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Abstract—Cloud Computing offers simple and cost effective
outsourcing in dynamic service environments, and allows the
construction of service-based applications using virtualization.
By aggregating the capabilities of various IaaS cloud providers,
federated clouds can be built. Managing such a distributed,
heterogeneous environment requires sophisticated interopera-
tion of adaptive coordinating components. In this paper we
introduce an integrated federated management and monitoring
approach that enables autonomous service provisioning in fed-
erated clouds. In this architecture, cloud brokers manage the
number and the location of the utilized virtual machines for the
received service requests. In order to provide seamless service
executions, a state of the art monitoring solution is proposed
that supports cloud selection performed by the management
layer of the architecture. Our solution is able to cope with
highly dynamic service executions by federating heterogeneous
cloud infrastructures in a transparent and autonomous manner.

Keywords-Cloud Computing; Service Monitoring; Cloud
Brokering; On-demand deployment;

I. INTRODUCTION

Cloud Computing [1] offers simple and cost effective
outsourcing in dynamic service environments and allows
the construction of service-based applications extensible
with the latest achievements of diverse research areas, such
as Grid Computing, Service-oriented computing, business
processes and virtualization. Cloud-based highly dynamic
service environments [3] require a novel infrastructure that
incorporates a high-level monitoring approach to support
autonomous, on demand deployment and decommission of
service instances. Virtual appliances (VA) encapsulate a
complete software system (e.g. operating system, software
libraries and applications) prepared for execution in virtual
machines (VM). Infrastructure as a Service (IaaS) cloud
systems provide access to remote computing infrastructures
by allowing their users to instantiate virtual appliances on
their virtualized resources as virtual machines. Nowadays,
several public and private IaaS systems co-exist provided
by public service providers (like Amazon [4] or RackSpace

[5]) or by smaller scale privately managed infrastructures.
Cloud solutions are also spreading fast in the academia with
the emerging open-source tools, such as Eucalyptus [6] and
OpenNebula [7].

However, user demands are frequently overextending the
boundaries of a single cloud system. In these cases, they
need to handle the differences between the various cloud
providers and have to negotiate their requirements with
multiple parties. Federated clouds aim at supporting these
users by providing a single interface on which they can
transparently handle the different cloud providers as they
would do with a single cloud system. This paper proposes
an architecture to construct federated cloud systems that not
only offers a single interface for its users but it automatically
manages their virtual machines independently from the cur-
rently applied cloud system. We argue that efficient cloud
selection in federated clouds requires a cloud monitoring
subsystem that determines the actual health status of the
available IaaS systems.

We present an architecture that incorporates the con-
cepts of on-demand service deployment, cloud brokering
and meta-brokering, supported by an integrated monitoring
solution. The meta-brokering component allows the system
to interconnect the various cloud brokers available in the
system. It is also responsible for selecting a proper execution
environment managed by a cloud broker. This selection
process relies on a sophisticated monitoring component,
which provides up-to-date service availability and infrastruc-
ture reliability based on specific monitoring metrics. The
cloud broker component is responsible for managing the
virtual machine instances of the particular virtual appliances
hosted on a specific IaaS provider. Our architecture also
organizes virtual appliance distribution with its automatic
service deployment component that can decompose and
deliver virtual appliances in smaller parts.

Related works have identified several shortcomings in
the current cloud infrastructures [2]: e.g. federated clouds
face the issue of scalability, self-management and losing



complete control on computing costs. Our solution aims at
these problems by allowing users to utilize meta-brokering
between public, academic and private cloud systems as a
result lowering their operation costs. Our architecture serves
as an entry point to this cloud federation by providing trans-
parent service execution for users. The following challenges
are of great importance for such a mediator solution: varying
load of user requests, enabling virtualized management of
applications, establishing interoperability, minimizing cloud
usage costs and enhancing provider selection. Therefore
the main contributions of this paper are: (i) an advanced,
integrated monitoring solution to support meta-brokering
decisions for user requirement-based service provisioning,
and (ii) a holistic view of interoperable federated clouds
managed by a multi-level resource management architecture.

This paper is organized as follows: first, we gather related
approaches in Section II. In Section III we introduce our
proposed architecture and discuss its main components in
three subsections. In Section IV, we present a simplified
scenario that we use to exemplify our approach. Finally, we
conclude our research in Section V.

II. RELATED WORK

In 2009, Amazon Web Services launched Amazon Cloud-
Watch [8], which is a supplementary service for Amazon
EC2 instances that provides monitoring services for running
virtual machine instances. It allows gathering information
about the different characteristics (traffic shape, load, disk
utilization, etc.) of resources, and based on that users and
services are able to dynamically start or release instances to
match demand as utilization goes over or below predefined
thresholds. The main shortcoming is that this solution is tied
to a specific IaaS cloud system and introduces a monetary
overhead, since the service charges a fixed hourly rate for
each monitored instance.

