

reconstruction 

 

As Fig. 1.2 shows, holography consists of two procedures: recording and reconstruction. In 

Fig. 1.2(a), a hologram is recorded on a high resolution photographic plate. What is actually 

recorded is the interference pattern formed by the light scattered from the surface of the 

object and a coherent beam which is called the reference wave. Here, the requirement of a 
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coherent beam ensures that the interference pattern is displayed stably in time. The object 

cannot be recognized directly from its hologram, which is encoded in the form of bright and 

dark microscopic fringes. These micro fringes usually are not visible to the human eye, due 

to the high spatial frequencies involved. The hologram is usually recorded on a flat surface, 

but it contains 3D information. When a sufficiently long exposure time has elapsed, 

depending upon the laser power employed and the sensitivity of the film/plate, the 

photographic film is developed by a wet chemical method. 

 

Subsequently the hologram is placed back in the recording geometry as shown in Fig. 1.2(b) 

and it is illuminated with a reference wave similar to the original reference wave that was 

used to record the hologram. A virtual image is then located in the same position that was 

previously occupied by the object. This virtual image, formed by part of the transmitted light, 

exhibits all the normal attributes of perspective and depth of focus that the object would 

exhibit if it were still there. 

 

To illustrate the principle of holography more clearly, the holographic process may be 

described mathematically. Assume that the coordinate system of the hologram plane is the xy 

plane. In the procedure of recording the hologram, the complex amplitude of the object wave 

can be written as 

[ ]),(exp),(),( yxiyxEyxU ooo ϕ=       (1.1) 

where oE  is the real amplitude and oϕ  is the phase of the object wave. Similarly, the 

reference wave can be written as 

[ ]),(exp),(),( yxiyxEyxU rrr ϕ=       (1.2) 

where rE  is the real amplitude and rϕ  is the phase of the reference wave. When both 

waves interfere with each other at the surface of the recording medium, the intensity is given 

by: 

[ ] [ ]
),(),(),(),(),(),(

),(),(),(),(

),(),(),(

22

2

yxUyxUyxUyxUyxUyxU

yxUyxUyxUyxU

yxUyxUyxU

rororo

roro

roh

∗∗

∗

+++=

+⋅+=

+=

  (1.3) 

where ∗  means complex conjugate. The amplitude transmission ),( yxI  of the developed 

photographic plate is proportional to ),( yxU h : 
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),(),( 0 yxUhyxI hβτ+=         (1.4) 

The constant β is dependent on the exposure characteristics of the light sensitive material, τ 

is the exposure time and h0 is the amplitude transmission of the unexposed plate. I(x,y) is 

called the hologram function. From Eq. (1.1), Eq. (1.2), Eq. (1.3), and Eq. (1.4), the 

hologram function can be written as: 

)],(),(),(),([),( 22

0 yxUyxUyxUyxUEEhyxI rororo

∗∗ ++++= βτ   (1.5) 

In the reconstruction process, the hologram function is multiplied by the complex amplitude 

of the original reference wave: 

),(),(),(

),()]([),(),(

22

22

0

yxUyxUyxUE

yxUEEhyxIyxU

oror

rror

∗++

++=

βτβτ

βτ
   (1.6) 

The first term on the right hand side of Eq. (1.6) is the undiffracted wave passing through the 

hologram. As the hologram can be regarded as a diffraction grating, this term indicates the 

zero order diffraction term of the hologram. The second term is the reconstructed object 

wave, whose brightness is affected by the real constant 2

rEβτ . This is a virtual image. The 

third term is a distorted real image of the object. For in-line holography, where the axes of 

the object wave and the reference wave are parallel, these three terms superpose together and 

cannot be separated spatially. However in off-axis holography, these three terms are spatially 

separated and may be isolated. 

1.3 The development of optical holography 

The history of holography shows a rapid development of the technology. In the limited space 

of this review chapter, only the major milestones are mentioned here. A more detailed 

introduction can be found in the bibliography (Smith, 1969, Hariharan, 1984). 

 

The first idea of a two-stage imaging process was proposed by Bragg (1939, 1942) in his 

X-ray microscope. In his experiment, an X-ray diffraction pattern of the crystal lattice was 

first recorded photographically. Then the photograph was illuminated by a filtered mercury 

arc lamp to implement the second diffraction process. The core of Bragg’s method is a 

double-diffraction process, which is also the key to the holographic process. It is noted that 

the diffraction field of an object can be represented as a Fourier transform of the light 

distribution at the object and so the first recording is a Fourier transform of the object and the 
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second diffraction is a Fourier transform of the Fourier transform of the object, which is an 

image of the object itself. If all the diffracted information of amplitudes and phase are 

preserved, the diffraction from the hologram will reproduce the object wave. The 

preservation of object phase was realized by the choice of crystals that possess a center of 

symmetry as they are able to produce a diffracted field that would be real. Another 

constriction of this method was the strong magnification differential for the different 

wavelengths, X-ray and visible light, used in each stage respectively. 

 

Dennis Gabor (1948) extended this idea and built the foundation of optical holography when 

he tried to improve the resolution in electron microscopy. He named this new technology 

“holography”. This was a major innovation in the optical imaging field and later he was 

awarded the Nobel Prize for this invention. 

 

 

Fig. 1.3 The diagram of recording an in-line (Gabor) hologram 

 

In the process of what is now called “in-line interferometric holography”, the photographic 

plate was illuminated by a plane wave through a low contrast transparent phase object, 

where the axes of both the object wave and the reference wave were collinear. The reference 

wave was used to interfere with the diffracted object wave, in order to keep the phase 

information of the object wave in an intensity-based interference pattern. Both waves were 

assumed to be mutually coherent. This interference pattern was recorded by photographic 

film in order to generate a hologram and the light diffracted from this hologram during 

reconstruction constituted the second diffraction stage, having the effect of restoring the 

original object wave. When Gabor applied this method to electron microscopy, it failed for 

various reasons. The most serious problem was the twin image in the reconstruction. As the 

photographic plate does not record the absolute phase, two possible objects contribute to the 
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single exposure that generates the hologram. One object is the original object and the other is 

a virtual object located symmetrically behind the hologram. Through reconstruction, the 

diffracted light forms two waves: the original object wave and a “twin” wave caused by the 

virtual object. The reconstructed object wave is so seriously disturbed by the twin wave that 

various researchers worked on resolving this problem (Gabor, 1949, Bragg and Rogers, 1951, 

Gabor, 1951, Baez, 1952). Meanwhile, the strict requirement for electrical and mechanical 

stability and the lack of an intense, coherent source also prevented holography from 

practically reaching the theoretical resolution. 

 

Gabor’s approach and Bragg’s X-ray microscope are similar, however the differences 

between them are extremely significant as well. In Bragg’s microscope, no phase 

information is lost and an exact reconstructed image can be obtained, but the object must be 

symmetrical. In Gabor’s approach, an object which does not have symmetrical structure can 

be handled. But the loss of phase information, though tolerable, leads to the formation of an 

additional conjugate image. 

 

Although some researchers, such as Rogers (1950, 1952) and Kirkpatrick and El-Sum (1956) 

made efforts to significantly extend the theory and conceptual understanding of holography, 

it was not until the early 1960s that significant further progress was made in this field, when 

Leith and Upatnieks (1962, 1963) proposed a new method to completely remove the twin 

conjugate wave. The method is simple and utilises an off-axis reference wave. The 

experimental geometry is shown in Fig. 1.2. From an optical viewpoint, the interference 

between the diffracted object wave and an off-axis reference wave would form a hologram 

with the structure of a diffraction grating. When light is diffracted from this hologram in the 

reconstruction process, it will yield two waves representing the first two orders of the grating. 

In this way, physical separation is achieved and the previously troublesome superposition of 

the twin wave is completely removed. By a simple tilting of the reference wave, dramatic 

improvement is achieved and this started a new era of holographic applications. Another 

advantage of this method is that the film can be processed with a reduced requirement for a 

linear transfer of exposure to amplitude transmission. It also has the ability to eliminate the 

self-interference effects between different points of the object. Finally, it removes the 

restrictions against the use of objects which do not transmit a large proportion of light. 

 

Even though a number of advantages were provided by this new method, the real potential of 

research in the holographic field was not realised until another two important advances 
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emerged. In the early 1960s, the advent of the gas laser, which is a highly coherent source, 

with strong irradiance, was one of the important advances. It significantly increased the 

resolution of holography and gives the ability to make holograms of very large objects. 

Another advance by Leith and Upatnieks (1964) was diffuse illumination holography. With 

diffuse illumination on the object, this technology has the ability to record holograms of 

diffusely reflecting, 3D objects as compared to the previous technology, which only records 

holograms of very thin transparent objects. Diffuse illumination holography also has the 

capability to superpose multiple holograms on the same holographic plate. This 

phenomenon is very helpful enabling multi-exposure methods in the application of 

holographic interferometry. 

 

Denisyuk (1962) invented the thick reflection hologram for which the images are viewed in 

light that is reflected from the hologram. In this case, which is shown in Fig. 1.4, the beam 

reflected from the object and the reference beam must arrive at the photographic plate from 

opposite sides to record a reflection hologram. This type of hologram has a very good 

wavelength selectivity which allows it to be illuminated by white light to reconstruct the 

images. 

 

 

Fig. 1.4 A simple geometry of recording one-beam reflection hologram 

 

Because of the great potential of holography, it has been applied to many scientific and 

engineering fields. These included high-resolution imaging of aerosols (Thompson et al., 

1967), imaging through diffusing and aberrating media (Leith and Upatnieks, 1966, 

Kogelnik, 1965), multiple imaging (Lu, 1968, Groh, 1968), computer generated holograms 

(Lohmann and Paris, 1967), the production and correction of optical elements (Upatnieks et 

al., 1966), information storage and processing (Stroke et al., 1965, Vander Lugt et al., 1965), 
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etc. Among these, holographic interferometry (HI) is a major application of holography, 

which was discovered almost simultaneously by several groups, all working independently 

(Brooks et al., 1965, Burch, 1965, Collier et al., 1965, Haines and Hildebrand, 1965, Powell 

and Stetson, 1965). It became possible, for the first time, to map the displacements of a 

relatively rough surface with an accuracy of a fraction of a micrometre (Amadesi et al., 

1974); it was also possible to make interferometric comparisons of stored wavefronts that 

existed at different times. 

 

The explosive growth of optical holography since the advent of the laser in the 1960’s was 

restricted with the beginning of the digital era in the late 1990s. Conventional optical 

holography uses photographic film as the recording medium which cannot be processed in 

real-time. The wet chemical procedure also adds complexity to the applications of 

holography. From 1994, a new type of holography, digital holography emerged and is 

becoming an increasingly active field for optical researchers. 

1.4 The development of digital holography 

Before Leith and Upatnieks proposed off-axis holography, Rogers reasoned that the 

interference pattern of an on-axis hologram could be calculated analytically for some simple 

objects, for example a wire. He fabricated the holograms and reconstructed the images. But 

this method could go no further until the computing power was dramatically increased and 

the fast Fourier transform (FFT) algorithm was invented. Brown and Lohmann (1966) were 

successful in using detour phase
1

 and the FFT algorithm to create binary 

computer-generated holograms. Afterwards the computer-generated holograms were 

transferred to a transparency by a plotting or printing device and they were then optically 

reconstructed. This offers a great advantage in that the hologram of an object can be created 

accurately; even it never existed in the physical world. Limitations of the method include the 

feasibility of creating the object mathematically in the first place, the acceptable duration for 

the calculations involved, and the performance of the device used to transfer the numerical 

hologram to a suitable transparent medium. This technology is not discussed in this thesis. 

For a more detailed description and discussion, please read the papers in the bibliography 

(Lee, 1978, Bryngdahl and Wyrowski, 1990). 

                                                        
1 While the path difference for wavelets from adjacent slits of a perfect grating in the first diffraction order is exactly one 

wavelength, the path length difference for wavelets from a dislocated slit and its neighbour will be greater or less than one 

wavelength. The deviation from an integral wavelength is called “detour phase”, which forms the basis for encoding the 

phase in computer-generated holograms. 
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The development of computer technology made possible not only the digital recording 

process in the computer but also the numerical reconstruction process as well. The idea of 

numerical reconstruction was proposed by Goodman and Lawrence (1967) and by Kronrod 

et al. (1972). A hologram on a photographic plate is optically enlarged and sampled and then 

this digitized hologram is reconstructed numerically. Other researchers improved the 

reconstruction algorithm and applied it to various fields, for example particle measurement 

(Onural and Scott, 1987, Liu and Scott, 1987, Onural and Ozgen, 1992), shape measurement 

(Ma et al., 2004) and microscopy (Haddad et al., 1992). 

 

In 1993, Schnars and Juptner (1993) used a CCD camera to record a hologram and 

performed numerical reconstruction in order to reconstruct this digital hologram. This 

represents a significant step in bringing new life to holography. It was named “direct 

holography” originally, but later the term “digital holography” was widely accepted by the 

optical metrology community for this method. It is a method that moves directly from optical 

recording to numerical processing. There is no need for a holographic plate or other 

chemical media so no wet chemical processing involved, which offers the potential of 

real-time applications. So far it has been successfully applied to deformation analysis 

(Pedrini et al., 2003), shape measurement (Yamaguchi et al., 2006), microscopy (Cuche et al., 

1999), particle distribution measurement (Koek et al., 2005), light-in-flight holography and 

other short-coherence-length applications (Nilsson and Carlsson, 1998), comparative digital 

holography (Osten et al., 2002), holographic optical tweezers (Reicherter et al., 2006) and 

encryption of information (Meng et al., 2005), etc. A detailed introduction and discussion for 

the definition and applications of this method can be found in the bibliography (Schnars and 

Juptner, 2005). 

 

A clear path of development has been shown above for holography, from its birth to the 

situation today. With the introduction of developments in electronics technology, holography 

has been given a new lease of life since the end of the last century. Digital holography or 

electronic holography adds some exciting new features to traditional optical science. It 

allows the simulation of experiments in a computer and even the ability to perform scenarios 

that cannot be realised by real experimentation. For the first time, phase information can be 

obtained directly, which is a significant contribution to optics. 
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1.5 Some problems in digital holography 

Although digital holography has some significant advantages over conventional optical 

holography, there are some important restrictions on this new technique. 

1.5.1 The spatial frequency requirements 

In digital holography, a CCD/CMOS camera is used as the recording medium to take the 

place of the high-resolution photographic film or plates used in optical holography. The 

interference pattern generated by the superposition of the reference wave and the wave from 

the object points has to be resolved in order to restore the intensity and phase information of 

the object. The maximum spatial frequency that can be resolved is determined by the 

maximum angle maxθ  between these waves: 

2
sin

2 max
max

θ
λ

=f         (1.7) 

Photographic emulsions used in optical holography have resolutions of up to 5000 line pairs 

per millimetre (Lp/mm). Using these materials, holograms with angles of up to 180° between 

the reference wave and the object wave can be recorded. To obtain good reconstructed image 

quality and measurement accuracy, each micro fringe in the hologram must be represented 

by at least two pixels. Then the corresponding maximum resolvable spatial frequency is 

calculated by: 

x
f

∆
=

2

1
max          (1.8) 

However, the distance between neighbouring pixels of a high resolution CCD camera is only 

in the order of mx µ5≈∆ . According to Eq. (1.8), the maximum resolvable spatial 

frequency of a CCD camera is about 100 Lp/mm. Combining Eq. (1.7) and (1.8) leads to 

xx ∆
≈








∆

=
24

arcsin2max

λλ
θ       (1.9) 

where the approximation is valid for small angles. Therefore the distance between 

neighbouring pixels is the quantity, which limits the maximum angle between reference and 

object wave. For the camera which has been used in the experiments described in the latter 

chapters (ProgRes
®

 MF
scan

, manufactured by JENOPTIK AG), its pixel size is 6.45µm and 
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the maximum angle between the reference wave and the object wave should be less than 

2.81°. For off-axis holography, half of the full resolution of the hologram is occupied by the 

twin image, which means the valid resolution for the off-axis hologram is only half of the 

result in Eq. (1.9). 

 

The limited resolution of the CCD device restricts digital holography being applied to large 

objects or small objects that are very close to the CCD device. In digital holography, both the 

size of the object and the distance of the object to the CCD have to be carefully chosen to 

ensure the validity of the experimental results. A lot of effort has been made to increase the 

resolution of digital holography. In the latter part of this thesis, these issues will be discussed 

in detail. 

1.5.2 The algorithm for numerical reconstruction 

Fresnel-Kirchoff integral is used to describe the diffraction of a light wave at an aperture 

which is mounted perpendicular to the incoming beam. In the case of holography, the 

hologram is the aperture. The numerical calculation of the Fresnel-Kirchhoff integral is of 

vital importance in performing the numerical reconstruction of the digital hologram. There 

are some algorithms available to realise this process, but different algorithms vary in the 

quality of the reconstructed image. 

1.5.3 The suppression of the zero-order term and twin image 

The CCD/CMOS only records the intensity of the interference pattern, as the photographic 

film does in optical holography. Similarly to what was illustrated in section 1.3, after 

numerical reconstruction in the computer, it will be the case that the zero-order term and the 

twin image also exist together with the desired image. Due to the limited resolution and 

dynamic range of CCD sensors, the zero-order term and the twin image will severely affect 

the quality of the reconstructed object image. They must be suppressed in order to gain 

useful results from digital holography. 

1.6 Objective of this thesis 

The objective of this thesis is to explore the feasibility of digital holography and apply it to 

the specific application of optical contouring of macroscopic objects. 
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1.7 Contributions of this thesis 

� Investigated the algorithms for performing numerical reconstruction, especially the 

Fresnel approximation and convolution approach, and successfully applied them to both 

simulated ideal holograms and real holograms obtained from the optical system. 

� Comprehensively investigated the methods to suppress the zero-order term and the twin 

image; made the comparisons with different methods to find out the suitable solution for 

the objective of this thesis; pointed out the benefits and limitations of each method; 

proposed a digital filtering method to suppress the zero-order term and the twin image of 

the holograms of the diffusely reflective object. 

� Explored the methods to enhance the reconstruction results of the digital holograms, 

including optimising the intensity ratio of the object illumination wave and the reference 

wave, the reduction of speckle noise and the improvement of the resolution of the 

reconstruction results; presented a method to get the suitable intensity ratio between the 

object wave and the reference wave; successfully applied a super resolution (SR) image 

reconstruction technique to digital holography in order to suppress the aliasing effect 

caused by the insufficient resolution of the CCD device. 

� Performed optical contouring of 3D objects via the two-source technique and 

two-wavelength technique; analysed every aspect of performing two-source contouring 

technique based on digital holography in detail; applied SR technique to two-source 

contouring, and achieved larger measurement range than that without using SR 

technique; proved the feasibility of the application of SR technique in phase 

measurement of digital holographic interferometry. 

� Proposed the use of two-source contouring of an object of accurately known dimensions 

as a numerical metric to evaluate the effects of different processing techniques used in 

digital holography. 

1.8 The structure of this thesis 

In Chapter 1 of this thesis, the background of the techniques for shape measurement is given. 

Among the various techniques, digital holography is a new branch that is full of potential in 

this field. A historical review of holography has shown the roots of holography itself and the 

subsequent development of digital holography. The problems to be investigated in this thesis 

have been proposed. Also the objectives and contributions of this work have been presented. 

 



Chapter 1 Introduction 

16 

In Chapter 2, the different algorithms for the numerical reconstruction of digital holograms 

are discussed. Results based on these algorithms are presented and analysed. Comparisons 

of the different algorithms are also presented. 

 

In Chapter 3, available techniques to suppress the zero-order term and twin image are 

described. The results of simulations and experiments are shown in this chapter. Analyses of 

these methods and comparisons between the methods are presented in detail. 

 

In Chapter 4, the factors which affect the quality of the reconstructed images are discussed 

and optimized, including approaches to overcoming the restriction of the relatively low 

CCD sampling rate. A new type of camera is used to generate ultra high resolution images, 

i.e. super images, to increase the resolution of the digital hologram and these “super 

resolution” methods are analysed in detail. 

 

In Chapter 5, digital holography has applied to the shape measurement of macroscopic 

objects. The problems involved with real measurements are revealed and solutions are 

proposed. The experimental results for some real objects are shown. 

 

In Chapter 6, the conclusions from this thesis are presented. Some suggestions on future 

work in the area of digital holography are presented. 
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2 Numerical Reconstruction in Digital 

Holography 

2.1 General principle of digital holography 

Digital holography became feasible with the emergence of high resolution CCD/CMOS 

devices and the increasing availability of affordable high speed computing. The basic 

principle of digital holography is the same as in conventional holography, which was 

discussed in Chapter 1. It also consists of two procedures: a recording stage and a 

reconstruction stage. However in digital holography, the process of recording the hologram 

uses a CCD/CMOS camera, replacing photographic film as the recording medium. The 

parameter h0 in Eq. (1.4) can be neglected for a CCD/CMOS camera. The CCD/CMOS 

camera transfers the captured image to the computer connected to and this image is saved 

digitally as a digital hologram. In the process of reconstruction, this hologram is digitally 

accessed and numerically reconstructed by a virtual reference wave which effectively 

simulates the reference wave used in the process of recording. As the reconstruction 

procedure is performed in the computer, its speed only depends upon the implementation 

of the numerical reconstruction algorithm and the speed of the computer processing. 

 

Because the reference wave has to be generated virtually in the computer, a plane wave or 

a spherical wave is usually used in the recording process, for the sake of simplicity and 

accuracy. The object is either transparent or a 3D body with a diffusely reflecting surface, 

which is at a certain distance from the CCD/CMOS device. Fig. 2.1 shows the typical 

set-up of digital holography. 

 

A hologram can be looked upon as an aperture, and the reconstructed images are the results 

of diffraction of the reference wave by this aperture. Huygen’s principle illustrates that 

every point of a wavefront can be considered as a source point for secondary spherical 

waves. The wavefront at any other place is the coherent superposition of these secondary 

waves. Suppose the coordinate system is as shown as in Fig. 2.2(a), then the diffraction by 

the aperture or hologram in the distance of d along the propagation direction of the wave 

can be quantitatively described by Fresnel-Kirchhoff integral (Schnars and Juptner, 2005): 
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In Eq. (2.1), ),( yxA  is the complex amplitude in the plane of the aperture. λ is the 

wavelength used in the diffraction. ),( ηξ ′′Γ  is the diffracted field in the observation plane. 

ρ′  represents the Euclidean distance between a point in the aperture plane and a point in 

the observation plane which can be calculated by Eq. (2.2). Q stands for the inclination 

factor which depends on the angles θ and θ ′  according to Eq. (2.3). θ is the angle 

between the incident ray from the source and the unit vector n
v

 perpendicular to the 

aperture plane, and θ ′  is the angle between the diffracted ray and n
v

, see Fig. 2.2(b). 

Fig. 2.1 Principle of digital holography: (a) recording; (b) reconstruction with reference wave; (c) 

reconstruction with conjugate reference wave; (d) reconstruction of the virtual image 
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Some authors (see for example Goodman, 2005) use a “+” sign in the argument of the 

exponential function in Eq. (2.1) instead of the “-” sign used here. Which is appropriate 

depends on the mathematical description of the optical wave which can be defined as either 

( )ϕi+exp  or ( )ϕi−exp . However, using the “+” sign in Eq. (2.1) leads to the same 

expressions for all measurable quantities, as e.g. the intensity and the magnitude of the 

interference phase used in digital holographic interferometry. 

 

 

Fig. 2.2 Illustrations for diffraction: (a) coordinate system; (b) angles in inclination factor Q 

 

 

Fig. 2.3 Coordinate system for numerical hologram reconstruction 

 

The formulation above covers the conventions in the case of classical diffraction within an 

aperture. In the case of digital holography, the coordinate system is quite similar to Fig. 

2.2(a) but with a different meaning. For the sake of clarity, the coordinate system for 

numerical reconstruction is shown in Fig. 2.3. The inclination factor Q is set to 1 because 

the angles θ  and θ ′  are approximately zero in practical digital holography – a 
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consequence of the relatively low resolution of the detector. This is valid for all numerical 

reconstruction algorithms in this thesis. 

 

If the reference wave is set up to be nominally normally incident to the hologram, then the 

diffracted light is approximated by the Fresnel-Kirchhoff integral as 
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where ),( yxUh  is the digital hologram captured by the CCD camera; λ  is the 

wavelength of the light in the virtual reference beam used in the reconstruction; ρ′  is the 

distance between a point in the hologram plane and a point in the reconstruction plane 

which has the same form as Eq. (2.2); ),( yxU r  is the function describing the reference 

wave. For a uniform plane reference wave, it has real amplitude with the simple equation: 

rrr aiayxU =+= 0),(         (2.5) 

For a spherical reference wave whose point source is at the original point of the object 

plane, it can be described as: 
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In Eq. (2.4), ( )ηξ ′′Γ ,  is the diffraction pattern calculated at a distance d behind the CCD 

plane (see Fig. 2.3) which means it reconstructs the complex amplitude in the plane of the 

real image. Therefore, both the intensity and the phase information can be obtained after 

numerical reconstruction. However, in optical reconstruction, only the intensity is visible. 

So this new facility potentially sheds new light in many applications of holography. The 

reconstructed intensity is written as: 

( ) 2
,),( ηξηξ ′′Γ=′′I         (2.7) 

And the reconstructed phase is: 
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where Re denotes the real part and Im denotes the imaginary part. Please notice here the 

calculated diffraction pattern is the complex amplitude at a distance d behind the CCD 

plane where the real image is reconstructed. 

 

However as was mentioned in section 1.2 the real image could be distorted by the 

reference wave (see Eq. (1.6)). To avoid this effect and ensure that an undistorted real 

image are left, a conjugate reference wave has to be introduced in the reconstruction as 

shown in Fig. 2.1(c). Contrary to the situation depicted in Fig. 2.1(b), an undistorted real 

image swaps with the virtual image and is located at the position where the object was 

recorded. Then the calculated diffraction pattern is rewritten as: 
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with 

( ) ( ) 222
dyx +−+−= ηξρ

       (2.10) 

where ),( yxU r

∗
 is conjugate to the original reference wave ),( yxU r . But for the plane 

reference wave defined in Eq. (2.5), both results from Eq. (2.4) and Eq. (2.9) are equivalent 

because ),(),( yxUyxU rr

∗= . 

 

The virtual image can be reconstructed by adding a numerical lens in the process of 

numerical reconstruction. The simplest scheme is shown in Fig. 2.1(d) where the numerical 

lens is located directly behind the hologram. The introduced lens functions as an eyepiece 

for the observer, viewing the optical reconstruction. Suppose the lens has a focal length of f, 

the imaging formula of the lens is: 

( )







+= 22exp),( yx

f
iyxL
λ
π

       (2.11) 

To keep the magnification to 1, 2df =  is usually used in Eq. (2.11). The phase 

aberrations caused by the introduced lens should be corrected to avoid phase errors in the 

reconstructed image. The phase correction factor is described as: 
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According to Eq. (2.4), Eq. (2.11), and Eq. (2.12), the full equation for virtual image 

reconstruction through a numerical lens of focal length f is: 
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This combination of conventional holography and electronic devices allows holograms to 

be taken and reconstructed in near real time. With the use of CCD/CMOS cameras, the 

hologram can be recorded directly and stored digitally. No wet-chemical or other 

time-consuming processes are required. Numerical reconstruction also offers greater 

flexibility than optical processing. Without using the phase shifting methods, the phases of 

the stored light waves can be calculated directly from the digital holograms under 

numerical reconstruction, as shown in Eq. (2.8). Also other optical metrology methods, for 

example, shearography, can be derived numerically from digital holography (Schnars and 

Juptner, 1994). In the next section, the numerical methods used to calculate the diffracted 

field, which is the key element in digital holography, will be discussed in detail. 

2.2 Numerical reconstruction of digital holograms 

As illustrated above, Eq. (2.9) is the key formula of digital holography and it is essential to 

calculate it numerically to perform numerical reconstruction of a digital hologram. The 

direct approach of Eq. (2.9) is not feasible in terms of the calculation complexity and 

computer run time. Some approximations have to be applied in order to calculate the 

quadrature of this double integral to make the numerical reconstruction effective and 

efficient. According to the approximation used in the algorithm, the numerical 

reconstruction can be classified into three types: Fresnel approximation, convolution 

approaches, and other numerical methods. 

2.2.1 Reconstruction by the Fresnel approximation 

In digital holography, the values of the coordinates x and y as well as ξ and η, are very 

small compared to the distance d between the reconstruction plane and the CCD/CMOS 

device. If now the right hand side of Eq. (2.10) is expanded to a Taylor series and the 

fourth term is smaller than the wavelength, 
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the effect of it and the terms after it are negligible and they can be removed. Thus the 

distance ρ can be approximated as: 

d
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)( 22 −
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−
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ηξ
ρ        (2.15) 

Replacing the denominator in Eq. (2.9) with d and inserting Eq. (2.15) into it, the following 

expression results in the reconstruction of the real image: 
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This equation is known as the Fresnel approximation or Fresnel transformation due to its 

mathematical similarity with the Fourier transform. 

 

Similarly to Eq. (2.7) and Eq. (2.8), the intensity is calculated by squaring: 

2
),(),( ηξηξ Γ=I         (2.17) 

And the phase is calculated by 

)],(Re[
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arctan),(
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ηξϕ
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Γ
=        (2.18) 

 

To convert the Fresnel approximation in Eq. (2.16) to a digital implementation, two 

substitutions are applied (Yaroslavsky and Merzlyakov, 1980): 

dλ
ξ

ν = ;  
dλ
η

µ =         (2.19) 

Therefore Eq. (2.16) turns into: 
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This shows that the Fresnel approximation is equal to the multiplication of a spherical 

phase factor and the inverse Fourier transformation of the function 

])()(exp[),(),( 22 dyxiyxUyxU hr λπ +−∗
. 

 

Suppose that there is a rectangular raster of N×N points with steps ∆x and ∆y along the 

coordinate axes. ∆x and ∆y are the spacings of two adjacent pixels on the CCD/CMOS 

device in the horizontal and vertical directions, respectively. The calculated diffraction 

function ),( µνΓ  is sampled with this raster so that the infinite integral in Eq. (2.20) is 

converted to finite sums, as given by: 
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for 1,...,1,0 −= Nm ; 1,...,1,0 −= Nn . 

(2.21) 

Because the maximum frequency is determined by the sampling interval in the spatial 

domain according to the theory of the Fourier transform, 

xN ∆=∆= 1max νν ; yN ∆=∆= 1max µµ      (2.22) 

The relationships among ∆x, ∆y, ∆ν and ∆µ are: 

xN∆
=∆

1
ν ; 

yN∆
=∆

1
µ         (2.23) 

With Eq. (2.23), Eq. (2.21) can be rewritten as: 
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Eq. (2.24) is known as the discrete Fresnel transform. The matrix Γ is calculated by 

applying an inverse discrete Fourier transform to the product of ),( lkU r

∗
 with ),( lkUh  

and ])()(exp[ 2222 dylxki λπ ∆+∆− . The calculation can be done very effectively using the 

Fast Fourier Transform (FFT) algorithm. If only the intensity according to Eq. (2.17) is of 

interest, the factor in front of the sum only affects the overall phase and can be neglected. 

If the wavelength does not change in multiple exposures, this factor can also be removed 

when calculating the phase differences between holograms. 

 

From Eq. (2.19) and Eq. (2.23), the sizes of the reconstructed pixels, ∆ξ and ∆η, are 

different from the sampled pixel in the hologram, ∆x and ∆y. The relationship between 

them is given as: 
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Through a similar process, the corresponding discrete formula for reconstruction via a 

virtual lens with focal length 2df =  is: 
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for 1,...,1,0 −= Nm ; 1,...,1,0 −= Nn  

(2.26) 

Some examples both via computer simulation and experiment can now be given to 

demonstrate the process of numerical reconstruction by the Fresnel approximation. 

