
Irish, JD, Hemphill, BE, de Ruiter, DJ and Berger, LR

 The apportionment of tooth size and its implications in Australopithecus 
sediba versus other Plio-pleistocene and recent African hominins

http://researchonline.ljmu.ac.uk/id/eprint/4279/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Irish, JD, Hemphill, BE, de Ruiter, DJ and Berger, LR (2016) The 
apportionment of tooth size and its implications in Australopithecus sediba 
versus other Plio-pleistocene and recent African hominins. American 
Journal of Physical Anthropology, 161 (3). pp. 398-413. ISSN 1096-8644 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 
 

The apportionment of tooth size and its implications in Australopithecus sediba versus other 

Plio-Pleistocene and recent African hominins 

 

 

Joel D. Irish1,4,*, Brian E. Hemphill2, Darryl J. de Ruiter3,4, and Lee R. Berger4 

  

1. Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural 

Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF UK. 

 

2. Department of Anthropology, University of Alaska, Fairbanks, AK 99775 USA.  

 

3. Department of Anthropology, Texas A&M University, College Station, TX 77843 USA. 

 

4. Evolutionary Studies Institute and Centre for Excellence in PaleoSciences, University of 

the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa. 

 

 

 23 text pages 

 12 reference pages 

1 footnote page 

 8 tables 

 10 figures 

 

Running Title:  Australopithecus sediba odontometrics 

 

KEY WORDS Odontometrics, geometric means, principal components analysis, phenetic 

affinities  

 

Send correspondence to: Prof. Joel D. Irish, Research Centre in Evolutionary Anthropology 

and Palaeoecology, School of Natural Sciences and Psychology, 

Liverpool John Moores University, Byrom Street, Liverpool,      

L3 3AF, United Kingdom  +44 (0)151 231 2387 (Office)  

         +44 (0)151 231 2338 (Fax) 

         J.D.Irish@ljmu.ac.uk 

 

Grant sponsors: National Science Foundation (BCS-0840674, BNS-9013942) to JDI; Council for 

the International Exchange of Scholars to BEH; Texas A&M University Ray A. Rothrock 

Fellowship, Cornerstone Faculty Fellowship, and College of Liberal Arts Seed Program to DJD. 



2 
 

ABSTRACT   

Objectives: Australopithecus sediba is characterized further by providing formerly unpublished 

and refined mesiodistal and buccolingual crown measurements in the MH1 and MH2 specimens. 

After size correction, these data were compared with those in other fossil and recent samples to 

facilitate additional insight into diachronic hominin affinities. 

Materials and Methods: Six comparative samples consist of fossil species: A. africanus, A. 

afarensis, Homo habilis, Paranthropus robustus, P. boisei, and H. erectus. Others comprise H. 

sapiens and Pan troglodytes. Re-estimates of “actual” dimensions in damaged A. sediba teeth 

were effected through repeated measurements by independent observers. X-ray synchrotron 

microtomography allowed measurement of crowns obscured by matrix and non-eruption. Tooth 

size apportionment analysis, an established technique for intraspecific comparisons, was then 

applied at this interspecific level to assess phenetic affinities using both within- and among-

group data.   

Results: Comparison of these highly heritable dimensions identified a general trend for smaller 

posterior relative to larger anterior teeth (not including canines), contra Paranthropus, that allies 

A. sediba with other australopiths and Homo; however, specific reductions and/or shape variation 

in the species’ canines, third premolars, and anterior molars relative to the other teeth mirror the 

patterning characteristic of Homo.  

Discussion: Of all samples, including east African australopiths, A. sediba appears most like H. 

habilis, H. erectus and H. sapiens regarding how crown size is apportioned along the tooth rows. 

These findings parallel those in prior studies of dental and other skeletal data, including several 

that suggest A. sediba is a close relative of, if not ancestral to, Homo.  
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The dental morphology of Australopithecus sediba has been characterized and compared with 

that of various fossil and recent hominins (Berger et al., 2010; de Ruiter et al., 2013; Irish et al., 

2013, 2014). Dental measurements were also presented (Berger et al., 2010; de Ruiter et al., 

2013) though, with exception (de Ruiter et al., 2013), inter-sample study of crown dimensions 

has been more limited. In brief, these earlier studies suggested the species: 1) is distinct from east 

African australopiths, 2) may be a sister species of A. africanus, and 3) along with A. africanus, 

is positioned at the stem of a clade comprising Homo, or otherwise shares a close relationship 

with the latter genus (i.e., Dembo et al., 2015). Dental morphological apomorphies relative to 

earlier australopiths, as well as Gorilla and Pan, include: faint shoveling of the upper central 

incisors (UI1), size variation between the two lingual cusps of lower fourth premolars (LP4), and 

increased expressions of key upper and lower molar variants (Carabelli’s UM1, protostylid LM1, 

cusp 7 LM1) (Berger et al., 2010; Irish et al., 2013, 2014). Odontometric apomorphies include 

general size reduction and a specific decrease in the canines and several posterior teeth, like that 

seen in later Homo (Berger et al., 2010; de Ruiter et al., 2013).  

The objective of this report is to expand further upon the latter topic, i.e., odontometrics 

in A. sediba and interspecific relationships. First, previously unpublished and several revised 

mesiodistal (MD) and buccolingual (BL) measurements are presented in the 1.977 Ma year-old 

MH1 Holotype and MH2 Paratype. The diameters are revised, albeit minimally, in that they are 

based on repeated-measures (re)estimates of worn and fractured crowns, and x-ray synchrotron 

microtomographic scans of teeth that were unerupted or are covered by matrix. Published data of 

the latter had originally been taken from lower resolution medical CT scans. Second, the highly 

heritable MD and BL crown dimensions (Alvesalo and Tigerstedt, 1974; Townsend and Brown, 

1980; Kieser, 1990; Dempsey et al., 1995; Dempsey and Townsend, 2001; Hlusko et al., 2002; 
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Townsend et al., 2003; Baydas et al., 2005; Rizk et al., 2008), where in some studies h2 > 0.8 

(e.g., Dempsey and Townsend, 2001), are used to compare A. sediba with samples of eight other 

species: A. africanus, A. afarensis, Homo habilis, Paranthropus robustus, P. boisei, H. erectus 

(ergaster), recent H. sapiens, and Pan troglodytes.  To do so, a proven method known as tooth 

size apportionment (TSA) analysis is employed to identify among-sample phenetic affinities.  

Like all skeletal measurements, odontometric data may be divided into two components 

for analysis: (absolute) size and shape (relative size) (Penrose, 1954; Rahman, 1962; Corruccini, 

1973; Smith, 1981b; Wolpoff, 1985; Harris and Harris, 2007; Brook et al., 2008; Suwa et al., 

2009; Townsend et al., 2009). Both components are useful, depending on the question(s) being 

asked. However, in the present study significant differences between small- (e.g., H. sapiens, 

Pan troglodytes) and large-toothed (P. boisei, P. robustus) samples are such that the interspecific 

variation will be disproportionately influenced by size differences alone (as demonstrated by 

Corruccini, 1973, and below; also see Penrose, 1954; Rahman, 1962; Mayer, 1969; Harris and 

Bailit, 1988, Harris and Rathbun, 1991; Harris and Harris, 2007; Townsend et al., 2009). Such 

differences may or may not be allometrically equivalent (e.g., Gould, 1975; Felsenstein, 1985; 

Gingerich and Smith, 1985; Pagel and Harvey, 1988, 1989; Harvey et al., 1991; Copes and 

Schwartz, 2010) and might be affected by differing levels and patterns of sex dimorphism, life 

history factors, diet, and/or social group structure (Gingerich and Schoeninger, 1979; Smith 

1981a; Kay et al., 1988; Kieser, 1990; Leigh, 1992; Plavcan, 2001; Toma et al., 2007; Pilloud et 

al., 2014). Thus, the crown measurements were mathematically corrected so that all samples are 

equivalently scaled (among all teeth within dentitions) using an approach termed DM_RAW 

(from Jungers et al., 1995; after Darroch and Mosimann, 1985). Though not directly evaluated, it 

follows that the heritability of these scaled data is comparable to that of the original MD and BL 



5 
 

dimensions (above), as all measurements before and after correction (see Results) are highly 

correlated (r=0.94, p=0.00).  

