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ABSTRACT 

Two domain-specific quantity systems have been proposed; the “Precise Number System” for 

small precise numerical representations, and the “Approximate Number System” for 

imprecise numerical representations  (Feigenson, Dehaene, & Spelke, 2004). The efficiency 

of these systems has been individually associated with numerical competence (Mazzocco, 

Feigenson, & Halberda, 2011; Schleifer & Landerl, 2011). Phonological awareness and 

VSSP functioning are domain-general cognitive skills which have been shown to contribute 

to distinct aspects of early numerical competence (Krajewski & Schneider, 2009; LeFevre et 

al., 2010). Krajewski and Schneider’s model (2009) proposes three distinct developmental 

levels of early number skills; phonological awareness contributes to basic verbal number 

skills (Level I) while VSSP functioning and quantitative skills contribute to quantity to 

number-word linkage (Level II) and to early arithmetic skills (Level III). This thesis 

examines the longitudinal and independent contributions that domain-specific and domain-

general cognitive skills make to early number skills and to two standardised mathematical 

attainment measures.  

 

Verbal, visuo-spatial and quantitative skills were assessed in 129 children at the start of 

Reception Year. Precise quantity discrimination skills predicted performance and growth in 

children’s ability to count objects (Level II), approximate quantity discrimination skills 

predicted performance and growth in reciting the number-word sequence (Level I) and the 

two domain-general cognitive skills predicted performance and growth in performing simple 

arithmetic skills (Level III) over an eighteen-month period. Also, approximate quantity 

discrimination skills, phonological awareness and VSSP functioning predicted performance 

in both mathematical attainment measures over a six-month period. However VSSP 

functioning predicted performance and growth in a specific mathematical attainment measure 

over an eighteen-month period.  

 

Each cognitive skill seems to have a circumscribed role as a precursor of specific later 

number skills.  This suggests that identifying deficits in these cognitive skills and designing 

targeted-intervention programmes for children in the very early stages of schooling could 

prevent later general mathematical deficits. 
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1. THEORETICAL CONTEXT, THESIS OVERVIEW AND AIMS 

This chapter reviews three recent theoretical models of numerical processing that identify 

three key types of cognitive skills proposed to be critical for number processing; quantitative, 

verbal and visuo-spatial short-term memory skills. They suggest that the extent of the 

contribution of each of these three cognitive precursors to mathematical outcomes depends on 

the specific cognitive demands that the numerical tasks make. The first model is the triple-

code model of number processing (Dehaene, 1992; Dehaene & Cohen, 1995; Dehaene, 

Piazza, Pinel, & Cohen, 2003) and is based on behavioural, neuropsychological and 

neuroimaging data obtained with adults. Following this, two recent theoretical models of 

early arithmetic development, that have been partially or fully tested in children, are 

presented and discussed. Similarities and differences between the studies that empirically 

tested these models are highlighted. Lastly, this chapter discusses how the present study tests 

and expands these theoretical models.  

 

1.1 THE TRIPLE-CODE MODEL OF NUMBER PROCESSING  

The triple-code model of number processing (Dehaene, 1992; Dehaene & Cohen, 1995; 

Dehaene et al., 2003) is based on converging evidence from behavioural, neuropsychological 

and neuroimaging studies conducted with adults. It proposes that humans are endowed with 

three distinct systems for numerical information processing. Two of these systems are 

considered domain-general; one system located in the left angular gyrus responsible for the 

verbal manipulation of numerical information and one system located in the posterior 

superior area of the intraparietal sulcus in charge of the visuo-spatial attention processes 

needed when a numerical task is being performed. The triple-code model proposes that the 

extent to which these two domain-general systems are implicated when performing numerical 

tasks would depend upon the specific demands of the numerical task. Thus, tasks that require 

manipulation of numerical information in verbal codes would make higher demands on the 

verbal-code system. For instance, reciting times tables requires number fact retrieval in the 

form of verbal codes (DeSmedt, Taylor, Archibald, & Ansari, 2010) and therefore verbal 

skills need to be recruited. Similarly, numerical tasks that require “keeping track” of 

sequential information would rely to a greater extent on the visuo-spatial attention-code 

system. For example, to perform a sequential counting task visuo-spatial attention skills are 

needed to keep active information about the counting process. This model also proposes a 
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core-quantity system located in the bilateral horizontal segment of the intraparietal sulcus that 

is responsible for the representation and manipulation of analogue quantities. Unlike the two 

domain-general systems, this system is proposed to activate whenever numerical information 

is being processed, regardless of its presentation format. Thus, this core-quantity system is a 

potential domain-specific system for number processing (see figure 1.1). 

Figure 1.1: Dehaene’s (1992) diagram of the triple-code model of number processing  

 

 

This theoretical model proposes a modular structure of the way numerical information is 

processed. It argues that both, domain-specific cognitive skills (quantity-processing system) 

and domain-general cognitive skills (verbal and visual-spatial attention systems) are 

implicated in processing numerical information. It also proposes that the extent of the 

contributions of verbal and visuo-spatial attention skills varies in relation to the specific 

numerical task demands, while quantitative skills contribute consistently, irrespective of the 

demands of specific mathematical tasks. This model predicts that, when a particular number 

system is damaged or malfunctioning, difficulties in performing specific number tasks that 

rely on the malfunctioning system will occur, but that performance on other number tasks 

that rely on non-affected number systems should not be substantially affected. It should be 

noted, however, that this theoretical model reveals little about the contributions that these 

three cognitive skills make to the early stages of mathematical development as it is based on 

behavioural, neuropsychological and neuroimaging data obtained with adults. This issue is 

addressed in the following models. 
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1.2 THE PATHWAYS TO EARLY MATHEMATICS MODEL 

The pathways to early mathematics model (LeFevre et al., 2010) is based on the triple-code 

model of number processing (Dehaene, 1992; Dehaene & Cohen, 1995; Dehaene et al., 2003) 

and explores its applicability to early mathematical development. In line with the triple-code 

model, LeFevre et al. (2010) propose that early quantitative, verbal and visuo-spatial 

attention skills make independent contributions to different early number skills and to 

performance on different mathematical attainment measures. The model also proposes that 

the extent to which these three cognitive precursors contribute to different aspects of 

numerical competence vary depending on each numerical task’s demands. It argues that 

verbal skills contribute to children’s performance on symbolic number tasks because 

language is a symbolic representational system and therefore similar rules apply when 

learning the conventional and culture-specific representations for number through 

mathematical instruction (hereafter formal number system).Verbal skills would also be 

expected to contribute to children’s performance on all standardised mathematical attainment 

tests since the symbolic number system is always involved. The model also proposes that 

quantitative skills are involved in number tasks and standardised mathematical attainment 

measures that require accessing the analogue magnitude representations of numbers. Lastly, 

because visuo-spatial attention skills are needed to represent and/or retain the numerical 

information of the task regardless of its format, this model proposes that visuo-spatial 

attention skills make additional unique contributions to children’s performance on numerical 

tasks where visuo-spatial orientation on an internal number line is needed. Therefore, visuo-

spatial attention skills would be expected to contribute to a wide variety of standardised 

mathematical attainment measures (see figure 1.2). 
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Figure 1.2: LeFevre’s (2010) pathways to early mathematics’ model diagram  

 

 

1.2.1 Empirical testing of the pathways to early Mathematics Model 

LeFevre et al.’s (2010) model was tested in a two-year longitudinal study with pre-school and 

kindergarten children (median age five years for the preschool group and median age five 

years eleven months for the kindergarten group). The impact of quantitative, verbal and 

visuo-spatial short-term memory skills (hereafter visuo-spatial STM) on two early number 

skills tasks and performance on various standardised and research-based mathematical 

attainment measures was examined. Measures of the three cognitive precursors and 

participants’ early number skills were obtained at the beginning of the study. Participants’ 

early quantitative skills were assessed with an enumeration task in which children were 

presented with arrays ranging from one to six dots. Children’s response times (hereafter RTs) 

to articulate the number-word matching the exact number of dots presented was recorded. It 

has been argued that the ability to quickly and accurately enumerate small collections of up to 

three or four items (subitising) is different from counting and underpins later numerical skills 

and basic arithmetic skills (Butterworth, 1999, 2005, 2010). Note that subitising skills and 

their potential role in mathematical development are discussed in much greater detail in 

Chapter 2 of this thesis. Analysis of RTs revealed a clear discontinuity between children RTs 



5 

 

for arrays containing one to three dots, for which the RTs slope showed no significant 

increase between one and two dots and a slight increase between two and three dots, and 

arrays containing four to six dots, where the RTs slope showed a significant increase with 

each additional dot presented. The median for the RTs of all trials presenting one, two or 

three dots was used as a measure of children’s subitising latency. Children’s verbal skills 

were assessed with two standardised tests assessing their receptive vocabulary and 

phonological awareness. Children’s visuo-spatial STM skills were assessed with a child-

friendly Corsi blocks task. At the same time as these cognitive assessments, both a verbal and 

a non-verbal early number task were also administered. In the verbal number task children 

were asked to correctly articulate the number-word matching a one-, two- or three-digit 

Arabic numeral presented on a screen. In the non-verbal number task children were asked to 

complete non-verbal arithmetic problems. They were presented with a set of objects, then this 

set was masked and another set of objects was added to or removed from the initial set. 

Children were then asked to form a set matching the number of objects in the hidden set 

using their own objects.  

 

It was found that children’s verbal skills made unique contributions to their performance on 

the verbal number task (number naming), but not to their performance on the non-verbal 

number task (non-verbal arithmetic). In contrast, children’s subitising latency made unique 

contributions to their performance on the non-verbal number task (non-verbal arithmetic) but 

not to their performance on the verbal number task (number naming). Performance on the 

Corsi blocks task made unique contributions to variation in children’s performance on the 

verbal and non-verbal number tasks. Thus, as hypothesised in their theoretical model, 

children’s verbal skills contributed to their performance on a symbolic number task but not to 

their non-berbal arithmetic performance. Also, children’s quantitative skills contributed to 

their performance on a number task that demanded the representation and manipulation of 

analogue quantities but not verbal skills. Visuo-spatial attention skills made independent 

unique contributions to both types of early number tasks.  

 

Two years later participants’ mathematical knowledge was assessed using standardised and 

research-based mathematical attainment measures. In line with their theoretical predictions, it 

was expected that the extent of the contribution of each cognitive precursor would vary 

depending on the specific cognitive demands that each mathematical attainment measure 

makes. Four standardised subtests of mathematical attainment were administered; the 
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Numeration, Measurement and Geometry subtests of mathematical knowledge from the 

KeyMaths Test-Revised (Connolly, 2000) and the Calculation subtest from the Woodcock-

Johnson Test (hereafter WJ) of Achievement-Revised (Woodcock & Johnson, 1989). The 

Numeration subtest assesses children’s knowledge of the numerical order, the Measurement 

subtest assesses children’s ability to compare quantities and the Geometry subtest assesses 

children’s processing and understanding of spatial arrays, sequencing and patterning. The 

Calculation subtest assesses computation skills. In addition, two computerised research-based 

measures of mathematical knowledge were administered. One was a computerised number 

line task where children were shown a target number and then asked to place the on-screen 

cursor where they estimated the target number would be on a line that presents a “1” on the 

extreme left and a “1,000” on the extreme right. Proximity of the children’s selected location 

to the real target location was then analysed using linear regression analysis. The other 

research-based measure of mathematical knowledge was a symbolic comparison task where 

children were presented with pairs of distinct single-digit numbers varying in physical size 

for a maximum of three seconds. Then children were asked to indicate which digit 

represented a larger number.  

 

While the children’s verbal skills, represented by a latent variable of children’s receptive 

vocabulary, phonological awareness and number naming performance, made significant 

contributions to all standardised and research-based mathematical measures two years later, 

their quantitative skills and visuo-spatial STM skills only predicted specific outcome 

measures. In particular, the quantitative pathway, represented by a latent variable of 

children’s subitising latency and non-verbal arithmetic performance, made significant 

contributions to both research-based measures but only predicted performance on the 

Numeration and Calculation subtests of the standardised mathematical attainment measures. 

No significant variance in the Geometry subtest or Measurement subtest was predicted by the 

quantitative pathway. The visuo-spatial STM skills’ pathway, represented by children’s 

performance on the Corsi blocks task, made significant contributions to all standardised 

mathematical attainment tests and to their number line performance but failed to predict 

children’s performance on the symbolic comparison task. The separate and independent 

longitudinal contributions that the three mathematical cognitive precursors made to the 

different outcome measures was interpreted as evidence of their variable contribution 

depending on the characteristics and demands that the mathematical measures make.  
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LeFevre et al.’s (2010) study provides a comprehensive model of early mathematical 

development by including measures of domain-general and domain-specific cognitive skills. 

It proposes that different early number tasks make different cognitive demands and classify 

these as symbolic and non-verbal number skills. Their work also explores the relative 

contribution that children’s visuo-spatial STM skills, verbal skills and quantitative skills 

make to different mathematical attainment measures. LeFevre et al. (2010) acknowledge that 

two distinct quantity systems have been proposed; a quantity system for the processing of 

small and precise numerical magnitudes proposed by Butterworth and colleagues 

(Butterworth, 1999, 2005, 2010; Castelli, Glaser, & Butterworth, 2006; Gelman & 

Butterworth, 2005) and a quantity system for the processing of approximate quantities of 

numerical magnitudes proposed by Dehaene and colleagues (Dehaene, 1997; Dehaene, 

Molko, Cohen, & Wilson, 2004; Spelke & Dehaene, 1999). These two systems for number 

processing and their potential role in early mathematical development are discussed in much 

greater detail in Chapters 2 and 3 of this thesis. However, LeFevre et al. (2010) only included 

a measure of children’s precise enumeration speed to assess children’s quantitative skills. No 

measure representing children’s ability to make approximate numerical judgements was 

included. Moreover, in the subitising task children had to answer with a number-word and 

therefore their verbal skills and their pre-existing knowledge of the formal number system 

were to some extent involved. In addition, LeFevre et al. (2010) used combined measures of 

cognitive predictors and early number skills to examine how verbal skills and quantitative 

skills relate to different mathematical attainment measures. Finally, a single-task was used to 

assess children’s visuo-spatial STM skills. Latent variables are considered to be better 

representative measures than single-tasks because they suffer less contamination from the 

specific tasks demands than single-tasks measures (Bowey, 2005). 

 

1.3 KRAJEWSKI AND SCHNEIDER’S MODEL OF EARLY ARITHMETICAL 

DEVELOPMENT 

Krajewski and Schneider’s (2009) theoretical model of early arithmetical development 

proposes that children’s quantitative skills, verbal skills and visuo-spatial STM skills 

contribute to their early number skills and mathematical attainment performance. This model 

distinguishes three distinct developmental levels of early number skills (referred to as 

“quantity-number competences”, hereafter QNCs). QNCs Level I refer to children’s ability to 

articulate number-words and recite the number-word sequence correctly. QNCs Level II 



8 

 

refers to the linkage of number-words to their quantity meaning. It is proposed that this 

linkage is completed in two phases; first, children link quantities to words with imprecision 

(Level IIa), then the precise number-word is linked to its exact quantity concept and children 

can distinguish which of two consecutive number-words refers to a larger quantity (Level IIb). 

QNCs Level III refers to children’s ability to use exact number-words to describe the 

outcome of adding or subtracting one quantity and another. Krajewski and Schneider (2009) 

propose that children’s verbal skills contribute to their performance on QNCs Level I because 

these are mainly a verbal process and do not require understanding of quantities. Children’s 

quantitative skills and visuo-spatial STM skills would be expected to contribute to their 

performance on QNCs Level II because these require the linking of number-words with their 

quantity meaning and therefore quantity representations are needed. Children’s quantitative 

skills and their visuo-spatial STM skills would also contribute to their performance on QNCs 

Level III because these require the representation and manipulation of quantities. All levels of 

QNCs are proposed to contribute to performance on standardised mathematical attainment 

tests (see figure 1.3). 

Figure 1.3:  Theoretical model of early arithmetical development (Krajewski, 2008) 

 

 

1.3.1 Empirical testing of Krajewski and Schneider’s (2009) theoretical model 

Krajewski and Schneider (2009) conducted a three-year longitudinal study with German 

kindergarten children examining the influence of domain-general cognitive skills and early 
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number skills on mathematical attainment. Data was collected at four different time points. 

At the first time point (children’s mean age five years and seven months), two visuo-spatial 

sketch-pad (hereafter VSSP) measures and two phonological awareness measures were 

obtained. At the second time point (children’s mean age five years and eleven months), three 

measures of children’s basic verbal number skills (ability to recite the number word sequence 

forwards and backwards and to identify individual elements in the sequence) and a number 

naming measure (articulating the number-word matching various Arabic numerals) were 

obtained. These tasks were expected to provide valid measures of QNCs Level I. At the third 

time point (children’s mean age six years and seven months), children were administered 

three groups of tasks assessing different aspects of their numerical knowledge (non-symbolic 

quantity comparison skills, correct use of number-words to non-symbolic quantities in a fixed 

sequence, symbolic quantity comparison skills and their skills at mapping Arabic numerals to 

their corresponding quantities). These tasks were expected to provide valid measures of 

QNCs Level II. At this time point, children were also asked to verbally report the numerical 

difference between pairs of arrays of dots and to represent with concrete objects the 

numerical outcome of a verbally presented arithmetical problem. These tasks were expected 

to provide valid measures of QNCs Level III. At the fourth time point (children’s mean age 

eight years and eight months), children’s arithmetic, applied mathematics and geometry 

knowledge was assessed with a modified version of the German Mathematics Test (hereafter 

DEMAT 2+)  (Krajewski, Liehm, & Schneider, 2004). 

 

In line with the predictions from their model, individual differences in phonological 

awareness significantly predicted children’s performance on QNCs Level I tasks while 

children’s individual differences in VSSP functioning failed to do so. In contrast, variation in 

VSSP functioning significantly predicted performance on the tasks representing QNCs Level 

II and Level III but not their performance on tasks representing QNCs Level I. QNCs Level I 

and QNCs Levels II and III made unique contributions to children’s mathematical attainment 

in Grade 3. Thus, phonological awareness and VSSP functioning related differently to the 

three Levels  of QNCs. Phonological awareness predicted the later acquisition of number-

words and number sequence reciting skills and also contributed to verbal number tasks where 

representations or manipulations of quantities were not needed. Children’s VSSP functioning 

predicted later ability to perform number tasks that demanded the representation and 

manipulation of abstract quantities.  
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Krajewski and Schneider’s (2009) theoretical model extends previous research in various 

ways. First, it identifies three distinct developmental levels of early number skills, providing 

a more comprehensive, specific and coherent set of early number skills than LeFevre et al. 

(2010). The distinction between numerical sequence meaning (number-word reciting) and 

numerical cardinal meaning (quantity to number-word linkage) is supported by other 

developmental models of early mathematical competence (Fuson, 1988, 1992; Gelman & 

Gallistel, 1978; Wynn, 1992). These argue that numerical sequence meaning refers to being 

able to recite the number-word sequence and acknowledging the position of a number-word 

in the number sequence without necessarily accessing its cardinality meaning (Fuson, 1992; 

Gelman & Gallistel, 1978). In contrast, the numerical cardinal meaning refers to 

acknowledging the exact number of discrete items in a collection (Fuson, 1988, 1992). 

Therefore, these models consider rote citation of the number-words and understanding the 

absolute numerical value of a set of items distinct developmental number skills. This 

distinction is also supported by neuropsychological data in adults (Dehaene & Cohen, 1997; 

Delazer & Butterworth, 1997). Thus, the three distinct developmental levels of QNCs 

proposed by Krajewski and Schneider (2009) seem more appropriate than the distinction 

between symbolic number skills and non-verbal arithmetic proposed by LeFevre et al. (2010). 

Also, unlike LeFevre et al. (2010), Krajewski and Schneider’s (2009) study examines the 

longitudinal contribution that children’s cognitive precursors make to early number skills and 

uses latent variables to represent children’s domain-general cognitive skills. However, 

Krajewski and Schneider (2009) used only one mathematical attainment measure and despite 

including children’s early quantitative skills in their theoretical model as a cognitive predictor 

of later number skills and mathematical attainment, the predictive power of quantitative skills 

was not empirically tested. 

 

1.4 STRENGTHS AND WEAKNESSESS OF THE PATHWAYS TO EARLY 

MATHEMATICS MODEL AND KRAJEWSKI AND SCHNEIDER’S MODEL OF 

EARLY ARITHMETICAL DEVELOPMENT 

The triple-code model of number processing (Dehaene, 1992; Dehaene & Cohen, 1995; 

Dehaene et al., 2003) provides a solid comprehensive framework for exploring both the 

independent and relative contributions that quantitative, verbal and visuo-spatial STM skills 

make to different number skills and to mathematical attainment measures. This model 

suggests that domain-specific and domain-general cognitive skills make independent 
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contributions to numerical performance and that the extent of their contributions varies in 

relation to the individual number task demands. The pathways to early mathematics model 

(LeFevre et al., 2010) and the theoretical model of early arithmetical development (Krajewski 

& Schneider, 2009) suggest that these two key aspects of the triple-code model of number 

processing are also applicable to early mathematics development. These two models were 

partially or fully tested in young children using longitudinal data in their respective studies. 

However, there are key methodological differences in the way these two models were tested.  

 

Firstly, although both theoretical models consider quantitative skills to be key cognitive 

precursors of mathematics development, Krajewski and Schneider (2009) failed to include 

measures of these skills in their study and LeFevre et al. (2010) only included a measure of 

subitising skills, but not tasks tapping children’s ability to make approximate numerical 

judgements. In addition, the subitising task employed by LeFevre et al. (2010) is not purely 

quantitative, as it demanded a number-word response from the children and therefore verbal 

skills and pre-existing knowledge of the formal number system were involved to some extent. 

Also, combined measures of cognitive skills and number tasks’ performance were used to 

examine how verbal and quantitative skills relate to the different mathematical attainment 

measures. Therefore these variables could be contaminated by other domain-general 

cognitive skills such as memory or language. Secondly, while LeFevre et al. (2010) 

distinguish between symbolic number tasks and non-verbal arithmetic tasks, Krajewski and 

Schneider (2009) clearly provide a more coherent set of early number skills by proposing 

three distinct developmental levels of early number skills. This more detailed distinction 

aligns better with previous models of mathematical development (Fuson, 1988; Gelman & 

Gallistel, 1978; Wynn, 1992) and is also supported by neuropsychological data (Dehaene & 

Cohen, 1997; Delazer & Butterworth, 1997). Thirdly, LeFevre et al. (2010) used a single-task 

measure to tap children’s visuo-spatial STM skills which could potentially be contaminated 

by the specific task demands. In contrast, Krajewski and Schneider (2009) used latent 

variables to reflect children’s domain-general cognitive skills, which may provide more 

accurate measures of these skills because they comprise the common variance from different 

tasks tapping the same construct and therefore reduce the measurement error from the 

specific single task demands (Bowey, 2005). Fourthly, Krajewski and Schneider (2009) 

include only one standardised mathematical attainment test as an outcome measure while 

LeFevre et al. (2010) include distinct standardised and research-based mathematical 

knowledge measures and therefore provide empirical evidence of the relative contribution 
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that quantitative, verbal and visuo-spatial STM skills make to each of these outcome 

measures. Last, while LeFevre et al. (2010) only provide empirical evidence of the concurrent 

contribution of children’s verbal, quantitative and visuo-spatial STM skills to their early 

number skills, Krajewski and Schneider (2009) provide empirical evidence of the 

longitudinal contribution that verbal and visuo-spatial STM skills make to children’s distinct 

levels of early number skills between the ages of five and six years. 

 

1.5 OVERALL AIMS AND THESIS OVERVIEW 

The overall aim of the longitudinal study presented in this thesis was to examine the 

independent and unique contributions that young children’s domain-specific and domain-

general cognitive skills make to their early number skills and mathematical attainment using 

Krajewski and Schneider’s (2009) theoretical model as a general framework. Krajewski and 

Schneider’s (2009) model was selected over that of LeFevre et al. (2010) because it proposes 

three distinct developmental levels of early number skills and therefore is more in line with 

previous models of mathematical development (Fuson, 1988; Gelman & Gallistel, 1978; 

Wynn, 1992) which are also supported by neuropsychological data (Dehaene & Cohen, 1997; 

Delazer & Butterworth, 1997). Two distinct domain-specific systems for quantity processing 

have been proposed; one for small and precise magnitude representations and one for 

approximate magnitude representations (Feigenson et al., 2004). Current research addressing 

these two quantity processing systems and their relationships with early mathematical 

development is discussed in Chapters 2 and 3 of this thesis. The present study examined the 

unique and independent contributions that children’s precise and approximate quantity 

discrimination skills make to their development of early number skills proposed by Krajewski 

and Schneider (2009) and to their mathematical attainment. 

 

The relationships of verbal and visuo-spatial STM skills with early number skills and 

mathematical attainment were examined in both Krajewski and Schneider’s (2009) and in 

LeFevre et al.’s (2010). Chapter 4 of this thesis discusses current research examining the 

impact of verbal and visuo-spatial STM skills on young children’s early number skills and 

mathematical attainment. The present study aimed to examine the unique and independent 

contributions that children’s visuo-spatial STM and verbal skills make to their early number 

skills and mathematical attainment. 
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Following these review chapters, Chapter 5 presents a pilot study that was conducted to test 

the criterion validity and reliability of the novel tasks designed to tap children’s domain-

specific systems for quantity processing and distinct early number skills. Refined aims are 

presented in Chapter 6 with an extensive rationale for the longitudinal study and its 

methodology. Chapters 7 and 8 present the longitudinal study results. A final extensive 

discussion of the findings and how the present study tested and expanded Krajewski and 

Schneider’s (2009) work is presented in Chapter 9.  

 

Throughout this thesis a number of abbreviations, acronyms and specific terms are used. 

Consequently, a glossary is provided at the end of this thesis to specify what these 

abbreviations, acronyms and specific terms refer to in the present work. 
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2. NUMBER SENSE: THE PRECISE NUMBER SYSTEM 

This thesis aims to explore the separate and independent contributions that young children’s 

verbal skills, visuo-spatial STM skills and quantitative skills make to their early number skills 

and mathematical attainment. Both Krajewski and Schneider’s (2009) model and LeFevre et 

al.’s (2010) model stress that quantitative processing skills play a crucial role in early 

mathematical development. The concept of number sense stands for the early quantitative 

skills that enable us to intuitively grasp numerical information. This number sense is believed 

to be a domain-specific and biologically-determined skill for three main reasons. First, new-

borns can already detect numerical differences in very small visual and aural arrays (Antell & 

Keating, 1983; Bijeljac-Babic, Bertoncini, & Mehler, 1993) and even actions (Wynn, 1996), 

suggesting that number sense emerges early in life before verbal abilities or formal 

mathematical instruction. Second, empirical evidence of the detection and discrimination of 

numerical information in non-human animals (Hanus & Call, 2007; Hauser, MacNeilage, & 

Ware, 1995; Pepperberg & Gordon, 2005) indicates the number sense is shared across 

species. Third, neuropsychological, electro-imagining and neuroimaging data point to the 

existence of specific brain networks specialized in processing numerical information 

(Dehaene, Dehaene-Lambertz, & Cohen, 1998) indicating that these skills have their own 

neural substrate.  

 

This core knowledge perspective can be contrasted with a number of other perspectives of 

early cognitive development, including mathematical development.  In the seminal theory of 

cognitive development Piaget proposed that children are born with only reflexive schemas 

which simply allow them to react in specific ways to specific stimuli.  These schemas are 

later modified and developed through the processes of a number of functional invariants (e.g. 

assimilation and accommodation) creating sequence of clearly defined stages (sensory-motor, 

pre-operational, concrete operational and formal operational) in the development of 

knowledge and understanding. Carey (2004), as an alternative to Piaget’s mechanism of 

functional invariants proposes a mechanism of development characterised as “bootstrapping”; 

which is heavily dependent on language.  This view suggests that only through external 

symbols that need to be learnt through formal or informal instruction can our preverbal 

quantity representations represent natural number concepts. However, empirical findings 

from comparison studies between children whose culture lacks number words and English 

speakers suggest that number-words are not crucial in order to acquire the natural number 
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concepts and that spatial strategies might be the ones supporting  our number concepts 

(Butterworth & Reeve, 2008). A last alternative view comes from Geary (1995) who 

proposes two classes of cognitive abilities; primary cognitive abilities, which are supported 

by neurobiological systems that are specialised for the processing of domain-specific 

information, and secondary cognitive abilities that are a product of the co-operation of 

primary cognitive abilities that only develop through formal or informal instruction. Within 

the number domain, primary cognitive mathematical abilities would be our number sense, 

basic understanding of numerical cardinal meaning, counting and performing simple 

arithmetic. Secondary cognitive mathematical abilities would be the ability of mapping 

number-words to quantities and performing advanced arithmetic. Geary’s view strengthens 

the role of working memory as a key primary cognitive ability for mathematical 

development. 

  

Regardless of what skills later support our preverbal quantity representations, solid 

theoretical views propose that our number sense is a key foundational skill upon which our 

basic arithmetic skills are built (Butterworth, 1999, 2005, 2010; Dehaene, 1997; Dehaene et 

al., 2004; Spelke & Dehaene, 1999). However, within the detection and discrimination of 

numerical information, precise and approximate numerical representations seem to be 

processed differently. This suggests the existence of two core quantification systems; the 

“Precise Number System” (hereafter PNS) and the “Approximate Number System” (hereafter 

ANS) (Feigenson et al., 2004). The PNS would represent small quantities precisely and rely 

on a number magnitude processing skill called “subitising” (Revkin, Piazza, Izard, Cohen, & 

Dehaene, 2008; Trick & Pylyshyn, 1994). The ANS would represent larger quantities 

imprecisely with a ratio signature in accord of Weber’s law and rely on an internal number 

line where numerical magnitudes are organised by size in a continuum (Dehaene, 1997; 

Huntley-Fenner & Cannon, 2000). Two plausible although nonexclusive theoretical proposals 

coexist nowadays; one proposes that our precise magnitude representations support later 

numerical and basic arithmetic skills (Butterworth, 1999, 2005, 2010), the other proposes that 

approximate magnitude representations underpin the later acquisition of early numerical and 

arithmetic skills (Dehaene, 1997; Dehaene et al., 2004; Spelke & Dehaene, 1999). Whilst 

these theoretical links have been postulated, empirical evidence examining the relationships 

between number sense and numerical competence remain controversial (Fuhs & McNeil, 

2013; Gilmore et al., 2013; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013). Furthermore, 

so far no study has explored whether the efficiency of these two systems can explain separate 
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unique variance in children’s early number skills and mathematical attainment.  Whether both 

of these systems explain independent and unique variance in young children’s numerical 

competence that cannot be explained by domain-general mathematical related cognitive skills 

also remains to be explored. 

 

This chapter presents a comprehensive although not exhaustive literature review of key 

behavioural, neuropsychological and neuroimaging studies examining adults’ and children’s 

precise enumeration skills for small quantities. It also reviews the main theories that have 

emerged; those proposing subitising is a domain-specific number skill, and those proposing 

subitising is a consequence of the limited capacity of a domain-general cognitive system. 

This chapter includes the limited evidence that has empirically linked children’s precise 

numerical processing skills to their early number skills and mathematical attainment. The 

following chapter focuses on the ANS and its relationship with early number skills and 

mathematical attainment. 

 

2.1 SUBITISING AND THE PRECISE NUMBER SYSTEM (PNS) 

Subitising is defined as a cognitive process that enables the rapid, accurate and confident 

numerical judgment over small numerical sets without the need for counting (Kaufman, Lord, 

Reese, & Volkmann, 1949). When humans are asked to quickly and accurately enumerate 

visual sets of discrete items, RTs increase with the number of items presented (Akin & 

Chase, 1978; Chi & Klahr, 1975; Frick, 1987). If the set is only accessible for a brief period 

of time, accuracy drops as the set increases in number (Kaufman et al., 1949; Mandler & 

Shebo, 1982; Wolters, van Kempen, & Wijhuizen, 1987). Enumerating very small sets of up 

to three or four discrete items seems to be fast and accurate, with no significant increase in 

RTs and free from errors regardless of the number of items, while RTs and error rates 

increase gradually with every additional item for collections containing more than three or 

four discrete items (Akin & Chase, 1978; Chi & Klahr, 1975; Frick, 1987; Mandler & Shebo, 

1982; Saltzman & Garner, 1948; Trick & Pylyshyn, 1994). These two trends reflect a drastic 

change in the quantification processes between numerical sets of up to three or four items and 

for larger numerical sets, and are seen by some as evidence of the existence of two distinct 

and qualitatively different quantification processes (Kaufman et al., 1949; Mandler & Shebo, 

1982; Trick & Pylyshyn, 1994). Because enumerating a few discrete items is done very 

quickly with no significant increase in RTs per item, some researchers argue that processing 
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the numerical information within a very small numerical set takes place in parallel, whilst 

enumerating larger sets is done serially, resulting in the observed increases in RTs and error 

rates (Schleifer & Landerl, 2011). However, this argument is not free from controversy 

(Balakrishnan & Ashby, 1991; Gallistel & Gelman, 1992) because RTs for the enumeration 

of small quantities also seem to increase with number, but this increase is very shallow 

(Balakrishnan & Ashby, 1991), and no discontinuity is found when subvocal articulation is 

prevented (Cordes, Gelman, Gallistel, & Whalen, 2001). Controversy hinges on whether the 

behavioural evidence is strong enough to support subitising as a domain-specific cognitive 

skill that underlies a unique numerical mechanism which is distinct from counting. Two-

process theories argue that subitising is indeed a domain-specific cognitive skill distinct from 

counting. One-process theories argue that the discontinuities observed in RTs and accuracy 

rates in enumeration tasks are a consequence of the limited capacity of a domain-general 

cognitive skill and that both subitising and counting function under the same principles. 

Limitations in memory, perception and attention systems have been proposed as alternative 

explanations to the existence of two qualitatively different quantification processes. 

 

2.2 BEHAVIOURAL EVIDENCE OF TWO QUANTIFICATION PROCESSES IN 

ADULTS 

Early evidence suggesting that subitising is a domain-specific cognitive skill different from 

counting comes from Taves (1941), who conducted a visual enumeration task where arrays 

varying from two to 180 dots were presented for 200 msec. Participants had to report the 

number of dots presented and the degree of confidence in their responses. When arrays from 

one to about seven dots were presented participants were both accurate in their responses and 

highly confident, but these indices drastically decreased for larger quantities. Similarly, 

Kaufman et al. (1949) conducted a visual enumeration task where arrays ranging from one to 

210 dots were presented for 500 msec. A clear discontinuity in participants’ accuracy and 

self-reported degree of confidence was found between arrays below and those above six dots. 

Interpretations in favour of the existence of two quantification processes were drawn; one 

process being fast, accurate and confident with a limited capacity of about six items identified 

as “subitising”, and the other process, counting, which appeared to be slower, less confident 

and more error-prone. Additional evidence towards a two-process theory was found by Chi 

and Klahr (1975), who administered a visual enumeration task to twelve adults and twelve 

children. For both groups, a discontinuity in the RTs slopes was found. However, the 
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inflection point in the RTs curves for both groups occurred between three and five items. The 

authors supported the existence of at least two different quantification processes depending 

on the number of visual items presented but proposed that its limited capacity was smaller 

than what previously suggested (Kaufman et al., 1949). As Balakrishnan and Ashby (1991) 

would later note, if the criterion for accuracy is the number of items that can be enumerated 

correctly by the participant 50% of the time, then the subitising limit would be about seven 

items (Miller, 1956). However, if a stricter criterion is used, such as 99% of the time, then the 

subitising limit would be about three or four items. More recently, Revkin et al. (2008) 

administered two enumeration tasks in which two arrays were presented for 150 msec.; one 

presenting one to eight dots, and one presenting ten to 80 dots. Participants were faster in 

their responses for quantities ranging from one to eight dots. Also, while little variability was 

found in the RTs for quantities between one and four dots, RTs increased with any additional 

dot presented for arrays containing above four dots. 

 

However, not all behavioural evidence with adults supports the existence of two distinct 

quantification processes for small and large collections. Saltzman and Garner (1948) found 

that RTs discontinuities disappear when certain features of the visual stimuli are controlled. 

Knowledge of the stimulus-range, practise, regularity in spacing and size of the stimuli were 

controlled for in their visual enumeration task presenting two to ten concentric circles for 500 

msec. A consistent increase in participants’ RTs was found as the number of dots presented 

increased, suggesting that discontinuities found in enumeration tasks reflect the methodology 

used. Balakrishnan and Ashby (1991) presented arrays of blocks on a computer screen and 

asked subjects to report the number of blocks presented. Participants’ RTs and accuracy did 

not fit either a bilinear-two-process model that would support the existence of two distinct 

quantification processes or a log linear-single-process model that would indicate subitising 

and counting are not distinct quantification processes. Gallistel and Gelman (1992) found that 

RTs for small quantities also showed an increase with every additional visual item presented 

and interpreted the discontinuity in the RTs slopes as evidence of a shift between the usage of 

non-verbal tags to the usage of verbal tags in a serial counting process. Discontinuities were 

proposed to be due the different representations used to access the number name; subitising 

would only require mapping the preverbal representation (non-verbal tag) to its verbal one, 

while counting would require verbal retrievals, therefore taking longer time than subitising. 

Cordes et al. (2001) asked participants to quickly press a key as many times as was indicated 

by an Arabic numeral (from two to 35) presented on a screen. Subvocal articulation was 
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prevented by participants saying “the” for each time they pressed the key. Results showed 

that the mean number of times participants pressed the key increased as the Arabic numeral 

increased. No significant differences were found between the regressions’ slopes for the 

number of presses for Arabic numerals within the subitising range and above, supporting the 

one-process theory. 

 

2.3 ALTERNATIVE THEORIES OF THE EXISTENCE OF TWO DISTINCT 

QUANTIFICATION PROCESSES 

Limitations in the capacity of different domain-general cognitive systems, such as attention, 

memory or perception have been proposed as plausible explanations for the discontinuities 

found in RTs and accuracy rates in visual enumeration tasks.  

 

2.3.1 Subitising as a limited memory process 

Researchers like Miller (1956) and Cowan (2001) interpret the discontinuities observed in 

enumeration tasks as evidence of the limited span of working memory. In accordance with 

this view, Klahr and Wallace (1973) postulated a three-quantification operator model in 

working memory, these being subitising, counting and estimating. Subitising was postulated 

to be used for small collections of items and to have a limited capacity of about five items. 

When asked to enumerate the items in a collection, short-term memory (hereafter STM) starts 

a serial self-terminated process to be matched with a stored subitising list in long-term 

memory (hereafter LTM). This list comprises a set of distinct quantitative symbols, each of 

which represents a cardinal numerosity. When no matches can be found between the result of 

the STM scan and the LTM labels, another quantification operator (counting or estimating) 

needs to commence in order to solve the enumeration task.  

 

 

2.3.2 Subitising as a limited perceptual process 

Atkinson, Campbell, and Francis (1976) found that subjects’ accuracy in enumerating 

collections within the subitising range fell from four to two items when the distance between 

the dots presented in the arrays was manipulated. Similarly, Akin and Chase (1978) 

administered an enumeration task controlling for compactness, symmetry, planarity and 

linearity in the visual stimuli (blocks). They concluded that a grouping process is responsible 
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for the shallow RT slopes for arrays of items within the subitising range and that the visual 

structure of the stimuli has an impact on this grouping process. Mandler and Shebo (1982) 

suggested that the discontinuity found in RTs can be explained by acquired canonical 

patterns. This is, when a small array of dots is displayed, its items will be forming a familiar 

canonical shape (e.g. two dots a line, three dots a triangle, etc.) and discontinuities in RTs 

could be evidence of a perceptual process for the recognition of familiar patterns rather than a 

specific numerical skill. Simons and Langheinrich (1982) found RT discontinuities at four 

dots in a visual enumeration task regardless of the arrangement of the stimuli (linear, dice or 

random). Interpretations were that RT discontinuities are due to limitations in the perceptual 

process as a result of the usage of clustering, figural cues and scanning processes, instead of 

canonical patterns.  

 

2.3.3 Subitising as a limited pre-attentive process 

Trick and Pylyshyn (1994) proposed that subitising is the result of a limited pre-attentive 

mechanism based on Pylyshyn’s (1989) FINSTs (Fingers of Instantiation) mechanism, “a 

primitive mechanism capable of individuating and dynamically indexing a small number of 

features (or features-clusters) in a visual field” (pg. 93). Trick and Pylyshyn (1994) suggest 

that subitising takes place after other pre-attention processes for external features have 

finished, such as colour or orientation of the stimuli, but before attention processes 

commence. When the visual stimuli exceeds the mechanism’s limits, another process is 

needed (counting). Also, when attention is required to solve a visual task, the efficiency of 

the FINST mechanism would be compromised.  

 

Thus, behavioural data on visual enumeration tasks with adults does not always show a clear 

discontinuity (Balakrishnan & Ashby, 1991; Cordes et al., 2001; Saltzman & Garner, 1948) 

and when it does the limited capacity of different cognitive systems has been proposed to 

account for the evidence often interpreted as a subitising process (Atkinson et al., 1976; 

Cowan, 2001; Mandler & Shebo, 1982; Trick & Pylyshyn, 1994). Nevertheless, the possible 

existence of two distinct quantification processes for small and larger numerical collections 

remains tenable (Chi & Klahr, 1975; Revkin et al., 2008). 
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2.4 BEHAVIOURAL EVIDENCE OF TWO QUANTIFICATION PROCESSES IN 

CHILDREN 

Visual enumeration and discrimination paradigms have been employed to study young 

children’s quantification processes; discontinuities in accuracy rates and RTs have been 

almost always reported.  

 

2.4.1 Enumeration Paradigms 

Chi and Klahr (1975) administered a visual enumeration task to a group of five- and six-year 

olds and a group of adults. A discontinuity in the RTs slopes between three and five items 

was found in both groups. The authors not only regarded this as evidence of the existence of 

two distinct quantification processes but also suggested their possible ontogeny. Comparable 

results and conclusions have been reported with children of seven-to-eight years (Svenson & 

Sjöberg, 1978) and with five-year-olds (Benoit, Lehalle, & Jouen, 2004) who were asked to 

report the number of dots presented on a screen. Fischer, Gebhardt, and Hartnegg (2008) 

compared 156 children with arithmetic skills’ problems with 219 control children. 

Participants’ ages in both groups ranged from seven to seventeen years. For both groups 

accuracy and speed were better for arrays displaying one to four dots and gradually 

deteriorated for larger quantities. Control children were faster and more accurate in the visual 

enumeration task than children presenting arithmetic difficulties. Interestingly, accuracy and 

speed improved with age in both groups. More recently, Schleifer and Landerl (2011) 

conducted a visual enumeration task with eight-, eleven- and fourteen-year-olds and adults in 

which RTs and eye-movement behaviour were recorded. For both variables they found a 

discontinuity between one to four dots and five to ten dots, providing evidence not only for 

the existence of two distinct enumeration processes but also suggesting that subitising is a 

parallel process and counting is a serial one.  

 

However, Gelman and Tucker (1975) used an enumeration paradigm to examine whether 

three-, four- and five-years-olds engaged or did not in serial counting when asked to 

enumerate small collections ranging from two to five discrete items. A total of 144 children 

divided into three groups according to their age were asked to report the number of items 

presented on a card for either one sec., five sec. or 60 sec. Data analyses revealed an increase 

in accuracy with age and that the longer the stimuli were presented, the more accurate 

subjects were in their responses. A trend to count overtly regardless of the set size was 
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observed in the younger group, even when time exposure was very limited. Older children 

(four- and five-year-olds) were more likely to engage in overt counting when larger sets were 

presented, but not with small sets. The authors concluded that under certain conditions 

children have a tendency to rely on counting rather than other quantification processes. 

 

2.4.2 Discrimination paradigms 

Discontinuities in accuracy and RTs have also been observed in young children using 

discrimination paradigms. Starkey and Cooper (1995) asked children aged between two and 

five years to identify the larger of two arrays of dots between an array presented throughout 

the trial and another array that would show for 200 msec. Accuracy analyses revealed that 

younger children in the sample seemed to be subitising arrays containing one to three dots, 

and older children arrays of one to four dots. Trick, Enns, and Brodeur (1996) used a 

discrimination paradigm with different age groups (six-, eight-, ten-, 22- and 72-year-olds) 

who were asked to determine if the array of dots presented had the same number of dots or 

one dot more than a sample array by pressing different keys. Stimuli pair displays in the 

discrimination condition were one versus two, three versus four, six versus seven and eight 

versus nine. Data analyses revealed an increase in RTs with every additional item presented, 

however, the slopes for stimuli displaying six to nine items were significantly steeper than the 

slopes for one to four items. Within the younger groups (six-, eight-, ten- and 22-year-olds), it 

was also found that RTs decreased with age for both small and large arrays. Interestingly, this 

decrease was more pronounced for arrays in the counting range. 

 

Thus, children seem to be faster and are more accurate when enumerating small visual sets of 

items than when enumerating sets of four items or more (Starkey & Cooper, 1995; Svenson 

& Sjöberg, 1978) and also when having to identify the larger of two arrays containing up to 

three or four items than larger arrays (Starkey & Cooper, 1995; Trick et al., 1996). 

Behavioural evidence obtained with children also suggests that subitising is a developmental 

skill because speed and the number of discrete items they can subitise increase with age 

during childhood (Benoit et al., 2004; Fischer et al., 2008; Trick et al., 1996). Comparison 

studies contrasting children’s and adults’ performance in enumeration tasks show that adults 

are faster and more accurate than children but both groups show discontinuities in RTs and 

accuracy rates for the enumeration of small and large sets of visual items (Starkey & Cooper, 

1995; Trick et al., 1996). Nevertheless, not all studies conducted with children support the 
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interpretation of two distinct quantification processes (Gelman & Tucker, 1975) and it is 

noteworthy that a wide range of paradigms and methodologies have been used to assess 

subitising skills in children and adults. 

