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1 Abstract 

 

Electronic sensors equipped with accelerometers have the potential to remotely monitor 

and record herbivore behaviours. In the UK, sheep are a significant consumer in both 

managed pasture and upland ecosystems. The ability to automatically collect behavioural 

data could help inform research into ecosystem functioning and animal welfare. This study 

evaluated the placement of accelerometers and the ability of data generated to 

automatically classify four behaviours in sheep; grazing, standing (non grazing), lying 

head up and lying head down. An application of this method was used to analyse and 

map data in a GIS and investigate if sheep show a preference for areas with higher 

fructan levels in grass. Three sheep were fitted with two accelerometers each. One 

attached to a head halter and one centrally located across the withers by means of a dog 

harness. Training data were collected and discriminant function analysis was used to 

develop a model that could predict future unobserved behaviours. Correct classification 

rates of 95.2%, 91.0% and 91.8% were achieved for each sheep. In the fructan study, 

although no preference was detected, the study did demonstrate that data from 

accelerometers can be used to generate behavioural distribution maps. The use of 

accelerometers is a suitable method for classifying a range of behaviours in sheep. 
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3 Objectives 

 

Explore the ability of discriminant function analysis to classify sheep behaviour from 

accelerometer data. 

 

Combine GPS and accelerometer data to investigate if sheep exhibit a preference for 

higher levels of fructan. 
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5 Introduction 

The UK has a population of 22.9 million sheep (Defra, 2012)and is the largest producer of 

sheep meat within the European Union(European-Union, 2012). The population is 

distributed on hill, upland and lowland environments with the greatest density being in 

upland habitats (Defra, 2006).The grazing habitats of sheep are important carbon stores.  

Upland habitats account for some of the largest stores of carbon in the UK (Milne and 

Brown, 1997, Natural.England, 2009).Over the last 10,000 years, UK peatlands have 

sequestered 5.5 billion tonnes of carbon from the atmosphere (JNCC, 2011).The Climate 

Change Act (2008) puts in place legally binding targets to reduce the UK’s greenhouse 

gas emissions by at least 80% by 2050. With large carbon stores in UK uplands, land 

management and the functioning of these ecosystems can directly affect these targets. 

The management of grazing herbivores is important as it can potentially impact on 

ecosystem functioning (Tilman et al., 1997) and biodiversity. The need for research into 

the management of biodiversity and its importance to ecosystem functions has been 

highlighted by the Biodiversity Theme Action Plan (BTAP) 

(Natural.Environment.Research.Council, 2009). The BTAP aims to understand further the 

role of biodiversity in key ecosystem processes and functions. Further, as part of an 

adaptation plan for climate change risk and reporting requirements under the Climate 

Change Act (2008), Natural England (NE) has highlighted how climate change driven 

threats have direct effects on species and their interactions that threaten the ability to 

protect species and ecosystems. NE response to these threatsrecognises the need for an 

ecosystem approach, considering the full range of ecosystem services a healthy natural 

environment provides to people (Natural.England, 2012). Bardgett and Wardle 

(2010)discussed the significance of herbivores in relation to above and below ground 

interactions suggesting more research is needed to understand how herbivores modulate 

ecosystem responses to climate change and consequently how the management of 

herbivore populations could be changed to mitigate against climate change effects 

(Bardgett and Wardle, 2010). Scaling up research to the landscape scale to better 

understand the effects of herbivores on ecosystem processes, that are well studied at 

localised spatial scales, and their effect on ecosystem functions at the landscape scale, 

will contribute to the ecosystem approach needed to help understand and mitigate climate 

change threats to important grazing habitats (Bardgett and Wardle, 2010). Further, the 

ability to monitor herbivore behaviours in a spatial context at the landscape scale will also 

enhance the understanding of the influences of grazing on biodiversity &natural 

environments and ecosystem processes (Putfarken et al., 2008a, Rutter, 2007). 
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5.1.1 Difficulties with visual sheep observations and the need to automate 

Collection of data on sheep behaviour faces several challenges: 

 

 Visual observations of sheep are time consuming and labour intensive, particularly 

at the landscape scale. Observations in upland environments are further impeded 

by the varied terrain and potential wide spatial distribution of the target population. 

The different visual observation sampling protocols, e.g. scan, focal, or continuous 

sampling (Altmann, 1974) can be difficult to complete as the focal or selected 

animals have increased opportunity to move out of sight of an observer.  

 The presence of an observer or observers can in itself alter the behaviour (Martin 

and Bateson, 1993)or free choice foraging behaviours of individuals through the 

human-animal relationship (HAR), further complicating the assessment of natural 

behaviours. The presence of one or more observers can elicit fear responses in 

sheep. On farm management such as shearing, castration, tail docking, 

vaccination, herding and transportation are known to generate fear responses in 

sheep (Forkman et al., 2007), thus creating future aversion to humans. However 

the method used for some treatments can reduce future aversion and flight risk 

(Hargreaves and Hutson, 1990). Behavioural reactions to human presence can 

also vary between breeds (Le Neindre et al., 1993). These responses are 

indicative of the HAR, especially one categorised as negative.  Sheep can 

discriminate between different people and exhibit different levels of fear responses 

(Boivin et al., 1997), however, observers engaged in scientific data collection are 

unlikely to have developed the type of HAR that results in reduced fear responses 

similar to that of stock people.  

 Manual observations of animals are also at risk of anthropomorphism, whereby 

behaviours are interpreted in a subjective manner and influenced by the observers’ 

emotions and intentions (Martin and Bateson, 1993). Further, manual observations 

can also suffer from negative within and between observer reliability and validity. 

The practice and experience of observers, frequency of behaviour occurrence, and 

observer fatigue can all affect how well a category of behaviour is measured and 

the reliability within and between observers (Martin and Bateson, 1993). Further, 

definitions of behaviour categories are at risk of changing over time, known as 

observer drift. This, however can be reduced with clear and unambiguously 

defined categories or through scoring scales such as used by  Kaler et al. (2009).  

 

The difficulties inherent in manual observations could be reduced by using some form of 

automatic recording of behaviours producing quantitative data. Indeed, interest has been 
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growing for some time in automatic techniques where animal behaviour can be monitored 

on multiple animals, non-invasively for long periods of time (O’Driscoll et al., 2008). 

5.1.2 Accelerometers 

Accelerometers have been used in livestock research to automatically detect and classify: 

step counts (Scaglia et al., 2009, Boland et al., 2011), multi behavioural classification 

(Moreau et al., 2009, Watanabe et al., 2008, Soltis et al., 2012, Nadimi et al., 2008, 

Nadimi et al., 2012), and total activity levels comprising different behaviours such as 

feeding, drinking, walking, grooming, ruminating as well as all conscious and unconscious 

movements (Giannetto et al., 2010, Bertolucci et al., 2008, Piccione et al., 2008d, 

Piccione et al., 2008a). In agricultural and livestock environments, several different types 

of accelerometer have been used in applied research.  

Accelerometers are available as ready-made all in one solutions, ready-housed 

component and electrical component only solutions. Off the shelf animal research 

solutions have all electronic components ready housed in an end product. The provided 

software manages the transfer and analysis of data. Different products are able to detect 

and classify different activity levels and locomotion (e.g., Actiwatch) and step counts (e.g., 

Icetag). Ready housed raw data accelerometers are supplied with software that will 

convert the raw data into acceleration and angular displacement measurements. However 

the software is not capable of analyzing data to classify behavioural modes, activity levels 

or step counts. Component accelerometers are available and have been used but these 

require the end user to build and fit them in a suitable housing with adequate power while 

also providing their own means by which to transfer and analyse raw data.  

5.1.3 Ready-made accelerometers 

Actiwatch 

In the early 2000s, Actiwatch devices were manufactured in tandem by MiniMitter Co. MA, 

USA and Cambridge Neurotechnology Ltd (CNT), UK. Minimitter licensed the technology 

from CNT. The Actiwatch-Mini® utilises a piezo-electric accelerometer that is set up to 

record the integration of the amount, duration and intensity of movement in all directions. 

The corresponding voltage produced is converted and stored as an activity count in the 

memory unit of the Actiwatch-Mini®. The maximum sampling frequency is 32 Hz. It is 

important to stress that due to this improved way of recording activity data there is no 

need for sensitivity setting as the Actiwatch unit records all movement over 0.05 g. 

(Piccione et al., 2008a). The Actiwatch-Mini has been used to monitor activity levels and 

locomotion in a variety of livestock animals such as cows (Piccione et al., 2011f), goats 

(Giannetto et al., 2010, Piccione et al., 2008i, Piccione et al., 2008a), horses (Bertolucci et 

al., 2008) and sheep (Piccione et al., 2008d, Piccione et al., 2007, Piccione et al., 2010a, 

Piccione et al., 2010d, Piccione et al., 2011a). The ability to automatically monitor activity 
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levels in livestock has been used to investigate the adaptation of animals to different 

intensive farming management options. Piccione et al. (2011a) investigated the influence 

of different housing conditions and feeding schedules on the daily rhythm of total 

locomotor activity (TLA) in sheep using the Actiwatch-Mini. They concluded that restricting 

food access to a limited number of hours per day forces a cycle in which the short period 

of food ingestion alternates with a long interval of fasting, resulting in a precise and 

defined cycle of feeding-fasting and satiety-hunger. During the rest of the day, TLA was 

reduced with respect to the period of food availability, with some peak of activity. Even if 

the TLA is mainly entrained by photoperiod, the amount of activity may be influenced by 

housing conditions and food availability. Their research showed that monitoring of TLA 

with the Actiwatch-Mini can be applied to describe the adaptation of animals both to 

different stabling conditions and feeding schedules, to improve welfare and health of 

sheep. Piccione et al. (2011f) investigated the influence of different farming conditions on 

the TLA of cows and how this could be used as a tool to determine management-related 

differences in activity patterns under real-life conditions. They found that for dairy cattle 

subjected to farming management, most activity is concentrated in the photophase of the 

light/dark cycle. The activity was rhythmic, even though the management practise 

changed according to the productive period, and activity reached its peak in the middle of 

the photophase. However, activity levels differed according to management conditions 

and could be influenced by food administration and diet composition, even though the 

main stimulus to the onset of the TLA is in any case the photoperiod. Giannetto et al. 

(2010) investigated whether changes in photoperiod and restricted feeding were 

associated with changes in total daily locomotor activity in goats. Using the Actiwatch-Mini 

helped to show that goats exhibited a daily rhythm of total locomotor activity, with the 

highest daily amount of activity during the photophase. With ad libitum food access, the 

primary influence of the TLA was identified as the photic stimulus and with restricted 

feeding the zeitgeber of TLA was shown to be the restricted food access (non-photic 

stimuli). Further studies have investigated how photoperiod and restricted feeding affect 

total daily locomotor activity in sheep.Piccione et al. (2010d) considered the daily rhythms 

of free radicals and anti-oxidant power in sheep, and the possible influences of daily 

locomotor activity fluctuation, (Piccione et al., 2010a) showed the circadian rhythm of total 

activity in sheep and goats kept in stable conditions. 

