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ABSTRACT
High-mass stars shape the interstellar medium in galaxies, and yet, largely because the initial
conditions are poorly constrained, we do not know how they form. One possibility is that
high-mass stars and star clusters form at the junction of filamentary networks, referred to as
“hubs”. In this letter we present the complex anatomy of a protocluster hub within an Infrared
Dark Cloud (IRDC), G035.39− 00.33, believed to be in an early phase of its evolution. We
use high-angular resolution ({θmaj, θmin} = {1′′.4, 0′′.8} ∼ {0.02pc, 0.01pc}) and high-sensitivity
(0.2 mJy beam−1; ∼ 0.2 M�) 1.07 mm dust continuum observations from the Atacama Large
Millimeter Array (ALMA) to identify a network of narrow, 0.028 ± 0.005 pc wide, filamen-
tary structures. These are a factor of & 3 narrower than the proposed “quasi-universal” ∼ 0.1 pc
width of interstellar filaments. Additionally, 28 compact objects are reported, spanning a mass
range 0.3M� < Mc < 10.4M�. This indicates that at least some low-mass objects are form-
ing coevally with more massive counterparts. Comparing to the popular “bead-on-a-string”
analogy, the protocluster hub is poorly represented by a monolithic clump embedded within
a single filament. Instead, it comprises multiple intra-hub filaments, each of which retains its
integrity as an independent structure and possesses its own embedded core population.

Key words: stars: formation – stars: massive – ISM: clouds – ISM: individual: G035.39–
00.33 – ISM: structure

1 INTRODUCTION

In recent years, Infrared Dark Clouds (IRDCs; Pérault et al. 1996;
Egan et al. 1998) have received significant attention in the field of
high-mass (> 8 M�) star formation, owing to their natal associa-
tion with massive (∼ 100 M�) protocluster clumps. Early studies
earmarked IRDC clumps as potential locations of high-mass star
and star cluster formation (e.g. Rathborne et al. 2006), with high-
angular resolution observations adding credence to this theory (Tan
et al. 2013, 2016; Cyganowski et al. 2014; Zhang et al. 2015).

Common to many IRDCs is the presence of filamentary struc-
ture. As a key ingredient of the molecular interstellar medium
(André et al. 2010; Molinari et al. 2010), there has been a com-
mensurate drive towards understanding the intrinsic nature of fil-
aments. Physically, interstellar filaments are characterised by a
“quasi-universal” width of the order ∼ 0.1 pc (Arzoumanian et al.

? Contact e-mail: j.d.henshaw@ljmu.ac.uk

2011). The origin of this commonly observed width is currently
unknown. One possibility is that this scale is a direct reflection
of the physics of filament formation, following the dissipation of
turbulent energy via shocks at the stagnation points of a turbulent
velocity field (e.g. Federrath 2016). From a dynamical perspective,
both observations (e.g. Schneider et al. 2012) and simulations (Dale
& Bonnell 2011; Myers et al. 2013; Gómez & Vázquez-Semadeni
2014) agree that filaments play an important role in star and clus-
ter formation. In this context, filaments may act as tributaries, fun-
nelling mass towards protocluster clumps at the centre of so-called
“hub-filament” systems (Myers 2009; Liu et al. 2012; Gómez &
Vázquez-Semadeni 2014; Smith et al. 2016).

Observational studies of relatively evolved massive star-
forming clusters support the “hub-filament” scenario for high-mass
star and star cluster formation (e.g. Liu et al. 2012; Peretto et al.
2013). For objects at an early stage of evolution, such as IRDCs,
there is growing evidence in the form of coherent, parsec-scale, ve-
locity gradients associated with prominent filaments in the vicinity

c© 2016 The Authors
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Figure 1. Spitzer 8µm image of G035.39−00.33 (Churchwell et al. 2009),
with logarithmic intensity scale in units of MJy sr−1. Open white circles
indicate the 7-field 12 m ALMA mosaic. The dashed contour displays the
edge of the ALMA mosaic. Filled yellow diamonds and filled magenta cir-
cles indicate the locations of 3.2 mm PdBI cores identified by Henshaw et al.
(2016b) and high-mass cores reported by Butler & Tan (2012), respectively.
Open red circles and red triangles refer to the 8µm, and 24µm emission, re-
spectively (Carey et al. 2009; Jiménez-Serra et al. 2010). The symbol sizes
are scaled by the source flux. Filled green squares highlight the location of
extended 4.5µm emission (Chambers et al. 2009).

