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ABSTRACT 

In recent years, the field of Digital Interactive Storytelling (DIS) has become very 

popular both in academic circles, as well as in the gaming industry, in which stories are 

becoming a unique selling point. Academic research on DIS focuses in the search for 

techniques that allow the creation of systems that can generate dynamically 

interesting stories which are not linear and can change dynamically at runtime as a 

consequence of a player’s actions, therefore leading to different story endings.  

To reach this goal, DIS systems usually employ Artificial Intelligence planning and re-

planning algorithms as part of their solution. There is a lack of algorithms created 

specifically for DIS purposes since most DIS systems use generic algorithms, and they 

do not usually assess if and why a given algorithm is the best solution for their 

purposes. Additionally, there is no unified way (e.g. in the form of a selection of 

metrics) to evaluate such systems and algorithms. 

To address these issues and to provide new solutions to the DIS field, we performed a 

review of related DIS systems and algorithms, and based on the critical analysis of that 

work we designed and implemented a novel multi-agent DIS framework called 

DIEGESIS, which includes –among other novel aspects- two new DIS-focused planning 

and re-planning algorithms. 

To ensure that our framework and its algorithms have met the specifications we set, 

we created a large scale evaluation scenario which models the story of Troy, derived 

from Homer’s epic poem, “Iliad”, which we used to perform a number of evaluations 

based on metrics that we chose and we consider valuable for the DIS field. This 

collection of requirements and evaluations could be used in the future from other DIS 

systems as a unified test-bed for analysis and evaluation of such systems. 
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1   INTRODUCTION 

1.1. MOTIVATION 

In recent years, the field of Digital Interactive Storytelling (DIS) has become very 

popular both in academic circles and in the gaming industry. The latter is a prosperous 

industry, since it has surpassed in revenue the music and movies industries. Stories 

and storytelling are becoming more important in games (for example in Role Playing 

Games) and are transforming into a unique selling point of them.  

DIS systems can also be used in education and also in other entertainment areas (apart 

from games) such as in TV, movies, series, etc. For example, in the future the viewer 

may be able to interact and change the outcome of a story presented to her via 

animation. Such systems can also generate scripts for movies/series to help writers 

with ideas. 

DIS is a very flourishing research area in academia and is a platform which allows us to 

do a multi-disciplinary research containing interesting and exciting areas to work on, 

such as multi-agent systems, planning, re-planning, etc., solving difficult problems (for 

example regarding real-time performance). 

Also, we get the chance to combine all these disciplines and apply and use them in a 

different area from where they were traditionally used. For example, there is extensive 

research for planning algorithms with a focus on industrial themes, but not much in 

the DIS field. 

Academic research on DIS focuses in the search for techniques that allow the creation 

of systems that can generate dynamically interesting stories which are not linear and 

that can change dynamically during runtime as a consequence of a player’s actions, 

therefore leading to different story endings. 



2 
 

There have been numerous approaches attempting to reach this goal by employing 

Artificial Intelligence (AI) planning algorithms as part of the solution, but they typically 

do not discuss in detail or assess if and why a given planning algorithm was used and if 

that algorithm is the best solution for the story scenarios used or if it is suitable for 

other DIS scenarios. Also, there is a gap in the development and use of re-planning 

methods in existing systems, as no specific re-planning algorithm has been proposed to 

deal specifically with DIS. In this research we propose to contribute to the assessment 

of existing AI planning solutions for DIS, to create a novel multi-agent framework that 

provides new solutions for DIS, and to design new AI planning re-planning algorithms 

which will have been evaluated to be the most suitable for DIS characteristics. 

1.2. AIM & OBJECTIVES 

The proposed research aims at investigating AI planning and re-planning algorithms 

and exploiting their potential for the field of DIS, to evaluate their suitability for such 

systems and to develop new algorithms to improve them. To this end and to also 

provide more solutions to DIS research, a multi-agent DIS framework using planning 

and re-planning techniques will be specified, designed, implemented, and evaluated 

using appropriate DIS scenarios. 

The objectives of this research work will be to consolidate the knowledge related to 

existing planning and re-planning algorithms for DIS, and develop a more generic 

multi-agent DIS framework providing a more robust, flexible and performant solution 

for a large class of DIS. In particular we will: 

 Review the related work in DIS systems, as well as planning and re-planning 

algorithms related to DIS; 

 specify the requirements of a multi-agent DIS framework which uses planning 

and re-planning techniques; 

 design and implement a novel multi-agent DIS framework which utilises 

planning and re-planning techniques to generate a narrative; 

 introduce mechanisms to generate different story outcomes and perspectives, 

for example using choices, goal injections, levels transitioning, and vantage 

points; 
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 design and implement a new planning algorithm for DIS, taking into account its 

performance and impact on the storyline quality; 

 design and implement a new re-planning algorithm for DIS, taking into account 

its performance, minimal disruption to the original plan, and impact on the 

storyline quality; 

 define the evaluation criteria, create evaluation scenarios, and evaluate the 

implemented framework and algorithms; 

 exploit the research outcomes for generalisation and dissemination purposes. 

1.3. RESEARCH METHODOLOGY 

In order to achieve the research objectives that we outlined previously, the research 

methodology that we used during the course of our research follows an incremental 

and iterative model. In each iteration, starting with an initial idea, we performed a 

(never-ending) literature survey on the related work to identify problems in one (or 

more) of our fields of research. By analysing the data derived from this survey, we 

designed new and/or modified existing components of our framework, which we 

implemented and evaluated (when was required). The following sections discuss these 

steps in more details. 

1.3.1. LITERATURE SURVEY AND CRITICAL ANALYSIS 

In order to develop a deep and varied understanding in the fields related to our 

research, we performed a comprehensive survey on existing DIS systems, multi-agent 

systems, as well as planning and re-planning algorithms with the DIS field in mind, 

which we documented in chapter 2. 

1.3.2. PROBLEM ANALYSIS AND DESIGN 

Based on the critical analysis of our literature review, we specified the requirements 

and specifications of a scalable, abstract, interactive, and decoupled multi-agent DIS 

framework which includes dynamic story generation and narration, as well as different 

points of view. 
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To achieve these requirements and specifications we designed DIEGESIS, a multi-agent 

DIS framework using planning and re-planning techniques. DIEGESIS consists of several 

different components, each responsible for one or more features of the framework, 

such as the planner which includes a planning and a re-planning algorithm. 

Although we used an incremental and iterative approach during the design or our 

framework and its components, for the sake of simplicity and clarity of the thesis we 

are documenting everything showing DIEGESIS as a final product. The requirements 

and specifications of our framework are documented in chapter 3, and its design in 

chapter 4. 

1.3.3. FRAMEWORK IMPLEMENTATION 

While implementing our designed multi-agent DIS framework, including our planning 

and re-planning algorithms, we took an iterative prototyping approach. As soon as a 

part of a design was complete (e.g. a new component) we implemented it and then, 

when it was required, we designed and created an evaluation case to test and evaluate 

it. As soon as this process was complete, changes and refinements were made to the 

design (and therefore to the implementation) of our framework before starting this 

iterative process again. The implementation of our framework is documented in 

chapter 5. 

1.3.4. EVALUATION ASSESSMENT 

As we mentioned in the previous section, during the course of our design and 

implementation phases, we performed a number of evaluations to evaluate several 

aspects of our framework, expose any limitations that it has, and ensure we were in 

course with the requirements and specifications we had set. 

To aid us in these evaluations, we either used parts or the whole of the large-scale 

evaluation scenario we modelled, which includes several characters with rich relations 

between them, and a high number of possible actions and choices, that can provide 

different outcomes. This scenario along with other related information and our 

evaluations are documented in chapter 6. 



5 
 

1.4. CONTRIBUTIONS TO KNOWLEDGE 

This thesis makes the following contributions to knowledge, in relation to the field of 

Digital Interactive Storytelling (DIS): 

1.4.1. CRITICAL ANALYSIS CONSOLIDATION 

Consolidating the knowledge of previous related work in the field of DIS, can help to 

identify techniques that provide good results and also to identify areas in the field 

which have not been thoroughly explored yet and in which we could provide a novel 

perspective. 

Planning and re-planning techniques used in DIS systems are such an area, therefore 

we are presenting the results of our critical analysis and evaluation mostly focused on 

that, identifying (among other data) the types of planning and the planning algorithms 

the state of the art of related DIS systems use, as well as if they consider re-planning. 

Parts of our literature survey have been published in the following papers: (Duarte et 

al., 2013, El Rhalibi et al., 2012, Goudoulakis et al., 2011, Goudoulakis et al., 2012b, 

Goudoulakis et al., 2013, Goudoulakis et al., 2012a, Goudoulakis et al., 2014) 

1.4.2. DESIGN OF A NOVEL DIS FRAMEWORK 

DIEGESIS is a scalable, interactive, and modular DIS multi-agent framework, which 

includes dynamic story generation and narration, as well as different points of view. 

Most DIS systems use generic Artificial Intelligence (AI) planning algorithms which 

were not created specifically with DIS requirements in mind, and very few of them 

consider re-planning as part of their planners. DIEGESIS includes a new planner which 

consists of a planning and a re-planning algorithm created with the needs of DIS 

systems in mind. 

Most DIS systems perform either centralised or decentralised planning; DIEGESIS 

follows a hybrid approach. On the plan generation level, it performs decentralised 

planning in which each character in a story is represented by an autonomous agent 

able to opportunistically generate plans based on its own goals. In the same manner, 

each agent tries to execute its own plans autonomously. We believe that this provides 
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a more flexible and realistic approach to the generation of a story, since each agent 

acts as a self-sufficient agent, generating an autonomous plan considering its own 

needs. 

In the case of plans execution though, our approach borrows the control and 

coordination concepts from the centralised planning approach. Although the plans are 

individual, we want DIEGESIS to dictate the execution phase of the agent’s plans 

(therefore the generation of the story) so the system can have a better control and 

understanding of what happens during the generation/execution of the story, and to 

be able to interfere if needed. 

DIEGESIS’ agent architecture, follows a hybrid approach; it includes elements of 

reactive agents (the agent receives input, processes it, and produces an output), 

elements of deliberative agents (the agent keeps an internal view of its environment), 

and elements of BDI agents (Beliefs – the agent’s view of the world, Desires – the 

agent’s goals, Intentions – the agent’s plans). 

In terms of interactivity, while many DIS systems allow the end-user to control only 

one character in the story (i.e. the protagonist), in DIEGESIS, there is not a main 

character (i.e. agent) that the player controls/observes; instead, the player can make 

choices (defined by the person who creates the story, i.e. the storyteller) for actions 

that can affect every character in the active story. 

Apart from choices which can have a huge impact on the outcome of the generated 

narrative, DIEGESIS implements other mechanics which can have an impact on the 

story as well: A goal injection mechanism can inject new goals to the agents based on 

situations that occur during the generation of the story; a battle mechanism is able to 

calculate the outcome of both duels between agents and/or non-player characters 

(NPCs), and large-scale battles between large armies of NPCs; a futile goals module is 

able to assign goals to agents which are idle; and the concept of uncertain actions 

(actions which have a chance of succeeding or failing) have the potential to delay 

agents’ plans from being successfully executed, or even invalidate them. 

Traditionally, related DIS systems use either a first-person or a third-person 

perspective to present their stories to the player. In its default mode, DIEGESIS 
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presents the generated story as a whole, allowing the player to observe and interact 

(when is required) with any of the agents present in the story. These abilities 

constitute a third-person perspective, but since we want to provide the player with a 

first-person perspective as well, we created the concept of vantage points. If the player 

selects to view the story from the vantage point of an agent she will view only the 

story outcome which is related to the chosen agent, and will be available to interact 

with the story (i.e. make choices) only when an action is related to the story agent. The 

rest of the story (which is unrelated to the selected agent) will continue normally in 

the background. The player is able to choose between different vantage points or 

return to a full story view freely during run-time. All these mechanics are allowing 

linear storyline with differing endings, interleaved storylines, and even flashbacks. 

Finally, DIEGESIS uses a hybrid story modelling approach, combining both plot-based 

and character-based elements. The game world is organised in multiple relatively 

abstract levels which can represent possible parts of a story. DIEGESIS is able to 

transfer knowledge between levels (acquired by previously executed levels), and 

judiciously choose which level needs to be executed next to form a valid and 

interesting story, based on a level transitioning system. Using this plot-based 

approach, DIEGESIS always has a high-level control over the overall structure of the 

story, being able to transition the story between levels which make sense, producing a 

coherent narrative. 

But, when a level is loaded to be executed, we move closely to a character-based 

model; each agent may have some initial intentions/desires, but is able to operate 

autonomously and opportunistically to achieve its goals. The framework won’t 

interfere with the decisions of an agent even if they mean that the story cannot 

progress any further. The authoring process in DIEGESIS provides enough freedom to 

the storyteller to operate whichever way she wants; either to create a relatively rigid 

storyline without much room for highly diverse narratives, or to model a story in a way 

that everything is fluid; a lot of player choices, several potential goal injections based 

on actions that may occur, and several uncertain actions; all of these features can 

contribute to unexpected situations and more emergent narratives. 
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Parts of the DIEGESIS’ architecture have been described in the following published 

papers: (Duarte et al., 2013, Goudoulakis et al., 2012b, Goudoulakis et al., 2013, 

Goudoulakis et al., 2012a, Goudoulakis et al., 2014) 

1.4.3. IMPLEMENTATION OF A NOVEL DIS FRAMEWORK 

The aforementioned design of DIEGESIS is fully implemented into a full working multi-

agent DIS framework. This implementation provides us with a framework for the 

creation and evaluation of our new planning and re-planning algorithms, as well as 

enabling us to provide an accurate evaluation of them. That also gives us the 

opportunity to use the framework in conjunction with other systems in the future, 

creating new expanded DIS solutions. 

1.4.4. A NEW PLANNING SOLUTION FOR DIS FRAMEWORKS 

Most DIS systems use generic AI planning algorithms which were not created 

specifically with DIS requirements in mind. A few DIS systems have created 

adaptations of planning algorithms for their needs, but they don’t provide many details 

about their mechanics. 

DIEGESIS includes a new planning solution created based on the needs of the DIS field, 

able to generate plans of actions based on each agent’s state and context, considering 

both the current world state and the available resources. 

The planning algorithm is based on Graphplan (expanded to include support for several 

language requirements that we consider valuable for DIS) for solutions expansion, and 

a backtracking heuristic search for plan extraction, enriched with constraints 

satisfaction and dynamic opportunistic restart when required. The planning algorithm 

is also aware of the available time (duration) an agent/character has for a plan when it 

is asked to generate one. 

The expansion stage allows the generation of all the sub-goals compatible with the 

current constraints, while the plan extraction involves a search technique using 

appropriate heuristics to link the goal(s) to the initial state and generate a valid plan.  
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Details about our planning solution have been published in the following papers: 

(Goudoulakis et al., 2012b, Goudoulakis et al., 2012a, Goudoulakis et al., 2014) 

1.4.5. A NEW RE-PLANNING SOLUTION FOR DIS 

When we consider classical AI planning for DIS, one of the premises is that the 

environment is static, which means that the planner is the only agent that can make 

changes in the story environment. However, a more realistic proposal is that the 

environment is dynamic; that is, there are other agents in the story and the actions 

generated by the planner may fail due to the actions of these agents. 

We believe that a key aspect in the use of planning formalisms in DIS consists in their 

ability to support re-planning and to offer representations embedding the potential for 

failure. However, research for re-planning in DIS is sporadic. There are some DIS 

systems that claim to use re-planning approaches, but the information they provide is 

scarce.  Most planners solve each planning task from scratch, which is time consuming. 

DIEGESIS deals with the execution of the agents’ plans in a higher level, and when a 

part of a plan fails, instructs the agent to re-plan based on its current knowledge of the 

state of the world. Considering that we modelled each agent to act as a real person in 

the way they generate and try to execute a plan, it does not make sense (in our 

context) to predict and prevent plan failures as some related DIS systems do, since a 

plan can fail either due to user intervention (which cannot be predicted), or 

intervention by other characters, or –in some cases– pure chance. In any case, failed 

plans due to “unpredicted” reasons are realistic and have the potential to enrich a 

generated narrative. 

In our re-planning solution, as we interleave plan generation and plan execution, when 

a plan fails, we discard the already completed actions and we only re-plan for the 

failed (and some of the pending) actions of the plan, merging the new partial plan with 

the unexecuted portion of the original plan. 

Details about our re-planning solution have been published in the following papers: 

(Goudoulakis et al., 2013, Goudoulakis et al., 2014) 
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1.4.6. EVALUATION OF DIS SYSTEMS  

DIEGESIS has to be evaluated with experiments that provide evidence in support of our 

thesis and emphasise either the proof-of-concept (i.e. demonstrating the validity of a 

technique) or efficiency (i.e. demonstrating that a technique provides better 

performance than those that exist), depending on the evaluated component’s role in 

the overall framework. 

There are no widely accepted metrics to evaluate DIS systems that we could use, so we 

had to specify some of them, based on what we consider valuable for the DIS field. 

This collection of requirements and evaluations could be used in the future from other 

DIS systems as a unified test-bed for analysis and evaluation of such systems. 

The outcome of our work is evaluated for the following requirements that we consider 

important for DIS frameworks: 

 Performance of planning and re-planning solutions: Many related DIS systems 

reported that their planning and re-planning solutions suffered from 

performance issues, making the planning and re-planning expensive in any 

sizable domain. Our planner needs to have a good performance in order to 

generate (and regenerate) plans in real-time. To this end, we designed and 

performed a number of evaluations to identify potential bottlenecks of our 

planning and re-planning solutions, and explore their suitability for our DIS 

needs. 

 Suitability of planning algorithms’ features for DIS: Apart from performance, a 

planning algorithm should possess a number of features that we consider 

valuable for the DIS field. We performed an evaluation to identify which of the 

existing planning algorithms are suitable to be used in the DIS field, to be used 

as a base algorithm of our planning solution. 

 Performance-based interactivity of the framework: Any DIS system and 

framework should support some kind of interactivity. To this end, the 

framework’s performance should be adequate enough so the player will not 

suffer from delays causing the framework to be potentially unusable and 

possibly frustrating to use. To evaluate the performance-based interactivity of 
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DIEGESIS, we designed and performed an evaluation measuring the 

framework’s level loading and turn execution times during the generation and 

execution of a large-scale scenario. 

 Summarisation metrics: Although their types can vary in different DIS systems 

and frameworks, in most there should be some data which can quantify the 

complexity of a generated story. We performed an evaluation measuring 

several metrics of some storylines generated by DIEGESIS, such as the volume 

of levels, characters, turns, actions, potential nodes, etc. 

To perform the aforementioned evaluations, we created a large scale evaluation 

scenario which models the story of Troy, derived from Homer’s epic poem, “Iliad”, 

which will be presented in section 6.1. 

We have published evaluations of our framework and of relevant planning algorithms 

in the following papers: (El Rhalibi et al., 2012, Goudoulakis et al., 2011, Goudoulakis et 

al., 2012b, Goudoulakis et al., 2013, Goudoulakis et al., 2012a, Goudoulakis et al., 

2014). 

1.4.7. PROPOSAL OF POSSIBLE APPLICATIONS 

Apart of operating on its own, we are proposing two different possible applications 

which use DIEGESIS as a relying framework: an application which uses a 3D engine that 

will enable us to visualise the generated stories and improve the interactivity with the 

end-user; and a virtual storyteller application which interfaces our framework with a 

3D character animation framework which will act as a narrator for the stories which 

our framework produces, using a natural language generation system as an 

intermediate, an application which we proposed in (Duarte et al., 2013). 

1.4.8. DISSEMINATION OF OUR FINDINGS 

The outcomes of our research have been disseminated via publishing a number of 

papers (Duarte et al., 2013, El Rhalibi et al., 2012, Goudoulakis et al., 2011, 

Goudoulakis et al., 2012b, Goudoulakis et al., 2013, Goudoulakis et al., 2012a, 

Goudoulakis et al., 2014), and our work has been presented at international 

conferences. 
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1.5. STRUCTURE OF THESIS 

The rest of the thesis is structured in the following way: 

 In Chapter 2 (Background & Related work), we present the background of our 

research area. More specifically, we discuss about the field of Digital Interactive 

Storytelling, about multi-agent systems presenting some agent architectures, 

and about DIS-related as well as multi-agent-related planning and re-planning. 

We also present some of the planning algorithms which are typically used in 

DIS systems along with some of the representation languages used by them, we 

present some examples of re-planning outside of the DIS field, and we survey 

and critically assess a number of DIS systems, stating their relation to our own 

work. 

 In Chapter 3 (DIEGESIS DIS Framework), we document the requirements and 

specifications of our multi-agent DIS framework. 

 In Chapter 4 (Design of the Framework), we discuss in detail the design aspect 

of every component of our framework. 

 In Chapter 5 (Implementation), we document all the details about the 

implementation of the multi-agent DIS framework we discussed in the previous 

chapter. 

 In Chapter 6 (Evaluation), we provide detailed information about the evaluation 

scenario that we modelled, showing its potential storylines, we discuss some of 

the mechanics that can have an impact on the generated story, and we specify 

the metrics used in our evaluations. We are also documenting a number of 

evaluations for the different components of our framework, using the 

evaluation scenario we presented earlier in the chapter. 

 Finally, in Chapter 7 (Conclusion & Future Work), we conclude this thesis and 

we document some future work ideas for our framework. We also describe 

some potential routes for our framework, utilising its capabilities via connecting 

it to other components and engines to allow us to create new DIS applications. 
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2   BACKGROUND & RELATED WORK 

In this chapter we present the background of our research areas, which are the fields 

of Digital Interactive Storytelling (DIS), planning, re-planning, and multi-agent systems 

(MAS). Afterwards, we present some of the planning algorithms which are typically 

used in Digital Interactive Storytelling (DIS) systems along with some of the 

representation languages used by them, then some examples of re-planning outside 

the DIS field, and finally we survey and critically assess a number of DIS systems, 

stating their relation to our own work. 

2.1. DIGITAL INTERACTIVE STORYTELLING 

Video games for computers and consoles are established as the leading form of 

interactive digital entertainment (Barros and Musse, 2007a), are becoming more 

complex, and so their use as a storytelling medium is growing in importance and 

popularity. The unique interactive nature of games means that stories and characters 

can become more personal and involving. 

Until now, stories in contemporary games are typically implemented using one or 

more standardised methods such as linear, branched or layered narrative (Paul et al., 

2009). DIS is a relatively new field of interactive computer entertainment (Barros and 

Musse, 2005) that aims to create interactive applications capable to generate 

consistent narratives. 

Traditionally, a story is considered to be a sequence of actions that leads to a sequence 

of events (Spierling, 2009). As defined in (Thue et al., 2007), DIS is “a story-based 

experience in which the sequence of events that unfolds is determined while the 

player plays”. A storytelling system can either actually create stories or enable the user 

just to tell different stories based on previously computed sequences of actions 

(Karlsson et al., 2007). As mentioned in (Thue et al., 2007), “deferring storytelling 

decisions to run-time can greatly improve the flexibility and replay value of a 

storytelling game”. 
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In fact, computer game stories can be implemented in different ways (Merabti et al., 

2008): either linear, branching, parallel, or threaded. Most games typically follow a 

linear storyline, where the events of the story are presented in a predefined sequence. 

It can be argued that making a player follow a defined story can diminish the 

interactivity level of a game; the player is, after all, following a pre-set path already laid 

out for him/her by the author. In order to still convey a story and allow the player to 

feel a high degree of interactivity, the concept of interactive or non-linear storytelling 

has to be introduced. Simply put, interactive storytelling presents the opportunity for 

players to have an input on what is happening in the game world in which they are 

placed, to be the ones who dictate how certain events may come to pass within the 

constraints set by the story author. 

Similar to other entertainment media, stories in games play a big role in increasing 

immersion, building tension and adding interest to the player. However, one main 

difference from the games to those other media is that games are interactive; they 

expect participation from the player and in turn, players expect to participate and get 

involved in the events the game is presenting and the outcomes of those events. 

As thoroughly described in (Karlsson et al., 2007), a story model can be focused either 

on characters or on plots: 

 In a character-based model, the storyline results from the real-time interaction 

among virtual autonomous agents. The main advantage of this model is the 

ability of anytime user intervention, meaning that the user may alter the plot as 

it unfolds by interfering with any character in the story. On the other hand, 

such an extreme interference level may lead the plot to unexpected situations 

or even to miss essential predefined events. Also, there is no guarantee that 

the narratives that emerge from the interaction of the above mentioned 

autonomous agents will be complex enough to create an interesting drama. 

 In a plot-based model, characters should follow more rigid rules, specifying the 

intended plot structures. In a pure plot-based model, user intervention is more 

limited than in a character-based model but it is usually easier to guarantee 

coherence and a measure of dramatic power. 
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Another consideration is whether stories should be told using a first-person or a third-

person perspective. As discussed in (Karlsson et al., 2007), a first person perspective 

tends to be particularly suitable for applications closer to digital games, whereas a 

third-person perspective is more appropriate for those involving film making. 

Apart from its application in computer gaming, DIS has applications in several other 

areas like military training and interactive drama (Paul et al., 2009). 

As discussed in (Charles et al., 2003), with the exception of emergent storytelling, DIS 

systems rely on various Artificial Intelligence (AI) techniques to support their behaviour 

including Assumption-based Truth Maintenance Systems (ATMS), Reasoning 

Maintenance Systems (RMS), logic programming and planning systems. 

2.2. PLANNING 

Planning is a combination of search and logic, two major areas of AI (Russell and 

Norvig, 2010). Planning involves knowing the state that you’re in, the state you want to 

be in and then finding the sequence of operators that will get you from the current 

state to the final state. According to (Russell and Norvig, 2010), a planner can be 

considered as either a program that performs a search for a solution or as one that 

proves the existence of a solution.  

To generate a storyline in DIS, planning systems are the most widely used techniques. 

They are considered extremely appropriate for DIS applications since plans are 

composed of discrete operations and stories can be easily converted to computer 

graphics-based output (Barros and Musse, 2007a). Apart from DIS systems, even AAA 

game titles such as the 2005 first-person shooter F.E.A.R. (Orkin, 2006) have employed 

successfully planning methods. 

As stated in (Barros and Musse, 2005), the use of planning algorithms in DIS has two 

advantages: 

1. Plans are a sequence of actions that can be used to achieve a given goal. They 

have an inherent notion of cause and effect that maps naturally to the concept 

of story. 

2. Plans consist of discrete actions that can be individually assigned to and 

executed by characters. 
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However, there are fundamental differences between the goals of AI and DIS that 

should not be ignored (Barros and Musse, 2007a, Barros and Musse, 2005). In one 

hand AI algorithms are typically concerned with “hard” and precise goals such as 

optimality (e.g. finding the shortest path to a given place) whilst, on the other hand, 

the narrative goals in DIS are more subtle and not easily defined formally. That can be 

improved by using languages that use predicate logic, such as PDDL (Planning Domain 

Definition Language; discussed later in this section). Therefore, when applying AI 

algorithms in DIS problems these differences must be taken into account so narrative 

consistency of the generated stories will not be compromised. 

Some of the problems with the current research in DIS, as discussed in (Spierling, 

2009), are: 

 AI engines appear obscure for authors from non-computer-science areas, and 

approaches in automatic planning are hard to grasp. 

 Due to a lack of available playable prototypes, practical experience is missing. 

 Naïve authoring approaches are generally too linear to suffice for highly 

interactive storytelling, which means granting end-users participation in the 

story. 

There are many different description languages for representing planning problems. 

The most widely used is called PDDL (Planning Domain Definition Language) (Fox and 

Long, 2003). PDDL was derived from the original Stanford Research Institute Problem 

Solver (STRIPS) planning language which is slightly more restricted than PDDL since for 

example, STRIPS preconditions and goals cannot contain negative literals. STRIPS uses 

first-order predicate logic, and a world state is represented as a conjunction of 

predicates. There have been several versions of PDDL, consecutively extending the 

language expressiveness and features. Its first version was released on 1998 and the 

last version (i.e. 3.1) in 2008. Another planning language is ADL (Action Description 

Language) which is included as a PDDL extension (Fox and Long, 2003). ADL relaxed 

some of the STRIPS restrictions and made it possible to encode more realistic 

problems. Another major difference between these planning languages is that, in 

contrast to STRIPS, which use a closed-world model, the open world assumption 

applies to ADL. (Russell and Norvig, 2010) 
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Although planning systems have been used intensively in DIS systems, there have not 

been much novel solutions for DIS research with respect to planning algorithms. No 

DIS dedicated planning algorithm has been proposed as yet, and the justification of the 

choice of a planning algorithm for a DIS prototype is usually inadequate. In particular, a 

discussion of the specific requirements necessary for planning is often missing, and 

authors just propose comparisons of alternative existing planning algorithms in order 

to find the most appropriate one for a specific ad-hoc DIS problem domain. 

2.3. PLANNING USING CONSTRAINTS 

Interest in using constraint techniques in planning problems has grown in recent years 

and has proven successful for many domains (Nareyek et al., 2005). As described in 

(Nareyek et al., 2005), the basic units of constraint-based problems are the constraints 

and the variables, where the constraints are entities that restrict the values that can be 

assigned to the variables. As further explained in (Barták et al., 2010), constraints are 

just relations while a Constraint Satisfaction Problem (CSP) indicates which relations 

(constrains) should hold among the given decision variables. 

An interesting application of CSPs is in scheduling which shares some similarity with 

planning, but focuses essentially on actions, resources and time optimisation 

techniques. As explained in (Barták et al., 2010), scheduling concerns with the 

allocation of resources (such as time, machines etc.) to activities (actions) with the 

objective of optimising some performance measures. For example in time scheduling, 

the duration of a number of actions can be modelled as a CSP so they will not overlap 

while selected, or the final plan will not exceed the available time. 

2.4. MULTI-AGENT SYSTEMS 

A definition of an agent in our context is that an agent is an entity which is part of an 

environment, perceives it with the help of sensors, and is able to act intelligently on it 

via a set of action mechanisms available to it (Vlachavas et al., 2005).  Extending the 

above definition, we can add that an agent should be able to operate autonomously, 

persist over a prolonged time period, adapt to change, and create and pursue goals 

(Russell and Norvig, 2010). 
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A multi-agent system (MAS) is a system designed and implemented as a group of 

agents interacting with each other (i.e. communicating, competing, cooperating, 

coordinating, negotiating, and so forth). In such systems, the agents either work 

individually exchanging information and/or services with other agents trying to 

succeed to their individual goals or work together solving sub-problems so the 

combination of their solutions become the final solution. (Vlachavas et al., 2005) 

According to (Vlachavas et al., 2005), there are two basic categories of interconnection 

models, i.e. ways for the agents to communicate with each other or with other 

systems; the blackboard systems, and the message passing systems. 

In blackboard systems, there is a common working space (i.e. the blackboard) to be 

used by all of the system’s agents, whereby they either share results, or they share 

tasks. When something is shared in this common area is accessible by all of the agents 

participating in the system. A blackboard system architecture is illustrated in Figure 1, 

adapted from (Vlachavas et al., 2005). 

 

Figure 1: Blackboard architecture 

On the other hand, in message passing systems the agents communicate directly with 

each other, sharing information via messages written in a communication language 

commonly accepted by all the system’s agents. A message passing system architecture 

is illustrated in Figure 2, adapted from (Vlachavas et al., 2005). 
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Figure 2: Message passing architecture 

In any of the aforementioned interconnection models, there can be two types of 

communication: Either synchronous, meaning that an agent which asks a question to 

the system or to another agent inhibits its operation until an answer has been 

received, or asynchronous, meaning that the answer can be received at any point 

without a disruption in the agent’s operation (Vlachavas et al., 2005). 

An intelligent agent may implement some the following abilities (Vlachavas et al., 

2005): 

 Autonomy: The agents can operate without a direct intervention by a user or 

other agents, and they have (total or partial) control over their internal state, 

meaning that the agents are able to pursue their goals without constantly 

receiving user input. 

 Social ability: The agents can communicate with other agents (or the user) 

using any kind of language that all of them can understand and “agreed” to use 

for the purpose of communication. Therefore, they are able for cooperation, 

coordination, and negotiation between them. 

 Reactiveness: The agents are able to perceive the environment they exist in, 

and react to it based on the changes that are happening in it. 

 Pro-activeness: The agents are not only able to react to the environment 

changes, but to act pro-actively as well, meaning that they can have goals and 

create plans to be able to achieve them. 

 Mobility: The agents are not only static, but are also able to move in the 

environment they exist in. 

 Adaptivity: The agents can constantly adjust to the environment or the choices 

of a user, meaning that they have an ability to learn. 

 Veracity: The agents do not send wrong information on purpose. 
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 Benevolence: The agents are always trying to achieve their given goals. 

 Rationality: The agents always act to achieve their goals, meaning that they 

don’t do futile actions without being told to, and they don’t act against 

achieving their goals. 

In any definition of an agent, it is part of an environment, which can be categorised 

based on the characteristics they possess, as follows (Russell and Norvig, 2010, 

Vlachavas et al., 2005): 

 Fully observable vs. partially observable: Whether an agent’s sensors give it 

access to the complete state of the environment at each point in time or not. 

 Deterministic vs. stochastic: If the next state of the environment is completely 

determined by the current state and the effects of the action executed by the 

agent, then the environment is deterministic; otherwise, it is stochastic. 

 Episodic vs. sequential: In an episodic task environment, the agent’s experience 

is divided into atomic episodes. In each of these episodes, the agent receives a 

percept and then performs a single action. Crucially, the effects of the actions 

taken in previous episodes do not affect at all the next episode. 

 Static vs. dynamic: If the environment can change while an agent is 

deliberating, then the environment is considered dynamic for that agent, 

otherwise is considered static. 

 Discrete vs. continuous: The discrete/continuous distinction applies to the state 

of the environment, to the way time is handled, and to the percepts and 

actions of the agent. 

2.5. MULTI-AGENT PLANNING 

A common characteristic of the agents that work together in a multi-agent system is 

the capability of coordination via a communication language so they can communicate 

agreements and solve possible conflicts. A definition of coordination is that it is the 

attribute of a multi-agent system to solve problems in a common environment. Agents 

may coordinate their actions either to succeed a common goal (cooperation) or to 

succeed their individual goals (negotiation) (Vlachavas et al., 2005). 
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As explained in (Russell and Norvig, 2010), when there are multiple agents in the 

environment, each agent faces a multi-agent planning problem in which it tries to 

achieve its own goals with the help (or not) of the others. As discussed in (Vlachavas et 

al., 2005), in multi-agent planning, agents are generating a plan of actions and they will 

solve the problem based on that plan. During the execution, the plan is revised based 

on the new details and results. 

Based on (Vlachavas et al., 2005), there are two types of multi-agent planning: 

 Centralised multi-agent planning, in which a central agent is responsible to 

collect the partial or local plans of the other agents, to combine them in one 

plan and solve any conflicts that may occur. 

 Distributed (a.k.a. decentralised) multi-agent planning, in which all the agents 

communicate with each other to generate their plans and to negotiate any 

possible conflicts. 

2.6. AGENT ARCHITECTURES 

There are several intelligent agents’ architectures that are used in multi-agent systems, 

such as the reactive agents, the deliberative agents, and the belief-desire-intention 

(BDI) agents (Vlachavas et al., 2005). But, depending on the needs of the system, it is 

very common to see hybrid agent architectures, which combine elements from several 

architectures (Russell and Norvig, 2010). 

The deliberative agents (Figure 3, adapted from (Vlachavas et al., 2005)) include an 

internal representation of the environment they exist in, and have knowledge of the 

set of rules that they must obey to, as well as of the set of actions they are able to 

execute. Therefore, they store a state which represents the evolution of their 

environment, as well as the current action they are executing, so they can decide for 

their next action (Vlachavas et al., 2005). 
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Figure 3: Deliberative agent architecture 

The reactive agents (Figure 4, adapted from (Vlachavas et al., 2005)) on the other 

hand, do not store a representation of the environment that they base their reasoning 

on, and they implement a stimulus/response type behaviour based on the current 

state of the environment they exist in. These agents are receiving data information 

from their environment (perception) and, based on the rules they operate by, they 

decide on the action they will choose as a reaction to their perception. Finally, these 

agents do not have an internal memory, meaning that they do not calculate their next 

actions based on previous states of the world (Vlachavas et al., 2005). 

 

Figure 4: Reactive agent architecture 

The belief-desire-intention (BDI) (Figure 5, adapted from (Vlachavas et al., 2005)) 

agents have a more complicated representation of their environment and they plan to 

achieve their goals. Their internal state consists of beliefs, desires, and intentions (i.e. 

the agent’s plans) (Vlachavas et al., 2005). 

 Beliefs are the agent’s view and knowledge of the environment that exists in. 

 Desires are related with the judgment that an agent will make for the future 

states of its environment, for example if a future state is desirable or not. In the 

desire level, the agent doesn’t examine if a desired state is possible, and there 
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is also the possibility that some of the desired states are in conflict with each 

other. 

 Goals are a subset of desires, and this is what the agent acts for. They should 

be achievable, and not in conflict with each other. 

 Intentions are a subset of goals, which an agent tries to achieve at a given 

moment in time. In most cases, it is not possible to achieve all goals at once, 

therefore the agent selects a subset of them, which forms the intentions set, 

based on some hierarchy criteria. 

 Plans are the set of actions that the agent can execute to achieve its intentions. 

 

Figure 5: BDI agent architecture 

2.7. RE-PLANNING 

As discussed in (Doyle, 1996), planning is necessary for the organisation of large-scale 

activities since decisions about actions to be taken in the future have direct impact on 

what should be done in the shorter term. But even if a plan is thoroughly tested and 

well-constructed, its value decays as changing circumstances, resources, information, 

or objectives render the original course of action inappropriate. When changes occur 

before or during the execution of a plan, it may be necessary for a new plan to be 

constructed by either starting from scratch or by revising a previously generated plan. 

Agents acting in complex and dynamic environments must often adjust their plans at 

runtime to avoid potential conflicts with other agents or using resources that are not 

available anymore. According to (Bartold and Durfee, 2003), such conflicts can be 

detected by selectively exchanging and comparing portions of agents’ individual plans, 
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identifying inconsistent expectations, and adding synchronisation actions and/or 

blocking some action choices to ensure conflicts cannot arise. 

Most planners solve each planning task from scratch by solving a series of similar 

planning tasks. Planning is time-consuming and severely limits the responsiveness 

and/or the number of what-if analyses that the planners can perform. To enhance 

their performance, (Koenig et al, 2002) states that re-planning methods that reuse 

information from previous planning episodes to solve a series of similar planning tasks 

are much faster than the approach of solving each planning task from scratch. (Doyle, 

1996) states that “to re-plan effectively in demanding situations, re-planning must be 

incremental, so that it modifies only the portions of the plan actually affected by the 

changes”. 

As discussed in (Charles et al., 2003), a key aspect in the use of planning formalisms in 

storytelling consists in their ability to support re-planning and to offer representations 

embedding the potential for failure, however no solution have been proposed since for 

re-planning in DIS. There is an important gap in the use of re-planning methods in 

existing DIS systems and the proposed research will attempt to fill it. 

2.8. PLANNING ALGORITHMS USED IN DIS 

The following are some of the planning algorithms that have been used in DIS systems, 

listed alphabetically. 

