
Facilitating self-adaptable Inter-Cloud management

G. Kecskemeti∗, M. Maurer†, I. Brandic†, A. Kertesz∗, Zs. Nemeth∗, and S. Dustdar†
∗MTA SZTAKI Computer and Automation Research Institute

H-1518 Budapest, P.O. Box 63, Hungary
{kecskemeti, keratt, zsnemeth}@sztaki.hu

†Distributed Systems Group
1040 Vienna, Argentinierstr. 8/181-1, Austria
{ivona, maurer, dustdar}@infosys.tuwien.ac.at

Abstract—Cloud Computing infrastructures have been devel-
oped as individual islands, and mostly proprietary solutions so
far. However, as more and more infrastructure providers apply
the technology, users face the inevitable question of using mul-
tiple infrastructures in parallel. Federated cloud management
systems offer a simplified use of these infrastructures by hiding
their proprietary solutions. As the infrastructure becomes more
complex underneath these systems, the situations (like system
failures, handling of load peaks and slopes) that users cannot
easily handle, occur more and more frequently. Therefore,
federations need to manage these situations autonomously
without user interactions. This paper introduces a methodology
to autonomously operate cloud federations by controlling their
behavior with the help of knowledge management systems.
Such systems do not only suggest reactive actions to comply
with established Service Level Agreements (SLA) between
provider and consumer, but they also find a balance between
the fulfillment of established SLAs and resource consumption.
The paper adopts rule-based techniques as its knowledge
management solution and provides an extensible rule set for
federated clouds built on top of multiple infrastructures.

Keywords-Cloud Computing; Knowledge Management; Au-
tonomous; Federations; Infrastructure as a Service

I. INTRODUCTION

Cloud Computing represents a novel computing paradigm
where computing resources are provided on demand follow-
ing the rules established in form of Service Level Agree-
ments (SLAs). SLAs represent the popular format for the
establishment of electronic contracts between consumers and
providers stating the terms of use, objectives and penalties
to be paid in case objectives are violated. Thus, appropriate
management of Cloud Computing infrastructures [7], [8],
[10], [11] is the key issue for the success of Cloud Com-
puting as the next generation ICT infrastructure [1], [2], [3].
Thereby, the interaction of the system with humans should
be minimized while established SLAs with the customers
should not be violated. Since Cloud Computing infrastruc-
tures represent mega scale infrastructures comprising up to
thousands of physical hosts, there is a high potential of
energy waste by overprovisioning resources to keep SLA
violation levels as low as possible.

Recent related work presents several concepts for the
management of competing priorities of both, prevention

of violation of established SLAs while reducing energy
consumption of the system. As presented in [4], knowledge
management techniques have been used to implement an
autonomic control loop, where Cloud infrastructures are
autonomously managed in order to keep the balance between
SLA violations and resource consumption. Thus, the knowl-
edge management (KM) system suggests reactive actions for
preventing possible SLA violations and optimizing resource
usage, which results in lower energy consumption. However,
reactive actions of the system (as presented in [4], [5])
consider only intra-Cloud management, e.g., application or
virtual machine (VM) reconfiguration.

On the other hand, there is considerable work in
Cloud federation mechanisms without dealing with self-
management issues of the system. A Federated Cloud Man-
agement (FCM) architecture proposed in [6] acts as an entry
point to cloud federations and incorporates the concepts
of meta-brokering, cloud brokering and on-demand service
deployment. In this paper, we extend FCM by introducing an
integrated system for reactive knowledge management and
federation mechanisms suitable for on-demand generation
and autonomous management of hybrid clouds. Besides
intra-Cloud level (i.e., application and intra-VM manage-
ment), we also target inter-Cloud management, where VMs
are instantiated and destroyed on demand to prevent SLA
violations and to minimize resource wastage.

This paper is organized as follows: first, we gather re-
lated approaches in Section II. In Section III we introduce
the architecture for Cloud federations and provide a short
overview on its main components. In Section IV, we present
the changes and extensions applied to the architecture to
accomplish autonomous behavior. Finally, we conclude our
research in Section V.

II. RELATED WORK

Bernstein et al. [15] defines two use case scenarios that ex-
emplify the problems faced by users of multi-cloud systems.
They define the case of VM Mobility where they identify
networking, specific cloud VM management interfaces and
the lack of mobility interfaces as the three major obstacles.
They also discuss a storage interoperability and federation

scenario, in which storage provider replication policies are
subject to change when a cloud provider initiates subcon-
tracting. However, they offer interoperability solutions only
for low-level functionality of clouds that are not focused
on recent user demands, but on solutions for IaaS system
operators.

