

ii

ABSTRACT

In recent years, the field of Digital Interactive Storytelling (DIS) has become very

popular both in academic circles, as well as in the gaming industry, in which stories are

becoming a unique selling point. Academic research on DIS focuses in the search for

techniques that allow the creation of systems that can generate dynamically

interesting stories which are not linear and can change dynamically at runtime as a

consequence of a player’s actions, therefore leading to different story endings.

To reach this goal, DIS systems usually employ Artificial Intelligence planning and re-

planning algorithms as part of their solution. There is a lack of algorithms created

specifically for DIS purposes since most DIS systems use generic algorithms, and they

do not usually assess if and why a given algorithm is the best solution for their

purposes. Additionally, there is no unified way (e.g. in the form of a selection of

metrics) to evaluate such systems and algorithms.

To address these issues and to provide new solutions to the DIS field, we performed a

review of related DIS systems and algorithms, and based on the critical analysis of that

work we designed and implemented a novel multi-agent DIS framework called

DIEGESIS, which includes –among other novel aspects- two new DIS-focused planning

and re-planning algorithms.

To ensure that our framework and its algorithms have met the specifications we set,

we created a large scale evaluation scenario which models the story of Troy, derived

from Homer’s epic poem, “Iliad”, which we used to perform a number of evaluations

based on metrics that we chose and we consider valuable for the DIS field. This

collection of requirements and evaluations could be used in the future from other DIS

systems as a unified test-bed for analysis and evaluation of such systems.

iii

ACKNOWLEDGEMENTS

This work is dedicated to my twin daughters, Evdokia and Myranda, who were born a

few months before I completed my research.

Firstly, I would like to thank my primary supervisor Professor Abdennour El Rhalibi for

his continuous support, guidance, encouragement, and inspiration throughout my

research which were crucial for the completion of it, as well as my second and third

supervisors, Professor Madjid Merabti and Professor A. Taleb-Bendiab.

I would also like to thank my parents, Christos and Evdokia, my partner, Filian, as well

as the rest of my family (with a special mention to my grandmother Eftichia and my

uncle Vasilis who passed away last summer and were always proud of me pursuing a

PhD) for the support, patience, and encouragement that they showed me both during

the course of my research, and during my whole life.

Finally, I would like to thank Liverpool John Moores University for the scholarship that

made this research possible and, last but not least, all my friends (whose list of names

is lengthy to mention here) for their support and companionship.

iv

DECLARATION

I declare that as the sole author of this doctoral thesis, the work contained herein is

my own, unless explicitly stated otherwise. During the course of my research, the

following research publications were produced to disseminate my work. Certain

material and concepts from these publications will, by necessity, be presented within

the context of this thesis.

 Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2011.

Evaluation of Planning Algorithms for Digital Interactive Storytelling. The 12th

Annual Post Graduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting (PGNet2011).

 El Rhalibi, A., Goudoulakis, E., and Merabti, M. 2012. DIS Planning Algorithms

Evaluation. 4th IEEE International Workshop on Digital Entertainment,

Networked Virtual Environments, and Creative Technology.

 Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2012.

Framework for multi-agent planning and coordination in DIS. Proceedings of the

Workshop at SIGGRAPH Asia (WASA ’12).

 Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2012.

Opportunistic Multi-Agent Digital Interactive Storytelling System. The 13th

Annual Post Graduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting (PGNet2012).

 Duarte, R., Goudoulakis, E., El Rhalibi, A., and Merabti, M. 2013. A

Conversational Avatar Framework of Digital Interactive Storytelling. The 14th

Annual Post Graduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting (PGNet2013).

 Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2013. Re-

planning in Digital Interactive Storytelling. The 14th Annual Post Graduate

Symposium on the Convergence of Telecommunications, Networking and

Broadcasting (PGNet2013).

 Goudoulakis, E., El Rhalibi, A., Merabti, M., and Taleb-Bendiab, A. 2014.

DIEGESIS – A Novel Multi-Agent Planning System for Digital Interactive

v

Storytelling. ACM Journal Computers in Entertainment, Issue 12, Vol. 3,

September 2014 (in print).

vi

TABLE OF CONTENTS

Abstract ... ii

1 Introduction ... 1

1.1. Motivation .. 1

1.2. Aim & Objectives .. 2

1.3. Research Methodology .. 3

1.3.1. Literature Survey and Critical Analysis .. 3

1.3.2. Problem Analysis and Design .. 3

1.3.3. Framework Implementation ... 4

1.3.4. Evaluation Assessment .. 4

1.4. Contributions to Knowledge... 5

1.4.1. Critical Analysis Consolidation .. 5

1.4.2. Design of a Novel DIS Framework ... 5

1.4.3. Implementation of a Novel DIS Framework ... 8

1.4.4. A New Planning Solution for DIS Frameworks .. 8

1.4.5. A New Re-planning Solution for DIS .. 9

1.4.6. Evaluation of DIS Systems ... 10

1.4.7. Proposal of Possible Applications ... 11

1.4.8. Dissemination of Our Findings .. 11

1.5. Structure of Thesis .. 12

2 Background & Related Work ... 13

2.1. Digital Interactive Storytelling .. 13

2.2. Planning .. 15

2.3. Planning Using Constraints ... 17

2.4. Multi-agent Systems ... 17

2.5. Multi-agent Planning .. 20

vii

2.6. Agent Architectures .. 21

2.7. Re-planning ... 23

2.8. Planning Algorithms Used in DIS .. 24

2.8.1. FF (Fast-Forward) .. 24

2.8.2. Graphplan .. 25

2.8.3. Heuristic Search Planner (HSP) ... 26

2.8.4. Hierarchical Task Network (HTN) Planning ... 27

2.9. Representation Languages ... 27

2.9.1. Stanford Research Institute Problem Solver (STRIPS)............................... 27

2.9.2. Action Description Language (ADL) ... 28

2.9.3. Planning Domain Definition Language (PDDL) .. 28

2.9.4. Hierarchical Task Network (HTN) .. 29

2.10. Review and Critical Analysis of Existing DIS Systems.................................... 30

2.10.1. Fabulator ... 30

2.10.2. Façade .. 31

2.10.3. GADIN .. 32

2.10.4. I-Storytelling .. 35

2.10.5. LOGTELL ... 37

2.10.6. Mimesis ... 38

2.10.7. MIST ... 40

2.10.8. Othello ... 43

2.10.9. PaSSAGE ... 44

2.11. DIS Systems Comparison .. 45

2.12. Re-planning outside of the DIS field ... 54

3 DIEGESIS DIS Framework ... 56

3.1. User Types and Characteristics .. 56

3.2. General Specifications .. 57

viii

3.3. Choice of Base Representation Language .. 58

3.4. Choice of Base Planning Algorithm .. 62

3.5. Multi-agent Needs .. 64

4 Design of the Framework .. 66

4.1. Game World Architecture .. 71

4.2. Parser .. 74

4.3. Knowledge Base ... 75

4.4. Level Manager .. 76

4.5. World Manager .. 78

4.6. Choices Manager .. 87

4.7. Transitioning Manager ... 90

4.8. Goal Injection Manager .. 98

4.9. Futile Goals Manager ... 102

4.10. Oracle .. 105

4.11. Uncertain Actions Manager .. 106

4.12. Vantage Point Manager .. 108

4.13. User Manager ... 111

4.14. Planner .. 113

4.15. Agent ... 129

4.16. Battle Manager ... 133

4.17. Evaluation Monitor ... 140

4.18. Tools for Story Modelling ... 142

5 Implementation ... 144

5.1. Choice of implementation platform ... 144

5.2. Parsing Component .. 145

5.3. Knowledge Base Component ... 146

5.4. Level Manager .. 149

ix

5.5. World Manager .. 150

5.6. Choices Manager .. 156

5.7. Transitioning Manager ... 157

5.8. Goal Injection Manager .. 158

5.9. Futile Goals Manager ... 161

5.10. Oracle .. 162

5.11. Uncertain Actions Manager .. 162

5.12. Vantage Point Manager .. 163

5.13. User Manager ... 164

5.14. Planner .. 168

5.15. Agent ... 175

5.16. Battle Manager ... 177

5.17. Evaluation Monitor ... 178

6 Evaluation .. 180

6.1. Evaluation Scenarios... 180

6.2. Potential Storylines .. 181

6.3. Story Mechanics ... 188

6.4. Evaluation Metrics .. 194

6.5. Evaluations ... 196

6.5.1. Planning Algorithms Evaluation .. 196

6.5.2. DIEGESIS Scalability Evaluation ... 199

6.5.3. Planning Algorithm Performance Evaluation .. 203

6.5.4. Re-planning Algorithm Evaluation .. 208

6.5.5. Summarisation evaluation .. 213

7 Conclusion & Future Work ... 228

7.1. Research Summary ... 228

7.2. Thesis Summary .. 230

x

7.3. Possible Applications .. 231

7.3.1. 3D Visualisation of Stories .. 232

7.3.2. Virtual Storyteller .. 234

7.4. Future Work ... 237

7.4.1. Authoring Tools ... 237

7.4.2. Emotions Manager Component .. 237

7.4.3. Improvement of Planning Algorithm’s Pre-processing 238

7.4.4. Durative Actions .. 238

7.4.5. Possible Applications ... 239

7.4.6. Application Programming Interface (API) ... 239

7.4.7. Further Framework Evaluations .. 239

7.4.8. Story Modelling ... 240

References ... 241

Appendices .. 247

Appendix A: Use of UML in the Thesis .. 247

xi

LIST OF FIGURES

Figure 1: Blackboard architecture ... 18

Figure 2: Message passing architecture .. 19

Figure 3: Deliberative agent architecture ... 22

Figure 4: Reactive agent architecture ... 22

Figure 5: BDI agent architecture ... 23

Figure 6: User types use case diagram .. 57

Figure 7: PDDL domain definition example .. 59

Figure 8: PDDL problem definition example ... 61

Figure 9: DIEGESIS’ initial architecture ... 67

 Figure 10: DIEGESIS architecture ... 70

Figure 11: Game world architecture ... 71

Figure 12: Example of a PDDL representation .. 73

Figure 13: Parser activity diagram .. 74

Figure 14: Preliminary database schema .. 75

Figure 15: Semantics of XML level nodes ... 77

Figure 16: Level Manager sequence diagram ... 78

Figure 17: World Manager high-level activity diagram .. 79

Figure 18: Level initialisation sequence diagram .. 80

Figure 19: Initialisation of agents activity diagram ... 80

Figure 20: An XML Character node ... 81

Figure 21: Activity diagram of the process of executing a turn 83

Figure 22: Sequence diagram of dealing with messages .. 86

Figure 23: A set of XML Choice nodes ... 87

Figure 24: Sequence diagram of loading a new level's choices 88

Figure 25: Sequence diagram of dealing with choices .. 89

Figure 26: Transitioning information in XML .. 91

Figure 27: A group of mutually exclusive levels modelled in XML 92

Figure 28: Activity diagram of the transitioning process .. 93

Figure 29: Transitioning sequence diagram .. 94

Figure 30: Example of transitioning layers .. 96

xii

Figure 31: Transitioning layers containing mutually exclusive levels 97

Figure 32: Transitioning layers after the mutually exclusive levels are removed 98

Figure 33: A set of XML Goal Injection rule nodes .. 100

Figure 34: Loading of new goal injection rules sequence diagram 101

Figure 35: Sequence diagram of dealing with goal injections 102

Figure 36: A set of XML futile goal and illegal location nodes 103

Figure 37: Loading of new futile goals sequence diagram.. 104

Figure 38: Sequence diagram of requesting a futile goal ... 105

Figure 39: Calculating a random outcome activity diagram ... 106

Figure 40: A set of XML uncertain actions nodes ... 107

Figure 41: Loading of new uncertain actions sequence diagram 107

Figure 42: Sequence diagram of checking if an action is uncertain.............................. 108

Figure 43: Vantage point generation sequence diagram ... 110

Figure 44: Checking if an action will be displayed sequence diagram 111

Figure 45: Initial GUI mock-up .. 112

Figure 46: Intermediate GUI mock-up .. 112

Figure 47: Final GUI mock-up .. 113

Figure 48: Modal box GUI mock-up .. 113

Figure 49: Planner initialisation sequence diagram .. 114

Figure 50: A set of XML action nodes ... 115

Figure 51: Activity diagram of the initialisation (pre-processing) of planning domain 116

Figure 52: A PDDL action example .. 117

Figure 53: Activity diagram of the planning process .. 119

Figure 54: A PDDL planning domain and problem .. 120

Figure 55: A simple planning graph example .. 120

Figure 56: An expanded PDDL planning domain and problem 123

Figure 57: The expanded planning graph ... 124

Figure 58: The new simplified planning graph .. 125

Figure 59: Activity diagram of the re-planning process .. 127

Figure 60: An abstract re-planning example ... 128

Figure 61: Sequence diagram of the initialisation of agents .. 130

Figure 62: Activity diagram of the agent goal selection process 131

Figure 63: Activity diagram of agent plan request process .. 132

xiii

Figure 64: A set of XML battle details ... 134

Figure 65: A set of XML battle groups ... 135

Figure 66: Battle Manager initialisation sequence diagram ... 135

Figure 67: Alliances' initialisation activity diagram ... 136

Figure 68: Activity diagram of checking for an alliance retreat 138

Figure 69: Activity diagram of performing a battle... 139

Figure 70: Battle configuration XML nodes .. 140

Figure 71: Screenshot of (Cooper, 2011)'s PDDL editor ... 142

Figure 72: DIEGESIS Software Architecture .. 144

Figure 73: Parser class diagram... 145

Figure 74: Knowledge Base class diagram .. 147

Figure 75: Knowledge Base database schema .. 148

Figure 76: Level Manager class diagram ... 150

Figure 77: World Manager class diagram ... 151

Figure 78: Choices Manager class diagram ... 156

Figure 79: Transitioning Manager class diagram .. 158

Figure 80: Goal Injection Manager class diagram ... 160

Figure 81: Futile Goals Manager class diagram .. 161

Figure 82: Oracle class diagram .. 162

Figure 83: Uncertain Actions Manager class diagram .. 163

Figure 84: Vantage Point Manager class diagram .. 164

Figure 85: The initial User Interface of the system ... 165

Figure 86: First version of DIEGESIS' GUI .. 165

Figure 87: Intermediate version of DIEGESIS' GUI .. 166

Figure 88: Finalised version of DIEGESIS' GUI ... 167

Figure 89: A pop-up modal box ... 167

Figure 90: User Manager class diagram .. 168

Figure 91: Planner class diagram .. 169

Figure 92: Planning graph expansion visualisation ... 171

Figure 93: Information about a specific action in the visualisation of the planning graph

 ... 171

Figure 94: Agent class diagram ... 176

Figure 95: Battle Manager class diagram .. 178

xiv

Figure 96: Evaluation Monitor class diagram.. 179

Figure 97: Troy scenario levels and potential transitions ... 187

Figure 98: Levels affected if Achilles decides not to join the war 189

Figure 99: Levels affected if Helen decides not to flee with Paris 191

Figure 100: Achilles’ combined plan ... 193

Figure 101: Troy characters coordination ... 194

Figure 102: The generated valid plan ... 199

Figure 103: Total times vs number of agents ... 201

Figure 104: The generated valid plan ... 201

Figure 105: Total times vs number of agents ... 203

Figure 106: Hector’s plan .. 204

Figure 107: Paris’ plan ... 205

Figure 108: Total and average planning times .. 206

Figure 109: Total and average number of nodes in planning graph 206

Figure 110: Successful and failed actions, times instructed to wait, and numbers of

total generated plans .. 207

Figure 111: Paris’ complete plan ... 208

Figure 112: Re-planning process and action execution of the new re-planning solution

 ... 209

Figure 113: Number of re-planning tasks ... 210

Figure 114: Total and average re-planning times ... 211

Figure 115: Individual planning time for each re-planning task 212

Figure 116: Total and average number of nodes .. 212

Figure 117: Individual number of nodes for each re-planning task 213

Figure 118: Execution order of levels in Story 1 ... 214

Figure 119: Execution order of levels in Story 2 ... 215

Figure 120: Execution order of levels in Story 3 ... 216

Figure 121: Execution order of levels in Story 4 ... 217

Figure 122: Pre-processing nodes ... 219

Figure 123: Total story duration ... 223

Figure 124: Levels of Achilles' vantage point .. 225

Figure 125: Levels of Helen's vantage point ... 226

Figure 126: Spartan warrior .. 232

xv

Figure 127: Parthenon of Greek Goddess Athena .. 233

Figure 128: Achilles Watching Ships Preparing for War ... 233

Figure 129: Achilles meeting Greek Goddess Athena ... 234

Figure 130: The Charisma interface .. 234

Figure 131: Framework layers for facial animation and DIS ... 235

Figure 132: The flow of a story used as input ... 235

Figure 133: Achilles’ combined plan ... 236

Figure 134: Information flow to create a narrative in the framework 237

xvi

LIST OF TABLES

Table 1: Feature sets of Digital Interactive Storytelling systems 48

Table 2: Algorithms’ feature sets .. 196

Table 3: Algorithms' execution time comparison ... 198

Table 4: Pre-processing and planning times vs number of agents 200

Table 5: Pre-processing and planning times vs number of agents 202

Table 6: Planning evaluation results ... 205

Table 7: Successful and failed actions, times instructed to wait, and numbers of total

generated plans... 207

Table 8: Planning times and number of nodes ... 210

Table 9: Planning tasks results .. 211

Table 10: Generic story data results ... 218

Table 11: Pre-processing nodes .. 219

Table 12: Planning data results ... 220

Table 13: Performance data results .. 221

Table 14: Transitioning data results .. 221

Table 15: Interactivity performance data ... 222

Table 16: Maximum waiting durations ... 222

Table 17: Vantage points data results .. 224

xvii

LIST OF ABBREVIATIONS

AI – Artificial Intelligence

AM – Agents’ Manager

BM – Battle Manager

CM – Choices Manager

DIS – Digital Interactive Storytelling

FGM – Futile Goals Manager

GIM – Goal Injection Manager

GUI – Graphical User Interface

HTN – Hierarchical Task Network

KB – Knowledge Base

LM – Level Manager

MAS – Multi-Agent System

NPC – Non-Player Character

OG – Output Generator

PDDL – Planning Domain Definition Language

STRIPS – Stanford Research Institute Problem Solver

TiM – Time Manager

TM – Transitioning Manager

UAM – Uncertain Actions Manager

UM – User Manager

VPM – Vantage Point Manager

WM – World Manager

1

1 INTRODUCTION

1.1. MOTIVATION

In recent years, the field of Digital Interactive Storytelling (DIS) has become very

popular both in academic circles and in the gaming industry. The latter is a prosperous

industry, since it has surpassed in revenue the music and movies industries. Stories

and storytelling are becoming more important in games (for example in Role Playing

Games) and are transforming into a unique selling point of them.

DIS systems can also be used in education and also in other entertainment areas (apart

from games) such as in TV, movies, series, etc. For example, in the future the viewer

may be able to interact and change the outcome of a story presented to her via

animation. Such systems can also generate scripts for movies/series to help writers

with ideas.

DIS is a very flourishing research area in academia and is a platform which allows us to

do a multi-disciplinary research containing interesting and exciting areas to work on,

such as multi-agent systems, planning, re-planning, etc., solving difficult problems (for

example regarding real-time performance).

Also, we get the chance to combine all these disciplines and apply and use them in a

different area from where they were traditionally used. For example, there is extensive

research for planning algorithms with a focus on industrial themes, but not much in

the DIS field.

Academic research on DIS focuses in the search for techniques that allow the creation

of systems that can generate dynamically interesting stories which are not linear and

that can change dynamically during runtime as a consequence of a player’s actions,

therefore leading to different story endings.

2

There have been numerous approaches attempting to reach this goal by employing

Artificial Intelligence (AI) planning algorithms as part of the solution, but they typically

do not discuss in detail or assess if and why a given planning algorithm was used and if

that algorithm is the best solution for the story scenarios used or if it is suitable for

other DIS scenarios. Also, there is a gap in the development and use of re-planning

methods in existing systems, as no specific re-planning algorithm has been proposed to

deal specifically with DIS. In this research we propose to contribute to the assessment

of existing AI planning solutions for DIS, to create a novel multi-agent framework that

provides new solutions for DIS, and to design new AI planning re-planning algorithms

which will have been evaluated to be the most suitable for DIS characteristics.

1.2. AIM & OBJECTIVES

The proposed research aims at investigating AI planning and re-planning algorithms

and exploiting their potential for the field of DIS, to evaluate their suitability for such

systems and to develop new algorithms to improve them. To this end and to also

provide more solutions to DIS research, a multi-agent DIS framework using planning

and re-planning techniques will be specified, designed, implemented, and evaluated

using appropriate DIS scenarios.

The objectives of this research work will be to consolidate the knowledge related to

existing planning and re-planning algorithms for DIS, and develop a more generic

multi-agent DIS framework providing a more robust, flexible and performant solution

for a large class of DIS. In particular we will:

 Review the related work in DIS systems, as well as planning and re-planning

algorithms related to DIS;

 specify the requirements of a multi-agent DIS framework which uses planning

and re-planning techniques;

 design and implement a novel multi-agent DIS framework which utilises

planning and re-planning techniques to generate a narrative;

 introduce mechanisms to generate different story outcomes and perspectives,

for example using choices, goal injections, levels transitioning, and vantage

points;

3

 design and implement a new planning algorithm for DIS, taking into account its

performance and impact on the storyline quality;

 design and implement a new re-planning algorithm for DIS, taking into account

its performance, minimal disruption to the original plan, and impact on the

storyline quality;

 define the evaluation criteria, create evaluation scenarios, and evaluate the

implemented framework and algorithms;

 exploit the research outcomes for generalisation and dissemination purposes.

1.3. RESEARCH METHODOLOGY

In order to achieve the research objectives that we outlined previously, the research

methodology that we used during the course of our research follows an incremental

and iterative model. In each iteration, starting with an initial idea, we performed a

(never-ending) literature survey on the related work to identify problems in one (or

more) of our fields of research. By analysing the data derived from this survey, we

designed new and/or modified existing components of our framework, which we

implemented and evaluated (when was required). The following sections discuss these

steps in more details.

1.3.1. LITERATURE SURVEY AND CRITICAL ANALYSIS

In order to develop a deep and varied understanding in the fields related to our

research, we performed a comprehensive survey on existing DIS systems, multi-agent

systems, as well as planning and re-planning algorithms with the DIS field in mind,

which we documented in chapter 2.

1.3.2. PROBLEM ANALYSIS AND DESIGN

Based on the critical analysis of our literature review, we specified the requirements

and specifications of a scalable, abstract, interactive, and decoupled multi-agent DIS

framework which includes dynamic story generation and narration, as well as different

points of view.

4

To achieve these requirements and specifications we designed DIEGESIS, a multi-agent

DIS framework using planning and re-planning techniques. DIEGESIS consists of several

different components, each responsible for one or more features of the framework,

such as the planner which includes a planning and a re-planning algorithm.

Although we used an incremental and iterative approach during the design or our

framework and its components, for the sake of simplicity and clarity of the thesis we

are documenting everything showing DIEGESIS as a final product. The requirements

and specifications of our framework are documented in chapter 3, and its design in

chapter 4.

1.3.3. FRAMEWORK IMPLEMENTATION

While implementing our designed multi-agent DIS framework, including our planning

and re-planning algorithms, we took an iterative prototyping approach. As soon as a

part of a design was complete (e.g. a new component) we implemented it and then,

when it was required, we designed and created an evaluation case to test and evaluate

it. As soon as this process was complete, changes and refinements were made to the

design (and therefore to the implementation) of our framework before starting this

iterative process again. The implementation of our framework is documented in

chapter 5.

1.3.4. EVALUATION ASSESSMENT

As we mentioned in the previous section, during the course of our design and

implementation phases, we performed a number of evaluations to evaluate several

aspects of our framework, expose any limitations that it has, and ensure we were in

course with the requirements and specifications we had set.

To aid us in these evaluations, we either used parts or the whole of the large-scale

evaluation scenario we modelled, which includes several characters with rich relations

between them, and a high number of possible actions and choices, that can provide

different outcomes. This scenario along with other related information and our

evaluations are documented in chapter 6.

5

1.4. CONTRIBUTIONS TO KNOWLEDGE

This thesis makes the following contributions to knowledge, in relation to the field of

Digital Interactive Storytelling (DIS):

1.4.1. CRITICAL ANALYSIS CONSOLIDATION

Consolidating the knowledge of previous related work in the field of DIS, can help to

identify techniques that provide good results and also to identify areas in the field

which have not been thoroughly explored yet and in which we could provide a novel

perspective.

Planning and re-planning techniques used in DIS systems are such an area, therefore

we are presenting the results of our critical analysis and evaluation mostly focused on

that, identifying (among other data) the types of planning and the planning algorithms

the state of the art of related DIS systems use, as well as if they consider re-planning.

Parts of our literature survey have been published in the following papers: (Duarte et

al., 2013, El Rhalibi et al., 2012, Goudoulakis et al., 2011, Goudoulakis et al., 2012b,

Goudoulakis et al., 2013, Goudoulakis et al., 2012a, Goudoulakis et al., 2014)

1.4.2. DESIGN OF A NOVEL DIS FRAMEWORK

DIEGESIS is a scalable, interactive, and modular DIS multi-agent framework, which

includes dynamic story generation and narration, as well as different points of view.

Most DIS systems use generic Artificial Intelligence (AI) planning algorithms which

were not created specifically with DIS requirements in mind, and very few of them

consider re-planning as part of their planners. DIEGESIS includes a new planner which

consists of a planning and a re-planning algorithm created with the needs of DIS

systems in mind.

Most DIS systems perform either centralised or decentralised planning; DIEGESIS

follows a hybrid approach. On the plan generation level, it performs decentralised

planning in which each character in a story is represented by an autonomous agent

able to opportunistically generate plans based on its own goals. In the same manner,

each agent tries to execute its own plans autonomously. We believe that this provides

6

a more flexible and realistic approach to the generation of a story, since each agent

acts as a self-sufficient agent, generating an autonomous plan considering its own

needs.

In the case of plans execution though, our approach borrows the control and

coordination concepts from the centralised planning approach. Although the plans are

individual, we want DIEGESIS to dictate the execution phase of the agent’s plans

(therefore the generation of the story) so the system can have a better control and

understanding of what happens during the generation/execution of the story, and to

be able to interfere if needed.

DIEGESIS’ agent architecture, follows a hybrid approach; it includes elements of

reactive agents (the agent receives input, processes it, and produces an output),

elements of deliberative agents (the agent keeps an internal view of its environment),

and elements of BDI agents (Beliefs – the agent’s view of the world, Desires – the

agent’s goals, Intentions – the agent’s plans).

In terms of interactivity, while many DIS systems allow the end-user to control only

one character in the story (i.e. the protagonist), in DIEGESIS, there is not a main

character (i.e. agent) that the player controls/observes; instead, the player can make

choices (defined by the person who creates the story, i.e. the storyteller) for actions

that can affect every character in the active story.

Apart from choices which can have a huge impact on the outcome of the generated

narrative, DIEGESIS implements other mechanics which can have an impact on the

story as well: A goal injection mechanism can inject new goals to the agents based on

situations that occur during the generation of the story; a battle mechanism is able to

calculate the outcome of both duels between agents and/or non-player characters

(NPCs), and large-scale battles between large armies of NPCs; a futile goals module is

able to assign goals to agents which are idle; and the concept of uncertain actions

(actions which have a chance of succeeding or failing) have the potential to delay

agents’ plans from being successfully executed, or even invalidate them.

Traditionally, related DIS systems use either a first-person or a third-person

perspective to present their stories to the player. In its default mode, DIEGESIS

7

presents the generated story as a whole, allowing the player to observe and interact

(when is required) with any of the agents present in the story. These abilities

constitute a third-person perspective, but since we want to provide the player with a

first-person perspective as well, we created the concept of vantage points. If the player

selects to view the story from the vantage point of an agent she will view only the

story outcome which is related to the chosen agent, and will be available to interact

with the story (i.e. make choices) only when an action is related to the story agent. The

rest of the story (which is unrelated to the selected agent) will continue normally in

the background. The player is able to choose between different vantage points or

return to a full story view freely during run-time. All these mechanics are allowing

linear storyline with differing endings, interleaved storylines, and even flashbacks.

Finally, DIEGESIS uses a hybrid story modelling approach, combining both plot-based

and character-based elements. The game world is organised in multiple relatively

abstract levels which can represent possible parts of a story. DIEGESIS is able to

transfer knowledge between levels (acquired by previously executed levels), and

judiciously choose which level needs to be executed next to form a valid and

interesting story, based on a level transitioning system. Using this plot-based

approach, DIEGESIS always has a high-level control over the overall structure of the

story, being able to transition the story between levels which make sense, producing a

coherent narrative.

But, when a level is loaded to be executed, we move closely to a character-based

model; each agent may have some initial intentions/desires, but is able to operate

autonomously and opportunistically to achieve its goals. The framework won’t

interfere with the decisions of an agent even if they mean that the story cannot

progress any further. The authoring process in DIEGESIS provides enough freedom to

the storyteller to operate whichever way she wants; either to create a relatively rigid

storyline without much room for highly diverse narratives, or to model a story in a way

that everything is fluid; a lot of player choices, several potential goal injections based

on actions that may occur, and several uncertain actions; all of these features can

contribute to unexpected situations and more emergent narratives.

8

Parts of the DIEGESIS’ architecture have been described in the following published

papers: (Duarte et al., 2013, Goudoulakis et al., 2012b, Goudoulakis et al., 2013,

Goudoulakis et al., 2012a, Goudoulakis et al., 2014)

1.4.3. IMPLEMENTATION OF A NOVEL DIS FRAMEWORK

The aforementioned design of DIEGESIS is fully implemented into a full working multi-

agent DIS framework. This implementation provides us with a framework for the

creation and evaluation of our new planning and re-planning algorithms, as well as

enabling us to provide an accurate evaluation of them. That also gives us the

opportunity to use the framework in conjunction with other systems in the future,

creating new expanded DIS solutions.

1.4.4. A NEW PLANNING SOLUTION FOR DIS FRAMEWORKS

Most DIS systems use generic AI planning algorithms which were not created

specifically with DIS requirements in mind. A few DIS systems have created

adaptations of planning algorithms for their needs, but they don’t provide many details

about their mechanics.

DIEGESIS includes a new planning solution created based on the needs of the DIS field,

able to generate plans of actions based on each agent’s state and context, considering

both the current world state and the available resources.

The planning algorithm is based on Graphplan (expanded to include support for several

language requirements that we consider valuable for DIS) for solutions expansion, and

a backtracking heuristic search for plan extraction, enriched with constraints

satisfaction and dynamic opportunistic restart when required. The planning algorithm

is also aware of the available time (duration) an agent/character has for a plan when it

is asked to generate one.

The expansion stage allows the generation of all the sub-goals compatible with the

current constraints, while the plan extraction involves a search technique using

appropriate heuristics to link the goal(s) to the initial state and generate a valid plan.

9

Details about our planning solution have been published in the following papers:

(Goudoulakis et al., 2012b, Goudoulakis et al., 2012a, Goudoulakis et al., 2014)

1.4.5. A NEW RE-PLANNING SOLUTION FOR DIS

When we consider classical AI planning for DIS, one of the premises is that the

environment is static, which means that the planner is the only agent that can make

changes in the story environment. However, a more realistic proposal is that the

environment is dynamic; that is, there are other agents in the story and the actions

generated by the planner may fail due to the actions of these agents.

We believe that a key aspect in the use of planning formalisms in DIS consists in their

ability to support re-planning and to offer representations embedding the potential for

failure. However, research for re-planning in DIS is sporadic. There are some DIS

systems that claim to use re-planning approaches, but the information they provide is

scarce. Most planners solve each planning task from scratch, which is time consuming.

DIEGESIS deals with the execution of the agents’ plans in a higher level, and when a

part of a plan fails, instructs the agent to re-plan based on its current knowledge of the

state of the world. Considering that we modelled each agent to act as a real person in

the way they generate and try to execute a plan, it does not make sense (in our

context) to predict and prevent plan failures as some related DIS systems do, since a

plan can fail either due to user intervention (which cannot be predicted), or

intervention by other characters, or –in some cases– pure chance. In any case, failed

plans due to “unpredicted” reasons are realistic and have the potential to enrich a

generated narrative.

In our re-planning solution, as we interleave plan generation and plan execution, when

a plan fails, we discard the already completed actions and we only re-plan for the

failed (and some of the pending) actions of the plan, merging the new partial plan with

the unexecuted portion of the original plan.

Details about our re-planning solution have been published in the following papers:

(Goudoulakis et al., 2013, Goudoulakis et al., 2014)

10

1.4.6. EVALUATION OF DIS SYSTEMS

DIEGESIS has to be evaluated with experiments that provide evidence in support of our

thesis and emphasise either the proof-of-concept (i.e. demonstrating the validity of a

technique) or efficiency (i.e. demonstrating that a technique provides better

performance than those that exist), depending on the evaluated component’s role in

the overall framework.

There are no widely accepted metrics to evaluate DIS systems that we could use, so we

had to specify some of them, based on what we consider valuable for the DIS field.

This collection of requirements and evaluations could be used in the future from other

DIS systems as a unified test-bed for analysis and evaluation of such systems.

The outcome of our work is evaluated for the following requirements that we consider

important for DIS frameworks:

 Performance of planning and re-planning solutions: Many related DIS systems

reported that their planning and re-planning solutions suffered from

performance issues, making the planning and re-planning expensive in any

sizable domain. Our planner needs to have a good performance in order to

generate (and regenerate) plans in real-time. To this end, we designed and

performed a number of evaluations to identify potential bottlenecks of our

planning and re-planning solutions, and explore their suitability for our DIS

needs.

 Suitability of planning algorithms’ features for DIS: Apart from performance, a

planning algorithm should possess a number of features that we consider

valuable for the DIS field. We performed an evaluation to identify which of the

existing planning algorithms are suitable to be used in the DIS field, to be used

as a base algorithm of our planning solution.

 Performance-based interactivity of the framework: Any DIS system and

framework should support some kind of interactivity. To this end, the

framework’s performance should be adequate enough so the player will not

suffer from delays causing the framework to be potentially unusable and

possibly frustrating to use. To evaluate the performance-based interactivity of

11

DIEGESIS, we designed and performed an evaluation measuring the

framework’s level loading and turn execution times during the generation and

execution of a large-scale scenario.

 Summarisation metrics: Although their types can vary in different DIS systems

and frameworks, in most there should be some data which can quantify the

complexity of a generated story. We performed an evaluation measuring

several metrics of some storylines generated by DIEGESIS, such as the volume

of levels, characters, turns, actions, potential nodes, etc.

To perform the aforementioned evaluations, we created a large scale evaluation

scenario which models the story of Troy, derived from Homer’s epic poem, “Iliad”,

which will be presented in section 6.1.

We have published evaluations of our framework and of relevant planning algorithms

in the following papers: (El Rhalibi et al., 2012, Goudoulakis et al., 2011, Goudoulakis et

al., 2012b, Goudoulakis et al., 2013, Goudoulakis et al., 2012a, Goudoulakis et al.,

2014).

1.4.7. PROPOSAL OF POSSIBLE APPLICATIONS

Apart of operating on its own, we are proposing two different possible applications

which use DIEGESIS as a relying framework: an application which uses a 3D engine that

will enable us to visualise the generated stories and improve the interactivity with the

end-user; and a virtual storyteller application which interfaces our framework with a

3D character animation framework which will act as a narrator for the stories which

our framework produces, using a natural language generation system as an

intermediate, an application which we proposed in (Duarte et al., 2013).

1.4.8. DISSEMINATION OF OUR FINDINGS

The outcomes of our research have been disseminated via publishing a number of

papers (Duarte et al., 2013, El Rhalibi et al., 2012, Goudoulakis et al., 2011,

Goudoulakis et al., 2012b, Goudoulakis et al., 2013, Goudoulakis et al., 2012a,

Goudoulakis et al., 2014), and our work has been presented at international

conferences.

12

1.5. STRUCTURE OF THESIS

The rest of the thesis is structured in the following way:

 In Chapter 2 (Background & Related work), we present the background of our

research area. More specifically, we discuss about the field of Digital Interactive

Storytelling, about multi-agent systems presenting some agent architectures,

and about DIS-related as well as multi-agent-related planning and re-planning.

We also present some of the planning algorithms which are typically used in

DIS systems along with some of the representation languages used by them, we

present some examples of re-planning outside of the DIS field, and we survey

and critically assess a number of DIS systems, stating their relation to our own

work.

 In Chapter 3 (DIEGESIS DIS Framework), we document the requirements and

specifications of our multi-agent DIS framework.

 In Chapter 4 (Design of the Framework), we discuss in detail the design aspect

of every component of our framework.

 In Chapter 5 (Implementation), we document all the details about the

implementation of the multi-agent DIS framework we discussed in the previous

chapter.

 In Chapter 6 (Evaluation), we provide detailed information about the evaluation

scenario that we modelled, showing its potential storylines, we discuss some of

the mechanics that can have an impact on the generated story, and we specify

the metrics used in our evaluations. We are also documenting a number of

evaluations for the different components of our framework, using the

evaluation scenario we presented earlier in the chapter.

 Finally, in Chapter 7 (Conclusion & Future Work), we conclude this thesis and

we document some future work ideas for our framework. We also describe

some potential routes for our framework, utilising its capabilities via connecting

it to other components and engines to allow us to create new DIS applications.

13

2 BACKGROUND & RELATED WORK

In this chapter we present the background of our research areas, which are the fields

of Digital Interactive Storytelling (DIS), planning, re-planning, and multi-agent systems

(MAS). Afterwards, we present some of the planning algorithms which are typically

used in Digital Interactive Storytelling (DIS) systems along with some of the

representation languages used by them, then some examples of re-planning outside

the DIS field, and finally we survey and critically assess a number of DIS systems,

stating their relation to our own work.

2.1. DIGITAL INTERACTIVE STORYTELLING

Video games for computers and consoles are established as the leading form of

interactive digital entertainment (Barros and Musse, 2007a), are becoming more

complex, and so their use as a storytelling medium is growing in importance and

popularity. The unique interactive nature of games means that stories and characters

can become more personal and involving.

Until now, stories in contemporary games are typically implemented using one or

more standardised methods such as linear, branched or layered narrative (Paul et al.,

2009). DIS is a relatively new field of interactive computer entertainment (Barros and

Musse, 2005) that aims to create interactive applications capable to generate

consistent narratives.

Traditionally, a story is considered to be a sequence of actions that leads to a sequence

of events (Spierling, 2009). As defined in (Thue et al., 2007), DIS is “a story-based

experience in which the sequence of events that unfolds is determined while the

player plays”. A storytelling system can either actually create stories or enable the user

just to tell different stories based on previously computed sequences of actions

(Karlsson et al., 2007). As mentioned in (Thue et al., 2007), “deferring storytelling

decisions to run-time can greatly improve the flexibility and replay value of a

storytelling game”.

14

In fact, computer game stories can be implemented in different ways (Merabti et al.,

2008): either linear, branching, parallel, or threaded. Most games typically follow a

linear storyline, where the events of the story are presented in a predefined sequence.

It can be argued that making a player follow a defined story can diminish the

interactivity level of a game; the player is, after all, following a pre-set path already laid

out for him/her by the author. In order to still convey a story and allow the player to

feel a high degree of interactivity, the concept of interactive or non-linear storytelling

has to be introduced. Simply put, interactive storytelling presents the opportunity for

players to have an input on what is happening in the game world in which they are

placed, to be the ones who dictate how certain events may come to pass within the

constraints set by the story author.

Similar to other entertainment media, stories in games play a big role in increasing

immersion, building tension and adding interest to the player. However, one main

difference from the games to those other media is that games are interactive; they

expect participation from the player and in turn, players expect to participate and get

involved in the events the game is presenting and the outcomes of those events.

As thoroughly described in (Karlsson et al., 2007), a story model can be focused either

on characters or on plots:

 In a character-based model, the storyline results from the real-time interaction

among virtual autonomous agents. The main advantage of this model is the

ability of anytime user intervention, meaning that the user may alter the plot as

it unfolds by interfering with any character in the story. On the other hand,

such an extreme interference level may lead the plot to unexpected situations

or even to miss essential predefined events. Also, there is no guarantee that

the narratives that emerge from the interaction of the above mentioned

autonomous agents will be complex enough to create an interesting drama.

 In a plot-based model, characters should follow more rigid rules, specifying the

intended plot structures. In a pure plot-based model, user intervention is more

limited than in a character-based model but it is usually easier to guarantee

coherence and a measure of dramatic power.

15

Another consideration is whether stories should be told using a first-person or a third-

person perspective. As discussed in (Karlsson et al., 2007), a first person perspective

tends to be particularly suitable for applications closer to digital games, whereas a

third-person perspective is more appropriate for those involving film making.

Apart from its application in computer gaming, DIS has applications in several other

areas like military training and interactive drama (Paul et al., 2009).

As discussed in (Charles et al., 2003), with the exception of emergent storytelling, DIS

systems rely on various Artificial Intelligence (AI) techniques to support their behaviour

including Assumption-based Truth Maintenance Systems (ATMS), Reasoning

Maintenance Systems (RMS), logic programming and planning systems.

2.2. PLANNING

Planning is a combination of search and logic, two major areas of AI (Russell and

Norvig, 2010). Planning involves knowing the state that you’re in, the state you want to

be in and then finding the sequence of operators that will get you from the current

state to the final state. According to (Russell and Norvig, 2010), a planner can be

considered as either a program that performs a search for a solution or as one that

proves the existence of a solution.

To generate a storyline in DIS, planning systems are the most widely used techniques.

They are considered extremely appropriate for DIS applications since plans are

composed of discrete operations and stories can be easily converted to computer

graphics-based output (Barros and Musse, 2007a). Apart from DIS systems, even AAA

game titles such as the 2005 first-person shooter F.E.A.R. (Orkin, 2006) have employed

successfully planning methods.

As stated in (Barros and Musse, 2005), the use of planning algorithms in DIS has two

advantages:

1. Plans are a sequence of actions that can be used to achieve a given goal. They

have an inherent notion of cause and effect that maps naturally to the concept

of story.