 



Chapter 2 Numerical Reconstruction in Digital Holography 

31 

A simulation is shown in Fig. 2.4. The original object, a letter “F”, is shown in Fig. 2.4(a). 

Random phase is applied to this object. The hologram is generated by the interference 

between the diffraction field of this object on the hologram plane and a plane reference 

wave normally incident to the hologram plane. The wavelength in the simulation is 

632.8nm. The distance between the object plane and the hologram plane is set at 1m. The 

hologram plane is an array of 512×512 pixels with a pixel spacing of mmyx 01.0=∆=∆ . 

According to these parameters and Eq. (2.25), the object plane is sampled by 

mm124.0=∆=∆ ηξ . The plane reference wave is described as in Eq. (2.5). There are two 

ways to calculate the diffraction field of the object numerically. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.4 Simulation results of numerical reconstruction by Fresnel approximation: (a) the 2D 

object used to generate the hologram; (b) the hologram generated by direct approach in Eq. (2.27); 

(c) the hologram generated by approximation in Eq. (2.29). 
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(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Fig. 2.4 (Continued) (d) the reconstructed real image from (b); (e) the reconstructed real image 

from (c); (f) the reconstructed phase image from (b); (g) the reconstructed phase image from (c); 

(h) the reconstrcted virtual image from (b) by using a virtual lens; (i) the reconstrcted virtual 

image from (c) by using a virtual lens. 

 

The first method is known as the direct approach. As the optical system is a linear invariant 

system, the object can be decomposed to many point sources, each with different intensity 
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and phase, according to the definition of the object. The diffraction field of the object is the 

sum of the diffraction fields of those point sources in the hologram plane, according to 

Huygens’ Principle in section 2.1. Therefore the direct approach to calculate the diffraction 

field of the object is derived by Eq. (2.1): 
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for 1,...,1,0 −= Nm ; 1,...,1,0 −= Nn . 

(2.27) 

( ) ( ) 222
dlynkxm +∆−∆+∆−∆= ηξρ     (2.28) 

The coordinate system is as shown in Fig. 2.3. ( )ηξ ∆∆ lkUo ,  is the complex amplitude of 

the object in the object plane; ( )ynxmUo ∆∆ ,  is the diffraction field of the object in the 

hologram plane; λ is the wavelength in the recording process; d is the distance between the 

object plane and the hologram plane; ∆x and ∆y are the pixel spacings in the hologram 

plane; . ∆ξ and ∆η are the pixel spacings in the object plane. Fig. 2.4(b) shows the 

computer generated hologram produced by this direct approach. 

 

The second method is to employ an approximation of Eq. (2.28) as given by Eq. (2.15). Fig. 

2.4(c) shows the computer generated hologram produced by this approximation. The 

diffraction field of the object then can be calculated by FFT to increase the speed of 

simulation dramatically. The process is written as 

( )[ ]

( )














∆+∆−∆∆ℑ×

∆+∆−







−=∆∆

− 22221

2222

exp),(

exp
2

exp),(

ylxk
d

ilkU

nmdidi
d

i
ynxmU

o

o

λ
π

ηξ

µνπλ
λ
π

λ
 

for 1,...,1,0 −= Nm ; 1,...,1,0 −= Nn . 

(2.29) 

In the reconstructed images in Fig. 2.4(d) and (e), as well as the desired image of the object, 

the twin image is also present on the other side of the picture but it is out of focus. For the 

sake of clarity, the zero-order term has already been suppressed. The methods and benefits 

of doing this zero-order term suppression will be presented and discussed in the next 

chapter. Comparing the results in Fig. 2.4, the reconstruction resulting from the hologram 
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in Fig. 2.4(c), using the approximation of Eq. (2.28), is better than that based on the direct 

method hologram of Fig. 2.4(b). However, it should be noted that Fig. 2.4(c) was obtained 

by applying the same approximation used in the reconstruction of the Fresnel 

approximation. In fact, Fig. 2.4(b) is closer to the real case and the reconstruction results 

bear greater resemblance to those found in experimental practice. This can be verified by 

considering the experimental results presented later. 

 

Now move on to consider an actually experimental case. The optical geometry used to 

record a reflective digital hologram is shown in Fig. 2.5. 

 

 

Fig. 2.5 The optical geometry to record the reflective digital hologram 

 

A typical hologram obtained by this system is displayed in Fig. 2.6(b). The object which 

will be the subject of the hologram is a die with reflective surfaces and dimensions of 

13mm×13mm×13mm as shown in Fig. 2.6(a). It is placed 580mm away from the CCD 

camera. The resolution of the camera is 1360×1024 pixels with a pixel spacing of 

myx µ45.6=∆=∆ . The wavelength of the laser is 632.8nm. Beamsplitter 1 is used to split 

the laser beam into two beams: a reference beam and an object beam to illuminate the die. 

Beamsplitter 2 recombines both beams and directs them to the CCD plane where they 

interfere with each other and so produced the hologram. 

 

Mirror 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Fig. 2.6 Experimental results of numerical reconstruction by Fresnel approximation: (a) the 

object used to make the hologram; (b) the hologram captured by CCD; (c) the reconstructed 

phase image; (d) the reconstructed real image; (e) the reconstructed virtual image produced by 

using a virtual lens; (f) the reconstructed real image with aspect ratio of 1:1; (g) the reconstructed 

virtual image with aspect ratio of 1:1. 
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To display the real image after numerical reconstruction, the zero-order term has been 

suppressed. But its influence can still be seen in the reconstructed intensity images. For 

example in Fig. 2.6(d), the real image is displayed on the left, while the twin image on the 

right is out of focus, and the suppressed zero-order image is in the centre. Fig. 2.6(c) 

displays the reconstructed phase-contrast image of the die. It is not possible to get the 

phase information from this image because the surface roughness of the die is higher than 

the recording wavelength. But for some microscopic applications with tiny smooth objects, 

it is possible to simultaneously obtain the amplitude and phase information in one exposure 

(Cuche et al., 1999). According to Eq. (2.25), the pixel distances in the reconstructed 

image ∆ξ and ∆η are related to the pixel number and pixel distances of the CCD and the 

distance used in the numerical reconstruction. As the camera used in this experiment has 

different numbers of pixels in the ξ and η axes, the pixel distances ∆ξ and ∆η are different, 

which results in the distortion shown in Fig. 2.6(d) and (e). The image of the die does not 

look like the original object shown in Fig. 2.6(a). To remove this distortion from the 

reconstructed images, the hologram in Fig. 2.6(b) is cropped to an array of 1024×1024 thus 

making the pixel distances in both directions equal. The corresponding results are 

displayed in Fig. 2.6(f) and (g). 

 

Fig. 2.7 shows the optical geometry required to record a digital hologram of a transparent 

object. The object is a USAF 1951 chromium positive resolution test target. Several groups 

of bars with different spacings are deposited on a glass plate as shown in Fig. 2.8(a). The 

target was placed 266mm away from the CCD camera. The resolution of the camera was 

1360×1024 pixels, with pixel distances of myx µ45.6=∆=∆ . The wavelength of the laser 

was 632.8nm. Beamsplitter 1 is used to split the laser beam into two beams, the reference 

beam and the object beam to illuminate the resolution test target. Beamsplitter 2 

recombines both beams and directs them to the CCD plane to interfere with each other and 

generate the hologram. 
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Fig. 2.7 The optical geometry to record the transparent digital hologram 

 

 

(a) 

 
(b) 

 
(c) 

Fig. 2.8 Experimental results of numerical reconstruction by Fresnel approximation: (a) the 

resolution test target; (b) the hologram captured by CCD; (c) the reconstructed phase image with 

aspect ratio 1:1. 
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(f) 

 
(g) 

Fig. 2.8 (Continued) (d) the reconstructed real image with aspect ratio of 1:1; (e) the 

reconstructed virtual image with aspect ratio 1:1. 

2.2.2 Reconstruction by the convolution approach 

Besides the Fresnel approximation, another approach is also widely used in digital 

holography to perform numerical reconstruction. This method makes use of the 

convolution theorem. It was first applied to process the numerical reconstruction of 

sub-optical holograms by Demetrakopoulos and Mitta (1974). Later, this approach was 

introduced to digital holography by Kreis and Juptner (1997). 

 

Eq. (2.9) also can be interpreted as a superposition integral: 
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According to Eqs. (2.30) and (2.31), the linear system characterized by 

),(),,,( yxgyxg −−= ηξηξ  is space-invariant. So Eq. (2.30) can be regarded as a 

convolution and the convolution theorem can be applied. The two dimensional convolution 

of two functions ),( yxf  and ),( yxg is defined as: 
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where the ⊗  denotes the convolution operation. The convolution theorem states that the 

Fourier transform of the convolution of two functions is equal to the product of the Fourier 

transforms of the individual functions: 

{ } { } { } ),(),(),(),(),(),( vuGvuFyxgyxfyxgyxf =ℑℑ=⊗ℑ    (2.33) 

In other words, the convolution of two functions in the spatial domain can be easily 

obtained through the multiplication of them in another domain, namely spatial frequency 

domain. 

 

Applying the convolution theorem to Eq. (2.9), it is converted to: 

( ) ( ){ }),(),(),(),( 1 yxgyxUyxU rh ℑ⋅⋅ℑℑ=Γ ∗−ηξ     (2.34) 

Eq. (2.34) includes two forward Fourier transformations and one inverse Fourier 

transformation, all of which can be practically implemented via the FFT algorithm. 

Considering the digitization, the numerical impulse response function is described as in Eq. 

(2.35). The shift of the coordinates by N/2 is to make the reconstructed area symmetrical 

with respect to the optical axis. 
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The Fourier transform of ),( lkg  can be calculated and expressed analytically (Goodman, 

2005) as Eq. (2.36): 
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This saves one Fourier transform for the reconstruction of the real image: 

( ){ }GUU rh ⋅⋅ℑℑ=Γ ∗−1),( ηξ        (2.37) 

According to Eq. (2.13), the reconstruction of the virtual image can be considered as: 

( ){ }GLUUP rh ⋅⋅⋅ℑℑ′′=′′Γ −1),(),( ηξηξ       (2.38) 
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Here the lens function L(x,y) is defined as in Eq. (2.11) and the phase correction factor 

),( ηξ ′′P  is as defined in Eq. (2.12). 

 

The size of the pixel reconstructed by this algorithm is the same as that of the CCD: 

x∆=∆ξ ; y∆=∆η         (2.39) 

If there is another area to reconstruct which is not symmetrical to the optical axis, two 

integer variables are introduced to shift the reconstructed area: 
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The convolution approach provides the ability to change the image magnification in the 

reconstruction process. If both the focal length of the introduced numerical lens and the 

reconstruction distance, i.e. the distance between the hologram plane and the image plane, 

are changed according to the required magnification, the magnified reconstructed image 

can be obtained. So, in general, the reconstruction distance can set to: 

mdd ⋅=′          (2.41) 

where d is the recording distance and m represents the magnification factor. The focal 

length of the numerical lens can be calculated by the lens formula from geometrical optics: 
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Then the lens function in Eq. (2.11) becomes: 
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      (2.43) 

Applying Eq. (2.41) for d ′  and the lens function in Eq. (2.43) to Eq. (2.38) yields the 

magnified image. 

 

In Fig. 2.9 a computer simulation of numerical reconstruction by the convolution approach 

is demonstrated. The wavelength in the simulation is 632.8nm. The distance between the 

object plane and the hologram plane is 100mm. The hologram plane is an array of 512×512 
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pixels with a pixel spacing of mmyx 01.0=∆=∆ . According to Eq. (2.39), the object 

plane is sampled by the same spacing in the hologram plane as mm01.0=∆=∆ ηξ . The 

hologram is generated by the interference between the diffraction field of this object on the 

hologram plane and a plane reference wave as given by Eq. (2.27). The plane reference 

wave is still as described as Eq. (2.5). The object here is similar to the one in Fig. 2.4(a) 

but its size is about 12 times smaller than that shown in Fig. 2.4(a) because of the different 

pixel distances in both cases. Fig. 2.9(b) shows the computer generated hologram of this 

object. Fig. 2.9(c) and (e) show the reconstructed real and virtual images of Fig. 2.9(b), 

respectively. Fig. 2.9(d) displays the reconstructed phase image of Fig. 2.9(b). To verify 

the ability to change the magnification in the reconstruction process, a magnification factor 

is introduced to reconstruct the hologram displayed in Fig. 2.4(b) by the convolution 

approach. Fig. 2.9(f) shows the result for this reconstruction with a magnification factor of 

12.4, which ensures the magnified image is of the same size as the original object shown in 

Fig. 2.4(a). However, if another magnification factor is chosen in the reconstruction 

process, the replica of the image will be superposed with the desired image. This is 

demonstrated in Fig. 2.9(g) and (h) which show the results of the reconstruction process 

with magnification factors of 7 and 16, respectively. 

 

 

(a) 

 

(b) 

Fig. 2.9 Simulation results of the numerical reconstruction by the convolution approach: (a) the 

2D object used to generate the hologram; (b) the hologram generated according to Eq. (2.27). 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 2.9 (Continued) (c) the reconstructed real image of (b); (d) the reconstructed phase image of 

(b); (e) the reconstrcted virtual image of (b) produced by using a virtual lens; the reconstrcted 

virtual image of Fig. 2.4(b) produced using magnification factors of (f) 12.4, (g) 7 and (h) 16. 

 

Experimental use of the convolution approach is demonstrated by the numerical 

reconstruction of the hologram shown in Fig. 2.6(b) using this method. The result is shown 
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in Fig. 2.10. The magnification factor was set to 6.5 which ensures that the reconstructed 

image is the same size as in the Fresnel approximation reconstruction. The reconstructed 

intensity image in Fig. 2.10(a) is comparable in quality to that obtained via previous 

method as shown in Fig. 2.6(f). But when the magnification factor is decreased, the whole 

of the object detail cannot be recovered (see in Fig. 2.10(c)); whilst when the magnification 

factor is increased, the unwanted replica image can be clearly seen in the reconstruction 

(see in Fig. 2.10(d)). These results are consistent with the computer simulation as shown 

previously in Fig. 2.9. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2.10 Reconstruction results for the hologram shown in Fig. 2.6(b) by use of the convolution 

approach: the reconstructed (a) intensity image and (b) phase image with a magnification factor 

of 6.5; the reconstructed intensity images with magnification factors of (c) 5 and (d) 12, 

respectively. 

 

To demonstrate the advantages of the convolution approach in the application of digital 

holography to smaller objects, the reconstruction results for the hologram of the resolution 

target, originally shown in Fig. 2.8(b), are displayed in Fig. 2.11. However, this time the 

reconstruction is performed via the convolution approach. As the pixel size in the 

convolution approach is the same as the pixel size of the sensor chip, rather than depending 
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on the recording distance and wavelength, the reconstruction results in Fig. 2.11 can be 

thought of as an enlargement of the target area. The availability of numerical focusing is 

also demonstrated here. By changing the distance in the numerical reconstruction, the bars 

and numbers in the resolution target are either in or out of focus. When the reconstruction 

distance is equal to the recording distance, i.e. 266mm, the image of the target appears to 

be sharpest, i.e. fully in focus. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2.11 Reconstruction results for the hologram shown in Fig. 2.8(b) by the convolution 

approach: the reconstructed intensity-contrast image with a reconstruction distance of (a) 260mm, 

(b) 264mm, (c) 266mm, (d) 268mm. 
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(e) 

 

(f) 

Fig. 2.11 (Continued) (e) the reconstructed intensity-contrast image with a reconstruction distance 

of 272mm; (f) the reconstructed phase-contrast image. 

 

Fig. 2.11(f) is the reconstructed phase-contrast image. The phase of the aluminium bars is 

quite clear. The large scale fringes in the background area result from the difference 

between the digital reference wave used in numerical reconstruction and the reference 

wave in the recording process. Each fringe indicates a jump of 2π of this difference in the 

phase value. The deviation of these fringes from the straight lines is caused by the phase 

aberration in the wave to illuminate the resolution target. Both the phase difference and 

aberration must be removed in quantitative phase-contrast measurement. 

2.2.3 Comparison of Fresnel approximation and convolution 

approach 

The Fresnel approximation and the convolution approach are the basic methods of 

numerical reconstruction in digital holography. Almost all other algorithms are derived 

from these two algorithms albeit with different improvements and enhancements. 

 

Both methods are practically implemented via the FFT algorithm. In the Fresnel 

approximation, only a forward FFT is performed. However, two or three FFTs are 

performed in the convolution approach. This disparity shows the conceptual difference 

between methods. If the xy plane of the digital hologram is taken as the spatial domain, 

then the procedure of Eq. (2.24), i.e. Fresnel approximation, gives a result in the frequency 

domain due to the single Fourier transform. The convolution approach consists of a 
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forward Fourier transform and an inverse Fourier transform, shown in Eq. (2.37), so the 

result is still in the spatial domain. 

 

A consequence of this difference is the dissimilarity of the pixel size in the reconstructed 

images. In the Fresnel approximation, the pixel sizes of the reconstructed image ∆ξ and ∆η 

depend on the reconstruction distance and the wavelength used, which is shown in Eq. 

(2.25). But in the convolution approach, the pixel sizes of the reconstructed image are 

equal to that of the hologram, shown in Eq. (2.39), and are hence independent of the 

wavelength and distance. 

 

Fresnel approximation is a “natural scaling” algorithm, as can be seen in Eq. (2.25). The 

hologram is the aperture of the optical system with a side length of N∆x. In a diffraction 

limited system, the half diameter of the Airy disk or speckle diameter restricts the 

resolution of the system. According to diffraction theory, λd/N∆x is equal to the radius of 

the Airy disk. This sets the image reconstructed by the Fresnel approximation algorithm 

always to the physical limit of this holographic system. In the convolution approach, the 

pixel sizes in the reconstructed image are equal to that of the hologram. It would seem that 

a higher resolution could be achieved if a CCD/CMOS device with a smaller pixel size was 

used in the recording process. But this resolution is just a numerical value, and the actual 

resolution is determined by the physical limitations of the optical system as shown in Eq. 

(2.25). 

 

The inclination factor Q in Eq. (2.1) is set to 1 in digital holography, as illustrated at the 

beginning of this section. However with the convolution approach, it is possible to vary 

this parameter and Eq. (2.40) shows that the convolution approach offers the facility to 

shift a reconstructed area when it is not symmetrical to, or aligned with, the optical axis. 

 

Which reconstruction method to use depends upon the requirements of the specific 

application that is being considered. Usually, the Fresnel approximation is used more often 

than the convolution approach when the detected object or surface is bigger than the 

CCD/CMOS sensor. This is because it runs more quickly, as only a single FFT needs to be 

carried out. But in particle measurement, microscopy and other applications that detect 

very small objects, the convolution approach has more advantages and is more accurate 

than the Fresnel approximation algorithm. 
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2.2.4 Lensless digital holography (digital Fourier holography) 

In the former examples, only plane waves were used as the reference wave. If a spherical 

wave is used as the reference wave in the holographic system, and the point source of the 

spherical wave is located in the plane of the object (see Fig. 2.12(a)), it is called lensless 

holography or Fourier holography. Since the spherical wave can be described as given in 

Eq. (2.6), the reconstruction formula for the virtual image shown in Eq. (2.26) leads to 

following equation: 

( ) [ ]),(exp),( 122 yxU
d

iC h

−ℑ




 +=Γ ηξ
λ
π

ηξ     (2.44) 

where C  is a complex constant. Therefore, the reconstruction of a lensless hologram 

simplifies to the calculation of the Fourier transform of the digital hologram. However, it is 

not possible to focus on different areas within the object volume in lensless Fourier 

holography, because the reconstruction distance d does not appear in Eq. (2.44). This 

means that this technique lacks the ability to perform numerical focusing. 

 

 

Fig. 2.12 Lensless holography: (a) the principle; (b) the schematic diagram of our experimental 

system. 

 

Fig. 2.12(b) shows the optical geometry of the experimental system as used here. The use 

of optical fibres makes the system more flexible, more compact, and more robust. It is also 

easier to adapt to different types of holography. The same die shown in Fig. 2.6(a) is 

chosen as the object, because of its small size and the high contrast of the black dots on 

white background. The light source is a 6mw HeNe laser with a wavelength of 632.8nm. A 
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1×2 fibre coupler is used to act as a beamsplitter in order to split the laser beam into two 

beams with 10% of the output intensity in the reference wave and 90% of the output 

intensity used to illuminate the object. Usually, the coupling efficiency from laser to 

single-mode fibre is less than 40%. This means that less than 40% of the output intensity of 

the laser is transmitted through the fibre. If the object is poorly reflective such as the die, 

the illumination intensity is not sufficient. Also, the fibre changes the polarization status of 

the laser beam. So when using low-power lasers, or in the case of applications sensitive to 

polarization status, optical fibre should be avoided in spite of its advantages of flexibility 

and miniaturization. The distance between the CCD camera and the object is nominally 

720mm. According to the requirement of lensless Fourier holography, the distance between 

the end of the fibre, where the reference wave exits, and the CCD should also be 720mm – 

i.e. the same as the distance between the object and detector. A PULNiX TM-6CN CCD 

camera was used with a Matrox Pulsar frame grabber to capture the digital hologram. The 

image obtained from this system is of 768×572 pixels and the size of a single pixel is 

8.4µm×8.4µm. 

 

 

(a) 

 

(b) 
 

(c) 

Fig. 2.13 Example of lensless digital holography: (a) the lensless Fourier hologram of the die; (b) 

the reconstructed intensity-contrast image from (a); (c) the reconstructed amplitude-contrast 

image from (a). 
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The lensless hologram captured by the CCD camera is shown in Fig. 2.13(a). Applying Eq. 

(2.44) to this hologram results in the reconstructed intensity- and amplitude-contrast 

images displayed in Fig. 2.13(b) and (c), respectively. The amplitude-contrast image 

provides better contrast and more detail on the object is visible. That is because the 

amplitude of the reconstructed image of the object is much smaller than that of the 

zero-order term. When it is squared to generate the intensity-contrast image, the intensity 

of the image of the object is attenuated while the intensity of the zero-order term becomes 

stronger, which makes the contrast of the image worse than the amplitude-contrast image. 

There are two dice in the reconstruction results. Both of them are real images which is in 

accordance with optical lensless holography. The lower one is the primary image and the 

upper one is the conjugate image, because it is the inverse of the object. The vertical line 

below the die is the image of the post on which the object is mounted. The light dot in the 

centre of the image is the zero-order image and the other light dots are caused by optical 

reflections from the optical components. It is apparent that less than half of the full 

resolution of the CCD is available in this manner when performing digital holography. 

2.2.5 Angular spectrum method 

Both the Fresnel approximation and the convolution approach, suffer the same limitation, 

i.e. that the object under observation must be placed farther away than some minimum 

distance. If it is placed inside this distance, the spatial frequency of the detector is too low 

and aliasing occurs. This minimum distance is given by (Hecht, 1998): 

( )
λN

xN
d

2

min

∆
=          (2.45) 

where N and ∆x are the number and the size of the pixels. However, the angular spectrum 

method (Kim et al., 2006) is able to overcome this disadvantage. It is comparable with the 

other methods in terms of computational efficiency but has the potential of higher 

accuracy. 

 

If the wavefield at the plane 0=d  is ( )0;,0 yxU , the angular spectrum ( )0;, yx kkA  at 

this plane is obtained by taking the Fourier transform: 

( ) ( ) ( )[ ]∫∫ +−= dxdyykxkiyxUkkA yxyx exp0;,0;, 0     (2.46) 
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where xk  and yk  are the corresponding spatial frequencies of x and y. The angular 

spectrum at the distance d, i.e. ( )dkkA yx ;,  is calculated from ( )0;, yx kkA  as given by: 

( ) ( ) ( )dikkkAdkkA zyxyx exp0;,;, =      (2.47) 

where 222

yxz kkkk −−= . The reconstructed complex wavefield at any plane 

perpendicular to the propagating z axis is found by 

( ) ( ) ( )[ ] ( ) ( )[ ]dikUdkdkkkidkkAdU zyxyxyx expexp;,;, 0

1 ℑℑ=+= −∫∫ ηξηξ  (2.48) 

The resolution of the reconstructed images from the angular spectrum method is the same 

as that in the hologram plane, which means that the pixel size does not vary with changes 

of wavelength or reconstruction distance. In Fig. 2.14, the results obtained from using this 

method clearly show the significant advantage of the angular spectrum method in 

calculating wave fields near the hologram plane. The object in Fig. 2.14 was part of the 

surface of a coin with an area of 2.62mm×2.62mm. The reconstructed distance is 3.9mm. 

The wavelength used to record Fig. 2.14(a) was 575nm. 

 

Fig. 2.14 (a) Hologram of a penny; reconstruction from (b) convolution approach and (c) the 

angular spectrum method. (Reprinted with permission from Yu and Kim (2005). Copyright 

(2005), Optical Society of America.) 

2.2.6 Phase retrieval methods 

The methods mentioned above quite literally translate the physical process of the optical 

reconstruction of conventional holograms into a numerical analogue. However, some 

researchers have gone beyond simple mimicking of conventional holographic practice and 

have attempted to gain access to the additional information numerical reconstruction can 

offer. In particular they have applied the concept of phase retrieval to the numerical 

reconstruction in digital holography. 
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Liebling et al (2004) perform a nonlinear change of variables so that the reconstruction 

may be performed by use of a method that is reminiscent of phase-shifting techniques. The 

algorithm is based on a local least-squares estimation of the amplitude and phase by 

assuming an a priori model of the phase of the reference wave. Once the complex object 

wave is recovered in the acquisition plane, the wave is back-propagated to restore a 

focused image using a digital implementation of the Fresnel transform. 

 

Liu and Scott (1987) proposed an approach to implement numerical reconstruction that 

uses the Gerchberg-Saxton phase-retrieval algorithm. Zhang et al (2003) introduced the 

Yang-Gu phase-retrieval algorithm to the numerical reconstruction of in-line digital 

holograms. Iterations are implemented in both methods until convergence is achieved 

when the difference between the hologram obtained by the iteration and the real one 

captured by camera reaches a minimum value. The Yang-Gu algorithm takes more time to 

process than the Gerchberg-Saxton algorithm because it has two iteration loops. But it can 

be easily expanded to multiwavelength and multiplane systems and is not sensitive to 

correct choice of initial value. 

 

The method proposed by Zheng et al (2005) is based on the processing of a series of 

holograms of the same object recorded with different distances. What can be recorded on 

the CCD/CMOS device is the intensity distribution, and the phase information is lost 

completely. So the direct application of the Fresnel approximation to the hologram will 

produce both the original image and its twin image. In order to solve this problem, the 

phase of the wave field must be retrieved. For the hologram I1 recorded at a distance d0 

from the object, a propagation of this pattern I1 from d0 to dd ∆+0  using the Fresnel 

approximation is calculated obtaining a complex wave field distribution 2A′ . Then keeping 

the phase distribution of the field 2A′  unchanged and using the square root of the 

hologram I2 as an amplitude distribution, thus a new wave field A2 is composed. Then a 

propagation of this new wave field A2 is performed from dd ∆+0  to dd ∆+ 20 . After 

determination of the phase and amplitude of the wavefront at a given plane, it is possible to 

recover the image of the object by using the inverse Fresnel transform. The phase 

distribution was revised again and again by using the correct intensity information 

provided by multiple holograms, and the real phase distribution can be obtained in this 

manner. It is very similar to the algorithm for retrieving phase information from two 

intensity distributions, such as the Gerchberg-Saxton algorithm and the Yang-Gu algorithm, 
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but the use of multiple holograms rather than two intensity distributions means that more 

information is available to recover the phase. 

2.2.7 Other algorithms for numerical reconstruction 

Zhang et al (2005) proposed a systematic approach from the perspective of “generalized 

sampling theory”. An approximation of the continuous complex amplitude at the 

CCD/CMOS sensor can be synthesized from a set of basis functions, with the recorded 

samples as weights. By adopting different basis functions and different formulas for 

describing the diffraction process, an optimal reconstruction algorithm can be developed 

for various recording conditions and different diffraction characteristics of the object. 

 

Yu and Cai (2001) proposed a method to numerically extract the object information from 

the fringe pattern of the hologram. Then an iterative algorithm is used to imitate an 

imaging system by focusing on different layers of the object; and by operation in both the 

spatial domain and the frequency domain, the algorithm produces a series of 

two-dimensional layer images. The object is finally reconstructed layer by layer subject to 

a constraint condition which must be satisfied. 

 

Liebling et al (2003) constructed a new wavelet basis, Fresnelets, for the processing and 

reconstruction of digital holograms by taking advantage of the mathematical properties of 

the Fresnel transform. It allows reconstruction at different user-specified and wavelength 

independent scales. The reconstructions at a coarse scale allow for optimal filtering of the 

zero-order and the twin image and also result in less noisy images. 

2.3 Conclusions 

In this chapter, various algorithms for the numerical reconstruction of digital holograms 

have been presented and discussed. The main focus has been on the Fresnel approximation 

and the convolution approach as they are the direct derivatives from scalar diffraction 

theory and most other algorithms are connected with them at least to some degree. The 

Fresnel approximation is the most cost-effective algorithm due to its use of only one FFT. 

For the measurement of macroscopic objects at longer distances, say some tens of 

millimetres, the Fresnel approximation is the best option. But for microscopic objects, with 

their rather small size, the convolution approach shows its advantages as demonstrated in 
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Fig. 2.11. The angular spectrum algorithm provides more accurate reconstruction results 

than both the Fresnel approximation and the convolution approach, which can be seen 

clearly in Fig. 2.14. But for the purpose of this thesis, i.e. measuring macroscopic objects, 

the recording distance between the object plane and the CCD/CMOS plane is sufficient to 

ensure that the Fresnel approximation is equivalent to the angular spectrum algorithm, but 

with significantly greater simplicity. Phase retrieval methods can avoid the reconstructed 

image being severely corrupted by the zero-order term and the twin-image. They 

intrinsically remove these terms without the need for any pre- or post-processing. However 

they are complex procedures and the implementations of phase retrieval methods are based 

on iteration loops, which means that they are more time-consuming than other algorithms. 

Other algorithms have been developed for some specific applications, or were used only in 

initial development stages. They have not been used as widely as the Fresnel 

approximation, the convolution approach and the angular spectrum algorithm. 

 

In this research both computer simulations and experiments were performed in order to 

compare the Fresnel approximation algorithm and the convolution approach. Through the 

results shown in this chapter, the Fresnel approximation algorithm can be seen to provide a 

better solution to carry out numerical reconstruction for macroscopic objects. The IDL 

codes for performing these two algorithms and the computer simulations for the formation 

of the digital hologram are enclosed in the Appendix. 

 

In the latter part of this thesis, it may be assumed that, unless otherwise indicated, the 

Fresnel approximation algorithm is always used to conduct numerical reconstruction of the 

digital holograms. 
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3 Suppression of the 

Zero-Order and Twin-Image Terms 

3.1 Introduction 

Suppose a hologram ( )yxUh ,  is generated by the interference of an object wave ( )yxUo ,  

and a reference wave ( )yxU r , . The hologram reconstruction can be expressed in Eq. (3.1). 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )yxUyxUyxUyxUyxUyxUyxUyxUyxU roroorrhr ,,,,,,,,,
2222 ∗+++=

 (3.1) 

where ∗  stands for the complex conjugate. 

 

The coordinate system for digital holography is shown in Fig. 3.1. 