 

Icetag 

The IceTag accelerometer (Ice Robotics Inc, Edinburgh, UK), designed specifically for 

livestock, monitors and records stepping, standing and lying behaviour. It is a leg-based 

sensor based around a 3 axis accelerometer that has a sampling rate of 16 Hz, averaging 

the data to 1 second. The Icetag has been updated several times with the Icetag2 

available until 2008. The subsequent model, Icetag3D, made available wireless data 
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transfer. The latest model, IceTag®Sensor maintains the same functionality but in a 

smaller and lighter housing. The end user does not have access to the raw data from 

each axis, rather the included software, “IceTagAnalyser” converts the data to present the 

user with information on stepping, lying and standing behaviour. Although the Icetag does 

not give data on grazing behaviour, Aharoni et al. (2009) and  Scaglia et al. (2009)  used a 

procedure to extract time spent grazing and walking without grazing. They summarised 

the data into 5-minute intervals. If fewer than 10 steps were taken during that interval, the 

animal was considered to be standing still; if between 10 and 80 steps were taken, the 

animal was considered to be grazing; and if more than 80 steps were taken, the animal 

was considered to be walking without grazing (Scaglia et al., 2009). Using this method 

(Scaglia et al., 2009) attempted to evaluate the effect of time of supplementation on the 

behaviour and dry matter intake of beef steers continuously stocked on annual ryegrass. 

They were able to conclude that supplementation in the afternoon hours reduced the time 

animals spent grazing when data were analyzed within periods of the day.  (Aharoni et al., 

2009) sought to compare the grazing behaviour, diet intake, and energy cost of activity of 

Beefmaster × Simford cross cows and small Baladi cows. With the use of the Icetag, they 

were able to conclude that Baladi cows were better adapted to harsh conditions than 

heavy beef cows due to better efficiency of intake utilisation and smaller relative 

locomotion cost of small stature. In an effort to improve grazing management and better 

understand foraging strategies of dairy cows under progressive defoliation regimens, 

Gregorini et al. (2011) investigated the feeding station behaviour of dairy cows during the 

first grazing session of the day in response to daily restrictions of time at pasture. The 

Icetags were used to calculate feeding station eating steps and searching steps. The 

eating step length was calculated using validation data collected over two days by dividing 

the distance walked while eating between the two points (provided by GPS collars) and 

the number of steps taken between them (using the IceTags). They concluded that 

changes in the total number of feeding stations shown during the first grazing session of 

the day occur in response to restrictions of time at pasture helping to further understand 

changes in eating and locomotive behaviour in competitive feeding scenarios situations in 

intense grazing management systems. Generally, studies using the Icetag are not 

concerned with validation as the provided software interprets the data and presents the 

end user with information on posture (standing vs. lying), leg movement and the number 

of steps taken per time unit. However, as Ledgerwood et al. (2010) noted, the use of the 

recorded number of steps per second to classify walking or standing can provide an 

inaccurate prediction because cows can move their legs without motion of the body, i.e. 

without walking, and they can also walk so slowly that no leg activity is recorded for one or 

more seconds. Ledgerwood et al. (2010) aimed  to develop an algorithm for predicting the 

duration of walking and standing periods based on a moving average of the output from 

the IceTag device and the step count and lying/standing prediction of the IceTag device 
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was also validated against video recordings. They found that sorting data into steps for 

walking, and steps for standing will improve the correct step counts and suggested that 

the IceTag provides data that can be used to estimate the number of steps per time unit 

and to estimate the frequency and duration of walking and standing with a reasonably 

high accuracy.   

5.1.4 Component accelerometers  

Accelerometers are also available as standalone electronic components that require the 

user to integrate a power source, storage and transfer capabilities in an appropriate 

housing. This approach allows the researcher to develop a bespoke system that is tailored 

to specific requirements. However, knowledge of electrical components and the ability to 

integrate all the separate components into one system is required. Unlike the all in one 

solutions such as the Actiwatch and Icetag, accelerometer data need to be calibrated and 

validated against the behaviour, activity or movement of interest. Nadimi et al. (2011) and 

Nadimi et al. (2012) used a dual axis ADXL202 accelerometer (Analog Devices, Norwood, 

MA) integrated with a MTS310 sensor board (MEMSIC Inc, Andover, MA). These 

components were further integrated into a wireless sensor network to facilitate wireless 

monitoring of sheep behaviours including grazing, lying down, standing and walking. 

Using a separate component based approach they were able to successfully design and 

establish a wireless network with integrated energy generation (Nadimi et al., 2011) and 

enhanced communication reliability (Nadimi et al., 2012) for monitoring sheep behaviours. 

Martiskainen et al. (2009) used a tri-axial ADXL330 accelerometer (Analog Devices, 

Norwood, MA) integrated with an 8-bit AD converter to convert accelerometer voltage 

output to integer values. The accelerometer was powered with four 3.7 V lithium batteries 

(2.4 Ah each). Data were sent to a pc via a wireless data acquisition network. Using a 

separate component based approach they were able to develop a method for measuring 

several behavioural patterns of dairy cows. Cornou and Lundbye-Christensen (2010) 

housed a tri-axial LIS3L02DS accelerometer (STMicroelectronics, Geneva, Switzerland) 

with a battery package and Bluetooth transfer capabilities. They successfully used these 

integrated components on group-housed sows and showed how multivariate models are 

well suited to categorise activity types.  

5.1.5 Housed accelerometers 

Unlike component only accelerometers, ready housed accelerometers provide a solution 

that requires no knowledge of electronic systems design. However, as with component 

based accelerometers, data need to be calibrated and validated against the behaviour, 

activity or movement of interest. These accelerometers usually come supplied with 

software allowing programming of sample rates and data retrieval. Housed 

accelerometers have been used with a variety of livestock animals to successfully classify 
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behaviours such as feeding, walking, resting and step counts. Soltis et al. (2012) used the 

X9-2mini accelerometer (Gulf Coast Data Concepts) fitted to collars to determine if data 

generated by the device could distinguish between four behaviour patterns: feeding, 

bathing, walking and swaying in captive African elephants. Robert et al. (2009) used a 

GP1 SENSR tri-axial accelerometer (SENSR, USA) fitted to the  lateral aspect of the right 

rear leg and were able to show that accelerometers can provide an objective, non-

invasive measure of activity and standing, walking and lying behaviours in cows. 

Watanabe et al. (2008) used the G-MEN DR10 tri-axial accelerometer (SRIC, Nagano, 

Japan) fitted to cows by means of a head halter. Using the raw accelerometer data, they 

developed a statistical method using discriminant function analysis to automatically 

classify eating, ruminating and resting activities with a success rate greater than 90%. 

Moreau et al. (2009) used the HOBO Pendant G tri-axial accelerometer (Onset Computer 

Corporation, Pocasset, MA, USA) to develop an automated behaviour analysis system for 

goats’ activities at pasture. Using different accelerometer positions on the goats, they 

investigated if resting, eating and walking could be automatically classified. They were 

able to show, with robust calibration, automatic detection of goat behaviours was possible. 

Ringgenberg et al. (2010) also used the HOBO Pendant G tri-axial accelerometer to 

automatically detect standing, lying laterally and ventrally in sows and also quantify the 

number of hind limb steps taken by a sow during a feeding episode. Ledgerwood et al. 

(2010) also used the HOBO Pendant G tri-axial accelerometer to evaluate its accuracy to 

detect lying on the left side, lying on the right  side, total lying time, and number of lying 

bouts in dairy cattle. Depending on sampling intervals, they were able to successfully 

detect all aspects of lying behaviour. 

5.2 Validation and calibration 

The general practice in using accelerometers to classify animal behaviours requires the 

accelerometer data be used to train or calibrate classifiers or machine learning algorithms 

that are validated against observations, often video observations, and then used to 

classify unobserved behaviours from future accelerometer data (Nathan et al., 2012). All 

in one solution accelerometers such as the Actiwatch and Icetag come with classifiers and 

algorithms integrated into the supplied software. Component and housed accelerometers 

require the user to implement a statistical method to classify the raw data into behaviour 

or activity classes. Classifiers can be considered to be unsupervised or supervised. 

Unsupervised classification such as cluster analysis develops class structure within the 

data where classes are not known a priori. With supervised classification, however, such 

as discriminant function analysis, class structure is known a priori, and rules and 

algorithms are developed to allocate new unknown cases to the appropriate classes 

(Wade, 1999).  
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5.2.1 Statistical classifiers and behaviour prediction 

5.2.2 Discriminant function analysis 

Discriminant function analysis (DFA) is a supervised learning multivariate statistical 

classifier used to predict group membership from a set of predictors (Tabachnick and 

Fidell, 2007). In DFA, the independent variables are the predictors and the dependent 

variables are the groups (Poulsen and French, 2004). In order to predict group 

membership, DFA creates a discriminant function in the form of a linear equation with a 

combination of the independent variables weighted to maximize the difference between or 

among the groups categorized by the dependant variable.  

DFA has been used previously on accelerometer data. Soltis et al. (2012)used DFA to 

attempt to separate four behaviour classes in African Elephants. Watanabe et al. (2008) 

used DFA to discriminate behaviours in cows using separate axes data from an 

accelerometer. The classification accuracy varied widely dependent on the axes and 

behaviour in question. Using the x axis data, they achieved correct classification in excess 

of 98%, but only 34% using data from the Y axis. 

5.2.3 Classification trees 

Decision trees, or classification and regression trees (CART) (Breiman et al., 1984) are a 

multi-stage method of classification whereby cases are grouped through successive 

division of the data into increasingly homogeneous groups or nodes (Finch, 2006) to 

predict the membership of cases in classes of a categorical dependent variables from 

measurements of one or several predictor variables (Nadimi et al., 2008). Among the 

advantages of CART analysis is the lack of assumptions making it inherently non-

parametric, able to handle ordinal or non ordinal categorical predictors and skewed or 

multi-model data (Lewis, 2000). Robert et al. (2009) used a classification tree (Insightful 

Miner, Insightful Corporation, Seattle,WA) to validate against video recording cattle 

behaviours using an accelerometer. Lying and standing gave excellent agreement with 

99.2% and 98.0% respectively whilst walking was significantly lower with 67.8% 

agreement. 

5.2.4 Neural networks 

Artificial networks consists of a group of simple processing units (neurons) which 

communicate  through signals sent to each other (Kröse et al., 1996).  By adjusting the 

weights of the connections between the neurons, trained by a training data set, neural 

networks can perform a given function(Lee et al., 2010): for example, classification of 

behaviours from accelerometer data. Nadimi et al. (2012), in their development of a 

wireless sensor network to classify sheep behaviours, used an MLP-based feed forward 

back propagation neural network with five layers. Each hidden layer contained 10 



15 
 

neurons. Hyperbolic tangent sigmoid transfer functions were used as the activation 

function of the hidden layers and a linear transfer function was selected for the output 

layer. The initialization process was performed using the Nguyen–Widrow initialization 

algorithm (Nadimi et al., 2012). Using this neural network architecture, they were able to 

successfully discriminate 83.8% of grazing and 83.2% of lying. 