Buyya et al. in [16] suggests a cloud federation ori-
ented, just-in-time, opportunistic and scalable application
services provisioning environment called InterCloud. They
envision utility-oriented federated IaaS systems that are
able to predict application service behavior for intelligent
down- and up-scaling infrastructures. They also present
a market-oriented approach to offer InterClouds including
cloud exchanges and brokers that bring together produc-
ers and consumers. Producers are offering domain specific
enterprise Clouds that are connected and managed within
the federation with their Cloud Coordinator component.
Finally, they have implemented a CloudSim-based simu-
lation that evaluates the performance of the federations
created using InterCloud technologies. Unfortunately, users
face most federation-related issues before the execution of
their services, therefore the concept of InterClouds cannot
be applied in user scenarios this paper is targeting.

RightScale [9] offers a multi-cloud management platform
that enables users to exploit the unique capabilities of differ-
ent clouds, which has a similar view on Cloud federations
to our approach. It is able to manage complete deployments
of multiple servers across more clouds, using an automation
engine that adapts resource allocation as required by system
demand or system failures. They provide server templates
to automatically install software on other supported cloud
infrastructures. They also advertize disaster recovery plans,
low-latency access to data, and support for security and
SLA requirements. RightScale users can select, migrate and
monitor their chosen clouds from a single management
environment. They support Amazon Web Services, Eucalyp-
tus Systems, Flexiscale, GoGrid, and VMware. The direct
access to IaaS systmes is performed by the so-called Multi-
Cloud Engine, which is supposed to perform brokering
capabilities related to VM placement. Unfortunately we
are not aware of any publications that detail the brokering
operations of these components, therefore we cannot provide
any deeper comparisons to our approach.

There has been considerable work on energy efficiency
in ICT systems. Their common goal is to attain certain
performance criteria for reducing energy consumption. Liu
et al. [18] show how to save energy by optimizing VM
placement via live migration. Meng et al. [19] try to increase
efficient resource by provisioning multiple specific VMs to-
gether on a physical machine. Some authors as Kalyvianaki
[20] focus on optimizing specific resource type as CPU
usage, or only deal with homogeneous resources [21]. While
most authors assume a theoretical energy model behind
their approaches, Yu [22] targets the more basic question

Generic Meta Brokering Service

Cloud
Broker

FCM
repository

Cloud
Broker

VMx

Native
repository

VMy

Native
repository

Submit Submit
Lookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Figure 1. The original Federated Cloud Management architecture

of how to effectively measure energy consumption in Cloud
computing environments in a scalable way. Besides, none
investigated energy efficiency in Cloud federations.

Considering the use of Knowledge Management Sys-
tems (KM) and SLAs, Paschke et al. [23] look into a
rule based approach in combination with a logical formal-
ism called ContractLog. It specifies rules to trigger after
a violation has occurred, e.g., it obliges the provider to
pay some penalty, but it does not deal with avoidance of
SLA violations. Others inspected the use of ontologies as
knowledge bases (KBs), but only at a conceptual level.
Koumoutsos et al. [24] view the system in four layers
(i.e., business, system, network and device) and break down
the SLA into relevant information for each layer, but they
give no implementation details. Bahati et al. [25] also use
policies, i.e., rules, to achieve autonomic management. They
provide a system architecture including a KB and a learning
component, and divide all possible states of the system into
so called regions, which they assign a certain benefits for
being in this region. However, the actions are not structured
and lack a coherent approach. They are mixed together into
a single rule, which makes them very hard to manage. On
the contrary, we provide a well-structured and extendable
approach that also investigates how actions are defined to
avoid counteracting recommendations of the KM system.

III. FEDERATED CLOUD MANAGEMENT ARCHITECTURE

Figure 1 shows the Federated Cloud Management (FCM)
architecture (first introduced in [6]), and its connections to
the corresponding components that together represent an
interoperable solution for establishing a federated cloud en-
vironment. Using this architecture, users are able to execute

services deployed on cloud infrastructures transparently, in
an automated way. Virtual appliances for all services should
be stored in a generic repository called FCM Repository,
from which they are automatically replicated to the native
repositories of the different Infrastructure as a Service cloud
providers.