2.8.1. FF (FAST-FORWARD) 

FF (Hoffmann, 2001) is a forward state-space searcher that uses the ignore-delete-lists 

heuristic, estimating the heuristic with the help of a planning graph. It then uses 

enforced hill-climbing search (modified to keep track of the plan) with the heuristic to 

find a solution. When it hits a plateau or local maximum – i.e. when no action leads to 

a state with better heuristic score- then FF uses iterative deepening search until it finds 

a state which is better, or it gives up and restarts hill-climbing (Russell and Norvig, 

2010). FF was created by mixing some novel ideas with features of Graphplan and HSP 

(discussed in sections 2.8.2 and 2.8.3 accordingly) among others (Barros and Musse, 

2007a). 
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Facing a search state S, a relaxed (ignoring delete lists) version of Graphplan is used to 

generate output for heuristic evaluation (the length of the solution plan) and the 

generation of helpful actions. Then, an enforced version of hill-climbing method 

considering only the helpful actions are used to find a solution plan. That is, all the 

direct successors of a state S are evaluated. If none of them has a better heuristic value 

than S, the successors’ successors are evaluated, and so on, until a state S’ with better 

heuristic value than S is found. When such a state is found, the path to it is added to 

the current plan and the search continues with S’ as a starting point. 

In summary, each iteration performs a complete breadth-first search for a state with 

strictly better evaluation. If enforced hill-climbing with helpful actions fails, then a 

best-first search considering all the applicable actions is performed to find a solution. 

2.8.2. GRAPHPLAN  

Graphplan (Blum and Furst, 1997) was the first planning algorithm that converted the 

planning problem into an intermediary data structure called a planning graph. 

Graphplan have moved the field of planning forward by obtaining impressive gains in 

performance compared to previous planning approaches, based on the experimental 

results documented in (Blum and Furst, 1997). Graphplan’s main drawback is that 

although it is an optimal partial-order planner, its input language is quite limited 

(Russell and Norvig, 2010). 

In Graphplan a plan is extracted from a graph. The graph consists of levels of literals 

which could be either true or false, and levels of actions of which the preconditions 

could be also either true or false. The graph is constructed starting at level zero (0) 

where all literals that are currently true are represented; these are true or false 

depending on the initial state and there are no other possibilities. Then, a level of 

actions for which the preconditions hold in the first level is added. This is followed by 

another level of literals that could hold if an action makes it true. Each level of literals 

gives the literals that could possibly be made true at that level depending on choices 

made earlier. Each level of actions gives all actions that could be used at that level 

depending on earlier choices. 
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The Graphplan algorithm creates the graph in steps; if at the current level of literals all 

literals from the goal are present without mutex relations between them, a solution 

plan may exist in the current graph. Otherwise, the graph is expanded by adding a new 

level of actions and a resulting literals level. If the graph possibly contains a solution, 

the algorithm tries to find it. 

2.8.3. HEURISTIC SEARCH PLANNER (HSP)  

Heuristic Search Planner (HSP) (Bonet and Geffner, 2001) uses a STRIPS-based 

representation for problem description and searches the space of states from the 

initial state, using a traditional heuristic search algorithm and a heuristic automatically 

extracted from the STRIPS formulation (Charles et al., 2003). 

HSP is a state space planning approach that can run either forward or backward and is 

much like path-finding.  A state space search planner searches for a path along world 

states to the goals state. A world state can be reached by using an action. A forward 

searching planner starts with the initial state of the world and constructs a list of all 

reachable world states. These possible world states are nodes in the search tree. It will 

then choose one and repeat the process until it reaches a goal state. It will usually 

have a heuristic that gives rules for which node to expand, which world state to try 

first. A good heuristic function is important to make the planning fast. 

The search can also start at the goal state. This is backward or regression planning. 

Regression planning may have a smaller space to search through. A state space planner 

will return a single plan. Actions in the plan are sometimes motivated by the next 

action in the plan but we cannot be sure of this. And sometimes actions are motivated 

by actions that are further along the plan. This is because actions that are in the plan 

are placed in a sequence that will make the preconditions of the actions be satisfied at 

the time they are executed. 

According to (Russell and Norvig, 2010), HSP was the first state-space searcher that 

made state-space search practical for large planning problems. 
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2.8.4. HIERARCHICAL TASK NETWORK (HTN) PLANNING  

Hierarchical Task Network (HTN) based planning (Cavazza et al., 2002), which is also 

known as task-decomposition planning, is among the oldest approaches for providing 

domain-specific knowledge to a planning system. 

An HTN planner solves problems by decomposition. The initial problem statement, the 

initial state and goal are viewed as a single action that must be decomposed into lower 

level actions. On the lower levels, actions are decomposed further until only primitive 

actions remain. There will often be choices available to the planner when choosing 

decomposition for an action. Action decomposition specifies a way to turn an action 

into a plan. 

HTN is based on forward search, and thus can be searched to extract a task 

decomposition corresponding to a solution plan. It is also goal-directed at the same 

time, since the top-level task is the main goal. This brings the unique property that 

during planning itself the state of the world is known at all times (Charles et al., 2003). 

2.9. REPRESENTATION LANGUAGES 

There are different description languages for representing planning problems. The 

following sections contain overviews of some of the representation languages which 

are typically used in planning algorithms. 

2.9.1. STANFORD RESEARCH INSTITUTE PROBLEM SOLVER (STRIPS) 

According to (Russell and Norvig, 2010), the Stanford Research Institute Problem 

Solver (STRIPS) (Nilsson and Files, 1971) was the first major planning system. The 

representation language used by STRIPS was way more influential than its algorithmic 

approach. What we today call the “classical” representation language, is close to what 

STRIPS used. STRIPS use first-order predicate logic, and a world state is represented as 

a conjunction of predicates. 

To describe a planning problem in STRIPS we need an initial state of the world, a set of 

goals that should be achieved, and a set of actions that can be executed to achieve any 



28 
 

goals. According to (Vlachavas et al., 2005), the STRIPS model makes the following 

admissions: 

 Indivisible actions: The actions of the planning problems are indivisible, 

meaning that the state of the world during the execution of an action is 

irrelevant; it is relevant only at the beginning and at the end of the action. Also, 

the execution of an action cannot be interrupted. 

 Deterministic effects: There is no uncertainty for the effects of an action, since 

they are known beforehand. 

 Omniscience: The planning system has complete knowledge of the current state 

of the world, as well as its options (based on the available actions). 

 Closed world assumption: There is no possibility to include new or remove 

existing objects from the system’s world. 

 Static world: The world is modified only as a result of the actions executed by 

the planning system, and not by itself or by the actions of another entity. 

2.9.2. ACTION DESCRIPTION LANGUAGE (ADL) 

The Action Description Language or ADL (Pednault, 1989) relaxed some of the STRIPS 

restrictions and made it possible to represent more realistic problems. Another major 

difference between these planning languages is that, in contrast to STRIPS which uses 

a closed-world model, the open world assumption applies to ADL. ADL also allows 

negative literals, as well as disjunctions. (Russell and Norvig, 2010) 

2.9.3. PLANNING DOMAIN DEFINITION LANGUAGE (PDDL) 

The Planning Domain Definition Language (PDDL) (Ghallab et al., 1998) is the most 

widely used among planning algorithms. PDDL is an action-centred modular language 

and was derived from the original STRIPS planning language which is more restrictive 

than PDDL since, for example, STRIPS preconditions and goals cannot contain negative 

literals (Russell and Norvig, 2010). 

Apart from its relation to STRIPS, PDDL is descended from several forebears (Ghallab et 

al., 1998): ADL (which is included as a PDDL extension), the SIPE-2 formalism, the 
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Prodigy-4.0 formalism, the UMCP formalism, the Unpop formalism, and, most directly, 

the UCPOP formalism. 

As discussed in (Ghallab et al., 1998), PDDL is intended to express the “physics” of the 

domain, i.e. which predicates exist and which actions are possible along with the 

action’s structure and effects. PDDL is neutral in a way that it doesn’t provide any kind 

of “advice” (e.g. which actions to choose to achieve a goal) to the planners using it, 

and as a result of this neutrality, almost all planners will require extending the notation 

in different way. To this end, the language is factored into subsets of features 

(modules) called requirements, so each planner can choose to implement a subset of 

them. 

There have been several versions of PDDL, consecutively extending the language 

expressiveness and features, for example expressing temporal planning domains in 

PDDL 2.1 (Fox and Long, 2003). Its first version was released in 1998 and the latest 

version (i.e. 3.1) in 2008. 

2.9.4. HIERARCHICAL TASK NETWORK (HTN) 

Apart from the planners which are using STRIPS-like languages, there are also 

Hierarchical Task Network (HTN) based planners, which –according to (Lekavy and 

Navrat, 2007)– are based on hand-made hierarchical decomposition of the problem 

domain. The planner is provided with domain knowledge, expressed as the possible 

decompositions of tasks into subtasks. Tasks are categorised to primitive (i.e. directly 

executable) and non-primitive, which have to be decomposed into other tasks. 

Each non-primitive task includes one or more lists of tasks it can be decomposed into, 

and these lists of tasks along with any other restrictions (e.g. precedence of tasks, 

variable binding, mutual exclusions, etc.) comprise a task network. (Lekavy and Navrat, 

2007) 

According to (Lekavy and Navrat, 2007), although the theoretical model of HTN is 

strictly more expressive than STRIPS, both approaches are –in practice– identically 

expressive and can solve all domains solvable by a Turing machine with finite tape. 
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2.10. REVIEW AND CRITICAL ANALYSIS OF EXISTING DIS SYSTEMS  

The following are most of the existing DIS systems that we researched, listed 

alphabetically. 

2.10.1. FABULATOR 

In Fabulator (Barros and Musse, 2005), a planning algorithm is used to generate a 

sequence of actions (an actual story) performed by characters, that is capable to 

transform the system’s world. 

The player controls one character (the protagonist) and every other character is a Non-

Player Character (NPC). All NPC’s actions are determined by the system. 

In DIEGESIS, there is not a main character that the player controls/observes; instead, 

the player can make choices (defined by the storyteller) for actions that can affect 

every character in the active story. Also, the player is allowed to select and view the 

story from the perspective of any of the characters (in the default view mode, the 

story is presented as a whole), and to be able to switch between them without any 

limitations, during the generation of the narrative. 

Fabulator uses a “re-planning from scratch” approach; if an action of the player 

renders the current plan invalid, the system uses the planning algorithm to create a 

new plan. This way, the story is adapted to the player’s actions. 

In DIEGESIS, we have designed and implemented a new re-planning approach, aiming 

to make a minimal disruption to the original plan. We evaluated this approach against 

the approach of planning from scratch, concluding that the new approach has a better 

performance and has no difference in the outcome of the generated story compared 

to the other approach. 

Fabulator’s implementation “treats the planning problem as a state space search 

problem and uses the A* algorithm to solve it”. The creators of Fabulator state that 

there are several planning algorithms specific for STRIPS-like domains that can achieve 

better performance than A*, but for small storyworlds (the result of authoring process 

in DIS) like the one the current implementation uses, performance is not an issue. They 
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also state that the most important shortcoming of their work was its reliance on 

predicate logic to represent the world state. 

In a latter implementation of the system, the Metric-FF planning algorithm is being 

used (Barros and Musse, 2007a). In this implementation, the notion of tension arc is 

being introduced (“the level of tension in a story in function of time results in a curve 

called tension arc”) along with a mechanism that makes the generated stories follow 

an author-defined tension arc. 

2.10.2. FAÇADE 

Façade (Mateas and Stern, 2003) is a 20 minute interactive drama which can be played 

multiple times, where the player has to interact with a couple of NPCs that are 

experiencing marriage issues. According to  (Karlsson et al., 2007), it integrates 

characteristics of both plot-based and character-based approaches. 

Façade consists of a 3D world, believable agents, a broad and shallow natural language 

processing system, and a drama manager. Façade implements a reactive behaviour 

planner that selects, orders, and executes fine-grain plot elements called beats that 

describe action/reaction behaviours that story world characters will perform. The 

drama manager uses this planner to manage the story resulting from the simulation.  

A beat is the smallest unit of dramatic action that moves a story forward. Beats are 

authored by a human author and are given preconditions and effects. The 

preconditions specify when the beat can be applied and the effects specify what the 

result will be in the story state. The set of beats together implicitly defines a narrative 

graph. 

According to (Arinbjarnar et al., 2009), the beats are “explicitly pre-authored, with all 

actions within the beat being fully defined, and the actions of all roles being assigned 

to allow for multi-agent coordination”. 

By traversing the beats in some sequence, which depends on the interaction of the 

human player, the story is moved forward by the drama manager. Because the number 

of different ways in which beats can be sequenced is large the player can experience a 

lot of freedom in what story is experienced. The way the drama manager changes the 
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simulation is by modifying the behaviour of the characters; it adds and removes 

behaviours while the simulation runs. In Façade the number of beats is approximately 

200 and they are used in the rate of once every minute. 

As discussed in (Roberts and Isbell, 2008), due to the level of granularity required to 

author beats and their interactions, a beat-based drama manager seems ideally suited 

to small-world variety dramas (like the one used in Façade). “However, the freedom of 

replayability and authorial control may come at the price of ease of authoring, at least 

for large systems.” 

The characters are programmed using A Behaviour Language (ABL). “ABL is a reactive 

planning language, based on the Oz Project language Hap, designed specifically for 

authoring believable agents - characters which express rich personality, and which, in 

[this] case, play roles in an interactive, dramatic story world”. (Cooper, 2011) 

Façade is the first complete DIS system published. According to (TeessideUniversity, 

2010), its global agency is limited and user's actions (which mainly consist of typed 

text) have little explicit consequence on future developments of the story. 

2.10.3. GADIN 

The Generator of Adaptive Dilemma-based Interactive Narratives (GADIN) (Barber and 

Kudenko, 2009) dynamically generates interactive narratives which are focused on 

dilemmas to create dramatic tension. Its authors claim that the system addresses two 

open challenges: maintaining the dramatic interest of the narrative over a longer 

period and (story) domain independence. 

As described in (Roberts and Isbell, 2008), to construct the narrative, GADIN selects 

among the set of available dilemmas based on an appropriateness estimate, as well as 

based on the frequency with which each particular type of dilemma has been 

employed already. 

Its planner (which is based on the Graphplan algorithm) creates sequences of actions 

that all lead to a dilemma for a character (who can be the user). “The user interacts 

with the storyworld by making decisions on relevant dilemmas and by freely choosing 
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their own actions. Using this input, the system chooses and adapts future storylines 

according to the user’s past behaviour.” 

DIEGESIS includes a concept similar to dilemmas, in the form of “choices”. The 

storyteller (i.e. the person who models the story which is generated and executed by 

DIEGESIS) can mark any kind of action as a choice. When such an action is about to 

occur, DIEGESIS either makes a choice itself, or asks the player to make a choice 

whether the action will happen or not. The idea behind choices in DIEGESIS is that 

important decisions throughout the story should be marked as choices so they can 

potentially alter the outcome of the generated narrative. 

According to (TeessideUniversity, 2010), GADIN “continuously presents the user with 

dilemmas to keep the narrative going“. While in GADIN the generation of dilemmas is 

necessary to keep the narrative interesting and going, DIEGESIS’ stories can be 

generated even without any choices, although –as we already mentioned- the 

storyteller is encouraged to use them since they can potentially have a significant 

impact on the outcome of the generated narrative. 

Although the authors consider other application domains –in (Barber and Kudenko, 

2009) they implemented a finite children’s short story–, as discussed in (Barber and 

Kudenko, 2007), GADIN is best suited for genres which places a particular emphasis on 

stereotypes and clichés, such as soap operas which is the domain the system was 

evaluated on. Comparing the above to our framework, we believe that DIEGESIS is 

both suited for movie-like experiences including relatively long-length finite stories, as 

well as shorter stories, since it provides to the storyteller the flexibility required to 

experiment with multiple genres and lengths of stories. 

(Roberts and Isbell, 2008) argues that authoring a story in GADIN is not easy, since it 

requires STRIPS-like specification of the domain and character specific information, 

which necessitates AI competence. DIEGESIS uses a combination of modelling 

approaches: The storyteller needs to model the game world both in PDDL and in XML. 

To make the authoring process easier, we are using a PDDL editor created by (Cooper, 

2011), and although the authoring process in XML is quite easier compared to PDDL, 

we have designed an XML editor as an extension to the PDDL one. 
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GADIN’s authors have identified that the main problem of GADIN’s planner is that as 

more characters and actions are included, the time spent planning becomes 

unreasonably long; the time increases exponentially with the number of characters 

and the number of actions. On the other hand, neither the number of locations nor the 

number of dilemmas has an impact on the speed. According to (Arinbjarnar et al., 

2009), “with an increased number of actions, dilemmas and characters, the planning 

becomes too slow for a real-time experience of the narrative”; (Roberts and Isbell, 

2008) agrees, stating that “online planning approach can be slow in any sizable 

domain” The authors claim that a potential solution would be the use of a form of 

hierarchical planning. 

During the implementation phase of our research, we have identified that the 

bottleneck of DIEGESIS’ planner is its pre-processing process, i.e. the time needed by 

the planner to pre-generate nodes that are later used in the actual planning and re-

planning process. Our planner only needs to pre-process the information of a level 

once and then the pre-processed information can be reused in any planning and re-

planning episode of that level. Therefore, any delay due to the pre-processing will only 

affect the loading time of the level, and not the experience of the player while 

executing the level. 

The results of the evaluation we document in section 6.5.5 show that DIEGESIS is 

capable of generating and executing a large and complex story containing several 

characters in a very short amount of time, making the framework suitable to be used 

for the purpose of DIS. 

As it is mentioned by its authors, GADIN is performing re-planning, but there are not a 

lot of details for its mechanics. According to (Paul et al., 2010, Paul et al., 2011), if the 

player’s actions move too far away from the goal state or they make the story goal 

improbable, GADIN randomly selects a new story goal and reveals it to the player. This 

new story goal does not involve any further player actions; all further actions are 

carried out by NPCs. 

The system performs continuous planning in a thread using a global planning graph, so 

the re-planning can be faster, and performs a centralised planning for all the agents 

operating in the system. 



35 
 

In contrast, DIEGESIS performs a decentralised planning; each agent is generating a 

plan based on its own goals, and then tries to execute it. The framework deals with the 

execution of the agents in a higher level, and when a part of the plan fails, instructs the 

agent to re-plan based on its current knowledge of the state of the world. We believe 

that this provides a more realistic approach to the generation of a story, since each 

agent acts as a real person, generating an autonomous plan considering its own needs. 

2.10.4. I-STORYTELLING 

The Interactive Storytelling approach described in (Cavazza et al., 2002) and (Charles et 

al., 2003) is character-based supporting user interventions at any time. The graphic 

environment of the system was based on the Unreal™ game engine and the scenario 

used is inspired from the popular sitcom Friends™. 

The first prototype of the system (Cavazza et al., 2002) includes four autonomous 

agents/characters, and is able to generate short stories up to three minutes in 

duration, with approximately one “beat” (Mateas and Stern, 2003) per minute. 

According to (Barber and Kudenko, 2009), a longer narrative is not easy to accomplish 

due to the large amount of content and ordering predefinition required. As further 

discussed in (Paul et al., 2009), each character has a number of context-specific 

subtasks, therefore careful authoring of each character’s task network is needed to 

ensure that an interesting narrative will occur. The character roles are designed a priori 

for the story, therefore the actions that a character can take are scripted for a 

particular role; character’s roles are pre-selected at design time for a particular story. 

As discussed in  (Karlsson et al., 2007), “the main doubt about pure character-based 

approached is to what extent dramatic and engaging narratives may actually result. 

The task seems to be easier with genres like sitcoms, wherein the climax of a story is 

not so clearly distinguishable.” 

The user of the system can wander in the 3D world as an invisible avatar and interact 

with key objects, and can make suggestions (using a speech recognition interface) to 

NPCs, which may or may not be followed (Arinbjarnar et al., 2009). According to (Paul 

et al., 2010), “plot coherence is ensured by allowing only NPC actions related to the 

on-going story”. 
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Hierarchical Task Networks (HTNs) are being used since the characters’ roles can be 

represented in a consistent fashion as such. A single HTN corresponds to several 

possible decompositions for the main task therefore an HTN can be seen as an implicit 

representation for the set of possible solutions. 

The search algorithm that produces a suitable plan from the HTN searches the HTN 

depth-first left-to-right and executes (or at least attempts to execute) any primitive 

action that is generated. Backtracking is allowed when these actions fail. In addition, 

heuristic values (which are used to represent narrative concepts as well) are attached 

to the various sub-tasks, so forward search can make use of these values for selecting a 

sub-task decomposition. 

Any agent’s action will in turn trigger re-planning. This is implemented using the search 

mechanism of the HTN planner by back-propagating the failure of the action to the 

corresponding sub-goal, so search will backtrack and produce an alternative solution. 

Another planning formalism that was used in a second implementation (Charles et al., 

2003) of the same scenario (for comparison reasons) was HSP. Compared to the HTN 

implementation, HSP offers greater flexibility in the definition of action and more 

variability in the stories generated while HTN offers clear authoring principles and a 

global vision of the baseline plot. 

According to (TeessideUniversity, 2010), the system’s strong points are the general 

nature of the HTN-based planning system, the dramatization of narrative situations 

and the user interactions' influences on the unfolding of the narrative in real-time, 

while its limitation is the lack of control over the quality of the narrative generated. 

In (Charles et al., 2003), the authors mention that HTN is not a good solution when it 

comes to re-planning, and they switched to the HSP algorithm, claiming that it 

provides a better re-planning solution. The actual mechanics of re-planning are not 

described though. Based on the provided examples, the factors which can trigger re-

planning are usually user interference or the availability of a resource. 

In our framework, user interference is just one of the options which can trigger re-

planning. Since each agent operates as an individual, generating its own plans as we 

explained before, it is very common for an agent’s plan to interfere with a plan of 
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another agent, causing the latter to re-plan. The interference can be something simple 

such as the availability of a resource, or even something more complicated, like the 

death of a character (represented by an agent), which can potentially have a huge 

impact to the whole story, altering significantly the agent’s goals, therefore their plans. 

2.10.5. LOGTELL  

LOGTELL (Karlsson et al., 2007) is a storytelling system based on modelling and 

simulation. Its model includes typical events and goal-inference rules and tries to 

conciliate both plot-based and character-based modelling. Successive cycles of goal-

inference, planning, plan recognition and user intervention are used to generate plots. 

Typical events are described by parameterised operations with pre-conditions and 

post-conditions so that planning algorithms can be used for plot generation while, on 

the other hand, the goal-inference rules model the behaviour of the various actors 

providing some character-based features. The rules specify how situations can bring 

about new goals for each character. 

In LOGTELL, the stories are told with a third-person view-point, and user intervention is 

always indirect. That means that during the simulation the user can either let the 

partially-generated plots that seem interesting to be continued, or try to enforce the 

occurrence of situations and events. But, these interventions might be rejected by the 

system whenever it finds no valid way to change the story to accommodate the 

intervention. According to (Barber and Kudenko, 2007), the resulting story is 

graphically presented at a lower level, without any possible user interaction. 

In DIEGESIS, as we already mentioned, the storyteller (i.e. the person who models the 

story) can mark any kind of action as a choice, which is the way the player can interfere 

with the story. User interferences are always accepted by DIEGESIS and they affect the 

generation and execution of the story in real time so the user will be able to form the 

story in the way she wants, no matter how much impact they have on the generated 

narrative. 
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The planning tool used is a non-linear planner implemented in Prolog, adapted from 

others’ work with extensions. The use of a non-linear planner is justified as it seems 

more suitable because it uses a least-commitment strategy. 

The generation of a plot starts by inferring goals of characters from their initial 

configuration. Then, the system uses the planner that inserts events in the plot in 

order to allow the characters to try and fulfil their goals. When the planner detects 

that all goals have been either achieved or abandoned, the partial plot is generated 

and presented to the user and can be optionally dramatized. If the user does not like 

the partial plot, an alternative can be generated. If the plot is accepted, the process 

continues by inferring new goals from the generated situations. If new goals are 

inferred, the planner is activated again to fulfil them. The process alternates goal-

inference, plan generation/recognition and user interference until the moment the 

user decides to stop, or no new goal is inferred. In the goal-inference phase, forward 

reasoning is being used, where in the planning phase, an event inserted in the plot for 

the achievement of a goal might have unsatisfied preconditions, so they are checked 

via backward reasoning. 

The authors argue that combining goal inference, plan generation/recognition and 

user participation constitutes a promising strategy towards the production of 

entertaining and coherent plots, but on the negative side, plan generation is limited by 

computational complexity considerations. They also mention that “modern and post-

modern genres with their emphasis on a more radical transgression of any conventions 

should not be so easy to formalise in a systematic way”. 

2.10.6. MIMESIS 

The Mimesis (Riedl et al., 2003, Young and Riedl, 2003) system defines an architecture 

for building and coordinating interactive adaptive narratives. According to (Arinbjarnar 

et al., 2009), it is designed as a general architecture, therefore it should work with any 

game engine. 

Mimesis uses two planners; the narrative planner, which is responsible both for 

determining the actions that will occur within the virtual environment as the story 

unfolds and for modifying the plan during the story’s execution when the player’s 
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actions deviate substantially from the story’s intended structure; and the discourse 

planner, which is responsible for selecting the communicative techniques that will be 

used to convey the unfolding action to the player. Both planners use the Longbow 

planning system, a hierarchical partial-order causal link planner that can produce plans 

both for physical actions as well as communicative ones. 

The narrative planner takes as input a declarative representation of all the actions that 

are applicable in the virtual world as well as a specification of the goals for the end of 

the story. The narrative planner searches for a story plan, which is a sequence of 

actions which will be carried out by the characters in the story (including the character 

controlled by the player) and will both satisfy the goals of the story and provide an 

engaging narrative arc. 

The discourse planner takes as input the story plan generated by the narrative planner 

and a library of communicative actions that can be used by the game engine to convey 

the unfolding action of the story. Then, the discourse planner creates an action 

sequence containing directives to be carried out not by characters in the story world 

but by the game engine’s interface resources and intended to be executed 

concurrently with the story plan itself. 

Mimesis deals with re-planning in the following way (Mateas and Stern, 2003): It 

monitors the story world for potential player actions that might threaten causal links in 

the current story plan. When threat is detected, the system either generates a new 

plan which accommodates the player’s potential action while still accomplishing the 

story objectives, or intervenes by causing the player action to fail and thus protect the 

threatened causal link. According to (Paul et al., 2011), if Mimesis fails a player’s 

action, she will be given a pre-authored reason for the failure (e.g. a gun jamming 

preventing the player from killing an important character). 

(Roberts and Isbell, 2008) claim that re-planning in Mimesis is expensive in any sizable 

domain. Because of that, Mimesis builds re-planning policies in an opportunistic 

fashion; when processing demands are low, the system pro-actively computes policies 

for plans other than the one that is currently executing. 
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In contrast, DIEGESIS interleaves plan generation and plan execution, therefore re-

planning is happening in real time during execution for each individual agent when is 

required. Furthermore, based on our evaluations, the re-planning solution we created 

does not suffer from performance issues. 

2.10.7. MIST 

Multiplayer Interactive StoryTelling (MIST) (Paul et al., 2009, Paul et al., 2010, Paul et 

al., 2011) is “a system for interactive storytelling in a dynamic virtual world where 

NPCs can perform tasks autonomously to satisfy their internal motivations, as well as 

interacting with each other in various ways”. It uses AI planning methods for story 

creation and revision and character role selection. The system’s proposed architecture 

has two main components: a game engine and a drama manager. 

The game engine handles the display and update of game world objects and also 

interacts with characters and the drama manager. Each character in the game 

operates under a Belief-Desire-Intention (BDI) framework and has its own HTN planner 

in order to facilitate the creation of a dynamic game world where characters can 

interact with each other in a non-deterministic way. 

Generally, characters use their planners to decide how to perform tasks or achieve 

goals assigned to them by either the drama manager or the game engine. Characters 

also convert their local knowledge (acquired by sensors) into a partial game state 

representation for use by its planner. The planner uses this information to guide the 

decomposition of an assigned task into primitive tasks whose preconditions are known 

to be satisfied. All possible plans generated by the planner are ranked in order of 

decreasing plan cost; in case there is more than one possible plan, the planner returns 

one that minimises the total cost of all primitive tasks in the plan. 

The drama manager has a hierarchical network of story elements, which can be pieced 

together in different ways to form a story. The current state of the game world is 

passed to the drama manager periodically from the game engine. Then, the drama 

manager attempts to create a story that fits the current state of the world via its HTN 

planner, and the network of story elements. The authors argue that using an HTN 

planner in this way (i.e. as part of the drama management subsystem) could 
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potentially enable the creation of many story variants based on the state of the world 

at a particular time. 

In MIST, NPCs that have been assigned roles in a story plan are prevented from 

disrupting the story by being prevented to attempt to achieve their internal desires 

while the story is in progress. When it detects an invalid plan step resulting from the 

actions of non-story characters in the story plan, the drama manager attempts to 

repair the on-going story. The repaired plan is required to be consistent with the steps 

that have already been completed in the original plan. 

The authors have considered two different approaches to detecting invalid plan steps 

while a story is in progress: The first is to look one step ahead to check that the 

preconditions of the next plan step are satisfied. An important limitation of this 

approach is that because of commitments made by characters close to the point of 

(potential) failure, a consistent plan repair may not be possible. 

The second approach is that the drama manager continuously checking the 

preconditions of all future plan steps. This kind of detection increases the chance of 

finding a consistent plan repair because it enables the drama manager to avoid 

commitments being made by story characters close to the point of failure; therefore it 

is more likely to find a consistent plan repair that bypasses the invalid step. This 

approach applies though only to situations where a plan step is made invalid by the 

deletion of a precondition that was true in the initial state from which the story was 

generated; it does not apply to situations where a plan step is made invalid by the 

deletion of a precondition achieved by an earlier plan step. 

The approach that they ended up using removes the unsatisfied precondition from the 

initial state and uses the HTN planner to search for an alternative story plan that 

begins with the same steps as the original plan, up to (and including) the most recent 

step that has already been completed. The new story plan is both consistent with the 

original plan and generated from the same (correctly authored) HTN, thus ensuring 

that plot coherence is maintained. 

In DIEGESIS, we have modelled our agents (representing characters in the story) to be 

autonomous and opportunistic, generating and trying to execute plans considering 
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only their own needs, as we believe that this provides a more realistic approach to the 

generation of a story, since each agent acts as a real person. Therefore, in our context 

it does not make sense to predict and prevent plan failures since a plan can fail either 

due to user intervention (which cannot be predicted), or intervention by other 

characters, or –in some cases– pure chance (discussed in section 4.10). In any case, 

failed plans due to “unpredicted” reasons are realistic and have the potential to enrich 

a generated narrative. 

Another difference between MIST and DIEGESIS is in the way we deal with plan repair. 

In our re-planning solution, as we interleave plan generation and plan execution, when 

a plan fails, we discard the already completed actions and we only re-plan for the 

failed (and some of the pending – discussed in detail in section 4.14) actions of the 

plan, merging the new partial plan with the unexecuted portion of the original plan. 

Finally, situations like these described by MIST in which “a plan step is made invalid by 

the deletion of a precondition achieved by an earlier plan step” are not applicable in 

DIEGESIS, since it is not possible to generate a valid plan where the effects of a 

previous action renders a future action (in the same plan) invalid. 

Although the system was designed to use a set of HTN planners, in the initial 

implementation of the system (Paul et al., 2009) the authors used JPlan, a Java 

implementation of Graphplan, as the planning component of the system. As they 

explain, they needed a Java implementation of an algorithm for their first prototype, 

and JSHOP2 which is the most popular Java-based HTN planner had limitations when it 

comes to real-time planning that was needed in the system. 

Although that the algorithm is efficient and optimal, it has been identified by the 

creators of the system to have limited features for the purposes of their research. It 

was also stated that “the lack of expressivity in the operator input language restricted 

scalability”. The creators decided that, given the limitations of the graph planning 

algorithm, the most flexible solution would be the creation of a HTN planner in a 

subsequent implementation of the system, which they did in (Paul et al., 2010), 

implementing an HTN planner written in Prolog. 
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2.10.8. OTHELLO  

Othello (Chang and Soo, 2009, Chang and Soo, 2008) is a multi-agent simulation game 

environment where narratives arise on the fly from spontaneous interactions among 

characters during the game. 

An agent-based and plan-based storytelling approach has been used and assumes that 

plans serve as a proper representation of narratives and that a narrative is the result of 

plan execution by individual AI characters. A simulation session is considered to 

contain multiple autonomous planning agents who are given mental states, personality 

traits and social relations. Narratives are expected to be the total sequence of actions 

in the plans that the agents make and execute. 

Othello’s character plans embody the sociality of narratives, and are called social 

plans. A social plan realises a common narrative idiom that a character works to bring 

change to another character. Although a persistent game universe can develop 

intertwining narrative units where multiple characters exist (with all of them having 

their own social plans), Othello limits the focus on generating separate narrative units, 

each of which have a main character who is the builder of the social plan. A narrative 

unit is considered to be the result of the execution of a social plan. 

As an example of the size of a social plan, the authors mention that the simplified plot 

of Shakespeare’s Othello (i.e. the manipulative scheme of Iago against Othello) that 

they used in their simulations can be viewed as one social plan. 

To generate these social plans and allow NPC agents to engage in story-like activities 

by influencing others during a game session, Othello uses HSSP (the authors mention 

that in a previous version of the system they were using the Optop planner), a 

planning tool which interleaves social reasoning with state-space forward-search 

planning, guided by an adapted version of the HSP heuristic. As the authors explain, 

“apart from the heuristics part, the planning process itself is a normal forward search 

into the state space”. 

Finally, the authors discuss that although the scalability of the total narrative length is 

not within the scope of their research, their findings suggest a negative 
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correspondence between the number of actions and the social plan length using a 

classical planning approach like HSSP. 

2.10.9. PASSAGE 

PaSSAGE (Player-Specific Stories via Automatically Generated Events) (Thue et al., 

2007) is an interactive storytelling system that “uses player modelling to automatically 

learn a model of the player’s preferred style of play and then uses that model to 

dynamically select the content of an interactive story”. PaSSAGE uses a plot-based 

approach, including personalisation of the narrative experiences in the form of 

selection of events which matches the player preferences. 

According to (Roberts and Isbell, 2008), the system uses a three level hierarchy for 

defining a narrative similar to the idea of Façade’s narrative sequencing: “the event 

sequence level where the components of the story are selected; the structure level 

where the details concerning the time and place of story events are determined; and 

lastly, the behaviour level where the actions of individual characters are determined”. 

PaSSAGE uses some pre-defined player types (Fighter, Method Actor, Power Gamer, 

Storyteller, and Tactician) and during gameplay, it learns a player model expressed as 

weights for each of the above player types. PaSSAGE generates its stories using a 

library of possible events, called encounters, each of which has been pre-filled by an 

author with a number of possible events that would be suitable for each player type. 

Each encounter has one or more branches (i.e. potential courses of action for the 

player to take in that situation). The encounters follow a particular order depending on 

their type (Arinbjarnar et al., 2009). As it is mentioned in (Roberts and Isbell, 2008), 

this approach makes the stories hard to author, since it requires exhaustive and rich 

annotations of many sub-plots. 

While searching for an encounter to run, the system examines each encounter’s set of 

branches, and chooses the encounter whose branch fits the player model the best, via 

an inner-product calculation. Also, to help maintain a strong sense of story, encounters 

are grouped into sets. 
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The system is independent of time, place, and actor identity since the encounters are 

scripted generically and their details (e.g. when and where an encounter should occur) 

are determined at runtime. 

As an experiment, the authors modelled a modified version of the fairy tale “little red 

riding hood” and visualised using the toolset provided by the role playing game 

Neverwinter Nights. Their finalised model consists of 20 possible lines of gameplay 

called paths, with five different endings. 

According to (Barber and Kudenko, 2009), the player model used in PaSSAGE is less 

likely to be applicable in less computer game-oriented domains, since it is based 

specifically on computer game players. 

2.11. DIS SYSTEMS COMPARISON 

The following table (1) provides an overview of the features of the related DIS systems 

discussed in the previous section. The presented features are the following: 

 Story Model: The story model of the system, which (as discussed in section 2.1) 

can be either character-based, or plot-based, or a combination of both. 

 Type of Planning: Either centralised, meaning that the system’s planner 

generates a combined plan for all of the involved agents, either decentralised, 

meaning that each of the agents generate its own plan. 

 Re-planning: Whether the system performs re-planning or not. 

 Planning Algorithm: The planning algorithm used to generate plans of actions. 

 Representation Language: The representation language used to model the 

story world. 

 Perspective: Whether the stories are presented via a first-person perspective, 

i.e. the player experiences parts of the story which are related to one character, 

or via a third-person perspective, i.e. the player can experience the story 

irrelevant of a main character. 

 Interactivity: How the end-user can interact with the system. 

 Extendibility: If the system provides tools to connect it with other systems, or 

generate new stories. 

 Audience: The types of audience the system is designed for. 
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DIS System Story Model 
Type of 

Planning 
Planning 

Algorithm 
Representation 

Language 
Re-planning Perspective Interactivity Extendibility Audience 

Fabulator Plot-based Centralised 
Initially A*, 

then Metric-
FF 

Initially STRIPS 
& ADL, then 

PDDL 

Yes, from 
scratch 

First-
person 

Player controls 
only 

protagonist; 
the rest are 

NPCs 

No 
authoring 
tools; the 
PDDL files 

can be 
modified 

General 

Façade 

Plot-based 
with some 
character-

based 
elements 

No 
information 

Reactive 
behaviour 

planner 
ABL 

No 
information 

First-
person 

Player controls 
only 

protagonist; 
the rest are 

NPCs 

No tools for 
extendibility 

Adults 

GADIN 
Character-

based 
Continuous 
centralised 

Adaptation 
of 

Graphplan 
STRIPS-like 

Yes, without 
information 

about its 
mechanics 

Third-
person 

Player input to 
resolve 

dilemmas 

No tools, 
new stories 
are possible 

but they 
need to be 
hard coded 

Soap opera 
fans and 
children 

I-
Storytelling 

Character-
based 

Initially 
decentralised, 

then no 
information 

Initially HTN 
(depth-first 
left-to-right 
search with 
heuristics), 
then HSP 

Initially HTN, 
then STRIPS-

based 

 
Yes, initially 

by 
backtracking 
in the HTN, 

then 
without 

information 
about its 

mechanics 
 

Third-
person 

Player can 
wander in the 
3D world as an 
invisible avatar 

and interact 
with objects; 

speech input to 
provide advice 

to NPCs 

No 
information 

Sitcom fans 
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LOGTELL 

Plot-based 
with some 
character-

based 
elements 

Centralised 
Non-linear 
planner in 

Prolog 
Prolog 

No 
information 

Third-
person 

Indirect/passive 
interaction 

No tools 
available 

Anyone 
(depending 

on story) 

Mimesis Plot-based Centralised 
Longbow 
planning 
system 

No information 

Yes, 
monitors 

game world 
for threats 
and builds 
solutions 

pro-actively 

First-
person 

Player controls 
only 

protagonist; 
the rest are 

NPCs 

No 
information 

No 
information 

MIST 
Character-

based 
Decentralised 

Initially 
Graphplan, 
then HTN 
written in 

Prolog 

Initially STRIPS, 
then Prolog 

Yes, by 
trying to 

predict and 
repair in 

advance a 
potentially 
invalid plan 

Third-
person 

No information 
No 

information 

Computer 
game 

players 

Othello 
Character-

based 
Decentralised 

 
HSSP (state-

space 
forward-
search 

planning, 
guided by 

an 
adaptation 

of HSP) 
 

PDDL No 
No 

information 
No information 

No 
information 

No 
information 
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PaSSAGE Plot-based 
No 

information 
No 

information 
No information 

No 
information 

First-
person 

Player controls 
only 

protagonist; 
the rest are 

NPCs 

No 
information 

Computer 
game 

players 

DIEGESIS Hybrid Hybrid 

New 
planner 

based on 
Graphplan 

PDDL and XML 

Yes, 
interleaving 

plan 
generation 

and plan 
execution 

Both first 
and third-

person, 
including 
vantage 
points 

Player can 
make choices 

for any 
character or 

event 

PDDL and 
XML editors 

Anyone 
(depending 

on story) 

Table 1: Feature sets of Digital Interactive Storytelling systems
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In the previous section we reviewed and critically analysed 9 state-of-the-art DIS 

systems and in Table 1 we combined and presented a set of their features (analysed at 

the beginning of this section) for comparison purposes. 