 

 

Fig. 3.1 The coordinate sytem of digital holography 

 

As discussed in the previous chapter, there are three terms in the reconstructed field. The 

first term is known as zero-order term (or dc term) which consists of the intensity of the 

reference wave superposed with that of the object wave. The second and the third terms are 

the reconstructed object wave and conjugate object wave, respectively. The conjugate 

object wave is the twin-image term. In Gabor’s in-line holography, these three terms 

superpose with each other and cannot be observed separately. Off-axis holography 

invented by Leith and Upatneiks (1962) introduced a spatial carrier so that the zero-order 
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term, the image of the object and the twin image can be physically separated from each 

other. This is also widely used in digital holography. Fig. 3.2 displays a typical off-axis 

hologram and its reconstructed amplitude image. 

 

 

(a) 

 

(b) 

Fig. 3.2 (a) A typical digital hologram of a die; (b) the reconstructed amplitude of hologram in (a). 

 

The very bright square in the centre of Fig. 3.2(b) is the zero-order term. The image of the 

die is quite faint and can be seen on the left and the twin-image is on the right of the whole 

picture. It is because the zero-order term is so intense that the image of the die displays 

very faintly and the twin image is totally submerged in the background. Due to the limited 

resolution and dynamic range of CCD/CMOS sensors, the zero-order term and twin image 

must be suppressed in order to display the desired image normally so that it has adequate 

brightness and contrast levels. This is the usual case when displaying the reconstruction 

results, rather than the raw unprocessed image as shown in Fig. 3.2(b). Many approaches 

have been proposed to suppress the influence of the zero-order term and twin image. They 

can be classified into two categories according to their foundation: digital image 

processing methods and experimental methods. In this chapter, we will discuss different 

methods to suppress both the zero-order term and the twin image, for in-line digital 

holography and off-axis digital holography. 

3.2 Suppression of zero-order term and twin image in off-axis 

holograms 
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3.2.1 Methods based on digital image processing 

The physical meaning of zero-order term is that it is the zero-order diffraction of the 

reference wave, or equivalently the projection of the illuminated CCD/CMOS array. As 

illustrated in the previous chapter on numerical reconstruction of digital holograms, the 

Fresnel transform is the Fourier transform of a product of the hologram and the chirp 

function, if the plane reference wave is applied according to Eq. (2.20). A chirp function 

indicates a signal in which the frequency changes with time enabling the characterisation 

of frequency response by the application of a single signal. The chirp function as used in 

digital holography will be discussed later in this section. It can also be treated as the 

convolution of the hologram and the chirp function in Eq. (2.34). The Fourier transform of 

the hologram is trimodal with a peak at the spatial frequency (0,0). A schematic of the 

spatial spectrum of an off-axis digital hologram is shown in Fig. 3.3. The zero-order term 

is in the centre and the two sidelobes indicate the image of the object and its twin image. 

Fig. 3.4 is the spatial spectrum of the hologram that was shown in Fig. 3.2(a). 

 

Fig. 3.3 A schematic of the spatial spectrum of a digital hologram (redrawn from (Liu et al., 2002)) 

 

Fig. 3.4 The spatial spectrum of the digital hologram shown in Fig. 3.2(a) 
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In Fig. 3.4, only the zero-order term in the centre of the spectrum is displayed. It shows 

that the majority of the intensity is constrained in the zero-order term so that the 

information in other frequency is too weak to be seen in the spatial spectrum of this 

off-axis hologram. This explains what is shown in Fig. 3.2(b). 

 

The zero-order term of the spatial spectrum of the hologram is calculated by the following 

relation: 
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This can be modelled by a Dirac delta function in the frequency domain. So the zero-order 

term of the Fresnel transform of the digital hologram can be considered to be the 

zero-order term of the Fourier transform of the digital hologram convolved with the 

Fourier transform of the two-dimensional chirp function. Since a Dirac delta function is 

used to represent the former, the zero-order term of the whole Fresnel transform is the 

Fourier transform of the chirp function: 
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λ is the wavelength used in the reconstruction, and d is the distance between the hologram 

plane and the reconstructed image plane. Considering the chirp function is separable in Eq. 

(3.3), it is sufficient to investigate the one-dimensional chirp function. Fig. 3.5(a) shows 

the real part of a one-dimensional finite chirp function. The one-dimensional spectrum of 

this finite chirp function ( ))(exp 2 dxi λπ−  is shown in Fig. 3.5(b). The spectrum of the 

chirp function is almost flat over a certain region and almost zero outside that region. 

 

According to the analysis by Kreis and Juptner (1997), the width of the zero-order term is 

of ( )dxN λ22∆  pixels in the x axis and ( )dyN λ22∆  pixels in the y axis, where ∆x and 

∆y are the pixel spacings in x and y axes, respectively. The width of the zero-order term 

increases with an increase of the pixel size and also with the number of pixels in the CCD 

sensor, while it decreases when the distance and wavelength increase. 
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(a) 

 

(b) 

Fig. 3.5 (a) The finite chirp function; (b) its spectrum (L is the half of the side length of the 

hologram, d and λ are the distance and the wavelength used in the reconstruction, respectively, 

and β = 1/(λd).) 

 

Since the zero-order term of the hologram spectrum is the sum of the intensities of all 

pixels according to Eq. (3.2), Kreis and Juptner (1997) proposed subtracting the average 

intensity of the hologram from the intensity value of every pixel. In this manner the 

zero-order term in the spectrum of the hologram is zero. The average intensity value is 

calculated by 
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The modified hologram 

( ) ( ) hmhh UylxkUylxkU −∆∆=∆∆′ ,, , 1,...,0 −= Nk , 1,...,0 −= Ml    (3.5) 

is processed by a normal numerical reconstruction algorithm in order to obtain the object 

image and twin image, but with the zero-order term effectively suppressed. There must be 

some negative values in the modified hologram. This cannot be achieved by optical 

methods, but for digital image processing it is feasible. The whole hologram is 

downshifted in its intensity with an unchanged relationship between the intensities of 

individual pixels. The reconstruction results for the hologram shown in Fig. 3.2(a), when 

β1  
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processed by this method, are presented in Fig. 3.6(b). Although the zero-order term in the 

spatial spectrum is quite strong, as shown in Fig. 3.6(a), it is suppressed and the two 

sidelobes can now be seen that were not visible in Fig. 3.4. The effect of the suppression of 

the zero-order term is verified in Fig. 3.6(b). 

 

 

(a) 

 

(b) 

Fig. 3.6 The zero-order term suppression by subtracting the mean pixel value from the hologram 

before numerical reconstruction: (a) the spatial spectrum and (b) the reconstructed 

amplitude-contrast image of the processed hologram. 

 

This method can also be interpreted as a high-pass filtering operation, with a low cut-off 

frequency equal to the smallest nonzero frequency (Kreis and Juptner, 1997). Various 

high-pass filters are used and good results have been realized by subtracting the low-pass 

filter result of the average over each 3×3 pixel neighbourhood from the original digital 

hologram. 
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2,...,1 −= Nk , 2,...,1 −= Ml       (3.6) 

The factors ∆x and ∆y in the pixel arguments have been omitted for convenience. The 

results provided by implementing this method can be found in Fig. 3.7. The hologram of 

the die shown in Fig. 3.2(a) is used for this example. In the spatial spectrum of the 

high-pass filtered hologram, the zero-order term has disappeared completely. Therefore, in 

the reconstructed amplitude-contrast image, the central bright square is not present. 

However, the filtering process caused the amplitude of the object at locations near to the 

position of the zero-order term to decrease. 
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(a) 

 
(b) 

Fig. 3.7 The zero-order term suppression by high-pass filtering the hologram beore numerical 

reconstruction: (a) the spatial spectrum and (b) the reconstructed amplitude-contrast image of the 

processed hologram. 

 

Liu et al. (2002) used the Laplacian of the off-axis hologram, instead of the hologram itself, 

for numerical reconstruction by computer. The negative Laplacian of the hologram 

intensity is defined as 
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The discrete form of Eq. (3.7) can be written as 
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Performing a Fourier transformation on both sides of Eq. (3.8) and simplifying it, gives us: 
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where ( )
yxh ffL ,

~
 and ( )

yxh ffU ,
~

 are the Fourier transforms of ( )yxLh ,  and ( )yxUh , , 

respectively, xf∆  and yf∆  are the spacings of the xf  and yf  axes in spatial frequency 

domain. Also due to the separability of this equation, we need only to investigate the 

one-dimensional spectrum ( )xh fL
~

, which is shown schematically in Fig. 3.8. The 
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spectrum of the zero-order term is efficiently suppressed, and the spectra of the images are 

almost intact except for a small change in intensity. Therefore, it can be seen that the 

quality of the reconstructed image can be significantly improved when the Laplacian of the 

detected hologram is used for reconstruction instead of the hologram itself. 

 

Fig. 3.8 The schematic of the spatial spectrum of the Laplacian of the digital hologram (redrawn 

from (Liu et al., 2002)) 

 

In Fig. 3.8 the modification in the spectrum of the image of the object and the twin image 

has been introduced by using the Laplacian of the digital hologram for numerical 

reconstruction. This means that the reconstructed image will be modified to some extent. 

However, the maximum spectral width of the image of the object is much smaller than the 

period of the function ( )xf∆π2sin . So there is only a small change in the intensity of both 

of the images. On the other hand, ( )xf∆π2sin  is symmetrical and has the same effect on 

both images: weakening their lower-frequency components and strengthening their 

higher-frequency components. According to Fourier imaging principles, this kind of 

modification only results in an alteration of the image contrast. Using this method does 

affect the image quality of both images, but it is acceptable in comparison with the 

significant improvement in image quality due to the elimination of the zero-order term. An 

example of using this method is shown in Fig. 3.9. The hologram of the die originally 

shown in Fig. 3.2(a) is used to verify this method. The results look quite similar to those 

obtained from the high-pass filtering method presented previously in Fig. 3.7. The 

zero-order term is completely removed and the information of the die is preserved and 

enhanced. Meanwhile, the signal-to-noise ratios of Fig. 3.7(b) and Fig. 3.9(b) are similar, 

being 1.14 and 1.18, respectively. The only difference between the results from the 
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Laplacian method and the high-pass filtering method lies in the fact that Fig. 3.9(b) 

displays more ambient noise around the image of the die and its twin image. 

Fig. 3.9 The zero-order term suppression by using the Laplacian of the hologram: (a) the spatial 

spectrum and (b) the reconstructed amplitude-contrast image of the processed hologram. 

 

Recently, a new numerical method to suppress the zero-order image has been proposed 

(Chen et al., 2007). Suppose the object wave to be detected and reconstructed is oU  and 

the reference wave is rU . The hologram generated by these two waves can be written as 

∗∗ +++=+= rorororoh UUUUUUUUU
222

    (3.10) 

The first two terms on the right-hand side of Eq. (3.10) consist of the zero-order image in 

the reconstructed result, as illustrated in the previous sections, where 
2

oU  is the intensity 

of the object wave and 
2

rU  is the intensity of the reference wave. These two terms must 

be eliminated in order to suppress the zero-order image. Usually the amplitude and the 

phase of the reference wave are known. Therefore subtracting 
2

rU  from the hologram in 

Eq. (3.10) and squaring the result yields 

( ) ( )
( ) ( )

( ) ( ) ( )2222

2222

2222

2

2

∗∗

∗∗∗∗

∗∗

++−=

++++=

++=−

rorooho

rorororoooo

roroorh

UUUUUUU

UUUUUUUUUUU

UUUUUUU

   (3.11) 

 

(a) 
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Since ( )2∗
roUU  and ( )2roUU ∗  are mutually conjugate, the sum of them is real, because the 

imaginary part cancels out. So the sum can be substituted by 
2

2 ∗
roUU  and Eq. (3.11) can 

be rewritten as 
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It is assumed that the influence of 2
2

oU  can be neglected, because the intensity of the 

reference wave is larger than that of the object wave. Finally, the first two terms on the 

right-hand side of Eq. (3.10) are removed as given by: 
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To use Eq. (3.13) to suppress zero-order image, 
2

rU  must be known so that it can be 

numerically generated by computer. Fig. 3.10 shows the simulation results for this method. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3.10 Simulation results: (a) source image; (b) digital hologram; (c) reconstructed image; (d) 

Fourier power spectrum of (c). 
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(e) 

 

(f) 

Fig. 3.10 (Continued) (e) reconstructed image obtained by novel suppression approach; (f) Fourier 

power spectrum of (e). (Reprinted with permission from Chen et al. (2007). Copyright(2007), 

Optical Society of America) 

 

In this simulation, the recording wavelength is 632.8nm. The distance between the object 

plane and hologram plane is 286mm. Fig. 3.10(a) is the input image to generate the object 

wave. By the interference with the off-axis plane reference wave of the wave vector 

13380 −= mmkx  and 13240 −= mmky , the calculated hologram is shown in Fig. 3.10(b). 

Fig. 3.10(c) presents the reconstructed image obtained by performing the numerical 

propagation of 286mm with the digital hologram. The reconstructed image is superposed 

on the zero-order image so that it cannot be resolved. Fig. 3.10(d) shows the calculated 

Fourier spectrum of Fig. 3.10(c). Fig. 3.10(e) shows the reconstructed image by 

performing the method as stated in Eq. (3.13). The object image is resolved effectively 

because the zero-order term is deeply suppressed, which is clearly shown in Fig. 3.10(f). 

 

In practical terms, some questions must be raised about performing this method. The 

intensity distribution of the reference wave has to be generated numerically in order to help 

suppress the zero-order term. In the experimental work published in (Chen et al., 2007), it 

stated that they achieved this by “multiplying the proportion of the intensity ratio (between 

the object wave and the reference wave) with an operation array”. The meaning of this 

sentence is so ambiguous that it is not clear exactly how to carry out this process. 

Meanwhile, they only applied this new approach to transmission digital holography, in 

which it is easy to measure the intensity ratio of the object wave and the reference wave. 

But for applications that deal with diffusely reflective objects, it is quite difficult to 

measure this intensity ratio accurately. 

 

For the methods listed above, the zero-order term is effectively suppressed, while the twin 

image is either intact or has only a small or limited change. However, the existence of the 

twin image adversely affects the quality of the desired image. A method based on spatial 
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filtering proposed by Cuche et al. (2000) can deal with this problem. In off-axis holography, 

the object beam ),( yxUo  and the reference beam ),( yxU r arrive at the hologram plane 

from two different directions. Therefore the different terms will vary at different spatial 

frequencies and, as a consequence, will propagate along the two separate directions during 

the reconstruction. For example, if we assume a reference wave of the form 

( ) ( )θsinexp, ikxEyxU rr = , where θ is the angle between the object wave and the reference 

wave, the hologram intensity becomes 

( ) ( ) ( ) ( ) ( ) ( )yxUEikxyxUEikxyxIEyxU orororh ,sinexp,sinexp,, 2 ∗+−++= θθ  (3.14) 

The phase factor ( )θsinexp ikx−  in the third term and the phase factor ( )θsinexp ikx  in 

the fourth term indicate the deflection of the reconstructed images from ( )yxUo , , the wave 

used to illuminate the hologram. 

 

Considering the Fourier transform of the hologram, the influence of the two phase factors 

( )θsinexp ikx±  can be interpreted as a translation of the spatial frequencies associated 

with the real and the virtual images. Assume that ( )yxUo ,  is in normal incidence, the 

spatial frequencies of the zero-order diffraction are located in the centre of the Fourier 

plane, and the spatial frequencies of the interference terms vary at different carrier 

frequencies, which are located symmetrically with respect to the centre of the Fourier plane: 

πθ 2sink−  for the virtual image and πθ 2sink  for the real image. This suggests that 

the different terms of the reconstructed wave front can be spatially filtered. From the point 

of view of signal processing it is interesting to realize that the off-axis geometry introduces 

a spatial modulation of the interference terms. This task could be achieved optically during 

a conventional optical reconstruction with two lenses in a 4f configuration with an 

appropriate mask inserted in the Fourier plane of the first lens. However in digital 

holography this procedure can be performed digitally by multiplication of the computed 

Fourier transform of the hologram with a numerically defined mask. 

 

After performing the forward Fourier transform with an off-axis hologram, the different 

interference terms produce well-separated contributions. Spatial frequencies corresponding 

to the zero-order diffraction are located in the centre of the image, which includes the 

contribution of the reference intensity and the object intensity. The spatial frequencies of 

the third and fourth terms in Eq. (3.10) are located symmetrically with respect to the centre 
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of the image. This Fourier-transformed hologram is then multiplied with a mask that 

eliminates all spatial frequencies except those of the interference terms. Then the inverse 

Fourier transform is applied in order to generate a filtered hologram. It is this filtered 

hologram, instead of the original hologram, that is used in the numerical reconstruction. 

The mask used for spatial filtering consists of two transparent windows centered around 

the carrier frequencies of the interference terms. Windows with smoothed transmission 

profiles such as Gaussian, Hamming, Butterworth, or Tukey windows can be used to avoid 

the occurrence of high-frequency fluctuations in the reconstructed images. 

 

To eliminate the twin image, an asymmetrical mask may be used composed of only one 

transparent window centred on the carrier frequency of one of the interference terms. Since 

the hologram is a real function, its Fourier transform is symmetric with its complex 

conjugate. This symmetry is preserved if the mask used for spatial filtering is also 

symmetric. Thus the inverse Fourier transform can be represented by a real function (a 

hologram). However when an asymmetrical mask is used to eliminate the twin image, the 

symmetry is lost and the result of the inverse Fourier transform is a complex array. The 

same algorithm can be used to perform the numerical reconstruction, but using this 

complex array rather than a real array. 

 

This method of spatial filtering has been applied to the hologram of the resolution target 

that was originally displayed in Fig. 2.8(b) in order to illustrate the removal of the 

zero-order and twin images. The results are shown in Fig. 3.11. 

 

 

(a) 

 

(b) 

Fig. 3.11 Elimination of the zero-order term and the twin image of a transparent resolution target 

by spatial filtering: (a) 3D Fourier spectrum of the original hologram shown in Fig. 2.8(b); (b) 

reconstructed amplitude-contrast image of the original hologram. 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 3.11 (Continued) (c) 3D Fourier spectrum of the filtered hologram by a symmetrical mask; (d) 

reconstructed amplitude-contrast image of the filtered hologram by the symmetrical mask.(e) 3D 

Fourier spectrum of the filtered hologram by an asymmetrical mask; (f) reconstructed 

amplitude-contrast image of the filtered hologram by the asymmetrical mask; (g) the enlarged 

image of resolution target in (b); (h) the enlarged image of resolution target in (d). 
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(i) 

 

(j) 

Fig. 3.11 (Continued) (i) the reconstructed result by filtering with an asymmetrical window of 

100×100 pixels, only the area of interest is displayed; (j) the reconstructed result by filtering with 

an asymmetrical window of 200×200 pixels wide, only the area of interest is displayed. 

 

The advantage of the spatial filtering method is apparent in Fig. 3.11. With the removal of 

the zero-order term and the twin image, the brightness of the image of the resolution target 

is significantly improved. The background noise has been reduced in Fig. 3.11 (j) so that 

the image is much cleaner than those found in Fig. 3.11 (g). In this example, a Hanning 

window has been used to filter the original hologram. The dimensions of the window have 

to be large enough to avoid the filtering out of the high frequency information from the 

object. The choice of too small a size of Hanning window will cause the reconstructed 

image to be blurred. This effect can be clearly seen in Fig. 3.11(i). Meanwhile, by 

comparing Fig. 3.11(g) and Fig. 3.11(j) carefully, the numbers and the finest bars on the 

target pattern suggest that some high-frequency information has been lost by the filtering 

process, even when a large window size of 200×200 pixels is chosen. This method can also 

be applied to large opaque objects with rough surface, but the loss of high-frequency 

information is more obvious in the case of well defined test target. 

 

For the case of a large and opaque object, e.g. the die mentioned before, its Fourier 

spectrum is displayed in Fig. 3.12(a). Besides the central peak of the zero-order term with 

an amplitude value of about 75, both the 1±  order terms are very small, with a maximum 

amplitude value of 0.10 and the frequency information of the object is dispersed over a 

large spectral range. Hence it is very difficult to know the exact position and shape of the 

peak of the 1±  order terms in order to perform effective filtering. This is verified in the 

results shown in Fig. 3.12. With the highly suppressed noise in the background and the 

zero-order diffraction, the contrast of the edge of the die in Fig. 3.12(d) and (f) appears too 

dark in the display because of the filtering. Therefore, in order to preserve the frequency 

information of the object and remove the unwanted terms, an inverse Hanning window was 
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applied to suppress the central peak of the zero-order term but retain the other terms intact. 

The Fourier spectrum of the filtered hologram produced by this method to suppress only 

the zero-order term is shown in Fig. 3.12(g) and its reconstruction result is shown in Fig. 

3.12(h). The corresponding images showing the case of suppression of both the zero-order 

and the -1 order terms are displayed in Fig. 3.12 (i) and (j), respectively. The results shown 

in Fig. 3.12 (h) and (j) show better visual effect than those in Fig. 3.12(b), (d) and (f). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 3.12 Elimination of the zero-order term and the twin image of a die by spatial filtering: (a) 3D 

Fourier spectrum of the original hologram shown in Fig. 3.2(a); (b) reconstructed 

amplitude-contrast image of the original hologram; (c) 3D Fourier spectrum of the filtered 

hologram by a symmetrical mask; (d) reconstructed amplitude-contrast image of the filtered 

hologram by the symmetrical mask; (e) 3D Fourier spectrum of the filtered hologram by an 

asymmetrical mask; (f) reconstructed amplitude-contrast image of the filtered hologram by the 

asymmetrical mask. 
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(g) 

 

(h) 

 

(i) 

 

(j) 

Fig. 3.12 (Continued) (g) 3D Fourier spectrum of the filtered hologram by an inverse Hanning 

window to suppress zero-order term; (h) reconstructed amplitude-contrast image of the hologram 

of which Fourier spectrum is shown in (g); (i) 3D Fourier spectrum of the filtered hologram by an 

inverse Hanning window to suppress zero-order and -1 order term; (j) reconstructed 

amplitude-contrast image of the hologram of which Fourier spectrum is shown in (i). 

3.2.2 Methods based on experiments 

The object beam is usually formed from reflected or transmitted light from the object. Due 

to the coherence of the laser source, a typical object beam contains laser speckle because of 

the rough nature of the object’s surface. In noisy environments, the laser speckle 

distribution changes stochastically. By subtracting two stochastically changed speckled 

primary-fringe patterns, it is possible to obtain a clear reconstructed image of the original 

object. Demoli et al. (2003) presented a fast and simple method to take advantage of this 

property. The detailed analysis of a quasi-Fourier off-axis setup shows that a much lower 

average intensity for the subtracted hologram can be expected. If the convolution of the 

object wave and the quadratic phase factor is small compared to the reference wave, the 

diffracted intensity is possible to exceed the zero-order in the subtracted hologram. This 

method requires two holograms to be recorded consecutively under the same conditions, 
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but with a change in the speckle pattern. If the speckle pattern change is a constant shift in 

any particular direction, the resulting object reconstruction would not be adequate because 

of the information loss along the same direction in the output plane. The speckle change 

must be stochastic in order to suppress the zero-order without information loss. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3.13 Results of numerical reconstruction: (a) from a single hologram; (b) from a subtracted 

hologram; (c) from a subtracted hologram for constant shift in the horizontal direction; (d) 

obtained by subtracting two subsequent holograms from a series. (Reprinted with permission 

from Demoli et al. (2003). Copyright(2003), Optical Society of America) 

 

Fig. 3.13 shows the results of the subtraction method. Fig. 3.13(a) is the intensity 

reconstructed image from a single hologram. The zero-order term noticeably affects the 

reconstructed image. Fig. 3.13(b) is reconstructed from a subtracted hologram. The 

zero-order term has been greatly suppressed. Fig. 3.13(c) is also reconstructed from a 

subtracted hologram but there is only a constant shift (1 pixel) between the two holograms 

in the horizontal direction. This does not improve the quality of the result because of the 

information loss which is specified as described above. Fig. 3.13(d) is obtained by 

subtracting two subsequent holograms from a series. To obtain this series of holograms, the 

vibration mode of the optical table was measured by a digital seismograph. Then a 

loudspeaker controlled by a computer was used to excite the table in such a way as to 
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cause a stochastic change of the speckle pattern. The zero-order term is removed and very 

clear object reconstruction is obtained. 

 

Although this method is very simple and the results in Fig. 3.13 are fairly good, we have 

not applied it to our experiments for two reasons. The technique requires the vibration 

properties of the optical bench to be known. A digital seismograph was used in the paper 

by Demoli et al. (2003). But we do not have the specific equipment to qualify this task. 

 

Takaki et al. proposed some methods based on two shutters and a liquid-crystal phase 

modulator in order to eliminate both the zero-order and the twin image in hybrid 

holographic microscopy (Takaki et al., 1999). The two shutters are used to block the object 

beam and the reference beam independently, and the liquid-crystal phase modulator is used 

to modulate the phase of the object beam. In this manner the hologram recording 

parameters are changed. The recording system used is as shown in Fig. 3.14. 

  

Fig. 3.14 Diagram of the recording system that can eliminate the zero-order term and the twin 

image 

 

To eliminate the zero-order term, four methods are applied. 

 

Method A: By use of the two shutters, the intensity distribution of both the object beam and 

the reference beam are obtained and these are subtracted from a hologram to obtain a 

reconstructed result without the zero-order term. It can be described as 

rororoh UUUUIIU
∗∗ +=−−        (3.15) 

This method requires the capture of three images. 
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Method B: This method only requires two holograms. Between taking these two holograms, 

a phase change ∆φ is introduced by the liquid-crystal phase modulator. The two holograms 

can be represented as 

rororoh UUUUIIU
∗∗ +++=        (3.16) 

( ) ( ) ( ) rororoph UUiUUiIIU
∗∗ ∆−+∆++=∆ ϕϕϕ expexp     (3.17) 

Subtracting ( )ϕ∆hpU  from hU , it gives 

( ) ( )[ ] ( )[ ] rorohph UUiUUiUU
∗∗ ∆−−+∆−=∆− ϕϕϕ exp1exp1    (3.18) 

To use the dynamic range of the image sensor effectively, the magnitude can be maximised 

when πϕ =∆ : 

( )[ ] rorohph UUUUUU
∗∗ +=− 2π        (3.19) 

 

To eliminate both the zero-order term and the twin image, there are also two methods. 

 

Method C: This method adds phase modulation into Method A to remove the twin image. It 

can be written as 

( ) ( ) ( )[ ] ( )[ ] ∗∆−=−−∆∆−−− rorohproh UUiIIUiIIU ϕϕϕ 2exp1exp   (3.20) 

The magnitude of the 
∗

roUU  term becomes maximum when 2πϕ =∆ . 

 

Method D: This method uses only phase modulation. The holograms which are recorded 

with different phase modulations, 1ϕ  and 2ϕ , have intensity distributions given by 

( ) ( ) ( ) rororohp UUiUUiIIU
∗∗ −+++= 111 expexp ϕϕϕ     (3.21) 

( ) ( ) ( ) rororohp UUiUUiIIU
∗∗ −+++= 222 expexp ϕϕϕ     (3.22) 

These two intensity distributions and the intensity distribution with zero phase modulation 

hU  are used to obtain the 
∗

roUU  term: 
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The magnitude of which becomes maximum when 321 πϕ =  and 322 πϕ −= . Three 

holograms with different phase modulations are required. 

 

Fig. 3.15(a) shows the reconstructed image produced by using Method A. Fig. 3.15(b) 

shows the result reconstructed from the same hologram but this time produced using 

Method B. Fig. 3.15 (b) is less noisy than Fig. 3.15(a). The zero-order term in the centre is 

less obvious in Fig. 3.15(b). The recorded microscopic object was a type of filamentous 

green algae, known as Spirogyra sp. The spiral structure was observed in both Fig. 3.15(a) 

and Fig. 3.15(b). Fig. 3.15(c) is the reconstructed image by use of Method C. Fig. 3.15(d) 

is reconstructed from the same hologram by use of Method D. A horsetail spore, equisetum 

arvense, was used as the microscopic object. Clearly, the image in Fig. 3.15(d) is sharper 

and is exempt from the influence of both the zero-order term and the twin image. These 

images were produced by Takaki et al. (1999). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3.15 Reconstructed images by use of (a) method A; (b) method B; (c) method C; (d) method D 

(Reprinted with permission from Takaki et al. (1999). Copyright (1999), Optical Society of 

America) 

 

Our experimental results using these methods are shown in Fig. 3.16. The results are quite 

different from the conclusion given by Takaki et al. (1999). The result of using Method A in 
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Fig. 3.16(b) is much worse than it should be according to Eq. (3.15). And it is similar to the 

result of the die in Fig. 3.16(g). We suppose it results from the weak intensities of the 

object wave and the reference wave. The background noise of the CCD is quite comparable 

with the object wave and the reference wave when both of them are rather weak. Therefore 

the subtraction of the image illuminated only by reference wave and the image illuminated 

only by object wave causes the extra errors in the reconstructed results. The zero-order 

term and the twin image were not removed successfully in Fig. 3.16(d) and (e). This also 

could be the effect of the noise. Moreover, according to the characteristics of the LC phase 

retarder, shown in Fig. 3.17, the retardance change is very steep in the range 0.2 to 0.8 of a 

wave of retardance. Any minor deviation of the voltage applied to the LC phase retarder 

within this range might cause large errors. Therefore it is possible for the error in the phase 

retardance to cause the incomplete compensation of the phase-shifting holograms, so that 

both the zero-order term and the twin image have not been suppressed effectively. It is also 

worth pointing out that the methods were originally applied to microscopy for objects of 

the scale of microns, rather than the large objects used in our applications with a size of a 

few millimetres. 

 

 

(a) 

 

(b) 

Fig. 3.16 The reconstructed intensity-contrast image of a negative resolution test target with 

zero-order suppression by (a) subtracting the average value of the hologram; (b) Method A. 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 3.16 (Continued) The reconstructed intensity-contrast image of a negative resolution test 

target with zero-order suppression by (c) Method B; (d) Method C; (e) Method D; (f) the 

reconstructed intensity-contrast image of a die with zero-order suppression by subtracting the 

average value of the hologram. 
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(g) 

Fig. 3.16 (Continued) The reconstructed intensity-contrast image of a die with zero-order suppression 

by (g) Method A. 
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Fig. 3.17 The voltage-to-retardance property of LC variable retarder 

 

The methods that use a phase modulator not only yield reconstructed images that are less 

noisy than the images produced by the methods that use shutters but they also require 

fewer images to be captured by the image sensor. 

 

Zhang et al. (2004) used a holographic diffraction grating to act as a beam splitter to 

construct an off-axis holography system. A diagram illustrating this system is shown in Fig. 

3.18. 

 

In this system the holographic grating is illuminated by a plane wave. The zero-order 

diffraction wave does not change direction and propagates straight through to the CCD 

sensor as the reference wave. However the +1 order diffraction wave is deflected at a small 
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angle gθ  and is used to illuminate the object. A mirror is used to direct the object wave to 

the CCD faceplate to generate the hologram by interference with the reference wave. The 

principle of this method is similar to Method B that was proposed by Takaki et al. (1999) 

but the redistribution of the object beam on the hologram plane results from a minor 

adjustment of the reflecting mirror. 

 

 

Fig. 3.18 Schematic diagram of the recording system of an off-axis hologram by CCD 

 

Substantially, this method uses a phase-shifting technique. It is easy to obtain phase 

shifting of the object beam via adjustment of the reflecting mirror. The advantages of this 

method are that the optical setup and the experimental procedure are simple. However, the 

method has some disadvantages which are difficult to resolve. Firstly, the detected object 

should be transparent according to the geometry shown in Fig. 3.18. To secure 

( ) ( )yxUyxU oo ,, 21 = , where ( )yxUo ,1  and ( )yxUo ,2  are the distributions of the object 

beam on the hologram plane relating to the different positions of the reflecting mirror, a 

reflective object cannot be used as it will not be able to meet this requirement with the 

scattered light from object surface. Secondly, this paper did not specify to what extent the 

reflecting mirror has to be adjusted in order to eliminate the zero-order term. From their 

preliminary results, reproduced here in Fig. 3.19, the adjustment of the mirror depends on 

the setup, the position and orientation of the object. 