Yigitbasi et. al. [15] introduced a solution for cloud per-
formance monitoring called C-Meter. Using this framework,
workloads can be submitted to target clouds to analyze
their performances. On the contrary, our monitoring solution
examines the real, running applications instead of workloads,
and does not necessary require additional deployments.

Regarding federated management of different infrastruc-
tures, GridBot [10] represents an approach for execution
of bags-of-tasks on multiple grids, clusters, and volunteer
computing grids. It has a Workload Manager component
that is responsible for brokering among these environments,
which is similar to our approach, but we rather target
multi-cloud solutions and focus on highly dynamic service
executions instead of tasks more suitable for volunteer grids.

M. Schmidt et al. [9] investigate different strategies for
distributing virtual machine images within a data center:
unicast, multicast, binary tree distribution and peer-to-peer
distribution based on BitTorrent. They found the multicast
method the most efficient, but in order to be able to distribute

images over network boundaries (”cross-cloud”) they choose
BitTorrent. They also propose to use layered virtual machine
images for virtual appliances consisting of three layers:
user, vendor and base. By using the layers and a copy-on-
write method they were able to avoid the retransmission of
images already present at the destination and thus decrease
instantiation time and network utilization. The authors only
investigated distribution methods within the boundaries of a
single data center, going beyond that remained future work.

With respect to monitoring the provisioned services, the
existing technical approaches found in the literature to gather
the required data can be classified into two big categories.
On one hand, some proposals rely on the use of monitoring
directives as follows: Introducing monitoring directives into
the services themselves using Aspect Oriented Programming
(AOP), and weaving the monitoring code into the execution
process, which is commonly defined in BPEL [16], [17].
The advantages of this solution are a result of those of
AOP, which isolates the monitoring code from the business
logic as an aspect, providing low coupling and the ability to
add/modify the monitoring rules without affecting the core
code of the service. However, in the context of deploying
the service over cloud infrastructures, changes over the
monitoring rules would require dynamic weaving processes
on runtime, which might be somehow difficult if the cloud
does not provide the required artifacts for inserting these
directives on the execution chain of the service engine. For
instance, Zhou et al. [18] make usage of Model-Driven
techniques to automatically generate monitoring code for
Axis. As advantage, this solution seems to be more efficient
than the previous one since there is no weaving process.
However, this approach depends on the technology used
for service deployment, in this case the engine, where the
service is installed.

On the other hand, other proposals use a proxy that
intercepts the messages to add monitoring capabilities to the
system without the need to be so intrusive into the service or
its engine and hence, being independent of the technologies
chosen in the implementation of the services [19], [20]. In
this case, the same monitoring tool can be used for all kind
of services deployed in a cloud. Its main drawback is that if
the architecture is not properly built, the proxy can generate
a bottleneck affecting negatively the response time of the
monitored services.

III. INTEGRATED MONITORING APPROACH FOR SERVICE
PROVISIONING IN CLOUDS

Figure 1 shows the architecture of the Integrated
Monitoring Approach for Seamless Service Provisioning
(IMA4SSP). The figure reveals the interfaces of our com-
ponents and their relations with the currently available IaaS
systems. Our solution offers interoperable access to a feder-
ated cloud environment through the interface of the “meta-
broker” component. This component is capable to decide
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Figure 1. The IMA4SSP architecture

between the use of various “cloud brokers” based on metrics
gathered from our “service monitoring” subsystem. Cloud
brokers extend the current IaaS functionality by analyzing
and dispatching service requests. Based on service demand
patterns, they also use the “service deployment” component
to deploy or decommission the requested services as virtual
machines in specific IaaS systems.

We restrict our solution to support standard and state-
less web services described by WSDLs [11]. In this ar-
chitecture users are able to execute services deployed on
cloud infrastructures transparently, in an automated way. The
“Generic Service Registry” (GSR – see Figure 1) contains
information on these services (including WSDLs and their
virtual machine images or virtual appliances – VA). When
a service is deployed on a new host, the service deployment
component registers its new endpoint to the GSR. Upon
decommissioning, these endpoint registrations are removed
from the registry. During operation, the SALMon [14] mon-
itoring subsystem allows the components in IMA4SSP to
order regular testing on the deployed services according to
pre-defined metrics based on the service availability data
from the registry.