Regarding story models, 4 of the systems (GADIN, I-Storytelling, MIST, and Othello) are 

using a pure character-based approach and 3 of them (Fabulator, Mimesis, and 

PaSSAGE) a pure plot-based approach. The remaining 2 systems (Façade and LOGTELL) 

claim that they are using a plot-based approach combined with some character-based 

elements. 

DIEGESIS uses a hybrid approach, combining both plot-based and character-based 

elements. More specifically, as we will discuss in section 4.1, the game world (created 

by a storyteller) is organised in multiple levels which can represent possible parts of a 

story. Typically, a level represents a broad area where a number of events in a story 

may occur. The levels are organised in a hierarchical manner; each level may include 

potential successor levels which have a logical connection with it. As soon as a level is 

complete, the framework makes an informed decision and based on what happened 

previously during the generation and execution of the story, either loads a new level or 

ends the story (the detailed process is discussed in section 4.7). Using this plot-based 

approach, DIEGESIS always has a high-level control over the overall structure of the 

story, being able to transition the story between levels which make sense, producing a 

coherent narrative. 

The authors of (Carmichael and Mould, 2014) designed a framework focusing on 

deciding which scenes (a concept similar to DIEGESIS’ levels) to offer to players next. 

They use a similar plot-based approach and their framework “uses simple calculations 

to prioritise scene nodes”. Their scenes (which are designed beforehand by a 

storyteller) are loosely connected to each other and they include values that can be 

modified during runtime to prioritise them over others, as well as preconditions that 

need to be met so the scene can be applicable. 

The main difference between that framework and DIEGESIS’ transitioning component 

is that in (Carmichael and Mould, 2014)’s framework, when a scene is complete the 

player is presented with the potential scenes and is asked to select which one she 

wants to execute next, knowing beforehand the content of each scene, a concept 
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similar to the quests included in role playing games. In contrast, DIEGESIS’ transitioning 

component makes the choice of which level to execute next itself based only on what 

happened previously in the story and the preconditions set by the storyteller for each 

level, something that we believe it adds both to the generation of a coherent narrative 

and to the emotion of unexpected of the player since she does not know what will 

happen next based on choices she made during the execution of the story. 

Continuing with the story model discussion, in DIEGESIS, when a level is loaded to be 

executed, we move closely to a character-based model; each agent may have some 

initial intentions, but is able to operate autonomously and opportunistically to achieve 

its goals. The framework won’t interfere with the decisions of an agent (even if they 

are imposed by the player or the Oracle – discussed in section 4.10) even if they mean 

that the story cannot progress any further, although –in the bottom line– that is based 

on the story modelling performed by the storyteller. The authoring process in DIEGESIS 

provides enough freedom to the storyteller to operate whichever way she wants; 

either to create a relatively rigid storyline without much room for highly diverse 

narratives, or to model a story in a way that everything is fluid; a lot of player/oracle 

choices, several potential goal injections based on actions that may occur, and several 

uncertain actions; all of these features can contribute to unexpected situations and 

more emergent narratives. 

Moving to types of planning, 4 systems (Fabulator, GADIN, LOGTELL, and Mimesis) are 

performing a centralised planning, 3 systems (I-Storytelling, MIST, and Othello) a 

decentralised planning, and the rest 2 systems (Façade and PaSSAGE) do not provide 

any information about it. 

DIEGESIS follows a hybrid approach. On the plan generation level, it performs a 

decentralised planning; each agent (represents a character in the story) is modelled to 

be autonomous, opportunistically generating and executing plans based on its own 

goals. We believe that this provides a more realistic approach to the generation of a 

story, since each agent acts as a real person, generating an autonomous plan 

considering its own needs. 

In the case of plans execution though, our approach borrows the control and 

coordination concepts from the centralised planning approach. Although the plans are 
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individual, we want DIEGESIS to dictate the execution phase of the agent’s plans 

(therefore the generation of the story) so the system can have a better control and 

understanding of what happens during the generation/execution of the story, and to 

be able to interfere if needed. 

The systems use a variety of planning algorithms. Fabulator’s initial implementation 

was using A*, but then moved to Metric-FF. GADIN uses an adaptation of Graphplan. 

MIST’s initial implementation, although it was designed for HTN, used also a Java 

implementation of Graphplan, but afterwards its authors created an HTN planner 

written in Prolog. LOGTELL uses a non-linear planner written in Prolog as well, and 

Mimesis the Longbow planning system. I-Storytelling’s initial implementation was 

using an HTN planner (using depth-first left-to-right search with heuristics), but since 

moved to HSP. Othello uses HSSP, which is a state-space forward-search planning 

system, guided by an adaptation of HSP. Façade uses a reactive behaviour planner, and 

finally, PaSSAGE does not provide information about its algorithm. 

For DIEGESIS, we have created a planner which consists of a planning and a re-planning 

algorithm, able to generate plans of actions based on each agent’s state and context, 

considering both the current world state and the available resources. The planner is 

aware of the available time (duration) an agent/character has for a plan when it is 

asked to generate one. Our planning algorithm is based on Graphplan for solutions 

expansion, and backtracking heuristic search for plan extraction, enriched with 

constraints satisfaction and dynamic opportunistic restart when required. The Planner 

is discussed in detail in section 4.14. 

Regarding representation languages, most of the systems (Fabulator, GADIN, I-

Storytelling, MIST, and Othello) use –or used in some of their versions– either the 

STRIPS language or adaptations of it, or languages derived from it like ADL and PDDL. A 

couple of systems (LOGTELL and the second version of MIST) represent their 

storyworlds in Prolog, the same language their planner is implemented with. Finally, 

the first version of I-Storytelling was modelled using an HTN representation, Façade 

uses ABL, and a couple of systems (Mimesis and PaSSAGE) do not provide such 

information. 
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DIEGESIS uses a combination of modelling approaches: The basic information for every 

level of a story is modelled using PDDL and further information such as information for 

each character, goal injection rules, choices and their fall-backs, etc. in XML. All the 

representation information including examples is documented in chapter 4. 

In terms of re-planning, 3 systems (Façade, LOGTELL, and PaSSAGE) provide no 

information whether they support re-planning or not, Othello doesn’t support re-

planning, and GADIN mentions re-planning without giving much information about its 

mechanics. The rest implement different re-planning approaches: Fabulator re-plans 

from scratch; I-Storytelling by backtracking in the HTN; and both Mimesis and MIST 

pro-actively, trying to predict and repair faulty plans in advance. 

DIEGESIS deals with the execution of the agents’ plans in a higher level, and when a 

part of a plan fails, instructs the agent to re-plan based on its current knowledge of the 

state of the world. Considering that we modelled each agent to act as a real person in 

the way they generate and try to execute plans, it does not make sense (in our 

context) to predict and prevent plan failures, since a plan can fail either due to user 

intervention (which cannot be predicted), or intervention by other characters, or –in 

some cases– pure chance (discussed in section 4.10). In any case, failed plans due to 

“unpredicted” reasons are realistic and have the potential to enrich a generated 

narrative. 

In our re-planning solution, as we interleave plan generation and plan execution, when 

a plan fails, we discard the already completed actions and we only re-plan for the 

failed (and some of the pending – discussed in detail in section 4.14) actions of the 

plan, merging the new partial plan with the unexecuted portion of the original plan. 

Regarding perspectives, Othello does not provide information about it, half of the 

remaining systems (Fabulator, Façade, Mimesis, and PaSSAGE) use a first-person 

perspective to present their stories to the player, while the other half (GADIN, I-

Storytelling, LOGTELL, and MIST) use a third-person perspective. 

In its default mode, DIEGESIS presents the generated story as a whole. At any point 

during the generation of the story the player is able to view any action that a character 
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is executing, make choices related to any character, as well as view details about them 

(i.e. their current goals and plan). These abilities constitute a third-person perspective. 

But, apart from the default mode, we want to provide the player with a first-person 

perspective as well, that’s why we created the concept of vantage points (discussed in 

detail in section 4.12). If the player selects to view the story from the vantage point of 

a character she will view only the story outcome which is related to the chosen 

character, and will be available to interact with the story (i.e. make choices) only when 

an action is related to the story character. The generation of the rest of the story 

(which is unrelated to the selected character) will continue normally in the background 

(with the exception that any choices concerning other characters supposed to be made 

by the player will be made by the Oracle instead), yet invisible to the player. The player 

is able to choose between different vantage points or return to a full story view freely 

during run-time, allowing linear storyline with differing endings, interleaved storylines, 

and even flashbacks. 

In terms of interactivity, in most of the systems (Fabulator, Façade, Mimesis, and 

PaSSAGE) the player is able to control only the protagonist; the rest of the characters 

are NPCs. In GADIN, the only player input is to resolve dilemmas. In LOGTELL there is 

only indirect/passive interaction during the generation of a narrative; in the 

dramatization phase there is no user interaction. In I-Storytelling, the player is able to 

wander in the 3D world as an invisible avatar and interact with objects, as well as to 

provide advice to NPCs via speech input. Finally, MIST and Othello does not provide 

any information on interactivity. 

In DIEGESIS, there is not a main character that the player controls/observes; instead, 

the player can make choices (defined by the storyteller) for actions that can affect 

every character in the active story. Also, as we already explained before, the player is 

allowed to select and view the story from the perspective of any of the characters (in 

the default view mode, the story is presented as a whole), and to be able to switch 

between them without any limitations, during the generation of the narrative. 

As we just mentioned, DIEGESIS includes a concept similar to GADIN’s dilemmas, in the 

form of “choices”. The storyteller can mark any kind of action as a choice. When such 

an action is about to occur, DIEGESIS either makes a choice itself, or asks the player to 



54 
 

make a choice whether the action will happen or not. The idea behind choices in 

DIEGESIS is that important decisions throughout the story should be marked as choices 

so they can potentially alter the outcome of the generated narrative. User 

interferences are always accepted by DIEGESIS and they affect the generation and 

execution of the story in real time so the player will be able to form the story in the 

way she wants, no matter how much impact they have on the generated narrative. 

Regarding the extendibility of the systems, the information provided by the systems 

themselves is scarce. According to (Cooper, 2011), Fabulator has source files for the 

planner which can be modified but no editors or source code distribution, Façade is 

not designed to be modified therefore there are no tools available, GADIN provides no 

tools but new stories are possible if hard coded, and LOGTELL has no tools available. 

The rest of the systems (I-Storytelling, Mimesis, MIST, Othello, and PaSSAGE) do not 

provide such information. 

To make the authoring process easier for DIEGESIS, we are using a PDDL editor created 

by (Cooper, 2011), and although the authoring process in XML is quite easier 

compared to PDDL, we have designed an XML editor as an extension to the PDDL one. 

Finally, regarding audience: Fabulator has a general audience; Façade’s audience is 

adults; GADIN fits best soap opera fans (and possible children based on a children story 

they modelled); I-Storytelling’s audience is sitcom fans (since they modelled situations 

based on the famous sitcom Friends™); LOGTELL’s audience can be anyone depending 

on the story; MIST’s and PaSSAGE’s audience is computer game players; Mimesis and 

Othello does not provide enough information to categorise them. 

We believe that DIEGESIS is both suited for movie-like experiences including relatively 

long-length finite stories, as well as shorter stories, since it provides to the storyteller 

the flexibility required to experiment with multiple genres and lengths of stories. 

Therefore, DIEGESIS’ audience could be anyone, depending on the story. 

2.12. RE-PLANNING OUTSIDE OF THE DIS FIELD 

Moving away from the DIS field, there is research dealing with re-planning in several 

different fields, using multiple approaches. 
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For example, in (Zhang et al., 2007) a distributed graph planning algorithm is used by 

the agents to generate a plan collectively in a distributed manner, and re-plan 

accordingly. As we previously mentioned, DIEGESIS instructs each agent to generate 

and execute a plan individually. If at any point during execution the plan fails, re-

planning occurs only for an individual agent. 

A hybrid FastForward and HTN re-planning approach is explained in (Klusch et al., 

2005, Klusch and Renner, 2006), in which the re-planning is being performed off-line. 

In (Van Der Krogt and De Weerdt, 2005), the re-planning approach is to generate a 

number of sub-plans (by removing actions from the initial plan), and then calculate 

heuristic values for each one of them to decide which is the best candidate to expand, 

so a new valid plan can be constructed. 

In (Fox et al., 2006), the authors use a solution based on LPG algorithm and investigate 

the efficiency of repairing a plan versus re-planning from scratch. The approach 

considers plans which have their initial state and goals modified, and do not focus on 

re-planning during the execution of a plan. 

As we already mentioned, our solution is focused on re-planning during the execution 

of a plan in real time. The re-planning is being performed using the planner we have 

created and is based on Graphplan for solutions expansion, and backtracking heuristic 

search enriched with constraints satisfaction and dynamic opportunistic restart when 

required. 

In this chapter we presented the background and the related work of our research 

area. More specifically, we discussed about the field of DIS, about multi-agent systems 

and presented some of the relevant agent architectures, and about DIS-related as well 

as multi-agent-related planning and re-planning. We also presented some of the 

planning algorithms which are typically used in DIS systems, along with some of the 

representation languages used by them. Finally, we presented some examples of re-

planning outside of the DIS field, and we surveyed and critically assessed a number of 

DIS systems, stating their relation to our own work. In the next chapter, we will discuss 

the requirements and specifications of our DIS framework. 
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3   DIEGESIS  DIS FRAMEWORK 

In this chapter, we document the requirements and specifications of our multi-agent 

Digital Interactive Storytelling (DIS) framework, called DIEGESIS. The functionality of 

the framework’s components will be described in the next chapter. 

In the three chapters where we describe our framework in detail (i.e. chapters 3, 4, 

and 5), we used a number of UML diagrams, using the notation and recommendations 

made by (Fowler, 2003). More information about the use of UML in this thesis can be 

found in Appendix A. 

To properly design our framework, we need to think about who will use it and what 

would be helpful to them, who will create the story, which are the needs of the stories 

that our system will be able to manage, and which are going to be the key 

requirements of our framework. 

3.1. USER TYPES AND CHARACTERISTICS 

There will be two types of users associated with DIEGESIS. Firstly, the person who 

creates the structure of a story to be used by our framework, and secondly, the person 

who is going to use our framework to interact with the already created story structure 

and view the outcome of it. 

For the rest of this thesis, we’ll call the first person the “storyteller”, and the second 

one the “player”. A storyteller, to be able to design and model the structure of a story 

that will be used in our framework, needs to have knowledge of the PDDL and XML 

languages. As we will discuss in section 4.18, to make it easier for the storyteller to 

generate the story data we will design and use a PDDL and an XML editor. 

On the other hand, the characteristics of the player are more relaxed, since the only 

requirement is the ability to use a computer so he can interact with DIEGESIS via a 

Graphical User Interface (GUI). 
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As it is illustrated in Figure 6, a use case for a storyteller is to use any available editors 

to create a story to be used in DIEGESIS, and also play the story she created in 

DIEGESIS, usually for testing purposes, a use case which they share with the player. 

 

Figure 6: User types use case diagram 

3.2. GENERAL SPECIFICATIONS 

We want to build a scalable, abstract, DIS framework, which includes dynamic 

narration and story generation. 

 Scalable: The framework needs to be able to accommodate multiple characters 

and levels. Therefore, during the implementation of our framework, we will 

have to constantly evaluate its performance, to ensure that the framework 

stays responsive and usable even when using large stories. 

 Abstract: We intent to design the framework in the most abstract way we can, 

to be able to be used with any kind of story, instead of being highly coupled 

with one. That will enable the framework to be used in the future as a testing 

framework for planning and re-planning algorithms used in DIS. 

 Dynamic story generation and narration: The storyteller has to model the 

elements of the story. Such elements can include characters, locations, items, 

actions, goals of the characters, etc. Our framework should generate the 

outcome of the story in a dynamic way (i.e. not predefined). To this end, we 

will create and use a planning and re-planning solution, which fits the needs of 

such a framework. 
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 Interactive: Since we are creating a Digital Interactive Storytelling framework, 

the resulting framework needs to be interactive. We intent to include a way for 

the player to be able to interact with the framework, altering the outcome of 

the story based on any choices made, as well as a way to allow the player to 

view and interact with the story from different vantage points. 

 Different points of view: A different point of view (or vantage point) can 

dramatically alter the experience for a spectator or a participant, since it can 

change the context of a story. We want the player to be able to experience the 

generated story in different ways: both viewing and participating in the story as 

a whole, and viewing (and interacting with) the story via the “eyes” of a specific 

character, while the story progresses as usual. The framework should be able to 

alter these vantage points during runtime. 

 Decoupled: The components of our framework should be created in a 

decoupled way when possible, to allow it to be embeddable to other systems. 

We need to be able to replace some of our components with others. For 

example, we want our framework to be able to be connected to a 3D virtual 

world representation that will deal with a visual representation of the 

generated story. 

3.3. CHOICE OF BASE REPRESENTATION LANGUAGE 

As we already discussed in chapter 2, there are many different description languages 

for representing planning problems. We decided to use PDDL (Planning Domain 

Definition Language) (Ghallab et al., 1998), which belongs to the STRIPS family, which 

is extensively used among planning algorithms. 

To model a story into a planning task for PDDL, the following components are required 

as a minimum: a domain consisting of language requirements, types, predicates, and 

actions; and a problem consisting of objects, and initial state, and a set of goals. Figure 

7 contains a simple example of a domain and Figure 8 an example of a problem 

definition. 
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(:requirements 

    :typing :conditional-effects :equality :disjunctive-preconditions 

) 

 

(:types 

    character location item – object 

) 

 

(:predicates 

    (at ?x - (either character item) ?y - location) 

    (has ?x - character ?y - item) 

) 

 

(:action walk-to 

    :parameters  (?who - character ?from - location ?to - location) 

    :precondition  (and 

        (at ?who ?from) 

        (not (= ?from ?to)) 

    ) 

    :effect  (and 

        (at ?who ?to) 

        (not (at ?who ?from)) 

    ) 

) 

 

(:action pick-up 

    :parameters (?who - character ?what - item ?where - location) 

    :precondition  (and 

        (at ?who ?where) 

        (at ?what ?where) 

    ) 

    :effect  (and 

        (has ?who ?what) 

        (not (at ?what ?where)) 

    ) 

) 

 

(:action drop 

    :parameters (?who - character ?what - item ?where - location) 

    :precondition  (and 

        (at ?who ?where) 

        (has ?who ?what) 

    ) 

    :effect  (and 

        (at ?what ?where) 

        (not (has ?who ?what)) 

    ) 

) 
Figure 7: PDDL domain definition example 
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PDDL is a modular language. Each set of features are packed in a module, and can be 

included and used in a domain if they are declared in the requirements declaration. If a 

domain does not contain any requirements declaration, then the basic set of STRIPS 

requirements is assumed. The version 3.0 of PDDL (which we will use in our 

framework) includes the following requirements (Gerevini and Long, 2005): 

 :strips – Basic STRIPS-style adds and deletes. 

 :typing – To allow type names in declaration of variables. 

 :negative-preconditions – To allow “not” in precondition and goal descriptions. 

 :disjunctive-preconditions – To allow “or” in goal descriptions. 

 :equality – To support “=” as built-in predicate. 

 :existential-preconditions – To allow “exists” in goal descriptions.. 

 :universal-preconditions – To allow “forall” in goal descriptions. 

 :quantified-preconditions – Combined declaration of existential and universal 

preconditions. 

 :conditional-effects – To allow “when” in action effects. 

 :fluents – To allow function definitions and use of effects using assignment 

operators and arithmetic preconditions. 

 :adl – Combined declaration of strips, typing, negative preconditions, 

disjunctive preconditions, equality, quantified preconditions, and conditional 

effects. 

 :durative-actions – To allow durative actions. 

 :derived-predicates – To allow predicates whose truth value is defined by a 

formula. 

 :timed-initial-literals – To allow the initial state to specify literals that will 

become true at a specified time point (implies durative-actions). 

 :preferences – To allow the use of preferences in action preconditions and 

goals. 

 :constraints – To allow the use of constraints fields in domain and problem files. 

These may contain modal operators supporting trajectory constraints. 

Based on our needs, we have specified three base types of objects (i.e. characters, 

items, and locations) that can exist in a domain, which can be extended if required; for 
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example, there can be different kinds of items. Predicates are expressions that 

describe simple or complex states of the world in relation to the types we specified, 

which can be either true or false. In our example, a character or an item can be located 

at a specific location, and a character may have an item. 

Actions are usually made up of three parts: parameters, preconditions, and effects. 

Parameters are variables which define the objects which need to exist for an action to 

be executed, as well as their types. The preconditions are the predicates related to the 

parameters which need to be either true or false for an action to be executed, and 

finally the effects are the predicates which are going to be true or false after an action 

is executed successfully. 

(:objects 

    tom – character 

    mary – character 

    living-room – location 

    kitchen – location 

    glass-of-water – item 

    tv-remote-control – item 

) 

 

(:init 

    (at tom living-room) 

    (at mary living-room) 

    (at glass-of-water kitchen) 

    (at tv-remote-control living-room) 

) 

 

(:goal 

    (and 

        (has mary glass-of-water) 

    ) 

) 
Figure 8: PDDL problem definition example 

In the problem file, we define the actual objects (based on the types we defined 

before) that exist in the story that we are modelling. We also define an initial state for 

all of the objects present, in the form of predicates. Goals are also predicates of a 

desired outcome for our story, and the job of the planner is to find a valid plan using 

the available actions to reach this outcome. 
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In the example we are using, the goal is that Mary has the glass of water. Since Mary is 

located in the living room, and the glass of water is located in the kitchen, the most 

likely outcome that the planner will produce will be that Mary will have to execute the 

“walk-to” action to move to the same location as the item she wants to acquire, and –

as soon as this happens- the “pick-up” action, to have the glass of water in her 

possession. 

3.4. CHOICE OF BASE PLANNING ALGORITHM 

To aid us to decide which planning algorithm to use as a base for our solution, we 

performed an evaluation of planning algorithms with a DIS perspective in mind. In 

section 2.8 we documented the planning solutions some of the relevant DIS systems 

utilise. 

When we had to make the choice of a base planning algorithm, there was only one 

paper available in the literature that investigated the suitability of general-purpose 

planning algorithms for DIS systems (Barros and Musse, 2007b), describing an 

approach to perform such an evaluation, so we decided to use this approach as well. 

The approach was to benchmark different planning algorithms testing their 

performance to solve a specific problem in a specific domain and to compare their 

feature sets with DIS applications in mind. The feature sets considered valuable to DIS 

applications are the following: Support for extra language requirements; capability to 

generate partial-order plans; optimality; support for actions with costs; support for 

numeric variables. 

Support for extra language requirements: As we have already mentioned, most of the 

planning algorithms have adopted PDDL as their input language and it is our choice as 

well. PDDL is a modular language, therefore planning algorithms are only required to 

implement a very basic set of its features. Every extra feature (requirement) supported 

by a planning algorithm adds expressive power to its input language (and enables the 

creation of more interesting actions from a storytelling point of view) or just eases the 

task of describing certain actions. 

The five language constructs which are considered important are the following: Type 

hierarchies (:typing requirement); Built-in equality operator (:equality requirement), 
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Negative preconditions (:negative-preconditions requirement), Conditional effects 

(:conditional-effects requirement), and Existential preconditions (:existential-

preconditions requirement. 

Capability to generate partial-order plans: Total-order plans are sequence of actions 

without any sort of parallelism. In a DIS context, these actions represent story events. 

To be able to have actions occurring simultaneously in a story, partial ordered plans 

are needed. 

Optimality: Optimal planning algorithms are guaranteed to produce the best possible 

plan in a given problem. We must keep in mind however that optimality can be 

misleading (e.g. a partial-order plan including unnecessary actions will be considered 

optimal if the metric of “parallel steps” is used). 

Support for actions with costs: Many planners have a fixed metric that can be used to 

evaluate the value of the plan generated: the number of actions executed. 

Support for numeric variables: Classic planning systems represent the world state as a 

conjunction of Boolean predicates which can be a limiting factor in the Interactive 

Storytelling (IS) field since almost nothing is (rigidly) black or white in real-life stories 

that an IS system is trying to generate. The use of numeric variables (in addition to 

Boolean variables) can be used in IS to go beyond this limitation. 

The details of this evaluation are discussed in section 6.5.1. There, we discovered that 

there is no planning algorithm that combines all the characteristics described before. 

Therefore, we concluded that no planning algorithm can be considered ideal for DIS 

applications, and based on the available planning algorithms and considering that each 

DIS system has its own goals, the final choice of algorithm must be done based on the 

unique requirements of each DIS system. 

We believe that a new planning algorithm (combining some features from existing 

algorithms with novel ideas) needs to be created specifically with DIS systems in mind. 

Extra attention to the expressiveness of its language must be given since it will help 

authors and researchers easily create better stories, the fundamental principle of 

every DIS system. Also, support for numeric variables, actions with costs and, possibly, 

capability to create partial-order plans would be desirable. 
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We published the evaluation (Goudoulakis et al., 2011) with the idea that the family of 

the FF planners (FF, Marvin, and Metric-FF) seem to possess a number of these 

capabilities (especially the latter) along with a good performance (they had some of 

the quickest times in solving the test problem) so they could be used as a starting point 

to our planner. 

After we continued the design of our system though, we finally decided that our base 

planning algorithm would be Graphplan, since we wanted to be able to have more 

flexibility in the design of our planner and Graphplan provided that (several of 

Graphplan’s features are used by the FF family algorithms anyway). Since its major lack 

of features comparing to the other solutions was the lack of support for the extra 

language requirements, we decided to extend the algorithm and include any 

requirements that we need while progressing with the implementation of our system. 

3.5. MULTI-AGENT NEEDS 

The stories that DIEGESIS will generate based on the storyteller’s modelling, will most 

likely include multiple characters. Each of these characters should be able to act as a 

real person, even if they play a very small part in the whole story. To elaborate on that, 

a character should have its own will (i.e. try to achieve his own goals), be able to 

generate plans to achieve his goals and act independently from another -if required- to 

do so, have knowledge of the world that he exists in, and be able to take decisions if 

needed. 

All the above makes it clear that each character should be represented by an agent, 

which will make DIEGESIS a multi-agent system. 

Each agent in the game world will use an instance of the Planner (i.e. the planning and 

re-planning algorithms of our framework; discussed in the next chapter) to be able to 

generate plans of actions and regenerate them if needed. The framework should be 

able to dictate the execution of the agents’ plans, therefore the generation of the 

story, and should be able to coordinate them during the execution phase. Finally, to 

allow the framework to be as flexible as possible, there is not going to be a main 

character that the player controls/observes; instead, the player will be able to make 
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choices for actions that can affect every character in the active story, and -in extend- 

the outcome of the story. 

As we already discussed in section 2.5, there are two types of multi-agent planning: 

centralised planning, in which a central agent is responsible to collect the partial or 

local plans of the other agents, to combine them in one plan and solve any conflicts 

that may occur, and distributed (a.k.a. decentralised), in which all the agents 

communicate with each other to generate their plans and to negotiate any possible 

conflicts. 

In DIEGESIS, as we already mentioned at the beginning of this section, we want each 

agent (i.e. character) to operate as a real person. Relating that to the planning process, 

we want each agent to be able to generate its own plans based on each own goals and 

try to execute them individually and opportunistically. We believe that this provides a 

more realistic approach to the generation of a story, since by this way each agent can 

act as a real person, generating an autonomous plan considering only its own needs. 

This approach is similar to the description of decentralised planning. 

Decentralised planning involved that agents communicate only with each other to 

negotiate conflicts, etc. We don’t use that approach. Instead, although the plans are 

individual, we want DIEGESIS to dictate the execution phase of the agent’s plans 

(therefore the generation of the story) so the system can have a better control and 

understanding of what happens during the generation/execution of the story, and to 

be able to interfere if needed. Therefore, in the case of plans execution, our approach 

borrows the control and coordination concepts from the centralised planning 

approach. 

In this chapter, we documented the requirements and specifications of our multi-agent 

DIS framework. In the next chapter, we will document and discuss in detail the design 

aspect of every component of our framework. 
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4   DESIGN OF THE FRAMEWORK 

In this chapter, we discuss in detail the design aspect of every component of our multi-

agent Digital Interactive Storytelling (DIS) framework. As described in section 1.3, while 

designing and implementing the framework we used an incremental and iterative 

process. The work reported in the design and implementation chapters is the result of 

the aforementioned process. 

To achieve our needs, we designed DIEGESIS as a multi-agent Digital Interactive 

Storytelling (DIS) framework using planning and re-planning techniques. DIEGESIS 

consists of several different components, each responsible for one or more features of 

the framework. The design of the framework and its components evolved while 

progressing with the implementation and the evaluation of the system, to keep up and 

comply with the evolving nature of a research project’s requirements and 

specifications. 

Figure 9 depicts DIEGESIS’ high level architecture that we used in some of our 

publications, and illustrates the framework’s main components at the time. There have 

been some changes since then since some of the sub-components of the main 

components grew and became main components themselves, as well as new 

components were added, but most the processes of the system remain the same, so 

we will briefly discuss how the system initially operated. 

As we discussed in section 3.1, there are two types of users; the storyteller and the 

player. The Storyteller models the story in a set of XML & PDDL files, and the Parser 

component is responsible of translating them into a representation the framework 

understands and feed them to the World Manager (WM), which is the main 

component of the system and coordinates the rest. The WM stores this information to 

the Knowledge Base component, and uses it to update the environment which is 

perceived by the multiple instances of the Agent component (each Agent represents a 

character in the story). 
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Figure 9: DIEGESIS’ initial architecture 
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The planner consists of a planning and a re-planning algorithm able to generate plans 

of actions based on each agent’s goals considering the current state of the 

environment as the agent perceives it. 

The User manager is responsible of communicating with the player to either receive 

the player’s interaction, or to show him the outcome of the generated story. As we 

already mentioned and is illustrated in Figure 9 as well, the WM component included at 

the time several other sub-components. Eventually, as the framework grew and extra 

functionality was designed and implemented, most of these sub-components grew 

enough to become components by themselves, something which also promotes the 

modularity of the framework. 

Figure 10 illustrates the final architecture of the DIEGESIS DIS framework. The finalised 

components are the following: 

 Parser: It is responsible for parsing and processing the storyteller-created files. 

 Knowledge Base: A centralised repository of information, including a relational 

database and information stored in memory. The Knowledge Base component 

stores information about the currently active story. 

 Level Manager:  It is responsible of keeping track of most of the information 

about each possible level (i.e. scene) of the story, and distributing this 

information to other components when required. 

 World Manager: It is the main component which coordinates the whole system 

so the stories can be generated and executed. Its sub-components include the 

Agents’ Manager, the Blackboard System (to communicate with the agents), 

the Time Manager, and the Output Generator. It also keeps an up-to-date 

representation of the world and is responsible for distributing it to the agents 

when required. 

 Choices Manager: Based on the modelling of the story by the storyteller, the 

player may be able to make choices about important circumstances occurring 

while the story is being generated and executed. This component is responsible 

for dealing with them. 
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 Transitioning Manager: The component is responsible for performing a 

transition from a level which was just concluded to a new one which makes 

sense in the context of the story. 

 Goal Injection Manager: It is responsible for injecting goals to the agents based 

on specific conditions specified by the storyteller. 

 Futile Goals Manager: A component responsible of providing futile goals to the 

agents which are idle. 

 Oracle: In certain situations during the generation and execution of a story, a 

relatively random outcome needs to be calculated. This component is 

responsible for doing that. 

 Uncertain Actions Manager: There are some actions that make sense that they 

should have a percentage that will succeed (or fail) due to pure chance. This 

component deals with them. 

 Vantage Point Manager: During the execution/generation of a story, the player 

is able to choose freely between different characters’ vantage points (i.e. to 

view the story from the perspective of a specific character) and a full story 

view, and this component deals with these vantage points. 

 User Manager: It contains a graphical user interface to communicate the story 

outcome and other relevant information to the player, and receive user input 

when is required. 

 Planner: As we already mentioned, it consists of a planning and a re-planning 

algorithm able to generate plans of actions based on each agent’s goals 

considering the current state of the environment as an agent perceives it. 

 Agent: Every character in a story is represented by an agent. The component’s 

architecture follows a hybrid approach including elements of reactive, 

deliberative, and BDI agent architectures. 

 Battle Manager: There are cases in the evaluation scenario that we built 

(discussed in chapter 6), in which we need large-scale battles to occur; 

therefore, we built a component which deals with them. 
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Figure 10: DIEGESIS architecture
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In the following sections, we will discuss all the components of the, explaining in detail 

their processes and how they are operating together with other components. 

4.1. GAME WORLD ARCHITECTURE 

The game world is created before the execution of a story, by a storyteller. The world 

is organised in multiple levels which can represent possible parts of a story. Typically, a 

level represents a broad area where a number of events in a story may occur. The 

levels are organised in a hierarchical manner; each level may have some potential 

successor levels which have a logical connection with it. An example of a game world is 

illustrated in Figure 11. 

 

Figure 11: Game world architecture 

A level –and in extend the game world which will produce a story– consists of the 

following elements: 

 Locations which can be either small such as rooms or large such as whole 

countries. 

 Characters along with their individual information which will be discussed in 

detail in section 4.15, such as their list of goals. 

 Items which can be anything. 

 Actions which are applicable in a level and can be executed by the characters 

based on certain conditions. 
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 Information about the level (such as its title, etc.), which will be discussed in 

section 4.4. 

 A set of choices which are potential decision making moments for either the 

player or the framework and are based on rules specified by the storyteller, 

which will be discussed in section 4.6. 

 A set of transitioning data such as potential successor levels, milestones, etc. 

(will be discussed in detail in section 4.7) which will be used to perform a 

transition to a new level as soon as a level comes to an end. 

 Goal injection rules which will be discussed in section 4.8. 

 A set of futile goals which can be assigned to a character if is idle, which will be 

discussed in section 4.9. 

 A set of uncertain actions which will be discussed in section 4.11. 

 Information about a large-scale battle which may occur in a level, which will be 

discussed in section 4.16. 

The minimum mandatory elements that must exist in a level so DIEGESIS can process it 

consist of a set of locations, characters, and actions; everything else is optional. 

As we mentioned in section 3.3, each level’s main representation is modelled in PPDL. 

That includes the locations, characters who are present in a level (specifying in which 

location they are initially located), items present in a level (associated either with 

locations or with characters), and a set of applicable actions for a level. 

An example of a PDDL representation of a part of the story we are using (discussed in 

detail in section 6.1) is displayed in Figure 12, where we omitted some information to 

ensure readability. An initial (default) state of all the characters and items in a level 

needs to be defined by the storyteller, but it can be dynamically altered based on 

events that occurred in previously executed domains. 

(:objects 

    helen - character 

    menelaos - character 

    paris – character 

    hector – character 

    throne-room – room 

    private-room – room 

    guest-room – room 
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    docks – room 

    troy – location 

    gift – item 

    troy-ship - transportation-method 

) 

 

(:predicates 

    (at ?x - (either character transportation-method) ?y - location) 

    (has ?x - character ?y - item) 

    (in-discussion ?x - character ?y - character) 

    (emotion-loves ?who - character ?whom - character) 

) 

 

(:init 

    (at menelaos throne-room) 

    (at helen private-room) 

    (at hector docks) 

    (at paris docks) 

    (at troy-ship docks) 

    (has hector gift) 

    (emotion-loves paris helen) 

) 

 

(:action talk-to 

    :parameters (?x - character ?y - character ?z - room) 

    :precondition (and 

        (at ?x ?z) 

        (at ?y ?z) 

        (not (= ?x ?y)) 

    ) 

    :effect (and 

        (in-discussion ?x ?y) 

    ) 

) 

 

(:action seduce 

    :parameters (?who - character ?whom - character ?where - location) 

    :precondition (and 

        (at ?who ?where) 

        (at ?whom ?where) 

        (in-discussion ?who ?whom) 

        (emotion-loves ?who ?whom 

        (not (= ?who ?whom)) 

    ) 

    :effect (and 

        (emotion-loves ?whom ?who) 

    ) 

) 

Figure 12: Example of a PDDL representation 
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Apart from the main representation of each level which is modelled in PDDL, the rest 

of the elements are further modelled in XML and we will discuss them in detail in the 

following sections. 

4.2. PARSER 

As we already mentioned, each story is written and modelled by the person who is 

creating the story, i.e. the storyteller. The modelling of the story world including levels, 

characters, locations, items, goals, milestones, available actions, etc. is stored in a 

number of files, available to the system. There are two types of files: PDDL and XML. 

The Parser Component can be instructed by the World Manager (the component 

which coordinates the whole system and will be discussed later) or any other 

component to parse and analyse a set of files corresponding to a specific level, create a 

representation of them in the format needed, and communicate them back to the 

World Manager or the component which requested them to be used appropriately. 

This process is illustrated in Figure 13. 

The files are parsed in an iterative manner. After each file is parsed, analysed, and the 

information it contains is passed to the component which requested them, the Parser 

checks if there are still files left in the queue to be parsed. If there are no files left, the 

process ends. 

 

Figure 13: Parser activity diagram 
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4.3. KNOWLEDGE BASE 

In our system’s context, a Knowledge Base (KB) is a machine-readable centralised 

repository of information. DIEGESIS includes two types of KB; a relational database, 

and information stored in memory. 

The memory-based part of the KB is responsible to keep information about the 

currently active level of the game world. The relational database includes tables about 

characters and their options, levels (and mutual exclusions between them), 

milestones, story actions, transitions, and information about the characters and any 

battle groups. A preliminary schema is illustrated in Figure 14. 

The KB is populated during runtime by the framework, using data both from the 

information contained in the files created by the storyteller and parsed by the Parser 

as described in the previous section, as well as from information produced during the 

generation and execution of the story. 

 

Figure 14: Preliminary database schema 

Characters table include information about individual characters, such as a unique id, a 

name, and if the character is still alive and part of the story. Characters’ options table 

is able to store characters’ options. The table is designed in an abstract way, to allow 

the storyteller to represent any types of options. For example, a character based on his 
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previous actions, might need to be present at a certain point in the future of a story. 

The storyteller can create and store an option to keep this information. 

Levels table contain information about the different possible levels which are present 

in the story, such as a unique id for each level, its title, and if it was executed. Any 

mutual exclusion between levels is stored in the mutually exclusive levels table. 

The milestones table is related to the levels table, and is used to store the milestones 

of each level, and their state (i.e. are complete or not). Transitions table holds 

information about all the transitions, past and future, which occurred or will occur 

during the execution of the story, so the transitioning between levels, can be 

instructed. 

The story actions table is used to store and keep track of all the actions that occurred 

during the execution of the story, along with information about them (i.e. the 

characters related to them; when and where the action occurred). 

Finally, the battle groups table is used to store information about any battle groups 

present in the story, such as the group’s title, leader (represented by a character), 

fighting ability, and total volume. 

4.4. LEVEL MANAGER 

As we discussed in section 4.1, the game world is organised in multiple levels which 

can represent possible parts of a story. The Level Manager (LM) component is 

responsible of keeping track of most of the information about each possible level of 

the story. 

