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Abstract 

  The ability to adjust attentional focus to varying levels of task demands depends on the 

adaptive recruitment of cognitive control processes. The present study investigated for the first 

time whether the mobilization of cognitive control during response-conflict trials in a flanker 

task is associated with effort-related sympathetic activity as measured by changes in the RZ-

interval at a single-trial level, thus providing an alternative to the pre-ejection period (PEP) 

which can only be reliably measured in ensemble-averaged data. We predicted that response 

conflict leads to a physiological orienting response (i.e. heart rate slowing) and increases in effort 

as reflected by changes in myocardial beta-adrenergic activity (i.e. decreased RZ interval). Our 

results indeed showed that response conflict led to cardiac deceleration and decreased RZ 

interval. However, the temporal overlap of the observed heart rate and RZ interval changes 

suggests that the effect on the latter reflects a change in cardiac pre-load (Frank-Starling 

mechanism). Our study was thus unable to provide evidence for the expected link between 

cognitive control and cardiovascular effort. However, it demonstrated that our single-trial 

analysis enables the assessment of transient changes in cardiac sympathetic activity, thus 

providing a promising tool for future studies that aim to investigate effort at a single-trial level. 
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Introduction 

  In daily life, there are many situations in which we have to maintain focus without being 

distracted, so that inappropriate responses do not occur. The ability to flexibly adapt behavior to 

current task demands is generally considered to be an important aspect of cognitive control 

(Kahneman, 1973). Cognitive control processes are typically measured in response inhibition 

tasks, such as the flanker task (Eriksen & Eriksen, 1974; for an overview see Eriksen, 1995), in 

which the amount of conflict can be manipulated. According to the conflict-monitoring theory 

(Botvinick, Braver, Barch, Carter, & Cohen, 2001) cognitive control is adaptively mobilized 

when response conflict is detected during a trial. This adaptation to conflict improves subsequent 

performance and is thought to reflect transient enhancements in cognitive control. In addition, 

when the proportion of conflict trials across a task block is high, these adaptations result in an 

overall reduction in the behavioral susceptibility to conflict, suggesting improved sustained 

cognitive control during a high-conflict task block (Botvinick et al., 2001; Gratton, Coles, & 

Donchin, 1992; Purmann, Badde, Luna-Rodriguez, & Wendt, 2011). 

  In the present study we investigated whether the transient and sustained mobilization of 

cognitive control is also associated with physiological responses typically interpreted as 

reflecting effort mobilization. Although cognitive control has often been characterized as a 

process requiring effort (Hasher & Zacks, 1979; Kahneman, 1973; Mulder, 1986; Schneider & 

Shiffrin, 1977; Westbrook & Braver, 2015; see also Rothbart, Ellis, Rueda, & Posner, 2003) 

there is little empirical evidence to support this notion. Only a few studies have established a link 

between cognitive control and effort based on demonstrating an increase in pupil dilation in 

response to conflict trials in cognitive control paradigms (Brown et al., 1999; Laeng, Ørbo, 

Holmlund, & Miozzo, 2011; Rondeel, van Steenbergen, Holland, & van Knippenberg, 2015; 
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Siegle, Ichikawa, & Steinhauer, 2008; Siegle, Steinhauer, & Thase, 2004; van Bochove, van der 

Haegen, Notebaert, & Verguts, 2013; van Steenbergen & Band, 2013; van Steenbergen, Band, & 

Hommel, 2015; Wendt, Kiesel, Geringswald, Purmann, & Fischer, 2014). However, although 

increased pupil dilation has been argued to reflect increased effort (Kahneman, 1973), it might 

simply reflect an increase in physiological arousal non-specific to effort mobilization (Bradley, 

Miccoli, Escrig, & Lang, 2008). The same issue might apply to studies that have interpreted 

increased effort based on observed skin conductance changes in response to conflict trials 

(Kobayashi, Yoshino, Takahashi, & Nomura, 2007; Naccache et al., 2005; Stennett, 1957; cf. 

Schacht, Dimigen, & Sommer, 2010).   