of protocluster clumps (Peretto et al. 2014; Tackenberg et al. 2014).
Although high-angular resolution observations of IRDC clumps ex-
ist, these often focus on the embedded core population (e.g. Wang
et al. 2014; Beuther et al. 2015), and typically lack enough spa-
tial coverage and dynamic range to obtain a global understanding
of the anatomy of hub-filament systems. As a consequence, the
physical structure of protocluster hubs during the earliest phases
of evolution is poorly documented. It remains unknown, for exam-
ple, whether filamentary structures exist internally within hubs, and
if so, what role they may play in the subsequent evolution of proto-
cluster cores.

In this letter we present high-angular resolution ({θmaj, θmin} =

{1′′.4, 0′′.8}; see § 2) and high-sensitivity (0.2 mJy beam−1) Ata-
cama Large Millimetre Array (ALMA) cycle 2 dust continuum
observations toward a ∼ 100 M� clump (Rathborne et al. 2006;
Butler & Tan 2012), H6 (referred to as MM7 in Rathborne et al.
2006), located within the IRDC G035.39− 00.33 (cloud H; Butler
& Tan 2012). This cloud is reasonably massive (∼ 2× 104 M�
at a kinematic distance of 2.9kpc; Simon et al. 2006; Kainulainen
& Tan 2013) and comprises a network of kinematically-identified
sub-filaments that overlap spatially at the location of the H6 hub
(Henshaw et al. 2013, 2014; Jiménez-Serra et al. 2014). Combin-
ing ALMA observations with those from the Atacama Compact Ar-
ray (ACA), allows us to recover extended structures inside the hub,

and unveil a network of narrow intra-hub filaments and embedded
structure that had previously remained elusive.

2 OBSERVATIONS

ALMA cycle 2 Band 7 observations were carried out toward the
H6 hub (project: 2013.1.01035.S, PI: Henshaw) using the 12 m
ALMA and 7 m ACA arrays. The precipitable water vapour (PWV)
was 1.53 mm, resulting in system temperatures of ∼ 130 K. Pri-
mary beam sizes of the 12 m and 7 m antennas at 279 GHz are
∼ 22 arcsec and 38 arcsec, respectively. A 7-field mosaic was used
to cover a region ∼ 40′′ ×40′′ (corresponding to 0.55pc×0.55pc).
The 12 m mosaic can be seen as white open circles in Figure 1,
which shows the Spitzer Infrared Array Camera (IRAC) 8µm im-
age of G035.39−00.33, from the Galactic Legacy Mid-Plane Sur-
vey Extraordinaire (GLIMPSE; Churchwell et al. 2009). The short-
est available baseline from the 7 m array was D = 9 m. We are there-
fore sensitive to emission on scales up to ∼ 30arcsec (∼ 0.4pc). For
the 12 m observations, quasars J1924-2914 and J1851+0035 were
used for bandpass and time-dependent gain calibration (with mea-
surements every ∼10 minutes), respectively. Flux calibration was
performed using Neptune. The spectral set up included a 1.875 GHz
continuum band centred on 277.5 GHz. The 12 m and 7 m visi-
bility data were combined and imaged in casa. Imaging and de-
convolution was performed using MultiScale CLEAN with nat-
ural weighting. The resultant synthesised beam is {θmaj, θmin} =

{1′′.4, 0′′.8} ∼ {0.02pc, 0.01pc} ∼ {4000AU, 2000AU} with a posi-
tion angle P.A. = −57.9◦. The continuum image reaches a 1σrms
noise level of 0.2 mJy beam−1 (estimated from emission-free re-
gions after primary beam correction). From the Rathborne et al.
(2006) 1.2 mm dust continuum image of the H6 clump (size ∼
40 arcsec, ∼ to the extent of our ALMA mosaic), we estimate that
the integrated flux at 1.07 mm is ∼ 0.8 Jy (assuming a dust emissiv-
ity index, β = 1.75). The total flux in our ALMA image is ∼ 0.5 Jy,
indicating that we recover about 60 per cent of the total flux.

3 RESULTS

The ALMA 1.07 mm dust continuum emission map of the H6 re-
gion is displayed in the left-hand panel of Figure 2. This new high-
angular resolution and high-sensitivity map reveals a striking net-
work of intra-hub filaments, which had remained elusive in previ-
ous observations (e.g. Henshaw et al. 2016).