Apart from the PDDL representation of each level which we explained in section 4.1, 

we intentionally omitted to explain in detail the list of centralised information about 

each level. It is a list of all the possible levels which may be executed during the 

generation of the story, containing important information about them. This 

information is modelled by the storyteller in an XML file, using the semantics 

presented in Figure 15. 
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<levels> 

    <level> 

        <title>level-title</title> 

        <filename>level-base-filename </filename> 

        <display_title>Level’s Display Title </display_title> 

        <info>A small description about the level.</info> 

        <milestones> 

            <milestone>(a-pddl-fact-may-be-a milestone)</milestone> 

        </milestones> 

        <is_battle_level>false</is_battle_level> 

    </level> 

</levels> 

Figure 15: Semantics of XML level nodes 

The mandatory information for each level includes the level’s title, its base filename 

(so the rest of the level information mentioned in section 4.1 can be retrieved), a 

human-readable title and description of the level, and a flag informing the system if 

the level is a battle level or not. If it is a battle level, then further information about the 

battle is included which is discussed in detail in section 4.16. 

Finally, each level includes three sets of triggers, a set of milestones, a set of potential 

successor levels, and a set of character options. All this information is optional and is 

used in the level transitioning phase. It is omitted in Figure 15 since it is further 

discussed in section 4.7. 

When initialised by the World Manager (WM), LM uses an instance of the Parser to 

load all the information related to each level, translates them into a system-readable 

representation and stores whatever is needed to the Knowledge Base. It also has direct 

communication with the Battle Manager component to request any information 

needed which is related to a battle which may occur in a level. This process is 

illustrated in Figure 16. 

Only one level of the whole story can be active at a time. LM is responsible to keep 

track of which level is active at a given moment in time, and keep it in memory so it 

can be easily accessible to the other components (such as the WM and the 

Transitioning Manager) when is required. 
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Figure 16: Level Manager sequence diagram 

 

4.5. WORLD MANAGER 

The World Manager (WM) is the main component which coordinates the whole 

system. It has direct access to all the other components of the system, and (among 

other responsibilities) is responsible for keeping track of and updating the current 

state of the world, i.e. the environment the agents are aware of. 

Figure 17 illustrates the high level functionality of the component. As soon as DIEGESIS 

launches, it initialises the system, by initialising most of the components which are 

going to be used during the generation and execution of the story, which are the 

following: Knowledge Base (KB), Battle Manager (BM), Level Manager (LM), Futile 

Goals Manager (FGM), Planner, Goal Injection Manager (GIM), Transitioning Manager 

(TM), Choices Manager (CM), Uncertain Actions Manager (UAM), User Manager (UM), 
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Vantage Point Manager (VPM), Time Manager (TiM), Parser, Output Generator (OG), 

and Agents’ Manager (AM). 

When the initialisation of each component includes further processes other than a 

simple enabling of the component, the explanation of each process is included in the 

sub-section in which each component is documented. 

 

Figure 17: World Manager high-level activity diagram 

The next step after the initialisation of the system is to initialise the currently active 

level. This process is depicted in Figure 18. Initially, the WM requests the information 

of the currently active level from the LM. Then, it sends the relevant information to the 

Planner, instructing it to perform an initialisation of the level based on the PDDL model 

of the level, and after this initialisation is complete, the WM requests the current state 

of the world, as well as the generated PDDL representation of the level which was 

constructed by the Planner. 

Afterwards, the WM instructs a number of components to load a new set of 

information for the new level: the BM to load the battle details, the FGM to load the 

futile goals, the GIM to load the goal injection rules, the CM to load the choices, and 

the UAM to load the uncertain actions. Finally, the WM instructs the AM to initialise 

the agents of the new level, requests the lists of agents, and passes it to the UM. 
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Figure 18: Level initialisation sequence diagram 

The AM is a sub-component of the WM, which is responsible of managing the agents. 

It also keeps a list of the activated agents along with any information relevant to them, 

so they can be easily accessible when is required. 

The initialisation of the agents that the WM requested is illustrated in Figure 19, and 

operates in the following way: Initially, the AM finds which characters are present in 

the currently active level by using the PDDL representation of the level which was 

previously created by the Parser. In the same manner, it identifies in which location 

each of the characters is initially located in. 

 

Figure 19: Initialisation of agents activity diagram 
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Afterwards, using the Parser, it parses all the character information for each one of the 

characters, and creates an instance of the Agent component for each individual 

character, feeding it with the parsed information. Finally, it instructs each created 

agent to generate an initial plan based on its current set of goals (if there are any). 

The character information is created by the storyteller and is written in XML. A 

character node is required for every character present in each level. It is illustrated in 

Figure 20 and includes the PDDL name of the character that is related to, including the 

following information related to him/her: 

 The available time to complete the specified goals and the PDDL goals list; 

 If the character will be allocated with a futile goal when its goals’ list is empty; 

 The character’s fighting ability which will be used if the character engages in 

battle during the execution of the level, along with the alliance in which the 

character belongs to; 

 And a set of initial goals (which can change during runtime). Each goal node 

includes a name of a PDDL fact, (optionally) the importance value of the goal, 

and (optionally as well) one or more PDDL facts as preconditions. 

<character> 

  <name>paris</name> 

  <futile_goals>disabled</futile_goals> 

  <available_time>3600</available_time>  

  <alliance>troy</alliance> 

  <fighting_ability>70</fighting_ability> 

  <goals> 

    <goal> 

      <name>(will-follow helen paris troy)</name> 

      <importance>50</importance> 

      <precondition></precondition> 

    </goal> 

    <goal> 

      <name>(at paris troy)</name> 

      <importance>100</importance> 

      <precondition>(will-follow helen paris troy)</precondition> 

    </goal> 

  </goals> 

</character> 

Figure 20: An XML Character node 

For the agents to communicate with the framework, DIEGESIS implements a 

blackboard system as an interconnection model. In our implementation of a 
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blackboard system, every agent communicates synchronously with the WM to access 

and update the shared knowledge base and coordination information, and not directly 

with each other. The WM continuously and in turns, updates each agent’s knowledge 

of the current state of the world for any updates, and then “asks” them if there is an 

action to execute. Other communication (which will be discussed in detail in the 

remainder of the section) includes checking if an agent is busy, to instruct an agent to 

plan/re-plan, or wait, and to inject a new goal based on executed actions. 

After the initialisation of the level, the WM begins the generation and execution of the 

story. The story is executed in turns. The execution process is illustrated in Figure 21. 

Initially, the WM informs the UM that the execution of a turn started so the UM can 

disable the next turn button. Afterwards, the WM checks if a battle is in progress with 

the help of the BM. If it is, then the next step is to check if an alliance needs to retreat. 

If the battle ended due to a retreat, then the current state of the world is updated with 

the retreat information. If not, a battle is performed. All of the battle-related processes 

are discussed in detail in section 4.16. 

Then, for each individual agent the WM informs the agent of any changes in the 

current state of the world and checks if the agent is dead or busy (i.e. was either part 

of an action of another character or already involved in a battle). If it is, then the agent 

does nothing in this turn. 

The WM then makes an inquiry to the agent, asking if the agent has a plan to execute. 

If the agent doesn’t, then it is instructed to generate one before asked again if it has a 

plan. If it still doesn’t, then the WM checks if the agent is cleared to fight (i.e. if there is 

a battle going on, and if the agent is in a battlefield location). If it does, then a battle 

versus a soldier of the opposite alliance is performed and the turn of the agent comes 

to an end. 

If the agent has a plan to execute, then the WM requests the next set of actions from 

the agent. The generation and structure of a plan is discussed in detail in section 4.14. 

For each of the agent’s actions, the WM first identifies all the agents who are involved 

in the action and checks if they are available (i.e. still alive and not busy) and if the 

action is interruptive. An interruptive action (set by the storyteller) will ignore the fact 
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that an involved agent (other than the one who executes the action) might be busy, 

and will be executed anyway. 

 

Figure 21: Activity diagram of the process of executing a turn 
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If any of the agents is not available (and the action is not interruptive), then the WM 

checks if at least one of them is dead. If not, then the action is not executed in this 

turn, but will be pending for execution at the next one. But, if an agent is dead, the 

action fails, and the agent is instructed to re-plan. 

When the involved agents are available (or there are no involved agents in the action 

except from the agent who executes the action), the action’s preconditions are 

checked by the WM against the current state of the world, to identify if they are met. 

If even one of them is not met, then the action fails, and the agent is instructed to re-

plan. 

In the case that the preconditions are all met, the next step for the WM is to contact 

the CM and identify if the action is marked as a choice. Again, all the choices processes 

are discussed in more detail in section 4.6. If the action is marked as a choice, the WM 

(with the help of CM) deal with the choice. When the outcome of the choice is the 

action not to be executed, the WM updates the current world state with the fallback(s) 

of the choice, sends it to the agent, and instructs the agent to re-plan. 

On the other hand, when the outcome of the choice is that the action will be executed 

(or it wasn’t marked as a choice in the first place), the WM checks with the help of BM 

if the agent can fight, i.e. if the agent is located in a battlefield location and there is a 

battle in progress. If these conditions are true, then there is a chance that the agent’s 

action will be interrupted by a battle. The WM makes a decision with the help of the 

Oracle (discussed in section 4.10) whether the action will be interrupted or not (using 

an interruption percentage provided by the BM), and if it does, a battle is performed 

between the agent and a soldier of the enemy alliance. 

If the action is still ok to be executed, the last check involves if an action is clear to be 

executed due to doubt. The WM makes the appropriate checks with the UAM (the 

details are discussed in section 4.11), and if the action cannot be executed in this turn 

it is ignored. But, if it doesn’t then it is finally executed, and the following happen: The 

current state of the world is updated with the effects of the action, the action is 

marked as complete, and the involved characters are set to busy. 
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There is also a chance that the action is a duel. In the event that it is, the WM 

calculates the outcome of the duel (with the help of the Oracle) and updates the 

current state of the world with its outcome (i.e. who won and who lost the duel). The 

final step is to deal with any dead agents, to store the action’s details to the KB, and to 

deal with any goal injections. 

It is also important to mention that even if an agent is in a position to execute multiple 

actions in a single turn, it can only fight once, and if an action fails and the agent is 

instructed to re-plan, then the agent cannot try and execute any other actions during 

the same turn. 

After the execution of actions is finished, the WM checks if at least an action was 

executed. If it did, then the WM informs the agent which of the actions were executed, 

and updates the current world state that the agent is aware of. 

As soon as all of the agents finished their turn, the WM informs the UM that the turn 

execution is complete, it increments the time (with the help of the TiM), and 

completes the execution of the turn. 

The TiM is a small sub-component of the WM, whose only responsibility is to keep 

track of the time steps (i.e. turns) in which the story is at any point, and feed this 

information to the WM when it’s required. 

After the end of a turn, the WM checks if at least one action was executed by an agent 

during that turn, if there is an active battle going on, and if any of the agents have a 

valid plan which is still pending completion and does not consist of futile goals. When 

none of the above conditions are met, the WM understands that the execution of a 

level is finished, and instructs the TM to calculate and perform a transition. If there 

isn’t a suitable successor level, the story ends and the system shuts down. The details 

for the transitions are discussed in section 4.7. 

The player who uses DIEGESIS to execute and interact with a story created by a 

storyteller needs to be able to view the outcome of the generated story, as well as 

other information relevant to the story. Therefore, we need a component which 

responsibility is to generate all these messages in a human-readable form. During all of 

the WM processes, the WM (as well as other components if it’s required) uses the OG 
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to generate and display (with the help of the UM) appropriate messages to the player, 

as well as to the console for debugging purposes. 

The OG includes some pre-defined templates to visually represent a different variety 

of messages. The templates include headers, sub-headers, alerts, and plain messages. 

An example of requests for printing messages in the console as well as displaying them 

to the player can be found in Figure 22.  

There, the WM requests from the OG to print and display an alert message. The OG 

prepares the final message passing it through the alert template, and prints it to the 

console itself, as well as sending it to the UM so it can be displayed to the player. 

Afterwards, an Agent requests from the OG to print a plain message to the console, 

and display another message to the player. The OG prints the message in the console, 

and sends the other message to the UM requesting it to be displayed to the player. 

 

Figure 22: Sequence diagram of dealing with messages 



87 
 

Finally, before sending a request to display a message, the OG also checks if there is a 

vantage point enabled to determine if it’s appropriate to display the message or not. 

This process is described in section 4.12. 

4.6. CHOICES MANAGER 

The storyteller has the ability to mark actions as choices, and the Choices Manager 

(CM) is responsible of keeping the relevant information. A choice node (illustrated in 

Figure 23) contains the name of a PPDL action that needs to be flagged as a choice. The 

choice can be made either by the player, or by the framework. If the action succeeds 

(chosen either by the framework or the player), then the normal effect of the PDDL 

action is executed. 

<choices> 

  <choice> 

    <action_name> decide-if-will-plunder-temple</action_name> 

    <who_decides>player</who_decides> 

    <fallbacks> 

      <fallback> 

        <equals index="1">achilles</equals> 

        <predicate_to_become_true>(decided-if-will-plunder-

temple)</predicate_to_become_true> 

        <predicate_to_become_true>(will-not-plunder-

temple)</predicate_to_become_true> 

      </fallback> 

    </fallbacks> 

  </choice> 

  <choice> 

    <action_name> decide-if-will-capture</action_name> 

    <who_decides>player</who_decides> 

    <fallbacks> 

      <fallback> 

        <equals index="1">achilles</equals> 

        <equals index="2">briseis</equals> 

        <predicate_to_become_true>(decided-if-will-capture 

briseis)</predicate_to_become_true> 

        <predicate_to_become_true>(will-not-capture 

briseis)</predicate_to_become_true> 

      </fallback> 

    </fallbacks> 

  </choice> 

<choices> 
Figure 23: A set of XML Choice nodes 
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But since PDDL doesn’t offer the option of effects that are triggered if an action is 

about to be executed but failed (for any reason), we specify a set of fallback predicates 

(effects) which will be enabled if the choice is negative. 

The fallback can be applied in any form of the selected action, or it can be applied only 

if there are specific conditions in an action, if for example the action is executed by a 

specific character. For example, in the second choice node of Figure 23, the fallback 

predicate will be enabled only if the first index (i.e. variable) of the “decide-if-will-

capture” action is “achilles” and the second one is “briseis”. 

Every time that a new level is loaded, the World Manager (WM) instructs the CM to 

load the choices information for the new level (i.e. all the choice nodes which are 

relevant to the new level). The CM makes an inquiry to the Level Manager to receive 

the choices information about the currently active level, and using that it asks the 

Parser to parse and return the set of choices, which is stored in memory. This process 

is illustrated in Figure 24. 

 

Figure 24: Sequence diagram of loading a new level's choices 

While the story is generated and executed, every time that an action is about to be 

executed the WM checks with the CM to identify if the action is marked by the 

storyteller as a choice action. 

When such an action is set to be executed, a decision needs to be made; either the 

action is going to be executed or not. Based on the storyteller’s selection, either the 

framework will make a positive or negative decision, or the User Manager will be 
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instructed to stop the execution of the story and ask the player to make this decision. 

Based on the outcome of the decision, the action is either going to be executed, or not. 

If the choice is negative, then the WM requests the action’s fallback from the CM, and 

deals with it. This process is illustrated in Figure 25. 

 

Figure 25: Sequence diagram of dealing with choices 

If a decision is set to be made by the player but the player has chosen to view the story 

via the vantage point (discussed in section 4.12) of a character who is not involved in 

the specific decision, the framework will have to make the decision instead of the 

player. 
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4.7. TRANSITIONING MANAGER 

As we discussed in section 4.5, every time a turn ends while the story is executed, the 

World Manager (WM) component constantly monitors the current state of the active 

level to identify if nothing significant is left (and is still able) to happen in the currently 

active level, or it can be terminated, and a next level can be loaded. When a level ends, 

it is a time for a new level to be selected and enabled, and that’s what the 

Transitioning Manager (TM) component is responsible of. 

As we already mentioned in sections 4.1 and 4.4, the story levels are organised in a 

hierarchical manner; each level may include some potential successor levels which 

have a logical connection with it. Each level may also include three sets of triggers, a 

set of milestones, and a set of character options. All this information is optional, is 

used in the transitioning phase, and an example of it is included in Figure 26. 

A connection between two levels is being made by specifying a level as a “successor” 

of another one (using the specified title of a level). A level may include multiple 

potentially successor levels. “Milestones” are PDDL facts; when a level ends, their 

status (either true or false) is checked and the outcome is stored in the Knowledge 

Base (KB) component. 

“Character options” are also checked as soon a level ends, but they are a little more 

complicated than a milestone. They include the option’s title, the character who refers 

to (although it can be blank if they are general options), a set of options, a “then” value 

and an “else” value. Each option includes a PDDL fact and the condition the system will 

check if it exists. If all the facts’ conditions are met, then the option is stored in the KB 

with the “then” value; if not, the option is stored with the “else” value. 

In plain words, the “triggers” are used to identify if a level makes sense to be executed. 

They are preconditions, which need to be met for a level to be a successful candidate 

to be loaded into the system for execution. They can be milestones of another level, or 

character options, and they include an “expected” value to be checked against. They 

can also be marked as important. 

The “triggers type” variable can take three different values, which relate to the main 

triggers: “all”, “any”, and “important”. The default value is “any”, meaning that the 
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level is a successful candidate if any of the triggers is fired. The “all” value means that 

all of the triggers must be fired, and the “important” value means that only the triggers 

marked as important need to be fired for a level to be executed. 

<levels> 

    <level> 

        (…) 

        <successors> 

            <successor>title-of-a-potentially-successor-level</successor> 

        </successors> 

        <milestones> 

            <milestone>(a-milestone-is-a-pddl-fact)</milestone> 

        </milestones> 

        <character_options> 

            <option_group> 

                <title>option-title</title> 

                <character_name>mary</character_name> 

                <then_value>true</then_value> 

                <else_value>false</else_value> 

                <options> 

                    <option fact_condition="true" fact="(pddl fact)" /> 

                </options> 

            </option_group> 

        </character_options> 

        <triggers_type>all<triggers_type> 

        <triggers> 

            <trigger expected="true" from_level="another-level-title">(another 

level’s milestone)</trigger> 

        </triggers> 

        <knowledge_transfer> 

            <character_triggers> 

                  <character_trigger char_name="mary" from_level="another-

level-title" char_exists_if="true"> 

                    (another level’s milestone) 

                </character_trigger> 

            </character_triggers> 

            <fact_triggers> 

                <fact_trigger fact_to_enable="(pddl fact)" from_level=" 

another-level-title " enable_if="true"> 

                    (another level’s milestone) 

                </fact_trigger> 

            </fact_triggers> 

        </knowledge_transfer> 

    </level> 

</levels> 

Figure 26: Transitioning information in XML 
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There are two more types of triggers, the “character triggers” and the “fact triggers”, 

which are checked when a level is selected as the next transition and is about to be 

executed. Character triggers work in a similar way to the main triggers, but they refer 

to characters. If they are fired, then a character exists in the level. Fact triggers (as 

their name suggests) refer to PDDL facts. If the milestone or the character option is 

met, then the trigger is fired and the “fact to enable” will be set to true when the level 

is loaded and ready for execution. 

There are certain situations where a number of levels are mutually exclusive with 

others. The storyteller can specify them using the semantics presented in Figure 27. 

The mutual exclusions are grouped (each group needs a unique title), and each level 

has a priority value to identify which of the levels should be selected for execution in 

the event that a mutual exclusion situation appears. 

<mutually_exclusive_groups> 

    <group title="landing"> 

        <level priority="15">war-prevented</level> 

        <level priority="10">troy-beach-landing</level> 

        <level priority="5">troy-beach-landing-fallback</level> 

    </group> 

</mutually_exclusive_groups> 

Figure 27: A group of mutually exclusive levels modelled in XML 

As we already mentioned in section 4.5, as soon as the WM identifies that a level 

finished, it instructs the TM to calculate the next transition. This process is illustrated 

in Figure 28. 

The first step of the process is to get the information of the current level from the 

Level Manager (LM) and the current state of the world from the WM. Then, for each of 

the milestones, the TM checks the state of the milestone against the current state of 

the world and stores the relevant information in the KB. The interaction between the 

different components is illustrated in Figure 29. 

As soon as the checking of all the milestones is finished, the TM performs the same 

checks for the character options, and stores all the relevant information in the KB. 

Then, it creates a list of all the successor levels, getting the relevant information from 

the LM component. 



93 
 

 

Figure 28: Activity diagram of the transitioning process 
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Figure 29: Transitioning sequence diagram 
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For each of the successor levels, the TM get a list of their successors and resets the 

triggers counter, which is responsible of counting the number of triggers which were 

fired. Then, it iterates through the triggers. If the trigger needs to be checked against a 

milestone, the TM requests the milestone from the KB, or if the trigger needs to be 

checked against a character option, the TM retrieves the character option’s 

information from the KB instead. The value of either the milestone or the character 

option is checked against the precondition of the trigger, and if the trigger was fired is 

marked as fired and the triggers counter is incremented. 

If at least one of the triggers was fired, the TM checks the triggers type of the level. If it 

is set to “any”, then the TM creates a potential transition and stores the relevant 

information (i.e. the title of the level, the number of fired triggers, and the 

transitioning layer) in the KB. If the triggers type of the level is either set to “all” or to 

“important”, then the TM checks if all of the triggers or the important triggers were 

fired respectively, and if they did, it adds the level as a potential transition. If not, then 

the level is ignored. 

As soon as this process ends, then it is time for the TM to select the next level which 

will be executed. Before we describe how a level is selected, we need to explain the 

notion of transitioning layers. 

An example of transitioning layers containing possible transitions is depicted in Figure 

30. Layer 0 is the initial layer, which can only contain the initial level. As soon as this 

level is executed, the TM is requested to perform a transition. By performing the 

process we already described, the TM identifies that there are three levels which meet 

their preconditions and can be executed. All of them, are placed in the next 

transitioning layer (i.e. layer 1), since their content happens after the content of the 

already executed level. Every level which is in the same transitioning layer is supposed 

to happen in a simultaneous time as the others, although the player will “watch” and 

interact with them sequentially, just like in a movie. 

For the sake of the example, we will assume that their execution order will be the 

following: First the Level 1, then the Level 2, and finally, the Level 3. So, as soon as 

Level 1 is executed and comes to an end, the TM identifies that there are two 

successor levels (i.e. Levels 4 and 5) which need to be added in the transitioning stack. 
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Since the current transitioning level is 1, they need to be placed in layer 2. The TM 

then continues executing Level 2 which does not produces any suitable successors 

after it’s complete, and then it’s the turn of Level 3, which produces four successor 

levels: Levels 5, 6, 7, and 8, which are also added in layer 2 (since Level 5 already exists 

in the layer is not added for a second time). 

 

Figure 30: Example of transitioning layers 

So, to summarise, all the levels which are present in the current transitioning layer 

need to be executed before we move to the next transitioning layer, and any 

successors of them are placed in the next layer. 

Having explained that, we will return to the main transitioning process. The TM has 

already identified and added to the KB all the suitable successors of the completed 

level, and needs to select the next level which will be executed. To do that, the KB 

requests from the KB to return the title of the unexecuted level of the current 

transitioning layer which has the most fired triggers, although the execution order of 

levels present in the same level does not really matter since they are supposed to 

happen in the same time, therefore they should not be able to alter any information 

which is used in the levels of the same layer. 

If the KB does not return a level it means that there are no levels left to execute in this 

transitioning layer, so the TM increments the transitioning layer and asks again for a 
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level from the KB. If there is no level in the next layer as well, that means that the story 

has come to an end. 

As soon as the TM is in possession of the next level, it checks if there is a mutual 

exclusion specified for it. If there is one, then the TM requests from the KB all the 

levels which are present in the same transitioning layer as the selected level, and are 

still unexecuted. A mutual exclusion applies only for the current transitioning layer; 

therefore if a mutual exclusive level is present in a future layer will not be affected. As 

soon as the list of levels is constructed, the TM identifies which of the levels has the 

highest priority, sets it as the level which is going to be executed next, and removes 

the rest from the layer. 

We extend the example of Figure 30, in Figure 31. There, the execution of Level 4 was 

just completed (all the levels with a striped background are complete) and produced 

two more levels (9 & 10), which are added in the next transitioning layer (i.e. layer 3). 

The TM identifies that the next level that should be executed is Level 5. But, it also 

identifies that this level belongs to a mutual exclusion group along with Levels 6, 7, and 

10. 

 

Figure 31: Transitioning layers containing mutually exclusive levels 
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As we discussed earlier, since level 10 doesn’t belong to the same layer as Level 5, it is 

ignored. The priorities of rest of the levels (i.e. levels 5, 6, and 7) are compared, and 

the one with the highest priority (level 7) is selected for execution and the others are 

removed from the transitioning layer (Figure 32). 

 

Figure 32: Transitioning layers after the mutually exclusive levels are removed 

 

4.8. GOAL INJECTION MANAGER 

While the story is executed, the Goal Injection Manager (GIM) constantly monitors the 

current state of the active level with the help of the World Manager (WM), to identify 

if a goal needs to be injected to the goal list of an agent/character. The actions which 

can trigger a goal injection, along with any conditions, are created by the storyteller. 

There are three types of goal injection rules: fixed, default, and conditional. In all of 

them, there is a PDDL fact that triggers the goal injection. 

In the fixed type, the storyteller can specify a specific goal, which is going to be 

injected to a pre-defined character when a specific event occurs during the generation 
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of the story. In the default type, the goals to be injected are abstract and they are 

constructed during runtime using variables and indexes. 

In the example of Figure 33, the fact name which triggers the goal injection is “will-

follow”. The complete abstract PDDL predicate is the following: “will-follow ?who - 

character ?whom - character ?to – location”. The “inject_to” node takes as a value the 

index of the variable in the PDDL predicate in which the goal will be injected to. In the 

example, since the index is “1”, then the goal will be injected in the character who 

corresponds to the “?who” variable. 

The goal set to be injected can take two types of variables: the “_agent_” variable, and 

a set of “_param_” variables. The parameter nodes are specified as indexes 

corresponding to PDDL variables, exactly as it was explained before. 

In the example, the goal which is set to be injected is “(at _agent_ _param_)“. The 

“_agent_” variable is going to be substituted by the agent name (explained before), 

and the “_param_” variable by the variable in the PDDL predicate corresponding to the 

3rd index, i.e. the “?to” variable. 

<goal_injection_rules> 

  <rule> 

    <fact_name>will-release-briseis</fact_name> 

    <type>fixed</type> 

    <inject_to>agamemnon</inject_to> 

    <goals_to_inject> 

        <goal> 

            <goal_name>(informed-that-is-released briseis)</goal_name> 

            <goal_importance>100</goal_importance> 

            <precondition></precondition> 

        </goal> 

    </goals_to_inject> 

  </rule> 

  <rule> 

    <fact_name>will-follow</fact_name> 

    <type>default</type> 

    <inject_to>1</inject_to> 

    <goals_to_inject> 

        <goal> 

            <goal_name>(at _agent_ _param_)</goal_name> 

            <goal_importance>100</goal_importance> 

            <precondition></precondition> 

        </goal> 

    </goals_to_inject> 
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    <parameters> 

      <parameter>3</parameter> 

    </parameters> 

  </rule> 

  <rule> 

    <fact_name>is-dead</fact_name> 

    <type>conditional</type> 

    <conditions> 

      <condition> 

        <equals index=”1”>patroklus</equals_to> 

        <inject_to>odysseus</inject_to> 

        <goals_to_inject> 

          <goal> 

            <goal_name>(knows-important-person-is-dead achilles 

patroklus)</goal_name> 

            <goal_importance>100</goal_importance> 

            <precondition></precondition> 

          </goal> 

        </goals_to_inject> 

      </condition> 

      <condition> 

        <equals index=”1”>hector</equals_to> 

        <inject_to>paris</inject_to> 

        <goals_to_inject> 

          <goal> 

            <goal_name>(knows-important-person-is-dead priam 

hector)</goal_name> 

            <goal_importance>80</goal_importance> 

            <precondition></precondition> 

          </goal> 

        </goals_to_inject> 

      </condition> 

    </conditions> 

  </rule> 

</goal_injection_rules> 

Figure 33: A set of XML Goal Injection rule nodes 

The conditional type is an extension of the fixed type, where we specify a generic 

event that might occur during the generation of the story, and a set of conditions 

related to it, which can trigger different goal injections to different characters. 

In the example of Figure 33, the PDDL predicate is “is-dead ?who - character ?by - 

character”. So, the system checks the “?who” variable against the conditions. When 

the “?who” variable is equal to “patroklos”, then the first condition is met. The new 

goal is going to be injected to “odysseus”. In the same manner, if the first variable is 

equal to “hector”, a goal will be injected to “paris”. 
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Every time that a new level is loaded, the WM instructs the GIM to load the new rules 

of the level. GIM requests the new level’s information from the Level Manager, and 

using that asks the Parser to return all the parsed goal injection rules of this level. For 

each rule, the GIM communicates with the Planner to get the PDDL representation of 

the goals which are included to each rule, and creates the rule. This process is 

illustrated in Figure 34. 

 

Figure 34: Loading of new goal injection rules sequence diagram 

Every action has a set of positive or negative effects. Every time that an action is 

successfully executed during the execution/generation of the story, the WM sends its 

effects (which are PDDL facts) to the GIM, asking it to check if any of them match any 

of the goal injection rules of the currently active level. 

Then, the GIM requests the PDDL name of each fact from the Planner, and checks 

them against the goal injection rules. If a fact matches a rule, it adds the goal injection 

rule to a list and at the end of this process returns the list to the WM, which deals with 

the injection of the goals to the appropriate characters based on the rules of each goal. 

This process is illustrated in Figure 35. 
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Figure 35: Sequence diagram of dealing with goal injections 

 

4.9. FUTILE GOALS MANAGER 

The idea behind the creation of “futile goals” is that sometimes (depending on the 

story) the characters present in a level may not have any important goals to achieve, 

so instead of having them staying idle, the storyteller can specify a set of futile goals 

which are applicable in a level, and they can be used to keep the characters busy. 

A futile goal node (illustrated in Figure 36) contains a PDDL fact using a variable (i.e. 

?agent) so the system can substitute it with the name of the character the futile goal is 

injected to, the importance value of the goal, as well as its preconditions (if there are 

any). 

Apart from the futile goal nodes, the storyteller can also specify a set of illegal location 

nodes, which represent locations in which the futile goals are not applicable, meaning 

that even if a character is idle and located in one of these locations, she will not be 

assigned with a futile goal. 

The Futile Goals Manager (FGM) is in direct communication with all the activated 

agents. If at any point any agent doesn’t have any important goal to achieve, it may 

receive a futile goal, depending on the following conditions: if there are any futile 
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goals, if the agent is configured to accept futile goals, if the agent already waited for a 

turn doing nothing, and if the agent isn’t in a location where the futile goals are 

forbidden. The component keeps track of the futile goals assigned to an agent, so they 

won’t be assigned again to the same one, unless is required. 

<futile_goals> 

  <goal> 

    <name>(not-thirsty ?agent)</name> 

    <importance>0</importance> 

    <precondition></precondition> 

  </goal> 

  <goal> 

    <name>(not-hungry ?agent)</name> 

    <importance>0</importance> 

    <precondition></precondition> 

  </goal> 

</futile_goals> 

<illegal_locations> 

    <location>garden</location> 

    <location>basement</location> 

</illegal_locations> 

Figure 36: A set of XML futile goal and illegal location nodes 

The process of loading the new set of futile goals for each level is similar to the one of 

the loading of choices. Every time that a new level is loaded, the World Manager (WM) 

instructs the FGM to load the futile goals information for the new level (i.e. all the 

futile goal nodes which are relevant to the new level). The FGM makes an inquiry to 

the Level Manager to receive the choices information about the currently active level, 

and using that it asks the Parser to parse and return the set of futile goals, as well as 

the set of locations that the futile goals are not applicable in them, which are stored in 

memory. This process is illustrated in Figure 37. 

The execution of agent’s actions happens sequentially in turns. When it’s an agent’s 

turn to execute an action, the WM informs the agent that it’s its turn, and asks for an 

action to execute. For the purpose of describing the process of requesting a futile goal, 

we will assume that the agent has neither a plan which is currently being executed nor 

any important goals for which it needs to find a new plan. 
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Figure 37: Loading of new futile goals sequence diagram 

As soon as these conditions are met, the agent checks if has already waited for one 

turn. If not, the agent waits, alternatively it requests for a futile foal from the FGM, 

informing it of the agent’s location. Considering that there are futile goals available for 

this level, the FGM checks if the location of the agent is in the list of the forbidden 

locations. If it is not, then a futile goal which was not allocated before to this agent is 

randomly selected. 

Afterwards, it communicates with the Parser to request the PDDL representation of 

the goal, creates the goal for the specific agent, and returns it to the agent. As soon as 

the agent receives the goal, tries to generate a plan for it with the help of the Planner. 

If a successful plan is found then the agent returns to the WM the action which is 

about to execute, or just waits. This process is illustrated in Figure 38. 
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Figure 38: Sequence diagram of requesting a futile goal 

4.10. ORACLE 

There are certain situations during the generation and execution of a story, where a 

relatively random outcome needs to be calculated. For example, as we explain in 

section 4.16, soldiers and characters who are involved in battles have a fighting ability 

value. Therefore, the outcome of the battle needs to be calculated randomly, but 

based on that fighting ability. 

The Oracle component deals with these random outcome calculations. The process is 

similar to the concept of a lottery, and is depicted in Figure 39. It receives as an input 

the number of tokens for each side (e.g. for options “A” and “B”), as well as an optional 

multiplier (the default value is 1). 
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Figure 39: Calculating a random outcome activity diagram 

The first step of the process is to create the tokens for each option, by multiplying the 

initial number of tokens with the multiplier. As an example, if option A has 20 tokens, 

option B 10 tokens, and the multiplier is 10, then the final number of tokens will be 

200 and 100 respectively. 

Afterwards, all the tokens are added in a common collection, the collection is shuffled, 

and a token is selected randomly, which is returned to the component which 

requested it. 

4.11. UNCERTAIN ACTIONS MANAGER 

Actions can fail or succeed based on preconditions or user interaction. But, there are 

some types of actions which makes sense that they should have a percentage that will 

succeed due to chance. We call these actions “uncertain”, and the component which 

deals with them the Uncertain Actions Manager (UAM). 
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As an example, a character may need to locate another character in a crowded area, 

such as a battlefield. Even if the preconditions of the action are met (e.g. both of the 

characters are located in the battlefield), it makes sense that the action should have a 

chance of succeeding or failing. 

As illustrated in Figure 40, the storyteller can specify the name of such actions along 

with their success percentage. 

<uncertain_actions> 

  <action> 

    <name>locate-in-battle</name> 

    <succeed_percentage>30</succeed_percentage> 

  </action> 

</uncertain_actions> 

Figure 40: A set of XML uncertain actions nodes 

Every time that a new level is loaded, the World Manager (WM) instructs the UAM to 

load the uncertain actions of the new level. The UAM makes an inquiry to the Level 

Manager to receive the choices information about the currently active level, and using 

that it asks the Parser to parse and return the set of uncertain actions, which are 

stored in memory. This process is illustrated in Figure 41. 

 

Figure 41: Loading of new uncertain actions sequence diagram 

When an action is cleared for execution (i.e. the preconditions of the actions are met, 

the agents involved are available, etc.) WM instructs the UAM to check if an action is 

ok to be executed. The UAM checks if the action is in the uncertain actions list of the 

currently active level. 
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If it doesn’t, the UAM sends a message back to the WM that the action is cleared for 

execution. If it does, then the UAM sends the percentages of success and failure to the 

Oracle, requesting a lottery outcome. 

The Oracle calculates and returns the outcome, and based on it the UAM either 

informs the WM that the action is ok to be executed, or not. This process is depicted in 

Figure 42. 

 

Figure 42: Sequence diagram of checking if an action is uncertain 

 

4.12. VANTAGE POINT MANAGER 

As we discussed in section 2.11, DIS systems traditionally choose to apply either a first-

person or a third-person perspective to present their stories to the player. In its default 

mode, DIEGESIS presents the generated story as a whole. At any point during the 

generation of the story the player is able to view any action that a character is 

executing, make choices related to any character, as well as view details about them 

(i.e. their current goals and plan). These abilities constitute a third-person perspective. 

But, apart from the default mode, we want to provide the player with a first-person 

perspective as well; we want the player to be able to view the outcome of the story 

from the “eyes” of a specific character, meaning that the player will only view the story 
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outcome which is related to the chosen character, and will be available to interact with 

the story (i.e. make decisions) only when an action is related to the chosen character. 

We call this concept a vantage point. 

The player should be able to choose between different vantage points or return to a 

full story view freely during run-time. Choosing a vantage point will not affect the 

outcome of the story, which will continue normally –yet invisible if it’s unrelated to the 

chosen character- in the background. If an important action (i.e. choice) is about to be 

executed which is not related to the character whose vantage point is active, the 

framework will have to make the choice instead of the player. 

As we mentioned in section 4.5, every time that an action is executed, the World 

Manager (WM) stores information about the action in the Knowledge Base (KB). For 

each action, the following information is being gathered and stored in KB: the 

characters related to the action; the time step (i.e. turn) when the action occurred, the 

level in which the action belongs to, and the order of the action related to other 

actions. We store this information so it can be used by the Vantage Point Manager 

(VPM) component. 

Every time that a new level is loaded, the UM passes to the VPM the list of characters 

who are present in the level. The VPM checks if they are already in its characters list, 

and if they are not it stores them there. 

If instructed by the player via the User Manager (UM) component, the VPM recreates 

the generation of a part of the story that a specific character is involved with, to allow 

the player to view the story from the vantage point of that character. It displays all the 

actions executed by the selected character, as well as any actions which were executed 

by other characters in which the selected character was involved, in chronological 

order, separated by levels (including each level’s description). This process is illustrated 

in Figure 43. 

Initially, the WM requests all the actions related to the chosen character from the KB. 

Afterwards, for each of the actions, it checks if it belongs to a level which information 

was not displayed to the player during the generation of the vantage point. If it does, 

then requests the level information from the Level Manager, and passes it to the 
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Output Generator (OG) to be displayed to the player via the UM. Then, the VPM passes 

the action’s information to the OG so it can be displayed to the player as well. 

 

Figure 43: Vantage point generation sequence diagram 

If the vantage point of a character is selected, the vantage point manager dictates 

which messages are going to be sent to the UM by the OG. Although the story is 

executed normally in the background, the player will view only the messages relevant 

to the selected character. This process is depicted in Figure 44. 

Initially, the WM sends an action to the OG and requests to be displayed to the player 

and printed to the console (for debugging purposes). The OG prepares the appropriate 

message based on the action and prints it. Then, it checks with the VPM to check if 

there is an active vantage point. If it does, then sends the action to the VPM to identify 

if the enabled vantage point belongs to any of the characters involved in the action. If 

it does, then the OG sends the message to the UM to be displayed to the player. If it 

doesn’t, then the action is not displayed to the player. 

The vantage point can change at any point during the runtime, and the component is 

able to disable any active vantage points and restore the whole story in its default 

mode if requested. 
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Figure 44: Checking if an action will be displayed sequence diagram 

 

4.13. USER MANAGER 

The User Manager (UM) component is responsible of communicating with, as well as 

displaying the story and relevant information about it to the player. 

Initially, it has been decided that based on the focus of this research, a graphical user 

interface (GUI) would not be developed, as being out of scope for this project. Instead, 

the player would receive all the relevant information and the available actions in an 

old-fashioned text-adventure way. 

Although the first few prototypes of DIEGESIS were operating in this way, we quickly 

realised that it would serve our interests best and it would be easier for the player to 

interact with the system via a GUI. 

Therefore, we decided to revisit and alter the design of the UM and include a GUI 

which would keep the text-based narration, but would provide an easy way for the 
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player to be able to view information about the story and its characters on demand, 

plus a few more experimental features which we later discarded. The initial mock-up 

of the GUI is illustrated at Figure 45. 