2. Plans consist of discrete actions that can be individually assigned to and

executed by characters.

16

However, there are fundamental differences between the goals of AI and DIS that

should not be ignored (Barros and Musse, 2007a, Barros and Musse, 2005). In one

hand AI algorithms are typically concerned with “hard” and precise goals such as

optimality (e.g. finding the shortest path to a given place) whilst, on the other hand,

the narrative goals in DIS are more subtle and not easily defined formally. That can be

improved by using languages that use predicate logic, such as PDDL (Planning Domain

Definition Language; discussed later in this section). Therefore, when applying AI

algorithms in DIS problems these differences must be taken into account so narrative

consistency of the generated stories will not be compromised.

Some of the problems with the current research in DIS, as discussed in (Spierling,

2009), are:

 AI engines appear obscure for authors from non-computer-science areas, and

approaches in automatic planning are hard to grasp.

 Due to a lack of available playable prototypes, practical experience is missing.

 Naïve authoring approaches are generally too linear to suffice for highly

interactive storytelling, which means granting end-users participation in the

story.

There are many different description languages for representing planning problems.

The most widely used is called PDDL (Planning Domain Definition Language) (Fox and

Long, 2003). PDDL was derived from the original Stanford Research Institute Problem

Solver (STRIPS) planning language which is slightly more restricted than PDDL since for

example, STRIPS preconditions and goals cannot contain negative literals. STRIPS uses

first-order predicate logic, and a world state is represented as a conjunction of

predicates. There have been several versions of PDDL, consecutively extending the

language expressiveness and features. Its first version was released on 1998 and the

last version (i.e. 3.1) in 2008. Another planning language is ADL (Action Description

Language) which is included as a PDDL extension (Fox and Long, 2003). ADL relaxed

some of the STRIPS restrictions and made it possible to encode more realistic

problems. Another major difference between these planning languages is that, in

contrast to STRIPS, which use a closed-world model, the open world assumption

applies to ADL. (Russell and Norvig, 2010)

17

Although planning systems have been used intensively in DIS systems, there have not

been much novel solutions for DIS research with respect to planning algorithms. No

DIS dedicated planning algorithm has been proposed as yet, and the justification of the

choice of a planning algorithm for a DIS prototype is usually inadequate. In particular, a

discussion of the specific requirements necessary for planning is often missing, and

authors just propose comparisons of alternative existing planning algorithms in order

to find the most appropriate one for a specific ad-hoc DIS problem domain.

2.3. PLANNING USING CONSTRAINTS

Interest in using constraint techniques in planning problems has grown in recent years

and has proven successful for many domains (Nareyek et al., 2005). As described in

(Nareyek et al., 2005), the basic units of constraint-based problems are the constraints

and the variables, where the constraints are entities that restrict the values that can be

assigned to the variables. As further explained in (Barták et al., 2010), constraints are

just relations while a Constraint Satisfaction Problem (CSP) indicates which relations

(constrains) should hold among the given decision variables.

An interesting application of CSPs is in scheduling which shares some similarity with

planning, but focuses essentially on actions, resources and time optimisation

techniques. As explained in (Barták et al., 2010), scheduling concerns with the

allocation of resources (such as time, machines etc.) to activities (actions) with the

objective of optimising some performance measures. For example in time scheduling,

the duration of a number of actions can be modelled as a CSP so they will not overlap

while selected, or the final plan will not exceed the available time.

2.4. MULTI-AGENT SYSTEMS

A definition of an agent in our context is that an agent is an entity which is part of an

environment, perceives it with the help of sensors, and is able to act intelligently on it

via a set of action mechanisms available to it (Vlachavas et al., 2005). Extending the

above definition, we can add that an agent should be able to operate autonomously,

persist over a prolonged time period, adapt to change, and create and pursue goals

(Russell and Norvig, 2010).

18

A multi-agent system (MAS) is a system designed and implemented as a group of

agents interacting with each other (i.e. communicating, competing, cooperating,

coordinating, negotiating, and so forth). In such systems, the agents either work

individually exchanging information and/or services with other agents trying to

succeed to their individual goals or work together solving sub-problems so the

combination of their solutions become the final solution. (Vlachavas et al., 2005)

According to (Vlachavas et al., 2005), there are two basic categories of interconnection

models, i.e. ways for the agents to communicate with each other or with other

systems; the blackboard systems, and the message passing systems.

In blackboard systems, there is a common working space (i.e. the blackboard) to be

used by all of the system’s agents, whereby they either share results, or they share

tasks. When something is shared in this common area is accessible by all of the agents

participating in the system. A blackboard system architecture is illustrated in Figure 1,

adapted from (Vlachavas et al., 2005).

Figure 1: Blackboard architecture

On the other hand, in message passing systems the agents communicate directly with

each other, sharing information via messages written in a communication language

commonly accepted by all the system’s agents. A message passing system architecture

is illustrated in Figure 2, adapted from (Vlachavas et al., 2005).

19

Figure 2: Message passing architecture

In any of the aforementioned interconnection models, there can be two types of

communication: Either synchronous, meaning that an agent which asks a question to

the system or to another agent inhibits its operation until an answer has been

received, or asynchronous, meaning that the answer can be received at any point

without a disruption in the agent’s operation (Vlachavas et al., 2005).

An intelligent agent may implement some the following abilities (Vlachavas et al.,

2005):

 Autonomy: The agents can operate without a direct intervention by a user or

other agents, and they have (total or partial) control over their internal state,

meaning that the agents are able to pursue their goals without constantly

receiving user input.

 Social ability: The agents can communicate with other agents (or the user)

using any kind of language that all of them can understand and “agreed” to use

for the purpose of communication. Therefore, they are able for cooperation,

coordination, and negotiation between them.

 Reactiveness: The agents are able to perceive the environment they exist in,

and react to it based on the changes that are happening in it.

 Pro-activeness: The agents are not only able to react to the environment

changes, but to act pro-actively as well, meaning that they can have goals and

create plans to be able to achieve them.

 Mobility: The agents are not only static, but are also able to move in the

environment they exist in.

 Adaptivity: The agents can constantly adjust to the environment or the choices

of a user, meaning that they have an ability to learn.

 Veracity: The agents do not send wrong information on purpose.

20

 Benevolence: The agents are always trying to achieve their given goals.

 Rationality: The agents always act to achieve their goals, meaning that they

don’t do futile actions without being told to, and they don’t act against

achieving their goals.

In any definition of an agent, it is part of an environment, which can be categorised

based on the characteristics they possess, as follows (Russell and Norvig, 2010,

Vlachavas et al., 2005):

 Fully observable vs. partially observable: Whether an agent’s sensors give it

access to the complete state of the environment at each point in time or not.

 Deterministic vs. stochastic: If the next state of the environment is completely

determined by the current state and the effects of the action executed by the

agent, then the environment is deterministic; otherwise, it is stochastic.

 Episodic vs. sequential: In an episodic task environment, the agent’s experience

is divided into atomic episodes. In each of these episodes, the agent receives a

percept and then performs a single action. Crucially, the effects of the actions

taken in previous episodes do not affect at all the next episode.

 Static vs. dynamic: If the environment can change while an agent is

deliberating, then the environment is considered dynamic for that agent,

otherwise is considered static.

 Discrete vs. continuous: The discrete/continuous distinction applies to the state

of the environment, to the way time is handled, and to the percepts and

actions of the agent.

2.5. MULTI-AGENT PLANNING

A common characteristic of the agents that work together in a multi-agent system is

the capability of coordination via a communication language so they can communicate

agreements and solve possible conflicts. A definition of coordination is that it is the

attribute of a multi-agent system to solve problems in a common environment. Agents

may coordinate their actions either to succeed a common goal (cooperation) or to

succeed their individual goals (negotiation) (Vlachavas et al., 2005).

21

As explained in (Russell and Norvig, 2010), when there are multiple agents in the

environment, each agent faces a multi-agent planning problem in which it tries to

achieve its own goals with the help (or not) of the others. As discussed in (Vlachavas et

al., 2005), in multi-agent planning, agents are generating a plan of actions and they will

solve the problem based on that plan. During the execution, the plan is revised based

on the new details and results.

Based on (Vlachavas et al., 2005), there are two types of multi-agent planning:

 Centralised multi-agent planning, in which a central agent is responsible to

collect the partial or local plans of the other agents, to combine them in one

plan and solve any conflicts that may occur.

 Distributed (a.k.a. decentralised) multi-agent planning, in which all the agents

communicate with each other to generate their plans and to negotiate any

possible conflicts.

2.6. AGENT ARCHITECTURES

There are several intelligent agents’ architectures that are used in multi-agent systems,

such as the reactive agents, the deliberative agents, and the belief-desire-intention

(BDI) agents (Vlachavas et al., 2005). But, depending on the needs of the system, it is

very common to see hybrid agent architectures, which combine elements from several

architectures (Russell and Norvig, 2010).

The deliberative agents (Figure 3, adapted from (Vlachavas et al., 2005)) include an

internal representation of the environment they exist in, and have knowledge of the

set of rules that they must obey to, as well as of the set of actions they are able to

execute. Therefore, they store a state which represents the evolution of their

environment, as well as the current action they are executing, so they can decide for

their next action (Vlachavas et al., 2005).

22

Figure 3: Deliberative agent architecture

The reactive agents (Figure 4, adapted from (Vlachavas et al., 2005)) on the other

hand, do not store a representation of the environment that they base their reasoning

on, and they implement a stimulus/response type behaviour based on the current

state of the environment they exist in. These agents are receiving data information

from their environment (perception) and, based on the rules they operate by, they

decide on the action they will choose as a reaction to their perception. Finally, these

agents do not have an internal memory, meaning that they do not calculate their next

actions based on previous states of the world (Vlachavas et al., 2005).

Figure 4: Reactive agent architecture

The belief-desire-intention (BDI) (Figure 5, adapted from (Vlachavas et al., 2005))

agents have a more complicated representation of their environment and they plan to

achieve their goals. Their internal state consists of beliefs, desires, and intentions (i.e.

the agent’s plans) (Vlachavas et al., 2005).

 Beliefs are the agent’s view and knowledge of the environment that exists in.

 Desires are related with the judgment that an agent will make for the future

states of its environment, for example if a future state is desirable or not. In the

desire level, the agent doesn’t examine if a desired state is possible, and there

23

is also the possibility that some of the desired states are in conflict with each

other.

 Goals are a subset of desires, and this is what the agent acts for. They should

be achievable, and not in conflict with each other.

 Intentions are a subset of goals, which an agent tries to achieve at a given

moment in time. In most cases, it is not possible to achieve all goals at once,

therefore the agent selects a subset of them, which forms the intentions set,

based on some hierarchy criteria.

 Plans are the set of actions that the agent can execute to achieve its intentions.

Figure 5: BDI agent architecture

2.7. RE-PLANNING

As discussed in (Doyle, 1996), planning is necessary for the organisation of large-scale

activities since decisions about actions to be taken in the future have direct impact on

what should be done in the shorter term. But even if a plan is thoroughly tested and

well-constructed, its value decays as changing circumstances, resources, information,

or objectives render the original course of action inappropriate. When changes occur

before or during the execution of a plan, it may be necessary for a new plan to be

constructed by either starting from scratch or by revising a previously generated plan.

Agents acting in complex and dynamic environments must often adjust their plans at

runtime to avoid potential conflicts with other agents or using resources that are not

available anymore. According to (Bartold and Durfee, 2003), such conflicts can be

detected by selectively exchanging and comparing portions of agents’ individual plans,

24

identifying inconsistent expectations, and adding synchronisation actions and/or

blocking some action choices to ensure conflicts cannot arise.

Most planners solve each planning task from scratch by solving a series of similar

planning tasks. Planning is time-consuming and severely limits the responsiveness

and/or the number of what-if analyses that the planners can perform. To enhance

their performance, (Koenig et al, 2002) states that re-planning methods that reuse

information from previous planning episodes to solve a series of similar planning tasks

are much faster than the approach of solving each planning task from scratch. (Doyle,

1996) states that “to re-plan effectively in demanding situations, re-planning must be

incremental, so that it modifies only the portions of the plan actually affected by the

changes”.

As discussed in (Charles et al., 2003), a key aspect in the use of planning formalisms in

storytelling consists in their ability to support re-planning and to offer representations

embedding the potential for failure, however no solution have been proposed since for

re-planning in DIS. There is an important gap in the use of re-planning methods in

existing DIS systems and the proposed research will attempt to fill it.

2.8. PLANNING ALGORITHMS USED IN DIS

The following are some of the planning algorithms that have been used in DIS systems,

listed alphabetically.

2.8.1. FF (FAST-FORWARD)

FF (Hoffmann, 2001) is a forward state-space searcher that uses the ignore-delete-lists

heuristic, estimating the heuristic with the help of a planning graph. It then uses

enforced hill-climbing search (modified to keep track of the plan) with the heuristic to

find a solution. When it hits a plateau or local maximum – i.e. when no action leads to

a state with better heuristic score- then FF uses iterative deepening search until it finds

a state which is better, or it gives up and restarts hill-climbing (Russell and Norvig,

2010). FF was created by mixing some novel ideas with features of Graphplan and HSP

(discussed in sections 2.8.2 and 2.8.3 accordingly) among others (Barros and Musse,

2007a).

25

Facing a search state S, a relaxed (ignoring delete lists) version of Graphplan is used to

generate output for heuristic evaluation (the length of the solution plan) and the

generation of helpful actions. Then, an enforced version of hill-climbing method

considering only the helpful actions are used to find a solution plan. That is, all the

direct successors of a state S are evaluated. If none of them has a better heuristic value

than S, the successors’ successors are evaluated, and so on, until a state S’ with better

heuristic value than S is found. When such a state is found, the path to it is added to

the current plan and the search continues with S’ as a starting point.

In summary, each iteration performs a complete breadth-first search for a state with

strictly better evaluation. If enforced hill-climbing with helpful actions fails, then a

best-first search considering all the applicable actions is performed to find a solution.

2.8.2. GRAPHPLAN

Graphplan (Blum and Furst, 1997) was the first planning algorithm that converted the

planning problem into an intermediary data structure called a planning graph.

Graphplan have moved the field of planning forward by obtaining impressive gains in

performance compared to previous planning approaches, based on the experimental

results documented in (Blum and Furst, 1997). Graphplan’s main drawback is that

although it is an optimal partial-order planner, its input language is quite limited

(Russell and Norvig, 2010).

In Graphplan a plan is extracted from a graph. The graph consists of levels of literals

which could be either true or false, and levels of actions of which the preconditions

could be also either true or false. The graph is constructed starting at level zero (0)

where all literals that are currently true are represented; these are true or false

depending on the initial state and there are no other possibilities. Then, a level of

actions for which the preconditions hold in the first level is added. This is followed by

another level of literals that could hold if an action makes it true. Each level of literals

gives the literals that could possibly be made true at that level depending on choices

made earlier. Each level of actions gives all actions that could be used at that level

depending on earlier choices.

26

The Graphplan algorithm creates the graph in steps; if at the current level of literals all

literals from the goal are present without mutex relations between them, a solution

plan may exist in the current graph. Otherwise, the graph is expanded by adding a new

level of actions and a resulting literals level. If the graph possibly contains a solution,

the algorithm tries to find it.

2.8.3. HEURISTIC SEARCH PLANNER (HSP)

Heuristic Search Planner (HSP) (Bonet and Geffner, 2001) uses a STRIPS-based

representation for problem description and searches the space of states from the

initial state, using a traditional heuristic search algorithm and a heuristic automatically

extracted from the STRIPS formulation (Charles et al., 2003).

HSP is a state space planning approach that can run either forward or backward and is

much like path-finding. A state space search planner searches for a path along world

states to the goals state. A world state can be reached by using an action. A forward

searching planner starts with the initial state of the world and constructs a list of all

reachable world states. These possible world states are nodes in the search tree. It will

then choose one and repeat the process until it reaches a goal state. It will usually

have a heuristic that gives rules for which node to expand, which world state to try

first. A good heuristic function is important to make the planning fast.

The search can also start at the goal state. This is backward or regression planning.

Regression planning may have a smaller space to search through. A state space planner

will return a single plan. Actions in the plan are sometimes motivated by the next

action in the plan but we cannot be sure of this. And sometimes actions are motivated

by actions that are further along the plan. This is because actions that are in the plan

are placed in a sequence that will make the preconditions of the actions be satisfied at

the time they are executed.

According to (Russell and Norvig, 2010), HSP was the first state-space searcher that

made state-space search practical for large planning problems.

27

2.8.4. HIERARCHICAL TASK NETWORK (HTN) PLANNING

Hierarchical Task Network (HTN) based planning (Cavazza et al., 2002), which is also

known as task-decomposition planning, is among the oldest approaches for providing

domain-specific knowledge to a planning system.

An HTN planner solves problems by decomposition. The initial problem statement, the

initial state and goal are viewed as a single action that must be decomposed into lower

level actions. On the lower levels, actions are decomposed further until only primitive

actions remain. There will often be choices available to the planner when choosing

decomposition for an action. Action decomposition specifies a way to turn an action

into a plan.

HTN is based on forward search, and thus can be searched to extract a task

decomposition corresponding to a solution plan. It is also goal-directed at the same

time, since the top-level task is the main goal. This brings the unique property that

during planning itself the state of the world is known at all times (Charles et al., 2003).

2.9. REPRESENTATION LANGUAGES

There are different description languages for representing planning problems. The

following sections contain overviews of some of the representation languages which

are typically used in planning algorithms.

2.9.1. STANFORD RESEARCH INSTITUTE PROBLEM SOLVER (STRIPS)

According to (Russell and Norvig, 2010), the Stanford Research Institute Problem

Solver (STRIPS) (Nilsson and Files, 1971) was the first major planning system. The

representation language used by STRIPS was way more influential than its algorithmic

approach. What we today call the “classical” representation language, is close to what

STRIPS used. STRIPS use first-order predicate logic, and a world state is represented as

a conjunction of predicates.

To describe a planning problem in STRIPS we need an initial state of the world, a set of

goals that should be achieved, and a set of actions that can be executed to achieve any

28

goals. According to (Vlachavas et al., 2005), the STRIPS model makes the following

admissions:

 Indivisible actions: The actions of the planning problems are indivisible,

meaning that the state of the world during the execution of an action is

irrelevant; it is relevant only at the beginning and at the end of the action. Also,

the execution of an action cannot be interrupted.

 Deterministic effects: There is no uncertainty for the effects of an action, since

they are known beforehand.

 Omniscience: The planning system has complete knowledge of the current state

of the world, as well as its options (based on the available actions).

 Closed world assumption: There is no possibility to include new or remove

existing objects from the system’s world.

 Static world: The world is modified only as a result of the actions executed by

the planning system, and not by itself or by the actions of another entity.

2.9.2. ACTION DESCRIPTION LANGUAGE (ADL)

The Action Description Language or ADL (Pednault, 1989) relaxed some of the STRIPS

restrictions and made it possible to represent more realistic problems. Another major

difference between these planning languages is that, in contrast to STRIPS which uses

a closed-world model, the open world assumption applies to ADL. ADL also allows

negative literals, as well as disjunctions. (Russell and Norvig, 2010)

2.9.3. PLANNING DOMAIN DEFINITION LANGUAGE (PDDL)

The Planning Domain Definition Language (PDDL) (Ghallab et al., 1998) is the most

widely used among planning algorithms. PDDL is an action-centred modular language

and was derived from the original STRIPS planning language which is more restrictive

than PDDL since, for example, STRIPS preconditions and goals cannot contain negative

literals (Russell and Norvig, 2010).

Apart from its relation to STRIPS, PDDL is descended from several forebears (Ghallab et

al., 1998): ADL (which is included as a PDDL extension), the SIPE-2 formalism, the

29

Prodigy-4.0 formalism, the UMCP formalism, the Unpop formalism, and, most directly,

the UCPOP formalism.

As discussed in (Ghallab et al., 1998), PDDL is intended to express the “physics” of the

domain, i.e. which predicates exist and which actions are possible along with the

action’s structure and effects. PDDL is neutral in a way that it doesn’t provide any kind

of “advice” (e.g. which actions to choose to achieve a goal) to the planners using it,

and as a result of this neutrality, almost all planners will require extending the notation

in different way. To this end, the language is factored into subsets of features

(modules) called requirements, so each planner can choose to implement a subset of

them.

There have been several versions of PDDL, consecutively extending the language

expressiveness and features, for example expressing temporal planning domains in

PDDL 2.1 (Fox and Long, 2003). Its first version was released in 1998 and the latest

version (i.e. 3.1) in 2008.

2.9.4. HIERARCHICAL TASK NETWORK (HTN)

Apart from the planners which are using STRIPS-like languages, there are also

Hierarchical Task Network (HTN) based planners, which –according to (Lekavy and

Navrat, 2007)– are based on hand-made hierarchical decomposition of the problem

domain. The planner is provided with domain knowledge, expressed as the possible

decompositions of tasks into subtasks. Tasks are categorised to primitive (i.e. directly

executable) and non-primitive, which have to be decomposed into other tasks.

Each non-primitive task includes one or more lists of tasks it can be decomposed into,

and these lists of tasks along with any other restrictions (e.g. precedence of tasks,

variable binding, mutual exclusions, etc.) comprise a task network. (Lekavy and Navrat,

2007)

According to (Lekavy and Navrat, 2007), although the theoretical model of HTN is

strictly more expressive than STRIPS, both approaches are –in practice– identically

expressive and can solve all domains solvable by a Turing machine with finite tape.

30

2.10. REVIEW AND CRITICAL ANALYSIS OF EXISTING DIS SYSTEMS

The following are most of the existing DIS systems that we researched, listed

alphabetically.

2.10.1. FABULATOR

In Fabulator (Barros and Musse, 2005), a planning algorithm is used to generate a

sequence of actions (an actual story) performed by characters, that is capable to

transform the system’s world.

The player controls one character (the protagonist) and every other character is a Non-

Player Character (NPC). All NPC’s actions are determined by the system.

In DIEGESIS, there is not a main character that the player controls/observes; instead,

the player can make choices (defined by the storyteller) for actions that can affect

every character in the active story. Also, the player is allowed to select and view the

story from the perspective of any of the characters (in the default view mode, the

story is presented as a whole), and to be able to switch between them without any

limitations, during the generation of the narrative.

Fabulator uses a “re-planning from scratch” approach; if an action of the player

renders the current plan invalid, the system uses the planning algorithm to create a

new plan. This way, the story is adapted to the player’s actions.

In DIEGESIS, we have designed and implemented a new re-planning approach, aiming

to make a minimal disruption to the original plan. We evaluated this approach against

the approach of planning from scratch, concluding that the new approach has a better

performance and has no difference in the outcome of the generated story compared

to the other approach.

Fabulator’s implementation “treats the planning problem as a state space search

problem and uses the A* algorithm to solve it”. The creators of Fabulator state that

there are several planning algorithms specific for STRIPS-like domains that can achieve

better performance than A*, but for small storyworlds (the result of authoring process

in DIS) like the one the current implementation uses, performance is not an issue. They

31

also state that the most important shortcoming of their work was its reliance on

predicate logic to represent the world state.

In a latter implementation of the system, the Metric-FF planning algorithm is being

used (Barros and Musse, 2007a). In this implementation, the notion of tension arc is

being introduced (“the level of tension in a story in function of time results in a curve

called tension arc”) along with a mechanism that makes the generated stories follow

an author-defined tension arc.

2.10.2. FAÇADE

Façade (Mateas and Stern, 2003) is a 20 minute interactive drama which can be played

multiple times, where the player has to interact with a couple of NPCs that are

experiencing marriage issues. According to (Karlsson et al., 2007), it integrates

characteristics of both plot-based and character-based approaches.

Façade consists of a 3D world, believable agents, a broad and shallow natural language

processing system, and a drama manager. Façade implements a reactive behaviour

planner that selects, orders, and executes fine-grain plot elements called beats that

describe action/reaction behaviours that story world characters will perform. The

drama manager uses this planner to manage the story resulting from the simulation.

A beat is the smallest unit of dramatic action that moves a story forward. Beats are

authored by a human author and are given preconditions and effects. The

preconditions specify when the beat can be applied and the effects specify what the

result will be in the story state. The set of beats together implicitly defines a narrative

graph.

According to (Arinbjarnar et al., 2009), the beats are “explicitly pre-authored, with all

actions within the beat being fully defined, and the actions of all roles being assigned

to allow for multi-agent coordination”.

By traversing the beats in some sequence, which depends on the interaction of the

human player, the story is moved forward by the drama manager. Because the number

of different ways in which beats can be sequenced is large the player can experience a

lot of freedom in what story is experienced. The way the drama manager changes the

32

simulation is by modifying the behaviour of the characters; it adds and removes

behaviours while the simulation runs. In Façade the number of beats is approximately

200 and they are used in the rate of once every minute.

As discussed in (Roberts and Isbell, 2008), due to the level of granularity required to

author beats and their interactions, a beat-based drama manager seems ideally suited

to small-world variety dramas (like the one used in Façade). “However, the freedom of

replayability and authorial control may come at the price of ease of authoring, at least

for large systems.”

The characters are programmed using A Behaviour Language (ABL). “ABL is a reactive

planning language, based on the Oz Project language Hap, designed specifically for

authoring believable agents - characters which express rich personality, and which, in

[this] case, play roles in an interactive, dramatic story world”. (Cooper, 2011)

Façade is the first complete DIS system published. According to (TeessideUniversity,

2010), its global agency is limited and user's actions (which mainly consist of typed

text) have little explicit consequence on future developments of the story.

2.10.3. GADIN

The Generator of Adaptive Dilemma-based Interactive Narratives (GADIN) (Barber and

Kudenko, 2009) dynamically generates interactive narratives which are focused on

dilemmas to create dramatic tension. Its authors claim that the system addresses two

open challenges: maintaining the dramatic interest of the narrative over a longer

period and (story) domain independence.

As described in (Roberts and Isbell, 2008), to construct the narrative, GADIN selects

among the set of available dilemmas based on an appropriateness estimate, as well as

based on the frequency with which each particular type of dilemma has been

employed already.

Its planner (which is based on the Graphplan algorithm) creates sequences of actions

that all lead to a dilemma for a character (who can be the user). “The user interacts

with the storyworld by making decisions on relevant dilemmas and by freely choosing

33

their own actions. Using this input, the system chooses and adapts future storylines

according to the user’s past behaviour.”

DIEGESIS includes a concept similar to dilemmas, in the form of “choices”. The

storyteller (i.e. the person who models the story which is generated and executed by

DIEGESIS) can mark any kind of action as a choice. When such an action is about to

occur, DIEGESIS either makes a choice itself, or asks the player to make a choice

whether the action will happen or not. The idea behind choices in DIEGESIS is that

important decisions throughout the story should be marked as choices so they can

potentially alter the outcome of the generated narrative.

According to (TeessideUniversity, 2010), GADIN “continuously presents the user with

dilemmas to keep the narrative going“. While in GADIN the generation of dilemmas is

necessary to keep the narrative interesting and going, DIEGESIS’ stories can be

generated even without any choices, although –as we already mentioned- the

storyteller is encouraged to use them since they can potentially have a significant

impact on the outcome of the generated narrative.

Although the authors consider other application domains –in (Barber and Kudenko,

2009) they implemented a finite children’s short story–, as discussed in (Barber and

Kudenko, 2007), GADIN is best suited for genres which places a particular emphasis on

stereotypes and clichés, such as soap operas which is the domain the system was

evaluated on. Comparing the above to our framework, we believe that DIEGESIS is

both suited for movie-like experiences including relatively long-length finite stories, as

well as shorter stories, since it provides to the storyteller the flexibility required to

experiment with multiple genres and lengths of stories.

(Roberts and Isbell, 2008) argues that authoring a story in GADIN is not easy, since it

requires STRIPS-like specification of the domain and character specific information,

which necessitates AI competence. DIEGESIS uses a combination of modelling

approaches: The storyteller needs to model the game world both in PDDL and in XML.

To make the authoring process easier, we are using a PDDL editor created by (Cooper,

2011), and although the authoring process in XML is quite easier compared to PDDL,

we have designed an XML editor as an extension to the PDDL one.

34

GADIN’s authors have identified that the main problem of GADIN’s planner is that as

more characters and actions are included, the time spent planning becomes

unreasonably long; the time increases exponentially with the number of characters

and the number of actions. On the other hand, neither the number of locations nor the

number of dilemmas has an impact on the speed. According to (Arinbjarnar et al.,

2009), “with an increased number of actions, dilemmas and characters, the planning

becomes too slow for a real-time experience of the narrative”; (Roberts and Isbell,

2008) agrees, stating that “online planning approach can be slow in any sizable

domain” The authors claim that a potential solution would be the use of a form of

hierarchical planning.

During the implementation phase of our research, we have identified that the

bottleneck of DIEGESIS’ planner is its pre-processing process, i.e. the time needed by

the planner to pre-generate nodes that are later used in the actual planning and re-

planning process. Our planner only needs to pre-process the information of a level

once and then the pre-processed information can be reused in any planning and re-

planning episode of that level. Therefore, any delay due to the pre-processing will only

affect the loading time of the level, and not the experience of the player while

executing the level.

The results of the evaluation we document in section 6.5.5 show that DIEGESIS is

capable of generating and executing a large and complex story containing several

characters in a very short amount of time, making the framework suitable to be used

for the purpose of DIS.

As it is mentioned by its authors, GADIN is performing re-planning, but there are not a

lot of details for its mechanics. According to (Paul et al., 2010, Paul et al., 2011), if the

player’s actions move too far away from the goal state or they make the story goal

improbable, GADIN randomly selects a new story goal and reveals it to the player. This

new story goal does not involve any further player actions; all further actions are

carried out by NPCs.

The system performs continuous planning in a thread using a global planning graph, so

the re-planning can be faster, and performs a centralised planning for all the agents

operating in the system.

35

In contrast, DIEGESIS performs a decentralised planning; each agent is generating a

plan based on its own goals, and then tries to execute it. The framework deals with the

execution of the agents in a higher level, and when a part of the plan fails, instructs the

agent to re-plan based on its current knowledge of the state of the world. We believe

that this provides a more realistic approach to the generation of a story, since each

agent acts as a real person, generating an autonomous plan considering its own needs.

2.10.4. I-STORYTELLING

The Interactive Storytelling approach described in (Cavazza et al., 2002) and (Charles et

al., 2003) is character-based supporting user interventions at any time. The graphic

environment of the system was based on the Unreal™ game engine and the scenario

used is inspired from the popular sitcom Friends™.

The first prototype of the system (Cavazza et al., 2002) includes four autonomous

agents/characters, and is able to generate short stories up to three minutes in

duration, with approximately one “beat” (Mateas and Stern, 2003) per minute.

According to (Barber and Kudenko, 2009), a longer narrative is not easy to accomplish

due to the large amount of content and ordering predefinition required. As further

discussed in (Paul et al., 2009), each character has a number of context-specific

subtasks, therefore careful authoring of each character’s task network is needed to

ensure that an interesting narrative will occur. The character roles are designed a priori

for the story, therefore the actions that a character can take are scripted for a

particular role; character’s roles are pre-selected at design time for a particular story.

As discussed in (Karlsson et al., 2007), “the main doubt about pure character-based

approached is to what extent dramatic and engaging narratives may actually result.

The task seems to be easier with genres like sitcoms, wherein the climax of a story is

not so clearly distinguishable.”

The user of the system can wander in the 3D world as an invisible avatar and interact

with key objects, and can make suggestions (using a speech recognition interface) to

NPCs, which may or may not be followed (Arinbjarnar et al., 2009). According to (Paul

et al., 2010), “plot coherence is ensured by allowing only NPC actions related to the

on-going story”.

36

Hierarchical Task Networks (HTNs) are being used since the characters’ roles can be

represented in a consistent fashion as such. A single HTN corresponds to several

possible decompositions for the main task therefore an HTN can be seen as an implicit

representation for the set of possible solutions.

The search algorithm that produces a suitable plan from the HTN searches the HTN

depth-first left-to-right and executes (or at least attempts to execute) any primitive

action that is generated. Backtracking is allowed when these actions fail. In addition,

heuristic values (which are used to represent narrative concepts as well) are attached

to the various sub-tasks, so forward search can make use of these values for selecting a

sub-task decomposition.

Any agent’s action will in turn trigger re-planning. This is implemented using the search

mechanism of the HTN planner by back-propagating the failure of the action to the

corresponding sub-goal, so search will backtrack and produce an alternative solution.

Another planning formalism that was used in a second implementation (Charles et al.,

2003) of the same scenario (for comparison reasons) was HSP. Compared to the HTN

implementation, HSP offers greater flexibility in the definition of action and more

variability in the stories generated while HTN offers clear authoring principles and a

global vision of the baseline plot.

According to (TeessideUniversity, 2010), the system’s strong points are the general

nature of the HTN-based planning system, the dramatization of narrative situations

and the user interactions' influences on the unfolding of the narrative in real-time,

while its limitation is the lack of control over the quality of the narrative generated.

In (Charles et al., 2003), the authors mention that HTN is not a good solution when it

comes to re-planning, and they switched to the HSP algorithm, claiming that it

provides a better re-planning solution. The actual mechanics of re-planning are not

described though. Based on the provided examples, the factors which can trigger re-

planning are usually user interference or the availability of a resource.

In our framework, user interference is just one of the options which can trigger re-

planning. Since each agent operates as an individual, generating its own plans as we

explained before, it is very common for an agent’s plan to interfere with a plan of

37

another agent, causing the latter to re-plan. The interference can be something simple

such as the availability of a resource, or even something more complicated, like the

death of a character (represented by an agent), which can potentially have a huge

impact to the whole story, altering significantly the agent’s goals, therefore their plans.

2.10.5. LOGTELL

LOGTELL (Karlsson et al., 2007) is a storytelling system based on modelling and

simulation. Its model includes typical events and goal-inference rules and tries to

conciliate both plot-based and character-based modelling. Successive cycles of goal-

inference, planning, plan recognition and user intervention are used to generate plots.

Typical events are described by parameterised operations with pre-conditions and

post-conditions so that planning algorithms can be used for plot generation while, on

the other hand, the goal-inference rules model the behaviour of the various actors

providing some character-based features. The rules specify how situations can bring

about new goals for each character.

In LOGTELL, the stories are told with a third-person view-point, and user intervention is

always indirect. That means that during the simulation the user can either let the

partially-generated plots that seem interesting to be continued, or try to enforce the

occurrence of situations and events. But, these interventions might be rejected by the

system whenever it finds no valid way to change the story to accommodate the

intervention. According to (Barber and Kudenko, 2007), the resulting story is

graphically presented at a lower level, without any possible user interaction.

In DIEGESIS, as we already mentioned, the storyteller (i.e. the person who models the

story) can mark any kind of action as a choice, which is the way the player can interfere

with the story. User interferences are always accepted by DIEGESIS and they affect the

generation and execution of the story in real time so the user will be able to form the

story in the way she wants, no matter how much impact they have on the generated

narrative.

38

The planning tool used is a non-linear planner implemented in Prolog, adapted from

others’ work with extensions. The use of a non-linear planner is justified as it seems

more suitable because it uses a least-commitment strategy.

The generation of a plot starts by inferring goals of characters from their initial

configuration. Then, the system uses the planner that inserts events in the plot in

order to allow the characters to try and fulfil their goals. When the planner detects

that all goals have been either achieved or abandoned, the partial plot is generated

and presented to the user and can be optionally dramatized. If the user does not like

the partial plot, an alternative can be generated. If the plot is accepted, the process

continues by inferring new goals from the generated situations. If new goals are

inferred, the planner is activated again to fulfil them. The process alternates goal-

inference, plan generation/recognition and user interference until the moment the

user decides to stop, or no new goal is inferred. In the goal-inference phase, forward

reasoning is being used, where in the planning phase, an event inserted in the plot for

the achievement of a goal might have unsatisfied preconditions, so they are checked

via backward reasoning.

The authors argue that combining goal inference, plan generation/recognition and

user participation constitutes a promising strategy towards the production of

entertaining and coherent plots, but on the negative side, plan generation is limited by

computational complexity considerations. They also mention that “modern and post-

modern genres with their emphasis on a more radical transgression of any conventions

should not be so easy to formalise in a systematic way”.

2.10.6. MIMESIS

The Mimesis (Riedl et al., 2003, Young and Riedl, 2003) system defines an architecture

for building and coordinating interactive adaptive narratives. According to (Arinbjarnar

et al., 2009), it is designed as a general architecture, therefore it should work with any

game engine.

Mimesis uses two planners; the narrative planner, which is responsible both for

determining the actions that will occur within the virtual environment as the story

unfolds and for modifying the plan during the story’s execution when the player’s

39

actions deviate substantially from the story’s intended structure; and the discourse

planner, which is responsible for selecting the communicative techniques that will be

used to convey the unfolding action to the player. Both planners use the Longbow

planning system, a hierarchical partial-order causal link planner that can produce plans

both for physical actions as well as communicative ones.

The narrative planner takes as input a declarative representation of all the actions that

are applicable in the virtual world as well as a specification of the goals for the end of

the story. The narrative planner searches for a story plan, which is a sequence of

actions which will be carried out by the characters in the story (including the character

controlled by the player) and will both satisfy the goals of the story and provide an

engaging narrative arc.

The discourse planner takes as input the story plan generated by the narrative planner

and a library of communicative actions that can be used by the game engine to convey

the unfolding action of the story. Then, the discourse planner creates an action

sequence containing directives to be carried out not by characters in the story world

but by the game engine’s interface resources and intended to be executed

concurrently with the story plan itself.

Mimesis deals with re-planning in the following way (Mateas and Stern, 2003): It

monitors the story world for potential player actions that might threaten causal links in

the current story plan. When threat is detected, the system either generates a new

plan which accommodates the player’s potential action while still accomplishing the

story objectives, or intervenes by causing the player action to fail and thus protect the

threatened causal link. According to (Paul et al., 2011), if Mimesis fails a player’s

action, she will be given a pre-authored reason for the failure (e.g. a gun jamming

preventing the player from killing an important character).

(Roberts and Isbell, 2008) claim that re-planning in Mimesis is expensive in any sizable

domain. Because of that, Mimesis builds re-planning policies in an opportunistic

fashion; when processing demands are low, the system pro-actively computes policies

for plans other than the one that is currently executing.

40

In contrast, DIEGESIS interleaves plan generation and plan execution, therefore re-

planning is happening in real time during execution for each individual agent when is

required. Furthermore, based on our evaluations, the re-planning solution we created

does not suffer from performance issues.

2.10.7. MIST

Multiplayer Interactive StoryTelling (MIST) (Paul et al., 2009, Paul et al., 2010, Paul et

al., 2011) is “a system for interactive storytelling in a dynamic virtual world where

NPCs can perform tasks autonomously to satisfy their internal motivations, as well as

interacting with each other in various ways”. It uses AI planning methods for story

creation and revision and character role selection. The system’s proposed architecture

has two main components: a game engine and a drama manager.

The game engine handles the display and update of game world objects and also

interacts with characters and the drama manager. Each character in the game

operates under a Belief-Desire-Intention (BDI) framework and has its own HTN planner

in order to facilitate the creation of a dynamic game world where characters can

interact with each other in a non-deterministic way.

Generally, characters use their planners to decide how to perform tasks or achieve

goals assigned to them by either the drama manager or the game engine. Characters

also convert their local knowledge (acquired by sensors) into a partial game state

representation for use by its planner. The planner uses this information to guide the

decomposition of an assigned task into primitive tasks whose preconditions are known

to be satisfied. All possible plans generated by the planner are ranked in order of

decreasing plan cost; in case there is more than one possible plan, the planner returns

one that minimises the total cost of all primitive tasks in the plan.

The drama manager has a hierarchical network of story elements, which can be pieced

together in different ways to form a story. The current state of the game world is

passed to the drama manager periodically from the game engine. Then, the drama

manager attempts to create a story that fits the current state of the world via its HTN

planner, and the network of story elements. The authors argue that using an HTN

planner in this way (i.e. as part of the drama management subsystem) could

41

potentially enable the creation of many story variants based on the state of the world

at a particular time.

In MIST, NPCs that have been assigned roles in a story plan are prevented from

disrupting the story by being prevented to attempt to achieve their internal desires

while the story is in progress. When it detects an invalid plan step resulting from the

actions of non-story characters in the story plan, the drama manager attempts to

repair the on-going story. The repaired plan is required to be consistent with the steps

that have already been completed in the original plan.

The authors have considered two different approaches to detecting invalid plan steps

while a story is in progress: The first is to look one step ahead to check that the

preconditions of the next plan step are satisfied. An important limitation of this

approach is that because of commitments made by characters close to the point of

(potential) failure, a consistent plan repair may not be possible.

The second approach is that the drama manager continuously checking the

preconditions of all future plan steps. This kind of detection increases the chance of

finding a consistent plan repair because it enables the drama manager to avoid

commitments being made by story characters close to the point of failure; therefore it

is more likely to find a consistent plan repair that bypasses the invalid step. This

approach applies though only to situations where a plan step is made invalid by the

deletion of a precondition that was true in the initial state from which the story was

generated; it does not apply to situations where a plan step is made invalid by the

deletion of a precondition achieved by an earlier plan step.

The approach that they ended up using removes the unsatisfied precondition from the

initial state and uses the HTN planner to search for an alternative story plan that

begins with the same steps as the original plan, up to (and including) the most recent

step that has already been completed. The new story plan is both consistent with the

original plan and generated from the same (correctly authored) HTN, thus ensuring

that plot coherence is maintained.

In DIEGESIS, we have modelled our agents (representing characters in the story) to be

autonomous and opportunistic, generating and trying to execute plans considering

42

only their own needs, as we believe that this provides a more realistic approach to the

generation of a story, since each agent acts as a real person. Therefore, in our context

it does not make sense to predict and prevent plan failures since a plan can fail either

due to user intervention (which cannot be predicted), or intervention by other

characters, or –in some cases– pure chance (discussed in section 4.10). In any case,

failed plans due to “unpredicted” reasons are realistic and have the potential to enrich

a generated narrative.

Another difference between MIST and DIEGESIS is in the way we deal with plan repair.