The among-sample scaled dimensions were then used in the TSA analysis to examine the 

distribution, or patterning, of relative crown size along the tooth rows by sample (Harris, 1997, 

1998). To date, this method has been used exclusively to characterize and compare samples of 

recent humans, i.e., within species (Harris and Bailit, 1988; Harris and Rathbun, 1991; Hemphill 

et al., 1992; Lukacs and Hemphill, 1993; Harris, 1997, 1998; Irish and Hemphill, 2001; Irish and 

Kenyhercz, 2013). Here, TSA is applied to do the same among species of hominins and Pan that 

differ markedly in apportionment of tooth size relative to humans. Various imaging methods are 

available that can quantify such variation (Kato and Ohno, 2009; Mitteroecker and Gunz, 2009; 

Baab et al., 2012; Braga, 2016; Hemphill, 2016a); yet, they are time intensive and the heritability 

of phenotype captured is comparable to that derived from basic linear estimates (e.g., Hlusko et 

al., 2002 and below). Thus, the phenetic affinity of A. sediba to the other species is considered 

using two basic, readily obtainable measurements of the permanent teeth.  

METHODS 

Maximum crown dimensions were recorded in each of the total 29 teeth from the juvenile MH1 

male and adult MH2 female (Berger et al., 2010) following the standard, established protocol 

(Moorrees and Reed, 1964) used by odontometricians in all subfields of biological anthropology, 

including paleoanthropology: the MD dimension is measured parallel to the occlusal and labial/ 

buccal surfaces, whereas the BL is measured as the greatest distance perpendicular to the MD 

(Hemphill, 2016a). Measurements were taken with needle point calipers accurate to 0.05 mm.  

Re-estimates of “actual” biological diameters for worn and damaged crowns permitted 

refinement of several measurements. Where hindered by remnant matrix and non-eruption (see 
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Berger et al., 2010; de Ruiter et al., 2013; Irish et al., 2013), dimensions were estimated from 

medical CT scans for the original 2010 A. sediba study (Berger et al., 2010). Subsequently, 

propagation phase contrast x-ray synchrotron microtomography was undertaken, from which 

more precise measurements could be taken for the present study. Scanning was performed at the 

European Synchrotron Radiation Facility, in Grenoble, France. For the mandible scan, the ID19 

beamline was used with a propagation distance of 900 mm and a polychromatic beam. The 

wiggler source was set at a gap of 73 mm, filtered with 3 mm of aluminum and 1 mm of Cu, and 

coupled with a scintillator screen in gadox 25 microns thick. The resulting average detected 

energy was 62.3 keV. Each sub-scan was done in half-acquisition mode (double lateral field of 

view), using 5,000 projections of 0.2s each with a FReLoN CCD camera in frame transfer mode. 

The sample was moved vertically by 4.5 mm between each scan. All of the reconstructions were 

performed using a single distance phase retrieval algorithm. Slices were then corrected for ring 

artifacts, and all the sub-scans were concatenated together to generate a single scan of the whole 

specimen (Tafforeau, pers. comm. 2015). For the maxillary dentition, the ID17 beamline was 

used. The protocol is detailed elsewhere (Carlson et al., 2011), but in brief, a beam of 5 x 96 mm 

in half-acquisition geometry was used to acquire projections of 1s each over 360 degrees of the 

specimen. From the original high resolution data (isotropic voxel size of 45.71 μm, 50 Gb in 16 

bits), a lower resolution data set was generated (91.42 μm, 6.4 Gb in 16 bits) for easier data 

handling. To distinguish bone/teeth from matrix, lower (18000) and upper thresholds (31000) 

were used for segmentation. Supplementary image processing (for removal of additional matrix) 

was done with Avizo 6.3 and VGStudio MAX 2.1 before transferring the calculated mask back 

to the full resolution data set (Carlson et al., 2011).  
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Two authors, JDI and DJD, independently took repeated MD and BL measurements of 

each MH1 and MH2 crown. No significant intra-observer error was detected. Measurements of 

both observers were then compared, for which there also was no significant difference (paired-

samples t-test, p<0.05). For slight variations the mean dimension was calculated on the basis that 

random errors tend to be normally distributed about the true measure (Hemphill, 2016a). Those 

dimensions (refer to Table 1) that do vary from the originals do so minimally, and no significant 

differences were detected. The comparability of MD and BL crown measurements taken with 

calipers vs. those from CT scans has not been specifically tested, although enamel thickness has 

been [i.e., micro focal X-ray computed tomography (e.g., Olejniczaki and Grine, 2006)]; these 

results ranged from excellent to poor equivalency – in the case of thin enamel (i.e., < 0.10 mm). 

Given the larger scale of crown size and much higher resolution of synchrotron scans relative to 

this enamel thickness study, any inter-method error should be minimal. Measurement landmarks 

are the same and the accuracy of the calipers is approximately equivalent to that of the scan data 

(Carlson, pers. comm., 2016).  

For the comparative analyses, any redundancy between right and left antimeres was 

avoided by using mean MD and BL data in both specimens where the tooth pairs are retained; if 

only the right or left tooth of an antimeric pair is present, its dimensions were used to reach 16 

possible measurements in each isomere.  

 Tooth size apportionment analysis (TSA) was employed to compare species. The unit of 

study is the dentition as a whole, i.e., how crown size varies within it, instead of focusing on the 

individual tooth dimensions (Harris and Bailit, 1988; Harris and Rathbun, 1991; Hemphill et al., 

1992; Lukacs and Hemphill, 1993; Harris, 1997, 1998; Irish and Hemphill, 2001). In prior study 

of recent humans, TSA has been conducted at two levels: within-group (a.k.a., inter-individual) 
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and among-group. At the former level, a correlation matrix of tooth measurements in a sample of 

individuals with complete dentitions from one population is submitted to principal components 

analysis (PCA). At the among-group level a correlation matrix of mean MD and BL data from 

multiple samples is submitted to PCA. The resulting uncorrelated components are then used to 

facilitate comparisons among samples based on patterns of intertooth relationships. Here, the 

goal is to compare patterning among hominin species; to do so, a modified approach of Harris 

and others is followed (Harris and Bailit, 1988; Harris and Rathbun, 1991; Hemphill et al., 1992; 

Lukacs and Hemphill, 1993; Harris, 1997, 1998; Irish and Hemphill, 2001; Hemphill, 2016b).   

Ordinarily, to minimize the size effects that dominate component 1 in TSA analyses of 

recent humans, residual scores are calculated and substituted (Harris, 1997). However (as above), 

size correction is critical here given the significant differences among hominin species. Thus, an 

alternate method advocated by Jungers et al. (1995). i.e., the DM_RAW correction (Darroch and 

Mosimann, 1985), was used (also Irish and Kenyhercz, 2013). Specifically, the geometric mean 

(GM) is computed as the nth root of the product for all n measurements (x) per case. Each of the 

measurements is then divided by this mean (x/GM) for that case to yield an average value of 1.0 

across rows. Such scaling effectively “cancels out size differences by giving each individual [or 

sample] the same average character state or magnitude over all the measurements taken on it” 

(Corruccini, 1973, p 747). Once calculated, the correlation matrix of DM_ RAW-corrected mean 

MD and BL diameters was submitted to PCA to obtain component loadings, with the resulting 

group component scores plotted in three dimensions to help visualize interspecific variation. All 

statistical analyses were performed using SPSS (Ver. 21.0).   

Maxillary and mandibular teeth are generally analyzed simultaneously to produce the 

maximum characterization and differentiation in apportionment of tooth size. However, the 
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missing measurements in A. sediba (refer to Table 1) prompted initial separate comparisons with 

the other hominin and Pan samples: maxillary teeth only with data from MH1, and mandibular 

teeth using measurements from MH2. In both cases, within-group data (A. sediba) are compared 

directly to among-group data (all other species). Correlation matrices from these alternate data 

are strongly correlated (e.g., r=0.70). Still, to address potential data incompatibility the simplest 

strategy is to assume that MH1 and MH2, each with a sample size of n=1 for the maxillary and 

mandibular comparisons, are representative of A. sediba. Doing so provides compatibility in the 

among-group data analysis across comparative samples, while at least permitting some indication 

of A. sediba‘s phenetic affinity to the other species.  

A second strategy is to undertake a comparison at the level of the individual. However, 

the requisite complete fossil dentitions are not available. What is required is the construction of 

samples drawn from modern humans, with complete dentitions, that parallel the characteristics of 

the fossil hominin dental assemblages. Measurements of four modern samples are used here (see 

Materials). Unfortunately, sampling protocols that specifically targeted young adults having 

minimally worn teeth means that the overwhelming majority of individuals lacked third molars. 

For this reason, all third molars were excluded from consideration in this phase of the analysis. 