 

Figure 45: Initial GUI mock-up 

While progressing with the design of DIEGESIS and prototyping at the same time, the 

design of the GUI involved. We removed features that we decided not to implement, 

and added others such as the ability for the player to make choices. An intermediate 

mock-up of the GUI is depicted in Figure 46. 

 

Figure 46: Intermediate GUI mock-up 

Finally, as soon as we finalised the design of DIEGESIS, we included all the features we 

needed the player to have access to into the GUI, such as the selection of vantage 

points, etc. The final mock-up for the DIEGESIS’ GUI is illustrated in Figure 47. 
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Figure 47: Final GUI mock-up 

Apart from viewing the outcome of the story, the player can progress the story to the 

next turn, view at any point during the execution the current plan and goals for any of 

the activated characters in a level, view information about the currently active level, 

and, when is required, make choices for the outcome of the story. The player also has 

the ability to switch between different vantage points at any point during the 

generation of the story. The ability for the player to make a choice is removed from the 

main GUI, and added as a pop-up modal box, illustrated in Figure 48. 

 

Figure 48: Modal box GUI mock-up 

4.14. PLANNER 

As we already discussed in section 2.2, planning algorithms are the most widely used 

technique in DIS systems, and this is the solution that we are using as well. DIEGESIS’ 

planner consists of a planning and a re-planning algorithm, able to generate plans of 

actions based on each agent’s state and context, considering both the current world 

state and the available resources. The planner is aware of the available time (duration) 

a character has for a plan when it is asked to generate one. 
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As we already discussed in section 2.11, our planning algorithm is based on Graphplan 

for solutions expansion, and backtracking heuristic search for plan extraction, enriched 

with constraints satisfaction and dynamic opportunistic restart when required. The 

Planner is the component which deals both with the planning and the re-planning 

processes. 

When the World Manager (WM) instructs the Planner to initialise itself, the Planner 

requests from the Level Manager (LM) the current level’s information, and then 

instructs the Planner to parse and return the PDDL representation of the current level, 

as well as any information about the duration of the level’s actions. As soon as the 

Planner has this information, it pre-processes and initialises the planning domain that 

will be used to generate plans for the level. This process is illustrated in Figure 49. 

 

Figure 49: Planner initialisation sequence diagram 

We want the actions that an agent can execute to be atomic and also we don’t want to 

have actions that overlap each other, mostly for simplicity reasons, since it is easier to 

evaluate the generated plans of each character in the story and investigate how they 

affect each other. Therefore, we decided that instead of using PDDL’s durative actions 

which are more complex for the storyteller to construct, to simply specify the total 

duration of an action (in seconds) in XML. 

The storyteller can specify a set of action nodes for the actions of each level. If an 

action does not have a specified duration, the default duration of 0 seconds is used. An 

action node (illustrated in Figure 50), contains the name of a PDDL action, its duration 
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(in seconds), and –optionally– its type (i.e. an interruptive action, which was explained 

in section 4.5). 

<actions> 

  <action> 

    <name>seduce</name> 

    <duration>1200</duration> 

  </action> 

  <action> 

    <name>negotiate</name> 

    <duration>3600</duration> 

  </action> 

  <action> 

    <name>kill</name> 

    <duration>60</duration> 

    <type>interruptive</type> 

  </action> 

</actions> 
Figure 50: A set of XML action nodes 

The initialisation of the planning domain in illustrated in Figure 51. Initially, the Planner 

gets a list of PDDL predicates and objects from the PDDL representation that was 

returned by the Parser. As we explained in section 3.3, predicates are expressions that 

describe simple or complex states of the world, and can be either true or false. 

An example of a predicate is the following: “at ?who – character ?where – location”. 

The predicate’s name is “at”, and has two variables (words which begin with a 

question mark are variables): “?who” which can be only a character object, and 

“?where” which can only be a location object. 

To make sense and to can be used in the planning process, predicates’ variables are 

substituted with actual objects. In our example, a substituted predicate can be the 

following: “at menelaos throne-room”. From now on, we will call any substituted 

variable, a “fact”. 

As soon as the Planner has the list of predicates, for each predicate it performs any 

possible substitution (i.e. any possible combination of applicable objects) to create all 

the facts of the planning domain, and stores them in a facts list. 
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Figure 51: Activity diagram of the initialisation (pre-processing) of planning domain 

Then, the Planner gets a list of all the PDDL actions from the PDDL representation. As 

explained in section 3.3, actions are usually made up of three parts: parameters, 

preconditions, and effects. Parameters are variables which define the objects which 

need to exist for an action to be executed, as well as their types. The preconditions are 

predicates related to the parameters which need to be either true or false for an 

action to be executed, and the effects are one or more predicates which will be turned 

to true or false after an action is executed successfully. 

In the example of Figure 52, action “talk” has three parameters: two characters and a 

location; three preconditions: both of the characters need to be at the same location, 
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and they cannot be the same person; and one effect: the two characters will be in 

discussion. 

(:action talk 

    :parameters (?who - character ?to-whom - character ?where - room) 

    :precondition (and 

        (at ?who ?where) 

        (at ?to-whom ?where) 

        (not (= ?who ?to-whom)) 

    ) 

    :effect (and 

        (in-discussion ?who ?to-whom) 

    ) 

) 

Figure 52: A PDDL action example 

Similar to what happens with the predicates, the actions also need substitutions in 

their parameter variables to make sense. For example, one of the possible 

substitutions of the above action could be the following: “talk menelaos agamemnon 

throne-room”. Since every action performs an operation to the planning domain, 

within the context of the Planner we call them “operators”. 

As soon as the Planner has the list of actions, it performs any possible substitution in 

the parameters of each action to create all the operators of the planning domain, and 

stores them in an operators list. It also searches the list of action’s duration, and adds 

the appropriate duration to each operator.  

Apart from regular operators, there are also “no-op” operators. Each no-op represents 

a persistent action, which causes the fact present in a level of the planning graph to 

stay at the same state in the next level. A set of no-ops for each fact in the planning 

domain is created and added to the operators list. 

Having created a list of all the possible operators that can be present in the planning 

domain, the next step for the Planner is to identify all the mutexes between them and 

add them to a list for future reference. 

Two actions in the same level are considered mutex when their preconditions and 

effects are inconsistent. They can co-exists as possibilities in a level (since a level is a 

belief state; a state of possible states) but they cannot exist as a part of an actual 

solution. 
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By identifying all the possible mutexes before the actual generation of a planning 

graph and the extraction of a plan, the planning process is extremely speeded up. 

After dealing with the mutexes, it is time to deal with any goals. As usual, the Planner 

gets a list of all the PDDL goals from the PDDL representation. Each goal is actually a 

substituted predicate, therefore a fact, so the Planner searches the facts list, identifies 

the fact which is identical with the each goal, and adds it to a goals list as well. 

Finally, the same process is repeated to create the initial state of the world. Similar to 

goals, the initial state of the world is specified by the storyteller and consists of a set of 

substituted predicates, i.e. facts. The Planner creates a list of facts which represent the 

current state of the world. This list is passed to the WM, and is used to keep track of 

the state of the world at any time by setting facts to true or false. This process 

completes the initialisation of the planner. 

To generate a plan, the Planner needs this initial pre-processed information, which can 

be altered during runtime. For example, when an agent requests a plan during 

runtime, typically it will change the initial list of goals to add its own, and will set the 

current state of the world as the initial state (as perceived by the Planner). The process 

of generating a new plan is illustrated in Figure 53. 

The Planner keeps the information about the latest planning episode it worked on, and 

when instructed to generate a new plan, it first checks if the new set of goals is present 

in the list of goals it already has, and if the initial state of the world is the same. If these 

conditions are met, then the Planner removes the excess of goals which are not 

present in the new request, bypasses the expansion stage, and moves directly to the 

plan extraction phase. We’ll get to the plan extraction phase in a bit, but to explain 

things properly we will first explain how the expansion process operates. 

So, considering that there is a new planning problem to solve, the Planner first needs 

to generate the planning graph. The first level of the planning graph is the initial state 

of the world. To expand it, the Planner identifies all the operations (actions) which are 

applicable based on this current state, and “executes” them, adding their positive and 

negative effects (facts) to the new layer, but also keeping the facts which are already 

present in the initial state, copying them to the new layer via a no-op. 
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Figure 53: Activity diagram of the planning process 

As an example, in Figure 54 we have a planning domain and problem (we combined 

them and omitted some information for simplicity reasons) with two characters 

(“Helen” and “Paris”), two locations (“room-1” and “room-2”), one predicate (“at” 

which indicates in which location a character is located) and a single action (“walk”), 

which allows the characters to move from one location to another. The initial state of 

the world is that Paris is located in room-1, and Helen in room-2. 

(:objects 

  paris - character 

  helen - character 

  room-1 – location 

  room-2 – location 

) 

 

(:predicates 

  (at ?x - character ?y - location) 

) 

 

(:action walk 

  :parameters  (?x - character ?y - location ?z - location) 

  :precondition (and 

    (at ?x ?y) 

    (not (= ?y ?z)) 
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  ) 

  :effect (and 

    (at ?x ?z) 

    (not (at ?x ?y)) 

  ) 

) 

 

(:init 

  (at paris room-1) 

  (at helen room-2) 

) 

Figure 54: A PDDL planning domain and problem 

When the Planner expands the level, it creates a planning graph similar to the one 

depicted in Figure 55. L0 represents the first level of the planning graph, i.e. the initial 

state of the world. From there, as we already mentioned, to expand the level to the 

next, the Planner identifies all the operations which are applicable based on this 

current state, and “executes” them. There are two possible operators that can be 

executed, that is to walk Paris from room-1 to room-2, and Helen from room-1 to 

room-2. There are also two applicable no-op operators that preserve the facts present 

on the initial level, to the next one. These no-ops are represented by a dashed line. The 

dotted lines represent mutexes between operators or facts. As an example, although 

Paris can be either in room-1 or in room-2 in the expanded level 1, he cannot be at the 

two rooms at the same time. 

 

Figure 55: A simple planning graph example 

As we described in section 4.5, a character’s goal consists of a fact, and (optionally) 

from an importance (salience) value and a precondition. The precondition isn’t 
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relevant to the Planner (is discussed in section 4.15), but the importance value of each 

goal is passed to the Planner along with the actual goal (i.e. the fact). 

After a new expansion of the planning graph is complete and a new level is created, 

the Planner checks if all of the goals which it tries to generate a plan for, exist in the 

level and they are not mutex (i.e. they don’t have any constraints) between them. For 

example, if the goal of the expansion example we just described was “at paris room-2”, 

then it would be located in the first level. 

If the goals are not present in a level, or they are not free of mutexes, then the planner 

checks if the planning graph levelled off before it expands another layer. If two 

consecutive layers are identical we consider that the planning graph has levelled off, 

meaning that we reached a point where the planning graph cannot be expanded any 

further (all the subsequent levels will be identical to each other). If that happens, then 

the process ends there and the Planner returns a failure message. 

The above process is being performed until either the planning graph levels off, or a 

level is found containing all mutex-free goals. As soon as this happens, the Planner 

moves on to the plan extraction phase. 

The extraction phase includes a backward search starting from the last generated level 

which contains all the goals. There, the Planner identifies a set of operators (actions) 

which resolve the goals and are mutex-free between them, and adds them to the 

generated plan as the last set of plan actions. A plan consists of one or more sets of 

actions, which can contain one or more action(s). 

Then, the Planner calculates the duration of the whole plan using the action duration 

values of each action specified by the storyteller. If the total duration of the plan is 

within the specified limits, then the planning graph’s level is marked as searched, and 

all the preconditions of the operators that solve the problem for this level (and were 

added to the plan) are extracted and added as the new set of goals. 

If all the levels are marked as searched (i.e. the last searched level was the initial state 

of the world), then a valid plan has been found, and the Planner returns it. If not, then 

the process continues for the next level of the planning graph (as a reminder, we move 

backwards). 
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If the total plan’s duration exceeds the available time, the planner chooses the least 

important goal (based on the “salience” value of the goals), and removes it from the 

list of goals. If (after the removal) the goal set is still the same (i.e. there was not a goal 

which wasn’t important), or there are no other goals left, the process stops and the 

Planner returns a failure message. 

If there are still goals to search for, the Planner clears the plan and marks all of the 

expanded levels as unexecuted. Then, starting from the initial level it performs a 

forward search in all levels sequentially to find the one in which all the new set of goals 

is present and all the goals are mutex-free between them. As soon as it found, if it is 

not the last one in the planning graph, then the levels after it are marked as ignored, 

and it becomes the last. Then, the process continues normally by searching in the last 

level for a solution. 

As we already mentioned in section 3.5, we want each agent to be able to plan and 

operate as an individual, creating an autonomous plan considering its own needs. The 

planning approach we just explained suffers from the following: it best suited for a 

centralised planning, where we want to perform a decentralised planning. 

Elaborating on the centralised planning issue, we will discuss a new expansion example 

(its details can be found in Figure 56), which is an expanded version of the expansion 

example we discussed earlier in this section. 

(:objects 

  paris - character 

  helen - character 

  room-1 – location 

  room-2 – location 

  item - item 

) 

 

(:predicates 

  (at ?x - character ?y - location) 

  (has ?x - character ?y - item) 

) 

 

(:action walk 

  :parameters  (?x - character ?y - location ?z - location) 

  :precondition (and 

    (at ?x ?y) 

    (not (= ?y ?z)) 
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  ) 

  :effect (and 

    (at ?x ?z) 

    (not (at ?x ?y)) 

  ) 

) 

 

(:action give 

  :parameters (?i - item ?x - character ?y - character ?z - location) 

  :precondition (and 

    (has ?x ?i) 

     (at ?x ?z) 

     (at ?y ?z) 

     (not (= ?x ?y)) 

  ) 

  :effect (and 

     (has ?y ?i) 

     (not (has ?x ?i)) 

  ) 

) 

 

(:action take 

  :parameters (?i - item ?x - character ?y - character ?z - location) 

  :precondition   (and 

     (has ?y ?i) 

     (at ?x ?z) 

     (at ?y ?z) 

     (not (= ?x ?y)) 

  ) 

  :effect (and 

     (has ?x ?i) 

     (not (has ?y ?i)) 

  ) 

) 

 

(:init 

  (at paris room-1) 

  (at helen room-2) 

  (has paris item) 

) 

Figure 56: An expanded PDDL planning domain and problem 

The differences with the previous example are that apart from the two characters and 

the two locations, it contains an item, a new predicate (“has” which indicates which 

character is in possession of an item), and two new actions, “give” which a character 

can use to give an item to another character willingly, and “take” which a character 
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can use to take an item from another one without asking permission. The initial state 

of the world is that Paris is located in room-1, Helen in room-2, and Paris has the item. 

Considering that the Planner is instructed by the agent who represent Helen to find a 

valid plan for the goal “has helen item”, it will expand the planning graph up to the 

third level (L2). The expanded planning graph up to that point is illustrated in Figure 

57. In level L2, there are four (4) actions which will accomplish the goal: Paris can give 

the item to Helen either in room-1 or in room-2 (one action for each room), and Helen 

can take the item from Paris, again either in room-1 or in room-2. Therefore, a possible 

valid plan is that Paris will walk from room-1 to room-2 where Helen is originally 

located, and there he will give her the item. 

 

Figure 57: The expanded planning graph 

But, in our context, that plan doesn’t make sense. Since the goal belongs to Helen, she 

is the one who needs to take action and accomplish that goal. Therefore, she should 

ask the framework to execute actions that concern her, and not request from the 

framework to force another agent to execute an action that he didn’t plan for. The 

solution to that problem is to specify to the Planner that it needs to generate a plan 

which includes actions that can only be executed by Helen.  
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If we do that only for the extraction phase though, for example to make the Planner 

identify which actions are not executed by Helen and ignore them while searching for a 

valid plan, it still doesn’t make sense to expand the planning graph having these 

actions in the first place. Apart that they are irrelevant for the plan the Planner needs 

to generate, they can also potentially have a huge performance impact since they the 

planning graph will grow a lot. 

For example, if in the planning domain we just discussed we had one hundred (100) 

characters instead of two (2) and the same two (2) locations, in the first level of the 

planning graph we would have ninety nine (99) facts which should not be there, since 

the ninety nine (99) “walk” actions which have them as effect should not be executed 

since they are irrelevant of the agent who actually plans. 

To solve all of these issues, the Planner is aware of the name of the agent who 

instructed it to generate a plan. Furthermore, for every action which involves more 

than one character, we specify which character is the main one, i.e. the one who 

initiates the action.  

These steps have the effect that the Planner now expands the planning graph only for 

the main character, leaving the rest in their initial state (i.e. the state that the 

character knows they are when initiates the plan generation). The new planning graph 

is illustrated in Figure 58. 

 

Figure 58: The new simplified planning graph 
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If we compare the new planning graph of Figure 58 with the old planning graph of 

Figure 57, we can see that even in that quite small and simple example, the complexity 

of the planning graph is highly reduced, which will cause the Planner to find a valid 

plan which makes sense easier. 

Of course, by planning only for one agent without any idea of how the rest are going to 

operate in the future (e.g. if they will stay in the same location, etc.) can often cause a 

plan to fail while being executed. 

Plan failures do not apply only to DIEGESIS though. In any type of planning systems, 

even if a plan is thoroughly tested and well-constructed there are unpredicted 

situations that might cause it to fail. Since (as we already mentioned) each agent 

operates as an individual generating its own plans based on its own goals, it is common 

for an agent’s plan to interfere with another agent’s plan, causing the latter to fail. The 

interference can be something simple such as the availability of a resource, or even 

something more complicated, like the death of a character which can alter significantly 

an agent’s goals, therefore its plans. Another option that can trigger re-planning is user 

interference. 

When a plan fails, it is necessary for a new plan to be constructed, and this can 

typically happen in two ways: either by planning from scratch, discarding any 

previously generated plans, or by revising a previously generated plan. We believe that 

the re-planning methods that reuse information from previously generated plans are 

much faster than the approach of solving each planning task from scratch. We 

validated this assumption performing an evaluation (Goudoulakis et al., 2013) 

(discussed in section 6.5.4), where we evaluated our re-planning method against 

planning from scratch. 

Our proposal for re-planning in DIS interleaves plan generation and plan execution to 

be able to re-plan as soon as an unexpected change happen in the environment, while 

making minimal disruption to the original plan. 

The re-planning process is illustrated in Figure 59. When instructed to do so, the 

Planner retrieves all the action sets of the plan which needs to revise. Then, it selects 

the action set in which at least an action failed. For each of the actions, it checks if the 
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action is failed or is still pending. For any of these conditions, it retrieves the action’s 

effects and adds them as goals for the new plan. Then, it checks if there are other 

action sets after the one it just checked. If there are, then it selects the first of these 

sets, and for each action (since they are all pending), it adds their effects as goals as 

well. 

 

Figure 59: Activity diagram of the re-planning process 

As soon as the new goals list is prepared, the Planner generates a new partial plan for 

these goals using the planning process we described earlier in this section. If a new 

plan is not found, then it returns failure and terminates the process. If a new valid plan 

is found, then it moves to the merging phase, where it discards the action sets which 

are already complete, as well as the action sets for which it generated the new plan, 

and replaces them with the new partial plan, forming a complete valid plan. 

Figure 60 illustrates an abstract example of how our re-planning solution is operating. 

There is an initial plan, consisting of n sequential sets of actions. While an agent is 

executing the third action set (A2), one if its actions fails. 
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Figure 60: An abstract re-planning example 

Our re-planning algorithm identifies the actions which are pending or failed in the A2 

set, and adds their effects as goals for the new partial plan which will be generated. It 

also identifies that there are other action sets after the failed one, so adds the effects 

of the actions of the next set (i.e. A3) as goals as well. Based on these goals, a new 

partial plan is being generated using our planning algorithm. 

As soon as a valid plan is generated, we proceed to the merging phase, where the first 

4 action sets (A0 – A3) are discarded since they consist of completed action sets (A0 – 

A1) and action sets for which the algorithm has just generated a new partial plan to 

replace them (A2 – A3). 

The new plan consists from the action sets of the partial plan (NA0 – NA4) which are 

placed at the beginning of the plan, and the rest of the sets of the existing plan (A4 – 

A..n). 
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4.15. AGENT 

As we already discussed, DIEGESIS is designed as a multi-agent solution. Each agent 

represents a character in the game world and uses an instance of the Planner 

component to be able to generate plans of actions, and regenerate them if needed. 

Each agent is designed to operate as an individual, creating an autonomous plan 

considering its own needs. 

As discussed in section 2.6, there are several intelligent agents’ architectures that are 

used in multi-agent systems. DIEGESIS’ agent architecture, follows a hybrid approach; 

it includes elements of reactive agents (the agent receives input, processes it, and 

produces an output), elements of deliberative agents (the agent keeps an internal view 

of its environment), and elements of BDI agents (Beliefs – the agent’s view of the 

world, Desires – the agent’s goals, Intentions – the agent’s plans). 

The initialisation process of an agent was discussed in section 4.5; when initialised, the 

agent is fed with relevant information: the character’s (who the agent represent) 

name, the available time to complete any goals (if applicable), its fighting ability and 

the alliance it belongs to (if applicable), if the agent can request futile goals when has 

nothing to do in the level, the location it is currently located into, the current state of 

the world, and a set of initial goals for the specific level. 

After an agent is initialised, the Agents’ Manager (AM), a sub-component of the World 

Manager (WM), instructs the agent to generate an initial plan based on the goal set 

that the agent has. To do that, and only if the agent has at least one goal to generate a 

plan for, the agent sends to the Planner all the information it’s going to need to 

generate a plan (i.e. the current state of the world, the available time of the agent, and 

the set of agent’s goals), and requests for a new plan generation. The Planner tries to 

generate a plan, and either returns the plan or a message of failure (as discussed in 

section 4.14). This process is illustrated in Figure 61. 
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Figure 61: Sequence diagram of the initialisation of agents 

For our evaluation needs (and specifically for the evaluation documented in section 

6.5.5), we decided to model the agent to be able to request a plan in two different 

ways: either by requesting a plan for all of the goals in its goal list, or by requesting a 

plan only for the most important of its goals (the concept of goal importance was 

discussed in section 4.14), and when that goal is complete to move to the next goal, 

etc. The storyteller can choose for the agent to operate in any of these two ways. 

The way in which the agent is constructing the list of goals to generate a plan for is 

illustrated in Figure 62. The agent holds two lists of goals: a list containing all of the 

goals which are still pending, and a list (which is basically a sub-set of the 

aforementioned list) which contains the set goals which will be sent to the Planner to 

generate a plan for them. 

Initially, the agent clears the list of goals to generate a plan for. Then, considering that 

there are goals which are pending, it iterates through the list of pending goals, and for 

each one of them checks if the goal is marked as complete during the execution of a 

previously generated plan. If it is, then is removed from the original pending goals list. 

If not, then the agent checks if the goal has any preconditions. If it does not, then the 

goal is added to the goals to search for list. In case the goal has preconditions, the 
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agent iterates through them and checks their status against the current state of the 

world. If all of the preconditions are met, then the goal is added to the list. If not, then 

the goal is ignored (but is left in the original pending goals list). 

 

Figure 62: Activity diagram of the agent goal selection process 

As soon as the new goals list is populated, the agent checks which of the two modes 

we discussed earlier (i.e. planning for all the goals at the same time versus planning for 

one goal at a time) is enabled. If the mode of searching for all of the goals is enabled, 

then the process ends. Alternatively, the agent needs to identify the most important of 
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these goals, and remove the rest. To accomplish that, the agent checks the volume of 

goals in the list. 

If the list is empty or has only one goal, then the process ends. If there are more goals 

in the list, then for each of the goals the agent first checks if the goal is the first one 

that is being checked. If it is, then the goal is kept as the most important goal. If it is 

not, then the importance value of this goal is checked against the goal which is 

currently the most important one. If it is higher, then this goal replaces the other as 

the most important. If it is lower, then the goal is ignored. In case they are the same, 

then the agent selects one of them randomly and uses that as the most important. 

As soon as this process ends, the agent checks if there is at least one goal to generate a 

plan for. If there is, then it sends all the appropriate information to the Planner, and 

requests a plan. If the Planner returned a plan, the agent stores the plan to be 

executed later, and ends the process. If not, then the stored plan remains empty. This 

process is illustrated in Figure 63. 

 

Figure 63: Activity diagram of agent plan request process 

In case there are no goals to find a plan for in the list, then the agent checks its 

configuration to identify if it can accept a futile goal, and if already waited for one turn. 

If both of these conditions are true, then requests a futile goal from the Futile Goals 

Manager (FGM); the details of the process are discussed in section 4.9. If the FGM 
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returned a futile goal, then this goal is added in the goals to search for list, and the 

agent sends the goal along with the rest of the required information to the Planner to 

generate a plan. 

When an agent has a plan, is able to keep track of which parts of the plan already 

executed and if the plan is complete, as well as which is the next action set that needs 

to execute when requested to do so by the WM (as we discussed in detail in section 

4.5). If during the execution of a plan is informed by the WM that an action set was 

failed and instructed to re-plan, then the agent communicates with the Planner 

sending all the relevant information requesting the Planner to re-plan based on the 

provided information and current state of the world. 

The agent is also aware if the character that represents is still alive as well as the 

location in which is located at any point during the execution of a level. When a level 

ends, every agent which was enabled during the level is deactivated. 

4.16. BATTLE MANAGER 

There are cases in the story that we are using to evaluate DIEGESIS, in which we need 

battles to occur, which add an added form of complexity to and have the potential to 

affect greatly the generated story. Therefore, it makes sense to create a component 

which will handle all these battles between either armies of Non-Player Characters 

(NPCs) or story characters/agents, even both. The Battle Manager (BM) component is 

responsible of dealing with all the battles in the system. 

First of all, to specify if a battle occurs in a level, the storyteller needs to mark it as a 

battle level in the XML file containing the main information about the level which we 

discussed in section 4.4. An example of the additional semantics is displayed in Figure 

64. 

In each battle level, there can be up to two alliances fighting against each other. In the 

example of Figure 64, there is the alliance called “Greece” fighting against the alliance 

called “Troy”. Each alliance may consist of different battle groups (e.g. “Myrmidons”, 

“Trojans”, etc.) each possessing a different volume of soldiers for a specific level. The 

existence of a battle group may be depended by a character option. In the example of 

Figure 64, the battle group “Myrmidons” will only exist in this level if the character 
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called “Achilles” has the option “will-fight” set as “true”. Also, each alliance has a 

“retreat percentage” associated to it. When this threshold is reached (e.g. when the 

volume of soldiers of the Greek alliance becomes equal to or lower than 30% or the 

initial volume of soldiers), the battle will stop and the alliance will retreat. 

<levels> 

  <level> 

    (…) 

    <is_battle_level>true</is_battle_level> 

    <battle_alliances> 

      <battle_alliance title="greece" retreat_percentage="30"> 

        <battle_group volume="500" exist_if_char="achilles" 

exist_if_option="will-fight" exist_if_value="true">myrmidons</battle_group> 

        <battle_group volume="2000">mycenaeans</battle_group> 

        <battle_group volume="2000">spartans</battle_group> 

      </battle_alliance> 

      <battle_alliance title="troy" retreat_percentage="0"> 

        <battle_group volume="5000">trojans</battle_group> 

      </battle_alliance> 

    </battle_alliances> 

  </level> 

</levels> 
Figure 64: A set of XML battle details 

Each battle group has a set of other attributes as well, which are specified in another 

XML file created by the storyteller, which is used in every level of the story and is 

displayed in Figure 65. They have a different fighting ability (which will be used to 

calculate the outcome of each battle), a total volume of soldiers, and a character name 

as leader. The volumes included in each individual level cannot exceed the total 

volume of a battle group which specified here. 

<battle_groups> 

  <battle_group> 

    <title>spartans</title> 

    <leader>menelaos</leader> 

    <total_volume>10000</total_volume> 

    <fighting_ability>5</fighting_ability> 

  </battle_group> 

  <battle_group> 

    <title>mycenaeans</title> 

    <leader>agamemnon</leader> 

    <total_volume>50000</total_volume> 

    <fighting_ability>3</fighting_ability> 

  </battle_group> 

  <battle_group> 
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    <title>ithacans</title> 

    <leader>odysseus</leader> 

    <total_volume>5000</total_volume> 

    <fighting_ability>3</fighting_ability> 

  </battle_group> 

  <battle_group> 

    <title>myrmidons</title> 

    <leader>achilles</leader> 

    <total_volume>1000</total_volume> 

    <fighting_ability>10</fighting_ability> 

  </battle_group> 

  <battle_group> 

    <leader>priam</leader> 

    <title>trojans</title> 

    <total_volume>50000</total_volume> 

    <fighting_ability>4</fighting_ability> 

  </battle_group> 

</battle_groups> 
Figure 65: A set of XML battle groups 

When the BM component is initialised by the World Manager (WM) component 

(Figure 66), the BM with the help of the Parser component parses all the generic battle 

group information, and stores them in the Knowledge Base (KB). 

 

Figure 66: Battle Manager initialisation sequence diagram 

When a battle level is loaded, the WM instructs the BM to initialise the alliances so it 

can be ready to calculate any battles; the BM requests the current level information 

from the LM, and then it loads the new alliances. 
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The loading of the alliances is depicted in Figure 67. Initially, the BM loads the details 

of the new level, and resets any counters which will be used later to deal with the 

battles. Then, it creates a list of the alliances present in the new level, and for each of 

the alliances, it creates a list of the battle groups which belong to the alliance. 

For each group, the BM first checks if the group has an existence precondition. If it 

does, then it gets the character option from the KB and check if the precondition is 

met. If it is not met, then it removes the battle group from the list (i.e. the battle group 

will not be present and fight in this level). If the precondition is met (or if there is not a 

precondition set), then the BM retrieves the current total volume of the battle group 

which is stored in the KB. 

 

Figure 67: Alliances' initialisation activity diagram 
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The total volume is irrelevant of a specific level and it is used globally in the story. For 

example, the total volume for a battle group might be 1000 at the beginning of the 

story, but as the story progresses, it might be reduced to 100 if 900 of the soldiers died 

in battles in previous levels. 

If the total volume is zero (i.e. no soldier is left in this battle group), then the battle 

group is removed. If there are soldiers left, then the next step is to check if the total 

volume is higher than or equal to the required volume of soldiers for the battle group, 

which refers to this level. If it is not, then the volume of soldiers for this level becomes 

equal to the total volume. 

For example, we might model a level where we specify that there are 300 soldiers of a 

specific battle group. But, if something happened in a previous level and a lot of 

soldiers were killed and there are only 100 soldiers left, then only 100 are going to be 

present in this level instead of 300. 

Afterwards, the BM calculates the appropriate amount of soldiers for this level, it adds 

their volume to the total volume of the alliance they belong to, creates a Soldier 

instance for each one of them, and adds it to the alliance’s collection of soldiers. 

As we discussed in section 4.5, when a level is marked as a battle level, a battle occurs 

in each turn of the level until it stops based on certain retreat conditions. To check if 

an alliance needs to retreat, the BM first iterates through the list of alliances and 

calculates the percentage of their current volume, against the volume they started the 

level with. If the current percentage is either lower than or equal to the retreat 

percentage of the alliance (specified by the storyteller), then the alliance is marked as 

“retreated”. 

After this iteration ends, the BM checks if at least one alliance retreated. If there was 

one, then the battle is set to complete, and BM iterates through the alliances again. 

For each one of them, it iterates through their battle groups, and calculates the final 

volume of the battle group (i.e. the number of soldier who were not killed in battle), 

and based on this information calculates the new total volume of the battle group 

which is used globally in the story, and updates the KB with this information. This 

process is illustrated in Figure 68. 
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Figure 68: Activity diagram of checking for an alliance retreat 

To calculate the outcome of a battle turn (illustrated in Figure 69), the first step for the 

BM is to discover which the larger one of the alliances is. Afterwards, each soldier of 

the larger alliance fights (in sequence) a single soldier of the smaller one, until every 

soldier of the smaller alliance has been involved in a fight. 

Then, depending on the configuration of the system by the storyteller, the fight might 

continue or not. If the configuration is that every soldier should fight at least once, 

considering that there are still soldiers from the smaller alliance who have won the 

battle (i.e. they are still alive), they are marked as available, and they fight the 

remaining soldiers of the larger alliance who haven’t been involved in a fight yet. 

To summarise, if the storyteller has chosen that every soldier should fight in a battle, 

then each soldier of the larger alliance will fight a soldier of the smaller alliance once 

during a battle turn (considering that the smaller alliance has not been eliminated 

during the battle turn), but some of the soldiers of the smaller alliance will be involved 

in fight more than once. If there isn’t such a requirement, then the amount of fights 

that will occur in a battle turn is equal to the initial volume of the smaller alliance. 
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Figure 69: Activity diagram of performing a battle 

To calculate the outcome of a fight between two soldiers, their fighting abilities are 

being used. A higher fighting ability means a larger chance that the soldier will come 

out from a battle victorious. The BM feeds their fighting abilities to the Oracle, and 

received the outcome of the battle. The soldier who won is marked as busy (i.e. 

already involved in a battle), and the other as dead. 

At the end of each battle turn, the BM calculates and updates the total volumes of 

remaining soldiers for each alliance (and battle group), removed the dead soldiers, and 

resets the status of the rest to available for battle. 

Finally, apart from NPCs (i.e. generic soldiers) fighting other NPCs, an agent might fight 

a soldier as well. Firstly, as we already discussed in section 4.5, the WM needs to check 

if an agent is in a position to fight. Apart from the agent’s availability, the WM checks 
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with the help of the BM if the agent is located in a battlefield location, and if there is a 

battle in progress. The battlefield location is specified by the storyteller (Figure 70). 

<battle_configuration> 

  <pddl_battlefield_location_name>battlefield</pddl_battlefield_location_name> 

  <percentage_change_of_interruption_to_fight_if_in_battlefield> 

    50 

  </percentage_change_of_interruption_to_fight_if_in_battlefield> 

</battle_configuration> 
Figure 70: Battle configuration XML nodes 

If these conditions are met, then there is a chance that the agent’s action will be 

interrupted by a battle. The WM makes a decision with the help of the Oracle whether 

the action will be interrupted or not (using the interruption percentage provided by 

the BM and displayed in Figure 70), and if it does, a battle is performed between the 

agent and a soldier of the enemy alliance. 

To perform the battle, the BM first identifies the alliance in which the agent belongs 

to, and checks if the enemy alliance has any soldiers alive. If it does, then the BM 

randomly chooses one and with the help of the Oracle calculates the outcome of the 

battle and returns it to the WM. 

4.17. EVALUATION MONITOR 

During the course of our research, we need to evaluate several aspects of our 

framework. While some of the evaluations can be implemented by coding small scripts 

which use some specific components of the framework for the needs of each 

evaluation, we also need to be able to evaluate aspects of the whole framework and 

the generated narrative while the story is being executed and generated. 

To this end, we designed the Evaluation Monitor (EM) component which can be easily 

enabled or disabled via a configuration variable and is responsible of gathering the 

following data while the framework is generating and executing a story: 

 For each agent, the volume of its successful, failed, and initiated by other 

agents actions, the times an agent fought a soldier, and information about an 

agent’s planning and re-planning episodes, wrapped as a group for each 

individual level the agent participated into. 
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 For each planning and re-planning episode, the volume of goals, operator 

nodes, fact nodes, and plan steps, the planning/re-planning duration, and if the 

planning/re-planning process was successful. 

 For each level, its pre-processing duration, the volume of pre-processing fact 

and operator nodes, its loading duration (including the pre-processing), the list 

of agents involved in it, the volume of choices and goal injections, and the 

duration of each turn, calculating it from the time the player chooses to 

execute the turn, up to the point that is fully executed (i.e. all agents finished 

with their planning/re-planning processes, they tried to execute their 

respective actions –if they have any–, and any battles are complete), excluding 

any time the system waited for a choice by the player during a turn execution. 

 For every transition between levels, the duration the transition needed to be 

calculated/processed, and the volumes of the processed milestones, 

successors, triggers, character triggers, fact triggers, and mutually exclusive 

levels. 

At the end of each level, the EM produces a report (saved to a text file), which contains 

all the information mentioned above which corresponds to a single level, including that 

level’s agent information. 

At the end of the story, the EM produces another report (also saved to a text file), 

which contains calculated data combined from all the executed levels. The report 

includes the following details: 

 The total volume of levels; 

 the total volume of agent appearances in all the levels, how many unique 

agents appeared in the story, and the average volume of agents in each level; 

 the total, average, maximum (in a single level), and minimum (again in a single 

level)  volume of choices, goal injections, turns, pre-processing fact & operator 

nodes, milestones, successors, triggers, character triggers, fact triggers, 

mutually exclusive levels, successful/failed/involved actions, planning/re-

planning episodes, goals, planning/re-planning operator & fact nodes, plan 

steps, and successful/failed plans; 
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 the total, average, maximum (in a single level), and minimum (again in a single 

level)  duration of turns, pre-processing, loading, transitioning, and planning/re-

planning episodes; 

 similar data to the above grouped by individual agents. 

4.18. TOOLS FOR STORY MODELLING 

As we already described in previous sections, DIEGESIS uses a combination of 

modelling approaches: The storyteller needs to model the game world both in PDDL 

and in XML. To make the authoring process easier, we are using a PDDL editor created 

by (Cooper, 2011).  

The PDDL editor (illustrated in Figure 71) consists of three parts: an actions editor, 

used to create new action and assign parameters, preconditions and effects; a 

predicates editor, used to create new predicates made of parameters and types which 

return true, and an initial states editor, used to setup the state of the world and 

everything in it when the story starts. 

 

Figure 71: Screenshot of (Cooper, 2011)'s PDDL editor 
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Although the authoring process in XML is quite easier to the end-user compared to 

PDDL, we designed an XML editor as an extension to the PDDL one, so the storyteller 

can be able to create all the XML nodes described in this chapter easier. 

In this chapter, we documented and discussed in detail the design aspect of every 

component of our framework. In the next chapter, we will document and discuss the 

implementation of our framework. 
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5   IMPLEMENTATION  

In this chapter, we document all the details about the implementation of the multi-

agent Digital Interactive Storytelling (DIS) framework we designed in the previous 

chapter. 

5.1. CHOICE OF IMPLEMENTATION PLATFORM 

As an implementation platform, we have chosen to use Java, a language that runs in 

any operating system and includes all the modern programming techniques that we 

need. For our relational database needs we opted to use MySQL, one of the most 

widely used open-source relational database management systems (RDBMS). 

Figure 72 illustrates DIEGESIS’ software architecture. Moving upwards from the 

operating systems and the technologies we just discussed, we are using the PDDL4J 

library to be able to parse PDDL files, and a MySQL driver that enables Java to 

communicate with the MySQL server. Finally, the last stack of our architecture 

contains user-created content, i.e. a set of PDDL and XML files which (with the help of 

our framework) produce a story. 

 

Figure 72: DIEGESIS Software Architecture 
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5.2. PARSING COMPONENT 

Figure 73 illustrates the Parsing Component’s implementation. We use two types of 

parsers; a PDDL and an XML parser. The PDDL parser is implemented using the PDDL4J 

library (Pellier, 2009) and we do not illustrate its structure for simplicity reasons, since 

it can be found in its official documentation. 

 

Figure 73: Parser class diagram 

The XML parser is part of our Parser implementation, and is used to parse a number of 

XML files to retrieve any additional constraints and other information applicable to the 

specified level, based on the semantics we presented and discussed in chapter 4  . 

The Parser class always needs an instance of the LevelManager class (discussed in 

section 4.4) which provides the paths of the currently active level so the Parser can 

parse the correct files, as well as an instance of the OutputGenerator class (discussed 
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in section 4.5), to be able to display messages in the console which are used for 

debugging. 