The filamentary structures evident in Figure 2 are narrow in
comparison to the prominent filament seen in extinction in Figure 1
and to the “quasi-universal” filament width of ∼ 0.1 pc (Arzouma-
nian et al. 2011; André et al. 2016). We can estimate the width of
these filaments via the analysis of their radial surface density pro-
files, Σf(r). We focus on the filament marked ‘F’ in Figure 2, as
it exhibits the most uniform structure of those observed. To derive
the radial surface density profile we rotate the image and take hor-
izontal slices of equivalent breadth across the filament crest. The
column density, NH, is estimated using the following assumptions:
i) the dust continuum emission is optically thin; ii) a total (gas plus
dust)-to-dust-mass ratio, Rgd = 141 (Draine 2011); iii) a dust opac-
ity per unit mass, κν ≈ 1.26 cm2g−1 (valid for the moderately coag-
ulated thin ice mantle dust model of Ossenkopf & Henning 1994,
assuming β = 1.75); iv) a dust temperature, Td = 13 K. For an in-
depth discussion on these considerations, please see Henshaw et al.

MNRAS 000, 1–6 (2016)
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Figure 2. Left: The ALMA 1.07 mm continuum map (logarithmic colour scale in units of Jy beam−1 and thin black contours). Contours increase in 3σrms
(σrms ∼ 0.2 mJy beam−1) steps from 3σrms to 15σrms, then in 5σrms steps up until 30σrms, before increasing in 20σrms steps until 70σrms (∼ 0.15 Jy beam−1).
The symbols and dotted contour have equivalent meaning to those presented in Figure 1. The thick blue and red contours depict identified sources (§ 3 and
Table 1), with the latter representing leaves that are rejected from further analysis as they reside at the very edge of the map. The PdBI (Henshaw et al.
2016b) and ALMA synthesised beams are shown in the bottom left-hand corner in grey and white, respectively. Right: The median column density profile
perpendicular to the filament marked ‘F’ in the left panel (thick black line). The yellow area indicates the median absolute deviation. The ALMA synthesised
beam is indicated by the blue line. Different models used to derive the filament width are shown in red and green (see § 3 for more details).

(2016). After accounting for uncertainties in our assumed param-
eters, the uncertainty in NH is ∼ 50 per cent. The resultant 1σrms
sensitivity is ∼ 4×1022 cm−2.

We follow a conservative approach to estimating the filament
width, using the median, rather than mean surface density profile
(as is more commonly used). The presence of embedded cores
means that the mean surface density profile typically yields nar-
rower filaments. For completeness however, we derive the filament
width using both profiles. The median radial surface density profile
of the filament marked ‘F’ in left-hand panel of Figure 2 is pre-
sented in the right-hand panel.

Two independent models are used to establish the filament
width (Smith et al. 2014; Federrath 2016). First we consider the fil-
ament as an idealised cylinder, the surface density profile of which
can be described by a Plummer profile of the form

Σf(r) = Ap
Σf,0

[1 + (r/Rflat)2]
p−1

2

+Σbg, (1)

where r refers to the cylinder radius, Ap is a finite constant factor
dependent on the density profile power-law index, p, and the fila-
ment inclination angle, i (for simplicity we assume i = 0), Σf,0 =

ρf,0Rflat, where ρf,0 is the filament central density and Rflat is the
radius of the flat inner section of the cylinder. For p = 2, the fila-
ment width is Wf ∼ 3Rflat (Arzoumanian et al. 2011). The second
model involves fitting a simple Gaussian profile of the form

Σf(r) = Σf,0exp
(
−

r2

2σ2
Gauss

)
+Σbg, (2)

where σGauss is the surface density dispersion about the filament
centre and the width is given by Wf = 2(2ln2)1/2σGauss.