Users are in direct contact with the Generic Meta Bro-
kering Service (GMBS – [13]) that allows requesting a
service by describing the call with a WSDL, the operation
to be called, and its possible input parameters. The GMBS
is responsible of selecting a suitable cloud infrastructure
for the call, and submitting to a Cloud-Broker (CB) in
contact with the selected infrastructure. Selection is based on
static data gathered from the FCM Repository (e.g., service
operations, WSDL, appliance availability), and on dynamic
information of special deployment metrics gathered by the
Cloud-Brokers (see Section IV-B2). The role of GMBS is to
manage autonomously the interconnected cloud infrastruc-
tures with the help of the Cloud-Brokers by forming a cloud
federation.

Cloud-Brokers are set up externally for each IaaS provider
to process service calls and manage VMs in the particular
cloud. Each Cloud-Broker [14] has its own queue for storing
the incoming service calls, and it manages one virtual
machine queue for each virtual appliance (VA). Virtual
machine queues represent the resources that can currently
serve a virtual appliance specific service call. The main
goal of the Cloud-Broker is to manage the virtual machine
queues according to their respective service demand. The
default virtual machine scheduling is based on the currently
available requests in the queue, their historical execution
times, and the number of running VMs.

Virtual Machine Handlers are assigned to each virtual
machine queue and process the VM creation and destruc-
tion requests in the queue. Requests are translated and
forwarded to the underlying IaaS system. VM Handlers
are infrastructure-specific and built on top of the public
interfaces of the underlying IaaS. Finally, the Cloud-Broker
manages the incoming service call queue by associating and
dispatching calls to VMs created by the VM Handler.

As a background process, the architecture organizes vir-
tual appliance distribution with the automatic service de-
ployment component [17]. This component minimizes pre-
execution service delivery time to reduce the apparent ser-
vice execution time in highly dynamic service environments.
Service delivery is minimized by decomposing virtual ap-
pliances and replicating them according to demand patterns,
then rebuilding them on the IaaS system that will host the
future virtual machine. This paper does not aim to further
discuss the behavior of the ASD, however it relies on its
features that reduce virtual appliance replication time and
transfer time between the FCM and the native repositories.

IV. SELF-ADAPTABLE INTER-CLOUD MANAGEMENT
ARCHITECTURE

This paper offers two options to incorporate the concepts
of knowledge management (KM) systems into the Federated
Cloud Management architecture: local and global. Local
integration is applied on a per deployed component basis,
e.g., every Cloud-Broker utilizes a separate KM system
for its internal purposes. In contrast, global integration is
based on a single KM system that controls the autonomous
behavior of the architectural components considering the
available information from the entire cloud federation. In
this section, first, we discuss which integration option is best
to follow, then we introduce the extensions made to a KM
system in order to perform the integration.

A. Knowledge management integration options

When local integration is applied, each knowledge man-
ager can make fine-grained changes – e.g., involving actions
on non-public interfaces – on its controlled subsystem. First,
the meta-broker can select a different scheduling algorithm if
necessitated by SLA violation predictions. Next, the Cloud-
Broker can apply a more aggressive VM termination strat-
egy, if the greenness of the architecture is more prioritized.
Finally, if the storage requirements of the user are not
valid any more, the FCM repository removes unnecessarily
decomposed packages (e.g., when the used storage space
approaches its SLA boundaries, the repository automatically
reduces the occupied storage). However, the locally made
reactions to predicted SLA violations might conflict with
other system components not aware of the applied changes.
These conflicts could cause new SLA violation predictions
in other subsystems, where new actions are required to
maintain the stability of the system. Consequently, local
reactions could cause an autonomic chain reaction, where
a single SLA violation prediction might lead to an unstable
system.