When parsing a level modelled in PDDL, the Parser class uses an instance of PDDL4J’s 

PDDLParser class to perform the parsing of the PDDL files, as well as an instance of 

PDDL4J’s PDDLObject class to represent (and return) the PDDL model resulted by the 

parsing of the PDDL files. 

Considering our needs, we modified PDDL4J’s PDDLObject class to be able to perform a 

few functions that we need, such as to provide lists of specific lists contained in the 

PDDL representation of the level, e.g. a list of characters. 

As we explained in section 4.7, although a character may be present in the model of a 

level as modelled by the storyteller, he/she might need to be removed from the level 

based on what happened in previously executed levels. Therefore, the PDDLObject 

class is now able to remove any references to a character from the PDDL 

representation of a level if requested. 

Finally, the PDDLObject class in now able to identify in which location is every 

character located and return a map containing this information. 

5.3. KNOWLEDGE BASE COMPONENT 

As we discussed in section 4.3, DIEGESIS includes two types of Knowledge Bases (KB); a 

relational database, and information stored in memory. Figure 74 illustrates the 

implementation of the KB component. 

The memory-based part of the KB (KnowledgeBase class) is responsible to keep the 

current state of the world for the active level, a map with the locations of each 

character that is active in a level, and two helper lists which are related to the 

relational database and hold the database ids of the characters and the levels. 

The second class illustrated in Figure 74, (i.e. the Db class) is able to perform any 

function related to the relational database (i.e. select, insert, delete, and update 

information). As we discussed in section 4.3, the relational database includes tables 

about characters and their options, levels (and mutual exclusions between them), 



147 
 

milestones, story actions, transitions, and information about the characters and any 

battle groups. Its schema is illustrated in Figure 75. 

 

Figure 74: Knowledge Base class diagram 

Characters table include the following information about each individual character: 

The character’s unique id (the id’s type is integer and it is set to auto increment when a 

new character is inserted) which is also the primary key of the table, the character’s 

name (which type is varchar), and if the character is alive or not (is_dead, which is 

Boolean and represented in MySQL by a tinyint). 

Characters_options table is able to store the characters’ options described in section 

4.7. The table is designed in a way to allow the storyteller to represent any types of 

options. It includes the name of the option (varchar), the character’s id (character_id – 

integer) which is a foreign key pointing to an id of a character in the characters table, 

and the value of the option (varchar). Option and character_id are a double primary 

key for this table. 
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Figure 75: Knowledge Base database schema 

Levels table contain information about the different possible levels which are present 

in the story. It contains a unique id for each level (which type is integer, auto-

increments, and it’s the primary key of the table), the level’s title (type), and if it was 

executed (Boolean) or not. Any mutual exclusion between levels is stored in the 

mutually_exclusive_levels table. The information stored there includes the mutual 

exclusion group’s name (varchar), the level’s id (level_id – integer; foreign key of levels 

table id), and the priority (integer) of the level. Group and level_id are a double 

primary key for the mutually_exclusive_levels table. 

The milestones table is used to store the milestones (varchar) of each level (level_id – 

integer; foreign key of levels table id), along with each milestone’s state, i.e. if the 

milestone is complete (Boolean) or not. Milestones and level_id are a double primary 

key for the milestones table. 

Transitions table holds information about all the transitions which occurred or will 

occur during the execution of the story. It includes the transitioning_layer (integer) in 

which the transition occurs, the id of the level (level_id – integer; foreign key of levels 

table id) which the transition refers to, the number of fired_triggers (integer) of the 
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transition, and the id of the level (parent_id – integer; foreign key of levels table id) 

which triggered the transition. The fields transitioning_layer and level_id are a double 

primary key for the transitions table. 

The story_actions table is used to store and keep track of all the actions that occurred 

during the execution of the story, along with information about them. Specifically, it 

includes a unique id (integer; auto-increment; primary key) for each action, the actual 

action (varchar), the ids of the characters who either executed the action or are 

involved in it (character_id & involved_character_id – integer; foreign keys of 

characters table id), the level_id (integer; foreign key of levels table id) in which the 

action occurred, and the time_step (int) in which the action was executed into. 

Finally, the battle_groups table includes the following information about any battle 

groups present in the story: The group’s title (varchar; primary key), the group’s leader 

(character_id – integer; foreign key of characters table id), the group’s fighting_ability 

(integer), and the group’s total_volume (integer). 

5.4. LEVEL MANAGER 

As we already discussed in section 4.4, The Level Manager (LM) component is 

responsible of keeping track of most of the information about each possible level of 

the story. 

The implementation of the LM component is illustrated in Figure 76. The 

LevelManager class uses an instance of the Parser class to parse information related to 

each level, and an instance of KnowledgeBase and Db classes to store whatever is 

needed to the Knowledge Base. It also uses an instance of the BattleManager class to 

request any information needed which is related to a battle which may occur in a level. 

Each level is represented by a Level class, which stores all the information related to a 

level which was previously parsed. Each level may contain an infinite amount of 

BattleAlliance instances (each BattleAlliance instance may contain an infinite amount 

of BattleGroup instances) which represent battle information about a level, and are 

further discussed in section 5.16. 

Each level class may also include an infinite amount of: CharacterOptionsGroup 

instances (with each CharacterOptionsGroup instance able to contain an infinite 
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amount of CharacterOptionsGroupOption instances); Trigger instances; 

CharacterTrigger instances; and FactTrigger instances. All of these classes contain 

information which is used by the Transitioning Manager, and are further discussed in 

section 5.7. 

 

Figure 76: Level Manager class diagram 

5.5. WORLD MANAGER 

As discussed in section 4.5, the World Manager (WM) is the main component which 

coordinates the whole system, and it has direct access to most of the other 
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components of the system. The implementation of the WM component is illustrated in 

Figure 77). 

The WorldManager class uses an instance of the TimeManager and the 

OutputGenerator classes. The TimeManager class is responsible of keeping track of the 

time (i.e. turns) in a level and globally in the story. The OutputGenerator class is 

responsible of sending messages to the User Manager component to be displayed to 

the player, or print messages to the console for debugging purposes, and includes a 

few templates such as a header template, an alert message template, etc. 

 

Figure 77: World Manager class diagram 

As we already mentioned, the WM has access to most of the other main components 

of the system, either to initialise them (and have them help the WM initialise new 

levels), or to help during the execution of the story. All of the classes of Figure 77 
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which does not contain variables and functions are discussed in detail in their own 

sections. 

Apart from initialising the system and the currently active level with the help of the 

rest component of the system, its main responsibility is to dictate the execution of the 

agent’s actions based on their individual plans, keeping track of the current state of 

the world, etc. 

Algorithm 1 presents the execution of the agents’ plans in a given time step (i.e. turn). 

Initially, the WM informs the User Manager (UM) component that the execution of a 

turn has started. Then, it checks (with the help of the Level Manager) if the currently 

active level is a battle level, and, with the help of the Battle Manager (BM), if the 

alliances are initialised. If the level is a battle level and the alliances are not initialised, 

then it instructs the BM to initialise them. Afterwards, if a battle is still in progress (i.e. 

an alliance not retreated in a previous turn) it instructs the BM to check if an alliance 

needs to retreat. If the battle ended due to a retreat, it retrieves the retreat info from 

the BM and updates the current state of the world; alternatively it instructs the BM to 

perform a battle. 

Then, the WM queries all the agents one by one to deal with their plans. Initially, 

checks if an agent is dead. If it is, then it moves to the next agent. 

The next step is to identify if the agent has an active plan. If there is a plan, then the 

WM requests the set of actions the agent wants to execute. Alternatively, it instructs 

the agent to generate a new plan, and then requests the actions set (considering that 

the agent successfully generated a plan). 

Then, the WM checks if the agent is busy at the given time step (i.e. if it is involved in 

another action initiated by another agent already), as well as if the agent returned a 

set of actions to execute. 

If the agent is busy, then the WM moves to the next agent. If the agent didn’t return a 

set of actions (i.e. doesn’t have a valid plan to execute), the WM with the help of the 

BM checks if the agent is able to fight. If it is, then the WM instructs the BM to perform 

a battle between the agent and an enemy soldier. 
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Considering that the agent is not busy and has a set of actions to execute, the WM 

iterates through the actions of the action set. For each of the actions, the WM 

identifies if any other agents are involved in the action, and checks their availability as 

well. 

If any of the involved agents is not available, and the action is not interruptive 

(meaning that the availability of the ignored agents will be ignored) then the WM 

checks if all of them are still alive. If they are, then the agent is instructed to wait (the 

action remains pending). If at least one of them is dead, then the action is impossibly 

to be executed, therefore the action is marked as failed, the execution of all other 

actions is stopped, the current state of the world is sent to the agent, and the agent is 

instruct for any completed goals (based on the new state of the world), and ultimately 

re-plan.  

ALGORITHM 1 – Multi-agent execution of plans 

Input: A: a list active agents; T: a time step; C: the current state of the world; UM: UserManager; BM: 

BattleManager; TiM: TimeManager: L: currently active level 

Output:  

 
1:    inform UM that turn execution started; 
2:    if (L is battle level) AND (alliances are not initialised) do: 

3:        instruct BM to initialise alliances; 
4:    end if 
 
5:    if battle in progress do: 

6:        instruct BM to check if an alliance needs to retreat; 
7:        if battle ended do: 

8:            get retreat info from BM; 
9:            update C with retreat info; 
10:       else 
11:           instruct BM to perform battle; 
12:       end if 
13:   end if 
 
14:   for each A as agent do: 

15:       if agent is dead do: 

16:           go to line 89; 
17:       end if 

 
18:       update agent with C; 
19:       if agent has plan do: 

20:           get next set of actions from plan; 
21:       else 

22:           generate new plan; 
23:           if agent has plan do: 

24:               get next set of actions from plan; 
25:           end if 
26:       end if 

 

27:       if agent not busy at T AND size of actions > 0 do: 

29:           for each actions as action do: 

30:               identify agents involved in action; 
31:               if agents not busy at T OR action is interruptive do: 
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33:                   if preconditions of action exist in C do: 

34:                       if action marked as choice do: 

35:                           get choice result (YES/NO) either from player or from system;                                                   
36:                       else 

37:                           choice = YES; 
38:                       end if 

 

39:                       if choice = YES do: 

40:                           if agent can fight AND agent is forced to fight do: 

41:                               instruct BM to perform battle between agent and enemy soldier; 
42:                           stop execution of all other actions; 
43:                           else if action is clear to execute due to doubt do: 
44:                               update C with action effects; 
45:                               mark action as executed; 
46:                               set involved agents busy at T; 
47:                               if action is duel do: 

48:                                   instruct BM to perform battle between agents; 
49:                                   update C with battle outcome; 
50:                               end if 
51:                               deal with any dead agents; 
52:                               store action details in KB; 
53:                               inject new goals to agents based on changes in C; 
54:                           end if 

 
55:                       else if choice = NO do: 

56:                           mark action as failed; 
57:                           update C with action’s fallback; 
58:                           update agent with C; 
59:                           instruct agent to check for completed goals; 
60:                           instruct agent to re-plan; 
61:                           stop execution of all other actions; 
62:                       end if 

63:                   else 

64:                       mark action as failed; 
65:                       stop execution of all other actions; 
66:                       instruct agent to re-plan; 
67:                   end if 

 

68:               else 

69:                   if all involved agents alive do: 

70:                       instruct agent to wait; 
71:                   else 
72:                       mark action as failed; 
73:                       update C with action’s fallback; 
74:                       update agent with C; 
75:                       instruct agent to check for completed goals; 
76:                       instruct agent to re-plan; 
77:                       stop execution of all other actions; 
78:                   end if 

79:               end if 

80:           end for each 

 

81:           if at least an action was executed do: 

82:               inform agent which actions were executed; 
83:               set agent busy in T; 
84:               update agent with C; 
85:               instruct agent to check for a location change; 
86:               instruct agent to check for completed goals; 
87:           end if 

 
88:       else 

89:           if agent can fight do: 

90:               instruct BM to perform battle between agent and enemy soldier; 
91:           else 
92:               instruct agent to wait; 
93:           end if 
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94:       end if 

95:   end for each 

 

96:   set TiM’s level time to T+1 and increment global time; 
97:   inform UM that turn execution finished; 

Afterwards, the preconditions of the action are checked against the current state of 

the world. If the preconditions are met, then the system checks (with the help of the 

Choices Manager) if the action is marked by the storyteller as a choice. If it is, then a 

choice needs to be made. If the action is not marked as a choice, then the WM sets the 

outcome of the choice as “YES”. 

If the choice is “NO”, then the action is marked as failed, the current state of the world 

is updated with the fallback of the choice, the agent is updated with the new current 

state of the world, the agent is instructed to check for any completed goals and to re-

plan, and the WM stops the execution of all other actions of the agent. 

If the choice is “YES”, then the WM checks (with the help of the BM) if the agent is able 

to fight, and if the agent will be forced in a fight interrupting the execution of the 

action. If the agent needs to fight, then the BM is instructed to perform a battle 

between the agent and an enemy soldier, and the WM stops the execution of any 

remaining actions of this agent. 

If the agent evades the fight (or if a fight is not applicable due to the level not being a 

battle level or the agent being in a location which is unsuitable for a fight) then the 

WM checks (with the help of the Uncertain Actions Manager) if the action is clear to be 

executed due to doubt. If it is not, then the action remains pending for this turn. 

Alternatively, the current state of the world is updated with the effects of the action, 

the action is marked as executed, and the involved agents are set as busy for this time 

step. Then, the WM checks if the action is a duel between two agents. If it is, then it 

instructs the BM to calculate the outcome of the battle, and updates the current state 

of the world with it. 

Then, the WM deals with any dead agents, stores the executed action details to the 

Knowledge Base, and (with the help of the Goal Injection Manager) injects new goals 

to agents based on the changes on the current state of the world. 
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After the end of the actions execution, if at least an action was executed, the WM 

informs the agent of which actions were executed (i.e. are complete), sets the agent 

busy for the time step, sends to the agent the updated current state of the world, and 

instructs the agent to check for any location change, as well as for any completed 

goals. 

Finally, when the agents list is finished, the WM instructs the Time Manager to iterate 

the global and level time, and informs the UM that the execution of the turn is 

finished. 

5.6. CHOICES MANAGER 

As discussed in section 4.6, the storyteller has the ability to mark actions as choices, 

and the Choices Manager (CM) is responsible of keeping the relevant information. The 

implementation of the CM component is illustrated in Figure 78. 

 

Figure 78: Choices Manager class diagram 

The ChoicesManager class uses an instance of the Parser class to be able to parse the 

choices of a new level, as well as an instance of the LevelManager class (which is used 

to be passed to the Parser class), and an infinite amount of Choice class instances. Each 

instance of the Choice class represents a choice for a specific level, and may contain 
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from one to an infinite amount of fallbacks (each fallback is represented by an instance 

of the Fallback class). 

Finally, the ChoicesManager class uses an instance of the Oracle class (discussed in 

section 5.10) to be able to make a choice if the decision maker is the system (or the 

player is unable to make a decision at that time). 

5.7. TRANSITIONING MANAGER 

As discussed in section 4.7, when a level of the story ends, it is a time for a new level to 

be selected and enabled, and that’s what the Transitioning Manager (TM) component 

is responsible of. The implementation of the TM component is illustrated in Figure 79. 

The TransitionManager class is the class which (when asked by the World Manager 

component) can calculate all the transitions deriving from the level which just 

completed its execution, and select the next level which will be loaded for execution, 

using the processes described in section 4.7. It uses an instance of the LevelManager 

class to be able to request information about any levels involved in the transitioning 

process, as well as an instance of the KnowledgeBase and Db classes to be able to 

retrieve and store information about milestones, triggers, etc. 

As we explained in section 4.7, one of the transitioning steps is to check the state of 

each of the milestones of the level against the current state of the world, and store the 

relevant information in the Knowledge Base. Each instance of the Milestone class 

represents a milestone of a level. To be able to map them against the current state of 

the world, the TrasitionManager class uses an instance of the InitAlgorithm class, 

which will be further discussed in section 5.14. 

During the calculation of any future transitions and the selection of the next applicable 

level, the TransitionManager class may also use multiple instances of the Level class. 

As we discussed in section 4.7, each level is associated with a number of triggers, fact 

triggers, character triggers, and character options. Each of these concepts are 

represented respectively by an instance of the Trigger class, the FactTrigger class, the 

CharacterTrigger class, or the CharacterOptionsGroup class (which can contain 

multiple instances of CharacterOptionsGroupOption class). 
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Finally, the TransitionManager class may use instances of the MutuallyExclusiveLevel 

class to keep information about mutually exclusive levels and deal with them (as 

discussed in detail in section 4.7). 

 

Figure 79: Transitioning Manager class diagram 

5.8. GOAL INJECTION MANAGER 

As we discussed in section 4.8, while the story is executed the Goal Injection Manager 

(GIM) constantly monitors the current state of the active level with the help of the 
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World Manager (WM), to identify if a goal needs to be injected to the goal list of an 

agent/character based on goal injection rules created by the storyteller. 

The implementation of the GIM component is illustrated in Figure 80. The 

GoalInjectionManager class uses an instance of the LevelManager class and an 

instance of the Parser class to be able to parse and prepare the goal injection rules of a 

new level. To help mapping these rules against the current state of the world, an 

instance of the InitiAlgorithm class along with an infinite amount of Fact class’ 

instances are used. Both of these classes are part of the Planner component and they 

are discussed in section 4.14. 
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Figure 80: Goal Injection Manager class diagram 

Each different type of goal injection rules (i.e. default, fixed, and conditional) are 

represented by a different class (i.e. GoalInjectionRule, GoalInjectionFixedRule, and 

GoalInjectionConditionalRule respectively). GoalInjectionConditionalRule instances 

include at least one condition, in the form of a Condition class instance. 

All of the classes which represent goal injection rules ultimately return a list of goals to 

be injected, in the form of InjectedGoal instances. Each instance of the InjectedGoal 
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class includes the name of the agent in which the goal will be injected to, along with 

the goal which will be injected. The goal is represented by an instance of the Goal 

class, containing information about the goal such as its importance, its PDDL name 

(AtomicFormula), etc. A goal may also include the names of other goals as 

preconditions along with their expected status, which are represented by instances of 

the GoalPrecondition class. 

5.9. FUTILE GOALS MANAGER 

As discussed in section 4.9, the idea behind the creation of futile goals is that 

sometimes (depending on the story) the characters present in a level may not have any 

important goals to achieve, so instead of having them staying there doing nothing, the 

storyteller can specify a set of futile goals which are applicable in a level, and they can 

be used to keep the characters busy. The implementation of the Futile Goals Manager 

component is illustrated in Figure 81. 

 

Figure 81: Futile Goals Manager class diagram 

The FutileGoalsManager class uses an instance of the Parser class as well as an 

instance of the LevelManager class to parse and load the futile goals of a new level, 

and store them in a goals list. Each goal is represented by an instance of the Goal class 

and may contain a number of preconditions represented by instances of 

GoalPrecondition class as discussed in section 5.8. When requested to do so, the 

FutileGoalsManager class selects a goal randomly and returns it to the World Manager 

component so it can be added to the agent who requested it. 
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5.10. ORACLE 

As discussed in section 4.10, there are certain situations during the generation and 

execution of a story, where a relatively random outcome needs to be calculated. The 

Oracle component deals with these random outcome calculations. Its implementation 

is depicted in Figure 82. 

 

Figure 82: Oracle class diagram 

The Oracle class is self-contained and when requested to do so, it is able to calculate 

and return a random outcome between different candidates. 

5.11. UNCERTAIN ACTIONS MANAGER 

As discussed in section 4.11, there are some types of actions which make sense that 

they should have a percentage that will succeed due to chance. We call these actions 

“uncertain”, and the component which deals with them the Uncertain Actions 

Manager (UAM). UAM’s implementation is displayed in Figure 83. 

Like in most of DIEGESIS’ components, UncertainActionsManager component uses an 

instance of the Parser class as well as an instance of the LevelManager class to parse 

and load the uncertain actions of a new level, and then stores them in an actions list. 

Each uncertain action is represented by an instance of the UncertainAction class. 
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Figure 83: Uncertain Actions Manager class diagram 

When requested by the World Manager component, it checks if an action is in the list 

of uncertain actions, and if it is then uses an instance of the Oracle class to calculate an 

outcome which represents if the action is cleared to be executed or not. 

5.12. VANTAGE POINT MANAGER 

As we discussed in section 4.12, the player needs to be able to view the outcome of 

the story from the “eyes” of a specific character, meaning that the player will only view 

the story outcome which is related to the chosen character, and will be available to 

interact with the story (i.e. make decisions) only when an action is related to the 

chosen character. We call this concept a vantage point, and the Vantage Point 

Manager (VPM) component to deal with vantage points. The component’s 

implementation is depicted in Figure 84. 

The VantagePointManager class uses an instance of the KnowledgeBase class and an 

instance of the Db class to be able to fetch information about the characters and their 

actions which were already executed and stored in the Knowledge Base. It also uses an 

instance of the LevelManager class, to fetch information about the different levels 

each action was executed into. 

Each action is represented by an instance of the VantagePointAction class, which 

contains the name of the action, the time step in which the action was executed, and 

the level’s title in which the action belongs to. 
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Figure 84: Vantage Point Manager class diagram 

When the VantagePointManager class is requested to generate the vantage point for a 

new character (or revert back to the main story view), after gather all the relevant 

actions, it uses an instance of the OutputGenerator class to send display all the 

relevant information to the player (via the User Manager) as well as to the console for 

debugging. 

 

5.13. USER MANAGER 

As we already discussed in section 4.13, we initially decided that based on the focus of 

this research, a graphical user interface would not be developed, as being out of scope 

for this project. Instead, the player would receive all the relevant information and the 

available actions in an old-fashioned text-adventure way. The first prototypes of 

DIEGESIS were operating in this way (Figure 85 displays an example). 
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Figure 85: The initial User Interface of the system 

As further discussed in section 4.13, apart from displaying the outcome of the story 

and relevant information about it to the player, the User Manager (UM) component is 

also responsible of communicating with the player. Therefore, we quickly decided that 

we should implement a graphical user interface (GUI). One of the first versions of 

DIEGESIS’ GUI is illustrated at Figure 86. 

 

Figure 86: First version of DIEGESIS' GUI 



166 
 

While progressing with the design of DIEGESIS and prototyping at the same time, the 

design of the GUI involved, as we removed features that we decided not to implement, 

and added others, such as the ability for the player to make choices. An intermediate 

version of the GUI is displayed in Figure 87. 

 

Figure 87: Intermediate version of DIEGESIS' GUI 

The finalised version of the DIEGESIS’ GUI is displayed in Figure 88. It includes all the 

features we need the player to have access to via the GUI. Apart from viewing the 

outcome of the story, the player can progress the story to the next turn, view at any 

point during the execution the current plan and goals for any of the activated 

characters in a level, and view information about the currently active level. The player 

also has the ability to switch between different vantage points at any point during the 

generation of the story. 
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Figure 88: Finalised version of DIEGESIS' GUI 

Finally, when is required, the player is able to make choices for the outcome of the 

story. This interactivity is removed from the main GUI, and added as a pop-up modal 

box, illustrated in Figure 89. 

 

Figure 89: A pop-up modal box 

The implementation of the UM component is illustrated in Figure 90. The 

UserManager class uses an instance of the WordManager class to be able to instruct 

the World Manager (WM) component about player’s interactions (e.g. to advance a 

turn) that need to been take care by the WM. 

It also uses an instance of the LevelManager class to receive information about each 

level (i.e. their display titles and descriptions), and an instance of the 

VantagePointManager class to deal with the vantage points. Finally, it have access to a 

list of Agent class’ instances which represent story characters who are active in a level, 

so the LM can get information from them (e.g. their current goals, locations, etc.). 
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Figure 90: User Manager class diagram 

5.14. PLANNER 

As we discussed in section 4.14, the planner component consists of a new planning and 

a new re-planning algorithm, able to generate plans of actions based on each agent’s 

state and context, considering both the current world state and the available 

resources. The Planner is aware of the available time (duration) a character has for a 

plan when it is asked to generate one. 

The Planner’s implementation is illustrated in Figure 91. The Planner class is the main 

class of the component, which deals with both the planning and re-planning processes. 

The InitAlgorithm class is responsible of pre-processing (i.e. initialising) the planning 

domain (represented by an instance of the PDDLObject class), the process which we 

described in depth in section 4.14. The Planner class uses an instance of the 

InitAlgorithm class to retrieve this information so it can use it in the planning and re-

planning processes. 
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Figure 91: Planner class diagram  
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The AtomicFormula class is part of the pddl4j PDDL parser which we use to parse PDDL 

files, and represents an substituted PDDL predicate, which is a fact about the world 

(e.g. character X is in location Y) which can be either true or false at a given moment. 

The Fact class of the planner extends the AtomicFormula class and is used to represent 

these facts. 

Each possible action in the planning domain is represented by an instance of the 

Operator class, and includes (among others) sets of positive and negative 

preconditions, as well as sets of positive and negative effects. 

The planner represents several concepts as BitSets. A BitSet is a vector of bits, which 

can be either true (1) or false (0). For example, the planner keeps all the possible facts 

of the planning domain in a facts list, and keeps their state (i.e. the current state of the 

world) in a BitSet. There are situations where we need matrixes of BitSets, which are 

represented by an instance of the BitMatrix class. 

Finally, a plan (either valid or failed) is represented by an instance of the Plan class. 

While implementing and evaluating DIEGESIS, we wanted to experiment with different 

concepts, for example different types of plan execution, which would require changes 

to the implementation of the plan. Also, we wanted the rest of the system to be as de-

coupled as possible from our planner (so it can be connected to other planners in the 

future), therefore we decided to de-couple our planner’s plans from the plans that 

DIEGESIS agents’ use, and included the ability that the Plan could be converted to an 

instance of the new plan implementation. 

DiegesisPlan class is the representation of the plan DIEGESIS uses. A DiegesisPlan 

includes a set of actions, the number of plan’s steps (i.e. the number of action sets), 

and the total duration of the plan. Each plan’s action is represented by an instance of 

the DiegesisAction class, which includes information about the action which will is used 

by the agent and the World Manager while executing the plan. 

To help us with debugging during the creation of our planning solution, we visualised 

the planning graph, using a graphical interface. An example of the outcome of the 

planning graph visualisation (Shen, 2006) can be seen in Figure 92 and Figure 93. 
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Figure 92: Planning graph expansion visualisation 

 

Figure 93: Information about a specific action in the visualisation of the planning graph  

The planning process is presented in Algorithms 2-5. The planner receives as an input a 

list of goals (G), and the current state of the world (S), which is added as the first level 

of the planning graph. The planner also keeps the last list of planning graph levels as 

well as the last list of goals used in the latest planning operation for the agent who is 

requesting a new plan. 
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First, the planner checks if the new list of goals is equal to or a subset of the old list of 

goals. If it does, then it copies the old list of planning graph levels to the new one and 

searches for a level in which the goals are present into. Then, it bypasses the 

expansion phase, moving to the extraction phase. 

Alternatively (if the above conditions are not met), the planner starts to expand the 

layers of the planning graph until all the goals are present in the planning graph, or the 

algorithm has levelled-off, considering the constraints (mutexes) between them. This is 

shown in Algorithm 2 – lines 10-13. As we explained in section 4.14, two actions in the 

same level are considered mutex when their preconditions and effects are 

inconsistent. If two consecutive layers are identical (the algorithm has levelled-off) and 

the goals are not present and mutex free in the layers, the expansion stops. 

ALGORITHM 2 – Planning algorithm 

Input: G: a list of goals; S: the current state of the world 

Output: The generated plan P 

 

1:    L: list of planning graph levels 
2:    oL: old list planning graph levels 
3:    oG: old list of goals 
 
4:    copy S to L0; 
5:    if (G equal to or subset of oG) AND (L0 = oL0) do: 

6:        copy oL to L; 
7:        search for Lx where G present in Lx; 
8:        go to line 17; 
9:    end if 
 
10:   while (G not present in Lx OR G not mutex-free in Lx) AND algorithm not levelled-off do: 

11:           expand Lx; 
12:           increment Lx; 
13:   end while 

 

14:   if G not present in Lx OR G not mutex-free in Lx then: 

15:           return P = FAILURE; 
16:   end if 

 

17:   P = extract G from Lx; 
 
18:   if P = TIME_FAILURE  then: 

19:           while P = TIME_FAILURE AND G not empty do: 

20:                   select goal from G with lowest salience value; 
21:                   remove goal from G; 
22:                   search for Lx where G present in Lx; 
23:                   P = extract G from Lx; 
24:           end while 

25:   end if 

 

26:   copy G to oG AND clear G; 

27:   copy L to oL AND clear L; 

 

28:   return P; 
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The complete extraction phase is documented in Algorithm 3. The algorithm receives 

as an input a list of goals (G), and the level of the planning graph (L) which needs to be 

expanded. As it is shown in Algorithm 3 – lines 1-9, if the algorithm is not levelled-off, 

then the facts (possible states of the world) of level L are retrieved, and a logical or is 

applied with the facts of the previous level (L-1), so the previously applied actions can 

be copied. 

Afterwards, a check is being performed to identify which actions are applicable in L, 

the facts of the level L are updated with the effects of these actions, the mutexes 

between the actions are calculated and stored, and the resolvers (used to speed up the 

search process) are updated. In the case that the algorithm is levelled-off, Algorithm 3 

– lines 10-15, all the information for level L is the same with the layer L-1. 

ALGORITHM 3 – Expand function 

Input: G: a list of goals; L: a planning graph level 

Output: The data in the expanded level L 

 
1:    if algorithm is not levelled-off then: 

2:            get facts of L; 
3:            if L > 0 then: 

4:                    apply logical or with facts in L-1 to copy results of previous actions; 

5:            end if 

6:            check which actions are applicable in L; 
7:            update facts of L based on positive & negative effects of applicable actions; 
8:            calculate mutexes of actions in L; 
9:            update resolvers of actions in L (to speed up the search process); 
10:   else 

11:           facts of L = facts of L-1; 
12:           applicable actions in L = applicable actions in L-1; 
13:           mutexes in L = mutexes in L-1; 
14:           resolvers in L = resolvers in L-1; 
15:   end if 

 

After the planning graph is created, the extraction phase begins, where a backward 

search is being performed starting from the last generated level (containing all the 

goals) until a valid plan is discovered. This is shown in Algorithms 4 and 5. The search 

function searches iteratively for a set of actions that resolve a set of goals G in a level L. 

These sets of actions form a complete plan. While searching, the total time that the 

plan needs to be performed is calculated (Algorithm 5 – line 21). If at some point the 

plan time exceeds the available time, the search stops. 
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ALGORITHM 4 – Extract function 

Input: G: a list of goals; L: planning graph layer 

Output: A plan P 

 
1:    if L = 0 then: 

2:            return P = EMPTY; 
3:    end if 

 

4:    P = search for G in L; 
 
5:    return P; 

 

Then, as it is shown in Algorithm 2 – lines 18-25, the planner chooses the least 

important goal from the list (based on the “importance” value of the goals), removes it 

and restarts the search process from the level that all the remaining goals are present. 

This happens until a valid plan within the time constraints has been discovered. 

ALGORITHM 5 – Search function 

Input: G: a list of goals; L: planning graph level; A: a set of actions; M: a set of mutexes 

Output: A plan P 

 
1:    if G not empty then: 

2:            select goal from G; 
3:            get actions that resolve goal; 
4:            while actions not empty AND P = NULL do: 

5:                    select action from actions; 
6:                    remove action from actions; 
7:                    select mutexes for action; 
8:                    newA = A + action; 
9:                    newM = M + mutexes; 
10:                   newG = G – positive effects of action; 
11:                   P = search for newA, newM, newG, in l; 
12:           end while 

13:   else 

14:           for each A as action do: 

15:                   add action’s positive precondition in G; 

16:           end for each 

17:           P = extract for G in L-1; 
18:           if P is not FAILURE OR TIME_FAILURE  then: 

19:                   for each A as action do: 

20:                           add action to P in layer L-1; 
21:                           calculate duration of P; 
22:                           if duration of P > available duration for P then: 
23:                                   P = TIME_FAILURE; 
24:                           end if 

25:                   end for each 

26:           end if 

27:   end if 

 

28:   P = search for G in L; 
 
29:   return P; 

 

As discussed in section 4.14, our proposal for re-planning in DIS interleaves plan 

generation and plan execution to be able to re-plan as soon as an unexpected change 

happen in the environment, while making minimal disruption to the original plan. 
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Our re-planning algorithm is illustrated in Algorithm 6. The first step is to get the set of 

actions related to the step of the plan which failed. The effects of each action which is 

either failed or not executed yet are added as the goals of the new plan. If there are 

more steps in the plan, then the effects of the actions of the next step are also added 

in the goals list. 

ALGORITHM 6 – Re-planning algorithm 

Input: P: an existing plan; S: step of the plan which failed; 

Output: A new plan P 

 
1:    A: set of actions; p: partial plan; G: goals list; 
 
2:    get A from P for S; 
3:    for each A as action do: 

4:            if action is failed OR action is not complete then: 

5:                    get effects of action; 
6:                    add effects in G; 
7:            end if 

8:    end for each 

 

9:    if size of P > S then: 

10:           get A from P for S + 1; 

11:           for each A as action do: 

12:                   get effects of action; 
13:                   add effects in G; 
14:           end for each 

15:   end if 

 
16:   p = generate plan for G; 
17:   if size of P > S then: 

18:           remove actions of S + 1 from P; 
19:   end if 

20:   remove completed and failed actions from P; 
21:   add actions of p at the beginning of P’s actions list; 
 

22:   return P; 

 

Afterwards, a new partial plan is generated for these goals via our planning algorithm. 

After the generation of the new partial plan, the completed and failed actions (as well 

as the actions of the step right after the failed step, if such a step exists) of the existing 

plan are removed, and the two plans (the existing and the new partial plan) are 

merged into one, which is returned to the agent for execution. 

5.15. AGENT 

As we already discussed in section 4.15, each agent in DIEGESIS represents a character 

in the game world and is designed to operate as an individual, creating an autonomous 

plan considering its own needs. The implementation of the Agent component is 

displayed in Figure 94. 
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The Agent class is able to keep all the information about the story world that an agent 

is aware of, as well as information about the character that the agent represents. An 

instance of the Db class is being used to fetch information about the character, as well 

as to update such information (e.g. if the character dies). To be able to display relevant 

information to the player, as well as for debugging reasons, the Agent class uses an 

instance of the OutputGenerator. 

 

Figure 94: Agent class diagram  

The Agent class may include several instances of the Goal class (each of them with its 

own set of GoalPreconditions), which represent a set of goals that a character has for a 

level. In case there are no goals in the list, the agent is set to accept futile goals, and 

the agent already waited for one turn, then it is able to requests a futile goal from an 
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instance of the FutileGoalsManager class. The agent is able to check the status of its 

goals at any time, and to re-populate its list of current goals (i.e. the list of goals to 

search for a plan for). 

When an agent has at least a goal whose precondition is valid, then it needs to find a 

plan to accomplish it. To find a plan, the Agent class uses an instance of the Planner 

class. The Planner class is fed with an instance of the InitAlgorithm plan (i.e. the 

initialised algorithm based on the current status of the world – the PDDLObject class’ 

instance), as well as a set of goals, and is requested to generate a plan for them. The 

plan which is returned by the Planner is represented by an instance of the Plan class, 

and it is then converted to an instance of the DiegesisPlan class, which contains several 

instances of DiegesisAction class, which represent different actions which the agent 

need to execute to accomplish the plan. 

The Agent class is able to keep track of which parts of the plan are already executed 

and if the plan is complete. During the execution of a plan, the agent might be 

informed by the World Manager that an action set has failed. If that happens, then the 

Agent class sends all the relevant information to the Planner class, requesting the 

Planner to re-plan and provide a new valid plan based on the provided information and 

current state of the world. 

5.16. BATTLE MANAGER 

As we discussed in section 4.16, there are certain cases in the story that we are using 

to evaluate DIEGESIS, in which we need battles to occur. The Battle Manager (BM) 

component is responsible of dealing with all the battles in the system. The 

implementation of the BM is illustrated in Figure 95. 

The BattleManager class uses an instance of the Parser class as well as an instance of 

the LevelManager class to parse and load the battle information for a new level. An 

instance of the Db class is used to store and retrieve battle-related information from 

the Knowledge Base. 

It also uses an instance of the OutputGenerator to display messages to the player and 

to the console for debugging, and may use instances of the Agent class to retrieve 
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battle-related information from any agents involved in a battle (either versus another 

agent or versus a soldier, which is a NPC). 

 

Figure 95: Battle Manager class diagram 

As explained in section 4.16, in each battle level there can be up to two alliances 

fighting against each other. These alliances are represented by an instance of the 

BattleAlliance class. Each alliance may consist of different battle groups, each 

possessing a different volume of soldiers. Battle groups are represented by instances 

of the BattleGroup class, while soldiers are represented by instances of the Soldier 

class. To calculate the outcome of a battle, the BattleManager class uses an instance of 

the Oracle class. 

5.17. EVALUATION MONITOR 

As we discussed in section 4.17, we need to be able to evaluate aspects of the whole 

framework and the generated narrative while the story is being executed and 

generated, therefore we designed the Evaluation Monitor component. Its 

implementation is illustrated in Figure 96. 
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Figure 96: Evaluation Monitor class diagram 

The EvaluationAgent class combines all the metrics relevant to an agent (i.e. instances 

of the AgentMetrics and PlanningEpisode classes) for each level the agent participates 

in. The LevelMetrics and TransitionMetrics classes track the level and transition 

metrics respectively. The EvaluationMonitor class keeps track of everything, and when 

requested can produce the two types of report discussed in section 4.17 and save 

them to text files. 

In this chapter, we documented all the details about the implementation of the multi-

agent DIS framework we designed in the previous chapter. In the next chapter, we will 

discuss about our evaluation methodology, and we will document a number of 

evaluations for the different components of our framework 
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6   EVALUATION 

In this chapter, we provide detailed information about the evaluation scenario that we 

modelled, showing its potential storylines, we also discuss some of the mechanics that 

can have an impact on the generated story, and we specify the metrics used in our 

evaluations. Then, we are documenting a number of evaluations for the different 

components of our framework, using the evaluation scenario we presented earlier in 

the chapter. 

6.1. EVALUATION SCENARIOS 

As we discussed in section 3.4, to aid us to decide which planning algorithm to use as a 

base for our solution, we needed to perform an evaluation of planning algorithms with 

a DIS perspective in mind. To benchmark the performance of the algorithms, we used 

an approach discussed in (Barros and Musse, 2007b), therefore we decided to use the 

same scenario used in their experiment to be able to compare our results to the 

published results. The evaluation scenario is called Ugh’s Story first act, and is 

described in (Barros and Musse, 2007b). 

For the evaluation scenario of DIEGESIS though, we needed a story much bigger than 

the Ugh’s Story scenario, which would be rich in relations between characters, actions, 

choices, possible constraints and outcomes, making it a suitable setup for rich 

emerging narratives to be developed in a DIS system. 

After investigating some potential candidate stories, we decided to use a scenario 

based on the story presented in the 2004 film “Troy” (Petersen, 2004), which is based 

on Homer’s epic poem called “Iliad” (Homer, 2003). 

In the scenario we modelled, Paris, the Prince of Troy (brother of Hector; son of Priam) 

falls in love with Helen, the Queen of Sparta, seduces her and convinces her to join him 

and flee together to Troy. Menelaos, the King of Sparta and husband of Helen, along 

with his brother Agamemnon (King of Mycenae) decide to gather an army comprising 

of the elite of Greek warriors (such as Achilles and Odysseus) to attack and conquer 
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Troy, each of them for their own reason. Menelaos because he’s angered that Helen 

left him and Agamemnon because he always wanted to find a reason to conquer Troy. 