Thus, with this exception, a series of random samples were drawn from each modern sample that 

mimic as closely as possible the number of individuals and representation by dental element of 

the average fossil taxon. The latter information was obtained by averaging the fossil comparative 

samples by taxon, dental element, and number of individuals. All crown diameters captured in 

each of these sampling events were then averaged to obtain a “meta-individual,” in which each 

measurement was subsequently size-corrected, i.e., geometrically scaled. The same process was 

repeated until the number of meta-individuals was the same as that for the average fossil taxon. 
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Next, comparative fossil samples were resampled in the same manner; Pan was excluded. The 

meta-individuals, i.e., replicates, provide the unit of analysis for TSA comparison with A. sediba, 

i.e., here with data from MH1 and MH2 combined. Therefore, separate maxillary and mandibular 

analyses are unnecessary because these teeth are compared simultaneously.  

MATERIALS 

Ongoing fossil recovery has led to an ability to analyze samples, some of which are more 

representative than others, to help quantify intraspecific variation for interspecific comparisons. 

Of the current comparative samples, six consist of African Plio-Pleistocene species based on 

directly-recorded (by DJD) or published data (see Robinson, 1956; Tobias, 1967, 1991; Wolpoff, 

1971; Johanson et al., 1982; Grine, 1989; Wood, 1991; Grine and Daegling, 1993; Grine and 

Strait, 1994; Gabunia and Vekua, 1995; Kimbel et al., 1997; de Ruiter, 2004; Kimbel et al., 

2004; Moggi-Cecchi et al., 2006; White et al., 2006; Suwa et al., 2007; Martinón-Torres et al., 

2008; Lordkipanidze et al., 2013; Berger et al., 2015). In the latter cases, where reported, the 

measurement technique was identified for conformity with the above protocol (Moorrees and 

Reed, 1964) to promote data compatibility; of course, inter-observer error could not be assessed.  

 The fossil samples were selected because they: 1) originate in the two primary hominin 

geographic regions of Africa, i.e., east and south, 2) represent three key later Plio-Pleistocene 

genera and, most simply, 3) are the only African species with multiple measurements for all 

permanent teeth. They are: A. africanus (307 total teeth), A. afarensis (271 teeth), Paranthropus 

robustus (377 teeth), P. boisei (172 teeth), H. habilis (93 teeth), and H. erectus (260 teeth). The 

very few anterior teeth recovered from the latter species in Africa necessitated supplementation, 

so data from 38 crowns in what is identified as H. erectus ergaster (or at least a close relative of 
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similar age) from Dmanisi (Rightmire et al., 2006; Baab, 2008; Martinón-Torres et al., 2008; 

Rightmire and Lordkipanidze, 2010; Lordkipanidze et al., 2013) are also included. 

For the separate maxillary and mandibular among-group TSA comparisons, one sample 

(>8,300 total teeth; n=822 individuals) of H. sapiens is included that consists of measurements 

taken (by JDI) in post-Pleistocene sub-Saharan Africans. A non-hominin Pan troglodytes (924 

teeth; n=70 individuals) sample is included to help demonstrate methodological effectiveness, 

while emphasizing among-species taxonomic variation (Mahler, 1973). For TSA within-group 

analysis of the meta-individuals, H. sapiens is represented by four dental cast samples of modern 

people. Initially, South African San (>1,100 teeth; n=83) and Pedi (or Northern Sotho) (>2,400 

teeth; n= 177) were considered (Haeussler et al., 1989; Irish, 1993); however, to move beyond 

local population-level variation, i.e., promote taxonomic variability, two Indian samples of Bhils 

(>2,800 teeth; n=208) and Garasias (>2,800 teeth; n=207) (Lukacs and Hemphill, 1993) were 

included. In these instances sample selections were based on availability as well as, critically, 

dental completeness (with exceptions noted).  

Ideally, analyses would be conducted separately by sex, although this strategy was not 

followed in the earlier TSA analyses. In recent humans tooth size is not allometrically scaled to a 

significant degree, so males and females from the same population will differ in absolute size but 

relative tooth size apportionment is unaffected by sexual dimorphism (Harris and Rathbun, 1991; 

Hemphill et al., 1992; Hemphill, 2016b). The same cannot be assumed for the fossil species with, 

for example, greater body size differences between the sexes. Nevertheless, at least in recent 

humans, dimorphism is mainly (80%) a matter of ontogenetic scaling, so the pattern of tooth size 

variation among species should not be substantially altered (Hemphill, 2016b); this is especially 

true for the within-group analysis, where all measurements were geometrically scaled for each 
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meta-individual. In any event, it is out of necessity, including an inability to assign sex to most 

fossil specimens, many missing data, and a need to maximize the already-small sample sizes, 

that the sexes be pooled by species.  

RESULTS 

The odontometric measurements of A. sediba are presented in Table 1. Many dimensions could 

not be recorded, though among the 29 teeth in the right and left dental arches of MH1 and MH2, 

most MD and BL diameters of the 32 permanent teeth are listed at least once; the exceptions are 

the MD dimensions of the lower first (LI1) and second incisors (LI2), because both teeth are too 

worn to attempt visual approximation. A total of 36 measurements from the original study (i.e., 

Berger et al., 2010) were either revised, albeit insignificantly (above) between 0.1 to 1.0 mm, or 

are presented for the first time in the case of MH1 right maxillary postcanine teeth (Fig. 1). Mean 

odontometric data for the relevant comparative samples are listed in Table 2.  

[TABLES 1-2 and FIGURE 1 HERE] 

The MH1 Maxillary Dentition Comparison 

The MH1 occlusal surface areas (MD x BL) were first calculated by tooth for comparison 

with the other sample data. These products provide rough estimates of actual crown areas (Garn 

et al., 1977; Hemphill, 2016a). Nonetheless, they are useful as general indicators of dentition size 

(Hemphill, 2016a) and, as above, estimated and actual areas share the same heritability (h2 = 

0.83), at least for the molars of close relatives (Hlusko et al., 2002). As evident in a line plot of 

tooth-by-tooth areas (Fig. 2), MH1 is intermediate in size compared to small- and large-toothed 

species. Australopithecus sediba trends the closest to H. habilis and A. afarensis, though the 

differential size reduction in certain teeth is evident (Berger et al., 2010) (as above). The MH1 

canine (UC) is smaller than that in all comparative samples except the Paranthropus species and 
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H. sapiens; similarly, only H. erectus and H. sapiens have smaller upper third premolars (UP3) 

and second molars (UM2). This is not a cladistic study, but as mentioned the size of these teeth 

emulates the derived state present in later Homo species. Conversely, a more limited reduction of 

the upper fourth premolar (UP4) and perhaps upper third molar (UM3) relative to the adjacent 

UM2 in A. sediba, appears reminiscent of the condition in other australopiths and H. habilis.  

[FIGURE 2 HERE] 

 Prior to the TSA analysis all 16 maxillary measurements were DM_RAW size-corrected 

(Table 3). If these data are contrasted before and after correction it is evident how absolute tooth 

size is scaled among species. For instance, P. boisei and H. sapiens share the same mean UI1 BL 

size of 7.0 mm (Table 2); however, their respective corrected values are 0.61 and 0.82 (Table 3), 

which indicates that P. boisei has a smaller UI1 in this dimension relative to other teeth in the 

dentition. These species also share a corrected MD value of 1.22 for the upper first molar (UM1) 

(Table 3), but their respective absolute dimensions are 14.1 and 10.4 mm (Table 2).  

[TABLE 3 HERE] 

To demonstrate the effectiveness of DM_RAW the data were submitted to hierarchical 

agglomerative cluster analysis before and after correction. A dendrogram can be produced to 

illustrate inter-sample phenetic relationships according to branching points in the display. Many 

algorithms are available but results from the average linkage (i.e., between groups) method are 

presented (Fig. 3). Each sample is initially considered as an individual cluster. The two most 

odontometrically-similar clusters, which may comprise one or more samples, are then joined 

based on the smallest average inter-sample distance between them. This process continues until 

one cluster results. Average linkage is the most common method (e.g., Everitt, 1980; Aldenderfer 
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and Blashfield, 1984; Romesburg, 1984), though the application of all seven available in SPSS 

(Ver. 21.0) (not shown) provides equivalent results, indicating stability of the solution.  

[FIGURE 3 HERE] 

Before (Fig. 3a), H. sapiens appears distinct from the other hominins, and closest to Pan. 

