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ABSTRACT
We study the stellar-to-halo mass relation of central galaxies in the range
9.7 < log10(M∗/h−2 M�) < 11.7 and z < 0.4, obtained from a combined analysis of the
Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. We
use ∼100 deg2 of KiDS data to study the lensing signal around galaxies for which spec-
troscopic redshifts and stellar masses were determined by GAMA. We show that lensing alone
results in poor constraints on the stellar-to-halo mass relation due to a degeneracy between the
satellite fraction and the halo mass, which is lifted when we simultaneously fit the stellar mass
function. At M∗ > 5 × 1010 h−2 M�, the stellar mass increases with halo mass as ∼M0.25

h .
The ratio of dark matter to stellar mass has a minimum at a halo mass of 8 × 1011 h−1 M�
with a value of Mh/M∗ = 56+16

−10 [h]. We also use the GAMA group catalogue to select centrals
and satellites in groups with five or more members, which trace regions in space where the
local matter density is higher than average, and determine for the first time the stellar-to-halo
mass relation in these denser environments. We find no significant differences compared to
the relation from the full sample, which suggests that the stellar-to-halo mass relation does not
vary strongly with local density. Furthermore, we find that the stellar-to-halo mass relation of
central galaxies can also be obtained by modelling the lensing signal and stellar mass function
of satellite galaxies only, which shows that the assumptions to model the satellite contribution
in the halo model do not significantly bias the stellar-to-halo mass relation. Finally, we show
that the combination of weak lensing with the stellar mass function can be used to test the
purity of group catalogues.

Key words: gravitational lensing: weak – methods: observational – galaxies: groups:
general – galaxies: haloes – galaxies: luminosity function, mass function.

1 IN T RO D U C T I O N

Galaxies form and evolve in dark matter haloes. Larger haloes at-
tract on average more baryons and host larger, more massive galax-
ies. The exact relation between the baryonic properties of galaxies
and their dark matter haloes is complex, however, as various astro-
physical processes are involved. These include supernova and AGN

� E-mail: vuitert@ucl.ac.uk

feedback (see e.g. Benson 2010), whose relative importances gen-
erally depend on halo mass in a way that is not accurately known,
but environmental effects also play an important role. Measuring
projections of these relations, such as the stellar-to-halo mass re-
lation, helps us to gain insight into these processes and their mass
dependences, and provides valuable references for comparisons for
numerical simulations that model galaxy formation and evolution
(e.g. Munshi et al. 2013; Kannan et al. 2014).

The stellar-to-halo mass relation has been studied with a vari-
ety of methods, including indirect techniques such as abundance
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matching (e.g. Behroozi, Conroy & Wechsler 2010; Moster, Naab
& White 2013) or galaxy clustering (e.g. Wake et al. 2011; Guo
et al. 2014), which can only be interpreted within a cosmological
framework (e.g. �CDM). Satellite kinematics offer a direct way
to measure halo mass (e.g. Norberg, Frenk & Cole 2008; Wojtak
& Mamon 2013), but this approach is relatively expensive as it
requires spectroscopy for large samples of satellites. Weak gravita-
tional lensing offers another powerful method that enables average
halo mass measurements for ensembles of galaxies (e.g. Mandel-
baum et al. 2006; Velander et al. 2014). Recently, various groups
have combined different probes (e.g. Leauthaud et al. 2012; Coupon
et al. 2015), which enable more stringent constraints on the stellar-
to-halo mass relation by breaking degeneracies between model pa-
rameters. A coherent picture is emerging from these studies: the
stellar-to-halo mass relation of central galaxies can be described by
a double power law, with a transition at a pivot mass where the ac-
cumulated star formation has been most efficient. At higher masses,
AGN feedback is thought to suppress star formation, while at lower
masses, supernova feedback suppresses it. This pivot mass coin-
cides with the location where the stellar mass growth in galaxies
turns from being in situ dominated to merger dominated (Robotham
et al. 2014).

Most galaxies can be roughly divided into two classes, i.e. red,
‘early types’ whose star formation has been quenched, and blue,
‘late types’ that are actively forming stars. These are also crudely
related to different environments and morphologies. The differences
in their appearances point at different formation histories. Their
stellar-to-halo mass relations may contain information of the under-
lying physical processes that caused these differences. Hence it is
natural to measure the stellar-to-halo mass relations of red and blue
galaxies separately (e.g. Mandelbaum et al. 2006; More et al. 2011;
van Uitert et al. 2011; Tinker et al. 2013; Wojtak & Mamon 2013;
Velander et al. 2014; Hudson et al. 2015). The main result of the
aforementioned studies is that at stellar masses below ∼1011 M�,
red and blue galaxies that are centrals (i.e. not a satellite of a larger
system) reside in haloes with comparable masses. At higher stellar
masses, the halo masses of red galaxies are larger at low redshift,
but smaller at high redshift at a given stellar mass. Tinker et al.
(2013) interpret this similarity in halo mass at the low-mass end as
evidence that these red galaxies have only recently been quenched;
the difference at the high-mass end is interpreted as evidence that
blue galaxies have a relatively larger stellar mass growth in recent
times, compared to red galaxies.

As red galaxies preferentially reside in dense environments such
as galaxy groups and clusters, it appears that local density is the
main driver behind the variation of the stellar-to-halo mass relation,
and that the change in colour is simply a consequence of quench-
ing, as was already hypothesized in Mandelbaum et al. (2006). This
scenario could be verified by measuring the stellar-to-halo mass re-
lation for galaxies in different environments. This requires a galaxy
catalogue including stellar masses and environmental information,
plus a method to measure masses. Weak gravitational lensing of-
fers a particularly attractive way of measuring average halo masses
of samples of galaxies, as it measures the total projected matter
density along the line of sight, without any assumption about the
physical state of the matter, out to scales that are inaccessible to
other gravitational probes.

These conditions are provided by combining two surveys: the
Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly
(GAMA) survey. GAMA is a spectroscopic survey for galaxies
with r < 19.8 that is highly complete (Driver et al. 2009, 2011;
Liske et al. 2015), facilitating the construction of a reliable group

catalogue (Robotham et al. 2011). GAMA is completely covered
by the KiDS survey (de Jong et al. 2013), an ongoing weak lensing
survey which will eventually cover 1500 deg2 of sky in the ugri-
bands. In this work, we study the lensing signal around ∼100 000
GAMA galaxies using sources from the ∼100 deg2 of KiDS imaging
data overlapping with the GAMA survey from the first and second
publicly available KiDS-DR1/2 data release (Kuijken et al. 2015).

The outline of this paper is as follows. In Section 2 we describe the
data reduction and lensing analysis, and introduce the halo model
that we fit to our data. The stellar-to-halo mass relation of the full
sample is presented in Section 3. In Section 4, we measure this rela-
tion for centrals and satellites in groups with a multiplicity Nfof ≥ 5.
We conclude in Section 5. Throughout the paper we assume a Planck
cosmology (Planck Collaboration et al. 2014) with σ 8 = 0.829,
�� = 0.685, �M = 0.315, �bh2 = 0.02205 and ns = 0.9603. Halo
masses are defined as Mh ≡ 4π (200ρ̄m)R3

200/3, with R200 the ra-
dius of a sphere that encompasses an average density of 200 times
the comoving matter density, ρ̄m = 8.74 · 1010h2 M�Mpc−3, at the
redshift of the lens. All distances quoted are in comoving (rather
than physical) units unless explicitly stated otherwise.

2 A NA LY SIS

2.1 KiDS

To study the weak-lensing signal around galaxies, we use the shape
and photometric redshift catalogues from the Kilo Degree Survey
(KiDS; Kuijken et al. 2015). KiDS is a large optical imaging survey
which will cover 1500 deg2 in u, g, r and i to magnitude limits of
24.2, 25.1, 24.9 and 23.7 (5σ in a 2 arcsec aperture), respectively.
Photometry in five infrared bands of the same area will become
available from the VISTA Kilo-degree Infrared Galaxy (VIKING)
survey (Edge et al. 2013). The optical observations are carried out
with the VLT Survey Telescope (VST) using the 1 deg2 imager
OmegaCAM, which consists of 32 CCDs of 2048×4096 pixels each
and has a pixel size of 0.214 arcsec. In this paper, weak lensing re-
sults are based on observations of 109 KiDS tiles1 that overlap with
the GAMA survey, and have been covered in all four optical bands
and released to ESO as part of the first and second KiDS-DR1/2
data releases. The effective area after accounting for masks and
overlaps between tiles is 75.1 square degrees. The image reduction
and the astrometric and photometric reduction use the ASTRO-WISE
pipeline (McFarland et al. 2013); details of the resulting astromet-
ric and photometric accuracy can be found in de Jong et al. (2015).
Photometric redshifts have been derived with BPZ (Benı́tez 2000;
Hildebrandt et al. 2012), after correcting the magnitudes in the op-
tical bands for seeing differences by homogenising the photometry
(Kuijken et al. 2015). The photometric redshifts are reliable in the
redshift range 0.005 < zB < 1.2, with zB being the location where
the posterior redshift probability distribution has its maximum, and
have a typical outlier rate of <5 per cent at zB < 0.8 and a red-
shift scatter of 0.05 (see section 4.4 in Kuijken et al. 2015). In the
lensing analysis, we use the full photometric redshift probability
distributions.