In our re-planning solution, as we interleave plan generation and plan execution, when

a plan fails, we discard the already completed actions and we only re-plan for the

failed (and some of the pending – discussed in detail in section 4.14) actions of the

plan, merging the new partial plan with the unexecuted portion of the original plan.

Finally, situations like these described by MIST in which “a plan step is made invalid by

the deletion of a precondition achieved by an earlier plan step” are not applicable in

DIEGESIS, since it is not possible to generate a valid plan where the effects of a

previous action renders a future action (in the same plan) invalid.

Although the system was designed to use a set of HTN planners, in the initial

implementation of the system (Paul et al., 2009) the authors used JPlan, a Java

implementation of Graphplan, as the planning component of the system. As they

explain, they needed a Java implementation of an algorithm for their first prototype,

and JSHOP2 which is the most popular Java-based HTN planner had limitations when it

comes to real-time planning that was needed in the system.

Although that the algorithm is efficient and optimal, it has been identified by the

creators of the system to have limited features for the purposes of their research. It

was also stated that “the lack of expressivity in the operator input language restricted

scalability”. The creators decided that, given the limitations of the graph planning

algorithm, the most flexible solution would be the creation of a HTN planner in a

subsequent implementation of the system, which they did in (Paul et al., 2010),

implementing an HTN planner written in Prolog.

43

2.10.8. OTHELLO

Othello (Chang and Soo, 2009, Chang and Soo, 2008) is a multi-agent simulation game

environment where narratives arise on the fly from spontaneous interactions among

characters during the game.

An agent-based and plan-based storytelling approach has been used and assumes that

plans serve as a proper representation of narratives and that a narrative is the result of

plan execution by individual AI characters. A simulation session is considered to

contain multiple autonomous planning agents who are given mental states, personality

traits and social relations. Narratives are expected to be the total sequence of actions

in the plans that the agents make and execute.

Othello’s character plans embody the sociality of narratives, and are called social

plans. A social plan realises a common narrative idiom that a character works to bring

change to another character. Although a persistent game universe can develop

intertwining narrative units where multiple characters exist (with all of them having

their own social plans), Othello limits the focus on generating separate narrative units,

each of which have a main character who is the builder of the social plan. A narrative

unit is considered to be the result of the execution of a social plan.

As an example of the size of a social plan, the authors mention that the simplified plot

of Shakespeare’s Othello (i.e. the manipulative scheme of Iago against Othello) that

they used in their simulations can be viewed as one social plan.

To generate these social plans and allow NPC agents to engage in story-like activities

by influencing others during a game session, Othello uses HSSP (the authors mention

that in a previous version of the system they were using the Optop planner), a

planning tool which interleaves social reasoning with state-space forward-search

planning, guided by an adapted version of the HSP heuristic. As the authors explain,

“apart from the heuristics part, the planning process itself is a normal forward search

into the state space”.

Finally, the authors discuss that although the scalability of the total narrative length is

not within the scope of their research, their findings suggest a negative

44

correspondence between the number of actions and the social plan length using a

classical planning approach like HSSP.

2.10.9. PASSAGE

PaSSAGE (Player-Specific Stories via Automatically Generated Events) (Thue et al.,

2007) is an interactive storytelling system that “uses player modelling to automatically

learn a model of the player’s preferred style of play and then uses that model to

dynamically select the content of an interactive story”. PaSSAGE uses a plot-based

approach, including personalisation of the narrative experiences in the form of

selection of events which matches the player preferences.

According to (Roberts and Isbell, 2008), the system uses a three level hierarchy for

defining a narrative similar to the idea of Façade’s narrative sequencing: “the event

sequence level where the components of the story are selected; the structure level

where the details concerning the time and place of story events are determined; and

lastly, the behaviour level where the actions of individual characters are determined”.

PaSSAGE uses some pre-defined player types (Fighter, Method Actor, Power Gamer,

Storyteller, and Tactician) and during gameplay, it learns a player model expressed as

weights for each of the above player types. PaSSAGE generates its stories using a

library of possible events, called encounters, each of which has been pre-filled by an

author with a number of possible events that would be suitable for each player type.

Each encounter has one or more branches (i.e. potential courses of action for the

player to take in that situation). The encounters follow a particular order depending on

their type (Arinbjarnar et al., 2009). As it is mentioned in (Roberts and Isbell, 2008),

this approach makes the stories hard to author, since it requires exhaustive and rich

annotations of many sub-plots.

While searching for an encounter to run, the system examines each encounter’s set of

branches, and chooses the encounter whose branch fits the player model the best, via

an inner-product calculation. Also, to help maintain a strong sense of story, encounters

are grouped into sets.

45

The system is independent of time, place, and actor identity since the encounters are

scripted generically and their details (e.g. when and where an encounter should occur)

are determined at runtime.

As an experiment, the authors modelled a modified version of the fairy tale “little red

riding hood” and visualised using the toolset provided by the role playing game

Neverwinter Nights. Their finalised model consists of 20 possible lines of gameplay

called paths, with five different endings.

According to (Barber and Kudenko, 2009), the player model used in PaSSAGE is less

likely to be applicable in less computer game-oriented domains, since it is based

specifically on computer game players.

2.11. DIS SYSTEMS COMPARISON

The following table (1) provides an overview of the features of the related DIS systems

discussed in the previous section. The presented features are the following:

 Story Model: The story model of the system, which (as discussed in section 2.1)

can be either character-based, or plot-based, or a combination of both.

 Type of Planning: Either centralised, meaning that the system’s planner

generates a combined plan for all of the involved agents, either decentralised,

meaning that each of the agents generate its own plan.

 Re-planning: Whether the system performs re-planning or not.

 Planning Algorithm: The planning algorithm used to generate plans of actions.

 Representation Language: The representation language used to model the

story world.

 Perspective: Whether the stories are presented via a first-person perspective,

i.e. the player experiences parts of the story which are related to one character,

or via a third-person perspective, i.e. the player can experience the story

irrelevant of a main character.

 Interactivity: How the end-user can interact with the system.

 Extendibility: If the system provides tools to connect it with other systems, or

generate new stories.

 Audience: The types of audience the system is designed for.

46

DIS System Story Model
Type of

Planning
Planning

Algorithm
Representation

Language
Re-planning Perspective Interactivity Extendibility Audience

Fabulator Plot-based Centralised
Initially A*,

then Metric-
FF

Initially STRIPS
& ADL, then

PDDL

Yes, from
scratch

First-
person

Player controls
only

protagonist;
the rest are

NPCs

No
authoring
tools; the
PDDL files

can be
modified

General

Façade

Plot-based
with some
character-

based
elements

No
information

Reactive
behaviour

planner
ABL

No
information

First-
person

Player controls
only

protagonist;
the rest are

NPCs

No tools for
extendibility

Adults

GADIN
Character-

based
Continuous
centralised

Adaptation
of

Graphplan
STRIPS-like

Yes, without
information

about its
mechanics

Third-
person

Player input to
resolve

dilemmas

No tools,
new stories
are possible

but they
need to be
hard coded

Soap opera
fans and
children

I-
Storytelling

Character-
based

Initially
decentralised,

then no
information

Initially HTN
(depth-first
left-to-right
search with
heuristics),
then HSP

Initially HTN,
then STRIPS-

based

Yes, initially

by
backtracking
in the HTN,

then
without

information
about its

mechanics

Third-
person

Player can
wander in the
3D world as an
invisible avatar

and interact
with objects;

speech input to
provide advice

to NPCs

No
information

Sitcom fans

47

LOGTELL

Plot-based
with some
character-

based
elements

Centralised
Non-linear
planner in

Prolog
Prolog

No
information

Third-
person

Indirect/passive
interaction

No tools
available

Anyone
(depending

on story)

Mimesis Plot-based Centralised
Longbow
planning
system

No information

Yes,
monitors

game world
for threats
and builds
solutions

pro-actively

First-
person

Player controls
only

protagonist;
the rest are

NPCs

No
information

No
information

MIST
Character-

based
Decentralised

Initially
Graphplan,
then HTN
written in

Prolog

Initially STRIPS,
then Prolog

Yes, by
trying to

predict and
repair in

advance a
potentially
invalid plan

Third-
person

No information
No

information

Computer
game

players

Othello
Character-

based
Decentralised

HSSP (state-

space
forward-
search

planning,
guided by

an
adaptation

of HSP)

PDDL No
No

information
No information

No
information

No
information

48

PaSSAGE Plot-based
No

information
No

information
No information

No
information

First-
person

Player controls
only

protagonist;
the rest are

NPCs

No
information

Computer
game

players

DIEGESIS Hybrid Hybrid

New
planner

based on
Graphplan

PDDL and XML

Yes,
interleaving

plan
generation

and plan
execution

Both first
and third-

person,
including
vantage
points

Player can
make choices

for any
character or

event

PDDL and
XML editors

Anyone
(depending

on story)

Table 1: Feature sets of Digital Interactive Storytelling systems

49

In the previous section we reviewed and critically analysed 9 state-of-the-art DIS

systems and in Table 1 we combined and presented a set of their features (analysed at

the beginning of this section) for comparison purposes.

Regarding story models, 4 of the systems (GADIN, I-Storytelling, MIST, and Othello) are

using a pure character-based approach and 3 of them (Fabulator, Mimesis, and

PaSSAGE) a pure plot-based approach. The remaining 2 systems (Façade and LOGTELL)

claim that they are using a plot-based approach combined with some character-based

elements.

DIEGESIS uses a hybrid approach, combining both plot-based and character-based

elements. More specifically, as we will discuss in section 4.1, the game world (created

by a storyteller) is organised in multiple levels which can represent possible parts of a

story. Typically, a level represents a broad area where a number of events in a story

may occur. The levels are organised in a hierarchical manner; each level may include

potential successor levels which have a logical connection with it. As soon as a level is

complete, the framework makes an informed decision and based on what happened

previously during the generation and execution of the story, either loads a new level or

ends the story (the detailed process is discussed in section 4.7). Using this plot-based

approach, DIEGESIS always has a high-level control over the overall structure of the

story, being able to transition the story between levels which make sense, producing a

coherent narrative.

The authors of (Carmichael and Mould, 2014) designed a framework focusing on

deciding which scenes (a concept similar to DIEGESIS’ levels) to offer to players next.

They use a similar plot-based approach and their framework “uses simple calculations

to prioritise scene nodes”. Their scenes (which are designed beforehand by a

storyteller) are loosely connected to each other and they include values that can be

modified during runtime to prioritise them over others, as well as preconditions that

need to be met so the scene can be applicable.

The main difference between that framework and DIEGESIS’ transitioning component

is that in (Carmichael and Mould, 2014)’s framework, when a scene is complete the

player is presented with the potential scenes and is asked to select which one she

wants to execute next, knowing beforehand the content of each scene, a concept

50

similar to the quests included in role playing games. In contrast, DIEGESIS’ transitioning

component makes the choice of which level to execute next itself based only on what

happened previously in the story and the preconditions set by the storyteller for each

level, something that we believe it adds both to the generation of a coherent narrative

and to the emotion of unexpected of the player since she does not know what will

happen next based on choices she made during the execution of the story.

Continuing with the story model discussion, in DIEGESIS, when a level is loaded to be

executed, we move closely to a character-based model; each agent may have some

initial intentions, but is able to operate autonomously and opportunistically to achieve

its goals. The framework won’t interfere with the decisions of an agent (even if they

are imposed by the player or the Oracle – discussed in section 4.10) even if they mean

that the story cannot progress any further, although –in the bottom line– that is based

on the story modelling performed by the storyteller. The authoring process in DIEGESIS

provides enough freedom to the storyteller to operate whichever way she wants;

either to create a relatively rigid storyline without much room for highly diverse

narratives, or to model a story in a way that everything is fluid; a lot of player/oracle

choices, several potential goal injections based on actions that may occur, and several

uncertain actions; all of these features can contribute to unexpected situations and

more emergent narratives.

Moving to types of planning, 4 systems (Fabulator, GADIN, LOGTELL, and Mimesis) are

performing a centralised planning, 3 systems (I-Storytelling, MIST, and Othello) a

decentralised planning, and the rest 2 systems (Façade and PaSSAGE) do not provide

any information about it.

DIEGESIS follows a hybrid approach. On the plan generation level, it performs a

decentralised planning; each agent (represents a character in the story) is modelled to

be autonomous, opportunistically generating and executing plans based on its own

goals. We believe that this provides a more realistic approach to the generation of a

story, since each agent acts as a real person, generating an autonomous plan

considering its own needs.

In the case of plans execution though, our approach borrows the control and

coordination concepts from the centralised planning approach. Although the plans are

51

individual, we want DIEGESIS to dictate the execution phase of the agent’s plans

(therefore the generation of the story) so the system can have a better control and

understanding of what happens during the generation/execution of the story, and to

be able to interfere if needed.

The systems use a variety of planning algorithms. Fabulator’s initial implementation

was using A*, but then moved to Metric-FF. GADIN uses an adaptation of Graphplan.

MIST’s initial implementation, although it was designed for HTN, used also a Java

implementation of Graphplan, but afterwards its authors created an HTN planner

written in Prolog. LOGTELL uses a non-linear planner written in Prolog as well, and

Mimesis the Longbow planning system. I-Storytelling’s initial implementation was

using an HTN planner (using depth-first left-to-right search with heuristics), but since

moved to HSP. Othello uses HSSP, which is a state-space forward-search planning

system, guided by an adaptation of HSP. Façade uses a reactive behaviour planner, and

finally, PaSSAGE does not provide information about its algorithm.

For DIEGESIS, we have created a planner which consists of a planning and a re-planning

algorithm, able to generate plans of actions based on each agent’s state and context,

considering both the current world state and the available resources. The planner is

aware of the available time (duration) an agent/character has for a plan when it is

asked to generate one. Our planning algorithm is based on Graphplan for solutions

expansion, and backtracking heuristic search for plan extraction, enriched with

constraints satisfaction and dynamic opportunistic restart when required. The Planner

is discussed in detail in section 4.14.

Regarding representation languages, most of the systems (Fabulator, GADIN, I-

Storytelling, MIST, and Othello) use –or used in some of their versions– either the

STRIPS language or adaptations of it, or languages derived from it like ADL and PDDL. A

couple of systems (LOGTELL and the second version of MIST) represent their

storyworlds in Prolog, the same language their planner is implemented with. Finally,

the first version of I-Storytelling was modelled using an HTN representation, Façade

uses ABL, and a couple of systems (Mimesis and PaSSAGE) do not provide such

information.

52

DIEGESIS uses a combination of modelling approaches: The basic information for every

level of a story is modelled using PDDL and further information such as information for

each character, goal injection rules, choices and their fall-backs, etc. in XML. All the

representation information including examples is documented in chapter 4.

In terms of re-planning, 3 systems (Façade, LOGTELL, and PaSSAGE) provide no

information whether they support re-planning or not, Othello doesn’t support re-

planning, and GADIN mentions re-planning without giving much information about its

mechanics. The rest implement different re-planning approaches: Fabulator re-plans

from scratch; I-Storytelling by backtracking in the HTN; and both Mimesis and MIST

pro-actively, trying to predict and repair faulty plans in advance.

DIEGESIS deals with the execution of the agents’ plans in a higher level, and when a

part of a plan fails, instructs the agent to re-plan based on its current knowledge of the

state of the world. Considering that we modelled each agent to act as a real person in

the way they generate and try to execute plans, it does not make sense (in our

context) to predict and prevent plan failures, since a plan can fail either due to user

intervention (which cannot be predicted), or intervention by other characters, or –in

some cases– pure chance (discussed in section 4.10). In any case, failed plans due to

“unpredicted” reasons are realistic and have the potential to enrich a generated

narrative.

In our re-planning solution, as we interleave plan generation and plan execution, when

a plan fails, we discard the already completed actions and we only re-plan for the

failed (and some of the pending – discussed in detail in section 4.14) actions of the

plan, merging the new partial plan with the unexecuted portion of the original plan.

Regarding perspectives, Othello does not provide information about it, half of the

remaining systems (Fabulator, Façade, Mimesis, and PaSSAGE) use a first-person

perspective to present their stories to the player, while the other half (GADIN, I-

Storytelling, LOGTELL, and MIST) use a third-person perspective.

In its default mode, DIEGESIS presents the generated story as a whole. At any point

during the generation of the story the player is able to view any action that a character

53

is executing, make choices related to any character, as well as view details about them

(i.e. their current goals and plan). These abilities constitute a third-person perspective.

But, apart from the default mode, we want to provide the player with a first-person

perspective as well, that’s why we created the concept of vantage points (discussed in

detail in section 4.12). If the player selects to view the story from the vantage point of

a character she will view only the story outcome which is related to the chosen

character, and will be available to interact with the story (i.e. make choices) only when

an action is related to the story character. The generation of the rest of the story

(which is unrelated to the selected character) will continue normally in the background

(with the exception that any choices concerning other characters supposed to be made

by the player will be made by the Oracle instead), yet invisible to the player. The player

is able to choose between different vantage points or return to a full story view freely

during run-time, allowing linear storyline with differing endings, interleaved storylines,

and even flashbacks.

In terms of interactivity, in most of the systems (Fabulator, Façade, Mimesis, and

PaSSAGE) the player is able to control only the protagonist; the rest of the characters

are NPCs. In GADIN, the only player input is to resolve dilemmas. In LOGTELL there is

only indirect/passive interaction during the generation of a narrative; in the

dramatization phase there is no user interaction. In I-Storytelling, the player is able to

wander in the 3D world as an invisible avatar and interact with objects, as well as to

provide advice to NPCs via speech input. Finally, MIST and Othello does not provide

any information on interactivity.

In DIEGESIS, there is not a main character that the player controls/observes; instead,

the player can make choices (defined by the storyteller) for actions that can affect

every character in the active story. Also, as we already explained before, the player is

allowed to select and view the story from the perspective of any of the characters (in

the default view mode, the story is presented as a whole), and to be able to switch

between them without any limitations, during the generation of the narrative.

As we just mentioned, DIEGESIS includes a concept similar to GADIN’s dilemmas, in the

form of “choices”. The storyteller can mark any kind of action as a choice. When such

an action is about to occur, DIEGESIS either makes a choice itself, or asks the player to

54

make a choice whether the action will happen or not. The idea behind choices in

DIEGESIS is that important decisions throughout the story should be marked as choices

so they can potentially alter the outcome of the generated narrative. User

interferences are always accepted by DIEGESIS and they affect the generation and

execution of the story in real time so the player will be able to form the story in the

way she wants, no matter how much impact they have on the generated narrative.

Regarding the extendibility of the systems, the information provided by the systems

themselves is scarce. According to (Cooper, 2011), Fabulator has source files for the

planner which can be modified but no editors or source code distribution, Façade is

not designed to be modified therefore there are no tools available, GADIN provides no

tools but new stories are possible if hard coded, and LOGTELL has no tools available.

The rest of the systems (I-Storytelling, Mimesis, MIST, Othello, and PaSSAGE) do not

provide such information.

To make the authoring process easier for DIEGESIS, we are using a PDDL editor created

by (Cooper, 2011), and although the authoring process in XML is quite easier

compared to PDDL, we have designed an XML editor as an extension to the PDDL one.

Finally, regarding audience: Fabulator has a general audience; Façade’s audience is

adults; GADIN fits best soap opera fans (and possible children based on a children story

they modelled); I-Storytelling’s audience is sitcom fans (since they modelled situations

based on the famous sitcom Friends™); LOGTELL’s audience can be anyone depending

on the story; MIST’s and PaSSAGE’s audience is computer game players; Mimesis and

Othello does not provide enough information to categorise them.

We believe that DIEGESIS is both suited for movie-like experiences including relatively

long-length finite stories, as well as shorter stories, since it provides to the storyteller

the flexibility required to experiment with multiple genres and lengths of stories.

Therefore, DIEGESIS’ audience could be anyone, depending on the story.

2.12. RE-PLANNING OUTSIDE OF THE DIS FIELD

Moving away from the DIS field, there is research dealing with re-planning in several

different fields, using multiple approaches.

55

For example, in (Zhang et al., 2007) a distributed graph planning algorithm is used by

the agents to generate a plan collectively in a distributed manner, and re-plan

accordingly. As we previously mentioned, DIEGESIS instructs each agent to generate

and execute a plan individually. If at any point during execution the plan fails, re-

planning occurs only for an individual agent.

A hybrid FastForward and HTN re-planning approach is explained in (Klusch et al.,

2005, Klusch and Renner, 2006), in which the re-planning is being performed off-line.

In (Van Der Krogt and De Weerdt, 2005), the re-planning approach is to generate a

number of sub-plans (by removing actions from the initial plan), and then calculate

heuristic values for each one of them to decide which is the best candidate to expand,

so a new valid plan can be constructed.

In (Fox et al., 2006), the authors use a solution based on LPG algorithm and investigate

the efficiency of repairing a plan versus re-planning from scratch. The approach

considers plans which have their initial state and goals modified, and do not focus on

re-planning during the execution of a plan.

As we already mentioned, our solution is focused on re-planning during the execution

of a plan in real time. The re-planning is being performed using the planner we have

created and is based on Graphplan for solutions expansion, and backtracking heuristic

search enriched with constraints satisfaction and dynamic opportunistic restart when

required.

In this chapter we presented the background and the related work of our research

area. More specifically, we discussed about the field of DIS, about multi-agent systems

and presented some of the relevant agent architectures, and about DIS-related as well

as multi-agent-related planning and re-planning. We also presented some of the

planning algorithms which are typically used in DIS systems, along with some of the

representation languages used by them. Finally, we presented some examples of re-

planning outside of the DIS field, and we surveyed and critically assessed a number of

DIS systems, stating their relation to our own work. In the next chapter, we will discuss

the requirements and specifications of our DIS framework.

56

3 DIEGESIS DIS FRAMEWORK

In this chapter, we document the requirements and specifications of our multi-agent

Digital Interactive Storytelling (DIS) framework, called DIEGESIS. The functionality of

the framework’s components will be described in the next chapter.

In the three chapters where we describe our framework in detail (i.e. chapters 3, 4,

and 5), we used a number of UML diagrams, using the notation and recommendations

made by (Fowler, 2003). More information about the use of UML in this thesis can be

found in Appendix A.

To properly design our framework, we need to think about who will use it and what

would be helpful to them, who will create the story, which are the needs of the stories

that our system will be able to manage, and which are going to be the key

requirements of our framework.

3.1. USER TYPES AND CHARACTERISTICS

There will be two types of users associated with DIEGESIS. Firstly, the person who

creates the structure of a story to be used by our framework, and secondly, the person

who is going to use our framework to interact with the already created story structure

and view the outcome of it.

For the rest of this thesis, we’ll call the first person the “storyteller”, and the second

one the “player”. A storyteller, to be able to design and model the structure of a story

that will be used in our framework, needs to have knowledge of the PDDL and XML

languages. As we will discuss in section 4.18, to make it easier for the storyteller to

generate the story data we will design and use a PDDL and an XML editor.

On the other hand, the characteristics of the player are more relaxed, since the only

requirement is the ability to use a computer so he can interact with DIEGESIS via a

Graphical User Interface (GUI).

57

As it is illustrated in Figure 6, a use case for a storyteller is to use any available editors

to create a story to be used in DIEGESIS, and also play the story she created in

DIEGESIS, usually for testing purposes, a use case which they share with the player.

Figure 6: User types use case diagram

3.2. GENERAL SPECIFICATIONS

We want to build a scalable, abstract, DIS framework, which includes dynamic

narration and story generation.

 Scalable: The framework needs to be able to accommodate multiple characters

and levels. Therefore, during the implementation of our framework, we will

have to constantly evaluate its performance, to ensure that the framework

stays responsive and usable even when using large stories.

 Abstract: We intent to design the framework in the most abstract way we can,

to be able to be used with any kind of story, instead of being highly coupled

with one. That will enable the framework to be used in the future as a testing

framework for planning and re-planning algorithms used in DIS.

 Dynamic story generation and narration: The storyteller has to model the

elements of the story. Such elements can include characters, locations, items,

actions, goals of the characters, etc. Our framework should generate the

outcome of the story in a dynamic way (i.e. not predefined). To this end, we

will create and use a planning and re-planning solution, which fits the needs of

such a framework.

58

 Interactive: Since we are creating a Digital Interactive Storytelling framework,

the resulting framework needs to be interactive. We intent to include a way for

the player to be able to interact with the framework, altering the outcome of

the story based on any choices made, as well as a way to allow the player to

view and interact with the story from different vantage points.

 Different points of view: A different point of view (or vantage point) can

dramatically alter the experience for a spectator or a participant, since it can

change the context of a story. We want the player to be able to experience the

generated story in different ways: both viewing and participating in the story as

a whole, and viewing (and interacting with) the story via the “eyes” of a specific

character, while the story progresses as usual. The framework should be able to

alter these vantage points during runtime.

 Decoupled: The components of our framework should be created in a

decoupled way when possible, to allow it to be embeddable to other systems.

We need to be able to replace some of our components with others. For

example, we want our framework to be able to be connected to a 3D virtual

world representation that will deal with a visual representation of the

generated story.

3.3. CHOICE OF BASE REPRESENTATION LANGUAGE

As we already discussed in chapter 2, there are many different description languages

for representing planning problems. We decided to use PDDL (Planning Domain

Definition Language) (Ghallab et al., 1998), which belongs to the STRIPS family, which

is extensively used among planning algorithms.

To model a story into a planning task for PDDL, the following components are required

as a minimum: a domain consisting of language requirements, types, predicates, and

actions; and a problem consisting of objects, and initial state, and a set of goals. Figure

7 contains a simple example of a domain and Figure 8 an example of a problem

definition.

59

(:requirements

 :typing :conditional-effects :equality :disjunctive-preconditions

)

(:types

 character location item – object

)

(:predicates

 (at ?x - (either character item) ?y - location)

 (has ?x - character ?y - item)

)

(:action walk-to

 :parameters (?who - character ?from - location ?to - location)

 :precondition (and

 (at ?who ?from)

 (not (= ?from ?to))

)

 :effect (and

 (at ?who ?to)

 (not (at ?who ?from))

)

)

(:action pick-up

 :parameters (?who - character ?what - item ?where - location)

 :precondition (and

 (at ?who ?where)

 (at ?what ?where)

)

 :effect (and

 (has ?who ?what)

 (not (at ?what ?where))

)

)

(:action drop

 :parameters (?who - character ?what - item ?where - location)

 :precondition (and

 (at ?who ?where)

 (has ?who ?what)

)

 :effect (and

 (at ?what ?where)

 (not (has ?who ?what))

)

)
Figure 7: PDDL domain definition example

60

PDDL is a modular language. Each set of features are packed in a module, and can be

included and used in a domain if they are declared in the requirements declaration. If a

domain does not contain any requirements declaration, then the basic set of STRIPS

requirements is assumed. The version 3.0 of PDDL (which we will use in our

framework) includes the following requirements (Gerevini and Long, 2005):

 :strips – Basic STRIPS-style adds and deletes.

 :typing – To allow type names in declaration of variables.

 :negative-preconditions – To allow “not” in precondition and goal descriptions.

 :disjunctive-preconditions – To allow “or” in goal descriptions.

 :equality – To support “=” as built-in predicate.

 :existential-preconditions – To allow “exists” in goal descriptions..

 :universal-preconditions – To allow “forall” in goal descriptions.

 :quantified-preconditions – Combined declaration of existential and universal

preconditions.

 :conditional-effects – To allow “when” in action effects.

 :fluents – To allow function definitions and use of effects using assignment

operators and arithmetic preconditions.

 :adl – Combined declaration of strips, typing, negative preconditions,

disjunctive preconditions, equality, quantified preconditions, and conditional

effects.

 :durative-actions – To allow durative actions.

 :derived-predicates – To allow predicates whose truth value is defined by a

formula.

 :timed-initial-literals – To allow the initial state to specify literals that will

become true at a specified time point (implies durative-actions).

 :preferences – To allow the use of preferences in action preconditions and

goals.

 :constraints – To allow the use of constraints fields in domain and problem files.

These may contain modal operators supporting trajectory constraints.

Based on our needs, we have specified three base types of objects (i.e. characters,

items, and locations) that can exist in a domain, which can be extended if required; for

61

example, there can be different kinds of items. Predicates are expressions that

describe simple or complex states of the world in relation to the types we specified,

which can be either true or false. In our example, a character or an item can be located

at a specific location, and a character may have an item.

Actions are usually made up of three parts: parameters, preconditions, and effects.

Parameters are variables which define the objects which need to exist for an action to

be executed, as well as their types. The preconditions are the predicates related to the

parameters which need to be either true or false for an action to be executed, and

finally the effects are the predicates which are going to be true or false after an action

is executed successfully.

(:objects

 tom – character

 mary – character

 living-room – location

 kitchen – location

 glass-of-water – item

 tv-remote-control – item

)

(:init

 (at tom living-room)

 (at mary living-room)

 (at glass-of-water kitchen)

 (at tv-remote-control living-room)

)

(:goal

 (and

 (has mary glass-of-water)

)

)
Figure 8: PDDL problem definition example

In the problem file, we define the actual objects (based on the types we defined

before) that exist in the story that we are modelling. We also define an initial state for

all of the objects present, in the form of predicates. Goals are also predicates of a

desired outcome for our story, and the job of the planner is to find a valid plan using

the available actions to reach this outcome.

62

In the example we are using, the goal is that Mary has the glass of water. Since Mary is

located in the living room, and the glass of water is located in the kitchen, the most

likely outcome that the planner will produce will be that Mary will have to execute the

“walk-to” action to move to the same location as the item she wants to acquire, and –

as soon as this happens- the “pick-up” action, to have the glass of water in her

possession.

3.4. CHOICE OF BASE PLANNING ALGORITHM

To aid us to decide which planning algorithm to use as a base for our solution, we

performed an evaluation of planning algorithms with a DIS perspective in mind. In

section 2.8 we documented the planning solutions some of the relevant DIS systems

utilise.

When we had to make the choice of a base planning algorithm, there was only one

paper available in the literature that investigated the suitability of general-purpose

planning algorithms for DIS systems (Barros and Musse, 2007b), describing an

approach to perform such an evaluation, so we decided to use this approach as well.

The approach was to benchmark different planning algorithms testing their

performance to solve a specific problem in a specific domain and to compare their

feature sets with DIS applications in mind. The feature sets considered valuable to DIS

applications are the following: Support for extra language requirements; capability to

generate partial-order plans; optimality; support for actions with costs; support for

numeric variables.

Support for extra language requirements: As we have already mentioned, most of the

planning algorithms have adopted PDDL as their input language and it is our choice as

well. PDDL is a modular language, therefore planning algorithms are only required to

implement a very basic set of its features. Every extra feature (requirement) supported

by a planning algorithm adds expressive power to its input language (and enables the

creation of more interesting actions from a storytelling point of view) or just eases the

task of describing certain actions.

The five language constructs which are considered important are the following: Type

hierarchies (:typing requirement); Built-in equality operator (:equality requirement),

63

Negative preconditions (:negative-preconditions requirement), Conditional effects

(:conditional-effects requirement), and Existential preconditions (:existential-

preconditions requirement.

Capability to generate partial-order plans: Total-order plans are sequence of actions

without any sort of parallelism. In a DIS context, these actions represent story events.

To be able to have actions occurring simultaneously in a story, partial ordered plans

are needed.

Optimality: Optimal planning algorithms are guaranteed to produce the best possible

plan in a given problem. We must keep in mind however that optimality can be

misleading (e.g. a partial-order plan including unnecessary actions will be considered

optimal if the metric of “parallel steps” is used).

Support for actions with costs: Many planners have a fixed metric that can be used to

evaluate the value of the plan generated: the number of actions executed.

Support for numeric variables: Classic planning systems represent the world state as a

conjunction of Boolean predicates which can be a limiting factor in the Interactive

Storytelling (IS) field since almost nothing is (rigidly) black or white in real-life stories

that an IS system is trying to generate. The use of numeric variables (in addition to

Boolean variables) can be used in IS to go beyond this limitation.

The details of this evaluation are discussed in section 6.5.1. There, we discovered that

there is no planning algorithm that combines all the characteristics described before.

Therefore, we concluded that no planning algorithm can be considered ideal for DIS

applications, and based on the available planning algorithms and considering that each

DIS system has its own goals, the final choice of algorithm must be done based on the

unique requirements of each DIS system.

We believe that a new planning algorithm (combining some features from existing

algorithms with novel ideas) needs to be created specifically with DIS systems in mind.

Extra attention to the expressiveness of its language must be given since it will help

authors and researchers easily create better stories, the fundamental principle of

every DIS system. Also, support for numeric variables, actions with costs and, possibly,

capability to create partial-order plans would be desirable.

64

We published the evaluation (Goudoulakis et al., 2011) with the idea that the family of

the FF planners (FF, Marvin, and Metric-FF) seem to possess a number of these

capabilities (especially the latter) along with a good performance (they had some of

the quickest times in solving the test problem) so they could be used as a starting point

to our planner.

After we continued the design of our system though, we finally decided that our base

planning algorithm would be Graphplan, since we wanted to be able to have more

flexibility in the design of our planner and Graphplan provided that (several of

Graphplan’s features are used by the FF family algorithms anyway). Since its major lack

of features comparing to the other solutions was the lack of support for the extra

language requirements, we decided to extend the algorithm and include any

requirements that we need while progressing with the implementation of our system.

3.5. MULTI-AGENT NEEDS

The stories that DIEGESIS will generate based on the storyteller’s modelling, will most

likely include multiple characters. Each of these characters should be able to act as a

real person, even if they play a very small part in the whole story. To elaborate on that,

a character should have its own will (i.e. try to achieve his own goals), be able to

generate plans to achieve his goals and act independently from another -if required- to

do so, have knowledge of the world that he exists in, and be able to take decisions if

needed.

All the above makes it clear that each character should be represented by an agent,

which will make DIEGESIS a multi-agent system.

Each agent in the game world will use an instance of the Planner (i.e. the planning and

re-planning algorithms of our framework; discussed in the next chapter) to be able to

generate plans of actions and regenerate them if needed. The framework should be

able to dictate the execution of the agents’ plans, therefore the generation of the

story, and should be able to coordinate them during the execution phase. Finally, to

allow the framework to be as flexible as possible, there is not going to be a main

character that the player controls/observes; instead, the player will be able to make

65

choices for actions that can affect every character in the active story, and -in extend-

the outcome of the story.

As we already discussed in section 2.5, there are two types of multi-agent planning:

centralised planning, in which a central agent is responsible to collect the partial or

local plans of the other agents, to combine them in one plan and solve any conflicts

that may occur, and distributed (a.k.a. decentralised), in which all the agents

communicate with each other to generate their plans and to negotiate any possible

conflicts.

In DIEGESIS, as we already mentioned at the beginning of this section, we want each

agent (i.e. character) to operate as a real person. Relating that to the planning process,

we want each agent to be able to generate its own plans based on each own goals and

try to execute them individually and opportunistically. We believe that this provides a

more realistic approach to the generation of a story, since by this way each agent can

act as a real person, generating an autonomous plan considering only its own needs.

This approach is similar to the description of decentralised planning.

Decentralised planning involved that agents communicate only with each other to

negotiate conflicts, etc. We don’t use that approach. Instead, although the plans are

individual, we want DIEGESIS to dictate the execution phase of the agent’s plans

(therefore the generation of the story) so the system can have a better control and

understanding of what happens during the generation/execution of the story, and to

be able to interfere if needed. Therefore, in the case of plans execution, our approach

borrows the control and coordination concepts from the centralised planning

approach.

In this chapter, we documented the requirements and specifications of our multi-agent

DIS framework. In the next chapter, we will document and discuss in detail the design

aspect of every component of our framework.

66

4 DESIGN OF THE FRAMEWORK

In this chapter, we discuss in detail the design aspect of every component of our multi-

agent Digital Interactive Storytelling (DIS) framework. As described in section 1.3, while

designing and implementing the framework we used an incremental and iterative

process. The work reported in the design and implementation chapters is the result of

the aforementioned process.

To achieve our needs, we designed DIEGESIS as a multi-agent Digital Interactive

Storytelling (DIS) framework using planning and re-planning techniques. DIEGESIS

consists of several different components, each responsible for one or more features of

the framework. The design of the framework and its components evolved while

progressing with the implementation and the evaluation of the system, to keep up and

comply with the evolving nature of a research project’s requirements and

specifications.

Figure 9 depicts DIEGESIS’ high level architecture that we used in some of our

publications, and illustrates the framework’s main components at the time. There have

been some changes since then since some of the sub-components of the main

components grew and became main components themselves, as well as new

components were added, but most the processes of the system remain the same, so

we will briefly discuss how the system initially operated.

As we discussed in section 3.1, there are two types of users; the storyteller and the

player. The Storyteller models the story in a set of XML & PDDL files, and the Parser

component is responsible of translating them into a representation the framework

understands and feed them to the World Manager (WM), which is the main

component of the system and coordinates the rest. The WM stores this information to

the Knowledge Base component, and uses it to update the environment which is

perceived by the multiple instances of the Agent component (each Agent represents a

character in the story).

67

Figure 9: DIEGESIS’ initial architecture

68

The planner consists of a planning and a re-planning algorithm able to generate plans

of actions based on each agent’s goals considering the current state of the

environment as the agent perceives it.

The User manager is responsible of communicating with the player to either receive

the player’s interaction, or to show him the outcome of the generated story. As we

already mentioned and is illustrated in Figure 9 as well, the WM component included at

the time several other sub-components. Eventually, as the framework grew and extra

functionality was designed and implemented, most of these sub-components grew

enough to become components by themselves, something which also promotes the

modularity of the framework.

Figure 10 illustrates the final architecture of the DIEGESIS DIS framework. The finalised

components are the following:

 Parser: It is responsible for parsing and processing the storyteller-created files.

 Knowledge Base: A centralised repository of information, including a relational

database and information stored in memory. The Knowledge Base component

stores information about the currently active story.

 Level Manager: It is responsible of keeping track of most of the information

about each possible level (i.e. scene) of the story, and distributing this

information to other components when required.

 World Manager: It is the main component which coordinates the whole system

so the stories can be generated and executed. Its sub-components include the

Agents’ Manager, the Blackboard System (to communicate with the agents),

the Time Manager, and the Output Generator. It also keeps an up-to-date

representation of the world and is responsible for distributing it to the agents

when required.

 Choices Manager: Based on the modelling of the story by the storyteller, the

player may be able to make choices about important circumstances occurring

while the story is being generated and executed. This component is responsible

for dealing with them.

69

 Transitioning Manager: The component is responsible for performing a

transition from a level which was just concluded to a new one which makes

sense in the context of the story.

 Goal Injection Manager: It is responsible for injecting goals to the agents based

on specific conditions specified by the storyteller.

 Futile Goals Manager: A component responsible of providing futile goals to the

agents which are idle.

 Oracle: In certain situations during the generation and execution of a story, a

relatively random outcome needs to be calculated. This component is

responsible for doing that.

 Uncertain Actions Manager: There are some actions that make sense that they

should have a percentage that will succeed (or fail) due to pure chance. This

component deals with them.

 Vantage Point Manager: During the execution/generation of a story, the player

is able to choose freely between different characters’ vantage points (i.e. to

view the story from the perspective of a specific character) and a full story

view, and this component deals with these vantage points.

 User Manager: It contains a graphical user interface to communicate the story

outcome and other relevant information to the player, and receive user input

when is required.

 Planner: As we already mentioned, it consists of a planning and a re-planning

algorithm able to generate plans of actions based on each agent’s goals

considering the current state of the environment as an agent perceives it.

 Agent: Every character in a story is represented by an agent. The component’s

architecture follows a hybrid approach including elements of reactive,

deliberative, and BDI agent architectures.

 Battle Manager: There are cases in the evaluation scenario that we built

(discussed in chapter 6), in which we need large-scale battles to occur;

therefore, we built a component which deals with them.

70

Figure 10: DIEGESIS architecture

71

In the following sections, we will discuss all the components of the, explaining in detail

their processes and how they are operating together with other components.

4.1. GAME WORLD ARCHITECTURE

The game world is created before the execution of a story, by a storyteller. The world

is organised in multiple levels which can represent possible parts of a story. Typically, a

level represents a broad area where a number of events in a story may occur. The

levels are organised in a hierarchical manner; each level may have some potential

successor levels which have a logical connection with it. An example of a game world is

illustrated in Figure 11.

Figure 11: Game world architecture

A level –and in extend the game world which will produce a story– consists of the

following elements:

 Locations which can be either small such as rooms or large such as whole

countries.

 Characters along with their individual information which will be discussed in

detail in section 4.15, such as their list of goals.

 Items which can be anything.

 Actions which are applicable in a level and can be executed by the characters

based on certain conditions.

72

 Information about the level (such as its title, etc.), which will be discussed in

section 4.4.

 A set of choices which are potential decision making moments for either the

player or the framework and are based on rules specified by the storyteller,

which will be discussed in section 4.6.

 A set of transitioning data such as potential successor levels, milestones, etc.

(will be discussed in detail in section 4.7) which will be used to perform a

transition to a new level as soon as a level comes to an end.

 Goal injection rules which will be discussed in section 4.8.

 A set of futile goals which can be assigned to a character if is idle, which will be

discussed in section 4.9.

 A set of uncertain actions which will be discussed in section 4.11.

 Information about a large-scale battle which may occur in a level, which will be

discussed in section 4.16.

The minimum mandatory elements that must exist in a level so DIEGESIS can process it

consist of a set of locations, characters, and actions; everything else is optional.

As we mentioned in section 3.3, each level’s main representation is modelled in PPDL.

That includes the locations, characters who are present in a level (specifying in which

location they are initially located), items present in a level (associated either with

locations or with characters), and a set of applicable actions for a level.

An example of a PDDL representation of a part of the story we are using (discussed in

detail in section 6.1) is displayed in Figure 12, where we omitted some information to

ensure readability. An initial (default) state of all the characters and items in a level

needs to be defined by the storyteller, but it can be dynamically altered based on

events that occurred in previously executed domains.