  The present study used cardiac physiological measures as an alternative to pupil dilation 

and skin conductance. In particular, we focused on myocardial sympathetic activity as the 

operational definition of effort mobilization (Wright, 1996). Previous use of cardiovascular 

measures to index effort has typically analyzed cardiovascular responses at the block of trials 

level, thus aggregating the cardiovascular response over several minutes of task performance. 

For example, Richter and colleagues (Richter, Friedrich, & Gendolla, 2008) demonstrated 

increases in mean heart rate of a 72 trials block in proportion to experienced task difficulty. 

However, given that the cardiovascular system is controlled by both branches of the autonomic 

nervous system (Berntson, Quigley, & Lozano, 2007), heart rate can only be regarded as a 

measure of effort if the sympathetic activation (i.e. increase in heart rate) outweighs the 

parasympathetic activity (i.e. decrease in heart rate), and it is impossible to disentangle these 

influences using a noninvasive methodology.  

A more promising measure of effort mobilization is the pre-ejection period (PEP) 

(Gendolla, Wright, & Richter, 2012; Kelsey, 2012; Richter, Friedrich, & Gendolla, 2008). PEP is 
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defined as the period between the onset of left ventricular contraction and aortic valve opening 

(Weissler, 1977) and has been considered to be a useful indicator of the contractile state of the 

heart (Kelsey, 2012; Sherwood et al., 1990). Consistent with our definition of effort mobilization 

(Kelsey, 2012), PEP is thought to reflect the sympathetic effects on the heart, mediated by its 

beta-adrenergic receptors, and has been shown to respond proportionally to task engagement 

(Richter et al., 2008). Further, research has shown that PEP becomes progressively shorter in 

response to increasing task difficulty (Richter et al., 2008; Silvestrini & Gendolla, 2013). It is 

important to note that these effects of decreased PEP were observed in the absence of a decrease 

in heart rate. This is important because heart rate slowing is associated with greater ventricular 

filling (cardiac pre-load) which automatically leads to increased contractility and decreased PEP 

via the Frank-Starling mechanism. Thus, heart rate deceleration influences PEP independently of 

sympathetic influences (Sherwood et al., 1990). 

Some studies have also investigated the effect on cardiac reactivity at the level of single 

trials. To the best of our knowledge, however, this approach has yet only been used for heart rate 

measures. For example, heart rate slowing has been observed following attention regulation 

(Somsen, van der Molen, Jennings, & van Beek, 2000), error monitoring (Hajcak, McDonald, & 

Simons, 2003), mental transformations (Jennings, van der Molen, & Debski, 2003), and response 

conflict (Fiehler, Ullsperger, Grigutsch, & von Cramon, 2004; Jennings, van der Molen, Brock, 

& Somsen, 1991; Schacht et al., 2010; cf. Spapé & Ravaja, 2016). This transient deceleration of 

heart rate after stimulus onset has been interpreted to reflect an orienting response, mediated by 

the parasympathetic system, that helps to prepare organisms to deal effectively with task-relevant 

stimuli (Graham & Clifton, 1966; Jennings et al., 1991; Lynn, 1966; van der Molen, 2000).  
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The goal of the present study is to examine whether conditions that require increased 

cognitive control lead to effort mobilization as measured at a single-trial level. To this aim we 

developed a – to the best of our knowledge – novel method that provides an alternative measure 

of beta-adrenergic sympathetic impact on the heart at a single-trial level. The standard approach 

to measure PEP requires ensemble-averaged ICG data across many R-peaks in which PEP is 

typically defined as the time interval between the Q point and the B point. Given the complexity 

of this scoring method, guidelines have been developed to standardize visual inspection and 

correction (Sherwood et al., 1990). However, this method is not suitable to be applied at the 

single-trial level because the Q and B points are both considerably susceptible to noise and 

distortion. Fortunately, it has been shown that for signals ensemble-averaged over 1 minute 

epochs, PEP can be closely approximated by measuring the interval between the R-peak and the 

Z (dZ/dtmax) points (Lozano et al., 2007), which are fairly simple to extract, even for single QRS 

cycles. Given this close relationship between PEP and the RZ interval (henceforth abbreviated as 

RZ), the method introduced here capitalizes on this finding and will measure effort-related beta-

adrenergic sympathetic impact on the heart by calculating an evoked response at trial level based 

on an interpolated continuous RZ signal.   