5.2.5 Support vector machine 

Support vector machine is a supervised learning classification method. It maps pattern 

vectors to a high dimensional feature space (Webb, 2003) where hyperplanes are formed 

that best separate and maximize the distance of observations from the separating 

hyperplane (Nathan et al., 2012). Martiskainen et al. (2009) used multi-class support 

vector machine classifiers with data from accelerometers placed on cows to classify 

behaviours. They achieved over 80% accuracy for all behaviour classes combined. 

However, misclassification was common for standing, lying, and ruminating; 29%, 15%, 

and 15% of the cases, respectively mostly confused with each other. 

5.2.6 K-means classification algorithm 

The K-means classifier (MacQueen, 1967) is an unsupervised learning algorithm. This 

clustering method partitions data into k clusters with the aim of minimising the variability 

within clusters and maximising the variability between clusters (Landau and Everitt, 2004). 

A case is assigned to a group or cluster with the closest mean. The group means are then 

recalculated until the within-group sum of squares are no longer reduced by the 

movement of cases (Webb, 2003). An advantage of K-means is the minimal data 

preparation and no calibration procedure is required (Schwager et al., 2007) although the 

user needs to determine a priori the number of clusters to be obtained (Fortin and Dale, 

2005).  

5.3 GPS 

Satellite-based systems became available for use during the 1980’s. One of the best 

known systems, Argos (Hulbert and French, 2001) was used in animal tracking studies. 

However, measurements using this system were affected by topography and animal 

movements and as a result, errors of between 0.5 to 1.5 km and occasionally up to 8 km 

have been reported (Fancy et al. 1988). The development and deployment of the Global 

Positioning System (GPS) for civil use by the US military presented new possibilities for 

animal tracking and research studies. However, for reasons of national security, the US 

Department of Defence implemented “selective availability” which reduced the accuracy of 

the civilian GPS signal to 100m (Rodgers et al., 1996). In May 2000 selective availability 

was removed resulting in significant improvements to location accuracy (Adrados et al., 

2002). However, further precision can be obtained when differential correction is applied 
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to GPS location data. This involves recording errors in the GPS signal at a fixed known 

location and then applying them as a correction factor either in real time or by post 

processing the correction factors to the data collected (Rutter, 2007). Other techniques 

such as the H-Star technology employed in Trimble mapping and survey grade GPS 

receivers can further improve precision into the sub metre range (Rutter, 2007), Trimble 

2005) allowing data collection on patch scale foraging. 

 

Housed accelerometers and GPS offer a potentially reliable, affordable and easy to 

implement method to atomically classify and map sheep behaviour. However, the use and 

performance of statistical classifiers needs to be evaluated before wider adoption. 
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6 Training a statistical classifier for automatic classification of 

sheep behaviours using accelerometers 

6.1 Introduction 

Accelerometers have been used to automatically classify animal behaviours without the 

need for a human observer in close proximity to focal animals (Naylor and Kie, 2004, 

Watanabe et al., 2008, Soltis et al., 2012, Ledgerwood et al., 2010). When combined with 

GPS data, spatially aware behaviour classification is possible (Moreau et al., 2009). 

Accelerometers provide a means to reducing observer bias and overcoming the difficulties 

of livestock observations in challenging terrain. While accelerometers have been used 

widely to classify behaviours in cows, e.g. sleep detection (Hokkanen et al 2011), eating 

duration (Ueda et al 2011) oestrus detection (Fricke et al 2012, Valenza et al 2012) and 

eating, ruminating and resting (Watanabe et al 2008), little research has been conducted 

evaluating their performance for classifying sheep behaviour. Biomedical research has 

used accelerometers extensively with sheep to investigate the response of fetuses to 

vibration stimuli by attachment of small accelerometers to the foetus skull  (Abrams et al., 

1997, Petersa et al., 1996), head impact (Anderson et al., 1997, Anderson et al., 2003), 

shaken baby syndrome (Sandoz et al., 2012), and spinal studies (Keller et al., 2006b, 

Colloca et al., 2009, Keller et al., 2006a). These approaches, however, use invasive 

methods of attachment not suitable for livestock experiments or monitoring. Collar 

attached Actiwatch accelerometers have been used by Piccione et al. (2008d), Piccione et 

al. (2011a) to detected diurnal rhythms in activity levels (e.g. – feeding, drinking, walking, 

grooming and ruminating) in sheep. However, the Actiwatch is an all in one off the shelf 

system, which rather than detecting individual postures associated with specific 

behaviours, only detects activity levels. Nadimi et al. (2012) and Nadimi et al. (2011) used 

the ADXL202 accelerometer (Analog Devices, Inc. Norwood, MA) to detect grazing, lying 

down, standing, walking, mating and drinking in sheep. These accelerometers, however, 

are supplied as standalone electronic components that require the user to be competent 

in electrical systems design. Ready housed raw data accelerometers offer a solution that 

requires no electronic systems design knowledge while providing the potential to classify 

individual postures associated with behaviours of interest. Moreau et al. (2009) used the 

Hobo® G  Pendant Data Logger accelerometer (Onset, USA) to classify resting, eating 

and walking in goats. Ringgenberg et al. (2010) used the same accelerometer to detect 

standing, sitting and lying in sows. Ready housed accelerometers do, however, require 

the raw data to be calibrated and validated. Machine learning classifiers have been used 

to classify component and housed accelerometer data. Accelerometer data, annotated 

with behaviours’, usually from video recordings (Soltis et al., 2012, Watanabe et al., 2008, 

Ledgerwood et al., 2010, Nadimi et al., 2012) are used as training data for machine 
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learning algorithms.  No standardised methods exist in the literature with regards to the 

choice of classifier. Discriminant function analysis (Soltis et al., 2012, Watanabe et al., 

2008, Naylor and Kie, 2004), classification trees (Robért, 2010, Robert et al., 2009, Ungar 

et al., 2011), neural networks (Nadimi et al., 2012), support vector machines (Hokkanen et 

al., 2011, Martiskainen et al., 2009) and manually developed decision trees (Moreau et al., 

2009) have all shown good classification results with different accelerometers and 

animals. The majority of studies with sheep and accelerometers have used the Actiwatch 

system and the included software for classification of activity levels (Piccione et al., 

2010d, Piccione et al., 2007, Piccione et al., 2011a, Piccione et al., 2008d, Piccione et al., 

2010a). To the author’s knowledge, no ready housed accelerometers have been used 

with sheep, only component based accelerometers which used neural network algorithms 

for classification (Nadimi et al., 2012). Ready housed accelerometers used with machine 

learning classifiers may provide a suitable, low cost, easily deployed system to 

automatically monitor sheep behaviours. Further, when combined with GPS data, 

behaviour classification could also be spatially aware, helping to show habitat use by 

sheep and provide a method to investigate how ecosystems respond to herbivore 

pressures at the landscape scale by generating behaviour distribution data that could 

inform sampling strategies for environmental data collection. As using ready housed 

accelerometers do not require the electrical systems design knowledge needed when 

using component accelerometers, such a system could be more widely adopted. 

However, validation and calibration needs to be assessed to determine the ability of a 

ready housed accelerometer to classify sheep behaviour before deployment in the wider 

environment and accelerometer attachment positions need to be assessed for their 

contribution to the model. 

 

The aims of this study were to (1) generate multi class training data collected from sheep 

attached accelerometers (2) use discriminant function analysis to interrogate the training 

data and assess this analysis capability for classifying sheep behaviours from 

accelerometer data. 

6.2 Methods 

Training data were collected during June and July 2011 in a small enclosure of 550m2 in 

North West England located in Shotwick, North West England (SJ 33780 71987). The 

study site presented opportunities for both grazing and browsing with variable terrain in a 

small area suitable for observations of the animal’s behaviour to be video recorded. 

Vegetation was a mix of perennial rye grass (Loliumperenne) and clover 

(Trifoliumrepens). Scattered apple trees occupy the site which is bordered by hawthorn to 

the east and south and wooden fencing to the north and west. Three ewes (Table 1) were 
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fitted with a head halter and dog harness one week prior to the study. Sheep had ad 

libitum access to water and the study site prior to, during and after the study period. 

 

Table 1 Body surface area (cm2) and mass (kg) of the three ewes used in the study.  Body 
surface area calculated using formula as described by Benedict (1934) in Schmidt-Nielsen 
(1984).  Mass was calculated using the formula described by (Benedict, 1934). 

Sheep Body Surface area (cm2) Mass (kg) 

1 4172.8 74.1 

2 2218.8 39.4 

3 2266.8 40.2 

 

6.2.1 Accelerometers 

Due to their inexpensive cost and small protective waterproof housing (58 x 33 x 23 mm) 

weighing 18 g, six HOBO Pendant G accelerometer data loggers (Onset Computer 

Corporation) were used. This accelerometer is a three-channel logger with 8-bit resolution 

and can record up to approximately 21,800 combined x-, y-, and z-axis acceleration 

readings or internal logger events (Figure 1) (Onset Computer Corporation 2011). 

 

Figure 1 HOBO Pendant G accelerometer data logger X, Y and Z axis of orientation 
(Onset Computer Corporation 2011). 

 

Two accelerometers were attached to each sheep by two attachment methods. The 

different attachments were assessed for reliability and the effect of accelerometer location 

on the predictive capability of the model. A leather head halter allowed the accelerometer 

to be placed between the frontal bone and the parietal bone (Figure 2) allowing capture of 

postures and movements of the head, particularly those associated with grazing. A dog 

harness allowed placement of the accelerometer across the withers (Figure 3). Each 

attachment type had a small leather pouch attached to allow safe, secure deployment of 

the accelerometer.  
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Figure 2 Position of the accelerometer placed between the frontal bone and the parietal 

bone. 

 

 

Figure 3 Position of the accelerometer placed across the withers 

 

6.2.2 Behavioural recording and calibration 

Training data were annotated with behaviour codes after sheep movements were 

recorded with a Sony DCR-HC24EMiniDV Handycam®. The camera, mounted on a 

tripod, was positioned at various locations within the study area dependant on the focal 

animal position. The internal clock of the camera was synchronised with the internal clock 

of the computer from which the accelerometers would be activated. This ensured both the 

camera and accelerometer were synchronized in time to allow accurate annotation of the 

accelerometer data after behavioural recordings were made. During recording sessions, 

all sheep were fitted with activated accelerometers via both attachment methods. The aim 

was to film each individual for four hours during daylight but due to some synchronous 

accelerometer failures while filming, some recordings were not used. However, video 

footage containing more than one of the study animals was used to add further 
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annotations to the data. Consequently, the total time filmed and comparable frequencies 

of behaviours differ amongst the three sheep. 