(:objects

 helen - character

 menelaos - character

 paris – character

 hector – character

 throne-room – room

 private-room – room

 guest-room – room

73

 docks – room

 troy – location

 gift – item

 troy-ship - transportation-method

)

(:predicates

 (at ?x - (either character transportation-method) ?y - location)

 (has ?x - character ?y - item)

 (in-discussion ?x - character ?y - character)

 (emotion-loves ?who - character ?whom - character)

)

(:init

 (at menelaos throne-room)

 (at helen private-room)

 (at hector docks)

 (at paris docks)

 (at troy-ship docks)

 (has hector gift)

 (emotion-loves paris helen)

)

(:action talk-to

 :parameters (?x - character ?y - character ?z - room)

 :precondition (and

 (at ?x ?z)

 (at ?y ?z)

 (not (= ?x ?y))

)

 :effect (and

 (in-discussion ?x ?y)

)

)

(:action seduce

 :parameters (?who - character ?whom - character ?where - location)

 :precondition (and

 (at ?who ?where)

 (at ?whom ?where)

 (in-discussion ?who ?whom)

 (emotion-loves ?who ?whom

 (not (= ?who ?whom))

)

 :effect (and

 (emotion-loves ?whom ?who)

)

)

Figure 12: Example of a PDDL representation

74

Apart from the main representation of each level which is modelled in PDDL, the rest

of the elements are further modelled in XML and we will discuss them in detail in the

following sections.

4.2. PARSER

As we already mentioned, each story is written and modelled by the person who is

creating the story, i.e. the storyteller. The modelling of the story world including levels,

characters, locations, items, goals, milestones, available actions, etc. is stored in a

number of files, available to the system. There are two types of files: PDDL and XML.

The Parser Component can be instructed by the World Manager (the component

which coordinates the whole system and will be discussed later) or any other

component to parse and analyse a set of files corresponding to a specific level, create a

representation of them in the format needed, and communicate them back to the

World Manager or the component which requested them to be used appropriately.

This process is illustrated in Figure 13.

The files are parsed in an iterative manner. After each file is parsed, analysed, and the

information it contains is passed to the component which requested them, the Parser

checks if there are still files left in the queue to be parsed. If there are no files left, the

process ends.

Figure 13: Parser activity diagram

75

4.3. KNOWLEDGE BASE

In our system’s context, a Knowledge Base (KB) is a machine-readable centralised

repository of information. DIEGESIS includes two types of KB; a relational database,

and information stored in memory.

The memory-based part of the KB is responsible to keep information about the

currently active level of the game world. The relational database includes tables about

characters and their options, levels (and mutual exclusions between them),

milestones, story actions, transitions, and information about the characters and any

battle groups. A preliminary schema is illustrated in Figure 14.

The KB is populated during runtime by the framework, using data both from the

information contained in the files created by the storyteller and parsed by the Parser

as described in the previous section, as well as from information produced during the

generation and execution of the story.

Figure 14: Preliminary database schema

Characters table include information about individual characters, such as a unique id, a

name, and if the character is still alive and part of the story. Characters’ options table

is able to store characters’ options. The table is designed in an abstract way, to allow

the storyteller to represent any types of options. For example, a character based on his

76

previous actions, might need to be present at a certain point in the future of a story.

The storyteller can create and store an option to keep this information.

Levels table contain information about the different possible levels which are present

in the story, such as a unique id for each level, its title, and if it was executed. Any

mutual exclusion between levels is stored in the mutually exclusive levels table.

The milestones table is related to the levels table, and is used to store the milestones

of each level, and their state (i.e. are complete or not). Transitions table holds

information about all the transitions, past and future, which occurred or will occur

during the execution of the story, so the transitioning between levels, can be

instructed.

The story actions table is used to store and keep track of all the actions that occurred

during the execution of the story, along with information about them (i.e. the

characters related to them; when and where the action occurred).

Finally, the battle groups table is used to store information about any battle groups

present in the story, such as the group’s title, leader (represented by a character),

fighting ability, and total volume.

4.4. LEVEL MANAGER

As we discussed in section 4.1, the game world is organised in multiple levels which

can represent possible parts of a story. The Level Manager (LM) component is

responsible of keeping track of most of the information about each possible level of

the story.

Apart from the PDDL representation of each level which we explained in section 4.1,

we intentionally omitted to explain in detail the list of centralised information about

each level. It is a list of all the possible levels which may be executed during the

generation of the story, containing important information about them. This

information is modelled by the storyteller in an XML file, using the semantics

presented in Figure 15.

77

<levels>

 <level>

 <title>level-title</title>

 <filename>level-base-filename </filename>

 <display_title>Level’s Display Title </display_title>

 <info>A small description about the level.</info>

 <milestones>

 <milestone>(a-pddl-fact-may-be-a milestone)</milestone>

 </milestones>

 <is_battle_level>false</is_battle_level>

 </level>

</levels>

Figure 15: Semantics of XML level nodes

The mandatory information for each level includes the level’s title, its base filename

(so the rest of the level information mentioned in section 4.1 can be retrieved), a

human-readable title and description of the level, and a flag informing the system if

the level is a battle level or not. If it is a battle level, then further information about the

battle is included which is discussed in detail in section 4.16.

Finally, each level includes three sets of triggers, a set of milestones, a set of potential

successor levels, and a set of character options. All this information is optional and is

used in the level transitioning phase. It is omitted in Figure 15 since it is further

discussed in section 4.7.

When initialised by the World Manager (WM), LM uses an instance of the Parser to

load all the information related to each level, translates them into a system-readable

representation and stores whatever is needed to the Knowledge Base. It also has direct

communication with the Battle Manager component to request any information

needed which is related to a battle which may occur in a level. This process is

illustrated in Figure 16.

Only one level of the whole story can be active at a time. LM is responsible to keep

track of which level is active at a given moment in time, and keep it in memory so it

can be easily accessible to the other components (such as the WM and the

Transitioning Manager) when is required.

78

Figure 16: Level Manager sequence diagram

4.5. WORLD MANAGER

The World Manager (WM) is the main component which coordinates the whole

system. It has direct access to all the other components of the system, and (among

other responsibilities) is responsible for keeping track of and updating the current

state of the world, i.e. the environment the agents are aware of.

Figure 17 illustrates the high level functionality of the component. As soon as DIEGESIS

launches, it initialises the system, by initialising most of the components which are

going to be used during the generation and execution of the story, which are the

following: Knowledge Base (KB), Battle Manager (BM), Level Manager (LM), Futile

Goals Manager (FGM), Planner, Goal Injection Manager (GIM), Transitioning Manager

(TM), Choices Manager (CM), Uncertain Actions Manager (UAM), User Manager (UM),

79

Vantage Point Manager (VPM), Time Manager (TiM), Parser, Output Generator (OG),

and Agents’ Manager (AM).

When the initialisation of each component includes further processes other than a

simple enabling of the component, the explanation of each process is included in the

sub-section in which each component is documented.

Figure 17: World Manager high-level activity diagram

The next step after the initialisation of the system is to initialise the currently active

level. This process is depicted in Figure 18. Initially, the WM requests the information

of the currently active level from the LM. Then, it sends the relevant information to the

Planner, instructing it to perform an initialisation of the level based on the PDDL model

of the level, and after this initialisation is complete, the WM requests the current state

of the world, as well as the generated PDDL representation of the level which was

constructed by the Planner.

Afterwards, the WM instructs a number of components to load a new set of

information for the new level: the BM to load the battle details, the FGM to load the

futile goals, the GIM to load the goal injection rules, the CM to load the choices, and

the UAM to load the uncertain actions. Finally, the WM instructs the AM to initialise

the agents of the new level, requests the lists of agents, and passes it to the UM.

80

Figure 18: Level initialisation sequence diagram

The AM is a sub-component of the WM, which is responsible of managing the agents.

It also keeps a list of the activated agents along with any information relevant to them,

so they can be easily accessible when is required.

The initialisation of the agents that the WM requested is illustrated in Figure 19, and

operates in the following way: Initially, the AM finds which characters are present in

the currently active level by using the PDDL representation of the level which was

previously created by the Parser. In the same manner, it identifies in which location

each of the characters is initially located in.

Figure 19: Initialisation of agents activity diagram

81

Afterwards, using the Parser, it parses all the character information for each one of the

characters, and creates an instance of the Agent component for each individual

character, feeding it with the parsed information. Finally, it instructs each created

agent to generate an initial plan based on its current set of goals (if there are any).

The character information is created by the storyteller and is written in XML. A

character node is required for every character present in each level. It is illustrated in

Figure 20 and includes the PDDL name of the character that is related to, including the

following information related to him/her:

 The available time to complete the specified goals and the PDDL goals list;

 If the character will be allocated with a futile goal when its goals’ list is empty;

 The character’s fighting ability which will be used if the character engages in

battle during the execution of the level, along with the alliance in which the

character belongs to;

 And a set of initial goals (which can change during runtime). Each goal node

includes a name of a PDDL fact, (optionally) the importance value of the goal,

and (optionally as well) one or more PDDL facts as preconditions.

<character>

 <name>paris</name>

 <futile_goals>disabled</futile_goals>

 <available_time>3600</available_time>

 <alliance>troy</alliance>

 <fighting_ability>70</fighting_ability>

 <goals>

 <goal>

 <name>(will-follow helen paris troy)</name>

 <importance>50</importance>

 <precondition></precondition>

 </goal>

 <goal>

 <name>(at paris troy)</name>

 <importance>100</importance>

 <precondition>(will-follow helen paris troy)</precondition>

 </goal>

 </goals>

</character>

Figure 20: An XML Character node

For the agents to communicate with the framework, DIEGESIS implements a

blackboard system as an interconnection model. In our implementation of a

82

blackboard system, every agent communicates synchronously with the WM to access

and update the shared knowledge base and coordination information, and not directly

with each other. The WM continuously and in turns, updates each agent’s knowledge

of the current state of the world for any updates, and then “asks” them if there is an

action to execute. Other communication (which will be discussed in detail in the

remainder of the section) includes checking if an agent is busy, to instruct an agent to

plan/re-plan, or wait, and to inject a new goal based on executed actions.

After the initialisation of the level, the WM begins the generation and execution of the

story. The story is executed in turns. The execution process is illustrated in Figure 21.

Initially, the WM informs the UM that the execution of a turn started so the UM can

disable the next turn button. Afterwards, the WM checks if a battle is in progress with

the help of the BM. If it is, then the next step is to check if an alliance needs to retreat.

If the battle ended due to a retreat, then the current state of the world is updated with

the retreat information. If not, a battle is performed. All of the battle-related processes

are discussed in detail in section 4.16.

Then, for each individual agent the WM informs the agent of any changes in the

current state of the world and checks if the agent is dead or busy (i.e. was either part

of an action of another character or already involved in a battle). If it is, then the agent

does nothing in this turn.

The WM then makes an inquiry to the agent, asking if the agent has a plan to execute.

If the agent doesn’t, then it is instructed to generate one before asked again if it has a

plan. If it still doesn’t, then the WM checks if the agent is cleared to fight (i.e. if there is

a battle going on, and if the agent is in a battlefield location). If it does, then a battle

versus a soldier of the opposite alliance is performed and the turn of the agent comes

to an end.

If the agent has a plan to execute, then the WM requests the next set of actions from

the agent. The generation and structure of a plan is discussed in detail in section 4.14.

For each of the agent’s actions, the WM first identifies all the agents who are involved

in the action and checks if they are available (i.e. still alive and not busy) and if the

action is interruptive. An interruptive action (set by the storyteller) will ignore the fact

83

that an involved agent (other than the one who executes the action) might be busy,

and will be executed anyway.

Figure 21: Activity diagram of the process of executing a turn

84

If any of the agents is not available (and the action is not interruptive), then the WM

checks if at least one of them is dead. If not, then the action is not executed in this

turn, but will be pending for execution at the next one. But, if an agent is dead, the

action fails, and the agent is instructed to re-plan.

When the involved agents are available (or there are no involved agents in the action

except from the agent who executes the action), the action’s preconditions are

checked by the WM against the current state of the world, to identify if they are met.

If even one of them is not met, then the action fails, and the agent is instructed to re-

plan.

In the case that the preconditions are all met, the next step for the WM is to contact

the CM and identify if the action is marked as a choice. Again, all the choices processes

are discussed in more detail in section 4.6. If the action is marked as a choice, the WM

(with the help of CM) deal with the choice. When the outcome of the choice is the

action not to be executed, the WM updates the current world state with the fallback(s)

of the choice, sends it to the agent, and instructs the agent to re-plan.

On the other hand, when the outcome of the choice is that the action will be executed

(or it wasn’t marked as a choice in the first place), the WM checks with the help of BM

if the agent can fight, i.e. if the agent is located in a battlefield location and there is a

battle in progress. If these conditions are true, then there is a chance that the agent’s

action will be interrupted by a battle. The WM makes a decision with the help of the

Oracle (discussed in section 4.10) whether the action will be interrupted or not (using

an interruption percentage provided by the BM), and if it does, a battle is performed

between the agent and a soldier of the enemy alliance.

If the action is still ok to be executed, the last check involves if an action is clear to be

executed due to doubt. The WM makes the appropriate checks with the UAM (the

details are discussed in section 4.11), and if the action cannot be executed in this turn

it is ignored. But, if it doesn’t then it is finally executed, and the following happen: The

current state of the world is updated with the effects of the action, the action is

marked as complete, and the involved characters are set to busy.

85

There is also a chance that the action is a duel. In the event that it is, the WM

calculates the outcome of the duel (with the help of the Oracle) and updates the

current state of the world with its outcome (i.e. who won and who lost the duel). The

final step is to deal with any dead agents, to store the action’s details to the KB, and to

deal with any goal injections.

It is also important to mention that even if an agent is in a position to execute multiple

actions in a single turn, it can only fight once, and if an action fails and the agent is

instructed to re-plan, then the agent cannot try and execute any other actions during

the same turn.

After the execution of actions is finished, the WM checks if at least an action was

executed. If it did, then the WM informs the agent which of the actions were executed,

and updates the current world state that the agent is aware of.

As soon as all of the agents finished their turn, the WM informs the UM that the turn

execution is complete, it increments the time (with the help of the TiM), and

completes the execution of the turn.

The TiM is a small sub-component of the WM, whose only responsibility is to keep

track of the time steps (i.e. turns) in which the story is at any point, and feed this

information to the WM when it’s required.

After the end of a turn, the WM checks if at least one action was executed by an agent

during that turn, if there is an active battle going on, and if any of the agents have a

valid plan which is still pending completion and does not consist of futile goals. When

none of the above conditions are met, the WM understands that the execution of a

level is finished, and instructs the TM to calculate and perform a transition. If there

isn’t a suitable successor level, the story ends and the system shuts down. The details

for the transitions are discussed in section 4.7.

The player who uses DIEGESIS to execute and interact with a story created by a

storyteller needs to be able to view the outcome of the generated story, as well as

other information relevant to the story. Therefore, we need a component which

responsibility is to generate all these messages in a human-readable form. During all of

the WM processes, the WM (as well as other components if it’s required) uses the OG

86

to generate and display (with the help of the UM) appropriate messages to the player,

as well as to the console for debugging purposes.

The OG includes some pre-defined templates to visually represent a different variety

of messages. The templates include headers, sub-headers, alerts, and plain messages.

An example of requests for printing messages in the console as well as displaying them

to the player can be found in Figure 22.

There, the WM requests from the OG to print and display an alert message. The OG

prepares the final message passing it through the alert template, and prints it to the

console itself, as well as sending it to the UM so it can be displayed to the player.

Afterwards, an Agent requests from the OG to print a plain message to the console,

and display another message to the player. The OG prints the message in the console,

and sends the other message to the UM requesting it to be displayed to the player.

Figure 22: Sequence diagram of dealing with messages

87

Finally, before sending a request to display a message, the OG also checks if there is a

vantage point enabled to determine if it’s appropriate to display the message or not.

This process is described in section 4.12.

4.6. CHOICES MANAGER

The storyteller has the ability to mark actions as choices, and the Choices Manager

(CM) is responsible of keeping the relevant information. A choice node (illustrated in

Figure 23) contains the name of a PPDL action that needs to be flagged as a choice. The

choice can be made either by the player, or by the framework. If the action succeeds

(chosen either by the framework or the player), then the normal effect of the PDDL

action is executed.

<choices>

 <choice>

 <action_name> decide-if-will-plunder-temple</action_name>

 <who_decides>player</who_decides>

 <fallbacks>

 <fallback>

 <equals index="1">achilles</equals>

 <predicate_to_become_true>(decided-if-will-plunder-

temple)</predicate_to_become_true>

 <predicate_to_become_true>(will-not-plunder-

temple)</predicate_to_become_true>

 </fallback>

 </fallbacks>

 </choice>

 <choice>

 <action_name> decide-if-will-capture</action_name>

 <who_decides>player</who_decides>

 <fallbacks>

 <fallback>

 <equals index="1">achilles</equals>

 <equals index="2">briseis</equals>

 <predicate_to_become_true>(decided-if-will-capture

briseis)</predicate_to_become_true>

 <predicate_to_become_true>(will-not-capture

briseis)</predicate_to_become_true>

 </fallback>

 </fallbacks>

 </choice>

<choices>
Figure 23: A set of XML Choice nodes

88

But since PDDL doesn’t offer the option of effects that are triggered if an action is

about to be executed but failed (for any reason), we specify a set of fallback predicates

(effects) which will be enabled if the choice is negative.

The fallback can be applied in any form of the selected action, or it can be applied only

if there are specific conditions in an action, if for example the action is executed by a

specific character. For example, in the second choice node of Figure 23, the fallback

predicate will be enabled only if the first index (i.e. variable) of the “decide-if-will-

capture” action is “achilles” and the second one is “briseis”.

Every time that a new level is loaded, the World Manager (WM) instructs the CM to

load the choices information for the new level (i.e. all the choice nodes which are

relevant to the new level). The CM makes an inquiry to the Level Manager to receive

the choices information about the currently active level, and using that it asks the

Parser to parse and return the set of choices, which is stored in memory. This process

is illustrated in Figure 24.

Figure 24: Sequence diagram of loading a new level's choices

While the story is generated and executed, every time that an action is about to be

executed the WM checks with the CM to identify if the action is marked by the

storyteller as a choice action.

When such an action is set to be executed, a decision needs to be made; either the

action is going to be executed or not. Based on the storyteller’s selection, either the

framework will make a positive or negative decision, or the User Manager will be

89

instructed to stop the execution of the story and ask the player to make this decision.

Based on the outcome of the decision, the action is either going to be executed, or not.

If the choice is negative, then the WM requests the action’s fallback from the CM, and

deals with it. This process is illustrated in Figure 25.

Figure 25: Sequence diagram of dealing with choices

If a decision is set to be made by the player but the player has chosen to view the story

via the vantage point (discussed in section 4.12) of a character who is not involved in

the specific decision, the framework will have to make the decision instead of the

player.

90

4.7. TRANSITIONING MANAGER

As we discussed in section 4.5, every time a turn ends while the story is executed, the

World Manager (WM) component constantly monitors the current state of the active

level to identify if nothing significant is left (and is still able) to happen in the currently

active level, or it can be terminated, and a next level can be loaded. When a level ends,

it is a time for a new level to be selected and enabled, and that’s what the

Transitioning Manager (TM) component is responsible of.

As we already mentioned in sections 4.1 and 4.4, the story levels are organised in a

hierarchical manner; each level may include some potential successor levels which

have a logical connection with it. Each level may also include three sets of triggers, a

set of milestones, and a set of character options. All this information is optional, is

used in the transitioning phase, and an example of it is included in Figure 26.

A connection between two levels is being made by specifying a level as a “successor”

of another one (using the specified title of a level). A level may include multiple

potentially successor levels. “Milestones” are PDDL facts; when a level ends, their

status (either true or false) is checked and the outcome is stored in the Knowledge

Base (KB) component.

“Character options” are also checked as soon a level ends, but they are a little more

complicated than a milestone. They include the option’s title, the character who refers

to (although it can be blank if they are general options), a set of options, a “then” value

and an “else” value. Each option includes a PDDL fact and the condition the system will

check if it exists. If all the facts’ conditions are met, then the option is stored in the KB

with the “then” value; if not, the option is stored with the “else” value.

In plain words, the “triggers” are used to identify if a level makes sense to be executed.

They are preconditions, which need to be met for a level to be a successful candidate

to be loaded into the system for execution. They can be milestones of another level, or

character options, and they include an “expected” value to be checked against. They

can also be marked as important.

The “triggers type” variable can take three different values, which relate to the main

triggers: “all”, “any”, and “important”. The default value is “any”, meaning that the

91

level is a successful candidate if any of the triggers is fired. The “all” value means that

all of the triggers must be fired, and the “important” value means that only the triggers

marked as important need to be fired for a level to be executed.

<levels>

 <level>

 (…)

 <successors>

 <successor>title-of-a-potentially-successor-level</successor>

 </successors>

 <milestones>

 <milestone>(a-milestone-is-a-pddl-fact)</milestone>

 </milestones>

 <character_options>

 <option_group>

 <title>option-title</title>

 <character_name>mary</character_name>

 <then_value>true</then_value>

 <else_value>false</else_value>

 <options>

 <option fact_condition="true" fact="(pddl fact)" />

 </options>

 </option_group>

 </character_options>

 <triggers_type>all<triggers_type>

 <triggers>

 <trigger expected="true" from_level="another-level-title">(another

level’s milestone)</trigger>

 </triggers>

 <knowledge_transfer>

 <character_triggers>

 <character_trigger char_name="mary" from_level="another-

level-title" char_exists_if="true">

 (another level’s milestone)

 </character_trigger>

 </character_triggers>

 <fact_triggers>

 <fact_trigger fact_to_enable="(pddl fact)" from_level="

another-level-title " enable_if="true">

 (another level’s milestone)

 </fact_trigger>

 </fact_triggers>

 </knowledge_transfer>

 </level>

</levels>

Figure 26: Transitioning information in XML

92

There are two more types of triggers, the “character triggers” and the “fact triggers”,

which are checked when a level is selected as the next transition and is about to be

executed. Character triggers work in a similar way to the main triggers, but they refer

to characters. If they are fired, then a character exists in the level. Fact triggers (as

their name suggests) refer to PDDL facts. If the milestone or the character option is

met, then the trigger is fired and the “fact to enable” will be set to true when the level

is loaded and ready for execution.

There are certain situations where a number of levels are mutually exclusive with

others. The storyteller can specify them using the semantics presented in Figure 27.

The mutual exclusions are grouped (each group needs a unique title), and each level

has a priority value to identify which of the levels should be selected for execution in

the event that a mutual exclusion situation appears.

<mutually_exclusive_groups>

 <group title="landing">

 <level priority="15">war-prevented</level>

 <level priority="10">troy-beach-landing</level>

 <level priority="5">troy-beach-landing-fallback</level>

 </group>

</mutually_exclusive_groups>

Figure 27: A group of mutually exclusive levels modelled in XML

As we already mentioned in section 4.5, as soon as the WM identifies that a level

finished, it instructs the TM to calculate the next transition. This process is illustrated

in Figure 28.

The first step of the process is to get the information of the current level from the

Level Manager (LM) and the current state of the world from the WM. Then, for each of

the milestones, the TM checks the state of the milestone against the current state of

the world and stores the relevant information in the KB. The interaction between the

different components is illustrated in Figure 29.

As soon as the checking of all the milestones is finished, the TM performs the same

checks for the character options, and stores all the relevant information in the KB.

Then, it creates a list of all the successor levels, getting the relevant information from

the LM component.

93

Figure 28: Activity diagram of the transitioning process

94

Figure 29: Transitioning sequence diagram

95

For each of the successor levels, the TM get a list of their successors and resets the

triggers counter, which is responsible of counting the number of triggers which were

fired. Then, it iterates through the triggers. If the trigger needs to be checked against a

milestone, the TM requests the milestone from the KB, or if the trigger needs to be

checked against a character option, the TM retrieves the character option’s

information from the KB instead. The value of either the milestone or the character

option is checked against the precondition of the trigger, and if the trigger was fired is

marked as fired and the triggers counter is incremented.

If at least one of the triggers was fired, the TM checks the triggers type of the level. If it

is set to “any”, then the TM creates a potential transition and stores the relevant

information (i.e. the title of the level, the number of fired triggers, and the

transitioning layer) in the KB. If the triggers type of the level is either set to “all” or to

“important”, then the TM checks if all of the triggers or the important triggers were

fired respectively, and if they did, it adds the level as a potential transition. If not, then

the level is ignored.

As soon as this process ends, then it is time for the TM to select the next level which

will be executed. Before we describe how a level is selected, we need to explain the

notion of transitioning layers.

An example of transitioning layers containing possible transitions is depicted in Figure

30. Layer 0 is the initial layer, which can only contain the initial level. As soon as this

level is executed, the TM is requested to perform a transition. By performing the

process we already described, the TM identifies that there are three levels which meet

their preconditions and can be executed. All of them, are placed in the next

transitioning layer (i.e. layer 1), since their content happens after the content of the

already executed level. Every level which is in the same transitioning layer is supposed

to happen in a simultaneous time as the others, although the player will “watch” and

interact with them sequentially, just like in a movie.

For the sake of the example, we will assume that their execution order will be the

following: First the Level 1, then the Level 2, and finally, the Level 3. So, as soon as

Level 1 is executed and comes to an end, the TM identifies that there are two

successor levels (i.e. Levels 4 and 5) which need to be added in the transitioning stack.

96

Since the current transitioning level is 1, they need to be placed in layer 2. The TM

then continues executing Level 2 which does not produces any suitable successors

after it’s complete, and then it’s the turn of Level 3, which produces four successor

levels: Levels 5, 6, 7, and 8, which are also added in layer 2 (since Level 5 already exists

in the layer is not added for a second time).

Figure 30: Example of transitioning layers

So, to summarise, all the levels which are present in the current transitioning layer

need to be executed before we move to the next transitioning layer, and any

successors of them are placed in the next layer.

Having explained that, we will return to the main transitioning process. The TM has

already identified and added to the KB all the suitable successors of the completed

level, and needs to select the next level which will be executed. To do that, the KB

requests from the KB to return the title of the unexecuted level of the current

transitioning layer which has the most fired triggers, although the execution order of

levels present in the same level does not really matter since they are supposed to

happen in the same time, therefore they should not be able to alter any information

which is used in the levels of the same layer.

If the KB does not return a level it means that there are no levels left to execute in this

transitioning layer, so the TM increments the transitioning layer and asks again for a

97

level from the KB. If there is no level in the next layer as well, that means that the story

has come to an end.

As soon as the TM is in possession of the next level, it checks if there is a mutual

exclusion specified for it. If there is one, then the TM requests from the KB all the

levels which are present in the same transitioning layer as the selected level, and are

still unexecuted. A mutual exclusion applies only for the current transitioning layer;

therefore if a mutual exclusive level is present in a future layer will not be affected. As

soon as the list of levels is constructed, the TM identifies which of the levels has the

highest priority, sets it as the level which is going to be executed next, and removes

the rest from the layer.

We extend the example of Figure 30, in Figure 31. There, the execution of Level 4 was

just completed (all the levels with a striped background are complete) and produced

two more levels (9 & 10), which are added in the next transitioning layer (i.e. layer 3).

The TM identifies that the next level that should be executed is Level 5. But, it also

identifies that this level belongs to a mutual exclusion group along with Levels 6, 7, and

10.

Figure 31: Transitioning layers containing mutually exclusive levels

98

As we discussed earlier, since level 10 doesn’t belong to the same layer as Level 5, it is

ignored. The priorities of rest of the levels (i.e. levels 5, 6, and 7) are compared, and

the one with the highest priority (level 7) is selected for execution and the others are

removed from the transitioning layer (Figure 32).

Figure 32: Transitioning layers after the mutually exclusive levels are removed

4.8. GOAL INJECTION MANAGER

While the story is executed, the Goal Injection Manager (GIM) constantly monitors the

current state of the active level with the help of the World Manager (WM), to identify

if a goal needs to be injected to the goal list of an agent/character. The actions which

can trigger a goal injection, along with any conditions, are created by the storyteller.

There are three types of goal injection rules: fixed, default, and conditional. In all of

them, there is a PDDL fact that triggers the goal injection.

In the fixed type, the storyteller can specify a specific goal, which is going to be

injected to a pre-defined character when a specific event occurs during the generation

99

of the story. In the default type, the goals to be injected are abstract and they are

constructed during runtime using variables and indexes.

In the example of Figure 33, the fact name which triggers the goal injection is “will-

follow”. The complete abstract PDDL predicate is the following: “will-follow ?who -

character ?whom - character ?to – location”. The “inject_to” node takes as a value the

index of the variable in the PDDL predicate in which the goal will be injected to. In the

example, since the index is “1”, then the goal will be injected in the character who

corresponds to the “?who” variable.

The goal set to be injected can take two types of variables: the “_agent_” variable, and

a set of “_param_” variables. The parameter nodes are specified as indexes

corresponding to PDDL variables, exactly as it was explained before.

In the example, the goal which is set to be injected is “(at _agent_ _param_)“. The

“_agent_” variable is going to be substituted by the agent name (explained before),

and the “_param_” variable by the variable in the PDDL predicate corresponding to the

3rd index, i.e. the “?to” variable.

<goal_injection_rules>

 <rule>

 <fact_name>will-release-briseis</fact_name>

 <type>fixed</type>

 <inject_to>agamemnon</inject_to>

 <goals_to_inject>

 <goal>

 <goal_name>(informed-that-is-released briseis)</goal_name>

 <goal_importance>100</goal_importance>

 <precondition></precondition>

 </goal>

 </goals_to_inject>

 </rule>

 <rule>

 <fact_name>will-follow</fact_name>

 <type>default</type>

 <inject_to>1</inject_to>

 <goals_to_inject>

 <goal>

 <goal_name>(at _agent_ _param_)</goal_name>

 <goal_importance>100</goal_importance>

 <precondition></precondition>

 </goal>

 </goals_to_inject>

100

 <parameters>

 <parameter>3</parameter>

 </parameters>

 </rule>

 <rule>

 <fact_name>is-dead</fact_name>

 <type>conditional</type>

 <conditions>

 <condition>

 <equals index=”1”>patroklus</equals_to>

 <inject_to>odysseus</inject_to>

 <goals_to_inject>

 <goal>

 <goal_name>(knows-important-person-is-dead achilles

patroklus)</goal_name>

 <goal_importance>100</goal_importance>

 <precondition></precondition>

 </goal>

 </goals_to_inject>

 </condition>

 <condition>

 <equals index=”1”>hector</equals_to>

 <inject_to>paris</inject_to>

 <goals_to_inject>

 <goal>

 <goal_name>(knows-important-person-is-dead priam

hector)</goal_name>

 <goal_importance>80</goal_importance>

 <precondition></precondition>

 </goal>

 </goals_to_inject>

 </condition>

 </conditions>

 </rule>

</goal_injection_rules>

Figure 33: A set of XML Goal Injection rule nodes

The conditional type is an extension of the fixed type, where we specify a generic

event that might occur during the generation of the story, and a set of conditions

related to it, which can trigger different goal injections to different characters.

In the example of Figure 33, the PDDL predicate is “is-dead ?who - character ?by -

character”. So, the system checks the “?who” variable against the conditions. When

the “?who” variable is equal to “patroklos”, then the first condition is met. The new

goal is going to be injected to “odysseus”. In the same manner, if the first variable is

equal to “hector”, a goal will be injected to “paris”.

101

Every time that a new level is loaded, the WM instructs the GIM to load the new rules

of the level. GIM requests the new level’s information from the Level Manager, and

using that asks the Parser to return all the parsed goal injection rules of this level. For

each rule, the GIM communicates with the Planner to get the PDDL representation of

the goals which are included to each rule, and creates the rule. This process is

illustrated in Figure 34.

Figure 34: Loading of new goal injection rules sequence diagram

Every action has a set of positive or negative effects. Every time that an action is

successfully executed during the execution/generation of the story, the WM sends its

effects (which are PDDL facts) to the GIM, asking it to check if any of them match any

of the goal injection rules of the currently active level.

Then, the GIM requests the PDDL name of each fact from the Planner, and checks

them against the goal injection rules. If a fact matches a rule, it adds the goal injection

rule to a list and at the end of this process returns the list to the WM, which deals with

the injection of the goals to the appropriate characters based on the rules of each goal.

This process is illustrated in Figure 35.

102

Figure 35: Sequence diagram of dealing with goal injections

4.9. FUTILE GOALS MANAGER

The idea behind the creation of “futile goals” is that sometimes (depending on the

story) the characters present in a level may not have any important goals to achieve,

so instead of having them staying idle, the storyteller can specify a set of futile goals

which are applicable in a level, and they can be used to keep the characters busy.

A futile goal node (illustrated in Figure 36) contains a PDDL fact using a variable (i.e.

?agent) so the system can substitute it with the name of the character the futile goal is

injected to, the importance value of the goal, as well as its preconditions (if there are

any).

Apart from the futile goal nodes, the storyteller can also specify a set of illegal location

nodes, which represent locations in which the futile goals are not applicable, meaning

that even if a character is idle and located in one of these locations, she will not be

assigned with a futile goal.

The Futile Goals Manager (FGM) is in direct communication with all the activated

agents. If at any point any agent doesn’t have any important goal to achieve, it may

receive a futile goal, depending on the following conditions: if there are any futile

103

goals, if the agent is configured to accept futile goals, if the agent already waited for a

turn doing nothing, and if the agent isn’t in a location where the futile goals are

forbidden. The component keeps track of the futile goals assigned to an agent, so they

won’t be assigned again to the same one, unless is required.

<futile_goals>

 <goal>

 <name>(not-thirsty ?agent)</name>

 <importance>0</importance>

 <precondition></precondition>

 </goal>

 <goal>

 <name>(not-hungry ?agent)</name>

 <importance>0</importance>

 <precondition></precondition>

 </goal>

</futile_goals>

<illegal_locations>

 <location>garden</location>

 <location>basement</location>

</illegal_locations>

Figure 36: A set of XML futile goal and illegal location nodes

The process of loading the new set of futile goals for each level is similar to the one of

the loading of choices. Every time that a new level is loaded, the World Manager (WM)

instructs the FGM to load the futile goals information for the new level (i.e. all the

futile goal nodes which are relevant to the new level). The FGM makes an inquiry to

the Level Manager to receive the choices information about the currently active level,

and using that it asks the Parser to parse and return the set of futile goals, as well as

the set of locations that the futile goals are not applicable in them, which are stored in

memory. This process is illustrated in Figure 37.

The execution of agent’s actions happens sequentially in turns. When it’s an agent’s

turn to execute an action, the WM informs the agent that it’s its turn, and asks for an

action to execute. For the purpose of describing the process of requesting a futile goal,

we will assume that the agent has neither a plan which is currently being executed nor

any important goals for which it needs to find a new plan.

104

Figure 37: Loading of new futile goals sequence diagram

As soon as these conditions are met, the agent checks if has already waited for one

turn. If not, the agent waits, alternatively it requests for a futile foal from the FGM,

informing it of the agent’s location. Considering that there are futile goals available for

this level, the FGM checks if the location of the agent is in the list of the forbidden

locations. If it is not, then a futile goal which was not allocated before to this agent is

randomly selected.

Afterwards, it communicates with the Parser to request the PDDL representation of

the goal, creates the goal for the specific agent, and returns it to the agent. As soon as

the agent receives the goal, tries to generate a plan for it with the help of the Planner.

If a successful plan is found then the agent returns to the WM the action which is

about to execute, or just waits. This process is illustrated in Figure 38.

105

Figure 38: Sequence diagram of requesting a futile goal

4.10. ORACLE

There are certain situations during the generation and execution of a story, where a

relatively random outcome needs to be calculated. For example, as we explain in

section 4.16, soldiers and characters who are involved in battles have a fighting ability

value. Therefore, the outcome of the battle needs to be calculated randomly, but

based on that fighting ability.

The Oracle component deals with these random outcome calculations. The process is

similar to the concept of a lottery, and is depicted in Figure 39. It receives as an input

the number of tokens for each side (e.g. for options “A” and “B”), as well as an optional

multiplier (the default value is 1).

106

Figure 39: Calculating a random outcome activity diagram

The first step of the process is to create the tokens for each option, by multiplying the

initial number of tokens with the multiplier. As an example, if option A has 20 tokens,

option B 10 tokens, and the multiplier is 10, then the final number of tokens will be

200 and 100 respectively.

Afterwards, all the tokens are added in a common collection, the collection is shuffled,

and a token is selected randomly, which is returned to the component which

requested it.

4.11. UNCERTAIN ACTIONS MANAGER

Actions can fail or succeed based on preconditions or user interaction. But, there are

some types of actions which makes sense that they should have a percentage that will

succeed due to chance. We call these actions “uncertain”, and the component which

deals with them the Uncertain Actions Manager (UAM).

107

As an example, a character may need to locate another character in a crowded area,

such as a battlefield. Even if the preconditions of the action are met (e.g. both of the

characters are located in the battlefield), it makes sense that the action should have a

chance of succeeding or failing.

As illustrated in Figure 40, the storyteller can specify the name of such actions along

with their success percentage.

<uncertain_actions>

 <action>

 <name>locate-in-battle</name>

 <succeed_percentage>30</succeed_percentage>

 </action>

</uncertain_actions>

Figure 40: A set of XML uncertain actions nodes

Every time that a new level is loaded, the World Manager (WM) instructs the UAM to

load the uncertain actions of the new level. The UAM makes an inquiry to the Level

Manager to receive the choices information about the currently active level, and using

that it asks the Parser to parse and return the set of uncertain actions, which are

stored in memory. This process is illustrated in Figure 41.

Figure 41: Loading of new uncertain actions sequence diagram

When an action is cleared for execution (i.e. the preconditions of the actions are met,

the agents involved are available, etc.) WM instructs the UAM to check if an action is

ok to be executed. The UAM checks if the action is in the uncertain actions list of the

currently active level.

108

If it doesn’t, the UAM sends a message back to the WM that the action is cleared for

execution. If it does, then the UAM sends the percentages of success and failure to the

Oracle, requesting a lottery outcome.

The Oracle calculates and returns the outcome, and based on it the UAM either

informs the WM that the action is ok to be executed, or not. This process is depicted in

Figure 42.

Figure 42: Sequence diagram of checking if an action is uncertain

4.12. VANTAGE POINT MANAGER

As we discussed in section 2.11, DIS systems traditionally choose to apply either a first-

person or a third-person perspective to present their stories to the player. In its default

mode, DIEGESIS presents the generated story as a whole. At any point during the

generation of the story the player is able to view any action that a character is

executing, make choices related to any character, as well as view details about them

(i.e. their current goals and plan). These abilities constitute a third-person perspective.

But, apart from the default mode, we want to provide the player with a first-person

perspective as well; we want the player to be able to view the outcome of the story

from the “eyes” of a specific character, meaning that the player will only view the story

109

outcome which is related to the chosen character, and will be available to interact with

the story (i.e. make decisions) only when an action is related to the chosen character.

We call this concept a vantage point.

The player should be able to choose between different vantage points or return to a

full story view freely during run-time. Choosing a vantage point will not affect the

outcome of the story, which will continue normally –yet invisible if it’s unrelated to the

chosen character- in the background. If an important action (i.e. choice) is about to be

executed which is not related to the character whose vantage point is active, the

framework will have to make the choice instead of the player.

As we mentioned in section 4.5, every time that an action is executed, the World

Manager (WM) stores information about the action in the Knowledge Base (KB). For

each action, the following information is being gathered and stored in KB: the

characters related to the action; the time step (i.e. turn) when the action occurred, the

level in which the action belongs to, and the order of the action related to other

actions. We store this information so it can be used by the Vantage Point Manager

(VPM) component.

Every time that a new level is loaded, the UM passes to the VPM the list of characters

who are present in the level. The VPM checks if they are already in its characters list,

and if they are not it stores them there.

If instructed by the player via the User Manager (UM) component, the VPM recreates

the generation of a part of the story that a specific character is involved with, to allow

the player to view the story from the vantage point of that character. It displays all the

actions executed by the selected character, as well as any actions which were executed

by other characters in which the selected character was involved, in chronological

order, separated by levels (including each level’s description). This process is illustrated

in Figure 43.

Initially, the WM requests all the actions related to the chosen character from the KB.

Afterwards, for each of the actions, it checks if it belongs to a level which information

was not displayed to the player during the generation of the vantage point. If it does,

then requests the level information from the Level Manager, and passes it to the

110

Output Generator (OG) to be displayed to the player via the UM. Then, the VPM passes

the action’s information to the OG so it can be displayed to the player as well.

Figure 43: Vantage point generation sequence diagram

If the vantage point of a character is selected, the vantage point manager dictates

which messages are going to be sent to the UM by the OG. Although the story is

executed normally in the background, the player will view only the messages relevant

to the selected character. This process is depicted in Figure 44.

Initially, the WM sends an action to the OG and requests to be displayed to the player

and printed to the console (for debugging purposes). The OG prepares the appropriate

message based on the action and prints it. Then, it checks with the VPM to check if

there is an active vantage point. If it does, then sends the action to the VPM to identify

if the enabled vantage point belongs to any of the characters involved in the action. If

it does, then the OG sends the message to the UM to be displayed to the player. If it

doesn’t, then the action is not displayed to the player.

The vantage point can change at any point during the runtime, and the component is

able to disable any active vantage points and restore the whole story in its default

mode if requested.

111

Figure 44: Checking if an action will be displayed sequence diagram

4.13. USER MANAGER

The User Manager (UM) component is responsible of communicating with, as well as

displaying the story and relevant information about it to the player.

Initially, it has been decided that based on the focus of this research, a graphical user

interface (GUI) would not be developed, as being out of scope for this project. Instead,

the player would receive all the relevant information and the available actions in an

old-fashioned text-adventure way.

Although the first few prototypes of DIEGESIS were operating in this way, we quickly

realised that it would serve our interests best and it would be easier for the player to

interact with the system via a GUI.

Therefore, we decided to revisit and alter the design of the UM and include a GUI

which would keep the text-based narration, but would provide an easy way for the

112

player to be able to view information about the story and its characters on demand,

plus a few more experimental features which we later discarded. The initial mock-up

of the GUI is illustrated at Figure 45.

Figure 45: Initial GUI mock-up

While progressing with the design of DIEGESIS and prototyping at the same time, the

design of the GUI involved. We removed features that we decided not to implement,

and added others such as the ability for the player to make choices. An intermediate

mock-up of the GUI is depicted in Figure 46.