 

The zero-order term dominated the reconstructed result in Fig. 3.19(a) so that the image of 

the object was invisible. In Fig. 3.19(b), the zero-order term is suppressed to some extent 

and therefore the image of the object is revealed. But the zero-order term still remains 

because ( ) ( )yxUyxU oo ,, 21 ≠ . The visible fringes on the reconstructed images are 

generated by the interference between the two real images and two conjugate images in the 

( )yx,  

Reference Wave 

Object Wave

gθ  

Grating

Plane Wave 

Zero-order 

+1 order 

Object Mirror 

CCD 
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two holograms used to produce the subtracted hologram. The phase difference ( )yx,ϕ∆  

relates to the fringes spacing. Fig. 3.19(b) shows that ( )yx,ϕ∆  is not small enough so that 

the fringes can be clearly seen. In Fig. 3.19(c), the zero-order term in the centre has 

disappeared and both the image of the object and its twin image are displayed clearly 

without fringes. It shows that in this case ( ) ( )yxUyxU oo ,, 21 =  and also that the phase 

difference between the two digital holograms which are being subtracted is constant. 

 

 

(a) 
 

(b) 
 

(c) 

Fig. 3.19 The reconstructed amplitude images: (a) reconstructed from single off-axis hologram; (b) 

reconstructed from a subtracted hologram without full elimination of the zero-order term; (c) 

reconstructed from a subtracted hologram with full elimination of the zero-order term (Reprinted 

from (Zhang et al., 2004). Copyright (2004), with permission from Elsevier). 

3.3 Zero-order and twin image suppression for in-line 

holograms 

In-line holography was originally proposed by Gabor in order to improve the resolution of 

electronic microscopes. Although its inherent twin-image problem was resolved by off-axis 

holography, it is still widely used in particle-field analysis and soft X-ray holography, due 

to the simplicity of its recording set-up. However, because of the significantly lower 

resolution of electronic image sensors when compared to high-resolution photographic film, 

in-line holography also plays an important role in digital holography in order to take 

advantage of the full resolution of the image sensor. The use of an in-line hologram 

necessitates digital filtering in order to suppress the conjugate image and the zero-order 

image. Wavelength-scanning holography by an argon-ion laser with a tunable intracavity 

etalon was also proposed (Marron and Schroeder, 1992), but it requires an especially high 

computation load because of the 3-D Fourier transform including the wavelength axis. 

 



Chapter 3 Suppression of the Zero-Order and Twin-Image Terms 

82 

Yamaguchi and Zhang (1997) measured the complex amplitude of the object wave at the 

CCD plane for an in-line setup by using phase-shifting interferometry. The phase of the 

reference wave was changed in a stepwise fashion, and the resulting three or four 

interference fringe images are processed by a computer to yield the distribution of the 

complex amplitude of the object wave. Then the distribution is Fresnel transformed in the 

computer to reconstruct images at arbitrary planes. The arrangement is shown in Fig. 3.20. 

 

 

Fig. 3.20 Arrangement for phase-shifting digital holography for measuring diffusely reflecting 

object 

 

At the CCD plane, the complex amplitudes of the reference wave and the object wave are 

denoted by ( ) ( )[ ]yxiEyxU rrr ,exp, ϕ=  and ( ) ( ) ( )[ ]yxiyxEyxU ooo ,exp,, ϕ= , respectively. 

The intensity to be recorded is represented by 

( ) ( ) ( ) ( )

( ) ( )ϕϕ

ϕδ

∆+∆−++=

+∆=
∗∗

iUUiUUEE

yxUiyxUyxU

roroor

orh

expexp

,exp,;,

22

2

   (3.24) 

where ϕ∆  is the phase shift that is provided by the PZT mirror, or alternatively by the LC 

modulator shown in the frame with dashed lines. The recording of three phase-shifted 

holograms, obtained using phase-shifts of 0=∆ϕ , π/2 and π yields the complex 

amplitude of the object wave, which is given by 
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For the recording of four phase-shifted holograms using phase-shifts of 0=∆ϕ , π/2, π 

and 3π/2, the complex amplitude of the object wave is given by: 
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By carrying out a Fresnel transformation on either Eq. (3.25) or Eq. (3.26), the complex 

amplitude obtained at a distance Z from the CCD is obtained given by: 

( ) ( ) ( ) ( )
dxdy

Z

yx
ikyxUZU oo ∫∫ 







 −′+−′
=′′

2
exp,;,

22 ηξ
ηξ    (3.27) 

with λπ2=k . Setting dZ −=  here leads to the complex amplitude at the object plane. 

For a numerical calculation, Eq. (3.27) can be regarded either as a Fourier transform or as a 

convolution integral. The former could be implemented using a single fast Fourier 

transform (FFT), while the latter requires two or three FFTs. The sampling pitch of the 

reconstructed image is proportional to the wavelength and the object distance in the former 

case and fixed to the pixel pitch of the CCD in the latter case as illustrated in the previous 

chapter. 

 

 

(a) 

 

(b) 

Fig. 3.21 Numerical reconstructed intensity-contrast images of a die by (a) a single in-line 

hologram, (b) four phase-shifted holograms. 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 3.21 (Continued) (c) Numerical reconstructed intensity-contrast images of a die by three 

phase-shifted holograms; numerical reconstructed intensity-contrast images of a 

photographically-negative resolution test target by (d) a single in-line hologram, (e)four 

phase-shifted holograms and (f) three phase-shifted holograms. 

 

Fig. 3.21(a) to (c) shows reconstructed images of a diffusely reflecting die, produced using 

an in-line geometry by use of both phase-shifting holography and also conventional digital 

holography. The die, shown in Fig. 2.6(a), has dimensions of 13mm×13mm×13mm and its 

centre was positioned at a distance of mmd 415=  from the CCD sensor. Comparing Fig. 

3.21 (a) to (c), it can be seen that the bright zero-order image and twin image in Fig. 3.21(a) 

significantly disrupts the display of the image of the die. However these were both 

removed by both versions of the phase-shifting method to give a very clear image of the 

die. Fig. 3.21(d) to (f) show reconstructed images of a photographically-negative resolution 

test target produced firstly by conventional digital holography and secondly by use of two 

versions of phase-shifting holography. The resolution target that was shown previously in 

Fig. 2.8(a) was positioned at a distance of mmd 370=  from the CCD sensor. The 
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application of the phase-shifting methods greatly reduces the disturbance caused by the 

zero-order and the twin image, as can be seen in Fig. 3.21(e) and (f). 

 

The results from the version using three phase-shifting holograms in Fig. 3.21 present 

better suppression of the undesired terms. Theoretically, the results from both the four and 

the three bucket phase-shifting methods should be the same. However in practice, 4-step 

phase-shifting operation introduces larger error than 3-step phase-shifting operation. The 

characteristic curve for the phase retarder shown in Fig. 3.17 does not give the exact 

voltage to generate an exact phase retardance of 0.25, 0.5 and 0.75 wave. Therefore the 

applied voltage has to be calculated by interpolation, according to the adjacent known 

points. Unfortunately the LC phase retarder is a non-linear device, which may cause the 

interpolated result to deviate from the true value. This is also one reason why the results 

from different phase-shifting holograms exhibit differences. For real-time applications, 

phase-shifting digital holography with three holograms is preferred, as it takes less time to 

capture and process the holograms. 

 

Phase-shifting digital holography realizes 3D imaging for in-line holography and produces 

high quality images without using imaging lenses. Numerical focusing provides high 

flexibility in the display of 3D objects. Although the computational load is heavy for the 

large number of pixels required for high-quality imaging, this difficulty could be overcome 

by use of a parallel array processor to implement the Fresnel transformation. 

 

Lai et al. (2000) also presented a phase-shifting method to remove the zero-order term and 

the twin image in an in-line hologram. The system geometry to detect the diffusely 

reflecting object is similar to that presented in Fig. 3.20. The system arrangement to detect 

a transparent object is shown in Fig. 3.22. 

 

Fig. 3.22 Experimental setup of phase-shifting digital holography for transparent objects 
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A liquid crystal retarder is used in the reference beam path to vary the phase of the 

reference wave by 0=∆ϕ , π/2, π and 3π/2. Four quadrature-phase-shifting holograms are 

achieved. The object wave is denoted as ( ) ( ) ( )[ ]yxiyxEyxU oo ,exp,, ϕ= . Four plane 

reference plane waves are used, which are 

( ) rrr EiEU == 0exp1 , ( ) rrr iEiEU == 2exp2 π , 

( ) rrr EiEU −== πexp3 , ( ) rrr iEiEU −== 23exp4 π . 

Then the four recorded holograms can be described as 

( ) ( ) ( )[ ] ( ) ( )[ ]yxiyxEEyxiyxEEyxEEU orororh ,exp,,exp,,22

1 ϕϕ −+++=   (3.28) 

( ) ( ) ( )[ ] ( ) ( )[ ]yxiyxEiEyxiyxEiEyxEEU orororh ,exp,,exp,,22

2 ϕϕ −+−+=   (3.29) 

( ) ( ) ( )[ ] ( ) ( )[ ]yxiyxEEyxiyxEEyxEEU orororh ,exp,,exp,,22

3 ϕϕ −−−+=   (3.30) 

( ) ( ) ( )[ ] ( ) ( )[ ]yxiyxEiEyxiyxEiEyxEEU orororh ,exp,,exp,,22

4 ϕϕ −−++=   (3.31) 

Illuminating the four holograms described above with the corresponding reference waves, 

we have 

( ) ( ) ( )[ ] ( ) ( )[ ]yxiyxEEyxiyxEEyxEEEUU ooorrhr rr
,exp,,exp,, 2223

11 ϕϕ −+++=   (3.32) 

( ) ( ) ( )[ ] ( ) ( )[ ]yxiyxEEyxiyxEEyxEiEiEUU ooorrhr rr
,exp,,exp,, 2223

22 ϕϕ −−++=  (3.33) 

( ) ( ) ( )[ ] ( ) ( )[ ]yxiyxEEyxiyxEEyxEEEUU ooorrhr rr
,exp,,exp,, 2223

33 ϕϕ −++−−=  (3.34) 

( ) ( ) ( )[ ] ( ) ( )[ ]yxiyxEEyxiyxEEyxEiEiEUU ooorrhr rr
,exp,,exp,, 2223

44 ϕϕ −−+−−=  (3.35) 

Adding Eqs. (3.32) - (3.35) together, we obtain 

( ) ( )[ ]yxiyxEEUUUUUUUU ohrhrhrhr r
,exp,4 2

44332211 ϕ=+++    (3.36) 

In Eq. (3.36), it is clear that only the pure wavefront of the object detected on the CCD 

faceplate remains and the other unwanted terms are cancelled out. If then the Fresnel 

approximation or convolution approach is applied to Eq. (3.36), the complex amplitude of 

the object wave at any distance from the CCD faceplate can be reconstructed. 

 

This method is simple in principle, but very hard to realise practically for conventional 

holography. However via its digital recording on the CCD sensor and numerical 

reconstruction performed in the computer, it can be performed very easily by digital 

holography. There are at least two errors in this method which degrade the quality of the 
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reconstructed image. One is the noise from the CCD sensor and the second noise source is 

from the phase-shift error introduced by the phase-shifting devices. Both of these are 

assumed to have a normal distribution with a mean value of zero and a standard deviation 

of σ for the former and ϕ∆  for the latter. So they can be reduced by averaging multiple 

holograms for each phase step. 

 

 

Fig. 3.23 Reconstructed images of a part of a resolution target produced by: (a) single hologram; 

and (b) four quadrature-phase-shift holograms. (Reprinted from (Lai et al., 2000). Copyright 

(2000), with permission from Elsevier.) 

 

Fig. 3.23 shows the reconstructed images of a part of a resolution target from both a single 

hologram and also from four quadrature-phase-shift holograms. By use of the proposed 

phase-shifting method, the twin image is eliminated and never contaminates the real image. 

 

The same quadrature-phase-shifting holograms that were used to produce the results 

presented in Fig. 3.21(b) and (e) were now used to perform the phase-shifting method 

described in Eq. (3.36). Fig. 3.24(a) and (b) show the corresponding results. Through a 

comparison of Fig. 3.21 and Fig. 3.24, for both the transparent target and the diffusely 

reflecting die, Yamaguchi and Zhang’s method displayed better performance in suppressing 

the undesired terms, than that of Lai et al.’s phase retrival approach. Taking a closer look at 

Eqs. (3.26) and (3.36), it is not difficult to find the reason for this. As described above, the 

phase error caused by the LC variable retarder, will affect the reconstruction results when 

using the quadrature-phase-shifting holograms. In Eq. (3.36), the phase-shifted reference 

waves are simulated by computer employing an ideal formula. However, the reference 

waves used in the experiment are not ideal. For example, the intensity of the reference 

wave is not uniform on the CCD sensor, because of dust or blemishes in the beam expander. 

Also the phase steps of the reference waves are not strictly π/2. The multiplications and 

additions of these ideal reference waves and the phase-shifting holograms with errors will 

surely increase noise and degrade the reconstruction results. This is in accordance with the 
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results shown in Fig. 3.24. Therefore in the practical application of phase-shifting digital 

holography, Yamaguchi and Zhang’s method is used by the majority of the researchers in 

this area. 

 

 

(a) 
 

(b) 

Fig. 3.24 The reconstructed intensity-contrast image by phase-shifting method proposed by Lai et 

al. (2000): (a) the die reconstructed from the same hologram sequence which were also used to 

obtain Fig. 3.21(b); (b) the resolution target reconstructed from the same hologram sequence 

which were also used to obtain Fig. 3.21(e). 

 

3.4 Conclusions 

In this chapter, various methods that have been used to suppress the zero-order and twin 

image terms have been briefly reviewed. These terms severely degrade the results of the 

in-line holograms. Even in off-axis digital holography, though the different terms are 

separated by the spatial carrier that has been introduced, the existence of these terms 

decreases the dynamic range of the reconstruction results. In conventional holography, this 

problem is mainly resolved by experimental methods. But with the facilities of digital 

recording and numerical reconstruction, digital holography is more flexible in its capability 

to suppress the effects of these terms. Digital filtering can easily be integrated into the 

numerical reconstruction stage to enhance the quality of results, as seen in section 3.2.1. 

Also with digital methods, the system geometry is simplified. For example, Gabor’s 

two-quadrature-hologram method is the same as the result of adding Eq. (3.32) and (3.33) 

together. Even so, the configuration of Gabor’s interference microscope was very 

complicated. By comparison the digital recording of four quadrature holograms, the 

implementation of Eq. (3.36) is straightforward and easy. 
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Besides digital image processing methods, the phase-shifting method is also widely used in 

digital holography in order to suppress the unwanted terms. In sections 3.2.2 and 3.3, a 

phase shift is introduced either in the object beam or the reference beam, depending on the 

conditions and requirements of the system setup. With either a known, or an unknown 

phase shift, some undesired terms are cancelled out, which definitely improves the 

reconstruction results. From the results shown in Fig. 3.21 and Fig. 3.23, it can be seen that 

phase-shifting digital holography provides a fundamental improvement over conventional 

digital holography. With this approach, the full resolution of the CCD sensor can be 

exploited and the quality of the reconstructed image is significantly enhanced. However, 

these benefits are achieved at the cost of an increased complexity in the whole system. In 

some real-time applications with high-speed requirements, the necessity of capturing more 

than three holograms for each state of the object would be a bottle-neck to the use of this 

technology. 

 

Digital filtering of the digital hologram with an inverse Hanning window is proposed in 

order to suppress the zero-order term and the twin image described in section 3.2.1. The 

feasibility and the influences of the various different techniques to suppress the zero-order 

term and the twin image for the application of macroscopic objects are specified in this 

chapter. 

 

In our main application of optical contouring by digital holography, which will be 

discussed later, phase-shifting digital holography was not used. This is because the 

characteristic curve of the LC variable phase retarder shown in Fig. 3.17, only works for 

linearly polarised light, whose polarisation direction is 45° to the fast axis of the retarder. 

However in optical contouring applications, one of the laser systems is designed to couple 

with an optical fibre. The state of polarisation of the laser beam delivered by the optical 

fibre is changed to an arbitrary status, dictated by fibre bending and environmental 

parameters, for example temperature and humidity. Hence, with this set-up phase-shifting 

using the LC variable retarder cannot be performed. Therefore, off-axis digital holography 

was used in the optical contouring section described in Chapter 5. 
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4 Enhancements of Digital Holography 

4.1 Introduction 

As the digital version of optical holography, digital holography has inherited both 

advantages and disadvantages from its optical counterpart. It has the ability to preserve 

both the intensity and phase information of the wave field, and can be performed within 

seconds or even in less than a second, without resorting to inconvenient wet chemical 

processes. However digital holography has also inherited some fundamental problems, 

such as the presence of the zero-order diffraction and speckle noise. Moreover, due to the 

characteristics of the recording media in digital holography, the effects of these two 

problems are more troublesome than in optical holography. The adoption of a CCD sensor 

as the recording medium facilitates fast and efficient recording and processing of the 

hologram, however the limited number of pixels in the CCD chip, i.e. the relatively low 

resolution of the recording media, is the biggest obstacle to the further development of 

digital holography. 

 

In this chapter, factors that enhance the results of digital holography will be dealt with. 

Firstly, the influence of the recording conditions will be discussed. Then speckle noise and 

the methods used to suppress it will be presented. Finally, a method is proposed to 

overcome the limitations due to the relatively low CCD resolution compared to 

holographic film. 

4.2 Recording conditions 

4.2.1 Typical configurations in digital holographic systems 

Fig. 4.1 shows some typical recording configurations used in digital holography. In Fig. 

4.1(a) and (b), a plane wave has been used as the reference wave. The benefit of using a 

plane reference wave is that it gives the ability to perform numerical refocusing by 

computer as part of the numerical reconstruction according to Eq. (2.20). A beamsplitter is 

used to couple the plane reference wave into the system in Fig. 4.1(b). This allows the 

object to be positioned symmetrically and easily. Usually there is a stand or equivalent 
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equipment that is used to hold the object securely. As explained in section 1.5, normally the 

angle between the object wave and the reference wave is smaller than 4°, depending on the 

specification of the CCD for off-axis digital holography. If the object is positioned too near 

the CCD target, the object holder might block the reference wave in a configuration such 

as that shown in Fig. 4.1(a). Although the use of a beamsplitter introduces some 

longitudinal image shift, in the application of imaging macroscopic objects, this shift does 

not have a noticeable effect on the results. Therefore, the configuration shown in Fig. 4.1(b) 

is frequently chosen by researchers. In our experiments, this configuration has also been 

used. 

 

Fig. 4.1 Typical recording configurations in digital holography 

 

Contrary to the situations shown in Fig. 4.1(a) and (b), Fig. 4.1(c) shows the case where a 

spherical wave has been used as the reference wave in lensless Fourier holography. The 

principle and example of lensless holography was previously described in section 2.2.4. 

The angle between the object wave and the reference wave is approximately constant over 

the full sensor area (see Fig. 4.2(b)). Thus the spatial-frequency spectrum is fully used on 

every point of the CCD, so that in this case the object can be positioned closer to the CCD 

sensor. However for a plane reference wave, the angle between the reference beam and the 

object beam varies over the surface of the sensor (see Fig. 4.2(a)). Therefore in some 

places the spatial bandwidth is not used fully, assuming that the sampling theorem is 

considered. 

 

In our experiments, lensless Fourier holography was not used, even though it provides 

better usage of the spatial-frequency spectrum and involves simpler calculations. This was 

mainly because it is not possible to perform numerical refocusing using this method which 

has been analysed in section 2.2.4. 

 

Reference wave 

CCD 

Object 

d 

(a) 

Beamsplitter 

Object 

Reference wave 

CCD 

d 

(b) 

Reference wave 

CCD 

Object 

d 

(c) 



Chapter 4 Enhancement of Digital Holography 

93 

  

Fig. 4.2 Diagrams to show the angle between the reference wave (R) and the object wave (O) over 

the surface of the sensor: (a) with plane reference wave; (b) with spherical reference wave. 

4.2.2 The intensity of the reference wave 

A hologram is the interference pattern formed by superposition of the reference wave and 

the object wave. According to interference theory, the maximum contrast of an interference 

pattern is achieved when the intensity of both waves is equal. The influence of the intensity 

ratio of the reference wave and the object wave is clearly shown in Fig. 4.3, which presents 

the reconstruction results from different digital holograms, where the intensity ratio has 

been changed by using different neutral density filters (NDF) to change the intensity of the 

reference wave. Because the object wave is the light reflected from the surface of the 

object, in this case a die, which is much weaker than the wave that was used to illuminate it, 

the NDF used in the optical path of the reference wave has to have a large attenuation 

factor to make both waves comparable. As well as the different holograms with varying 

ratios of reference wave and object wave, for each of these intensity ratios, an image of 

only the reference wave and an image with only the object wave were recorded in order to 

find out the optimization conditions to obtain good reconstruction results. Table 4.1 gives 

the results of this investigation. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.3 The reconstructed images of the die, produced by recording with different intensity ratios 

between reference wave and object wave. The intensity ratio was changed by using different NDFs 

in the reference beam path: (a) with a NDF of 0.1%; (b) with two NDFs of 0.1% and 50%; (c) 

with two NDFs of 0.1% and 33%; (d) with three NDFs of 0.1%, 33% and 50%. 
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(e) 

Fig. 4.3 (Continued) (e) the reconstruction result of the die with two NDFs of 0.1% and 10% in the 

reference beam path. 

 

 with a 

NDF of 

0.1% 

with 2 NDFs 

of 0.1% and 

50% 

with 2 NDFs 

of 0.1% and 

33% 

with 3 NDFs 

of 0.1%, 33% 

and 50% 

with 2 NDFs 

of 0.1% and 

10% 

Attenuation factor (%) 0.1 0.05 0.033 0.017 0.01 

Mean value of the 

image of the reference 

wave 

95.2464 65.5980 54.4046 38.8397 34.0447 

Mean value of the 

image of the object 

wave 

39.2769 38.9835 39.3064 39.0676 39.2637 

Intensity ratio of the 

reference wave and 

object wave 

2.42500 1.68271 1.38411 0.994166 0.867078 

Table 4.1 The mean values and intensity ratios of the reference wave and object wave by using 

different NDF combinations 

 

It is clear that with greater attenuation of the reference wave, the image of the die is 

improved and more object detail is revealed. But further attenuation of the reference wave 

results in the significantly noisy background in the reconstruction results as shown in Fig. 

4.3(e). If the reference wave is too intense, the image of the die is too dark and not many 

details are revealed, as shown in Fig. 4.3(a). Under the dual considerations of both 

displaying more information from the object and also restricting the background noise, 

there must be an optimisation of the intensity ratio of the object and reference waves. 

Comparing the five pictures in Fig. 4.3, this optimisation can be seen from Fig. 4.3(c) and 

(d). By referring to Table 4.1, it matches with the assumption that the best contrast of the 

fringes is achieved when the intensities of both the reference wave and the object wave are 

close to each other. These results show that the intensity ratio of both waves is important in 
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obtaining a good hologram, so the intensity ratio must be well-controlled in the recording 

procedure. 

 

Schnars and Juptner (2005) proposed a method to adjust the intensity ratio to the optimised 

level. An aperture is used to cover one half of the expanded reference wave. The brightness 

(measured in greyscale value) in that half of the CCD that is being illuminated by the 

reference and object waves together should be twice as high as the brightness in the other 

half, which is illuminated only by the object wave. However this is not valid for the 

conditions in our experiments. The hologram shown in Fig. 4.4(a) is generated by a 

reference wave and an object wave with an intensity ratio of 1:1. This is measured by 

blocking either wave to obtain two images with solely the reference wave, or alternatively 

solely the object wave and then performing calculations in order to get the results similar 

to those presented in Table 4.1. Then a paper screen was used to block off half of the 

reference wave and an image is captured as shown in Fig. 4.4(b). The intensity ratio of the 

right half of Fig. 4.4(b) compared to its left half is 1.4, which is much less than the ratio of 

2.0 that was proposed by Schnars and Juptner (2005). This difference might result from the 

different output powers of the laser sources used. According to Schnars et al. (1996) and 

other published papers by this group, laser sources with typical output powers of a few 

hundred miliwatts were used in their systems. However our most powerful laser has an 

output power of about 40 mw. Therefore, the object wave scattered from the surface of the 

object is very weak, as shown in the left half of Fig. 4.4(b). For such a very weak signal, 

the noise from the CCD has a larger effect than it would in the case of a stronger signal. 

Hence the reference wave and the object wave are preferred to be measured individually to 

find the optimisation ratio, rather than by using the method provided by Schnars and 

Juptner (2005). 

 

 

(a) 

 

(b) 

Fig. 4.4 Example to test the intensity ratio of the reference wave and object wave: (a) a hologram 

with equal intensity of the reference wave and object wave; (b) the image captured by blocking a 

half of the reference wave. 
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4.3 Reduction of speckle noise 

The experiments of Kozma and Christensen (1976) indicated that the image resolution of a 

coherently illuminated system is less than half of that produced by an equivalent 

incoherently illuminated system, when the object is a black and white diffuse grating. This 

factor falls to less than one-fifth when the object is a continuous grayscale-image. Because 

speckle noise severely degrades the results of digital holography as seen in previous 

chapters, speckle noise is an important issue that digital holography must deal with. It 

essentially arises from the limited size of the CCD camera and the rough object’s surface 

that is being illuminated by the coherent light source. There are many methods that have 

been used to resolve this problem. Usually these methods can be divided into two 

categories, digital image processing techniques and optical techniques. 

4.3.1 Digital image processing 

Garcia-Sucerquia et al. (2005) proposed a digital image processing method to effectively 

reduce speckle noise that combined a mixed approach of matrix reduction and median 

filtering. 

 

Fig. 4.5 An illustration of reducing the hologram size 

 

Matrix reduction is based on the idea of reducing the size of the reconstructed hologram, as 

Fig. 4.5 shows. Suppose ),( nmUh
′′′ , a shortened version of the reconstruction, is generated 

from the original reconstruction result ),( nmUh . Each pixel of ),( nmUh
′′′  is the result of 

averaging square regions of side length p  in ),( nmUh . Thus, if the pixel numbers of the 
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image ),( nmUh  is yx NN × , the pixel numbers of the reduced image ),( nmUh
′′′  will be 

( ) ( )pNpN yx intint × , with int standing for the integer part and p  the reduction order. 

Each pixel of ),( nmUh
′′′  is obtained from the weighted average of the local 

neighbourhood of the pixel in the input ),( nmUh , which can be represented 

mathematically as: 

( ) ( )[ ] ( )[ ]( )∑∑
= =

+−′⋅+−′⋅=′′′
p

i

p

j

hh jnpimpU
p

nmU
1 1

2
1,1

1
, , ,...3,2,1=p  

( )pNm xint,...,2,1=′ , ( )pNn yint,...,2,1=′     (4.1) 

This reduction can be understood to be a modified and localized low-pass filtering 

operation that generates a smaller output image in which all its entries are smoothed 

versions of corresponding square regions of size p . The bigger the reduction factor p , 

the smaller the speckle noise, while the bigger detriment of the image itself. Therefore, 

there must be a compromise in choosing a proper value for p . 

 

The median filtering involves a convolution using a conventional image processing median 

kernel filter. Since speckle noise can be considered to be randomly occurring impulses, and 

a median filter is a good tool to remove binary or impulsive noise, whilst preserving spatial 

resolution, median filtering is quite effective in reducing the speckle noise in the 

reconstructed results. Like the choice of the reduction factor p  that was addressed above, 

the width of the median filter window must also be optimised. Too small a filter width 

results in poor noise reduction, whereas too wide a filter results in blurring of the image. 

 

It is more effective to reduce speckle noise by combining these two methods rather than 

using them independently. The order of implementing them in the processing is significant, 

resulting in different image qualities. This can be verified by considering the results 

presented in Fig. 4.6. Also it shows that the choices of reduction factor and the width of the 

median filter significantly affect the results as stated above. However, a fully proven 

formula that guarantees success in the speckle noise reduction process has hardly been 

established. As in many areas of digital image processing, it has instead been addressed by 

rule of thumb. Regardless of this lack of a strict formula, the digital manipulation of 

holograms in digital holography brings great flexibility and greater versatility to 

components to formerly purely optical methods, such as the application of digital image 
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processing methods here and the elimination of the zero-order term and the twin image by 

spatial filtering in Chapter 3. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

Fig. 4.6 The reconstruction results with reduced speckle noise by use of digital image processing: 

(a) an original reconstructed result of a die; matrix reduction of (b) 2×2, (c) 4×4, (d) 5×5; median 

filtering with a window width of (e) 3×3, (f) 7×7, (g) 9×9; (h) 2×2 matrix reduction followed by 5×5 

median filtering; (i) 3×3 matrix reduction followed by 5×5 median filtering; (j) 5×5 median 

filtering followed by 3×3 matrix reduction. 
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4.3.2 Multiple holograms 

The contrast value of a speckle pattern can be used to evaluate the effect of speckle noise. 

Speckle patterns with high contrast values contain more speckle noise than those with 

lower contrast values. The contrast of a speckle pattern ν  is defined as 

Iσν =          (4.2) 

where I  is the mean value and σ  is the standard deviation of the intensity distribution 

),( nmI , both of which are described as 

,

),(
1 1
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I

N
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M
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= =   
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InmI
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σ     (4.3) 

Here MN ×  is the size of the speckle pattern. The contrast value of a standard speckle 

pattern is always equal to 1 because of its intensity distribution with a negative exponent. 

 

Suppose k  speckle patterns are represented as iI , ki ,...,2,1= . They follow the same 

intensity distribution but are statistically independent of each other. The mean value of iI  

is denoted by iI , and the standard deviation of iI  is denoted by iσ . Therefore the 

contrast value of iI  is 

iii Iσν =          (4.4) 

The averaged pattern ( Î ) of these speckle patterns is calculated by 

kII
k

i

i∑
=

=
1

ˆ          (4.5) 

So the mean value of Î  should be equal to iI : 

iII =ˆ           (4.6) 

Meanwhile, the relation between the standard deviation (σ̂ ) of Î  and iσ  is 

kiσσ =ˆ          (4.7) 

According to Eqs. (4.2), (4.3), (4.6) and (4.7), the contrast value (ν̂ ) of Î  is calculated by 
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kI iνσν == ˆˆˆ        (4.8) 

It is obvious in Eq. (4.8) that the contrast value of an averaged speckle pattern, taken from 

a series of k  speckle patterns, is reduced by a factor of k1  compared with that of a 

single speckle pattern. Hence speckle noise can be significantly reduced by averaging a 

number of speckle patterns that do not correlate with each other. Because a hologram is a 

recorded interference pattern of the combined object and reference waves, it is therefore 

eligible to apply this principle to holographic applications. 

 

The experimental setup is usually based on a typical off-axis holographic geometry, as 

shown in Fig. 4.7. However different researchers have used different methods to generate 

the series of holograms, which must have the same intensity distribution but uncorrelated 

speckle patterns. 

 

 

Fig. 4.7 The experimental setup to record multiple holograms to reduce speckle noise (BS, 

beamsplitter; E, objective; L, collimating lens; M, mirror; O, object; D, diffuser). 

 

It is quite simple to couple a diffuser into the geometry in order to introduce the change in 

the speckle pattern. Most of the approaches (Dainty, 1975, Lowentha and Joyeux, 1971, 

Dubois et al., 2004) to reduce the undesired effects of speckle noise in the coherent 

imaging system are based on moving diffusers during the integration time of the detector. 