In a comparable odontometric experiment, Corruccini (1973 p 748) described these same “severe 

inconsistencies with accepted taxonomy” as being a “product of taxonomically unimportant size 

differences.” After size correction (Fig. 3b) the dendrogram appears similar to more generally 

accepted among-species relationships illustrated in cladograms from phylogenetic analyses. Pan 

is in a cluster of one. The two Paranthropus species again share a cluster, but now so do: 1) H. 

erectus and H. sapiens, and 2) A. sediba (MH1), A. africanus, H. habilis, and A. afarensis.  

 Although size-corrected these 32 total values remain inter-correlated, so they provide 

statistically redundant information (Corruccini, 1973; Harris, 1997). As such, for TSA analysis 

they were submitted to PCA to yield three uncorrelated components that account for 93.0% of 

the total variance. Each component’s loadings, their eigenvalues near or above 1.0, and variance 

explained are listed (Table 4). The group component scores are plotted in Figure 4. Together, this 

information can be used to characterize how tooth size is differentially apportioned or distributed 

within samples, and to compare variation in this patterning among samples.  

[TABLE 4 and FIGURE 4 HERE] 

 Accounting for most of the variance (80.8%), component 1 identifies the major difference 

in size apportionment. Paranthropus possesses massive posterior relative to small anterior teeth.  

So strong loadings (i.e., > |0.5|) of 0.664 to 0.986 (Table 4) for relatively large, DM-corrected 

MD and BL dimensions of the UP3 to UM3 result in P. boisei and P. robustus being plotted near 

the positive end of the X axis in Figure 4, i.e., in this instance toward the top of plot.1 On the 



15 
 

other hand, strongly negative (-0.831 to -0.966) loadings for DM_MD and DM_BL values in the 

UI1, upper lateral incisors (UI2), and UC push others, most notably Pan – with its spatulate 

incisors and prominent canines, toward the opposite end of the axis. The impetus for this sample 

distribution on the axis is apparent in Table 3. The Paranthropus species have the largest DM-

corrected posterior tooth diameters of all samples, especially as compared to Pan which has the 

smallest. And, the reverse can be seen in the anterior teeth, as Pan has the largest DM-corrected 

anterior tooth diameters; P. boisei and P. robustus have the smallest. All others, including MH1, 

exhibit intermediate values (Table 3), which result in their locations near the center of the X axis.  

 Component 2 comprises 6.4% of the total variance. Samples are separated by size within 

the molar class. Specifically, the UM1 DM_MD dimension has a strongly positive loading 

(0.546), while slightly less variation relates to DM_BL (0.510); thus, the UM1 of high scorers on 

this axis is large compared to their adjacent UM2 and UM3. Homo sapiens, characterized by a 

size gradient of M1>M2>M3, is plotted toward the positive end of the Y axis; in Table 3 the 

UM1 DM_MD and DM_BL dimensions (1.22 and 1.31) are large relative to UM2 (1.16 and 

1.32) and especially UM3 (1.04 and 1.29) contra most other samples, A. africanus in particular. 

The latter sample is nearest the negative end, where the UM1 DM_MD (i.e., 1.16) and DM_BL 

(1.25) size-corrected values (Table 3) are small relative to those of the UM2 (1.26 and 1.41) and 

UM3 (1.26 and 1.43). MH1 and H. habilis, at the center of the axis, share values of intermediate 

size, plus relatively long UM1s (below).  

 Component 3 accounts for 5.8% of the variance. There is just one strong loading and one 

of moderate magnitude in Table 4: again, the DM_BL (loading of 0.521) and to a lesser extent 

the DM_MD (-0.417) of UM1. High scorers on the Z axis, which include most samples, possess 

comparatively short DM_MD and broad DM_BL dimensions for this tooth, such as A. afarensis 
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(1.11 and 1.24, respectively in Table 3). The lowest scoring sample indicated in the figure, MH1, 

is characterized by relatively long DM_MD (1.25) and narrow DM_BL dimensions (1.19) for the 

UM1. Both of these corrected dimensions in nearby H. habilis are the same (i.e., 1.22; Table 3).  

 It was next decided to focus solely on similarities among the hominin samples, so Pan 

with its very distinct patterning of tooth size apportionment was dropped from analysis. Doing so 

produces some changes in the loadings, as evident when comparing Tables 4 and 5. Most notably 

both component 1 corrected-UM1 values (in Table 3) now play a minimal role in differentiating 

Paranthropus from the others (Table 5). On component 2, DM_MDUI2 is much more important 

(with loading of 0.694) in driving variation, while the DM_BLUM1 loading is less so (0.368). 

However, the total variance explained by the first three components (93.1%) is comparable, as is 

the sample distribution in a second plot (Fig. 5). The main differences are that the Paranthropus 

species appear more distant on the X axis, whereas MH1, H. erectus and, to a lesser extent, H. 

habilis, are nearer H. sapiens on the Y axis. Some variation in the latter grouping is driven by the 

sharing of long DM_MDUI2 values relative to other samples (e.g., 0.70, 0.76, and .080 in MH1, 

H. erectus, and H. sapiens, respectively; Table 3), though not the extreme spatulate form in Pan 

(with DM_MDUI2 corrected dimension of 0.86).  

[TABLE 5 and FIGURE 5 HERE] 

The MH2 Mandibular Dentition Comparison 

As noted, MD measurements of the LI1 and LI2 cannot be estimated due to heavy wear 

(Table 1; also see Fig. 7c below), so these data were deleted across all samples to leave just 14 

DM_RAW scaled measurements for TSA analysis (Table 3). Thus, in conjunction with estimated 

data for the worn posterior teeth, the results should be interpreted with caution relative to those 

from the MH1 maxillary dentition.  
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In absolute size the MH2 teeth are smaller than those in most samples but trend nearest A. 

afarensis, as illustrated in a second occlusal crown area plot (Fig. 6). Still, like the MH1 maxilla, 

the premolars, especially LP3, and molars (LM1, LM2, and LM3) are small, and the canine (LC) 

diminutive in comparison. Only H. sapiens has smaller estimated LC, LP3, and LP4 areas, and 

H. erectus and H. sapiens more reduced LM2s and LM3s. Again, differential decrease of these 

teeth in MH2 mirrors the arrangement in later Homo. Though much reduced, the relatively large 

LP4-to-LP3 and LM3-to-LM2 patterning is more like that present in H. habilis and the other 

australopiths – especially A. africanus (also compare A. africanus, P. robustus, MH2, H. erectus, 

and H. sapiens crown size variation in Fig. 7).  

[FIGURES 6-7 HERE] 

 Regarding relative size, the first two components account for 90.2% of the total variance 

(see Table 6). The values for component 3 are also listed, but the small loadings, eigenvalue, and 

variance indicate little additional information; they are included because the group component 

scores are plotted in three dimensions (Fig. 8) to promote comparability among figures. Like the 

maxillary dentition, component 1 (81.5%) is dominated by strong positive loadings (i.e., 0.727-

0.984) for relatively large posterior teeth, which again explains the location of P. boisei and P. 

robustus at the far end of the X axis. The key exception is the large negative loading (-0.853) for 

DM_MDLP3; it relates to Pan’s sectorial LP3 (1.05 in Table 3) that, among other differences in 

relative size, helps to drive the sample toward the axe’s near end. As above, all other samples are 

between these two extreme patterns. Lastly, on component 2 (7.7%) the UM1 of high scorers is, 

like the maxillary dentition, large compared to the adjacent UM2 and UM3. Thus, H. sapiens 

(UM1 DM_MD and DM_BL dimensions of 1.36 and 1.25 in Table 3) and to a lesser extent MH2 
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are near the positive end of the Y axis, whereas the Paranthropus and Pan samples plot toward 

the negative end.  

 [TABLE 6 and FIGURE 8 HERE] 

After omitting Pan, P. robustus and P. boisei again plot near the positive end of the X 

axis for component 1 (61.2%) (Fig. 9 and Table 7), with relatively large posterior teeth other 

than LM1. Low scoring Homo and australopith samples have comparatively large anterior teeth. 

Component 2 (15.2%) separates H. sapiens on the basis of relatively large LM1s; MH2 is again 

intermediate. The source of variation on component 3 (9.8%) is unclear, but relative dimensions 

of the LP3 and LM3 appear contributory based on moderate loadings.  

 [TABLE 7 and FIGURE 9 HERE] 

The Meta-Individual Comparison 

Finally, analysis was conducted at the individual level to address the potentially 

confounding issue of comparing within- (A. sediba) to among-group data (all other species). 