Shear measurements are performed in the r-band, which has been
observed under stringent seeing requirements (<0.8 arcsec). The r-
band is separately reduced with the well-tested THELI pipeline
(Erben et al. 2005, 2009), following procedures very similar to the

1 A tile is an observation of a pointing on the sky.
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analysis of the CFHTLS data as part of the CFHTLenS collabo-
ration (Heymans et al. 2012; Erben et al. 2013). The shape mea-
surements are performed with lensfit (Miller et al. 2007; Kitching
et al. 2008), using the version presented in Miller et al. (2013). We
apply the same calibration scheme to correct for multiplicative bias
as the one employed in CFHTLenS; the accuracy of the correction
is better than the current statistical uncertainties, as is shown by
a number of systematics tests in Kuijken et al. (2015). Shear esti-
mates are obtained using all source galaxies in unmasked areas with
a non-zero lensfit weight and for which the peak of the posterior
redshift distribution is in the range 0.005 < zB < 1.2. The corre-
sponding effective source number density is 5.98 arcmin−2 (using
the definition of Heymans et al. 2012, which differs from the one
adopted in Chang et al. 2013, as discussed in Kuijken et al. 2015).

2.2 GAMA

The GAMA survey (Driver et al. 2009, 2011; Liske et al. 2015) is
a highly complete optical spectroscopic survey that targets galaxies
with r < 19.8 over roughly 286 deg2. In this work, we make use of
the G3Cv7 group catalogue and version 16 of the stellar mass cata-
logue, which contain ∼180 000 objects, divided into three separate
12×5 deg2 patches that completely overlap with the northern stripe
of KiDS. We use the subset of ∼100 000 objects that overlaps with
the 75.1 deg2 from the KiDS-DR1/2.

Stellar masses of GAMA galaxies have been estimated in Tay-
lor et al. (2011). In short, stellar population synthesis models from
Bruzual & Charlot (2003) that assume a Chabrier (2003) Initial
Mass Function (IMF) are fit to the ugriz-photometry from SDSS.
NIR photometry from VIKING is used when the rest-frame wave-
length is less than 11 000 Å. To account for flux outside the AUTO
aperture used for the spectral energy distributions (SEDs), an aper-
ture correction is applied using the fluxscale parameter. This pa-
rameter defines the ratio between the r-band (AUTO) aperture flux
and the total r-band flux determined from fitting a Sérsic profile
out to 10 effective radii (Kelvin et al. 2012). The stellar masses do
not include the contribution from stellar remnants. The stellar mass
errors are ∼0.1 dex and are dominated by a magnitude error floor
of 0.05 mag, which is added in quadrature to all magnitude errors,
thus allowing for systematic differences in the photometry between
the different bands. The random errors on the stellar masses are
therefore even smaller, and we ignore them in the remainder of
this work. Systematic errors due to e.g. the choice of the IMF are
not included in the error budget; their expected magnitude is also
∼0.1 dex.

The distribution of stellar mass versus redshift of all GAMA
galaxies in the KiDS footprint is shown in Fig. 1. This figure shows
that the GAMA catalogue contains galaxies with redshifts up to
z � 0.5. Furthermore, bright (massive) galaxies reside at higher
redshifts, as expected for a flux-limited survey. Note that the appar-
ent lack of galaxies more massive than a few times 1010 h−2 M�
at z < 0.2 is a consequence of plotting redshift on the horizontal
axis instead of bins of equal comoving volume. The bins at low
redshift contain less volume and therefore have fewer galaxies (for
a constant number density). It is not a selection effect.

We use the group properties of the G3C catalogue (Robotham
et al. 2011) to select galaxies in dense environments. Groups are
found using an adaptive friends-of-friends algorithm, linking galax-
ies based on their projected and line-of-sight separations. The algo-
rithm has been tested on mock catalogues, and the global properties,
such as the total number of groups, are well recovered. Version 7 of
the group catalogue, which we use in this work, consists of nearly

Figure 1. Spectroscopic redshift versus stellar mass of the GAMA galax-
ies in the KiDS overlap. The density contours are drawn at 0.5, 0.25 and
0.125 times the maximum density in this plane. The total density of GAMA
galaxies as a function of redshift and stellar mass are shown by the his-
tograms on the x- and y-axes, respectively. The dashed lines indicate the
mass bins of the lenses.

24 000 groups with over ∼70 000 group members. The catalogue
contains group membership lists and various estimates for the group
centre, as well as group velocity dispersions, group sizes and esti-
mated halo masses. We limit ourselves to groups with a multiplicity
Nfof ≥ 5, because groups with fewer members are more strongly
affected by interlopers, as a comparison with mock data has shown
(Robotham et al. 2011). We refer to these groups as ‘rich’ groups.
We assume that the brightest2 group galaxy is the central galaxy,
while fainter group members are referred to as satellites. An alter-
native procedure to select the central galaxy is to iteratively remove
group members that are furthest away from the group centre of light.
As the two definitions only differ for a few per cent of the groups
and the lensing signals are statistically indistinguishable (see ap-
pendix A of Viola et al. 2015), we do not investigate this further
and adopt the brightest group galaxy as the central throughout. To
verify that these ‘rich’ groups trace dense environments, we match
the G3C catalogue to the environmental classification catalogue of
Eardley et al. (2015), who uses a tidal tensor prescription to distin-
guish between four different environments: voids, sheets, filaments
and knots. Using the classification that is based on the 4 h−1Mpc
smoothing scale, we find that 76 per cent of the centrals of groups
with Nfof ≥ 5 reside in filaments and knots, compared to 49 per cent
of the full GAMA catalogue, which shows the Nfof ≥ 5 groups form
a crude tracer of dense regions.

Note that both the stellar mass catalogue and the GAMA group
catalogue were derived with slightly different cosmological pa-
rameters: Taylor et al. (2011) used (��, �M, h)=(0.7,0.3,0.7) and

2 This is based on SDSS r-band Petrosian magnitudes with a global (k + e)-
correction (see Robotham et al. 2011). Due to variations in the mass-to-light
ratio, it occasionally happens that a satellite has a larger stellar mass than
the central.

MNRAS 459, 3251–3270 (2016)

 at L
iverpool John M

oores U
niversity on July 20, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


3254 E. van Uitert et al.

Table 1. Number of lenses and mean lens redshift of all lens samples used in this work. The stellar mass ranges that are indicated correspond to the log10 of
the stellar masses and are in units log10(h−2 M�). The ‘All’ sample contains all GAMA galaxies that overlap with KiDS-DR1/2, while ‘Cen’ and ‘Sat’ refers
to the samples that only contain the centrals and satellites in GAMA groups with a multiplicity Nfof ≥ 5.

M1 M2 M3 M4 M5 M6 M7 M8
[9.39,9.89] [9.89,10.24] [10.24,10.59] [10.59,11.79] [10.79,10.89] [10.89,11.04] [11.04,11.19] [11.19,11.69]

Nlens 〈z〉 Nlens 〈z〉 Nlens 〈z〉 Nlens 〈z〉 Nlens 〈z〉 Nlens 〈z〉 Nlens 〈z〉 Nlens 〈z〉
All 15 819 0.17 19 175 0.21 24 459 0.25 11475 0.29 3976 0.31 3885 0.32 1894 0.34 1143 0.35

Cen (Nfof ≥ 5) 15 0.08 55 0.12 185 0.16 242 0.18 185 0.19 276 0.21 241 0.23 209 0.26
Sat (Nfof ≥ 5) 1755 0.14 2392 0.18 3002 0.22 1267 0.26 388 0.27 343 0.27 138 0.29 65 0.32

Robotham et al. (2011) used (��,�M, h)=(0.75,0.25,1.0) in order
to match the Millennium Simulation mocks. We accounted for the
difference in h, but not in �� and �M, because the lensing signal
at low redshift depends only weakly on these parameters and this
should not impact our results.

The current lensing catalogues in combination with these GAMA
catalogues have already been analysed by Viola et al. (2015), where
the main focus was GAMA group properties, and by Sifón et al.
(2015), where the masses of satellites in groups were derived. Here,
we aim at a broader scope, as we measure the stellar-to-halo mass
relation over two orders of magnitude in halo mass. Studying the
centrals and satellites in ‘rich’ groups supplies us with the first
observational limits on whether the stellar-to-halo mass relation
changes in dense environments.