  Using this novel method, we tested the primary hypothesis that conflicting flanker task 

trials do not only decrease heart rate, but also increase transient effects on compensatory effort, 

as reflected by a lowering of evoked RZ following stimulus onset. Physiological data was 

acquired in the context of a conflict tasks in which participant had to respond to conflict and no-

conflict flanker trials presented in random order. In addition, the proportion of conflict trials 

across a task block was manipulated, using low-conflict (75% no-conflict and 25% conflict 

trials) and high-conflict (25% no-conflict and 75% conflict trials) task blocks that were presented 
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in alternating order. On the basis of the known temporal dynamics of beta-adrenergic influence 

on the heart (Mokrane & Nadeau, 1998; Ng, Brack, & Coote, 2001), it is expected that the 

effects of trial conflict on RZ only emerge after 1 to 3 seconds following stimulus onset. On the 

other hand, based on earlier studies it is expected that the effect of trial conflict on cardiac 

deceleration emerges approximately 1 second after stimulus onset (i.e.,  the first interbeat 

interval following stimulus onset) and lasts for about 1 second (Fiehler et al., 2004; Jennings et 

al., 1991; Spapé & Ravaja, 2016).  In addition, we investigated the effect of the overall 

proportion of conflict in the task blocks. Given previous findings showing increased behavioral 

interference in blocks in which the proportion of conflict trials is low (e.g. Gratton et al., 1992; 

Purmann et al., 2011), we expected that low-conflict compared to high-conflict blocks 1) leads to 

more pronounced transient enhancements of effort, reflected by a larger effect of conflict on RZ 

following stimulus onset; and, 2) might be associated with reduced sustained effort, reflected by 

an increased RZ during the pre-stimulus baseline period.  

Method 

Participants 

  Forty-eight students at Leiden University (age mean = 19.06 years, SD = 1.34 years; 7 

males; 8 left-handed) participated as part of gaining course credit. All participants were native 

Dutch speakers and signed informed consent prior to their inclusion in the study. The research 

protocol for this study was approved by the Psychology Research Ethics Committee at Leiden 

University. Participants were required to meet the following inclusion criteria: 1) 18-30 years of 

age, 2) no previous meditation experience, 3) absence of any cardiovascular problems or 

psychiatric disorders, and 4) no use of medication known to influence cognition or 

cardiovascular responses (e.g. antipsychotics or antidepressants) at the moment of inclusion and 
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during the whole study. Three participants were excluded after screening of the physiological 

data. For two participants, the ICG signal was too noisy to analyze. One other participant was 

excluded because their physiological data demonstrated frequent ventricular ectopic beats across 

the experimental session. 

 Flanker task 

Participants performed a modified version of the Eriksen flanker task (Eriksen & Eriksen, 

1974) that included no-conflict (congruent) and conflict (incongruent) trials. We presented an 

arrow target stimulus that pointed to the left or to the right. This arrow target was surrounded by 

two arrows at either side that pointed to the same (congruent), or the opposite (incongruent) 

direction as the target arrow. Participants had to respond as fast and accurately as possible to the 

direction of the central arrow by using the “q” or “p” key on a standard keyboard. The stimuli 

(sized about 2.45° width x 0.25° height) were presented in black color on a gray background on a 

17” monitor at a distance of about 70 cm from the participants’ eyes. The flanker task was 

conducted using E-prime software version 2.0.10.356 (Psychology Software Tools, Pittsburgh, 

PA) and took about 15 minutes to complete.   

  After 16 practice trials that included performance feedback, participants performed six 

blocks of low proportion conflict (75% no-conflict and 25% conflict trials) and six blocks of 

high proportion conflict (25% no-conflict and 75% conflict trials) trials in alternating order. Each 

block comprised 40 trials. Block order was counterbalanced such that half of the participants 

started with a low-conflict block and the other half of the participants started with a high-conflict 

block. In each trial the stimulus was presented for 500 ms (or until a response was given) and 

was followed by a randomized inter-trial interval of 800, 900, or 1000 ms.1
 Blocks were 

separated by a self-paced rest period. 
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Procedure 

The experiment took place in a laboratory based in the Faculty of Social and Behavioral 

Sciences at Leiden University. The data from this experiment was acquired after participants had 

completed an experiment in an unrelated study that involved computer-based cognitive and 

motor tasks under the assumption that flanker task performance and related cardiac events would 

not be differentially influenced by the preceding tasks. After providing written informed consent, 

participants were seated in front of a computer monitor after which the experimenter attached 

electrodes for electrocardiography (ECG) and ICG as described below.  