Expectation-maximization (EM) estimation (Dempster et al., 1977) was used to replace missing 

data in the four modern H. sapiens samples, where four or fewer of the 28 total MD and BL 

measurements (excluding the mostly unerupted M3s) were absent. The estimates were based on 

the five highest correlations for the absent value by sample. Little’s (1988) test was used to 

determine whether these data were missing completely at random. If not, such cases were 

deleted; the result was a reduction in the effective number of modern individuals to 159 Bhils, 

190 Garasias, 60 San, and 130 Pedi. From them, the abovementioned random samples were 

drawn that reflect the size and relative representation by dental element of the “average fossil 

hominin taxon.” The latter, which is averaged across values for the six fossil comparative 

samples (e.g., see Table 2), consists of 94 individuals with nine UI1s, eight UI2s, 11 UCs, 14 
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UP3s, 14 UP4s, 16 UM1s, 11 UM2s, seven LI1s, seven LI2s, 11 LCs, 15 LP3s, 16 LP4s, 20 

LM1s, and 21 LM2s. Therefore, a series of 94 replicate data sets were drawn randomly from 

each modern sample to obtain meta-individuals. To err on the side of caution, all were drawn 

separately by dental element from a sampling frame in which a random 15% set of individuals 

was removed prior to each sampling event. This same process was repeated for the comparative 

fossil samples. Most of these necessitated data sub-sampling like in the modern groups, while 

those of very small size, e.g., H. habilis (see Table 2), required repeated resampling from the 

same data set.  

In the end, the 10 comparative samples comprise 94 meta-individuals apiece. Excluding 

the MD LI1 and LI2 dimensions (i.e., those absent in MH2), the average 26 measurements for 

each meta-individual were geometrically scaled with DM correction for TSA comparison to A. 

sediba. Because the latter species is represented by just one maxilla and mandible, to here yield a 

combined individual (i.e., MH1_2), there is no variance in crown measurements; thus, it is not 

possible to create replicates as above. Instead, the pooled variance/covariance matrix of the other 

fossil hominins and modern humans was employed to place A. sediba in multi-component space 

relative to these taxa. Descriptive statistics for these comparative samples and meta-individuals, 

including the slightly different DM-scaled values from those in Table 3, are available from the 

authors and are planned for presentation elsewhere.  

Component values are listed as before (Table 8), but the many meta-individuals dictate 

that only average group component scores (centroids) are plotted for each comparative sample 

and MH1_2 (Fig. 10). Patterning clearly parallels the among-group results, particularly that of 

the maxilla (compare to Figs. 5 and 9). On component 1 (69.9% of the variance) relatively large 

posterior teeth, other than UM1 DM_MD and LM1 DM_BL values, are again responsible for the 
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location of the two Paranthropus centroids at the far end of the X axis (loadings 0.508 to 0.967). 

All others, the H. sapiens meta-individuals in particular, have the opposite pattern of relatively 

large anterior teeth (-0.651 to -0.944). On component 2 (14.9%), the large size of M1 to M2 that 

typifies H. sapiens separates species along the Y axis, as above. And on component 3 (5.3%), the 

lowest scorers on the Z axis, H. ergaster, MH1_2, and to a lesser degree, H. habilis, share a long 

UM1 DM_MD dimension based on one moderate loading (-0.480); high scorers do not have this 

attribute, but share relatively broad LM1s (0.418). Like the preceding analyses, A. sediba plots in 

an intermediate location relative to all others, here roughly equidistant between H. sapiens and 

the other Homo species.  

[TABLE 8 and FIGURE 10 HERE] 

DISCUSSION 

Together, the individual measurements and PCA components thoroughly characterize A. sediba 

and the comparative samples. That is, the apportionment, or patterning, of relative tooth size 

within and among samples of individuals is identified (Harris, 1997, 1998) based on the highly 

heritable actual and scaled MD and BL dimensions (Alvesalo and Tigerstedt, 1974; Townsend 

and Brown, 1980; Kieser, 1990; Dempsey et al., 1995; Dempsey and Townsend, 2001; Hlusko et 

al., 2002; Townsend et al., 2003; Baydas et al., 2005; Rizk et al., 2008). Plotting this patterning, 

in turn, visualizes among-sample phenetic variation to enable additional insight into the affinities 

of A. sediba to other species.  

 Australopithecus sediba appears roughly average (MH1) to below average (MH2) in 

absolute crown size compared to small- and large-toothed hominins (Tables 1-2); qualitatively, it 

most closely follows the tooth-by-tooth estimated crown area trend line (Figs. 2 and 6) of A. 

afarensis, as well as H. habilis – especially within the maxilla. The most obvious difference is 
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smaller canine and posterior tooth size toward the condition in later Homo. After size-correcting 

these measurements, A. sediba again appears somewhat similar to A. afarensis and H. habilis 

(Fig. 3b), as well as A. africanus.  

 Continuing to focus on the more complete MH1 maxillary dentition, the inter-sample 

phenetic affinities seen in the dendrogram of 16 corrected but correlated measurements (Fig. 3b) 

largely parallel those in Figure 4 from the uncorrelated principal components. Such continuity 

speaks to data constancy, regardless of analytical or illustrative method. As well, this maxillary 

output, excluding Pan (Table 5 and Fig. 5), is highly concordant with that from comparisons of 

meta-individuals with complete dentitions (i.e., 24 measurements) (Table 8 and Fig. 10); thus, at 

least in this study, direct comparison of within- (A. sediba) to among-group data (other species) 

provides plausible results. Together, these phenetic affinities appear generally concordant with 

those in dendrograms and cladograms from dental morphological (Irish et al., 2013, 2014) and 

craniodental traits (Berger et al., 2010). In these prior cases, A. sediba exhibits some similarity to 

A. africanus; previously the two were interpreted to be sister species within a South African 

australopith clade.  

The TSA results suggest a closer relationship to the genus Homo. Of course, this phenetic 

affinity cannot be directly compared with relationships discerned in recent phylogenetic research, 

because of differences in sample composition and approach, but it does seem supportive. That is, 

using Bayesian analysis Dembo et al. (2015) posited that the best supported hypothesis is “one in 

which A. sediba is the sister taxon of a clade comprising all Homo species;” not surprisingly, 

given the use of the same character dataset, this finding was said to be “consistent with Berger et 

al.’s (2010) conclusion that A. sediba groups with Homo and may be its ancestor” (Dembo et al., 

2015 p 3).  
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 With regard to other samples: 1) Pan serves to demonstrate how the geometrically-scaled 

crown measurements and TSA analyses yield likely inter-sample affinities (Figs. 3b-4 and 8), 

contra comparisons based on absolute crown size (Fig. 3a), 2) both P. robustus and P. boisei are 

divergent as would be expected because of their highly specialized dentitions (Figs. 3b-5, 8-10) 

and, again focusing on the maxillary- and combined-dentition results 3) A. afarensis appears to 

be phenetically most akin to A. africanus then, to a much lesser degree, H. habilis and A. sediba 

and/or H. erectus (Figs. 3b-5 and 10). These odontometric phenetic affinities do not agree with 

previous results (Berger et al., 2010; Irish et al., 2013, 2014) where, for example, A. afarensis 

was linked with the Paranthropus species based on several shared, mass-additive molar traits.  

In sum, size-corrected results from crown diameters, which derive from different genetic 

pathways (Dassule et al., 2000; Shimizu et al., 2004; Sperber, 2006; Townsend et al., 2009) than 

previously-analyzed characters, emulate many findings reported for the crania, dentition, and 

post-crania (i.e., Berger et al., 2010; Carlson et al., 2011; Kivell et al., 2011; Kibii et al., 2011; 

Zipfel et al., 2011; Churchill et al., 2013; de Ruiter et al., 2013; Irish et al., 2013, 2014; Schmid 

et al., 2013; Williams et al., 2013). Australopithecus sediba has some commonalities with other 

australopiths, but perhaps paralleling recent phylogenetic findings (Dembo et al., 2015) it shares 

several features with later Homo, including such synapomorphies as the aforementioned dental 

morphological and metric features and, among others, small mandibular corpus width, a highly 

flexible spine, a narrow waist, and a notch on the lateral plateau of the proximal tibiae (Berger et 

al., 2010; de Ruiter et al., 2013; Irish et al., 2013, 2014; Schmid et al., 2013; Williams et al., 

2013); such links may be reflected in the above figures by the proximity of MH1 and MH2 to the 

samples of H. habilis, H. erectus, and H. sapiens. In fact, Dembo et al. (2015) suggest that A. 

sediba could be assigned to the genus Homo.  
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Nevertheless, determining the relationships of A. sediba, whether phenetic or cladistic, 

remains a work in progress. The most obvious concern is sample size; two partial dentitions 

obviously cannot capture the range of intraspecific variation necessary for comprehensive 

interspecific comparisons. Thus, the usual paleoanthropological caveat applies: recovery of more 

A. sediba (and other Plio-Pleistocene hominin) fossils is essential to promote more definitive 

conclusions.  
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FOOTNOTE 

1In this (Fig. 4) and subsequent three-dimensional plots the X axis is oriented vertically so the H. 

sapiens sample is positioned on the right to standardize comparison.  