 

2.5 BEHAVIOURAL, NEUROPSYCHOLOGICAL AND NEUROIMAGINING 

EVIDENCE OF TWO QUANTIFICATION PROCESSES IN CHILDREN AND 

ADULTS 

Neuropsychology often studies disassociations, cases of patients with damaged or 

malfunctioning brain structures who are unable to perform certain task(s). If a patient with a 

damaged or malfunctioning brain structure is unable to perform a particular task, but can 

perform any other task, it is reasonable to believe that the damaged brain structure is 

responsible for the functions needed to perform that particular task. When a patient with 

certain brain damage or brain malfunction cannot perform a certain task, but is capable of 

performing other(s) and there is another patient with a different damaged or malfunctioning 

area who presents the opposite behavioural pattern, it is referred to as a double disassociation. 

Double disassociations are the strongest evidence that a brain structure might be responsible 

for a certain cognitive function because most certainly the impossibility of performing one 

task or the other is not due to the level of difficulty of the task but due to the area presenting 

damage or malfunction. Neuroimaging techniques measure brain activity to identify the 

structures that activate during certain cognitive processes. Two of the most commonly used 

techniques are Positron Emission Tomography (hereafter PET) and Functional Magnetic 

Resonance Imaging (hereafter fMRI). PET monitors the trace of glucose or fludeoxyglucose 

for a limited time. FMRI traces oxygenated and deoxygenated haemoglobin and offers a 

better resolution than PET.  

 

Gerstmann syndrome is caused by left parietal lobe damage and characterised by the presence 

of difficulties in dealing with numbers (acalculia or dyscalculia), writing (agraphia or 

dysgraphia), naming or pointing the fingers (digital agnosia) and distinguishing between left 

and right. Therefore, the brain networks responsible for our understanding of numbers, 

letters, fingers and space seem to be hardwired in the left parietal lobe of the brain. However, 

neuropsychological and neuroimaging evidence suggests that only numbers above four are 

processed on the left hemisphere. For instance, Cipolotti, Butterworth, and Denes (1991) 

studied the case of C. G. who presented hypo-density in the left fronto-parietal region of her 
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brain and was unable to perform any task that involved the manipulation of the numbers 

above four in any modality, despite her intelligence quotient (hereafter IQ) and other 

neuropsychological signs being normal. Although C. G. was unable to subitise, she preserved 

small numbers within the subitising range but not larger numbers. Pasini and Tessari (2001) 

asked subjects to enumerate different dot patterns ranging from one to sixteen dots. Then an 

Arabic numeral was presented in either the left or right side of the screen which either 

matched the number of dots or not. Faster responses were given when stimuli were presented 

on the left for quantities in the subitising range and on the right when stimuli exceeded the 

subitising range. On the assumption that faster responses are given when information is 

presented in the visual field controlled by the hemisphere processing that type of information, 

the authors suggested that processes of subitising occur in the right hemisphere and counting 

processes occur in the left hemisphere. Arp, Fagard, and Taranne (2006) compared the 

performance of four-to-eight cerebral-palsied and control children in a subitising task. 

Cerebral palsy children who presented a right-hemisphere lesion had a more limited 

subitising range than those who presented left-hemisphere or bilateral damage, again 

suggesting that certain brain networks in the right hemisphere could be responsible for 

subitising skills.  

 

It has also been suggested that subitising does not rely on visual attention processes or at least 

not on the same processes as counting. Vuilleumier and Rafal (1999) asked subjects with 

right parietal lesions to perform two different tasks with the same stimuli; an enumeration 

task where a collection of shapes ranging from one to four was presented and a localization 

task where they had to report on which side the stimuli were presented. It was found that 

subjects performed better when asked to enumerate than when they were asked to simply 

indicate the location of the stimuli, even when stimuli in the enumeration task were presented 

in their neglected visual field. Bull, Blatto-Vallee, and Fabich (2006) compared performance 

on a subitising task consisting of arrays presenting one to six dots for 50 msec. in twenty deaf 

young adults and twenty controls. Because deaf adults seem to have better visual attention 

skills (Corina, Kritchevsky, & Bellugi, 1992; Rettenback, Diller, & Sireteaunu, 1999), it was 

hypothesized that if subitising relies on visual-attention processes deaf participants should 

perform better than controls. Results showed that accuracy was high for both groups within 

the subitising range and decreased when more than four dots were presented, but no 

significant advantage was found for the deaf group in the subitising task. Sathian et al. (1999) 

conducted a PET study where participants were asked to enumerate either zero, one, one to 
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four or five to eight targets (vertical bars) presented among several horizontal bars in a 

display. RT data analysis confirmed that participants were subitising when one to four targets 

were presented. PET results revealed that when participants were engaged in counting, they 

activated networks from more brain regions compared to when they were subitising. Fink et 

al. (2001) found that subitising activates visual-attention brain networks but different from 

the ones that activate in other visual-attention tasks requiring decisions based on shapes. They 

compared the fMRI of nine participants on a quantity discrimination task and a shape visual 

yes-no decision task. In the quantity discrimination task, subjects were shown arrays of three, 

four or five dots for 300 msec. and were asked to report if four dots were presented. For the 

shape task, subjects were asked to indicate if the dots were forming a square shape. 

Behavioural data analyses showed that subjects’ RTs increased as the number of dots 

presented increased and there was a discontinuity in RTs slopes, barely increasing for each 

additional item in the subitising range and showing a sharp increase for larger quantities. 

Their fMRI data showed that distinct brain networks activated depending on the tasks’ 

demands; the quantity discrimination task activated the left inferior frontal cortex and visual 

processing areas while the shape task activated the temporo-patietal cortex, medial posterior 

cingulate cortex and left dorsolateral parietal cortex.  

 

In addition, Nan, Knosche, and Luo (2006) asked participants to report the number of 

rectangles (targets) and ignore the circles (distracters) in displays of collections of discrete 

items. The number of targets in the displays varied from one to six and the number of 

distracters was either zero, equal to the number of targets or twice the number of targets 

presented. Behavioural results showed a consistent increase in the RTs with increasing 

number of targets and distracters and no clear discontinuity between small and large number 

of targets or distracters. However, when four to five targets were presented, participants 

found more difficulties to perform the task than when one to three targets were presented, 

suggesting that counting was more affected by the presence of distracters than was subitising. 

Their EEG results showed that counting and subitising seem to share many brain networks, 

but also that while counting seems to recruit spatial attention resources subitising does not.  

Subitising and counting also seem to be qualitatively distinct quantification processes. For 

instance Dehaene and Cohen (1994) compared the performance of five patients with 

simultanagnosia with that of five matched controls in enumeration and visual search tasks. 

Simultanagnosia is a visual deficit that renders patients unable to perceive scenes as a whole 

although they can perceive individual objects in those scenes. Visual serial counting is 
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impaired in these patients because they cannot “keep track” of the items already counted. 

Simultanagnosia patients were able to subitise sets of one and two items and in some cases 

three discrete items whilst their performance was significantly worse than controls’ in visual 

search tasks, suggesting that subitising might not be a serial process. Piazza, Giacomini, Le 

Bihan, and Dehaene (2003) asked subjects to perform an enumeration task and a colour 

naming task. Results showed that the same brain areas were active for the subitising and 

colour naming task but a sharp bilateral increase in fronto-parietal areas occurred in the 

enumeration task for quantities of four and above. These studies suggest that the process of 

subitising may rely on parallel mechanisms. However, not all neuroimaging evidence 

supports the subitising-counting dichotomy. Piazza, Mechelli, Butterworth, and Price (2002) 

administered a visual baseline task and a visual enumeration task consisting of arrays ranging 

from one to nine dots presented for 2,500 msec. Although RT slopes were sharper for the six-

to-nine dot arrays, PET results revealed no differences in brain activation patterns for arrays 

presenting one to four dots or arrays presenting six to nine dots. Brain activation increased as 

the number of dots presented increased and brain networks in the extrastriate middle occipital 

and intraparietal areas were more active for counting than for subitising; however these were 

also more active for subitising than for the baseline condition. The authors raised the 

possibility that the same neural system could be involved in both counting and subitising.  

 

Cognitive neuropsychology and neuroimaging studies have reached a common and more 

unitary agreement for the distinction of subitising and counting as qualitatively different 

quantification processes, although not absolutely free from controversy (Piazza et al., 2002). 

The vast majority of evidence suggests that the brain mechanisms responsible for subitising 

and counting might be embodied in different hemispheres; subitising processes seem to be 

hardwired in the right hemisphere while counting seems to be hardwired in the left 

hemisphere (Arp et al., 2006; Pasini & Tessari, 2001; Vuilleumier & Rafal, 1999). Research 

also finds that subitising does not (or at least not totally) depend on other brain networks 

responsible for visual-attention processes (Arp et al., 2006; Bull et al., 2006; Dehaene & 

Cohen, 1994), raising the possibility of the existence of very specialised brain networks for 

processing small numerical magnitudes. While subitising activates brain networks mainly in 

visual processing areas, counting seems to demand the activation of more brain networks 

(Piazza et al., 2002; Sathian et al., 1999), suggesting that enumerating small numerical 

magnitudes is a very automatic process that makes little additional cognitive demands. These 

differences speak in favour of the two distinct enumeration processes dichotomy and suggest 
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that processing the numerical information of small quantities might be done in parallel while 

enumerating larger quantities might require engaging in a serial counting process. 

 

2.6 SUBITISING AND EARLY MATHEMATICAL DEVELOPMENT 

The defective number module hypothesis (Butterworth, 1999, 2005, 2010) argues that 

mathematics learning difficulties might occur due to a selective impairment of the 

biologically-determined domain-specific capacity to understand and represent small 

numerical magnitudes. Despite this theoretical link, only a limited body of research has 

associated small number processing with numerical competence in typically developing 

children. The defective number module hypothesis is mainly supported by comparison 

studies conducted with children presenting mathematical learning difficulties (hereafter 

MLD). For example, Landerl, Bevan, and Butterworth (2004) compared four groups of eight- 

and nine-year-olds diagnosed with either dyslexia, dyscalculia, or both disorders, with 

matched controls in diverse numerical tasks which included a visual enumeration task. 

Dyscalculic children were those who scored more than three standard deviations above the 

mean RTs of the control group on a computasired arithmetic task comprising single-digit 

additions, subtractions and multiplications. Dyscalculics were slower than dyslexics and 

controls at enumerating arrays ranging from one to three dots, and from four to ten dots and 

were also significantly slower at naming one- and two-digit numerals presented on a screen 

and at reading three-digit numerals from a sheet of paper after controlling for their colour 

naming speed. Results were interpreted in favour of the defective number module hypothesis 

(Butterworth, 1999, 2005, 2010). Fischer et al. (2008) conducted a comparison study with 

seven- to seventeen-year-olds presenting arithmetic skills problems and controls. Children 

were assigned to the low arithmetic skills group if they performed poorly on a standarised 

arithmetic skills test but not on reading and spelling tasks. Not only it was found that controls 

were faster and more accurate in a visual enumeration task than those presenting arithmetic 

difficulties but it was also found that the difference in performance between both groups 

increased with age. 

 

Schleifer and Landerl (2011) administered a visual enumeration task to a group of  second, 

third and fourth graders with dyscalculia and matched controls. Children were considrered 

dyscalculic if their performance was below 1.5 standard deviations from the age norms on a 

standardised test of arithmetic skills. Although in both groups and for every age group they 
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found a discontinuty in RTs between the subitising range (one to three dots) and larger arrays, 

dyscalculics’ RTs slopes for the subitising range were significantly steeper compared to 

controls’. In addition RT slopes decreased with age and were very similar for larger arrays in 

both goups, suggesting that MLD children present a specific and ongoing difficulty in 

processing only small quantities at high speed.  

 

One study has examined the longitudinal contribution that children’s enumeration speed for 

numerical collections of up to three discrete items makes to their later mathematical 

attainment (LeFevre et al., 2010). This study is described in detail in Chapter 1 of this thesis. 

Four- and five-year-olds’ speed in enumerating one to three dots predicted their concurrent 

ability to manipulate quantities non-verbally and a combined masure of children’s 

enumeration speed and their performance on a non-verbal arithmetic task predicted their 

performance on two standarised tests of mathematical attainment and on three research-based 

mathematical attainment measures two years later.  

 

Taken together these studies provide evidence that faster enumeration of small quantities is 

related to children’s numerical comptence and suggests that children’s ability to process 

small quantities might be a foundational skill unpon which number and arithmetic skills are 

built. However, although all these studies used RTs as a common index of subitising skills, 

only Landerl et al. (2004) controlled for a naming speed measure. Some of these studies did 

not control for age (LeFevre et al., 2010) despite the evidence from previous research that age 

has an effect on subitising speed (Fischer et al., 2008). In addition, all tasks employed to 

assess subitising skills demanded a certain degree of verbal skills and also knowledge of the 

formal number system, thus not providing pure measures of children’s quantitative skills. 

 

2.7 DISCUSSION 

A large body of research has consistently found discontinuities in accuracy rates and RTs 

slopes for the enumeration of small and large sets of discrete visual items in children and 

adults (Chi & Klahr, 1975). The vast majority of neuropsychological and neuroimaging 

studies also suggest that subitising and counting are qualitatively different processes and that 

they recruit different neural networks (Piazza et al., 2003). Subitising seems to activate fewer 

brain structures and to require less attention resources than counting, suggesting that it is an 

automatic and parallel process. In contrast, counting seems to be a serial process that makes 
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higher attention demands (Fink et al., 2001; Sathian et al., 1999). Research conducted with 

children suggests that subitising and counting are developmental skills that improve with age 

(Fischer et al., 2008). In addition, subitising skills have been shown to predict children’s 

concurrent performance on specific number skills and to contribute to later mathematical 

attainment performance (LeFevre et al., 2010).  

 

It is worth noting that despite the vast literature on this small quantity processing skill, 

controversial arguments regarding subitising remain unresolved. First, the origin of subitising 

remains unclear; whether it is a domain-specific cognitive skill or it depends on a domain-

general cognitive system. Second, its relationship with early number skills and mathematical 

attainment during early stages of schooling needs to be examined in a more rigorous way. 

This thesis explores the unique and independent contributions that young children’s speed in 

making accurate two-choice numerical judgements about non-symbolic numerical collections 

of up to three discrete items make to their later number skills and mathematical attainment. 

Krajewski and Schneider’s (2009) theoretical model proposes that children’s foundational 

quantity discrimination skills contribute to specific early number skills that require quantity 

representations (quantity to number-word linkage, QNCs Level II) and quantity 

manipulations (understanding of relationships between numerical quantities, QNCs Level 

III). LeFevre et al. (2010) found that children’s speed in enumerating small collections of up 

to three dots predicted children’s concurrent non-verbal arithmetic performance and 

moreover contributed to specific mathematical attainment measures two years later. One of 

the aims of this thesis was to examine whether children’s speed in making non-symbolic 

numerical judgements over small quantities contributes to their later performance on any of 

the three levels of early number skills proposed by Krajewski and Schneider (2009) and/or to 

distinct aspects of later mathematical attainment.  
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3. NUMBER SENSE: THE APPROXIMATE NUMBER SYSTEM 

In the previous chapter precise quantity discrimination skills and studies examining their 

relationship with early mathematical development were discussed. However, it has been 

proposed that alongside precise quantity discrimination skills, humans are also endowed with 

approximate quantity discrimination skills (Xu, 2003). Precise and approximate quantity 

discrimination skills seem to rely on distinct core systems for quantity processing (Feigenson 

et al., 2004). This chapter focuses on our approximate quantity discrimination skills and their 

relationship with early number skills and mathematical attainment. It has been proposed that 

our approximate numerical skills rely on mental magnitudes that are represented in an 

organised mental continuum (Dehaene & Changeux, 1993; Moyer & Landauer, 1967) and 

that activate automatically in the presence of numerical information (Dehaene & Akhavein, 

1995). These analogical numerical representations are believed to form a “number line” 

where small numerical magnitudes would be represented very precisely and vagueness would 

increase proportionally for larger numerical magnitudes (Dehaene & Cohen, 1991, 1995; 

Dehaene, Dupoux, & Mehler, 1990). Evidence of this mental number line comes from three 

main behavioural effects which had been observed. First, the longer the numerical distance 

between two numerical representations, the easier it is to discriminate them (numerical 

distance effect, hereafter NDE) (Moyer & Bayer, 1976). Second, as numerosity increases, the 

greater the difficulty in discriminating two numerical representations of equal numerical 

distance (numerical size effect, NSE) (Moyer & Landauer, 1967). Third, large numbers are 

associated with right side responses and smaller numbers are associated with left side 

responses in Western adults (Spatial-Numerical Association of Response Codes, SNARC) 

(Dehaene, Bossini, & Giraux, 1993). These three effects have been observed with both 

symbolic and non-symbolic number tasks (Dehaene et al., 1993), across stimuli formats 

(Barth, La Mont, Lipton, & Spelke, 2005; Hauser, Dehaene, Dehaene-Lambertz, & Patalano, 

2002) and even when just a same-different judgment is required (Duncan & McFarland, 

1980), suggesting that humans rely on this analogue mental number line for multiple number 

tasks.  

 

However, unlike precise quantity discrimination skills (discussed in detail in Chapter 2) 

approximate numerical discriminations do not seem to depend on the absolute number of 

items presented but on the numerical ratio difference between the numerical magnitudes; the 

smaller the ratio difference between two numerical representations, the harder it is to 
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discriminate them and as the numerical difference increases, discrimination improves 

proportionally in accord with Weber’s Law (Piazza, Izard, Pinel, Le Bihan, & Dehaene, 

2004; Whalen, Gallistel, & Gelman, 1999). Also, unlike small non-symbolic quantity 

discrimination skills, non-symbolic approximate numerical discriminations do not seem to be 

affected by continuous features of the stimuli such as surface area or contour length (Xu et 

al., 2005, but see also Solstesz et al., 2010). These two distinctive signatures for quantity 

discrimination suggest that we possess distinct abstract representations for precise and 

approximate numerical magnitudes (Feigenson et al., 2004; Xu, 2003; Xu, Spelke, & 

Goddard, 2005). This distinction is also supported by neuropsychological and neuroimaging 

data (Dehaene, Spelke, Stanescu, Pinel, & Tsivkin, 1999; Lemer, Dehaene, Spelke, & Cohen, 

2003). It has been proposed that our magnitude representations for approximate numerical 

discriminations underpin the later acquisition of early numerical and arithmetic skills 

(Dehaene, 1997; Dehaene et al., 2004; Spelke & Dehaene, 1999). A limited body of evidence 

has explored the relationship between approximate quantity discrimination skills and early 

number skills (Mussolin, Nys, Leybaert, & Content, 2012), although more work has 

examined the relationship between non-symbolic approximate quantity discrimination skills 

and children’s performance on standardised mathematical attainment tests. Some studies find 

that approximate non-symbolic quantity discrimination skills are associated with 

mathematical attainment (Halberda, Mazzocco, & Feigenson, 2008) and even are causal 

predictors of later mathematical attainment in young children (Libertus, Feigenson, & 

Halberda, 2013). However these findings have not been consistently replicated (Fuhs & 

McNeil, 2013; Gilmore et al., 2013).  

 

This chapter presents a comprehensive although not exhaustive literature review of 

behavioural, neuropsychological, electro-imagining and neuroimaging studies that support 

the distinction of abstract representations for precise and approximate numerical magnitudes. 

It also reviews the contrasting findings in favour and those against the association between 

non-symbolic approximate quantity discrimination skills and early number skills and 

mathematical attainment in children, including comparison studies with MLD children and 

correlational, retrospective and longitudinal studies conducted with typically developing 

children. Finally, it addresses the methodological issues that could account for the non-

converging findings across studies.  
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3.1 BEHAVIORAL EVIDENCE OF THE APPROXIMATE NUMBER SYSTEM IN 

ADULTS 

Moyer and Landauer (1967) asked young adults to identify the larger of two single-digit 

Arabic numerals presented simultaneously. RTs and error rates decreased as the numerical 

distance between the numerals increased suggesting that subjects were transcoding the 

numerical symbolic representations into analogue magnitude representations organised by 

size. The same behavioural pattern have been consistently found (Banks, Fujii, & Kayra-

Stuart, 1976; Parkman, 1971) including when comparing two-digit Arabic numerals 

(Dehaene et al., 1990; Hinrichs, Yurko, & Hu, 1981), using priming paradigms (Marcel & 

Forrin, 1974), with cross-matching tasks between Arabic numerals and dot patterns (Buckley 

& Gillman, 1974), between Arabic numerals and number-words (Dehaene & Akhavein, 

1995), between Arabic numerals and numbers retained in memory (Sekuler, Rubin, & 

Armstrong, 1971) and even when numerical information is irrelevant to the task (Dehaene & 

Akhavein, 1995; Henik & Tzelgov, 1982; Tzelgov, Meyer, & Henik, 1992).  

 

Thus, distance and size effects seem to occur irrespective of the input and output modality of 

the stimuli and support the contention that analogue magnitude representations organised by 

size are employed for approximate numerical judgements. Distance and size effects are also 

reflected in adults’ accuracy rates and RTs when performing approximate numerical 

judgements over non-symbolic quantities (Halberda & Feigenson, 2008). If the stimuli to be 

judged are visually presented for an unlimited time, RTs increase as the numerical ratio 

difference between the two numerical magnitudes decreases (e. g. Hinrichs et al., 1981; 

Buckeley & Gilman, 1974). When the stimuli are presented for a limited time which prevents 

verbal counting, accuracy decreases as the numerical ratio difference between the two 

numerical magnitudes decreases in accord with Weber’s Law (van Oeffelen & Vos, 1982). 

This ratio-dependent feature when making approximate numerical discriminations has even 

been found in adults who do not have arithmetical training and who have a very restricted 

number lexicon (Pica, Lemer, Izard, & Dehaene, 2004) suggesting that the ability to make 

approximate numerical judgements does not depend on knowledge of the formal number 

system or other domain-general cognitive skills such as language. It has also been found that 

Western adults give faster left-side responses when presented with small magnitude 

representations and faster right-side responses when presented with large magnitude 

representations (see Fias & Fisher, 2005; Wood et al., 2008, for reviews) suggesting that 
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these analogue magnitude representations organised in a continuum also have a spatial 

dimension (Dehaene et al., 1993). Because this effect is compromised in the presence of 

visuo-spatial working memory demands when adults perform symbolic magnitude 

comparisons, it has been suggested that visuo-spatial WM skills might play a role in 

numerical magnitude representations, at least in adults (van Dijck, Gevers, & Fias, 2009). 

 

3.2 BEHAVIORAL EVIDENCE OF THE APPROXIMATE NUMBER SYSTEM IN 

CHILDREN 

Six-month-old infants seem to possess different representations for precise and approximate 

numerical magnitudes (Xu, 2003; Xu et al., 2005) and they can already detect numerical 

changes in the stimuli even when other continuous variables have changed but not vice versa 

(Brannon, Abbot, & Lutz, 2004). However, their discrimination fails if the ratio difference 

between the numerical sets decreases from 2.0 to 1.5 (Lipton & Spelke, 2003; Xu et al., 2005; 

Xu & Spelke, 2000). In children RTs and error rates decrease as the numerical difference 

between the numerical representations increase with symbolic (Duncan & McFarland, 1980; 

Sekuler & Mierkiewicz, 1977) and with non-symbolic (Barth et al., 2005; Halberda & 

Feigenson, 2008) numerical representations. In addition, Halberda and Feigenson (2008) 

found that the numerical ratio difference that can be accurately discriminated increases with 

age; being 3:4 for pre-schoolers and gradually increasing up to 10:11 in adulthood. 

 

3.3 NEUROPSYCHOLOGICAL, ELECTRO-IMAGINING AND NEURO-

IMAGINING EVIDENCE OF THE APPROXIMATE NUMBER SYSTEM  

Single and double-dissociations for exact and approximate numerical abilities have been 

reported. Warrington (1982) reported the case of D.R.C., a 61-year-old man who presented a 

haematoma in the left posterior parieto-occipital region. His intelligence, memory and ability 

to read, write and remember numbers were all normal. D.R.C could estimate the number of 

dots visually presented, approximate the solution to arithmetic problems and accurately judge 

the larger of two-digit Arabic numerals. However, he was significantly slowed and inaccurate 

at performing exact arithmetic, using laborious and inefficient strategies to arrive to the 

answer. A similar case was reported by Dehaene and Cohen (1991). N.A.U. was a 41-year-

old man who presented hypo-density in the left temporo-parieto-occipital area and although 

he could not do simple one-digit arithmetic calculations, he was capable of judging whether 
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the result of an arithmetic problem was “approximately” correct or not. Only a few years 

later, Dehaene and Cohen (1997) reported a double disassociation; B.O.O. was a 60-year-old 

right-handed woman with a left subcortical lesion and M.A.R. was a 61-year-old left-handed 

man with a lesion in his left inferior parietal lobe whose hemispheric specialization was 

inverse to the right-handed standard. While B.O.O.’s performance on quantity knowledge 

tasks was within normal limits, M.A.R. showed a clear impairment in number judgments, 

proximity tasks and bisection of numerical intervals. However, M.A.R.’s performance on 

verbal number tasks was significantly better than B.O.O.’s, who was unable to recite number 

sequences, the alphabet or arithmetic tables correctly. Lemer et al. (2003) reported a similar 

double disassociation; a patient with left intraparietal and right occipital brain damage who 

performed very poorly in approximation, symbolic and non-symbolic magnitude comparison 

tasks but who could perform exact arithmetical tasks and a patient with left temporal hypo-

metabolism who had intact approximation abilities but whose abilities for exact calculations 

were severely affected.  

 

Neuroimaging and electro-imagining studies also support such a distinction. For instance 

Dehaene et al. (1999) conducted a study in which bilingual subjects were trained on either 

exact or approximate two-digit additions in one language and who were then tested on trained 

and untrained additions in the other language. Behavioural results showed that while 

subjects’ performance on exact arithmetic for the non-trained additions was affected, the 

performance on untrained approximate arithmetic was not, being very similar to performance 

on trained approximate additions. Thus exact arithmetic seemed to recruit verbal sources 

while approximate arithmetic seemed to be language-independent. Neuroimaging results 

obtained with fMRI and event-related potential (records electric potentials at high speed) also 

revealed different brain activation patterns when participants were processing exact and 

approximate arithmetic; while the latter showed greater activation of the bilateral parietal 

lobes, the former activated strictly left hemisphere regions. Stanescu-Cosson et al. (2000) 

found an increase in the activation of bilateral intra-parietal areas when subjects were 

presented with large numbers and asked to perform exact calculations. Piazza, Mechelli, 

Price, and Butterworth (2006) found that the right intra-parietal cortex was significantly more 

active during estimation tasks than in exact counting tasks regardless of the modality of 

presentation of the stimuli. Pinel, Dehaene, Rivière, and Lebihan (2001) asked subjects to 

decide whether the visually presented Arabic numeral or number-word was larger or smaller 

than 65 by pressing a key. PET results revealed a significantly increased activation in the 
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right intra-parietal areas with decreased numerical distance between stimuli and target 

number, regardless of the stimuli-format presentation. Thus, neuroimaging and electro-

imagining evidence also support the existence of two distinct routes for number processing; 

the left intra-parietal cortex that activates when performing exact numerical tasks and the 

right intraparietal cortex that activates particularly in the presence of approximate numerical 

tasks. 

 

3.4 APPROXIMATE QUANTITY DISCRIMINATION SKILLS AND EARLY 

MATHEMATICS DEVELOPMENT 

It has been proposed that early approximate numerical discriminations underpin the later 

acquisition of early numerical and arithmetic skills (Dehaene, 1997; Dehaene et al., 2004; 

Spelke & Dehaene, 1999) and that poor approximate numerical representations are a core 

aspect of MLD (Mazzocco et al., 2011). Approximate numerical discriminations are usually 

assessed with non-symbolic approximate quantity discrimination tasks in young children. In 

these tasks children are asked to select the larger of two non-symbolic collections of discrete 

items by either naming the colour of the items in the larger collection (e. g. Libertus et al., 

2011) or by pressing a left or right key depending on the side on which the larger array is 

presented (e. g. Piazza et al., 2010). These tasks are accepted measures of ANS precision in 

young children. However, despite the extensive body of research examining the relationship 

between approximate quantity discrimination skills and children’s early mathematics 

development, this link remains controversial. Some theoretical views propose that an 

underlying deficit in the representational system for approximate numerical magnitudes is a 

core aspect of MLD (the defective number module hypothesis, Butterworth, 1999, 2005, 

2010). An alternative theoretical view proposes that MLD are due to a deficit in accessing the 

numerical information from symbolic numerical representations rather than a deficit in the 

representational system for approximate numerical magnitudes per se (the access deficit 

hypothesis, Rousselle & Noel, 2007). This last view is supported by studies that find a 

relationship between children’s symbolic approximate quantity discrimination skills and 

performance on standardised mathematical attainment measures, but which find no 

relationship between children’s non-symbolic approximate quantity discrimination skills and 

their performance on standardised mathematical attainment measures (e. g. Rousselle & Noel 

2007). 
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 Furthermore, some authors do not attribute the relationship between performance on ANS 

tasks and mathematical attainment to the efficiency of children’s analogue representational 

system for numbers (Soltész et al., 2010). This last theoretical view suggests that non-

symbolic approximate quantity discrimination tasks might be unintentionally tapping 

domain-general cognitive aspects in children, such as inhibition control skills (Fuhs & 

McNeil, 2013; Gilmore et al., 2013). First the evidence both in favour and against the 

association of non-symbolic approximate quantity discrimination skills with early number 

skills in children is reviewed. Then studies that have examined the relationship between non-

symbolic approximate quantity discrimination skills and mathematical attainment in MLD 

children and correlational and longitudinal studies conducted with typically developing 

children are reviewed. Lastly, potential reasons for the non-converging findings across 

studies are discussed. 

 

3.4.1 Approximate quantity discrimination skills and their relationship with early number 

skills in young children 

Whilst there are numerous studies examining the relationship between general mathematical 

attainment and approximate non-symbolic quantity discrimination skills, there are very few 

studies which examine how approximate non-symbolic quantity discrimination skills relate to 

distinct early number skills. Mussolin et al. (2012) assessed non-symbolic approximate 

quantity discrimination skills, number-sequence reciting skills and performance on a battery 

comprising a wide range of early number skills in four groups of children (three-, four-, five- 

and six-year-olds). Children’s accuracy on a non-symbolic quantity discrimination task 

consisting of identifying the larger of two arrays ranging from three to 24 discrete items was 

associated with children’s performance on the number sequence reciting task and the 

numerical tasks battery even when individual differences in age, IQ, verbal skills and visuo-

spatial and verbal STM skills were controlled for. However, Piazza et al. (2010) suggested 

that non-symbolic approximate quantity discrimination skills relate differently to different 

early number skills. They compared the performance of kindergarten (children aged between 

three and six years) and school-aged children (children aged between eight and twelve years) 

with and without dyscalculia on a non-symbolic approximate quantity discrimination task. 

Dyscalculics were diagnosed after a poor performance on a dyscalculia battery test (Biancardi 

& Nicoletti, 2004) despite other cognitive skills being normal. Children had to identify the 

larger of two non-symbolic large arrays simultaneously presented until response by pressing a 
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key; one array contained either sixteen or 32 dots and the other array ranged from twelve to 

40 dots. For all participants, accuracy rates increased as the numerical ratio difference 

between the sets decreased and performance improved with age. Participants’ w parameter 

(this is the minimum change needed in the numerical ratio presented by the two numerical 

magnitudes to be correctly discriminated) was calculated. It was found that dyscalculic 

children performed significantly worse than their typically developing peers. Interestingly, 

when the tasks comprised in the dyscalculia battery test were grouped in relation to the 

cognitive demands they made (transcoding skills, quantity and relational-based skills, simple 

arithmetic facts retrieval skills and complex written and oral calculation skills), group 

differences were found only for quantity and relational-based symbolic skills. Thus, non-

symbolic approximate quantity discrimination skills related to symbolic number comparison 

skills that demanded accessing the number semantics, but not to other number tasks. Soltész 

et al. (2010) raised the possibility that the numerical representations are supported by a 

domain-general cognitive skill rather than by a domain-specific core quantity system. They 

administered an approximate non-symbolic quantity discrimination task to a group of four-to-

seven-year-olds in which they had to identify the larger of two arrays ranging from four to 

eighteen dots by pressing a key. Children’s accuracy and RTs in this task did not relate to 

their symbolic or counting knowledge skills. Interestingly, accuracy was significantly 

predicted by participants’ memory for numbers and for words. Thus, although limited 

research which has examined whether performance on non-symbolic approximate quantity 

discrimination tasks is related to early number skills, it does not reach a unitary agreement.  

 

3.4.2 Approximate quantity discrimination skills and their relationship with performance on 

standardised mathematical attainment tasks in young children 

A large body of research has examined the relationship between approximate quantity 

discrimination skills and children’s performance on standardised mathematical attainment 

tests, however this relationship remains controversial. This section reviews evidence in 

favour and against the association of non-symbolic approximate quantity discrimination skills 

with mathematical attainment in typically developing children. 
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3.4.2.1 Comparison studies 

Mazzocco et al. (2011) found that fourteen-year-olds with very low mathematics achievement 

scores (participants who obtained scores below the 10
th

 percentile consistently for at least five 

years since kindergarten in the Test of Early Mathematics Abilities (hereafter TEMA) 2 

(Ginsburg & Baroody, 1990) or in the WJ Revised Calculation subtest (Woodcock & 

Johnson, 1990)) performed significantly worse than their typical, high and low achievement 

peers (who obtained scores between the 10
th

 and the 25
th

 percentile consistently for at least 

five years since kindergarten) in a large approximate quantity discrimination task.  

Participants were asked to identify the larger of two spatially intermixed sets containing five 

to sixteen blue and yellow dots simultaneously presented for 200 msec. Group differences 

were found between very low achievers and the other three groups in the w parameter. These 

differences remained after controlling for concurrent individual differences in other cognitive 

skills (lexical access and STM) and even after controlling for individual differences in other 

cognitive skills measures (non-word reading decoding, executive function, visual memory 

and visual perception) obtained in previous years. The authors suggested that individual 

differences in the efficiency of children’s approximate number sense could account for their 

mathematical attainment performance over their school-age years. 

 

However, some comparison studies fail to find group differences in performance on 

approximate non-symbolic quantity discrimination tasks and yet find group differences in 

symbolic quantity comparison tasks. For instance Rousselle and Noel (2007) compared eight-

year-olds MLD children and controls in different numerical tasks including a symbolic and a 

non-symbolic quantity discrimination task. Group assignment criteria depended on the 

composite score obtained on a battery of tests comprising six subtests: number writing, 

number comparison, transcoding, untimed addition and subtraction and a timed addition test. 

Those obtaining a composite score below the 15
th

 percentile were classified as MLD. In the 

non-symbolic comparison task children had to identify the larger of two arrays containing 

from six to 28 discrete visual items and in the symbolic comparison task they had to identify 

the larger of two single-digit Arabic numerals presented simultaneously. For both tasks 

stimuli were present until response. Significant group differences between MLD children and 

controls in accuracy and RTs were found for the symbolic number task, while for the non-

symbolic comparison task no significant differences between these groups were found. 

Similar results were found by Iuculano, Tang, Hall, and Butterworth (2008). They compared 
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the performance of eight- and nine-year-olds dyscalculics and controls on symbolic and non-

symbolic tasks. Participants’ assignment to the dyscalculic group depended on their 

performance on the Dyscalculia Screener (Butterworth, 2003). Children were asked to 

perform a small symbolic quantity comparison task where they had to select the larger of two 

single-digit Arabic numerals (symbolic task) and a small non-symbolic quantity comparison 

task where they had to select the larger of two arrays ranging from one to nine squares (non-

symbolic task). In addition, they were asked to perform a large approximate non-symbolic 

comparison task presenting arrays ranging from ten to 58 dots (Barth et al., 2005). Children’s 

efficiency in the low numeracy group did not differ from their typically developing peers in 

the small and large approximate tasks, although they were significantly worse than their peers 

in the small symbolic comparison task. Similarly, Landerl and Kölle (2009) found no 

significant group differences in RTs between typically developing children in second, third 

and fourth grade and a small group of dyscalculic children in a single-digit comparison task 

nor in a non-symbolic comparison task. However, dyscalculic children were significantly 

slower and less accurate in selecting the larger of two two-digit numerals even after 

controlling for their verbal and non-verbal IQ. Children were identified as dyscalculics if they 

scored 1.5 standard deviations below the mean on the Heidelberger Rechentest standardised 

arithmetic test (Haffner, Baro, Parzer, & Resch, 2005). DeSmedt and Gilmore (2011) also 

found that first graders who scored below the 25
th

 percentile on the Math Up to 10 

curriculum-based standardised general mathematics achievement test (Dudal, 2000) were 

significantly slower than their typically achieving peers on a symbolic comparison task, even 

after controlling for individual differences in baseline speed. However, no group differences 

were found on a non-symbolic quantity discrimination task consisting of identifying the 

larger of two simultaneously presented arrays ranging from one to nine dots using the same 

regression model. Thus, the vast majority of comparison studies fail to find the difference 

between low and high achievers reported by Mazzocco et al. (2011). 

 

3.4.2.2 Correlational studies with typically developing children 

Nordman, Bull, Davidson, and Church (2009, September) asked five-year-olds to identify by 

pressing a key the larger of two arrays simultaneously presented side to side on a screen for 

2,000 msec. Each array contained five to 35 dots. Accuracy rates increased as the numerical 

ratio difference between the sets decreased and there were large individual differences in 

performance across subjects. Children’s Weber Just Noticeable Difference (hereafter JND, 
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the precision with which the child can respond with 75% accuracy) was obtained for every 

child. A higher Weber JND correlated with concurrent higher scores on the Number 

Operations and Mathematical Reasoning standardised subtests of the Wechsler Individual 

Achievement Test Second Edition (hereafter WIAT-II
UK

) (Wechsler, 2002). The same 

association was found by Libertus et al. (2011) who asked 174 pre-schoolers to identify the 

largest of two spatially intermixed sets containing four to fifteen blue and yellow dots 

simultaneously presented for 2,000 msec. by naming the colour of the larger array. 

Regressions analyses revealed that children’s accuracy and children’s w parameter 

significantly predicted their performance on the TEMA 3 (Woodcock, McGrew, & Mather, 

2001) even after controlling for their RTs, their age and a measure of their vocabulary. 

 

However, Inglis, Attridge, Batchelor, and Gilmore (2011) suggested that the relationship 

between non-symbolic approximate quantity discrimination skills and mathematical 

achievement changes with age. A group of seven-to-nine-year-olds and a group of adults 

(mean age of 23 years) were asked to select the larger of two arrays ranging from seven to 22 

dots presented simultaneously for 1,500 msec. Accuracy rates increased as the numerical 

ratio difference between the sets decreased for all participants. Children were administered 

the WJ III revised Calculation subtest and the Matrix Reasoning subtest of the WASI 

(Wechsler, 1999) while adults were administered different numerical subtests of the WJ III 

battery (Woodcock et al., 2001), the Matrix Reasoning subtest of the WASI and two 

numerical tasks consisting of written arithmetic problems (Evans & Handley, 1999; Usiskin, 

1982). Only in children did the w parameter predict performance on the Calculation subtest 

after controlling for age and Matrix Reasoning performance. The w parameter failed to 

predict any of the outcome measures in adults using the same regression model. Similar 

findings have been recently reported by Bonny and Lourenco (2013) with younger 

participants. Non-symbolic approximate quantity discrimination skills were assessed in a 

large group of three-to-five-year-olds with a task consisting of the identification of the larger 

of two simultaneously presented arrays; one containing eight dots and another array ranging 

from four to twelve dots. Analyses including the whole sample revealed that children’s 

accuracy predicted their performance on the TEMA 3 even when their receptive vocabulary 

was controlled. However, when the same regression model was conducted for each age group 

(three-, four- and five-year-olds), five-year-olds approximate non-symbolic acuity did not 

predict their mathematical attainment performance, suggesting that the relationship between 
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children’s ANS precision and mathematical attainment is non-linear and weakens over 

development. 

 

Nevertheless and just as with comparison studies, null findings of the relationship between 

children’s performance on approximate non-symbolic quantity discrimination tasks and their 

mathematical attainment have simultaneously been reported. Holloway and Ansari (2009) 

administered a symbolic and a non-symbolic comparison task to a large group of six-year-

olds. In the symbolic task, children had to select the larger of two single-digit Arabic 

numerals ranging from one to nine and in the non-symbolic task participants had to select the 

larger of two arrays ranging from one to nine squares. Children’s performance on the 

Mathematics Fluency and Calculation subtests of the WJ III tests (Woodcock et al., 2001) 

were used as outcome measures. The NDE in the symbolic comparison task (indexed as RTs) 

predicted children’s performance on both mathematical attainment measures even after 

controlling for individual differences in age, processing speed and other cognitive skills such 

as reading. However, the NDE in the non-symbolic comparison task failed to predict 

significant variance in any of the outcome measures using the same regression model. 

Similarly, Sasanguie, De Smedt, Defever, and Reynvoet (2012) found that kindergartens’ and 

first, second and sixth graders’ efficiency (RTs adjusted to accuracy) in a symbolic 

comparison task where they had to identify the larger of two single-digit numerals predicted 

their mathematic achievement level. In contrast, efficiency in a non-symbolic comparison 

task where participants had to identify the larger of two arrays of dots ranging from one to 

nine failed to predict children’s mathematical attainment. Very recently, Sasanguie et al. 

(2013) have found that scores on a curriculum-based standardised achievement test for 

mathematics from the Flemish Student Monitoring System (Dudal, 2000) in a large group of 

six-to-eight-year-olds were predicted by their RTs on a symbolic quantity comparison task, 

but neither their w parameter nor their mean accuracy on a non-symbolic comparison task 

similar to the one employed by Piazza et al. (2010) predicted their maths performance. These 

studies provide support for the defective access hypothesis (Rousselle & Noel, 2007), 

suggesting that young children’s difficulties in maths could be due to a specific deficit in 

accessing the number semantics from symbolic numerical representations. Thus, results from 

studies conducted with typically developing young children examining the relationship 

between approximate non-symbolic quantity discrimination skills and mathematical 

attainment are also controversial.  
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3.4.2.3 Retrospective and longitudinal studies 

Halberda et al. (2008) assessed fourteen-year-olds with the approximate non-symbolic 

quantity discrimination task described in section 3.4.2.1 (Mazzocco et al., 2011). Accuracy 

rates increased as the numerical ratio difference between the sets decreased and performance 

varied widely across the sample. Participants’ w parameter predicted their performance on the 

TEMA 2 (Woodcock & Johnson, 1989) and the WJ revised calculation subtest (Woodcock & 

Johnson, 1989) since kindergarten, even after controlling for other cognitive skills measures 

such as naming speed or IQ. In addition, Mazzocco et al. (2011) conducted a longitudinal 

study with seventeen pre-schoolers who were asked to select the larger of two arrays of 

discrete objects that appeared simultaneously for either 1,200 msec. or for 2,500 msec. 

depending on participants’ age group. Again, accuracy rates increased as the numerical ratio 

difference between the sets increased and performance varied widely across the sample. Two 

years later, participants were administered the TEMA 3, the WASI (Wechsler, 1999) and 

three tests of Rapid Automatized Naming (Denckla & Rudel, 1976). Children’s percentage of 

correct responses on the non-symbolic approximate quantity discrimination task accounted 

for significant variance in children’s performance on the TEMA 3 two years later after 

controlling for their age and display times. Furthermore, Libertus et al. (2013) have recently 

published a longitudinal study conducted with a large group of pre-schoolers where they used 

the non-symbolic approximate quantity discrimination task described in section 3.4.2.2 

(Libertus et al., 2011). Children were administered this and other tasks (TEMA-3, Form A of 

the Peabody Picture Vocabulary Test, Dunn & Dunn, 2007) in two occasions six months 

apart. At the latter time point an attention measure and a memory span forward and backward 

task were also administered. Participants’ percentage of correct responses increased across 

time points and their RTs decreased across time points. Also, accuracy decreased as the 

numerical ratio difference decreased. It was found that pre-schoolers’ accuracy and RTs on 

the non-symbolic approximate quantity discrimination task at the start of the study were 

unique and causal predictors of their later performance on the TEMA 3 even when individual 

differences in age, initial math abilities and vocabulary were accounted for. Thus, 

retrospective and longitudinal studies suggest that non-symbolic approximate quantity skills 

contribute, and are causal predictors of, young children’s mathematical attainment. 
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3.4.3 The role of inhibition control skills in ANS tasks 

Inhibition skills are a well-established predictor of early mathematics development (Blair & 

Razza, 2007; Bull & Scerif, 2001; Clark, Pritchard, & Woodward, 2010; St Clair-Thompson 

& Gathercole, 2006; Welsh, Nix, Blair, Bierman, & Nelson, 2010). Very recently, two 

studies have suggested that the relationships identified between children’s performance on 

non-symbolic approximate quantity discrimination tasks and their mathematical attainment 

could be an artefact of the relationship between their inhibition control skills and their 

mathematical attainment. They suggest that ANS tasks could unintentionally tap inhibition 

control skills because children have to inhibit responding to the larger physical set in 

incongruent trials that is, when physical aspects of the numerical set are inversely related to 

the number of items presented. Fuhs and McNeil (2013) examined the non-symbolic 

approximate quantity discrimination skills of a large group of pre-schoolers from low-income 

homes (participants’ families met the federal poverty guidelines). Children had to identify the 

larger of two sets ranging from one to 30 stars that varied in size intra and inter set and 

remained visible until the child responded. Children’s mathematical attainment, inhibitory 

control and receptive vocabulary were also assessed. Mathematical attainment was assessed 

with the TEMA 3. Inhibitory control was assessed with three tasks: the Head/Feet task 

(McCabe, Rebello-Britto, Hernandez, & Brooks-Gunn, 2004), the Day/Night task (Gerstadt, 

Hong, & Diamond, 1994) and the Knock/Tap task (Hughes, 1998). Receptive vocabulary was 

assessed with the Peabody Picture Vocabulary Test (Dunn & Dunn, 2007). Children’s 

accuracy in the non-symbolic task did not predict significant variance over and above their 

vocabulary. However, children’s inhibitory control predicted unique variance over and above 

both their vocabulary and their accuracy on any of the trials types of the non-symbolic 

quantity discrimination task.  