2.3 Lensing signal

Weak lensing induces a small distortion of the images of background
galaxies. Since the lensing signal of individual galaxies is generally
too weak to be detected due to the low number density of background
galaxies in wide-field surveys, it is common practice to average the
signal around many (similar) lens galaxies. In the regime where
the surface mass density is sufficiently small, the lensing signal
can be approximated by averaging the tangential projection of the
ellipticities of background (source) galaxies, the tangential shear:

〈γt〉(R) = 	
(R)


crit
, (1)

with 	
(R) = 
̄(< R) − 
̄(R) the difference between the mean
projected surface mass density inside a projected radius R and the
surface density at R, and 
crit the critical surface mass density:


crit = c2

4πG

DS

DLDLS

, (2)

with DL and DS the angular diameter distance from the observer to
the lens and source, respectively, and DLS the distance between the
lens and source. For each lens–source pair we compute 1/
crit by
integrating over the redshift probability distribution of the source.
We have not computed the error on 
crit and propagated it in the
analysis. This would require knowledge on the error on the redshift
probability distribution of the sources, which is not available. How-
ever, for lenses and sources that are well separated in redshift, as is
the case here, the lensing efficiency DLS/DS is not very sensitive to
details of the source redshift distribution. Hence we expect that the
error on 
crit can be safely ignored in our analysis.

The actual measurements of the excess surface density profiles
are performed using the same methodology outlined in section 3.3
of Viola et al. (2015). The covariance between the radial bins of the
lensing measurements is derived analytically, as discussed in section
3.4 of Viola et al. (2015). We have also computed the covariance ma-

trix using bootstrapping techniques and found very similar results
in the radial range of interest.

We group GAMA galaxies in stellar mass bins and measure
their average lensing signals. The bin ranges were chosen following
two criteria. First, we aimed for a roughly equal lensing signal-to-
noise ratio of ∼15 per bin. Secondly, we adopted a maximum bin
width of 0.5 dex. To determine the signal-to-noise ratio, we fitted a
singular isothermal sphere (SIS) to the average lensing signal and
determined the ratio of the amplitude of the SIS to its error. The
adopted bin ranges are listed in Table 1, as well as the number of
lenses and their average redshift; the average 	
 is shown in Fig. 2.
We note, however, that our conclusions do not depend on the choice
of binning.

2.4 The halo model

The halo model (Seljak 2000; Cooray & Sheth 2002) has become a
standard method to interpret weak lensing data. The implementation
we employ here is similar to the one described in van den Bosch
et al. (2013) and has been successfully applied to weak lensing
measurements in Cacciato, van Uitert & Hoekstra (2014), van Uitert
et al. (2015), and to weak lensing and galaxy clustering data in
Cacciato et al. (2013). We provide a description of the model here,
as we have made a number of modifications.

In the halo model, all galaxies are assumed to reside in spher-
ical dark matter haloes. Using a prescription for the way galaxies
occupy dark matter haloes, as well as for the matter density pro-
file, abundance and clustering of haloes, one can predict the surface
mass density (and thus the lensing signal) correlated with galaxies
in a statistical manner:


(R) = ρ̄m

∫ ωS

0
ξgm(r)dω, (3)

with ξ gm(r) the galaxy-matter cross-correlation, ω the comoving
distance from the observer and ωS the comoving distance to the
source. For small separations, R ≈ ωL θ , with ωL the comoving
distance to the lens and θ the angular separation from the lens.
The three-dimensional comoving distance r is related to ω via
r2 = (ωL · θ )2 + (ω − ωL)2. The integral is computed along the line
of sight.

As the computation of ξ gm(r) generally requires convolutions
in real space, it is convenient to express the relevant quantities
in Fourier-space where these operations become multiplications.
ξ gm(r) is related to the galaxy-matter power spectrum, Pgm(k, z),
via

ξgm(r, z) = 1

2π2

∫ ∞

0
Pgm(k, z)

sin kr

kr
k2dk, (4)

with k the wavenumber. On small physical scales, the main contribu-
tion to Pgm(k, z) comes from the halo in which a galaxy resides (the
one-halo term), while on large physical scales, the main contribution
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Figure 2. Excess surface mass density profile of GAMA galaxies measured as a function of projected (comoving) separation from the lens, selected in various
stellar mass bins, measured using the source galaxies from KiDS. The dashed red line indicates the best-fitting halo model, obtained from fitting the lensing
signal only. The solid green line is the best-fitting halo model for the combined fit to the weak lensing signal and the stellar mass function, the orange area
indicates the 1σ model uncertainty regime of this fit. The stellar mass ranges that are indicated correspond to the log10 of the stellar masses and are in units
log10(h−2 M�).

comes from neighbouring haloes (the two-halo term). Additionally,
the halo model distinguishes between two galaxy types, i.e. centrals
and satellites. Centrals reside in the centre of a main halo, while
satellites reside in subhaloes that are embedded in larger haloes.
Their power spectra are different and computed separately. Hence
one has

Pgm(k) = P 1h
cm(k) + P 1h

sm(k) + P 2h
cm(k) + P 2h

sm(k), (5)

with P 1h
cm(k) (P 1h

sm(k)) the one-halo contributions from centrals (satel-
lites), and P 2h

cm(k) (P 2h
sm(k)) the corresponding two-halo terms. We

follow the notation of van den Bosch et al. (2013) and write this
compactly as:

P 1h
xy (k, z) =

∫
Hx(k, Mh, z)Hy(k, Mh, z)nh(Mh, z)dMh, (6)

P 2h
xy (k, z) =

∫
dM1Hx(k, M1, z)nh(M1, z)∫

dM2Hy(k,M2, z)nh(M2, z)Q(k|M1, M2, z), (7)

where x and y are either c (for central), s (for satellite), or m (for
matter), nh(Mh, z) is the halo mass function of Tinker et al. (2010),
and Q(k|M1, M2, z) = bh(M1, z)bh(M2, z)P lin

m (k, z) describes the
power spectrum of haloes of mass M1 and M2, which contains the
large-scale halo bias bh(Mh) from Tinker et al. (2010). P lin

m (k, z) is
the linear matter power spectrum. We employ the transfer function
of Eisenstein & Hu (1998), which properly accounts for the acoustic
oscillations. Furthermore, we use

Hm(k, Mh, z) = Mh

ρ̄m
ũh(k|Mh, z), (8)

with Mh the halo mass, and ũh(k|Mh, z) the Fourier transform of the
normalized density distribution of the halo. We assume that the den-
sity distribution follows a Navarro–Frenk–White (NFW; Navarro,

Frenk & White 1996) profile, with a mass–concentration relation
from Duffy et al. (2008):

cdm = fconc × 10.14

(
Mh

Mpivot

)−0.081

(1 + z)−1.01, (9)

where fconc is the normalization, which is a free parameter in the
fit, and Mpivot = 2 × 1012 h−1 M�. Note that the choice for this
particular parametrization is not very important, as essentially all
mass–concentration relations from the literature predict a weak
dependence on halo mass. Furthermore, the scaling with redshift
cdm ∝ (1 + z)−1 is motivated by analytical treatments of halo for-
mation (see e.g. Bullock et al. 2001). It is worth mentioning that
more complex redshift dependences are expected (see e.g. Muñoz-
Cuartas et al. 2011) but those deviations are only relevant at redshifts
larger than one, well beyond the highest lens redshift in this study.

For centrals and satellites, we have

Hx(k, Mh, z) = 〈Nx|Mh〉
n̄x(z)

ũx(k|Mh). (10)

We set ũc(k|Mh) = 1, i.e. we assume that all central galaxies are lo-
cated at the centre of the halo. We adopt this choice in order to limit
the number of free parameters in the model; additionally, lensing
alone does not provide tight constraints on the miscentring distri-
bution. This modelling choice can lead to a biased normalization
of the mass–concentration relation (see e.g. van Uitert et al. 2015;
Viola et al. 2015) but it does not bias the halo masses (van Uitert
et al. 2015) or the stellar-to-halo mass relation. Furthermore, we as-
sume ũs(k|Mh, z) = ũh(k|Mh, z), hence the distribution of satellites
follows the dark matter. This is a reasonable assumption, given the
large discrepancies in the reported trends in the literature, which
range from satellites being either more or less concentrated than the
dark matter (see e.g. Wang et al. 2014, and the discussion therein).