As we will present in the next section, we believe that the Troy scenario is a suitable 

setup for our needs, since it contains several characters with rich relations between 

them, and a high number of possible actions and choices, which can provide different 

outcomes. 

6.2. POTENTIAL STORYLINES 

As we already explained in section 4.1, the game world is created before the execution 

of a story, by a storyteller and is organised in multiple levels which can represent 

possible parts of a story (typically a broad area where a number of events in a story 

may occur). 

We modelled the Troy scenario in the following 27 levels. The potential transitions 

between them are illustrated in Figure 97. 

1. Sparta palace: In the initial level, the scene takes place in the palace of Sparta, 

where Paris and Hector (the Princes of Troy) are visiting Menelaos (the King of 

Sparta) to negotiate a peace treaty between Sparta and Troy. While this 

negotiation takes place, Paris seduces Helen (the Queen of Sparta) and tries to 

convince her to flee with him to Troy. 

2. Troy palace: In this level, the Trojan princes have returned from their visit to 

Sparta and Hector is informing Priam, his father and king of Troy, of the 

negotiation outcome. If Paris succeeded in his seduction and Helen is with him, 

Priam and Hector are trying to convince them to return Helen back to Sparta to 

prevent the upcoming war resulting of that action. 

3. Mycenae palace: Given that Helen fled with Paris, Menelaos visits his brother 

Agamemnon (King of Mycenae) to ask him to join the war against Troy. 

4. Sparta palace (peace): If the negotiation between Troy and Sparta succeeded 

and Paris did not convince Helen to flee with him, then there are no grounds 

for a war between Sparta and Troy, and the story would end there. To still 

provide a chance for the war to occur, we modelled this level where 

Agamemnon (who is depicted in the movie as a warmonger who always 
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wanted to capture Troy) decides that he might declare war against Troy and 

visits Menelaos in Sparta to try and convince him to join the war. If 

Agamemnon fails to convince Menelaos to join the war, he has to decide if he 

will still declare war by himself. If he decides against that, then the story ends 

here. 

5. Ithaca: This level is located in Ithaca, where Menelaos and Agamemnon visit 

Odysseus (the King of Ithaca) to convince him and his army to join the war 

against Troy. 

6. Fthia: This level is located in Fthia, the hometown of one of the greatest Greek 

warriors called Achilles, where Odysseus, Menelaos, and Agamemon (the latter 

only as a backup plan in case that both Odysseus or Menelaos are not part of 

the war) are visiting Achilles to convince him and his army of Myrmidons to join 

the war against Troy. In the event they fail to do so, they try to convince 

Patroclus (Achilles’ cousin and best friend) to persuade Achilles and change his 

mind. 

7. Sparta palace (Helen returns): This is a level resulting from level 2 (Troy palace), 

where Helen was convinced to return back to Sparta, and tries to convince 

Menelaos (and Agamemnon if he joined the war) to call of the war. If she 

succeeds, the story ends there. 

8. Troy beach Myrmidons landing: In this level, the Greek army is approaching a 

beach in the outskirts of Troy, and the ship containing Achilles, Patroclus, and 

the rest of the Myrmidons are landing first, and fight a small army of Trojans 

who are there to protect the beach and the nearby temple of the Greek and 

Roman god of light and sun, called Apollo. If they win the fight, then the rest of 

the Greek army lands without a further fight, and Achilles has to decide if he 

will visit the temple or not. 

9. Troy beach landing: In case Myrmidons lost the fight of the previously 

described level or Achilles decided in level 6 (Fthia) that he won’t join the war, 

then the whole of the Greek army lands to the Trojan beach and fights the 

previously mentioned small army of Trojans. If they win the fight, they establish 

a Greek camp in the beach. If Achilles is present, he still has to decide if he will 

visit Apollo’s temple. If they lose the fight, they return back to Greece and the 

story ends. 
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10. Apollo temple: In this level, Achilles explores the temple of Apollo, located 

closely to the Greek camp. If he decides to plunder the temple, he discovers 

Briseis (priestess of Apollo; Hector and Paris’ cousin) and decides if he will 

capture her and bring her back to the Greek camp. 

11. Greek camp (Briseis): When Achilles brings Briseis to the Greek camp she is 

taken from him by Agamemnon, and given to some Greek soldiers. Achilles 

confronts Agamemnon, and asks him to return Briseis. If Agamemnon refuses, 

then Achilles decides that he and his Myrmidons will no longer fight in the war, 

then finds the soldiers who have Briseis and takes her back. 

12. Troy palace gardens: While Troy is under siege by the Greek forces, Helen 

(considering she’s still in Troy) decides to leave Troy, head to the Greek camp 

and try to convince Menelaos to stop the war. While trying to leave, Hector 

stumbles upon her, and tries to talk her out of her decision. 

13. Greek camp (Helen returns): If Hector failed to convince Helen to leave Troy in 

the previously described level, Helen finds Menelaos and Tries to convince him 

to stop the war. If she succeeds, then Menelaos is trying to convince 

Agamemnon (considering he’s part of the war) as well. If everyone is 

convinced, the Greek forces withdraw, and the story ends. 

14. Troy palace (Paris wants duel): Considering that Helen is still in Troy, Paris tries 

to convince his father (Priam) and his brother (Hector) to allow him to 

challenge Menelaos to a duel to prevent a further conflict between the Greek 

and Trojan forces. 

15. Troy battlefield (Paris vs Menelaos duel): Just before the first large-scale battle 

in the battlefield just outside of Troy, the leaders of each side are discussing. 

Initially, Agamemnon (if he’s present in the war) proposes to Hector to 

surrender. If Hector agrees, the Greeks are capturing Troy and the story ends. 

Alternatively, considering that Paris duel proposal discussed in the previous 

level is valid, Paris proposes to duel Menelaos, while Agamemnon is trying to 

convince Menelaos not to duel. In case of a duel, if Paris wins he kills Menelaos. 

If Menelaos wins, Paris has to decide if he will stay and die in honour or not. If 

he doesn’t stay to die, then there is a chance that a further duel between 

Hector and Menelaos will take place (if Menelaos tries to pursue him). 
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16. Troy battlefield (first battle): After any duels have occurred in previous levels, 

the first large-scale battle between the Greek and Trojan forces starts, and 

everyone from the Greek forces who is present at the war takes part of it, 

except from Achilles and his Myrmidons if he previously decided to withdraw 

from the war due to his conflict with Agamemnon over Briseis. If Greeks win 

the battle, they capture Troy and the story ends. If not, they retreat back to the 

Greek camp to regroup. 

17. Greek camp (Achilles won’t fight): If Achilles decided to withdraw from the war, 

then Odysseus (considering he is part of the war and still alive), Patroclus, or 

Eudorus (another Myrmidon, in case both of the others are unavailable) try to 

convince him to join the war again. If they fail, Patroclus (who wants to fight) 

has to decide if he will impersonate Achilles leading the Myrmidons in the next 

battle. 

18. Troy palace (retaliation): Priam tries to decide if the Trojans will attack the 

Greeks in their camp, or if they will wait for them to attack again. Hector wants 

to wait, while the Trojan high-priest wants to attack since he believes Apollo 

will favour Troy because Achilles decided to plunder the temple in a previous 

level. If Achilles did not plunder the temple, then the high-priest provides no 

opinion. 

19. Troy battlefield (final battle): In this level, the Trojans decided to wait for the 

Greeks to attack. The Greeks gather their whole army, and perform a final 

attack which will decide the outcome of the war: if they win they capture Troy; 

if they lose they withdraw and return back to Greece. Either way, the story 

ends. 

20. Greek camp (Trojans attack): In this level, the Trojans decided to attack the 

Greeks in their camp. If they win the battle, the Greeks withdraw and the story 

ends. If they lose, then withdraw back to Troy to regroup. If Hector and Achilles 

are both part of this battle, Hector will try to locate and duel him. In case that 

Patroclus decided to impersonate Achilles, he will be part of this duel instead. 

21. Greek camp (Priam wants ceasefire): In case either Paris or Hector were killed 

in the aforementioned battle at the Greek camp, Priam will send a messenger 

to the Greek camp asking for a twelve-day ceasefire to mourn and honour the 

memory of the princes. In the meantime, he performs a funeral for them. 
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22. Greek camp (Patroclus died): In case that Patroclus impersonated Achilles and 

was killed by Hector, Eudorus informs Achilles of what happened. Then, Achilles 

has to decide if he will resume fighting for the Greek forces and if he will seek 

revenge for Patroclus’ death. If he decides in favour of revenge, Briseis 

(considering she is part of the story) will try to convince him against it. 

23. Troy battlefield (Achilles vs Hector duel): Achilles wants to take revenge for 

Patroclus’ death by the hands of Hector, so he goes alone outside of Troy, and 

challenges Hector to a duel. If Hector agrees, he says his goodbyes to his father, 

his brother, and his wife Andromache (informing her of a secret exit from Troy 

in case it is captured by the Greeks) and confronts Achilles. After the duel, if 

Achilles is killed Hector takes his body back to the Greek camp. If Achilles 

manages to kill Hector, he has to decide if he will leave his body, or take it with 

him to further disgrace him. At the end of the level, Achilles attends Patroclus’ 

funeral. 

24. Greek camp (Priam asks for Hector’s body): In case that Achilles killed Hector 

and took his body with him, Priam disguises himself and infiltrates the Greek 

camp. There, he locates Achilles and tries to convince him to allow Priam to 

retrieve Hector’s body to give him a proper funeral. If Briseis is present, she 

tries to persuade Achilles over that direction as well. If Achilles agrees, Priam 

takes Hector’s body back to Troy where every Trojan character attends his 

funeral. Also, if Briseis wants it, Achilles has to decide if he will allow her to 

return back to Troy as well. 

25. Greek camp (attack or Trojan horse): If Odysseus is still present in the war, he 

comes up with the idea of the Trojan horse: to build a huge hollow wooden 

horse and fill it with himself and other Greek fighters to be able to infiltrate 

Troy while the rest of the Greek army would seemingly depart from the war. If 

the Greek leaders decide against it, they will just perform a final battle instead. 

26. Troy beach (Trojan horse): Greeks pretend that they withdrew from the war, 

and left behind the Trojan Horse Odysseus invented. A Trojan scout brings the 

news to Priam, and Trojans need to decide if they will accept it or not. Hector 

and Paris (if they are still present) are against the idea of accepting the “gift”, 

while the Trojan high-priest is in favour of the idea if the Apollo temple was 

previously plundered. If Priam decides against accepting the Trojan horse, he 
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gives the order to torch it, therefore killing everyone inside it, causing the 

Greeks to lose the war and the story to end. 

27. Inside Troy: In this level, the Trojans accepted the Trojan horse, and placed it 

inside the walls of Troy, near its main entrance. When the time is right, the 

Greek fighters emerge from it, the open the entrance for the rest of the army 

to enter Troy, and they capture and destroy the city. Agamemnon heads to the 

Trojan throne room, where he finds Priam and tries to kill him. If Briseis ended 

up in Troy, is in the throne room as well, and is captured. If Agamemnon 

manages to kill Priam, Briseis tries to kill him via a sneak attack. If she’s 

captured, Achilles tries to find her and save her. In the meantime, if Hector is 

still part of the story, he informs Andromache of the secret exit from Troy and 

sends her there to flee. Andromache also tries to find Helen and informs her of 

the secret exit as well. In case Menelaos is still part of the story tries to locate 

Paris and duel him. Helen tries to convince Paris to flee with him from Troy. 

Even if she succeeds or not, she will try to flee. In some cases, Paris and/or 

Hector will try to duel and kill Achilles. If Briseis is present, she will try to 

prevent them from doing so. This is the last level of the story, and after it’s 

complete, the story ends. 

Apart from the aforementioned levels, during the course of our research we created 

some other levels as well, either modified versions of the above to be used in 

evaluations, or modelling scenes from the Troy film which we ended-up not using in 

the finalised scenario for various reasons. As an example, one of these levels included 

Achilles meeting the Greek goddess Athena in the Pantheon, to take advice about 

going to war against Troy. 
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Figure 97: Troy scenario levels and potential transitions 
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6.3. STORY MECHANICS 

As we explained in previous chapters, DIEGESIS implements different mechanics which 

have the potential to affect the agent’s plans, thus the outcome of the story. First of 

all, based on actions that may occur during the generation of the story, some goals 

might be injected to agents (discussed in section 4.8), altering their behaviour in a 

level, and potentially affecting other agents as well. For example, in level 15 (Paris vs 

Menelaos duel) considering that Paris loses the duel and does not stay to die in 

honour, a goal is injected to Hector to protect him by duelling Menelaos. 

The above can have serious implications to the story, since some of the main 

characters can die. This is caused by the implementation of both duels and battles. 

Duels (discussed in section 4.5) can occur between two characters, their outcome is 

decided by the Oracle (discussed in section 4.10), but the death of the character who 

lost the duel is not definite; after the end of a duel, there are goal injections which 

dictate if a character will be killed or not. 

Battles (discussed in section 4.16) are large-scale, between two alliances, each may 

containing several battle groups consisting of thousands of soldiers. Soldiers are NPCs 

and their only purpose is to fight. As in duels, the outcome of a battle between a 

soldier and another soldier or a character is determined by the Oracle. Apart of the 

death of a character during a battle which can have serious impact on the story (we 

will discuss the situation where a character is no longer part of the story in a bit), the 

actual outcome of a large-scale battle can be a game-changer as well. For example, if 

the Greek forces lose any of the battles in the landing level, the final battle level, or the 

level where the Trojans attack the Greek camp, they will lose the war, and the story 

will end. 

The most powerful mechanic though, that may occur in any level and most of the 

characters have the opportunity to use it while the story progresses, are the choices 

(discussed in section 4.6) made either by the player or the system. As an example, 

considering that in Fthia level Achilles decided against joining the war, 7 of the future 

levels will not be possible to execute since Achilles was an integral part of them, and 

further 5 levels can be executed, but they will be affected since Achilles will not be 

there. This situation is illustrated in Figure 98.  
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Figure 98: Levels affected if Achilles decides not to join the war 
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Similar to that choice, if Achilles does go to war but dies in the Myrmidons landing, it 

will have the almost the same effect in the story. The levels that Achilles is an integral 

part will not be executed, and the rest will be affected by Achilles not being there, but 

the difference is that the rest of the Myrmidons will be there and they can choose to 

fight and be led by another Myrmidon instead. 

Another choice example which can have a huge impact on the story is if Helen decided 

against fleeing with Paris in the very first level of the story. This single choice can cause 

6 levels not to be able to be executed, and one to be affected. This situation is 

illustrated in Figure 99. 

Choices don’t have to have such dramatic effects to the story though; they can just 

flavour it a bit. For example, if Achilles decides to plunder Apollo’s temple, the Trojan 

high-priest will be in favour of attacking the Greeks to their camp, as well as accepting 

the Trojan horse and will try to persuade Priam towards that direction. 

A couple of other mechanics which can potentially have some impact in the outcome 

of the story are the futile goals (discussed in section 4.9) and the uncertain actions 

(discussed in section 4.11). An uncertain action has the potential to delay the 

execution of a character’s plan if it fails, but the character will try to execute it again in 

a later turn. 

In the case of futile goals, the most common impact is that they can delay a character’s 

actions when they involve another character who is executing a plan for a futile goal. 

For example, in the first level Helen has no initial goals, and one of the first goals of 

Paris is to be involved in a discussion with her, which can be delayed to be executed if 

Helen is busy executing a futile goal. 

There is a final mechanism which although does not have any impact on the actual 

generation of the story outcome, it has an impact on the perception of the story by the 

player. When the vantage point (discussed in section 4.12) of a character is selected, 

the story will continue to be generated normally, but the player will only view content 

which is relevant to the selected character. 
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Figure 99: Levels affected if Helen decides not to flee with Paris 
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In (Goudoulakis et al., 2014) we documented as example of how some of the story 

mechanics are operating together to generate a story. To do that, we used a level 

which includes characters’ action sequence, agents’ coordination and injection of 

goals. In the finalised version of our scenario, some of the events of the level described 

here are used in separate levels. The level involves the following: 

 Characters: Achilles, Odysseus, Patroclus, Hector, Paris, and Priam;  

 Locations: Achilles’ tent, Greek Camp, Greek Camp’s Beach, Battlefield, and 

Troy Palace;  

 Actions: go to, pick up, drop, ask for, allow to take, wear, talk to, tell, kill, 

prepare for funeral, perform funeral, attend funeral, find, wait. 

As we have already explained, the characters, locations, and actions vary in each level 

of our complete scenario, depending on the nature and context of the level, which can 

help managing the complexity of the scenario, for example by reducing the number of 

actions considered in the planning and re-planning phases. 

Achilles and Priam are initially located at Achilles’ tent and Troy palace respectively. 

Odysseus, Patroclus, Hector, and Paris are located at the battlefield, and they are in the 

middle of the battle. 

At some point, Hector kills Patroclus. This triggers a goal injection for Odysseus, which 

now has the following goals: To bring Patroclus’ body back to the Greek camp; and to 

inform Achilles that Patroclus was killed by Hector. So, Odysseus leaves the battle, 

picks up Patroclus’ body, and brings it back to the Greek camp. Afterwards, he goes to 

the tent where Achilles is located, and shares the news about Patroclus’ death. 

Achilles now has the following goals: To prepare for battle, to find and kill Hector as 

well as to defile his body by taking it with him to take revenge for Patroclus’ death, 

and, finally, to perform Patroclus’ funeral. He gears up, goes to the battlefield where 

he joins the on-going battle (Odysseus does the same as well), and kills Hector. When 

he does, that triggers the end of the battle, and he takes Hector’s body with him, and 

returns to the camp (Odysseus returns as well) to prepare for Patroclus’ funeral. When 

the preparation starts, the goal to attend the funeral is injected to Odysseus. 
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The death of Hector triggers a goal injection for Paris. He has the task to return to Troy 

and give the bad news to Priam. When he does, Priam decides to find Achilles and ask 

him to allow for the body of Hector to return to Troy to have a proper funeral. So, he 

wears a disguise to be able to infiltrate the Greek camp, and goes there. He finds 

where Achilles’ tent is, but since Achilles is at Patroclus’ funeral, he waits there until it’s 

over. 

When Achilles returns, the two men have a discussion, and Priam convinces Achilles to 

let him take Hector’s body with him. Priam does that, returns to Troy, and performs a 

funeral for Hector, with Paris attending it. As an example, Figure 100 displays the 

complete combined plan of Achilles. 

PICK-UP ACHILLES SWORD ACHILLES-TENT 

PICK-UP ACHILLES SHIELD ACHILLES-TENT 

WEAR ACHILLES ARMOUR ACHILLES-TENT 

GO-TO ACHILLES ACHILLES-TENT BATTLEFIELD 

ATTACK ACHILLES HECTOR BATTLEFIELD 

KILL ACHILLES HECTOR BATTLEFIELD 

PICK-UP ACHILLES HECTOR BATTLEFIELD 

GO-TO ACHILLES BATTLEFIELD GREEK-CAMP 

DROP ACHILLES HECTOR GREEK-CAMP 

GO-TO ACHILLES GREEK-CAMP BEACH 

PREPARE-FOR-FUNERAL GREEK ACHILLES BEACH 

PERFORM-FUNERAL GREEK ACHILLES BEACH 

GO-TO ACHILLES BEACH ACHILLES-TENT 

ALLOW-TO-TAKE ACHILLES PRIAM HECTOR 

Figure 100: Achilles’ combined plan 

Figure 101 illustrates all the interactions, coordination, and goal injections between 

the characters involved in the level. 
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Figure 101: Troy characters coordination 

6.4. EVALUATION METRICS 

To successfully evaluate several important parts of DIEGESIS, we needed to identify 

and decide on what to measure, in which way to measure it, and why to measure it. 

As we discussed in section 3.4, to aid us decide on the base planning algorithms we 

would use to create our own planning solution, we performed an evaluation of 

planning algorithms with a Digital Interactive Storytelling (DIS) perspective in mind. 

The evaluation approach was to benchmark different planning algorithms testing their 

performance to solve a specific problem in a specific domain and to compare their 

feature sets which we considered valuable to DIS applications, which are explained in 

detail in section 3.4 and are the following: Support for extra language requirements; 

capability to generate partial-order plans; optimality; support for actions with costs; 

support for numeric variables. 

Early in the implementation of our framework we discovered that the pre-processing 

of the planning domain (explained in detail in section 4.14) is a computationally 

intensive process which could be a potential bottleneck for the performance of the 
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whole system, depending on the design of our agents. We initially considered two 

different approaches in the design of our agents: In the first approach, we assumed 

that agents may be aware of different environments, each represented as different 

domain. Therefore, each agent who is aware of a different environment would have to 

perform its own individual pre-processing (i.e. to generate facts, operators etc.). In the 

second approach, we assumed that all the agents are aware of the same base 

environment; therefore they could share a pre-processed planning domain. 

Since the early prototypes of DIEGESIS, we were using the second approach, but to 

make sure that the approach is scalable (it is a specification we specified in section 3.2) 

and to have an answer if the first approach is feasible in case we want to consider it in 

the future, we decided to perform a scalability evaluation, measuring the performance 

of the two approaches. 

Another consideration that we had was that we considered two different planning 

methods (we discussed that in section 4.15). In the first one, each agent has a list of 

goals and generates a plan for all the goals at the same time, whilst in the second 

method a plan is generated only for the most important goal (the concept of goal 

importance was discussed in section 4.14), and when the goal is complete (or not 

applicable any more), a plan for the next goal is generated, and so forth. The 

storyteller is able to choose the way each agent will operate. We implemented and 

used both in DIEGESIS, but to identify which of the two approaches is better for our 

needs, we performed an evaluation measuring the performance of each approach and 

we also observed if one of them seemed to affect the generated story in any way, by 

measuring the generated actions. 

Apart from our planning solution, our Planner includes a new re-planning solution as 

well. We evaluated its performance measuring the time needed to generate a valid 

plan after re-planning and we compared it to the approach of creating a new plan from 

scratch.  

Finally, after we completed the design and implementation of DIEGESIS, as well as the 

modelling of the evaluation scenario we discussed in previous sections, we decided to 

evaluate the whole framework using that. Using DIEGESIS, we generated a number of 

different storylines and we measured generic data results such as the number of 
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levels, characters, choices, turns, actions, etc. We also focused on the performance 

aspects both of the planner and of the rest of the framework, and we finally observed 

some data related to vantage points. 

6.5. EVALUATIONS 

In this section, we are documenting a number of evaluations for the different 

components of our framework, using the evaluation scenarios we presented in 

sections 6.1 and 6.2. 

6.5.1. PLANNING ALGORITHMS EVALUATION 

As we discussed in section 3.4, to aid us to decide which planning algorithm to use as a 

base for our solution, we performed an evaluation of planning algorithms with a DIS 

perspective in mind. The approach we used to perform this evaluation was to 

benchmark different planning algorithms testing the speed they solved a specific 

problem in a specific domain and to compare their feature sets with DIS applications in 

mind. 

The list of algorithms we benchmarked includes the following algorithms: FF 

(Hoffmann, 2001), Graphplan (Blum and Furst, 1997), LPG-TD (Gerevini et al., 2004), 

Marvin (Coles and Smith, 2004), Metric-FF (Hoffmann, 2003), SatPlan (Kautz and 

Selman, 1992), HSP (Bonet and Geffner, 2001), and JSHOP2 (Ilghami and Nau, 2003). 

The feature sets considered valuable to DIS applications are the following, and were 

discussed in detail is section 3.4: Support for extra language requirements; capability 

to generate partial-order plans; optimality; support for actions with costs; support for 

numeric variables. Table 2 shows the list of features each algorithm implements. 

Algorithm TH EO NP CE EP Opt POP AC NV 

FF          

Graphplan          

LPG-TD          

Marvin          

Metric-FF          

SatPlan          

HSP          

JSHOP2          
Table 2: Algorithms’ feature sets  
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The abbreviations used in the table are the following: Type hierarchies (TH); equality 

operator (EO); negative preconditions (NP); conditional effects (CE); existential 

preconditions (EP); optimal (Opt); partial-order planner (POP); action costs (AC); and 

numeric variables (NV). 

As we explained in section 6.1, to benchmark the performance of the algorithms, the 

same test problem (i.e. Ugh’s Story first act) as in (Barros and Musse, 2007b) was used. 

Since most of the algorithms tested could not handle all the language features needed 

for the test problem, the test problem was “ported” for each algorithm (e.g. defining 

an “eq” predicate for algorithms without a built-in equality operator). We performed 

the porting for the JSHOP2 algorithm, as it was not evaluated in the original paper. 

The times reported are an average of three runs in a Virtual Machine (Ubuntu Linux on 

Oracle VirtualBox with 1024 MB of RAM and 1 core of the Quad-core CPU @ 2.40 GHz); 

the results of the benchmark are listed in Table 3. 

Graphplan is an optimal and partial-order planner, but its input language is quite 

limited since none of the extra requirements described earlier is supported. 

SatPlan is also optimal and is capable of generating partial-order plans. Its input 

language is quite limited since the only extra requirement it supports is type 

hierarchies. 

HSP is a total-order non-optimal planner and its input language supports type 

hierarchies and has a built-in equality operator. It lacks all other features discussed 

earlier. 

LPG-TD supports all the extra language requirements discussed before, except 

conditional effects. It generates partial-order plans, supports action costs and numeric 

variables but it is not optimal. 

The FF (Fast-Forward) algorithm is non-optimal, produces total-order plans and its 

input language supports all extra requirements described before. It cannot handle 

numeric variables and actions with costs. 

Metric-FF is an extension of FF which provides support for numeric variables. Also, 

although actions with costs are not supported explicitly, they can be easily "emulated" 
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with numeric variables, since Metric-FF allows for the definition of an optimality 

metric. 

Marvin is based on FF's search strategy and supports the same input language as FF, 

but it is capable of generating partial-order plans. 

JSHOP2, is a planner based on ordered task decomposition, a type of Hierarchical Task 

Network (HTN) planning. It supports conditional effects, negative preconditions, partial 

ordered plans, and numeric variables. Its language, although it incorporates many 

PDDL features, has a unique syntax. The problem and domain descriptions must be 

compiled into Java code (by the system) before execution therefore there might be a 

problem with potential use with real-time planning systems. 

Algorithm Barros Time 

FF 0.015 s 0.023 s 

Graphplan 0.138 s 0.240 s 

LPG-TD 0.169 s 0.463 s 

Marvin 0.017 s 0.040 s 

Metric-FF 0.018 s 0.036 s 

SatPlan 0.247 – 0.512 s 0.630 s 

HSP 0.031 s - 

JSHOP2 - 0.021 s 
Table 3: Algorithms' execution time comparison 

The times produced by our evaluation comply with the times produced by the original 

evaluation. JSHOP2 produced the fastest solution, with FF, Metric-FF and Marvin 

coming very close. Graphplan, LPG-TD and SatPlan on the other hand showed an 

increase in the solution time needed. 

By examining the above analysis, it can be seen that there is no planning algorithm 

that combines all the characteristics described before. Therefore, we can conclude, 

and agree with (Barros and Musse, 2007b) that no planning algorithm can be 

considered ideal for DIS applications. Based on the available planning algorithms, and 

considering that each DIS system has its own goals, the final choice of algorithm must 

be done based on the unique requirements of each DIS system (the same way as it is 

done until now). 



199 
 

6.5.2. DIEGESIS SCALABILITY EVALUATION 

As we discussed in section 3.2, while designing and prototyping DIEGESIS it was a 

necessity that the performance of the system and the algorithms would be good 

enough to accommodate large stories with several characters (represented by agents). 

Therefore, during the implementation of our system, we had to constantly evaluate its 

performance, to ensure that the system stays responsive and usable even when using 

large stories. 

Early in the implementation of our system we discovered that the initialisation (pre-

processing) of the planning domain (explained in section 4.14) is a computationally 

intensive process which could be a potential bottleneck for the performance of the 

whole system, depending on the design of our agents. We initially considered two 

different approaches in the design of our agents: In the first approach, we assumed 

that agents may be are aware of different environments, each represented as different 

domain. Therefore, each agent who is aware of a different environment would have to 

perform its own individual pre-processing (i.e. to generate facts, operators etc.). In the 

second approach, we assumed that all the agents are aware of the same base 

environment; therefore they could share a pre-processed planning domain. 

So, the first evaluation that we performed (Goudoulakis et al., 2012b) was to test the 

performance and scalability of DIEGESIS with an increasing number of active agents in 

the system, was to measure the agent initialisation time (including the pre-processing 

time of our planning algorithm), as well as the plan generation time. 

As a planning domain, we used one of the levels of the Troy scenario we presented in 

section 6.2, which -at that point- was still early in its design and modelling. In that 

level, each agent represents the character called Paris with a goal of convincing 

character Helen to come with him to the city of Troy. The valid plan consists of 4 

actions and is displayed in Figure 102. 

GOTO PARIS TROY-PALACE SPARTA-PALACE 

SEDUCE PARIS HELEN SPARTA-PALACE 

CONVINCE-TO-FOLLOW PARIS HELEN SPARTA-PALACE 

TAKE-SOMEONE-FROM-TO PARIS HELEN SPARTA-PALACE TROY 
Figure 102: The generated valid plan 
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To perform our tests, a varying number of agents are activated, and are trying to 

generate the valid plan of Figure 102 using an instance of the Planner component. To 

be able to do that, as we already discussed in section 4.14, the Planner needs to 

translate the domain into facts (e.g. “at paris troy-palace”), operators (e.g. “seduce 

paris helen sparta-palace”), mutexes between them, etc. to be used in the graph 

expansion and extraction phases. 

After a successful pre-processing, the evaluation domain contains a total of 758 facts 

and 3398 operators. The times reported in this evaluation are an average of five runs 

for each case in a PC with 4GB of RAM and a Quad-core CPU @ 2.83 GHz, running 

Windows 7. 

We evaluated both of the approaches mentioned earlier in this section, and our results 

are documented in Table 4, and illustrated in Figure 103. We initially tested for one 

agent, and then for 10, 50, and 100 agents simultaneously. 

Agent execution environment 
Number of agents 

1 agent 10 agents 50 agents 100 agents 

Different 
domain 

Initialisation time 0.62s 5.19s 26.12s 51.7s 

Planning time 0.05s 0.22s 1.35s 5.84s 

Same Domain 
Initialisation time 0.62s 0.63s 0.63s 0.63s 

Planning time 0.05s 0.23s 1.11s 3.41s 

Multi-threaded Total time 0.68s 2.11s 8.98s 20.65s 
Table 4: Pre-processing and planning times vs number of agents 

If we compare the planning times between the two approaches (i.e. different domain 

& same domain), we can see a slight increase in the different domain approach while 

the number of agents increases, but it is clear that the real potential bottleneck is the 

initialisation (pre-processing) time. 

To solve the obvious scalability issue of the first approach (i.e. each agent is aware of a 

different domain), we performed a third test with the same principle. In that, we 

altered our system’s implementation so it can initialise the agents in a multi-threaded 

fashion instead of the linear initialisation of the first approach, to improve its 

performance. The results of this approach reveal a remarkable improvement 

compared to the results of the first approach (20.65 seconds against 57.54 seconds for 

100 agents). 



201 
 

 

Figure 103: Total times vs number of agents 

After we progressed with the implementation of the system and we expanded the Troy 

scenario, we decided to perform a similar scalability evaluation to further test the 

performance of DIEGESIS, which we published in (Goudoulakis et al., 2012a). In the 

same manner as before, we decided to test the performance and scalability the 

framework with an increasing number of active agents in the system by measuring the 

agent initialisation and plan generation time. 

As a planning domain, we used an extended version of the level used in the previously 

discussed scalability evaluation, which is part of the Troy scenario discussed in section 

6.1. Again, each agent represents the character called “Paris” with a goal of seducing 

and convincing character “Helen” to flee with him back to the city of “Troy”. This time, 

the valid plan of each agent consists of 8 actions (instead of 4 actions that the previous 

plan included) and is displayed in Figure 104. 

WALK-TO PARIS TROY-THRONE-ROOM TROY-DOCK TROY 

TRAVEL-TO PARIS TROY-DOCK SPARTA-DOCK SHIPS SEA 

WALK-TO PARIS SPARTA-DOCK SPARTA-THRONE-ROOM SPARTA 

TALK-TO PARIS HELEN SPARTA-THRONE-ROOM 

SEDUCE PARIS HELEN SPARTA-THRONE-ROOM 

CONVINCE-TO-FOLLOW PARIS HELEN SPARTA-THRONE-ROOM 

WALK-TO-WITH PARIS HELEN SPARTA-THRONE-ROOM SPARTA-DOCK SPARTA 

TRAVEL-TO-WITH PARIS HELEN SPARTA-DOCK TROY-DOCK SHIPS SEA 

Figure 104: The generated valid plan 
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Similarly to the previous scalability evaluation, a varying number of agents are 

activated, and are trying to generate the valid plan of Figure 104 using an instance of 

the Planner component. After a successful pre-processing, the evaluation domain 

contains a total of 816 facts and 7696 operators (accordingly, 758 and 3398 in the 

previous evaluation). The times reported in this evaluation are an average of five runs 

for each case in a PC with 4GB of RAM and a Quad-core CPU @ 2.83 GHz, running 

Windows 7, the same infrastructure used in the previous evaluation. 

We evaluated the same two approaches as in the previous evaluation (i.e. agents have 

individual domains, or share a domain). Our results are documented in Table 5, and 

illustrated in Figure 105. We initially tested for one agent, and then for 10, 50, and 100 

agents simultaneously. 

Table 5 displays the times needed for the all agents to be initialised (including the pre-

processing time) and the times needed for all the agents to generate a valid plan. 

Agent execution environment 
Number of agents 

1 agent 10 agents 50 agents 100 agents 

Different 
domain 

Initialisation time 2.159s 13.914s 76.909s 163.930s 

Planning time 0.085s 0.522s 2.818s 8.780s 

Same Domain 
Initialisation time 2.159s 2.160s 2.162s 2.181s 

Planning time 0.085s 0.520s 2.803s 8.771s 

Multi-threaded Total time 1.355s 6.419s 32.248s 65.318s 
Table 5: Pre-processing and planning times vs number of agents 

As we already identified, the difference between the plan generation time of each 

approach is minimal, therefore the main impact derives from the initialisation time. 

Similarly to the previous evaluation, the different domain approach shows a scalability 

issue, therefore we tested the same domain with the multi-threaded execution 

approach which have implemented as a solution during our previous evaluation, which 

(as expected) showed a significant improvement compared to the results of the first 

approach. 
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Figure 105: Total times vs number of agents 

When we published the results of our first evaluation in (Goudoulakis et al., 2012b), 

we concluded that we would continue to use the second approach (i.e. all agents are 

aware of the same domain), since the likelihood of all the characters that need to 

generate a plan at the same time being aware of a different domain is extremely low. 

The same conclusion was reached after the second evaluation as well. Ultimately, as 

we continued to implement the system and grow the scenario we decided that this is 

the approach that fits best our needs, and therefore, as we documented in chapter 4, 

this is the approach which DIEGESIS is designed to use. 

6.5.3. PLANNING ALGORITHM PERFORMANCE EVALUATION 

As we already discussed in section 4.15, we have considered two different planning 

methods. In the first one, each agent has a list of goals and generates a plan for all the 

goals at the same time, whilst in the second method a plan is generated only for the 

most important goal (the concept of goal importance was discussed in section 4.14), 

and when the goal is complete (or not applicable any more), a plan for the next goal is 

generated, and so forth. The storyteller is able to choose the way each agent will 

operate. 
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To identify which of the two approaches is better for our needs, we performed an 

evaluation, which we published in (Goudoulakis et al., 2014), using a modified part of 

the scenario we discussed in section 6.2, which includes the following elements: 

 Characters: Paris, Hector, Menelaos, Helen, and Agamemnon; 

 Locations: throne room, guest room, royal bedroom, kitchen, armoury, dock, 

stable, and garden (all located in Sparta), as well as Troy’s dock; 

 Actions: talk to, walk to, travel to, pick up, drop, ask to give, give, kill, seduce, 

convince to follow, board, negotiate peace, drink, and eat. 

We are using Paris and Hector as our main characters and the rest as dummy 

characters. By the term “dummy characters” we mean that they don’t have any initial 

goals associated with them; the system injects goals to them during the execution 

based on other agents’ actions, or just futile goals. 

Hector has the following three goals: first, to give a present brought from Troy to 

Menelaos (since he is his guest), then to negotiate peace between Troy and Sparta, 

and finally, to return back to Troy. Figure 106 displays a possible plan for Hector which 

achieves all his goals. 

WALK-TO HECTOR GUEST-ROOM THRONE-ROOM 

TALK-TO HECTOR MENELAOS THRONE-ROOM 

GIVE HECTOR MENELAOS HECTOR-TROY-GIFT THRONE-ROOM 

NEGOTIATE-PEACE HECTOR TROY MENELAOS SPARTA THRONE-ROOM 

WALK-TO HECTOR THRONE-ROOM DOCK 

BOARD HECTOR SHIPS DOCK 

TRAVEL-TO HECTOR DOCK TROY SHIPS SEA 

Figure 106: Hector’s plan 

Paris has five goals, which are to give a present to Menelaos as well, to seduce Helen, 

convince her to follow him back to Troy, engage in small talk with Agamemnon who is 

around at the palace, and finally return to Troy. Figure 107 displays a possible plan for 

Paris which achieves all his goals. 

We measured the following, for both agents for both of the approaches: the total 

planning time needed (in seconds), the average time needed to generate a single plan, 

the total number of nodes in the planning graph, the average number of nodes for 

each plan, and the number of successful, failed, and wait actions during the scenario 

execution. 
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WALK-TO PARIS GUEST-ROOM GARDEN 

TALK-TO PARIS AGAMEMNON GARDEN 

WALK-TO PARIS GARDEN ROYAL-BEDROOM 

TALK-TO PARIS HELEN ROYAL-BEDROOM 

CONVINCE-TO-FOLLOW PARIS HELEN ROYAL-BEDROOM TROY 

WALK-TO PARIS ROYAL-BEDROOM THRONE-ROOM 

TALK-TO PARIS MENELAOS THRONE-ROOM 

GIVE PARIS MENELAOS PARIS-TROY-GIFT THRONE-ROOM 

WALK-TO PARIS THRONE-ROOM DOCK 

BOARD PARIS SHIPS DOCK 

TRAVEL-TO PARIS DOCK TROY SHIPS SEA 

Figure 107: Paris’ plan 

The data is an average of five runs for each case in a PC featuring 4GB of RAM, and a 

Quad-core CPU @ 2.83 GHz, running Windows 7. 

The total planning time for each approach, for each agent, as well as the average 

planning time for each plan are displayed in Table 6, and illustrated in Figure 108. (a) is 

the case where a plan is generated for all the goals at the same time, where (b) the 

case where a plan is generated for only one goal at a time. 

Planning methods & 
characters 

Planning times Number of nodes 

Average Total Average Total 

Case (a) 
(all goals) 

Paris 1.3783s 4.135s 6476 19428 

Hector 1.1265s 2.253s 9459.5 18919 

Case (b) 
(one goal) 

Paris 0.1902s 0.951s 784.2 3921 

Hector 0.1504s 0.752s 748.8 3744 
Table 6: Planning evaluation results 

The combined total planning time for both of the agents in case (a) was 6.388 seconds, 

where in case (b) was only 1.703 seconds, a 73.34% decrease. In case (a), the highest 

planning time that appeared was 2.216 seconds, and the lowest 0.735 seconds. In 

contrast, in case (b), the highest was 0.486 seconds, and the lowest 0.017 seconds. 