To avoid these chain reactions, we investigated global
integration (presented in Figure 2) that makes architecture-
wide decisions from an external viewpoint. High-level inte-
gration is supported by a monitoring solution – deployed
next to each subcomponent in the system (GMBS, the
various Cloud-Brokers and repositories) – that determines
system behavior in relation to the settled SLA terms. Global
KM integration aggregates the metrics received from the
different monitoring solutions, thus operates on the overall
architecture and makes decisions considering the state of
the entire system before changing one of its subsystems.
However, adaptation actions are restricted to use the public
operations of the FCM architecture (e.g., new cloud selection
requests, new VM and call associations or repository rear-
rangements). Consequently, the global integration exhausts
adaptation actions earlier than the local one, because of
metrics aggregation and restricted interface use. For in-
stance, if aggregated data hides the cause of a possible

Global Autonomous
ManagerGeneric Meta-Broker Service

Cloud
Broker

FCM
repository

Cloud
Broker

VMx

Native
repository

VMy

Native
repository

Submit SubmitLookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Knowledge
Management

System

Monitor Analyze

PlanExecute

Figure 2. Global integration of the knowledge management system

Global Autonomous
ManagerGeneric Meta-Broker Service

VMx

Native
repository

VMy

Native
repository

Submit SubmitLookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Knowledge
Management

System

Monitor Analyze

PlanExecute

KM

KM

KM
Cloud
Broker

KM
Cloud
Broker

FC
M

repository

Figure 3. Hybrid integration of the knowledge management system

future SLA violation, then global KM cannot act without
user involvement.

In this paper, we propose to use a hybrid KM sys-
tem (revealed in Figure 3) combining both global and
local integration options. The hybrid system avoids the
disadvantages of the previous solutions by enabling global
control over local decisions. In our system, local actions
can be preempted by the global KM system by propagating
predicted changes in aggregated metrics. Based on predicted
changes, the global KM could stop the application of a
locally optimal action and prevent the autonomic chain
reaction that would follow the local action. On the other

Action Involved component Integration
Reschedule calls Meta-Broker Global

Rearrange VM queues Cloud-Broker Global
Extend/Shrink VM Queue Cloud-Broker Local

Rearrange VA storage FCM repository Global
Self-Instantiated Deployment Service instances Local

Table I
SUMMARY OF AUTONOMOUS ACTIONS

hand, if the global system does not stop the locally optimal
action, then it enables the execution of more fine-grained
actions postponing adaptation action exhaustion.

B. Knowledge management system extensions

This subsection first lists the possible autonomic actions
in our KM system, then it analyzes the collected monitoring
data that can indicate the need for autonomous behavior.
Finally, based on these indicators, we conclude with the rules
triggering the adaptation in our FCM components.

1) Actions: Based on the affected components, the archi-
tecture applies four basic types of actions on unacceptable
behavior. First, at the meta-brokering level, the system can
organize a rescheduling of several service calls. E.g., the
autonomous manager could decide to reschedule a specific
amount of queued calls – c ∈ Qx, where c refers to the
call, and Qx specifies the queue of the Cloud-Broker for
IaaS provider x. Consequently, to initiate rescheduling, the
knowledge manager specifies the amount of calls (Ncr) to be
rescheduled and the source cloud (Cs) from which the calls
need to be removed. Afterwards, the meta-broker evaluates
the new situation for the removed calls, and schedules them
to a different cloud, if possible.

Second, at the level of cloud brokering, the system could
decide either to rearrange the VM queues of different
Cloud-Brokers, or alternatively to extend or shrink the VM
queue of a specific Cloud-Broker. VM queue rearrangement
requires global KM integration in the system so it can
determine the effects of the queue rearrangement on multi-
ple infrastructures. The autonomous manager accomplishes
rearrangement by destructing VMs of a particular virtual
appliance in a specific cloud and requesting new VMs in
another one. Consequently, the autonomous manager selects
the virtual appliance (V Aarr – appliance to rearrange) that
has the most affected VMs. Then it identifies the amount
of virtual machines (Nvmtr) to be removed from the source
cloud (Cs) and instantiated in a more suitable one (Cd).

The queue rearrangement operations have their counter-
parts also in case of local KM integration. The VM queue
extension and shrinking operations are local decisions that
are supported by energy efficiency related decisions. In case
of queue shrinking, some of the virtual machines controlled
by the local Cloud-Broker are destructed. However, under
bigger loads, virtual machines could be in the process of

performing service calls. Therefore, the autonomous man-
ager can choose between the three VM destruction behaviors
embedded into the Cloud-Brokers: (i) destroy after call
completed, (ii) destroy right after request and put the call
back to the local service call queue and finally, (iii) destroy
right after request and notify the user about call abortion.
As a result, the autonomous manager specifies the number
of VMs to extend (Nex) or shrink (Nshr) the queue with
and the destruction strategy (Sdest) to be used.