We specify the halo occupation statistics using the Conditional
Stellar Mass Function (CSMF), �(M∗|Mh)dM∗, which describes
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the average number of galaxies with stellar masses in the range
M∗ ± dM∗/2 that reside in a halo of mass Mh. The occupation
numbers required for the computation of the galaxy-matter power
spectra follow from

〈Nx|Mh〉(M∗,1, M∗,2) =
∫ M∗,2

M∗,1

�x(M∗|Mh)dM∗, (11)

where ‘x’ refers to either ‘c’ (centrals) or ‘s’ (satellites), and M∗,1

and M∗,2 indicate the extremes of a stellar mass bin. The average
number density of these galaxies is given by

n̄x(z) =
∫

〈Nx|Mh〉(M∗,1, M∗,2)nh(Mh, z)dMh, (12)

and the satellite fraction follows from

fs(M∗,1, M∗,2) =
∫ 〈Ns|Mh〉(M∗,1, M∗,2) nh(Mh) dMh

n̄c(z) + n̄s(z)
. (13)

The stellar mass function is given by

ϕ(M∗,1, M∗,2) =
∫

[〈Nc|Mh〉 + 〈Ns|Mh〉] nh(Mh) dMh, (14)

where 〈Nc|Mh〉 and 〈Ns|Mh〉 are computed with equation (11) using
the bin limits of the stellar mass function.

We separate the CSMF into the contributions of central and satel-
lite galaxies, �(M∗|Mh) = �c(M∗|Mh) + �s(M∗|Mh). The contri-
bution from the central galaxies is modelled as a log-normal distri-
bution:

�c(M∗|Mh) =
exp

[
− (log10 M∗−log10 Mc∗(Mh))2

2σ 2
c

]
√

2π ln(10) σc M∗
, (15)

where σ c is the scatter in log M∗ at a fixed halo mass. For simplicity,
we assume that it does not vary with halo mass, as supported by
the kinematics of satellite galaxies in the SDSS (More et al. 2009,
2011), by combining galaxy clustering, galaxy–galaxy lensing and
galaxy abundances (Cacciato et al. 2009; Leauthaud et al. 2012)
and by SDSS galaxy group catalogues (Yang, Mo & van den Bosch
2008). Mc

∗ represents the mean stellar mass of central galaxies in a
halo of mass Mh, parametrized by a double power law:

Mc
∗(Mh) = M∗,0

(Mh/Mh,1)β1[
1 + (Mh/Mh,1)

]β1−β2
, (16)

with Mh,1 a characteristic mass scale, M∗,0 a normalization and β1

(β2) the power law slope at the low-(high-) mass end. This is the
stellar-to-halo mass relation of central galaxies we are after.

For the CSMF of the satellite galaxies, we adopt a modified
Schechter function:

�s(M∗|Mh) = φs

M s∗

(
M∗
M s∗

)αs

exp

[
−

(
M∗
M s∗

)2
]

, (17)

which decreases faster than a Schechter function at the high-stellar
mass end. Galaxy group catalogues show that the satellite contribu-
tion to the total CSMF falls off around the mean stellar mass of the
central galaxy for a given halo mass (e.g. Yang et al. 2008). Thus
one expects the characteristic mass of the modified Schechter func-
tion, M s

∗, to follow Mc
∗ . Inspired by Yang et al. (2008), we assume

that M s
∗(Mh) = 0.56 Mc

∗(Mh). For the normalization of �s(M∗|Mh)
we adopt

log10[φs(Mh)] = b0 + b1 × log10 M13, (18)

with M13 = Mh/(1013h−1 M�). b0, b1, and αs are free parameters.
We test the sensitivity of our results to the location of M s

∗, and to

Table 2. Priors adopted in halo model fit.

Parameter Type Range Prior mean Prior sigma

log10(Mh,1) Flat [9, 14] – –
log10(M∗,0) Flat [7, 13] – –

β1 Gaussian – 5.0 3.0
log10β2 Flat [−3, ∞] – –

σ c Flat [0.05, 0.5] – –
αs Gaussian – −1.1 0.9
b0 Gaussian – 0.0 1.5
b1 Gaussian – 1.5 1.5
fsub Flat [0, 1] – –
fconc Flat [0.2, 2] – –
c0 Flat [−5, 5] – –
c1 Flat [9, 16] – –

the addition of a quadratic term in equation (18), in Appendix B.
We find that our results are not significantly affected.

We assign a mass to the subhaloes in which the satellites re-
side using the same relation that we use for the centrals (equation
16). For every stellar mass bin, we compute the average mass of
the main haloes in which the satellite resides, and multiply this
with a constant factor, fsub, a free parameter whose range is limited
to values between 0 and 1. In this way, we can crudely account
for the stripping of the dark matter haloes of satellites. Given our
limited knowledge of the distribution of dark matter in satellite
galaxies, we assume that it is described by an NFW profile, which
provide a decent description of the mass distribution of subhaloes
in the Millennium simulation (Pastor Mira et al. 2011). We use the
same mass–concentration relation as for the centrals. The statistical
power of our measurements is not sufficient to additionally fit for a
truncation radius (see Sifón et al. 2015).

The above prescription provides us with the lensing signal from
centrals and satellites, with separate contributions from their one-
halo and two-halo terms. At small projected separations, the contri-
bution of the baryonic component of the lenses themselves becomes
relevant. We model this using a simple point mass approximation:

	
1h
gal(R) ≡ 〈M∗〉

π R2
, (19)

with 〈M∗〉 the average stellar mass of the lens sample.
To summarize, the halo model employed in this paper has the

following free parameters: (Mh,1, M∗,0, β1, β2, σc) and (αs, b0, b1)
to describe the halo occupation statistics of centrals and satellites.
fsub controls the subhalo masses of satellites, and fconc quantifies
the normalization of the c(M) relation. We use non-informative flat
or Gaussian priors, as listed in Table 2, except for β1, because our
measurements do not extend far below the location of the kink in the
stellar-to-halo mass relation. As a consequence, we are not able to
provide tight constraints on the slope at the low-mass end. All priors
were chosen to generously encapsulate previous literature results
and they do not affect our results. In particular, in Appendix B we
demonstrate that our results are insensitive to the choice of prior on
β1. Note that for some samples, we had to adopt somewhat different
priors; we comment on this where applicable.

The parameter space is sampled with an affine invariant ensem-
ble Markov Chain Monte Carlo (MCMC) sampler (Goodman &
Weare 2010). Specifically, we use the publicly available code EMCEE

(Foreman-Mackey et al. 2013). We run EMCEE with four separate
chains with 150 walkers and 4500 steps per walker. The first 1000
steps (which amounts to 600 000 evaluations) are discarded as the
burn-in phase. Using the resulting 2100 000 model evaluations,
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Figure 3. (Left) stellar-to-halo mass relation of central galaxies from KiDS+GAMA, determined from fitting the lensing signal only (dark/light brown
indicating 1/2σ model uncertainty regime) or by combining the lensing signal with the stellar mass function (orange/yellow indicating 1/2σ model uncertainty
regime). The contours are cut at the mean stellar mass of the first and last stellar mass bin used in the lensing analysis, to ensure we only show the regime
where the data constrains it. (Right) the fraction of galaxies that are satellites as a function of stellar mass for all GAMA galaxies. The coloured contours show
the 68 per cent confidence interval for the fits to the lensing signal only and to the combined fits, as indicated in the panel. The upper thick black dashed line
shows a crude estimate of the satellite fraction based on the GAMA group catalogues (as detailed in Section 3.3), the lower thick dotted line shows a lower
limit. Hatched areas show the overlap between the 1σ lensing-only results and the combined analysis.

we estimate the parameter uncertainties; the fit parameters that
we quote in the following correspond to the median of the
marginalized posterior distributions, the errors correspond to the
68 per cent confidence intervals around the median. We assess
the convergence of the chains with the Gelman–Rubin test (Gelman
& Rubin 1992) and ensure that R ≤ 1.015, with R the ratio between
the variance of a parameter in the single chains and the variance
of that parameter in all chains combined. In addition, we compute
the auto-correlation time (see e.g. Akeret et al. 2013) for our main
results and find that it is shorter than the length of the chains that
is needed to reach 1 per cent precision on the mean of each fit
parameter.

For some lens selections, we also run the halo model in an ‘in-
formed’ setting. When we use the GAMA group catalogue to select
and analyse only centrals or satellites, we only need the part of the
halo model that describes their respective signals. Hence, when we
only select centrals, we set the CSMF of satellites to zero. When
we select satellites only, we model both the CSMF of the satellites
and of the centrals of the haloes that host the satellites. We need
the latter to model the miscentred one-halo term and the subhalo
masses of the satellites.