In Figure 2 we show the best fitting model solutions to the ra-
dial column density profile. The models described by Equation 1
are shown in red. The dashed and dotted lines are the solutions

assuming p = 4 and p = 2, respectively, where the former is the Os-
triker (1964) solution for an isothermal filament in hydrostatic equi-
librium. The Gaussian model is shown in green. From Figure 2, a
Plummer-like surface density profile appears to better represent the
observations, particularly within ±0.01 pc and for radial distances
<−0.02 pc and > 0.02 pc. Taking p = 2 (Equation 1), we find Rflat =

0.009±0.001 pc. The resultant width is Wf ≈ 0.027 ± 0.006 pc. To
investigate the possibility of variation in the filament width, we also
fit individual profiles. From a sample of ∼ 150 radial cuts, we find
a mean width of Wf ≈ 0.029 ± 0.013 pc (where the uncertainty
reflects the standard deviation). Alternatively, the Gaussian model
returns a full-width at half-maximum width, after beam deconvolu-
tion, of Wf ≈ 0.028 ± 0.005 pc.1

Our ALMA continuum image also reveals the presence of 28
high-contrast, compact cores embedded within the filaments. In
Figure 1 and Figure 2 (left panel), yellow diamonds indicate the po-
sition of the 3.2 mm continuum sources previously identified with
the Plateau de Bure Interferometer (PdBI; Henshaw et al. 2016).
This comparison shows that a greater number of objects (28 vs. 7)
is detected in this new image due to the high angular resolution,
sensitivity and dynamic range of ALMA.

To characterise the physical properties of the compact cores,
we use astrodendro to first extract the sources.2 The thick blue and
red contours in the left-hand panel of Figure 2 show the locations
of the 28 identified dendrogram leaves (the highest level in the den-
drogram hierarchy, representing the smallest structures identified).

1 Using the mean column density profile gives widths of Wf ≈ 0.021 pc or
0.020 pc for the Plummer and Gaussian models, respectively.
2 The following parameters are used in computing the dendrogram:
min_value = 3σrms; min_delta = 1σrms; min_npix = 60.

MNRAS 000, 1–6 (2016)
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Table 1. Dendrogram leaves: physical properties (see § 3).

RAa Deca Req
b NH,c

c Mc
d nH,c,eq

e tff,c f

×1023 ×106 ×104

(pc) (cm−2) (M�) (cm−3) (yr)

18:57:08.09 2:10:28.05 0.026 8.3 3.1 1.6 3.4
18:57:08.43 2:10:31.65 0.019 2.1 1.0 1.4 3.7
18:57:08.06 2:10:33.00 0.013 1.9 0.4 1.9 3.2
18:57:07.62 2:10:36.15 0.011 1.7 0.3 2.0 3.0
18:57:09.13 2:10:36.60 0.013 2.5 0.5 2.1 3.0
18:57:09.50 2:10:38.10 0.017 2.0 0.7 1.3 3.8
18:57:08.00 2:10:39.30 0.031 10.6 7.7 2.4 2.8
18:57:09.53 2:10:40.80 0.021 7.7 2.2 2.0 3.1
18:57:09.23 2:10:41.70 0.026 2.4 1.9 1.0 4.5
18:57:07.61 2:10:43.95 0.023 4.4 2.3 1.7 3.3
18:57:08.46 2:10:44.40 0.014 2.1 0.6 2.1 3.0
18:57:08.88 2:10:44.55 0.012 3.4 0.6 3.6 2.3
18:57:07.91 2:10:45.00 0.024 13.9 5.6 3.8 2.2
18:57:08.30 2:10:46.20 0.010 2.9 0.4 4.3 2.1
18:57:08.67 2:10:48.60 0.019 3.1 1.6 2.1 3.0
18:57:08.31 2:10:51.00 0.014 3.9 1.2 4.1 2.1
18:57:07.62 2:10:51.75 0.021 2.5 1.5 1.5 3.6
18:57:08.10 2:10:52.50 0.018 21.5 4.4 7.0 1.6
18:57:08.50 2:10:53.55 0.026 28.3 10.4 5.5 1.9
18:57:07.91 2:10:56.55 0.011 1.7 0.3 2.0 3.0
18:57:08.37 2:10:57.60 0.014 6.3 1.5 5.6 1.8
18:57:07.62 2:10:59.70 0.027 26.2 6.7 3.0 2.5
18:57:08.16 2:11:05.25 0.016 7.5 1.6 3.3 2.4
18:57:08.26 2:11:06.45 0.011 2.4 0.4 2.9 2.5

a Position of peak emission.
b Equivalent radius, Req = (NpixApix/π)1/2.
c Peak beam-averaged column density. Uncertainty: σNH,c ∼ 50 per cent.
d Leaf mass. Uncertainty: σMc ∼ 60 per cent.
e Leaf number density. Uncertainty: σnH,c,eq ∼ 75 per cent.
f Leaf free-fall time. Uncertainty: σtff,c ∼ 40 per cent.