From each accelerometer, data on three axes (x, y and z) for both acceleration (g) and 

angle of tilt (°) were obtained (recording interval = 1 second). This gave up to six variables 

from a single accelerometer available for analysis. Accelerometer data were downloaded 

using the Hoboware Pro 3.4.0 software (Onset Computer Corporation). The 

accelerometer data were exported into an Excel spreadsheet. As well as containing 

values of acceleration and tilt on three axes, the data also contained the date and time of 

each one second interval of accelerometer data. The video footage of each sheep was 

replayed with a time stamp visible on screen. A new column was created in the 

spreadsheet called behaviour code. This column was manually populated with one of four 

codes corresponding to one of four behaviour modes (Table 2) as observed during video 

playback. 

 

Table 2 Number of cases observed in each behaviour group for sheep 1, 2 and 3.  

Behaviour Group Description Sheep 1 Sheep 2 Sheep 3 

Standing head down 1 

Standing head down 

while engaged in 

grazing behaviour 

1472 2505 1381 

Standing head up 2 

Standing head up 

including walking with 

head up and vigilance 

864 2237 2674 

Lying head up 3 

Lying  head up 

including vigilance and 

chewing cud 

7681 1781 5433 

Lying head down 4 
Lying head down 

including resting 
719 3033 945 

Total     10736 9558 10433 

 

6.2.3 Statistical analyses 

For each individual sheep, discriminant function analysis was performed separately to 

interrogate respective training data and generate linear discriminant functions. Twelve 

variables consisting of X, Y and Z acceleration (g) and tilt (°) axes were used as predictors 

of four dependant variables (behavioural groups). A classification table was generated to 

assess the accuracy of the model to classify sheep behaviours using accelerometers.  

Univariate and multivariate outliers were identified and removed.  Multivariate outliers 

were identified from Mahalanobis distances. Mahalonobis distances from the groups 

centroid should follow a χ2 distribution, and so any individuals with distances above the 

upper 99.9% quantile of this distribution were declared as outliers. Although the grouped 
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predictors were not normally distributed, z scores greater than 4 were considered 

univariate outliers (Stevens, 2009). 

6.3 Results 

Discriminant function analysis using the within-groups matrix was performed using 

combined head and withers accelerometer data to classify four behaviour groups in three 

sheep. The within groups method allows cross validation via the “leave one out” jackknifed 

method.  This validation method is useful as bias enters classification if the coefficients 

used to assign a case to a group are in part derived from that case. Rather than splitting 

the data in two where a proportion of the data has the group membership hidden from the 

system, the “leave one out” classification omits data from an individual case when 

coefficients used to assign that case are computed (Tabachnick and Fidell, 2007).. Twelve 

variables were used as the independents: Withers X Acceleration (g), Withers Y 

Acceleration (g), Withers Z Acceleration (g), Withers X Tilt (°), Withers Y Tilt (°), Withers Z 

Tilt (°), Head X Acceleration (g), Head Y Acceleration (g), Head Z Acceleration (g), Head 

X Tilt (°), Head Y Tilt (°), Head Z Tilt (°).  

Univariate ANOVA results via the Tests of Equality of Group Means (Appendix 1  Table 9) 

indicate significant mean differences were observed for all the independent variables on 

all four behaviour groups for all sheep (P<0.001).  

Log determinants were not similar for all sheep. Box’s M (Appendix 1 Table 10) indicated 

the assumption of equality of covariance matrices was violated for all sheep (P<0.001). A 

high degree of correlation exists between variables that share the same axis, for example 

X acceleration and X tilt. Given that tilt variables are derived from accelerometer values, 

multicollinearity could be an issue. However, SPSS protects the analysis from 

multicollinearity through checks for tolerance. Withers Y Tilt for sheep 1 failed the 

tolerance test and was excluded from analysis as reflected in the rank=11 for sheep 1 

Box’s M output (Appendix 1 Table 10). DFA is sensitive to outliers, both univariate and 

multivariate. The lack of homogeneity of the covariance matrix could be as a result of 

outliers in one or more groups (Garson, 2012). Analysis was run again after identifying 

and deleting univariate and multivariate outliers (Table 3). 

 

Table 3 Number of cases observed in each behaviour group after the removal of 
univariate and multivariate outliers for sheep 1, 2 and 3. Numbers in brackets are the 
number of cases removed for each group. 

Behaviour Group Sheep 1 Sheep 2 Sheep 3 

Standing head down 1 1399 (73) 2417 (88) 1321 (60) 

Standing head up 2 806 (58) 2135 (102) 2541 (133) 

Lying head up 3 7313 (368) 1721 (60) 5207 (226) 

Lying head down 4 700 (19) 2899 (134) 910 (35) 

Total   10218 (518) 9172 (386) 9979 (454) 
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Following removal of univariate and multivariate outliers, univariate ANOVA results via the 

Tests of Equality of Group Means (Appendix 1 Table 11) indicate significant mean 

differences were observed for all the independent variables on all four behavior groups for 

all sheep (P<0.001).  

Although the variability among log determinants was reduced with outliers removed, they 

were still not similar for all sheep (Appendix 1 Table 12). Box’s M indicated the 

assumption of equality of covariance matrices was violated for all sheep (P<0.001). 

Further, some covariance matrices are singular and the usual procedure will not work. 

The non-singular groups would be tested against their own pooled within-groups 

covariance matrix. For these, the log determinants are -20.296 and -20.795 for sheep 1 

and 2 respectively. As the assumption of equality of covariance matrices was still violated 

for all sheep even after the removal of outliers, the analysis was run again based on 

separate-group covariance matrices with the removal of outliers.    

 

6.3.1 Separate-group covariance matrices with the removal of outliers. 

Using separate covariance matrices, classification is based on the separate-group 

covariance matrices of the functions instead of the pooled within-groups covariance 

matrix. Cross validation is not available in SPSS using separate covariance matrices and 

consequently all cases are used the analysis. Further, the rank in the log determinants is 

equal to the number of discriminant functions in the model. Log determinants were not 

similar for all sheep (Appendix 1 Table 13). Using the separate groups method does not 

allow cross validation using the leave one out method. Box’s M indicated the assumption 

of equality of covariance matrices was violated for all sheep (P<0.001). Nevertheless, 

analysis was continued as Box’s M can be overly sensitive. 

The Wilks' Lambda table shows the "peel off" significance tests of successive discriminant 

functions. The Wilks’ lambda statistic here is the proportion of the total variance in the 

discriminant scores not explained by differences among groups. Three discriminant 

functions were calculated for each sheep (Table 4). After the removal of the second and 

third discriminant functions (2 through 3 and 3) the results were still significantly different 

for all sheep (P<0.001), meaning all functions are carried forwards in the analysis. As an 

example, for sheep 1, the three discriminant functions had a combined   = 0.013, 2(30) 

= 44103.428, p< 0.001. After removal of the first function there was still a strong 

association between groups and predictors  = 0.211, 2(18) = 15871.653, p< 0.001. 

Leaving just the third function, there was still a strong association between groups and 

predictors  = 0.597, 2(8) = 5270.159, p< 0.001. 
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Table 4 Results of the Wilks' Lambda test for all sheep. 

Sheep 

Test of 

Function(s) 

Wilks' 

Lambda Chi-square df Sig. 

  1 through 3 .013 44103.428 30 <0.001 

1 2 through 3 .211 15871.653 18 <0.001 

  3 .597 5270.159 8 <0.001 

  1 through 3 .025 33759.956 36 <0.001 

2 2 through 3 .173 16068.821 22 <0.001 

  3 .503 6292.875 10 <0.001 

  1 through 3 .024 37199.471 33 <0.001 

3 2 through 3 .207 15699.433 20 <0.001 

  3 .497 6976.408 9 <0.001 

 

Eigenvalues indicate the proportion of variance explained. Large values suggest a strong 

function. Large canonical correlations indicate how well a function discriminates. The first 

discriminant function accounts for 85.6%, 67.1% and 76.0% of the between-group 

variability for sheep 1, 2 and 3 respectively. Large canonical correlation values also 

suggest the first function discriminates well for all sheep. Table 5 gives the remaining 

percentage of variance and associated statistics of each function for each sheep.  

 

Table 5 Eigenvalues, % of variance and canonical correlation of sheep 1, 2 and 3.  

Sheep Function Eigenvalue 

% of 

Variance 

Cumulative 

% 

Canonical 

Correlation 

  1 14.881a 85.6 85.6 .968 

1 2 1.825a 10.5 96.1 .804 

  3 .676a 3.9 100.0 .635 

  1 5.894a 67.1 67.1 .925 

2 2 1.906a 21.7 88.8 .810 

  3 .987a 11.2 100.0 .705 

  1 7.640a 76.0 76.0 .940 

3 2 1.399a 13.9 89.9 .764 

  3 1.013a 10.1 100.0 .709 

 a. First 3 canonical discriminant functions were used in the analysis. 

 

 

 

 

 

 

 



25 
 

Table 6 & Figure 4 show the first discriminant function separates behaviour 1 from the 

other behaviour groups well for sheep 1 and 3 but less so for sheep 2. The second 

discriminant function separates behavior 4 from the other behaviour groups for sheep 1, 2 

and 3. However, the second discriminant function has less discriminatory power for the 

same behaviours in sheep 2. Behaviour 1 occupies a similar space for all sheep, i.e. to 

the positive side of functions one and two. Behaviour 3 occupies a similar space for all 

sheep on function one but differs on function 2 for sheep 2 from the other sheep. 

Behaviour 2 is positioned around the first functions central space for all sheep but differs 

slightly on the second function for sheep 2. The most obvious difference is the space 

occupied on the second function for behaviour 4. Although similar for sheep 1 and 3, this 

group for sheep 2 is positioned on the other side of function 2’s dimensional space. The 

behaviour with the greatest dispersion appears to be behaviour 2, and behaviour 4 the 

least for all sheep. 

 

 

 

 Sheep1                        Sheep 2             Sheep 3 

Figure 4 Combined group plots of the canonical discriminant functions for sheep 1, 2 and 
3 
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Table 6 Functions at Group Centroids for sheep 1, 2 and 3. 