Cardiac acquisition 

Throughout the experimental session we continuously measured ECG and ICG using a 

BIOPAC MP150 system (BIOPAC Systems Inc., Goleta, CA, USA). Stimulus onset markers 

were conveyed from the flanker task program via a parallel port and saved into an event marker 

channel. Data was stored using AcqKnowledge software (BIOPAC Systems, Goleta, CA, USA).  

In order to analyze heart rate offline, we sampled the ECG signal at 1000 Hz with a 

BIOPAC BioNomadix BN-ECG-2 module using three pre-gelled Ag/AgCl spot electrodes 

placed on skin sites prepared by abrasion and cleaning with alcohol. The first electrode was 

placed under the right clavicle at the mid-clavicular line, the second electrode was placed on the 

lower left abdomen within the rib cage frame and the third, ground, electrode and was placed at 

the lower right abdomen. 

The ICG signal was sampled at 1000 Hz using a BIOPAC BioNomadix BN-NICO 

module interfaced with four sets of Ag/AgCl spot electrodes. After skin preparation, two pairs of 

electrodes were positioned 5 cm apart on each side of the neck and two pairs of electrodes were 

positioned 5 cm apart on each side of the abdomen. The distance between the lower neck 
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electrodes and the upper abdominal electrodes was approximately 30 cm. Within each pair of 

electrodes, one electrode emitted a 400 µA alternating current and the other measured the voltage 

developed through the thorax volume. Through the NICO100c, the ICG signal provided 

measures of basal impedance (Z0) and the rate of change in impedance (dZ/dt) which, in 

combination with the ECG signal, was used to derive RZ. 

Offline cardiac analyses  

To generate interbeat intervals (IBI) data, to index heart rate, and RZ data, to index effort, 

suitable for grand averaging and time series analysis, the ECG and dZ/dt signals were first 

processed in MATLAB Release 2012b (The MathWorks, Inc., Natick, MA, USA). First, the raw 

ECG signal was low-pass filtered at 50 Hz to remove high frequency noise and high-pass filtered 

at 2 Hz to detrend it, both times using zero-phase forward and reverse digital filters. Automatic 

R-peak detection was then performed and at each R-peak the corresponding IBI, defined as the 

time difference in ms relative to the preceding R-peak, was calculated. The filtered ECG signal 

superimposed with the automatically detected R-peaks and IBI periods was then presented to 

trained reviewers blind to the experimental conditions for visual inspection, allowing them to 

reject incorrectly detected R-peaks and IBIs. Only accepted data were used in subsequent 

calculations (proportion accepted R-peaks: range = 93.9 – 98.7%, mean = 97.4%). 

Because the dZ/dt signals were smooth and did not require detrending, no further filtering 

was applied. The dZ/dtmax points were automatically detected by searching for the highest peak 

in the dZ/dt signal between each R-peak and 300 ms thereafter. In a similar fashion to the ECG 

data, the dZ/dt signal and detected dZ/dtmax points were manually inspected and corrected 

(proportion accepted dZ/dtmax points given accepted R-peak: range = 91.4 – 99.7%, mean = 

98.3%). Subsequently, at each accepted dZ/dtmax point, the interval between each R-peak and its 
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corresponding Z (dZ/dtmax) was calculated, forming the RZ time series. At this point, the RZ and 

IBI time series only contained values at their respective discrete events (i.e. accepted R-peaks 

and accepted dZ/dtmax points), which were located at the R-peaks and dZ/dtmax points for each 

heartbeat, and thus arbitrarily positioned relative to each stimulus at its onset. To be able to 

calculate the average evoked response curves across trials, the IBI and RZ time series were 

transformed into continuous equidistantly spaced signals by means of linear interpolation, 

performed at the original acquisition sampling rate of 1000 Hz. The resulting RZ and IBI signals, 

together with the marker channel, were then saved as 32-bit floating point binary data.  