The speed of the diffuser motion is tuned so that the phase of the illumination is temporally 

varying faster than the temporal resolution of the detector, providing an illuminating beam 

with reduced spatial coherence and consequently reduced speckle noise. However 

Garcia-Sucerquia et al. (2006) proposed a method which does not have to move the 
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diffuser within the integration time of the detector. Moreover, the speed and the movement 

of the diffuser are not necessarily as strictly controlled as in the former methods which 

makes the system simpler and easier to implement. It is an off-axis holographic system, but 

with a diffuser placed before the object to affect the speckle pattern of the illumination 

wave. The diffuser is shown as a dashed line in Fig. 4.7. The diffuser is kept still during the 

integration time of the detector, so that spatial coherence is preserved. This can be verified 

in Fig. 4.8(b) showing that the hologram recorded with a diffuser is reconstructed with 

high-contrast speckle noise, which is similar to the hologram recorded without a diffuser 

shown in Fig. 4.8(a). Fig. 4.8(b) is darker than Fig. 4.8(a) because of the reduction in the 

intensity of the object wave that was caused by the scattering of the diffuser. Then another 

hologram is recorded by shifting the diffuser to another position, but ensuring that the 

other parts of the geometry remain in the same condition as the last exposure. This 

procedure is repeated several times in order to produce a series of holograms with different 

speckle patterns. It should be noted that the shifts are made by keeping the diffuser in the 

same plane and ensuring that different areas of it are illuminated in each position. 

Therefore, statistically similar but uncorrelated speckle patterns will illuminate the object. 

Such conditions allow the shifts to be performed longitudinally or by rotating the diffuser 

in steps greater than the average size of the scattering surface asperities. Thereafter, several 

reconstructed holograms are superimposed on an intensity basis to generate a result with a 

reduction in the level of speckle noise. In Fig. 4.8, a series of reconstructed 

amplitude-contrast pictures of a die are displayed. The die is the same one originally shown 

in Fig. 2.6(a). With greater increments of the number of the superimposed images, the 

speckle noise reduction was improved and greater object detail was clearly revealed. 

Comparing Fig. 4.8(a) and (b), the introduction of a diffuser makes the reconstructed 

image of the die more uniform. This is because of the uniform illumination of the die 

through the diffuser. 

 



Chapter 4 Enhancement of Digital Holography 

103 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 4.8 The reconstructed amplitude-contrast images of a die : (a) without a diffuser; (b) with a 

diffuser in a particular still position; by superimposing (c) 2, (d) 6, (e) 12 holograms according to 

the method described above. 

 

Baumbach et al. (2006) proposed a new method of obtaining the holograms of different 

speckle patterns by shifting the detector. The CCD camera was placed on an x-y translation 

stage (indicated in Fig. 4.7 by dashed lines) to enable a shift that was parallel to the surface 
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of the object. By changing the camera position laterally which assures the shift of the 

camera was parallel to the surface of the object, the speckle field of the reconstructed 

object was changed and this was then recorded by the camera. The linear phase factor 

caused by the camera shift can be calculated and deducted from the directly reconstructed 

results to ensure that each phase map was similar to the phase map in the reference position. 

Finally all the processed phase maps were averaged to achieve a result with less speckle 

noise and better spatial resolution by applying the following relation: 
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where N is the number of images, iϕ  is the phase value at the ith position. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 4.9 (a) image of a relay; (b) result of a single deformation measurement of the relay; (c) result 

after averaging with 25 pictures (Reprinted with permission from Baumbach et al. (2006). 

Copyright(2006), Optical Society of America). 
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This method can actually be interpreted as a generation of a large synthetic aperture 

consisting of many small apertures given by the single CCD. The example presented in Fig. 

4.9 shows that this technique can suitably reduce speckle noise and recover spatial 

resolution in digital holography. The removal of the linear phase factor caused by the 

translation of the CCD sensor ensures accurate phase measurement. However, the use of 

the x-y translation stage makes the experimental system quite complicated and expensive. 

 

Quan et al. (2007) acquired multiple holograms by continuously changing the incidence 

angle of the wave used to illuminate the object. The mirror used to direct this illumination 

wave was mounted on a rotation stage that is shown in dashed lines in Fig. 4.7. By the 

rotation of this mirror, a set of holograms with different speckle patterns were obtained. 

These holograms were individually numerically reconstructed. By averaging the intensities 

of these reconstructed images, the speckle noise was drastically suppressed and the 

reconstructed result exhibited with a better contrast and clarity. This can be viewed from 

the results from the die shown in Fig. 4.10. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.10 Reconstructed amplitude-contrast images of the die obtained by: (a) 1, (b) 2, (c) 6, (d) 12 

holograms with different angles to illuminate the die controlled by a rotation stage 
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The results improve with the use of increasing numbers of holograms, but this is limited by 

the size and intensity of the optical field on the object. Therefore this method is simple and 

suitable for smaller objects. It can also be implemented so as to perform shape and 

deformation measurements. 

 

For the methods using multiple holograms, the improvement factor of contrast value does 

not strictly follow a relation of k1 . That is because the images reconstructed for every 

single hologram partially correlate with each other and the correlation coefficients are 

distributed randomly around 0, but are not exactly equal to 0. The situation varies under 

different experimental conditions and only can be evaluated experimentally. 

4.3.3 Deconvolution of the aperture function 

This method was recently proposed by Cai and Wang (2008). Through a careful 

investigation of the whole process of digital holography, including recording and 

reconstruction, they came to the conclusion that the speckle noise is aggravated after 

diffraction by a window function; moreover, the speckle noise is more aggravated by 

smaller window widths. Therefore the speckle noise in the reconstructed image of 

hologram can be reduced by reducing the aggravated noise due to the small-aperture 

diffraction through deconvolution. 

 

Suppose the object surface consists of N  points and the complex amplitude reflectivity 

of each point is ( )ηξ ,oU . The coordinate system is shown in Fig. 2.3. Then the 

reconstructed real image on the image plane ( )ηξ ′′,irU  can be described as 
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where ( )yxU r ,  represents the reference wave incident onto the hologram plane, λ  is the 

wavelength of the reconstruction light, Σ  is the area of the recording aperture on the 

hologram plane, d  is the distance between the object and hologram plane, and id  is the 

distance between the hologram plane and the image plane. If idd = , i.e. the reconstructed 
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image is at the same distance from the hologram plane as the original object, Eq. (4.10) can 

be written as 

( ) ( ) ( ) ( ) ( )
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where 






 −′−′

dd
P

λ
ηη

λ
ξξ

,  is the Fourier transformation of the hologram aperture. 

Therefore it is evident that the reconstructed image of the hologram is the convolution of 

the original object’s reflected light distribution when illuminated by coherent light and the 

Fourier transformation of the hologram aperture function. Assuming that the hologram 

aperture is a rectangle, with dimensions a and b in width and length, the aperture function 

can be expressed as 

( ) ( ) ( )byaxyxp rectrect, =       (4.12) 

and its Fourier transformation is 
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Therefore, a deconvolution process can be applied to the Fourier transformation of the 

aperture function in order to reduce speckle noise in the reconstructed image that is caused 

by diffraction through the hologram aperture. An example is shown in Fig. 4.11. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 4.11 (a) The digital hologram of a circle; (b) its reconstruction without deconvolution and (c) 

after deconvolution (Reprinted from (Cai and Wang, 2008). Copyright (2008), with permission 

from Elsevier) 

 

From the example it can be seen that the speckle noise from the aperture in the zero-order 

diffraction term has been reduced. Although this kind of noise is diffracted into every order 
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of the diffraction term, it has less influence on higher diffraction orders than on the 

zero-order diffraction term. That is why the image of the object is not improved as much as 

the zero-order term in Fig. 4.11(c). 

4.4 Resolution improvement 

As stated in section 1.5.1, the size of the object is limited by x∆ , the distance between 

neighbouring pixels of CCD sensor. It is described by Eq. (1.9): 

xx ∆
≈








∆

=
24

arcsin2max

λλ
θ        (4.14) 

where maxθ  is the maximum resolvable angle between the object wave and the reference 

wave, which restricts the size of the object, and λ  is the recording wavelength. This 

equation is valid for small angles. This relation has to be carefully maintained in the 

recording procedure. Otherwise, the contrast of the whole hologram decreases or even 

vanishes in extreme cases. Fig. 4.12 shows the effect of different x∆  values for the CCD 

sensor in digital holography. The object is a die with side length of about 13mm that was 

originally shown in Fig. 2.6(a). Only the effective resolution of the CCD was changed by 

subsampling in these images in order to vary x∆ , but all other conditions remained 

unchanged. The die in Fig. 4.12(a) is shown clearly, but the image shown in Fig. 4.12(b) is 

blurred and incomplete, caused by aliasing due to insufficient samples. With a further 

reduction in the resolution of the CCD, the fringe pattern in the hologram cannot be 

resolved by the CCD so that the image of the die disappears in Fig. 4.12(c).  

 

 

(a) 
 

(b) 

 

(c) 

Fig. 4.12 The reconstruction results of a die with different resolutions of the CCD sensor: (a) 

1024×1024, equivalent to a neighbouring pixel distance of 6.45µm; (b) 512×512, equivalent to a 

neighbouring pixel distance of 12.9µm; (c) 340×340, equivalent to a neighbouring pixel distance of 

19.35µm. 
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According to Eq. (4.14), either a laser source with a long wavelength or a CCD camera 

with a very small distance between neighbouring pixels is able to enlarge the maximum 

resolvable angle. In practice, most laser sources with long wavelengths are diode lasers, 

which have a large divergence angle and poor coherence. Meanwhile wavelengths above 

750 nm  are invisible to human eyes and normal CCD cameras also have insufficient 

quantum efficiency in this wave band. Therefore, most researchers use light sources such 

as HeNe lasers, Argon Ion lasers and high powered solid-state pulse lasers. It is 

straightforward to achieve better spatial frequencies by reducing the pixel size of the CCD 

sensor. However, the light intensity falling on a single pixel drops when the pixel size 

decreases. This generates shot noise that severely degrades the image quality. There is 

obviously a restriction in the amount by which pixel size may be reduced, whilst remaining 

free of the degrading effect caused by shot noise. Current image sensor technology has 

almost reached this level of 40 2mµ  (Park et al., 2003). Since both of these direct methods 

for increasing object size are impractical to apply, other methods have to be found to 

measure objects of larger sizes at a reasonable recording distance. 

 

Schnars et al. (1996) proposed a simple method to record large objects using digital 

holography. The experimental geometry is shown in Fig. 4.13. A divergent lens is arranged 

between the object and the target. This lens generates a reduced virtual image of the object 

at a distance d ′ . The wave emerging from this virtual image is the object wave and 

interferes with the reference wave to generate the hologram. This method is able to 

measure large objects at reasonably short distances. But the lens has the property of spatial 

filtering and causes an undesired optical bandlimiting effects, so that some object detail is 

lost. 

 

Fig. 4.13 Recording geometry for large objects using a divergent lens 

 

Divergent 

lens 

Reduced 

image 

Reference wave 

CCD 

Object 

Beamsplitter 

d  

d ′  



Chapter 4 Enhancement of Digital Holography 

110 

Because of the limited size of commercial CCD sensors, which is typically about 6×8 2mm , 

only a very small part of the object wave can be received by the sensor. It is hard to 

improve the resolution by enlarging the sensitive area of the CCD because it leads to an 

increase in capacitance, which results in a low charge transfer rate. However it can be 

improved by making more of the object wave reach the CCD chip. It is well known that 

light incident upon a grating often splits into three beams. One of these beams will 

propagate along the original direction, and the other two beams will deviate from the 

original direction with an angle of ∆± λ , where λ  and ∆  are the illumination 

wavelength and the period of the grating, respectively. This situation is depicted in Fig. 

4.14: 

 

Fig. 4.14 Ray diagrams of the object wave: (a) without grating; (b) with a grating. 

 

  

Fig. 4.15 Reconstruction results (a) using a grating to achieve super-resolution and (b) normal 

method without using a grating (Reprinted with permission from (Liu et al., 2002). Copyright 

(2002), American Institute of Physics). 
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It is obvious that more of the object wave will reach the sensitive area of the CCD with the 

use of a grating. Liu et al. (2002) noticed this property and inserted a grating into the 

off-axis hologram recording geometry. A grating was positioned between the object and the 

CCD sensor, where it does not affect the reference wave. In the numerical reconstruction, 

the function of the grating has to be considered in order to get the exact object wave in the 

object plane. This adds some complexity to the numerical reconstruction. Their 

measurement of a resolution target shows a noticeable improvement in spatial resolution as 

shown in Fig. 4.15. 

 

Although the practical problem of increasing the sensitive area of CCD is hard to 

overcome with contemporary technology, an approach based on this idea, which is called a 

synthetic aperture, has been successfully employed in radio and optical astronomy. Two or 

more separated sensor arrays are used to record the same scene and a combination of the 

recorded holograms is used to generate a new hologram with greater pixel numbers. It is 

quite easy to understand how this method achieves the improved spatial resolution when 

applied to holography. Every part of a hologram contains information from the entire 

object. Hence the resolution of the reconstructed image improves with an increase in the 

effective pixel numbers. However in the optical hologram reconstruction, the increase in 

the number of pixels produces a reduction of the speckle size due to the enlargement of the 

aperture. The concept of a synthetic aperture can be realized by various methods in digital 

holography. Binet et al. (2002) presented an active synthetic aperture-imaging system 

which is a combination of a synthetic aperture and phase-shifting digital holography. 

Multiple digital holograms are generated by rotating the object and are overlapped 

according to the estimation and compensation of their relative positions through a speckle 

cross-correlation algorithm. Massig (2002) overlapped multiple holograms obtained by 

moving the camera linearly. Kreis and Schluter (2007) captured two holograms by two 

cameras simultaneously, then embedded both holograms in an artificial large hologram 

using zero padding of pixels with no grayscale value. In this method, the shift between two 

single holograms has to be determined to subpixel accuracy. An example of the kind of 

super-resolution result obtained by use of synthetic aperture is given in Fig. 4.16. 
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Fig. 4.16 Synthetic aperture image of an USAF scattering test target computed with (a) a single 

hologram 128×128 pixels; (b) a synthetic aperture (2048×128) composed of 33 subpupil holograms 

merged coherently (Reprinted with permission from Binet et al. (2002). Copyright(2002), Optical 

Society of America). 

 

In fact, the hologram is the aperture of the recording system. According to the theory of 

diffraction, the size of the reconstructed pixel in the Fresnel approximation given in Eq. 

(2.25) is 

xN

d

∆
=∆

λ
ξ          (4.15) 

which is the half diameter of the airy disk or speckle diameter in the plane of the 

reconstructed image, which limits the optical resolution. However, increasing the aperture 

size by using more than one CCD does not automatically improve the image resolution 

because the larger synthetic aperture requires a longer recording distance which is 

illustrated in Fig. 4.17. maxθ  is restricted by ∆x according to Eq. (4.14). The pixel size of 

most commercial CCDs is of the order of 5 µm, hence the object has to be set at a longer 

distance in order to perform synthetic aperture methods. 

 

 

(a) 

 

(b) 
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Fig. 4.17 Scheme showing the use of two CCDs to create a synthetic aperture (redrawn from 

(Schnars and Juptner, 2005)) 

 

As discussed previously, the physical pixel size of CCD sensors seems unlikely to be 

significantly further reduced using present technology. Meanwhile, the idea of increasing 

the size of the sensor chip is also invalid because this results in an increase in chip 

capacitance which leads to a slow charge transfer rate. In order to overcome these 

restrictions in obtaining higher resolution images than those provided by CCD, a 

signal-processing based approach known as super resolution (SR) image reconstruction 

provides an alternative. The term SR was originally used in optics, and it refers to 

algorithms that operate mainly on a single image to extrapolate the spectrum of an object 

beyond the diffraction limit, i.e. SR restoration (Kang and Chaudhuri, 2003). The synthetic 

aperture method mentioned above is a type of SR restoration. These two SR concepts, SR 

image reconstruction and SR restoration, have a common focus in recovering 

high-frequency information that has been lost or degraded during image acquisition. 

However, the cause of this loss of high-frequency information differs between these two 

concepts. SR restoration in optics attempts to recover information beyond the diffraction 

cutoff frequency, while the SR image reconstruction method used in engineering tries to 

recover high-frequency components that have been corrupted by aliasing. In the rest of this 

chapter, the term SR is used to specify SR image reconstruction. 

 

The SR image is produced from multiple low-resolution (LR) images. The basis for 

increasing the spatial resolution in SR techniques is to capture multiple LR images from 

the same scene. This can be achieved by several acquisitions from one camera, or from 

multiple cameras installed in different positions. Each LR image represents a different 

“view” of the same scene. These LR images are subsampled (aliased) and shifted with 

subpixel precision. They cannot be shifted by integer units of pixels because that would 
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cause each image to contain the same information, thus there would be no new information 

that could be used to reconstruct an SR image. However, using different subpixel shifts for 

multiple captures ensure that new information is obtained in the LR images and each LR 

image cannot be obtained from the others. In this case, the new information contained in 

each LR image can be exploited to obtain an SR image. 

 

Most of the SR image reconstruction methods consist of three stages: registration, 

interpolation, and restoration (Park et al., 2003). These steps can be implemented 

separately or simultaneously, according to the reconstruction methods adopted. The 

estimation of motion information is referred to as the registration stage, and here the 

relative shifts between the LR images when compared to the reference LR image are 

estimated with fractional pixel accuracy. Obviously, accurate subpixel motion estimation is 

a very important factor in the success of the SR image reconstruction algorithm. In practice, 

the motions between the LR images are generated by the controller in the imaging system. 

Therefore high accuracy of the controller is essential to the performance of SR image 

reconstruction. Image interpolation has been extensively investigated in order to increase 

the number of effective pixels in a single image. The quality of an image magnified from 

an aliased LR image is inherently limited, even though ideal sinc basis functions are 

employed. This is because single image interpolation cannot recover the high-frequency 

components lost or degraded during the LR sampling process. For this reason, image 

interpolation methods are not considered as SR techniques. To achieve further 

improvements in this field, the next step requires the utilization of multiple data sets in 

which additional data constraints can be used from several observations of the same scene. 

The fusion of information from various observations of the same scene allows the SR 

reconstruction of the scene. Image restoration based on image processing rather than on the 

type of optical restoration mentioned previously is also related to SR image reconstruction. 

The goal of image restoration is to recover a degraded (e.g., blurred, noisy) image, but it 

does not change the size of image. 

 

In our experiments, a ProgRes
®

 MF
scan

, CCD camera with a “microscanning” function, 

which is also sometimes referred to as “pixel shifting”, was used to capture SR digital 

holograms via subpixel movements. The image sensor of such a camera can be moved with 

sub-pixel displacements by means of piezoelectric actuators. Using this technique the 

image plane is “scanned” by the CCD array sensor in a similar manner to a line scanner. 
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The successively captured single images are then recombined to produce an image with 

greatly increased spatial resolution. 

 

Fig. 4.18 shows experimental results using the ProgRes
®

 MF
scan

 camera, with a die as the 

object. The hologram recording geometry is an off-axis set-up as shown in Fig. 4.1(b). A 

35mw HeNe laser with a wavelength of 632.8nm was used as the light source. The size of 

the die was about 13mm×13mm×13mm, and the distance between the front of the die and 

CCD sensor chip was 604mm. The CCD chip has a resolution of 1360×1024 but only the 

central 1024×1024 pixels are used to perform numerical reconstruction. The size of each 

pixel in the CCD is 6.45µm×6.45µm. According to Eq. (4.15), the maximum size of object 

that would be resolvable is 29mm. But in off-axis holography, the introduction of an 

additional carrier frequency by the reference wave and the existence of the twin image 

reduce the resolvable resolution of the system to less than half of the maximum resolution. 

This is revealed in Fig. 4.18(a) which suffers from severe aliasing. The display of the die is 

incomplete and misplaced, because the image of the object should be on the left of the 

zero-order image, according to its original recording setup. If an angle is introduced to the 

simulated reference wave in the numerical reconstruction that is different from that used in 

the recording process, the carrier frequency is changed and the position of the image of the 

object and zero-order image move accordingly. This can be seen clearly in Fig. 4.18(b). 

Although the image of the object is now complete, the aliasing is still obvious and the twin 

image is superposed with the image of the object. The quality of Fig. 4.18(c) is highly 

improved compared to the former Fig. 4.18(a) and (b). The aliasing vanishes and the 

contrast of the image is much better. It is reconstructed from a hologram taken in 4-scan 

mode. By shifting the CCD chip three times, by a distance of half the pixel size in x- and y- 

dimensions, four holograms with resolutions of 1024×1024 are recorded and combined to 

produce a single super resolution hologram with a resolution of 2048×2048. This verifies 

the ability of the SR image reconstruction technique to increase the resolution of 

holograms and eliminate the aliasing effects caused by undersampling. Therefore, larger 

objects can be recorded and the distance between the object and the hologram can be 

shortened without resorting to the use of any optical lens. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.18 The numerical reconstruction results for the case when the recording conditions are such 

that the angle between the die and the reference wave is bigger than that which the CCD camera 

can resolve: (a) normal reconstruction; (b) normal reconstruction with an angle introduced for 

the reference wave, which enables the display of the die completely; (c) reconstruction of a super 

hologram with a resolution of 2048×2048 captured by 4-scan mode. 

 

Using the same die, placed at an angle that can be resolved by the camera, the 

reconstruction results are shown in Fig. 4.19. The zero-order term and the twin image are 
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cropped, and only the desired image of the die is displayed. Comparing these pictures, the 

one produced using 9-scan mode shows greater detail and has better contrast. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 4.19 The intensity-contrast reconstructed die with different recording modes: (a) 1-scan; (b) 

4-scan; (c) 9-scan. 

 

There are different methods to combine the LR images as a SR image (Kornis and 

Gombkoto, 2005, Baldi, 2006). They vary from a simple, weighted summation to more 

complex methods in the frequency space. The family of interleave methods are the 

simplest and the most cost-effective in the calculation. They can be described by the 

general formulation: 

∑
=

=
N

l

llkk JwI
1

,         (4.16) 

where kI  is the thk  SR pixel, lJ  is the thl  LR pixel and lkw ,  weights the 

contribution of the LR pixel l to the SR pixel k. The methods differ in the manner in which 

lkw ,  is chosen. For the interlace method, every input LR pixel falls only on one output SR 

pixel so that every output SR pixel gets information from one input LR pixel only, and not 

from other input LR pixels. For the four-quadrant 2×2 drizzle method, every input LR 

pixel is equally shared between four output SR pixels. 

 

The schematic diagrams of these two methods are shown in Fig. 4.20. Four LR images 

)4,3,2,1( =kIk , each with pixel number of m×n, are used to generate a SR image. They are 

captured by moving the camera by half of the distance between two neighboring pixels in 

both x and y axes which are displayed in Fig. 4.20 with number 1, 2, 3 and 4. Suppose the 

output SR image J is of pixel number of 2n×2m. Then for the interlace method, the output 

SR pixels are given 
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),()2,2( 1 yxIyxJ =         (4.17) 

),()2,12( 2 yxIyxJ =+        (4.18) 

),()12,2( 3 yxIyxJ =+        (4.19) 

),()12,12( 4 yxIyxJ =++       (4.20) 

While for the four-quadrant 2×2 drizzle method, the output SR pixels are given 

)1,1()1,(),1(),()2,2( 4321 −−+−+−+= yxIyxIyxIyxIyxJ    (4.21) 

)1,()1,(),(),()2,12( 4321 −+−++=+ yxIyxIyxIyxIyxJ    (4.22) 

),1(),(),1(),()12,2( 4321 yxIyxIyxIyxIyxJ −++−+=+    (4.23) 

),(),(),(),()12,12( 4321 yxIyxIyxIyxIyxJ +++=++     (4.24) 

 

 

Fig. 4.20 Schematic diagrams of interleave methods: (a) the interlace method; (b) four-quadrant 

2×2 drizzle method. (p is the distance between two neighboring pixels.) 

 

 

(a) 

 

(b) 

Fig. 4.21 The reconstruction results of a small statue obtained from: (a) a LR hologram; (b) a SR 

hologram generated by ProgRes
®
 MF

scan
. 
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(c) 

 

(d) 

Fig. 4.21 (Continued) (c) a SR hologram generated by the interlace method; (d) a SR hologram 

generated by the four-quadrant 2×2 drizzle method. 

 

From the results shown in Fig. 4.21, it is clear that the reconstruction results are affected by 

different methods used to generate a SR hologram. The actual algorithm used in the 

ProgRes
®

 MF
scan

 camera is commercially confidential and the company has refused to 

disclose the details. But the result obtained by this method in Fig. 4.21(b) shows that this 

method provides the best reconstruction results in our experiments. Therefore, the SR 

holograms directly obtained from the ProgRes
®

 MF
scan

 are used in the optical contouring 

process of a 3D object described in Chapter 5. 

 

It is natural to use interpolation to increase the size of the hologram. However, as was 

explained previously, single image interpolation is not able to recover high-frequency 

components that were lost or damaged during the LR sampling process. This is shown in 

Fig. 4.22. A hologram of the same die is recorded at the distance of 629mm with the same 

optical system to obtain Fig. 4.18. It is shown in Fig. 4.22(a) with a resolution of 

1024×1024. The amplitude-contrast image reconstructed from it is displayed in Fig. 

4.22(b), where the three terms are separated well. Then the original hologram is 

downsampled with a new resolution of 512×512. Every other pixel in x- and y- dimensions 

is preserved to form the downsampled new hologram. The amplitude-contrast image 

reconstructed from this downsampled hologram is shown in Fig. 4.22(c). It looks like the 

result in Fig. 4.18(a) where the aliasing effect is noticeable. As expected, the high 

frequency information of the die is lost in the downsampling process. A bilinear 

interpolation is carried out on this downsampled hologram to have a new hologram with 

the resolution of 1024×1024. The reconstructed result of this interpolated hologram is 
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shown in Fig. 4.22(d). Comparing Fig. 4.22(d) with (b), the high frequency information is 

not restored by bilinear interpolation so that the image is still suffering from serious 

aliasing effects. Similarly, the hologram in Fig. 4.22(a) is bilinearly interpolated to a new 

hologram with resolution of 2048×2048. Making a comparison of its reconstructed result 

in Fig. 4.22(e) and the result from a super hologram taken by 4-scan mode shown in Fig. 

4.22(f), Fig. 4.22(f) provides better noise reduction and correct result. However in Fig. 

4.22(e), unwanted replica of the twin image and the image of the die are obvious. 

Therefore the interpolation cannot restore the high frequency information lost or damaged 

by LR sampling but SR algorithms can achieve it. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.22 (a) a hologram of a die with resolution of 1024×1024; amplitude-contrast images 

reconstructed from (b) hologram in (a); (c) a downsampled hologram of (a) with resolution of 

512×512; (d) a hologram bilinearly interpolated to 1024×1024 from the downsampled hologram. 
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(e) 

 

(f) 

Fig. 4.22 (Continued) (e) a hologram bilinearly interpolated to 2048×2048 from (a); (f) a super 

hologram with reslution of 2048×2048 obtained from the camera by 4-scan mode. 

 

As the experimental results above show, it has been verified that SR image reconstruction 

can be used in digital holography to increase the recording angle between the object wave 

and the reference wave. Compared to conventional methods of using translation stages to 

cause displacements of the whole camera, the ProgRes
®

 MF
scan

 camera integrates a PZT in 

the body of the camera to control movement of the sensor chip alone at high precision. 

Therefore, the ProgRes
®

 MF
scan

 camera and the camera’s function of “microscanning” are 

very suitable to performing SR image reconstruction. The use of SR image reconstruction 

in phase application, such as holographic interferometry, will be demonstrated in Chapter 

5. 

4.5 Conclusions 

In this chapter, various methods for improving the performance of digital holography have 

been discussed. The methods used for suppression of the zero-order term and the twin 

image were discussed previously in Chapter 3. Therefore here the discussion has been 

focused on three main methods for improving digital holography. 

 

Firstly, the intensity ratio of the reference wave and the object wave was found to affect the 

quality of the reconstructed results in digital holography, just as it does in normal 

interferometric applications. Therefore it is important to keep the intensity of both waves 

comparable in order to obtain good results. 
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Secondly, as a coherent illumination source is used, speckle noise is unavoidable in digital 

holography due to the object’s rough surface. Many approaches have been developed to 

reduce speckle noise so that better resolution and image quality can be achieved. In terms 

of ease and flexibility of manipulation, digital image processing methods seem to be the 

best choice to deal with speckle noise. However, the lack of a fully proven formula and the 

usual image processing dependence on “rule of thumb” is a disadvantage. 

Multiple-hologram methods are widely used to reduce speckle noise. The multiple 

holograms are obtained by varying the speckle pattern of the object wave. This can be done 

by changing the status of the wave used to illuminate the object via translation stages, etc. 

This increases the complexity of the experimental system, but has the advantage of 

increased spatial resolution and reducing levels of speckle noise. Deconvolution of the 

aperture function is a newly proposed method. As with the digital image processing 

methods, it does not need more than one hologram to be recorded. Thus the experimental 

system is simpler and the time required to capture and process the hologram is shorter than 

that of multiple-hologram methods. However considering the results shown in Fig. 4.11, 

the improvements brought about by this method are limited when compared with the other 

methods mentioned. 

 

Thirdly, the low resolution of the CCD sensor results in heavy aliasing when it is applied to 

measure or visualize objects of relatively large size, e.g. of the order of tens of millimetres. 

It is also very hard to observe objects at closer distances due to the limited resolution of the 

CCD sensor. In our work, the super-resolution image reconstruction approach has been 

incorporated into our measuring system via a camera with microscanning capability, the 

ProgRes
®

MF
scan

 camera. This function not only removes aliasing to make the measurement 

more accurate, but also enables better quality reconstruction results to be obtained, with 

much larger observation ranges or alternatively a closer measurement distance for the same 

object. The use of the ProgRes
®

MF
scan

 camera enables the high accuracy and 

straightforward implementation of super-resolution image reconstruction algorithms. 

 

To the author’s best knowledge, this is the first time that holograms have been captured in 

super resolution by a camera with microscanning capability. The effect of super resolution 

approaches to digital holography has been thoroughly evaluated in this work. Also 

experimental work has been performed to propose a suitable approach to optimise the 

intensity ratio of the object beam and the reference beam. 
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5 Optical contouring of 3D objects 

5.1 Introduction 

As illustrated in Chapter 1, shape measurement plays an important part in many 

applications in engineering and science. Examples of those applications include inspection 

and quality control in industry, robotics, biomedicine, the measurement of mechanical wear, 

and 3D object surface data recording for research into deformation and strain analysis . 

Optical methods for 3D shape measurement have been studied extensively because they 

are noncontact, nondestructive and are able to detect the whole measurement field and are 

therefore high speed. These optical contouring methods can be categorised into both 

incoherent illumination methods, such as fringe projection, moiré, and into coherent 

illumination methods, such as holographic interferometry, speckle interferometry, etc. 

Amongst these optical methods, interferometry offers 3D surface shape measurement at 

high resolution. Well-known interferometric methods for 3D shape measurement include 

holography and speckle interferometry. Quantitative evaluation of fringe patterns was first 

applied in Electronic Speckle Pattern Interferometery (ESPI) to process the fringes formed 

upon the object’s surface. During the recording stage in ESPI, a lens is used to image the 

fringes and this introduces aberrations and makes the optical system more complex. 

However, no lens is used in holographic interferometry. The whole system is simpler and is 

therefore less influenced by aberrations. Conventional holographic interferometry performs 

well for many applications, as discussed previously in section 1.3. However in terms of the 

flexibility and processing speed it cannot meet the requirements of industrial environments. 