  

Behaviour code 

Function 

Sheep 1 2 3 

  1 9.204 .793 .422 

1 2 .916 .410 -2.790 

  3 -2.039 .276 .227 

  4 1.852 -4.937 .001 

  1 3.711 .173 .660 

2 2 .208 -1.382 -1.502 

  3 -2.774 -1.539 1.326 

  4 -1.600 1.787 -.231 

  1 6.751 .713 .475 

3 2 -.130 -.157 -1.716 

  3 -1.738 .525 .573 

  4 .508 -3.598 .824 

 

The structure matrix of correlations between predictors and discriminant functions (Table 

7) suggest the best predictors for distinguishing between standing head down and the 

other behaviours (first function) is the x axis of each accelerometer placement. The x axis 

acceleration variable appears to contribute most to this function for all sheep. However, 

where head x acceleration is the best predictor for sheep 1 and 3, withers x acceleration is 

the best predictor for sheep 2. Head z tilt contributes the most to function 2 which plays a 

role in separating lying head down from the other behaviour groups for sheep 1 and 3 but 

head Y tilt contributes the most to this function for sheep 2. 
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Table 7 Structure matrix (loading matrix) showing contribution of each variable to each discriminant function. Variables ordered by absolute 
size of correlation within function. * indicates the largest absolute correlation between each variable and any discriminant function. 

Sheep 1       Sheep 2       Sheep 3       

  

Function 

  

Function 

  

Function 

1 2 3 1 2 3 1 2 3 

Head X Acceleration  .767* -.381 .018 Withers X Acceleration  .771* .133 -.272 Head X Acceleration  .825* -.339 .229 

Head X Tilt (°) .709* -.311 .008 Withers X Tilt (°) .766* .123 -.240 Head X Tilt (°) .747* -.363 .184 

Withers X Tilt (°) .547* .210 -.067 Head X Acceleration  .649* .615 .194 Withers X Tilt (°)b .576* .058 -.513 

Withers X Acceleration  .547* .192 -.114 Head X Tilt (°) .618* .610 .157 Withers X Acceleration  .575* .055 -.512 

Withers Z Tilt (°) .328* .241 .262 Withers Z Acceleration  .262* -.200 .205 Head Z Tilt (°) -.258 .697* .030 

Withers Z Acceleration  .296* .252 .290 Withers Y Acceleration  .181* .086 .104 Head Z Acceleration  -.239 .539* .060 

Head Z Tilt (°) .079 .569* .491 Withers Y Tilt (°) .181* .096 .092 Withers Y Tilt (°) .057 .387* .293 

Head Z Acceleration  .109 .410 .432* Head Y Tilt (°) -.255 .449* -.151 Withers Y Acceleration  .058 .378* .313 

Withers Y Acceleration  -.096 -.173 .431* Head Y Acceleration  -.256 .412* -.134 Withers Z Acceleration  .020 -.280* -.220 

Withers Y Tilt (°)b -.094 -.170 .429* Head Z Tilt (°) -.091 .000 .206* Head Y Acceleration  .066 -.260* .086 

Head Y Tilt (°)b -.034 .120 -.138* Head Z Acceleration  -.114 .009 .203* Head Y Tilt (°) .066 -.256* .084 

Head Y Acceleration  -.038 .117 -.134* Withers Z Tilt (°) .125 -.107 .183* Withers Z Tilt (°) .047 -.273 -.301* 
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For sheep 1, of the total usable sample of 10,218 accelerometer readings 9,724 (95.2%) 

were classified correctly, compared with 5,537 (54%) that would be correctly classified by 

chance alone. For sheep 2, of the usable 9,172 accelerometer readings, 8,348 (91.0%) 

were classified correctly, compared with 2,373 (26%) that would be correctly classified by 

chance alone. For sheep 3, of the total usable 9,979 accelerometer readings, 9,164 

(91.8%) were correctly classified, compared with 3,621 (36%) that would be correctly 

classified by chance alone. Correct classification of behaviour1 was 97.4%, 94.5% and 

99.0% for sheep 1, 2 and 3 respectively (Table 8). Behaviour 2 had the highest 

misclassification rate for all sheep with only 85.2%, 77.9% and 77.3% correctly classified 

for each sheep respectively (Table 8). For sheep 1 and 3, behaviour3 attracted the most 

misclassified behaviour2 cases with 7.7% and 17.6% of these cases misclassified as 

behaviour3 for each sheep respectively (Table 8). For sheep 2, behaviour1 attracted the 

most misclassified cases with 11.2% of behaviour 2 misclassified as behaviour 1 (Table 

8). Behaviour 4 had the highest percentage of correct classifications, 98.0% and 99.8% 

for sheep 1 and 3 while behaviour3 was the highest for sheep 2 (Table 8). 
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Table 8 Classification results for sheep 1, 2 and 3 using discriminant function analysis with 
separate matrices and removal of outliers.  

      Predicted Group Membership Total 

Sheep Behaviour group 1.000 2.000 3.000 4.000 

  Count 1 1362 37 0 0 1399 

  2 50 687 62 7 806 

1 3 0 303 6989 21 7313 

  4 0 14 0 686 700 

  % 1 97.4 2.6 0.0 0.0 100.0 

  2 6.2 85.2 7.7 .9 100.0 

  3 0.0 4.1 95.6 .3 100.0 

  4 0.0 2.0 0.0 98.0 100.0 

  Count 1 2284 133 0 0 2417 

  2 240 1663 208 24 2135 

2 3 0 41 1650 30 1721 

  4 0 57 91 2751 2899 

  % 1 94.5 5.5 0.0 0.0 100.0 

  2 11.2 77.9 9.7 1.1 100.0 

  3 0.0 2.4 95.9 1.7 100.0 

  4 0.0 2.0 3.1 94.9 100.0 

  Count 1 1308 13 0 0 1321 

  2 100 1963 448 30 2541 

3 3 0 220 4985 2 5207 

  4 0 2 0 908 910 

  % 1 99.0 1.0 0.0 0.0 100.0 

 2 3.9 77.3 17.6 1.2 100.0 

  3 0.0 4.2 95.7 .0 100.0 

  4 0.0 .2 0.0 99.8 100.0 

 

Behaviour 4 had the lowest error rate of all behaviours for all sheep (Figure 5). Behaviour 

2 had the highest error rate for all sheep combined (Figure 5). All other behaviours were 

variable in their error rates between all sheep. Sheep 1 had the lowest error rate and 

sheep 2 the highest error rate (Figure 5). Behaviour 3 for sheep 3 had the highest 

individual error rate. Of all the data used in this study, just over 7% were misclassified 

(Figure 5). 
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Figure 5 Percentage of cases incorrectly classified from all available training data per 
individual sheep and the total error rate from all data in the study (29,369 cases). Error 
rate for each sheep is the total of incorrect cases classified, divided by the total number of 
cases available for classification multiplied by 100. The total for each sheep is the sum of 
all cases misclassified for all behaviours divided by the total number of cases available for 
classification multiplied by 100. 

 

 

6.4 Discussion 

Using discriminant function analysis (DFA) and accelerometers attached to the head and 

withers of three sheep, a model was developed which accurately classified a number of 

postures. Three of the postures analysed were correctly classified in over 90% of cases. 

These high rates suggest accelerometer data, trained and classified with discriminant 

function analysis could be used to generate large temporal-aware behavioural data. 

However, care should be taken when using separate covariance matrices as overfitting of 

the model could occur when not using the cross validation method or splitting training 

data, for example as a 75%/25 split. 

 

One of the assumptions of DFA is multivariate normality (e.g., normality of each of the 

independent variables and all their possible linear combinations). DFA is considered 

robust to failures of normality if violation is caused by skewness rather than outliers and 

sample sizes are about equal (Tabachnick and Fidell, 2007).The sample sizes for each 

group in this study were not equal. However, where sample size difference among groups 

increases, larger overall sample sizes are necessary to assure robustness (Tabachnick 

and Fidell, 2007). As suggested by Tabachnick and Fidell (2007) robustness is expected 

with 20 cases in the smallest group if there are only a few predictors (say, five or fewer). 
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As the number of training data cases in this study were large for all groups, robustness to 

this assumption was assumed. Box’s M indicated that the assumption of equality of 

covariance matrices was violated, however Box’s M can be overly sensitive. DFA can be 

robust to this violation; however, it should be noted that cases can be over classified into 

groups with greater dispersion. Inspection of Figure 4 suggests standing head up had 

greater dispersion across the functions space. Indeed Figure 5 indicates this to be the 

posture with the greatest error rate when considering all data used in this study. The 

greatest amount of misclassification into this group was from the lying head up group for 

sheep one and three and standing head down for sheep two. If standing head down 

representing grazing is the only behaviour of interest, this misclassification is not of great 

concern. However if a significant amount of standing head down cases were misclassified 

as standing head up, then important information that could help generate grazing 

distribution maps will be lost. The X axis on the head placement contributes most to 

discriminating between standing head down and the other postures for sheep 1 and 3. 

The X axis on the withers placement contributes the most for sheep 2. This could be due 

to movements unique to this individual. Further research should be conducted with a 

commercial flock to determine which variable contributes most to the discriminating 

model. The sheep used in the study were different weight and size dimensions. In a 

commercial flock, the dimensions of the sheep will be more uniform. If it can be shown 

that one variable (Head X axis) can discriminate successfully between standing head 

down and other behaviours, this opens up the possibility to extend the data collection 

period. The limiting factor with the accelerometers used in this study is the memory 

capacity. However, they can be programmed to only collect data on one axis. If grazing is 

the main behaviour of interest, only data on the X axis could be collected thus providing a 

longer data collection time frame. 

 

Consideration needs to be given to defining what accelerometers are recording in 

behavioural observation studies. Behaviour observations can be categorised as structure, 

consequence and spatial relation (Martin and Bateson, 1993). Structure describes posture 

and movement, consequence describes the behavioural effect (eg grazing) and spatial 

relation describes proximity to environmental features (Morrison et al., 2006). 

Accelerometers can be considered to be only recording the structure component of 

behaviour. Careful design of training data collection, the classification model and 

accelerometer placement, should be applied to ensure a high confidence in the predicted 

consequence. Regardless of the behaviour or posture of interest, it is important to define 

the limb movements before any training data is collected. This allows the accelerometer to 

be placed in the optimal position on the body to record the most extreme movements and 

positions associated to the structure and consequence of interest, for example, when 

grazing, the head is in a lowered position. The grazing consequence can be further 
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divided with several discreet unique structural movements of the head resulting from 

selection and biting to sever herbage from the sword, which often results in a small jolt of 

the head (Baumont et al., 2006). An accelerometer placed on top of the head, as done so 

in this study is able to record all structures associated with these consequences. To detect 

lying behaviours, the accelerometer might be best placed on the leg, thus being best 

placed to detect the difference in angles between standing and lying and doing so with 

reduced variables, helping to maximize data collection time. To record urination events, 

potentially useful in nitrogen deposition studies, the accelerometer could be placed toward 

the base of the tail, which is raised slightly whilst urinating. This would depend on the 

placement not interfering with the behaviour.  

 

There is no agreement for standards and methods for calibration, validation and analysis 

of accelerometer data in sheep behavioural studies. Umstätter et al. (2008) used 

integrated tilt sensors, similar to accelerometers and set their devices to record every 30 

seconds with manual observations used to assign behaviour categories to the datasets. 

Having initially failed to use discriminant function analysis to discriminate between four 

behaviours, they reduced the number of classes down to two, active and inactive. 