 

 

Table 1. Mesiodistal (MD) and buccolingual (BL) maxillary (upper) and mandibular (lower) 

maximum crown diameters in millimeters for the two Australopithecus sediba specimens (values 

in bold are either revised or previously unpublished measurements). 

 

 Specimen MH1 Specimen MH2 

 Right Left Right Left 

 MD BL MD BL MD BL MD BL 

UI1 10.1 6.9       

UI2   7.2
2
 6.6

1
     

UC 9.0 8.8       

UP3 8.9 11.1 9.0 11.2
1
     

UP4 9.2
1
 12.1

1
 9.3 12.1

1
     

UM1 12.7 12.4
2
 12.9 12.0

1
     

UM2 13.0 13.5 12.9 13.7
1
     

UM3 13.1
1
 13.6

1
 13.3

1
 14.1

1
 12.6

2
 12.9

2
   

         

LI1      5.9   

LI2      6.6   

LC   8.0 8.6 7.3 7.4   

LP3 8.0
1
    8.1

2
 9.2   

LP4 8.4
1
    8.8

2
 9.7   

LM1 13.1
2
 11.5   13.1

2
 11.3   

LM2 14.5 13.2   14.4
2
 12.3   

LM3 14.9 13.6
3
   14.9

2
 12.7 14.8

2
 12.5 

 
1
Measurement based on synchrotron scan because actual crown is unerupted or obscured by 

matrix (see text for details).  
2
Estimated maximum diameter of fractured or worn crown. 
3
From 3D print generated from scan of unerupted tooth 

Page 39 of 58

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2. Mean mesiodistal (MD) and buccolingual (BL) maxillary (upper) and mandibular (lower) maximum crown diameters in mm 

for the comparative hominin and Pan samples
1
.  

 

 

 A. africanus
 
A. afarensis P. robustus P. boisei H. habilis H. erectus H. sapiens Pan 

troglodytes 

 MD BL MD BL MD BL MD BL MD BL MD BL MD BL MD BL 

                 
UI1 10.5 

(8)
2
 

8.4 

(8) 

10.7 

(7) 

8.4 

(8) 

8.8 

(17) 

7.2 

(17) 

9.2 

(5) 

7.0 

(5) 

10.8 

(4) 

7.5 

(4) 

11.4 

(3) 

7.8 

(3) 

8.6 

(358) 

7.0 

(412) 

11.7 

(64) 

9.4 

(64) 

UI2 6.8 

(10) 

6.9 

(10) 

7.5 

(9) 

7.2 

(9) 

6.7 

(12) 

6.8 

(12) 

7.9 

(5) 

6.6 

(5) 

7.2 

(6) 

6.8 

(6) 

8.1 

(5) 

7.6 

(5) 

6.8 

(388) 

6.3 

(430) 

8.6 

(44) 

8.6 

(44) 

UC 10.0 

(13) 

10.3 

(13) 

9.9 

(15) 

 10.8 

(15) 

8.4 

(26) 

9.2 

(26) 

8.6 

(5) 

8.8 

(5) 

9.5 

(6) 

9.9 

(6) 

9.8 

(6) 

9.8 

(6) 

7.5 

(554) 

8.1 

(575) 

11.1 

(60) 

12.5 

(60) 

UP3 9.2 

(22) 

12.8 

(22) 

8.8 

(12) 

12.4 

(10) 

9.7 

(28) 

13.9 

(28) 

10.5 

(9) 

14.4 

(9) 

9.1 

(9) 

12.0 

(9) 

8.8 

(10) 

12.5 

(10) 

7.0 

(653) 

9.3 

(668) 

8.0 

(70) 

10.3 

(70) 

UP4 9.3 

(14) 

13.5 

(14) 

9.1 

(18) 

12.4 

(12) 

10.4 

(31) 

15.0 

(31) 

11.6 

(4) 

16.3 

(4) 

9.2 

(9) 

12.0 

(9) 

8.5 

(7) 

11.9 

(7) 

6.7 

(631) 

9.2 

(658) 

7.2 

(49) 

10.1 

(49) 

UM1 12.9 

(19) 

13.9 

(19) 

12.0 

(16) 

13.4 

(13) 

13.1 

(34) 

14.1 

(34) 

14.1 

(13) 

15.0 

(13) 

12.9 

(13) 

13.0 

(13) 

12.8 

(12) 

13.3 

(11) 

10.4 

(609) 

11.2 

(718) 

10.4 

(70) 

11.4 

(70) 

UM2 14.0 

(20) 

15.7 

(20) 

12.9 

(10) 

14.6 

(11) 

14.1 

(26) 

15.7 

(26) 

15.5 

(8) 

16.8 

(8) 

13.1 

(10) 

14.6 

(10) 

12.7 

(8) 

13.4 

(8) 

9.9 

(659) 

11.3 

(714) 

10.3 

(50) 

11.6 

(50) 

UM3 14.0 

(24) 

15.9 

(24) 

12.7 

(11) 

14.5 

(11) 

14.7 

(30) 

16.4 

(30) 

14.1 

(5) 

17.4 

(5) 

12.6 

(8) 

14.6 

(8) 

12.4 

(5) 

14.0 

(5) 

8.9 

(427) 

11.0 

(458) 

9.6 

(57) 

11.0 

(57) 
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Table 2. Continued 

 

 A. africanus
 
A. afarensis P. robustus P. boisei H. habilis H. erectus H. sapiens Pan 

troglodytes 

 MD BL MD BL MD BL MD BL MD BL MD BL MD BL MD BL 

                 
LI1 6.1 

(9) 

6.5 

(9) 

6.7 

(7) 

7.1 

(8) 

5.4 

(10) 

6.1 

(10) 

5.3 

(9) 

6.7 

(9) 

6.5 

(2) 

6.9 

(2) 

5.7 

(4) 

6.5 

(4) 

5.2 

(335) 

5.7 

(349) 

7.8 

(62) 

8.7 

(62) 

LI2 7.2 

(10) 

7.8 

(10) 

6.7 

(7) 

8.0 

(6) 

6.5 

(7) 

6.6 

(7) 

5.8 

(4) 

7.2 

(4) 

7.7 

(2) 

7.5 

(2) 

7.2 

(8) 

7.2 

(8) 

5.8 

(383) 

6.1 

(403) 

8.4 

(42) 

9.1 

(42) 

LC 9.3 

(23) 

10.1 

(23) 

8.8 

(13) 

10.4 

(16) 

7.7 

(20) 

8.2 

(20) 

7.9 

(11) 

9.0 

(11) 

9.0 

(3) 

9.2 

(3) 

9.2 

(6) 

8.9 

(6) 

6.8 

(449) 

7.3 

(475) 

10.6 

(61) 

12.3 

(61) 

LP3 9.6 

(18) 

11.4 

(18) 

9.6 

(27) 

10.6 

(26) 

9.9 

(24) 

12.1 

(24) 

10.4 

(10) 

13.5 

(10) 

10.0 

(3) 

10.0 

(3) 

9.5 

(11) 

10.2 

(12) 

7.1 

(499) 

7.9 

(517) 

10.4 

(69) 

8.3 

(69) 

LP4 10.2 

(24) 

11.6 

(24) 

9.8 

(24) 

11.0 

(21) 

11.0 

(22) 

12.8 

(22) 

12.9 

(19) 

13.3 

(18) 

10.5 

(3) 

10.9 

(3) 

8.8 

(9) 

9.9 

(9) 

7.2 

(469) 

8.2 

(510) 

7.9 

(48) 

8.6 

(48) 

LM1 14.0 

(27) 

13.0 

(27) 

13.1 

(32) 

12.6 

(26) 

14.5 

(33) 

13.5 

(33) 

15.5 

(19) 

14.0 

(19) 

13.8 

(5) 

11.8 

(5) 

13.0 

(16) 

11.7 

(16) 

11.3 

(443) 

10.4 

(533) 

10.9 

(70) 

9.7 

(70) 

LM2 15.7 

(35) 

14.5 

(35) 

14.3 

(31) 

13.4 

(27) 

16.0 

(26) 

14.8 

(26) 

17.5 

(20) 

15.9 

(20) 

15.0 

(5) 

13.4 

(5) 

13.6 

(16) 

12.1 

(16) 

10.7 

(462) 

10.2 

(547) 

11.3 

(50) 

10.5 

(50) 

LM3 16.3 

(31) 

14.6 

(31) 

15.3 

(26) 

13.5 

(23) 

16.8 

(31) 

14.5 

(31) 

18.0 

(26) 

15.4 

(26) 

15.3 

(5) 

13.0 

(5) 

13.9 

(10) 

12.2 

(11) 

10.5 

(319) 

9.9 

(343) 

10.7 

(58) 

10.2 

(58) 

 
1
Odontometric data from directly-recorded (by DJD and JDI) and published measurements (See references in text). 

2
Values in parentheses identify the number of teeth measured to calculate the mean diameter. 
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Table 3. DM_RAW size-corrected
1
 mesiodistal (MD) and buccolingual (BL) diameters for the comparative samples

 
used in tooth size 

apportionment analyses.  