This data was then imported to BrainVision Analyzer. For each individual, we segmented 

the IBI and RZ data for the four combinations of trial type (conflict versus no-conflict trials) and 

block type (low- versus high-conflict blocks), using segments from 2 seconds before to 5 

seconds after stimulus onset. These were then averaged after which we subtracted the mean 

values during a pre-stimulus period, ranging from 2 to 1 seconds before stimulus onset. Note that 

we chose this pre-stimulus baseline, because the use of a later period (e.g. the last second before 

stimulus onset) would have been contaminated by interpolated values originating from possible 

heart beat changes that immediately followed stimulus onset. Note however, that our results did 

not critically depend on the choice of this particular baseline period because an analysis on 

waveforms that were not baseline-corrected revealed a pattern of results very similar to the 

findings reported here. The grand average of the resulting four waveforms for the IBI and RZ 

data are shown in Figure 1. 

In order to test for the effect of conflict on transient changes both in IBI and RZ, we used 

two analysis steps. First, we run a standard repeated-measures ANOVA on time-series data for 

the pre-stimulus-corrected interval of interest (0 to 5 seconds after stimulus onset) down-sampled 
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to 10 Hz, to test for the effect of time point (50 points), block type (low-conflict versus high-

conflict block), trial type (conflict versus no-conflict trial), and their interactions. Since these 

analyses revealed interactions between time point and trial type and a three-way interaction 

between time point, trial type and block type for both dependent variables, the subsequent 

analysis step tested for significant differences between conflict versus no-conflict trial types (i.e., 

a congruency-difference waveform) using series of paired t-tests on the pre-stimulus waveforms 

for each time point following stimulus onset, for the low-conflict and high-conflict blocks 

separately. An additional series of paired t-tests was used to test for differences between the 

congruency-difference waveforms of the high- and low-conflict block respectively. Because 

these analyses were run on the original interpolated data (sampled at 1000 Hz) they allowed 

identifying the temporal dynamics of the conflict effects in ms accuracy. Considering that the 

paired t-tests involved multiple, albeit closely dependent, time points, we only interpret results 

surviving a p-value < .01 threshold to protect against type 1 errors. This more conservative p-

value roughly corresponds to a Bonferroni correction for multiple comparisons, taking into 

account that the interpolated values in the 5-second interval of interest were actually based on 

about 5 discrete heart beats on average.  

Finally, in order to test for the effect of block type on pre-stimulus activity which might 

reflect sustained adaptation in effort, we also compared the effect of low-conflict blocks versus 

high-conflict blocks (collapsed across conflict and no-conflict trials) by submitting the average 

pre-stimulus interval (-2 to -1 seconds) waveforms to a repeated measures ANOVA with the 

factor block type (low-conflict versus high-conflict block).  

Results 
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  The results of the analyses on single-trial level IBI (indexing heart rate) and RZ changes 

relative to the pre-stimulus baseline are presented in Figure 1. For both IBI and RZ, ANOVAs 

revealed an interaction between trial type and time point [IBI: F(49,2156) = 14.64, p < .001, 

MSE = 395.4, �
�= .250; RZ: F(49,2156) = 7.91, p < .001, MSE = 1.2, �

�= .152] and a three-way 

interaction between block type, trial type, and time point [IBI: F(49,2156) = 5.98, p = .001, MSE 

= 333.4, �
�= .120; F(49,2156) = 2.83, p = .023, MSE = 1.2, �

�= .061]. In addition there was an 

interaction between time point and block type [IBI: F(49,2156) = 9.32, p < .001, MSE = 181.0, 

�
�= .175; RZ: F(49,2156) = 4.64, p = .001, MSE = 0.6, �

�= .095] and a main effect of time point 

[IBI: F(49,2156) = 36.35, p < .001, MSE = 223.5, �
�= .452; RZ: F(49,2156) = 72.05, p < .001, 

MSE = 2.0, �
�= .621]. Finally, there was a significant main effect of trial type for IBI but not for 

RZ [IBI: F(1,44) = 6.71, p = .013, MSE = 1722.9, �
�= .132; RZ: F(1,44) = 1.49, p = .229, MSE = 

9.7, �
�= .033].   