Comparison to this study is difficult as they needed to adapt their study to a two class 

problem. However, they did achieve in excess of 90% correct classification rates. Nadimi 

et al. (2012) and (Nadimi et al., 2008) used a component accelerometer with one second 

sampling intervals with video recordings of all sheep to assign behaviours, the same as 

this study. However, they used neural networks as their classifier and achieved correct 

classification rates of 84% (grazing), 83% (Lying) and 71% (standing). Their lower 

classification rates suggest housed accelerometers and discriminant function analysis 

could discriminate more accurately between behaviours. However their study has the 

benefit of being able to transmit the accelerometer data wirelessly. The Hobo housed 

accelerometer does not wirelessly transmit data. Any application of this accelerometer in 

the future is limited by the need to manually retrieve the recorded data. However, the 

Hobo accelerometer does not rely on having expertise in electronic systems design, 

allowing implementation in projects where this knowledge is not present. 

 

The predictive powers of classifying models is dependent on the quality and size of the 

training dataset (Figueroa et al., 2012, Kalayeh and Landgrebe, 1983). When annotating 

the training dataset, erroneous classifications could occur due to cases being labeled 

incorrectly. The quality of the training data could be improved by smoothing the data. One 

possible method could be to remove nth cases at either end of every sequence of 

behaviours using programming scripts such as Visual Basic or Python. Further, the 

usefulness of accelerometers is limited by the need to calibrate them to individual subjects 

(Levineet al. 2001).  Obtaining known data sets by observing and videoing individuals with 
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attached accelerometers, followed by annotating the behaviours to the data is time 

consuming with potential impacts on project costs. Although numerous studies have 

shown how predictive models can classify animal behaviour from accelerometer data, to 

the author’s knowledge no research into the minimum training sample size required for 

model accuracy has been conducted. Investigating the minimum number of known 

behaviour observations required for a discriminant analysis model to accurately predict 

future unknown behaviours from accelerometer readings could ease the laborious task of 

transcribing excessive behaviours during the calibration of an accelerometer to an 

individual sheep. Classifier learning curves could be generated under different conditions 

to estimate the minimum training data size required for desired performance levels. 

Further, training data pooled from different sheep could be investigated to assess the 

classification accuracy when used to classify new individuals. This is likely to need to 

consider the size and dimensions of the training data sheep and target sheep and any 

discreet differences in the structure component of behaviours of interest. Further problems 

could occur when using training data obtained from grazing different sward heights and 

different angled terrain. Developing equations to offset and account for different sword 

heights and terrain between the training and un-annotated data may provide a way to use 

training data obtained from different sward heights and terrain. The attachment methods 

used in this study provided a stable method of attachment to the body. However, the dog 

harness, over time, could cause discomfort and abrasion to the sheep. The variables used 

in the model obtained from this placement did not contribute as much to the model as 

those obtained from the head halter. It is recommended that the dog harness attachment 

is not used long term in any study. Other areas of placement could be considered after 

assessing postures and limb movements associated with any behaviour of interest. 

 

By grazing, sheep remove plant biomass, which can modify the biodiversity and energy 

balance of grasslands, with resulting feedbacks on net carbon uptake and changes in the 

influence of climate on land-atmosphere carbon fluxes (Bardgett and Wardle, 2010, 

Wayne Polley et al., 2008).  In order to predict ecosystem carbon balance, understanding 

how grazing affects CO2 exchange in grasslands needs to be improved (Wayne Polley et 

al., 2008). Predictive models need to account for grazing to simulate the dynamics of CO2 

fluxes in grassland ecosystems. However, the potential for grazing to modulate the 

response of carbon flux to climatic variability needs further investigation (Bardgett and 

Wardle, 2010). The use of accelerometers, combined with GPS data could help to better 

understand the effects of grazing at the landscape scale and how ecosystems, under the 

influence of herbivore pressure, respond to climate change. The data generated could 

help inform sampling strategies that can account for biotic and abiotic interactions at the 

landscape scale, which would be difficult to account for at the plot scale. Environmental 
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sensors could also be deployed simultaneously to collect data on abiotic variables, adding 

further detail to foraging choices and their effects.  

 

The “five freedoms” (Brambell 1965) are a set of universally adopted principles that form 

the cornerstone of animal welfare legislation and policy in the UK. While some of these 

freedoms can be readily observed in individual animals, wider flock observations 

especially in extensive systems can be difficult. Accelerometers have the potential to 

automatically detect behaviours and body postures that can be used in welfare 

assessment. As far as can be determined, there are not many studies that have used 

accelerometers with sheep to automatically detect behaviours that could be used in 

welfare assessment. Piccione et al. (2008) and Piccione et al. (2011) detected diurnal 

rhythms in activity levels (eg – feeding, drinking, walking, grooming and ruminating) using 

accelerometers attached using collars to sheep. These studies however used the 

actiwatch system, that rather than detecting individual postures associated with specific 

behaviours, only detect activity levels using the Actiwatch Activity Analysis software. 

Accelerometers have been used with other animals however that are capable of detecting 

behaviours associated with body postures such as sleep detection in calfs (Hokkanen et 

al 2011), eating duration in cows (Ueda et al 2011) estrus detection in cows (Fricke et al 

2012, Valenza et al 2012) and eating, ruminating and resting in cows (Watanabe et al 

2008). In order for automatic classification of behaviours to be useful for welfare 

assessment, the recording method needs to be cheap, not be too time consuming and the 

classified behaviours be relevant to animal welfare rather than simply their ability to be 

automatically detected (Rusheb et al 2012). Further, real time analysis of the data needs 

to be in place to alert farmers to welfare issues. Although this study did not have this 

capability, it has shown that accelerometers have the potential, through posture 

recognition, to inform farmers of any welfare issues, subject to timely analysis of the data. 

 

Using DFA to classify sheep behaviours from accelerometer data has been shown to 

perform well for a range of behaviours and postures. Some assumptions of DFA were 

violated but were considered robust given the data used in this study. Data collection 

periods could be extended if movements and postures of interest are defined and data on 

selective axes is collected. However, further research is needed to assess classification 

accuracy using reduced axis on commercial flocks where the size and dimension of sheep 

are more uniform than used in this study. Accelerometers have been defined as capable 

of recognizing the structure component of behaviour observations. Wireless transmission 

of data would be beneficial. Although the accelerometers used in this study required 

manual data recovery, they do allow for easy deployment where electronic systems 

design knowledge is not present. Future research should investigate if smoothing training 

data improves classification accuracy. Classifier learning curves should be generated to 
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inform of the minimum amount of training data for the model to classify adequately to ease 

the laborious task of calibration for individual sheep. Using pooled training data to avoid 

the need for individual calibration should be investigated to assess classification accuracy. 

Algorithms could be developed as off-sets to take into account training data acquired from 

different sized sheep and different sword heights. Care needs to be taken with attachment 

methods to avoid discomfort to sheep. Accelerometers could help to improve the 

understanding of how grazing at the landscape scale affects ecosystem function 

responses to climate change. Subject to prompt analysis of data, accelerometers could 

help with the detection of welfare related issues in sheep. 
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7 Fructan levels in grass and grazing by sheep 

7.1 Introduction 

There is growing interest in perennial ryegrass cultivars, developed to have elevated 

water soluble carbohydrate levels, to improve livestock production systems (Edwards et 

al., 2007, Turner et al., 2006a, Marley et al., 2007). Sheep show a preference for herbage 

with higher water soluble carbohydrates (Ciavarella et al., 2000, Allsop et al., 2009, 

Mayland and Shewmaker, 1999, Ciavarella et al., 1998). Further, increasing dietary 

carbohydrates such as fructans in sheep diets can improve protein metabolism, reduce 

ammonia excretions and energy loss and promote increased weight gain (Biggs and 

Hancock, 1998, Evans et al., 2011, Parsons et al., 2012). 

Experiments investigating grazing preference of sheep predominantly take place in highly 

controlled environments or plots (Ciavarella et al., 2000, Marley et al., 2007, Evans et al., 

2011). However, the metabolism of fructans is affected by a number of environmental 

variables such as  irradiance, photoperiod, diurnal regulation, temperature, water 

availability, nutrient supply, timing of flowering, pests, diseases, and interactions between 

such abiotic and biotic factors (Turner et al., 2006b). To develop research on the grazing 

preference of sheep for high fructan content in grasses, experiments need to take into 

account the fructan accumulating performance of grasses within wider landscape 

conditions where environmental variables and fructan accumulations can be variable. 

However, it is difficult to set up experimental pasture plots that take into account all these 

environmental variables and their interactions. The use of real world landscapes and 

environments provides an ideal canvas to account for the different environmental 

conditions and their interactions. However, this increases the difficulty of observing 

animals to assess their spatial grazing distributions.   

GPS has been used in previous studies that investigate the distribution of grazing 

livestock. However, assumptions regarding movement velocity need to be implemented 

for the GPS data to infer grazing locations (Putfarken et al., 2008b, Diaz Falu et al., 

Schlecht et al., 2004, Bertiller and Ares, 2008). The combination of data from extra 

sensors such as jaw sensors (Rutter et al., 1997, Matsui, 1994) and accelerometers 

(Moreau et al., 2009, Guo et al., 2009) and GPS data has helped improve behavioural 

predictions and generate grazing livestock spatial distribution maps.  

Accelerometers offer a potentially reliable and affordable method for generating spatial 

grazing data. They have been used with sheep to detect diurnal rhythms in activity levels 

(Piccione et al., 2008d, Piccione et al., 2011a). However these products are off-the-shelf 

solutions that are not capable of distinguishing between different body movements. 

Nadimi et al. (2012) and Nadimi et al. (2011) used component accelerometers to detect 
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grazing, lying down, standing, walking, mating and drinking in sheep.  However these 

accelerometers require specialist knowledge of electronic design to integrate them into a 

system for use with livestock. Ready-housed raw data accelerometers; combined with 

GPS data could provide an affordable, easy to implement solution for generating spatial 

grazing data at the landscape scale. 

The aims of this study were to evaluate in a field experiment the implementation and 

performance of a ready-housed raw data accelerometer combined with GPS data to 

investigate if sheep exhibited a preference for higher levels of fructan in fresh pasture and 

to examine potential improvements to this approach.  

7.2 Methods 

7.2.1 Study site 

The study site (Figure 6), located in Shotwick, North West England (SJ 33780 71987) is a 

small 850m2 herbaceous pasture dominated by perennial ryegrass and clover. Two 

months before the experiment was conducted, access by the sheep was restricted, the 

pasture was mown and vegetation around the perimeter was cut back to ensure grazing 

was the only feeding method available. 

 

Figure 6 study site located in Shotwick, North West England (SJ 33780 71987). 