The total average for both of the agents in case (a) was 1.2524 seconds, and in case (b) 

0.1703 seconds, a decrease of 86.4%. Based on the above numbers, it’s clear that 

there is a significant performance increase using the case (b). 
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Figure 108: Total and average planning times 

Figure 109 illustrates the total and average number of nodes generated in the planning 

graph while planning, for both agents, in both cases. The number of nodes is displayed 

in Table 6. 

 

Figure 109: Total and average number of nodes in planning graph 

The reduction in the number of nodes is consistent with the reduction in time. More 

specifically, the total number of nodes in case (b) is 80% less than in case (a), and the 

average number of nodes of case (a) are showing a 90.38% reduction comparing them 

with the average of case (b). 

Table 7 displays (and Figure 110 illustrates) the successful actions execution, the failed 

actions, the number of times each agent was instructed to wait, and the total number 
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of plans generated by each agent throughout the previously mentioned scenario. In 

case (a) the number consists of the initial plan plus the re-planning because of failures, 

and in case (b) consists of the plans for each individual goal, plus the re-planning 

because of actions' failure. 

Planning methods & 
characters 

Successful 
actions 

Failed 
actions 

Instructed 
to wait 

Total 
plans 

Case (a) 
(all goals) 

Paris 11 2 0 3 

Hector 8 1 2 2 

Case (b) 
(one goal) 

Paris 12 1 0 5 

Hector 9 2 2 5 
Table 7: Successful and failed actions, times instructed to wait, and numbers of total generated plans 

There were more plans generated in case (b), something which was expected since the 

agents needed to generate a plan for each individual goal, but since the complexity of 

each plan was quite lower than the plans of case (a), the planning times were quite 

lower as discussed before in Figure 108, therefore the increased number of plans was 

not a negative impact on the performance. 

 

Figure 110: Successful and failed actions, times instructed to wait, and numbers of total generated 
plans 

The rest of the metrics in Table 7 and Figure 110 are similar to each other between the 

two cases. The times an agent was instructed by the system to wait a turn before 

trying to execute its action again were identical, as well as the failed actions. There was 

a slight increase in the successful actions in case (b), which can potentially add to the 

emergence of the generated narrative. 
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6.5.4. RE-PLANNING ALGORITHM EVALUATION 

To evaluate the performance of our re-planning solution, we used a part of the 

scenario we discussed in section 6.2, modified for the evaluation purposes. The 

evaluation scenario includes the following elements: 

Paris as the main character, Hector, Menelaos, Helen, and Agamemnon as “dummy” 

characters (they exist only to interact with the main character when needed); guest 

room, garden, armoury, royal bedroom, throne room, kitchen, and dock as locations 

(all located in Sparta); and several actions such as talk, walk, seduce, ask for item, etc. 

which can be performed by the agents. 

Figure 111 illustrates the complete plan of the agent which represents character Paris 

in the scenario. 

WALK-TO PARIS GUEST-ROOM GARDEN 

TALK-TO PARIS AGAMEMNON GARDEN 

WALK-TO PARIS GARDEN ARMOURY 

PICK-UP PARIS MAP ARMOURY 

WALK-TO PARIS ARMOURY ROYAL-BEDROOM 

TALK-TO PARIS HELEN ROYAL-BEDROOM 

SEDUCE PARIS HELEN ROYAL-BEDROOM 

CONVINCE-TO-FOLLOW PARIS HELEN ROYAL-BEDROOM TROY 

WALK-TO PARIS ROYAL-BEDROOM THRONE-ROOM 

TALK-TO PARIS MENELAOS THRONE-ROOM 

GIVE PARIS MENELAOS PARIS-TROY-GIFT THRONE-ROOM 

WALK-TO PARIS THRONE-ROOM DOCK 

BOARD PARIS SHIPS DOCK 

TRAVEL-TO PARIS DOCK TROY SHIPS SEA 

Figure 111: Paris’ complete plan 

Paris is initially located in the guest room in Sparta, and he plans to go to the gardens 

and chat with Agamemnon, then to pick up a map located in the armoury, then to find 

Helen in the royal bedroom, seduce her, and convince her to follow him back to Troy. 

Afterwards, to find Menelaos at the throne room and give him a gift, and finally, to 

walk to the docks and board to a ship to return to Troy. 

While the plan is executed, it is scheduled to fail three times in the following 

situations: 

1. Hector has taken the map, so Paris needs to find him and ask for the map; 

2. Helen is no longer located at the royal bedroom; 
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3. Menelaos is no longer located at the throne room. 

We evaluated two cases: In the first one, when a plan fails, the re-planning is 

performed from scratch. The previously generated plan is discarded, and a new plan is 

generated from the current state in which an action has failed. In the second case, the 

re-planning algorithm documented in section 4.14 is used, generating a new partial 

plan only for the failed action(s), which is then merged with the rest of the existing 

plan. 

Figure 112 illustrates the re-planning process and the action execution sequence of the 

second case, for the scenario used in the evaluation. When an action fails, a partial 

plan is generated, which accomplishes the effects of the failed action, as well as the 

effects of the next action (if exists). It is then merged with the initial plan, and the 

execution of the actions continues as usual. 

 

Figure 112: Re-planning process and action execution of the new re-planning solution 

We measured the total re-planning time needed (in seconds), the average re-planning 

time needed for each plan, the total number of nodes in the planning graph, the 
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average number of nodes for each plan, and the number of re-plans occurred during 

the scenario execution. 

The data is an average of five runs for each case in a PC featuring 4GB of RAM, and a 

Quad-core CPU @ 2.83 GHz, running Windows 7. 

Figure 113 illustrates the number of the re-planning tasks occurred during the 

execution of the plans. (a) is the case where a plan was generated from scratch, whilst 

(b) is the case where a partial plan was generated. 

 

Figure 113: Number of re-planning tasks 

Case (b) has an increased number of re-planning tasks, due to the following: The re-

planning solution generates a partial plan which connects the failed actions with the 

next step of actions. But, most of the actions in our scenario are modelled in a way 

that binds them to locations. During the evaluation, we noticed 2 cases where a 

second partial plan needed to be generated to complete a long sequence of actions in 

a specific location which was different during the initial plan generation. 

Table 8 contains the total and average planning times for each of the two re-planning 

method cases (illustrated in Figure 114), as well as the total and average number of 

nodes of each case (illustrated in Figure 116). 

Re-planning methods 
Planning times Number of nodes 

Average Total Average Total 

Case (a) 
(new plan from scratch) 

0.065s 0.194s 1274.67 3824 

Case (b) 
(partial plan) 

0.014s 0.070s 314.25 1257 

Table 8: Planning times and number of nodes 
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The total planning time in case (a) was 0.194 seconds, where in case (b) was only 0.07 

seconds, a 63.92% decrease. 

 

Figure 114: Total and average re-planning times 

The individual planning times and number of nodes for each individual re-planning task 

in each case are documented in Table 9, and illustrated in Figure 115 and Figure 117. 

Re-planning methods 
Planning tasks 

1 2 3 4 5 

Case (a) 
(from scratch) 

Times 0.107s 0.056s 0.031s - - 

Nodes 1635 1384 805 - - 

Case (b) 
(partial plan) 

Times 0.019s 0.014s 0.011s 0.016s 0.010s 

Nodes 259 273 203 328 194 
Table 9: Planning tasks results 

In case (a), the highest re-planning time that appeared was 0.107 seconds, and the 

lowest 0.031 seconds. In contrast, in case (b), the highest was 0.019 seconds, and the 

lowest 0.01 seconds. 

The average re-planning time for each re-planning task in case (a) was 0.065 seconds, 

and in case (b) 0.014 seconds, a decrease of 78.46%. 

Based on the above numbers, it is clear that there is a significant performance increase 

in case (b). 
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Figure 115: Individual planning time for each re-planning task 

The reduction in the number of nodes is consistent with the reduction in time. More 

specifically, the total number of nodes in case (b) is 67.13% less than in case (a), and 

the average number of nodes of case (a) are showing a 80.28% reduction comparing 

them with the average of case (b). 

 

Figure 116: Total and average number of nodes 

Based on the results of the evaluation, the approach to generate a partial plan which 

solves the failed actions and to connect it with the rest of the valid plan has a 

significantly better performance from the approach to re-plan from scratch. The 

increased number of re-planning tasks we observed and discussed earlier in this 

section does not have any impact of the overall performance of the solution. 
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Figure 117: Individual number of nodes for each re-planning task 

Finally, apart from a better performance, our re-planning solution did not affect in a 

negative way the outcome of the generated story compared to the other solution. 

6.5.5. SUMMARISATION EVALUATION 

To evaluate the whole framework with the Troy evaluation scenario (discussed in 

section 6.2) we modelled for this purpose, we used DIEGESIS to generate 4 different 

storylines and measured a number of metrics, which we will document in this section. 

In the first storyline (from now on we will refer to it as “story 1”), we intentionally used 

the appropriate choices, and made some minor modifications (merely to the fighting 

abilities of some key characters and the volumes of some battle groups) to the 

modelling of the scenario to produce an outcome consistent with the Troy movie in 

which we based our scenario. The 21 levels generated and executed are illustrated in 

Figure 118, are marked in a blue-shaded background and their execution order is 

mentioned before their title (the same principles apply to all the illustrated outcomes). 

In the rest three storylines, the modifications we made for the first story were 

removed and all the choices were made by the Oracle component (discussed in section 

4.10), producing a relatively random outcome in each storyline. In the second storyline 

(i.e. “story 2”), 10 levels were executed, which are illustrated in Figure 119. In the third 

storyline (i.e. “story 3”), 6 levels were executed (illustrated in Figure 120), while in the 

fourth and final storyline, 13 levels were executed which are illustrated in Figure 121. 
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Figure 118: Execution order of levels in Story 1 
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Figure 119: Execution order of levels in Story 2 
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Figure 120: Execution order of levels in Story 3 
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Figure 121: Execution order of levels in Story 4 
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To gather the data of this evaluation, we run DIEGESIS in a PC featuring 4GB of RAM, 

and a Quad-core CPU @ 2.83 GHz, running Windows 7. 

Table 10 contains the following data for each storyline in total: 

 The volume  of generated and executed levels; 

 the volume of turns; 

 the volume of character occurrences in these levels (in this metric, if a 

character appeared in 3 levels, it will count as 3 characters); 

 the volume of unique characters who appeared at least once in the story (in 

contrast to the previous metric, in this one if a character appeared in 3 levels, it 

will count as 1 character); 

 the volume of choices made (either by the framework or by the player); 

 the total successful actions for all the characters; 

 the total volume of successful character actions which were not planned by the 

character, but initiated by another character instead (these actions are not 

included in the previously mentioned successful actions); 

 the volume of failed character actions; 

 the total volume of actions (including successful, initiated, and failed actions). 

Story data 
Storylines 

Story 1 Story 2 Story 3 Story 4 

Levels 21 10 6 13 

Turns 167 63 41 84 

Character occurrences 85 33 16 45 

Unique characters 18 10 9 11 

Choices 40 11 9 19 

Successful actions 173 55 35 80 

Initiated actions 93 22 15 36 

Failed actions 32 23 7 41 

Total actions 298 100 57 157 
Table 10: Generic story data results 

As we can observe, as a story grows in levels and turns, the number of unique 

characters and how many time they appear in the executed levels grow as well, 

something which was expected. The growth is not steady, since levels are different 

from each other, for example they include different amounts of characters, possible 

actions, etc. A similar growth can be observed in the volume of choices and actions. 
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As discussed in section 4.14, facts are potential states of the game world, for example 

that Paris is located in Troy’s throne room, and operators are potential actions that can 

be executed resulting to these states, for example that Paris can walk from the throne 

room to his own room. As we also explained in section 4.14, during the loading phase 

of each level our planner pre-processes the possible facts and operators, creating and 

storing all their possible combinations (in relation to the characters, locations, items, 

etc. which are present in a level) and uses this information when performing a 

planning episode. 

Table 11 contains the number of pre-processed facts and operators (we will call them 

“nodes”) for each of the storylines, as well as for all the levels present in the evaluation 

scenario. These data (which are further illustrated in Figure 122) are an indicator of the 

complexity of each story, and as we observed before, the complexity rises when a 

story includes more levels, characters, etc. More specifically, story 1 used 66.14% of 

the available nodes, story 2 used 15.74% of the available nodes, story 3 used 10.84% of 

the available nodes, and story 4 used 21.36% of the available nodes. 

Pre-processing nodes 
Storylines 

All levels Story 1 Story 2 Story 3 Story 4 

Fact nodes 4758 3320 1092 701 1451 

Operator nodes 17464 11377 2406 1708 3295 

Total nodes 22222 14697 3498 2409 4746 
Table 11: Pre-processing nodes 

 

Figure 122: Pre-processing nodes 
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Table 12 contains information about the planning episodes occurred in each story. The 

same pattern appeared here as well, where a larger story had more planning episodes 

than a smaller one. The table also contains the amount of nodes (facts and operators) 

the planner considered while constructing the planning graph to find a valid plan. In 

terms of performance, the results are showing that our planner is able to generate a 

large number of plans in a short amount of time. As an example, there were 102 

planning episodes the largest story (1), and the planned needed a total of 0.249 

seconds to generate all of them. 

Planning data 
Storylines 

Story 1 Story 2 Story 3 Story 4 

Planning episodes 102 30 18 49 

Total planning duration 0.249 sec 0.065 sec 0.055 sec 0.078 sec 

Fact nodes 1239 248 165 401 

Operator nodes 6514 1699 1262 2522 

Total nodes 7753 1947 1427 2923 
Table 12: Planning data results 

Continuing the discussion about the performance, Table 13 contains further 

performance data, more specifically: 

 The total pre-processing duration, i.e. the combined time the planner needed 

to generate the nodes we mentioned before, as well as other information 

(discussed in detail in section 4.14) such as the mutexes between the 

operators, etc.; 

 the total loading duration, i.e. the combined time the World Manager (WM) 

component needed to initialise a new level (the process in discussed in section 

4.5), including the pre-processing time; 

 and the total turns duration, i.e. the combined time the WM needed to execute 

all the turns in the story (including the time the planner needed to generate 

each of the planning episodes we mentioned earlier). 

Once more, the larger a story gets, the more time it needs to be pre-processed, to be 

loaded, and to be executed. 
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Performance data 
Storylines 

Story 1 Story 2 Story 3 Story 4 

Total pre-processing duration 1.177 sec 0.368 sec 0.255 sec 0.331 sec 

Total loading duration 5.676 sec 3.543 sec 2.548 3.734 sec 

Total turns duration 7.056 sec 2.367 sec 1.345 sec 4.323 sec 
Table 13: Performance data results 

Before continuing with the performance discussion we will have a look at the 

transitioning data included in Table 14. The transitioning process (i.e. moving from a 

level which ended to a new level that makes sense based on what happened in 

previously executed levels) is explained in detail in section 4.7. The transitioning data 

includes the number of transitions successfully performed during the generation of 

each story, the total time needed to be calculated, the total potential successors that 

were investigated for their suitability, and the mutual exclusions between them which 

were calculated. 

Transitioning data 
Storylines 

Story 1 Story 2 Story 3 Story 4 

Transitions 20 10 6 13 

Total transitions duration 3.394 sec 1.858 sec 1.162 sec 2.506 sec 

Potential successors 44 24 14 32 

Mutual exclusions  39 14 3 17 
Table 14: Transitioning data results 

Table 15 includes the following information for each of the storylines:  

 The average and max level loading duration, i.e. the time the WM component 

needed to initialise a new level, including the pre-processing time of the 

Planner; 

 the average and max turn execution duration, i.e. the time the WM needed to 

execute a turn in the story (including the time the planner needed to generate 

each of the planning episodes we mentioned earlier); 

 and the average and max transition duration, i.e. the time the Transitioning 

Manager (TM) component needed to perform a transition from a level to 

another. 

The maximum combination of durations the player has to wait during the execution of 

a story is when she instructs the framework to execute the next turn, the turn is 
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executed and it is the last of a level, so a transition has to be performed, then a loading 

of the next level, and the execution of the new level’s each turn. 

Interactivity performance data 
Storylines 

Story 1 Story 2 Story 3 Story 4 

Average level loading duration 0.270 sec 0.354 sec 0.425 sec 0.287 sec 

Max level loading duration 1.872 sec 2.218 sec 1.888 sec 2.031 sec 

Average turn execution duration 0.042 sec 0.038 sec 0.033 sec 0.051 sec 

Max turn execution duration 0.235 sec 0.149 sec 0.127 sec 0.240 sec 

Average transition duration 0.170 sec 0.186 sec 0.194 sec 0.193 sec 

Max transition duration 0.411 sec 0.336 sec 0.267 sec 0.316 sec 
Table 15: Interactivity performance data 

Therefore, the waiting duration (        ) before the framework becomes available for 

interaction again can be calculated as a combination of these durations and can be 

expressed as the following equation (1): 

                                         

Equation 1: Calculation of maximum waiting duration 

Using this equation and considering as a worst case scenario that the maximum 

durations from Table 15 occurred sequentially, we can calculate that the waiting 

duration that the player had to wait before the system becomes interactive again 

would be 2.753 seconds for story 1, 2.852 seconds for story 2, 2.409 seconds for story 

3, and 2.827 seconds for story 4. These results are displayed in Table 16. 

Storylines Maximum waiting duration 

Story 1 2.753 sec 

Story 2 2.852 sec 

Story 3 2.409 sec 

Story 4 2.827 sec 

Table 16: Maximum waiting durations 

Taking into account that these durations include loading durations (something that 

gamers are accustomed to) and they represent the worst case scenario, we consider 

them an indicator that DIEGESIS has a good interactivity performance. The average 

values of Table 15 shows that as well. 
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Extending the above, if we combine the total loading, turns, and transitions durations 

from Table 13 and Table 14, we can calculate the total story duration, represented by 

equation 2. 

                                                        

Equation 2: Calculation of total story duration 

Using that equation, we can calculate that story 1 needed a total of 16.126 seconds to 

be generated and executed, story 2 a total of 7.768 seconds, story 3 a total of 5.055 

seconds, and story 4 a total of 10.563 seconds. These calculations are illustrated in 

Figure 123. 

Based on these results, we believe that DIEGESIS is capable of generating and 

executing a large and complex story containing several characters (as a reminder, story 

1 contains all the main characters, interactions and important scenes appeared in the 

Troy film) in a very short amount of time, making the framework suitable to be used 

for the purpose of digital interactive storytelling. 

 

Figure 123: Total story duration 

Apart from the combined data for each story, it is worth reviewing some data for a few 

individual characters of a story, to investigate what happens when a vantage point is 

selected by the user. As we discussed in section 4.12, the player is able to choose 

between different vantage points or return to a full story view freely during run-time, 
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and choosing a vantage point does not affect the outcome of the story, which 

continues normally –yet invisible if it’s unrelated to the chosen character- in the 

background. 

Table 17 includes data for 4 of the characters (Achilles, Hector, Odysseus, and Helen), 

as measured during the generation of story 1. The data includes the following: 

 The volume  of levels the character appeared in; 

 the total successful actions of the character; 

 the total volume of successful character actions which were not planned by the 

character, but initiated by another character instead (these actions are not 

included in the previously mentioned successful actions); 

 the volume of failed character actions; 

 and the total volume of actions (including successful, initiated, and failed 

actions). 

Vantage points data 
Characters (Story 1) 

Achilles Hector Odysseus Helen 

Levels 11 9 7 4 

Successful actions 33 38 11 5 

Initiated actions 14 8 2 7 

Failed actions 3 4 4 1 

Total actions 50 50 17 13 
Table 17: Vantage points data results 

If the player chooses to view the story from the “eyes” of Achilles, DIEGESIS will show 

her 50 actions involving Achilles scattered across 11 levels plus any battles which 

Achilles is involved in. In contrast, if the player chooses Helen’s vantage point, she will 

only see 13 actions in 4 levels. The levels which will visible in the event that Achilles’ 

vantage point is active are illustrated in Figure 124, and those of Helen’s vantage point 

in Figure 125. 



225 
 

 

Figure 124: Levels of Achilles' vantage point 
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Figure 125: Levels of Helen's vantage point 
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In this chapter, we provided detailed information about the evaluation scenario that 

we modelled, showing its potential storylines. We also discussed some of the 

mechanics that can have an impact on the generated story, and we specified the 

metrics used in our evaluations. Then, we documented a number of evaluations for the 

different components of our framework, using the evaluation scenario we presented 

earlier in previous chapter. In the next chapter, we conclude the thesis and provide 

some future work ideas 
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7   CONCLUSION & FUTURE WORK 

In this chapter we will conclude the thesis, and provide some future work ideas. 

7.1. RESEARCH SUMMARY 

The goal of this research was to investigate AI planning and re-planning algorithms and 

exploit their potential for the field of Digital Interactive Storytelling (DIS), to evaluate 

their suitability for such systems and to develop new algorithms and storytelling 

mechanisms to improve them. To this end and to also provide more solutions to DIS 

research, we decided to specify, design, implement, and evaluate a multi-agent DIS 

framework, which we titled DIEGESIS. 

Apart from a review of the planning and re-planning solutions used by DIS systems, we 

surveyed and critically assessed a number of DIS systems related to DIEGESIS. This 

process gave us the opportunity to specify the requirements and the specifications of 

our multi-agent DIS framework. Based on this set of requirements and specifications, 

we designed DIEGESIS to be multi-agent, scalable, interactive, modular, and to utilise 

planning and re-planning techniques to dynamically generate and narrate a story. 

Compared to related DIS systems, DIEGESIS’ design took many different approaches in 

key aspects of the framework, which were all governed by our specified needs. For 

example, although DIS systems traditionally perform either centralised or 

decentralised planning, DIEGESIS’ approach borrows ideas from both approaches, 

creating a hybrid approach; on the plan generation level it performs decentralised 

planning, but on the plan execution level our approach borrows the control and 

coordination concepts from the centralised planning approach. DIEGESIS’ agent 

architecture follows a hybrid approach as well, including elements of reactive, 

deliberative, and BDI agents. 

While many DIS systems allow the player to control and/or make decisions for only 

one character in the story, in DIEGESIS the player can observe and make choices for 

any character. Player choices and a number of other mechanics we devised such as a 
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goal injection mechanism, a battle mechanism, a futile goals module, and the concept 

of uncertain actions can have an impact on the generated outcome, changing the 

course of the story. 

We also identified that DIS systems utilise either a first-person or a third-person 

perspective, including vantage points, to present their stories to the player. In its 

default mode, DIEGESIS presents the generated story as a whole, allowing the player to 

observe and interact (when is required) with any of the agents present in the story. 

While these abilities constitute a third-person perspective, we also want to provide the 

player with a first-person perspective. That’s the reason we created the concept of 

vantage points. If the player selects to view the story from the vantage point of an 

agent she will view only the story outcome which is related to the chosen agent, and 

will be available to interact with the story (i.e. make choices) only when an action is 

related to the story agent. The rest of the story (which is unrelated to the selected 

agent) will continue normally in the background. The player is able to choose between 

different vantage points or return to a full story view freely during run-time. 

DIEGESIS uses a hybrid story modelling approach, combining both plot-based and 

character-based elements. The game world is organised in multiple relatively abstract 

levels which can represent possible parts of a story, and DIEGESIS can perform 

transitions between them based on a set of rules and what happened previously in the 

story, to form a valid an interesting story, concept which constitutes a plot-based 

model. In the level execution though, DIEGESIS implements a character-based model, 

since each agent has some initial intentions, but is able to operate autonomously and 

opportunistically to achieve them. 

DIEGESIS includes a new planning solution created based on the needs of the DIS field, 

able to generate plans of actions based on each agent’s state and context, considering 

both the current world state and the available resources. The planning algorithm is 

based on Graphplan (expanded to include support for several language requirements 

that we consider valuable for DIS) for solutions expansion, and a backtracking heuristic 

search for plan extraction, enriched with constraints satisfaction and dynamic 

opportunistic restart when required. The planning algorithm is also aware of the 
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available time (duration) an agent/character has for a plan when it is asked to generate 

one. 

DIEGESIS deals with the execution of the agents’ plans in a higher level, and when a 

part of a plan fails, instructs the agent to re-plan based on its current knowledge of the 

state of the world. Considering that we modelled each agent to act as a real person in 

the way they generate and try to execute plan, it does not make sense (in our context) 

to predict and prevent plan failures as some related DIS systems do, since a plan can 

fail either due to user intervention (which cannot be predicted), or intervention by 

other characters, or –in some cases– pure chance. In any case, failed plans due to 

“unpredicted” reasons are realistic and have the potential to enrich a generated 

narrative. 

In our re-planning solution, as we interleave plan generation and plan execution, when 

a plan fails, we discard the already completed actions and we only re-plan for the 

failed (and some of the pending) actions of the plan, merging the new partial plan with 

the unexecuted portion of the original plan. 

To evaluate DIEGESIS and its components, we created a large-scale evaluation 

scenario, where we modelled the story presented in the 2004 film “Troy” (Petersen, 

2004), which is based on Homer’s epic poem called “Iliad” (Homer, 2003), and using 

that performed a number of evaluations. Also, since there are no widely accepted 

metrics to evaluate DIS systems that we could use, we specified some of them based 

on what consider valuable for the DIS field, a collection which could be potentially 

used by other DIS systems in the future. These requirements are the following: 

performance of planning and re-planning solutions; suitability of planning algorithms’ 

features for DIS, performance-based interactivity of the framework; and 

summarisation metrics. Finally, we disseminated the outcomes of our research, via 

publishing a number of papers. 

7.2. THESIS SUMMARY 

In Chapter 1 (Introduction), we discussed the motivation behind our research, the aims 

and objectives of it, and the research methodology we followed. We also listed a 

number of contributions to knowledge that our research made. 
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In Chapter 2 (Background & Related Work), we presented the background of our 

research area, where we discussed about the fields of Digital Interactive Storytelling 

and multi-agent systems, we presented some agent architectures, and we discussed 

about DIS-related as well as multi-agent-related planning and re-planning. We also 

presented some of the planning algorithms which are typically used in DIS systems 

along with some of the representation languages used by them. Finally, we presented 

some examples of re-planning outside of the DIS field, and we surveyed and critically 

assessed a number of DIS systems, stating their relation to our own work. 

In Chapter 3 (DIEGESIS DIS Framework), we documented the requirements and 

specifications of our multi-agent DIS framework, and then, in Chapter 4 (Design of the 

Framework), we discussed in detail the design aspect of every component of our 

framework. 

In Chapter 5 (Implementation), we documented all the details about the 

implementation of the multi-agent DIS framework we discussed in the previous 

chapters. 

In Chapter 6 (Evaluation), we provided detailed information about the evaluation 

scenario that we modelled, discussed its potential storylines. We also discussed some 

of the mechanics that can have an impact on the generated story, presented a 

coordination example, and we specified the metrics used in our evaluations. Finally, 

we documented a number of evaluations for the different components of our 

framework, which were performed using the evaluation scenario we presented earlier 

in the chapter. 

7.3. POSSIBLE APPLICATIONS 

Apart from using DIEGESIS on its own as described in this thesis, we are also 

considering alternative routes for it, such as utilising its framework capabilities to 

connect it to other components and game engines. In this section we will briefly 

discuss two potential applications involving DIEGESIS as a storytelling framework. 
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7.3.1. 3D VISUALISATION OF STORIES 

One potential route for DIEGESIS to be used as a framework would be to be connected 

with a 3D engine that will enable us to visualise the generated stories and improve the 

interactivity with the end-user. The resulting application would be able to use DIEGESIS 

to generate a story as described in previous chapters, and then the 3D engine would 

be able to visualise the outcome of the generated narrative, presenting it to the user, 

and allowing her to interact with the system and the story as well. As an example, 

Figure 126 depicts a scene from Total War: Rome II (SEGA, 2013) video game, showing 

a Spartan warrior inside Troy after the city was set on fire. 

 

Figure 126: Spartan warrior 

For the game engine and implementation development aspect we will use the Homura 

Game Engine and development Framework (El Rhalibi et al., 2009), developed by our 

research team. The Homura project's game development framework was created to 

provide an Open Source (LGPL-Licensed) API for the creation of Java and Open GL 

based hardware-accelerated 3D games applications, which support cross platform, 

cross-browser deployment using Java Web Start (JWS) and Next-generation Applet 

technologies. The framework bundles together several example applications and 

technical demos, which demonstrate and explain how to implement common games 

functionality in our applications; An application template, which acts as a great starting 

point for developing research applications and Homura related games; The APIs of 

both Homura and the key open-source projects it builds upon including the Java 

Monkey Engine scenegraph API, jME Physics Library, MD5 Model Importer, GBUI User 

Interface Libraries and many more; External Tools for the creation of Font Assets, 

Particle Effects and Levels for the games. 
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The game engine can be used to create the different 3D scenes to animate and 

visualise the story as it is generated by the DIEGESIS framework. A member of our 

research team created a visualisation sample; as an example, Figure 127 depicts a 3D 

scene involving a panoramic view of the Parthenon of Goddess Athena. 

 

Figure 127: Parthenon of Greek Goddess Athena 

Figure 128, describes a scene where Achilles watches the ships of the Greek army 

preparing to sail to Troy. 

 

Figure 128: Achilles Watching Ships Preparing for War 

Figure 129 depicts a scene of Achilles meeting Greek Goddess Athena before leaving to 

Troy, with some of the Greek army ships preparing to depart on the background. 
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Figure 129: Achilles meeting Greek Goddess Athena 

7.3.2. VIRTUAL STORYTELLER 

Another potential route for our system is to interface it with a 3D character animation 

framework to create a conversational avatar framework for Digital Interactive 

Storytelling, i.e. 3D facial model animation which will act as a narrator for the stories 

which our framework produces. We designed, documented, and proposed this 

application in (Duarte et al., 2013). In the proposed system, DIEGESIS will be interfaced 

with Charisma (El Rhalibi et al., 2010), an MPEG-4 based facial animation framework, 

which will enable a 3D character to narrate the generated story (Figure 130), or it 

could also be used for in-story character dialogues. 

 

Figure 130: The Charisma interface 

DIEGESIS is capable of generating interactive, dynamic, emergent, and consistent 

narratives, however the language of the outcome story presented to the user is not 
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rich and expressive. Therefore, it seems as a good fit to use an intermediate system 

that generates natural language, such as those introduced in (Theune et al., 2006, 

Theune et al., 2007), and presents it to the user by text and speech, using the 

coarticulation system in Charisma, providing a more natural interface to the user. 

Using the abilities of DIEGESIS, the proposed framework generates a narrative (Figure 

131 and Figure 132), based on the initial story model provided by the storyteller, the 

interaction between the agents, and the choices of the user. 

 

Figure 131: Framework layers for facial animation and DIS 

Once a part of the narrative is generated, it will be converted to natural language, and 

handed to the coarticulation embodied module. Further details about the 

coarticulation module (which are out of the scope of this thesis) can be found in 

(Duarte et al., 2013). 

 

Figure 132: The flow of a story used as input 

The current framework provides a richer user experience, by using a 3D narrator to 

narrate the generated story, and by generating a richer and expressive language for 

the narrative, when compared with the previous outcome of the framework. 
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Figure 133 illustrates an example of an agent’s possible plan, based on the scenario 

described in section 6.2. The agent represents the character Achilles in the story. Using 

a dialogue generation solution, we will generate an expressive narration based on the 

outcome which DIEGESIS is generating, so it can be imported to Charisma. 

PICK-UP ACHILLES SWORD ACHILLES-TENT 

PICK-UP ACHILLES SHIELD ACHILLES-TENT 

WEAR ACHILLES ARMOUR ACHILLES-TENT 

GO-TO ACHILLES ACHILLES-TENT BATTLEFIELD 

ATTACK ACHILLES HECTOR BATTLEFIELD 

KILL ACHILLES HECTOR BATTLEFIELD 

PICK-UP ACHILLES HECTOR BATTLEFIELD 

GO-TO ACHILLES BATTLEFIELD GREEK-CAMP 

DROP ACHILLES HECTOR GREEK-CAMP 

PICK-UP ACHILLES PATROCLUS GREEK-CAMP 

GO-TO ACHILLES BEACH 

PREPARE-FOR-FUNERAL GREEK ACHILLES BEACH 

PERFORM-FUNERAL GREEK ACHILLES BEACH 

GO-TO ACHILLES BEACH ACHILLES-TENT 

ALLOW-TO-TAKE ACHILLES PRIAM HECTOR 

Figure 133: Achilles’ combined plan 

An example of the narrative that could be generated by a dialog generation solution 

based on the outcome illustrated in Figure 133, is the following: “Achilles picked up his 

sword and shield, and wore his armour. Afterwards, he left his tent, heading for the 

battlefield. There, he attacked Hector and killed him. Achilles picked up Hector’s body, 

returned to the Greek camp and dropped Hector’s body. He picked up Patroklus’ body 

and walked to the beach. There, Achilles prepared for Patroclus’ funeral, and then 

performed it. He returned to his tent, where Priam was waiting and, after a discussion, 

Achilles allowed Priam to take Hector’s body.” 

As illustrated in Figure 134, once the natural language based story is generated using 

the tools available in DIEGESIS in conjunction with a dialogue generation solution, it is 

then sent to Charisma for further processing and to be presented to the user. A further 

evaluation of the proposed application can be found in (Duarte et al., 2013). 
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Figure 134: Information flow to create a narrative in the framework 

7.4. FUTURE WORK 

There are several avenues to extend this research and explore some areas that we 

didn’t explore, and to add some features that were not necessary to implement during 

our research. 

7.4.1. AUTHORING TOOLS 

As we discussed in section 4.18, to make the authoring process easier for the 

storyteller, we are using a PDDL editor created by (Cooper, 2011), and we designed an 

XML editor as an extension to the PDDL one, so the storyteller can be able to create 

easier all the XML nodes needed to complete the modelling of a story. Since implanting 

authoring tools wasn’t the aim of our research we didn’t implement the XML editor we 

designed, but implementing it in the future would benefit the storytellers who will use 

DIEGESIS. 

7.4.2. EMOTIONS MANAGER COMPONENT 

A potential feature that we considered at some point during our research was to 

design and implement an emotions manager component, which will closely work with 

our framework’s agents. A potential implementation could be to add emotions to the 

agents in related to other agents, and then model the story’s actions to affect certain 
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emotions positively or negatively. Then, these emotion values can be used to affect 

the choices that agents make (when they are made by the framework and not the 

player) and to trigger goal injection rules based on emotion thresholds. 

We didn’t go into that route because we decided that it would require a lot of micro-

management to get it working in an acceptable way and it would derail us from our 

research aims and objective. It has the potential to make the generated narrative and 

the relations between the characters richer though, so it should be considered as a 

potential extension of the framework. 

7.4.3. IMPROVEMENT OF PLANNING ALGORITHM’S PRE-PROCESSING 

During the implementation phase of our research, we have identified that the 

bottleneck of DIEGESIS’ planner is its pre-processing process, i.e. the time needed by 

the planner to pre-generate nodes that are later used in the actual planning and re-

planning process.  

Our planner only needs to pre-process the information of a level once and then the 

pre-processed information can be reused in any planning and re-planning episode of 

that level, an approach which has a good performance as we discovered in the 

evaluation we documented in section 6.5.2. Therefore, any delay due to the pre-

processing will only affect the loading time of the level, and not the experience of the 

player while executing the level.  

Furthermore, as we discovered in the evaluation we performed and documented in 

section 6.5.5, DIEGESIS is capable of generating and executing a large and complex 

story containing several characters in a very short amount of time. Nevertheless, it is 

something that we could investigate further in the future and try to improve the 

performance of the algorithm. 

7.4.4. DURATIVE ACTIONS 

As we discussed in section 4.14, for simplicity reasons since it was easier to evaluate 

the generated plans of each character in the story and investigate how they affect 

each other, we modelled the actions that an agent can execute to be atomic and 
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unable to overlap each other during the course of several turns. Therefore, we decided 

that instead of using PDDL’s durative actions which are more complex for the 

storyteller to construct, to simply specify the total duration of an action (in seconds) in 

XML. We consider the incorporation of durative actions into the plan execution phase 

as an interesting prospect for our framework, especially since we have already 

modelled our new planning solution to take into account the duration of an action and 

discard goals that are not such important if a generated plan does not meet its time 

constraints. 

7.4.5. POSSIBLE APPLICATIONS 

As we discussed in section 4.13, we initially decided that based on the focus of our 

research, a graphical user interface (GUI) would not be developed, as being out of 

scope of this project. Although we did end up creating a GUI, it is mainly focused on 

debugging, providing relevant information about what is happening in the framework 

and displaying the generated story in a visually limited way. Therefore, in section 7.3 

we described two possible applications utilising DIEGESIS as a DIS framework which 

will be visually pleasing and easy to use by the player. 

7.4.6. APPLICATION PROGRAMMING INTERFACE (API) 

Although we have designed DIEGESIS as a framework and –as we discussed in the 

previous section– we want it to be able to connect with other systems to form 

different DIS applications, we didn’t implement an API for it, something which will 

make it easier to be integrated to other systems. The de-coupled nature of our design 

though will make it easy to replace the User Manager component with an appropriate 

API if we decide to implement one in the future. 

7.4.7. FURTHER FRAMEWORK EVALUATIONS 

Apart from the evaluation metrics we discussed in section 6.4 used in the evaluations 

we documented in section 6.5, there are a couple of other metrics and potential 

evaluations that can be performed in the future: 
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 Plan quality over optimality: Optimality of a plan is not necessary in DIS. The 

ultimate goal of a DIS system is to create a good story so (even if it’s hard to 

measure it) the quality of the narrative is the most important metric in such a 

system. A possible way to measure the quality of the generated narrative is to 

present a story created by the system to a group of people and create a 

questionnaire that they will complete to evaluate the quality of the story. 

 Minimising Disruption in Re-planning: When performing re-planning to an 

existing plan, the disruption made to it should be kept to a minimum. A metric 

to measure is the number of changes performed in an existing plan and the 

extent of these changes, to measure the disruption in it, quantified by a 

disruption metric. 

7.4.8. STORY MODELLING 

As the specifications of 3.2 dictated, we aimed to design the framework in the most 

abstract way we could, to be able to be used with any kind of story instead of being 

highly coupled with one. We believe that we achieved that, since with the exception of 

the Battle Manager component (which can be turned off) all the other components of 

the system and the modelling rules of it are not highly coupled to a specific kind of 

story. But, since we did not have a chance to evaluate that notion by building another 

type of story (e.g. a science fiction-based scenario), it would be interesting to do that 

in the future. 

Also, another interesting route would be to replicate stories produced for other DIS 

systems, after they are ported into our modelling requirements, to investigate what 

kind of outcome DIEGESIS is capable of producing compared to these systems, based 

on the same story model. 
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APPENDICES 

APPENDIX A: USE OF UML IN THE THESIS 

In this thesis, we use a set of UML diagrams to describe use cases in the form of use 

case diagrams (in chapter 3), processes of various components of the framework in the 

form of activity diagrams (in chapter 4), classes and operations of the framework in the 

form of class diagrams (in chapter 5), and interactions between the components of the 

framework in the form of sequence diagrams (in chapter 4). 

To design these diagrams, we used the notation and recommendations made by 

(Fowler, 2003). When a diagram does not clearly states that is a use case, activity, 

sequence, or class diagram, then it is not a UML diagram. 

The conventions that we have made to the standard UML notation are the following: 

 In some class diagrams, when a class has been described in detail as part of a 

previous class diagram and appears again in another located after the one it 

was described into, we are omitting its description (i.e. its properties and 

operations) and keep only its name for the sake of simplicity. 

 Although most of the framework’s components consist of a number of classes, 

in all of the sequence diagrams located in the design chapter, we consider each 

component as one entity, and represent them as one instance of the 

component. That happens for the sake of simplicity, but also because the actual 

brake down of each component’s classes is located in the implementation 

chapter (which is located after the design chapter) and it was suitable to 

describe the interactions and message flow between the components as part of 

the design process. 
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