In this chapter, the feasibility of applying digital holography to the application of 3D 

surface contouring will be explored. 

 

In digital holography, the reconstructed optical field from the digital hologram is calculated 

as a set of complex numbers, through which the amplitude- and phase-contrast images can 

be obtained. When imaging microscopic objects, phase-contrast images are of great interest 

as the 3D contour and absolute refractive indices of these objects can be determined from 

their phase-contrast images (Cuche et al., 1999). Phase-contrast imaging is used 

extensively and quantitatively in the microscopic field. However, it is of limited use with 

macroscopic objects. Macroscopic objects may be defined as objects with dimensions at 
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least 4 orders of magnitude greater than the wavelength of the optical field. Because their 

roughness is comparable to the wavelength of the optical wave, their phase-contrast images 

consist of values randomly distributed between the range π−  and π+ . Therefore, a 

point-to-point subtraction of two phase-contrast images is necessary to determine the 3D 

contours of large objects. The result of this subtraction produces fringes which are absolute 

contours of surface height above some reference surface. Usually these two phase-contrast 

images of the same macroscopic object are obtained by using either two different 

illumination sources, two different wavelengths or two different refractive indices. 

 

In this chapter, both conventional and digital implementations of these three methods, 

two-source, two-wavelength and two-refractive-index methods, will be discussed in detail. 

Finally a brief comparison of these three techniques is presented. 

5.2 Contour generation 

As shown in previous chapters, the image formed by the wavefront reconstruction process 

in holography is a replica of the object. This image contains a multiplicative phase function 

which is often absorbed into the image term and ignored (Hildebrand and Haines, 1967). 

However, this phase function is fundamental to optical contouring by holography. 

According to Fig. 5.1, this phase term is 

( ) ( )ba rrkrrrk −+−+′= 22101mϕ       (5.1) 

where 11 2 λπ=k  and 22 2 λπ=k , 1λ  is the wavelength used in the recording process 

and 2λ  is the wavelength used in the reconstruction process. 

 

If contours are to be generated on the image, obviously additional information about the 

object must be obtained. If the source that is used to illuminate the object is changed in 

position during exposures, the hologram sees the object under illumination from two 

different angles. Likewise, multiple-frequency illumination provides additional information 

about the object because the complex reflectivity of the object is a function of frequency. 

Another way to interpret this is that the change of ϕ  in Eq. (5.1) produces the desired 

interference pattern. Therefore, changes in the optical path, illumination wavelength or 

refractive index of the media results in the formation of contour fringes. 
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Fig. 5.1 Geometries for (a) the hologram recording process; (b) the reconstruction process. 

 

5.3 Two-source methods 

5.3.1 The conventional two-source method 

In conventional holography, a double-exposure hologram may be formed on a holographic 

film by the two-source method. Between exposures the light source used to illuminate the 

object is shifted laterally by a small amount. Usually the object is illuminated by the 

reflection of the light source via an adjustable mirror. Through changing the angle of the 

mirror between exposures, the source appears to be translated. Hence, when this 

double-exposure hologram is reconstructed, a pattern of interference fringes is seen. 

 

The principle of this method is quite straightforward. The two beams from two different 

light sources generate the planes of interference when they cross. The contours are formed 

when any object is placed into this light field, which appears to be cut by the planes of 

interference into a number of slices. In the recording process of the double-exposure 

hologram, the object is illuminated sequentially with each of the light sources, so no 

contours can be seen directly. But when this double-exposure hologram is reconstructed by 

the reference wave, both illumination beams from these two light sources appear 

simultaneously then the contours are observable as if illuminated by the two crossed beams. 

From this it can also be seen that for collimated illumination beams the fringe or contour 

spacing h∆  is given by 
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( )2sin2 θ
λ

=∆h          (5.2) 

where θ  is the angle between the two illumination beams and λ  is the wavelength of 

the light sources. The reference planes for the contours will bisect the two beams. 

5.3.2 The two-source method in digital holography 

For the measurement of 3D surface shape using the two-source method in digital 

holography, a typical setup is shown in Fig. 5.2. 

 

 

Fig. 5.2 A typical setup for surface contouring by the two-source method in digital holography 

 

Beamsplitter 1 is used to separate the expanded laser beam into two beams: an object beam 

and a reference beam. The object beam illuminates the surface of the object via a rotatable 

mirror, whose movement is controlled by an electronic or a piezo-electric controller. The 

reference beam remains unchanged and is directed to the CCD sensor by mirror 1 and 

mirror 2. The reflected light from the surface of the object and the reference beam are 

combined by beamsplitter 2 and the interference pattern is captured by the CCD sensor. 

 

By numerical reconstruction in digital holography, both amplitude- and phase-contrast 

images are obtained directly. Here only the phase-contrast images are of the interest for 

determining the 3D surface contours of macroscopic objects. Between the two exposures, 

the rotatable mirror is rotated by an angle 2θ∆  from its initial angle of incidence θ. For 

simplicity, a two-dimensional analysis is adopted here. The object phase before and after 

the rotatable mirror tilt, ( )01 , zx −θϕ  and ( )02 , zx −θϕ , is expressed by 
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( ) ( ) ( )[ ]xhxhxkzx ++=− θθϕθ cossin, 01       (5.3) 

( ) ( ) ( ) ( ) ( )[ ]xhxhxkzx +∆++∆+=− θθθθϕθ cossin, 02     (5.4) 

where x  and ( )xh  are shown in Fig. 5.2, θ∆  is the change of the illumination angle 

between the two exposures, and k  is the wave number. As previously mentioned the 

roughness of the surface is comparable with the optical wavelength so that each 

phase-contrast image is randomly distributed between the values π−  and π . Hence, the 

phase difference becomes 

( ) ( ) ( )
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which means that the object surface is intersected by a group of planes parallel to the 

bisector of the illuminating beams and spaced by ( )[ ]2sin2 θλ ∆ , where λ  is the 

wavelength of the laser. The contour interval h∆  is given by the following expression if 

the tilt angle is sufficiently small: 
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 ∆
+

∆
=∆h       (5.6) 

It should be noted that Eq. (5.6) only holds for 0=x . 

 

As the phase-contrast images 1θϕ  and 2θϕ  are calculated from the recorded holograms 

according to the algorithms mentioned in Chapter 2, they are modulo 2π phase images, i.e. 

wrapped phase images. The phase change induced by the translated illumination source 

monotonically increased or decreased within the object field, so the phase difference 

between these phase-contrast images θϕ∆  cannot be computed by simply subtracting 

image 1θϕ  directly from image 2θϕ  but instead is given by 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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( )0, zx −∆ θϕ  is also a wrapped phase image. Conventional phase unwrapping algorithms 

may be applied to this phase difference image in order to remove the 2π ambiguities and so 

achieve an absolute phase difference map and the surface contours of the object. 
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To obtain contouring planes normal to the line of sight in reflective holography, the object 

must be illuminated from the side. The consequent problem of shadowing is unavoidable 

for the objects with complex surface shapes. Meanwhile, the first term in Eq. (5.5) is the 

linear phase introduced by the use of illumination from the side and this phase term is 

independent from the object. It must be removed in order to obtain the correct contours of 

the object related to the surface height distribution ( )xh . 

5.3.3 Experimental system for the two-source method 

The scheme of our experimental system is similar to the geometry shown in Fig. 5.2, and 

Fig. 5.3 shows a photograph of the real system. 

 

 

Fig. 5.3 A photograph of the experimental system 

 

A 35mw HeNe laser (Melles Griot, model number of 25 LHP 928-230) with a wavelength 

of 632.8nm was used as the light source. The laser beam passes through a cubic 

beamsplitter of size 25.4mm×25.4mm×25.4mm to form two beams. One beam, which is the 

reference beam, travels through two mirrors and is expanded by a 20× beam expander 

Object (Roller) 

Laser 

CCD Camera 

Rotation 

Stage 

Beam Expander 1 

Mirror 

Mirror 

Beamsplitter 2 

Beam Expander 2 

Beamsplitter 1 



Chapter 5 Optical Contouring of 3D Objects 

131 

made by Melles Griot. Then it is reflected by another cubic beamsplitter so that it enters 

the camera. The other beam, i.e. the object beam, expanded by beam expander which 

consists of an objective ( mmfNA 4,62.0 == ) and a collimation lens ( mmf 75= ), 

illuminates the surface of the object by way of a reflecting mirror which is mounted on a 

Newport rotation stage RV120CC. This rotation stage is controlled by a Newport controller, 

model number MM4005. The resolution of this rotation stage is 0.001°. The CCD camera 

used to capture the hologram was a ProgRes
®

 MF
scan

 from Jenoptik. The resolution of the 

CCD sensor is 1360×1024. But with built-in piezo-control mechanics in the camera, the 

CCD sensor can be shifted precisely by a fraction of the pixel spacing so that a much 

higher resolution can be achieved by combining these shifted images to form a super 

resolution image.  

 

In a digital holographic system, the CCD sensor is the aperture of the system. Therefore, 

the numerical aperture of the system is related to the size of the CCD sensor and also the 

distance between the object and the CCD sensor. If the distance between the object and the 

CCD sensor is d, the pixel spacing of the CCD is x∆  and the number of pixels in each 

dimension for the CCD is N, the numerical aperture of the system can be described as 

d

xN
NA

2

∆
=          (5.8) 

In an optical system, the numerical aperture characterizes the range of angles over which 

the system can accept or emit light. The focal depth of the reconstructed image is given by 

( )2NA
FL

λ
=          (5.9) 

Therefore, to measure an object at a distance of a few hundred millimetres, say 700mm, 

with a recording wavelength of 632.8nm and a CCD sensor side length of 6mm, the focal 

depth of the reconstructed image would be 34mm. However for a distance of 200mm, under 

the same conditions, the focal depth would be 2.8mm. This shows that the object distance 

does not have to be measured precisely if the object is placed at a relatively large distance 

from the CCD. When the object is placed near the CCD, especially in microscopic 

applications, the distance should be measured precisely. However, the numerical focusing 

ability of digital holography can extend the focal depth in these applications to compensate 

for the shortages inherent in conventional microscopy. 
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5.3.4 Experimental results for the two-source method 

Firstly a white-painted stainless steel roller bearing element was used as the measurement 

object. The radius of the roller was 5.60mm and its height is 11.20mm. Fig. 5.4 shows a 

photograph of this roller. 

 

 

Fig. 5.4 A photograph of the roller under study 

 

The roller was illuminated by the HeNe laser from an angle θ with respect to the optical 

axis of the CCD sensor, i.e. z axis. It is placed 527mm away from the CCD plane. The 

angle θ was set to -36° and the mirror was rotated with °=∆ 03.0θ  between the two 

exposures. The phase-contrast images produced directly from the numerically 

reconstructed holograms for these two angles are shown in Fig. 5.5. Fig. 5.5(a) is the 

phase-contrast image with an illumination angle °−= 00.36θ  and Fig. 5.5(b) is the 

phase-contrast image with an illumination angle °−= 97.35θ . Both images look 

qualitatively the same. The phase of the reconstructed object field is randomly dispersed in 

the range of -π to +π. As illustrated in section 5.1, these phase-contrast images do not offer 

direct phase information of the object’s surface because of the surface roughness which is 

much higher than the wavelength of the illumination source. But the phase-difference 

image can provide the wrapped phase map of the object under study. Fig. 5.5(c) shows the 

phase-difference image which is obtained by subtracting Fig. 5.5(b) from Fig. 5.5(a) 

according to Eq. (5.7). Because the object is illuminated from the side, as shown in Fig. 5.3, 

there is a linear carrier term that must be deducted. Otherwise the correct object surface 

will not be achieved after phase unwrapping. Fig. 5.5(d) is the wrapped phase map of the 

object under study after removing the linear carrier term in Eq. (5.5). Fig. 5.5(e) is the 

unwrapped phase map of the roller. Fig. 5.5(f) is the reconstructed 3D surface of the roller. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 5.5 Experimental results for a roller: the reconstructed phase-contrast images when (a) the 

illumination angle θ = -36°; (b) the illumination angle θ = -35.97°; (c) phase-difference image 

obtained by subtracting (b) from (a); (d) phase-difference image with the removal of the linear 

carrier term; (e) unwrapped phase-difference image; (f) the 3D height distribution of the object 

surface. 

 

In the whole process of calculating the 3D height distribution of the object, there are some 

important aspects to note: 

 

A. the removal of the linear carrier term 

 

This is very important for the two-source method. The linear carrier factor has to be 

removed as tilted illumination is always used in this method. Otherwise the unwrapped 
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phase cannot provide the correct phase information. According to Eq. (5.5), the linear 

carrier factor lt  is given by: 

( ) ( )2cos2sin2 θθθ ∆+∆= kxtl       (5.10) 

The calculated phase-difference term θϕ∆  in Eq. (5.7) is wrapped between 0 and +2π. 

However, lt  is beyond this range. To remove the linear carrier factor effectively, lt  has 

to be wrapped between 0 and +2π as well. The arctan function is applied to Eq. (5.10) to 

obtain the wrapped linear carrier factor lwt  which is distributed between the range of 0  

and +2π. The removal of the linear carrier factor is then calculated by 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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This new phase term nwϕ  represents the actual phase introduced in the optical field by the 

surface shape of the roller. After inverting this term, a 3D representation of the surface of 

the roller can be obtained. Fig. 5.5(c) and (d) show the phase-difference image before and 

after the removal of the linear carrier factor. 

 

B. the noise reduction of the wrapped phase map by digital image processing 

 

As illustrated in previous chapters, because of the limited size of the CCD sensor, a 

fundamental problem in digital holography is the presence of speckle noise in the 

reconstruction process. The speckle pattern can be clearly seen in Fig. 5.5. The direct 

measurement result in Fig. 5.5(f) is noisy and cannot show the shape of the surface clearly. 

Besides the speckle noise, electronic noise from the CCD sensor also noticeably degrades 

the holograms, because the light reflected from the surface of the object is very weak. Also 

in such noisy wrapped phase-difference images, the phase unwrapping algorithm may 

detect false 2π jumps, which may cause additional image corruption effects. To avoid these 

problems, digital image processing techniques may be used to enhance the wrapped 

phase-difference image. 

 

Median filters are commonly used to smooth the phase-difference images (Schnars, 1994). 

Median filtering can be applied to all the pixels in the phase-contrast image using a small 

window of variable size. Usually a 3×3 window is used. The method takes all the data 

points contained within the window, sorts them until the median is found, and then places 
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the median value into a location in another array corresponding to the centre of the window. 

The window is then moved across the image by one pixel, and the procedure is repeated 

until the entire array has been processed. Since the median filter does not create new pixel 

values when the filter encounters an edge, it is much better at preserving sharp edges than 

mean averaging filters. But phase itself is not a signal. It is instead a property of a signal. It 

is usually suggested that it is the observations which generate the phase rather than phase 

itself that must be filtered. However in digital holography, the original holograms are not 

available to be filtered and so the phase data itself must be filtered. Therefore the phase 

data cannot be filtered in a conventional way. 

 

Suppose the phase in the phase-difference image is ),( yxϕ . In the conventional way, the 

median filtered phase ),(~ yxϕ will be obtained by 

( )[ ]yxmedianyx ,),(~ ϕϕ =         (5.12) 

In fact, the phase data first must be mapped to vectors ( )[ ]yxj ,exp ϕ  in the complex plane 

(Ghiglia and Pritt, 1998). These vectors can then be median filtered and the resulting phase 

extracted by means of the arc tangent operator. Because there is no natural way to define 

the median filter because of the lack of natural ordering for complex numbers, an 

approximation has to be defined by the equation 

( )[ ] ( )[ ]{ }yxmedianyxmedianyx ,cos,,sinarctan),(~ ϕϕϕ =    (5.13) 

where the median is evaluated in the 3×3 neighbourhood of the pixel ),( yx . Some 

researchers use other filters, such as the anisotropic sine/cosine average filter, to enhance 

the wrapped phase and prevent image corruption effects (Palacios et al., 2004). Here a 

median filter with a 3×3 window has been applied to the wrapped phase-difference image 

without the linear carrier factor (see Fig. 5.5(d)). Fig. 5.6(a) and (b) show the results of the 

wrapped phase-difference image filtered by Eq. (5.12) and Eq. (5.13), respectively. Fig. 

5.6(c) and (d) show the unwrapped phase of Fig. 5.6(a) and (b). Fig. 5.6(e) and (f) are the 

3D height distributions of the surface converted from the phase in Fig. 5.6(c) and (d). Fig. 

5.6(g) shows the 3D height distribution of the surface in Fig. 5.6(f) by further smoothing of 

3×3 window. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Fig. 5.6 (a) The wrapped phase image with incorrect median filtering in Eq. (5.12); (b) the 

wrapped phase image with correct median filtering in Eq. (5.13); (c) the unwrapped phase image 

from (a); (d) the unwrapped phase image from (b); (e) the 3D height distribution of the surface 

from (c); (f) the 3D height distribution of the surface from (d); (g) the 3D height distribution of 

the surface in (f) by further smoothing of 3×3 window. 

 

Faulty discontinuity 
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Clearly from Fig. 5.6(e), a 2π jump has not been detected by the unwrapping algorithm and 

so there are discontinuities in the 3D representation of the surface. But when the wrapped 

phase-difference image is filtered correctly according to Eq. (5.13), the reconstructed 

surface shape (see Fig. 5.6(f)) can be seen to coincide with that of the roller under study. 

Though the application of median filter helps to reduce the speckle noise significantly, 

comparing Fig. 5.5(e) and Fig. 5.6(f), the reconstructed surface can be further smoothed by 

a 3×3 averaging window, as is shown in Fig. 5.6(g). By using a curve fitting technique, 

based on the Gradient-expansion algorithm (Bevington and Robinson, 1992), which 

combines the best features of the gradient search technique with the method of linearizing 

the fitting function, the measured radius of the roller in Fig. 5.6(g) was determined as 

5.54mm, which represents an error of only 1.1% compared with the value of 5.60mm as 

measured by a vernier calliper with an uncertainty of 0.02mm. 

 

Another nonlinear filtering method was proposed by Yamaguchi et al. (2001). The phase 

image is split into discrete 2×2 matrices and for each 2×2 sub-matrix a phase value for the 

pixel with the maximum amplitude of 
∗

21UU  is chosen in order to compress the original 

data set. For an original phase-difference image of 1024×1024 pixels, the compressed 

image has a size of 512×512 pixels. This data compression is justified because the phase 

values at lower intensity pixels are less reliable. The results from this processing are 

presented in Fig. 5.7. Fig. 5.7(a) is the phase-difference image processed by this nonlinear 

filtering method, after removal of the linear inclination factor. Fig. 5.7(b) is the unwrapped 

phase map of Fig. 5.7(a). Fig. 5.7(c) is the direct 3D height distribution of the detected 

surface from Fig. 5.7(b). Fig. 5.7(d) is the result of further smoothing of Fig. 5.7(c) by a 

3×3 window. Although there are some wrinkles on the surface of the roller, the shape is 

correctly obtained. Meanwhile the measured radius of the surface of 5.74mm has an error 

of 2.5% compared to that measured independently using a vernier calliper as 

5.60±0.01mm. 

 

(a) 

 

(b) 

Fig. 5.7 (a) The wrapped phase-difference image processed by this nonlinear filtering method 

(∆θ=0.03°); (b) the unwrapped phase image of (a). 
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(c) 

 

(d) 

Fig. 5.7 (Continued) (c) the direct 3D height distribution of the measured surface from (b); (d) the 

further smoothing of (c) by a 3×3 window. 

 

According to the principles of the filtering methods shown above, the nonlinear filtering 

method proposed by Yamaguchi et al. (2001) has an improved ability in suppressing 

speckle noise in digital holographic interferometry where the reflected light intensity from 

the surface of the object is often lower than would ideally be the case. 

 

C. the effect of the application of different phase unwrapping algorithms 

 

There are many different phase unwrapping algorithms that can be used for applications in 

interferometry. They can be classified into two categories: path-following methods and 

minimum-norm methods. Interested readers can find more details about phase unwrapping 

algorithms in the bibliography (Ghiglia and Pritt, 1998). Path-following methods are 

mainly based on branch-cut, quality-map or discontinuity techniques. They explicitly or 

implicitly generate branch cuts or lines of discontinuity. Goldstein’s branch cut algorithm, 

the quality-guided path following algorithm, Flynn’s minimum discontinuity algorithm and 

the recursive nearest neighbour algorithm all fall into among this category. Minimum-norm 

methods are completely different from the path-following methods. They impose 

constraints on the solution in a mathematically formal manner, in order to seek the 

unwrapped phase whose local derivatives match the measured derivatives as closely as 

possible, according to the generalized error norm. The minimum L
p
-Norm algorithm and 

the PCG (preconditioned conjugate gradient) algorithm are typical methods in this category. 

Usually Goldstein’s algorithm is the fastest amongst the phase unwrapping algorithms 

mentioned above. Its unwrapping results are good if the wrapped phase map is not noisy 

and is without discontinuities. In terms of success and failure rate, Flynn’s algorithm and 

the minimum L
p
-norm algorithm are better than the other algorithms. However, they run 
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considerably slower than Goldstein’s algorithm. Fig. 5.8 shows results comparing different 

phase unwrapping algorithms. The wrapped phase-difference image in Fig. 5.8(a) is used 

to test all of these different phase unwrapping algorithms. It is the same as that shown 

previously in Fig. 5.5(d). The unwrapped phase maps and their corresponding 3D height 

distributions are displayed for comparison. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 5.8 A comparison of different phase unwrapping algorithms for the phase-difference image 

shown in Fig. 5.5(d): (a) the unwrapped phase map and (b) the height distribution produced using 

Goldstein’s branch cut algorithm; (c) the unwrapped phase map and (d) the height distribution 

produced using the quality-guided path following algorithm; (e) the unwrapped phase map and (f) 

the height distribution produced using the mask cut algorithm. 
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(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 

 

(m) 

 

(n) 

Fig. 5.8 (Continued) (g) the unwrapped phase map and (h) the height distribution produced using 

Flynn’s minimum discontinuity algorithm; (i) the unwrapped phase map and (j) the height 

distribution produced using the Unweighted Least-squares (Unweighted Multigrid) algorithm; (k) 

the unwrapped phase map and (l) the height distribution produced using the PCG algorithm; (m) 

the unwrapped phase map and (n) the height distribution produced using the weighted multigrid 

algorithm. 
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(o) 

 

(p) 

 

(q) 

 

(r) 

 

(s) 

 

(t) 

Fig. 5.8 (Continued) (o) the unwrapped phase map and (p) the height distribution produced using 

the minimum L
p
-norm algorithm; (q) the unwrapped phase map and (r) the height distribution 

produced using the reliability ordering (Arevalillo-Herráez’s) algorithm; (s) the unwrapped phase 

map and (t) the height distribution produced using the recursive nearest neighbor algorithm. 
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Phase Unwrapping Algorithm 
Measured Radius of 

The Surface (mm) 
Error (%) 

Goldstein’s Branch Cut Algorithm 5.538 -1.1 

Quality-Guided Path Following Algorithm 5.686 1.5 

Mask Cut Algorithm 5.646 0.8 

Flynn’s Minimum Discontinuity Algorithm 5.542 -1.0 

Unweighted Least-Squares Algorithm 6.739 20.3 

PCG Algorithm 8.760 56.4 

Weighted Multigrid Algorithm 6.449 15.2 

L
p
-Norm Algorithm 5.569 -0.6 

Reliability Ordering (Arevalillo-Herráez’s) 

Algorithm 
5.925 5.8 

Recursive Nearest Neighbour Algorithm N/A N/A 

Table 5.1 The measured radius of the roller according to Fig. 5.5(d) 

 

 

Phase Unwrapping Algorithm 
Measured Radius of 

The Surface (mm) 
Error (%) 

Goldstein’s Branch Cut Algorithm 5.588 -0.2 

Quality-Guided Path Following Algorithm 5.588 -0.2 

Mask Cut Algorithm 5.588 -0.2 

Flynn’s Minimum Discontinuity Algorithm 5.588 -0.2 

Unweighted Least-Squares Algorithm 6.190 10.5 

PCG Algorithm 6.501 16.1 

Weighted Multigrid Algorithm 5.822 4.0 

L
p
-Norm Algorithm 5.588 -0.2 

Reliability Ordering (Arevalillo-Herráez’s) 

Algorithm 
5.588 -0.2 

Recursive Nearest Neighbour Algorithm N/A N/A 

Table 5.2 The measured radius of the roller according to Fig. 5.6(b) 
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Phase Unwrapping Algorithm 
Measured Radius of 

The Surface (mm) 
Error (%) 

Goldstein’s Branch Cut Algorithm 5.641 0.7 

Quality-Guided Path Following Algorithm 5.603 0.1 

Mask Cut Algorithm 5.641 0.7 

Flynn’s Minimum Discontinuity Algorithm 5.641 0.7 

Unweighted Least-Squares Algorithm 6.466 15.5 

PCG Algorithm 6.426 14.8 

Weighted Multigrid Algorithm 5.641 0.7 

L
p
-Norm Algorithm 5.660 1.1 

Reliability Ordering (Arevalillo-Herráez’s) 

Algorithm 
5.630 0.5 

Recursive Nearest Neighbour Algorithm N/A N/A 

Table 5.3 The measured radius of the roller according to Fig. 5.7(a) 

 

As the results are shown above, different phase unwrapping algorithms have different 

performance. For the phase-difference images both with and without digital filtering shown 

in Fig. 5.5(d), Fig. 5.6(b) and Fig. 5.7(a), Goldstein’s branch cut algorithm, quality-guided 

path following algorithm, mask cut algorithm, Flynn’s algorithm and the L
p
-norm 

algorithm performed stably with errors between -1.1% to 1.5%. However the recursive 

nearest neighbour algorithm failed to extract the correct 3D height distribution of the roller 

under any case. Clear discontinuities can be seen in Fig. 5.8(s), which indicated the failure 

of the algorithm to detect the 2π jumps. The digital filtering of the phase-difference image 

improved the results of the phase unwrapping process. Comparing Table 5.2 and Table 5.3 

with Table 5.1, the error decreased after performing digital filtering on the phase-difference 

images. For the phase unwrapping algorithms which are quite sensitive to the noise, such 

as unweighted least-squares algorithm, PCG algorithm, weighted multigrid algorithm and 

reliability ordering algorithm, their performances improved significantly after the 

phase-difference images were digitally filtered. In terms of running time, all the algorithms 

took a similar time, in the range to two seconds, to process an image with a size of 

266×300 pixels, except L
p
-norm algorithm which took 15 seconds to process the same 

image. 
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D. the effect of the contour interval 

 

The contour interval, defined by Eq. (5.6), is in inverse proportion to the number of 

contour fringes in optical contouring. To investigate its effect on the reconstructed 3D 

surface height distribution, various contour intervals were used. In the two-source 

contouring method, the height sensitivity is related to the illumination angles in both 

exposures and the recording wavelength according to Eq. (5.6). Fig. 5.10 to Fig. 5.14 show 

the results obtained by varying ∆θ to achieve different height sensitivities. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.9 The contouring results when ∆θ=0.01°: the phase-difference images (a) with and (b) 

without illumination factor; (c) the 3D height distribution of the roller. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.10 The contouring results when ∆θ=0.02°: the phase-difference images (a) with and (b) 

without illumination factor; (c) the 3D height distribution of the roller. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.11 The contouring results when ∆θ=0.03°: the phase-difference images (a) with and (b) 

without illumination factor; (c) the 3D height distribution of the roller. 
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(a) 

 

(b) 

 

(c) 

Fig. 5.12 The contouring results when ∆θ=0.04°: the phase-difference images (a) with and (b) 

without illumination factor; (c) the 3D height distribution of the roller. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.13 The contouring results when ∆θ=0.05°: the phase-difference images (a) with and (b) 

without illumination factor; (c) the 3D height distribution of the roller. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.14 The contouring results when ∆θ=0.06°: the phase-difference images (a) with and (b) 

without illumination factor; (c) the 3D height distribution of the roller. 
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Contouring 

Results 

Illumination 

Angle Change (°) 

Contour Interval 

( mm
-1

) 

Measured Radius of 

the Roller ( mm ) 

Error 

(%) 

Fig. 5.9 0.01 6.17 5.63 0.5 

Fig. 5.10 0.02 3.08 5.64 0.7 

Fig. 5.11 0.03 2.06 5.59 0.2 

Fig. 5.12 0.04 1.54 5.62 0.4 

Fig. 5.13 0.05 1.23 5.60 0.0 

Fig. 5.14 0.06 1.03 5.65 0.9 

Table 5.4 The numerical results of changing contour interval by altering ∆θ 

 

From the figures and numerical results shown above, the variation of contour interval via 

altering the change of illumination angle did not make a significant difference to the 

accuracy of the measured radius. The measurement error remained in the range of 1% for 

all different contour intervals tested. The number of contours increases when the contour 

interval decreases. For large contour interval, there is no contour in the phase-difference 

image when the illumination factor is removed, as shown in Fig. 5.9, which means no 

phase unwrapping algorithm is needed in order to extract the 3D representation of the roller. 

As for the phase-difference image with contours displayed, a phase unwrapping algorithm 

is necessary. In this example, mask cut algorithm was used to obtain the 3D representation 

of the roller. 

 

Theoretically a decrease in contour interval improves the system’s ability to measure fine 

surface detail. However too small a contour interval will not perform well in holographic 

interferometry. Limited by the small size of the CCD sensor and the weak intensity 

reflected from the object, noise destroys the quality of the finer contours. Meanwhile, the 

low resolution of the CCD sensor cannot resolve the contours denser than the pixel spacing 

of the camera. This is shown in Fig. 5.14. The contrast of the contours in this figure is less 

than it in Fig. 5.13 and the edge of the roller was not recovered successfully. Therefore, the 

contour interval has to be chosen carefully according to the specific conditions dictated by 

the object and the optical system. 

 

The comparisons shown in Table 5.1 to 5.4 led us to the idea of using the two-source 

contouring technique as a numerical method for evaluating the effects caused by the 

various different processing techniques. In the previous chapters, the choices for finding 
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suitable processing methods, such as for the suppression of the zero-order term and for the 

reduction of speckle noise, etc., are based purely on the visual quality of the reconstructed 

images. This is a subjective process. However through the use of the two-source 

contouring technique to quantitatively measure an object of accurately known dimensions 

by varying the processing methods in due course, these quantitative results can be used as a 

quantitative benchmark in order to evaluate the effects caused by the different processing 

methods and may be established as a standard to optimize processing in digital holographic 

applications. 

 

E. the benefits of applying the super-resolution technique 

 

In Chapter 4, the super-resolution technique was introduced to improve the visualisation of 

large objects in digital holography. But the reconstructed SR hologram is not identical to 

the original high-resolution hologram. Therefore Zhang (2006) thought this might limit its 

application in measurement where precision is a concern. 

 

A ball bearing with the radius of 7.95mm is placed off-axis and 355mm away from the 

CCD sensor. This stand-off distance is too close for our camera to be able to resolve the 

whole area of the ball bearing according to Eq. (4.14) so that it is beyond the resolvable 

angle of our camera in an off-axis geometry. The illumination angles in the exposures are 

-32.00º and -31.96º, respectively. For the same scene, holograms are taken by both normal 

mode and also by 4-scan mode. Fig. 5.15 shows the comparison of the reconstruction 

results produced using these two modes. 

 

(a) 

 

(b) 

Fig. 5.15 The comparison of SR and non-SR holograms to measure the surface of a ball bearing 

by two-source contouring method: phase-difference images of (a) SR hologram and (b) non-SR 

hologram. 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 5.15 (Continued) Phase-difference images removed from the linear factor of (c) SR hologram 

and (d) non-SR hologram; unwrapped phase-difference images of (e) SR hologram and (f) non SR 

holograms; reconstructed 3D surface of the roller (g) SR hologram and (h) non SR holograms. 