Figure 46: Intermediate GUI mock-up

Finally, as soon as we finalised the design of DIEGESIS, we included all the features we

needed the player to have access to into the GUI, such as the selection of vantage

points, etc. The final mock-up for the DIEGESIS’ GUI is illustrated in Figure 47.

113

Figure 47: Final GUI mock-up

Apart from viewing the outcome of the story, the player can progress the story to the

next turn, view at any point during the execution the current plan and goals for any of

the activated characters in a level, view information about the currently active level,

and, when is required, make choices for the outcome of the story. The player also has

the ability to switch between different vantage points at any point during the

generation of the story. The ability for the player to make a choice is removed from the

main GUI, and added as a pop-up modal box, illustrated in Figure 48.

Figure 48: Modal box GUI mock-up

4.14. PLANNER

As we already discussed in section 2.2, planning algorithms are the most widely used

technique in DIS systems, and this is the solution that we are using as well. DIEGESIS’

planner consists of a planning and a re-planning algorithm, able to generate plans of

actions based on each agent’s state and context, considering both the current world

state and the available resources. The planner is aware of the available time (duration)

a character has for a plan when it is asked to generate one.

114

As we already discussed in section 2.11, our planning algorithm is based on Graphplan

for solutions expansion, and backtracking heuristic search for plan extraction, enriched

with constraints satisfaction and dynamic opportunistic restart when required. The

Planner is the component which deals both with the planning and the re-planning

processes.

When the World Manager (WM) instructs the Planner to initialise itself, the Planner

requests from the Level Manager (LM) the current level’s information, and then

instructs the Planner to parse and return the PDDL representation of the current level,

as well as any information about the duration of the level’s actions. As soon as the

Planner has this information, it pre-processes and initialises the planning domain that

will be used to generate plans for the level. This process is illustrated in Figure 49.

Figure 49: Planner initialisation sequence diagram

We want the actions that an agent can execute to be atomic and also we don’t want to

have actions that overlap each other, mostly for simplicity reasons, since it is easier to

evaluate the generated plans of each character in the story and investigate how they

affect each other. Therefore, we decided that instead of using PDDL’s durative actions

which are more complex for the storyteller to construct, to simply specify the total

duration of an action (in seconds) in XML.

The storyteller can specify a set of action nodes for the actions of each level. If an

action does not have a specified duration, the default duration of 0 seconds is used. An

action node (illustrated in Figure 50), contains the name of a PDDL action, its duration

115

(in seconds), and –optionally– its type (i.e. an interruptive action, which was explained

in section 4.5).

<actions>

 <action>

 <name>seduce</name>

 <duration>1200</duration>

 </action>

 <action>

 <name>negotiate</name>

 <duration>3600</duration>

 </action>

 <action>

 <name>kill</name>

 <duration>60</duration>

 <type>interruptive</type>

 </action>

</actions>
Figure 50: A set of XML action nodes

The initialisation of the planning domain in illustrated in Figure 51. Initially, the Planner

gets a list of PDDL predicates and objects from the PDDL representation that was

returned by the Parser. As we explained in section 3.3, predicates are expressions that

describe simple or complex states of the world, and can be either true or false.

An example of a predicate is the following: “at ?who – character ?where – location”.

The predicate’s name is “at”, and has two variables (words which begin with a

question mark are variables): “?who” which can be only a character object, and

“?where” which can only be a location object.

To make sense and to can be used in the planning process, predicates’ variables are

substituted with actual objects. In our example, a substituted predicate can be the

following: “at menelaos throne-room”. From now on, we will call any substituted

variable, a “fact”.

As soon as the Planner has the list of predicates, for each predicate it performs any

possible substitution (i.e. any possible combination of applicable objects) to create all

the facts of the planning domain, and stores them in a facts list.

116

Figure 51: Activity diagram of the initialisation (pre-processing) of planning domain

Then, the Planner gets a list of all the PDDL actions from the PDDL representation. As

explained in section 3.3, actions are usually made up of three parts: parameters,

preconditions, and effects. Parameters are variables which define the objects which

need to exist for an action to be executed, as well as their types. The preconditions are

predicates related to the parameters which need to be either true or false for an

action to be executed, and the effects are one or more predicates which will be turned

to true or false after an action is executed successfully.

In the example of Figure 52, action “talk” has three parameters: two characters and a

location; three preconditions: both of the characters need to be at the same location,

117

and they cannot be the same person; and one effect: the two characters will be in

discussion.

(:action talk

 :parameters (?who - character ?to-whom - character ?where - room)

 :precondition (and

 (at ?who ?where)

 (at ?to-whom ?where)

 (not (= ?who ?to-whom))

)

 :effect (and

 (in-discussion ?who ?to-whom)

)

)

Figure 52: A PDDL action example

Similar to what happens with the predicates, the actions also need substitutions in

their parameter variables to make sense. For example, one of the possible

substitutions of the above action could be the following: “talk menelaos agamemnon

throne-room”. Since every action performs an operation to the planning domain,

within the context of the Planner we call them “operators”.

As soon as the Planner has the list of actions, it performs any possible substitution in

the parameters of each action to create all the operators of the planning domain, and

stores them in an operators list. It also searches the list of action’s duration, and adds

the appropriate duration to each operator.

Apart from regular operators, there are also “no-op” operators. Each no-op represents

a persistent action, which causes the fact present in a level of the planning graph to

stay at the same state in the next level. A set of no-ops for each fact in the planning

domain is created and added to the operators list.

Having created a list of all the possible operators that can be present in the planning

domain, the next step for the Planner is to identify all the mutexes between them and

add them to a list for future reference.

Two actions in the same level are considered mutex when their preconditions and

effects are inconsistent. They can co-exists as possibilities in a level (since a level is a

belief state; a state of possible states) but they cannot exist as a part of an actual

solution.

118

By identifying all the possible mutexes before the actual generation of a planning

graph and the extraction of a plan, the planning process is extremely speeded up.

After dealing with the mutexes, it is time to deal with any goals. As usual, the Planner

gets a list of all the PDDL goals from the PDDL representation. Each goal is actually a

substituted predicate, therefore a fact, so the Planner searches the facts list, identifies

the fact which is identical with the each goal, and adds it to a goals list as well.

Finally, the same process is repeated to create the initial state of the world. Similar to

goals, the initial state of the world is specified by the storyteller and consists of a set of

substituted predicates, i.e. facts. The Planner creates a list of facts which represent the

current state of the world. This list is passed to the WM, and is used to keep track of

the state of the world at any time by setting facts to true or false. This process

completes the initialisation of the planner.

To generate a plan, the Planner needs this initial pre-processed information, which can

be altered during runtime. For example, when an agent requests a plan during

runtime, typically it will change the initial list of goals to add its own, and will set the

current state of the world as the initial state (as perceived by the Planner). The process

of generating a new plan is illustrated in Figure 53.

The Planner keeps the information about the latest planning episode it worked on, and

when instructed to generate a new plan, it first checks if the new set of goals is present

in the list of goals it already has, and if the initial state of the world is the same. If these

conditions are met, then the Planner removes the excess of goals which are not

present in the new request, bypasses the expansion stage, and moves directly to the

plan extraction phase. We’ll get to the plan extraction phase in a bit, but to explain

things properly we will first explain how the expansion process operates.

So, considering that there is a new planning problem to solve, the Planner first needs

to generate the planning graph. The first level of the planning graph is the initial state

of the world. To expand it, the Planner identifies all the operations (actions) which are

applicable based on this current state, and “executes” them, adding their positive and

negative effects (facts) to the new layer, but also keeping the facts which are already

present in the initial state, copying them to the new layer via a no-op.

119

Figure 53: Activity diagram of the planning process

As an example, in Figure 54 we have a planning domain and problem (we combined

them and omitted some information for simplicity reasons) with two characters

(“Helen” and “Paris”), two locations (“room-1” and “room-2”), one predicate (“at”

which indicates in which location a character is located) and a single action (“walk”),

which allows the characters to move from one location to another. The initial state of

the world is that Paris is located in room-1, and Helen in room-2.

(:objects

 paris - character

 helen - character

 room-1 – location

 room-2 – location

)

(:predicates

 (at ?x - character ?y - location)

)

(:action walk

 :parameters (?x - character ?y - location ?z - location)

 :precondition (and

 (at ?x ?y)

 (not (= ?y ?z))

120

)

 :effect (and

 (at ?x ?z)

 (not (at ?x ?y))

)

)

(:init

 (at paris room-1)

 (at helen room-2)

)

Figure 54: A PDDL planning domain and problem

When the Planner expands the level, it creates a planning graph similar to the one

depicted in Figure 55. L0 represents the first level of the planning graph, i.e. the initial

state of the world. From there, as we already mentioned, to expand the level to the

next, the Planner identifies all the operations which are applicable based on this

current state, and “executes” them. There are two possible operators that can be

executed, that is to walk Paris from room-1 to room-2, and Helen from room-1 to

room-2. There are also two applicable no-op operators that preserve the facts present

on the initial level, to the next one. These no-ops are represented by a dashed line. The

dotted lines represent mutexes between operators or facts. As an example, although

Paris can be either in room-1 or in room-2 in the expanded level 1, he cannot be at the

two rooms at the same time.

Figure 55: A simple planning graph example

As we described in section 4.5, a character’s goal consists of a fact, and (optionally)

from an importance (salience) value and a precondition. The precondition isn’t

121

relevant to the Planner (is discussed in section 4.15), but the importance value of each

goal is passed to the Planner along with the actual goal (i.e. the fact).

After a new expansion of the planning graph is complete and a new level is created,

the Planner checks if all of the goals which it tries to generate a plan for, exist in the

level and they are not mutex (i.e. they don’t have any constraints) between them. For

example, if the goal of the expansion example we just described was “at paris room-2”,

then it would be located in the first level.

If the goals are not present in a level, or they are not free of mutexes, then the planner

checks if the planning graph levelled off before it expands another layer. If two

consecutive layers are identical we consider that the planning graph has levelled off,

meaning that we reached a point where the planning graph cannot be expanded any

further (all the subsequent levels will be identical to each other). If that happens, then

the process ends there and the Planner returns a failure message.

The above process is being performed until either the planning graph levels off, or a

level is found containing all mutex-free goals. As soon as this happens, the Planner

moves on to the plan extraction phase.

The extraction phase includes a backward search starting from the last generated level

which contains all the goals. There, the Planner identifies a set of operators (actions)

which resolve the goals and are mutex-free between them, and adds them to the

generated plan as the last set of plan actions. A plan consists of one or more sets of

actions, which can contain one or more action(s).

Then, the Planner calculates the duration of the whole plan using the action duration

values of each action specified by the storyteller. If the total duration of the plan is

within the specified limits, then the planning graph’s level is marked as searched, and

all the preconditions of the operators that solve the problem for this level (and were

added to the plan) are extracted and added as the new set of goals.

If all the levels are marked as searched (i.e. the last searched level was the initial state

of the world), then a valid plan has been found, and the Planner returns it. If not, then

the process continues for the next level of the planning graph (as a reminder, we move

backwards).

122

If the total plan’s duration exceeds the available time, the planner chooses the least

important goal (based on the “salience” value of the goals), and removes it from the

list of goals. If (after the removal) the goal set is still the same (i.e. there was not a goal

which wasn’t important), or there are no other goals left, the process stops and the

Planner returns a failure message.

If there are still goals to search for, the Planner clears the plan and marks all of the

expanded levels as unexecuted. Then, starting from the initial level it performs a

forward search in all levels sequentially to find the one in which all the new set of goals

is present and all the goals are mutex-free between them. As soon as it found, if it is

not the last one in the planning graph, then the levels after it are marked as ignored,

and it becomes the last. Then, the process continues normally by searching in the last

level for a solution.

As we already mentioned in section 3.5, we want each agent to be able to plan and

operate as an individual, creating an autonomous plan considering its own needs. The

planning approach we just explained suffers from the following: it best suited for a

centralised planning, where we want to perform a decentralised planning.

Elaborating on the centralised planning issue, we will discuss a new expansion example

(its details can be found in Figure 56), which is an expanded version of the expansion

example we discussed earlier in this section.

(:objects

 paris - character

 helen - character

 room-1 – location

 room-2 – location

 item - item

)

(:predicates

 (at ?x - character ?y - location)

 (has ?x - character ?y - item)

)

(:action walk

 :parameters (?x - character ?y - location ?z - location)

 :precondition (and

 (at ?x ?y)

 (not (= ?y ?z))

123

)

 :effect (and

 (at ?x ?z)

 (not (at ?x ?y))

)

)

(:action give

 :parameters (?i - item ?x - character ?y - character ?z - location)

 :precondition (and

 (has ?x ?i)

 (at ?x ?z)

 (at ?y ?z)

 (not (= ?x ?y))

)

 :effect (and

 (has ?y ?i)

 (not (has ?x ?i))

)

)

(:action take

 :parameters (?i - item ?x - character ?y - character ?z - location)

 :precondition (and

 (has ?y ?i)

 (at ?x ?z)

 (at ?y ?z)

 (not (= ?x ?y))

)

 :effect (and

 (has ?x ?i)

 (not (has ?y ?i))

)

)

(:init

 (at paris room-1)

 (at helen room-2)

 (has paris item)

)

Figure 56: An expanded PDDL planning domain and problem

The differences with the previous example are that apart from the two characters and

the two locations, it contains an item, a new predicate (“has” which indicates which

character is in possession of an item), and two new actions, “give” which a character

can use to give an item to another character willingly, and “take” which a character

124

can use to take an item from another one without asking permission. The initial state

of the world is that Paris is located in room-1, Helen in room-2, and Paris has the item.

Considering that the Planner is instructed by the agent who represent Helen to find a

valid plan for the goal “has helen item”, it will expand the planning graph up to the

third level (L2). The expanded planning graph up to that point is illustrated in Figure

57. In level L2, there are four (4) actions which will accomplish the goal: Paris can give

the item to Helen either in room-1 or in room-2 (one action for each room), and Helen

can take the item from Paris, again either in room-1 or in room-2. Therefore, a possible

valid plan is that Paris will walk from room-1 to room-2 where Helen is originally

located, and there he will give her the item.

Figure 57: The expanded planning graph

But, in our context, that plan doesn’t make sense. Since the goal belongs to Helen, she

is the one who needs to take action and accomplish that goal. Therefore, she should

ask the framework to execute actions that concern her, and not request from the

framework to force another agent to execute an action that he didn’t plan for. The

solution to that problem is to specify to the Planner that it needs to generate a plan

which includes actions that can only be executed by Helen.

125

If we do that only for the extraction phase though, for example to make the Planner

identify which actions are not executed by Helen and ignore them while searching for a

valid plan, it still doesn’t make sense to expand the planning graph having these

actions in the first place. Apart that they are irrelevant for the plan the Planner needs

to generate, they can also potentially have a huge performance impact since they the

planning graph will grow a lot.

For example, if in the planning domain we just discussed we had one hundred (100)

characters instead of two (2) and the same two (2) locations, in the first level of the

planning graph we would have ninety nine (99) facts which should not be there, since

the ninety nine (99) “walk” actions which have them as effect should not be executed

since they are irrelevant of the agent who actually plans.

To solve all of these issues, the Planner is aware of the name of the agent who

instructed it to generate a plan. Furthermore, for every action which involves more

than one character, we specify which character is the main one, i.e. the one who

initiates the action.

These steps have the effect that the Planner now expands the planning graph only for

the main character, leaving the rest in their initial state (i.e. the state that the

character knows they are when initiates the plan generation). The new planning graph

is illustrated in Figure 58.

Figure 58: The new simplified planning graph

126

If we compare the new planning graph of Figure 58 with the old planning graph of

Figure 57, we can see that even in that quite small and simple example, the complexity

of the planning graph is highly reduced, which will cause the Planner to find a valid

plan which makes sense easier.

Of course, by planning only for one agent without any idea of how the rest are going to

operate in the future (e.g. if they will stay in the same location, etc.) can often cause a

plan to fail while being executed.

Plan failures do not apply only to DIEGESIS though. In any type of planning systems,

even if a plan is thoroughly tested and well-constructed there are unpredicted

situations that might cause it to fail. Since (as we already mentioned) each agent

operates as an individual generating its own plans based on its own goals, it is common

for an agent’s plan to interfere with another agent’s plan, causing the latter to fail. The

interference can be something simple such as the availability of a resource, or even

something more complicated, like the death of a character which can alter significantly

an agent’s goals, therefore its plans. Another option that can trigger re-planning is user

interference.

When a plan fails, it is necessary for a new plan to be constructed, and this can

typically happen in two ways: either by planning from scratch, discarding any

previously generated plans, or by revising a previously generated plan. We believe that

the re-planning methods that reuse information from previously generated plans are

much faster than the approach of solving each planning task from scratch. We

validated this assumption performing an evaluation (Goudoulakis et al., 2013)

(discussed in section 6.5.4), where we evaluated our re-planning method against

planning from scratch.

Our proposal for re-planning in DIS interleaves plan generation and plan execution to

be able to re-plan as soon as an unexpected change happen in the environment, while

making minimal disruption to the original plan.

The re-planning process is illustrated in Figure 59. When instructed to do so, the

Planner retrieves all the action sets of the plan which needs to revise. Then, it selects

the action set in which at least an action failed. For each of the actions, it checks if the

127

action is failed or is still pending. For any of these conditions, it retrieves the action’s

effects and adds them as goals for the new plan. Then, it checks if there are other

action sets after the one it just checked. If there are, then it selects the first of these

sets, and for each action (since they are all pending), it adds their effects as goals as

well.

Figure 59: Activity diagram of the re-planning process

As soon as the new goals list is prepared, the Planner generates a new partial plan for

these goals using the planning process we described earlier in this section. If a new

plan is not found, then it returns failure and terminates the process. If a new valid plan

is found, then it moves to the merging phase, where it discards the action sets which

are already complete, as well as the action sets for which it generated the new plan,

and replaces them with the new partial plan, forming a complete valid plan.

Figure 60 illustrates an abstract example of how our re-planning solution is operating.

There is an initial plan, consisting of n sequential sets of actions. While an agent is

executing the third action set (A2), one if its actions fails.

128

Figure 60: An abstract re-planning example

Our re-planning algorithm identifies the actions which are pending or failed in the A2

set, and adds their effects as goals for the new partial plan which will be generated. It

also identifies that there are other action sets after the failed one, so adds the effects

of the actions of the next set (i.e. A3) as goals as well. Based on these goals, a new

partial plan is being generated using our planning algorithm.

As soon as a valid plan is generated, we proceed to the merging phase, where the first

4 action sets (A0 – A3) are discarded since they consist of completed action sets (A0 –

A1) and action sets for which the algorithm has just generated a new partial plan to

replace them (A2 – A3).

The new plan consists from the action sets of the partial plan (NA0 – NA4) which are

placed at the beginning of the plan, and the rest of the sets of the existing plan (A4 –

A..n).

129

4.15. AGENT

As we already discussed, DIEGESIS is designed as a multi-agent solution. Each agent

represents a character in the game world and uses an instance of the Planner

component to be able to generate plans of actions, and regenerate them if needed.

Each agent is designed to operate as an individual, creating an autonomous plan

considering its own needs.

As discussed in section 2.6, there are several intelligent agents’ architectures that are

used in multi-agent systems. DIEGESIS’ agent architecture, follows a hybrid approach;

it includes elements of reactive agents (the agent receives input, processes it, and

produces an output), elements of deliberative agents (the agent keeps an internal view

of its environment), and elements of BDI agents (Beliefs – the agent’s view of the

world, Desires – the agent’s goals, Intentions – the agent’s plans).

The initialisation process of an agent was discussed in section 4.5; when initialised, the

agent is fed with relevant information: the character’s (who the agent represent)

name, the available time to complete any goals (if applicable), its fighting ability and

the alliance it belongs to (if applicable), if the agent can request futile goals when has

nothing to do in the level, the location it is currently located into, the current state of

the world, and a set of initial goals for the specific level.

After an agent is initialised, the Agents’ Manager (AM), a sub-component of the World

Manager (WM), instructs the agent to generate an initial plan based on the goal set

that the agent has. To do that, and only if the agent has at least one goal to generate a

plan for, the agent sends to the Planner all the information it’s going to need to

generate a plan (i.e. the current state of the world, the available time of the agent, and

the set of agent’s goals), and requests for a new plan generation. The Planner tries to

generate a plan, and either returns the plan or a message of failure (as discussed in

section 4.14). This process is illustrated in Figure 61.

130

Figure 61: Sequence diagram of the initialisation of agents

For our evaluation needs (and specifically for the evaluation documented in section

6.5.5), we decided to model the agent to be able to request a plan in two different

ways: either by requesting a plan for all of the goals in its goal list, or by requesting a

plan only for the most important of its goals (the concept of goal importance was

discussed in section 4.14), and when that goal is complete to move to the next goal,

etc. The storyteller can choose for the agent to operate in any of these two ways.

The way in which the agent is constructing the list of goals to generate a plan for is

illustrated in Figure 62. The agent holds two lists of goals: a list containing all of the

goals which are still pending, and a list (which is basically a sub-set of the

aforementioned list) which contains the set goals which will be sent to the Planner to

generate a plan for them.

Initially, the agent clears the list of goals to generate a plan for. Then, considering that

there are goals which are pending, it iterates through the list of pending goals, and for

each one of them checks if the goal is marked as complete during the execution of a

previously generated plan. If it is, then is removed from the original pending goals list.

If not, then the agent checks if the goal has any preconditions. If it does not, then the

goal is added to the goals to search for list. In case the goal has preconditions, the

131

agent iterates through them and checks their status against the current state of the

world. If all of the preconditions are met, then the goal is added to the list. If not, then

the goal is ignored (but is left in the original pending goals list).

Figure 62: Activity diagram of the agent goal selection process

As soon as the new goals list is populated, the agent checks which of the two modes

we discussed earlier (i.e. planning for all the goals at the same time versus planning for

one goal at a time) is enabled. If the mode of searching for all of the goals is enabled,

then the process ends. Alternatively, the agent needs to identify the most important of

132

these goals, and remove the rest. To accomplish that, the agent checks the volume of

goals in the list.

If the list is empty or has only one goal, then the process ends. If there are more goals

in the list, then for each of the goals the agent first checks if the goal is the first one

that is being checked. If it is, then the goal is kept as the most important goal. If it is

not, then the importance value of this goal is checked against the goal which is

currently the most important one. If it is higher, then this goal replaces the other as

the most important. If it is lower, then the goal is ignored. In case they are the same,

then the agent selects one of them randomly and uses that as the most important.

As soon as this process ends, the agent checks if there is at least one goal to generate a

plan for. If there is, then it sends all the appropriate information to the Planner, and

requests a plan. If the Planner returned a plan, the agent stores the plan to be

executed later, and ends the process. If not, then the stored plan remains empty. This

process is illustrated in Figure 63.

Figure 63: Activity diagram of agent plan request process

In case there are no goals to find a plan for in the list, then the agent checks its

configuration to identify if it can accept a futile goal, and if already waited for one turn.

If both of these conditions are true, then requests a futile goal from the Futile Goals

Manager (FGM); the details of the process are discussed in section 4.9. If the FGM

133

returned a futile goal, then this goal is added in the goals to search for list, and the

agent sends the goal along with the rest of the required information to the Planner to

generate a plan.

When an agent has a plan, is able to keep track of which parts of the plan already

executed and if the plan is complete, as well as which is the next action set that needs

to execute when requested to do so by the WM (as we discussed in detail in section

4.5). If during the execution of a plan is informed by the WM that an action set was

failed and instructed to re-plan, then the agent communicates with the Planner

sending all the relevant information requesting the Planner to re-plan based on the

provided information and current state of the world.

The agent is also aware if the character that represents is still alive as well as the

location in which is located at any point during the execution of a level. When a level

ends, every agent which was enabled during the level is deactivated.

4.16. BATTLE MANAGER

There are cases in the story that we are using to evaluate DIEGESIS, in which we need

battles to occur, which add an added form of complexity to and have the potential to

affect greatly the generated story. Therefore, it makes sense to create a component

which will handle all these battles between either armies of Non-Player Characters

(NPCs) or story characters/agents, even both. The Battle Manager (BM) component is

responsible of dealing with all the battles in the system.

First of all, to specify if a battle occurs in a level, the storyteller needs to mark it as a

battle level in the XML file containing the main information about the level which we

discussed in section 4.4. An example of the additional semantics is displayed in Figure

64.

In each battle level, there can be up to two alliances fighting against each other. In the

example of Figure 64, there is the alliance called “Greece” fighting against the alliance

called “Troy”. Each alliance may consist of different battle groups (e.g. “Myrmidons”,

“Trojans”, etc.) each possessing a different volume of soldiers for a specific level. The

existence of a battle group may be depended by a character option. In the example of

Figure 64, the battle group “Myrmidons” will only exist in this level if the character

134

called “Achilles” has the option “will-fight” set as “true”. Also, each alliance has a

“retreat percentage” associated to it. When this threshold is reached (e.g. when the

volume of soldiers of the Greek alliance becomes equal to or lower than 30% or the

initial volume of soldiers), the battle will stop and the alliance will retreat.

<levels>

 <level>

 (…)

 <is_battle_level>true</is_battle_level>

 <battle_alliances>

 <battle_alliance title="greece" retreat_percentage="30">

 <battle_group volume="500" exist_if_char="achilles"

exist_if_option="will-fight" exist_if_value="true">myrmidons</battle_group>

 <battle_group volume="2000">mycenaeans</battle_group>

 <battle_group volume="2000">spartans</battle_group>

 </battle_alliance>

 <battle_alliance title="troy" retreat_percentage="0">

 <battle_group volume="5000">trojans</battle_group>

 </battle_alliance>

 </battle_alliances>

 </level>

</levels>
Figure 64: A set of XML battle details

Each battle group has a set of other attributes as well, which are specified in another

XML file created by the storyteller, which is used in every level of the story and is

displayed in Figure 65. They have a different fighting ability (which will be used to

calculate the outcome of each battle), a total volume of soldiers, and a character name

as leader. The volumes included in each individual level cannot exceed the total

volume of a battle group which specified here.

<battle_groups>

 <battle_group>

 <title>spartans</title>

 <leader>menelaos</leader>

 <total_volume>10000</total_volume>

 <fighting_ability>5</fighting_ability>

 </battle_group>

 <battle_group>

 <title>mycenaeans</title>

 <leader>agamemnon</leader>

 <total_volume>50000</total_volume>

 <fighting_ability>3</fighting_ability>

 </battle_group>

 <battle_group>

135

 <title>ithacans</title>

 <leader>odysseus</leader>

 <total_volume>5000</total_volume>

 <fighting_ability>3</fighting_ability>

 </battle_group>

 <battle_group>

 <title>myrmidons</title>

 <leader>achilles</leader>

 <total_volume>1000</total_volume>

 <fighting_ability>10</fighting_ability>

 </battle_group>

 <battle_group>

 <leader>priam</leader>

 <title>trojans</title>

 <total_volume>50000</total_volume>

 <fighting_ability>4</fighting_ability>

 </battle_group>

</battle_groups>
Figure 65: A set of XML battle groups

When the BM component is initialised by the World Manager (WM) component

(Figure 66), the BM with the help of the Parser component parses all the generic battle

group information, and stores them in the Knowledge Base (KB).

Figure 66: Battle Manager initialisation sequence diagram

When a battle level is loaded, the WM instructs the BM to initialise the alliances so it

can be ready to calculate any battles; the BM requests the current level information

from the LM, and then it loads the new alliances.

136

The loading of the alliances is depicted in Figure 67. Initially, the BM loads the details

of the new level, and resets any counters which will be used later to deal with the

battles. Then, it creates a list of the alliances present in the new level, and for each of

the alliances, it creates a list of the battle groups which belong to the alliance.

For each group, the BM first checks if the group has an existence precondition. If it

does, then it gets the character option from the KB and check if the precondition is

met. If it is not met, then it removes the battle group from the list (i.e. the battle group

will not be present and fight in this level). If the precondition is met (or if there is not a

precondition set), then the BM retrieves the current total volume of the battle group

which is stored in the KB.

Figure 67: Alliances' initialisation activity diagram

137

The total volume is irrelevant of a specific level and it is used globally in the story. For

example, the total volume for a battle group might be 1000 at the beginning of the

story, but as the story progresses, it might be reduced to 100 if 900 of the soldiers died

in battles in previous levels.

If the total volume is zero (i.e. no soldier is left in this battle group), then the battle

group is removed. If there are soldiers left, then the next step is to check if the total

volume is higher than or equal to the required volume of soldiers for the battle group,

which refers to this level. If it is not, then the volume of soldiers for this level becomes

equal to the total volume.

For example, we might model a level where we specify that there are 300 soldiers of a

specific battle group. But, if something happened in a previous level and a lot of

soldiers were killed and there are only 100 soldiers left, then only 100 are going to be

present in this level instead of 300.

Afterwards, the BM calculates the appropriate amount of soldiers for this level, it adds

their volume to the total volume of the alliance they belong to, creates a Soldier

instance for each one of them, and adds it to the alliance’s collection of soldiers.

As we discussed in section 4.5, when a level is marked as a battle level, a battle occurs

in each turn of the level until it stops based on certain retreat conditions. To check if

an alliance needs to retreat, the BM first iterates through the list of alliances and

calculates the percentage of their current volume, against the volume they started the

level with. If the current percentage is either lower than or equal to the retreat

percentage of the alliance (specified by the storyteller), then the alliance is marked as

“retreated”.

After this iteration ends, the BM checks if at least one alliance retreated. If there was

one, then the battle is set to complete, and BM iterates through the alliances again.

For each one of them, it iterates through their battle groups, and calculates the final

volume of the battle group (i.e. the number of soldier who were not killed in battle),

and based on this information calculates the new total volume of the battle group

which is used globally in the story, and updates the KB with this information. This

process is illustrated in Figure 68.

138

Figure 68: Activity diagram of checking for an alliance retreat

To calculate the outcome of a battle turn (illustrated in Figure 69), the first step for the

BM is to discover which the larger one of the alliances is. Afterwards, each soldier of

the larger alliance fights (in sequence) a single soldier of the smaller one, until every

soldier of the smaller alliance has been involved in a fight.

Then, depending on the configuration of the system by the storyteller, the fight might

continue or not. If the configuration is that every soldier should fight at least once,

considering that there are still soldiers from the smaller alliance who have won the

battle (i.e. they are still alive), they are marked as available, and they fight the

remaining soldiers of the larger alliance who haven’t been involved in a fight yet.

To summarise, if the storyteller has chosen that every soldier should fight in a battle,

then each soldier of the larger alliance will fight a soldier of the smaller alliance once

during a battle turn (considering that the smaller alliance has not been eliminated

during the battle turn), but some of the soldiers of the smaller alliance will be involved

in fight more than once. If there isn’t such a requirement, then the amount of fights

that will occur in a battle turn is equal to the initial volume of the smaller alliance.

139

Figure 69: Activity diagram of performing a battle

To calculate the outcome of a fight between two soldiers, their fighting abilities are

being used. A higher fighting ability means a larger chance that the soldier will come

out from a battle victorious. The BM feeds their fighting abilities to the Oracle, and

received the outcome of the battle. The soldier who won is marked as busy (i.e.

already involved in a battle), and the other as dead.

At the end of each battle turn, the BM calculates and updates the total volumes of

remaining soldiers for each alliance (and battle group), removed the dead soldiers, and

resets the status of the rest to available for battle.

Finally, apart from NPCs (i.e. generic soldiers) fighting other NPCs, an agent might fight

a soldier as well. Firstly, as we already discussed in section 4.5, the WM needs to check

if an agent is in a position to fight. Apart from the agent’s availability, the WM checks

140

with the help of the BM if the agent is located in a battlefield location, and if there is a

battle in progress. The battlefield location is specified by the storyteller (Figure 70).

<battle_configuration>

 <pddl_battlefield_location_name>battlefield</pddl_battlefield_location_name>

 <percentage_change_of_interruption_to_fight_if_in_battlefield>

 50

 </percentage_change_of_interruption_to_fight_if_in_battlefield>

</battle_configuration>
Figure 70: Battle configuration XML nodes

If these conditions are met, then there is a chance that the agent’s action will be

interrupted by a battle. The WM makes a decision with the help of the Oracle whether

the action will be interrupted or not (using the interruption percentage provided by

the BM and displayed in Figure 70), and if it does, a battle is performed between the

agent and a soldier of the enemy alliance.

To perform the battle, the BM first identifies the alliance in which the agent belongs

to, and checks if the enemy alliance has any soldiers alive. If it does, then the BM

randomly chooses one and with the help of the Oracle calculates the outcome of the

battle and returns it to the WM.

4.17. EVALUATION MONITOR

During the course of our research, we need to evaluate several aspects of our

framework. While some of the evaluations can be implemented by coding small scripts

which use some specific components of the framework for the needs of each

evaluation, we also need to be able to evaluate aspects of the whole framework and

the generated narrative while the story is being executed and generated.

To this end, we designed the Evaluation Monitor (EM) component which can be easily

enabled or disabled via a configuration variable and is responsible of gathering the

following data while the framework is generating and executing a story:

 For each agent, the volume of its successful, failed, and initiated by other

agents actions, the times an agent fought a soldier, and information about an

agent’s planning and re-planning episodes, wrapped as a group for each

individual level the agent participated into.

141

 For each planning and re-planning episode, the volume of goals, operator

nodes, fact nodes, and plan steps, the planning/re-planning duration, and if the

planning/re-planning process was successful.

 For each level, its pre-processing duration, the volume of pre-processing fact

and operator nodes, its loading duration (including the pre-processing), the list

of agents involved in it, the volume of choices and goal injections, and the

duration of each turn, calculating it from the time the player chooses to

execute the turn, up to the point that is fully executed (i.e. all agents finished

with their planning/re-planning processes, they tried to execute their

respective actions –if they have any–, and any battles are complete), excluding

any time the system waited for a choice by the player during a turn execution.

 For every transition between levels, the duration the transition needed to be

calculated/processed, and the volumes of the processed milestones,

successors, triggers, character triggers, fact triggers, and mutually exclusive

levels.

At the end of each level, the EM produces a report (saved to a text file), which contains

all the information mentioned above which corresponds to a single level, including that

level’s agent information.

At the end of the story, the EM produces another report (also saved to a text file),

which contains calculated data combined from all the executed levels. The report

includes the following details:

 The total volume of levels;

 the total volume of agent appearances in all the levels, how many unique

agents appeared in the story, and the average volume of agents in each level;

 the total, average, maximum (in a single level), and minimum (again in a single

level) volume of choices, goal injections, turns, pre-processing fact & operator

nodes, milestones, successors, triggers, character triggers, fact triggers,

mutually exclusive levels, successful/failed/involved actions, planning/re-

planning episodes, goals, planning/re-planning operator & fact nodes, plan

steps, and successful/failed plans;

142

 the total, average, maximum (in a single level), and minimum (again in a single

level) duration of turns, pre-processing, loading, transitioning, and planning/re-

planning episodes;

 similar data to the above grouped by individual agents.

4.18. TOOLS FOR STORY MODELLING

As we already described in previous sections, DIEGESIS uses a combination of

modelling approaches: The storyteller needs to model the game world both in PDDL

and in XML. To make the authoring process easier, we are using a PDDL editor created

by (Cooper, 2011).

The PDDL editor (illustrated in Figure 71) consists of three parts: an actions editor,

used to create new action and assign parameters, preconditions and effects; a

predicates editor, used to create new predicates made of parameters and types which

return true, and an initial states editor, used to setup the state of the world and

everything in it when the story starts.

Figure 71: Screenshot of (Cooper, 2011)'s PDDL editor

143

Although the authoring process in XML is quite easier to the end-user compared to

PDDL, we designed an XML editor as an extension to the PDDL one, so the storyteller

can be able to create all the XML nodes described in this chapter easier.

In this chapter, we documented and discussed in detail the design aspect of every

component of our framework. In the next chapter, we will document and discuss the

implementation of our framework.

144

5 IMPLEMENTATION

In this chapter, we document all the details about the implementation of the multi-

agent Digital Interactive Storytelling (DIS) framework we designed in the previous

chapter.

5.1. CHOICE OF IMPLEMENTATION PLATFORM

As an implementation platform, we have chosen to use Java, a language that runs in

any operating system and includes all the modern programming techniques that we

need. For our relational database needs we opted to use MySQL, one of the most

widely used open-source relational database management systems (RDBMS).

Figure 72 illustrates DIEGESIS’ software architecture. Moving upwards from the

operating systems and the technologies we just discussed, we are using the PDDL4J

library to be able to parse PDDL files, and a MySQL driver that enables Java to

communicate with the MySQL server. Finally, the last stack of our architecture

contains user-created content, i.e. a set of PDDL and XML files which (with the help of

our framework) produce a story.

Figure 72: DIEGESIS Software Architecture

145

5.2. PARSING COMPONENT

Figure 73 illustrates the Parsing Component’s implementation. We use two types of

parsers; a PDDL and an XML parser. The PDDL parser is implemented using the PDDL4J

library (Pellier, 2009) and we do not illustrate its structure for simplicity reasons, since

it can be found in its official documentation.

Figure 73: Parser class diagram

The XML parser is part of our Parser implementation, and is used to parse a number of

XML files to retrieve any additional constraints and other information applicable to the

specified level, based on the semantics we presented and discussed in chapter 4 .

The Parser class always needs an instance of the LevelManager class (discussed in

section 4.4) which provides the paths of the currently active level so the Parser can

parse the correct files, as well as an instance of the OutputGenerator class (discussed

146

in section 4.5), to be able to display messages in the console which are used for

debugging.

When parsing a level modelled in PDDL, the Parser class uses an instance of PDDL4J’s

PDDLParser class to perform the parsing of the PDDL files, as well as an instance of

PDDL4J’s PDDLObject class to represent (and return) the PDDL model resulted by the

parsing of the PDDL files.

Considering our needs, we modified PDDL4J’s PDDLObject class to be able to perform a

few functions that we need, such as to provide lists of specific lists contained in the

PDDL representation of the level, e.g. a list of characters.

As we explained in section 4.7, although a character may be present in the model of a

level as modelled by the storyteller, he/she might need to be removed from the level

based on what happened in previously executed levels. Therefore, the PDDLObject

class is now able to remove any references to a character from the PDDL

representation of a level if requested.

Finally, the PDDLObject class in now able to identify in which location is every

character located and return a map containing this information.

5.3. KNOWLEDGE BASE COMPONENT

As we discussed in section 4.3, DIEGESIS includes two types of Knowledge Bases (KB); a

relational database, and information stored in memory. Figure 74 illustrates the

implementation of the KB component.

The memory-based part of the KB (KnowledgeBase class) is responsible to keep the

current state of the world for the active level, a map with the locations of each

character that is active in a level, and two helper lists which are related to the

relational database and hold the database ids of the characters and the levels.

The second class illustrated in Figure 74, (i.e. the Db class) is able to perform any

function related to the relational database (i.e. select, insert, delete, and update

information). As we discussed in section 4.3, the relational database includes tables

about characters and their options, levels (and mutual exclusions between them),

147

milestones, story actions, transitions, and information about the characters and any

battle groups. Its schema is illustrated in Figure 75.

Figure 74: Knowledge Base class diagram

Characters table include the following information about each individual character:

The character’s unique id (the id’s type is integer and it is set to auto increment when a

new character is inserted) which is also the primary key of the table, the character’s

name (which type is varchar), and if the character is alive or not (is_dead, which is

Boolean and represented in MySQL by a tinyint).

Characters_options table is able to store the characters’ options described in section

4.7. The table is designed in a way to allow the storyteller to represent any types of

options. It includes the name of the option (varchar), the character’s id (character_id –

integer) which is a foreign key pointing to an id of a character in the characters table,

and the value of the option (varchar). Option and character_id are a double primary

key for this table.

148

Figure 75: Knowledge Base database schema

Levels table contain information about the different possible levels which are present

in the story. It contains a unique id for each level (which type is integer, auto-

increments, and it’s the primary key of the table), the level’s title (type), and if it was

executed (Boolean) or not. Any mutual exclusion between levels is stored in the

mutually_exclusive_levels table. The information stored there includes the mutual

exclusion group’s name (varchar), the level’s id (level_id – integer; foreign key of levels

table id), and the priority (integer) of the level. Group and level_id are a double

primary key for the mutually_exclusive_levels table.

The milestones table is used to store the milestones (varchar) of each level (level_id –

integer; foreign key of levels table id), along with each milestone’s state, i.e. if the

milestone is complete (Boolean) or not. Milestones and level_id are a double primary

key for the milestones table.

Transitions table holds information about all the transitions which occurred or will

occur during the execution of the story. It includes the transitioning_layer (integer) in

which the transition occurs, the id of the level (level_id – integer; foreign key of levels

table id) which the transition refers to, the number of fired_triggers (integer) of the

149

transition, and the id of the level (parent_id – integer; foreign key of levels table id)

which triggered the transition. The fields transitioning_layer and level_id are a double

primary key for the transitions table.

The story_actions table is used to store and keep track of all the actions that occurred

during the execution of the story, along with information about them. Specifically, it

includes a unique id (integer; auto-increment; primary key) for each action, the actual

action (varchar), the ids of the characters who either executed the action or are

involved in it (character_id & involved_character_id – integer; foreign keys of

characters table id), the level_id (integer; foreign key of levels table id) in which the

action occurred, and the time_step (int) in which the action was executed into.

Finally, the battle_groups table includes the following information about any battle

groups present in the story: The group’s title (varchar; primary key), the group’s leader

(character_id – integer; foreign key of characters table id), the group’s fighting_ability

(integer), and the group’s total_volume (integer).

5.4. LEVEL MANAGER

As we already discussed in section 4.4, The Level Manager (LM) component is

responsible of keeping track of most of the information about each possible level of

the story.

The implementation of the LM component is illustrated in Figure 76. The

LevelManager class uses an instance of the Parser class to parse information related to

each level, and an instance of KnowledgeBase and Db classes to store whatever is

needed to the Knowledge Base. It also uses an instance of the BattleManager class to

request any information needed which is related to a battle which may occur in a level.

Each level is represented by a Level class, which stores all the information related to a

level which was previously parsed. Each level may contain an infinite amount of

BattleAlliance instances (each BattleAlliance instance may contain an infinite amount

of BattleGroup instances) which represent battle information about a level, and are

further discussed in section 5.16.