 

In addition, Gilmore et al. (2013) examined mathematical attainment with the Numerical 

Operations subtest of the WIAT-II
UK

 (Wechsler, 2002), inhibition control skills with the 

NEPSY-II Inhibition subtest (Korkman, Kirk, & Kemp, 2007) and performance on a non-

symbolic approximate quantity discrimination task in a group of seven-to-ten-year-olds. In 

their quantity discrimination task children had to identify the larger of two arrays ranging 

from five to 28 dots that were simultaneously presented for 1,500 msec. Children’s inhibition 

control skills always predicted unique variance in their mathematical attainment regardless of 

the order in which the two independent variables were entered into the regression model. 
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However, the children’s w parameter or accuracy in the quantity discrimination task failed to 

predict unique variance in children’s mathematical attainment when either was entered after 

inhibition control skills in the regression model. Thus, it could be that non-symbolic 

approximate quantity discrimination tasks are unintentionally tapping inhibition control skills 

and their relationship with mathematical attainment is due to them tapping inhibition rather 

than the efficiency of children’s approximate quantity representations. 

 

3.5 APPROXIMATE QUANTITY DISCRIMINATION SKILLS AND THEIR 

INCONSISTENT RELATIONSHIP WITH EARLY MATHEMATICAL 

DEVELOPMENT ACROSS STUDIES 

Previous sections in this chapter show that while some comparison, correlational and 

longitudinal studies have identified a relationship between non-symbolic approximate 

quantity discrimination skills and mathematical attainment (Libertus et al., 2013; Mazzocco 

et al., 2011) other comparison and correlational studies have not found this relationship 

(Holloway & Ansari, 2009; Landerl & Kölle, 2009) and some suggest that this relationship is 

not consistent over development (Bonny & Lourenco, 2013). Potential reasons for the 

conflicting findings across studies could lie in the different methodologies, metrics and 

analyses used to examine the relationship between children’s ANS precision and their 

mathematical competence. Firstly, methodological aspects of the ANS tasks vary across 

studies. For example, although the majority of the non-symbolic quantity discrimination tasks 

present two arrays simultaneously and for a brief period of time to prevent the use of verbal 

counting strategies, there are exceptions (Piazza et al., 2010; Rousselle & Noel, 2007). If 

arrays are presented for a period of time that does not prevent children from using alternative 

quantification strategies then it is difficult to discriminate whether the non-symbolic quantity 

discrimination task is actually tapping ANS efficiency or simply providing a measure of the 

efficiency of other domain-general cognitive systems. For instance, children with good verbal 

counting skills could be opting for fast serial counting strategies or a combination of 

subitising and verbal counting instead of relying on their ANS to respond to untimed quantity 

discrimination tasks. Also, the number of discrete items and the numerical ratio difference 

displayed between arrays vary widely across studies. Only in some of the ANS tasks was the 

numerical ratio difference between arrays systematically varied (Soltész et al., 2010) and 

while some tasks depicted numerical ratios easy to discriminate (Holloway & Ansari, 2009; 

Sasanguie et al., 2013), others presented much harder numerical ratios (Halberda et al., 
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2008). Second is the issue of accuracy, RTs or w parameter being used as indices of 

children’s ANS precision. Some ANS metrics seem to have a stronger relationship with 

mathematical attainment measures than others. For instance, Libertus et al. (2011) found that 

children’s accuracy on a non-symbolic approximate quantity discrimination task was a better 

predictor of their mathematical attainment than RTs or w parameter. Third, and as suggested 

by Piazza et al. (2010), the ANS may have a stronger relationship with some number skills 

than others. Therefore, the strength of the relationship between ANS and mathematical 

attainment could vary in relation to the standardised mathematical attainment test used. 

Finally, there is no consistency in the regression models used across studies. Some studies 

control for domain-general cognitive skills but do not specifically control for working 

memory skills (Libertus et al., 2011). However, it has been suggested that the mental number 

line relied upon when making approximate numerical discriminations has a spatial dimension 

(Dehaene et al., 1993) and also that non-symbolic quantity discrimination tasks might 

unintentionally tap inhibition motor skills (Fuhs & McNeil, 2013; Gilmore et al., 2013). If 

ANS is a domain-specific number system, it should predict variance in children’s number 

skills and mathematical attainment that cannot be explained by other domain-general 

cognitive systems.  

 

Moreover, findings may differ because different age groups have been studied. Some cross-

sectional studies examining children of different ages find that the relationship between ANS 

precision and mathematical attainment changes over development (Bonny & Lourenco, 2013; 

Inglis et al., 2011). 

 

3.6 DISCUSSION 

Adults with and without formal arithmetical training can discriminate the larger of two large 

numerical sets without counting (Pica et al., 2004). Similar approximate quantity 

discrimination skills have been found in preverbal infants (Lipton & Spelke, 2003) and 

animals (Gallistel, 1990). Approximate quantity discrimination skills seem to improve with 

age (Halberda & Feigenson, 2008) and to recruit a neural substrate in the brain distinct from 

that supporting exact numerical processing (Dehaene & Cohen, 1997; Dehaene et al., 1999). 

Thus, like small and precise numerical processing skills approximate numerical skills seem to 

be present very early in humans, to be shared with other animal species, to be supported by 

specific brain networks and to improve during childhood. Nevertheless, two distinctive 
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signatures make the ANS distinct from the PNS; First, approximate non-symbolic quantity 

discrimination skills do not seem to be affected by physical features of the stimuli (Xu, 

Spelke et al. 2005, but see also Solstesz et al., 2010 for an opposite opinion). Second, the 

correct approximate discrimination depends on the numerical ratio difference between the 

numerical magnitudes presented (Piazza et al., 2004; Whalen et al., 1999). These differences 

between PNS and ANS suggest that we possess distinct abstract representations for small and 

large numerical magnitudes (Feigenson et al., 2004; Xu, 2003; Xu et al., 2005) and such a 

distinction is supported by neuropsychological, electro-imagining and neuroimaging data 

(Dehaene et al., 1999; Lemer et al., 2003). Approximate magnitude representations have been 

proposed to underpin our later symbolic numerical competence (Dehaene, 1997; Dehaene et 

al., 2004; Spelke & Dehaene, 1999). Nevertheless, the relationship between ANS precision 

and early number skills and mathematical attainment remains controversial. Clearly studies 

have employed diverse tasks and metrics to tap ANS precision, as well as different regression 

models that controlled for different cognitive skills. These different methodological 

approaches could well account for the non-converging findings.  

 

If PNS and ANS are distinct domain-specific systems for numerical representations that 

underpin later numerical competence (Butterworth, 1999, 2005, 2010; Dehaene, 1997; 

Dehaene et al., 2004; Feigenson et al., 2004; Spelke & Dehaene, 1999) these two systems 

should make unique and independent longitudinal contributions to children’s early number 

skills and mathematical attainment measures. However, this assumption has not been 

explored previously. The longitudinal study presented in this thesis will examine whether the 

precise and approximate quantity discrimination skills make differential contributions to early 

number skills and mathematical attainment.  



47 

 

4. DOMAIN-GENERAL COGNITIVE SKILLS: PHONOLOGICAL AND 

VISUO-SPATIAL SKILLS 

Phonological processing and visuo-spatial STM skills were identified by Krajewski and 

Schneider (2009) and LeFevre et al. (2010) as key cognitive precursors of early number skills 

and mathematical attainment in young children. Krajewski and Schneider (2009) and LeFevre 

et al. (2010) propose that these two domain-general cognitive skills have different 

relationships with different early number skills depending on the cognitive demands the 

number tasks make. In particular, Krajewski and Schneider (2009) propose that phonological 

awareness contributes to basic verbal number skills such as reciting the number-word 

sequence (Level I QNCs), whilst the VSSP functioning contributes to the process of linking 

quantity representations to number-words and to understanding number relationships (levels 

II and III QNCs, respectively). Krajewski and Schneider (2009) and LeFevre et al. (2010) 

also suggest that phonological processing and visuo-spatial STM skills contribute to 

children’s mathematical attainment. However, standardised mathematical attainment tests 

usually comprise a wide range of number skills and therefore do not allow to be determinate 

the extent to which different cognitive skills are involved. This chapter focuses on how 

phonological processing and visuo-spatial STM skills relate to early number skills and 

mathematical attainment in young children. It first presents studies examining number skills 

competence in dyslexic children. Then, studies examining the relationship between 

phonological awareness and early number skills and mathematical attainment in typically 

developing children are discussed. This chapter also presents a literature review of key 

studies examining the relationships of visuo-spatial STM skills in children presenting MLD. 

Then, studies examining the relationship between VSSP functioning with early number skills 

and mathematical attainment in typically developing children are also discussed. 

 

4.1 PHONOLOGICAL PROCESSING ABILITIES AND EARLY MATHEMATICAL 

DEVELOPMENT 

Phonological processing skills are involved in the manipulation (phonological awareness), 

retention (phonological memory) and retrieval (rate of access to phonological information) of 

phonological codes. These skills are well-established predictors of early reading attainment 

(de Jong, 2007; Hulme, Snowling, Caravolas, & Carroll, 2005; Melby-Lervåg, Lyster, & 

Hulme, 2012). Nevertheless, phonological processing skills also seem to be good early 
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predictors of children’s mathematical attainment (DeSmedt et al., 2010; Hecht, Torgeson, 

Wagner, & Rashotte, 2001). This section reviews studies conducted with dyslexic children 

because their weak phonological processing has been associated with weaknesses in 

particular number tasks that demand the processing of verbal codes. 

 

4.1.1 Comparison studies of children with dyslexia 

Dyslexic children have poor phonological processing abilities (Bradley & Bryant, 1985; 

Bruck, 1990; Griffiths & Snowling, 2001; Manis, Custodio, & Szeszulski, 1993; Olson, 

Kliegel, Davidson, & Foltz, 1985; Snowling, 2000; Swan & Goswami, 1997; Vellutino, 

Scanlon, & Spearing, 1995). The weak phonological representations hypothesis (Simmons & 

Singleton, 2008) postulates that dyslexic children perform worse than their peers in number 

tasks that demand the manipulation of verbal codes due to their poor phonological processing 

abilities, but that their performance in number tasks which do not require phonological 

processing may not necessarily be affected. For instance, dyslexic children should struggle 

with multiplication tasks because they require the retrieval of phonological representations 

from LTM, but not with place value tasks because they do not make any verbal demands 

(DeSmedt et al., 2010; Simmons & Singleton, 2009). This hypothesis is supported by studies 

conducted with dyslexic children who performed worse than their peers in specific number 

skills where verbal skills are directly involved. For example, Turner Ellis, Miles, and 

Wheeler (1996) found that school-aged dyslexic boys were slower than their aged-matched 

controls at retrieving answers to multiplication problems. Similarly, Miles (1983) found that 

children with dyslexia experienced more difficulties in reciting the times tables than their 

typically developing peers from the age of seven onwards. Geary, Hamson, and Hoard (2000) 

found that first-graders presenting with reading difficulties were significantly slower at 

retrieving monosyllabic familiar words and also experienced greater difficulties than their 

peers in retrieving the answers to visually presented simple addition problems. More recently, 

Simmons and Singleton (2009) found that eleven-year-olds with dyslexia were slower and 

less accurate in arithmetic fact retrieval than their typically developing peers but not in a 

place value understanding test, where no verbal skills were involved. Boets and De Smedt 

(2010) found that third-graders with dyslexia performed significantly worse than their peers 

in single-digit multiplications and subtractions. Thus, much evidence suggests that the quality 

of children’s phonological representations impacts their performance on specific number 

tasks where phonological processing abilities are needed. 
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4.2 PHONOLOGICAL AWARENESS AND EARLY MATHEMATICAL 

DEVELOPMENT 

Phonological awareness refers to the specific ability to represent and manipulate the 

phonological structure of language. Phonological awareness is usually assessed in young 

children with tasks where the child is asked to identify initial phonemes, rhyming words or to 

segment or blend specific syllables or phonemes within real words. While some consider 

phonological awareness a STM skill (Passolunghi & Siegel, 2001; Wagner, Torgesen, 

Laughon, Simmons, & Rashotte, 1993), others regard phonological awareness as a cognitive 

skill distinct from memory (Windfuhr & Snowling, 2001). The latter approach is adopted 

here because it is supported by empirical data obtained with children (Alloway, Gathercole, 

Willis, & Adams, 2004; Gathercole, Tiffany, Briscoe, & Thorn, 2005; Gathercole, Willis, & 

Baddeley, 1991; Muter & Snowling, 1998). Like other phonological processing skills, 

phonological awareness predicts reading abilities in young children (Gathercole et al., 2005; 

Hecht et al., 2001). It has been suggested that phonological awareness contributes to the 

linkage between phonemes and graphemes when learning to read (see Cain, 2010 for a 

discussion of this issue), so it is plausible that this skill also contributes to the linkage 

between phonemes and symbolic numerical representations. Hecht et al. (2001) found that 

phonological awareness predicted greater variance in both mathematical attainment 

performance and growth in school-aged children than phonological memory and rate of 

access of phonological representations. This section reviews studies which examine the 

relationships between phonological awareness and distinct early number skills in typically 

developing children. It then reviews studies examining the relationships between children’s 

phonological awareness and their performance on standardised mathematical attainment tests. 

It concludes by discussing possible reasons why phonological awareness consistently predicts 

specific number skills in which phonological representations are needed but does not 

consistently predict performance on standardised mathematical attainment tests. 

 

4.2.1 The relationship between phonological awareness and specific number skills 

Studies conducted with young typically developing children have found that phonological 

awareness predicts performance on specific number tasks where verbal skills are involved. 

For example, in LeFevre’s (2010) study (described in detail in Chapter 1 of this thesis) 

kindergarteners’ phonological awareness predicted unique variance in children’s concurrent 

ability to name Arabic numerals but not in their concurrent ability to perform non-verbal 
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arithmetic. In Krajewski and Schneider’s (2009) study (also described in detail in Chapter 1 

of this thesis) phonological awareness predicted unique variance in children’s scores on a 

composite measure comprising verbal number tasks such as reciting the number-word 

sequence forward and backward, identifying elements within the number-word sequence or 

naming Arabic numerals four months later. In contrast phonological awareness did not 

predict children’s scores on a composite measure comprising number tasks that demanded 

abstract quantity manipulation such a non-symbolic comparison task or performing non-

verbal arithmetic problems (Krajewski and Schneider, 2009). These studies support the weak 

phonological representations hypothesis (Simmons & Singleton, 2008) in that phonological 

awareness is involved in number tasks that demand verbal codes’ processing but not in other 

number tasks where phonological representations are not needed. 

 

4.2.2 The relationship between phonological awareness and mathematical attainment 

There is also evidence that phonological awareness contributes to young children’s 

performance on standardised tests of mathematical attainment. For example, Leather and 

Henry (1994) found that seven-year-olds performance on the arithmetic subtest of the WISC-

R (Wechsler, 1974) was best predicted by a composite of their phonological awareness skills. 

Simmons, Singleton, and Horne (2008) found that kindergartener’s phonological awareness 

and VSSP functioning were unique predictors of performance on the Number Skills Test of 

the British Ability Scales (hereafter BAS) (Elliott, Murray, & Pearson, 1983) a year later. In 

LeFevre et al.’s (2010) study (described in detail in Chapter 1 of this thesis) a combined 

measure of phonological awareness and a number naming task in five-year-olds predicted 

performance two years later on all standardised tests and research-based measures of 

mathematical attainment included in the study. However, the relationship between 

phonological awareness and performance on standardised mathematical attainment tests in 

young children has not always been replicated. For instance, Passolunghi, Mammarella, and 

Altoé (2008) found that phonological awareness assessed at the beginning of first grade did 

not predict mathematical performance on a standardised mathematical test by the end of first 

grade although measures of central executive and phonological loop functioning did. In 

Krajewski and Schneider’s (2009) study (described in detail in Chapter 1 of this thesis) the 

impact of kindergarteners’ phonological awareness on a standardised mathematical 

attainment test three years later was indirect and mediated by their performance on early 

verbal number skills assessed at midway through kindergarten.  
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Thus, phonological awareness makes both concurrent and longitudinal contributions to 

specific number tasks that require the manipulation of verbal codes during early stages of 

schooling. However, evidence of the longitudinal contributions that phonological awareness 

makes to young children’s performance on standardised mathematical attainment tests is 

controversial. There are a number of reasons why phonological awareness may not be 

consistently related to general mathematical attainment. First, language factors such as 

participants’ language structure (Italian) in Passolunghi et al. (2008) may account for the null 

findings. It has been suggested that Italian and Spanish children have higher central executive 

functioning demands when performing verbal number tasks than other children because 

number-words in these languages are larger in length. Variance in these measures might be 

more greatly influenced by the central executive functioning in Spanish and Italian children 

and the role for phonological awareness might be smaller (Raghubar, Barnes, & Hecht, 2010). 

Second, the lack of a direct relationship between phonological awareness and performance on 

a standardised mathematical attainment test in Krajewski and Schneider’s (2009) study could 

be due to the length of time which elapsed between cognitive precursors and outcome 

measures. Studies reporting direct relationships between phonological awareness and 

mathematical attainment are either concurrent or the time which passed between the 

collection of the cognitive precursors and when the outcome measures were obtained are 

considerably shorter (Simmons et al., 2008). Because there is evidence that children recruit 

different cognitive skills to perform the same number task depending on their age (McKenzie, 

Bull, & Gray, 2003; Rasmussen & Bisanz, 2005), it could be that the longitudinal 

contributions that phonological awareness make to mathematical attainment in young 

children are less substantial over time and therefore do not remain significant over a three-

year period. Finally, null findings could also be due to the nature of the standardised 

mathematical attainment test used. According to the weak phonological representations 

hypothesis (Simmons & Singleton, 2008), the quality of children’s phonological 

representations impacts only on number tasks that demand the processing of verbal codes. 

Because mathematical attainment tests usually comprise a wide variety of number tasks the 

strength of the relationship between phonological awareness and a specific standardised 

mathematical attainment test may vary in relation to the nature of the items that the 

mathematical test comprises.  
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4.3 WORKING MEMORY AND EARLY MATHEMATICAL DEVELOPMENT 

Working memory refers to the ability of simultaneously storing and processing information 

(Baddeley, 2000). Different theoretical models of working memory co-exist nowadays (see 

Miyake and Shah, 1999, for a review). In this chapter Baddeley’s (2000) multi-component 

working memory model is used as a framework because each of its components has been 

related to academic success (Holmes & Adams, 2006) and empirical findings suggest that it 

can be applied to children (Alloway et al., 2005). The multi-component model (Baddeley, 

2000) is based on behavioural and neuropsychological evidence and identifies three distinct 

systems to account for how information is manipulated and stored in memory; the central 

executive, the VSSP and the phonological loop. The central executive component is a 

supervisory system in charge of attention processes and responsible for inhibiting, shifting 

and updating information (Baddeley, 1996; Miyake et al., 2000). The central executive 

component is supported by the episodic buffer which merges incoming information that 

requires attention resources with automatic information to produce integrated episodes 

(Baddeley, 2000). The central executive component controls two limited-capacity storage 

systems: the VSSP component and the phonological loop component. The VSSP component 

is responsible for the visual and spatial memory processes and supports the generation, 

retention and manipulation of visuo-spatial information (Logie, 1995). The phonological loop 

component stores phonological information and is in charge of maintaining articulatory 

rehearsal processes active (Baddeley, 1986).  

 

There is a large body of research associating working memory functioning with early 

mathematics development in children (Geary, Hoard, Byrd-Craven, & DeSoto, 2004; 

Mabbott & Bisanz, 2008; McLean & Hitch, 1999; Passolunghi & Siegel, 2001; Raghubar et 

al., 2010; Wilson & Swanson, 2001). This section reviews studies that compared MLD 

children with their typically developing peers in visuo-spatial STM tasks. Within research of 

mathematical development visuo-spatial STM is usually viewed in the context of Baddeley’s 

(2000) multi-component model of working memory. To assess VSSP functioning children are 

usually asked to recall in the same order or manner the locations where visually presented 

stimuli have previously been shown for a limited time (e.g. block recall, mazes memory, 

visual pattern test). 
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4.3.1 Comparison studies conducted with MLD children 

Ozols and Rourke (1988) found that seven-to-eight-year-olds presenting with only math 

difficulties had worse visuo-perceptual and visuo-spatial skills than children presenting 

reading and spelling difficulties or children presenting difficulties in both academic domains. 

McLean and Hitch (1999) compared the performance of nine-year-olds with specific 

arithmetic difficulties to a group of age-matched controls. Children performing low (below 

25% of the raw scores) on a standardised mathematical attainment test but performing at an 

average level on a standardised reading test were assigned to the arithmetic difficulties group. 

It was found that children in the arithmetic difficulties group performed significantly worse 

than their peers on a VSSP working memory task. Murphy, Mazzocco, Hanich, and Early 

(2007) determined retrospectively the presence of MLD depending on children’s performance 

on a standardised mathematical attainment test in a group of kindergarten and first graders. 

Children were classified as typically developing children, children with MLD (who scored 

between the 11
th

 and the 22
nd

 percentile during at least two years) and children presenting 

severe mathematical disabilities (who scored below the 10
th

 percentile during at least two 

years). Analyses of performance in kindergarten and first grade revealed that children in the 

MLD and severe mathematical disabled groups performed significantly worse than their 

peers on visuo-spatial STM tasks. Thus, visuo-spatial STM skills seem to contribute to 

mathematics performance and deficits in visuo-spatial STM may account for the low 

mathematical performance in MLD children. 

 

4.4 VSSP FUNTIONING AND EARLY MATHEMATICAL DEVELOPMENT 

It is been suggested that the VSSP provides a mental workspace where information is 

encoded, retained and manipulated during calculation procedures and/or transcribed into 

qualitatively different representations or procedural rules (Noël, Fias, & Brysbaert, 1997; 

Simmons, Willis, & Adams, 2012; Trbovich & LeFevre, 2003). Krajewski and Schneider 

(2009) and LeFevre et al. (2010) found VSSP functioning to be an early precursor of 

children’s early number skills. VSSP functioning has also been found to be a strong predictor 

of young children’s mathematical performance (Holmes & Adams, 2006; Raghubar et al., 

2010). This section reviews studies examining the relationships between VSSP functioning 

and early number skills in typically developing children. Studies where VSSP functioning has 

been associated with young typically developing children’ performance on standardised 
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mathematical attainment tests are then discussed, as well as possible reasons why VSSP 

functioning does not consistently predict performance on these measures. 

 

4.4.1 The relationship between VSSP functioning and specific number skills 

McKenzie et al. (2003) found that six-year-olds performance on a Corsi blocks task 

correlated with their accuracy on simple arithmetic problems presented aurally and that under 

VSSP functioning demands, children’s arithmetic performance deteriorated significantly. 

Swanson and Beebe-Frankenberger (2004) found that a working memory composite score 

comprising performance on five different working memory tasks where two of them were 

visuo-spatial STM tasks (visual matrix and mapping and directions task) significantly 

predicted unique variance in children’s calculation and word-problem solving over and above 

verbal STM skills and executive functioning. Rasmussen and Bisanz (2005) found that pre-

schoolers’ performance on a Corsi block task was a unique predictor of their performance on 

non-verbal arithmetic problems. Also, in Krajewski and Schneider’s (2009) study (described 

in detail in Chapter 1), kindergarteners’ VSSP functioning predicted their performance four 

months later on a composite measure comprising different number tasks that involved 

quantity representation or manipulation, such as identifying which of two number-words 

represents a larger quantity or reporting the numerical difference between pairs of arrays of 

dots. In contrast, kindergarteners’ VSSP functioning failed to predict their performance on a 

composite measure comprising different verbal number tasks (Krajewski and Schneider, 

2009). In LeFevre et al.’s (2010) study (described in detail in Chapter 1), five-year-olds’ 

performance on a Corsi blocks task predicted their concurrent performance on a number task 

in which they were asked to match a number-word with its corresponding Arabic numeral 

and on non-verbal arithmetic problems. In addition, in Simmons et al.’s (2012) study, VSSP 

functioning was a unique predictor of performance on a number writing task and a symbolic 

magnitude comparison task in a group of first and third graders, whilst no other working 

memory component predicted unique variance on these tasks.  

 

4.4.2 The relationship between VSSP functioning and mathematical attainment 

Holmes and Adams (2006) and Holmes, Adams, and Hamilton (2008) found that VSSP 

functioning predicted performance on the National Curriculum-based mathematical skills test 

in seven-, eight- and nine-year-olds respectively. Simmons et al. (2008) found that five-year-
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olds performance on a Corsi span task was a unique predictor of children’s performance a 

year later on the Number Skills Test of the BAS (Elliott et al., 1983). Bull, Espy, and Wiebe 

(2008) found that VSSP functioning in a large group of four-year-olds was the only unique 

predictor of their mathematical performance assessed at the end of the first year with the 

Performance Indicators in Primary School. However, in Krajewski and Schneider’s (2009) 

study (described in detail in Chapter 1) the impact of kindergarteners’ VSSP functioning on 

the DEMAT2+ three years later was indirect and mediated by their performance on early 

non-verbal number skills assessed in kindergarten. As discussed in section 4.2.2 of this 

chapter, null results in this case could be due to the length of time elapsed between the 

collection of the cognitive precursors and outcome measures or due to the extent to which 

items in the mathematical attainment test applied required VSSP functioning skills. Therefore, 

studies consistently find that children’s VSSP functioning predicts their concurrent and 

longitudinal performance on number tasks that demand quantity representation and 

manipulation of analogue quantities and even their number writing skills. VSSP functioning 

almost consistently predicts children’s concurrent and later performance on standardised 

mathematical attainment tests.  

 

In addition to the relationships between VSSP functioning and number skills and 

mathematical attainment, studies have also linked central executive functioning (Bull, 

Johnson, & Roy, 1999; Bull & Scerif, 2001; McKenzie et al., 2003) and phonological loop 

functioning (Adams & Hitch, 1997; Jarvis & Gathercole, 2003; Noël, Seron, & Trovarelli, 

2004; Rasmussen & Bisanz, 2005; Towse & Houston-Price, 2001) with early mathematical 

development. Nevertheless, studies have also demonstrated that the contributions of VSSP 

functioning to number skills and mathematical attainment in young children are independent 

of other working memory components (Bull et al., 2008; McKenzie et al., 2003; Rasmussen 

& Bisanz, 2005; Simmons et al., 2012) 

 

4.5 DISCUSSION 

Phonological awareness and VSSP functioning seem to both be key domain-general abilities 

that independently predict mathematical success in young children. Studies conducted with 

non-typically developing children suggest that visuo-spatial STM and phonological 

processing skills contribute to early number skills and mathematical attainment performance 

(Boets & De Smedt, 2010; Murphy et al., 2007; Simmons & Singleton, 2009). Studies 
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conducted with young typically developing children find that phonological awareness 

predicts their concurrent and later verbal number skills (Krajewski & Schneider, 2009; 

LeFevre et al., 2010). Similarly, studies conducted with young typically developing children 

also find that VSSP functioning predicts their concurrent and later early number skills where 

analogue magnitude representations or transformation of numerical information into 

procedural rules is needed (Krajewski & Schneider, 2009; Rasmussen & Bisanz, 2005). In 

addition some studies find that phonological awareness and VSSP functioning also predict 

concurrent and later performance on mathematical attainment tests (Leather & Henry, 1994) 

and that they account together for a large substantial variance in young children’s later 

mathematical attainment (Simmons et al., 2008). However, not all studies find direct 

relationships between VSSP functioning or phonological awareness and children’s later 

performance on standardised mathematical attainment tests (Krajewski & Schneider, 2009; 

Passolunghi et al., 2008). It could be that the longitudinal contributions that VSSP 

functioning and phonological awareness make to mathematical attainment are not consistent 

over long developmental periods. Cross-sectional studies suggest that children recruit distinct 

cognitive skills to perform the same numerical tasks depending on their age (McKenzie et al., 

2003; Rasmussen & Bisanz, 2005). However, it could also be that standardised tests are less 

informative of these specific relationships because they include many types of number skills. 
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5. THE PILOT STUDY: DESIGN AND VALIDITY OF THE NOVEL 

TASKS 

This thesis aims to explore the impact of quantitative, verbal and visuo-spatial STM skills on 

young children’s early number skills and mathematical attainment over the early stages of 

schooling using Krajewski and Schneider’s (2009) theoretical model of early arithmetical 

development as a general framework. Novel tasks to assess children’s quantitative and early 

number skills were designed. A pilot study was conducted to test the validity and reliability 

of these novel tasks. The specific aims of this pilot study were: 

 

 To test the three novel Early Number Skills’ tasks designed to tap the three distinct 

developmental levels of QNCs proposed in Krajewski and Schneider (2009), determining 

whether they provide distinct valid measures of these skills over early stages of schooling. 

 

 To determine whether performance on each of the three early number tasks explain unique 

variance in children’s scores on the two different standardised mathematical attainment 

measures; The Numerical Operations and Mathematical Reasoning subtests of the WIAT-

II
UK

. Thus, determining whether these tasks are valid measures of individual early number 

skills. 

 

 To analyse whether the precise and approximate quantity discrimination skills tasks tap 

the two distinct domain-specific quantity systems; PNS and ANS, respectively (Feigenson 

et al., 2004). 

 

 To determine whether children’s performances on the precise quantity discrimination 

skills task and on the approximate quantity discrimination skills task make independent 

and unique contributions to the three Early Number Skills’ tasks and to children’s 

performance on the two standardised mathematical attainment measures of the WIAT-II
UK

. 
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5.1 EARLY NUMBER SKILLS TASKS 

Early number skills refer to numerical abilities that children acquire through formal 

instruction of the formal number system, such as being able to recite the number-word 

sequence, counting discrete objects or solving basic arithmetic problems. These early number 

competences have been found to be good early predictors of mathematical attainment in 

young children (Krajewski & Schneider, 2009; LeFevre et al., 2010; Östergren & Träff, 2013; 

Sarnecka & Carey, 2008) 

 

5.1.1 Rationale for the design of the Early Number Skills’ tasks 

In order to design different tasks that would tap distinct early number skills, Krajewski and 

Schneider’s (2009) theoretical model of early arithmetical development was adopted because 

it provides a comprehensive yet specific and precise classification of early number skills. 

This theoretical model purposes three different developmental levels of early QNCs: 

 

Number-word isolated from quantities (QNC Level I): Refers to the ability to correctly 

articulate the number-words and recite the number-word sequence, but not necessarily 

connecting these words with the quantity concept they refer to. To assess this skill, children 

were asked to recite the number-word sequence forward from different start points.  

 

Imprecise and precise quantity to number-word linkage (QNC Level IIa and IIb): Refers to 

the acquisition of the number-words’ quantity meaning. First, children connect number-words 

to quantities imprecisely (“a bit”, “much”, “very much”) (QNC Level IIa). Eventually, this 

connection becomes precise and children distinguish which number-word refers to a larger 

quantity of two consecutive number-words in the number-word sequence (QNC Level IIb). 

To assess children’s understanding of the number-words’ exact quantity meaning, they were 

asked to verbally report the exact number of discrete items presented on laminated sheets.  

 

Number relationships (QNC Level III): Children understand that quantities can be composed 

and decomposed into other exact quantities and that these outcomes can be referred to with a 

number-word. To assess whether children understand the relations between quantities they 

were asked to perform simple abstract arithmetic (additions and subtractions).  
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The different Early Number Skills’ tasks designed for the study were expected to provide 

appropriate distinct measures of the three different developmental levels of QNCs proposed 

by Krajewski and Schneider (2009). These authors suggested that verbal skills contribute to 

the knowledge of the number-words (QNC Level I) while quantity discrimination skills and 

visuo-spatial STM skills contribute to the linkage of number-words to their precise quantity 

concept (QNC Level II) and to children’s early arithmetic skills (QNC Level III). Also, that 

performance on Level I, II and III of QNCs contribute to children’s mathematical attainment. 

 

5.2 QUANTITY DISCRIMINATION SKILLS TASKS 

It has been proposed that our quantity discrimination skills are domain-specific and 

biologically-determined (Butterworth, 1999, 2005, 2010; Dehaene, 1997; Dehaene et al., 

2004; Spelke & Dehaene, 1999). Two distinct systems for the representation of precise and 

approximate numerical magnitude representations have been proposed; the PNS and the ANS 

(Feigenson et al., 2004). The former supports the precise abstract representations of a few 

discrete items and the latter supports the approximate abstract representation of numerical 

magnitudes (see Chapters 2 and 3 for a more detailed review of these systems and their 

relationship with mathematical development). Enumeration tasks and small non-symbolic 

quantity discrimination tasks have been employed to tap young children’s PNS (Svenson & 

Sjöberg, 1978; Trick et al., 1996). Better performance on these tasks has been associated with 

better numerical competence in children (Arp et al., 2006; Fischer et al., 2008; Landerl et al., 

2004; LeFevre et al., 2010; Schleifer & Landerl, 2011). Non-symbolic approximate quantity 

discrimination tasks have been employed to tap children’s ANS, and better performance on 

these tasks has also been associated with better numerical competence (Libertus et al., 2011; 

Mazzocco et al., 2011; Nordman et al., 2009, September) although this finding has not 

always been replicated (Holloway & Ansari, 2009; Sasanguie et al., 2013). 

 

5.2.1 Rationale for the design of the Precise Quantity Discrimination skills task 

Whilst enumerating small collections of discrete items is a fast and accurate process; 

enumerating large collections is slower and error-prone (Akin & Chase, 1978; Chi & Klahr, 

1975; Frick, 1987; Mandler & Shebo, 1982; Trick & Pylyshyn, 1994). Analyses of children’s 

accuracy and RTs in enumeration tasks show a clear discontinuity for sets of up to three or 

four items and above (Arp et al., 2006; Benoit et al., 2004; Chi & Klahr, 1975; Fischer et al., 
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2008; Landerl et al., 2004; LeFevre et al., 2010; Schleifer & Landerl, 2011; Starkey & 

Cooper, 1995; Svenson & Sjöberg, 1978). This suggests that the process of enumerating 

small sets of up to three or four discrete items is done in parallel, and for larger numerical 

sets a serial quantification process (vocal or subvocal counting) is needed (Arp et al., 2006; 

Bruandet, Molko, Cohen, & Dehaene, 2004; Piazza et al., 2003; Sathian et al., 1999). 

Children’s higher accuracy rates and faster RTs in enumerating small quantities have been 

associated with better numerical competence (Arp et al., 2006; Fischer et al., 2008; Landerl et 

al., 2004; LeFevre et al., 2010; Schleifer & Landerl, 2011). However, tasks employed to 

assess children’s subitising skills usually make additional cognitive demands or involve 

understanding or using the formal number system to a certain extent (LeFevre et al., 2010). 

Studies using discrimination paradigms with children have also found discontinuities in 

accuracy rates and RTs between sets containing up to three items and above (Starkey & 

Cooper, 1995; Trick et al., 1996). However, these studies used symbolic numerical 

representations (Durand, Hulme, Larkin, & Snowling, 2005) and/or presented the two small 

non-symbolic numerical collections sequentially (Starkey & Cooper, 1995; Trick et al., 1996) 

and/or stimuli in these tasks presented collections containing more than three discrete items 

(Iuculano et al., 2008). Therefore all these measures are potentially contaminated by 

children’s knowledge of the formal number system, memory skills or verbal counting 

abilities. Nevertheless, studies consistently find that children are faster and/or more accurate 

with the enumeration of at least up to three discrete items (Arp et al., 2006; Benoit et al., 

2004; Chi & Klahr, 1975; Fischer et al., 2008; Landerl et al., 2004; Schleifer & Landerl, 

2011; Svenson & Sjöberg, 1978; Trick et al., 1996), suggesting that their subitising limit is at 

least up to three discrete items.  

 

In the present study, the design of the Precise Quantity Discrimination task intends to provide 

a measure of children enumeration speed for quantities they can subitise. Sets were presented 

for unlimited time. Consequently, children’s speed and not accuracy could discriminate 

whether they were relying on their subitising skills to respond or whether they were engaging 

in serial counting or any other not-as-efficient strategies. As a general rule, children’s 

accuracy is used when stimuli is presented for a limited time (Benoit et al., 2004; Gelman & 

Tucker, 1975; Starkey & Cooper, 1995) and children’s RTs are used when stimuli is 

presented for a long time (Iuculano et al., 2008) or until the child responds (Chi & Klahr, 

1975; Durand et al., 2005; LeFevre et al., 2010; Schleifer & Landerl, 2011; Svenson & 

Sjöberg, 1978; Trick et al., 1996). Sets were presented simultaneously and children 
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responded by pressing a key so that there were few cognitive demands from other cognitive 

systems. Furthermore no symbolic number representations were employed or required. The 

aim of this task was to examine whether children’s speed completing accurate numerical 

judgements on non-symbolic sets containing no more than three discrete items could predict 

their performance on the Early Number Skills’ tasks and the two standardised mathematical 

attainment measures. In addition a measure of children’s RTs over two-choice non-numerical 

judgements was obtained in order to statistically control for their baseline RTs. 

 

5.2.2 Rationale for the design of the Approximate Quantity Discrimination skills task 

Pre-schoolers’ performance on non-symbolic approximate quantity discrimination tasks has 

been associated with their numerical competence (Libertus et al., 2011; Mazzocco et al., 2011; 

Murphy et al., 2007; Nordman et al., 2009, September), although not all studies find this 

association (Rousselle & Noel, 2007; Sasanguie et al., 2012; Sasanguie et al., 2013), or at 

least not a linear association throughout development (Bonny & Lourenco, 2013; Inglis et al., 

2011). Different approximate non-symbolic quantity discrimination tasks have been used to 

tap young children’s ANS precision, these differ in stimuli presentation time, number of 

discrete items and level of difficulty in the numerical ratios displayed (see section 3.5 of this 

thesis for a discussion of the different methodologies employed to tap ANS precision in 

children). For the present study, Nordman et al.’s (2009, September) ANS task was adapted 

to tap children’s non-symbolic approximate quantity discrimination skills. Two large non-

symbolic numerical sets above the subitising range (five to 35 discrete items) were 

simultaneously presented for 2,000 msec. during which children had to make their choice by 

pressing a key. Because the average time for five- and six-year-olds to correctly enumerate an 

additional item outside the subitising range is approximately 1,000 msec. (Chi & Klahr, 1975; 

LeFevre et al., 2010; Svenson & Sjöberg, 1978; Trick et al., 1996) a time window of 2,000 

msec. makes the use of serial counting unlikely, forcing participants to rely on their ANS to 

solve the task. Yet, this time seems to be sufficient for young children to make approximate 

quantity judgements (see Inglis et al., 2011). In addition, a measure of participants’ ability to 

count discrete visual items with no time restriction was obtained (Counting Objects task of 

the Early Number Skills) to determine whether children are even capable of verbally counting 

the items should they opt for this strategy.  
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Stimuli in both computerized quantity discrimination tasks were non-symbolic and a two-key 

choice response method was used. Children were not presented with, nor required to employ, 

symbolic numerical representations (Arabic numerals or number-words). In addition, 

discrimination paradigms with simultaneous presentation of the two numerical sets were 

chosen because it has been suggested that sequential presentation could demand working 

memory load to retain and compare the numerical information of the sets (Gilmore, Attridge, 

& Inglis, 2011). Thus performance on both tasks is unlikely to be contaminated by children’s 

knowledge of the formal number system or other domain-general cognitive skills such as 

language or memory. 

 

5.3 METHODOLOGY 

5.3.1 Participants 

63 children (29 males) from Reception Year and Year 1 classes of a primary school in North 

West of England successfully completed all the assessments (see table 5.1 for details of age 

and gender distribution). 64 children were initially recruited but one female from Reception 

Year did not complete all the assessments due to continuing non-attendance on the scheduled 

assessment days and her data has not been included in the final analysis. Based on the school 

Ofsted report at the time (http://www.ofsted.gov.uk) the proportion of pupils eligible for Free 

School Meals was in line with the national average. Three participants (two in Reception 

Year and one in Year 1) were identified by the school as having Special Education Needs. 

Data from these participants have been included in the analysis because it made the sample 

representative of the school population as a whole. 

Table 5.1: Descriptive statistics of participants’ age and gender for Reception Year, Year 1 and overall sample 

 Age in months  Gender  Sample 

Year Group Mean SD (months) Range  Males Females  Total 

Reception Year 5 years, 3 months 3.73 months 54.3-69.1  13 17  30 

Year 1 6 years, 2 months 3.86 months 66.2-81.3  16 17  33 

Total 5 years, 9 months 6.92 months 54.3-81.3  29 34  63 

Note1. Months’ information is given as units 
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5.3.2 Procedure 

Written consent was gained from the school´s head-teacher and from the parents or guardians 

of the children. Prior to any assessment, the children were given a brief explanation of the 

study and the tasks individually and their verbal assent was needed to commence. The 

participants had their Precise and Approximate Quantity Discrimination Skills, Early Number 

Skills, mathematical and reading attainment assessed in three individual sessions of a 

maximum of fifteen minutes during school hours. Computer tasks were combined with oral 

and/or pencil-and-paper tasks in each session. The order of the presentation of the sessions 

was randomised across children to counterbalance effects of order. 

 

5.3.3 Computerised Tasks 

5.3.3.1 Baseline task 

A baseline measure of children´s RTs on a two-choice non-numerical computerised task was 

obtained. The task was designed with E-Prime in a game-format. Two triangles were 

presented simultaneously side-by-side on a white screen until participants responded. On 

each pair, one triangle had eyes and a smile (“happy triangle”) and the other triangle was 

empty (see figure 5.1 for an example). Children were told that they would see two triangles, 

one on each side of the screen at the same time and that they needed to press as fast and 

accurately as they could one of the two keys of a response box matching the side (left or right) 

on which the “happy triangle” appeared. This task consisted of three practise trials and twelve 

experimental trials in which the right answer appeared six times on each side in a random 

order. Feedback for each trial was given immediately after each response with a white screen 

where either a “well done” message or a “oh no, the happy triangle was on the other side” 

message appeared for 2,000 msecs. Then the following trial automatically started. Children’s 

accuracy and RTs were recorded. 
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Figure 5.1: Trial example of the Baseline task 

 

 

5.3.3.2 Precise Quantity Discrimination Skills’ task  

Two arrays ranging from one to three red circles were simultaneously presented side-by-side 

on a white screen and separated by a black horizontal line (see figure 5.2 for an example). For 

each trial, the number of circles in the sets was always different. Children were told that they 

would see two groups of circles one on each side of the screen at the same time and that they 

needed to press as fast and accurately as they could one of the two keys of a response box 

matching the side (left or right)  where more circles appeared. This task consisted of four 

practise trials and 36 experimental trials; twelve trials presenting a comparison of one against 

two circles, twelve trials presenting a comparison of one against three circles and twelve 

trials presenting a comparison of two against three circles. Contour length and surface area 

were controlled for so that these continuous variables could not be associated with the correct 

response. Six trials were presented in which there was the same surface area in both sets, six 

trials in which the left set contained the larger surface area, six trials in which the right set 

contained the larger surface area, six trials presented the same contour length in both sets, six 

trials on which the left set presented the larger contour length and six trials on which the right 

set presented the larger contour length. The correct answer appeared the same number of 

times on each side of the screen in random order. Feedback was given immediately after each 

response for each trial with a white screen where either a “well done” message or a “oh no, 

there were more circles on the other side” message automatically appeared for 2,000 msecs. 

Then the following trial automatically started. Children’s accuracy and RTs were recorded. 
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Figure 5.2: Trial example of the Precise Quantity Discrimination skills’ task 

 

 

5.3.3.3 Approximate Quantity Discrimination Skills’ task  

Nordman et al.’s (2009) non-symbolic approximate quantity discrimination task was adapted 

using E-Prime. Children were told that they needed to help a pirate to buy a new boat by 

collecting as many coins as possible. Two sets of circles were simultaneously presented for 

2,000 msec. side-by-side on a white screen. During this time, participants had to press the left 

or right key of a response box matching the side where the larger set in number was presented.  

Children were told that two groups of coins would appear on each side of the screen at the 

same time, and that they needed to press as fast and accurately as they could one of the two 

keys of a response box matching the side (left or right) on which more coins appeared. 

Circles within each set were either green or purple and contained the sterling pound symbol 

(£). Circles varied in size inter and intra set (see figure 5.3 for an example).  
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Figure 5.3: Trial example of the Approximate Quantity Discrimination skills’ task 

 

 

This task consisted of four practise trials and 110 experimental trials. The number of circles 

in each set varied from five to 35, with each pair depicting a numerical ratio difference 

ranging from 1.0 (Weber =0) to 1.5 (Weber = 0.5) (see table 5.2). The experimental trials 

were divided into four blocks, each block presenting 27 trials (two blocks) or 28 trials (two 

blocks) in random order. The correct answer appeared the same number of times on each side 

of the screen in random order. Feedback was given immediately after response for each trial. 

Feedback consisted on the presentation of either a chest full of coins (if a correct response 

was given) or an empty chest (if an incorrect response was given) on a white screen for 2,000 

msecs. If a response was not given within 2,000 msecs. an incorrect answer was 

automatically recorded and no feedback was given. The following trial automatically started 

after feedback or when there was no response within 2,000 msecs. Encouraging feedback was 

given after each block by presenting a picture of a boat that got bigger in size on a white 

screen. Children were allowed to take breaks between blocks so the picture of the boat 

remained on the screen until the child indicated that he or she was ready to play again. Then 

the experimenter pressed a key to start the new block and the first trial started immediately. 