 

The results shown in Fig. 5.15(a), (c), (e) and (g) were calculated from SR holograms with 

the resolution of 2048×2048 pixels, captured in 4-scan mode. Fig. 5.15(b), (d), (f) and (h) 

were calculated from LR holograms with the resolution of 1024×1024 pixels, captured in 

normal mode. It is clear in Fig. 5.15(b) that the surface contours of the ball bearing suffer 

from higher noise than that is shown in Fig. 5.15(a). In the reconstructed height 
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distribution image of Fig. 5.15(h), this can be seen most clearly. However for the images 

obtained using the super-resolution technique, i.e. captured via the 4-scan mode of the 

ProgRes® MF
scan

 camera, the phase data of the whole illuminated area of the roller is 

obtained. Furthermore, the 3D surface in Fig. 5.15(g) appears to have less noise than Fig. 

5.15(h). Regarding the quantitative results, the measured radius of the ball bearing is 

mm14.097.7 ±  determined by using a curve fitting technique, based on the 

Gradient-expansion algorithm, which represents an error of only 2% compared with the 

value of 7.95mm as measured by a vernier calliper with an uncertainty of 0.02mm. 

Therefore, the SR method is not only valid for visualisation application in digital 

holography, but are also valid for phase measurement, such as surface contouring as 

described here. This disagrees with Zhang’s viewpoint (Zhang, 2006) and the accuracy of 

the measurement can be assured when applying SR methods in high-precision 

measurements of macroscopic objects. 

 

F. the importance of the collimation of the reference wave 

 

In digital holography, the reference wave in numerical reconstruction is a virtual wave 

designed to be equivalent to the one used in the recording procedure. In our experiments, a 

plane wave is used as the reference wave so that a plane wave is simulated for performing 

numerical reconstruction. Two beam expanders were used in our experiments. One is a 

compact 20× beam expander made by Melles Griot, and the other is a combination of an 

objective ( mmfNA 4,62.0 == ) and a collimation lens ( mmf 75= ). The design of 

mounting, and adjustment of the combination of the objective and the collimation lens, 

makes it difficult to get the desired optimized expanded collimated wave as the reference 

wave. This drawback was not revealed in the visualization application shown in the 

previous chapters. But in the phase measurements, such as two-source contouring method, 

it caused some problems such as those shown in Fig. 5.16. 

 

It is noticeable that the contrast of the contours with a poorly collimated reference wave is 

much worse than that with a well collimated reference wave, while the speckle noise in Fig. 

5.16(a) and (c) is more severe than it in Fig. 5.16(b) and (d). The higher order contours are 

submerged by the significant noise when the contour interval becomes small by increasing 

the change of the illumination angles ∆θ. In Fig. 5.16(c), the contours are hardly resolved 
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when °=∆ 03.0θ . But for the same parameters with a well collimated reference wave, ∆θ 

can be as high as 0.06° as shown in Fig. 5.14(a). 

 

Therefore, careful attention must be paid to choosing and adjusting the beam expander in 

order to avoid undesired errors and achieve more reliable measurement results. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.16 The effect of the collimated reference wave to the directly subtracted phase-difference 

image in two-source method: (a) without and (b) with a well collimated reference wave when 

∆θ=0.02°; (c) without and (d) with a well collimated reference wave when∆θ=0.03°. 

5.4 Two-wavelength methods 

5.4.1 The conventional two-wavelength method 

In this method, two holograms of the same object are recorded with two different 

wavelengths 1λ  and 2λ . These holograms are recorded on the same holographic plate to 

form a composite hologram. When the composite hologram is illuminated by one of the 

recording wavelengths, say 1λ , two images are reconstructed. The image recorded with 

wavelength 1λ  and reconstructed by 1λ  is an exact replica of the original object; 
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however, the other image that was recorded with wavelength 2λ  but reconstructed by 1λ  

is shifted in its observation direction with respect to the original surface (Meier, 1965). 

These two reconstructed images interfere with each other to generate surface contours of 

the object. The general recording and reconstruction geometries are shown in Fig. 5.17. 

 

Fig. 5.17 General recording and reconstruction geometries: (a) recording; (b) reconstruction. 

 

The equation for a constant phase difference is: 

( ) πϕϕϕ nzyx ooo 2,, 21 =−=∆        (5.14) 

which describes a surface in object space. The intersection of this surface with the object is 

the nth bright contour. Phase terms 1ϕ  and 2ϕ  represent the phase across the aperture 

due to the two points on the reconstructed virtual images according to the different 

recording wavelengths. Each of these consists of three components: 

vihicii ϕϕϕϕ ++=         (5.15) 
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where ciϕ  is the phase of the reconstruction wave at the hologram, hiϕ  is the phase 

contribution due to modulation by the hologram, and viϕ  is the phase contribution due to 

the path difference between the hologram and the aperture. These three components can be 

represented by the coordinate system in Fig. 5.17. When all the terms are introduced to Eq. 

(5.14) and the equation is simplified (Friesem and Levy, 1976), the basic relation for the 

analysis of two-wavelength contour holography is given by 

( ) πϕ nkrrr rho 2=∆−+=∆        (5.16) 

where ( ) 221 hhh rrr += , ( ) 221 rrr rrr +=  and ( ) ( )211221 2 λλλλπ −=−=∆ kkk . Eq. (5.16) 

provides solutions for a family of surfaces in space. 

 

For Fresnel hologram recording and readout arrangements, when the illumination, 

reference, and reconstruction beams are plane waves, if the illumination beam has an 

orientation of angle oθ  with respect to z axis, and the angular orientations of both 

reference beam and reconstruction beam are the same as θ with respect to z axis, Eq. (5.16) 

leads to 

( ) ( )[ ] πθβθθϕ nkxz oooo 2sinsincos1 =∆−++=∆    (5.17) 

where ( )oaa zzz −=β , oz  is the average distance between the hologram plane and the 

object plane. According to this equation, the family of planes are inclined at an angle incθ  

with respect to the hologram plane: 

o

o
inc θ

θβθ
θ

cos1

sinsin
tan

+
−

−=       (5.18) 

To eliminate the inclination, a recording and reconstruction geometry is chosen so that 

0sinsin =− θβθo        (5.19) 

The depth resolution, i.e. the axial distance between adjacent fringes is thus given by 

( )( )o

oz
θλλ

λλ
cos112

21

+−
=∆        (5.20) 

5.4.2 The two-wavelength method in digital holography 

The recording procedure for digital holographic two-wavelength contouring is similar to 
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that of the conventional method, consisting of the recording of two holograms with 

different wavelengths 1λ  and 2λ . Both holograms are recorded by the camera and saved 

in the computer. In the numerical reconstruction, these holograms are reconstructed 

separately using the true recording wavelengths, rather than only one of the recording 

wavelengths as is the case in the reconstruction procedure in the conventional method. This 

means that the hologram that had a recording wavelength 1λ  is reconstructed at 

wavelength 1λ  and the hologram that was produced using a recording wavelength 2λ  is 

reconstructed at wavelength 2λ . Two resulting complex amplitudes ( )ηξλ ,1Γ  and 

( )ηξλ ,2Γ  can therefore be correctly obtained. The phase is calculated as: 

( ) ( )
( )

( ) ( )
( )ηξ
ηξ

ηξϕ
ηξ
ηξ

ηξϕ
λ

λ
λ

λ

λ
λ

,Re

,Im
arctan,,

,Re

,Im
arctan,

2

2
2

1

1
1 Γ

Γ
=

Γ
Γ

=     (5.21) 

As illustrated in section 5.3.2, both phase-contrast images are modulo π2  phase images. 

The phase difference should be calculated as in Eq. (5.7): 

( )
( ) ( ) ( ) ( )
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ϕ  (5.22) 

 

Fig. 5.18 Principles of surface contouring by two-wavelength digital holography 

 

For surface contouring, if two holograms are recorded by tilt illumination as shown in Fig. 

5.18, the phase terms 1λϕ  and 2λϕ  can be written as: 

( ) ( ) ( ) θθϕλ sincos, 11101 xkxhkkzx ++=−      (5.23) 

( ) ( ) ( ) θθϕλ sincos, 22202 xkxhkkzx ++=−      (5.24) 

where 11 2 λπ=k , 22 2 λπ=k , and θ is the illumination angle with respect to z axis.  

Therefore the phase difference is 

1k , 2k  θ  

z  

x  

( )xh  

1k , 2k  
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( ) ( )( ) ( ) ( ) θθϕλ sincos1, 12120 xkkxhkkzx −++−=−∆    (5.25) 

where it is assumed that the incident plane is parallel to the xz plane and the reference 

plane is the xy plane. The first term on the right-hand side of Eq. (5.25) includes the 

information of the surface height distribution, and the second term is a linear carrier 

introduced by the tilt illumination, which is similar to the two-source method in Eq. (5.5). 

This linear carrier can be eliminated either by numerical subtraction or by employing 

normal incidence ( 0=θ ) in the recording procedure. For this case the phase difference is 

given by 

( ) ( )( ) ( )xhkkzx θϕλ cos1, 120 +−=−∆      (5.26) 

The contour interval, i.e. the height difference corresponding to a phase difference of π2 , 

is: 

( )θλλ
λλ

cos121

12

+−
=∆h        (5.27) 

For normal incidence, 

22 21

12 Λ
=

−
=∆

λλ
λλ

h         (5.28) 

where 2112 λλλλ −=Λ  is the synthetic wavelength of 1λ  and 2λ . 

 

Although Eq. (5.20) for the conventional method is the same as Eq. (5.27), they are 

achieved by a different process. For the conventional method, it is hard to accurately 

determine the relationship between the observed contouring pattern and the surface profile 

of the object. This is because the image reconstructed by a wavelength different from the 

recording wavelength varies not only in phase, but also in position and magnification 

(Meier, 1965). When the difference of the two recording wavelengths is relatively large, 

the difference in image position will result in poor visibility of the contour fringes. In order 

to obtain accurate surface contours for the case of large wavelength differences, either 

there must be a change in the geometry of the holographic recording arrangement for each 

wavelength, or auxiliary optical components may be inserted during the recording 

procedure (Varner, 1971). This also causes some difficulty in performing the mathematical 

analysis precisely. The result presented in Eq. (5.20) is obtained as a result of certain 

simplifications (Friesem and Levy, 1976). However, all of these problems do not occur in 
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digital holography, as both holograms are reconstructed by the original recording 

wavelengths. No change in position and magnification is introduced by the reconstruction 

process. Eq. (5.27) is obtained strictly from the mathematical deduction. The result is in 

accordance with practice. Meanwhile, when two wavelengths are used that have a large 

difference between them, achromatic aberration must be considered when constructing the 

experimental setup. 

5.4.3 Experimental results when using the two-wavelength 

method 

An experimental system similar to that shown in Fig. 5.3 was constructed to investigate the 

two-wavelength contouring method. A 25mw tunable diode laser with a central wavelength 

of 685nm (TEC-100-0685-25 by Sacher Lasertechnik Group) was used as the light source. 

This was controlled by an MLD 1000 controller to vary the wavelength in the hologram 

recording process. The wavelength of the tunable diode laser was monitored by a Bristol 

LM621 wavelength meter provided by Bristol Instruments, Inc. A 685nm fibre optical 

isolator (FOI-01-13-685-4/125-S-40-3A-1-1-35 provided by OZ Optics Ltd.) was used to 

prevent back reflections into the diode laser system, which can cause wavelength 

instability of the diode laser. The laser beam coming out of this isolator was split into two 

beams by a 10/90 2×2 fibre coupler (FC632-90B-3FC-1APC manufactured by Thorlabs, 

Inc.), the weaker one of which was used as the reference wave and the stronger one of 

which was used to illuminate the object. In this application, the ProgRes
®

 MF
scan

 camera 

was also used to record the digital holograms, as shown in Fig. 5.3. The measurement 

object was the roller with both a diameter and height of 16mm. 

 

 

(a) 

 

(b) 

Fig. 5.19 Experimental results for the two-wavelength contouring method with a neighbouring 

contour interval of 2.41mm: (a) directly subtracted phase-difference image for the roller; (b) 

phase-difference image with the inclination factor removed. 
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(c) 

 

(d) 

Fig. 5.19 (Continued) (c) unwrapped phase-difference image of (b); (d) 3D height distribution of 

the roller smoothed by a 7×7 window. 

 

Fig. 5.19 shows an example of the two-wavelength contouring method. The roller was 

placed at a distance of 672mm from the CCD sensor. The roller was illuminated at an angle 

of -18º from the side. The wavelengths used in both exposures were 685.80nm and 

685.70nm, respectively. Therefore the contour interval here according to Eq. (5.27) is 

2.41mm. By using curve fitting, the measured radius of cylindrical roller in Fig. 5.19(d) is 

8.70mm, 8% larger than the independentally determined, via venier caliplier measurement, 

value of 8mm. Because of the shadowing problem in oblique illumination and the 

submersion of the finer contours in the speckle noise, only part of the surface of the roller 

is detected. This can be verified by changing the neighbouring contour interval shown in 

Fig. 5.20. With a decrease in the contour interval, i.e. an increase of the number of the 

contours, the detected area of the object shrinks because the finer contours hide in the noise 

of the phase-difference image. In Fig. 5.20(d), the measured radius of the cylindrical roller 

is 8.73mm. 

 

 

(a) 

 

(b) 

Fig. 5.20 Results of changing the contour interval to 1.34mm: (a) directly subtracted 

phase-difference image of the roller; (b) phase-difference image with the inclination factor 

removed. 
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(c) 

 

(d) 

Fig. 5.20 (Continued) (c) unwrapped phase-difference image of (b); (d) 3D height distribution of 

the roller smoothed by a 7×7 window. 

 

To ensure an accurate contouring result, a plane wave should be used for illumination so 

that the contour surfaces are almost plane and normal to the sensitivity vector. In our 

experimental geometry, the plane wave is achieved by adding a collimating lens after the 

output end of the fibre coupler. If this collimating lens is removed, a spherical wavefront is 

used to illuminate the object and this would, in general, cause distortion. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.21 (a) phase-difference image by illumination with a spherical wavefront; (b) reconstructed 

3D height distribution of the roller; (c) the 1D height plot of the central line along the y axis in Fig. 

5.19(d); (d) the 1D height plot of the central line along the y axis in Fig. 5.21(b). 
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In Fig. 5.21(a), the illumination by a spherical wavefront results in a closed contour which 

is an incorrect result for the object as it is a roller. Fig. 5.21(c) and (d) display the 1D 

height plot of the central line along the y axis of Fig. 5.19(d) and Fig. 5.21(b), respectively. 

Comparing them, it is obvious that the result obtained from the illumination by a spherical 

wavefront is distorted. In conventional holographic interferometry, though a divergent 

source is used to illuminate the object, it is placed quite far away from so that the distortion 

is small enough to be ignored. However, in our experimental geometry, the point source 

cannot be positioned far enough away from the object because of the limited output power 

available from the optical fibre. Therefore, according to our experience, it is recommended 

to avoid illuminating object with a spherical wavefront in optical contouring. 

5.5 Two-refractive-index methods 

5.5.1 The conventional two-refractive-index method 

In this method, the object is mounted inside a cell with a plane-glass window (Varner, 

1974). By changing the refractive index of the fluid around the object between the two 

exposures of the hologram, interference fringes are produced which contour the distance 

from the object to the window. The interpretation of the fringes is much simpler than in the 

previous technique, since a physical reference plane is provided by the cell window. The 

process is very similar to the use of holography for flow visualization. In visualization of 

two-dimensional flow fields the fringes contour a variable change in refractive index over 

a constant path length (Zelenka and Varner, 1969). In contouring, a variable path length is 

contoured for a constant change in refractive index as: 

( ) ( )hnnyx 21

2
, −=∆

λ
π

ϕ        (5.29) 

where 1n  and 2n  are the two refractive indices of the fluid surrounding the object during 

each of the two exposures, ( )yx,ϕ∆  is the phase difference, and h is the surface height 

distribution. The fringe orders are given by 

( )21 nn
d

N −=
λ

        (5.30) 

The contour interval is simply the change in surface height h∆  which corresponds to an 

increment of one in the fringe order, that is 
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21 nn
h

−
=∆

λ
        (5.31) 

By suitable choice of the fluids, it is possible to obtain a wide range of contour intervals. 

With various liquids, contour intervals between 50µm and 500µm can be produced. 

5.5.2 The two-refractive-index method in digital holography 

Fig. 5.22 is a typical arrangement for contouring diffuse objects by the 

two-refractive-index method in digital holography. The plane of the window of the cell is 

kept normal to the mean direction of propagation of the object wave reaching the face plate 

of the sensor, so that the angle of incidence of the object beam and reference beam does not 

change. This is essential to avoid a lateral displacement or change of scale of the 

reconstructed image. In this experimental condition, the fringes are localized on the surface 

of the object. This condition also minimizes aberrations caused by imperfections in the 

material of the cell. 

 

Fig. 5.22 The typical arrangement for contouring diffuse objects by the two-refractive-index 

method in digital holography 

 

In this method, the object is located in an immersion cell containing a specific solution. By 

changing the concentration of the solution, the refractive index of the liquid is changed 

accordingly. Two holograms are captured at two different refractive indexes and these are 

numerically reconstructed to generate a phase-difference image ϕ∆ . The reconstructed 

phase images of refractive index 1n  and 2n  are given by: 

( ) ( ) ( ) 1111101 sincos, θθϕ kxnxkhnxhknzxn ++=−     (5.32) 
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( ) ( ) ( ) 2222202 sincos, θθϕ kxnxkhnxhknzxn ++=−    (5.33) 

where ( )11 sinarcsin nθθ =  and ( )22 sinarcsin nθθ = , θ is the incidence angle of the 

illumination beam as shown in Fig. 5.22. The phase difference nϕ∆  is given by 

subtracting 1nϕ  from 2nϕ : 

( ) ( ) ( ) ( ) ( ) ( )11221122120 sinsincoscos, θθθθϕ nnkxxhnnkxhnnkzx −+−+−=−∆  (5.34) 

Then the contour interval can be deduced from Eq. (5.36) as given by: 

( ) ( ) 1122 cos1cos1 nn
h

θθ
λ

+−+
=∆      (5.35) 

In the experiment, two recorded digital holograms are reconstructed by the numerical 

methods described in Chapter 2 to generate two phase-contrast images. The related 

phase-difference image is calculated by 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




−<−+−−−

−≥−−−−
=−∆

01020102

01020102

0
,,,2,,

,,,,,
,

zxzxifzxzx

zxzxifzxzx
zx

nnnn

nnnn

n ϕϕπϕϕ

ϕϕϕϕ
ϕ  (5.36) 

which is similar to Eq. (5.7). By applying a phase unwrapping algorithm to this 

phase-difference image, the phase map of the detected surface is produced and can be 

converted to a surface height distribution. 

 

Fig. 5.23 gives an example of the two-refractive-index technique that was provided by 

Hossain et al. (2007). An immersion cell of dimensions of 60mm×30mm×65mm having 

optically flat windows, with flatness of the order of ~ 6λ , was used in the experiment. The 

measured object was a nearly spherical steel ball of 20mm diameter immersed in the 

immersion cell. The refractive index of the water-ethanol solution was varied by adjusting 

the concentration of the ethanol in the water. The refractive indices were measured by an 

Abbe-Refractometer. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.23 An example of the two-refractive-index technique: (a) the phase-difference image 

reconstructed from two Fourier holograms corresponding to the distilled water–––– ethanol 

solutions of different concentrations (different refractive indices) (1.3322, 1.3332); (b) the 

phase-difference image after removal of the zero-order term and 4×4 median filtering; (c) 

one-dimensional wrapped phase along the length of the line AB in (b); (d) unwrapped phase of (c) 

(Reprinted from (Hossain et al., 2007). Copyright (2007), with permission from Elsevier). 

 

The depth contour interval in this example is 0.29mm. It decreases with an increase of the 

difference in refractive indices, according to Eq. (5.37). Quantitative information regarding 

the depth of the spherical ball can be extracted via the unwrapped phase map shown in Fig. 

5.23(d) and the knowledge of the depth contour interval.  

5.6 Decorrelation effects in optical contouring 

In the derivations of equations about optical contouring, it has been assumed that the 

random amplitude and phase of an individual speckle remains unchanged in the course of 

capturing two holograms which to form the fringes. The amplitudes in the recording plane 

in both recording states contain terms of the form 

ss iuU ϕexp1 =          (5.37) 

( )[ ]ϕϕ ∆+′′= ss iuU exp2         (5.38) 
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where su  and su′  are the real amplitude of the object wave, sϕ  and sϕ′  are the phase 

of the object wave in both recording states, ϕ∆  is the change of the phase between both 

exposures. And it has been assumed that ss uu ′=  and ss ϕϕ ′= , so that the amplitudes are 

fully correlated when πϕ n2=∆ . However, if ss uu ′≠  and ss ϕϕ ′≠ , the maximum value 

of the correlation coefficient of 1U  and 2U  is reduced. If the change is sufficiently large, 

the speckle patterns will be decorrelated and no fringes will be observed. Decorrelation 

effects are related to surface roughness, the NA and the tilt angle. Detailed discussion 

about the decoorelation effects can be found in the literature (Jones and Wykes, 1983). 

 

Our experiments are carried out on an optical bench. A Michelson interferometer was 

constructed to test the stability of the environment. Noticeable movement of the fringes on 

the paper screen can be observed. It mainly caused by the heat convection and the ambient 

vibration in the building. To reduce the heat convection, the experimental system is 

covered by a large box-like enclosure. Meanwhile, an air-conditioning unit was installed to 

control the room temperature. To prevent the ambient vibration in the building, the optical 

bench should be equipped with vibration isolation function. But limited by our 

experimental condition, this cannot be resolved except by buying a new vibration isolation 

bench. Therefore, it can be discerned that the full potential of two-source and 

two-wavelength contouring techniques might have not been fully exploited. However from 

the obtained results, the decorrelation effect would not appear to be significant. 

5.7 Conclusions 

In this chapter, three optical contouring methods have been discussed in detail. These are 

the two-source contouring method, the two-wavelength contouring method, and the 

two-refractive-index contouring method. Limited by experimental conditions, the 

two-refractive-index technique has not been demonstrated, but the other two techniques 

have been verified by our experiments. Through the results presented in this chapter, some 

conclusions can be drawn as follows. 

 

The two-source technique is theoretically the simplest contouring method. The idea is quite 

straightforward and the experimental system is not complicated. The contour interval is 

strongly dependent on the change of both illumination angles, ∆θ. The shadowing problem 

is unavoidable in the two-source method because of the oblique illumination angle of the 
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object. Carefully arrangement of the positions of both the object and the reference wave is 

required in order to prevent the object obstructing the reference beam. An increase in ∆θ 

results in a decrease in the contour interval. The choice of contour interval affects the 

quality and accuracy of the final results. Smaller contour intervals are beneficial for 

measuring steeper surfaces, but the limited resolution of the CCD device and decorrelation 

effects, related to the tilt angle, also lead to poor contrast in the contouring map. Special 

care must be taken to form a collimated plane reference wave in the recording procedure; 

otherwise the contour map is of poor quality and fails to extract the correct surface 

information. 

 

For the two-wavelength technique, no shadowing problem exists for proper arrangements 

and there is no requirement for any moving parts during the two exposures. However a 

laser source providing more than one wavelength is needed to apply this technique. The 

stability of both the wavelength and the intensity during the exposure time must be good 

enough to capture holograms with sufficient quality to allow reconstruction of the height 

distribution of the surface. The contour interval of this technique is controlled by the 

recording wavelengths used in both exposures. Larger differences between these two 

wavelengths provide smaller height sensitivities and the ability to measure surfaces with 

finer structures. But it should be noted that too small a contour interval might result in too 

many contours which cannot be resolved by the CCD camera. The tunable laser system 

used in our experiments proved to have quite poor wavelength stability. Additionally, 

though the use of optical fiber components to deliver the laser beam ensures good spatial 

filtering for imaging, this configuration means that the laser beam used to illuminate the 

surface under study is attenuated to only 10% of the original output power. Hence both the 

noise from the camera and the laser speckle noise significantly degrade the quality of the 

contouring image, as shown in Fig. 5.19 and Fig. 5.20. 

 

In the two-refractive-index techniques, the object is mounted inside a cell with a 

plane-glass window. The object is immersed in fluid. The whole equipment is harder to 

handle practically because of this use of liquid. Moreover, the measurement of the 

refractive index of the liquid is also complicated. The contour interval of this technique is 

determined by the refractive index of the liquid and its subsequent change. 

 

Plane-wave reference and object beams are used for optical contouring techniques, because 

they allow for a uniform treatment of all the object points. In the two-source contouring 



Chapter 5 Optical Contouring of 3D Objects 

164 

technique, another advantage of using these plane-wave beams is the fact that the 

necessary adjustment can be simplified in the form of angular rotation of the reference and 

object beams. 

 

This is the first time that the super-resolution method has been tested in its application to 

contouring techniques and it provides measurement results for objects which are larger 

than those which can be resolved with the CCD camera. The relevant results are given in 

Fig. 5.15. The holograms obtained from super-resolution method provide a less noisy 3D 

surface profile with similar accuracy to holograms obtained without using super-resolution 

methods. Considering the comparisons of the quantitative results shown in sections 5.3.4 C 

and D, this experimental two-source contouring approach may be used as a benchmark to 

evaluate the effects of the different processing techniques in digital holography. 
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6 Conclusions and the Future Work 

6.1 Conclusions 

For the measurement of macroscopic objects over long distances, say tens of millimetres, 

Fresnel approximation offers the best option. But for microscopic objects, the convolution 

approach is more competitive than the Fresnel approximation algorithm, especially when 

the distance between the object and the CCD sensor is too small to satisfy the requirements 

of Fresnel diffraction. 

 

In digital holography, the zero-order term and the twin image degrade the quality of the 

reconstruction results more seriously than they do in conventional holography. It is 

essential to suppress them in order to produce correct image information. Spatial filtering 

is very effective for removing the unwanted terms for off-axis holograms. 

 

Despite the increased system complexity, phase-shifting digital holography provides the 

best effect for suppressing the influence of the unwanted terms for in-line holography. By 

taking multiple holograms with different phase shifts in the reference wave, the resolution 

of the CCD device can be fully exploited. 

 

As a technique that is based on interferometry, the reference wave and the object wave 

should be kept at comparable intensities in order to achieve good quality reconstruction 

results. 

 

Speckle noise is unavoidable and very troublesome in digital holography when dealing 

with objects with rough surfaces. Digital filters can be applied to the holograms in order to 

reduce the speckle noise. However, the use of multiple holograms to reduce the speckle 

noise provides more satisfactory results and is more commonly employed. The multiple 

holograms are obtained by varying the speckle pattern of the object wave. This can be 

achieved by introducing some movement between different exposures in order to produce 

holograms with various speckle patterns. 
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The super-resolution image reconstruction approach has been incorporated into our 

measurement system by the use of a camera, the Jenoptik ProgRes
®

MF
scan

, with 

microscanning function. The introduction of this approach not only removes aliasing 

effects in order to make the measurements more accurate, but also enables improved 

quality of the reconstruction results and either much larger observation ranges or closer 

measurement distances for the same object. 

 

Two-source, two-wavelength and two-refractive-index contouring techniques are proven 

approaches that have been used in digital holography. The measured height distribution 

correctly reflects the true shape of the surface under study, but noise levels are significant 

due to the limited size of the CCD sensor and the weak reflected light returning from the 

object’s surface. Therefore, optical contouring of macroscopic objects can now be 

performed using digital holography, but it is not currently a good choice to perform 

macroscopic 3D surface measurements. 

 

Plane-wave reference and object beams are used in optical contouring techniques because 

they allow for a uniform treatment of all object points. A spherical wave, used to illuminate 

the object’s surface, leads to unwanted distortion of the measured 3D surface. 

 

The super-resolution method has been tested in surface contouring techniques and it 

provides measurement results for surfaces which are larger than those which can be 

resolved by the CCD camera. The precision of its measurement is similar to the 

measurements without using super-resolution methods. 

 

The quantitative results from two-source contouring of an object with accurately known 

dimensions can be used as a benchmark to evaluate the effects caused by the different 

processing methods and establishes a standard to optimize the processing in digital 

holographic applications. 

6.2 Future work 

Three suggestions for future work can be outlined for digital holography as listed below. 
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A. Quantitative benchmarking of different processing techniques and optimizations 

 

As illustrated in 5.3.4, two-source contouring or other quantitative measurements can be 

used as a numerical benchmark to evaluate the different processing techniques. This work 

is implied in the comparisons in 5.3.4 (Table 5.1 ~ 5.4). However, further work needs to be 

done in the future to validate this idea. 

 

B. Influence of the bit depth of the CCD camera in digital holography 

 

By applying super-resolution methods to digital holography, higher spatial resolutions are 

achievable, which may either be used to measure the objects with increased size or 

alternatively to decrease the stand-off distance to the object. However from a consideration 

of the reconstruction results for the super-resolution method which are presented in 

Chapters 4 and 5, it can be seen that the restoration of the detail of the object has not been 

improved by the super-resolution methods. 

 

According to the work of Skydan et al. (2003), an increase in the image bit depth may well 

be significantly beneficial in terms of increasing the accuracy of phase-measuring fringe 

analysis systems. Digital holographic contouring systems bear a resemblance to fringe 

analysis systems because they also produce a result in terms of a phase measurement. This 

leads us to consider that it might also be beneficial to the accuracy of digital holographic 

measurements by employing a CCD camera with an increased bit depth, i.e. one that is 

greater than the 14 bits provided by the ProgRes
@

 MF
scan

 camera that was used in this 

research. Further work could therefore be performed in order to investigate the influence of 

the bit depth of the CCD camera in digital holography. 

 

C. Digital holographic microscopy (DHM) 

 

Although digital holography can be applied to the interferometric measurements of 

macroscopic objects, as illustrated in this thesis, especially via the introduction of either 

phase-shifting digital holography or by super-resolution techniques, which enable it to 

employ the full potential of the CCD, it is still confined by the intrinsic characteristics of  

the CCD sensor. Comparing digital holography to conventional holographic recording 

media, the CCD has much lower resolution which is still insufficient for the production of 
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high quality holograms for the macroscopic objects with a size of a few centimeters and at 

shorter measurement distances – typically less than 0.5m. Meanwhile, the small size of the 

CCD chip also results in significant speckle noise, which has been shown in this thesis. 

 

However in the microscopic field, digital holography has been a topic of intense recent 

interest that is being investigated by increasing numbers of researchers. The resolution of 

current CCD cameras is no longer a constraint because of the dramatically decreased size 

of the microscopic samples. Also there is no need to use a very powerful laser beam to 

illuminate the sample, as most microscopic samples are transparent. The greatest potential 

of digital holography when applied to microscopy, is its ability to perform numerical 

focusing. In microscopy, the depth of field of the system is very small due to the high 

magnifications involved. Therefore, in order to obtain 3D information about an object at 

microscopic resolutions, several refocusing steps are usually needed, e.g. the scanning 

process in confocal microscopic systems. However, all this 3D information can be 

recorded in a single hologram and certain layers of the object can be refocused by use of 

the numerical methods that were discussed in Chapter 2. Moreover, due to the fact that the 

size of the microscopic sample is comparable to the wavelength of the light source, the 

phase-contrast image that is obtained by the numerical reconstruction can be used directly 

to render the surface or other properties of the sample. 

 

The lateral resolution of the reconstructed image produced by the Fresnel approximation 

algorithm in digital holography is described in Eq. (2.25). A small reconstruction distance 

is needed in order to achieve the desired lateral resolution. But this often violates the 

requirements for a Fresnel approximation. The distance does not affect the application of 

the convolution approach. According to Eq. (2.39), the lateral resolution of the convolution 

approach is equal to the pixel size of the CCD sensor. Unfortunately, the pixel size of state 

of the art cameras is about 5µm and so this is insufficient for microscopy. 