Third, on the level of the FCM repository, the autonomous
manager can make the decision to rearrange virtual ap-
pliance storage between native repositories. This decision
requires the FCM repository either to remove appliances
from the native repositories, or to replicate its contents to a
new repository. Appliance removal is only feasible, if one
of the following cases are met: (i) the hosting cloud will
no longer execute the VA, (ii) the hosting cloud can down-
load the VA from third party repositories or finally, (iii)
the appliance itself was based on an extensible appliance
that is still present in the native repository of the hosting
cloud. The objective of the rearrangement is to reduce the
storage costs in the federation at the expense of increased
virtual machine instantiation time for VMs of the removed
appliances. Conclusively, the rearrangement decision should
involve the decision on the percentage (Nrepr) of the re-
duced or replicated appliances that should participate in the
rearrangement process.

Finally, when virtual appliances are built with embedded
autonomous capabilities (internal monitoring, KM system
etc.), then virtual machines based on them are capable of
self-initiated deployment. If a service instance gets either
overloaded or dysfunctional according to its internal mon-
itoring metrics, then the instance contacts the local Cloud-
Broker to instantiate a new virtual machine just like the in-
stance is running in. In case of overloading, the new instance
will also be considered for new Call→VM associations. In
case of dysfunctional instances, the system creates a proxy
service inside the original VM replacing the original service
instance. This proxy is then used to forward the requests
towards the newly created instance until the current VM is
destructed.

2) Monitored metrics: After analyzing the various au-
tonomous actions that the KM system can exercise, we
investigated the monitoring system and the possible metrics
to be collected for the identification of those cases when the
architecture encounters unsatisfactory behavior. Currently,
we monitor and analyze the behavior of Cloud-Brokers, the
FCM repository and individual service instances.

Since Cloud-Brokers represent the behavior of specific
IaaS systems, most of the measurements and decisions
are made based on their behavior. All measurements are
related to the queues of the Cloud-Broker; therefore we
summarize their queuing behavior. Cloud-Brokers offer two
types of queues: the call queue (Qx, where x identifies the

specific Cloud-Broker that handles the queue) and the VM
queues (VMQx,y , where y identifies the specific service
– or appliance V Ay – the queued VMs are offering). The
members of the call queue represent the service calls that
a Cloud-Broker needs to handle in the future (the queue
is filled by the meta-broker and emptied by the Cloud-
Broker through associating a call with a specific VM). On
the other hand, VM queues are handled on a more complex
way: they list the currently handled VMs offering a specific
service instance. Consequently, the Cloud-Brokers maintain
VM queues for all service instances separately. Entries in
the VM queues are used to determine the state of the VMs:

State : VM →

WAITING
INIT
RUNNING.AV AILABLE
RUNNING.ACQUIRED
CANCEL

(1)

• Waiting: the underlying cloud infrastructure does not
have resources to fulfill this VM request yet.

• Init: the VM handler started to create the VM but it
has not started up completely yet.

• Running and available: the VM is available for use,
the Cloud-Broker can associate calls to these VMs only.

• Running and acquired: the VM is associated with a
call and is processing it currently.

• For cancellation: the Cloud-Broker decided to remove
the VM and stop hosting it in the underlying infras-
tructure.

Based on these two queues the monitor collects the
metrics listed in the following paragraphs.

To support decisions for service call rescheduling, the
system monitors the call queue for all available Cloud-
Brokers for a specific service call s:

q(x, s) := {c ∈ Qx : (type(c) = s)}, (2)

where type(c) defines the kind of the service call c is
targeting.

Call throughput measurement of available Cloud-Brokers
is also designed to assist call rescheduling:

throughput(x) :=
1

maxc∈Qx
(waitingtime(c))

, (3)

where waitingtime(c) expresses the time in sec a service
call has been waiting in the specific Q.