Each level class may also include an infinite amount of: CharacterOptionsGroup

instances (with each CharacterOptionsGroup instance able to contain an infinite

150

amount of CharacterOptionsGroupOption instances); Trigger instances;

CharacterTrigger instances; and FactTrigger instances. All of these classes contain

information which is used by the Transitioning Manager, and are further discussed in

section 5.7.

Figure 76: Level Manager class diagram

5.5. WORLD MANAGER

As discussed in section 4.5, the World Manager (WM) is the main component which

coordinates the whole system, and it has direct access to most of the other

151

components of the system. The implementation of the WM component is illustrated in

Figure 77).

The WorldManager class uses an instance of the TimeManager and the

OutputGenerator classes. The TimeManager class is responsible of keeping track of the

time (i.e. turns) in a level and globally in the story. The OutputGenerator class is

responsible of sending messages to the User Manager component to be displayed to

the player, or print messages to the console for debugging purposes, and includes a

few templates such as a header template, an alert message template, etc.

Figure 77: World Manager class diagram

As we already mentioned, the WM has access to most of the other main components

of the system, either to initialise them (and have them help the WM initialise new

levels), or to help during the execution of the story. All of the classes of Figure 77

152

which does not contain variables and functions are discussed in detail in their own

sections.

Apart from initialising the system and the currently active level with the help of the

rest component of the system, its main responsibility is to dictate the execution of the

agent’s actions based on their individual plans, keeping track of the current state of

the world, etc.

Algorithm 1 presents the execution of the agents’ plans in a given time step (i.e. turn).

Initially, the WM informs the User Manager (UM) component that the execution of a

turn has started. Then, it checks (with the help of the Level Manager) if the currently

active level is a battle level, and, with the help of the Battle Manager (BM), if the

alliances are initialised. If the level is a battle level and the alliances are not initialised,

then it instructs the BM to initialise them. Afterwards, if a battle is still in progress (i.e.

an alliance not retreated in a previous turn) it instructs the BM to check if an alliance

needs to retreat. If the battle ended due to a retreat, it retrieves the retreat info from

the BM and updates the current state of the world; alternatively it instructs the BM to

perform a battle.

Then, the WM queries all the agents one by one to deal with their plans. Initially,

checks if an agent is dead. If it is, then it moves to the next agent.

The next step is to identify if the agent has an active plan. If there is a plan, then the

WM requests the set of actions the agent wants to execute. Alternatively, it instructs

the agent to generate a new plan, and then requests the actions set (considering that

the agent successfully generated a plan).

Then, the WM checks if the agent is busy at the given time step (i.e. if it is involved in

another action initiated by another agent already), as well as if the agent returned a

set of actions to execute.

If the agent is busy, then the WM moves to the next agent. If the agent didn’t return a

set of actions (i.e. doesn’t have a valid plan to execute), the WM with the help of the

BM checks if the agent is able to fight. If it is, then the WM instructs the BM to perform

a battle between the agent and an enemy soldier.

153

Considering that the agent is not busy and has a set of actions to execute, the WM

iterates through the actions of the action set. For each of the actions, the WM

identifies if any other agents are involved in the action, and checks their availability as

well.

If any of the involved agents is not available, and the action is not interruptive

(meaning that the availability of the ignored agents will be ignored) then the WM

checks if all of them are still alive. If they are, then the agent is instructed to wait (the

action remains pending). If at least one of them is dead, then the action is impossibly

to be executed, therefore the action is marked as failed, the execution of all other

actions is stopped, the current state of the world is sent to the agent, and the agent is

instruct for any completed goals (based on the new state of the world), and ultimately

re-plan.

ALGORITHM 1 – Multi-agent execution of plans

Input: A: a list active agents; T: a time step; C: the current state of the world; UM: UserManager; BM:

BattleManager; TiM: TimeManager: L: currently active level

Output:

1: inform UM that turn execution started;
2: if (L is battle level) AND (alliances are not initialised) do:

3: instruct BM to initialise alliances;
4: end if

5: if battle in progress do:

6: instruct BM to check if an alliance needs to retreat;
7: if battle ended do:

8: get retreat info from BM;
9: update C with retreat info;
10: else
11: instruct BM to perform battle;
12: end if
13: end if

14: for each A as agent do:

15: if agent is dead do:

16: go to line 89;
17: end if

18: update agent with C;
19: if agent has plan do:

20: get next set of actions from plan;
21: else

22: generate new plan;
23: if agent has plan do:

24: get next set of actions from plan;
25: end if
26: end if

27: if agent not busy at T AND size of actions > 0 do:

29: for each actions as action do:

30: identify agents involved in action;
31: if agents not busy at T OR action is interruptive do:

154

33: if preconditions of action exist in C do:

34: if action marked as choice do:

35: get choice result (YES/NO) either from player or from system;
36: else

37: choice = YES;
38: end if

39: if choice = YES do:

40: if agent can fight AND agent is forced to fight do:

41: instruct BM to perform battle between agent and enemy soldier;
42: stop execution of all other actions;
43: else if action is clear to execute due to doubt do:
44: update C with action effects;
45: mark action as executed;
46: set involved agents busy at T;
47: if action is duel do:

48: instruct BM to perform battle between agents;
49: update C with battle outcome;
50: end if
51: deal with any dead agents;
52: store action details in KB;
53: inject new goals to agents based on changes in C;
54: end if

55: else if choice = NO do:

56: mark action as failed;
57: update C with action’s fallback;
58: update agent with C;
59: instruct agent to check for completed goals;
60: instruct agent to re-plan;
61: stop execution of all other actions;
62: end if

63: else

64: mark action as failed;
65: stop execution of all other actions;
66: instruct agent to re-plan;
67: end if

68: else

69: if all involved agents alive do:

70: instruct agent to wait;
71: else
72: mark action as failed;
73: update C with action’s fallback;
74: update agent with C;
75: instruct agent to check for completed goals;
76: instruct agent to re-plan;
77: stop execution of all other actions;
78: end if

79: end if

80: end for each

81: if at least an action was executed do:

82: inform agent which actions were executed;
83: set agent busy in T;
84: update agent with C;
85: instruct agent to check for a location change;
86: instruct agent to check for completed goals;
87: end if

88: else

89: if agent can fight do:

90: instruct BM to perform battle between agent and enemy soldier;
91: else
92: instruct agent to wait;
93: end if

155

94: end if

95: end for each

96: set TiM’s level time to T+1 and increment global time;
97: inform UM that turn execution finished;

Afterwards, the preconditions of the action are checked against the current state of

the world. If the preconditions are met, then the system checks (with the help of the

Choices Manager) if the action is marked by the storyteller as a choice. If it is, then a

choice needs to be made. If the action is not marked as a choice, then the WM sets the

outcome of the choice as “YES”.

If the choice is “NO”, then the action is marked as failed, the current state of the world

is updated with the fallback of the choice, the agent is updated with the new current

state of the world, the agent is instructed to check for any completed goals and to re-

plan, and the WM stops the execution of all other actions of the agent.

If the choice is “YES”, then the WM checks (with the help of the BM) if the agent is able

to fight, and if the agent will be forced in a fight interrupting the execution of the

action. If the agent needs to fight, then the BM is instructed to perform a battle

between the agent and an enemy soldier, and the WM stops the execution of any

remaining actions of this agent.

If the agent evades the fight (or if a fight is not applicable due to the level not being a

battle level or the agent being in a location which is unsuitable for a fight) then the

WM checks (with the help of the Uncertain Actions Manager) if the action is clear to be

executed due to doubt. If it is not, then the action remains pending for this turn.

Alternatively, the current state of the world is updated with the effects of the action,

the action is marked as executed, and the involved agents are set as busy for this time

step. Then, the WM checks if the action is a duel between two agents. If it is, then it

instructs the BM to calculate the outcome of the battle, and updates the current state

of the world with it.

Then, the WM deals with any dead agents, stores the executed action details to the

Knowledge Base, and (with the help of the Goal Injection Manager) injects new goals

to agents based on the changes on the current state of the world.

156

After the end of the actions execution, if at least an action was executed, the WM

informs the agent of which actions were executed (i.e. are complete), sets the agent

busy for the time step, sends to the agent the updated current state of the world, and

instructs the agent to check for any location change, as well as for any completed

goals.

Finally, when the agents list is finished, the WM instructs the Time Manager to iterate

the global and level time, and informs the UM that the execution of the turn is

finished.

5.6. CHOICES MANAGER

As discussed in section 4.6, the storyteller has the ability to mark actions as choices,

and the Choices Manager (CM) is responsible of keeping the relevant information. The

implementation of the CM component is illustrated in Figure 78.

Figure 78: Choices Manager class diagram

The ChoicesManager class uses an instance of the Parser class to be able to parse the

choices of a new level, as well as an instance of the LevelManager class (which is used

to be passed to the Parser class), and an infinite amount of Choice class instances. Each

instance of the Choice class represents a choice for a specific level, and may contain

157

from one to an infinite amount of fallbacks (each fallback is represented by an instance

of the Fallback class).

Finally, the ChoicesManager class uses an instance of the Oracle class (discussed in

section 5.10) to be able to make a choice if the decision maker is the system (or the

player is unable to make a decision at that time).

5.7. TRANSITIONING MANAGER

As discussed in section 4.7, when a level of the story ends, it is a time for a new level to

be selected and enabled, and that’s what the Transitioning Manager (TM) component

is responsible of. The implementation of the TM component is illustrated in Figure 79.

The TransitionManager class is the class which (when asked by the World Manager

component) can calculate all the transitions deriving from the level which just

completed its execution, and select the next level which will be loaded for execution,

using the processes described in section 4.7. It uses an instance of the LevelManager

class to be able to request information about any levels involved in the transitioning

process, as well as an instance of the KnowledgeBase and Db classes to be able to

retrieve and store information about milestones, triggers, etc.

As we explained in section 4.7, one of the transitioning steps is to check the state of

each of the milestones of the level against the current state of the world, and store the

relevant information in the Knowledge Base. Each instance of the Milestone class

represents a milestone of a level. To be able to map them against the current state of

the world, the TrasitionManager class uses an instance of the InitAlgorithm class,

which will be further discussed in section 5.14.

During the calculation of any future transitions and the selection of the next applicable

level, the TransitionManager class may also use multiple instances of the Level class.

As we discussed in section 4.7, each level is associated with a number of triggers, fact

triggers, character triggers, and character options. Each of these concepts are

represented respectively by an instance of the Trigger class, the FactTrigger class, the

CharacterTrigger class, or the CharacterOptionsGroup class (which can contain

multiple instances of CharacterOptionsGroupOption class).

158

Finally, the TransitionManager class may use instances of the MutuallyExclusiveLevel

class to keep information about mutually exclusive levels and deal with them (as

discussed in detail in section 4.7).

Figure 79: Transitioning Manager class diagram

5.8. GOAL INJECTION MANAGER

As we discussed in section 4.8, while the story is executed the Goal Injection Manager

(GIM) constantly monitors the current state of the active level with the help of the

159

World Manager (WM), to identify if a goal needs to be injected to the goal list of an

agent/character based on goal injection rules created by the storyteller.

The implementation of the GIM component is illustrated in Figure 80. The

GoalInjectionManager class uses an instance of the LevelManager class and an

instance of the Parser class to be able to parse and prepare the goal injection rules of a

new level. To help mapping these rules against the current state of the world, an

instance of the InitiAlgorithm class along with an infinite amount of Fact class’

instances are used. Both of these classes are part of the Planner component and they

are discussed in section 4.14.

160

Figure 80: Goal Injection Manager class diagram

Each different type of goal injection rules (i.e. default, fixed, and conditional) are

represented by a different class (i.e. GoalInjectionRule, GoalInjectionFixedRule, and

GoalInjectionConditionalRule respectively). GoalInjectionConditionalRule instances

include at least one condition, in the form of a Condition class instance.

All of the classes which represent goal injection rules ultimately return a list of goals to

be injected, in the form of InjectedGoal instances. Each instance of the InjectedGoal

161

class includes the name of the agent in which the goal will be injected to, along with

the goal which will be injected. The goal is represented by an instance of the Goal

class, containing information about the goal such as its importance, its PDDL name

(AtomicFormula), etc. A goal may also include the names of other goals as

preconditions along with their expected status, which are represented by instances of

the GoalPrecondition class.

5.9. FUTILE GOALS MANAGER

As discussed in section 4.9, the idea behind the creation of futile goals is that

sometimes (depending on the story) the characters present in a level may not have any

important goals to achieve, so instead of having them staying there doing nothing, the

storyteller can specify a set of futile goals which are applicable in a level, and they can

be used to keep the characters busy. The implementation of the Futile Goals Manager

component is illustrated in Figure 81.

Figure 81: Futile Goals Manager class diagram

The FutileGoalsManager class uses an instance of the Parser class as well as an

instance of the LevelManager class to parse and load the futile goals of a new level,

and store them in a goals list. Each goal is represented by an instance of the Goal class

and may contain a number of preconditions represented by instances of

GoalPrecondition class as discussed in section 5.8. When requested to do so, the

FutileGoalsManager class selects a goal randomly and returns it to the World Manager

component so it can be added to the agent who requested it.

162

5.10. ORACLE

As discussed in section 4.10, there are certain situations during the generation and

execution of a story, where a relatively random outcome needs to be calculated. The

Oracle component deals with these random outcome calculations. Its implementation

is depicted in Figure 82.

Figure 82: Oracle class diagram

The Oracle class is self-contained and when requested to do so, it is able to calculate

and return a random outcome between different candidates.

5.11. UNCERTAIN ACTIONS MANAGER

As discussed in section 4.11, there are some types of actions which make sense that

they should have a percentage that will succeed due to chance. We call these actions

“uncertain”, and the component which deals with them the Uncertain Actions

Manager (UAM). UAM’s implementation is displayed in Figure 83.

Like in most of DIEGESIS’ components, UncertainActionsManager component uses an

instance of the Parser class as well as an instance of the LevelManager class to parse

and load the uncertain actions of a new level, and then stores them in an actions list.

Each uncertain action is represented by an instance of the UncertainAction class.

163

Figure 83: Uncertain Actions Manager class diagram

When requested by the World Manager component, it checks if an action is in the list

of uncertain actions, and if it is then uses an instance of the Oracle class to calculate an

outcome which represents if the action is cleared to be executed or not.

5.12. VANTAGE POINT MANAGER

As we discussed in section 4.12, the player needs to be able to view the outcome of

the story from the “eyes” of a specific character, meaning that the player will only view

the story outcome which is related to the chosen character, and will be available to

interact with the story (i.e. make decisions) only when an action is related to the

chosen character. We call this concept a vantage point, and the Vantage Point

Manager (VPM) component to deal with vantage points. The component’s

implementation is depicted in Figure 84.

The VantagePointManager class uses an instance of the KnowledgeBase class and an

instance of the Db class to be able to fetch information about the characters and their

actions which were already executed and stored in the Knowledge Base. It also uses an

instance of the LevelManager class, to fetch information about the different levels

each action was executed into.

Each action is represented by an instance of the VantagePointAction class, which

contains the name of the action, the time step in which the action was executed, and

the level’s title in which the action belongs to.

164

Figure 84: Vantage Point Manager class diagram

When the VantagePointManager class is requested to generate the vantage point for a

new character (or revert back to the main story view), after gather all the relevant

actions, it uses an instance of the OutputGenerator class to send display all the

relevant information to the player (via the User Manager) as well as to the console for

debugging.

5.13. USER MANAGER

As we already discussed in section 4.13, we initially decided that based on the focus of

this research, a graphical user interface would not be developed, as being out of scope

for this project. Instead, the player would receive all the relevant information and the

available actions in an old-fashioned text-adventure way. The first prototypes of

DIEGESIS were operating in this way (Figure 85 displays an example).

165

Figure 85: The initial User Interface of the system

As further discussed in section 4.13, apart from displaying the outcome of the story

and relevant information about it to the player, the User Manager (UM) component is

also responsible of communicating with the player. Therefore, we quickly decided that

we should implement a graphical user interface (GUI). One of the first versions of

DIEGESIS’ GUI is illustrated at Figure 86.

Figure 86: First version of DIEGESIS' GUI

166

While progressing with the design of DIEGESIS and prototyping at the same time, the

design of the GUI involved, as we removed features that we decided not to implement,

and added others, such as the ability for the player to make choices. An intermediate

version of the GUI is displayed in Figure 87.

Figure 87: Intermediate version of DIEGESIS' GUI

The finalised version of the DIEGESIS’ GUI is displayed in Figure 88. It includes all the

features we need the player to have access to via the GUI. Apart from viewing the

outcome of the story, the player can progress the story to the next turn, view at any

point during the execution the current plan and goals for any of the activated

characters in a level, and view information about the currently active level. The player

also has the ability to switch between different vantage points at any point during the

generation of the story.

167

Figure 88: Finalised version of DIEGESIS' GUI

Finally, when is required, the player is able to make choices for the outcome of the

story. This interactivity is removed from the main GUI, and added as a pop-up modal

box, illustrated in Figure 89.

Figure 89: A pop-up modal box

The implementation of the UM component is illustrated in Figure 90. The

UserManager class uses an instance of the WordManager class to be able to instruct

the World Manager (WM) component about player’s interactions (e.g. to advance a

turn) that need to been take care by the WM.

It also uses an instance of the LevelManager class to receive information about each

level (i.e. their display titles and descriptions), and an instance of the

VantagePointManager class to deal with the vantage points. Finally, it have access to a

list of Agent class’ instances which represent story characters who are active in a level,

so the LM can get information from them (e.g. their current goals, locations, etc.).

168

Figure 90: User Manager class diagram

5.14. PLANNER

As we discussed in section 4.14, the planner component consists of a new planning and

a new re-planning algorithm, able to generate plans of actions based on each agent’s

state and context, considering both the current world state and the available

resources. The Planner is aware of the available time (duration) a character has for a

plan when it is asked to generate one.

The Planner’s implementation is illustrated in Figure 91. The Planner class is the main

class of the component, which deals with both the planning and re-planning processes.

The InitAlgorithm class is responsible of pre-processing (i.e. initialising) the planning

domain (represented by an instance of the PDDLObject class), the process which we

described in depth in section 4.14. The Planner class uses an instance of the

InitAlgorithm class to retrieve this information so it can use it in the planning and re-

planning processes.

169

Figure 91: Planner class diagram

170

The AtomicFormula class is part of the pddl4j PDDL parser which we use to parse PDDL

files, and represents an substituted PDDL predicate, which is a fact about the world

(e.g. character X is in location Y) which can be either true or false at a given moment.

The Fact class of the planner extends the AtomicFormula class and is used to represent

these facts.

Each possible action in the planning domain is represented by an instance of the

Operator class, and includes (among others) sets of positive and negative

preconditions, as well as sets of positive and negative effects.

The planner represents several concepts as BitSets. A BitSet is a vector of bits, which

can be either true (1) or false (0). For example, the planner keeps all the possible facts

of the planning domain in a facts list, and keeps their state (i.e. the current state of the

world) in a BitSet. There are situations where we need matrixes of BitSets, which are

represented by an instance of the BitMatrix class.

Finally, a plan (either valid or failed) is represented by an instance of the Plan class.

While implementing and evaluating DIEGESIS, we wanted to experiment with different

concepts, for example different types of plan execution, which would require changes

to the implementation of the plan. Also, we wanted the rest of the system to be as de-

coupled as possible from our planner (so it can be connected to other planners in the

future), therefore we decided to de-couple our planner’s plans from the plans that

DIEGESIS agents’ use, and included the ability that the Plan could be converted to an

instance of the new plan implementation.

DiegesisPlan class is the representation of the plan DIEGESIS uses. A DiegesisPlan

includes a set of actions, the number of plan’s steps (i.e. the number of action sets),

and the total duration of the plan. Each plan’s action is represented by an instance of

the DiegesisAction class, which includes information about the action which will is used

by the agent and the World Manager while executing the plan.

To help us with debugging during the creation of our planning solution, we visualised

the planning graph, using a graphical interface. An example of the outcome of the

planning graph visualisation (Shen, 2006) can be seen in Figure 92 and Figure 93.

171

Figure 92: Planning graph expansion visualisation

Figure 93: Information about a specific action in the visualisation of the planning graph

The planning process is presented in Algorithms 2-5. The planner receives as an input a

list of goals (G), and the current state of the world (S), which is added as the first level

of the planning graph. The planner also keeps the last list of planning graph levels as

well as the last list of goals used in the latest planning operation for the agent who is

requesting a new plan.

172

First, the planner checks if the new list of goals is equal to or a subset of the old list of

goals. If it does, then it copies the old list of planning graph levels to the new one and

searches for a level in which the goals are present into. Then, it bypasses the

expansion phase, moving to the extraction phase.

Alternatively (if the above conditions are not met), the planner starts to expand the

layers of the planning graph until all the goals are present in the planning graph, or the

algorithm has levelled-off, considering the constraints (mutexes) between them. This is

shown in Algorithm 2 – lines 10-13. As we explained in section 4.14, two actions in the

same level are considered mutex when their preconditions and effects are

inconsistent. If two consecutive layers are identical (the algorithm has levelled-off) and

the goals are not present and mutex free in the layers, the expansion stops.

ALGORITHM 2 – Planning algorithm

Input: G: a list of goals; S: the current state of the world

Output: The generated plan P

1: L: list of planning graph levels
2: oL: old list planning graph levels
3: oG: old list of goals

4: copy S to L0;
5: if (G equal to or subset of oG) AND (L0 = oL0) do:

6: copy oL to L;
7: search for Lx where G present in Lx;
8: go to line 17;
9: end if

10: while (G not present in Lx OR G not mutex-free in Lx) AND algorithm not levelled-off do:

11: expand Lx;
12: increment Lx;
13: end while

14: if G not present in Lx OR G not mutex-free in Lx then:

15: return P = FAILURE;
16: end if

17: P = extract G from Lx;

18: if P = TIME_FAILURE then:

19: while P = TIME_FAILURE AND G not empty do:

20: select goal from G with lowest salience value;
21: remove goal from G;
22: search for Lx where G present in Lx;
23: P = extract G from Lx;
24: end while

25: end if

26: copy G to oG AND clear G;

27: copy L to oL AND clear L;

28: return P;

173

The complete extraction phase is documented in Algorithm 3. The algorithm receives

as an input a list of goals (G), and the level of the planning graph (L) which needs to be

expanded. As it is shown in Algorithm 3 – lines 1-9, if the algorithm is not levelled-off,

then the facts (possible states of the world) of level L are retrieved, and a logical or is

applied with the facts of the previous level (L-1), so the previously applied actions can

be copied.

Afterwards, a check is being performed to identify which actions are applicable in L,

the facts of the level L are updated with the effects of these actions, the mutexes

between the actions are calculated and stored, and the resolvers (used to speed up the

search process) are updated. In the case that the algorithm is levelled-off, Algorithm 3

– lines 10-15, all the information for level L is the same with the layer L-1.

ALGORITHM 3 – Expand function

Input: G: a list of goals; L: a planning graph level

Output: The data in the expanded level L

1: if algorithm is not levelled-off then:

2: get facts of L;
3: if L > 0 then:

4: apply logical or with facts in L-1 to copy results of previous actions;

5: end if

6: check which actions are applicable in L;
7: update facts of L based on positive & negative effects of applicable actions;
8: calculate mutexes of actions in L;
9: update resolvers of actions in L (to speed up the search process);
10: else

11: facts of L = facts of L-1;
12: applicable actions in L = applicable actions in L-1;
13: mutexes in L = mutexes in L-1;
14: resolvers in L = resolvers in L-1;
15: end if

After the planning graph is created, the extraction phase begins, where a backward

search is being performed starting from the last generated level (containing all the

goals) until a valid plan is discovered. This is shown in Algorithms 4 and 5. The search

function searches iteratively for a set of actions that resolve a set of goals G in a level L.

These sets of actions form a complete plan. While searching, the total time that the

plan needs to be performed is calculated (Algorithm 5 – line 21). If at some point the

plan time exceeds the available time, the search stops.

174

ALGORITHM 4 – Extract function

Input: G: a list of goals; L: planning graph layer

Output: A plan P

1: if L = 0 then:

2: return P = EMPTY;
3: end if

4: P = search for G in L;

5: return P;

Then, as it is shown in Algorithm 2 – lines 18-25, the planner chooses the least

important goal from the list (based on the “importance” value of the goals), removes it

and restarts the search process from the level that all the remaining goals are present.

This happens until a valid plan within the time constraints has been discovered.

ALGORITHM 5 – Search function

Input: G: a list of goals; L: planning graph level; A: a set of actions; M: a set of mutexes

Output: A plan P

1: if G not empty then:

2: select goal from G;
3: get actions that resolve goal;
4: while actions not empty AND P = NULL do:

5: select action from actions;
6: remove action from actions;
7: select mutexes for action;
8: newA = A + action;
9: newM = M + mutexes;
10: newG = G – positive effects of action;
11: P = search for newA, newM, newG, in l;
12: end while

13: else

14: for each A as action do:

15: add action’s positive precondition in G;

16: end for each

17: P = extract for G in L-1;
18: if P is not FAILURE OR TIME_FAILURE then:

19: for each A as action do:

20: add action to P in layer L-1;
21: calculate duration of P;
22: if duration of P > available duration for P then:
23: P = TIME_FAILURE;
24: end if

25: end for each

26: end if

27: end if

28: P = search for G in L;

29: return P;

As discussed in section 4.14, our proposal for re-planning in DIS interleaves plan

generation and plan execution to be able to re-plan as soon as an unexpected change

happen in the environment, while making minimal disruption to the original plan.

175

Our re-planning algorithm is illustrated in Algorithm 6. The first step is to get the set of

actions related to the step of the plan which failed. The effects of each action which is

either failed or not executed yet are added as the goals of the new plan. If there are

more steps in the plan, then the effects of the actions of the next step are also added

in the goals list.

ALGORITHM 6 – Re-planning algorithm

Input: P: an existing plan; S: step of the plan which failed;

Output: A new plan P

1: A: set of actions; p: partial plan; G: goals list;

2: get A from P for S;
3: for each A as action do:

4: if action is failed OR action is not complete then:

5: get effects of action;
6: add effects in G;
7: end if

8: end for each

9: if size of P > S then:

10: get A from P for S + 1;

11: for each A as action do:

12: get effects of action;
13: add effects in G;
14: end for each

15: end if

16: p = generate plan for G;
17: if size of P > S then:

18: remove actions of S + 1 from P;
19: end if

20: remove completed and failed actions from P;
21: add actions of p at the beginning of P’s actions list;

22: return P;

Afterwards, a new partial plan is generated for these goals via our planning algorithm.

After the generation of the new partial plan, the completed and failed actions (as well

as the actions of the step right after the failed step, if such a step exists) of the existing

plan are removed, and the two plans (the existing and the new partial plan) are

merged into one, which is returned to the agent for execution.

5.15. AGENT

As we already discussed in section 4.15, each agent in DIEGESIS represents a character

in the game world and is designed to operate as an individual, creating an autonomous

plan considering its own needs. The implementation of the Agent component is

displayed in Figure 94.

176

The Agent class is able to keep all the information about the story world that an agent

is aware of, as well as information about the character that the agent represents. An

instance of the Db class is being used to fetch information about the character, as well

as to update such information (e.g. if the character dies). To be able to display relevant

information to the player, as well as for debugging reasons, the Agent class uses an

instance of the OutputGenerator.

Figure 94: Agent class diagram

The Agent class may include several instances of the Goal class (each of them with its

own set of GoalPreconditions), which represent a set of goals that a character has for a

level. In case there are no goals in the list, the agent is set to accept futile goals, and

the agent already waited for one turn, then it is able to requests a futile goal from an

177

instance of the FutileGoalsManager class. The agent is able to check the status of its

goals at any time, and to re-populate its list of current goals (i.e. the list of goals to

search for a plan for).

When an agent has at least a goal whose precondition is valid, then it needs to find a

plan to accomplish it. To find a plan, the Agent class uses an instance of the Planner

class. The Planner class is fed with an instance of the InitAlgorithm plan (i.e. the

initialised algorithm based on the current status of the world – the PDDLObject class’

instance), as well as a set of goals, and is requested to generate a plan for them. The

plan which is returned by the Planner is represented by an instance of the Plan class,

and it is then converted to an instance of the DiegesisPlan class, which contains several

instances of DiegesisAction class, which represent different actions which the agent

need to execute to accomplish the plan.

The Agent class is able to keep track of which parts of the plan are already executed

and if the plan is complete. During the execution of a plan, the agent might be

informed by the World Manager that an action set has failed. If that happens, then the

Agent class sends all the relevant information to the Planner class, requesting the

Planner to re-plan and provide a new valid plan based on the provided information and

current state of the world.

5.16. BATTLE MANAGER

As we discussed in section 4.16, there are certain cases in the story that we are using

to evaluate DIEGESIS, in which we need battles to occur. The Battle Manager (BM)

component is responsible of dealing with all the battles in the system. The

implementation of the BM is illustrated in Figure 95.

The BattleManager class uses an instance of the Parser class as well as an instance of

the LevelManager class to parse and load the battle information for a new level. An

instance of the Db class is used to store and retrieve battle-related information from

the Knowledge Base.

It also uses an instance of the OutputGenerator to display messages to the player and

to the console for debugging, and may use instances of the Agent class to retrieve

178

battle-related information from any agents involved in a battle (either versus another

agent or versus a soldier, which is a NPC).

Figure 95: Battle Manager class diagram

As explained in section 4.16, in each battle level there can be up to two alliances

fighting against each other. These alliances are represented by an instance of the

BattleAlliance class. Each alliance may consist of different battle groups, each

possessing a different volume of soldiers. Battle groups are represented by instances

of the BattleGroup class, while soldiers are represented by instances of the Soldier

class. To calculate the outcome of a battle, the BattleManager class uses an instance of

the Oracle class.

5.17. EVALUATION MONITOR

As we discussed in section 4.17, we need to be able to evaluate aspects of the whole

framework and the generated narrative while the story is being executed and

generated, therefore we designed the Evaluation Monitor component. Its

implementation is illustrated in Figure 96.

179

Figure 96: Evaluation Monitor class diagram

The EvaluationAgent class combines all the metrics relevant to an agent (i.e. instances

of the AgentMetrics and PlanningEpisode classes) for each level the agent participates

in. The LevelMetrics and TransitionMetrics classes track the level and transition

metrics respectively. The EvaluationMonitor class keeps track of everything, and when

requested can produce the two types of report discussed in section 4.17 and save

them to text files.

In this chapter, we documented all the details about the implementation of the multi-

agent DIS framework we designed in the previous chapter. In the next chapter, we will

discuss about our evaluation methodology, and we will document a number of

evaluations for the different components of our framework

180

6 EVALUATION

In this chapter, we provide detailed information about the evaluation scenario that we

modelled, showing its potential storylines, we also discuss some of the mechanics that

can have an impact on the generated story, and we specify the metrics used in our

evaluations. Then, we are documenting a number of evaluations for the different

components of our framework, using the evaluation scenario we presented earlier in

the chapter.

6.1. EVALUATION SCENARIOS

As we discussed in section 3.4, to aid us to decide which planning algorithm to use as a

base for our solution, we needed to perform an evaluation of planning algorithms with

a DIS perspective in mind. To benchmark the performance of the algorithms, we used

an approach discussed in (Barros and Musse, 2007b), therefore we decided to use the

same scenario used in their experiment to be able to compare our results to the

published results. The evaluation scenario is called Ugh’s Story first act, and is

described in (Barros and Musse, 2007b).

For the evaluation scenario of DIEGESIS though, we needed a story much bigger than

the Ugh’s Story scenario, which would be rich in relations between characters, actions,

choices, possible constraints and outcomes, making it a suitable setup for rich

emerging narratives to be developed in a DIS system.

After investigating some potential candidate stories, we decided to use a scenario

based on the story presented in the 2004 film “Troy” (Petersen, 2004), which is based

on Homer’s epic poem called “Iliad” (Homer, 2003).

In the scenario we modelled, Paris, the Prince of Troy (brother of Hector; son of Priam)

falls in love with Helen, the Queen of Sparta, seduces her and convinces her to join him

and flee together to Troy. Menelaos, the King of Sparta and husband of Helen, along

with his brother Agamemnon (King of Mycenae) decide to gather an army comprising

of the elite of Greek warriors (such as Achilles and Odysseus) to attack and conquer

181

Troy, each of them for their own reason. Menelaos because he’s angered that Helen

left him and Agamemnon because he always wanted to find a reason to conquer Troy.

As we will present in the next section, we believe that the Troy scenario is a suitable

setup for our needs, since it contains several characters with rich relations between

them, and a high number of possible actions and choices, which can provide different

outcomes.

6.2. POTENTIAL STORYLINES

As we already explained in section 4.1, the game world is created before the execution

of a story, by a storyteller and is organised in multiple levels which can represent

possible parts of a story (typically a broad area where a number of events in a story

may occur).

We modelled the Troy scenario in the following 27 levels. The potential transitions

between them are illustrated in Figure 97.

1. Sparta palace: In the initial level, the scene takes place in the palace of Sparta,

where Paris and Hector (the Princes of Troy) are visiting Menelaos (the King of

Sparta) to negotiate a peace treaty between Sparta and Troy. While this

negotiation takes place, Paris seduces Helen (the Queen of Sparta) and tries to

convince her to flee with him to Troy.

2. Troy palace: In this level, the Trojan princes have returned from their visit to

Sparta and Hector is informing Priam, his father and king of Troy, of the

negotiation outcome. If Paris succeeded in his seduction and Helen is with him,

Priam and Hector are trying to convince them to return Helen back to Sparta to

prevent the upcoming war resulting of that action.

3. Mycenae palace: Given that Helen fled with Paris, Menelaos visits his brother

Agamemnon (King of Mycenae) to ask him to join the war against Troy.

4. Sparta palace (peace): If the negotiation between Troy and Sparta succeeded

and Paris did not convince Helen to flee with him, then there are no grounds

for a war between Sparta and Troy, and the story would end there. To still

provide a chance for the war to occur, we modelled this level where

Agamemnon (who is depicted in the movie as a warmonger who always

182

wanted to capture Troy) decides that he might declare war against Troy and

visits Menelaos in Sparta to try and convince him to join the war. If

Agamemnon fails to convince Menelaos to join the war, he has to decide if he

will still declare war by himself. If he decides against that, then the story ends

here.

5. Ithaca: This level is located in Ithaca, where Menelaos and Agamemnon visit

Odysseus (the King of Ithaca) to convince him and his army to join the war

against Troy.

6. Fthia: This level is located in Fthia, the hometown of one of the greatest Greek

warriors called Achilles, where Odysseus, Menelaos, and Agamemon (the latter

only as a backup plan in case that both Odysseus or Menelaos are not part of

the war) are visiting Achilles to convince him and his army of Myrmidons to join

the war against Troy. In the event they fail to do so, they try to convince

Patroclus (Achilles’ cousin and best friend) to persuade Achilles and change his

mind.

7. Sparta palace (Helen returns): This is a level resulting from level 2 (Troy palace),

where Helen was convinced to return back to Sparta, and tries to convince

Menelaos (and Agamemnon if he joined the war) to call of the war. If she

succeeds, the story ends there.

8. Troy beach Myrmidons landing: In this level, the Greek army is approaching a

beach in the outskirts of Troy, and the ship containing Achilles, Patroclus, and

the rest of the Myrmidons are landing first, and fight a small army of Trojans

who are there to protect the beach and the nearby temple of the Greek and

Roman god of light and sun, called Apollo. If they win the fight, then the rest of

the Greek army lands without a further fight, and Achilles has to decide if he

will visit the temple or not.

9. Troy beach landing: In case Myrmidons lost the fight of the previously

described level or Achilles decided in level 6 (Fthia) that he won’t join the war,

then the whole of the Greek army lands to the Trojan beach and fights the

previously mentioned small army of Trojans. If they win the fight, they establish

a Greek camp in the beach. If Achilles is present, he still has to decide if he will

visit Apollo’s temple. If they lose the fight, they return back to Greece and the

story ends.

183

10. Apollo temple: In this level, Achilles explores the temple of Apollo, located

closely to the Greek camp. If he decides to plunder the temple, he discovers

Briseis (priestess of Apollo; Hector and Paris’ cousin) and decides if he will

capture her and bring her back to the Greek camp.

11. Greek camp (Briseis): When Achilles brings Briseis to the Greek camp she is

taken from him by Agamemnon, and given to some Greek soldiers. Achilles

confronts Agamemnon, and asks him to return Briseis. If Agamemnon refuses,

then Achilles decides that he and his Myrmidons will no longer fight in the war,

then finds the soldiers who have Briseis and takes her back.

12. Troy palace gardens: While Troy is under siege by the Greek forces, Helen

(considering she’s still in Troy) decides to leave Troy, head to the Greek camp

and try to convince Menelaos to stop the war. While trying to leave, Hector

stumbles upon her, and tries to talk her out of her decision.

13. Greek camp (Helen returns): If Hector failed to convince Helen to leave Troy in

the previously described level, Helen finds Menelaos and Tries to convince him

to stop the war. If she succeeds, then Menelaos is trying to convince

Agamemnon (considering he’s part of the war) as well. If everyone is

convinced, the Greek forces withdraw, and the story ends.

14. Troy palace (Paris wants duel): Considering that Helen is still in Troy, Paris tries

to convince his father (Priam) and his brother (Hector) to allow him to

challenge Menelaos to a duel to prevent a further conflict between the Greek

and Trojan forces.

15. Troy battlefield (Paris vs Menelaos duel): Just before the first large-scale battle

in the battlefield just outside of Troy, the leaders of each side are discussing.

Initially, Agamemnon (if he’s present in the war) proposes to Hector to

surrender. If Hector agrees, the Greeks are capturing Troy and the story ends.

Alternatively, considering that Paris duel proposal discussed in the previous

level is valid, Paris proposes to duel Menelaos, while Agamemnon is trying to

convince Menelaos not to duel. In case of a duel, if Paris wins he kills Menelaos.

If Menelaos wins, Paris has to decide if he will stay and die in honour or not. If

he doesn’t stay to die, then there is a chance that a further duel between

Hector and Menelaos will take place (if Menelaos tries to pursue him).

184

16. Troy battlefield (first battle): After any duels have occurred in previous levels,

the first large-scale battle between the Greek and Trojan forces starts, and

everyone from the Greek forces who is present at the war takes part of it,

except from Achilles and his Myrmidons if he previously decided to withdraw

from the war due to his conflict with Agamemnon over Briseis. If Greeks win

the battle, they capture Troy and the story ends. If not, they retreat back to the

Greek camp to regroup.

17. Greek camp (Achilles won’t fight): If Achilles decided to withdraw from the war,

then Odysseus (considering he is part of the war and still alive), Patroclus, or

Eudorus (another Myrmidon, in case both of the others are unavailable) try to

convince him to join the war again. If they fail, Patroclus (who wants to fight)

has to decide if he will impersonate Achilles leading the Myrmidons in the next

battle.

18. Troy palace (retaliation): Priam tries to decide if the Trojans will attack the

Greeks in their camp, or if they will wait for them to attack again. Hector wants

to wait, while the Trojan high-priest wants to attack since he believes Apollo

will favour Troy because Achilles decided to plunder the temple in a previous

level. If Achilles did not plunder the temple, then the high-priest provides no

opinion.

19. Troy battlefield (final battle): In this level, the Trojans decided to wait for the

Greeks to attack. The Greeks gather their whole army, and perform a final

attack which will decide the outcome of the war: if they win they capture Troy;

if they lose they withdraw and return back to Greece. Either way, the story

ends.

20. Greek camp (Trojans attack): In this level, the Trojans decided to attack the

Greeks in their camp. If they win the battle, the Greeks withdraw and the story

ends. If they lose, then withdraw back to Troy to regroup. If Hector and Achilles

are both part of this battle, Hector will try to locate and duel him. In case that

Patroclus decided to impersonate Achilles, he will be part of this duel instead.

21. Greek camp (Priam wants ceasefire): In case either Paris or Hector were killed

in the aforementioned battle at the Greek camp, Priam will send a messenger

to the Greek camp asking for a twelve-day ceasefire to mourn and honour the

memory of the princes. In the meantime, he performs a funeral for them.

185

22. Greek camp (Patroclus died): In case that Patroclus impersonated Achilles and

was killed by Hector, Eudorus informs Achilles of what happened. Then, Achilles

has to decide if he will resume fighting for the Greek forces and if he will seek

revenge for Patroclus’ death. If he decides in favour of revenge, Briseis

(considering she is part of the story) will try to convince him against it.

23. Troy battlefield (Achilles vs Hector duel): Achilles wants to take revenge for

Patroclus’ death by the hands of Hector, so he goes alone outside of Troy, and

challenges Hector to a duel. If Hector agrees, he says his goodbyes to his father,

his brother, and his wife Andromache (informing her of a secret exit from Troy

in case it is captured by the Greeks) and confronts Achilles. After the duel, if

Achilles is killed Hector takes his body back to the Greek camp. If Achilles

manages to kill Hector, he has to decide if he will leave his body, or take it with

him to further disgrace him. At the end of the level, Achilles attends Patroclus’

funeral.

24. Greek camp (Priam asks for Hector’s body): In case that Achilles killed Hector

and took his body with him, Priam disguises himself and infiltrates the Greek

camp. There, he locates Achilles and tries to convince him to allow Priam to

retrieve Hector’s body to give him a proper funeral. If Briseis is present, she

tries to persuade Achilles over that direction as well. If Achilles agrees, Priam

takes Hector’s body back to Troy where every Trojan character attends his

funeral. Also, if Briseis wants it, Achilles has to decide if he will allow her to

return back to Troy as well.

25. Greek camp (attack or Trojan horse): If Odysseus is still present in the war, he

comes up with the idea of the Trojan horse: to build a huge hollow wooden

horse and fill it with himself and other Greek fighters to be able to infiltrate

Troy while the rest of the Greek army would seemingly depart from the war. If

the Greek leaders decide against it, they will just perform a final battle instead.