 

7.2.2 Sheep 

The same three sheep used in section two of this thesis were used as study animals. In 

the month leading up to the study, each sheep was alternatively fitted with the equipment 

to allow them to become accustomed to the attachments. Data were collected during four 

time periods. All sheep were placed in a holding pen for two hours prior to release into the 

grazing paddock where they were all able to graze freely until the end of each grazing 

bout. The grazing bout was considered to be finished when the focal animal exhibited no 

grazing behaviour and was either waiting to exit the trial area into the main site or was 

ruminating. 
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7.2.3 Recording equipment 

Each sheep was fitted with a Trimble GEO XH GPS unit and a Hobo Pendant G 

accelerometer. The GPS receiver was securely attached by a body harness and weather 

proof box (Figure 7). The accelerometer was fixed in a leather pouch attached to a head 

halter that allowed the accelerometer to be placed between the frontal and parietal bones 

(Figure 7). The GPS unit and accelerometer had their time synchronised to allow the data 

to be joined together via a common time attribute during analysis. In order to allow the 

GPS position to be as close as possible to the biting point of the sheep, an external L1 

antenna was fitted to the head of the sheep via a fixing apparatus attached to the head 

halter (Figure 7). Using this method, when the head was in the down grazing position the 

antenna was vertically above the location of the mouth. 

 

 

Figure 7 GPS receiver, accelerometer and external L1 antenna in situ on sheep 1. 

 

7.2.4 Data collection and analysis 

The accelerometer data were run through a classification model using discriminant 

function analysis with previously validated training data in SPSS 15. GPS data were post-

processed in Trimble Pathfinder 4.20 using Rinex files obtained via the Trimble VRS Now 

service. This allowed post processing to be completed immediately upon data retrieval 

rather than waiting for the delayed availability of Rinex files via the free Ordnance Survey 

service. The post processed corrected GPS data and accelerometer data were then 

imported and joined in Arcmap 9.3. When the accelerometer data were run through the 

classification model, the probability of the predicted behaviour was calculated. When the 

GPS data were post processed the horizontal precision of each individual position was 

calculated. Using rule-based decisions, a high confidence grazing layer was created 

where the predicted behaviour probability was =>0.95 and the GPS horizontal precision 

was =<0.2m. If the availability of 0.2m horizontal precision positions was low, the precision 

threshold was increased by 0.1m until a satisfactory number of positions were available. 

The study site was divided into 0.5m quadrats in Arcmap GIS (Figure 8) where summary 

data of grazing positions with the desired horizontal precision were appended.  
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Figure 8 Study site divided into 0.5m quadrats. The inner polygon is a fenced chicken 
enclosure. 

The three highest grazed quadrats were selected as the highest grazed sample locations. 

The three lowest grazed sample locations were randomly selected from quadrats with a 

grazing count of one. Coordinates for the three highest and lowest grazed quadrats were 

transferred to a Trimble Geo XH GPS and located using real time differential correction 

via the cellular network.  

7.2.5 Fructan analysis 

Three replicates of grass samples, cut approximately 2.5cm above the ground were 

collected from each quadrat and stored immediately on dry ice in Ziploc® bags. Samples 

were then transferred to a -25o C freezer for storage to await analysis of fructan content. A 

0.8 – 1 g frozen grass sample was dried at 60o C overnight. Samples were cooled in a 

desiccator with CuSO4 crystals. 0.2 g dried grass sample was then placed in 100 ml 

distilled deionised water in a 250 ml flat bottomed flask. These were then placed on 

shaker at 250 rpm for an hour then 1 ml supernatant was placed in 12 ml anthrone 

reagent in a 50 ml Ehrlen-Meyer flat bottom flask and incubated for 3 min on a hotplate at 

80o C. Optical density of this solution was read in a spectrophotometer at 620 nm, after 2 

minutes cooling.  

mg ml fructose was calculated against fructose standards exposed to the same 

procedure. Fructose standards 0, 2.5, 5, 7.5, 10, 12.5, 15 mg ml in 100 ml total volume. 3 

minutes was deemed an optimal incubation period, after trialing periods of 2-8 minutes. 

This agrees with the methods of (Yemm and Willis, 1954), and ensured that polymers of 

fructan were hydrolysed to fructose. Anthrone reagent is 0.5 g anthrone powder, 340 ml 

water and 660 ml concentrated sulphuric acid and was kept at 4O C until needed.  

7.3 Results 

The combined accelerometer and GPS data suggest sheep 1 and 2 utilised the north east 

section of the study area during all their observation periods (Figure 9, Figure 10, Figure 

17, Figure 18). Sheep 3 exhibited a similar pattern for the first two periods but also grazed 

the south west of the study area during its final two observation periods (Figure 11, Figure 
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19). Grazing in all sheep exhibits a clustered spatial pattern with connectivity through 

linear grazing tracks connecting the clustered areas. While sheep 3 showed some 

clustered grazing events, these are not as densely populated as for the other two sheep. 

Further, observation two for sheep 3 exhibits a random grazing pattern.  

 

Figure 9 All predicted head down GPS positions for sheep one before removal of cases 
matching the rule base criteria and the location of the three highest and lowest grazed 
quadrats. 
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Figure 10 All predicted head down GPS positions for sheep two before removal of cases 
matching the rule base criteria and the location of the three highest and lowest grazed 
quadrats. 
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Figure 11 All predicted head down GPS positions for sheep three before removal of cases 
matching the rule base criteria and the location of the three highest and lowest grazed 
quadrats. 

Observation periods lasted between 31 minutes and 1 hour (Table 14). Grazing was the 

most frequently predicted posture in nine of the twelve observation periods (Figure 12). 

Sheep three on two occasions had standing head up as the highest predicted posture. 
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Figure 12 Number of GPS positions classified into one of four postures before removal of 
positions through a selective rule-base procedure. 

 

A rule-base criterion was applied to the classified grazing accelerometer data. Any cases 

with a probability <0.95 for this predicted behaviour were removed. Between 1% and 3% 

of cases were removed for sheep 1, between 7% and 9% for sheep 2 and between 11% 

and 43% for sheep 3 (Figure 13). Further rule-base criteria were applied to ensure only 

highly accurate (< 0.4 m) GPS positions remained. Application of this criterion removed a 

greater number of cases than the accelerometer rule base. With both rule base criteria 

applied, sheep 1 had between 58% and 70% of cases removed, sheep 2 between 46% 

and 83% removed and sheep 3 between 43% and 90% of cases removed (Figure 13). 

 

Figure 13 Percentage of standing head down positions remaining after removal of 
positions where the horizontal precision was  =>0.3m for all dates except 30/11/2011 
=>0.2m and the 11/12/2011 and 29/11/2011 =>0.4m. 

 

Following removal of cases through the rule base, GIS analysis provided a count of 

standing head down positions in each quadrat. The number of standing head down 
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positions in the three highest grazed quadrats ranged from 8 – 53 (Figure 14) with an 

average of 27. 

 

 

Figure 14 Number of predicted head down GPS positions in the three quadrats with the 
highest count of this behaviour after removal of cases through the rule base criteria. 
Quadrat one has the highest, quadrat three has the lowest number of positions. 

 

Fructan levels showed an increasing trend between the first and last observation periods 

(Figure 15). For all sheep, the high grazed quadrats showed higher median fructan levels 

than low grazed quadrats (Figure 16). Because of a lack of normality, (Shapiro-Wilk, low 

grazed W36=0.916 p=0.010 and high grazed W33=0.913 p=0.012), the non-parametric 

Mann-Whitney U test was the most appropriate test even though it required a slightly 

different formulation of null hypotheses because some sources of sampling error could not 

be incorporated into the analysis. Observations were within-quadrat means rather than 

raw observations. Sample sizes were n=36 (low grazed) and n=33 (high grazed). No 

significant difference was found in the levels of fructan between low grazed and high 

grazed quadrats (U=763.00, p=0.195).  
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Figure 15  Level of fructan content (Mg/g) from individual grass samples averaged at the 
individual quadrat level 

 

 

Figure 16 Median, lower, middle and upper quartiles of fructan levels for each sheep and 
all sheep combined across all their individual observation periods. 

 

7.4 Discussion 

This study has shown that ready housed accelerometers combined with GPS can allow 

reconstructions of grazing locations of sheep. However, no grazing preferences for higher 

fructan levels were detected in this study. Many factors such as smell, taste, texture, 

palatability and digestibility are known to influence diet selection. It is difficult to alter or 

account for one of these in isolation, especially in the field (Ciavarella et al., 1998). This 

study focused on fructan concentration and did not account for any of these variables. 

Ideally, these factors should be considered in future to allow any preference for higher 
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fructan levels to be isolated. The distribution of animals is the result of internal and 

external interactions, available nutrients, forage quality, weather conditions, and 

environmental terrain (Anderson, 2010). When sheep are grazing, they are known to 

exhibit close spatial proximity and keep other individual sheep within their visual field 

(Fisher and Matthews, 2001). Bond et al. (1967) suggested such behaviour could produce 

an important variable in grazing studies. The existence of this behavioural trait will 

influence foraging choices meaning the focal animal is not solely selecting on the basis of 

fructan levels. Also influencing the distribution of the sheep in this study is the location of 

the only entry point in to the study area, in the far north eastern corner of the site, which 

was likely also to influence the grazing locations. To counter this effect, a randomly 

selected location should have been used as a point where the sheep were herded ready 

for the start of each observation period. At the larger landscape scale, however, this 

becomes of less concern because the sheep could freely roam. 

 

The accelerometer classification model performed well for all sheep. However, after 

removing cases with a correct classification probability less than 0.95, the classification 

model for sheep three performed less favourably, particular for the second observation 

period where only 44 standing head down positions were recorded. Sheep three could 

have not adapted to the equipment in time for the study and therefore did not freely graze 

during the study period. Within the GPS rule base criteria, the requirement of removing 

any cases with a horizontal precision greater than 0.4 m caused a substantial number of 

recorded positions to be removed, resulting in the loss of a considerable amount of spatial 

information. Features in grazing areas such as trees can negatively impact GPS 

performance (Agouridis et al., 2004). The only entry and exit point to the study area had a 

large tree located close by, and the entry exit point also likely influenced the foraging 

locations of the animals to be in close proximity to this area of the site. The number of 

cases removed through the accelerometer rule base is fewer and more consistent than 

removal though the GPS rule base. Atmospheric effects and physical obstacles can be 

present that can affect GPS accuracy. In comparison, the accuracy of behaviour 

classification through the accelerometer model has fewer factors that can affect correct 

classification. These include accuracy of training data and difference in slope angles of 

the terrain used during collection of the training data. Any future study, particularly at the 

small plot scale should consider such features and attempt to prevent any grazing 

occurring within a proximity to physical barriers to the sky that could negatively affect GPS 

quality, and at the landscape scale variability in terrain should be considered when 

generating a predictive behavioural classification model.  