We define the average waiting time of a service s by

awt(s,Qx) :=

∑
c∈q(x,s) waitingtime(c)

|q(x, s)|
, (4)

and the average waiting time of a queue by

awt(Qx) :=

∑
c∈Qx

waitingtime(c)

|Qx|
. (5)

To distinguish the Cloud-Brokers, where VM queue rear-
rangements could occur, we measure the number of service
instances that are offered by a particular infrastructure:

vms(x, s) :=
{
vm ∈ VMQx,s :

State(vm) = RUNNING.AV AILABLE

∨ State(vm) = RUNNING.ACQUIRED
}

(6)

The call/VM ratio for a specific service managed by a
specific Cloud-Broker:

cvmratio(x, s) :=
|q(x, s)|
|vms(x, s)|

(7)

This ratio allows the global autonomous manager to plan
VM queue rearrangements and equalize the service call
workload on the federated infrastructures. When applied
with the local KM system, this ratio allows the system to
decide on extending and shrinking the VM queues of partic-
ular services and balance the service instances managed by
the local Cloud-Broker.

The load of the infrastructure managed by a specific
Cloud-Broker:

load(x) :=

∑
∀s |vms(x, s)|∑
∀s |VMQx,s|

(8)

The load analysis is used for VM queue rearrangements in
order to reduce the number of waiting VMs in the federation.
When applied locally, along with the call/vm ratio the load
analysis is utilized to determine when to extend or shrink the
VM queues of various services. As a result, Cloud-Brokers
could locally reorganize their VM structures that better fit
the current call patterns.

To support the remaining autonomous actions, the FCM
repository and individual service instances are also moni-
tored. First, the system monitors the accumulated storage
costs of a virtual appliance in all the repositories (r ∈ R) in
the system (expressed in US dollars/day):

stcost(V As) :=
∑
∀r

locstcost(r, V As), (9)

where locstcost(r, V As) signifies the local storage cost
at repository r for appliance V As. To better identify
the possible appliance storage rearrangements the sys-
tem also analyzes the usage rate of appliances in the
different repositories expressed in the number of times
the VMs based on the appliance have changed status
from INIT to RUNNING.AV AILABLE in a single
day (deployfreq(r, V As)).

Finally, individual services are monitored to support self-
instantiated deployment. Here we analyze the service avail-
ability (expressed as the % of time that the instance is
available for external service calls) of the specific service

instance deployed in the same VM where the monitoring
system is running.

3) Basic rules for applying actions: We decided to for-
mulate the knowledge base (KB) as a rule-based system.
Rules are of the form ”WHEN condition THEN action”
and can be implemented e.g., using the Java rule engine
Drools [26]. We define several rules based on the previously
defined measurements and actions, and present them in
Drools-related pseudo code. The working memory of the
KM system, which is the main class for using the rule engine
at runtime, does not only consist of the specified rules, but
also of the objects whose knowledge has to be modeled,
and that are currently active in the Cloud federation (like a
Cloud-Broker, the native repository, different queues, etc.).
These objects are typically modeled as Java classes, and thus
referred to as Cloud-Broker(), NativeRepository(), etc.

Figure 4 shows the rule for rescheduling service calls.
Line 1 states the unique name the rule can be identified
with in the KB. This way, rules can be dynamically altered
or replaced if different global behavior due to changing high-
level policies (i.e., changing from energy efficient to SLA
performant) is required. Lines 3-4 state the conditions that
have to be fulfilled to trigger the actions in lines 6-9. At first,
we look for a Cloud-Broker Cs (line 3), whose throughput
falls below the average of all the queues’ throughputs
(mean()) plus a multiple of their standard deviation (std(),
line 4). If such Cs is found, the rule is executed. We have
to decide to which Cloud Cd (line 6) to move Ncr service
calls (line 7), and finally invoke the appropriate public
interface methods of the Cloud brokers at stake (lines 8-9).
As Cd we choose the Cloud with maximum throughput. The
equalizeQs() method (line 7) tries to equal out the average
waiting times of the queues of Cs and Cd. It takes the last
service call ŝ out of Qs, retrieves its average waiting time
awt(ŝ, Qs) and calculates the new estimated average waiting
time for Qs and Qd by awt(Qs) := awt(Qs)− awt(ŝ, Qs)
and awt(Qd) := awt(Qd) + awt(ŝ, Qd), respectively. Then
it adds ŝ to Qd. It continues this procedure as long as
awt(Qs) ≥ awt(Qd), and returns the number of service
calls that have been hypothetically added to Qd. The rule
could then either really add the chosen calls to Cd as
presented in line 9, or return them to the meta-broker