26. Troy beach (Trojan horse): Greeks pretend that they withdrew from the war,

and left behind the Trojan Horse Odysseus invented. A Trojan scout brings the

news to Priam, and Trojans need to decide if they will accept it or not. Hector

and Paris (if they are still present) are against the idea of accepting the “gift”,

while the Trojan high-priest is in favour of the idea if the Apollo temple was

previously plundered. If Priam decides against accepting the Trojan horse, he

186

gives the order to torch it, therefore killing everyone inside it, causing the

Greeks to lose the war and the story to end.

27. Inside Troy: In this level, the Trojans accepted the Trojan horse, and placed it

inside the walls of Troy, near its main entrance. When the time is right, the

Greek fighters emerge from it, the open the entrance for the rest of the army

to enter Troy, and they capture and destroy the city. Agamemnon heads to the

Trojan throne room, where he finds Priam and tries to kill him. If Briseis ended

up in Troy, is in the throne room as well, and is captured. If Agamemnon

manages to kill Priam, Briseis tries to kill him via a sneak attack. If she’s

captured, Achilles tries to find her and save her. In the meantime, if Hector is

still part of the story, he informs Andromache of the secret exit from Troy and

sends her there to flee. Andromache also tries to find Helen and informs her of

the secret exit as well. In case Menelaos is still part of the story tries to locate

Paris and duel him. Helen tries to convince Paris to flee with him from Troy.

Even if she succeeds or not, she will try to flee. In some cases, Paris and/or

Hector will try to duel and kill Achilles. If Briseis is present, she will try to

prevent them from doing so. This is the last level of the story, and after it’s

complete, the story ends.

Apart from the aforementioned levels, during the course of our research we created

some other levels as well, either modified versions of the above to be used in

evaluations, or modelling scenes from the Troy film which we ended-up not using in

the finalised scenario for various reasons. As an example, one of these levels included

Achilles meeting the Greek goddess Athena in the Pantheon, to take advice about

going to war against Troy.

187

Figure 97: Troy scenario levels and potential transitions

188

6.3. STORY MECHANICS

As we explained in previous chapters, DIEGESIS implements different mechanics which

have the potential to affect the agent’s plans, thus the outcome of the story. First of

all, based on actions that may occur during the generation of the story, some goals

might be injected to agents (discussed in section 4.8), altering their behaviour in a

level, and potentially affecting other agents as well. For example, in level 15 (Paris vs

Menelaos duel) considering that Paris loses the duel and does not stay to die in

honour, a goal is injected to Hector to protect him by duelling Menelaos.

The above can have serious implications to the story, since some of the main

characters can die. This is caused by the implementation of both duels and battles.

Duels (discussed in section 4.5) can occur between two characters, their outcome is

decided by the Oracle (discussed in section 4.10), but the death of the character who

lost the duel is not definite; after the end of a duel, there are goal injections which

dictate if a character will be killed or not.

Battles (discussed in section 4.16) are large-scale, between two alliances, each may

containing several battle groups consisting of thousands of soldiers. Soldiers are NPCs

and their only purpose is to fight. As in duels, the outcome of a battle between a

soldier and another soldier or a character is determined by the Oracle. Apart of the

death of a character during a battle which can have serious impact on the story (we

will discuss the situation where a character is no longer part of the story in a bit), the

actual outcome of a large-scale battle can be a game-changer as well. For example, if

the Greek forces lose any of the battles in the landing level, the final battle level, or the

level where the Trojans attack the Greek camp, they will lose the war, and the story

will end.

The most powerful mechanic though, that may occur in any level and most of the

characters have the opportunity to use it while the story progresses, are the choices

(discussed in section 4.6) made either by the player or the system. As an example,

considering that in Fthia level Achilles decided against joining the war, 7 of the future

levels will not be possible to execute since Achilles was an integral part of them, and

further 5 levels can be executed, but they will be affected since Achilles will not be

there. This situation is illustrated in Figure 98.

189

Figure 98: Levels affected if Achilles decides not to join the war

190

Similar to that choice, if Achilles does go to war but dies in the Myrmidons landing, it

will have the almost the same effect in the story. The levels that Achilles is an integral

part will not be executed, and the rest will be affected by Achilles not being there, but

the difference is that the rest of the Myrmidons will be there and they can choose to

fight and be led by another Myrmidon instead.

Another choice example which can have a huge impact on the story is if Helen decided

against fleeing with Paris in the very first level of the story. This single choice can cause

6 levels not to be able to be executed, and one to be affected. This situation is

illustrated in Figure 99.

Choices don’t have to have such dramatic effects to the story though; they can just

flavour it a bit. For example, if Achilles decides to plunder Apollo’s temple, the Trojan

high-priest will be in favour of attacking the Greeks to their camp, as well as accepting

the Trojan horse and will try to persuade Priam towards that direction.

A couple of other mechanics which can potentially have some impact in the outcome

of the story are the futile goals (discussed in section 4.9) and the uncertain actions

(discussed in section 4.11). An uncertain action has the potential to delay the

execution of a character’s plan if it fails, but the character will try to execute it again in

a later turn.

In the case of futile goals, the most common impact is that they can delay a character’s

actions when they involve another character who is executing a plan for a futile goal.

For example, in the first level Helen has no initial goals, and one of the first goals of

Paris is to be involved in a discussion with her, which can be delayed to be executed if

Helen is busy executing a futile goal.

There is a final mechanism which although does not have any impact on the actual

generation of the story outcome, it has an impact on the perception of the story by the

player. When the vantage point (discussed in section 4.12) of a character is selected,

the story will continue to be generated normally, but the player will only view content

which is relevant to the selected character.

191

Figure 99: Levels affected if Helen decides not to flee with Paris

192

In (Goudoulakis et al., 2014) we documented as example of how some of the story

mechanics are operating together to generate a story. To do that, we used a level

which includes characters’ action sequence, agents’ coordination and injection of

goals. In the finalised version of our scenario, some of the events of the level described

here are used in separate levels. The level involves the following:

 Characters: Achilles, Odysseus, Patroclus, Hector, Paris, and Priam;

 Locations: Achilles’ tent, Greek Camp, Greek Camp’s Beach, Battlefield, and

Troy Palace;

 Actions: go to, pick up, drop, ask for, allow to take, wear, talk to, tell, kill,

prepare for funeral, perform funeral, attend funeral, find, wait.

As we have already explained, the characters, locations, and actions vary in each level

of our complete scenario, depending on the nature and context of the level, which can

help managing the complexity of the scenario, for example by reducing the number of

actions considered in the planning and re-planning phases.

Achilles and Priam are initially located at Achilles’ tent and Troy palace respectively.

Odysseus, Patroclus, Hector, and Paris are located at the battlefield, and they are in the

middle of the battle.

At some point, Hector kills Patroclus. This triggers a goal injection for Odysseus, which

now has the following goals: To bring Patroclus’ body back to the Greek camp; and to

inform Achilles that Patroclus was killed by Hector. So, Odysseus leaves the battle,

picks up Patroclus’ body, and brings it back to the Greek camp. Afterwards, he goes to

the tent where Achilles is located, and shares the news about Patroclus’ death.

Achilles now has the following goals: To prepare for battle, to find and kill Hector as

well as to defile his body by taking it with him to take revenge for Patroclus’ death,

and, finally, to perform Patroclus’ funeral. He gears up, goes to the battlefield where

he joins the on-going battle (Odysseus does the same as well), and kills Hector. When

he does, that triggers the end of the battle, and he takes Hector’s body with him, and

returns to the camp (Odysseus returns as well) to prepare for Patroclus’ funeral. When

the preparation starts, the goal to attend the funeral is injected to Odysseus.

193

The death of Hector triggers a goal injection for Paris. He has the task to return to Troy

and give the bad news to Priam. When he does, Priam decides to find Achilles and ask

him to allow for the body of Hector to return to Troy to have a proper funeral. So, he

wears a disguise to be able to infiltrate the Greek camp, and goes there. He finds

where Achilles’ tent is, but since Achilles is at Patroclus’ funeral, he waits there until it’s

over.

When Achilles returns, the two men have a discussion, and Priam convinces Achilles to

let him take Hector’s body with him. Priam does that, returns to Troy, and performs a

funeral for Hector, with Paris attending it. As an example, Figure 100 displays the

complete combined plan of Achilles.

PICK-UP ACHILLES SWORD ACHILLES-TENT

PICK-UP ACHILLES SHIELD ACHILLES-TENT

WEAR ACHILLES ARMOUR ACHILLES-TENT

GO-TO ACHILLES ACHILLES-TENT BATTLEFIELD

ATTACK ACHILLES HECTOR BATTLEFIELD

KILL ACHILLES HECTOR BATTLEFIELD

PICK-UP ACHILLES HECTOR BATTLEFIELD

GO-TO ACHILLES BATTLEFIELD GREEK-CAMP

DROP ACHILLES HECTOR GREEK-CAMP

GO-TO ACHILLES GREEK-CAMP BEACH

PREPARE-FOR-FUNERAL GREEK ACHILLES BEACH

PERFORM-FUNERAL GREEK ACHILLES BEACH

GO-TO ACHILLES BEACH ACHILLES-TENT

ALLOW-TO-TAKE ACHILLES PRIAM HECTOR

Figure 100: Achilles’ combined plan

Figure 101 illustrates all the interactions, coordination, and goal injections between

the characters involved in the level.

194

Figure 101: Troy characters coordination

6.4. EVALUATION METRICS

To successfully evaluate several important parts of DIEGESIS, we needed to identify

and decide on what to measure, in which way to measure it, and why to measure it.

As we discussed in section 3.4, to aid us decide on the base planning algorithms we

would use to create our own planning solution, we performed an evaluation of

planning algorithms with a Digital Interactive Storytelling (DIS) perspective in mind.

The evaluation approach was to benchmark different planning algorithms testing their

performance to solve a specific problem in a specific domain and to compare their

feature sets which we considered valuable to DIS applications, which are explained in

detail in section 3.4 and are the following: Support for extra language requirements;

capability to generate partial-order plans; optimality; support for actions with costs;

support for numeric variables.

Early in the implementation of our framework we discovered that the pre-processing

of the planning domain (explained in detail in section 4.14) is a computationally

intensive process which could be a potential bottleneck for the performance of the

195

whole system, depending on the design of our agents. We initially considered two

different approaches in the design of our agents: In the first approach, we assumed

that agents may be aware of different environments, each represented as different

domain. Therefore, each agent who is aware of a different environment would have to

perform its own individual pre-processing (i.e. to generate facts, operators etc.). In the

second approach, we assumed that all the agents are aware of the same base

environment; therefore they could share a pre-processed planning domain.

Since the early prototypes of DIEGESIS, we were using the second approach, but to

make sure that the approach is scalable (it is a specification we specified in section 3.2)

and to have an answer if the first approach is feasible in case we want to consider it in

the future, we decided to perform a scalability evaluation, measuring the performance

of the two approaches.

Another consideration that we had was that we considered two different planning

methods (we discussed that in section 4.15). In the first one, each agent has a list of

goals and generates a plan for all the goals at the same time, whilst in the second

method a plan is generated only for the most important goal (the concept of goal

importance was discussed in section 4.14), and when the goal is complete (or not

applicable any more), a plan for the next goal is generated, and so forth. The

storyteller is able to choose the way each agent will operate. We implemented and

used both in DIEGESIS, but to identify which of the two approaches is better for our

needs, we performed an evaluation measuring the performance of each approach and

we also observed if one of them seemed to affect the generated story in any way, by

measuring the generated actions.

Apart from our planning solution, our Planner includes a new re-planning solution as

well. We evaluated its performance measuring the time needed to generate a valid

plan after re-planning and we compared it to the approach of creating a new plan from

scratch.

Finally, after we completed the design and implementation of DIEGESIS, as well as the

modelling of the evaluation scenario we discussed in previous sections, we decided to

evaluate the whole framework using that. Using DIEGESIS, we generated a number of

different storylines and we measured generic data results such as the number of

196

levels, characters, choices, turns, actions, etc. We also focused on the performance

aspects both of the planner and of the rest of the framework, and we finally observed

some data related to vantage points.

6.5. EVALUATIONS

In this section, we are documenting a number of evaluations for the different

components of our framework, using the evaluation scenarios we presented in

sections 6.1 and 6.2.

6.5.1. PLANNING ALGORITHMS EVALUATION

As we discussed in section 3.4, to aid us to decide which planning algorithm to use as a

base for our solution, we performed an evaluation of planning algorithms with a DIS

perspective in mind. The approach we used to perform this evaluation was to

benchmark different planning algorithms testing the speed they solved a specific

problem in a specific domain and to compare their feature sets with DIS applications in

mind.

The list of algorithms we benchmarked includes the following algorithms: FF

(Hoffmann, 2001), Graphplan (Blum and Furst, 1997), LPG-TD (Gerevini et al., 2004),

Marvin (Coles and Smith, 2004), Metric-FF (Hoffmann, 2003), SatPlan (Kautz and

Selman, 1992), HSP (Bonet and Geffner, 2001), and JSHOP2 (Ilghami and Nau, 2003).

The feature sets considered valuable to DIS applications are the following, and were

discussed in detail is section 3.4: Support for extra language requirements; capability

to generate partial-order plans; optimality; support for actions with costs; support for

numeric variables. Table 2 shows the list of features each algorithm implements.

Algorithm TH EO NP CE EP Opt POP AC NV

FF

Graphplan

LPG-TD

Marvin

Metric-FF

SatPlan

HSP

JSHOP2
Table 2: Algorithms’ feature sets

197

The abbreviations used in the table are the following: Type hierarchies (TH); equality

operator (EO); negative preconditions (NP); conditional effects (CE); existential

preconditions (EP); optimal (Opt); partial-order planner (POP); action costs (AC); and

numeric variables (NV).

As we explained in section 6.1, to benchmark the performance of the algorithms, the

same test problem (i.e. Ugh’s Story first act) as in (Barros and Musse, 2007b) was used.

Since most of the algorithms tested could not handle all the language features needed

for the test problem, the test problem was “ported” for each algorithm (e.g. defining

an “eq” predicate for algorithms without a built-in equality operator). We performed

the porting for the JSHOP2 algorithm, as it was not evaluated in the original paper.

The times reported are an average of three runs in a Virtual Machine (Ubuntu Linux on

Oracle VirtualBox with 1024 MB of RAM and 1 core of the Quad-core CPU @ 2.40 GHz);

the results of the benchmark are listed in Table 3.

Graphplan is an optimal and partial-order planner, but its input language is quite

limited since none of the extra requirements described earlier is supported.

SatPlan is also optimal and is capable of generating partial-order plans. Its input

language is quite limited since the only extra requirement it supports is type

hierarchies.

HSP is a total-order non-optimal planner and its input language supports type

hierarchies and has a built-in equality operator. It lacks all other features discussed

earlier.

LPG-TD supports all the extra language requirements discussed before, except

conditional effects. It generates partial-order plans, supports action costs and numeric

variables but it is not optimal.

The FF (Fast-Forward) algorithm is non-optimal, produces total-order plans and its

input language supports all extra requirements described before. It cannot handle

numeric variables and actions with costs.

Metric-FF is an extension of FF which provides support for numeric variables. Also,

although actions with costs are not supported explicitly, they can be easily "emulated"

198

with numeric variables, since Metric-FF allows for the definition of an optimality

metric.

Marvin is based on FF's search strategy and supports the same input language as FF,

but it is capable of generating partial-order plans.

JSHOP2, is a planner based on ordered task decomposition, a type of Hierarchical Task

Network (HTN) planning. It supports conditional effects, negative preconditions, partial

ordered plans, and numeric variables. Its language, although it incorporates many

PDDL features, has a unique syntax. The problem and domain descriptions must be

compiled into Java code (by the system) before execution therefore there might be a

problem with potential use with real-time planning systems.

Algorithm Barros Time

FF 0.015 s 0.023 s

Graphplan 0.138 s 0.240 s

LPG-TD 0.169 s 0.463 s

Marvin 0.017 s 0.040 s

Metric-FF 0.018 s 0.036 s

SatPlan 0.247 – 0.512 s 0.630 s

HSP 0.031 s -

JSHOP2 - 0.021 s
Table 3: Algorithms' execution time comparison

The times produced by our evaluation comply with the times produced by the original

evaluation. JSHOP2 produced the fastest solution, with FF, Metric-FF and Marvin

coming very close. Graphplan, LPG-TD and SatPlan on the other hand showed an

increase in the solution time needed.

By examining the above analysis, it can be seen that there is no planning algorithm

that combines all the characteristics described before. Therefore, we can conclude,

and agree with (Barros and Musse, 2007b) that no planning algorithm can be

considered ideal for DIS applications. Based on the available planning algorithms, and

considering that each DIS system has its own goals, the final choice of algorithm must

be done based on the unique requirements of each DIS system (the same way as it is

done until now).

199

6.5.2. DIEGESIS SCALABILITY EVALUATION

As we discussed in section 3.2, while designing and prototyping DIEGESIS it was a

necessity that the performance of the system and the algorithms would be good

enough to accommodate large stories with several characters (represented by agents).

Therefore, during the implementation of our system, we had to constantly evaluate its

performance, to ensure that the system stays responsive and usable even when using

large stories.

Early in the implementation of our system we discovered that the initialisation (pre-

processing) of the planning domain (explained in section 4.14) is a computationally

intensive process which could be a potential bottleneck for the performance of the

whole system, depending on the design of our agents. We initially considered two

different approaches in the design of our agents: In the first approach, we assumed

that agents may be are aware of different environments, each represented as different

domain. Therefore, each agent who is aware of a different environment would have to

perform its own individual pre-processing (i.e. to generate facts, operators etc.). In the

second approach, we assumed that all the agents are aware of the same base

environment; therefore they could share a pre-processed planning domain.

So, the first evaluation that we performed (Goudoulakis et al., 2012b) was to test the

performance and scalability of DIEGESIS with an increasing number of active agents in

the system, was to measure the agent initialisation time (including the pre-processing

time of our planning algorithm), as well as the plan generation time.

As a planning domain, we used one of the levels of the Troy scenario we presented in

section 6.2, which -at that point- was still early in its design and modelling. In that

level, each agent represents the character called Paris with a goal of convincing

character Helen to come with him to the city of Troy. The valid plan consists of 4

actions and is displayed in Figure 102.

GOTO PARIS TROY-PALACE SPARTA-PALACE

SEDUCE PARIS HELEN SPARTA-PALACE

CONVINCE-TO-FOLLOW PARIS HELEN SPARTA-PALACE

TAKE-SOMEONE-FROM-TO PARIS HELEN SPARTA-PALACE TROY
Figure 102: The generated valid plan

200

To perform our tests, a varying number of agents are activated, and are trying to

generate the valid plan of Figure 102 using an instance of the Planner component. To

be able to do that, as we already discussed in section 4.14, the Planner needs to

translate the domain into facts (e.g. “at paris troy-palace”), operators (e.g. “seduce

paris helen sparta-palace”), mutexes between them, etc. to be used in the graph

expansion and extraction phases.

After a successful pre-processing, the evaluation domain contains a total of 758 facts

and 3398 operators. The times reported in this evaluation are an average of five runs

for each case in a PC with 4GB of RAM and a Quad-core CPU @ 2.83 GHz, running

Windows 7.

We evaluated both of the approaches mentioned earlier in this section, and our results

are documented in Table 4, and illustrated in Figure 103. We initially tested for one

agent, and then for 10, 50, and 100 agents simultaneously.

Agent execution environment
Number of agents

1 agent 10 agents 50 agents 100 agents

Different
domain

Initialisation time 0.62s 5.19s 26.12s 51.7s

Planning time 0.05s 0.22s 1.35s 5.84s

Same Domain
Initialisation time 0.62s 0.63s 0.63s 0.63s

Planning time 0.05s 0.23s 1.11s 3.41s

Multi-threaded Total time 0.68s 2.11s 8.98s 20.65s
Table 4: Pre-processing and planning times vs number of agents

If we compare the planning times between the two approaches (i.e. different domain

& same domain), we can see a slight increase in the different domain approach while

the number of agents increases, but it is clear that the real potential bottleneck is the

initialisation (pre-processing) time.

To solve the obvious scalability issue of the first approach (i.e. each agent is aware of a

different domain), we performed a third test with the same principle. In that, we

altered our system’s implementation so it can initialise the agents in a multi-threaded

fashion instead of the linear initialisation of the first approach, to improve its

performance. The results of this approach reveal a remarkable improvement

compared to the results of the first approach (20.65 seconds against 57.54 seconds for

100 agents).

201

Figure 103: Total times vs number of agents

After we progressed with the implementation of the system and we expanded the Troy

scenario, we decided to perform a similar scalability evaluation to further test the

performance of DIEGESIS, which we published in (Goudoulakis et al., 2012a). In the

same manner as before, we decided to test the performance and scalability the

framework with an increasing number of active agents in the system by measuring the

agent initialisation and plan generation time.

As a planning domain, we used an extended version of the level used in the previously

discussed scalability evaluation, which is part of the Troy scenario discussed in section

6.1. Again, each agent represents the character called “Paris” with a goal of seducing

and convincing character “Helen” to flee with him back to the city of “Troy”. This time,

the valid plan of each agent consists of 8 actions (instead of 4 actions that the previous

plan included) and is displayed in Figure 104.

WALK-TO PARIS TROY-THRONE-ROOM TROY-DOCK TROY

TRAVEL-TO PARIS TROY-DOCK SPARTA-DOCK SHIPS SEA

WALK-TO PARIS SPARTA-DOCK SPARTA-THRONE-ROOM SPARTA

TALK-TO PARIS HELEN SPARTA-THRONE-ROOM

SEDUCE PARIS HELEN SPARTA-THRONE-ROOM

CONVINCE-TO-FOLLOW PARIS HELEN SPARTA-THRONE-ROOM

WALK-TO-WITH PARIS HELEN SPARTA-THRONE-ROOM SPARTA-DOCK SPARTA

TRAVEL-TO-WITH PARIS HELEN SPARTA-DOCK TROY-DOCK SHIPS SEA

Figure 104: The generated valid plan

202

Similarly to the previous scalability evaluation, a varying number of agents are

activated, and are trying to generate the valid plan of Figure 104 using an instance of

the Planner component. After a successful pre-processing, the evaluation domain

contains a total of 816 facts and 7696 operators (accordingly, 758 and 3398 in the

previous evaluation). The times reported in this evaluation are an average of five runs

for each case in a PC with 4GB of RAM and a Quad-core CPU @ 2.83 GHz, running

Windows 7, the same infrastructure used in the previous evaluation.

We evaluated the same two approaches as in the previous evaluation (i.e. agents have

individual domains, or share a domain). Our results are documented in Table 5, and

illustrated in Figure 105. We initially tested for one agent, and then for 10, 50, and 100

agents simultaneously.

Table 5 displays the times needed for the all agents to be initialised (including the pre-

processing time) and the times needed for all the agents to generate a valid plan.

Agent execution environment
Number of agents

1 agent 10 agents 50 agents 100 agents

Different
domain

Initialisation time 2.159s 13.914s 76.909s 163.930s

Planning time 0.085s 0.522s 2.818s 8.780s

Same Domain
Initialisation time 2.159s 2.160s 2.162s 2.181s

Planning time 0.085s 0.520s 2.803s 8.771s

Multi-threaded Total time 1.355s 6.419s 32.248s 65.318s
Table 5: Pre-processing and planning times vs number of agents

As we already identified, the difference between the plan generation time of each

approach is minimal, therefore the main impact derives from the initialisation time.

Similarly to the previous evaluation, the different domain approach shows a scalability

issue, therefore we tested the same domain with the multi-threaded execution

approach which have implemented as a solution during our previous evaluation, which

(as expected) showed a significant improvement compared to the results of the first

approach.

203

Figure 105: Total times vs number of agents

When we published the results of our first evaluation in (Goudoulakis et al., 2012b),

we concluded that we would continue to use the second approach (i.e. all agents are

aware of the same domain), since the likelihood of all the characters that need to

generate a plan at the same time being aware of a different domain is extremely low.

The same conclusion was reached after the second evaluation as well. Ultimately, as

we continued to implement the system and grow the scenario we decided that this is

the approach that fits best our needs, and therefore, as we documented in chapter 4,

this is the approach which DIEGESIS is designed to use.

6.5.3. PLANNING ALGORITHM PERFORMANCE EVALUATION

As we already discussed in section 4.15, we have considered two different planning

methods. In the first one, each agent has a list of goals and generates a plan for all the

goals at the same time, whilst in the second method a plan is generated only for the

most important goal (the concept of goal importance was discussed in section 4.14),

and when the goal is complete (or not applicable any more), a plan for the next goal is

generated, and so forth. The storyteller is able to choose the way each agent will

operate.

204

To identify which of the two approaches is better for our needs, we performed an

evaluation, which we published in (Goudoulakis et al., 2014), using a modified part of

the scenario we discussed in section 6.2, which includes the following elements:

 Characters: Paris, Hector, Menelaos, Helen, and Agamemnon;

 Locations: throne room, guest room, royal bedroom, kitchen, armoury, dock,

stable, and garden (all located in Sparta), as well as Troy’s dock;

 Actions: talk to, walk to, travel to, pick up, drop, ask to give, give, kill, seduce,

convince to follow, board, negotiate peace, drink, and eat.

We are using Paris and Hector as our main characters and the rest as dummy

characters. By the term “dummy characters” we mean that they don’t have any initial

goals associated with them; the system injects goals to them during the execution

based on other agents’ actions, or just futile goals.

Hector has the following three goals: first, to give a present brought from Troy to

Menelaos (since he is his guest), then to negotiate peace between Troy and Sparta,

and finally, to return back to Troy. Figure 106 displays a possible plan for Hector which

achieves all his goals.

WALK-TO HECTOR GUEST-ROOM THRONE-ROOM

TALK-TO HECTOR MENELAOS THRONE-ROOM

GIVE HECTOR MENELAOS HECTOR-TROY-GIFT THRONE-ROOM

NEGOTIATE-PEACE HECTOR TROY MENELAOS SPARTA THRONE-ROOM

WALK-TO HECTOR THRONE-ROOM DOCK

BOARD HECTOR SHIPS DOCK

TRAVEL-TO HECTOR DOCK TROY SHIPS SEA

Figure 106: Hector’s plan

Paris has five goals, which are to give a present to Menelaos as well, to seduce Helen,

convince her to follow him back to Troy, engage in small talk with Agamemnon who is

around at the palace, and finally return to Troy. Figure 107 displays a possible plan for

Paris which achieves all his goals.

We measured the following, for both agents for both of the approaches: the total

planning time needed (in seconds), the average time needed to generate a single plan,

the total number of nodes in the planning graph, the average number of nodes for

each plan, and the number of successful, failed, and wait actions during the scenario

execution.

205

WALK-TO PARIS GUEST-ROOM GARDEN

TALK-TO PARIS AGAMEMNON GARDEN

WALK-TO PARIS GARDEN ROYAL-BEDROOM

TALK-TO PARIS HELEN ROYAL-BEDROOM

CONVINCE-TO-FOLLOW PARIS HELEN ROYAL-BEDROOM TROY

WALK-TO PARIS ROYAL-BEDROOM THRONE-ROOM

TALK-TO PARIS MENELAOS THRONE-ROOM

GIVE PARIS MENELAOS PARIS-TROY-GIFT THRONE-ROOM

WALK-TO PARIS THRONE-ROOM DOCK

BOARD PARIS SHIPS DOCK

TRAVEL-TO PARIS DOCK TROY SHIPS SEA

Figure 107: Paris’ plan

The data is an average of five runs for each case in a PC featuring 4GB of RAM, and a

Quad-core CPU @ 2.83 GHz, running Windows 7.

The total planning time for each approach, for each agent, as well as the average

planning time for each plan are displayed in Table 6, and illustrated in Figure 108. (a) is

the case where a plan is generated for all the goals at the same time, where (b) the

case where a plan is generated for only one goal at a time.

Planning methods &
characters

Planning times Number of nodes

Average Total Average Total

Case (a)
(all goals)

Paris 1.3783s 4.135s 6476 19428

Hector 1.1265s 2.253s 9459.5 18919

Case (b)
(one goal)

Paris 0.1902s 0.951s 784.2 3921

Hector 0.1504s 0.752s 748.8 3744
Table 6: Planning evaluation results

The combined total planning time for both of the agents in case (a) was 6.388 seconds,

where in case (b) was only 1.703 seconds, a 73.34% decrease. In case (a), the highest

planning time that appeared was 2.216 seconds, and the lowest 0.735 seconds. In

contrast, in case (b), the highest was 0.486 seconds, and the lowest 0.017 seconds.

The total average for both of the agents in case (a) was 1.2524 seconds, and in case (b)

0.1703 seconds, a decrease of 86.4%. Based on the above numbers, it’s clear that

there is a significant performance increase using the case (b).

206

Figure 108: Total and average planning times

Figure 109 illustrates the total and average number of nodes generated in the planning

graph while planning, for both agents, in both cases. The number of nodes is displayed

in Table 6.

Figure 109: Total and average number of nodes in planning graph

The reduction in the number of nodes is consistent with the reduction in time. More

specifically, the total number of nodes in case (b) is 80% less than in case (a), and the

average number of nodes of case (a) are showing a 90.38% reduction comparing them

with the average of case (b).

Table 7 displays (and Figure 110 illustrates) the successful actions execution, the failed

actions, the number of times each agent was instructed to wait, and the total number

207

of plans generated by each agent throughout the previously mentioned scenario. In

case (a) the number consists of the initial plan plus the re-planning because of failures,

and in case (b) consists of the plans for each individual goal, plus the re-planning

because of actions' failure.

Planning methods &
characters

Successful
actions

Failed
actions

Instructed
to wait

Total
plans

Case (a)
(all goals)

Paris 11 2 0 3

Hector 8 1 2 2

Case (b)
(one goal)

Paris 12 1 0 5

Hector 9 2 2 5
Table 7: Successful and failed actions, times instructed to wait, and numbers of total generated plans

There were more plans generated in case (b), something which was expected since the

agents needed to generate a plan for each individual goal, but since the complexity of

each plan was quite lower than the plans of case (a), the planning times were quite

lower as discussed before in Figure 108, therefore the increased number of plans was

not a negative impact on the performance.

Figure 110: Successful and failed actions, times instructed to wait, and numbers of total generated
plans

The rest of the metrics in Table 7 and Figure 110 are similar to each other between the

two cases. The times an agent was instructed by the system to wait a turn before

trying to execute its action again were identical, as well as the failed actions. There was

a slight increase in the successful actions in case (b), which can potentially add to the

emergence of the generated narrative.

208

6.5.4. RE-PLANNING ALGORITHM EVALUATION

To evaluate the performance of our re-planning solution, we used a part of the

scenario we discussed in section 6.2, modified for the evaluation purposes. The

evaluation scenario includes the following elements:

Paris as the main character, Hector, Menelaos, Helen, and Agamemnon as “dummy”

characters (they exist only to interact with the main character when needed); guest

room, garden, armoury, royal bedroom, throne room, kitchen, and dock as locations

(all located in Sparta); and several actions such as talk, walk, seduce, ask for item, etc.

which can be performed by the agents.

Figure 111 illustrates the complete plan of the agent which represents character Paris

in the scenario.

WALK-TO PARIS GUEST-ROOM GARDEN

TALK-TO PARIS AGAMEMNON GARDEN

WALK-TO PARIS GARDEN ARMOURY

PICK-UP PARIS MAP ARMOURY

WALK-TO PARIS ARMOURY ROYAL-BEDROOM

TALK-TO PARIS HELEN ROYAL-BEDROOM

SEDUCE PARIS HELEN ROYAL-BEDROOM

CONVINCE-TO-FOLLOW PARIS HELEN ROYAL-BEDROOM TROY

WALK-TO PARIS ROYAL-BEDROOM THRONE-ROOM

TALK-TO PARIS MENELAOS THRONE-ROOM

GIVE PARIS MENELAOS PARIS-TROY-GIFT THRONE-ROOM

WALK-TO PARIS THRONE-ROOM DOCK

BOARD PARIS SHIPS DOCK

TRAVEL-TO PARIS DOCK TROY SHIPS SEA

Figure 111: Paris’ complete plan

Paris is initially located in the guest room in Sparta, and he plans to go to the gardens

and chat with Agamemnon, then to pick up a map located in the armoury, then to find

Helen in the royal bedroom, seduce her, and convince her to follow him back to Troy.

Afterwards, to find Menelaos at the throne room and give him a gift, and finally, to

walk to the docks and board to a ship to return to Troy.

While the plan is executed, it is scheduled to fail three times in the following

situations:

1. Hector has taken the map, so Paris needs to find him and ask for the map;

2. Helen is no longer located at the royal bedroom;

209

3. Menelaos is no longer located at the throne room.

We evaluated two cases: In the first one, when a plan fails, the re-planning is

performed from scratch. The previously generated plan is discarded, and a new plan is

generated from the current state in which an action has failed. In the second case, the

re-planning algorithm documented in section 4.14 is used, generating a new partial

plan only for the failed action(s), which is then merged with the rest of the existing

plan.

Figure 112 illustrates the re-planning process and the action execution sequence of the

second case, for the scenario used in the evaluation. When an action fails, a partial

plan is generated, which accomplishes the effects of the failed action, as well as the

effects of the next action (if exists). It is then merged with the initial plan, and the

execution of the actions continues as usual.

Figure 112: Re-planning process and action execution of the new re-planning solution

We measured the total re-planning time needed (in seconds), the average re-planning

time needed for each plan, the total number of nodes in the planning graph, the

210

average number of nodes for each plan, and the number of re-plans occurred during

the scenario execution.

The data is an average of five runs for each case in a PC featuring 4GB of RAM, and a

Quad-core CPU @ 2.83 GHz, running Windows 7.

Figure 113 illustrates the number of the re-planning tasks occurred during the

execution of the plans. (a) is the case where a plan was generated from scratch, whilst

(b) is the case where a partial plan was generated.

Figure 113: Number of re-planning tasks

Case (b) has an increased number of re-planning tasks, due to the following: The re-

planning solution generates a partial plan which connects the failed actions with the

next step of actions. But, most of the actions in our scenario are modelled in a way

that binds them to locations. During the evaluation, we noticed 2 cases where a

second partial plan needed to be generated to complete a long sequence of actions in

a specific location which was different during the initial plan generation.

Table 8 contains the total and average planning times for each of the two re-planning

method cases (illustrated in Figure 114), as well as the total and average number of

nodes of each case (illustrated in Figure 116).

Re-planning methods
Planning times Number of nodes

Average Total Average Total

Case (a)
(new plan from scratch)

0.065s 0.194s 1274.67 3824

Case (b)
(partial plan)

0.014s 0.070s 314.25 1257

Table 8: Planning times and number of nodes

211

The total planning time in case (a) was 0.194 seconds, where in case (b) was only 0.07

seconds, a 63.92% decrease.

Figure 114: Total and average re-planning times

The individual planning times and number of nodes for each individual re-planning task

in each case are documented in Table 9, and illustrated in Figure 115 and Figure 117.

Re-planning methods
Planning tasks

1 2 3 4 5

Case (a)
(from scratch)

Times 0.107s 0.056s 0.031s - -

Nodes 1635 1384 805 - -

Case (b)
(partial plan)

Times 0.019s 0.014s 0.011s 0.016s 0.010s

Nodes 259 273 203 328 194
Table 9: Planning tasks results

In case (a), the highest re-planning time that appeared was 0.107 seconds, and the

lowest 0.031 seconds. In contrast, in case (b), the highest was 0.019 seconds, and the

lowest 0.01 seconds.

The average re-planning time for each re-planning task in case (a) was 0.065 seconds,

and in case (b) 0.014 seconds, a decrease of 78.46%.

Based on the above numbers, it is clear that there is a significant performance increase

in case (b).

212

Figure 115: Individual planning time for each re-planning task

The reduction in the number of nodes is consistent with the reduction in time. More

specifically, the total number of nodes in case (b) is 67.13% less than in case (a), and

the average number of nodes of case (a) are showing a 80.28% reduction comparing

them with the average of case (b).

Figure 116: Total and average number of nodes

Based on the results of the evaluation, the approach to generate a partial plan which

solves the failed actions and to connect it with the rest of the valid plan has a

significantly better performance from the approach to re-plan from scratch. The

increased number of re-planning tasks we observed and discussed earlier in this

section does not have any impact of the overall performance of the solution.

213

Figure 117: Individual number of nodes for each re-planning task

Finally, apart from a better performance, our re-planning solution did not affect in a

negative way the outcome of the generated story compared to the other solution.

6.5.5. SUMMARISATION EVALUATION

To evaluate the whole framework with the Troy evaluation scenario (discussed in

section 6.2) we modelled for this purpose, we used DIEGESIS to generate 4 different

storylines and measured a number of metrics, which we will document in this section.

In the first storyline (from now on we will refer to it as “story 1”), we intentionally used

the appropriate choices, and made some minor modifications (merely to the fighting

abilities of some key characters and the volumes of some battle groups) to the

modelling of the scenario to produce an outcome consistent with the Troy movie in

which we based our scenario. The 21 levels generated and executed are illustrated in

Figure 118, are marked in a blue-shaded background and their execution order is

mentioned before their title (the same principles apply to all the illustrated outcomes).

In the rest three storylines, the modifications we made for the first story were

removed and all the choices were made by the Oracle component (discussed in section

4.10), producing a relatively random outcome in each storyline. In the second storyline

(i.e. “story 2”), 10 levels were executed, which are illustrated in Figure 119. In the third

storyline (i.e. “story 3”), 6 levels were executed (illustrated in Figure 120), while in the

fourth and final storyline, 13 levels were executed which are illustrated in Figure 121.

214

Figure 118: Execution order of levels in Story 1

215

Figure 119: Execution order of levels in Story 2

216

Figure 120: Execution order of levels in Story 3

217

Figure 121: Execution order of levels in Story 4

218

To gather the data of this evaluation, we run DIEGESIS in a PC featuring 4GB of RAM,

and a Quad-core CPU @ 2.83 GHz, running Windows 7.

Table 10 contains the following data for each storyline in total:

 The volume of generated and executed levels;

 the volume of turns;

 the volume of character occurrences in these levels (in this metric, if a

character appeared in 3 levels, it will count as 3 characters);

 the volume of unique characters who appeared at least once in the story (in

contrast to the previous metric, in this one if a character appeared in 3 levels, it

will count as 1 character);

 the volume of choices made (either by the framework or by the player);

 the total successful actions for all the characters;

 the total volume of successful character actions which were not planned by the

character, but initiated by another character instead (these actions are not

included in the previously mentioned successful actions);

 the volume of failed character actions;

 the total volume of actions (including successful, initiated, and failed actions).

Story data
Storylines

Story 1 Story 2 Story 3 Story 4

Levels 21 10 6 13

Turns 167 63 41 84

Character occurrences 85 33 16 45

Unique characters 18 10 9 11

Choices 40 11 9 19

Successful actions 173 55 35 80

Initiated actions 93 22 15 36

Failed actions 32 23 7 41

Total actions 298 100 57 157
Table 10: Generic story data results

As we can observe, as a story grows in levels and turns, the number of unique

characters and how many time they appear in the executed levels grow as well,

something which was expected. The growth is not steady, since levels are different

from each other, for example they include different amounts of characters, possible

actions, etc. A similar growth can be observed in the volume of choices and actions.

219

As discussed in section 4.14, facts are potential states of the game world, for example

that Paris is located in Troy’s throne room, and operators are potential actions that can

be executed resulting to these states, for example that Paris can walk from the throne

room to his own room. As we also explained in section 4.14, during the loading phase

of each level our planner pre-processes the possible facts and operators, creating and

storing all their possible combinations (in relation to the characters, locations, items,

etc. which are present in a level) and uses this information when performing a

planning episode.

Table 11 contains the number of pre-processed facts and operators (we will call them

“nodes”) for each of the storylines, as well as for all the levels present in the evaluation

scenario. These data (which are further illustrated in Figure 122) are an indicator of the

complexity of each story, and as we observed before, the complexity rises when a

story includes more levels, characters, etc. More specifically, story 1 used 66.14% of

the available nodes, story 2 used 15.74% of the available nodes, story 3 used 10.84% of

the available nodes, and story 4 used 21.36% of the available nodes.

Pre-processing nodes
Storylines

All levels Story 1 Story 2 Story 3 Story 4

Fact nodes 4758 3320 1092 701 1451

Operator nodes 17464 11377 2406 1708 3295

Total nodes 22222 14697 3498 2409 4746
Table 11: Pre-processing nodes

Figure 122: Pre-processing nodes

220

Table 12 contains information about the planning episodes occurred in each story. The

same pattern appeared here as well, where a larger story had more planning episodes

than a smaller one. The table also contains the amount of nodes (facts and operators)

the planner considered while constructing the planning graph to find a valid plan. In

terms of performance, the results are showing that our planner is able to generate a

large number of plans in a short amount of time. As an example, there were 102

planning episodes the largest story (1), and the planned needed a total of 0.249

seconds to generate all of them.

Planning data
Storylines

Story 1 Story 2 Story 3 Story 4

Planning episodes 102 30 18 49

Total planning duration 0.249 sec 0.065 sec 0.055 sec 0.078 sec

Fact nodes 1239 248 165 401

Operator nodes 6514 1699 1262 2522

Total nodes 7753 1947 1427 2923
Table 12: Planning data results

Continuing the discussion about the performance, Table 13 contains further

performance data, more specifically:

 The total pre-processing duration, i.e. the combined time the planner needed

to generate the nodes we mentioned before, as well as other information

(discussed in detail in section 4.14) such as the mutexes between the

operators, etc.;

 the total loading duration, i.e. the combined time the World Manager (WM)

component needed to initialise a new level (the process in discussed in section

4.5), including the pre-processing time;

 and the total turns duration, i.e. the combined time the WM needed to execute

all the turns in the story (including the time the planner needed to generate

each of the planning episodes we mentioned earlier).

Once more, the larger a story gets, the more time it needs to be pre-processed, to be

loaded, and to be executed.

221

Performance data
Storylines

Story 1 Story 2 Story 3 Story 4

Total pre-processing duration 1.177 sec 0.368 sec 0.255 sec 0.331 sec

Total loading duration 5.676 sec 3.543 sec 2.548 3.734 sec

Total turns duration 7.056 sec 2.367 sec 1.345 sec 4.323 sec
Table 13: Performance data results

Before continuing with the performance discussion we will have a look at the

transitioning data included in Table 14. The transitioning process (i.e. moving from a

level which ended to a new level that makes sense based on what happened in

previously executed levels) is explained in detail in section 4.7. The transitioning data

includes the number of transitions successfully performed during the generation of

each story, the total time needed to be calculated, the total potential successors that

were investigated for their suitability, and the mutual exclusions between them which

were calculated.