  In order to reveal the temporal dynamics of the differences between conflict versus no-

conflict trial types we subsequently used a series of paired t-tests on the waveforms for each time 

point following stimulus onset, for the low-conflict and high-conflict blocks separately. The lines 

below the x-axis in Figure 1 show samples with significant differences at p < .01. As predicted, 

and consistent with earlier observations of cardiac deceleration after response conflict (Fiehler et 

al., 2004), relative to no-conflict trials, conflict trials (i.e., those requiring more cognitive control 

in order to overcome the conflict) led to heart rate slowing (increased IBIs) about 1 second after 

stimulus onset, both in the high-conflict (peak at 1256 ms, t(44) = 3.79, p < .001) and in the low-

conflict blocks (peak at 1576 ms, t(44) = 6.72, p < .001). Moreover, this effect was significantly 

stronger in the low-conflict block (peak of the differences between the congruency-difference 

waveforms scores at 1581 ms, t(44) = 3.98, p < .001), suggesting a stronger orienting response in 
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this condition, consistent with behavioral data from earlier studies that have shown increased 

behavioral interference scores when the proportion of conflict trials in a block is low. More 

importantly, we also observed an effect of conflict on RZ in the expected direction for the low-

conflict block only. That is, RZ was smaller following conflict trials in this block, suggesting 

increased cardiac signs of effort (peak at 1615 ms, t(44) = 5.43, p < .001). This difference was 

also significantly stronger in comparison to the high-conflict block (peak at 1656 ms, t(44) = 

3.53, p < .001). However, the temporal characteristics of this response occurred at the same time 

interval as the cardiac deceleration and it did not sustain for a longer period. This finding thus 

likely does not reflect an effort-related effect associated with beta-adrenergic influence on the 

heart, which should have reduced RZ around 3 seconds after stimulus onset.   

  In a complementary series of analyses, we also analyzed the effect of block type on the 

pre-stimulus values of IBI and RZ, which might reflect effects of sustained effort across the 

entire task block. No significant effect of block type(low-conflict versus low-conflict) was 

observed [IBI: M = 873.2 ms, SE = 19.6 versus M = 873.7 ms, SE = 19.3; F(1,45) = .07, p = 

.795, MSE = 101.0, �
�= .002; RZ: M = 179.3 ms, SE = 1.9 versus M = 179.5 ms, SE = 1.9; 

F(1,45) = 1.17, p = .286, MSE = 0.6, �
�= .025]. 

Discussion 

  Using a novel method to measure sympathetic effects on the heart, the present study 

examined for the first time the link between cognitive control and effort by testing whether 

response conflict in a flanker task (Eriksen & Eriksen, 1974) is accompanied by changes in RZ, 

and whether these cardiac changes are observable on a single-trial level. We hypothesized that 

conflicting flanker trials lead to both heart rate slowing (Fiehler et al., 2004) and increases in 

effort as reflected by a lowered RZ, an effect which might be more pronounced in blocks in 
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which the proportion of conflict trials is low, compared to blocks in which the proportion of 

conflict trials is high. Our findings indeed revealed an increase in IBI and decreased RZ 

following conflict, which, as predicted, was most pronounced during the low-conflict blocks (see 

Figure 1).   

  Although the temporal effect of conflict on IBI (onset at around 1 s) is consistent with 

previous findings (Fiehler et al., 2004), the temporal response of the effect on RZ is not 

consistent with the physiological mechanism that is thought to underlie effort-related cardiac 

responses. Whereas the beta-adrenergic effects underlying effort mobilization are thought to start 

influencing RZ after a couple of seconds, we observed a much quicker response in RZ around 1 

second after the flanker stimuli onset. Since heart rate deceleration was also observed in the same 

time period, it is likely that our observation of lowered RZ following conflict is driven by the 

concomitantly slowed heart rate. A reduction in heart rate may lead to increased ventricular 

filling (increased cardiac pre-load), which automatically increases myocardial contractility via 

the well-known Frank-Starling mechanism. The result is an RZ shortening that is not caused by 

sympathetic activity. Consequently, our data does not provide evidence for a link between 

cognitive control and cardiovascular effort as indexed by RZ, at least as measured in the context 

of the current flanker task. An interpretation of these null effects suggests that available evidence 

from other physiological measures of effort such as pupil dilation (e.g. van Steenbergen & Band, 

2013) and skin conductance response (e.g. Naccache et al., 2005) in cognitive control tasks, 

could simply reflect general arousal which does not necessarily involve effort mobilization.   