Correct responses given within the time limit were recorded.  
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Table 5.2: Approximate Quantity Discrimination skills task design: Stimulus pairing for each numerical ratio 

difference, Weber fraction value and number of trials 

Weber Ratio 
Stimulus pairings 

(left answer required) 

Stimulus pairings 

(right answer required) 

Total 

times 

0.5 1.5 9:6 - 18:12 27:18 - - 10:15 - - 20:30 20 

0.4 1.4 - 14:10 21:15 - - - 10:14 - - - 12 

0.3 1.3 - 13:10 - - 30:23 7:9 - 14:18 20:26 - 20 

0.2 1.2 6:5 - - 24:20 30:35 5:6 - 15:18 20:24 25:30 28 

0.1 1.1 11:10 - 22:20 32:29 - - 11:12 - - 30:33 20 

0.0 1.0 5:5 9:9 15:15 24:24 30:30 7:7 10:10 22:22 25:25 31:31 10 

Note1. Numeric ratio = n2/n1, n2 being the larger set 

Note2. Weber Fraction value = (n2-n1)/n1, n2 being the larger set 

 

5.3.4 Non-computerised tasks  

5.3.4.1 Early Number Skills’ tasks 

 Knowledge of the number sequence (KNS) 

Children were asked to recite the number-word sequence starting from one by being asked by 

the researcher “Can you count? Can you show me how high you can count up to?” and were 

stopped at twenty. If participants missed or made less than four consecutive errors they were 

then asked to recite the number sequence starting from numbers 25, 65 and 75 and scored on 

their ability to recite the six following number-words. They were stopped after four incorrect 

or missing number-words. One point was given for each number-word given in the correct 

order. Consequently, a maximum of 50 points could be obtained. No points were given for 

misplaced or missing number-words. 

 

 Counting objects (CO) 

Children were asked to count pictures of animals presented randomly spread on a laminated 

sheet. The picture of the animals varied between sheets. The researcher asked the child “How 

many (name of the animal presented) are there?” (see figure 5.4 for an example).  
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Figure 5.4: Counting Objects task example 

 

 

The task consisted of twenty trials presented in increasing difficulty showing from three to 97 

pictures of animals of approximately 2.5 cm
2
 (see table 5.3). The first fifteen trials were 

presented on A4 laminated sheets. The last five trials were presented on A3 laminated sheets. 

Children were told they could touch the pictures to count them if needed. One point was 

given for each set counted correctly. Children were stopped after four consecutive incorrect 

answers. 

Table 5.3: Number of discrete items (pictures of animals) presented for each item on the Counting Objects task 

Item no. 
Items 

displayed 
Item no. 

Items 

displayed 
Item no. 

Items 

displayed 
Item no. 

Items 

displayed 

Item 1 3 Item 6 11 Item 11 20 Item 16 35 

Item 2 5 Item 7 13 Item 12 23 Item 17 42 

Item 3 7 Item 8 15 Item 13 25 Item 18 51 

Item 4 8 Item 9 16 Item 14 27 Item 19 66 

Item 5 10 Item 10 18 Item 15 30 Item 20 97 
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 Story Problems (SP) 

The researcher read an arithmetical problem in the format of a brief story to the child while 

showing a picture that related to the story context but showed no concrete support for the 

answer. A request for the result of a simple arithmetic calculation was made at the end of 

each story with a direct question (e.g. “Four people live in a house. Three people move in 

with them. How many people live in the house now?” While a picture of a house was 

presented to the child). The researcher re-read the story to the child only if he/she asked for it. 

This task consisted of twenty story problems. The first part consisted of ten addition 

problems presented in increasing difficulty. The first five story problems in this part 

requested adding two single-digit numbers, resulting in a single-digit outcome and the last 

five story problems requested adding a two-digit number to a single-digit number resulting in 

a two-digit outcome not larger than twenty. The second part consisted of ten subtraction story 

problems presented in increasing difficulty. The first five story problems in this part 

requested subtracting a single-digit number from a single-digit number, resulting in a single-

digit outcome and the last five story problems requested the subtraction of a single-digit 

number from a two-digit number, resulting in a two digit outcome no lower than eleven. 

Children were stopped after four consecutive incorrect answers on each part. One point was 

given for each correct answer. 

 

5.3.4.2. Mathematical Attainment Measures 

Two subtests of the WIAT-II
UK

 were administered in two different sessions. 

 

 The Numerical Operations subtest 

This subtest assesses children’s arithmetic competence and includes tasks such as numeral 

identification, numeral position, numeral writing and solving written arithmetic problems on 

paper.  

 

 The Mathematical Reasoning subtest 

 This subtest assesses children’s ability to manipulate and apply numerical information in 

different contexts. The tasks are presented orally and supported with illustrations. They 

include counting, identifying shapes and solving numerical problems. 
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5.3.4.3 Reading Attainment Measure 

Children were administered the Word Reading subtest of the WIAT-II
UK

. This test assesses 

children’s printed letters identification, knowledge of letter names and single word reading. 

 

5.4 RESULTS 

5.4.1 Descriptive statistics 

5.4.1.1 Computerised tasks 

 Precise Quantity Discrimination Skills’ task and Baseline task 

A measure of children’s RTs was obtained calculating the mean RT for all correct responses 

taking less than two times the interquartile range from the median (hereafter Precise QDS 

Trimmed RT) for each child. This was done in order to eliminate influence of outliers due to 

children’s distractibility rather than representing time needed to process numerical 

information. Similar data trimming procedures were suggested by Tukey (1977) and have 

been performed in visual-attention studies exploring whether subjects are engaging in parallel 

or serial processes (Pylyshyn & Storm, 1988; Simon, Peterson, Patel, & Sathian, 1998; Wei, 

Lü, Müller, & Zhou, 2008) and with adults responding to numerical information (Carreiras, 

Carr, Barber, & Hernandez, 2010). Similar although more idiosyncratic data trimming has 

also been performed with young and older children’s latencies in response to non-symbolic 

numerical stimuli in order to eliminate very fast responses that are highly unlikely for 

subjects’ age or responses taking too long due to distractibility (Butterworth, 2003; Gebuis, 

Herfs, Kenemans, De Haan, & Van der Smagt, 2009; Libertus et al., 2011).  

 

In addition, a computerised baseline measure of children’s speed in making accurate two-

choice non-numerical discriminations was obtained calculating the mean RT for all correct 

responses taking less than two times the interquartile range from the median (hereafter 

Baseline Trimmed RT) for each child. This measure was obtained with the aim of controlling 

for individual differences in non-numerical two-choice discrimination tasks so that a no 

contaminated measure of the time needed to make numerical discriminations could be 

obtained. A similar baseline speed measure has been used with children to adjust their RTs 

when responding to numerical stimuli to their individual latencies in computerised tasks (see 

Butterworth, 2003).  
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Descriptive statistics for children’s Baseline and Precise Quantity Discrimination Skills’ 

Accuracy and Mean Trimmed RT were obtained (see table 5.4).  

Table 5.4: Descriptive statistics for the Precise QDS’ task and the Baseline task (n=63) 

Test Mean SD ZSkewness ZKurtosis Min. Max. 

Precise QDS       

Precise QDS Accuracy (max.36) 33.71 3.08 -9.48 18.32 18 36 

Precise QDS Trimmed RT (msec.) 1176.15 328.95 6.33 8.40 750.53 2521.68 

Baseline Task       

Baseline Accuracy (max.12) 11.30 0.91 -4.71 3.57 8 12 

Baseline Trimmed RT (msec.) 746.50 240.90 9.57 19.09 374.71 1866.08 

 

Accuracy rates in both tasks are very high with all participants scoring above chance, 

however, participants’ speed varied widely across the sample. In order to explore whether 

children employed a parallel or a serial enumeration strategy to identify which set contained 

more items, a repeated measures analysis of variance was conducted. Three Trimmed RT 

measures for when the total number of dots presented on the screen equalled three (one 

against two), four (one against three) and five (two against three) were entered. Children’s 

Trimmed RT for each type of trial were not normally distributed for three dots (D (63) = .22, 

<.001) or four dots (D (63) = .14, <.01) but they were for five dots (D (63) = .11, p=.05). 

Data failed to meet sphericity assumptions (χ
2 

(2) =22.69, p<.001) so values given are 

following Greenhouse Geisser corrections (ε=.76). There was a significant effect of the 

number of dots presented in the trials on children’s Trimmed RT F(1.53, 94.61) = 13.94, 

p<.001). Children were significantly more efficient on trials presenting three dots 

(M=1166.73, SD=452.29) and four dots (M=1103.49, SD=274.37) than on trials presenting 

five dots (M=1269.99, SD=337.44). There was evidence for linear (F(1,62)=7.80, p<.01) and 

non-linear (F(1,62)=26.64, p<.001) trends in the data. If children had solely employed a serial 

counting strategy one would expect there to be an increase in the RTs with every additional 

dot presented on the screen and only the linear trend would be significant. However, the data 

shows a quadratic trend as the number of dots presented in the task increases (see figure 5.5).  
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Figure 5.5: Trimmed RT for correct responses when three dots (one against two), four dots (one against three) 

and five dots (two against three) where displayed irrespective of the side where the correct answer was 

presented 

 
 

 Approximate Quantity Discrimination Skills’ task 

Accuracy analyses for the non-symbolic Approximate Quantity Discrimination task 

(hereafter Approximate QDS) show a normal distribution (see table 5.5). 

Table 5.5: Descriptive statistics for the Approximate QDS’ task.  

Test Mean SD ZSkewness ZKurtosis Min. Max. 

Approximate QDS Accuracy (max.100) 70.63 10.23 -0.51 0.64 50 94 

 

To test whether difficulty increases as the numerical ratio difference associated with each pair 

of non-symbolic quantities decreases, the number of left responses given by participants in 

each trial was analysed for each numerical ratio bin.  Results were plotted (see figure 5.6).  
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Figure 5.6: Proportion of left responses (Z-scores) at each Weber Fraction (ratio bin) 

Figure 5.6 shows that the number of correct responses given decreased as the numerical ratio 

difference associated with each pair of non-symbolic quantities decreased.   

 

5.4.1.2 Non-computerised tasks 

 Early Number Skills’ tasks 

Descriptive statistics for children’s scores on the Knowledge of the Number Sequence task, 

the Counting Objects task and the Story Problems tasks assessing their Early Number Skills 

were obtained (see table 5.6). 
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Table 5.6: Descriptive statistics for the three novel Early Number Skills’ tasks 

Early Number Skills Tasks Mean SD ZSkewness ZKurtosis Min Max 

Knowledge of Number Sequence (max. 50) 32.56 6.98 -4.46 1.34 12 38 

Counting Objects (max. 20) 12.05 4.14 -2.20 0.17 1 19 

Story Problems (max. 20) 8.05 4.78 -0.40 -1.73 0 17 

Note 1. For the Counting Objects task, a mean of 12.05 stands for 23 discrete items counted correctly (see table 

5.3 in section 5.3.4.1 for further clarification) 

 

Results show that only the Story Problems task of the three Early Number Skills tasks is 

normally distributed. The spread of scores in the Knowledge of the Number Sequence task 

shows a negatively skewed distribution and strong ceiling effects. The spread of scores in the 

Counting Objects task also shows a negatively skewed distribution although less severe and 

with no ceiling effects. 

 

 Standardised Attainment tasks 

Descriptive statistics for children’s raw and standard scores on the Numerical Operations, 

Mathematical Reasoning and Word Reading subtests of the WIAT-II
UK

 were obtained (see 

table 5.7) 

Table 5.7: Descriptive statistics for the Mathematical attainment (n=58) and Reading attainment (n=63) raw and 

standard scores 

Standardised Attainment Measures Mean SD ZSkewness ZKurtosis Min Max 

Numerical Operations WIAT-II
UK

  raw scores  8.22 2.43 -1.86 0.39 2 12 

Numerical Operations WIAT-II
UK

 standard  100 11.09 1.19 1.61 68 125 

Mathematical Reasoning WIAT-II
UK

 raw scores  17.79 5.45 1.23 1.17 6 34 

Mathematical Reasoning WIAT-II
UK

 standard  103.15 13.31 -1.06  -0.68 73 128 

Word Reading WIAT-II
UK

 raw scores  29.89 29.17 2.73 -1.00 2 103 

Word Reading WIAT-II
UK

 standard  89.51 24.88 0.23 -1.61 45 144 

 

Children’s mathematical attainment scores in the Numerical Operations and the Mathematical 

Reasoning subtests of the WIAT-II
UK

 are broadly similar to the UK average. Means for both 

subtests are based on a sub-sample of 58 children as five participants in Reception Year were 

too young for the test norms to be applied. Children’s raw scores were used for further 
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analyses. Participants’ reading attainment was assessed as below the UK average using the 

WIAT-IIUK. Reasons for these anomalous results are discussed later.  

 

5.4.2 Correlations and partial correlations for all the predictor variables and outcome 

measures 

Correlations and partial correlations controlling for participants’ age in months for all 

predictor variables and outcome measures were obtained (see table 5.8). 
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Table 5.8: Correlations (above the diagonal) and partial correlations controlling for age in months (below the diagonal) for the Quantity Discrimination Skills’ tasks with the 

three Early Number Skills’ tasks and the two mathematical attainment measures (n=63, df=60)  

Variable 2 3 4 5 6 7 8 9 

1.Age (months) .059 -.330
**

 .258
*
 .345

**
 .424

***
 .449

***
 .504

***
 .440

***
 

2.Precise Quantity Discrimination Skills’ Accuracy - -.296
*
 .431

***
 .207 .183 .197 .262

*
 .182 

3.Precise Quantity Discrimination Skills’ Trimmed RT -.293
*
 - -.431

***
 -.562

***
 -.453

***
 -.525

***
 -.631

***
 -.604

***
 

4.Approximate Quantity Discrimination Skills’ Accuracy .432
***

 -.379
**

 - .345
**

 .385
**

 .384
**

 .560
***

 .353
**

 

5.Knowledge of the Number Sequence .199 -.506
***

 .282
*
 - .541

***
 .646

***
 .724

***
 .649

***
 

6.Counting Objects .174 -.366
**

 .315
*
 .464

***
 - .534

***
 .690

***
 .586

***
 

7.Story Problems .191 -.447
***

 .310
*
 .586

***
 .425

***
 - .715

***
 .693

***
 

8.Numerical Operations WIAT-II
UK

 .270
*
 -.570

***
 .515

***
 .679

***
 .609

***
 .634

***
 - .711

***
 

9.Mathematical Reasoning WIAT-II
UK

 .173 -.541
***

 .276
*
 .590

***
 491

***
 .618

***
 .631

***
 - 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 
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All significant correlations are positive with the exception of the variables measuring 

children’s RTs, where correlations are negative, indicating that the older the children are, the 

faster they can respond to computerised discrimination tasks and the better they performed on 

the outcome measures. After controlling for children’s age in months, the predictor variables 

remain significantly correlated to each other. Children’s performance on each of the three 

Early Number Skills tasks remains significantly and modestly correlated to each other and 

performance on each of the two mathematical attainment measures also remains significantly 

and modestly correlated to each other. Regarding children’s performance on the quantity 

discrimination skills’ tasks, children’s accuracy on the Precise Quantity Discrimination skills 

task does not share significant variance with any of the Early Number Skills or with 

performance on the Mathematical Reasoning subtest of the mathematical attainment 

measures. In contrast, after controlling for age in months, Precise Quantity Discrimination 

Skills’ Trimmed RT shares significant variance with all outcome measures, the strength of 

these correlations being either modest or weak. Children’s Approximate Quantity 

Discrimination skills’ Accuracy correlates with all predictor variables and outcome measures 

before and after controlling for age in months, the strength of these correlations being either 

modest or weak. Children’s performances on each of the three Early Number Skills tasks 

relate modestly to each other after controlling for their age in months. Children’s 

performance on the mathematical attainment measures are highly correlated to each other 

after controlling for their age in months.  

 

5.4.3 Correlations and partial correlations for the Precise Quantity Discrimination Skills’ task 

with all the predictor variables and outcome measures 

5.4.3.1 Partial correlations for Baseline Trimmed RT with all the predictor variables and all 

the outcome measures 

Partial correlations controlling for participants’ age in months for Baseline Trimmed RT with 

all the predictor variables and all outcome measures were obtained (see table 5.9). 
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Table 5.9: Partial correlations for Baseline Trimmed RT with all predictor variables and outcome measures 

controlling for age (n=63, df=60) 

 Quantity Discrimination Skills Early Number Skills Maths attainment 

 PQDS 

Acc. 

PQDS 

Trimmed RT 

AQDS 

Acc. 
KNS CO SP NO MR 

Baseline 

Trimmed RT 
.024 .694

***
 -.338

**
 -.478

*
 -.433

***
 -.321

*
 -.562

***
 -.410

***
 

*p<=.05; **p<=.01; ***p<=.001 

 

After controlling for age in months, Baseline Trimmed RT shares significant variance with all 

predictor variables except for Precise Quantity Discrimination Skills’ Accuracy. Baseline 

Trimmed RT also shares significant variance with all outcome measures. The strength of all 

these correlations is modest or weak except for Precise Quantity Discrimination Skills’ 

Trimmed RT that shares a large amount of variance with Baseline Trimmed RT. Therefore, 

additional partial correlations controlling for participants’ age in months and Baseline 

Trimmed RT were conducted for Precise Quantity Discrimination Skills’ Trimmed RT and 

Accuracy with all the outcome measures (see table 5.10). 

Table 5.10: Partial correlations for Precise Quantity Discrimination Skills’ Accuracy and Trimmed RT with 

Approximate Quantity Discrimination Skills’ Accuracy and all outcome measures controlling for age and 

Baseline Trimmed RT (n=63, df=59) 

 Approximate QDS Acc. KNS CO SP NO MR 

Precise QDS Accuracy .467
***

 .240 .205 .210 .342
**

 .201 

Precise QDS Trimmed RT -.213 -.275
*
 -.101 -.329

**
 -.303

*
 -.391

**
 

*p<=.05; **p<=.01; ***p<=.001 

 

After controlling for age in months and Baseline Trimmed RT, Precise Quantity 

Discrimination skills’ Accuracy shares significant variance with Approximate Quantity 

Discrimination skills’ Accuracy and with performance on the Mathematical Reasoning 

subtest. After controlling for age in months and Baseline Trimmed RT, Precise Quantity 

Discrimination skills’ Trimmed RT still shares significant variance with children’s 

performance on the Knowledge of the Number Sequence task, the Story Problems task and 

both mathematical attainment measures. Children’s Precise Quantity Discrimination 

Trimmed RT after controlling for their Baseline Trimmed RT was used as a measure of their 

speed of precise non-symbolic numerical judgements for further analyses. 
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5.4.6 Regressions 

5.4.6.1 The relationships between the three Early Number Skills’ tasks and the two 

mathematical attainment measures 

Two different linear regression analyses for each mathematical attainment measure were 

conducted to explore whether children’s scores in the three Early Number Skills’ tasks could 

explain unique variance in their scores on the two different standardised mathematical 

attainment measures. The two regression models consisted of two blocks where age in 

months was always introduced in the first block and the three Early Number Skills’ tasks 

(Knowledge of Number Sequence, Counting Objects and Story Problems) were introduced 

together in the second block.  

 

 The Numerical Operations subtest 

In the first regression analysis, the raw scores of the Numerical Operations subtest were 

introduced as the criterion variable (see table 5.11).  

Table 5.11: Forced entry regression analysis examining the prediction of the raw score of the Numerical 

Operations subtest of the WIAT-II
UK

 from the scores in the Early Number Skills’ tasks over and above 

participants’ age in months. 

  B SE Beta t Sig. 

Block 1 F(1, 61)=20.720, p<.001      

 Age in months .177 .039 .504 4.552 .000 

Block 2 F(4, 58)=36.912, p<.001      

 Knowledge of Number Sequence .117 .033 .335 3.497 .001 

 Counting Objects .179 .052 .304 3.420 .001 

 Story Problems .140 .050 .275 2.792 .007 

Note. R² = .25 for block 1, ΔR²= .46 

 

 

Over and above children’s age in months, children’s performance on the Early Number Skills’ 

tasks together explained an additional 46.4% of children’s variance in the Numerical 

Operations subtest.  All three Early Number Skills were unique predictors. 

 

 The Mathematical Reasoning subtest 

In the second regression analysis, the raw scores of the Mathematical Reasoning subtest were 

introduced as the criterion variable (see table 5.12).  
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Table 5.12: Forced entry regression analysis examining the prediction of the raw score of the Mathematical 

Reasoning subtest of the WIAT-II
UK

 from the scores in the Early Number Skills’ tasks over and above 

participants’ age in months. 

  B SE Beta t Sig. 

Block 1 F(1, 61)=14.673, p<.001      

 Age .347 .091 .440 3.831 .000 

Block 2 F(4, 58)=.20.919, p<.001      

 Knowledge of Number Sequence .209 .090 .267 2.311 .024 

 Counting Objects .269 .141 .204 1.906 .062 

 Story Problems .420 .136 .368 3.099 .003 

Note. R² = .19 for block 1, ΔR²= .40   

 

Over and above children’s age in months, performance on the Early Number Skills’ tasks 

together explained an additional 39.7% of children’s variance on the Mathematical Reasoning 

subtest. Knowledge of the Number Sequence and Story Problems were unique predictors. 

 

5.4.6.2 The relationships between the two Quantity Discrimination Skills’ tasks and the three 

Early Number Skills’ tasks 

Three different linear regression analyses for each Early Number Skills’ task were conducted 

to explore whether children’s Precise Quantity Discrimination Skills’ Trimmed RT and 

Approximate Quantity Discrimination Skills’ Accuracy could explain unique variance in their 

performance on each of the standardised mathematical attainment measures. The two 

regression models consisted of two blocks where age in months and Baseline Trimmed RT 

were always introduced in the first block and Precise Quantity Discrimination Skills’ 

Trimmed RT and Approximate Quantity Discrimination Skills’ Accuracy were introduced 

together in the second block. Baseline Trimmed RT was introduced in the first step of the 

model so that individual differences in responding to non-numerical two-choice 

discrimination tasks was controlled for given that Precise Quantity Discrimination Skills’ 

Trimmed RT (and not accuracy) was used as a predictor variable. 

 

 Knowledge of the Number Sequence task 

A linear regression analysis was conducted to explore whether children’s Quantity 

Discrimination Skills could explain unique variance in their performance on the Knowledge 

of the Number Sequence task (see table 5.13). 
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Table 5.13: Forced entry regression analysis examining the prediction of Knowledge of Number Sequence from 

Precise QDS Trimmed RT and Approximate QDS Accuracy over and above age in months and Baseline 

Trimmed RT 

  B SE Beta t Sig. 

Block 1 F(2, 60)=14.128, p<.001      

 Age in months .274 .110 .246 2.253 .028 

 Baseline Trimmed RT -.013 .003 -.460 -4.216 .000 

Block 2 F(4, 58)=8.771, p=.080      

 Precise QDS Trimmed RT -.007 .003 -.310 -1.984 .052 

 Approximate QDS Accuracy .057 .080 .083 .711 .480 

Note. R² = .32 for block 1, ΔR²= .06  

 

Over and above children’s age in months and Baseline Trimmed RT, performance on the 

Quantity Discrimination Skills’ tasks together explained an additional 5.7% of children’s 

variance on the Knowledge of the Number Sequence task. However the additional variance 

explained was not statistically significant.  

 

 Counting Objects task 

A linear regression analysis was conducted to explore whether children’s Quantity 

Discrimination Skills could explain unique significant variance in their performance on the 

Counting Objects task (see table 5.14). 

Table 5.14: Forced entry regression analysis examining the prediction of Counting Objects from Precise QDS 

Trimmed RT and Approximate QDS Accuracy over and above age in months and Baseline Trimmed RT 

  B SE Beta t Sig. 

Block 1 F(2, 60)=15.010, p<.001      

 Age in months .202 .065 .337 3.124 .003 

 Baseline Trimmed RT -.007 .002 -.402 -3.721 .000 

Block 2 F(4, 58)=8.230, p=.280      

 Precise QDS Trimmed RT -.001 .002 -.074 -.467 .643 

 Approximate QDS Accuracy .067 .048 .166 1.409 .164 

Note. R²= .33 for block 1, ΔR²= .03 
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Over and above children’s age in months and Baseline Trimmed RT, children’s performance 

on the Quantity Discrimination Skills’ tasks together explained an additional 2.9% of 

children’s variance on the Counting Objects task. However the additional variance explained 

was not statistically significant.  

 

 Story Problems task 

A linear regression analysis was conducted to explore whether children’s Quantity 

Discrimination Skills could explain unique significant variance in their performance on the 

Story Problems task (see table 5.15). 

Table 5.15: Forced entry regression analysis examining the prediction of Counting Objects from Precise QDS 

Trimmed RT and Approximate QDS Accuracy over and above age in months and Baseline Trimmed RT 

  B SE Beta t Sig. 

Block 1 F(2, 60)=11.881, p<.001      

 Age in months .266 .077 .385 3.442 .001 

 Baseline Trimmed RT -.006 .002 -.294 -2.629 .011 

Block 2 F(4,58)=.8.869, p=.016      

 Precise QDS Trimmed RT -.005 .002 -.366 -2.350 .022 

 Approximate QDS Accuracy .071 .054 .153 1.310 .195 

Note. R² = .28 for block 1, ΔR²= .10 

 

Over and above children’s age in months and Baseline Trimmed RT, performance on the 

Quantity Discrimination Skills’ tasks together explained an additional 9.6% of children’s 

variance on the Story Problems task. The proportion of variance predicted was statistically 

significant and Precise Quantity Discrimination skills’ Trimmed RT was a unique predictor. 

 

5.4.6.3 The relationships between the two Quantity Discrimination Skills’ tasks and the two 

mathematical attainment measures 

Two different linear regression analyses for each mathematical attainment measure were 

conducted to explore whether children’s scores on the Quantity Discrimination Skills’ tasks 

could explain unique independent variance in their performance on each of the mathematical 

attainment measures. The two regression models consisted of two blocks where age in 

months and Baseline Trimmed RT were always introduced in the first block and the two 

Quantity Discrimination Skills’ tasks were introduced together in the second block.  
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 Numerical Operation subtest 

A linear regression analysis was conducted to explore whether children’s Quantity 

Discrimination Skills could explain unique significant variance in their performance on the 

Numerical Operations subtest (see table 5.16). 

Table 5.16: Forced entry regression analysis examining the prediction of the Numerical Operations subtest of 

the WIAT-II
UK

 from Precise QDS Trimmed RT and Approximate QDS Accuracy over and above age in months 

and Baseline Trimmed RT 

  B SE Beta t Sig. 

Block 1 F(2, 60)=28.698, p<.001      

 Age in months .139 .039 .367 3.607 .001 

 Baseline Trimmed RT -.005 .001 -.451 -4.437 .000 

Block 2 F(4, 58)=22.005, p=.001      

 Precise QDS Trimmed RT -.002 .001 -.236 -1.895 .063 

 Approximate QDS Accuracy .069 .022 .291 3.124 .003 

Note. R² = .49 for block 1, ΔR²= .11 

 

Over and above children’s age in months and Baseline Trimmed RT, performance on the 

Quantity Discrimination Skills’ tasks together explained an additional 11.4% of children’s 

variance on the Numerical Operations subtest. The proportion of variance predicted was 

statistically significant and Approximate Quantity Discrimination skills’ Accuracy was a 

unique predictor. 

 

 Mathematical Reasoning subtest 

A linear regression analysis was conducted to explore whether children’s Quantity 

Discrimination Skills could explain unique significant variance in their performance on the 

Mathematical Reasoning subtest (see table 5.17). 
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Table 5.17: Forced entry regression analysis examining the prediction of the Mathematical Reasoning subtest of 

the WIAT-II
UK

 from Precise QDS Trimmed RT and Approximate QDS Accuracy over and above age in months 

and Baseline Trimmed RT 

  B SE Beta t Sig. 

Block 1 F(2, 60)=14.742, p<.000      

 Age in months .283 .085 .359 3.316 .002 

 Baseline RT -.009 .002 -.377 -3.483 .001 

Block 2 F(4, 58)=11.212, p=.007      

 Precise QDS RT -.007 .002 -.450 -3.033 .004 

 Approximate QDS Accuracy .038 .059 .072 .649 .519 

Note. R² = .33 for block 1, ΔR²= .11 

 

Over and above children’s age in months and Baseline Trimmed RT, performance on the 

Quantity Discrimination Skills’ tasks together explained an additional 10.7% of children’s 

variance on the Mathematical Reasoning subtest. The proportion of variance predicted was 

statistically significant and Precise Quantity Discrimination skills’ Trimmed RT was a unique 

predictor. 

 

5.6 DISCUSSION 

This pilot study examined the validity of the novel tasks designed to be used in the 

longitudinal study, where the independent and unique longitudinal contributions of domain-

general and domain-specific cognitive skills on young children’s Early Number Skills and 

mathematical attainment was examined. This pilot study explored whether the three novel 

early number tasks provide valid and appropriate measures of the three developmental levels 

of early QNCs proposed by Krajewski and Schneider (2009). Also, it explored whether these 

three novel number tasks make unique and independent contributions to the two standardised 

mathematical attainment measures included in the study. In addition, this pilot study explored 

whether the two non-symbolic Quantity Discrimination Skills’ tasks designed to tap the two 

different core quantity systems proposed by Feigenson et al. (2004) provide accurate 

measures of these systems. It also explored whether they make unique and independent 

contributions to the three Early Number Skills tasks and to the two standardised mathematical 

attainment measures once children’s age and individual differences in responding to non-

numerical two-choice discrimination tasks was controlled for. 
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5.6.1 Criterion validity of the standardised attainment measures 

Participants’ scores on the Numerical Operations and Mathematical Reasoning subtests of the 

WIAT-II
UK

 are broadly similar to the UK average and provide a good spread of scores. 

However, participants’ reading attainment assessed with the Word Reading subtest of the 

WIAT-II
UK

 was below the UK average. This test, included to test the specificity of the 

relationships found in the present study, does not provide a valid accurate measure of 

children’s reading attainment because it is not indicative of their teacher-assessed 

performance or in line with their standardised mathematical attainment scores. A plausible 

explanation for these results is that in 26 of the first 30 items in this subtest (where a 

discontinue rule of seven consecutive incorrect or missing answers applies), participants are 

asked to report the letter name from a printed letter symbol. The vast majority of the children 

could identify the letter sound, but were unable to report the letter name because they were 

learning to read with the phonics method and being taught to produce letter sounds from a 

printed letter symbol not the letter names. Thus the Early Word Recognition subtest of the 

York Assessment of Reading for Comprehension (hereafter YARC) (Hulme et al., 2009) was 

used in the longitudinal study to test the specificity of the relations between the domain-

specific and domain-general cognitive predictors and the variables of interest.  

 

5.6.2 Criterion validity of the three novel Early Number Skills’ tasks 

The three early number tasks designed to assess the three levels of early QNCs proposed in 

Krajewski and Schneider´s (2009) theoretical model of early arithmetical development are 

highly correlated with each other but yet explain independent and unique variance in both of 

the standardised mathematical attainment measures (with the exception of the Counting 

Objects task that misses levels of significance when predicting performance on the 

Mathematical Reasoning subtest, p=0.062). Thus, they provide appropriate measures of the 

three distinct levels of QNCs at this age and their criterion validity is satisfactory. 

Nevertheless, the Knowledge of the Number Sequence task shows a negatively skewed 

distribution of scores and strong ceiling effects. Consequently, more difficult items were 

added to this task for the longitudinal study in order to obtain a better spread of scores. The 

scores’ distribution in the Counting Objects task is also negatively skewed although not 

severely and shows no ceiling effects. For these reasons and because at a practical level, 

making children count more than a hundred objects would consume valuable time during the 

data collection sessions, this task has not been modified for the longitudinal study. Although 



86 

 

the Story Problems task provided a good spread of scores, for the longitudinal study the 

researcher did not re-read the story to the child, not even if requested. Instead, participants 

were asked to focus on remembering information given and as a last resource to have a guess. 

This is because some children might not ask for repetition due to shyness while others would. 

Thus, in an attempt to provide more consistency with the administration procedures, 

participants listened to each story problem only once.  

 

5.6.3 Construct validity of the Quantity Discrimination Skills’ tasks 

The non-symbolic Precise Quantity Discrimination Skills’ task was designed to tap children’s 

Precise Number System functioning. It has been argued that the process of subitising depends 

on this particular system supporting abstract and precise numerical representations 

(Feigenson et al., 2004). Because children’s subitising range is about three or four discrete 

items (Arp et al., 2006; Benoit et al., 2004; Chi & Klahr, 1975; Fischer et al., 2008; Landerl 

et al., 2004; Schleifer & Landerl, 2011; Svenson & Sjöberg, 1978; Trick et al., 1996), the 

Precise Quantity Discrimination Skills’ task only presented sets containing up to three items. 

It was found that the total number of items presented had a significant effect on children’s 

numerical discriminations’ latancies in this task. However, if children were employing a 

serial counting strategy in order to respond a continuous linear increase with every additional 

dot presented on the screen would be expected. In contrast, it took children overall less time 

to discriminate one dot against three dots than one dot against two dots or two dots against 

three dots, suggesting that children were indeed employing an alternative quantification 

strategy different from vocal or sub-vocal counting and were relying on a parallel 

enumeration process. This explanation could account for the discontinuity in their latencies as 

the number of items increased. The fact that children’s individual latencies on a computerised 

two-choice non-numerical discrimination task were controlled for and that both sets to be 

compared were presented simultaneously makes it unlikely that these results are due to the 

efficacy of children’s domain-general cognitive systems. Also, because stimuli in the task 

were non-symbolic and a key respond method was used children’s performance is unlikely to 

be influenced by individual differences in knowledge of the formal number system.  

 

The non-symbolic Approximate Quantity Discrimination Skills’ task seems to efficiently tap 

children’s ANS precision for several reasons. First, pairs of non-symbolic sets in this task 

were presented simultaneously for 2,000 msec. and the smallest set presented in this task 
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contained five items. The average time for five- and six-year-olds to correctly enumerate an 

additional item outside the subitising range is approximately 1,000 msec. (Chi & Klahr, 1975; 

LeFevre et al., 2010; Svenson & Sjöberg, 1978; Trick et al., 1996). Therefore, if children had 

been relying on serial enumeration strategies (serial counting or a combination of subitising 

and serial counting) they would not have had enough time to make accurate numerical 

judgements. Second, a measure of participants’ ability to count discrete visual items with no 

time restriction was obtained (Counting Objects task). On average children could correctly 

count up to fifteen discrete items and in more than 55% of experimental trials on this task at 

least one of the sets contained more than fifteen dots (see table 5.2 in section 5.3.3.3). Third, 

children’s performance on this task shows the typical ratio-signature (decrease of correct 

responses as the numerical ratio difference between the numerical sets decreases) observed in 

previous studies conducted with young children (Halberda & Feigenson, 2008). Finally, 

children’s accuracy rates are fairly similar to those reported by Libertus et al. (2013) in which 

pre-schooler’s accuracy was 65.10%, with a standard deviation of 15.15. In the present study, 

the mean accuracy rate across the sample is 70%, with a standard deviation of 10.23 and 

children in the present sample were slightly older. For these reasons, the non-symbolic 

Approximate Quantity Discrimination skills’ task employed in the present study is considered 

to be tapping children’s Approximate Number System precision. Participants’ employment of 

other alternative quantification strategies such as serial counting could not have been 

sufficiently efficient to respond accurately.  

 

5.6.4 Relationships between Quantity Discrimination Skills’ tasks and the outcome measures  

Children’s Precise Quantity Discriminations skills’ Trimmed RT makes unique independent 

contributions to the Story Problems task of the Early Number Skills and to their performance 

on the Numerical Operations subtest. These results support Krajewski and Schneider’s (2009) 

theoretical proposal that early quantity discrimination skills contribute to children’s Level III 

QNCs. However, although included in their theoretical model, Krajewski and Schneider 

(2009) did not assess quantity discrimination skills to explore how they relate to the three 

levels of QNCs; this aspect makes the present study pioneering. Results also support previous 

studies where a relationship between children’s ability to precisely and accurately enumerate 

or discriminate small numerical representations and their mathematical attainment was found 

(Arp et al., 2006; Durand et al., 2005; Fischer et al., 2008; Landerl et al., 2004; LeFevre et al., 

2010; Schleifer & Landerl, 2011). Nevertheless, no relationship was found between 
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children’s Trimmed RT in making precise numerical discriminations over small quantities 

and their performance on the Mathematical Reasoning subtest, suggesting that the impact of 

these early quantitative skills might be relative to certain aspects of mathematical attainment 

but not all.  

 

In contrast, Approximate Quantity Discrimination Skills’ Accuracy failed to predict 

performance on any of the Early Number Skills’ tasks at a significant level but predicted their 

scores in the Numerical Operation subtest of mathematical attainment. These results are in 

line with previous findings from Nordman et al. (2009, September) where five-year-olds 

performance on a very similar non-symbolic approximate quantity discrimination task 

predicted their scores in the Numerical Operation mathematical attainment subtest. The 

relationship between approximate non-symbolic numerical discrimination skills and 

performance on standardised mathematical attainment measures is also in line with other 

recent studies that used different standardised attainment measures to the ones used in the 

present study (Gilmore, McCarthy, & Spelke, 2010; Libertus et al., 2011; Mazzocco et al., 

2011). It is worth noting that after controlling for age in months and Baseline Trimmed RT, 

Precise Quantity Discrimination Skills’ Trimmed RT and Approximate Quantity 

Discrimination Skills’ Accuracy did not share significant variance, suggesting they are 

independent measures. The fact that the two Quantity Discrimination Skills’ tasks relate 

differently to the two mathematical attainment measures further supports the idea that these 

two early quantity discrimination skills could work as distinct precursors of different 

mathematical abilities.  

 

5.6.5 Causality of the relationships identified 

The relationships found in this study are concurrent and therefore their causality cannot 

addressed; although it seems reasonable that early quantity discrimination skills are causal 

predictors of children’s learning of the formal number system and their mathematical 

attainment because number sense emerges early in life and prior to verbal skills or formal 

mathematical instruction (Antell & Keating, 1983; Bijeljac-Babic et al., 1993; Wynn, 1996; 

Xu, 2003; Xu et al., 2005), this concurrent study cannot fully support this view. It could be 

that better early number competence improves ANS acuity and that children’s learning of the 

formal number system helps developing early precise quantity discrimination skills. Only 

using longitudinal data can the causality of these relationships be examined to determine 
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whether children’s early quantitative skills are causal predictors of their later numerical 

competence and mathematical attainment.  
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6. LONGITUDINAL STUDY: RATIONALE, AIMS AND 

METHODOLOGY 

Krajewski and Schneider’s (2009) theoretical model of early arithmetical development was 

adopted for this longitudinal study as a general framework to explore how domain-general 

and domain-specific cognitive skills relate to children’s early number skills and to their 

mathematical attainment during the early stages of schooling. Krajewski and Schneider’s 

(2009) theoretical model proposes that children’s early quantity discrimination skills, 

phonological awareness and VSSP functioning are each independent early precursors of 

distinct QNCs. These researchers differentiate three distinct developmental levels of early 

QNCs; basic numerical skills (Level I), quantity to number-word linkage (Level II) and 

linking quantity relations with number-words (Level III). QNCs Level I refer to children’s 

ability to articulate the number-words and to their ability to recite the number-word sequence. 

This developmental level would be predicted by children’s phonological awareness because it 

facilitates their acquisition of language (Cain, 2010), and consequently facilitates the 

acquisition of number-words. QNCs Level II refer to children’s ability to use the acquired 

basic verbal numerical skills to refer to quantities, this developmental levels has two phases; 

imprecise quantity to number-word linkage (QNCs Level IIa), when children first refer to 

quantities imprecisely (“a bit”, “much”, “very much”) and precise quantity to number-word 

linkage (QNCs Level IIb), when children can refer to quantities using the exact number-

words that match that specific quantity (“one”, “twenty”, “a hundred”). QNCs Level II would 

be predicted by children’s quantity discrimination skills but also by their visuo-spatial STM 

skills, as these have been found to play a fundamental role in children’s ability to grasp the 

cardinality concept (Ansari et al., 2003). Last, QNCs Level III refer to children’s early 

calculation skills, when they understand that quantities can be composed and decomposed 

into other quantities and they can use number-words to express the outcome of simple 

arithmetic problems. This developmental level would also be predicted by children’s VSSP 

functioning and their quantity discrimination skills.  

 

As discussed in Chapter 1 of this thesis, Krajewski and Schneider (2009) partially tested their 

theoretical model. They explored how VSSP functioning and phonological awareness 

assessed at the start of kindergarten (five years and seven months) relate to their QNCs Level 

I at midway through kindergarten and to their QNCs Levels II and III at the end of 

kindergarten. They also explore how children’s three levels of QNCs relate to their 
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mathematical attainment three years later. Despite the fact that their theoretical model 

integrates quantity discrimination skills and makes predictions about how these skills relate to 

the distinct QNCs, no quantity discrimination skills tasks were included in their study. It was 

found that children’s phonological awareness significantly predicted children’s performance 

on QNCs Level I tasks. QNCs Level II and Level III tasks were best predicted by children’s 

VSSP functioning. However, because no quantity discrimination skills tasks were included in 

their study, no evidence of how children’s quantity discrimination skills relate to their later 

QNCs and mathematical achievement was provided.  

 

6.1 RATIONALE AND AIMS OF THE THESIS 

This longitudinal study uses Krajewski and Schneider’s (2009) theoretical model as a 

framework to simultaneously address the contribution that domain-general and domain-

specific cognitive skills make to young children’s early number skills and mathematical 

attainment. The current study has several aims.  

 

6.1.1 To explore the relationships between domain-general cognitive skills and the Early 

Number Skills 

First, it aims to explore whether phonological awareness and VSSP functioning differentially 

predict unique and independent variance in children’s later Early Number Skills. VSSP 

functioning facilitates the abstract representation and manipulation of quantities, linking 

quantities to number-words and is a good predictor of children’s early arithmetic skills 

(Ansari et al., 2003; Huttenlocher, Jordan, & Levine, 1994; Krajewski & Schneider, 2009; 

Rasmussen & Bisanz, 2005). Phonological awareness is a well-established precursor of 

reading (Badian, 2000; Bowey, 2005; Mann & Liberman, 1984) and also plays an important 

role in early mathematics development because some numerical tasks require accessing, 

retaining and manipulating phonological representations (Hecht et al., 2001; Simmons et al., 

2008). These two domain-general cognitive skills were selected for the study because 

Krajewski and Schneider (2009) found they make a significant contribution to children’s later 

performance on the distinct developmental levels of QNCs. In addition, phonological 

awareness and VSSP functioning together captured substantial variation in young children’s 

arithmetic performance a year later, over and above their concurrent vocabulary and 
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nonverbal reasoning (Simmons et al., 2008). Therefore, these two predictors seem to be key 

abilities that underpin mathematical success in young children.  

 

Multiple early number skills have been used in previous studies exploring the impact of 

children’s cognitive skills on their early numerical competence, however, only some of these 

studies categorise the tasks, usually into either verbal or non-verbal/quantitative tasks 

(LeFevre et al., 2010; Rasmussen & Bisanz, 2005). No coherent and consistent set of early 

number skills has yet been proposed to examine whether different cognitive skills relate to 

different types of early number skills. Krajewski and Schneider’s (2009) distinction of three 

developmental levels of QNCs provides a more specific classification for the study of 

children’s early number skills that is also supported by different developmental models of 

early mathematical competence (Fuson, 1988, 1992; Gelman & Gallistel, 1978; Wynn, 1992) 

and neuropsychological data (Dehaene & Cohen, 1997; Delazer & Butterworth, 1997). Three 

Early Number Skills’ tasks were designed to represent each of the three theoretical 

developmental levels of QNCs proposed by Krajewski and Schneider (2009). In the present 

study, in order to assess children’s QNCs Level I they were asked to recite the number-word 

sequence forward from different start points (Knowledge of the Number Sequence task). This 

task was purely verbal and no visual support was provided. To assess children’s QNCs Level 

II a counting task was administered where they were asked to report the exact number of 

discrete items visually presented to them (Counting Objects task). To assess QNCs Level III 

children were read an arithmetic problem in a story format where contextual but no concrete 

visual support for the answer was provided. In order to respond children were expected to 

make simple abstract calculations (additions and subtractions). Based on Krajewski and 

Schneider’s (2009) model, it was expected that children’s phonological awareness would 

make independent and unique longitudinal contributions to their performance on the 

Knowledge of the Number Sequence task over a six-month period and over an eighteen-

month period. It was also expected that children’s VSSP functioning would make 

independent and unique longitudinal contributions to their performance on the Counting 

Objects and Story Problems task over a six-month period and over an eighteen-month period. 
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6.1.2 To explore the relationships between the domain-general cognitive skills and the two 

mathematical attainment measures 

Standardised mathematical attainment tests usually include tasks which draw on a 

combination of different cognitive skills. Therefore, no distinction of the extent of the 

contribution that each cognitive skill makes to different aspects of children’s mathematical 

attainment can be made. Young children’s VSSP functioning has been found to be a good 

predictor of their performance on mathematical attainment tasks (Bull et al., 2008; DeSmedt 

et al., 2009; Simmons et al., 2008), and so has phonological awareness (Hecht et al., 2001; 

Simmons et al., 2008). However, the extent of their specific contributions to specific 

mathematical attainment tasks remains unclear due to the use of mixed tests to assess 

children’s mathematical attainment. Because reasoning about numerical information and 

solving written arithmetic problems have been found to tap distinct key aspects of 

mathematical achievement in young children (Nunes, Bryant, Barros, & Sylva, 2012), the 

present study uses the Mathematical Reasoning subtest and the Numerical Operations subtest 

of the WIAT-IIUK (Wechsler, 2002) to assess children’s performance on standardised 

mathematical attainment measures. These two measures were particularly selected because 

the majority of the items in the Mathematical Reasoning subtest focus particularly on the 

nature of the numerical relations and are verbally presented and/or require a verbal response 

from the child; therefore making heavy demands on verbal and quantitative skills. In contrast, 

the majority of the items in Numerical Operation subtest present printed arithmetic problems 

and little or no verbal instructions are given, therefore making heavy demands on visual and 

writing skills. The fact that these two mathematical attainment measures differ in presentation 

format, stimuli and response method allow determining the extent to which VSSP functioning 

and phonological awareness play differential roles in predicting children’s mathematical 

attainment.  