Transitioning data
Storylines

Story 1 Story 2 Story 3 Story 4

Transitions 20 10 6 13

Total transitions duration 3.394 sec 1.858 sec 1.162 sec 2.506 sec

Potential successors 44 24 14 32

Mutual exclusions 39 14 3 17
Table 14: Transitioning data results

Table 15 includes the following information for each of the storylines:

 The average and max level loading duration, i.e. the time the WM component

needed to initialise a new level, including the pre-processing time of the

Planner;

 the average and max turn execution duration, i.e. the time the WM needed to

execute a turn in the story (including the time the planner needed to generate

each of the planning episodes we mentioned earlier);

 and the average and max transition duration, i.e. the time the Transitioning

Manager (TM) component needed to perform a transition from a level to

another.

The maximum combination of durations the player has to wait during the execution of

a story is when she instructs the framework to execute the next turn, the turn is

222

executed and it is the last of a level, so a transition has to be performed, then a loading

of the next level, and the execution of the new level’s each turn.

Interactivity performance data
Storylines

Story 1 Story 2 Story 3 Story 4

Average level loading duration 0.270 sec 0.354 sec 0.425 sec 0.287 sec

Max level loading duration 1.872 sec 2.218 sec 1.888 sec 2.031 sec

Average turn execution duration 0.042 sec 0.038 sec 0.033 sec 0.051 sec

Max turn execution duration 0.235 sec 0.149 sec 0.127 sec 0.240 sec

Average transition duration 0.170 sec 0.186 sec 0.194 sec 0.193 sec

Max transition duration 0.411 sec 0.336 sec 0.267 sec 0.316 sec
Table 15: Interactivity performance data

Therefore, the waiting duration () before the framework becomes available for

interaction again can be calculated as a combination of these durations and can be

expressed as the following equation (1):

Equation 1: Calculation of maximum waiting duration

Using this equation and considering as a worst case scenario that the maximum

durations from Table 15 occurred sequentially, we can calculate that the waiting

duration that the player had to wait before the system becomes interactive again

would be 2.753 seconds for story 1, 2.852 seconds for story 2, 2.409 seconds for story

3, and 2.827 seconds for story 4. These results are displayed in Table 16.

Storylines Maximum waiting duration

Story 1 2.753 sec

Story 2 2.852 sec

Story 3 2.409 sec

Story 4 2.827 sec

Table 16: Maximum waiting durations

Taking into account that these durations include loading durations (something that

gamers are accustomed to) and they represent the worst case scenario, we consider

them an indicator that DIEGESIS has a good interactivity performance. The average

values of Table 15 shows that as well.

223

Extending the above, if we combine the total loading, turns, and transitions durations

from Table 13 and Table 14, we can calculate the total story duration, represented by

equation 2.

Equation 2: Calculation of total story duration

Using that equation, we can calculate that story 1 needed a total of 16.126 seconds to

be generated and executed, story 2 a total of 7.768 seconds, story 3 a total of 5.055

seconds, and story 4 a total of 10.563 seconds. These calculations are illustrated in

Figure 123.

Based on these results, we believe that DIEGESIS is capable of generating and

executing a large and complex story containing several characters (as a reminder, story

1 contains all the main characters, interactions and important scenes appeared in the

Troy film) in a very short amount of time, making the framework suitable to be used

for the purpose of digital interactive storytelling.

Figure 123: Total story duration

Apart from the combined data for each story, it is worth reviewing some data for a few

individual characters of a story, to investigate what happens when a vantage point is

selected by the user. As we discussed in section 4.12, the player is able to choose

between different vantage points or return to a full story view freely during run-time,

224

and choosing a vantage point does not affect the outcome of the story, which

continues normally –yet invisible if it’s unrelated to the chosen character- in the

background.

Table 17 includes data for 4 of the characters (Achilles, Hector, Odysseus, and Helen),

as measured during the generation of story 1. The data includes the following:

 The volume of levels the character appeared in;

 the total successful actions of the character;

 the total volume of successful character actions which were not planned by the

character, but initiated by another character instead (these actions are not

included in the previously mentioned successful actions);

 the volume of failed character actions;

 and the total volume of actions (including successful, initiated, and failed

actions).

Vantage points data
Characters (Story 1)

Achilles Hector Odysseus Helen

Levels 11 9 7 4

Successful actions 33 38 11 5

Initiated actions 14 8 2 7

Failed actions 3 4 4 1

Total actions 50 50 17 13
Table 17: Vantage points data results

If the player chooses to view the story from the “eyes” of Achilles, DIEGESIS will show

her 50 actions involving Achilles scattered across 11 levels plus any battles which

Achilles is involved in. In contrast, if the player chooses Helen’s vantage point, she will

only see 13 actions in 4 levels. The levels which will visible in the event that Achilles’

vantage point is active are illustrated in Figure 124, and those of Helen’s vantage point

in Figure 125.

225

Figure 124: Levels of Achilles' vantage point

226

Figure 125: Levels of Helen's vantage point

227

In this chapter, we provided detailed information about the evaluation scenario that

we modelled, showing its potential storylines. We also discussed some of the

mechanics that can have an impact on the generated story, and we specified the

metrics used in our evaluations. Then, we documented a number of evaluations for the

different components of our framework, using the evaluation scenario we presented

earlier in previous chapter. In the next chapter, we conclude the thesis and provide

some future work ideas

228

7 CONCLUSION & FUTURE WORK

In this chapter we will conclude the thesis, and provide some future work ideas.

7.1. RESEARCH SUMMARY

The goal of this research was to investigate AI planning and re-planning algorithms and

exploit their potential for the field of Digital Interactive Storytelling (DIS), to evaluate

their suitability for such systems and to develop new algorithms and storytelling

mechanisms to improve them. To this end and to also provide more solutions to DIS

research, we decided to specify, design, implement, and evaluate a multi-agent DIS

framework, which we titled DIEGESIS.

Apart from a review of the planning and re-planning solutions used by DIS systems, we

surveyed and critically assessed a number of DIS systems related to DIEGESIS. This

process gave us the opportunity to specify the requirements and the specifications of

our multi-agent DIS framework. Based on this set of requirements and specifications,

we designed DIEGESIS to be multi-agent, scalable, interactive, modular, and to utilise

planning and re-planning techniques to dynamically generate and narrate a story.

Compared to related DIS systems, DIEGESIS’ design took many different approaches in

key aspects of the framework, which were all governed by our specified needs. For

example, although DIS systems traditionally perform either centralised or

decentralised planning, DIEGESIS’ approach borrows ideas from both approaches,

creating a hybrid approach; on the plan generation level it performs decentralised

planning, but on the plan execution level our approach borrows the control and

coordination concepts from the centralised planning approach. DIEGESIS’ agent

architecture follows a hybrid approach as well, including elements of reactive,

deliberative, and BDI agents.

While many DIS systems allow the player to control and/or make decisions for only

one character in the story, in DIEGESIS the player can observe and make choices for

any character. Player choices and a number of other mechanics we devised such as a

229

goal injection mechanism, a battle mechanism, a futile goals module, and the concept

of uncertain actions can have an impact on the generated outcome, changing the

course of the story.

We also identified that DIS systems utilise either a first-person or a third-person

perspective, including vantage points, to present their stories to the player. In its

default mode, DIEGESIS presents the generated story as a whole, allowing the player to

observe and interact (when is required) with any of the agents present in the story.

While these abilities constitute a third-person perspective, we also want to provide the

player with a first-person perspective. That’s the reason we created the concept of

vantage points. If the player selects to view the story from the vantage point of an

agent she will view only the story outcome which is related to the chosen agent, and

will be available to interact with the story (i.e. make choices) only when an action is

related to the story agent. The rest of the story (which is unrelated to the selected

agent) will continue normally in the background. The player is able to choose between

different vantage points or return to a full story view freely during run-time.

DIEGESIS uses a hybrid story modelling approach, combining both plot-based and

character-based elements. The game world is organised in multiple relatively abstract

levels which can represent possible parts of a story, and DIEGESIS can perform

transitions between them based on a set of rules and what happened previously in the

story, to form a valid an interesting story, concept which constitutes a plot-based

model. In the level execution though, DIEGESIS implements a character-based model,

since each agent has some initial intentions, but is able to operate autonomously and

opportunistically to achieve them.

DIEGESIS includes a new planning solution created based on the needs of the DIS field,

able to generate plans of actions based on each agent’s state and context, considering

both the current world state and the available resources. The planning algorithm is

based on Graphplan (expanded to include support for several language requirements

that we consider valuable for DIS) for solutions expansion, and a backtracking heuristic

search for plan extraction, enriched with constraints satisfaction and dynamic

opportunistic restart when required. The planning algorithm is also aware of the

230

available time (duration) an agent/character has for a plan when it is asked to generate

one.

DIEGESIS deals with the execution of the agents’ plans in a higher level, and when a

part of a plan fails, instructs the agent to re-plan based on its current knowledge of the

state of the world. Considering that we modelled each agent to act as a real person in

the way they generate and try to execute plan, it does not make sense (in our context)

to predict and prevent plan failures as some related DIS systems do, since a plan can

fail either due to user intervention (which cannot be predicted), or intervention by

other characters, or –in some cases– pure chance. In any case, failed plans due to

“unpredicted” reasons are realistic and have the potential to enrich a generated

narrative.

In our re-planning solution, as we interleave plan generation and plan execution, when

a plan fails, we discard the already completed actions and we only re-plan for the

failed (and some of the pending) actions of the plan, merging the new partial plan with

the unexecuted portion of the original plan.

To evaluate DIEGESIS and its components, we created a large-scale evaluation

scenario, where we modelled the story presented in the 2004 film “Troy” (Petersen,

2004), which is based on Homer’s epic poem called “Iliad” (Homer, 2003), and using

that performed a number of evaluations. Also, since there are no widely accepted

metrics to evaluate DIS systems that we could use, we specified some of them based

on what consider valuable for the DIS field, a collection which could be potentially

used by other DIS systems in the future. These requirements are the following:

performance of planning and re-planning solutions; suitability of planning algorithms’

features for DIS, performance-based interactivity of the framework; and

summarisation metrics. Finally, we disseminated the outcomes of our research, via

publishing a number of papers.

7.2. THESIS SUMMARY

In Chapter 1 (Introduction), we discussed the motivation behind our research, the aims

and objectives of it, and the research methodology we followed. We also listed a

number of contributions to knowledge that our research made.

231

In Chapter 2 (Background & Related Work), we presented the background of our

research area, where we discussed about the fields of Digital Interactive Storytelling

and multi-agent systems, we presented some agent architectures, and we discussed

about DIS-related as well as multi-agent-related planning and re-planning. We also

presented some of the planning algorithms which are typically used in DIS systems

along with some of the representation languages used by them. Finally, we presented

some examples of re-planning outside of the DIS field, and we surveyed and critically

assessed a number of DIS systems, stating their relation to our own work.

In Chapter 3 (DIEGESIS DIS Framework), we documented the requirements and

specifications of our multi-agent DIS framework, and then, in Chapter 4 (Design of the

Framework), we discussed in detail the design aspect of every component of our

framework.

In Chapter 5 (Implementation), we documented all the details about the

implementation of the multi-agent DIS framework we discussed in the previous

chapters.

In Chapter 6 (Evaluation), we provided detailed information about the evaluation

scenario that we modelled, discussed its potential storylines. We also discussed some

of the mechanics that can have an impact on the generated story, presented a

coordination example, and we specified the metrics used in our evaluations. Finally,

we documented a number of evaluations for the different components of our

framework, which were performed using the evaluation scenario we presented earlier

in the chapter.

7.3. POSSIBLE APPLICATIONS

Apart from using DIEGESIS on its own as described in this thesis, we are also

considering alternative routes for it, such as utilising its framework capabilities to

connect it to other components and game engines. In this section we will briefly

discuss two potential applications involving DIEGESIS as a storytelling framework.

232

7.3.1. 3D VISUALISATION OF STORIES

One potential route for DIEGESIS to be used as a framework would be to be connected

with a 3D engine that will enable us to visualise the generated stories and improve the

interactivity with the end-user. The resulting application would be able to use DIEGESIS

to generate a story as described in previous chapters, and then the 3D engine would

be able to visualise the outcome of the generated narrative, presenting it to the user,

and allowing her to interact with the system and the story as well. As an example,

Figure 126 depicts a scene from Total War: Rome II (SEGA, 2013) video game, showing

a Spartan warrior inside Troy after the city was set on fire.

Figure 126: Spartan warrior

For the game engine and implementation development aspect we will use the Homura

Game Engine and development Framework (El Rhalibi et al., 2009), developed by our

research team. The Homura project's game development framework was created to

provide an Open Source (LGPL-Licensed) API for the creation of Java and Open GL

based hardware-accelerated 3D games applications, which support cross platform,

cross-browser deployment using Java Web Start (JWS) and Next-generation Applet

technologies. The framework bundles together several example applications and

technical demos, which demonstrate and explain how to implement common games

functionality in our applications; An application template, which acts as a great starting

point for developing research applications and Homura related games; The APIs of

both Homura and the key open-source projects it builds upon including the Java

Monkey Engine scenegraph API, jME Physics Library, MD5 Model Importer, GBUI User

Interface Libraries and many more; External Tools for the creation of Font Assets,

Particle Effects and Levels for the games.

233

The game engine can be used to create the different 3D scenes to animate and

visualise the story as it is generated by the DIEGESIS framework. A member of our

research team created a visualisation sample; as an example, Figure 127 depicts a 3D

scene involving a panoramic view of the Parthenon of Goddess Athena.

Figure 127: Parthenon of Greek Goddess Athena

Figure 128, describes a scene where Achilles watches the ships of the Greek army

preparing to sail to Troy.

Figure 128: Achilles Watching Ships Preparing for War

Figure 129 depicts a scene of Achilles meeting Greek Goddess Athena before leaving to

Troy, with some of the Greek army ships preparing to depart on the background.

234

Figure 129: Achilles meeting Greek Goddess Athena

7.3.2. VIRTUAL STORYTELLER

Another potential route for our system is to interface it with a 3D character animation

framework to create a conversational avatar framework for Digital Interactive

Storytelling, i.e. 3D facial model animation which will act as a narrator for the stories

which our framework produces. We designed, documented, and proposed this

application in (Duarte et al., 2013). In the proposed system, DIEGESIS will be interfaced

with Charisma (El Rhalibi et al., 2010), an MPEG-4 based facial animation framework,

which will enable a 3D character to narrate the generated story (Figure 130), or it

could also be used for in-story character dialogues.

Figure 130: The Charisma interface

DIEGESIS is capable of generating interactive, dynamic, emergent, and consistent

narratives, however the language of the outcome story presented to the user is not

235

rich and expressive. Therefore, it seems as a good fit to use an intermediate system

that generates natural language, such as those introduced in (Theune et al., 2006,

Theune et al., 2007), and presents it to the user by text and speech, using the

coarticulation system in Charisma, providing a more natural interface to the user.

Using the abilities of DIEGESIS, the proposed framework generates a narrative (Figure

131 and Figure 132), based on the initial story model provided by the storyteller, the

interaction between the agents, and the choices of the user.

Figure 131: Framework layers for facial animation and DIS

Once a part of the narrative is generated, it will be converted to natural language, and

handed to the coarticulation embodied module. Further details about the

coarticulation module (which are out of the scope of this thesis) can be found in

(Duarte et al., 2013).

Figure 132: The flow of a story used as input

The current framework provides a richer user experience, by using a 3D narrator to

narrate the generated story, and by generating a richer and expressive language for

the narrative, when compared with the previous outcome of the framework.

236

Figure 133 illustrates an example of an agent’s possible plan, based on the scenario

described in section 6.2. The agent represents the character Achilles in the story. Using

a dialogue generation solution, we will generate an expressive narration based on the

outcome which DIEGESIS is generating, so it can be imported to Charisma.

PICK-UP ACHILLES SWORD ACHILLES-TENT

PICK-UP ACHILLES SHIELD ACHILLES-TENT

WEAR ACHILLES ARMOUR ACHILLES-TENT

GO-TO ACHILLES ACHILLES-TENT BATTLEFIELD

ATTACK ACHILLES HECTOR BATTLEFIELD

KILL ACHILLES HECTOR BATTLEFIELD

PICK-UP ACHILLES HECTOR BATTLEFIELD

GO-TO ACHILLES BATTLEFIELD GREEK-CAMP

DROP ACHILLES HECTOR GREEK-CAMP

PICK-UP ACHILLES PATROCLUS GREEK-CAMP

GO-TO ACHILLES BEACH

PREPARE-FOR-FUNERAL GREEK ACHILLES BEACH

PERFORM-FUNERAL GREEK ACHILLES BEACH

GO-TO ACHILLES BEACH ACHILLES-TENT

ALLOW-TO-TAKE ACHILLES PRIAM HECTOR

Figure 133: Achilles’ combined plan

An example of the narrative that could be generated by a dialog generation solution

based on the outcome illustrated in Figure 133, is the following: “Achilles picked up his

sword and shield, and wore his armour. Afterwards, he left his tent, heading for the

battlefield. There, he attacked Hector and killed him. Achilles picked up Hector’s body,

returned to the Greek camp and dropped Hector’s body. He picked up Patroklus’ body

and walked to the beach. There, Achilles prepared for Patroclus’ funeral, and then

performed it. He returned to his tent, where Priam was waiting and, after a discussion,

Achilles allowed Priam to take Hector’s body.”

As illustrated in Figure 134, once the natural language based story is generated using

the tools available in DIEGESIS in conjunction with a dialogue generation solution, it is

then sent to Charisma for further processing and to be presented to the user. A further

evaluation of the proposed application can be found in (Duarte et al., 2013).

237

Figure 134: Information flow to create a narrative in the framework

7.4. FUTURE WORK

There are several avenues to extend this research and explore some areas that we

didn’t explore, and to add some features that were not necessary to implement during

our research.

7.4.1. AUTHORING TOOLS

As we discussed in section 4.18, to make the authoring process easier for the

storyteller, we are using a PDDL editor created by (Cooper, 2011), and we designed an

XML editor as an extension to the PDDL one, so the storyteller can be able to create

easier all the XML nodes needed to complete the modelling of a story. Since implanting

authoring tools wasn’t the aim of our research we didn’t implement the XML editor we

designed, but implementing it in the future would benefit the storytellers who will use

DIEGESIS.

7.4.2. EMOTIONS MANAGER COMPONENT

A potential feature that we considered at some point during our research was to

design and implement an emotions manager component, which will closely work with

our framework’s agents. A potential implementation could be to add emotions to the

agents in related to other agents, and then model the story’s actions to affect certain

238

emotions positively or negatively. Then, these emotion values can be used to affect

the choices that agents make (when they are made by the framework and not the

player) and to trigger goal injection rules based on emotion thresholds.

We didn’t go into that route because we decided that it would require a lot of micro-

management to get it working in an acceptable way and it would derail us from our

research aims and objective. It has the potential to make the generated narrative and

the relations between the characters richer though, so it should be considered as a

potential extension of the framework.

7.4.3. IMPROVEMENT OF PLANNING ALGORITHM’S PRE-PROCESSING

During the implementation phase of our research, we have identified that the

bottleneck of DIEGESIS’ planner is its pre-processing process, i.e. the time needed by

the planner to pre-generate nodes that are later used in the actual planning and re-

planning process.

Our planner only needs to pre-process the information of a level once and then the

pre-processed information can be reused in any planning and re-planning episode of

that level, an approach which has a good performance as we discovered in the

evaluation we documented in section 6.5.2. Therefore, any delay due to the pre-

processing will only affect the loading time of the level, and not the experience of the

player while executing the level.

Furthermore, as we discovered in the evaluation we performed and documented in

section 6.5.5, DIEGESIS is capable of generating and executing a large and complex

story containing several characters in a very short amount of time. Nevertheless, it is

something that we could investigate further in the future and try to improve the

performance of the algorithm.

7.4.4. DURATIVE ACTIONS

As we discussed in section 4.14, for simplicity reasons since it was easier to evaluate

the generated plans of each character in the story and investigate how they affect

each other, we modelled the actions that an agent can execute to be atomic and

239

unable to overlap each other during the course of several turns. Therefore, we decided

that instead of using PDDL’s durative actions which are more complex for the

storyteller to construct, to simply specify the total duration of an action (in seconds) in

XML. We consider the incorporation of durative actions into the plan execution phase

as an interesting prospect for our framework, especially since we have already

modelled our new planning solution to take into account the duration of an action and

discard goals that are not such important if a generated plan does not meet its time

constraints.

7.4.5. POSSIBLE APPLICATIONS

As we discussed in section 4.13, we initially decided that based on the focus of our

research, a graphical user interface (GUI) would not be developed, as being out of

scope of this project. Although we did end up creating a GUI, it is mainly focused on

debugging, providing relevant information about what is happening in the framework

and displaying the generated story in a visually limited way. Therefore, in section 7.3

we described two possible applications utilising DIEGESIS as a DIS framework which

will be visually pleasing and easy to use by the player.

7.4.6. APPLICATION PROGRAMMING INTERFACE (API)

Although we have designed DIEGESIS as a framework and –as we discussed in the

previous section– we want it to be able to connect with other systems to form

different DIS applications, we didn’t implement an API for it, something which will

make it easier to be integrated to other systems. The de-coupled nature of our design

though will make it easy to replace the User Manager component with an appropriate

API if we decide to implement one in the future.

7.4.7. FURTHER FRAMEWORK EVALUATIONS

Apart from the evaluation metrics we discussed in section 6.4 used in the evaluations

we documented in section 6.5, there are a couple of other metrics and potential

evaluations that can be performed in the future:

240

 Plan quality over optimality: Optimality of a plan is not necessary in DIS. The

ultimate goal of a DIS system is to create a good story so (even if it’s hard to

measure it) the quality of the narrative is the most important metric in such a

system. A possible way to measure the quality of the generated narrative is to

present a story created by the system to a group of people and create a

questionnaire that they will complete to evaluate the quality of the story.

 Minimising Disruption in Re-planning: When performing re-planning to an

existing plan, the disruption made to it should be kept to a minimum. A metric

to measure is the number of changes performed in an existing plan and the

extent of these changes, to measure the disruption in it, quantified by a

disruption metric.

7.4.8. STORY MODELLING

As the specifications of 3.2 dictated, we aimed to design the framework in the most

abstract way we could, to be able to be used with any kind of story instead of being

highly coupled with one. We believe that we achieved that, since with the exception of

the Battle Manager component (which can be turned off) all the other components of

the system and the modelling rules of it are not highly coupled to a specific kind of

story. But, since we did not have a chance to evaluate that notion by building another

type of story (e.g. a science fiction-based scenario), it would be interesting to do that

in the future.

Also, another interesting route would be to replicate stories produced for other DIS

systems, after they are ported into our modelling requirements, to investigate what

kind of outcome DIEGESIS is capable of producing compared to these systems, based

on the same story model.

241

REFERENCES

ARINBJARNAR, M., BARBER, H. & KUDENKO, D. 2009. A Critical Review
of Interactive Drama Systems. AISB 2009 Symposium. AI & Games.

BARBER, H. & KUDENKO, D. Dynamic Generation of Dilemma-based
Interactive Narratives. 3rd Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2007.

BARBER, H. & KUDENKO, D. 2009. Generation of Adaptive Dilemma
Based Interactive Narratives. IEEE Transactions on
Computational Intelligence and AI in Games.

BARROS, L. M. & MUSSE, S. R. 2005. Introducing Narrative Principles
Into Planning-Based Interactive Storytelling. Proceedings of the
2005 ACM SIGCHI International Conference on Advances in
computer entertainment technology, ACE '05.

BARROS, L. M. & MUSSE, S. R. 2007a. Improving Narrative Consistency
in Planning-Based Interactive Storytelling. Proceedings of the
Third Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE 07).

BARROS, L. M. & MUSSE, S. R. 2007b. Planning Algorithms for
Interactive Storytelling. ACM Computers in Entertainment, 5.

BARTÁK, R., SALIDO, M. A. & ROSSI, F. 2010. New Trends in Constraint
Satisfaction, Planning, and Scheduling: A survey. The Knowledge
Engineering Review, 25, 249-279.

BARTOLD, T. & DURFEE, E. 2003. Limiting Disruption in Multi-agent
Re-planning. Proceedings of the second international joint
conference on Autonomous agents and multi-agent systems,
AAMAS '03.

BLUM, A. & FURST, M. 1997. Fast Planning Through Planning Graph
Analysis. Artificial Intelligence, 90, 281-300.

BONET, B. & GEFFNER, H. 2001. Planning as heuristic search. Artificial
Intelligence, 129, 5-33.

CARMICHAEL, G. & MOULD, D. 2014. A Framework for Coherent
Emergent Stories. Foundations of Digital Games.

CAVAZZA, M., CHARLES, F. & MEAD, S. J. 2002. Interacting with Virtual
Characters in Interactive Storytelling. Proceedings of the first
international joint conference on Autonomous agents and multi-
agent systems, AAMAS ’02.

CHANG, H.-M. & SOO, V. W. Simulation-based narrative generation with
a theory of mind. 4th Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2008. 16-21.

242

CHANG, H.-M. & SOO, V. W. 2009. Planning-Based Narrative Generation
in Simulated Game Universes. IEEE Transactions on
Computational Intelligence and AI in Games.

CHARLES, F., LOZANO, M., MEAD, S. J., BISQUERRA, A. F. & CAVAZZA, M.
2003. Planning Formalisms and Authoring in Interactive
Storytelling. Proceedings of the 1st International Conference on
Technologies for Interactive Digital Storytelling and
Entertainment.

COLES, A. I. & SMITH, A. J. 2004. Marvin: Macro-actions from reduced
versions of the instance. Fourth International Planning
Competition Booklet (IPS'04), ICAPS.

COOPER, S. 2011. DISE: A Game Technology-based Digital Interactive
Storytelling Framework. PhD, Liverpool John Moores University.

DOYLE, J. 1996. Toward Rational Planning and Re-planning. Advanced
Planning Technology: Technological Achievements of the
ARPA/Rome Laboratory Planning Initiative.

DUARTE, R., GOUDOULAKIS, E., EL RHALIBI, A. & MERABTI, M. 2013. A
Conversational Avatar Framework for Digital Interactive
StoryTelling. The 14th Annual PostGraduate Symposium on the
Convergence of Telecommunications, Networking and
Broadcasting (PGNet 2013).

EL RHALIBI, A., CARTER, C., COOPER, S., MERABTI, M. & PRICE, M.
2010. Charisma: High Performance Web Based MPEG-4
Compliant Animation Framework. ACM Computers in
Entertainment, 8.

EL RHALIBI, A., GOUDOULAKIS, E. & MERABTI, M. 2012. DIS Planning
Algorithms Evaluation. 4th IEEE International Workshop on
Digital Entertainment, Networked Virtual Environments, and
Creative Technology.

EL RHALIBI, A., MERABTI, M., CARTER, C., DENNETT, C., COOPER, S.,
SABRI, M. A. & FERGUS, P. 2009. 3D Java Web-Based Games
Development and Deployment. International Journal on
Information and Communication Technologies, 2, 221-230.

FOWLER, M. 2003. UML Distilled Third Edition a Brief Guide to the
Standard Object Modeling Language, Addison-Wesley.

FOX, M., GEREVINI, A., LONG, D. & SERINA, I. 2006. Plan Stability:
Replanning versus Plan Repair. International Conference on AI
Planning and Scheduling (ICAPS).

FOX, M. & LONG, D. 2003. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains. Journal of Artificial
Intelligence Research, JAIR, 20, 61-124.

GEREVINI, A. & LONG, D. 2005. BNF Description of PDDL 3.0.

243

GEREVINI, A., SAETTI, A., SERINA, I. & TONINELLI, P. 2004. Planning in
PDDL2.2 domains with LPG-TD. Fourth International Planning
Competition Booklet (IPS'04), ICAPS.

GHALLAB, M., HOWE, A., KNOBLOCK, C., MCDERMOTT, D., RAM, A.,
VELOSO, M., WELD, D. & WILKINS, D. 1998. PDDL - The Planning
Domain Definition Language. Tech Report DCS TR-1165. Yale
Center for Computational Vision and Control.

GOUDOULAKIS, E., EL RHALIBI, A., MERABTI, M. & TALEB-BENDIAB, A.
2011. Evaluation of Planning Algorithms for Digital Interactive
Storytelling. The 12th Annual PostGraduate Symposium on the
Convergence of Telecommunications, Networking and
Broadcasting (PGNet 2011).

GOUDOULAKIS, E., EL RHALIBI, A., MERABTI, M. & TALEB-BENDIAB, A.
2012a. Framework for multi-agent planning and coordination in
DIS. Proceedings of the Workshop at SIGGRAPH Asia (WASA '12).

GOUDOULAKIS, E., EL RHALIBI, A., MERABTI, M. & TALEB-BENDIAB, A.
2012b. Opportunistic Multi-Agent Digital Interactive Storytelling
System. The 13th Annual PostGraduate Symposium on the
Convergence of Telecommunications, Networking and
Broadcasting (PGNet 2012).

GOUDOULAKIS, E., EL RHALIBI, A., MERABTI, M. & TALEB-BENDIAB, A.
2013. Re-planning in Digital Interactive Storytelling. The 14th
Annual PostGraduate Symposium on the Convergence of
Telecommunications, Networking and Broadcasting (PGNet 2013).

GOUDOULAKIS, E., EL RHALIBI, A., MERABTI, M. & TALEB-BENDIAB, A.
2014. DIEGESIS - A Novel Multi-Agent Planning System for
Digital Interactive Storytelling. ACM Journal Computer in
Entertainment, Vol. 3 (in print).

HOFFMANN, J. 2001. FF: The Fast-Forward Planning System. AI
Maagazine, 22.

HOFFMANN, J. 2003. The Metric-FF planning system: Translating
“ignoring delete lists” to numeric state variables. Artificial
Intelligence Research, 20, 291-341.

HOMER 2003. The Iliad, Penguin Books.
ILGHAMI, O. & NAU, D. S. 2003. A general approach to synthesize

problem-specific planners. Tech. Rep. CS-TR-4597, UMIACS-TR-
2004-40. University of Maryland.

KARLSSON, B., CIARLINI, A. E. M., FEIJO, B. & FURTADO, A. L. 2007.
Applying the Plan-Recognition / Plan-Generation Paradigm to
Interactive Storytelling: The LOGTELL Case Study. Monografias
em Ciencia da Computacao, 24/07, September.

KAUTZ, H. & SELMAN, B. Planning as satisfiability. Tenth European
Conference on Artificial Intelligence (ECAI'92), 1992. 359-363.

244

KLUSCH, M., GERBER, A. & SCHMIDT, M. 2005. Semantic Web Service
Composition Planning with OWLS-Xplan. AAAI Fall Symposium on
Semantic Web and Agents.

KLUSCH, M. & RENNER, K.-U. 2006. Fast Dynamic Re-planning of
Composite OWL-S Services. IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology
Workshops (WI-IAT 2006 Workshops).

LEKAVY, M. & NAVRAT, P. Expressivity of STRIPS-Like and HTN-Like
Planning. 1st KES International Symposium on Agent and Multi-
Agent Systems: Technologies and Applications (KES-AMSTA '07),
2007. 121-130.

MATEAS, M. & STERN, A. 2003. Façade: An Experiment in Building a
Fully-Realised Interactive Drama. In Game Developers Conference
Proceedings (GDC '03) (March 2003).

MERABTI, M., EL RHALIBI, A., ALCANTARA MELENDEZ, D., PRICE, M. &
SHEN, Y. 2008. Interactive Storytelling: Approaches and
techniques to achieve dynamic stories. International Journal
Transactions on Entertainment I, LNCS 5080, Springer-Verlag,
Berlin, Heidelberg.

NAREYEK, A., FREUDER, E. C., FOURER, R., GIUNCHIGLIA, E.,
GOLDMAN, R. P., KAUTZ, H., RINTANEN, J. & TATE, A. 2005.
Constraints and AI Planning. Intelligent Systems, IEEE, 20, 62-72.

NILSSON, N. J. & FILES, R. E. 1971. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 2, 189-208.

ORKIN, J. 2006. Three States and a Plan: The A.I. of F.E.A.R. Game
Developers Conference (GDC).

PAUL, R., CHARLES, D., MCNEILL, M. & MCSHERRY, D. MIST: An
Interactive Storytelling System with Variable Character
Behavior. Third joint conference on Interactive digital
storytelling, 2010. Springer Berlin Heidelberg, 4-15.

PAUL, R., CHARLES, D., MCNEILL, M. & MCSHERRY, D. Adaptive
Storytelling and Story Repair in a Dynamic Environment. 4th
international conference on Interactive Digital Storytelling, 2011.
Springer-Verlag Berlin, Heidelberg, 128-139.

PAUL, R. J. S., MCNEILL, M. D. J., CHARLES, D. K., MCSHERRY, D. M. G. &
MORROW, P. J. 2009. Real-time Planning for Interactive
Storytelling. Proceedings of the 9th Irish Workshop on Computer
Graphics.

PEDNAULT, E. ADL: Exploring the middle ground between STRIPS and
the situation calculus. 1st international conference on Principles
of Knowledge Representation and Reasoning, 1989. 324-332.

245

PELLIER, D. 2009. PDDL4J [Online]. Available:
https://github.com/gerryai/PDDL4J [Accessed 20th May 2014].

Troy, 2004. Directed by PETERSEN, W.
RIEDL, M., SARETTO, C. J. & YOUNG, R. M. Managing Interaction

Between Users and Agents in a Multi-agent Storytelling
Environment. Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS '03), 2003.

ROBERTS, D. L. & ISBELL, C. L. 2008. A Survey and Qualitative Analysis
of Recent Advances in Drama Management. International
Transactions on Systems Science and Applications, Special Issue on
Agent Based Systems for Human Learning, 3, 61-75.

RUSSELL, S. & NORVIG, P. 2010. Artificial Intelligence: A Modern
Approach, Third Edition, Pearson Education Inc.

SEGA. 2013. Total War: Rome II [Online]. Available:
https://www.totalwar.com/en_gb/rome2 [Accessed 1st June
2014].

SHEN, Y. 2006. Exploiting Timed Coloured Petri net in Control and
Analysis of Graphplan. Liverpool John Moores University.

SPIERLING, U. 2009. Conceiving Interactive Story Events. Proceedings
of the 2nd Joint International Conference on Interactive Digital
Storytelling, ICIDS '09.

TEESSIDEUNIVERSITY. 2010. IRIS Wiki: IS Systems [Online]. Available:
http://tecfalabs.unige.ch/mediawiki-
narrative/index.php/IS_Systems (mirror) [Accessed 25th May
2014].

THEUNE, M., MEIJS, K., HEYLEN, D. & ORDELMAN, R. 2006. Generating
expressive speech for storytelling applications. IEEE
Transactions on Audio, Speech, and Language Processing, 14.

THEUNE, M., SLABBERS, N. & HIELKEMA. The automatic generation of
narratives. 17th Meeting of Computational Linguistics in the
Netherlands (CLIN17), 2007. 131-146.

THUE, D., BULITKO, V., SPETCH, M. & WASYLISHEN, E. 2007.
Interactive Storytelling: A Player Modelling Approach.
Proceedings of the third Artificial Intelligence and Interactive
Digital Entertainment conference (AIIDE07).

VAN DER KROGT, R. & DE WEERDT, M. 2005. Plan Repair as an
Extension of Planning. International Conference on Automated
Planning and Scheduling.

VLACHAVAS, I., KEFALAS, P., VASILIADIS, N., KOKKORAS, F. &
SAKELLARIOU, E. 2005. Artificial Intelligence (Τεχνητή
Νοημοσύνη), Second Edition (Β Έκδοση), Gartaganis
(Γαρταγάνης).

http://www.totalwar.com/en_gb/rome2
http://tecfalabs.unige.ch/mediawiki-narrative/index.php/IS_Systems
http://tecfalabs.unige.ch/mediawiki-narrative/index.php/IS_Systems

246

YOUNG, R. M. & RIEDL, M. O. Towards an architecture for intelligent
control of narrative in interactive virtual worlds. ACM
International Conference on Intelligent User Interfaces, 2003.
310-313.

ZHANG, J. F., NGUYEN, X. T. & KOWALCZYC, R. 2007. Graph-based
Multi-agent Replanning Algorithm. 6th international joint
conference on Autonomous agents and multiagent systems
(AAMAS '07).

247

APPENDICES

APPENDIX A: USE OF UML IN THE THESIS

In this thesis, we use a set of UML diagrams to describe use cases in the form of use

case diagrams (in chapter 3), processes of various components of the framework in the

form of activity diagrams (in chapter 4), classes and operations of the framework in the

form of class diagrams (in chapter 5), and interactions between the components of the

framework in the form of sequence diagrams (in chapter 4).

To design these diagrams, we used the notation and recommendations made by

(Fowler, 2003). When a diagram does not clearly states that is a use case, activity,

sequence, or class diagram, then it is not a UML diagram.

The conventions that we have made to the standard UML notation are the following:

 In some class diagrams, when a class has been described in detail as part of a

previous class diagram and appears again in another located after the one it

was described into, we are omitting its description (i.e. its properties and

operations) and keep only its name for the sake of simplicity.

 Although most of the framework’s components consist of a number of classes,

in all of the sequence diagrams located in the design chapter, we consider each

component as one entity, and represent them as one instance of the

component. That happens for the sake of simplicity, but also because the actual

brake down of each component’s classes is located in the implementation

chapter (which is located after the design chapter) and it was suitable to

describe the interactions and message flow between the components as part of

the design process.

	Abstract
	1 Introduction
	1.1. Motivation
	1.2. Aim & Objectives
	1.3. Research Methodology
	1.3.1. Literature Survey and Critical Analysis
	1.3.2. Problem Analysis and Design
	1.3.3. Framework Implementation
	1.3.4. Evaluation Assessment

	1.4. Contributions to Knowledge
	1.4.1. Critical Analysis Consolidation
	1.4.2. Design of a Novel DIS Framework
	1.4.3. Implementation of a Novel DIS Framework
	1.4.4. A New Planning Solution for DIS Frameworks
	1.4.5. A New Re-planning Solution for DIS
	1.4.6. Evaluation of DIS Systems
	1.4.7. Proposal of Possible Applications
	1.4.8. Dissemination of Our Findings

	1.5. Structure of Thesis

	2 Background & Related Work
	2.1. Digital Interactive Storytelling
	2.2. Planning
	2.3. Planning Using Constraints
	2.4. Multi-agent Systems
	2.5. Multi-agent Planning
	2.6. Agent Architectures
	2.7. Re-planning
	2.8. Planning Algorithms Used in DIS
	2.8.1. FF (Fast-Forward)
	2.8.2. Graphplan
	2.8.3. Heuristic Search Planner (HSP)
	2.8.4. Hierarchical Task Network (HTN) Planning

	2.9. Representation Languages
	2.9.1. Stanford Research Institute Problem Solver (STRIPS)
	2.9.2. Action Description Language (ADL)
	2.9.3. Planning Domain Definition Language (PDDL)
	2.9.4. Hierarchical Task Network (HTN)

	2.10. Review and Critical Analysis of Existing DIS Systems
	2.10.1. Fabulator
	2.10.2. Façade
	2.10.3. GADIN
	2.10.4. I-Storytelling
	2.10.5. LOGTELL
	2.10.6. Mimesis
	2.10.7. MIST
	2.10.8. Othello
	2.10.9. PaSSAGE

	2.11. DIS Systems Comparison
	2.12. Re-planning outside of the DIS field

	3 DIEGESIS DIS Framework
	3.1. User Types and Characteristics
	3.2. General Specifications
	3.3. Choice of Base Representation Language
	3.4. Choice of Base Planning Algorithm
	3.5. Multi-agent Needs

	4 Design of the Framework
	4.1. Game World Architecture
	4.2. Parser
	4.3. Knowledge Base
	4.4. Level Manager
	4.5. World Manager
	4.6. Choices Manager
	4.7. Transitioning Manager
	4.8. Goal Injection Manager
	4.9. Futile Goals Manager
	4.10. Oracle
	4.11. Uncertain Actions Manager
	4.12. Vantage Point Manager
	4.13. User Manager
	4.14. Planner
	4.15. Agent
	4.16. Battle Manager
	4.17. Evaluation Monitor
	4.18. Tools for Story Modelling

	5 Implementation
	5.1. Choice of implementation platform
	5.2. Parsing Component
	5.3. Knowledge Base Component
	5.4. Level Manager
	5.5. World Manager
	5.6. Choices Manager
	5.7. Transitioning Manager
	5.8. Goal Injection Manager
	5.9. Futile Goals Manager
	5.10. Oracle
	5.11. Uncertain Actions Manager
	5.12. Vantage Point Manager
	5.13. User Manager
	5.14. Planner
	5.15. Agent
	5.16. Battle Manager
	5.17. Evaluation Monitor

	6 Evaluation
	6.1. Evaluation Scenarios
	6.2. Potential Storylines
	6.3. Story Mechanics
	6.4. Evaluation Metrics
	6.5. Evaluations
	6.5.1. Planning Algorithms Evaluation
	6.5.2. DIEGESIS Scalability Evaluation
	6.5.3. Planning Algorithm Performance Evaluation
	6.5.4. Re-planning Algorithm Evaluation
	6.5.5. Summarisation evaluation

	7 Conclusion & Future Work
	7.1. Research Summary
	7.2. Thesis Summary
	7.3. Possible Applications
	7.3.1. 3D Visualisation of Stories
	7.3.2. Virtual Storyteller

	7.4. Future Work
	7.4.1. Authoring Tools
	7.4.2. Emotions Manager Component
	7.4.3. Improvement of Planning Algorithm’s Pre-processing
	7.4.4. Durative Actions
	7.4.5. Possible Applications
	7.4.6. Application Programming Interface (API)
	7.4.7. Further Framework Evaluations
	7.4.8. Story Modelling

	References
	Appendices
	Appendix A: Use of UML in the Thesis