In our system, users send service calls as request sub-
missions to the Meta-Brokering component (later realized
by Generic Meta-Broker Service – GMBS). “Federated call

submissions” specify the requested service with a WSDL,
the operation to be called, and its possible input parameters.
The GMBS checks if the service is registered to the GSR,
and if so, it selects a suitable CloudBroker (CB) for further
submission, otherwise rejects the request. Based on service
usage patterns (e.g. average service response time, call
frequency) the GMBS orders the monitoring of the de-
ployed service from SALMon. The monitoring results allow
sophisticated matchmaking algorithms based on static data
gathered from the GSR and on dynamic information of spe-
cial metrics (referred as “query cloud metrics” in Figure 1)
gathered by SALMon and the cloud brokers. GMBS forms
a cloud federation by enabling the autonomous management
of the interconnected cloud infrastructures through cloud
brokers.

CloudBrokers are dedicated to specific IaaS systems and
offer a queue for incoming service calls. They also manage
one virtual machine queue for each virtual appliance. Virtual
machine queues represent the resources that currently can
serve a specific service call. VM queues allow CBs to
schedule members of the incoming service queue to specific
virtual machines (“Call ⇔ VM Association”). The main goal
of CB is to “manage the virtual machine queues” (instantiate
and destruct them using service deployment – see Figure 1)
according to their respective service demand. The default



virtual machine scheduling is based on the currently avail-
able requests in the incoming service queue, their historical
execution times, and the number of running VMs. The
secondary task of CB involves the dynamic creation and de-
struction of the various queues. In the following subsections
we detail the main components of the architecture.

A. Meta-brokering approach for interoperating clouds

As we already mentioned in the beginning of this section,
brokering takes place at two levels in this architecture: the
service call is first submitted to a meta-brokering component
implemented and names as the Generic Meta-Broker Service
(GMBS – which is a revised and extended version of the
Grid Meta-Broker Service described in [12]), where a high-
level decision is made to which cloud infrastructure the call
should be forwarded. Then the service call is placed in the
queue of the selected cloud broker, where a lower level
brokering is carried out to select the VM that performs the
actual service execution.

Now, let us turn our attention to the role of GMBS.
This meta-brokering service has five major components. The
Meta-Broker Core is responsible for managing the interac-
tion with the other components and handling user interac-
tions. The MatchMaker component performs the scheduling
of the calls by selecting a suitable broker. This decision
making is based on aggregated static and dynamic data
stored by the Information Collector (IC) component in a
local database. The Information System (IS) Agent is imple-
mented as a listener service of GMBS, and it is responsible
for regularly updating static information from the GSR
repository on service availability, dynamic information on
service and cloud reliability provided by SALMon (further
discussed in Section III-C), and aggregated dynamic in-
formation collected from the CloudBrokers (CB) including
average VA deployment- and service execution time. The
Invoker component forwards the service call to the selected
CB and receives the service response.

Each CB is described by an XML-based Broker Property
Description Language (BPDL) document containing basic
broker properties (e.g. name), and the gathered dynamic
properties. The scheduling-related attributes are typically
stored in the PerformanceMetrics field of BPDL. More
information on this document format can be read in [12].
Namely, the following data are stored in the BPDL of each
CB:

• Static availability information on specific virtual appli-
ances in native repositories collected from the GSR;

• average VA deployment time and average service ex-
ecution time for each VA queried from the cloud
brokers;

• and dynamic reliability information expressed by met-
rics collected from SALMon.

The scheduling process first filters the CBs by checking
VA availability in the native cloud repository, then a rank is

calculated for each broker based on the collected dynamic
data. Finally, the CB with the highest rank is selected for
forwarding the service call.

B. Cloud brokering and automatic service deployment

The CloudBroker, which is an extended version of the
system described in [13], handles and dispatches service
calls to resources and performs resource management within
a single IaaS system. It dynamically creates and destroys
virtual machines and VM queues of different virtual appli-
ances. Virtual machine creation is supported in the GSR by
storing additional static requirements (e.g. its minimum disk,
CPU or memory requirements) about each appliance’s future
instances.

A VM queue lists resources capable of handling specific
service calls, thus instances of a specific VA. New resource
requests are inserted to the queue of the appropriate VA,
while the need for resource destruction is indicated by
the shortening of the queue. Resource entries are managed
by the VM Handler that is designed to interact with the
public interface of a specific IaaS system. It translates queue
changes as VM creation and destruction requests to the IaaS
system.