3 STELLAR-TO -HALO MASS R ELATION

We start with an analysis of the lensing measurements to examine
the stellar-to-halo mass relation of central galaxies, as was done in
several previous studies (e.g. Mandelbaum et al. 2006; van Uitert
et al. 2011; Velander et al. 2014). We fit the lensing signals of the
eight lens samples simultaneously with the halo model. The best-
fitting models from the lensing-only analysis can be compared to
the data in Fig. 2. The resulting reduced chi-squared, χ2

red, has a
value of 1.0 (with 70 degrees of freedom), so the models provide
a satisfactory fit. In the left-hand panel of Fig. 3 we show the

constraints on the stellar-to-halo mass relation. A broad range of
relations describe the lensing signals equally well. Furthermore,
the right-hand panel of Fig. 3 shows that the uncertainties on the
fraction of galaxies that are satellites is also large.

van Uitert et al. (2011) pointed out that the uncertainties on the
satellite fraction obtained from lensing only are large at the high
stellar mass end, and, even worse, that a wrongly inferred satel-
lite fraction can bias the halo mass as they are anti-correlated. The
reason for this degeneracy is that lowering the halo mass reduces
the model excess surface mass density profile, which can be partly
compensated by increasing the satellite fraction, as satellites reside
on average in more massive haloes than centrals of the same stellar
mass, thereby boosting the model excess surface mass density pro-
file at a few hundred kpc. This problem was partly mitigated in van
Uitert et al. (2011) and Velander et al. (2014) by imposing priors on
the satellite fractions, which is not ideal, as the results are sensitive
to the priors used. As we employ a more flexible halo model here,
this problem is exacerbated and a different solution is required.

In order to tighten the constraints on the satellite fraction and the
stellar-to-halo mass relation, we either need to impose priors in the
halo model, or include additional, complementary data sets. Since it
is not obvious what priors to use, particularly since we aim to study
how the stellar-to-halo mass relation depends on environment, we
opt for the second approach. The most straightforward complemen-
tary data set is the stellar mass function, which constrains the central
and satellite CSMFs through equation (14). As a result, the number
of satellites cannot be scaled arbitrarily up or down anymore, which
helps to break this degeneracy.

Since GAMA is a highly complete spectroscopic survey, we
can measure the stellar mass function by simply counting galax-
ies, as long as we restrict ourselves to stellar mass and redshift
ranges where the sample is volume limited. Hence we measure
the stellar mass function in three equally log-spaced bins between
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Figure 4. Stellar mass function determined using all GAMA galaxies at
z < 0.15. Orange regions indicate the 68 per cent confidence interval from
the halo model fit to the lensing signal and the stellar mass function, linearly
interpolated between the stellar mass bins. The solid green line indicates
the best-fitting model. The stellar mass function from Baldry et al. (2012),
determined using GAMA galaxies at z < 0.06, is also shown.

9.39 < log10(M∗/h−2 M�) < 11.69 and include all galaxies from
the G3Cv7 group catalogue with z < 0.15. The choice of the number
of bins is mainly driven by the low number of independent boot-
strap realisations we can use to estimate the errors (discussed in
Appendix A). We do not expect to lose much constraining power
from the stellar mass function by measuring it in three bins only.
Note that the mean lens redshift is somewhat higher than the redshift
at which we determine the stellar mass function, but the evolution
of the stellar mass function is very small over the redshift range
considered in this work (see, e.g. Ilbert et al. 2013) and hence can
be safely ignored. The stellar mass function is shown in Fig. 4,
together with the results from Baldry et al. (2012), who measured
the stellar mass function for GAMA using galaxies at z < 0.06. The
measurements agree well.

We determine the error and the covariance matrix via bootstrap-
ping, as detailed in Appendix A. We show there that (1) the boot-
strap samples should contain a sufficiently large physical volume. If
the sample volume is too small, the errors will be underestimated;
(2) the major contribution to the error budget comes from cosmic
variance. The contribution from Poisson noise is typically of or-
der 10–20 per cent; (3) the stellar mass function measurements are
highly correlated. Smith (2012) showed that this has a major impact
on the confidence contours of model parameters fitted to the stellar
mass function. Including the covariance is therefore essential, not
only for studies that characterize the stellar mass/luminosity func-
tion (for example as a function of galaxy type), but also when it is
used to constrain halo model fits.

To determine the cross-covariance between the shear measure-
ments and the stellar mass function, we measured the shear of all
GAMA galaxies with log10(M∗/h−2 M�) > 9.39 and z < 0.15 in
each KiDS pointing, and used the same GAMA galaxies to de-
termine the stellar mass function. These measurements were used
as input to our bootstrap analysis. The covariance matrix of the
combined shear and stellar mass function measurements revealed
that the cross-covariance between the two probes is negligible and

can be safely ignored. The covariance between the lensing mea-
surements and the stellar mass function for smaller subsamples of
GAMA galaxies is expected to be even smaller because of larger
measurement noise. Therefore, we do not restrict ourselves to the
overlapping area with KiDS, but use the entire 180 deg2 of GAMA
area to determine the stellar mass function to improve our statistics.

We fit the lensing signal of all bins and the stellar mass function
simultaneously with the halo model. The best-fitting models are
shown in Figs 2 and 4, together with the 1σ model uncertainties.
The reduced χ2 of the best-fitting model is 80/(83 − 10) = 1.1
(eight mass bins times 10 angular bins for the lensing signal, plus
three mass bins for the stellar mass function), so the halo model
provides an appropriate fit. The lensing signal of the best-fitting
model is virtually indistinguishable from the best-fitting model of
the lensing-only fit. The stellar-to-halo mass relation, however, is
better constrained, as is shown in Fig. 3. The relation is flatter
towards the high-mass end, as a result of a better constrained satellite
fraction that decreases with stellar mass (discussed in Section 3.3).

The constraints on the parameters are listed in Table 3. The
marginalized posteriors of the pairs of parameters are shown in
Fig. 5. This figure illustrates that the main degeneracies in the halo
model occur between the parameters that describe the stellar-to-
halo mass relation, and between the parameters that describe the
CSMF of the satellites. These degeneracies are expected, given
the functional forms that we adopted (see equations 16, 17, 18). For
example, a larger value for Mh,1 would decrease the amplitude of the
stellar-to-halo mass relation, which could be partly compensated by
increasing M∗,0; hence these parameters are correlated. Similarly,
increasing b0 would lead to a higher normalization of �s(M∗|M),
which could be partly compensated by decreasing b1, hence these
two parameters are anti-correlated. Furthermore, by comparing the
marginalized posteriors to the priors, we observe that all parameters
but one, β1, are constrained by the data. We have verified that
varying the prior on β1 does not impact our results. Comparing
the posteriors of the combined fit to the analysis where we only
fit the lensing signal reveals that the stellar mass function helps by
constraining several parameters; those that describe the stellar-to-
halo mass relation and those that describe the satellite CSMF.

In Fig. 6, we present the stellar-to-halo mass relation of central
galaxies and the ratio of halo mass to stellar mass. The relation con-
sists of two parts. This is not simply a consequence of adopting a
double power law for this relation in the halo model, since the fit has
the freedom to put the pivot mass below the minimum mass scale
we probe, which would effectively result in fitting a single power
law. For M∗ < 5 × 1010 h−2 M�, the stellar-to-halo mass relation
is fairly steep and the stellar mass increases with halo mass as a
power law of Mh with an exponent ∼7. At higher stellar masses, the
relation flattens to ∼M0.25

h . The ratio of the dark matter to stellar
mass has a minimum at a halo mass of 8 × 1011 h−1 M�, where
Mc

∗ = (1.45 ± 0.32) × 1010 h−2 M� and the halo mass to stellar
mass ratio has a value of Mh/M∗ = 56+16

−10 [h]. The uncertainty on
this ratio reflects the errors on our measurements and does not ac-
count for the uncertainty of the stellar mass estimates themselves,
which are typically considerably smaller than the bin sizes we
adopted and hence should not affect the results much. The loca-
tion of the minimum is important for galaxy formation models, as
it shows that the accumulation of stellar mass in galaxies is most
efficient at this halo mass.