  Whilst our study did not provide evidence for an effort-related effect of conflict on RZ, it 

is important to emphasize that the novel single-trial method introduced here, that measured beta-

adrenergic impact on the heart using an interpolated signal of the interval between the R-peak 
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and Z of the dZ/dt function (Lozano et al., 2007), was sensitive to heart rate-induced changes in 

cardiac pre-load. This effect was observed despite the use of a short intertrial interval. This 

finding is in line with other studies on the skin conductance response, another slow physiological 

response, that have shown that differences between conditions are not affected by short intertrial 

intervals (Recio, Schacht, & Sommer, 2009; Schacht et al., 2010; Schacht, Nigbur, & Sommer, 

2009).   

  Obviously this can only be done as long as conditions are presented in random order so 

that effects at the current trial are not confounded by carry-over effects from previous trials. In 

addition, we expressed the changes in RZ and IBI relative to a pre-stimulus baseline period 

which further reduces the effect of random noise introduced by previous trials. Nevertheless, we 

cannot exclude the possibility that our design was less sensitive to prolonged responses in RZ 

due to noise introduced by the different subsequent trials presented, which would be problematic 

in case it would turn out that overlapping cardiac responses do not linearly add up. In the light of 

evidence that the dissipation of epinephrine and norepinephrine which impact the beta-

adrenergic receptors on the heart can last for about 9 seconds, it is therefore advisable that future 

studies use longer intertrial intervals. Notwithstanding these limitations, we believe that the 

method introduced here provides a promising tool to measure single-trial effort-related effects in 

other cognitive paradigms, such as attention-shifting (Apps, Grima, Manohar, & Husain, 2015), 

decision-making (Kool & Botvinick, 2014), task-switching (Kool, McGuire, Rosen, & 

Botvinick, 2010), and working memory paradigms (Westbrook, Kester, & Braver, 2013), as well 

as other paradigms that already have demonstrated PEP effects at the block level (Gendolla & 

Silvestrini, 2010; Richter et al., 2008; Richter & Gendolla, 2009; Silvestrini & Gendolla, 2011). 

It is well possible that the cardiovascular measures of effort in those tasks, that are likely more 
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difficult than the two-alternative forced choice flanker task used here, will be more sensitive to 

reveal effort-related effects in RZ.   

  In conclusion, our findings show that RZ and heart rate changes could be reliably 

assessed at a single-trial level in a flanker conflict paradigm. Although conflict did change early 

heart rate and RZ, associated with a physiological orienting response, it did not result in a 

prolonged RZ response that is associated with effort mobilization. These results suggest that the 

link between cognitive control and effort processes is not clear yet, and that future research is 

needed to gain a better understanding of the conditions under which the exertion of cognitive 

control does become effortful. 
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Footnotes 

1. Due to a programming error, we missed the behavioral responses during the inter-trial 

interval (comprising about 40% of the responses) and therefore we do not report the behavioral 

results here. However, note that the analyses on the subset of behavioral responses that was 

recorded confirmed that response conflict was successfully induced, as conflict versus no-

conflict trials were associated with slower responses (M = 401 ms versus M = 365 ms) and more 

errors (M = 22% versus M = 5%), Fs > 140, ps < .001.  
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Figure 1. 

 

Figure 1. Effect of flanker conflict on interbeat interval (IBI; upper row) and RZ interval (lower panels) during high-
conflict (left panels) and low-conflict (right panels) blocks. Waveforms show grand average across participants. 
Time 0 indicates stimulus onset. Gray lines below the x-axis indicate samples with a significant congruency effect 
(conflict versus no-conflict trials) for the paired waveforms at p < .01. Black lines below the x-axis in the right 
panels indicate samples where the difference between the congruency difference waveforms of the high- versus low-
conflict block is significant at p < .01. 