 

It was expected that both domain-general cognitive skills would predict children’s 

performance on the Mathematical Reasoning subtest because items in this test demand 

numerical and verbal processing and verbal responses from the child. It was expected that 

children’s VSSP functioning would predict their performance on the Numerical Operation 

subtest of the WIAT-IIUK because Camos (2008) and Simmons et al. (2012) found the VSSP 

functioning is involved in writing procedural rules. Although LeFevre et al. (2010) proposes 

that phonological processing skills contribute to number tasks because language is a symbolic 
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representational system and therefore similar rules apply when learning the formal number 

system, in the present study it was only expected that VSSP functioning would predict 

children’s performance on the Numerical Operation subtest of the WIAT-IIUK because in this 

test they would only need to access the semantic quantity representation but not the 

phonological representation from the printed symbolic number representations. 

 

6.1.3 To explore the relationships between domain-specific cognitive skills and the Early 

Number Skills 

The current study also includes two quantity discrimination skills’ tasks because as discussed 

in Chapters 2 and 3 of this thesis two distinct domain-specific quantity systems have been 

proposed; one for precise numerical representations and one for approximate numerical 

representations (Feigenson et al., 2004). Therefore, two computerised Quantity 

Discrimination Skills’ tasks were designed to provide appropriate distinct measures of 

children’s precise and approximate quantity discrimination skills. In both tasks, children 

viewed two non-symbolic quantities presented simultaneously on each side of the screen. To 

respond they had to press as fast as they could a left or right key matching the side on which 

the larger quantity appeared. Thus children’s performance on these two Quantity 

Discrimination Skills’ tasks is unlikely to be contaminated by their verbal skills, knowledge 

of the formal number system or working memory skills, this last could act as an extraneous 

variable when stimuli is presented serially (Gilmore et al., 2011).  

 

To obtain a measure of children’s precise quantity discrimination skills only arrays of up to 

three dots were presented until the child responded and their accuracy and RTs were recorded. 

Both children’s accuracy rates and RTs have previously been used as an index of their precise 

numerical representation skills. Because in this task stimuli were presented until the child 

responded, accuracy rates would not make a distinction between the children that were 

accurate and fast from the ones who were accurate but employed a not-as-efficient strategy. 

Thus, the mean RTs for all correct responses after eliminating the influence of outliers 

(responses taking longer than two times the interquartile range from the median for each child) 

was obtained (Precise QDS Trimmed RT). This data trimming was conducted in order to 

eliminate the influence of outliers due to children’s distractibility, rather than representing 

time needed to process numerical information (Butterworth, 2003; Gebuis et al., 2009; 

Libertus et al., 2011). In addition, children’s accuracy and RTs on a computerised two-choice 
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non-numerical discrimination task (Baseline) were also recorded and their mean RTs for all 

correct responses after eliminating the influence of outliers was also obtained (Baseline 

Trimmed RT). Children’s speed in discriminating small quantities was calculated by using 

their Precise Quantity Discrimination Skills’ Trimmed RT after controlling for their Baseline 

Trimmed RT. Controlling for children’s baseline speed helps to adjust their RTs when 

responding to numerical stimuli to their individual latencies in computerised tasks (see 

Butterworth, 2003).  

 

To obtain a measure of children’s Approximate Quantity Discrimination skills, children had 

to identify the larger of two non-symbolic large numerical sets within the limited duration of 

the stimuli presentation (2,000 msec.). The limited presentation time intended to prevent the 

use of verbal counting strategies so that children had to rely on their approximate quantity 

discrimination skills to respond. However, this time seems to be sufficient for young children 

to make approximate numerical judgements over non-symbolic quantities (Inglis et al., 2011). 

Because pre-schooler’s accuracy in a large non-symbolic quantity discrimination task has 

been found to be the most highly related estimate (above Weber fraction and RTs) with their 

maths ability measured with a standardised test (see Libertus et al., 2011) accuracy scores on 

this task were used for further analysis.  

 

Butterworth (1999, 2005, 2010) suggests that precise numerical discrimination skills serve as 

a foundation to our later number skills and basic arithmetic skills. Other views propose that 

large approximate numerical discrimination skills are the ones that support the later 

acquisition of early symbolic number skills (Barth et al., 2005; Condry & Spelke, 2008; 

Dehaene, 1997; Dehaene et al., 1998). However, there is limited evidence associating precise 

quantity discrimination skills with children’s early number skills. So far children’s speed in 

accurately quantifying non-symbolic arrays of up to three discrete items has been found to 

predict their ability to perform abstract arithmetic (LeFevre et al., 2010). However, the task 

used to assess children’s subitising skills demanded responding with a number-word and 

therefore verbal skills were involved to a certain extent. Also, no naming speed basline 

measure was controlled for. Thus this measure could potentially be contaminated by 

extraneous factors such as individual differences in verbal skills or individual latencies. 

Children’s ability to make approximate numerical judgements over non-symbolic quantities 

has been found to predict their performance on number tasks that demand accessing the 

number semantics (Piazza et al., 2010), their number sequence reciting task and other 
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numerical tasks (Mussolin et al., 2012). It was expected that children’s performance on both 

Quantity Discrimination Skills’ tasks would relate to their performance on the three Early 

Number Skills’ tasks, but due to the limited evidence examining these relationships and the 

fact that the two Quantity Discrimination Skills’ tasks are novel tasks specifically designed to 

eliminate contamination from extraneous variables, no further specific predictions could be 

made. The independent longitudinal contributions that each Quantity Discrimination Skill 

task makes to the different Early Number Skills over a six-month period and over an 

eighteen-month period were explored. 

 

6.1.4 To explore the relationships between the domain-specific cognitive skills and the two 

mathematical attainment measures 

The current study also aimed to explore whether the two distinct Quantity Discrimination 

Skills’ tasks predict unique variance of children’s performance on the two standardised 

mathematical attainment tasks selected for the study. Better (faster and/or more accurate) 

precise quantity discrimination skills over small quantities in young children have been 

associated with better mathematical attainment in studies comparing MLD and typically 

achieving children (Fischer et al., 2008; Landerl et al., 2004). Children’s accuracy on large 

non-symbolic approximate quantity discrimination tasks has also been associated with better 

mathematical performance (Halberda et al., 2008; Libertus et al., 2011; Mazzocco et al., 

2011), although not without controversy (Gilmore et al., 2013; Holloway & Ansari, 2009; 

Sasanguie et al., 2012; Sasanguie et al., 2013; Soltész et al., 2010). However, no study up 

until now has attempted to explore the independent and unique longitudinal contributions that 

each of these two Quantity Discrimination Skills’ tasks make to children’s mathematical 

attainment over a six-month period and over an eighteen-month period. The absence of 

studies exploring how these two core systems relate to children’s mathematical achievement 

has already been highlighted in recent literature (Libertus et al., 2011). Presumably, if these 

two quantity discrimination skills rely on different domain-specific number systems 

(Feigenson et al., 2004), they could support different aspects of children’s later mathematical 

attainment, but no evidence of this presumption has been explored up to this date.  
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6.1.5 To explore the domain-general and the domain-specific cognitive skills’ unique 

contributions to the three Early Number Skills and to the two mathematical attainment 

measures 

The absence of studies exploring how domain-specific and domain-general cognitive skills 

relate to children mathematical achievement has been recently stated (Raghubar et al., 2010). 

The present study therefore explores the independent and unique contributions that the two 

types of precursors included in the study (domain-general and domain-specific cognitive 

skills) make to children’s Early Number Skills and to the different mathematical attainment 

measures included in the study over a six-month period and over an eighteen-month period. 

Both types of precursors were expected to make independent and unique contributions to 

children’s Early Number Skills and mathematical attainment. However, due to the lack of 

studies exploring the impact of these two groups of precursors simultaneously, no specific or 

further predictions could be made nor whether their contributions would be consistent over 

time. It could be that in the presence of domain-general cognitive skills, quantity 

discrimination skills do no longer predict unique variance in children’s performance on the 

variables of interest, or indeed vice-versa.  

 

6.1.6 To explore the specificity of the relationships between cognitive precursors and 

mathematical outcomes 

The Early Word Recognition subtest of the YARC Early Reading Test (Hulme et al., 2009) 

was included in the study to determine the specificity of the relationship between the 

precursors and the variables of interest. Children’s phonological awareness is a domain-

general cognitive skill that has been identified as a solid predictor of their latter reading 

attainment (Gathercole et al., 2005; Hecht et al., 2001). It was therefore expected that 

children’s reading performance would be predicted by their phonological awareness. 

However, because the two core systems for numerical representations have been claimed to 

be domain-specific and independent from language (Dehaene, 1992; Dehaene & Cohen, 1995; 

Dehaene et al., 2003; Gelman & Butterworth, 2005), children’s performance on the two 

Quantity Discrimination Skills’ tasks are expected to predict their performance on the Early 

Number Skills’ tasks and mathematical attainment measures, but not their reading attainment. 

If results challenge these expectations, and Quantity Discrimination Skills can also predict 

later reading attainment in young children, it could be that quantity discrimination skills are 

in fact broader precursors of later scholastic attainment. 
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6.1.7 To explore the domain-general and the domain-specific cognitive skills’ unique 

contributions to the three Early Number Skills and the two mathematical attainment measures 

over and above General Conceptual Abilities 

Two additional measures tapping children’s verbal conceptual ability (Naming Vocabulary) 

and non-verbal conceptual ability (Picture Similarities) from the BAS-II II
UK

 (Elliott, Smith, 

& McCulloch, 1996) were also included in the study with the aim of determining whether the 

predictor variables are specific precursors of early mathematical development or whether 

they do not predict later mathematical performance over and above General Conceptual 

Abilities. Although the contamination of extraneous variables was minimised by using novel 

quantity discrimination tasks that improve previous methodologies used to tap the two 

distinct domain-specific systems, tasks’ demands could unintentionally tap additional 

cognitive abilities as well as the variables of interest. Therefore, measures of children’s 

General Conceptual Abilities are controlled for to eliminate possible ambiguity in the 

findings due to uncontrolled shared variance between the variables of interest and general 

cognitive abilities that typically predict scholastic success. Results from these analyses would 

determine whether the domain-specific and the domain-general cognitive skills are specific 

precursors of early mathematical development or whether they do not predict later 

mathematical performance over and above General Conceptual Abilities. 

 

6.1.8 To explore the causality of the relationships between cognitive predictors and outcome 

measures 

Longitudinal studies exploring the relationships between domain-general cognitive skills and 

mathematical performance suggest that phonological awareness and VSSP functioning are 

causal predictors of children’s later mathematical attainment (Simmons et al., 2008). 

However, only one longitudinal study explored the causality of the relationships between 

phonological awareness and later mathematical attainment in young children, confirming that 

phonological awareness is a causal predictor of school-aged children’s mathematical 

attainment (Hecht et al., 2001). No study has explored whether VSSP functioning is a causal 

predictor of children’s early number skills and mathematical attainment. Regarding quantity 

discrimination skills, only Libertus et al. (2013) have confirmed the role of non-symbolic 

approximate quantity discrimination skills as causal predictors of mathematical attainment 

over a six-month period in pre-schoolers. However, no study has explored whether precise 
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quantity discrimination skills are a causal predictor of children’s early number skills and 

mathematical attainment. 

 

The present study explores whether children’s domain-specific and domain-general cognitive 

skills assessed when children have undergone very limited formal mathematical instruction 

can predict children’s growth in the Early Number Skills and mathematical attainment 

measures. Analyses of growth are highly restrictive because they control for auto-regressor 

effects (tendency of a variable to later predict itself). Thus growth analyses examine whether 

the predictor variable can explain significant variance in the criterion variable over and above 

predicting itself. It is worth noting that if results from growth analyses are significant, 

emphasis can be placed in the contention that the predictor variable can predict growth in the 

criterion variable and consequently, is acting as a causal predictor of the criterion variable. 

Because children’s performance on Early Number Skills’ tasks and on mathematical 

attainment measures may not necessarily depend on the same cognitive processes at different 

points over development it is important to explore the contributions of such cognitive 

processes while controlling for the autoregressive effects so that their contributions are not 

inflated (see Bowey, 2005 for further clarification on analyses of growth).  

 

It was expected that performance on the Quantity Discrimination Skills’ tasks would predict 

children’s growth in the Early Number Skills and mathematical attainment measures over an 

eighteen-month period because these skills are present in new-borns (Antell & Keating, 1983; 

Bijeljac-Babic et al., 1993; Wynn, 1996), in adults with a very restricted lexicon for number 

words (Pica et al., 2004) and even other animals species (Hanus & Call, 2007; Hauser et al., 

1995; Pepperberg & Gordon, 2005). Because quantity discrimination skills seem to emerge 

early in life prior to verbal abilities or formal instruction they could influence later 

mathematical development, but this does not mean they should. It could be that learning to 

use the formal number system contributes to make more precise and accurate quantity 

discriminations. Because research shows that quantity discrimination skills develop over time 

(Fischer et al., 2008; Halberda & Feigenson, 2008), it could also be that these skills and learnt 

number skills contribute to one another throughout the early years and that their relationship 

is to a certain extent reciprocal. Results of the growth analyses shed light upon whether early 

quantity discrimination skills are in fact causal predictors of children’s early number skills 

and mathematical attainment. Phonological awareness has been found to be a causal 

precursor of school-aged children’s mathematical attainment (Hecht et al., 2001) and 
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approximate non-symbolic quantity discrimination skills’ accuracy has been found to be a 

causal precursor of mathematical attainment over a six-month period in preschool years 

(Libertus et al., 2013). Thus, the domain-specific and the domain-general cognitive 

precursors were expected to be causal predictors of children’s Early Number Skills and 

mathematical attainment. 

 

6.2 METHODOLOGY 

6.2.1 Participants 

A total of 131 children from Reception Year classes of five primary schools in the North 

West of England were recruited for the study. Data was collected in three time points; 

children completed two time points while in Reception Year (at the start and at the end of the 

academic year) and one time point while in Year 1 (at midway through the academic year). 

Time 1 (T1) assessments took place between the months of November and January and 129 

children (69 males) successfully completed all tasks. Two females were unable to complete 

some of the tasks; one due to school absence on the scheduled assessment days and one who 

did not desire to continue with the assessments. Time 2 (T2) assessments took place between 

the months of May and July and 128 children (68 males) successfully completed all the tasks. 

One male was absent during the scheduled assessment days. Time 3 (T3) assessments took 

place between the months of January and March and 126 children (68 males) successfully 

completed all the tasks. Two females were absence because their families moved abroad (see 

table 6.1 for details of age and gender distribution). Data from children who did not complete 

all tasks at a certain time point has not been included from the incomplete time point onwards.  

Table 6.1: Descriptive statistics of participants’ age and gender in T1, T2 and T3 and overall sample 

  Age in months  Gender   

Time Year Mean (in months) SD Range  Males Females  Total 

T1  Reception 4 years, 8 months (56.9m)  4.05 50 – 64  69 60  129 

T2  Reception 5 years, 2 months (62.5m) 3.93 56 – 70  68 60  128 

T3 Year 1 5 years, 10 months (70.9m) 3.97 64 - 78  68 58  126 

Note. Months’ information is given as units 
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The socio-economic level of children varied across the sample (see the proportion of pupils 

eligible for Free School Meals at each participating school based on the last schools Ofsted 

reports prior commencing the study, http://www.ofsted.gov.uk) (see table 6.2).  

Table 6.2: Proportion of pupils eligible for Free School Meals and number of participants attending the schools 

at each time point 

Proportion entitled to FSM Schools Participants T1 Participants T2 Participants T3 

Below UK Average 2 72 72 70 

In line with UK Average 2 39 39 39 

Above UK Average 1 18 17 17 

 

6.2.2 Procedure 

Written consent was gained from the schools´ head-teachers and from the parents or 

guardians of the children. Prior to any assessment, a brief explanation of the study and the 

tasks was given to each child individually and his or her verbal assent was needed to 

commence. Children were assessed individually in sessions of approximately twenty minutes 

in a quiet area of the school during school hours. At the first time point, participants had their 

domain-general cognitive skills (VSSP functioning and phonological awareness), domain-

specific cognitive skills (non-symbolic Precise and Approximate Quantity Discrimination 

Skills), Early Number Skills (Knowledge of the Number Sequence, Counting Objects and 

Story Problems) and mathematical attainment (The Numerical Operations and Mathematical 

Reasoning subtests of the Wechsler Individual Achievement Test, Wechsler, 2002) assessed 

in three different sessions. At the second time point, participants’ Early Number Skills and 

mathematical attainment were assessed in two different sessions. At the third time point, 

participants’ non-symbolic Precise and Approximate Quantity discrimination Skills, Early 

Number Skills, mathematical attainment, verbal and non-verbal general conceptual ability 

and reading attainment were assessed in three different sessions (see table 6.3). At the first 

and third time points computer tasks were combined with verbal and/or pencil-and-paper 

tasks in each session. The order of the presentation of the sessions for all time points was 

randomised across children to counterbalance effects of order.  

 

 

 

 

http://www.ofsted.gov.uk/
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Table 6.3: Tasks administered at each time point 

 SKILL  TASK  T1  T2  T3  
P

re
d

ic
to

r 
V

a
ri

a
b

le
s Domain-general 

Cognitive Skills  

Block recall and Mazes memory (AWMA)  √  

  

Phoneme segmentation and Rhyme awareness  (PIPA)  √  

  

Domain-specific 

Cognitive Skills 

Baseline Reaction Time (BL) √ 

 

√ 

Precise Quantity Discrimination (PQD) √ 

 

√ 

Approximate Quantity Discrimination (AQD) √ 

 

√ 

O
u

tc
o

m
e 

V
a

ri
a

b
le

s 

Early Number skills  

Knowledge of the number sequence (KNS)  √  √  √  

Counting Objects (CO)  √  √  √  

Story Problems (SP)  √  √  √  

Mathematical 

Attainment  

Mathematical Reasoning subtest (WIAT-II
UK

)  √  √  √  

Numerical Operations subtest (WIAT-II
UK

)  √  √  √  

G
en

er
ic

 

V
a

ri
a

b
le

s 

General Conceptual 

Ability 

Picture similarities (BAS II
UK

)  

  

√  

Naming vocabulary (BAS II
UK

)  

  

√  

S
p

ec
if

ic
it

y
 

V
a

ri
a

b
le

 

Reading Attainment  Early word recognition (YARC)  

  

√  

 

6.2.3 Tasks 

6.2.3.1 Predictor Variables 

 Domain-general cognitive skills tasks 

Four tasks were administered to assess children’s domain-general cognitive skills. To assess 

children’s VSSP functioning two working memory tasks from the Automatic Working 

Memory Assessment (Alloway, 2007) (hereafter AWMA) were administered: 

 

1. Block recall subtest: In this test the child sees an image presenting eight blocks and a 

finger tapping a certain number of blocks sequentially. The child is then encouraged 

to use his or her finger to tap the same blocks in the same order.  
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2. Mazes memory subtest: In this test the child is presented with a schematic figure of a 

man inside a black maze and a red line shows the path to get out. Three seconds later, 

the path line disappears and the child is encouraged to use his or her finger to trace the 

route that the line indicated.  

 

Both tasks consist of three practice trials and seven levels of increasing difficulty 

presenting up to six different items. The test automatically terminates after three incorrect 

answers on items of the same level of difficulty are given. 

 

To assess children’s phonological awareness two oral subtests from the Preschool and 

Primary Inventory of Phonological Awareness (hereafter PIPA) (Dodd, Crosbie, MacIntosh, 

Teitzel, & Ozanne, 2000) were administered: 

 

1. Syllable segmentation: This test assesses the ability to process real words sub-

lexically. The experimenter says a word while showing a picture of five drums, the 

child is then asked to reproduce the word by touching a drum for each syllable. This 

test consists of four practice items and twelve experimental items.  

 

2. Rhyme awareness: This test assesses the ability to identify words that are 

phonologically similar. The experimenter presents four pictures of different objects 

and names them to the child who is asked to identify the object’s name that does not 

rhyme with the others. This test consists of two practice items and twelve 

experimental items.  

 

For both tasks all items are administered and one point is given for each correct response. 

 

 Domain-specific cognitive skills tasks 

The Baseline task, the Precise Quantity Discrimination Skills’ task and the Approximate 

Quantity Discrimination Skills’ task were administered in different sessions at the first and 

third time points of data collection. The Baseline task and the Precise Quantity 

Discrimination Skills’ task administered in the pilot study were administered in this 

longitudinal study with no modifications. For the Approximate Quantity Discrimination 

Skills’ task, ten pairs (five mirrored pairs) were presented for each numerical ratio difference 
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depicted in the task. This modification was done to obtain a balanced measure of children’s 

accuracy on each numerical ratio presented (see table 6.4) because in the pilot an unequal 

numbers of trials were presented from each ratio bin. 

Table 6.4: Approximate Quantity Discrimination Skills’ task design: Stimulus pairing for each Weber fraction 

(numerical ratio difference) depicted and number of trials 

Weber 

Fraction 
RO 

Stimulus pairings 

(left answer required) 

Stimulus pairings 

(right answer required) 

0.5 1.5 9:6 15:10 18:12 27:18 30:20 6:9 10:15 12:18 18:27 20:30 

0.4 1.4 7:5 14:10 21:15 28:20 35:25 5:7 10:14 15:21 20:28 25:35 

0.3 1.3 9:7 13:10 18:14 26:20 30:23 7:9 10:13 14:18 20:26 23:30 

0.2 1.2 6:5 12:10 18:15 24:20 30:35 5:6 10:12 15:18 20:24 25:30 

0.1 1.1 11:10 12:11 22:20 32:29 33:30 10:11                                            11:12 20:22              29:32 30:33 

0.0 1.0 5:5 9:9 15:15 24:24 30:30 7:7 10:10 22:22 25:25 31:31 

Note1. Weber Fraction value = (n2-n1)/n1, n2 being the larger set 

Note2. Numeric ratio (RO) = n2 /n1, n2 being the larger set 

 

6.2.3.2 Outcome Variables 

 Early Number Skills’ tasks 

The Knowledge of the Number Sequence of the Early Number Skills’ tasks was modified for 

this longitudinal study from the initial design in the pilot study by adding more difficult items 

to prevent ceiling effects; children were asked to recite the number sequence from one and 

were stopped at number twenty, then asked to recite the number sequence starting from 

numbers 25, 65, 95 and 155. The same scoring and stopping rules from the pilot study were 

applied. In addition, for the Story Problems task the researcher only read the story to the child 

once. This was done in an attempt to provide more consistency in the administration 

procedures because some children may not verbally express their need to listen the story 

again while others might. 

 

 Mathematical attainment tasks 

The Numerical Operations and The Mathematical Reasoning subtests from the Wechsler 

Individual Achievement Test Second Edition (Wechsler, 2002) were administered in two 

different sessions. The standardised norms for administration and scoring of the WIAT-IIUK 

were applied. 
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 Generic variables 

To assess children’s verbal and non-verbal general conceptual ability two tasks from the 

Early Years Core Scales of the BAS-II II
UK

 (Elliott et al., 1996) were administered in 

different sessions: 

 

1. Picture similarities: Measures non-verbal reasoning ability. The child is shown a row 

of four different pictures and given a card with an extra picture. The child is 

encouraged to place the card under the picture that better relates to it. 

 

2. Naming vocabulary: Assesses spoken vocabulary. The child is shown pictures of 

different objects in sequential order and encouraged to name them. 

 

Specific stopping rules are applied for each of the subtests depending on the child’s age 

and the number of correct and incorrect responses given. 

 

 Reading 

To assess children’s reading attainment, the Early Word Recognition subtest of the YARC 

Early Reading Test (Hulme et al., 2009) was administered. This test assesses single-word 

reading, it contains fifteen words that are phonemically regular and fifteen words that are 

phonemically irregular. One point is given for each word read correctly and the test is 

terminated after ten consecutive reading errors. This test was selected with a view to obtain 

an accurate measure of children’s reading attainment.  
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7. LONGITUDINAL STUDY: 

EXPLORATION OF THE DATA AND PRELIMINARY DATA 

ANALYSES 

This chapter presents the results from the preliminary data exploration analyses conducted. 

First, descriptive statistics for all variables included in the longitudinal study are presented 

and discussed. Then, concurrent correlations and partial correlations controlling for age in 

months for all variables administered at each time point are presented and discussed. Last, 

correlations and partial correlations controlling for age in months for reading attainment with 

all predictor variables are presented and discussed.  

 

7.1 DESCRIPTIVE STATISTICS 

Descriptive statistics of children’s raw scores, and standardised, percentile, ability and T-

scores where applicable, were obtained for each task administered. 

 

7.1.1 Predictor variables: Domain-general cognitive skills (administered at Time 1): 

Descriptive statistics of children’s raw scores, standardised scores and percentiles scores for 

the Syllable Segmentation and Rhyme Awareness subtests of PIPA (Dodd et al., 2000) were 

obtained (see table 7.1) 

Table 7.1: Descriptive statistics for the Syllable Segmentation and Rhyme Awareness subtests of the PIPA at T1 

(n=129) 

Phonological awareness (PIPA) Mean SD ZSkewness ZKurtosis Min Max 

Syllable Segmentation (raw scores) 4.56 2.36 1.81 0.33 0 11 

Syllable Segmentation (standard scores) 8.45 2.21 1.05 2.81 2 15 

Syllable Segmentation (percentile) 33.20 21.80 0.21 1 0 95 

Rhyme awareness (raw scores) 5.00 2.53 1.71 -1.62 0 11 

Rhyme awareness (standard scores) 9.31 2.13 2.09 -0.33 5 15 

Rhyme awareness (percentile) 41.98 23.46 2.09 -1.71 5 95 

 

Children’s raw scores on the Syllable Segmentation and Rhyme Awareness subtests are 

normally distributed. The standard scores on both tasks denote normal phonological 

awareness skills in the sample overall, however, the percentile scores’ means for both tasks 
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are below average, especially for the Syllable Segmentation subtest. This could be due to the 

fact that assessments took place while participants’ were being taught to identify and isolate 

words’ phonemes and found it particularly difficult to change to identify and isolate words’ 

syllables.  

 

Descriptive statistics of children’s raw scores, standardised and percentiles scores for the 

Block Recall and Mazes Memory subtests of the AWMA (Alloway, 2007) were obtained (see 

table 7.2). 

Table 7.2: Descriptive statistics for the Block Recall and Mazes Memory subtests of the Automatic AWMA at 

T1 (n=129) 

AWMA subtests Mean SD ZSkewness ZKurtosis Min Max 

Block Recall (raw scores) 10.78 3.16 0.76 3.95 0 22 

Block Recall (standard scores) 95.74 16.47 -12.38 33.59 0 138 

Block Recall (percentile) 41.18 24.56 2.81 -0.95 0 99 

Mazes Memory (raw scores) 6.05 4.53 2.48 -0.45 0 21 

Mazes Memory (standard scores) 85.97 32.43 -8.95 6.62 0 137 

Mazes Memory (percentile) 39.19 26.64 1.48 -1.98 0 99 

 

Children’s raw scores on the Block Recall and Mazes Memory subtests are not normally 

distributed. Block Recall raw scores show a leptokurtic distribution, however, standard and 

percentile scores are within the average limits. Mazes Memory raw scores are positively 

skewed however, standard and percentile scores are within the average limits.  

 

Principal Component Analysis (hereafter PCA) was conducted with the four domain-general 

cognitive skills to reduce the number of predictors. The raw scores for Syllable Segmentation, 

Rhyme Awareness, Block Recall and Mazes Memory subtests were entered into a two fixed-

factor principal component analysis (see table 7.3 for correlations between variables).  
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Table 7.3: Correlations for the raw scores of the Syllable Segmentation and Rhyme Awareness subtests of the 

PIPA and Mazes Memory and Block Recall subtests of the AWMA (n=129)  

 PIPA  

Rhyme Awareness  

AWMA  

Mazes Memory  

AWMA  

Block Recall  

PIPA Syllable Segmentation  .220
**

 .118 .155
*
 

PIPA Rhyme Awareness  - .137 .216
**

 

AWMA Mazes Memory   - .279
***

 

*p<=.05; **p<=.01; ***p<=.001 (Sig. 1-tailed) 

 

Kaiser-Meyer-Olkin value was acceptable (KMO=.62) according to Kaiser (1974). Bartlett’s 

test of sphericity was significant (χ²(6)=25.44, p<.001), indicating that it is appropriate to 

conduct factor analysis on these variables. Results from the PCA analysis were a first factor 

that included the AWMA measures; with factor loadings of .74 (R²=.54) for Block Recall 

and .84 (R²=.70) for Mazes Memory and a second factor that included the PIPA measures; 

with factor loadings of .81 (R²=.66) for Syllable Segmentation and .72 (R²=.52) for Rhyme 

Awareness. All factor loadings are greater than .36, and the squared factor loading values are 

greater than 0.4 and therefore represent substantive significant values (Stevens, 1992). The 

resulting scores from the PCA analysis were used as VSSP functioning and phonological 

awareness variables for further analyses. Descriptive statistics of children’s VSSP 

functioning and phonological awareness scores from the PCA analysis were obtained (see 

table 7.4). 

Table 7.4: Descriptive statistics for the visuo-spatial sketch-pad functioning (VSSP) and phonological awareness 

(PA) scores from the PCA analysis (n=129) 

Variable ZSkewness ZKurtosis Min Max 

VSSP 2.86 1.69 -1.91 3.34 

PA 1.86 -0.45 -2.24 2.58 

Note. For all PCA variables the mean is 0 and the SD is 1 

 

7.1.2 Predictor variables: Domain-specific cognitive skills tasks (administered at Time 1 and 

Time 3): 

Tests of difference were conducted when the same task was administered at two different 

time points to explore whether scores were significantly different at each time point. Because 

the study sample is sufficiently large and therefore the assumption of normal distribution is 
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not required (see Lumley et al., 2002), related samples t-tests were conducted to compare the 

scores between time points. 

 

7.1.2.1 Baseline task and Precise Quantity Discrimination Skills’ tasks 

As in the pilot study, the mean RTs for the Baseline (BL) task and for the Precise Quantity 

Discrimination Skills’ (Precise QDS) task were obtained calculating the mean RTs for all 

correct responses for each child. Baseline Trimmed RT and the Precise Quantity 

Discrimination Skills’ Trimmed RT values were obtained calculating the mean RTs for all 

correct responses taking less than two times the interquartile range from the median for each 

child. This was done in order to eliminate the influence of outliers due to children’s 

distractibility, rather than representing the time needed to process numerical information (see 

appendix 1 for differences in Baseline data distribution prior and post data trimming at Time 

1 and at Time 3, and appendix 2 for differences in Precise Quantity Discrimination Skills’ 

data distribution prior and post data trimming at Time 1 and Time 3). 

Descriptive statistics of children’s accuracy and Trimmed RT in the Baseline task at Time 1 

and at Time 3 were obtained (see table 7.1) 

Table 7.1: Descriptive statistics of children’s accuracy scores and Trimmed RT in the Baseline task (BL) task at 

T1 (n=129) and at T3 (n=126) 

 

Children’s accuracy scores in the Baseline task were not normally distributed neither at Time 

1 (D (126) = .233, p<.001), or at Time 3 (D (126) =.338, p<.001). Children’s were 

significantly more accurate on this task as they got older (t=-5.138, df=125, p<.001). 

Children’s Baseline Trimmed RT was also not normally distributed neither at Time 1 (D (125) 

= .122, p<.001), or at Time 3 (D (125) =.099, p<.005). Children’s were significantly faster on 

this task as they got older (t=8.709, df= 124, p<.001). Only baseline Trimmed RT was used 

as a control variable because it aimed to control for the individual differences in responding 

to non-numerical two-choice discrimination tasks when Precise Quantity Discrimination 

Skills’ Trimmed RT (and not accuracy) was used as a predictor variable. 

Baseline Task N Mean SD ZSkewness ZKurtosis Min. Max. 

BL Accuracy (max.12) T1 129 10.55 1.90 -11.05 19.40 0 12 

BL Accuracy (max.12) T3 126 11.45 0.91 -11.77 20.26 7 12 

BL Trimmed RT (msec.) T1 128 888.37 289.50 7.48 8.31 309.66 2111.25 

BL Trimmed RT  (msec.) T3 126 679.30 152.42 8.23 1.32 453.55 1465.10 
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Descriptive statistics of children’s accuracy scores and trimmed RTs in the Precise Quantity 

Discrimination Skills’ task at Time 1 and at Time 3 were also obtained (see table 7.2). 

Table 7.2: Descriptive statistics for accuracy and Trimmed RT in the Precise Quantity Discrimination Skills’ 

(PQDS) task at T1 and at T3 

 

Children’s accuracy scores in the Precise Quantity Discrimination Skills’ task were not 

normally distributed either at Time 1 (D (126) = .247, p<.001), or at Time 3 (D (126) = .214, 

p<.001). Children were significantly more accurate on this task as they got older (t=-2.303, 

df=125, p<.05). Children’s Trimmed RT in the Precise Quantity Discrimination Skills’ task 

were not normally distributed at Time 1 (D (126) = .170, p<.001), but they were normally 

distributed at Time 3 (D (126) =.075, p=.077). Children were significantly faster on this task 

as they got older (t=8.830, df= 125, p<.001).  

 

Further analyses on children’s accuracy rates and Precise Quantity Discrimination Skills were 

conducted. First, children’s accuracy scores were analysed depending on the total number of 

dots presented in the trial; three dots (one against two dots), four dots (one against three dots) 

and five dots (two against three dots) to explore whether levels of difficulty differed 

significantly across the different types of trials. Children’s accuracy scores for each trial type 

at Time 1 were not normally distributed neither for three dots (D (129) =.289<.001), four dots 

(D (129)=.399<.001) or five dots (D(129)=.230,<.001). Data failed to meet sphericity 

assumptions (χ
2 

(2) =26.39, p<.001) so values given are following Greenhouse Geisser 

corrections (ε=.84). Significant effects are followed by paired comparisons under Bonferroni 

correction. There was a significant effect of the number of dots presented in the trial on 

children’s accuracy rates F(1.68, 215.56)=32.59, p<.001). Children were significantly more 

accurate on trials presenting four dots (M=11.25, SD=1.41) than on trials presenting three 

dots (M=10.98, SD=1.56), and on these they were significantly more accurate than on trials 

Precise QDS N Mean SD ZSkewness ZKurtosis Min. Max. 

PQDS Accuracy (max.36) T1 129 32.59 4.52 -8.67 6.31 18 36 

PQDS Accuracy (max.36) T3 126 33.61 2.82 -8.59 9.79 22 36 

PQDS Trimmed RT (msec.) T1 129 1555.25 796.82 12.38 18.88 521.06 4953.54 

PQDS Trimmed RT (msec.) T3 126 932.72 172.12 3.77 3.07 577.59 1587.16 
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presenting five dots (M=10.35, SD=2.01). There was evidence for linear (F(1,128)=26.20, 

p<.001) and non-linear (F(1,128)=40.872, p<.001) trends in the data.  

 

Children’s accuracy scores for each type of trial at Time 3 were not normally distributed 

neither for three dots (D (126) = .355<.001), four dots (D (126) =.436<.001) or five dots (D 

(126) =.225,<.001). Data failed to meet sphericity assumptions (χ
2 

(2)=.12.91, p<.01) so 

values given are following Greenhouse Geisser corrections (ε=.910). Significant effects are 

followed by paired comparisons under Bonferroni correction. There was a significant effect 

of the number of dots presented in the trial on children’s accuracy rates F(1.820, 227.504) 

=38.730, p<.001). Children were significantly more accurate on trials presenting three dots 

(M=11.36, SD=1.00) and four dots (M=11.58, SD=.98) than on trials presenting presenting 

five dots (M=10.67, SD=1.46). Accuracy rates on trials presenting three and four dots were 

not significantly different from each other. There was evidence for linear (F(1,125)=35.154, 

p<.001) and non-linear (F(1,125)=43.871, p<.001) trends in the data. 
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Figure 7.1: Accuracy rates for the PQDS’ task when the total number of dots presented on the screen were 3 (1 

against 2 and 2 against 1), 4 (1 against 3 and 3 against 1) and 5 (2 against 3 and 3 against 2), regardless the side 

where the correct answer was presented at T1 and T3  

 

Second, children’s Precise Quantity Discrimination Skills’ Trimmed RT was analysed 

depending on the total number of dots presented in the trial; three dots (one against two dots), 

four dots (one against three dots) and five dots (two against three dots) to explore whether 

they employed different enumeration strategies to respond to these trials. Children’s Precise 

Quantity Discrimination Skills’ Trimmed RT for each type of trial at Time 1 was not 

normally distributed neither for three dots (D (129) = .212, p<.001), four dots (D (129) = .168, 

p<.001) or five dots (D (129) = .225, p<.001). Data failed to meet sphericity assumptions (χ
2 

(2)=16.24, p<.001) so values given are following Greenhouse Geisser corrections (ε=.89). 

Significant effects are followed by paired comparisons under Bonferroni correction. There 

was a significant effect of the number of dots presented in the trial on children’s Precise 

Quantity Discrimination Skills’ Trimmed RT F(1.79, 228.56) = 13.27, p<.001). Children 

were significantly faster on trials presenting four dots (M=1425.87, SD=707.91), than on 

trials presenting three dots (M=1566.26, SD=998.69), and on these they were significantly 
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faster than on trials presenting five dots (M=1742.34, SD=1038.36). There was evidence for 

linear (F(1,128)=6.202, p<.05) and non-linear (F(1,128)=27.009, p<.001) trends in the data.  

 

Children’s Precise Quantity Discrimination Skills’ Trimmed RT at Time 3 were normally 

distributed for trials presenting three dots (D (126) = .070, p>.05) and four dots (D (126) 

= .072, p>.05) and not normally distributed for trials presenting five dots (D (126) = .084, 

p<.05). Data failed to meet sphericity assumptions (χ
2 

(2)=16.29, p<.001) so values given are 

following Greenhouse Geisser corrections (ε=.89). There was a significant effect of the 

number of dots presented in the trial on children’s Precise Quantity Discrimination Skills’ 

Trimmed RT F(1.78, 222.60) = 170.97, p<.001). Children were significantly faster in trials 

presenting four dots (M=874.86, SD=163.33), than on trials presenting three dots (M=899.01, 

SD=169.13), and on these they were significantly faster than on trials presenting five dots 

(M=1051.93, SD=220.99). There was evidence for linear (F(1,125)=188.851, p<.001) and 

non-linear (F(1,125)=146.881, p<.001) trends in the data. 

 

If children employed a serial counting strategy to solve this task, a significant increase in 

their Precise Quantity Discrimination Skills’ Trimmed RT would be expected with every new 

dot presented, as it would be an additional item to be counted. Children employed the same or 

even less time to make numerical judgements between one against three dots than one against 

two dots. This suggests that children were probably employing a parallel strategy rather than 

a serial verbal counting strategy when making numerical discriminations over arrays 

presenting one against two dots and arrays presenting one against three dots. The time 

children employed in making numerical judgements between two against three dots was at 

both time points significantly longer than the time they employed when they were asked to 

discriminate one against two dots, suggesting that at least some children could be employing 

serial counting to accurately respond to these trials. It is also worth noting that not only RTs 

decreased from Time 1 to Time 3 in this task but also that the difference in time needed to 

make numerical judgements over arrays presenting one against two dots and arrays 

presenting one against three dots significantly decreases from Time 1 to Time 3, to the point 

that at time three, the difference in time between these two types of trials is very subtle (see 

figures 7.6). Children’s Precise Quantity Discrimination Skills’ Trimmed RT at Time 1 will 

be used for further analyses so that influence of outliers due to distractibility is minimised. In 

addition, their Baseline Trimmed RT will also be controlled for so that their individual 

latencies in making accurate non-numerical discriminations cannot contaminate the results.  
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Figure 7.2: Trimmed RT in the Precise Quantity Discrimination task when the total number of dots presented on 

the screen were 3 (1 against 2 and 2 against 1), 4 (1 against 3 and 3 against 1) and 5 (2 against 3 and 3 against 2), 

irrespective of the side where the correct answer was presented at T1 and T3  

 
 

7.1.2.2 Approximate Quantity Discrimination Skills’ task  

The total number of correct responses given with exception of the pairs depicting the same 

number of dots on both arrays (Weber 0, ratio 1) at Time 1 and Time 3 was obtained for each 

child (see table 7.3). 

Table 7.3: Descriptive statistics for the Approximate Quantity Discrimination Skills’ (AQDS) task at T1 and T3 

(max.100) 

Approximate QDS N Mean SD ZSkewness ZKurtosis Min. Max. 

AQDS Accuracy - T1 129 59.29 10.84 -1.19 -1.50 29 79 

AQDS Accuracy - T3 126 70.65 9.92 -3.27 1.58 40 88 

 

Children’s accuracy scores in the Approximate Quantity Discrimination Skills’ task were 

normally distributed at Time 1 (D (126) = .072, p=.18), and negatively skewed at Time 3 (D 
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(126) = .086, p=.182). Children’s were significantly more accurate on this task when they 

were older (t=10.906, df= 125, p<.001). There are no floor or ceiling effects at any time point.  

 

The number of leftward responses for each ratio difference (Weber function) depicted in the 

task was analysed taking into account the side where the correct response was presented. As 

expected, children’s accuracy rates fall into a Weber’s Law pattern; the proportion of 

accurate responses (represented in Z-scores) decreases as the ratio difference decreases from 

zero to five (Weber function increases) and increases as the ratio difference increases from 

zero to five (Weber function decreases) at both time points (see Figures 7.3 and 7.4). 
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Figures 7.3 and 7.4: Children’s proportion of leftward responses for the five pairs presented depicting each Weber value on the AQDS task at T1  (on the left) and T3 (on the 

right) 
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At both time points children performed better when the numerical ratio difference between 

the two arrays was large (Weber 5) than when the numerical ratio difference between the two 

arrays was small (Weber 1), regardless the side where the correct response was presented. 

Graphs also reveal a general tendency to response with the right hand. The variance in 

children’s responses on the five different pairs depicting different numerical ratio values on 

each side decreases from Time 1 to Time 3, suggesting that children’s approximate quantity 

discrimination skills improve over time.  

 

A partial correlation controlling for age in months and Baseline Trimmed RT at Time 1 was 

conducted to explore whether children’s Precise Quantity Discrimination Skills’ Trimmed RT 

was related to their Approximate Quantity Discrimination Skills’ Accuracy. There was no 

significant relationship between these two measures (r = -.079, p (two-tailed) =.379) (see 

tables 7.15 and 7.16 in section 7.2.1). Consequently it is not appropriate to create a single 

composite variable with these two predictor variables. 

 

7.1.3 Outcome variables 

7.1.3.1 Early Number Skills’ tasks (Administered at Times 1, 2 and 3): 

The three Early Number Skills’ tasks are novel tasks and are not standardised. They were 

designed to tap the three distinct developmental levels of QNCs proposed by Krajewski and 

Schneider (2009) at three different time points. It was expected that they would capture 

children’s improvement on these skills over time by showing an increase in their accuracy 

while avoiding flooring and ceiling effects. Analyses of variance were conducted when the 

same task was administered at three different time points to explore whether scores were 

significantly different at each time point. Because the study sample is sufficiently large and 

therefore assumption of Normal distribution is not required (see Lumley, Diehr et al. 2002), 

repeated measures ANOVA were conducted to compare scores between time points. 

 

 Knowledge of the Number Sequence (KNS) 

Descriptive statistics for children’s total scores on the Knowledge of the Number Sequence 

task (KNS) at each time point were obtained (see table 7.8). 
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Table 7.8: Descriptive statistics for the Knowledge of the Number Sequence task (QNC Level I) at T1, T2 and T3.  

Knowledge of the Number Sequence N Mean SD ZSkewness ZKurtosis Min Max 

KNS - T1 (min. 0, max.50) 129 24.10 9.36 4.24 0.57 9 48 

KNS - T2 (min. 0, max.50) 128 31.49 10.34 0.28 -2.69 8 50 

KNS - T3 (min. 0, max.50) 126 39.56 10.23 -4.45 -1.16 15 50 

 

Children’s accuracy rates in the Knowledge of Number Sequence task were not normally 

distributed neither at Time 1 (D (129) = .18, p<.001), Time 2 (D (128) = .13, 001) or Time 3 

(D (126) = .24, p<.001). Data failed to meet sphericity assumptions (χ
2 

(2)=9.688, p<.01) so 

values given are following Greenhouse Geisser corrections (ε=.93). Children scored 

significantly higher in this task as they got older, F(1.86, 232.525) = 141.759, p<.001). 

Although additional items were added to the initial task administered in the pilot, at Time 3 

there are subtle ceiling effects. 

 

 Counting Objects (CO) 

Descriptive statistics for children’s total scores on the Counting Objects (CO) task at each 

time point task were obtained (see table 7.9) 

Table 7.9: Descriptive statistics for the Counting Objects task (QNC Level II) at T1, T2 and T3 

Counting Objects (CO) N Mean SD ZSkewness ZKurtosis Min Max 

CO - T1 (min. 0, max.20) 129 8.16 3.56 0.38 -2.09 1 17 

CO - T2 (min. 0, max.20) 128 10.80 3.50 -2.28 -0.40 1 19 

CO - T3 (min. 0, max.20) 126 13.14 3.59 -3.86 .95 2 19 

Note 1. Means stand for 15 (8.16), 18 (10.80) and 25 (13.14) discrete items counted correctly (see table 5.3 in 

section 5.3.4.1 for further clarification). 