In the lower left-hand panel of Fig. 6, we also show the inte-
grated stellar mass content of satellite galaxies divided by halo
mass. In haloes with masses �2 × 1013 h−1 M�, the total amount
of stellar mass in satellites is larger than that in the central. At
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Table 3. Fit parameters of the halo model. Parameters (1)–(5) determine the CSMF of centrals, (6)–(8) the CSMF of satellites, (9) the subhalo masses of
satellites, (10) the normalization of the mass–concentration relation, and (10) and (11) account for the selection incompleteness of centrals, as defined in
equation (20). Dimensions of parameter (1) and (2) are [log10(h−1 M�)] and [log10(h−2 M�)], respectively. ‘Cen’ and ‘Sat’ refer to the fits to the samples
that consist only of centrals and satellites in ‘rich’ groups (Nfof ≥ 5), respectively. A ‘�’ indicates the parameters that were fixed in the fit to the best-fitting
values of the halo model run on centrals only, while a ‘–’ indicates that the parameter was not used in the halo model. For the satellites, we show both the
results where we fixed the stellar-to-halo mass relation of the central galaxies (third row) and where we fit for it (fourth row).

log10(Mh,1) log10(M∗,0) β1 β2 σ c b0 b1 αs fsub fconc c0 c1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

All 10.97+0.34
−0.25 10.58+0.22

−0.15 7.5+3.8
−2.7 0.25+0.04

−0.06 0.20+0.02
−0.03 0.18+0.28

−0.39 0.83+0.27
−0.23 −0.83+0.22

−0.16 0.59+0.31
−0.40 0.70+0.19

−0.15 – –

Cen 12.06+0.72
−0.80 11.16+0.40

−0.62 5.4+5.3
−3.4 0.15+0.31

−0.14 0.14+0.08
−0.05 – – – – 0.77+0.27

−0.18 2.05+1.88
−0.82 13.00+0.28

−0.13

Sat � � � � � 0.12+0.19
−0.26 0.71+0.12

−0.13 −1.03+0.07
−0.08 0.25+0.09

−0.08 0.94+0.18
−0.16 � �

Sat 11.70+0.70
−0.84 11.22+0.12

−0.22 4.5+4.6
−2.9 0.05+0.07

−0.04 0.12+0.12
−0.05 −0.14+0.63

−0.28 1.03+0.14
−0.33 −1.00+0.10

−0.12 0.40+0.43
−0.21 1.05+0.25

−0.18 1.03+2.89
−1.01 12.09+2.71

−1.86

5 × 1014 h−1 M� ∼94 per cent of the stellar mass is in satellite
galaxies. Note that another considerable fraction of stellar mass is
contained in the diffuse intra-cluster light (up to several tens of per-
cents, see e.g. Lin & Mohr 2004) which we have not accounted for
here. The recently discovered ultra-diffuse galaxies (e.g. Abraham
& van Dokkum 2014; van der Burg, Muzzin & Hoekstra 2016)
form yet another source of unaccounted for stellar mass, but how
much they contribute to the total stellar mass budget is currently
uncertain.

The normalization of the mass–concentration relation is fairly
low, fconc = 0.70+0.19

−0.15. A normalization lower than unity was antic-
ipated as we did not account for miscentring of centrals in the halo
model. Miscentring distributes small-scale lensing power to larger
scales, an effect similar to lowering the concentration. In our fits, it
merely acts as a nuisance parameter, and should not be interpreted
as conflicting with numerical simulations. In future work, we will
include miscentering of centrals in the modelling, which should
enable us to derive robust and physically meaningful constraints
on fconc. The subhalo mass of satellites is not constrained by our
measurements, which is why we do not show it in Fig. 5. This is
not surprising, given that most of our lenses are centrals, and that
the lensing signal is fairly noisy at small projected distances from
the lens.

3.1 Sensitivity tests on stellar-to-halo mass relation

We have performed a number of tests to examine the robustness
of our results. For computational reasons, we limited the number
of model evaluations to 750 000 (instead of 2100 000), divided
over two chains. We adopted a maximum value of R = 1.05 in
the Gelman–Rubin convergence test to ensure that results are suffi-
ciently robust to assess potential differences.

First, we test if incompleteness in our lens sample can bias the
stellar-to-halo mass relation. As GAMA is a flux-limited survey,
our lens samples miss the faint galaxies at a given stellar mass. If
these galaxies have systematically different halo masses, our stellar-
to-halo mass relation may be biased. To check whether this is the
case, we selected a (nearly) volume-limited lens sample using the
methodology of Lange et al. (2015). This method consists of deter-
mining a limiting redshift for galaxies in a narrow stellar mass bin,
zlim, which is defined as the redshift for which at least 90 per cent of
the galaxies in that sample have zlim < zmax, with zmax the maximum
redshift at which a galaxy can be observed given its rest-frame SED
and given the survey magnitude limit. zlim is determined iteratively
using only galaxies with z < zlim. We removed all galaxies with red-
shifts larger than zlim (∼60 per cent of the galaxies in the first stellar
mass bin, fewer for the higher mass bins) and repeated the lensing

measurements. The resulting measurements are a bit noisier, but
do not differ systematically. We fit our halo model to this lensing
signal and the stellar mass function. The resulting stellar-to-halo
mass relation becomes broader by up to 20 per cent at the low-mass
end, but is fully consistent with the result shown in Fig. 6. Hence
we conclude that incompleteness of the lens sample is unlikely to
significantly bias our results.

We have also tested the impact of various assumptions in the set
up of the halo model. We give details of these tests in Appendix B.
None of the modifications led to significant differences in the stellar-
to-halo mass relation, which shows that our results are insensitive
to the particular assumptions in the halo model.

3.2 Literature comparison

We limit the literature comparison to some of the most recent results,
referring the reader to extensive comparisons between older works
in Leauthaud et al. (2012); Coupon et al. (2015); Zu & Mandelbaum
(2015). Our main goal is to see whether our results are in general
agreement. In-depth comparisons between results are generally dif-
ficult, due to differences in the analysis (e.g. the definition of mass,
choices in the modelling) as well as in the data (e.g. the computation
of stellar masses – note, however, that the stellar masses used in the
literature stellar-to-halo mass relations we compare to are all based
on a Chabrier (2003) IMF, as are ours).

Leauthaud et al. (2012) measured the stellar-to-halo mass rela-
tion of central galaxies by simultaneously fitting the galaxy–galaxy
lensing signal, the clustering signal and the stellar mass function
of galaxies in COSMOS. The depth of this survey allowed them to
measure this relation up to z = 1. In Fig. 6, we show their relation
for their low-redshift sample at 0.22 < z < 0.48, which is closest
to our redshift range. The relations agree reasonably well. We infer
a slightly larger halo mass at a given stellar mass, most noticeably
at the high-mass end. Their Mh/M∗ ratio reaches a minimum at a
halo mass of 8.6 × 1011 h−1 M� with a value of Mh/M∗ = 38 [h],
∼1.5σ below the minimum value of the ratio we find. A system-
atic shift in stellar mass may explain much of the difference. The
stellar masses used in Leauthaud et al. (2012) are based on photo-
metric redshifts, which generally induce a small Eddington bias in
the stellar mass estimates, particularly at the high-stellar mass end
where the stellar mass function drops exponentially (as illustrated in
Fig. 4 in Drory et al. 2009). In contrast, the stellar masses in GAMA
are computed using spectroscopic redshifts, and this bias does not
occur. We attempted various shifts in stellar mass and found that
the stellar-to-halo mass relations fully overlap if we decrease the
stellar masses from Leauthaud et al. (2011) by 0.15 dex. Systematic
differences between stellar mass estimates from the literature are
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Figure 5. Posteriors of pairs of parameters, marginalized over all other parameters. Dimensions are the same as in Table 3. Solid orange contours indicate the
1/2σ confidence intervals of the lensing+SMF fit, while the brown dashed contours indicate the 1/2σ confidence intervals of the lensing-only fit. Red crosses
indicate the best-fitting solution of the combined fit. The panels on the diagonal show the marginalized posterior of the individual fit parameters, together with
the priors (blue dotted lines). Including the SMF in the fit mainly helps to constrain the stellar-to-halo mass relation parameters (equation 16) and αs. The
degeneracies between the stellar-to-halo mass relation parameters and those that describe the satellite CSMF (equation 17, 18), follow from the functional form
we adopted.

typically of this order (see e.g. Mobasher et al. 2015), which implies
that the accuracy of the stellar-to-halo mass relation is already lim-
ited by systematic uncertainties in the stellar mass estimates.

Next, we compare our results to Moster et al. (2013), who applied
an abundance matching technique to the Millennium simulation
(Springel 2005). The stellar mass functions were adopted from
various observational studies, but were all converted to agree with a

Chabrier (2003) IMF. We use the fitting functions provided in that
work to compute the stellar-to-halo mass relation at z = 0.25, close
to the mean redshift of our full sample. We find good agreement
between the results as shown in Fig. 6. The minimum of their
Mh/M∗ ratio is located at 7 × 1011 h−1 M�, close to our best-
fitting result of 8 × 1011 h−1 M�. At this location, their halo to
stellar mass ratio takes a value of Mh/M∗ = 50 [h].
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Figure 6. Stellar-to-halo mass relation of central galaxies for KiDS+GAMA. Orange (yellow) regions indicate the 68 per cent (95 per cent) confidence
intervals for the centrals, blue regions the 68 per cent confidence intervals for the satellites, and grey (solid and hatched) regions are the 68 per cent confidence
intervals for the total sample. Our results can be compared to constraints from Leauthaud et al. (2012), Moster et al. (2013), Wojtak & Mamon (2013), Velander
et al. (2014), Han et al. (2015), and from the Milky Way. Note that the left-hand panels show the stellar mass at a given halo mass, 〈M∗|Mh〉, while the
right-hand panels show the halo mass at a given stellar mass, 〈Mh|M∗〉.