 

 Specimen 

MH1 

A. africanus
 
A. afarensis P. robustus P. boisei H. habilis H. erectus H. sapiens Pan 

troglodytes 

 MD BL MD BL MD BL MD BL MD BL MD BL MD BL MD BL MD BL 

                   
UI1 0.99 0.67 0.94 0.75 0.99 0.78 0.80 0.65 0.80 0.61 1.02 0.71 1.07 0.73 1.00 0.82 1.17 0.94 

UI2 0.70 0.64 0.61 0.62 0.69 0.67 0.61 0.62 0.68 0.57 0.68 0.64 0.76 0.71 0.80 0.74 0.86 0.86 

UC 0.88 0.86 0.90 0.93 0.91 1.00 0.76 0.84 0.75 0.76 0.89 0.93 0.92 0.93 0.88 0.95 1.11 1.25 

UP3 0.87 1.09 0.83 1.15 0.81 1.15 0.88 1.26 0.91 1.25 0.86 1.13 0.82 1.17 0.82 1.09 0.80 1.03 

UP4 0.91 1.18 0.84 1.21 0.84 1.15 0.95 1.36 1.01 1.41 0.87 1.13 0.79 1.11 0.78 1.08 0.72 1.01 

UM1 1.25 1.19 1.16 1.25 1.11 1.24 1.19 1.28 1.22 1.30 1.22 1.22 1.20 1.24 1.22 1.31 1.04 1.14 

UM2 1.27 1.33 1.26 1.41 1.19 1.35 1.28 1.43 1.34 1.46 1.23 1.37 1.19 1.25 1.16 1.32 1.02 1.06 

UM3 1.29 1.35 1.26 1.43 1.17 1.34 1.34 1.49 1.22 1.51 1.18 1.37 1.16 1.31 1.04 1.29 0.96 1.10 
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Table 3. Continued 

 

 

1
See main text for details 

*Cannot be determined because of missing data in MH2 (see text).  

 
 

 MD BL MD BL MD BL MD BL MD BL MD BL MD BL MD BL MD BL 

                   
LI1 * 0.61  0.57  0.65  0.54  0.56  0.64  0.64  0.68  0.89 

LI2 * 0.68  0.69  0.73  0.59  0.60  0.69  0.70  0.73  0.92 

LC 0.75 0.76 0.82 0.89 0.80 0.95 0.69 0.73 0.65 0.75 0.83 0.85 0.90 0.87 0.82 0.88 1.07 1.25 

LP3 0.83 0.95 0.85 1.00 0.87 0.96 0.89 1.08 0.86 1.12 0.92 0.92 0.93 1.00 0.85 0.95 1.05 0.84 

LP4 0.91 1.00 0.90 1.01 0.89 1.00 0.98 1.14 1.07 1.10 0.96 1.00 0.86 0.97 0.86 0.99 0.80 0.87 

LM1 1.35 1.16 1.23 1.14 1.19 1.15 1.30 1.21 1.28 1.16 1.27 1.09 1.27 1.14 1.36 1.25 1.10 0.98 

LM2 1.48 1.27 1.38 1.27 1.30 1.22 1.43 1.32 1.45 1.32 1.38 1.23 1.33 1.18 1.29 1.23 1.15 1.06 

LM3 1.54 1.30 1.43 1.28 1.39 1.23 1.50 1.30 1.49 1.28 1.41 1.20 1.36 1.19 1.26 1.19 1.09 1.04 

 Specimen 

MH2 

A. africanus
 
A. afarensis P. robustus P. boisei H. habilis H. erectus H. sapiens Pan 

troglodytes 
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Table 4. Component loadings
1
, eigenvalues, and the variance explained for size-

corrected maxillary measurements in MH1 and the eight comparative samples.  

 

Variable 
Component 

1 2 3 

DM_MDUI1 -0.946 0.042 -0.242

DM_MDUI2 -0.831 0.419 -0.029

DM_MDUC -0.966 -0.209 -0.104

DM_MDUP3 0.863 0.072 -0.255

DM_MDUP4 0.938 -0.086 -0.129

DM_MDUM1 0.695 0.546 -0.417

DM_MDUM2 0.980 -0.018 -0.135

DM_MDUM3 0.862 -0.330 -0.232

DM_BLUI1 -0.951 -0.045 0.247

DM_BLUI2 -0.957 0.119 0.081

DM_BLUC -0.951 -0.238 0.129

DM_BLUP3 0.864 -0.098 0.326

DM_BLUP4 0.923 -0.146 0.162

DM_BLUM1 0.664 0.510 0.521

DM_BLUM2 0.933 -0.076 0.181

DM_BLUM3 

 

 

Eigenvalue 

Variance (%) 

Total Variance 

0.986

12.931

80.820

80.820

-0.077

1.016

6.352

87.172

0.100

0.929

5.808

92.980

 
1
Values in bold-face indicate strong loadings (i.e., > |0.5|) as detailed in text. 
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Table 5. Component loadings
1
, eigenvalues, and the variance explained for size-

corrected maxillary measurements in MH1 and seven comparative samples 

(excluding Pan). 

 

Variable 
Component 

1 2 3 

DM_MDUI1 -0.928 0.013 -0.321

DM_MDUI2 -0.663 0.694 0.099

DM_MDUC -0.899 -0.298 -0.272

DM_MDUP3 0.896 0.361 -0.219

DM_MDUP4 0.953 0.099 -0.138

DM_MDUM1 0.212 0.803 -0.449

DM_MDUM2 0.956 0.005 -0.202

DM_MDUM3 0.725 -0.418 -0.426

DM_BLUI1 -0.887 -0.194 0.337

DM_BLUI2 -0.903 0.276 0.169

DM_BLUC -0.878 -0.415 0.130

DM_BLUP3 0.795 -0.102 0.365

DM_BLUP4 0.977 -0.006 0.171

DM_BLUM1 0.225 0.368 0.891

DM_BLUM2 0.846 -0.234 0.263

DM_BLUM3 

 

 

Eigenvalue 

Variance (%) 

Total Variance 

 

0.965

10.963

68.518

68.518

-0.179

2.048

12.797

81.315

0.139

1.880

11.753

93.068

1
Values in bold-face indicate strong loadings (i.e., > |0.5|) as detailed in text. 
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Table 6. Component loadings
1
, eigenvalues, and the variance explained for size-

corrected mandibular measurements in MH2 and the eight comparative samples.  

 

Variable 
Component 

1 2 3 

DM_MDLI1 *    *    *

DM_MDLI2 * * *

DM_MDLC -0.972 0.079 -0.064

DM_MDLP3 -0.853 -0.394 0.090

DM_MDLP4 0.807 -0.485 0.076

DM_MDLM1 0.727 0.571 0.025

DM_MDLM2 0.922 -0.063 -0.343

DM_MDLM3 0.929 -0.099 -0.331

DM_BLLI1 -0.969 0.048 0.056

DM_BLLI2 -0.981 0.100 -0.047

DM_BLLC -0.973 -0.093 0.055

DM_BLLP3 0.846 -0.307 0.332

DM_BLLP4 0.912 -0.263 0.238

DM_BLLM1 0.757 0.537 0.357

DM_BLLM2 0.984 -0.045 0.027

DM_BLLM3 

 

Eigenvalue 
Variance (%) 
Total Variance 

 

0.954

11.413

81.520

81.520

0.059

1.214

8.673

90.192

-0.182

0.582

4.160

94.352

 

1
Values in bold-face indicate strong loadings (i.e., > |0.5|) as detailed in text. 

*Cannot be determined because of missing data in MH2 (see text).
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Table 7. Component loadings
1
, eigenvalues, and the variance explained for size 

corrected mandibular measurements in MH2 and seven comparative samples 

(excluding Pan).  