 

To enhance the lateral resolution of digital holography, some modifications have been 

introduced. Rather than a plane wave, a spherical wave is used as the reference wave. Fig. 

6.1 shows set-ups for DHM with and without optical fiber components. By use of optical 

fiber components, the whole geometry is more compact, easier to build and adjust. But the 

single mode fiber changes the polarization status of the delivered laser beam which causes 
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problems with the phase-shifting technique. Meanwhile, the intensity loss caused by the 

fiber coupling is typically higher than 60~70%. 

 

 

Fig. 6.1 Schematic diagram of a digital holographic microscope: (a) with optical fiber components; (b) 

without optical fiber components 
 

For a hologram generated by a spherical reference wave, the lateral magnification of the 

reconstructed virtual image is (Schnars and Juptner, 2005): 
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where rd  and rd ′  describe the respective distances between the source point of the 

spherical reference wave and the hologram plane in the recording and reconstruction 

process. 1λ  and 2λ  are the wavelengths used in the recording and reconstruction 

processes. The reconstruction distance d ′ , i.e. the distance between the reconstructed 

image and the hologram plane, can be calculated by (Meier, 1965): 
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If the same reference wavefront is used for recording and reconstruction, it follows that 

dd =′ . Magnification can be introduced by changing the wavelength or the position of the 

source point of the reference wave in the reconstruction process. In digital holography, the 

magnification can be easily introduced by changing the source point of the reference wave. 

If the desired magnification factor is determined, the reconstruction distance can be 

calculated by combination of Eqs. (6.1) and (6.2) with 21 λλ = : 

Mdd ⋅=′          (6.3) 

To enlarge the image the source point of the reference wave needs to be placed at a 

distance given by: 
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The reference wave is now described by 

( ) ( ) ( ) 
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λ
π

    (6.5) 

where ( )rrr dyx ′−′′ ,,  is the position of the source point of the reference wave in the 

reconstruction process. 

 

The entire numerical reconstruction process of DHM may be summarized as follows: after 

determination of the desired magnification, the reconstruction distance d ′  is calculated 

using Eq. (6.3). Then the position of the source point rd ′  of the spherical reference wave 

that is used for reconstruction is calculated by applying Eq. (6.4). The spherical reference 

wave can be calculated by using rd ′  via Eq. (6.5). Finally one of the several numerical 

reconstruction algorithms that have been discussed in Chapter 2 may be applied in order to 

obtain the magnified amplitude and phase-contrast images for the object. Because of the 

aberrations introduced by the microscope objective in the reference wave, aberration 

correction measures must be performed in order to achieve reconstruction results that are 

free from such faults. 
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In summary, by applying digital holography to microscopy, this technology has great 

potential in diverse research areas such as metrology and quality control of 

micro-components and cell observations in biology. 
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Appendix: some programs for our 

applications written in IDL 

1. Program to generate the digital hologram of an object by calculating the diffraction 

pattern point by point 

 

PRO FT_CGH 

; This program is to generate a hologram by adding the diffraction fields of 
every point source 
; The unit of length is millimeter. 
; The parameters are saved in a .dat file and the generated hologram is saved 
in a .hol file 
; The generated hologram is for FT reconstruction 
 

; Input parameters of ccd 

Xnum = 512  ; pixel number in x axis 
Ynum = 512  ; pixel number in y axis 
ccdsp = 0.01  ; the distance between two adjacent pixels in the CCD 
ccdXlength = (Xnum - 1) * ccdsp 
ccdYlength = (Ynum - 1) * ccdsp 
 

; Input parameters of object field 

Zdist = 500.0  ; the distance between CCD plane and the object plane 

wavelength = 0.0006328 

objXsp = wavelength * Zdist / (Xnum * ccdsp)  ; the pixel size in the x axis 
at the reconstructed object plane 
objYsp = wavelength * Zdist / (Ynum * ccdsp)  ; the pixel size in the y axis 
at the reconstructed object plane 

objXlength = (Xnum - 1) * objXsp 

objYlength = (Ynum - 1) * objYsp 

 

; Input parameters of reference beam 

Ax = 0. 
Ref_amp = 0.0 
 

; Initiate some arrays 

objPx = fltarr(Xnum) 
objPy = fltarr(Ynum) 
ccdPx = fltarr(Xnum) 
ccdPy = fltarr(Ynum) 
obj = fltarr(Xnum, Ynum) 
obj_real = dblarr(Xnum, Ynum) 
obj_imag = dblarr(Xnum, Ynum) 
total_real = dblarr(Xnum, Ynum) 
total_imag = dblarr(Xnum, Ynum) 
line_real = fltarr(Xnum) 
line_imag = fltarr(Xnum) 
ref_real = fltarr(Xnum, Ynum) 
ref_imag = fltarr(Xnum, Ynum) 
ref_mean = dblarr(Xnum) 
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; Set up the orthogonal coordinates of object plane 

objPx[0] = -1. * objXlength / 2. 
for i=1, Xnum-1 do begin 
    objPx[i] = objPx[i-1] + objXsp 
endfor 
objPy[0] = -1. * objYlength / 2. 
for i=1, Ynum-1 do begin 
    objPy[i] = objPy[i-1]  + objYsp 
endfor 
 
; Set up the orthogonal coordinates of ccd plane 
ccdPx[0] = -1. * ccdXlength / 2. 
for i=1, Xnum-1 do begin 
    ccdPx[i] = ccdPx[i-1] + ccdsp 
endfor 
ccdPy[0] = -1. * ccdYlength / 2. 
for i=1, Ynum-1 do begin 
    ccdPy[i] = ccdPy[i-1] + ccdsp 
endfor 
 

; Generate the object pattern at the object plane, which is a “F” letter in 

this case 

obj[106:166, 255:259] = 128 
obj[106:156, 205:209] = 128 
obj[106:110, 155:257] = 128 
window, 0, xsize = 512, ysize = 512, title = 'Object' 
tvscl, congrid(obj, 512, 512) 
obj = sqrt(obj)  ; intensity of the object wave at the object plane 
obj_phase = fltarr(Xnum, Ynum)  ; phase of the object wave at the object plane 
which is randomly distributed  
seed = 1l 
err = randomn(seed, Xnum, Ynum) 
obj_phase = err * !pi / 4 
 

; Generate the object diffraction field 

wavenum = 2. * !pi / wavelength 
source_num = 0l 
t1 = systime(1) 
Zeuclid = Zdist ^ 2.0 
for u=0, Xnum-1 do begin  ; for each point souce in turn 
    for v=0, Ynum-1 do begin 
       if (obj[u,v] ne 0) then begin 
           source_num = source_num + 1 
           for x=0, Xnum-1 do begin  ; for each CCD column 
               Xeuclid = (ccdPx[x] - objPx[u]) ^ 2.0 
               for y=0, Ynum-1 do begin  ; for each CCD row 
                   Yeuclid = (ccdPy[y] - objPy[v]) ^ 2.0  ; calculate the y 
component of the euclidean distance 
                   euclid = sqrt(Xeuclid + Yeuclid + Zeuclid) 
                   ;arg = wavenum * euclid 
                   arg = -1. * wavenum * euclid + 2 * obj_phase[u,v] 
                   obj_real[x,y] = obj[u,v] * cos(arg) / euclid  ; the real part 
of the point source wavefront 
                   obj_imag[x,y] = obj[u,v] * sin(arg) / euclid  ; the imaginary 
part of the point source wavefront 
               endfor 
           endfor 
           total_real = total_real + obj_real 
           total_imag = total_imag + obj_imag 
           print, source_num, ' points have been completed.' 
       endif 
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    endfor 
endfor 
t2 = systime(1) 
print, 'It took ', t2-t1, ' seconds to calculate the diffraction field of the 
object.' 
temp_real = total_imag / wavelength 
temp_imag = total_real / wavelength 
total_real = temp_real 
total_imag = temp_imag 
obj_inten = total_real ^ 2.0 + total_imag ^ 2.0 
obj_phase = atan(total_imag, total_real) 
window, 1, xsize = 512, ysize = 512, title = 'Object Diffraction Indensity 
Field' 
tvscl, congrid(obj_inten, 512, 512) 
window, 2, xsize = 512, ysize = 512, title = 'Object Diffraction Phase Field' 
tvscl, congrid(obj_phase, 512, 512) 
 

; Generate the reference light field 

ref_amp = sqrt(mean(obj_inten)) 
for x=0, Xnum-1 do begin 
    phase_angle = -1.0 * wavenum * sin(Ax) * ccdPx[x] 
    line_real(x) = cos(phase_angle) * ref_amp 
    line_imag(x) = sin(phase_angle) * ref_amp 
endfor 
for y=0, Ynum-1 do begin 
    ref_real[*,y] = line_real 
    ref_imag[*,y] = line_imag 
endfor 
ref_phase = atan(ref_imag, ref_real) 
window, 3, xsize = 512, ysize = 512, title = 'Reference Beam Phase' 
tvscl, congrid(ref_phase, 512, 512) 
 

; Computer-generated Hologram 

ccd_real = total_real + ref_real 
ccd_imag = total_imag + ref_imag 
ccd = float(ccd_real ^ 2.0 + ccd_imag ^ 2.0) 
window, 4, xsize = 512, ysize = 512, title = 'Hologram' 
tvscl, congrid(ccd, 512, 512) 
 

; Save the hologram 

file = dialog_pickfile(/write) 
holofilename = file + '.hol' 
openw, unit, holofilename, /get_lun 
writeu, unit, ccd 
close, unit 
 

; Save the set up parameters 

datafilename = file + '.dat' 
openw, unit, datafilename, /get_lun 
writeu, unit, wavelength, Zdist 
writeu, unit, Xnum, Ynum 
writeu, unit, ccdsp, Ax 
close, unit 
free_lun, unit 
 

end 
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2. Program to reconstruct the digital hologram generated by the program above via Fresnel 

approximation algorithm 

PRO FT_RECON_pbp 

; Numerical reconstruction by Fresnel transformation with the simulations of 
point-to-point addition 
; Reconstruction of the real image with using lens function 
 

; Read the set-up parameters 

wavelength = 0.0 
Zdist = 0.0 
Xnum = 0 
Ynum = 0 
ccdsp = 0.0 
Angle = 0.0 
file = dialog_pickfile(/read, filter = '*.dat') 
datafilename = file 
openr, unit, datafilename, /get_lun 
readu, unit, wavelength, Zdist 
readu, unit, Xnum, Ynum 
readu, unit, ccdsp, Angle 
close, unit 
free_lun, unit 
Xlength = (Xnum - 1) * ccdsp 
Ylength = (Ynum - 1) * ccdsp 
 
; Read the digital hologram 
hologram = fltarr(Xnum, Ynum) 
file = strmid(file, 0, strlen(file)-4) + '.hol' 
holofilename = file 
openr, unit, holofilename, /get_lun 
readu, unit, hologram 
close, unit 
free_lun, unit 
 

; Initiate the data arrays 

ccdPx = fltarr(Xnum) 
ccdPy = fltarr(Ynum) 
PROP_REAL = FLTARR(XNUM, YNUM) 
PROP_IMAG = FLTARR(XNUM, YNUM) 
THETA2_REAL = FLTARR(XNUM, YNUM) 
THETA2_IMAG = FLTARR(XNUM, YNUM) 
LINE_REAL = FLTARR(XNUM) 
LINE_IMAG = FLTARR(XNUM) 
ref_real = fltarr(Xnum, Ynum) 
ref_imag = fltarr(Xnum, Ynum) 
 

; Suppression of the DC term 

ave_holo = total(hologram) / (float(Xnum) * float(Ynum)) 
hologram = hologram - ave_holo 

 

; Create the coordinate system of CCD array 

ccdPx[0] = -1. * Xlength / 2. 
for i = 1, Xnum - 1 do begin 
    ccdPx[i] = ccdPx[i-1] + ccdsp 
endfor 
ccdPy[0] = -1. * Ylength / 2. 
for i = 1, Ynum - 1 do begin 
    ccdPy[i] = ccdPy[i-1] + ccdsp 
endfor 
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; Generate plane reference wave for reconstruction 

ref_amp = 1.0 
wavenum = 2. * !pi / wavelength 
for x=0, Xnum-1 do begin 
    phase_angle = wavenum * sin(Angle) * ccdPx[x] 
    line_real[x] = ref_amp * cos(phase_angle) 
    line_imag[x] = ref_amp * sin(phase_angle) 
endfor 
for y=0, Ynum-1 do begin 
    ref_real[*,y] = line_real 
    ref_imag[*,y] = line_imag 
endfor 
 

; Numerical reconstruction by Fresnel approximation 

var1_real = fltarr(Xnum, Ynum) 
var1_imag = fltarr(Xnum, Ynum) 
factor1 = -1.0 * !pi / (wavelength * Zdist) 
for x=0, Xnum - 1 do begin 
    Xeuclid = ccdPx[x] ^ 2. 
    for y=0, Ynum - 1 do begin 
       Yeuclid = ccdPy[y] ^ 2. 
       euclid = Xeuclid + Yeuclid 
       var1_real[x, y] = cos(factor1 * euclid) 
       var1_imag[x, y] = sin(factor1 * euclid) 
    endfor 
endfor 
var2_real = hologram * (ref_real * var1_real - ref_imag * var1_imag) 
var2_imag = hologram * (ref_real * var1_imag + ref_imag * var1_real) 
c = complex(var2_real, var2_imag) 
f = fft(c, /inverse) 
f = shift(f, Xnum/2, Ynum/2) 
c_real = real_part(f) 
c_imag = imaginary(f) 
factor2 = -1.0 * !pi * wavelength * Zdist 
var3_real = fltarr(Xnum, Ynum) 
var3_imag = fltarr(Xnum, Ynum) 
for x=0, Xnum-1 do begin 
    Xdist = ((x-(Xnum-1)/2) / (Xlength + ccdsp)) ^ 2. 
    for y=0, Ynum-1 do begin 
       Ydist = ((y-(Ynum-1)/2) / (Ylength + ccdsp)) ^ 2. 
       dist = Xdist + Ydist 
       var3_real[x,y] = cos(factor2 * dist) 
       var3_imag[x,y] = sin(factor2 * dist) 
    endfor 
endfor 
factor3 = -1.0 * wavenum * Zdist 
var4_real = (sin(factor3) * var3_real - cos(factor3) * var3_imag) / (wavelength 
* Zdist) 
var4_imag = (sin(factor3) * var3_imag + cos(factor3) * var3_real) / (wavelength 
* Zdist) 
ccd_real = var4_real * c_real - var4_imag * c_imag 
ccd_imag = var4_real * c_imag + var4_imag * c_real 
 

; Calculate the reconstructed intensity image on CCD and display it 

ccd = ccd_real ^ 2.0 + ccd_imag ^ 2.0 
phase = atan(ccd_imag, ccd_real) 
window, 0, xsize = 512, ysize = 512, title = 'Reconstructed intensity image' 
tvscl, congrid(ccd, 512, 512) 
window, 1, xsize = 512, ysize = 512, title = 'Reconstructed phase image' 
tvscl, congrid(phase, 512, 512) 

 

end 
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3. Program to reconstruct the digital hologram genera by convolution approach 

 

PRO CV1_RECON 

; Reconstruction by convolution approach with 3 FFTs 

 
; Read the set-up parameters 

Wavelength = 0.0 
Zdist = 0.0 
Xnum = 0 
Ynum = 0 
ccdsp = 0.0 
Angle = 0.0 
file = dialog_pickfile(/read, filter = '*.dat') 
datafilename = file 
openr, unit, datafilename, /get_lun 
readu, unit, Wavelength, Zdist 
readu, unit, Xnum, Ynum 
readu, unit, ccdsp, Angle 
close, unit 
free_lun, unit 
Xlength = (Xnum - 1) * ccdsp 
Ylength = (Ynum - 1) * ccdsp 
 
; Read the digital hologram 

hologram = fltarr(Xnum, Ynum) 
file = strmid(file, 0, strlen(file)-4) + '.hol' 
holofilename = file 
openr, unit, holofilename, /get_lun 
readu, unit, hologram 
close, unit 
free_lun, unit 
 
; Initiate the data arrays 

ccd_x = fltarr(Xnum) 
ccd_y = fltarr(Ynum) 
prop_real = fltarr(Xnum, Ynum) 
prop_imag = fltarr(Xnum, Ynum) 
theta2_real = fltarr(Xnum, Ynum) 
theta2_imag = fltarr(Xnum, Ynum) 
line_real = fltarr(Xnum) 
line_imag = fltarr(Xnum) 
ref_real = fltarr(Xnum, Ynum) 
ref_imag = fltarr(Xnum, Ynum) 
 
; Suppression of the DC term 

ave_holo = total(hologram) / (float(Xnum) * float(Ynum)) 
hologram = hologram - ave_holo 
 
; Create the coordinate system of CCD array 

ccd_x[0] = -1. * Xlength / 2. 
for i = 1, Xnum - 1 do begin 
    ccd_x[i] = ccd_x[i-1] + ccdsp 
endfor 
ccd_y[0] = -1. * Ylength / 2. 
for i = 1, Ynum - 1 do begin 
    ccd_y[i] = ccd_y[i-1] + ccdsp 
endfor 
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; Generate plane reference wave for reconstruction 

ref_amp = 1.0 
wavenum = 2. * !pi / Wavelength 
for x=0, Xnum-1 do begin 
    phase_angle = -1. * wavenum * sin(Angle) * ccd_x[x] 
    line_real[x] = ref_amp * cos(phase_angle) 
    line_imag[x] = ref_amp * sin(phase_angle) 
endfor 
for y=0, Ynum-1 do begin 
    ref_real[*,y] = line_real 
    ref_imag[*,y] = line_imag 
endfor 
 
; Numerical reconstruction by convolution approach 

var1_real = hologram * ref_real 
var1_imag = hologram * ref_imag 
var1 = complex(var1_real, var1_imag) 
c = fft(var1) 
var1_real = float(c) 
var1_imag = imaginary(c) 
var2_real = fltarr(Xnum, Ynum) 
var2_imag = fltarr(Xnum, Ynum) 
Z_dist = Zdist ^ 2.0 
for x=0, Xnum - 1 do begin 
    X_dist = ccd_x[x] ^ 2. 
    for y=0, Ynum - 1 do begin 
       Y_dist = ccd_y[y] ^ 2. 
       dist = sqrt(X_dist + Y_dist + Z_dist) 
       var2_real[x, y] = sin(wavenum * dist) / (dist * Wavelength) 
       var2_imag[x, y] = cos(wavenum * dist) / (dist * Wavelength) 
    endfor 
endfor 
var2 = complex(var2_real, var2_imag) 
c = fft(var2) 
var2_real = float(c) 
var2_imag = imaginary(c) 
var3_real = var1_real * var2_real - var1_imag * var2_imag 
var3_imag = var1_real * var2_imag + var1_imag * var2_real 
var3 = complex(var3_real, var3_imag) 
c = fft(var3, /inverse) 
c = shift(c, Xnum/2, Ynum/2) 
recon_real = float(c) 
recon_imag = imaginary(c) 
 
; Calculate the reconstructed intensity image on CCD and display it 

ccd = recon_real ^ 2.0 + recon_imag ^ 2.0 
phase = atan(recon_imag, recon_real) 
window, 0, xsize = 512, ysize = 512, title = 'Reconstructed intensity image' 
tvscl, ccd 
window, 1, xsize = 512, ysize = 512, title = 'Reconstructed phase image' 
tvscl, phase 
 
end 

 

4. Program for the shape measurement of a ball bearing by two-source contouring 

 
; Two-source contouring for a ball bearing. The digital holograms used in this 

case were captured in 4-scan mode. 
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; Function for curve fitting dependent on the shape of the object under study 

pro gfunct, X, A, F, pder 
    bx = sqrt(A[2]^2-(X-A[0])^2) 
    F = bx + A[1] 
    if n_params() ge 4 then $ 
       pder = [[(X-A[0])/bx], [replicate(1.0, n_elements(X))], [A[2]/bx]] 
end 
 
; Parameters of the holographic system 

Wavelength = 0.0006328 ; wavelength used in the contouring 
Zdist = -355.    ; the distance between the object plane and CCD plane 
ccdsp = 0.003225   ; pixel spacing in the CCD 
Xnum = 0     ; pixel number in x dimension 
Ynum = 0     ; pixel number in y dimension 
Angle = 0. * !pi / 180 ; the angle of the reference wave 
ref_amp = 1.0    ; the amplitude of the plane reference wave 
wavenum = 2 * !PI / wavelength  ; wave number 
illu_angle = -32. * !pi / 180       ; illumination angle of the object wave 
in the first exposure 
del_angle = 0.01 * !pi / 180  ; the change of the illumination angle 
 
; Read the holograms captured with different illumination angles 

file1 = 'D:\RSI\IDL61\experiment results\2008-12-15\holo_081215_001.BMP' 
hologram1_3d = read_image(file1) 
b = size(hologram1_3d) 
Xnum = b[3] 
Ynum = b[3] 
ccdXlength = (Xnum - 1) * ccdsp  ; CCD length in x dimension 
ccdYlength = (Ynum - 1) * ccdsp  ; CCD length in y dimension 
file2 = strmid(file1, 0, strlen(file1)-6) + '02.BMP' 
hologram2_3d = read_image(file2) 
hologram1 = fltarr(Xnum, Ynum) 
hologram2 = fltarr(Xnum, Ynum) 
x_dis = (b[2]-b[3])/2 
for x = 0, Xnum-1 do begin 
    for y = 0, Ynum-1 do begin 
       hologram1[x,y] = hologram1_3d[0,x+x_dis,y] 
       hologram2[x,y] = hologram2_3d[0,x+x_dis,y] 
    endfor 
endfor 
 
; Suppression of the zero-order term 

ave_holo1 = total(hologram1) / n_elements(hologram1) 
hologram1 = hologram1 - ave_holo1 
ave_holo2 = total(hologram2) / n_elements(hologram2) 
hologram2 = hologram2 - ave_holo2 
 
; Initiate the data arrays 

ccdPx = fltarr(Xnum, Ynum) 
ccdPy = fltarr(Xnum, Ynum) 
orderXX = fltarr(Xnum, Ynum) 
orderYY = fltarr(Xnum, Ynum) 
objPx = fltarr(Xnum, Ynum) 
objPy = fltarr(Xnum, Ynum) 
plX = fltarr(Xnum) 
plY = fltarr(Ynum) 
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; Create the coordinate system of the CCD plane 

plX[0] = -1.0 * ccdXlength / 2.0 
for i = 1, Xnum - 1 do begin 
    plX[i] = plX[i-1] + ccdsp 
endfor 
for i = 0, Ynum - 1 do begin 
    ccdPx[*, i] = plX 
endfor 
plY[0] = -1.0 * ccdYlength / 2.0 
for i = 1, Ynum - 1 do begin 
    plY[i] = plY[i-1] + ccdsp 
endfor 
for i = 0, Xnum - 1 do begin 
    ccdPy[i, *] = plY 
endfor 
 
; Create the coordinate system of the object plane 

objXsp = abs(wavelength * Zdist / (Xnum * ccdsp)) 
objYsp = abs(wavelength * Zdist / (Ynum * ccdsp)) 
objXlength = (Xnum - 1) * objXsp 
objYlength = (Ynum - 1) * objYsp 
plX[0] = -1.0 * objXlength / 2.0 
for i = 1, Xnum - 1 do begin 
    plX[i] = plX[i-1] + objXsp 
endfor 
for i = 0, Ynum - 1 do begin 
    objPx[*, i] = plX 
endfor 
plY[0] = -1.0 * objYlength / 2.0 
for i = 1, Ynum - 1 do begin 
    plY[i] = plY[i-1] + objYsp 
endfor 
for i = 0, Xnum - 1 do begin 
    objPy[i, *] = plY 
endfor 
 
; Generate the reference wave 

ref_phase = -2 * !pi * ccdPx * sin(Angle) / Wavelength 
ref_real = ref_amp * cos(ref_phase) 
ref_imag = ref_amp * sin(ref_phase) 
 
; Numerical reconstruction of these two holograms by Fresnel approximation 

orderX = fltarr(Xnum) 
orderY = fltarr(Ynum) 
orderX[0] = (1 - Xnum) / 2. 
for i = 1, Xnum - 1 do begin 
    orderX[i] = orderX[i-1] + 1 
endfor 
for i = 0, Ynum - 1 do begin 
    orderXX[*, i] = orderX 
endfor 
orderY[0] = (1 - Ynum) / 2. 
for i = 1, Ynum -1 do begin 
    orderY[i] = orderY[i-1] + 1 
endfor 
for i = 0, Xnum - 1 do begin 
    orderYY[i, *] = orderY 
endfor 
para1 = -1.0 * !pi / (Wavelength * Zdist) 
para2 = ccdPx ^ 2.0 + ccdPy ^ 2.0 
para3_real = cos(para1 * para2) 
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para3_imag = sin(para1 * para2) 
para41_real = hologram1 * (ref_real * para3_real - ref_imag * para3_imag) 
para41_imag = hologram1 * (ref_real * para3_imag + ref_imag * para3_real) 
para42_real = hologram2 * (ref_real * para3_real - ref_imag * para3_imag) 
para42_imag = hologram2 * (ref_real * para3_imag + ref_imag * para3_real) 
c1 = complex(para41_real, para41_imag) 
c2 = complex(para42_real, para42_imag) 
f1 = fft(c1, /inverse) 
f2 = fft(c2, /inverse) 
f1 = shift(f1, Xnum/2, Ynum/2) 
f2 = shift(f2, Xnum/2, Ynum/2) 
c1_real = float(f1) 
c1_imag = imaginary(f1) 
c2_real = float(f2) 
c2_imag = imaginary(f2) 
para5 = -1.0 * !pi * Wavelength * Zdist 
para6 = (orderXX / (ccdXlength + ccdsp)) ̂  2.0 + (orderYY / (ccdYlength + ccdsp)) 
^ 2.0 
para7_real = cos(para5 * para6) 
para7_imag = sin(para5 * para6) 
para81_real = para7_real * c1_real - para7_imag * c1_imag 
para81_imag = para7_real * c1_imag + para7_imag * c1_real 
para82_real = para7_real * c2_real - para7_imag * c2_imag 
para82_imag = para7_real * c2_imag + para7_imag * c2_real 
Wavenum = 2 * !pi / Wavelength 
para9_real = sin(Wavenum * Zdist) / (Wavelength * Zdist) 
para9_imag = cos(Wavenum * Zdist) / (Wavelength * Zdist) 
para01_real = para81_real * para9_real - para81_imag * para9_imag 
para01_imag = para81_real * para9_imag + para81_imag * para9_real 
para02_real = para82_real * para9_real - para82_imag * para9_imag 
para02_imag = para82_real * para9_imag + para82_imag * para9_real 
 
; Obtain and display the phase-difference image 

phase = fltarr(Xnum, Ynum) 
phase1 = atan(para01_imag, para01_real) 
phase2 = atan(para02_imag, para02_real) 
for x=0, Xnum-1 do begin 
    for y=0, Ynum-1 do begin 
       if (phase2[x,y] lt phase1[x,y]) then phase[x,y] = phase2[x,y] - 
phase1[x,y] + 2 * !pi $ 
       else phase[x,y] = phase2[x,y] - phase1[x,y] 
    endfor 
endfor 
window, 0, xsize = 512, ysize = 512, title = 'direct subtracted phase' 
tvscl, congrid(phase, 512, 512) 
 
; Choose the region of interest 

cursor, left, down, /down, /device 
cursor, right, up, /up, /device 
left = left * 4 
right = right * 4 
up = up * 4 
down = down * 4 
Xdim = right - left + 1 
Ydim = down - up + 1 
 
; Remove the linear factor caused by tilted illumination 

incli_factor = 2 * wavenum * sin(del_angle/2) * cos(illu_angle+del_angle/2) 
incli_phase = incli_factor * objPx[left:right, up:down] 
incli_phase = atan(sin(incli_phase), cos(incli_phase))+!pi 
nor_phase = fltarr(Xdim, Ydim) 
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r_phase = phase[left:right, up:down] 
for x=0, Xdim-1 do begin 
    for y=0, Ydim-1 do begin 
       if (incli_phase[x,y] lt r_phase[x,y]) then nor_phase[x,y] = 
incli_phase[x,y] - r_phase[x,y] + 2 * !pi $ 
       else nor_phase[x,y] = incli_phase[x,y] - r_phase[x,y] 
    endfor 
endfor 
window, 1, xsize = Xdim, ysize = Ydim 
tvscl, nor_phase  ; display the phase-difference image after the removal of 
the linear factor 
 
; Unwrap the phase-difference image by calling a user-specified procedure and 

display the unwrapped phase 

unwrapped = unwrapimage2(nor_phase, 4, Xdim, Ydim, 3) 
window, 2, xsize = Xdim, ysize = Ydim 
tvscl, unwrapped 
 
; Get the height distribution of the surface 

height = unwrapped / (wavenum * 2 * sin(del_angle/2) * 
sin(illu_angle+del_angle/2)) 
height = smooth(height, 10, /edge_truncate) 
 
; Generate the mask for the object under study 

cursor, cx, cy, /device 
area_r = 200l 
height_r = fltarr(Xdim, Ydim) 
for i=0, Xdim-1 do begin 
    for j=0, Ydim-1 do begin 
       if (long(i-cx))^2+(long(j-cy))^2 gt area_r^2 then height_r[i,j] = 0 $ 
       else height_r[i,j] = height[i,j] - height[cx-area_r,cy] 
    endfor 
endfor 
 
; Display the surface of the object 

x_cor = plX[left:right] - plX[left] 
y_cor = plY[up:down] - plY[up] 
window, 3 
shade_surf, height_r, x_cor, y_cor, ax=45, az=30, 
zrange=[min(x_cor),max(x_cor)] 
 
; Find the maximum height and its position 

print, 'max_h = ', max(height_r,i) 
mx = i mod Xdim 
print, mx 
my = i / Xdim 
print, my 
 
; Display the cross sections along the x and y axes from the position of the 

maximum height 

window, 4, xsize = 512, ysize = 256, title = 'profile x' 
plot, x_cor, height_r[*,my], /isotropic 
window, 5, xsize = 512, ysize = 256, title = 'profile y' 
plot, y_cor, height_r[mx,*], /isotropic 
 
; Curve fitting for both cross sections displayed above. The fitting parameters 

vary depending upon the holograms used in the contouring. 

i = 0 
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while (height_r[i,my] le 2) and (i lt Xdim) do i = i + 1 
mxl = i 
i = i + 100 
while (height_r[i,my] gt 2.5) and (i lt Xdim) do i = i + 1 
mxr = i 
 
j = 0 
while (height_r[mx,j] le 2) and (j lt Ydim) do j = j + 1 
myl = j 
j = j + 100 
while (height_r[mx,j] gt 3) and (j lt Ydim) do j = j + 1 
myr = j 
 
X1 = x_cor[mxl:mxr] 
Y1 = height_r[mxl:mxr,my] 
weights = replicate(1.0, n_elements(X1)) 
A1 = [9., -1., 8.] 
yfit = curvefit(X1,Y1,weights,A1,sigma,function_name='gfunct',yerror=b1) 
print, 'Function parameters: ', A1, b1 
 
X2 = y_cor[myl:myr] 
Y2 = height_r[mx,myl:myr] 
weights = replicate(1.0,n_elements(X2)) 
A2 = [9.75, -1., 8.] 
yfit = curvefit(X2,Y2,weights,A2,sigma,function_name='gfunct',yerror=b2) 
print, 'Function parameters: ', A2, b2 
 
end 
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