We compare our measurements to the results of Han et al. (2015)
in the right-hand panel of Fig. 6. Han et al. (2015) measured halo
masses for the same GAMA sample, but using sources from the
SDSS. Halo masses were estimated for a volume-limited lens sam-
ple using a maximum likelihood technique. In contrast to our work,
their measurements show the average halo mass for a given stellar
mass, which is not the same due to the intrinsic scatter (see e.g. fig.
7 of Tinker et al. 2013). Hence we converted our results using Bayes
theorem (see e.g. Coupon et al. 2015) to enable a comparison. We
find excellent agreement between the results.

Wojtak & Mamon (2013) present halo mass estimates for galax-
ies in stellar mass bins obtained from the kinematics of satellite
galaxies around isolated galaxies in the SDSS. Halo masses were
defined with respect to ρcrit instead of the mean density, which are
typically 30–40 per cent smaller. To account for this, we multiplied
their masses with a factor 1.3. We find good agreement at stellar
masses M∗ < 8 × 1010 h−2 M�, but at higher stellar masses their
halo masses are somewhat lower than ours. A potential reason is that
their sample only consists of isolated galaxies, which may have sys-
tematically lower halo masses. Also note that they remark in their
work that their halo masses are ∼0.2 dex lower at the high-mass
end than what is typically reported in the literature.

Finally, we compare our results to the galaxy–galaxy lensing
results from Velander et al. (2014), who measured the lensing signal
around red and blue galaxies at 0.2 < z < 0.4 in CFHTLenS over
a large range in stellar mass. Masses were defined with respect
to ρcrit, which we multiplied with a factor 1.3 to convert them to
our definition. The agreement is fair; we find a good match at low
stellar masses, but for M∗ > 5 × 1010 h−2 M�, our halo masses are
somewhat larger. What may be contributing to this difference, is that
Velander et al. (2014) inferred a relatively high satellite fraction for
red galaxies at the high stellar mass end (reaching as high as their
upper limit of 0.2), which may have pushed their average halo mass

down. Also, as for Leauthaud et al. (2012), stellar masses were
determined using photometric redshifts, which may have induced a
small Eddington bias. If we decrease their mean stellar masses by
0.1 dex, their measurements fully overlap with ours.

Summarizing the above, we conclude that although we find small
differences between our stellar-to-halo mass relation and those from
the literature, the agreement is fair in general.

3.2.1 Milky Way comparison

The number of satellite galaxies depends on halo mass, and obser-
vations of the Milky Way suggest that it may have fewer satellites
than expected given its stellar mass (e.g. Klypin et al. 1999; Moore
et al. 1999). To resolve this so-called ‘missing satellite problem’
various studies have shown that the tension is eased for lower halo
masses of the Milky Way (e.g. Wang et al. 2012; Vera-Ciro et al.
2013). This raises the question whether or not the location of the
Milky Way is special in the stellar mass to halo mass plane, i.e.
whether its halo mass is peculiarly low given its stellar mass.

Total stellar mass estimates for the Milky Way are typically of
order (6 ± 1) × 1010 M� (McMillan 2011; Licquia & Newman
2015). Halo mass estimates have a considerably larger scatter, with
M200 estimates ranging (0.5–2) × 1012 M� (see fig. 1 of Wang
et al. 2015). We adjust these local measurements assuming h = 0.7
and show the results in Fig. 6. Our stellar-to-halo mass relation
predicts a mean stellar mass of 1.8 × 1010 h−2 M� at a halo mass
of 1 × 1012 h−1 M�. The Milky Way lies just at the edge of our 1σ

contours. However, our confidence intervals only correspond to the
uncertainties on the mean relation, and when comparing individual
objects, one should take the intrinsic scatter between stellar and
halo mass, which is ∼0.2 dex, into account. Hence the lower limit
on the stellar mass of the Milky Way (5 × 1010 M�) is roughly 1σ
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away in terms of intrinsic scatter at Mh = 1012 h−1 M�. Although
the Milky Way appears to have a relatively high stellar mass given
its halo mass, it is not particularly anomalous.

3.3 Satellite fraction

Our sample consists of a mixture of central and satellite galaxies. In
the halo model we fit for the contribution of both, which enables us
to determine the satellite fraction using equation (13). The results
are shown in Fig. 3. The satellite fraction decreases with stellar
mass from ∼0.3 at 5 × 109h−2 M� to ∼0.05 at 2 × 1011h−2 M�.
Particularly at the high-mass end, it is well constrained. As for
the stellar-to-halo mass relation, including the constraints from the
stellar mass function has a significant impact and considerably de-
creases the model uncertainty. The satellite fraction does not sen-
sitively depend on assumptions in the halo model, as discussed in
Appendix B.

We compare our satellite fractions to those based on the GAMA
group catalogue. For every stellar mass range, we count all galaxies
listed as satellite (not restricted to groups with Nfof ≥ 5), and divide
that by the total number of galaxies in that range. We only include
GAMA galaxies at z < 0.3 here, to reduce the impact of incomplete-
ness. The resulting satellite fractions do not sensitively depend on
the specific value of the redshift cut. The ratio is shown as the upper
dashed line in Fig. 3. It provides an estimate of the true satellite
fraction, but a crude one as the group membership identification in
GAMA becomes less robust towards groups with fewer members
(Robotham et al. 2011) and we do not apply a cut on Nfof. Hence
a fraction of the galaxies that are labelled as satellites may in fact
be centrals. In addition, some satellites may not be identified and as
such be excluded from the group catalogue. We derive a more robust
lower limit on the satellite fraction by only counting the satellites
in ‘rich’ groups (Nfof ≥ 5) and dividing that by the total number of
galaxies in that stellar mass range. This is indicated by the lower
dotted line in Fig. 3. The satellite fraction we obtain from the halo
model should be larger than this, which we find to be the case at
M∗ < 1011h−2 M�. For higher stellar masses, our constraints on
the satellite fraction fall below the lower limit from the GAMA
catalogue. Although not very significant, it suggests that a fraction
of satellites at the high stellar mass end are actually centrals, or that
one or more assumptions in our halo model are inaccurate. Either
way, it shows that the combination of galaxy–galaxy lensing with
the stellar mass function has the potential to become a valuable
tool to infer the robustness of group catalogues. We expect that
including the clustering of galaxies in the fit will further tighten the
constraints on the satellite fraction (see e.g. Cacciato et al. 2009).

4 E N V I RO N M E N TA L D E P E N D E N C E

Galaxies in groups are subject to processes such as quenching,
stripping and merging. One of the observable consequences is that
star formation is suppressed and galaxies turn red (see e.g. Boselli &
Gavazzi 2006). The cumulative impact of these processes is likely to
affect the baryonic and dark matter content of centrals and satellites
in different ways. An infalling (satellite) galaxy, for example, is
expected to lose relatively more dark matter than stars, as the latter
mainly reside in the central part of the halo where the potential well
is deep (e.g. Wetzel et al. 2014). This increases the group halo mass,
but should not affect the stellar mass of the central much. If, on the
other hand, an already accumulated satellite that has been stripped
off its dark matter merges with the central galaxy, the stellar mass
of the central increases, but not the halo mass. By comparing the

stellar-to-halo mass relation for centrals in ‘rich’ groups to the one
of the full sample, we can study the relative importance of such
environmental effects.

4.1 Centrals in rich groups

We first select the central galaxies in ‘rich’ groups (with a multi-
plicity Nfof ≥ 5) and measure their lensing signal and stellar mass
function using the same binning as before. We exclude groups with
fewer than five members because comparisons with mock data have
shown that those are affected more by interlopers (Robotham et al.
2011), which makes an interpretation of the results harder. The
galaxy–galaxy lensing signal is shown in Fig. 7 and the stellar
mass function in Fig. 8. We measure the stellar mass function using
groups at z < 0.15 to ensure the sample is volume-limited.

To fit the halo model to the data, we have to account for one
additional complication. For certain sub-samples of galaxies, not
all haloes of mass M contain a central galaxy, while the halo model
assumes that all of them do (the integral of equation 15 over stellar
mass is unity). We account for this by introducing a ‘halo mass
incompleteness’ factor, a generic function that varies between 0
and 1, which we multiply with the CSMF of the central galaxies:

�̃c(M∗|Mh) = �c(M∗|Mh) × erf(c0[log10(Mh) − c1]), (20)

with c0 and c1 two incompleteness parameters that we fit for; c1 de-
termines where we the transition to incompleteness occurs, and c0

determines how smooth or abrupt the transition is. This incomplete-
ness factor is only suitable for selections of lenses whose abundance
as a function of stellar mass increases/decreases monotonically with
respect to the full sample, as is the case here. A similar approach
was taken in Tinker et al. (2013) in order to simultaneously mea-
sure the stellar-to-halo mass relation of quiescent and star-forming
galaxies (see their Section 3.2).