 

Variable 
Component 

1 2 3 

DM_MDLI1 * * *

DM_MDLI2 * * *

DM_MDLC -0.925 -0.148 -0.082

DM_MDLP3 -0.314 -0.660 0.455

DM_MDLP4 0.824 -0.282 0.237

DM_MDLM1 0.137 0.791 0.038

DM_MDLM2 0.842 -0.039 -0.421

DM_MDLM3 0.829 -0.223 -0.464

DM_BLLI1 -0.915 0.236 0.027

DM_BLLI2 -0.947 0.132 -0.247

DM_BLLC -0.870 -0.179 -0.034

DM_BLLP3 0.782 -0.121 0.440

DM_BLLP4 0.894 -0.042 0.361

DM_BLLM1 0.101 0.873 0.389

DM_BLLM2 0.950 0.138 0.019

DM_BLLM3 

 

Eigenvalue 
Variance (%) 
Total Variance 

 

0.839

8.566

61.186

16.186

0.114

2.131

15.224

76.410

-0.425

1.384

9.883

86.292

 

1
Values in bold-face indicate strong loadings (i.e., > |0.5|) as detailed in text. 

*Cannot be determined because of missing data in MH2 (see text).
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Table 8. Component loadings
1
, eigenvalues, and the variance explained for size 

corrected maxillary and mandibular measurements in A. sediba (MH1 and MH2) 

and meta-individuals comprising six fossil and four modern comparative samples 

(excluding Pan).  

 

Variable 
Component 

1 2 3 

DM_MDUI1 -0.944  0.131 -0.222

DM_MDUI2 -0.865  -0.413 -0.186

DM_MDUC -0.908  0.211 -0.150

DM_MDUP3 0.937  -0.094 -0.225

DM_MDUP4 0.951  0.229 -0.024

DM_MDUM1 0.264  -0.747 -0.480

DM_MDUM2 0.894  0.215 -0.089

DM_BLUI1 -0.938  -0.177 0.186

DM_BLUI2 -0.814  -0.325 -0.336

DM_BLUC -0.920  0.232 0.135

DM_BLUP3 0.906  0.103 -0.276

DM_BLUP4 0.967  0.127 0.001

DM_BLUM1 0.508  -0.796 -0.025

DM_BLUM2 0.954  0.042 0.061

DM_MDLI1 * * *

DM_MDLI21 * * *

DM_MDLC -0.854  0.359 -0.230

DM_MDLP3 0.722  0.493 -0.374

DM_MDLP4 0.963  0.124 0.124

DM_MDLM1 0.578  -0.711 0.006

DM_MDLM2 0.877  0.344 0.021

DM_BLLI1 -0.651  -0.502 0.182

DM_BLLI2 -0.906  0.113 0.229

DM_BLLC -0.758  0.479 0.341

DM_BLLP3 0.880  0.177 0.043

DM_BLLP4 0.962  -0.027 0.202

DM_BLLM1 0.363  -0.769 0.418

DM_BLLM2 0.907  -0.005 0.327

 

Eigenvalue 
Variance (%) 
Total Variance 

 

18.182

69.929

69.929

3.879

14.921

84.850

1.377

5.297

90.147

1
Values in bold-face indicate strong loadings (i.e., > |0.5|) as detailed in text. 

*Not determined because of missing data in MH2 (see text).
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Figure 1. Right maxillary dentition of MH1 A. sediba, on which previously unpublished crown dimensions 
were taken. Note partially impacted UP4 and damaged UM1. See main text for details. Photograph by JDI.  

110x203mm (300 x 300 DPI)  
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Figure 2. Line plot showing tooth-by-tooth trends in absolute occlusal surface areas (MD x BL) of the 
maxillary dentition in mm2 by sample. See text for sample compositions.  

121x97mm (300 x 300 DPI)  
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Figure 3. (a) Average linkage cluster analysis dendrogram based on uncorrected MD and BL dimensions of 
the maxillary teeth in A. sediba and the eight comparative samples. (b) Average linkage cluster dendrogram 
based on 16 DM_RAW size-corrected MD and BL dimensions of the maxillary teeth in A. sediba and eight 

comparative samples. See text for methodological details and sample compositions.  
203x346mm (300 x 300 DPI)  
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Figure 4. Three-dimensional ordination of retained principal component scores for tooth size apportionment 
in the maxillary dentition of A. sediba (MH1) and eight comparative samples. Accounts for 92.9% of the 

total variance (80.8% on X axis, 6.4% on Y axis, and 5.8% on Z axis). Afa = A. afarensis, Afr = A. 
africanus, Her = H. erectus, Hha = H. habilis, Hsa = H. sapiens, Pan = Pan troglodytes, Pbo = P. boisei, Pro 

= P. robustus. See text for methodological details, component descriptions, and sample compositions.  
159x166mm (300 x 300 DPI)  
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Figure 5. Three-dimensional ordination of retained principal component scores for tooth size apportionment 
in the maxillary dentition of A. sediba (MH1) and seven comparative hominin samples (i.e., excluding Pan). 
Accounts for 93.1% of the total variance (68.5% on X axis, 12.8% on Y axis, and 11.8% on Z axis.  Afa = A. 

afarensis, Afr = A. africanus, Her = H. erectus, Hha = H. habilis, Hsa = H. sapiens, Pan = Pan troglodytes, 
Pbo = P. boisei, Pro = P. robustus.  

160x170mm (300 x 300 DPI)  
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Figure  6. Line plot showing tooth-by-tooth trends in absolute occlusal surface areas (MD x BL) of the 
mandibular dentition in mm2 by sample. Missing LI1 and LI2 MD dimensions do not permit area calculations 

for these teeth in MH2.  

121x97mm (300 x 300 DPI)  
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Figure 7. South African right* mandibular dentitions from (a) A. africanus (STS 52), (b) P. robustus (SK 23), 
(c) A. sediba (MH2)**, (d) H. erectus (SK 15), and (e) H. sapiens (modern), to further illustrate inter-
species size variation. Some mandibles are deformed via diagenesis, but all are at same scale and 

positioned similarly – with LM2 buccal and lingual margins oriented vertically and LM1 mesial margins 
aligned horizontally. *The more complete left SK 15 dentition was flipped to the right in the image (d). 

**Note MH2 crown wear and damage detailed in the text. Photographs by JDI.  
254x144mm (300 x 300 DPI)  
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Figure 8. Three-dimensional ordination of retained principal component scores for tooth size apportionment 
in the mandibular dentition of A. sediba (MH2) and eight comparative samples. Components 1 and 2 account 

for 90.2% of the total variance (81.5% on X axis and 7.7% on Y axis). Component 3 provides little 

additional information, but its group component scores are plotted to promote comparability with other MDS 
figures (see text for details). Afa = A. afarensis, Afr = A. africanus, Her = H. erectus, Hha = H. habilis, Hsa 

= H. sapiens, Pan = Pan troglodytes, Pbo = P. boisei, Pro = P. robustus.  
158x164mm (300 x 300 DPI)  
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Figure 9. Three-dimensional ordination of retained principal component scores for tooth size apportionment 
in the mandibular dentition of A. sediba (MH2) and seven comparative hominin samples (i.e., excluding 
Pan). Accounts for 93.1% of the total variance (68.5% on X axis, 12.8% on Y axis, and 11.8% on Z 

axis.  Afa = A. afarensis, Afr = A. africanus, Her = H. erectus, Hha = H. habilis, Hsa = H. sapiens, Pan = 
Pan troglodytes, Pbo = P. boisei, Pro = P. robustus.  

158x164mm (300 x 300 DPI)  
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Figure 10. Three-dimensional ordination of retained principal component scores for tooth size apportionment 
in combined dentitions of A. sediba (MH1_2) and 10 comparative samples consisting of 94 “meta-

individuals” each. Accounts for 90.1% of the total variance (69.9% on X axis, 14.9% on Y axis, and 5.3% on 

Z axis. Afa = A. afarensis, Afr = A. africanus, Her = H. erectus, Hha = H. habilis, Pbo = P. boisei, Pro = P. 
robustus, BHI = modern Indian Bhils, GRS = modern Indian Garasias, PED = modern South African Pedi, 

SAN = modern South African San. See text for methodological details and sample compositions.    
158x164mm (300 x 300 DPI)  
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