The service call queue stores incoming service requests
and a reference in the GSR to a VA for each request.
There is a single service call queue in each CloudBroker,
while there are many VM queues. Dynamic requirements
for the VA may be specified with the service call: additional
resources (CPU, memory and disk), and an UUID to identify
service calls originating from the same requestor. If dynamic
requirements are present, then the CloudBroker creates a
new VM queue for them and starts the newly requested
VM. Most IaaS systems offer predefined classes of VMs
(CPU, memory and disk capacity) not adjustable by the
user, therefore the CloudBroker selects the VM class that
offers the requested extra resources. This may lead to
allocating excess resources in some cases (e.g. the VM
class that meets the extra CPU requirement offers twice
the requested memory). The CloudBroker also schedules
service call requests to VM’s and manages the VM life-
cycle. If a service call cannot be associated to any VM,
the CloudBroker may decide to start a new VM to serve
the request. The VM creation and destruction decisions are
based on the following:

• The number of running VM’s available to handle the
service call;

• the number of waiting service calls for the VA in the
service call queue;

• the average execution time of service calls;
• the average deployment time of VA’s;
• and SLA constraints (e.g. total budget, deadline);
• the billing period of the IaaS system.
If a destruction is needed, shutdown is performed shortly

before the end of the billing period with regard to the average



Figure 2. SALMon framework

decommission time in the IaaS.
IaaS systems require virtual appliances to be stored in

their native repositories, because only the previously stored
appliances are usable to instantiate virtual machines. The
architecture organizes the distribution of user created appli-
ances with the help of the Automatic Service Deployment
(ASD – [23]) component. To optimize service executions in
highly dynamic service environments, the system organizes
virtual appliance distribution by automatically decomposing
and replicating appliances. To support the rebuilding of
decomposed VAs, the ASD requires appliances to embed
minimal manageable virtual appliances (MMVA). These
special appliances meet the following properties:

• Provide content management interfaces to add, config-
ure and remove new appliance parts;

• Offer monitoring interfaces to analyze the current state
of its instances (e.g. provide access to their CPU load,
free disk space and network usage);

• And, it is optimally sized: only those files present in
the appliance that are required to offer the previously
two properties.

As a result, the ASD only replicates MMVAs to native
repositories. Then, the VM Handler controls virtual appli-
ance rebuilding using minimal manageable virtual appli-
ances. Consequently, the VM Handler applies the following
strategy when it instantiates a virtual appliance that is
not available in the native repository. First, it instantiates
the MMVA. Then, the it requests the MMVA’s content
management interfaces to download the appliance parts – not
present in the native repository – from the GSR. Therefore,
the appliance is rebuilt in the virtual machine instantiated for

the MMVA. Finally, the VM is ready to serve the scheduled
requests from the service call queue.

C. Enhanced service health monitoring with SALMon

SALMon [14] is a service monitoring framework that has
been integrated into our proposed architecture in order to
gather reliability information on the managed IaaS clouds.
It is focused on monitoring the QoS of software services,
and is able to evaluate them accordingly to stated conditions
and notify the results to the interested parties, which in this
case is the Information System (IS) agent from the GMBS.

One of the main characteristics of SALMon is that it
combines both passive monitoring and testing approaches,
being able to configure each method accordingly to the pref-
erences of the user. In our integrated monitoring solution,
SALMon is used for testing purposes, in order to gather
the QoS of the constituent services deployed in the cloud.
This approach consists of periodically invoking a set of
methods of the target service and calculate the QoS over the
obtained results. Another important characteristic is that the
architecture is able to support any kind of service technology
(e.g. SOAP-based web services, RESTFul, etc.), which in
the context of the heterogeneity of the cloud is an important
aspect to address. The framework has been implemented as
a Service-Based Application itself, hence it enables an easy
integration with other frameworks. SALMon provides the
following two services: the Monitor, responsible to retrieve
the value of the required quality metrics of the services;
and the Analyzer, which is in charge of the evaluation
of conditions over these metrics. These services have the
required capabilities in order to monitor services running at
different cloud infrastructure providers.



In our IMA4SSP solution, only the monitor service of
SALMon is used in order to provide run-time values of the
dynamic QoS. To offer the required support for any kind of
service, the monitor manages several measure instruments.
A Measure Instrument is a component that implements the
logic needed in order to obtain the value of a concrete
basic quality metric (e.g., Current Response Time, Current
Availability, Accuracy of a service or operation. Derived
quality metrics are calculated from the set of basic quality
metrics retrieved from the measure instruments using an
aggregator function in a defined time interval (maximum,
minimum, average). Since measure instruments are the core
components that actually retrieve the values of the basic
metrics, these components are technologically dependent on
the kind of service they are monitoring. In this sense, the
Monitor service stays above the technological details, and
just creates the different measure instruments to obtain the
QoS.