Out of these leaves, 4 are rejected from further analysis as they
reside at the very edge of the mosaic (thick red contours).

The derived equivalent radii of the leaves range between
0.01pc < Req < 0.03pc, with a mean value of ∼ 0.02pc (Req ≡

NpixApix/π, where Npix is the total number of pixels and Apix is
the area of a single 0′′.15× 0′′.15 pixel). The mean angular separa-
tion of the leaves is ∼4.6”, which corresponds to a projected linear
separation of ∼0.065 pc at the distance of G035.39− 00.33. Leaf
peak beam-averaged column densities and masses are estimated
following the assumptions listed above (subscript ‘c’ is used to dis-
tinguish the core properties from the filament properties discussed
above). Under these assumptions the derived peak beam-averaged
column densities of the leaves range from 0.2×1024 cm−2 < NH,c <

2.8× 1024 cm−2. Leaf masses range from 0.3M� < Mc < 10.4M�
(the uncertainty in our mass estimate is ∼ 60 per cent and our esti-
mated mass sensitivity is ∼ 0.2 M�), which extends the distribution
of detected core masses to lower values with respect to that derived
by Henshaw et al. (2016, core masses ranging from ∼8 to 26M�).
Estimating the mass within the boundaries of the leaves identified
by Henshaw et al. (2016) from our ALMA image, we note a ∼ 30
per cent reduction, on average (although this can be ∼ 60 per cent).
This difference is likely due to the fact that the ALMA and PdBI im-
ages are sensitive to different spatial scales, and/or variation in the

dust properties at the respective resolution of the two images. The
equivalent number densities for each leaf, nH,c,eq (i.e. the density of
a structure with mass, Mc, and radius, Req, assuming spherical ge-
ometry), range between 0.9×106 cm−3 < nH,c,eq < 7.0×106 cm−3,
and the corresponding range in the estimated free-fall time is
1.6× 104 yr < tff,c < 4.5× 104 yr. All derived values can be found
in Table 1, where the leaves are listed in order of increasing decli-
nation.

4 THE EARLY-STAGE ANATOMY OF A
PROTOCLUSTER HUB

Observational studies of molecular gas kinematics in both low-
mass and high-mass star-forming regions have reported the pres-
ence of large-scale (∼ 2 pc) velocity gradients in hub-filament sys-
tems (Liu et al. 2012; Kirk et al. 2013; Peretto et al. 2013, 2014;
Tackenberg et al. 2014), possibly indicating mass transport (e.g.
Gómez & Vázquez-Semadeni 2014). In this scenario, protocluster
clumps (analogous to “beads-on-a-string”) grow in mass as mate-
rial is accreted from parsec-scales along tributary filaments. Alter-
natively, recent single-dish and interferometric observations have
revealed that, in some cases, these velocity “gradients” may instead
be caused by the deceptive superposition of underlying substructure
(e.g. Hacar et al. 2013; Henshaw et al. 2014). In such instances, a
centralised “hub” may represent the location where several sub-
filaments, gathered together by large-scale motions, spatially over-
lap and merge (as inferred from e.g. the hydrodynamical simula-
tions of Smith et al. 2016). Comparing to the “bead-on-a-string”
analogy, where the protocluster hub is represented as large bead on
a single string, each sub-filament in the latter scenario retains its
integrity as an independent structure within the “hub” and possess
its own core population.

The results presented in § 3 support the latter of these two
scenarios. The anatomy of the H6 protocluster, at this early phase
of its evolution, consists of several spatially-resolved intra-hub fil-
aments, each with an associated population of embedded compact
cores. This is consistent with both the kinematic and fragmentation
analyses presented by Henshaw et al. (2014) and Henshaw et al.
(2016), respectively.