 

Children’s accuracy rates in the Counting Objects task were not normally distributed neither 

at Time 1 (D (129) = .10, p<.01), Time 2 (D (128) = .14, p<.001) or Time 3 (D (126) = .13, 

p<.001). Data met sphericity assumptions (χ
2 

(2)=2.432, p=.296). Children scored higher in 

this task as they got older, F(1.96, 245.237) = 150.327, p<.001). There are no floor or ceiling 

effects at any time point. 
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 Story Problems (SP) 

Descriptive statistics for children’s total scores on the Story Problems (SP) task at each time 

point task were obtained (see table 7.10) 

Table 7.10: Descriptive statistics for the Story Problems task (QNCs Level III) at T1, T2 and T3 (min. 0, max. 20) 

Story Problems (SP) N Mean SD ZSkewness ZKurtosis Min Max 

SP - T1 (min. 0, max. 20) 129 3.19 1.89 6.23 8.67 0 12 

SP - T2 (min. 0, max. 20) 128 4.88 2.94 4.90 2.95 0 16 

SP – T3 (min. 0, max. 20) 126 8.40 4.10 0.27 -2.18 0 18 

 

Children’s accuracy rates in the Story Problems task were not normally distributed (D (126) 

neither at Time 1 (D (129) = .18, p<.01), Time 2 (D (128) = .17, p<.001) or Time 3 (D (126) 

= .12, p<.001). Data failed to meet sphericity assumptions (χ
2 

(2)=19.99, p<.001) so values 

given are following Greenhouse Geissser corrections (ε=.87). Children scored higher in this 

task as they got older, F(1.741, 217.590) = 146.401, p<.001). There are no floor or ceiling 

effects at any time point. 

 

7.1.3.2 Standardised mathematical attainment measures (Administered at Times 1, 2 and 3): 

For both mathematical attainment subtests of the WIAT-II (Wechsler, 2002), descriptive 

statistics for the standard scores are based on a sub-sample of 51 and 78 children at Time 1 

and Time 2 respectively, as the rest of the children in the sample (78 and 41 children, 

respectively) were too young for the test norms to be applied. The norms could be applied to 

all children at Time 3. 

 

 Mathematical Reasoning subtest WIAT-IIUK (MR WIAT-IIUK) 

Descriptive statistics for the raw scores and standard scores for the Mathematical Reasoning 

subtest of the WIAT-II
UK

 at Time 1, 2 and 3 were obtained (see table 7.11). 
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Table 7.11: Descriptive statistics for the Mathematical Reasoning subtest (MR WIAT-II
UK

) at T1, T2 and T3 

Mathematical Reasoning N Mean SD ZSkewness ZKurtosis Min Max 

MR WIAT-II
UK

 raw scores T1 129 10.85 3.33 1.19 0.05 4 21 

MR WIAT-II
UK

 standard T1 51 100.90 8.74 -1.94 2.06 79 123 

MR WIAT-II
UK

 raw scores T2 128 14.63 4.12 -0.57 -0.95 4 25 

MR WIAT-II
UK

 standard T2 87 108.13 10.78 -2.00 0.94 76 132 

MR WIAT-II
UK

 raw scores T3 126 18.59 4.42 0.54 1.02 6 32 

MR WIAT-II
UK

 standard T3 126 102.87 12.70 -1.09 -0.30 70 132 

 

Children’s accuracy raw scores on the Mathematical Reasoning subtest WIAT-II
UK

 were 

normally distributed at Time 2 (D (126)=.061, p=.200) but not normally distributed at Time 1 

(D (126)=.097, p<.01) or at Time 3 (D (126)=.082, p<.05). Data met sphericity assumptions 

(χ
2 

(2)=3.417, p=.181). Children scored significantly higher as they got older, F(2,250) = 

301.276, p<.001). Children’s performance is broadly similar to the UK average at every time 

point.  

 

 Numerical Operations subtest WIAT-IIUK (NO WIAT-IIUK) 

Descriptive statistics for the raw scores and standard scores of the Numerical Operation 

subtest of the WIAT-II
UK

 were obtained (see table 7.12). 

Table 7.12: Descriptive statistics for the Numerical Operation subtest (NO WIAT-II
UK

) at T1, T2 and T3 

Numerical Operations N Mean SD ZSkewness ZKurtosis Min Max 

NO WIAT-II
UK

 raw scores T1 129 4.84 2.11 -2.95 -1.31 0 8 

NO WIAT-II
UK

 standard T1 51 96.90 7.99 -2.18 0.35 78 109 

NO WIAT-II
UK

 raw scores T2 128 6.92 1.74 -1.86 3.09 0 11 

NO WIAT-II
UK

 standard T2 87 101.15 8.63 1.11 -1.00 83 120 

NO WIAT-II
UK

 raw scores T3 126 8.32 1.94 -1.41 -1.32 4 13 

NO WIAT-II
UK

 standard T3 126 97.59 10.10 -1.90 0.53 68 120 

 

Children’s accuracy raw scores on the Mathematical Reasoning subtest WIAT-II
UK

 were not 

normally distributed neither at Time 1 (D (129) = =.17, p<.001), Time 2 (D (128) = .17, 

p<.001) or Time 3 (D (126) = .13, p<.001). Data met sphericity assumptions (χ
2 

(2)=3.506, 
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p=.173). Children scored higher as they got older, F(2, 250) = 194.190, p<.001). There are no 

floor or ceiling effects at any time point. Overall, children’s performance is broadly similar to 

the UK average at every time point.  

 

7.1.4 Generic and Specificity variables (Administered at Time 3) 

7.1.4.1 Generic variables: Verbal and non-verbal general conceptual ability  

Descriptive statistics for the ability scores and T-scores of the Picture Similarities subtest and 

the Naming Vocabulary subtest of the BAS-II
UK

 (Elliott et al., 1996) at Time 3 were obtained 

(see table 7.13). Ability scores are standardised scores with an average of 100 and a standard 

deviation of fifteen. T-scores are scaled scores between one and a hundred, the average range 

being between 43 and 56 (see BAS-II
UK 

scoring manual for further information). 

Table 7.13: Descriptive statistics for the Picture Similarities subtest and the Naming Vocabulary subtest of the 

BAS-II
UK

 at T3 (n= 126) 

British Ability Scales II Mean SD ZSkewness ZKurtosis Min Max 

Picture Similarities  BAS-II
UK

 ability scores 87.31 8.56 -4.09 14.60 41 111 

Picture Similarities  BAS-II
UK

 T-scores 55.65 8.45 2.14 1.72 28 80 

Naming Vocabulary BAS-II
UK

 ability scores 116.64 14.07 .32 1.88 78 161 

Naming Vocabulary BAS-II
UK

 T-scores 56.09 10.40 -0.23 0.69 26 80 

 

Children’s ability scores on the Picture Similarities subtest are negatively skewed but their T-

scores on this test are normally distributed. Children’s ability scores and T-scores on the 

Naming Vocabulary subtest are normally distributed. Overall, children’s performance on 

these two subtests is broadly similar to the national average. Children’s ability scores on both 

tests were used for further analysis.  

 

7.1.4.2 Specificity variable: Reading Attainment  

Descriptive statistics for the raw scores and standard scores of the Single-word Reading 

subtest of the YARC Early Word Recognition Test (Hulme et al., 2009) at Time 3 were 

obtained (see table 7.14). 
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Table 7.14: Descriptive statistics for the single-word reading test of the YARC Early Reading Test at T3 (n= 126) 

YARC Early Reading Test Mean SD ZSkewness ZKurtosis Min Max 

Single-word reading raw scores 19.63 7.25 -1.36 -2.21 4 30 

Single-word reading standard scores 104.66 11.77 -0.68 -0.91 74 127 

 

Children’s raw scores show a leptokurtic distribution; however standard scores are normally 

distributed.  Children’s performance on this task is broadly similar to the UK average. 

Children’s raw scores were used for further analyses. 

 

7.2 CONCURRENT CORRELATIONS AND PARTIAL CORRELATIONS 

Correlations, and partial correlations controlling for age in months for all variables 

administered at each time point were obtained. Because the study sample is sufficiently large 

and therefore assumption of normal distribution is not required (see Lumley et al., 2002), 

Pearson’s Product Moment was conducted for the concurrent correlations. Age in months 

was controlled for because it was significantly correlated with all four predictor variables 

(Precise Quantity Discrimination Trimmed RT, Approximate Quantity Discrimination 

Accuracy, VSSP and PA) at Time 1. Additional partial correlations at Time 1 and at Time 3 

were conducted for children’s Precise Quantity Discrimination Trimmed RT controlling for 

their age in months and Baseline Trimmed RT to explore whether children’s Precise Quantity 

Discrimination Trimmed RT was related to their performance on the outcome measures once 

their Baseline Trimmed RT was accounted for.  

 

7.2.1 Concurrent correlations and partial correlations controlling for age at Time 1 

Concurrent correlations and partial correlations controlling for participants’ age in months at 

Time 1 (and also controlling for Baseline Trimmed RT at Time 1 for PQDS Trimmed RT) for 

all tasks administered at Time 1 were conducted (see tables 7.15 and 7.16).  
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Table 7.15: Correlations (above the diagonal, n=129) and partial correlations controlling for age in months at T1 (below the diagonal, df=125) for the baseline (BL) accuracy 

and Trimmed RT, the Precise Quantity Discrimination Skills’ (PQDS) accuracy and Trimmed RT, the Approximate Quantity Discrimination Skills’ (AQDS) accuracy, VSSP 

functioning (VSSP), phonological awareness (PA), the Early Number Skills (KNS, CO, SP) Mathematical Reasoning subtest of the WIAT II raw scores (MR WIAT-II
UK

) 

and Numerical Operations subtest of the WIAT-II
UK

 raw scores (NO WIAT-II
UK

) at T1.  

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

Age (months) -.012 -.285
***

 .103 -.338
***

 .298
***

 .335
***

 .236
**

 .404
***

 .212
*
 .184

*
 .293

***
 .364

***
 

1.BL Accuracy - .222
*
 .056 -.036 .190

*
 .115 .085 .179

*
 .111 .071 .076 .154 

2.BL Trimmed RT .224
*
 - .055 .392

***
 -.152 -.174

*
 -.209

*
 -.116 -.182

*
 -.009 -.100 -.271

**
 

3.PQDS Accuracy .094 .089 - -.009 .299
***

 .191
*
 .083 .156 .168 .106 .351

***
 .256

**
 

4.PQDS Trimmed RT -.044 .328
***

 .027 - -.190
*
 -.257

**
 -.192

*
 -.259

**
 -.319

***
 -.143 -.186

*
 -.331

***
 

5.AQDS Accuracy .173 -.073 .283
***

 -.098 - .238
**

 .194
*
 .320

***
 .263

**
 .138 .277

***
 .376

***
 

6.VSSP .101 -.088 .167 -.161 .153 - .000 .161 .221
*
 .098 .298

***
 .401

***
 

7.PA .046 -.153 .061 -.123 .133 -.086 - .395
***

 .270
**

 .263
**

 .302
***

 .339
***

 

8.Knowledge of the 

Number Sequence 
.155 .000 .125 -.142 .229

**
 .029 .337

***
 - .470

***
 .340

***
 .429

***
 .469

***
 

9.Counting objects .076 -.130 .151 -.269
**

 .214
*
 .163 .231

**
 .430

***
 - .177

*
 .453

***
 .455

***
 

10.Story Problems .083 -.046 .089 -.088 .089 .039 .230
**

 .296
***

 .143 - .312
***

 .283
***

 

11.MR WIAT-II
UK

 .086 -.018 .338
***

 -.096 .208
*
 .222

*
 .250

**
 .355

***
 .418

***
 .275

**
 - .604

***
 

12.NO WIAT-II
UK

 .078 -.186
*
 .236

**
 -.241

**
 .301

***
 .318

***
 .279

***
 .378

***
 .415

***
 .236

**
 .558

***
 - 
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Table 7.16: Partial correlations controlling for age in months at T1 and for the Baseline Trimmed RT at T1for the Precise Quantity Discrimination Skills (PQDS) Trimmed RT 

with baseline (BL) accuracy, the Precise Quantity Discrimination Skills’ (PQDS) accuracy, the Approximate Quantity Discrimination Skills’ (AQDS) accuracy, VSSP 

functioning (VSSP), phonological awareness (PA), Early Number Skills (KNS, CO, SP), Mathematical Reasoning of the WIAT-II
UK

 raw scores (MR WIAT-II
UK

) and 

Numerical Operations of the WIAT-II
UK

 raw scores (NO WIAT II) at T1 (n= 129, df = 124) 

 

BL 

Accuracy 

PQDS 

Accuracy 

AQDS 

Accuracy 
VSSP PA KNS CO SP 

MR 

WIAT-II
UK

 

NO 

WIAT-II
UK

 

PQDS Trimmed RT -.128 -.002 -.079 -.141 -.078 -.150 -.242
**

 -.109 -.096 -.194
*
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 
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All significant correlations are positive with exception of the variables measuring children’s 

RTs, in this case correlations are negative, indicating that the older the children are, the faster 

they can respond to computerised discrimination tasks and the better they perform on the 

outcome measures. Age in months significantly correlates with all variables expect with 

Precise Quantity Discrimination Skills’ Accuracy. After controlling for children’s age in 

months, none of the predictor variables remain significantly correlated to each other. 

Children’s performances on the three Early Number Skills’ tasks remain significantly 

correlated to each other with exception of the Counting Objects task with the Story Problems 

task. The strength of these correlations is modest for the Knowledge of the Number Sequence 

task with the Counting Object task and weak for the Knowledge of the Number Sequence 

with Story Problems task. The mathematical attainment measures remain significantly and 

modestly correlated to each other after controlling for participants’ age. Regarding children’s 

performance on the Quantity Discrimination Skills’ tasks, children’s Precise Quantity 

Discrimination Skills’ Trimmed RT remains significantly correlated to their performance on 

the Counting Objects task but not with their performance on the Knowledge of the Number 

Sequence or Story Problems tasks neither after controlling for their age, or after controlling 

for their age and Baseline Trimmed RT. However, children’s Approximate Quantity 

Discrimination Skills’ Accuracy remains significantly correlated to their performance on the 

Knowledge of the Number Sequence and Counting Objects task. The strength of all these 

correlations is weak.  

 

Children’s performances on each of the three Early Number Skills’ tasks still share 

significant variance with performance on the two mathematical attainment measures after 

controlling for age. The strength of these correlations varies from weak to modest. Regarding 

children’s domain-general cognitive skills, while VSSP functioning does not share significant 

variance with any of the three Early Number Skills’ tasks after controlling for age, their 

phonological awareness remains significantly correlated with their performance on the three 

Early Number Skills’ tasks. However, the strength of these correlations is weak. Also, 

children’s domain-general and domain-specific cognitive skills remain significantly 

correlated to their performance on both mathematical attainment measures after controlling 

for their age with exception of performance on the Precise Quantity Discrimination Trimmed 

RT that does no longer share any significant variance with their performance on the 

Mathematical Reasoning subtest. The strength of all partial correlations for the domain-

general and the domain-specific cognitive skills are weak. 
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7.2.2 Concurrent correlations and partial correlations controlling for age at Time 2 

Concurrent correlations and partial correlations controlling for participants’ age in months at 

Time 2 for all tasks administered at Time 2 were conducted (see table 7.17).  

Table 7.17: Correlations (above the diagonal) and partial correlations controlling for age in months at T2 (below 

the diagonal) for the Early Number Skills’ tasks and mathematical attainment measures administered at T2 

(n=128, df=125) 

Task  KNS CO SP MR WIAT-II
UK

 NO WIAT-II
UK

 

Age In Months .434
***

 .207
*
 .280

***
 .357

***
 .307

***
 

Knowledge of the Number Sequence  - .415
***

 .457
***

 .471
***

 .440
***

 

Counting objects  .369
***

 - .305
***

 .436
***

 .476
***

 

Story Problems  .387
***

 .263
**

 - .558
***

 .480
***

 

Mathematical Reasoning WIAT-II
UK

 .376
***

 .396
***

 .511
***

 - .547
***

 

Numerical Operations WIAT-II
UK

 .357
***

 443
***

 .431
***

 .492
***

 - 

*p<=.05; **p<=.01; ***p<=.001 

 

Age in months significantly correlates with all variables administered at Time 2. After 

controlling for children’s age in months performances on all three Early Number Skills’ tasks 

remain weakly correlated to each other. The mathematical attainment measures remain 

modestly correlated to each other. Children’s performances on each of the Early Number 

Skills’ tasks also remain correlated to their performance on both mathematical attainment 

measures. The strength of these partial correlations varies from modest to weak. 

 

 7.2.3 Concurrent correlations and partial correlations controlling for age at Time 3 

Concurrent correlations and partial correlations controlling for participants’ age in months at 

Time 3 (and also controlling for Baseline Trimmed RT at Time 3 for PQDS Trimmed RT) 

were conducted (see table 7.18). 
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Table 7.18: Correlations (above the diagonal, n=126) and partial correlations controlling for age in months at T3 (below the diagonal, df=123) for the baseline (BL) accuracy 

and Trimmed RT, the Precise Quantity Discrimination Skills’ (PQDS) Accuracy and Trimmed RT, the Approximate Quantity Discrimination Skills’ (AQDS) Accuracy, the 

Early Number Skills’ tasks (KNS, CO, SP), Mathematical Reasoning (MR WIAT-II
UK

) and Numerical Operations (NO WIAT-II
UK

) raw scores, single-word reading scores 

(YARC), Picture Similarities (PS BAS-II
UK

) and Naming Vocabulary  (NV BAS-II II
UK

) at T3. 

*p<=.05; **p<=.01; ***p<=.001 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Age In Months -.006 -.343
***

 .095 -.358
***

 .105 .168 .120 .342
***

 .306
***

 .388
***

 .272
**

 .069 .108 

1.BL Accuracy - .052 .166 .129 .077 .196
*
 .218

*
 .016 .063 .075 .094 -.029 .063 

2.BL Trimmed RT .053 - -.060 .435
***

 -.129 -.231
**

 -.187
*
 -.380

***
 -.395

***
 -.366

***
 -.301

***
 -.060 -.090 

3.PQDS Accuracy .168 -.029 - .369
***

 .267
**

 .227
*
 .227

*
 .270

**
 .252

**
 .232

**
 .182

*
 .107 .218

*
 

4.PQDS Trimmed RT .136 .356
***

 .434
***

 - -.160 -.137 -.016 -.190
*
 -.227

*
 -.178

*
 -.203

*
 -.078 -.146 

5.AQDS Accuracy .078 -.100 .259
**

 -.132 - .187
*
 .217

*
 .333

***
 .430

***
 .233

**
 .140 .118 .259

**
 

6.Knowledge of the 

Number Sequence 
.200

*
 -.187 .215

*
 -.084 .172 - .412

***
 .425

***
 .310

***
 .344

***
 .498

***
 .030 .140 

7.Counting objects .220
*
 -.157 .218

*
 .030 .207

*
 .400

***
 - .226

*
 .307

***
 .335

***
 .326

***
 -.001 .199

*
 

8.Story Problems .019 -.297
***

 .254
**

 -.077 .318
**

 .397
***

 .199
*
 - .608

***
 .613

***
 .483

***
 .140 .233

**
 

9.MR WIAT-II
UK

 .068 -.324
***

 .235
**

 -.132 .420
***

 .276
**

 .286
***

 .563
***

 - .396
***

 .367
***

 .159 .368
***

 

10.NO WIAT-II
UK

 .083 -.269
**

 .213
*
 -.046 .210

*
 .307

***
 .315

***
 .555

***
 .316

***
 - .525

***
 .029 .183

*
 

11.YARC .100 -.230
**

 .163 -.117 .116 .477
***

 .307
***

 .431
***

 .310
***

 .473
***

 - -.087 .225
*
 

12.PS BAS-II IIUK
 -.029 -.038 .102 -.057 .112 .018 -.009 .124 .145 .002 -.110 - .086 

13.NV BAS-II
UK

 .064 -.057 .210
*
 -.116 .251

**
 .125 .188

*
 .210

*
 .354

***
 .154 .204

*
 .079 - 
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Table 7.19: Partial correlations controlling for age in months and Baseline Trimmed RT at T3 and for the Precise Quantity Discrimination Skills’ (PQDS) Trimmed RT with 

Baseline (BL) Accuracy, the Precise Quantity Discrimination Skills’ (PQDS) Accuracy, the Approximate Quantity Discrimination Skills’ (AQDS) Accuracy, the Early 

Number Skills (KNS, CO, SP), Mathematical Reasoning of the WIAT-II
UK

 raw scores (MR WIAT-II
UK

) and Numerical Operations of the WIAT-II
UK

 raw scores (NO WIAT-

II
UK

),  single-word reading scores (YARC), Picture Similarities (NV BAS-II
UK

) and Naming Vocabulary  (NV BAS-II
UK

) at T3 (n= 126, df = 122) 

*p<=.05; **p<=.01; ***p<=.001 

  BL Acc. PQDS Acc. AQDS Acc. KNS CO SP 

MR  

WIAT-II
UK

 

NO  

WIAT-II
UK

 YARC 

PS  

BAS II 

NV  

BAS II 

PQDS Trimmed RT .126 .476
***

 -.103 -.019 -.093 -.033 -.019 -.056 -.038 -.046 -.102 
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All significant correlations are positive with exception of the variables measuring children’s 

RTs. In this case correlations are negative indicating that the older the children are the faster 

they can respond to computerised discrimination tasks and the better they perform on the 

outcome measures. Age in months significantly correlates with children’s Precise Quantity 

Discrimination Skills’ Trimmed RT, with both mathematical attainment measures and with 

reading performance. Children’s performances on the Quantity Discrimination Skills’ tasks 

do not correlate with each other either before or after controlling for their age. Children’s 

performances on each of the Early Number Skills’ tasks remain significantly correlated to 

each other after controlling for their age. Children’s performances on both mathematical 

attainment measures also remain significantly correlated to each other after controlling for 

their age. From the Quantity Discrimination Skills’ tasks, only children’s Approximate 

Quantity Discrimination Skills’ Accuracy remains significantly correlated to their 

performances on the Counting Objects task, Story Problems task and both mathematical 

attainment measures. Children’s performances on each of the Early Number Skills’ tasks 

remain significantly correlated to their performance on both mathematical attainment 

measures after controlling for their age. In addition children’s reading performance remains 

significantly correlated to their performance on the three Early Number Skills tasks, both 

mathematical attainment measures and their performance on the Naming Vocabulary subtest. 

Only Naming Vocabulary subtest, but not Picture Similarities, shares significant variance 

with children’s Approximate Quantity Discrimination Skills’ Accuracy, the Counting Objects 

task, the Story Problems task, the Mathematical Reasoning subtest and their reading 

attainment.  

 

7.2.4 Correlations and partial correlations for reading attainment with all predictor variables 

assessed at Time 1 

Partial correlations controlling for participants’ age in months at Time 1 (and also Baseline 

Trimmed RT for PQDS Trimmed RT) were also conducted to explore the relationships 

between the four cognitive precursors (Precise Quantity Discrimination Skills’ Trimmed RT, 

Approximate Quantity Discrimination Skills’ Accuracy, VSSP functioning and phonological 

awareness) and children’s reading attainment assessed at Time 3 (see table 7.20). 
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Table 7.20: Partial correlations for children’s scores on the Word Recognition subtest of the YARC Early 

Reading Test with the two Quantity Discrimination Skills’ tasks (PQDS Trimmed RT and AQDS Accuracy) and 

the two domain-general skills (VSSP and PA) controlling for participants’ age in months at T1 (n=128, df = 125)
 

Tasks Age T1 Age T3 
PQDS Trimmed 

RT 

AQDS 

Acc. 
VSSP PA 

Single-word reading YARC .259
**

 .272
**

 -.214
*
 .227

*
 .149 .225

*
 

*p<=.05; **p<=.01 

Note. Baseline Trimmed RT at T1 was also partialled out for PQDS Trimmed RT 

 

All significant correlations are positive with exception of children’s Precise Quantity 

Discrimination Skills’ Trimmed RT. In this case correlations are negative, indicating that the 

better children are at reading the faster they can respond to computerised discrimination tasks. 

Age in months at Time 1 and age in month at Time 3 significantly correlate with children’s 

performance on the Single-word Reading subtest of the YARC Early Word Recognition Test, 

the strength of these correlations being very similar. Children’s performance on the Early 

Word Recognition Test correlates significantly with their Approximate Quantity 

Discrimination Skills’ Accuracy and their phonological awareness at Time 1 after controlling 

for their age in months at Time 1.  

 

7.3 DISCUSSION 

Children’s performance on all standardised measures is broadly similar to the UK average. It 

can therefore be assumed that the study sample is representative of the population under 

investigation.  

 

Children’s Precise Quantity Discrimination Skills’ Accuracy and Trimmed RT reveal that 

overall they can make precise judgments over two small non-symbolic quantities at the start 

of Reception Year and that on average they employ 1,555 msec. to respond. Given that the 

average time for five- and six-year-olds to correctly enumerate an additional item outside the 

subitising range is approximately 1,000 msec. (Chi & Klahr, 1975; LeFevre et al., 2010; 

Svenson & Sjöberg, 1978; Trick et al., 1996) and that the minimum number of dots presented 

in a trial on this specific task was three (one against two dots), it is highly unlikely that they 

were employing a serial exhaustive enumeration strategy to respond. In addition, the analyses 

conducted on the time they employed to discriminate the larger set, depending on the number 

of dots presented, also indicates that it took them more time to correctly discriminate one 

against two dots than one against three dots, thus not needing additional time for each new 
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item to be counted and showing no continuous linear increase as the number of dots 

presented in a single trial increases. Consequently this task is tapping some “intuitive” 

strategy to make precise discriminations over small quantities, rather than tapping children’s 

serial counting speed. Children’s Approximate Quantity Discrimination Skills’ Accuracy 

aligns with previous ANS studies conducted with children of a similar age (see Libertus et al., 

2013), suggesting that Approximate Quantity Discrimination Skills’ Accuracy in the present 

study is tapping children’s ANS functioning. Children’s performance at the start of Reception 

Year on both Quantity Discrimination Skills’ tasks correlates with at least one of the 

standardised mathematical attainment measures, which indicates their criterion validity is 

satisfactory. In addition, the Quantity Discrimination Skills’ tasks do not share significant 

variance with each other including when age in months is controlled for nor when age in 

months and Baseline Trimmed RT are controlled for. This suggests that each Quantity 

Discrimination Skills’ task is in fact tapping distinct skills thus supporting Feigenson et al.’s 

(2004) proposal that each of these skills actually rely on two distinct systems of quantity 

representation. Neither of these tasks correlate with either children’s VSSP functioning or 

phonological awareness, supporting the idea that these two skills are domain-specific and 

dissociable from language (Cohen, Dehaene, Chochon, Lehericy, & Naccache, 2000) and 

from STM (Butterworth, 1996).  

 

For both tasks an improvement in performance from Time 1 to Time 3 is evident; children 

took significantly less time to make precise quantity discriminations over small non-symbolic 

numerical sets at midway through Year 1 than at the start of Reception Year and were 

significantly more accurate at identifying the larger of two large non-symbolic sets at midway 

through Year 1 than at the start of Reception Year. Given that the minimum time between the 

occasions children were administered these tasks was fourteen months, it is highly unlikely 

that improvement is due to practise. Alternatively, this data provides longitudinal evidence of 

the development of these specific skills throughout the early years and supports previous 

cross-sectional results where children were faster and more accurate the older they were 

(Benoit et al., 2004; Fischer et al., 2008; Gelman & Tucker, 1975; Holloway & Ansari, 2009; 

Svenson & Sjöberg, 1978; Trick et al., 1996) and results from a longitudinal study where pre-

schoolers’ non-symbolic approximate quantity discrimination skills’ precision improved over 

a six-month period (Libertus et al., 2013). This evidence highlights the importance of 

conducting analyses to determine whether the relationships between quantity discrimination 

skills and children’s performance on early number skills and mathematical attainment 
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measures are causal as well as the need to control for age in regression models predicting 

children’s mathematical outcomes from their quantitative skills. 

 

The PCA analysis was satisfactory and resulted in two latent variables representing the 

phonological awareness and the VSSP functioning measures respectively. The use of latent 

variables instead of single-task measures provides two main advantages. First, the number of 

predictors in the study is reduced and so the participant-test ratio improves. Second, measures 

are less contaminated with specific task demands than those obtained from single tests (see 

Bowey, 2005). Both domain-general cognitive skills measures obtained from the PCA 

analysis correlate with children’s performance on both mathematical attainment measures, 

suggesting they contribute to mathematical attainment.  

 

Results show that the three Early Number Skills’ tasks designed to represent the distinct 

developmental levels of QNCs proposed by Krajewski and Schneider (2009) provide a good 

spread of scores while avoiding flooring or ceiling effects at any time point. Nevertheless, 

children’s scores capture their improvement on these tasks over a six-month period and over 

an eighteen-month period. At each time point all three of these measures correlate with 

children’s performance on at least one of the standardised mathematical attainment measures, 

highlighting their criterion validity.  

 

The specificity measure administered at midway through Year 1 shows different patterns of 

relationships with the predictor variables; after controlling for children’s age in months, 

reading performance shares significant variance with performance on both Quantity 

Discrimination Skills’ tasks and phonological awareness. The fact that phonological 

awareness is related to children’s later reading performance corroborates previous findings 

which propose that this skill is an early precursor of literacy development (Gathercole et al., 

2005; Hecht et al., 2001). It was not expected that children’s reading attainment would share 

significant variance with their performance on both Quantity Discrimination Skills’ tasks, 

mainly because it has been proposed that these are domain-specific skills and independent 

from language (Cohen et al., 2000; Lemer et al., 2003). However, similar results were found 

by Holloway and Ansari (2009) with a group of six-year-olds. The authors suggested that 

these findings could be due to the common demands that reading and quantity discrimination 

tasks make, such as visual attention processes (Facoetti, Paganoni, Turatto, Marzola, & 

Mascetti, 2000).  
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Regarding the general conceptual ability measures administered at midway through Year 1, 

children’s verbal General Conceptual Abilities share significant variance with their 

performance on the Counting Objects and Story Problems tasks and with their performance 

on the Mathematical Reasoning subtest. In contrast, children’s non-verbal General 

Conceptual Abilities do not share significant variance with any of the variables of interest. 
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8. LONGITUDINAL STUDY RESULTS: 

DOMAIN-GENERAL AND DOMAIN-SPECIFIC COGNITIVE SKILLS 

PREDICTING EARLY NUMBER SKILLS AND MATHEMATICAL 

ATTAINMENT 

After preliminary analysis of the data partial correlations between predictor variables 

measured at the start of Reception Year (T1) and outcome measures assessed at the end of 

Reception Year (T2) and at midway through Year 1 (T3) were obtained to explore how the 

domain-general and domain-specific cognitive skills relate to the outcome measures over 

different time periods. Following this, multiple regression analyses were conducted to 

explore the independent and unique contributions that the domain-general and domain-

specific cognitive skills make to the three Early Number Skills’ tasks and the two 

mathematical attainment measures over a six-month period and over an eighteen-month 

period. Analyses for each type of cognitive predictors (either domain-general or domain-

specific) were first conducted independently for ease of comparison to previous findings, 

which have included solely domain-general predictors (e. g. Simmons et al., 2008) or have 

included solely domain-specific predictors (e. g. Libertus et al., 2011). Finally the unique and 

independent contribution of all four predictors to each of the outcome measures was explored 

simultaneously. The specific analyses conducted are explored in detail below.  

 

8.1 STATISTICAL ANALYSIS STRATEGY 

Different groups of regression analyses were conducted. First, regression analyses were 

conducted with only the domain-general cognitive skills as predictors. Then, regression 

analyses were conducted only with the domain-specific cognitive skills as predictors. Last, 

regression analyses with the domain-general and the domain-specific cognitive skills together 

as predictors were conducted. 

 

8.1.1 Regression analyses with only the domain-general cognitive skills as predictors 

Multiple regression analyses were conducted to determine whether the domain-general 

cognitive skills at the start of Reception Year (T1) independently predict children’s 

performance on the Early Number Skills and mathematical attainment measures at the end of 

Reception Year (T2) and at midway through Year 1 (T3). These analyses aimed to determine 
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whether children’s VSSP functioning and phonological awareness relate differently to each 

of the Early Number Skills and mathematical attainment measures over a six-month period 

and over an eighteen-month period. They will also determine whether the results obtained 

with the novel Early Number Skills’ tasks align with previous findings where phonological 

awareness and VSSP functioning predict specific early number skills (e.g. Krajewski & 

Schneider, 2009; LeFevre et al., 2010).  

 

8.1.2 Regression analyses with only the domain-specific cognitive skills as predictors 

Multiple separate regression analyses were conducted to explore whether the domain-specific 

cognitive skills at the start of Reception Year (T1) independently predict children’s 

performance on the Early Number Skills and mathematical attainment measures at the end of 

Reception Year (T2) and at midway through Year 1 (T3). These analyses aim to determine 

whether the present results align with previous studies that have examined the relationships 

between children’s subitising skills or children’s ANS precision and their numerical 

competence (e.g. LeFevre et al., 2010; Libertus et al., 2013).  

 

8.1.3 Regression analyses with the domain-general and the domain-specific cognitive skills 

as predictors 

Regression analyses were conducted including all four precursors in the regression model 

simultaneously to determine the specific contribution that each type of cognitive skill makes 

to each of the outcome measures over a six-month period and over an eighteen-month period. 

The aim was to explore whether the two domain-specific and the two domain-general 

cognitive skills measured at the start of Reception Year (T1) independently predict children’s 

performance on the Early Number Skills and mathematical attainment measures at the end of 

Reception Year (T2) and at midway through Year 1 (T3) or whether any of the four cognitive 

precursors no longer predicts unique variance once all four predictors are included in the 

regression model. An additional regression analysis was also conducted to determine whether 

the domain-specific and domain-general cognitive skills at the start of Reception Year (T1) 

predict children’s reading attainment at midway through Year 1 (T3). This additional 

regression was conducted with the aim of exploring whether children’s Precise and 

Approximate Quantity Discrimination Skills also relate to later reading attainment or they are 

specific precursors of mathematical outcomes. 
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All regression analyses simultaneously exploring the longitudinal contributions of the four 

precursors to the outcome measures over an eighteen-month period described above were re-

conducted controlling for children’s General Conceptual Abilities to explore whether the 

domain-general and domain-specific cognitive skills still explain independent and unique 

variance in the outcome measures when children’s General Conceptual Abilities are 

controlled for.  

 

Lastly, the causality of the relationships found between domain-specific and domain-general 

cognitive skills and outcome measures was investigated by exploring whether the cognitive 

skills that predicted significant variance in the outcome measures could also predict growth 

on these variables. First, whether children’s cognitive skills that predicted significant 

variance in the Early Number Skills over an eighteen-month period could also predict growth 

on these measures over this time period was explored. Second, whether the domain-specific 

and domain-general cognitive skills that predicted performance over a six-month period on 

the mathematical attainment measures could also explain growth in these measures over this 

period was explored. These additional analyses were conducted for ease of comparison with a 

recent study that has conducted growth analyses for approximate quantity discrimination 

skills on pre-schoolers’ mathematical attainment over a six-month period (Libertus et al., 

2013). Finally, whether children’s cognitive skills that predicted significant variance in the 

outcome measures over an eighteen-month period could also predict growth over this time 

period was examined. 

 

Age in months at the start of Reception Year (T1) was controlled for in all regression models 

because this variable shared significant variance with all predictor variables at time 1 (see 

table 7.15 in section 7.2.1). In addition, when the predictor variable was children’s Precise 

Quantity Discrimination Skills’ Trimmed RT, their Baseline Trimmed RT was also partialled 

out.  
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8.2 THE RELATIONSHIPS BETWEEN COGNITIVE PRECURSORS AND 

OUTCOME MEASURES 

8.2.1 The relationships between cognitive precursors and Early Number Skills 

8.2.1.1 The relationships between domain-general cognitive skills at the start of Reception 

Year with the Early Number Skills at the end of Reception Year and at midway through Year 

1 

Partial correlations controlling for participants’ age in months at Time 1 were conducted to 

explore the relationships between children’s VSSP functioning and phonological awareness 

with their performance on the three Early Number Skills’ tasks at the end of Reception Year 

and at midway through Year 1 (see table 8.1). 

Table 8.1: Partial correlations for children’s VSSP functioning (VSSP) and Phonological Awareness (PA) with 

the three Early Number Skills’ tasks at T2 and T3 controlling for participants’ age in months at T1 (n=128, df = 

125 for T2; n=126, df = 121 for T3) 

 Early Number Skills T2 Early Number Skills T3 

Variable KNS T2 CO T2 SP T2 KNS T3 CO T3 SP T3 

VSSP  .113 .143 .206
*
 .138 .146 .269

**
 

PA .310
***

 .211
*
 .224

*
 .259

**
 .104 .253

**
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

 

Children’s phonological awareness shares significant variance with all three Early Number 

Skills’ tasks at Time 2 and with the Knowledge of the Number Sequence task and Story 

Problems task at Time 3. Children’s VSSP functioning only shares significant variance with 

children’s scores in the Story Problems task at Time 2 and at Time 3. The strength of all these 

correlations is weak or very weak. 

 

Two different linear regression analyses for each Early Number Skill were conducted to 

explore whether children’s VSSP functioning and phonological awareness could explain 

unique variance in their performance on each of the Early Number Skills tasks at the end of 

Reception Year and at midway through Year 1 (see table 8.2).  
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Table 8.2: Forced entry regression analyses examining the prediction of the Early Number Skills performance at T2 and at T3 from VSSP functioning and PA over and above 

age in months 

 Knowledge of the Number Sequence (KNS) Counting Objects (CO)  Story Problems (SP) 

 KNS T2 KNS T3 CO T2 CO T3 SP T2 SP T3 

Variable B R² B R² B R² B R² B R² B R² 

Step 1. Control variable            

Age T1 (months) .430
***

  .174  .181
*
  .111  .289

***
  .335

***
  

R² by control variable .185
***

  .030  .033
*
  .012  .084

***
  .112

***
 

Step 2. D-G Cog. Skills            

VSSP functioning .138  .172  .172  .167  .234
**

  .298
***

  

PA .301
***

  .278
**

  .229
**

  .122  .242
**

  .272
***

  

Unique R² by D-G Cog. Skills .095
***

  .091
**

  .069
**

  .035  .094
***

  .133
***

 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

The ANOVA conducted on the final model predicting KNS T2 is F(3,124)=16.043,  p<.001  

The ANOVA conducted on the final model predicting KNS T3 is F(3,122)=5.587,  p<.001 

The ANOVA conducted on the final model predicting CO T2 is F(3,124)=4.667,  p<.01  

The ANOVA conducted on the final model predicting CO T3 is F(3,122)=2.016,  p=.115 

The ANOVA conducted on the final model predicting SP T2 is F(3,124)=8.909,  p<.001  

The ANOVA conducted on the final model predicting SP T3 is F(3,122)=13.226,  p<.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. The unique R² values represent the combined predictive impact 

of the two Domain-general Cognitive Skills while accounting for the control variables. 
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Over and above children’s age in months, the two domain-general cognitive skills together 

explained 9.5% and 9.1% of variance in the Knowledge of the Number Sequence task at the 

end of Reception Year and at midway through Year 1 respectively. The proportion of 

variance predicted by the regression models was statistically significant with phonological 

awareness being a unique predictor at both time points. Using the same regression model 

both domain-general cognitive skills together explained 6.9% and 3.5% of variance in the 

Counting Objects task at the end of Reception Year and at midway through Year 1 

respectively. The proportion of variance predicted by the regression model at the end of 

Reception Year was statistically significant with phonological awareness being the unique 

predictor. Lastly, the two domain-general cognitive skills together explained 9.4% and 13.3% 

of variance on the Story Problems task at the end of Reception Year and at midway through 

Year 1 respectively. The proportion of variance predicted by the regression models was 

statistically significant with both domain-general cognitive skills being unique predictors at 

both time points. This suggests that phonological awareness and VSSP functioning are 

distinct predictors of children’s performance on the three Early Number Skills’ tasks and that 

each domain-general cognitive skill relates differently to the different Early Number Skills 

included in the study. The variance predicted by the two domain-general cognitive skills 

remains fairly similar over a six-month period and over an eighteen-month period for the 

Knowledge of the Number Sequence task, however, it drops substantially when predicting 

performance on the Counting Objects task at midway through Year 1 and it increases 

substantially when predicting performance on the Story Problems task at midway through 

Year 1. Therefore, the longitudinal contributions that these two cognitive precursors make to 

the different Early Number Skills vary over time.  

 

8.2.1.2 The relationships between domain-specific cognitive skills at the start of Reception 

Year with the Early Number Skills at the end of Reception Year and at midway through Year 

1 

Partial correlations controlling for participants’ age in months at Time 1 were conducted to 

explore the relationships between children’s Precise Quantity Discrimination Skills’ 

Trimmed RT and Approximate Quantity Discrimination Skills’ Accuracy with their 

performance on the three Early Number Skills’ tasks at end of Reception Year and at midway 

through Year 1 (see table 8.3). 
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Table 8.3: Partial correlations for Precise Quantity Discrimination Skills (PQDS) Trimmed RT and 

Approximate Quantity Discrimination Skills (AQDS) Accuracy with the three Early Number Skills’ task at T2 

and T3 controlling for participants’ age in months at T1 (n=128, df = 123 for T2 and n=126, df=121 for T3) 

Variable KNS T2 CO T2 SP T2 KNS T3 CO T3 SP T3 

PQDS Trimmed RT T1 -.113 -.216
*
 -.091 -.133 -.282

**
 -.150 

AQDS Accuracy T1 .316
***

 .288
***

 .269
**

 .253
**

 .209
*
 .241

**
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

Note.  Baseline Trimmed RT at T1 was also partialled out for PQDS Trimmed RT 

 

At Time 2 and Time 3, Precise Quantity Discrimination Skills’ Trimmed RT shares 

significant variance with children’s performance on the Counting Objects task after 

controlling for their age in months and Baseline Trimmed RT at Time 1. Approximate 

Quantity Discrimination Skills’ Accuracy shares significant variance with children’s scores 

on the three Early Number Skills’ tasks at both time points. The strength of all these 

correlations is weak or very weak. 

 

Two different linear regression analyses for each Early Number Skill were conducted to 

explore whether children’s Quantity Discrimination Skills could explain unique significant 

variance in their performance on each of the Early Number Skills’ tasks at the end of 

Reception Year and at midway through Year 1 (see table 8.4).  
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Table 8.4: Forced entry regression analyses examining the prediction of the Early Number Skills’ tasks at T2 and at T3 from PQDS and AQDS over and above age in months 

and Baseline Trimmed RT 
 Knowledge of the Number Sequence (KNS) Counting Objects (CO) Story Problems (SP) 

 KNS T2 KNS T3 CO T2 CO T3 SP T2 SP T3 

Variable B R² B R² B R² B R² B R² B R² 

Step 1. Control variables            

Age T1 (months) .418
***

  .165  .168  .106  .269
**

  .303
***

  

Baseline Trimmed RT -.052  -.027  -.044  -.018  -.070  -.109  

R² by control variables .190
***

  .031  .034  .013  .088
**

  .123
***

 

Step 2. QDS             

PQDS Trimmed RT -.091  -.125  -.216
*
  -.298

**
  -.076  -.138  

AQDS Accuracy .276
***

  .237
*
  .276

**
  .195

*
  .257

**
  .227

**
  

Unique R² by QDS .079
**

  .067
*
  .114

***
  .113

***
  .067

**
  .066

**
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

The ANOVA conducted on the final model predicting KNS T2 is F(4,122)=11.258,  p<.001  

The ANOVA conducted on the final model predicting KNS T3 is F(4,120)=3.257,  p<.05 

The ANOVA conducted on the final model predicting CO T2 is F(4,122)=5.308,  p=.001  

The ANOVA conducted on the final model predicting CO T3 is F(4,120)=4.300,  p<.01 

The ANOVA conducted on the final model predicting SP T2 is F(4,122)=5.586,  p<.001  

The ANOVA conducted on the final model predicting SP T3 is F(4,120)=7.010,  p<.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. The unique R² values represent the combined predictive impact 

of the two Quantity Discrimination Skills’ tasks while accounting for the control variables. 
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After controlling for age in months and Baseline Trimmed RT, the two Quantity 

Discrimination Skills together explained 7.9% and 6.7% of variance in the Knowledge of the 

Number Sequence task at the end of Reception Year and at midway through Year 1 

respectively. The proportion of variance predicted by the regression models was statistically 

significant with Approximate Quantity Discrimination Skills’ Accuracy being a unique 

predictor at both time points. Using the same regression model both Quantity Discrimination 

Skills together also explained 11.4% and 11.3% of variance in the Counting Objects task at 

the end of Reception Year and at midway through Year 1 respectively. The proportion of 

variance predicted by the regression models was statistically significant with both Quantity 

Discrimination Skills being unique predictors at both time points. Lastly, the two Quantity 

Discrimination Skills together explained 6.7% and 6.6% of variance in the Story Problems 

task after controlling for age in months and Baseline Trimmed RT at the end of Reception 

Year and at midway through Year 1 respectively. The proportion of variance predicted by the 

regression models was statistically significant with Approximate Quantity Discrimination 

Skills’ Accuracy being a unique predictor at both time points. This suggests that Precise 

Quantity Discrimination Skills’ Trimmed RT and Approximate Quantity Discrimination 

Skills’ Accuracy are distinct predictors of children’s performance on Early Number Skills’ 

tasks and that they relate differently to the different Early Number Skills. The variance 

predicted by the two Quantity Discrimination Skills’ tasks remains fairly similar over a six-

month period and over an eighteen-month period for the Counting Objects and Story 

Problems tasks, however, it decreases substantially when predicting performance on the 

Knowledge of the Number Sequence task, indicating that the longitudinal contributions made 

by these two skills to the different Early Number Skills vary over time.  