Figures 5 and 6 show possible rules for removing VAs
from a Cloud’s native repository due to high local or global
costs, respectively. Both rules try to find a repository r and a
VA V Ax that have been inserted into the working memory
of the rules engine (lines 3-4), and remove the specified
VA from the repository (line 8), when certain conditions
hold. In Figure 5 the removal action is executed when two
conditions hold: First, the local storage cost of the VA
at the specified resource exceeds a certain threshold. The
threshold is calculated as the average local storage costs
at all repositories for the same VA plus a multiple of its
standard deviation. Second, the deploy frequency of the VA

1 rule ”Reschedule calls”
2 WHEN
3 Cs : Cloudbroker()
4 throughput(x) < mean(throughput(.)) + δ ·
std(throughput(.))
5 THEN
6 Cd := argmax throughput(.)
7 Ncr := equalizeQs(Cs, Cd)
8 calls := remove(Ncr, Cs); //removes last Ncr entries
in QCs

.
9 add(calls, Cd);

Figure 4. Rule for rescheduling calls

1 rule “Remove VA from native repository due to high
local costs”
2 WHEN
3 r : NativeRepository()
4 V Ax : VirtualAppliance()
5 locstcost(r, V Ax) > mean(locstcost(., V Ax)) + δ ·
std(locstcost(., V Ax))
6 deployfreq(r, V Ax) < mean(deployfreq(., V Ax))
7 THEN
8 remove(V Ax, r) //removes V Ax from native repository
r

Figure 5. Rule for removing VA from native repository of a specific Cloud
due to high local costs

at this repository falls below a certain threshold, which is
the mean deploy frequency of the VA at all repositories.
In short, the VA is instantiated less often than other VAs,
but its cost is higher than for other VAs, so the VA should
be removed. Figure 6 takes a global perspective and checks
whether the overall storage cost for the VA exceeds a certain
threshold (defined similarly as with Figure 5, line 5). Then,
the VA is removed from the repository that has the lowest
deployment frequency (line 6).

The remaining rules can be specified according to the

1 rule “Remove VA from native repository due to high
global costs”
2 WHEN
3 r : NativeRepository()
4 V Ax : VirtualAppliance()
5 stcost(V Ax) > mean(stcost(.)) + δ · std(stcost(.))
6 rmin : argmin deployfreq(., V Ax)
7 THEN
8 remove(V Ax, rmin) //removes V Ax from native
repository rmin

Figure 6. Rule for removing VA from native repository of a specific Cloud
due to high global costs

actions and measurements as explained before. However,
their specific parameters may have heavy impact on the
overall performance of the system. These parameters are to
be learned by the KM system. In our future work, we plan
to evaluate the system performance with the extension of the
simulation engine presented in [4].

V. CONCLUSION

This paper presented an approach to extend federated
cloud management architectures with autonomous behavior.
Our research uses knowledge management systems to facili-
tate the decision making process of the classical monitoring-
analysis-planning-execution loop. Using the FCM architec-
ture as the basis of our further investigations, we analyzed
different approaches to integrate the knowledge management
system within this architecture, and found a hybrid approach
that incorporates fine-grained local adaptation operations
with options for high-level override. Then this research
pinpointed the adaptation actions and their possible effects
on cloud federations. Finally, we established metrics that
could indicate possible SLA violations in federations, and
defined rules that could trigger adaptation actions in the case
of predicted violations.

Regarding future works, we plan to investigate more the
green aspects in the autonomous behavior of cloud federa-
tions. We also aim at defining new rules for advanced action
triggers and evaluate the applicability of another knowledge
management approaches like case based reasoning. Finally,
we also plan to investigate the effects of the autonomous
behavior on the overall performance of the cloud federation
on an experimental system.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube) and under grant agreement No RI-283481 (SCI-
BUS), also from the Vienna Science and Technology Fund
(WWTF) under grant agreement ICT08-018 – Foundations
of Self-Governing ICT Infrastructures (FoSII).

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic. Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Systems, 2009, vol.
25, issue. 6, pp. 599–616.

[2] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M.
Lindner. A break in the clouds: towards a cloud definition.
SIGCOMM Computer Communication Review. vol 39, 1, pp.
50–55, 2008.

[3] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K.
Pohl. A journey to highly dynamic, self-adaptive service-
based applications. Automated Software Engineering, vol.
15, pp. 313–341, December 2008.