 

The method of data collection used in this study collected grass samples for analysis after 

the grazing event. Although collected within close spatial proximity to the grazing location, 
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the fact remains that the sampling protocol resulted in analysis of grass that was 

remaining after grazing. Although this study found no preference for high levels of fructan, 

the method of automating behavioural observations could provide a means of recording 

animal behaviour at the landscape scale. However, the method of determining any intake 

preference needs to be sufficiently robust to maintain statistical power and determine in 

sufficient time the intake rates and sugar accumulation levels. Little research exists 

investigating sheep preference for high fructan grass intake or describing methods for 

such investigations. Burns et al. (2001) found that fructan content influenced sheep intake 

of Festuca arundinacea Schreb. hay harvested in summer but no research has been 

conducted in relation to fructan influence on fresh pasture intake. More research exists 

showing the influence of water soluble carbohydrates (WSC) and non-structural 

carbohydrates on intake preference. Previous studies investigating grazing preference of 

sugars in grass have detected preferences for elevated sugar levels using a variety of 

methods. Jones and Roberts (1991) found that cultivars of perennial ryegrass high in 

WSC content were more palatable to sheep than cultivars with moderate contents of 

WSC. However, this research used small (4 m x 3 m) plots sown with each cultivar and 

the remaining herbage in these plots was measured after each observation period, 

eliminating the need to generate behavioural distribution data to inform sampling 

locations. However, at the landscape scale where fructan and WSC accumulation is 

affected by a greater variety of uncontrolled biotic and abiotic factors, this method of 

measuring grazing preference becomes impractical. Ciavarella et al. (1998) used shaded 

and unshaded plots and faecal examination of synthetic alkanes sprayed onto the plots to 

show a preference by sheep for higher WSC forage. However, this is not a feasible 

method when attempting to examine preferences at the landscape scale as the alkanes 

cannot be sprayed across such a large area.  

 

Although no grazing preference was detected for higher levels of fructan, this study has 

shown that ready housed accelerometers combined with GPS can generate grazing 

distribution data of sheep. However, at the small plot scale, landscape features such as 

trees can impact on GPS accuracy resulting in the loss of spatial distribution data. 

behavioural traits affecting the distribution of sheep need to be considered and accounted 

for when investigating reasons behind grazing locations such as a preference for high 

fructan grasses. The experimental design also needs to ensure sufficient statistical power 

exists to prevent any potential significant findings being missed. 
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Table 9 Tests of Equality of Group Means on all independent variables for Sheep 1, 2 & 3. 

    Sheep 1         Sheep 2         Sheep 3       

  

Wilks' 

Lambda F df1 df2 Sig. 

Wilks' 

Lambda F df1 df2 Sig. 

Wilks' 

Lambda F df1 df2 Sig. 

Withers X Acceleration (g) 0.194 14868.3 3 10732 0.000 0.269 8668.53 3 9552 0.000 0.329 7099.09 3 10429 0.000 

Withers Y Acceleration (g) 0.761 1126.19 3 10732 0.000 0.85 560.88 3 9552 0.000 0.818 771.717 3 10429 0.000 

Withers Z Acceleration (g) 0.446 4437.42 3 10732 0.000 0.818 710.628 3 9552 0.000 0.913 331.686 3 10429 0.000 

Withers X Tilt (°) 0.196 14662.1 3 10732 0.000 0.276 8346.53 3 9552 0.000 0.326 7188.97 3 10429 0.000 

Withers Y Tilt (°) 0.761 1124.59 3 10732 0.000 0.845 582.323 3 9552 0.000 0.8 870.068 3 10429 0.000 

Withers Z Tilt (°) 0.416 5019.42 3 10732 0.000 0.914 300.548 3 9552 0.000 0.848 620.996 3 10429 0.000 

Head X Acceleration (g) 0.14 22031 3 10732 0.000 0.257 9183.81 3 9552 0.000 0.215 12722.3 3 10429 0.000 

Head Y Acceleration (g) 0.952 180.697 3 10732 0.000 0.62 1953.62 3 9552 0.000 0.912 335.346 3 10429 0.000 

Head Z Acceleration (g) 0.669 1771.68 3 10732 0.000 0.919 280.57 3 9552 0.000 0.638 1972.24 3 10429 0.000 

Head X Tilt (°) 0.154 19673.4 3 10732 0.000 0.273 8490.45 3 9552 0.000 0.229 11725.9 3 10429 0.000 

Head Y Tilt (°) 0.955 168.644 3 10732 0.000 0.611 2028.59 3 9552 0.000 0.911 339.083 3 10429 0.000 

Head Z Tilt (°) 0.618 2210.93 3 10732 0.000 0.929 241.631 3 9552 0.000 0.539 2973.92 3 10429 0.000 
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Table 10 Box's Test of Equality of Covariance Matrices Log determinants 

    Sheep 1   Sheep 2 Sheep 3 

behaviour_code Rank 

Log 

Determinant Rank 

Log 

Determinant 

Log 

Determinant 

1 11 -12.759 12 -23.017 -22.643 

2 11 -17.994 12 -5.69 1.046 

3 11 -36.316 12 -26.539 -34.477 

4 11 -53.858 12 -43.004 -48.773 

Pooled within-

groups 

11 -19.422 12 -13.792 -9.603 
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Table 11Tests of Equality of Group Means on all independent variables after the removal of univariate and multivariate outliers for Sheep 1, 2 & 3. 

      Sheep 1       Sheep 2       Sheep 3   

  

Wilks' 

Lamb

da F 

df

1 df2 Sig. 

Wilks' 

Lambd

a F df1 df2 Sig. 

Wilks' 

Lambd

a F df1 df2 Sig. 

Withers X Acceleration (g) .181 15399.68 3 10214 0.000 .217 11039.12 3 9168 0.000 .263 9307.74 3 9975 0.000 

Withers Y Acceleration (g) .758 1084.84 3 10214 0.000 .821 667.98 3 9168 0.000 .755 1077.82 3 9975 0.000 

Withers Z Acceleration (g) .404 5020.34 3 10214 0.000 .657 1594.81 3 9168 0.000 .861 537.98 3 9975 0.000 

Withers X Tilt (°) .181 15428.15 3 10214 0.000 .220 10834.94 3 9168 0.000 .266 9197.37 3 9975 0.000 

Withers Y Tilt (°) .758 1088.42 3 10214 0.000 .821 668.13 3 9168 0.000 .756 1070.93 3 9975 0.000 

Withers Z Tilt (°) .364 5960.86 3 10214 0.000 .872 448.22 3 9168 0.000 .824 709.43 3 9975 0.000 

Head X Acceleration (g) .100 30720.90 3 10214 0.000 .236 9890.17 3 9168 0.000 .156 18010.98 3 9975 0.000 

Head Y Acceleration (g) .944 200.66 3 10214 0.000 .579 2222.71 3 9168 0.000 .881 449.45 3 9975 0.000 

Head Z Acceleration (g) .622 2070.68 3 10214 0.000 .895 357.54 3 9168 0.000 .542 2809.68 3 9975 0.000 

Head X Tilt (°) .116 26072.30 3 10214 0.000 .251 9115.16 3 9168 0.000 .182 14908.84 3 9975 0.000 

Head Y Tilt (°) .947 191.91 3 10214 0.000 .559 2411.39 3 9168 0.000 .884 436.46 3 9975 0.000 

Head Z Tilt (°) .541 2884.48 3 10214 0.000 .916 279.38 3 9168 0.000 .457 3953.68 3 9975 0.000 
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Table 12 Box's Test of Equality of Covariance Matrices Log determinants after removal of univariate and multivariate outliers for sheep 1, 2 and 3 

    Sheep 1   Sheep 2   Sheep 3 

behaviour_code Rank 

Log 

Determinant Rank 

Log 

Determinant Rank 

Log 

Determinant 

1 10 -16.104 12 -29.851 11 -26.355 

2 10 -21.729 12 -18.447 11 -14.761 

3 10 -37.024 12 -34.002 11 -35.646 

4 9 .a 11 .a 11 -45.873 

Pooled within-

groups 

10 -20.320 12 -23.241 11 -20.955 

 

Table 13Box's test of equality of covariance matrices of canonical discriminant Functions log determinants for sheep 1, 2 and 3.  

    Sheep 1 Sheep 2 Sheep 3 

behaviour_code Rank Log Determinant Log Determinant Log Determinant 

1 3 .610 -2.107 .198 

2 3 4.121 2.301 2.613 

3 3 -3.283 -1.272 -4.740 

4 3 -1.095 -3.985 -4.778 

(identity matrix) 3 0.000 0.000 0.000 
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Figure 17 GPS positions and all predicted behaviours for sheep one for all observation 
periods. 
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Figure 18 GPS positions and all predicted behaviours for sheep two for all observation 
periods. 
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Figure 19 GPS positions and all predicted behaviours for sheep three for all observation 
periods.
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Table 14 Date, duration and data counts for each observation period. 

 

 

 

Sheep 1 1 1 1 2 2 2 2 3 3 3 3 

Date 
22/11/201

1 
27/11/201

1 
30/11/201

1 
10/12/201

1 
26/11/201

1 
28/11/201

1 01/12/2011 11/12/2011 23/11/2011 29/11/2011 06/12/2011 08/12/2011 

Time into paddock 12:15:07 11:58:20 12:04:16 12:12:00 11:41:31 12:03:05 12:12:37 11:11:47 12:16:11 12:00:21 11:47:36 10:12:02 

Time out of  paddock 12:46:53 12:38:17 12:55:07 13:03:05 12:38:11 13:04:49 13:10:15 12:11:10 12:49:37 12:55:43 12:48:47 10:56:17 

Duraion 0:31:46 0:39:57 0:50:51 0:51:05 0:56:40 1:01:44 0:57:38 0:59:23 0:33:26 0:55:22 1:01:11 0:44:15 

Standing head down 1102 1780 2252 2158 1644 2579 2490 2856 643 44 1874 1224 

Standing head up 384 244 283 422 540 865 741 539 930 2196 1007 784 

Lying head up 160 74 173 76 17 19 24 24 45 136 52 76 

Lying head down 258 294 232 372 111 126 165 131 328 280 670 538 

Total 1904 2392 2940 3028 2312 3589 3420 3550 1946 2656 3603 2622 

Total after selecting 
only cases > 0.95 
accelerometer model 
probabilty 1071 1745 2227 2108 1498 2361 2299 2663 542 25 1668 1063 

Total after selecting 
cases < 20cm horizontal 
accuracy and accel   

 
926 

        
  

Total after selecting 
cases < 30cm horizontal 
accuracy and accel 328 743 

 
670 889 843 412 342 62 0 1047 697 

Total after selecting 
cases < 40cm horizontal 
accuracy and accel   

      
1521 

 
5 

 
  

Total after selecting 
cases < 50cm horizontal 
accuracy and accel                   7     

Quadrat one 36 23 37 17 34 53 31 38 17   46 26 

Quadrat two 27 18 18 15 27 48 26 32 9 
 

44 23 

Quadrat three 19 17 18 14 26 36 25 29 8   41 21 
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