 

When comparing how domain-general cognitive skills and Quantity Discrimination Skills 

relate to children’s later Early Number Skills, results indicate that greater variance in 

performance on the Knowledge of the Number Sequence and Story Problems tasks is 

predicted by their domain-general cognitive skills than by their domain-specific cognitive 

skills at the end of Reception Year and at midway through Year 1. However, the Quantity 

Discrimination Skills predict greater variance than the domain-general cognitive skills in the 

Counting Objects task at the end of Reception Year and at midway through Year 1. This 

suggests that the three Early Number Skills draw on somewhat different cognitive skills. 
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8.2.1.3 The relationships between domain-general and domain-specific cognitive skills at the 

start of Reception Year and the Early Number Skills at the end of Reception Year and at 

midway through Year 1 

Three additional groups of linear regression analyses were conducted to explore whether the 

cognitive precursors remained as unique predictors of performance once all predictor 

variables; domain-general cognitive skills (VSSP functioning and phonological awareness) 

and domain-specific cognitive skills (Precise Quantity Discrimination Skills’ Trimmed RT 

and Approximate Quantity Discrimination Skills’ Accuracy) were entered together in the 

regression model (see table 8.5).  
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Table 8.5: Forced entry regression analyses examining the prediction of the three Early Number Skills’ tasks at T2 and at T3 from the PQDS, AQDS, VSSP functioning and 

PA over and above age in months and Baseline Trimmed RT 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

The ANOVA conducted on the final model predicting KNS T2 is F(6,120)=9.739,  p<.001  

The ANOVA conducted on the final model predicting KNS T3 is F(6,118)=3.561,  p<.01 

The ANOVA conducted on the final model predicting CO T2 is F(6,120)=4.451,  p<.001  

The ANOVA conducted on the final model predicting CO T3 is F(6,118)=3.145,  p<.01 

The ANOVA conducted on the final model predicting SP T2 is F(6,120)=5.470,  p<.001  

The ANOVA conducted on the final model predicting SP T3 is F(6,118)=7.858,  p<.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. The unique R² values represent the combined predictive impact 

of the two Quantity Discrimination Skills Tasks and the two domain-general Skills tasks while accounting for the control variables. 

 Knowledge of the Number Sequence (KNS) Counting Objects (CO) Story Problems (SP) 

 KNS T2 KNS T3 CO T2 CO T3 SP T2 SP T3 

Variable B R² B R² B R² B R² B R² B R² 

Step 1. Control Variables            

Age T1 (months) .418
***

  .165  .168  .106  .269
**

  .303
***

  

Baseline   Trimmed RT -.052  -.027  -.044  -.018  -.070  -.109  

R² by control variables .190
***

  .031  .034  .013  .088
**

  .123
***

 

Step 2. QDS + DG Cog. Skills            

PQDS  Trimmed RT -.062  -.092  -.188
*
  -.278

**
  -.035  -.084  

AQDS Accuracy .239
**

  .196
*
  .243

**
  .173  .209

*
  .167

*
  

VSSP functioning .080  .120  .106  .103  .193
*
  .263

**
  

PA .252
**

  .236
**

  .180*  .079  .207
*
  .245

**
  

Unique R² by QDS + DG Cog. Skills .137
***

  .123
**

  .148
***

  .125
**

  .127
***

  .162
***
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After controlling for age in months and Baseline Trimmed RT, the four cognitive precursors 

together explained 13.7% and 12.3% of variance in the Knowledge of the Number Sequence 

task at the end of Reception Year and at midway through Year 1 respectively. The proportion 

of variance predicted by the regression models was statistically significant with Approximate 

Quantity Discrimination Skills’ Accuracy and phonological awareness being unique 

predictors at both time points. Using the same regression model the four predictors together 

explained 14.8% and 12.5% of variance in the Counting Objects task at the end of Reception 

Year and at midway through Year 1 respectively. The proportion of variance predicted by the 

regression models was statistically significant with both Quantity Discrimination Skills and 

phonological awareness being unique predictors at the end of Reception Year but only 

Precise Quantity Discrimination Skills’ Trimmed RT being a unique predictor at midway 

through Year 1. Lastly, the two Quantity Discrimination Skills and the two domain-general 

cognitive skills together explained 12.7% and 16.2% of children’s variance in the Story 

Problems task at the end of Reception Year and at midway through Year 1 respectively after 

controlling for age in months and Baseline Trimmed RT. The proportion of variance 

predicted by the regression models was statistically significant with both domain-general 

cognitive skills and Approximate Quantity Discrimination Skills’ Accuracy being unique 

predictors at both time points. 

 

Thus, all the variables that predicted unique and independent variance in children’s 

performance on the Early Number Skills at the end of Reception Year and at midway through 

Year 1 in the separate analyses, remained as unique predictors of the same Early Number 

Skills’ performance at the end of Reception Year and at midway through Year 1 when all 

predictors were entered together with the exception of children’s Approximate Quantity 

Discrimination Skills’ Accuracy which no longer predicts unique variance in children’s 

performance on the Counting Objects task at midway through Year 1.  

 

8.2.1.4 The relationships between domain-general and domain-specific cognitive skills at the 

start of Reception Year and the Early Number Skills at midway through Year 1 over and 

above General Conceptual Abilities 

Correlations for age in months at Time 1 and partial correlations controlling for participants’ 

age in months at Time 1 were conducted to explore the relationships between the four 

cognitive precursors (Precise Quantity Discrimination skills’ Trimmed RT, Approximate 
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Quantity Discrimination Skills’ Accuracy, VSSP functioning and phonological awareness) 

and children’s performance on the Picture Similarities subtest and the Naming Vocabulary 

subtest of the BAS-II
UK 

(see table 8.6). 

Table 8.6: Partial correlations for children’s ability scores on the Picture Similarities (PS) subtest and on the 

Naming Vocabulary (NV) subtests of the BAS-II
UK 

with the two Quantity Discrimination Skills’ tasks (PQDS 

Trimmed RT and AQDS Accuracy) and the two domain-general cognitive skills (VSSP and PA) controlling for 

participants’ age in months at T1 (n=128, df = 125)
 

Variable Age T1 
PQDS 

Trimmed RT 

AQDS 

Accuracy 
VSSP PA 

PS BAS-II
UK

 .078 .068 .055 .272
**

 .057 

NV BAS-II
UK

 -.553
***

 .137 .279
**

 .081 .193
*
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

Note. Baseline Trimmed RT at time 1 was also partialled out for PQDS Trimmed RT  

 

Age in months at Time 1 shares a significant proportion of variance with children’s 

performance on the Naming Vocabulary subtest. After controlling for age in months at Time 

1, Naming Vocabulary shares significant variance with phonological awareness. Children’s 

performance on the Picture Similarities subtest shares significant variance with VSSP 

functioning. Children’s performance on the Naming Vocabulary subtest also correlates 

significantly with Approximate Quantity Discrimination Skills’ Accuracy. Thus, each of the 

children’s General Conceptual Abilities shares significant variance with a distinct domain-

general cognitive skill. However, the strength of all these correlations is weak. 

 

A linear regression analysis for each Early Number Skill was conducted to explore whether 

the Quantity Discrimination Skills and the domain-general cognitive skills that were unique 

predictors of children’s performance on the three Early Number Skills’ tasks could still 

explain unique significant variation in performance on these tasks, over and above their 

General Conceptual Abilities at midway through Year 1 (see table 8.7).  
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Table 8.7: Forced entry regression analyses examining the prediction of the three Early Number Skills’ tasks at T3 from the PQDS, AQDS, VSSP functioning and PA over 

and above age in months, Baseline Trimmed RT and General Conceptual Abilities 
 Knowledge of the Number Sequence T3 Counting Objects T3 Story Problems T3 

Variable B R² B R² B R² 

Step 1. Control Variables       

Age T1 (months) .165  .106  .303
***

  

Baseline  Trimmed RT -.027  -.018  -.109  

R² by control variables  .031  .013  .123
***

 

Step 2. General Conceptual Abilities       

Picture Similarities Ability Scores .002  -.026  .093  

Naming Vocabulary Ability Scores .116  .192
*
  .196

*
  

R² by control General Conceptual Abilities  .013  .036  .049
*
 

Step 3. QDS + DG Cog. Skills       

PQDS Trimmed RT -.090  -.290
**

  -.099  

AQDS Accuracy .195
*
  .132  .139  

VSSP functioning .126  .094  .241
**

  

PA .237
*
  .052  .223

**
  

Unique R² by QDS + DG Cog. Skills  .110
**

  . 108
**

  .122
***

 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

The ANOVA conducted on the final model predicting KNS T3 is F(8,116)=2.639,  p=.01  

The ANOVA conducted on the final model predicting CO T3 is F(8,116)=2.690,  p<.01 

The ANOVA conducted on the final model predicting SP T3 is F(8,116)=6.055,  p<.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. The unique R² value by General Conceptual Abilities represents 

the combined predictive impact of the two General Conceptual Abilities tasks while accounting for the control variables. The unique R² value by Quantity Discrimination 

Skills and Domain-General Cognitive skills represents the combined predictive impact of the Quantity Discrimination Skills’ tasks and the Domain-general Cognitive Skills 

tasks while accounting for the control variables and the General Conceptual Abilities. 



148 

 

The four cognitive precursors together explained 11% of the variance in the Knowledge of 

the Number Sequence task at midway through Year 1 over and above their age in months, 

Baseline Trimmed RT and General Conceptual Abilities. The proportion of variance 

predicted by the regression model was statistically significant with Approximate Quantity 

Discrimination Skills’ Accuracy and phonological awareness being unique predictors. Using 

the same regression model both types of predictors together explained 10.8% of variance in 

the Counting Objects task at midway through Year 1. The proportion of variance predicted by 

the regression model was statistically significant with Precise Quantity Discrimination Skills’ 

Trimmed RT being a unique predictor. Lastly, the four cognitive precursors together 

explained 12.2% of variance in the Story Problems task at midway through Year 1. The 

proportion of variance predicted by the regression model was statistically significant with 

phonological awareness and VSSP functioning being unique predictors after controlling for 

children’s age in months, Baseline Trimmed RT and General Conceptual Abilities.  

 

Thus the cognitive skills that were unique predictors of children’s performance on the three 

Early Number Skills’ tasks in the independent analyses where age or age and Baseline 

Trimmed RT were controlled for, remained as unique predictors of their performance on the 

three Early Number Skills’ tasks over and above the children’s age in months, their Baseline 

Trimmed RT and their General Conceptual Abilities over an eighteen-month period. The 

additional variance that domain-general and domain-specific cognitive skills together 

explained on the three Early Number Skills’ tasks at midway through Year 1 is substantially 

smaller when General Conceptual Abilities are controlled for.  

 

8.2.2 The relationships between cognitive precursors and the standardised attainment 

measures 

8.2.2.1 The relationships between domain-general cognitive skills at the start of Reception 

Year with the two mathematical attainment measures at the end of Reception Year and at 

midway through Year 1  

Partial correlations controlling for participants’ age in months at Time 1 were conducted to 

explore the relationships between children’s VSSP functioning and phonological awareness 

with their performance on the two mathematical attainment measures at the end of Reception 

Year and at midway through Year 1 (see table 8.8). 
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Table 8.8: Partial correlations for the Precise Quantity Discrimination Skills (PQDS) Trimmed RT and 

Approximate Quantity Discrimination Skills (AQDS) Accuracy at T1 with the three Early Number Skills’ tasks 

and the two standardised mathematical attainment measures at T2  and T3 controlling for participants’ age in 

months at T1 (n=128, df = 125 for T2; n=126, df = 121 for T3) 

 Mathematical Attainment T2 Mathematical Attainment T3 

Variable MRWIAT-II
UK

 T2 NOWIAT-II
UK

 T2 MR WIAT-II
UK

 T3 NO WIAT-II
UK

 T3 

VSSP  .253
**

 .214
*
 .271

**
 .202

*
 

PA  .232
**

 .225
*
 .183

*
 .006 

*
p<=.05; 

**
p<=.01 

 

At Time 2, children’s domain-general cognitive skills share significant variance with their 

performance on both mathematical attainment measures. At Time 3, children’s VSSP 

functioning shares significant variance with their performance on both mathematical 

attainment measures, but children’s phonological awareness only shares significant variance 

with their performance on the Mathematical Reasoning subtest of the WIAT-IIUK. The 

strength of all these correlations is weak or very weak. 

 

Five different linear regression analyses were conducted to explore whether children’s 

domain-general cognitive skills could explain significant unique variance in their 

performance on each of the mathematical attainment measures at the start of Reception Year 

and midway through Year 1 (see table 8.9).  
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Table 8.9: Forced entry regression analyses examining the prediction of MR WIAT-II
UK

 and NO WIAT-II
UK

 at T2 and at T3 from VSSP functioning and PA over and above 

age in months  

 Mathematical Reasoning (MR) WIAT-II
UK

 Numerical Operations (NO) WIAT-II
UK

 

 MR WIAT-II
UK

 T2 MR WIAT-II
UK

 T3 NO WIAT-II
UK

 T2 NO WIAT-II
UK

 T3 

Variable B R² B R² B R² B R² 

Step 1.Control Variable        

Age T1 (months) .354
***

  .296
***

  .280
***

  .372
***

  

R² by control variable .126
***

  .088
***

  .078
***

  .138
***

 

Step 2. D-G Cog. Skills         

VSSP functioning .277
***

  .297
***

  .243
**

  .203
*
  

PA .248
**

  .206
*
  .244

**
  .024  

Unique R² by D-G Cog. Skills  .114
**

  .107
***

  .098
***

  .036 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

The ANOVA conducted on the final model predicting MR WIAT-II
UK

 T2 is F(3,124)=12.998,  p<.001  

The ANOVA conducted on the final model predicting MR WIAT-II
UK

 T3 is F(3,122)=9.829,  p<.001 

The ANOVA conducted on the final model predicting NO WIAT-II
UK

 T2 is F(3,124)=8.844,  p<.001  

The ANOVA conducted on the final model predicting NO WIAT-II
UK

 T3 is F(3,122)=8.562,  p<.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. The unique R² values represent the combined predictive impact 

of the two domain-general Cognitive Skills while accounting for the control variable. 
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Over and above children’s age in months, the two domain-general cognitive skills together 

explained 11.4% and 10.7 % of variance in the Mathematical Reasoning subtest at the end of 

Reception Year and at midway through Year 1 respectively. The proportion of variance 

predicted by the regression models was statistically significant with both domain-general 

cognitive skills being unique predictors at both time points. Using the same regression model 

both domain-general cognitive skills together explained 9.8% and 3.6% of variance in the 

Numerical Operations subtest at the end of Reception Year and at midway through Year 1 

respectively. The proportion of variance predicted by the regression model at the end of 

Reception Year was statistically significant with both domain-general cognitive skills being 

unique predictors at the end of Reception Year but only VSSP functioning being a unique 

predictor at midway through Year 1. This pattern of findings suggests that the longitudinal 

contributions which phonological awareness and VSSP functioning make to children’s 

performance on mathematical attainment measures differ in relation to the characteristics of 

the particular mathematical attainment measure. Whilst the impact of the domain-general 

cognitive skills on children’s performance on the Mathematical Reasoning subtest remains 

broadly similar over a six-month period and over an eighteen-month period, the impact of the 

domain-general cognitive skills on children’s performance on the Numerical Operations 

subtest decreases substantially over the same time period, suggesting that the unique and 

independent longitudinal contributions that the domain-general cognitive skills make to 

children’s mathematical attainment vary over time.  

 

8.2.2.2 The relationships between domain-specific cognitive skills at the start of Reception 

Year and the two mathematical attainment measures at the end of Reception Year and at 

midway through Year 1  

Partial correlations controlling for participants’ age in months at Time 1 were conducted to 

explore the relationships between children’s Precise Quantity Discrimination Skills’ 

Trimmed RT and Approximate Quantity Discrimination Skills’ Accuracy with the two 

mathematical attainment measures at the end of Reception Year and at midway through Year 

1 (see table 8.10). 
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Table 8.10: Partial correlations for  Precise Quantity Discrimination Skills’ (PQDS) Trimmed RT and 

Approximate Quantity Discrimination Skills’ (AQDS) Accuracy with the two standardised mathematical 

attainment measures at T2 and at T3 controlling for participants’ age in months at T1 (n=128, df = 123 for T2 ; 

n=126, df=121 for T3) 

 Maths Attainment T2 Maths Attainment T3 

Variable MR WIAT-II
UK

 

T2 

NO WIAT-II
UK

 

T2 

MR WIAT-II
UK

 

T3 

NO WIAT-II
UK

 

T3 

PQDS Trimmed RT T1 -.186
*
 -.199

*
 -.092 -.193 

AQDS Accuracy T1 .263
**

 .286
***

 .220
*
 .193

*
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

Note. Baseline Trimmed RT at T1 was also partialled out for PQDS Trimmed RT 

 

At Time 2, children’s Quantity Discrimination Skills share significant variance with their 

performance on both of the mathematical attainment measures after controlling for age in 

months and Baseline Trimmed RT at Time 1. However, Approximate Quantity 

Discrimination Skills’ Accuracy only shares significant variance with children’s scores on 

both mathematical attainment measures at Time 3 under the same conditions. The strength of 

these correlations is weak or very weak.  

 

Five different linear regression analyses were conducted to explore whether children’s 

Quantity Discrimination Skills could explain unique variance in their performance on the 

mathematical attainment measures at the end of Reception Year and at midway through Year 

1 (see table 8.11).  
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Table 8.11: Forced entry regression analyses examining the prediction of MR WIAT-II
UK

 and NO WIAT-II
UK

 at T2 and at T3 from PQDS and AQDS over and above age in 

months and Baseline Trimmed RT 

 Mathematical Reasoning (MR) WIAT-II
UK

 Numerical Operations (NO) WIAT-II
UK

 

 MR WIAT-II
UK

 T2 MR WIAT-II
UK

 T3 NO WIAT-II
UK

 T2 NO WIAT-II
UK

 T3 

Variable B R² B R² B R² B R² 

Step 1.Control Variables        

Age T1 (months) 291
***

  .259
**

  .230
*
  .382

***
  

Baseline Trimmed RT -.218
*
  -.124  -.172  .036  

R² by control variables .169
***

  .102
***

  .105
***

  .139
***

 

Step 2. QDS         

PQDS Trimmed RT -.171  -.080  -.190
*
  -.186

*
  

AQDS Accuracy .227
**

  .197
*
  .259

**
  .171

*
  

Unique R² by QDS  .075
**

  .043  .096
***

  .058
*
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

The ANOVA conducted on the final model predicting MR WIAT-II
UK

 T2 is F(4,122)=9.837,  p<.001  

The ANOVA conducted on the final model predicting MR WIAT-II
UK

 T3 is F(4,120)=5.055,  p=.001 

The ANOVA conducted on the final model predicting NO WIAT-II
UK

 T2 is F(4,122)=7.687,  p<.001  

The ANOVA conducted on the final model predicting NO WIAT-II
UK

 T3 is F(4,120)=7.380,  p<.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. The unique R² values represent the combined predictive impact 

of the two Quantity Discrimination Skills while accounting for the control variables. 
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After controlling for age in months and Baseline Trimmed RT, the two Quantity 

Discrimination Skills together explained 7.5% and 4.3 % of variance in the Mathematical 

Reasoning subtest at the end of Reception Year and at midway through Year 1 respectively. 

The proportion of variance predicted by the regression model at the end of Reception Year 

was statistically significant with Approximate Quantity Discrimination Skills’ Accuracy 

being a unique predictor. Using the same regression model both Quantity Discrimination 

Skills together also explained 9.6% and 5.8% of variance in the Numerical Operations subtest 

at the end of Reception Year and at midway through Year 1 respectively. The proportion of 

variance predicted by the regression models was statistically significant with both Quantity 

Discrimination Skills being unique predictors at both time points. This pattern of findings 

suggests that Precise Quantity Discrimination Skills’ Trimmed RT and Approximate Quantity 

Discrimination Skills’ Accuracy relate differently to different aspects of mathematical 

attainment in young children. The longitudinal contributions that the Quantity Discrimination 

Skills make to children’s performance on both standardised mathematical attainment 

measures decreases substantially from a six-month period to an eighteen-month period. 

 

When comparing the separate analyses exploring how domain-general cognitive skills and 

Quantity Discrimination Skills relate to children’s performance on standardised attainment 

measures, domain-general cognitive skills predict greater variance in performance in the 

Mathematical Reasoning subtest over a six-month period and over an eighteen-month period 

than domain-specific cognitive skills. Quantity Discrimination Skills together predict almost 

the same amount of variance in performance on the Numerical Operation subtest as domain-

general cognitive skills at the end of Reception Year, however, at midway through Year 1 

Quantity Discrimination Skills predict greater variance than the domain-general cognitive 

skills on this test. These results seem to be consistent with the idea that the implication of 

different cognitive skills might vary for different standardised mathematical attainment 

measures that differ in the tasks’ characteristics (Dehaene, 1992; Dehaene & Cohen, 1995; 

Dehaene et al., 2003; LeFevre et al., 2010).  
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8.2.2.3 The relationships between domain-general and domain-specific cognitive skills at the 

start of Reception Year and the two mathematical attainment measures at the end of 

Reception Year and at midway through Year 1 and with the reading attainment measure at 

midway through Year 1 

Five additional linear regression analyses were conducted to explore whether the four 

cognitive precursors could explain children’s mathematical attainment at the end of 

Reception Year and at midway through Year 1 and reading attainment at midway through 

Year 1 (see table 8.12).  
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Table 8.12: Forced entry regression analyses examining the prediction of the MR WIAT-II
UK

 and the NO WIAT-II
UK

 at T2 and at T3 and of the YARC reading at T3 from the 

PQDS, AQDS, VSSP functioning and PA over and above age in months and Baseline Trimmed RT 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

The ANOVA conducted on the final model predicting MR WIAT-II
UK

 T2 is F(6,120)=8.697,  p<.001  

The ANOVA conducted on the final model predicting MR WIAT-II
UK

 T3 is F(6,118)=5.325,  p<.001 

The ANOVA conducted on the final model predicting NO WIAT-II
UK

 T2 is F(6,120)=6.625,  p<.001  

The ANOVA conducted on the final model predicting NO WIAT-II
UK

 T3 is F(6,118)=5.491, p<.001 

The ANOVA conducted on the final model predicting YARC T3 is F(4,120)=5.346,  p=.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. The unique R² values represent the combined predictive impact 

of the two Quantity Discrimination Skills Tasks and the two Domain-general Skills tasks while accounting for the control variables 

 Mathematical Reasoning  (MR) WIAT-II
UK

 Numerical Operations (NO) WIAT-II
UK

 Reading 

 MR WIAT-II
UK

 T2 MR WIAT-II
UK

 T3 NO WIAT-II
UK

 T2 NO WIAT-II
UK

 T3 YARC T3 

Variable B R² B R² B R² B R² B R² 

Step 1.Control Variables          

Age T1 (months) .291
***

  .259
**

  .230
*
  .382

***
  .245

**
  

Baseline  Trimmed RT -.218
*
  -.124  -.172  .036  -.046  

R² by control variable .169
***

  .102
***

  .105
***

  .139
***

  .069
*
 

Step 2. QDS + D-G Cog. Skills           

PQDS  Trimmed RT -.129  -.034  -.153  -.165  -.182  

AQDS Accuracy .180
*
  .147  .217

*
  .152  .172  

VSSP functioning .213
*
  .256

**
  .174

*
  .157  .126  

PA .186
*
  .165  .183

*
  -.006  .203

*
  

Unique R² by QDS + DG Cog. Skills .134
***

  .111
**

  .144
***

  .079
*
  .127

**
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After controlling for age in months and Baseline Trimmed RT the four cognitive precursors 

together explained 13.4% and 11.1% of variance in the Mathematical Reasoning subtest at 

the end of Reception Year and at midway through Year 1 respectively. The proportion of 

variance predicted by the regression models was statistically significant with Approximate 

Quantity Discrimination Skills’ Accuracy and the two domain-general cognitive skills being 

unique predictors at the end of Reception Year and only VSSP functioning being a unique 

predictor at midway through Year 1. Using the same regression model the four cognitive 

precursors together explained 14.4% and 7.9% of variance in the Numerical Operations 

subtest at the end of Reception Year and at midway through Year 1 respectively. The 

proportion of variance predicted by the regression models was statistically significant with 

both domain-general cognitive skills and Precise Quantity Discrimination Skills’ Trimmed 

RT being unique predictors at the end of Reception Year and no cognitive precursors are 

unique predictors at midway through Year 1. Lastly, the two Quantity Discrimination Skills 

and the two domain-general cognitive skills together explained 12.7% of reading attainment 

at midway through Year 1 after controlling for age in months and Baseline Trimmed RT. The 

proportion of variance predicted by this regression model was statistically significant with 

phonological awareness being a unique predictor.  

 

Thus the variance predicted by many of the individual cognitive precursors in the separate 

analyses does not remain statistically unique when all variables are entered together in the 

regression models. Phonological Awareness is no longer a unique predictor of Mathematical 

Reasoning performance at midway through Year 1 and VSSP functioning is no longer a 

unique predictor of Numerical Operations performance at midway through Year 1. Children’s 

Approximate Quantity Discrimination Skills’ Accuracy is no longer a unique predictor of 

performance on any standardised mathematical attainment measures at midway through Year 

1, and Precise Quantity Discrimination Skills’ Trimmed RT is no longer a unique predictor of 

performance on the Numerical Operations subtest. Regarding children’s reading attainment, 

only phonological awareness remains as a unique predictor of performance. Thus domain-

specific and domain-general cognitive skills seem to be distinct and unique predictors of 

children’s performance on mathematical attainment measures that differ in tasks’ 

characteristics, however their independent and unique longitudinal contributions vary from a 

six-month period to an eighteen-month period. Phonological awareness predicts unique 

significant variance in children’s reading attainment at midway through Year 1 when all 

variables are entered together in the regression models. Results from these three groups of 
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regression analyses suggest that while children’s domain-general cognitive skills predict their 

mathematical and reading attainment, their Quantity Discrimination Skills only predict their 

mathematical attainment. 

 

8.2.2.4 The relationships between domain-general and domain-specific cognitive skills at the 

start of Reception Year with the two mathematical attainment measures at the end of 

Reception Year and at midway through Year 1 and with the reading attainment measure at 

midway through Year 1 over and above General Conceptual Abilities 

A linear regression analysis for the Mathematical Reasoning subtest, the Numerical 

Operations subtest and the Single-word Reading subtest was conducted to explore whether 

the Quantity Discrimination Skills and the domain-general cognitive skills that were unique 

predictors of children’s performance on these three attainment measures could still explain 

unique significant variation in performance over and above their General Conceptual 

Abilities at midway through Year 1 (see table 8.13).  
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Table 8.13: Forced entry regression analyses examining the prediction of the three attainment measures at T3 from the PQDS, AQDS, VSSP functioning and PA over and 

above age in months and Baseline Trimmed RT and General Conceptual Abilities 

 Mathematical Reasoning WIAT-II
UK

 T3 Numerical Operations WIAT-II
UK

 T3 Reading YARC T3 

Variable B R² B R² B R² 

Step 1. Control Variables       

Age T1 (months) .259
**

  .382***  .245
**

  

Baseline Trimmed RT -.124  .036  -.046  

R² by control variables  .102
***

  .139***  .069
*
 

Step2. General Conceptual Abilities       

Picture Similarities Ability Scores .100  -.005  -.128  

Naming Vocabulary Ability Scores .330
***

  .146  .210
*
  

R² by control General Conceptual Abilities  .122
***

  .021  .056
*
 

Step 3. QDS + D-G Cog. Skills       

PQDS Trimmed RT -.070  -.174  -.178  

AQDS Accuracy .068  .121  .138  

VSSP functioning .208
*
  .151  .152  

PA .105  -.026  .189
*
  

Unique R² by QDS + D-G Cog. Skills  .056  .069*  .106
**

 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

The ANOVA conducted on the final model predicting MR WIAT-II
UK

 T3 is F(8,116)=5.638,  p<.001 

The ANOVA conducted on the final model predicting NO WIAT-II
UK

 T3 is F(8,116)=4.305,  p<.001 

The ANOVA conducted on the final model predicting YARC T3 is F(8,116)=4.340,  p<.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. The unique R² value by General Conceptual Abilities represents 

the combined predictive impact of the two General Conceptual Abilities Tasks while accounting for the control variables. The unique R² value by Quantity Discrimination 

Skills and Domain-General Cognitive skills represents the combined predictive impact of the Quantity Discrimination Skills tasks and the Domain-general Cognitive Skills 

tasks while accounting for the control variables and the General Conceptual Abilities. 
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The four cognitive precursors together explained 5.6% of variance in the Mathematical 

Reasoning subtest over and above age in months, Baseline Trimmed RT and General 

Conceptual Abilities. Only VSSP functioning remains as a unique predictor but the 

proportion of variance predicted by the regression model is not statistically significant. Using 

the same regression model both types of precursors together explained 6.9% of variance in 

the Numerical Operations subtest. The proportion of variance predicted by the regression 

model is statistically significant although none of cognitive precursors remains as a unique 

predictor. Lastly, the four cognitive precursors together explained 10.6% of variance in the 

Word-reading subtest over and above their age in months, Baseline Trimmed RT and General 

Conceptual Abilities. The proportion of variance predicted by the regression model is 

statistically significant with only phonological awareness being a unique predictor.  

 

The cognitive precursors that predicted unique variance in children’s performance on the 

attainment measures at midway through Year 1 remained as unique predictors of attainment 

when their impact was explored over and above children’s General Conceptual Abilities. 

However, the additional variation predicted by the four cognitive precursors in the 

mathematical attainment measures models after controlling for children’s age in months, 

Baseline Trimmed RT and after the inclusion of children’s General Conceptual Abilities is 

only statistically significant when predicting performance on the Numerical Operations 

subtest. The additional proportion of variance predicted by the four cognitive precursors in 

the reading attainment model after controlling for children’s age in months, Baseline 

Trimmed RT and after the inclusion of children’s General Conceptual Abilities remains 

statistically significant, although the additional variation predicted is smaller than when 

General Conceptual Abilities were not controlled for.  

 

8.3 Exploring the causality of the relationships found between the cognitive precursors and 

the outcome measures 

8.3.1 Early Number Skills growth from the start of Reception Year to midway through Year 1 

(eighteen-month period) 

Regression analyses were conducted to examine whether the cognitive precursors that 

explained performance on the Early Number Skills at midway through Year 1 could also 

predict growth on these variables over this eighteen-month period. A regression analysis for 

each Early Number Skill was conducted.  
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The first analysis aimed to determine whether children’s Approximate Quantity 

Discrimination Skills’ Accuracy and phonological awareness can predict growth on the 

Knowledge of the Number Sequence from the start of Reception Year to midway through 

Year 1. Age in months was controlled for in the first step of the regression and children’s 

performance on the Knowledge of the Number Sequence task at the start of Reception Year 

was controlled for in the second step of the regression. Children’s Approximate Quantity 

Discrimination skills’ Accuracy and phonological awareness at the start of Reception Year 

were entered in the third step of the regression to explore whether these cognitive predictors 

could explain Knowledge of the Number Sequence growth (see table 8.14).  

Table 8.14: Forced entry regression analyses examining the prediction of Knowledge of the Number Sequence 

growth from T1 to T3 from Approximate Quantity Discrimination skills (AQDS) Accuracy and phonological 

awareness (PA) T1 over and above age in months 

 Knowledge of the Number Sequence T3 

Variable B R² 

Step 1. 1 F(1,124)=3.858,  p=.052 

Age in months T1 .174  

R² by control variable  .030 

Step 2. F(2,123)=10.947,  p<.001   

Knowledge of the Number Sequence T1 .383
***

  

R² by Early Number Skill T1  .121
***

 

Step 3. F(4,121)=7.532,  p<.001   

AQDS Accuracy .177
*
  

PA .150  

Unique R² by Cognitive Predictors T1  .048
*
 

*
p<=.05;

 **
p<=.01; 

***
p<=.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. 

The unique R² value by the early number skill represents the predictive impact of the Early Number Skill at T1 

while accounting for the control variable. The unique R² value by the cognitive predictors represents the 

predictive impact of the cognitive predictors at T1 while accounting for the control variable and performance on 

the Early Number Skill at T1. 

 

Children’s performance on the Knowledge of the Number Sequence task at the start of 

Reception Year predicts 12.1% of their performance on the same task at midway through 

Year 1, over and above their age in months at the start of Reception Year. Over and above 

age in months and performance on the Knowledge of the Number Sequence task at the start 

of Reception Year, Approximate Quantity Discrimination Skills’ Accuracy and phonological 
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awareness together predict an additional 4.8% of the variance in the Knowledge of the 

Number Sequence task. The proportion of variance predicted by the regression model was 

statistically significant with Approximate Quantity Discrimination Skills’ Accuracy being a 

unique predictor. 

 

The second analysis aimed to determine whether children’s Precise Quantity Discrimination 

Skills’ Trimmed RT can predict growth on the Counting Objects task from the start of 

Reception Year to midway through Year 1. Age in months and Baseline Trimmed RT at the 

start of Reception Year were controlled for in the first step of the regression and children’s 

performance on the Counting Objects task at the start of Reception Year was controlled for in 

the second step of the regression. Children’s Precise Quantity Discrimination Skills’ 

Trimmed RT at the start of Reception Year was entered in the third step of the regression to 

explore whether this cognitive predictor could explain Counting Objects growth (see table 

8.15).  

Table 8.15: Forced entry regression analyses examining the prediction of Counting Objects growth from T1 to 

T3 from Precise Quantity Discrimination skills (PQDS) Trimmed RT at T1 over and above age in months and 

Baseline Trimmed RT at T1 

 Counting Objects T3 

Variable B R² 

Step 1. F(2,122)=.779,  p=.461 

Age in months T1 .106  

Baseline Trimmed RT T1 -.018  

R² by control variables  .013 

Step 2. F(3,124)=16.861,  p<.001   

Counting Objects T1 .552
***

  

R² by Early Number Skill T1  .282
***

 

Step 3. F(4,120)=14.083,  p<.001   

PQDS Trimmed RT T1 -.182
*
  

Unique R² by Cognitive Predictor T1  .025
*
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. 

The unique R² value by the early number skill represents the predictive impact of the Early Number Skill at T1 

while accounting for the control variables. The unique R² value by the cognitive predictor represents the 

predictive impact of the cognitive predictors at T1 while accounting for the control variables and performance on 

the Early Number Skill at T1. 
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Children’s performance on the Counting Objects task at the start Reception Year over and 

above their age in months and Baseline Trimmed RT at the start of Reception Year predicts 

28.2% of their performance on the same task at midway through Year 1. Precise Quantity 

Discrimination Skills’ Trimmed RT is a unique predictor of performance on this task after the 

inclusion of the Counting Objects task at the start of Reception Year in the model. Precise 

Quantity Discrimination Skills’ Trimmed RT predicts 2.5% of the variance in the Counting 

Objects task growth from the start of Reception Year to midway through Year 1. The 

proportion of variance predicted was statistically significant. 

 

The third analysis aimed to determine whether children’s phonological awareness and VSSP 

functioning can predict growth on the Story Problems task from the start of Reception Year 

to midway through Year 1. Age in months was controlled for in the first step of the regression 

and children’s performance on the Story Problems task at the start of Reception Year was 

controlled for in the second step of the regression. Children’s VSSP functioning and 

phonological awareness at the start of Reception Year were entered in the third step of the 

regression to explore whether these cognitive predictors could explain Story Problems growth 

(see table 8.16).  
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Table 8.16: Forced entry regression analyses examining the prediction of Story Problems growth from T1 to T3 

from VSSP functioning and PA at T1 over and above age in months 

 Story Problems T3 

Variable B R² 

Step 1. F(1,124)=15.629,  p<.001 

Age in months T1 .335
***

  

R² by control variables  .112
***

 

Step 2. F(2,123)=10.812,  p<.001   

Story Problems T1 .197
*
  

R² by Early Number Skill T1  .038
*
 

Step 3. F(4,121)=10.683,  p<.001   

VSSP functioning .289
***

  

PA .241
**

  

Unique R² by Cognitive Predictors T1  .111
***

 

*
p<=.05; 

**
p<=.01;

 ***
p<=.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. 

The unique R² value by the early number skill represents the predictive impact of the Early Number Skill at T1 

while accounting for the control variable. The unique R² value by the cognitive predictors represents the 

predictive impact of the cognitive predictors at T1 while accounting for the control variable and performance on 

the Early Number Skill at T1 

 

Children’s performance on the Story Problems task at the start of Reception Year predicts 3.8% 

of their performance on the same task at midway through Year 1 over and above their age in 

months at the start of Reception Year. Both domain-general cognitive skills are unique 

predictors of performance on this task after the inclusion of the Story Problems task at the 

start of Reception Year in the model. Together they predict 11.1% of the Story Problems task 

growth from the start of Reception Year to midway through Year 1. The proportion of 

variance predicted by the regression model was statistically significant.  

 

8.3.2 Mathematical attainment growth from the start of Reception Year to the end of 

Reception Year (six-month period) 

Regression analyses were conducted to determine whether the domain-specific cognitive 

skills and the domain-general cognitive skills that could explain performance on the 

mathematical attainment measures at the end of Reception Year could also predict growth on 

these outcome measures. These additional analyses were conducted for ease of comparison 
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with a recent study where pre-schooler’s approximate quantity discrimination skills were 

found to predict mathematical attainment growth over a six-month period (Libertus et al., 

2013). All cognitive precursors that explained unique variance in performance on the 

mathematical attainment measures at the end of Reception Year were entered together in the 

model to see whether they could also predict unique growth in each of the mathematical 

attainment measures that could not be explained by the other cognitive predictors (see table 

8.17) 

Table 8.17: Forced entry regression analyses examining the prediction of Mathematical Reasoning growth from 

T1 to T2 from Approximate Quantity Discrimination Skills’ task (AQDS), VSSP functioning (VSSP) and 

Phonological Awareness (PA) at T1 over and above age in months 

 MR WIAT-II
UK

 T2 NO WIAT-II
UK

 T2 

Variable B R² B R² 

Step 1. F(1,124)=11.924,  p=.001     

Age in months T1 .354
***

  .280
***

  

R² by control variable  .126
***

  .078
***

 

Step 2. F(2,123)=28.824,  p<.001     

MR WIAT-II
UK

/NO WIAT-II
UK

 T1 .565
***

  .545
***

  

R² by Mathematical attainment T1  .288
***

  .257
***

 

Step 3. F(3,122)=21.516,  p<.001     

AQDS Accuracy .122  .132  

VSSP functioning .144  .065  

PA .103  .089  

Unique R² by QDS + D-G Cog. Skills  .041
*
  .025 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. 

The unique R² value by the mathematical attainment measure represents the predictive impact of the 

mathematical attainment measure at T1 while accounting for the control variable. The unique R² value by the 

cognitive predictor represents the predictive impact of the cognitive predictor at T1 while accounting for the 

control variable and performance on the mathematical attainment measure at T1. 

 

Approximate Quantity Discrimination skills’ Accuracy, VSSP functioning and phonological 

awareness together predict 4.1% of the Mathematical Reasoning growth from the start to the 

end of Reception Year. The proportion of variance predicted was statistically significant 

although none of the cognitive precursors are unique predictors. Approximate Quantity 

Discrimination skills’ Accuracy and both domain-general cognitive skills together predict 2.5% 

of the Numerical Operations growth from the start to the end of Reception Year. The 
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proportion of variance predicted was not statistically significant and none of the cognitive 

precursors are unique predictors. 

 

8.3.3 Mathematical attainment growth from the start of Reception Year to midway through 

Year 1 (eighteen-month period) 

Finally, a regression analysis was conducted to determine whether the domain-general 

cognitive skill (VSSP functioning) that explained performance on the Mathematical 

Reasoning subtest at midway through Year 1 could also predict growth on this variable over 

this eighteen-month period. Age in months was controlled for in the first step of the 

regression and children’s performance on the Mathematical Reasoning subtest at the start of 

Reception Year was controlled for in the second step of the regression. Children’s VSSP 

functioning at the start of Reception Year was entered in the third step of the regression to 

explore whether this cognitive precursor could explain Mathematical Reasoning growth (see 

table 8.18).  

Table 8.18: Forced entry regression analyses examining the prediction of Mathematical Reasoning growth from 

T1 to T3 from VSSP functioning at T1 over and above age in months 

 Mathematical Reasoning WIAT-II
UK

 T3 

Variable B R² 

Step 1. Control Variable 

Age in months T1 .335
***

  

R² by control variables  .088
***

 

Step 2. Mathematical Attainment T1   

Mathematical Reasoning WIAT-II
UK

 T1 .197
*
  

R² by Mathematical Attainment T1  .231
***

 

Step 3. Cognitive predictor T1   

VSSP functioning .289
***

  

Unique R² by Cognitive Predictor T1  .027
*
 

*
p<=.05; 

**
p<=.01; 

***
p<=.001 

Note. B Stands for the standardised regression coefficient; R² stands for the proportion of variance explained. 

The unique R² value by the Mathematical Attainment represents the predictive impact of the Mathematical 

Attainment measure at T1 while accounting for the control variable. The unique R² value by the cognitive 

predictor represents the predictive impact of the cognitive predictor at T1 while accounting for the control 

variable and performance on the mathematical attainment measure at T1. 
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Children’s performance on Mathematical Reasoning at the start of Reception Year predicts 

23.1% of their performance on the same measure at midway through Year 1 over and above 

their age in months at the start of Reception Year. VSSP functioning is a unique predictor of 

performance on this measure after the inclusion of Mathematical Reasoning performance at 

the start of Reception Year in the model. VSSP functioning predicts 2.7% of Mathematical 

Reasoning growth from the start of Reception Year to midway through Year 1. The 

proportion of variance predicted was statistically significant with VSSP functioning being a 

unique predictor. Thus VSSP functioning seem to act as causal predictor of children’s 

mathematical reasoning over this period. 

 

8.4 DISCUSSION 

Results show that both domain-specific cognitive skills and both domain-general cognitive 

skills included in the study make independent and unique contributions to children’s 

performance on the Early Number Skills’ tasks and to their performance on the different 

mathematical attainment measures. Results also indicate that the longitudinal contributions 

that these four cognitive precursors make to the different Early Number Skills are consistent 

from a six-month period to an eighteen-month period. All four cognitive precursors are causal 

predictors of Early Number Skills. The longitudinal contributions that the four cognitive 

precursors make to the different mathematical attainment measures vary from a six-month 

period to an eighteen-month period and only VSSP functioning predicts growth in 

Mathematical Reasoning over an eighteen-month period. In addition, the Quantity 

Discrimination Skills predict the variables of interest but not of reading attainment, 

supporting the domain-specificity of these quantitative skills. 

 

8.4.1 The relationships between cognitive precursors and Early Number Skills 

Regarding the domain-general cognitive skills, this study provides additional evidence that 

children’s phonological awareness and VSSP functioning relate differently to different early 

number skills that make distinct cognitive demands (Krajewski & Schneider, 2009; LeFevre 

et al., 2010). Children’s phonological awareness makes independent and unique longitudinal 

contributions to children’s performance on the Knowledge of the Number Sequence task over 

a six-month period and over an eighteen-month period. Phonological awareness and VSSP 

functioning make independent and unique longitudinal contributions to children’s 



168 

 

performance on the Story Problems task over a six-month period and over an eighteen-month 

period. However, only children’s phonological awareness was a unique predictor of their 

performance on the Counting Objects task and only over a six-month period. These results 

remained comparable when all the cognitive precursors were entered together in the 

regression model and even when General Conceptual Abilities were controlled for, 

highlighting the solidity of these findings. Thus the present results align only partially with 

Krajewski and Schneider’s (2009) theoretical model and study results. The implication of 

phonological skills in numerical tasks that demand processing verbal codes has been 

theoretically proposed (Dehaene et al., 2003; Simmons & Singleton, 2008) and empirically 

demonstrated in young children (Hecht et al., 2001; Krajewski & Schneider, 2009; Leather & 

Henry, 1994; LeFevre et al., 2010). The Knowledge of the Number Sequence task assesses 

children’s ability to recite the number-words in the correct order and does not require any 

kind of quantity representation or manipulation, therefore it is not surprising that only 

children’s phonological awareness and not VSSP functioning was a unique predictor of 

performance for this task. VSSP functioning predicted performance on the Story Problems 

task, providing additional evidence of its implication in numerical tasks that demand quantity 

manipulations (Krajewski & Schneider, 2009; Rasmussen & Bisanz, 2005).  

 

However, and in contrast to Krajewski and Schneider’s (2009) theoretical model predictions 

and study results, in the current study phonological awareness also makes independent and 

unique contributions to children’s performance on Early Number Skills’ tasks representing 

QNCs Level III. This disparity could be due to the fact that verbal skills are directly involved 

in the Story Problems tasks. The Story problems task is verbally presented and demand a 

verbal response from the child. The two tasks representing QNCs Level III in Krajewski and 

Schneider’s (2009) study were also verbally presented, one presumably required a verbal 

response (determine the numerical difference between three pairs of dot arrangements) but 

the other did not (solve word-problems with concrete materials). These differences in tasks’ 

response method could be the reason why in the present study phonological awareness makes 

independent and unique contributions to children’s performance on the Story Problems task 

while in Krajewski and Schneider’s (2009) it only predicts performance on QNCs Level I 

tasks, where all task demanded verbal responses. Therefore, although the Story Problems 

tasks of the Early Number Skills assessment might also make additional cognitive demands, 

it seems reasonable that phonological awareness makes independent and unique contributions 

to children’s performance on this task. Also in contrast to Krajewski and Schneider’s (2009) 
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theoretical model and study results, VSSP functioning did not significantly predict children’s 

performance on the Counting Objects task designed to represent Krajewski and Schneider’s 

QNCs Level IIb, which they propose should be predicted by children’s VSSP functioning and 

quantitative skills. A plausible explanation could be that, although in this task children were 

presented with non-symbolic quantities, they did not necessarily represent them nor retain 

them visually. Instead, children could have been assigning a verbal label (number-word) to 

each item counted and reporting the final number-word assigned to the last item counted. 

This could mean that they were making greater demands on their verbal skills and requiring 

little or no VSSP functioning skills. Nevertheless, performance on the Counting Objects task 

is not significantly predicted by either of the domain-general cognitive skills at midway 

through Year 1.  

 

Results of the current study provide preliminary evidence that the two Quantity 

Discrimination Skills’ tasks included in the study relate differently to each of the Early 

Number Skills. On the face of these findings both theoretical views regarding the 

foundational role of quantity discrimination skills are supported; the one proposing that 

children’s precise quantity discrimination skills support their later verbal numerical skills and 

basic arithmetic skills (Butterworth, 1999, 2005, 2010) and the one proposing that children’s 

approximate discrimination skills support their later acquisition of early number skills 

(Condry & Spelke, 2008; Dehaene, 1997; Dehaene et al., 1998; Dehaene et al., 2004). 