[4] M. Maurer, I. Brandic and R. Sakellariou. Simulating
Autonomic SLA Enactment in Clouds using Case Based
Reasoning. In Towards a Service-Based Internet, Third
European Conference, ServiceWave 2010, Ghent, Belgium,
December, 2010 pp. 25-37

[5] M. Maurer, I. Brandic and R. Sakellariou. Enacting SLAs
in Clouds Using Rules. In Proceedings of the 17th Inter-
national Euro-Par Conference on Parallel and Distributed
Computing, Bordeaux, France, September, 2011

[6] A. Cs. Marosi, G. Kecskemeti, A. Kertesz and P. Kacsuk.
FCM: an Architecture for Integrating IaaS Cloud Systems.
In Proceedings of The Second International Conference on
Cloud Computing, GRIDs, and Virtualization. Rome, Italy.
September, 2011.

[7] Amazon Web Services LLC. Amazon elastic compute cloud.
http://aws.amazon.com/ec2/, 2009.

[8] Rackspace Cloud. http://www.rackspace.com/cloud/, 2011.

[9] RightScale website. http://www.rightscale.com/, 2011.

[10] Eucalyptus cloud. http://www.eucalyptus.com/, 2011.

[11] OpenNebula cloud. http://opennebula.org/, 2011.

[12] The World Wide Web Consortium.
http://www.w3.org/TR/wsdl, 2009.

[13] A. Kertesz and P. Kacsuk. GMBS: A new middleware
service for making grids interoperable. Future Generation
Computer Systems, 2010, vol. 26, issue 4, pp. 542–553.

[14] A. Cs. Marosi and P. Kacsuk. Workers in the clouds. In
Proceedings of the 19th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP 2011),
Ayia Napa, Cyprus, February 9-11, 2011. pp. 519–526

[15] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond and M.
Morrow. Blueprint for the Intercloud Protocols and Formats
for Cloud Computing Interoperability. In Proceedings of
The Fourth International Conference on Internet and Web
Applications and Services (2008, pp. 328-336)

[16] R. Buyya, R. Ranjan and R. N. Calheiros. InterCloud:
Utility-Oriented Federation of Cloud Computing Environ-
ments for Scaling of Application Services. Lecture Notes in
Computer Science: Algorithms and Architectures for Parallel
Processing. Volume 6081, 20 pages, 2010.

[17] G. Kecskemeti, G. Terstyanszky, P. Kacsuk, and Zs. Nemeth.
An Approach for Virtual Appliance Distribution for Service
Deployment. Future Generation Computer Systems, 2011,
vol. 27, issue 3, pp 280–289.

[18] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang,
and Y. Chen. Greencloud: a new architecture for green data
center. In Proceedings of the 6th international conference
industry session on Autonomic computing and communica-
tions industry session, ICAC-INDST ’09, pages 29–38, New
York, NY, USA, 2009. ACM.

[19] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and
D. Pendarakis. Efficient resource provisioning in compute
clouds via vm multiplexing. In Proceeding of the 7th
international conference on Autonomic computing, ICAC
’10, pages 11–20, New York, NY, USA, 2010. ACM.

[20] E. Kalyvianaki, T. Charalambous, and S. Hand. Self-
adaptive and self-configured cpu resource provisioning for
virtualized servers using kalman filters. In Proceedings of
the 6th international conference on Autonomic computing,
ICAC ’09, pages 117–126, New York, NY, USA, 2009.
ACM.

[21] B. Khargharia, S. Hariri, and M. S. Yousif. Autonomic
power and performance management for computing systems.
Cluster Computing, 11(2):167–181, 2008.

[22] Y. Yu and S. Bhatti. Energy measurement for the cloud.
Parallel and Distributed Processing with Applications, In-
ternational Symposium on, 0:619–624, 2010.

[23] A. Paschke and M. Bichler. Knowledge representation
concepts for automated SLA management. Decision Support
Systems, 46(1):187–205, 2008.

[24] G. Koumoutsos, S. Denazis, and K. Thramboulidis. SLA e-
negotiations, enforcement and management in an autonomic
environment. Modelling Autonomic Communications Envi-
ronments, pages 120–125, 2008.

[25] R. M. Bahati and M. A. Bauer. Adapting to run-time
changes in policies driving autonomic management. In ICAS
’08: Proceedings of the 4th Int. Conf. on Autonomic and
Autonomous Systems, Washington, DC, USA, 2008. IEEE
Computer Society.

[26] Drools, The Business Logic integration Platform.
www.drools.org, 2011.