The architecture of SALMon is depicted in Figure 2. As
stated, the main artifacts are the Analyzer and the Monitor
Service. The Analyzer service makes usage of the Monitor
service to obtain the QoS and evaluate the satisfaction
of conditions, whereas the Monitor creates and manages
several Measure Instruments to actually gather the QoS. In
the passive monitoring approach, instead of invoking the
services directly, the user would invoke a proxy that have
these Measure Instruments deployed. In the testing approach,
the Monitor creates and manages the Tester component,
which is responsible to invoke the service periodically. These
invocations are performed through the same proxy and using
hence the same measure instruments to retrieve the QoS.

IV. SIMPLIFIED USAGE SCENARIO OF IMA4SSP

As we discussed in the previous subsection, SALMon is
capable of monitoring services running at various cloud in-
frastructure providers. The monitoring target can be defined
using specific monitoring metrics. In order to exemplify the
operation of our proposed IMA4SSP solution, we describe
a simplified usage scenario shown in Figure 3 that we have
set up as a proof of concept installation. In this scenario
SALMon uses a special test service called Minimal Metric
Monitoring Service (M3S) for monitoring cloud reliability,
instead of monitoring different service methods stored in the
Generic Service Registry. This reference M3S test service
has two methods representing three monitoring metrics:

1) Availability: a generalized ping test (e.g. getting the
WSDL of the test service) this shows if the service
is up and running;

2) Computational capability: measured by a compute
method that performs a 5 minute-operation (the re-
sult is normalized compared to a reference hardware
setup) the response time of this method represents the
computational speed of the cloud;
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Figure 3. Simplified usage scenario of IMA4SSP

3) Data transfer capability: measured by a transfer
method that uploads and downloads a 10 MB file to a
predefined public storage location the response time
of this method shows the transfer speed of the cloud.

This monitoring test service is prepared in advance, and
pre-deployed on the managed IaaS providers. Meanwhile
SALMon is configured to monitor the methods of the
deployed M3S test services, and the monitoring test cases
are set in a way that minimum, maximum, average and latest
metric values can be gathered and fetched by GMBS. In a
real world private cloud infrastructure we experienced that
service methods of the deployed VAs are not always reach-
able from outside the cloud (though some providers make it
available on request). Therefore we separated the monitoring
and data management components of SALMon, and created
a VM from the monitoring part and a public service from the
data management part. For seamless operation, we place the
SALMon VM inside the cloud and perform the interactions
with the M3S there.

As shown in Figure 3, during operation SALMon per-
forms the monitoring of the M3S methods continuously
(Step 1) in an IaaS cloud, and reports the monitored metric
values to a central database (Step 2). The IS Agent of GMBS
regularly gets the monitored values and updates them in
the appropriate BPDL fields of the responsible CloudBroker
(Step 3).

Since keeping the monitoring VMs in the cloud can be
costly, we have extended the IS Agent component of GMBS
to initiate the deployment and decommission of these VMs
in order to minimize monitoring costs. The monitored metric
values reported to the DDBB have timestamps, therefore
these data become outdated after a predefined time interval.
When the IS Agent finds that the retrieved metric value of
a cloud is outdated, it contacts the VM Handler part of the



responsible CloudBroker, and initiates a M3S VM than a
SALMon VM deployment, and calls the appropriate method
of the deployed VM to start monitoring. When metric values
with new timestamps are read from the DDBB, the IS
Agent contacts the VM Handler again, to decommission the
monitoring VMs.

V. CONCLUSION

In this paper, we have presented an architecture that
offered federated cloud management and utilized a sophis-
ticated service monitoring approach to evaluate basic cloud
health status. The architecture uses the Generic Meta-Broker
Service as the entry point for the users of the cloud feder-
ation. The GMBS service decides the most suitable cloud
to perform the service requests of the user by investigating
the current state of the clouds according to the Generic
Service Registry and the health metrics collected by the
SALMon service monitoring subsystem. We also presented
the concept of the CloudBroker that is capable of handling
service requests and managing virtual machines within a
single IaaS cloud system. Finally, we discussed a simplified
scenario for exemplifying the operation of our proposed
solution using a minimal metric monitoring service.

Our future work targets the evaluation of the IMA4SSP
architecture with real user scenarios including ordinary
services deployed at different cloud providers. If ordinary
services are supported, the architecture should also take into
consideration the possible expenses of monitoring. There-
fore, we plan to investigate approaches for metric collec-
tion for services with long call processing times. Finally,
health metrics on ordinary services will also enable better
decisions in the lower level components of the architecture.
Consequently, we will also explore the integration options
of the monitoring system to the CloudBroker and Automatic
Service Deployment components of the architecture.
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