However, whilst Precise Quantity Discrimination Skills’ Trimmed RT predicted unique and 

independent variance in children’s performance on the Counting Objects task, Approximate 

Quantity Discrimination Skills’ Accuracy predicted unique and independent variance in 

Knowledge of the Number Sequence, even when the independent contribution of the four 

cognitive precursors was explored simultaneously, over a six-month period and over an 

eighteen-month period, and even and over and above General Conceptual Abilities. This 

pattern suggests that precise and approximate non-symbolic quantity discrimination skills 

play fundamental and distinct roles on early number skills’ development. These findings are 

contradictory to Krajewski and Schneider’s (2009) model predictions because they suggest 

that rote recitation of the number-word sequence evolves in isolation of quantity 

discrimination skills. The present findings challenge this theoretical view because children’s 

ability to recite the number-word sequence was predicted by their Approximate Quantity 

Discrimination skills’ Accuracy. Early recitation of the number-word sequence seems to not 

only be supported by phonological awareness abilities but also by quantity discrimination 
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skills. These results align with those from Mussolin et al. (2012) where young children’s 

accuracy in a non-symbolic approximate quantity discrimination task predicted their 

performance on a number sequence reciting task. Nevertheless, children’s Precise Quantity 

Discrimination skills’ Trimmed RT predicted independent and unique variance in 

performance on the Counting Objects task which is in line with Krajewski and Schneider 

model’s (2009) predictions that quantity discrimination skills contribute to QNCs Level II. 

 

8.4.2 The relationships between cognitive precursors and mathematical attainment 

The four cognitive precursors relate differently to the two mathematical attainment measures 

included in the study supporting the idea that the relative contribution of these cognitive skills 

varies in relation to each number task’s format, demands and response method (Dehaene et 

al., 2003; Krajewski & Schneider, 2009; LeFevre et al., 2010; Simmons & Singleton, 2008; 

Simmons et al., 2012). Thus the mathematical aspects that these two mathematical attainment 

measures tap should be treated as different mathematical attainment constructs in young 

children (Nunes et al., 2012).  

 

The present study hypothesised that children’s phonological awareness would contribute to 

children’s performance on the Mathematical Reasoning subtest because verbal skills are 

particularly involved. When the independent contribution that each of the four cognitive 

precursors make to the mathematical attainment measures was explored simultaneously, 

phonological awareness was no longer a unique predictor of children’s performance on any 

of the mathematical attainment measures over an eighteen-month period. It has been 

suggested that learning and assigning verbal labels to visual symbols such as the Arabic 

numerals is similar to developing lexical or sub-lexical mappings when children are learning 

to read (LeFevre et al., 2010). This could explain why phonological awareness makes unique 

contributions to this test over a short period. Children at the end of Reception Year could be 

still undergoing this mapping learning process, whilst by midway through Year 1 this 

mapping may be already mastered. It was also expected that children’s VSSP functioning 

would contribute to their performance on the Numerical Operations subtest, because in this 

test calculation and writing skills are particularly involved and these abilities seem to rely 

heavily on VSSP functioning (Huttenlocher et al., 1994; Krajewski & Schneider, 2009; 

Rasmussen & Bisanz, 2005). It was also found that VSSP functioning was no longer a unique 

predictor of children’s performance on the Numerical Operation subtest over an eighteen-
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month period. It could be that a shift in cognitive strategies occurs in the transition from 

Reception Year to Year 1 and other cognitive skills not included in the present study are 

better predictors of children’s performance on standardised mathematical attainment 

measures by midway through Year 1. For instance McKenzie et al. (2003) and Rasmussen 

and Bisanz (2005) found that central executive functioning together with VSSP functioning 

contribute to children’s arithmetical performance at this age. Because the present study uses 

Krajewski and Schneider’s (2009) theoretical model of early arithmetical development as a 

general framework, it did not include a measure of children’s central executive functioning. 

Nevertheless, VSSP functioning predicted unique variance of children’s performance on the 

Mathematical Reasoning subtest over an eighteen-month period and the proportion of 

variance predicted by the four regression models predicting children’s performance on the 

Mathematical Reasoning and the Numerical Operations subtests at the end of Reception Year 

and at midway through Year 1 is statistically significant.  

 

8.4.3 Proportion of variance predicted by the domain-specific cognitive skills 

In the present study, the proportion of variance that both Quantity Discrimination Skills’ 

tasks predict in children’s Mathematical Reasoning over and above age and Baseline 

Trimmed RT is 7.5% at the end of Reception Year but drops down to 4.3% at midway 

through Year 1. The proportion of variance that both Quantity Discrimination Skills’ tasks 

predict in the Numerical Operations subtest is 9.6% at the end of Reception Year but drops 

down to 5.8% at midway through Year 1. The magnitudes of the proportion of variance 

predicted by non-symbolic approximate quantity discrimination skills in mathematical 

attainment in young children seem to vary considerably across studies (see Libertus et al., 

2011). Halberda et al. (2008) found that the Weber function of fourteen-year-olds on an 

approximate non-symbolic quantity discrimination task predicted 16% of the variance in their 

performance on a standardised mathematical attainment test (TEMA 2, Woodcock & Johnson, 

1989) and 20% on a different standardised mathematical attainment test (WJ revised 

calculation test, Woodcock & Johnson, 1990). Libertus et al. (2011) found that three-to-five 

year olds accuracy on an approximate non-symbolic quantity discrimination task predicted a 

unique 13% in performance on a standardised mathematical attainment test (TEMA 3) 

(Ginsburg & Baroody, 2003) that could not be explained by their speed-accuracy trade-offs, 

after controlling their age and vocabulary size. Thus, the results of the present study are more 

in line with those from Libertus et al. (2013) possibly due to the similarities in participants’ 
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age, the use of accuracy as an index of approximate quantity discrimination skills and the 

similarities in the regression models (Libertus et al., 2013 included children’s Trimmed RT in 

a computerised task and their vocabulary and in the present study children’s Baseline 

Trimmed RT and their phonological awareness was included in the regression model).  

 

However, it is noteworthy that the variance predicted by children’s Quantity Discrimination 

Skills in the present study is smaller than that reported by Libertus et al. (2011). The smaller 

percentages predicted in the present study could be due to the fact that in the present study 

age is also controlled for. It could also be that quantity discrimination skills are more strongly 

related to specific standardised mathematical attainment tests. While the present study used 

the Mathematical Reasoning and the Numerical Operations subtests of the WIAT-IIUK 

(Wechsler, 2002), Libertus et al. (2013) used the TEMA 3 (Ginsburg & Baroody, 2003). Also 

there are differences in elapse of time between the times predictors and outcome measures 

were obtained. The present study reports longitudinal contributions over a six-month and 

over an eighteen-month period while Libertus et al. (2011) report concurrent contributions. 

Nevertheless, the present findings corroborate the contention that non-symbolic approximate 

quantity discrimination skills’ accuracy predicts unique and independent variance in 

children’s mathematical attainment.  

 

8.4.4 Causality and growth analyses 

Regarding the causality of the relationships found, the domain-specific and domain-general 

cognitive skills included in the study have causal relationships with children’s Early Number 

Skills, as they do not only predict performance but also growth on these outcome measures. It 

is worth noting that phonological awareness was a unique predictor of Knowledge of the 

Number Sequence performance over an eighteen-month period but failed to predict unique 

variance of Knowledge of the Number Sequence growth over the same time period. It could 

be that number sequence reciting makes higher verbal demands at early stages of schooling. 

Because growth analyses eliminate early variation of the Knowledge of the Number 

Sequence at the start of Reception Year, later growth on this number skill is only predicted by 

children’s approximate quantity discrimination skills (see Bowey, 2005). When all three 

significant cognitive precursors of mathematical attainment performance over a six-month 

period (Approximate Quantity Discrimination skills’ Accuracy, VSSP functioning and 

phonological awareness) were included in the regression model, none of them stood as a 
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unique predictor of Mathematical Reasoning growth, although the proportion of variance 

predicted by the model is statistically significant and VSSP functioning just misses traditional 

levels of significance (.055). In addition to these findings, only VSSP functioning predicted 

unique variance in children’s Mathematical Reasoning subtest performance and growth over 

an eighteen-month period. Thus, the present results suggest that children’s VSSP functioning 

is also a causal predictor of mathematical attainment in young children while the role of the 

other three cognitive precursors included in the study as causal predictors of mathematical 

attainment is more equivocal.  

 

8.4.5 The relationships between cognitive precursors and reading attainment 

Only phonological awareness predicted independent and unique variance in children’s 

reading attainment at midway through Year 1 when the independent contribution of all 

cognitive precursors was explored simultaneously and remained as such even after 

controlling for General Conceptual Abilities. These results do not only align with previous 

findings where phonological abilities have been found to play a crucial role in reading 

development (Gathercole et al., 2005; Hecht et al., 2001) but also suggest that the 

relationships identified between Quantity Discrimination Skills and the variables of interest 

are specific to the number domain. 
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9. DISCUSSION 

This thesis is the first large-scale study to simultaneously address the separate and 

independent contributions that young children’s domain-specific and domain-general 

cognitive skills make to their early number skills and mathematical attainment through their 

very early stages of schooling. It presents longitudinal data from 129 children assessed at the 

start and end of Reception Year and at midway through Year 1. Using Krajewski and 

Schneider’s (2009) theoretical model of early arithmetical development as a general 

framework, this thesis first explored the independent and unique contributions that domain-

specific and domain-general cognitive skills make to three early number tasks designed to tap 

the three distinct developmental levels of QNCs proposed by Krajewski and Schneider (2009) 

over a six-month period and over an eighteen-month period. The present study extended 

Krajewski and Schneider’s (2009) work because it empirically tested the relationships 

between the two domain-specific number systems that have been proposed (Feigenson et al., 

2004) with the three distinct developmental levels of QNCs (Krajewski & Schneider, 2009). 

Two novel non-symbolic Quantity Discrimination Skills’ tasks were designed; a Precise 

Quantity Discrimination Skills’ task to tap children’s PNS and an Approximate Quantity 

Discrimination Skills’ task to tap children’s ANS. These two Quantity Discrimination Skills’ 

tasks improve some of the previous methodology employed to tap the two core quantity 

systems (LeFevre et al., 2010; Libertus et al., 2011) because they used non-symbolic 

numerical sets presented simultaneously and children responded by pressing a key, so no 

verbal or memory demands were made, nor knowledge of the formal number system was 

required. Three novel Early Number Skills’ tasks were designed to represent the three distinct 

developmental levels of QNCs (Krajewski & Schneider, 2009). It was found that the domain-

specific cognitive skills and the domain-general cognitive skills relate differently to the 

different Early Number Skills. The independent and unique longitudinal contributions that the 

four cognitive precursors made to the Early Number Skills over a six-month period remained 

over an eighteen-month period and over and above General Conceptual Abilities.  

 

The relationships found between domain-general cognitive skills and Early Number Skills 

were broadly similar to those predicted by Krajewski and Schneider (2009). However, the 

two Quantity Discrimination Skills clearly supported different Early Number Skills and 

partially contradicted Krajewski and Schneider’s (2009) theoretical predictions. Precise 

Quantity Discrimination skills’ Trimmed RT predicted children’s ability to link quantities to 
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number-words (QNCs Level II) and Approximate Quantity Discrimination skills’ Accuracy 

predicted children’s ability to recite the number-word sequence (QNCs Level I). Thus the 

present results provide preliminary evidence that precise and approximate non-symbolic 

quantity discrimination skills play differential roles in early number skills’ development.  

 

In addition to examining individual number skills, the current study explored the independent 

and unique longitudinal contributions that the domain-specific and domain-general cognitive 

skills make to children’s performance on two standardised mathematical attainment measures. 

Children’s speed or accuracy in enumerating three or four items (subitising) has been 

associated with their mathematical attainment (Landerl et al., 2004) and a longitudinal study 

has found that a combined measure of kindergarteners’ enumeration speed over collections of 

up to three items and a non-verbal arithmetic task contributed to their mathematical 

attainment two years later (LeFevre et al., 2010). On the other hand, children’s ability to 

make approximate numerical judgements over non-symbolic quantities has been associated 

with their concurrent and later mathematical attainment (Libertus et al., 2013; Mazzocco et 

al., 2011), although some studies suggest this relationship is not consistent over early stages 

of schooling (Bonny & Lourenco, 2013) and some studies fail to find a relationship at all 

(Holloway & Ansari, 2009). This thesis contributes and extends previous work that has 

explored the relationships between cognitive skills and mathematical attainment in several 

ways. First, it simultaneously explored the independent and unique longitudinal contributions 

that precise and approximate non-symbolic Quantity Discrimination Skills make to children’s 

later mathematical attainment over a six-month period and over an eighteen-month period. 

Second, it explored the independent and unique longitudinal contributions that these two non-

symbolic Quantity Discrimination Skills make to two different mathematical attainment 

measures that seem to tap distinct mathematical attainment constructs in young children 

(Nunes et al., 2012). Third, it simultaneously explored the independent and unique 

longitudinal contributions that these domain-specific cognitive skills and two domain-general 

mathematical related cognitive skills make to young children’s mathematical attainment. 

Results show that both of the domain-specific cognitive skills and both of the domain-general 

cognitive skills relate differently to the different mathematical attainment measures, 

supporting the justification for the distinction of these two measures as distinct constructs of 

mathematical attainment in young children (Nunes et al., 2012).  
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When the independent contributions that the four cognitive precursors make to the distinct 

mathematical attainment measures were explored simultaneously, only Approximate 

Quantity Discrimination Skills’ Accuracy of the two Quantity Discrimination Skills’ tasks 

made unique longitudinal contributions to children’s mathematical attainment and only over a 

six-month period, suggesting that non-symbolic quantity discrimination skills are not good 

long-term predictors of young children’s mathematical attainment. In contrast, both domain-

general cognitive skills made unique longitudinal contributions to children’s mathematical 

attainment over a six-month period and VSSP functioning was a unique predictor of 

performance on the Mathematical Reasoning subtest over an eighteen-month period. Thus 

suggesting that VSSP functioning is a strong long-term predictor of young children’s 

mathematical attainment. 

 

This study also used growth analysis to examine whether the relationships identified are 

causal. Only one study has examined whether school-aged children’s phonological awareness 

could predict growth on their mathematical attainment performance (Hecht et al., 2001) and 

only one study has examined whether pre-schooler’s approximate quantity discrimination 

skills could predict growth on their mathematical attainment performance over a six-month 

period (Libertus et al., 2013). Both studies reported significant results. Growth analyses were 

conducted in the present study and revealed that cognitive precursors that made unique 

longitudinal contributions to the Early Number Skills over an eighteen-month period, also 

predicted their growth over this period. These results strengthen the argument that these 

cognitive precursors are causal predictors of early number skills. Regarding mathematical 

attainment, the model predicting Mathematical Reasoning growth over a six-month period 

from the four cognitive precursors explained a significant proportion of variance overall. 

However, no individual cognitive precursor stood as a unique predictor of Mathematical 

Reasoning growth. Therefore the role of these cognitive precursors as causal predictors of 

mathematical attainment over a six-month period is more equivocal. Nevertheless, VSSP 

functioning was a unique predictor of Mathematical Reasoning performance and growth over 

an eighteen-month period, strengthening the argument that it is causal predictor of 

mathematical attainment. 

 

Children’s phonological awareness measured at the start of the study predicted their reading 

performance eighteen months later even when the contributions of all four cognitive 

precursors were examined together and over and above children’s General Conceptual 
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Abilities. In contrast, none of the Quantity Discrimination Skills predicted unique variance in 

children’s reading attainment using the same regression model, suggesting that quantity 

discrimination skills are specific precursors of early mathematical development and not 

broader precursors of scholastic attainment. These results also corroborate the key role that 

phonological awareness plays in literacy development (Gathercole et al., 2005; Hecht et al., 

2001). 

 

9.1 THE RELATIONSHIPS BETWEEN DOMAIN-GENERAL COGNITIVE SKILLS 

AND EARLY NUMBER SKILLS 

The present findings align with Krajewski and Schneider’s (2009) model predictions and 

study results in that phonological awareness predicts children’s number-word sequence 

reciting and VSSP functioning predicts children’s simple arithmetic performance. However, 

results of the relationships between domain-general cognitive skills and Early Number Skills 

varied slightly to the results Krajewski and Schneider (2009) reported. When all four 

cognitive precursors were included in the regression model phonological awareness also 

predicted unique variance in children’s performance on the Story Problems task over a six-

month period, over an eighteen-month period and its contribution remained over and above 

children’s General Conceptual Abilities. It has been proposed that phonological awareness 

plays a crucial role in number tasks where processing and manipulation of verbal codes is 

needed (Simmons & Singleton, 2008). Comparisons between Krajewski and Schneider’s 

(2009) tasks and the task representing QNCs Level III (relations between numerical 

quantities) in the current study suggest that the present task (Story Problems) made higher 

verbal demands than those of Krajewski and Schneider’s (2009). This is because in the Story 

Problems task items were verbally presented and demanded a verbal response. Therefore, it is 

not surprising that phonological awareness made independent and unique contributions to the 

Story Problems at the end of Reception Year and at midway through Year 1. Thus, the 

present results corroborate the fundamental role that phonological awareness plays in 

numerical tasks that demand accessing and processing phonological representations (Hecht et 

al., 2001; LeFevre et al., 2010; Simmons & Singleton, 2008) and the fundamental role that 

VSSP functioning plays in young children’s early arithmetic skills (Krajewski & Schneider, 

2009; McKenzie et al., 2003; Rasmussen & Bisanz, 2005; Simmons et al., 2008; Swanson & 

Beebe-Frankenberger, 2004).  
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Nevertheless, the current results are at odds with Krajewski and Schneider’s (2009) 

theoretical proposal in that early number-word sequence reciting is solely supported by 

phonological awareness and that quantity discrimination skills only contribute to higher 

levels of QNCs where quantity representations or manipulations are needed. In the current 

study not only phonological awareness, but also Approximate Quantity Discrimination Skills’ 

Accuracy, made unique independent contributions to rote citation of the number-word 

sequence over a six-month period and over an eighteen-month period, even when all 

cognitive precursors were included in the model and over and above their General 

Conceptual Abilities.  

 

9.2 THE RELATIONSHIPS BETWEEN DOMAIN-SPECIFIC COGNITIVE SKILLS 

AND THE EARLY NUMBER SKILLS 

The present longitudinal study provides the first empirical evidence that precise and 

approximate quantity discrimination skills play differential roles in the development of 

different early number skills. Approximate Quantity Discrimination skills’ Accuracy made 

unique longitudinal contributions to children’s ability to recite the number-word sequence 

over a six-month period, over an eighteen-month period and over and above General 

Conceptual Abilities. This evidence directly challenges Krajewski and Schneider’s (2009) 

theoretical model because they propose that the acquisition of the knowledge of the number 

sequence is asemantic. Distance effects have been repeatedly reported in behavioural 

experiments with children and adults (Halberda & Feigenson, 2008) and these are taken as 

evidence of the existence of a “mental number line”, which is an analogue, internal 

presentation for number magnitude. This number line is a sequential structure where the 

numbers semantics are organised in a continuum and that supports our approximate 

numerical discrimination skills (Feigenson et al., 2004). It has been proposed that numerical 

representations on this analogue sequential structure are ordered by size but are noisy and 

overlap with each other (Cohen Kadosh, Tzelgov, & Henik, 2008; Dehaene & Changeux, 

1993). An internal syntactic frame is needed for the production of number-words so that they 

can be ordered by number lexical class; this structure allows each term to have its own 

position within the class it belongs to (McCloskey, Sokol, & Goodman, 1986). Thus results 

from the present study suggest that the mental number line that supports approximate 

numerical judgments might also serve as an internal structure for acquiring numerical 

sequential meanings, including the lexical structure of the number-words.  
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Precise Quantity Discrimination skills’ Trimmed RT predicted children’s later ability to 

count objects over a six-month period, over an eighteen-month period and over and above 

children’s General Conceptual Abilities. Counting objects is a complex numerical skill that 

requires mapping the discrete items in a set onto number-words in a one-to-one 

correspondence (Gelman & Gallistel, 1978). Subitising enables the rapid and precise 

enumeration of discrete items in small sets  and supports our precise quantity discrimination 

skills (Feigenson et al., 2004). Presumably this skill requires a well-ordered and not noisy 

representation of magnitudes in order to facilitate quick and precise numerical 

discriminations over very small quantities. Consequently, precise quantity discrimination 

skills might underpin the early acquisition of the numerical cardinality meaning.  

 

The distinction between sequence and cardinal numerical meaning is considered in different 

developmental models of mathematical development (Fuson, 1988; Krajewski & Schneider, 

2009; Wynn, 1992) and supported by neuropsychological data with adults (Dehaene & Cohen, 

1997; Delazer & Butterworth, 1997). However, never before has this distinction been 

associated with the two distinct systems for quantity representations that have been proposed 

(Feigenson et al., 2004). Two plausible although nonexclusive theoretical proposals coexist; 

one proposes that precise quantity discrimination skills are the ones supporting later 

numerical skills and basic arithmetic skills (Butterworth, 1999, 2005, 2010), the other 

suggests that approximate quantity discrimination skills underpin the later acquisition of early 

numerical skills and arithmetic (Dehaene, 1997; Dehaene et al., 2004; Spelke & Dehaene, 

1999).  

 

The present results suggest that approximate quantitative discrimination skills might act as a 

specific precursor for the acquisition of the numerical sequential meaning but not for the 

acquisition of numerical cardinal meaning and arithmetic skills. Butterworth (1999, 2005, 

2010) argues that subitising underlies the development of children’s formal number learning.  

However, findings of the current study indicate that subitising has a circumscribed role as a 

precursor of counting skills but no other early number skills such as early arithmetic skills. It 

is worth noting that the present findings do not rule out the possibility that children’s 

subitising underpins their early and very basic arithmetic skills at very early stages of 

mathematical development and in the “absence” of any formal arithmetic instruction. 

Findings simply point in the direction that by the age of five, children rely on their domain-

general cognitive skills and not on their “intuitive” quantitative skills to perform simple 



180 

 

arithmetic. Thus, findings of the current study indicate that both domain-specific and domain-

general cognitive skills play a fundamental role in early number skills’ development. See 

figure 9.1 for a summary of the similarities and discrepancies of the present results with 

Krajewski and Schneider’s (2009) theoretical model. 

Figure 9.1: Similarities and discrepancies of the present results with Krajewski and Schneider’s (2009) 

theoretical model 

 
 

 

9.3 GROWTH ANALYSES AND CAUSALITY: EARLY NUMBER SKILLS 

The four cognitive precursors included in the present study not only predicted children’s 

Early Number Skills’ performance but also predicted Early Number Skills’ growth from the 

start of Reception Year to midway through Year 1. Studies have found that measures of 

children’s phonological awareness and VSSP functioning at very early stages of formal 

education predict later number skills (Krajewski & Schneider, 2009). Similar longitudinal 

relationships have been reported between children’s quantity discrimination skills and their 

early number skills (LeFevre et al., 2010; Piazza et al., 2010). Such longitudinal relationships 

intuitively suggest that the cognitive precursors are causal predictors of the outcome 

measures because at the time cognitive precursors were assessed, children had undergone 

formal mathematical instruction only for a very limited time. However, predictive studies in 

mathematical development do not tend to examine the predictors of growth, although there 

are a few exceptions (Hecht et al., 2001; Libertus et al., 2013). Thus, the possibility of 

predictor variables having reciprocal relationships with the outcome measures or even a 

reverse directionality to the one intuitively suggested remains tenable. It could be that as a 
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consequence of the process of learning and using the formal number system, children “train” 

and improve their phonological, visuo-spatial and quantitative skills. A key feature of the 

present study is that it examined whether the cognitive precursors could also predict growth 

in the outcome measures. Growth analyses are a very strict methodology to confirm the role 

of cognitive precursors as causal predictors because predictor variables need to predict 

outcome measures over and above themselves. For this reason growth analyses are strong 

evidence of the role of precursors as causal predictors. However, because growth analyses are 

very conservative, it would not be wise to completely dismiss the role of cognitive precursors 

as causal predictors if they do not predict unique growth (see Bowey, 2005 for a full 

discussion on this issue). 

 

In the present study, results from the growth analyses for the Early Number Skills indicate 

that Approximate Quantity Discrimination skills’ Accuracy is a causal predictor of children’s 

Knowledge of the Number Sequence, Precise Quantity Discrimination skills’ Trimmed RT is 

a causal predictor of children’s ability to count discrete objects and both domain-general 

cognitive skills are causal predictors of children’s performance on verbally presented simple 

arithmetic problems. Both quantity discrimination skills have been proposed to be early 

precursors of children’s later numerical competence because they are present very early in 

life (Xu & Spelke, 2000), in adult humans with a very restricted number lexicon (Pica et al., 

2004) and in other animal species (Hanus & Call, 2007; Hauser et al., 1995; Pepperberg & 

Gordon, 2005). However, no study to date has empirically examined the causality of these 

relationships with early number skills. Because the cognitive precursors predicted unique 

variance in the Early Number Skills’ growth over an eighteen-month period it is possible to 

be very confident about their causal relationships with the Early Number Skills. However, 

phonological awareness did not predict unique variance in Knowledge of the Number 

Sequence growth (see figure 9.2 for a summary of the variables predicting unique variance in 

Early Number Skills’ growth over an eighteen-month period) despite the fact that it predicted 

performance over and above General Conceptual Abilities. It could be that knowledge of the 

number sequence reciting makes higher verbal demands at early stages of schooling but that 

later growth on number sequence reciting depends to a greater extent on children’s 

understanding of place value. Because growth analyses eliminate early variation of the 

Knowledge of the Number Sequence at the start of Reception Year, this could explain why 

only Approximate Quantity Discrimination skills’ Accuracy remains as a unique predictor of 

growth. However, the role of phonological awareness as a causal predictor of number-
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sequence reciting cannot completely be dismissed on the grounds that it does not predict 

unique variance in the Number Sequence growth and therefore its role as a causal predictor of 

number-sequence reciting is more equivocal (see Bowey, 2005). 

Figure 9.2: Cognitive precursors predicting unique variance in Early Number Skills’ performance (on the left) 

and unique variance in Early Number Skills’ growth (on the right) from the Start of Reception Year to midway 

through Year 1.  

 
 

 

9.4 THE RELATIONSHIPS BETWEEN DOMAIN-GENERAL COGNITIVE SKILLS 

AND MATHEMATICAL ATTAINMENT 

Phonological awareness and VSSP functioning made independent and unique contributions to 

children’s mathematical attainment, but they related differently to the two mathematical 

attainment measures, supporting the contention that these measures tap distinct constructs of 

mathematical attainment in young children (Nunes et al., 2012). When the independent and 

unique longitudinal contributions that the four cognitive precursors make to the two 

mathematical attainment measures were explored simultaneously, VSSP functioning and 

phonological awareness predicted unique variance in performance on the two standardised 

mathematical attainment measures over a six-month period. These results corroborate the 

proposal that mathematical attainment in young children is influenced by the quality of their 

phonological representations (Simmons & Singleton, 2008) and align with previous findings 

where phonological awareness predicted young children’s performance on standardised 

mathematical attainment measures months or a year later (Leather & Henry, 1994; Simmons 

et al., 2008). They also corroborate the role of VSSP functioning as a predictor of young 
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children’s later performance on standardised mathematical attainment tests (Noël et al., 2004; 

Rasmussen & Bisanz, 2005; Simmons et al., 2008). However, only VSSP functioning 

predicted unique variance in Mathematical Reasoning over an eighteen-month period. Items 

in the Numerical Operations subtest are not all verbally presented and they do not require a 

verbal response (except for one item where children are asked to verbally report the number 

of pennies presented to them). It has been suggested that at early stages of formal 

mathematical learning, the process of mapping the numerical lexicon to the corresponding 

Arabic numerals is still under development and presumably requires phonological skills 

because it is a similar process to learning to read (LeFevre et al., 2010). Once this mapping 

has been made, children would need to rely little if at all on verbal skills to solve written 

arithmetic problems that do not require phonological processing skills. This could explain 

why phonological awareness no longer contributes to performance on the Numerical 

Operation subtest at midway through Year 1.  

 

However, the finding that phonological awareness does not make unique longitudinal 

contributions to Mathematical Reasoning over an eighteen-month period was unexpected 

because items in the Mathematical Reasoning subtest are verbally presented and require 

verbal responses. It could be that a shift in cognitive strategies occurs in the transition from 

Reception Year to Year 1 and other cognitive skills not included in the present study might be 

better predictors of children’s performance on the Mathematical Reasoning subtest at this 

developmental stage. For instance, previous studies indicate that central executive 

functioning together with VSSP functioning contribute to children’s arithmetical performance 

at this stage (McKenzie et al., 2003; Rasmussen & Bisanz, 2005). Because the present study 

uses Krajewski and Schneider’s (2009) theoretical model of early arithmetical development 

as a general framework, it did not include a measure of children’s central executive 

functioning.  

 

9.5 THE RELATIONSHIPS BETWEEN DOMAIN-SPECIFIC COGNITIVE SKILLS 

AND MATHEMATICAL ATTAINMENT 

When all four cognitive precursors were included in the model, Precise Quantity 

Discrimination skills’ Trimmed RT did not contribute to children’s mathematical attainment 

at any time point, suggesting that this cognitive skill is not a good longitudinal predictor of 

children’s later performance on standardised mathematical attainment tasks and challenging 
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LeFevre et al.’s (2010) findings where a combined measure of subitising skills and a non-

verbal arithmetic task in five-year-olds made significant contributions to their performance 

on standardised and research-based mathematical attainment measures two years later. A 

plausible explanation for the contrasting findings could be that the task employed by LeFevre 

et al. (2010) to assess children’s subitising did not control for children’s age or naming speed. 

Especially when using RTs as an index of children’s quantity discrimination skills it is crucial 

to control for their baseline speed on a task that demands a rapid response to stimuli 

presented in the same format. Otherwise speed measures of the variable of interest are likely 

to be largely contaminated by children’s individual latencies. In addition, LeFevre et al.’s 

(2010) subitising task required the use of number-words and therefore was contaminated by 

children verbal skills. In addition, it was a combined measure of subitising skills and non-

verbal arithmetic what predicted later mathematical attainment and not just subitising skills. 

Therefore this relationship is likely to be largely contaminated by the efficiency of other 

cognitive skills such as VSSP functioning. 

 

Approximate Quantity Discrimination skills’ Accuracy only made unique longitudinal 

contributions to their mathematical attainment over a six-month period but not over an 

eighteen-month period. These results challenge those reported by Mazzocco et al. (2011) 

where pre-schoolers’ approximate quantity discrimination skills predicted their performance 

on a standardised mathematical attainment test two years later. Mazzocco et al.’s (2011) 

significant findings could be an artefact of children’s individual differences in their general 

cognitive abilities, which were not controlled for, or biased due to the very small sample 

recruited for their study (seventeen children). Nevertheless, the present results are consistent 

with those from Libertus et al. (2013) where pre-schoolers’ ANS accuracy made significant 

longitudinal contributions over a six-month period after controlling for participants’ age, 

vocabulary and math ability at the start of the study.  

 

The number module hypothesis (Butterworth, 1999, 2005, 2010) postulates that a deficit in 

the representational system for analogue numerical magnitudes is a core aspect of early MLD. 

Although this hypothesis originally emerged from comparison studies where children 

presenting MLD had poor subitising skills (Landerl et al., 2004), it has been generalised to 

give an account of the relationships found between children’s poor magnitude representation 

skills, whether precise or approximate, and their low mathematical performance. Therefore, 

all studies that have found children’s performance on non-symbolic quantity discrimination 
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tasks to be related to their concurrent or later mathematical attainment (Libertus et al., 2013; 

Libertus et al., 2011; Nordman et al., 2009, September) suggest that a deficit in the 

representational system for analogue numerical magnitudes might underpin children’s poor 

mathematical attainment. In contrast, the access deficit hypothesis (Rousselle & Noel, 2007) 

postulates that mathematical learning disabilities are due to a deficit in accessing the 

analogue magnitude representations from symbolic numerical representations and is 

supported by studies that fail to find a relationship between children’s performance on non-

symbolic quantity discrimination tasks and their mathematical attainment but find a 

relationship between performance on symbolic quantity discrimination tasks and children’s 

mathematical attainment (DeSmedt & Gilmore, 2011; Iuculano et al., 2008; Rousselle & 

Noel, 2007; Sasanguie et al., 2012; Soltész et al., 2010).  

 

In view of the present results children’s speed in making accurate and precise discriminations 

over small non-symbolic quantities seems to be a good long-term predictor of a specific early 

number skill (Counting Objects). Children’s accuracy on non-symbolic approximate 

numerical judgements seems to be a good long-term predictor of their number-sequence 

reciting and a short-term predictor, but not a good long-term predictor, of their performance 

on standardised mathematical attainment measures. These findings support the number 

module hypothesis in that non-symbolic approximate quantity discrimination skills predicted 

children’s mathematical attainment six months later. However, the present results also 

provide support to a very recent cross-sectional study which suggested that the relationship 

between children’s non-symbolic approximate quantity discrimination skills with 

mathematical attainment weakens over early stages of schooling (Bonny & Lourenco, 2013). 

 

The present study is the first to examine the relative and unique contributions that precise and 

approximate non-symbolic quantity discrimination skills make to the two mathematical 

attainment constructs in young children that have been proposed (Nunes et al., 2012) over a 

six-month and over an eighteen-month period and controlling for a children’s age and 

baseline speed in making two-choice non-numerical discriminations. In addition by including 

the two domain-general cognitive predictors in the model, it is possible to be very confident 

that the relationship identified between Approximate Quantity Discrimination Skills’ 

Accuracy and mathematical attainment cannot be explained by their visuo-spatial STM skills 

or phonological awareness. See figure 9.3 for a summary of the variables predicting 
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mathematical attainment at the end of Reception Year and mathematical and reading 

attainment at midway through Year 1. 

Figure 9.3: Independent contribution of the domain-specific and domain-general cognitive skills on children’s 

mathematical attainment at the end of Reception Year and on children’s mathematical attainment and reading at 

midway through Year 1.  

 
 

9.6 GROWTH ANALYSES AND CAUSALITY: MATHEMATICAL ATTAINMENT 

MEASURES 

Libertus et al. (2013) confirmed the role of approximate non-symbolic quantity 

discrimination skills’ accuracy as causal predictors of pre-schoolers’ mathematical attainment 

by conducting growth analyses over a six-month period. In the present study when all 

significant precursors of mathematical attainment over a six-month period were included in 

the growth analyses, only the regression model predicting Mathematical Reasoning at the end 

of Reception Year predicted a significant proportion of variance overall. However, no 

cognitive precursor was a unique predictor of Mathematical Reasoning growth over this time 

period. Therefore, the role of Approximate Quantity Discrimination skills’ Accuracy, 

Phonological Awareness and VSSP functioning as causal predictors of mathematical 

attainment is equivocal. However, because growth analyses control for auto-regressor effects 

(the tendency of a variable to predict itself), they are very strict. For this reason, it is not wise 

to dismiss the role of cognitive precursors as causal predictors if they do not predict unique 

variance in growth because these analyses are very conservative (see Bowey, 2005). Whilst 

VSSP functioning predicted performance and growth on the Mathematical Reasoning subtest 

over an eighteen-month period, none of the other cognitive precursors included in the study 
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predicted mathematical attainment over this time period. Thus, confirming the role of VSSP 

functioning as a causal predictor of mathematical attainment (see figure 9.4). 

Figure 9.4: Variables predicting unique variance in Mathematical Attainment growth from the Start of 

Reception Year to midway through Year 1. 

 

 

9.7 SPECIFICITY OF THE RELATIONSHIPS FOUND 

Quantity discrimination skills are believed to be domain-specific because they emerge 

independently from other cognitive skills (Antell & Keating, 1983; Bijeljac-Babic et al., 1993; 

Wynn, 1996) and are supported by distinct brain networks (Arp et al., 2006; Fink et al., 2001; 

Pasini & Tessari, 2001; Piazza et al., 2003; Sathian et al., 1999) that systematically activate in 

the presence of tasks demanding specific numerical processing (Dehaene et al., 1998). 

Studies examining the relationships between quantity discrimination skills and mathematical 

development tend to control for children’s individual differences in other cognitive skills to 

eliminate potential contamination from confounding variables. However, the possibility of 

quantity discrimination skills being broader precursors of scholastic attainment remains 
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tenable because the tasks used to tap these systems could also unintentionally tap general 

cognitive skills that are not being controlled for. In the present study, when the independent 

contribution of domain-general and domain-specific cognitive precursors was explored 

simultaneously, children’s Quantity Discrimination Skills predicted their later Early Number 

Skills and mathematical attainment but not their reading attainment. Thus, the relationships 

found between the cognitive precursors with the Early Number Skills and mathematical 

attainment in the present study seem to be specific to the number domain. In addition, 

children’s reading performance was only predicted by their phonological awareness when all 

four cognitive precursors were included in the regression models and this relationship 

remained over and above children’s General Conceptual Abilities. Therefore these results 

also corroborate the pivotal role that phonological awareness plays in early literacy 

development (Gathercole et al., 2005; Hecht et al., 2001) 

 

9.8 LIMITATIONS AND FUTURE DIRECTIONS 

The present thesis used Krajewski and Schneider’s (2009) model as a general framework to 

study the relationships between domain-general and domain-specific cognitive skills and 

distinct early number skills. Krajewski and Schneider’s (2009) model was chosen because 

they proposed three distinct developmental levels of early number skills instead of the two 

proposed by LeFevre et al. (2010). These three distinct developmental levels of early number 

skills include the distinction between sequential and cardinal number meaning proposed by 

previous developmental models of early mathematical competence (Fuson, 1988, 1992; 

Gelman & Gallistel, 1978; Wynn, 1992). However, there are a wide range of early number 

skills and future studies should consider including early number skills outside the ones 

considered in Krajewski and Schneider’s (2009) model, such as children’s ability to write or 

read numbers. 

 

Two non-symbolic quantity discrimination skills tasks were designed to tap children’s PNS 

and ANS respectively in the present study. These tasks aimed to meliorate previous 

methodology employed to tap these core systems for quantity representations by using non-

symbolic stimuli, simultaneous presentation of the arrays to be compared and children having 

to respond by pressing a key. Thus, no verbal skills, memory skills or knowledge of the 

formal number system was needed to perform these tasks. RTs in the Precise Quantity 

Discrimination Skills’ task showed a quadratic trend, suggesting that children were not 
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employing a serial counting strategy to respond. Accuracy analyses in the Approximate 

Quantity Discrimination task showed the numerical ratio effect consistent with the idea that 

children were relying on numerical magnitudes represented in a continuum where vagueness 

increases as the numerical magnitude increases. However, recent studies have suggested that 

non-symbolic quantity discrimination tasks might in fact be tapping domain-general cognitive 

skills (Fuhs & McNeil, 2013; Gilmore et al., 2013; Soltész et al., 2010). In particular, 

Gilmore et al. (2013) and Fuhs and McNeil (2013) have proposed that the relationship 

between non-symbolic approximate quantity discrimination tasks and mathematical 

attainment in young children could be an artefact of their relationships with inhibition motor 

skills. Although this possibility cannot be completely dismissed because no measure of 

inhibition skills was included in the present study, it is highly unlikely that both non-

symbolic Quantity Discrimination Skills’ tasks designed for this study are indirect measures 

of inhibition motor skills for two main reasons. Firstly, children’s Trimmed RT in the Precise 

Quantity Discrimination task and their Accuracy in the Approximate Quantity Discrimination 

task were not related to each other, suggesting that these measures tap different cognitive 

aspects. Secondly, Trimmed RT in the Precise Quantity Discrimination task and Accuracy in 

the Approximate Quantity Discrimination task related differently to the different Early 

Number Skills and predicted performance on these measures that could not be explained by 

domain-general cognitive skills or General Conceptual Abilities. Future studies may, 

however, want to explore whether the relationships identified in the present work between 

domain-specific cognitive skills and outcome measures are independent of children’s 

inhibition skills. 

 

In the current study, the unique proportion of variance predicted by phonological awareness, 

VSSP functioning and both Quantity Discrimination Skills is small. However, the number of 

predictors included in these models is larger than in most studies due to the inclusion of both 

Quantity Discrimination Skills and the two control measures (age in months and Baseline 

Trimmed RT). Therefore, after eliminating the variance that the control variables share with 

the outcome measures, the remaining unique variance that can be uniquely predicted by the 

cognitive precursors is smaller. Thus, the present methodological approach eliminates the 

influence of confounding variables to a greater extent than studies examining the 

relationships between either precise or approximate quantity discrimination skills and 

mathematical development. However, this is at the expense of reducing considerably the 
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amount of remaining variance in the variable of interest that can be predicted by the cognitive 

precursors. 

 

There is also a possibility that the proportions of variance predicted by the regression models 

in the present study are indirect. For instance the implication of central executive functioning 

in arithmetic tasks in six-year-olds has been previously reported (Bull et al., 2008; McKenzie 

et al., 2003; Rasmussen & Bisanz, 2005) and the possibility of approximate quantity 

discrimination tasks tapping central executive functioning has been raised (Fuhs & McNeil, 

2013; Gilmore et al., 2013). Although the domain-general cognitive skills included in the 

present study are well-established precursors of mathematical attainment (Simmons et al., 

2008), the relationships between the domain-specific cognitive skills and mathematical 

attainment are still controversial, especially for approximate quantity discrimination skills. 

Thus the relationships identified in the current study could be artefacts of the relationship 

between cognitive precursors and outcome measures with central executive functioning. The 

present study would have benefited from including a measure of central executive 

functioning measures to test this possibility. However, Krajewski and Schneider’s (2009) 

model was used as a general framework for which the role of central executive functioning 

was not considered. Future studies examining the relationships of domain-general and 

domain-specific cognitive skills with early number skills and mathematical attainment may 

want to consider the inclusion of central executive functioning measures to clarify whether 

the relationships identified in the present work are direct. 

 

While the four cognitive precursors included in the study were assessed at the start of 

Reception Year, General Conceptual Abilities were assessed at midway through Year 1. It is 

therefore likely that General Conceptual Abilities share greater variance with the outcome 

measures because they were both assessed at the same later time point. It could be that if they 

had been administered at the start of Reception Year General Conceptual Abilities and 

outcome measures would share less variance. However, due to the large number of 

participants recruited for the study and the large number of tasks administered at the start of 

Reception Year, the inclusion of General Conceptual Abilities tasks at this early stage of the 

study was not viable. Future studies might want to administer these control measures at the 

same time point as measures of the cognitive precursors are obtained, so that the control 

measures do not share greater variance with the outcome measures due to the fact that they 

had been administered at a later time point. 
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In summary, this study has identified key cognitive precursors of early number skills and 

mathematical attainment. It provides empirical evidence that each cognitive skill has a 

circumscribed role as a precursor of specific and distinct number skills. These findings are of 

key importance as they suggest that early assessments of the four cognitive skills included in 

this study could help with the identification of children that will struggle learning specific 

number skills and that targeted-interventions could be a straight forward solution to prevent 

later generalised mathematical low attainment in these children. For example one would 

predict that children with weak ANS may struggle with number-word sequence reciting and 

therefore early additional practice focussing on this early number skill could be very 

beneficial for these children. Similarly, children with weak PNS may find counting difficult 

and therefore encouraging them to engage in counting activities could help them to overcome 

these difficulties. Lastly, children with weak phonological awareness and/or weak VSSP 

functioning might find simple abstract arithmetic tasks particularly difficult, so early 

additional practice in arithmetic could be very useful. Whilst the study has a number of 

methodological strengths including its longitudinal design, it is recognised that there are 

weaknesses such as not including central executive measures. Future studies can extend and 

clarify whether the relationships identified in the current study are direct by including 

executive control measures. 
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GLOSSARY OF ABBREVIATIONS, ACRONYMS AND SPECIFIC 

TERMS 

ANS:  Approximate Number System 

AWMA: Automatic Working Memory Assessment 

BAS-II
UK

: British Ability Scales 

DEMAT2+: Modified version of the German Mathematics Test 

Early number skills: Skills that young children need to acquire to become competent 

users of the formal number system. This would include verbal 

skills such as counting as well as symbolic skills such as reading 

and writing numbers. 

Trimmed RT:    Mean RTs for all correct responses taking less than two times the 

interquartile range from the median 

ERPs:  Event-Related Potential 

FINSTs:        Fingers of Instantiation 

fMRI: Functional Magnetic Resonance Imaging 

Formal number system: Conventional and culture-specific representations for number that 

are to be learnt through mathematical instruction 

IQ: Intelligence quotient 

LTM: Long-term memory 

MLD: Mathematics Learning Difficulties 

NDE:             Numerical Distance Effect 

PCA: Principal Component Analysis 

PIPA: Preschool and Primary Inventory of Phonological Awareness 

PET:             Positron Emission Tomography 

PNS:              Precise Number System 

QDS:             Quantity Discrimination Skills 

QNC:           Quantity-number competence 

RT: Response Time 

STM: Short-term memory 

TEMA: Test of Early Mathematics Ability 

VSSP: Visuo-spatial sketch-pad 

w parameter:  Minimum change needed in the numerical ratio presented by the 

two numerical     magnitudes to be correctly discriminated 

WASI:           Wechsler Abbreviated Scale of Intelligence 

Weber JND:  Weber Just Noticeable Difference 

WIAT-IIUK: Wechsler Individual Achievement Test Second Edition 

WJ: Woodcock-Johnson Test 

YARC: York Assessment of Reading for Comprehension 
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APPENDICES 

Appendix 1 

Box and whiskers graphs of Baseline task data distribution prior and post data trimming at T1 (on the left) and at T3 (on the right) 
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Appendix 2 

Box and whiskers graphs for the Precise QDS data distribution prior and post data trimming at T1  (on the left) and at T3 (on the right) 
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