With widths of ∼ 0.028 ± 0.005 pc (§ 3), the H6 filaments are
remarkably narrower than the proposed “quasi-universal” width of
interstellar filaments (∼ 0.1 pc), a phenomenon which is suppos-
edly independent of column density, evolutionary stage, and star
formation efficiency (Arzoumanian et al. 2011; Federrath 2016).
Although there are several examples in the literature of filaments
displaying a range of widths, rather than displaying a characteris-
tic value (Pineda et al. 2011; Hennemann et al. 2012; Juvela et al.
2012; Schisano et al. 2014), it has been proposed that the width of
filaments is intrinsically linked to their formation in shocks, and
that this width may be set by the sonic scale of molecular cloud
turbulence, λsonic (Arzoumanian et al. 2011; Federrath 2016). This
scale represents the transition from supersonic to subsonic turbu-
lence and is given by (Federrath 2016):

λsonic = L
[ cs

σv,3D
(1 +β−1)

]2
, (3)

where L is the cloud scale, cs = (kBT/µmH)1/2 is the isothermal
sound speed at a gas temperature T , σv,3D is the 3D velocity dis-
persion on the cloud scale, and β = 2c2

s /v
2
A is the ratio of thermal to

magnetic pressure (vA = B/
√

4πρf is the Alfvén velocity).
By excluding the effects of magnetic fields from Equation 3

MNRAS 000, 1–6 (2016)



The early-stage anatomy of a protocluster hub 5

(i.e. β→∞), we can estimate the corresponding sonic scale for the
molecular gas in the H6 hub. Assuming that T = 13 K (see § 3),
σv,3D ≈

√
3σv,1D ≈ 0.7 km s−1 (the mean value derived from line-

fitting; Henshaw et al. 2014), and L = 0.35 pc (the projected extent
of the filament in Figure 2), we find a sonic scale λsonic ≈ 0.03 pc,
in agreement with our derived filament width. Although the “cloud
scale” (i.e. L) used above is somewhat dependant, in this simplistic
analysis, on the field of view of our ALMA mosaic, this could im-
ply that the observed intra-hub filaments have formed following the
dissipation of turbulent energy via shocks. However, if the width of
the H6 filament is indeed set by the sonic scale, then one would
expect to observe a direct transition to coherence across the fila-
ment boundary similar to that reported by Pineda et al. (2010) in
the Barnard 5 core in Perseus. This prospect will be investigated,
along with a detailed description, of the intra-hub kinematics in a
future publication (Henshaw et al. in preparation).

Our ALMA observations also reveal a number of cores asso-
ciated with the sub-filaments, spanning a range of masses between
0.3M� < Mc < 10.4M�. Previous studies of G035.39− 00.33 had
reported a lack of cores in the mass range 2-8 M� (Henshaw et al.
2016). A similar result was obtained by Zhang et al. (2015), study-
ing the P1 clump in IRDC G28.34+0.06, who reported a dearth of
low-mass cores (by a factor of 5) in the 1-2 M� mass range. With
only 24 cores identified in the present study, we are unable to es-
tablish a robust statistical determination of the mass function in the
H6 hub. However, with this new image, we identify a number low-
mass cores within the 2-8 M� mass range. We therefore conclude
that the previously reported dearth of such low-mass objects may be
of observational, rather than physical origin, and that at least some
low-mass cores are forming coevally in the immediate neighbour-
hood of more massive objects. The differences in the core mass
distribution function between G035.39− 00.33 and G28.34+0.06
may be due to either an evolutionary effect (where the latter is at
a more evolved phase in its evolution, as suggested by the several
molecular outflows reported in the P1 clump) or, as discussed by
Zhang et al. (2015), because the lower mass cores in G28.34+0.06
are forming within the immediate vicinity of higher mass objects.
In this latter scenario, the low mass objects may be indistinguish-
able from the extended emission of the P1 star-forming ridge.

In summary, the high-angular resolution (∼ 0.01 pc) and high-
sensitivity (∼ 0.2 mJy beam−1) observations of the H6 clump have
enabled us to investigate the anatomy of this complex protocluster
hub with a high-degree of precision. Previously unresolved narrow
(0.028 ± 0.005 pc) intra-hub filaments are revealed, as well as a
number of low- and intermediate-mass cores. Although the present
study is insufficient to conclude that the detected narrow filaments
(and their associated cores) are an intrinsic constituent of the initial
phases of intermediate- and/or high-mass star formation, we have
clearly demonstrated the need for high-angular resolution, high-
sensitivity and high-dynamic range observations in determining the
anatomy of such regions. Future investigations will focus on the
complex gas dynamics of this region, with the aim of understand-
ing how prestellar cores attain their mass during the early phases of
evolution in protocluster hubs.
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