To fit the halo model, we need to apply priors on the incomplete-
ness parameters (c0, c1), as the large covariance of the three stellar
mass function bins results in a peculiar likelihood surface. For a
large range of (c0, c1) values, the χ2 of the stellar mass function
is high but practically constant. When the MCMC chains start far
from the minimum, they can get stuck in this χ2 plateau. To avoid
having to run very long chains to ensure all walkers find their way
to the minimum, we adopt flat priors and restrict c0 to [−5, 5] and
c1 to [9, 14] which generously brackets the best fit for any chain
we run and hence should not affect the results. Note that we adopt
a range of [9, 16] for c1 for all other runs, see Table 2. We start
the chains close to the best-fitting location, as determined from a
previous run, to avoid that many walkers start in this χ2 plateau and
never reach the minimum. Even with these precautions, a fraction
(10 per cent) of the chains remain stuck.3 Since those models have
a similar (large) χ2 contribution from the stellar mass function,
we can easily identify them and remove them before we analyse
the chain. Fig. 8 shows that the model uncertainty of the stellar
mass function is somewhat skewed with respect to the data and the
best-fitting halo model. The reason is that some of the walkers are
close to the χ2 plateau and still in the process of evolving towards
the minimum. We have checked that including these problematic
walkers does not affect our results.

3 We also implemented a Metropolis–Hastings sampler with a proposal
distribution derived by a Fisher information matrix analysis and found it also
suffered from sampling problems which could not be solved by adjusting
the step-sizes.
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Figure 7. Excess surface mass density profile of GAMA galaxies measured as a function of projected separation to the lens, selected in various stellar mass
bins as indicated at the top of each column, that are centrals (top row) and satellites (bottom row) of ‘rich’ (Nfof ≥ 5) groups. The bin ranges correspond to the
log10 of the stellar mass and are in units log10(h−2 M�). Open symbols and the dashed lines indicate the absolute value of the negative data points and their
errors. The green solid line indicates the best-fitting halo model, the grey contours indicate the 68 per cent model uncertainty.

Figure 8. Stellar mass functions for GAMA galaxies at z < 0.15 that are
centrals and satellites in ‘rich’ groups, for a comoving volume. Errors have
been determined by bootstrap and include the contributions from Poisson
noise and cosmic variance. The green solid line indicates the best-fitting halo
model, the grey regions indicate the 68 per cent model uncertainty, linearly
interpolated between the stellar mass bins. We also show the analytical
fit to the SMF from Baldry et al. (2012) for all galaxies for reference.
The model uncertainties are somewhat skewed with respect to the data
and the best-fitting model, which is caused by sampling issues, as discussed
in the text.

The best-fitting model has a reduced χ2 of 98/(83 − 8) = 1.3.
Fig. 7 shows that the lensing signal of the lowest stellar mass bin is
not well fit. A possible reason is that the lowest stellar mass sam-
ples are contaminated with satellite galaxies, for which we provide
evidence in Section 4.3. Note that the lensing signal of these bins
are very noisy and that a potential bias of the stellar-to-halo mass

relation at the low-mass end resulting from this contamination is
unlikely to be significant.

The constraints on the fit parameters are tabulated in Table 3.
The stellar-to-halo mass relation is shown in Fig. 9. The 68 per cent
confidence interval is broader than the one of the full sample due to
the noisier lensing measurements at the low stellar mass end. None
the less, it shows that the stellar-to-halo mass relation of centrals
in ‘rich’ groups is consistent with the relation for the full sample,
suggesting that this relation does not sensitively depend on local
density. Note that centrals in ‘rich’ groups form ∼15 per cent of the
total lens sample for the two highest stellar mass bins, so the average
lensing signals of centrals in those bins are somewhat correlated to
the lensing signals of the corresponding bins of the full sample (and
consequently, the stellar-to-halo mass relations will be correlated as
well at the high-mass end).

We also inferred the stellar-to-halo mass relation from the lens-
ing signal only. The resulting minimum χ2 is 97 with 72 de-
grees of freedom, hence a similar reduced χ2 as for the combined
fit. The stellar-to-halo mass relation is consistent, but less well
constrained than the combined fit, particularly at stellar masses
>2 × 1010 h−2 M�, where the upper limit in halo masses is shifted
to larger values, already extending to 1015 h−1 M� at stellar masses
of 8 × 1010 h−2 M�.

Our result appears somewhat at odds with Tonnesen & Cen
(2015), who studied environmental variations of the stellar-to-halo
mass ratio using a large suite of cosmological hydrodynamical sim-
ulations. Environments were classified according to the mean den-
sity on 20 Mpc scales, stellar mass were computed by adding the
mass of all star particles that belonged to a galaxy. They reported a
significantly larger stellar-to-halo mass ratio for galaxies in large-
scale overdensities, compared to those in large-scale underdensities.
Their most massive halo mass bin extends to 1013 h−1 M�. In this
regime, we find that the stellar-to-halo mass ratio of centrals is not
larger than average. Note, however, that it is difficult to compare
the results, as the samples were selected in very different ways.
The difference in local density is smaller in our work (comparing
central galaxies as tracer of overdense regions, to the average of
all environments). Also, if the stellar masses of Tonnesen & Cen
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Figure 9. 68 per cent confidence intervals of the stellar-to-halo mass re-
lation for central galaxies in ‘rich’ groups (Nfof ≥ 5), determined using
the lensing signal and stellar mass function of central galaxies (‘Cen’, dark
grey), of satellites galaxies (‘Sat’, light grey) and of all galaxies in ‘rich’
groups (‘Cen & Sat’, empty contours). For reference, we also show the rela-
tion from the full sample in orange. The bottom panel shows the halo mass
to stellar mass ratio of the centrals and satellites in ‘rich’ groups (dark grey
and dark blue hatched, respectively). The halo mass to stellar mass ratio of
the full sample is shown for reference (orange and light blue for centrals
and satellites, respectively).

(2015) systematically include more stellar mass from the outskirts
of galaxies, this may partly explain the difference between the re-
sults. We plan to perform a more direct comparison in a future work,
where we will measure the stellar-to-halo mass relation in knots,
filaments, sheets and voids, using the environment catalogues from
Alpaslan et al. (2014) and Eardley et al. (2015), as well as according
to local density estimates as employed in Tonnesen & Cen (2015).

4.2 Satellites in rich groups

Next, we analysed the galaxies listed as satellites in ‘rich’ groups
(Nfof ≥ 5) performing a simultaneous fit to both the lensing signal
and the stellar mass function. Similar to our analysis of the centrals
in the previous section, we account for incompleteness by multiply-
ing the CSMF of the satellites by the ‘halo mass incompleteness’
factor,

�̃s(M∗|Mh) = �s(M∗|Mh) × erf(c0[log10(Mh) − c1]). (21)

The lensing signals in bins of stellar mass and the stellar mass
function are shown in Figs 7 and 8. In the fit, we fixed the stellar-
to-halo mass relation of the centrals, as well as the incompleteness
parameters in equation (20), to the best-fitting values of our nominal
results for centrals from the previous section. Also here the large
covariance of the stellar mass function resulted in a broad likeli-
hood surface: when fitting the halo model with the standard priors

(listed in Table 2), part of the chain would get stuck in regimes far
from the minimum (at 	χ2 ∼ 20). To avoid this, we excluded the
part of parameter space where this problem occurred through the
prior b0 > −0.5. We ensured that this did not exclude the regime
close to the minimum. With this additional prior, the minimiza-
tion ran smoothly. The resulting best-fitting model has a reduced
χ2 of 74/(83 − 5) = 0.9. The constraints on the satellite CSMF
parameters, and on fconc and fsub (the normalization of the mass–
concentration relation and the subhalo mass fraction) are listed in
Table 3. Since the confidence interval of b0 is sensitive to where we
put this prior, it should be interpreted with care.

The concentration of the subhaloes is consistent with predictions
from dark-matter-only simulations. Since the sample now only con-
sists of satellites, we derive much tighter constraints on the subhalo
mass fraction: fsub = 0.25+0.09

−0.08. This result is robust against changes
in the halo model, as detailed in Appendix B.

The subhalo mass fraction was also determined in Sifón et al.
(2015) for the same satellites, but now separated into samples at
different distances from their hosts. They reported a subhalo mass
fraction in the range 1–2 per cent. When we fix the subhalo mass
fraction in our halo model to such low values, the χ2 values of the
fit significantly degrades, and the model underestimates the lensing
signal at small scales for the high stellar mass bins. We attribute
this difference to the fact that Sifón et al. (2015) average over all
stellar masses. Fig. 7 shows that the small-scale lensing signal of
the first three stellar mass bins is very small and noisy. These two
bins contain 2/3 of all lenses stacked in Sifón et al. (2015), and
pull the average lensing signal down. When we separate the lensing
signal in stellar mass bins, most of the constraining power comes
from the massive stellar mass bins, which have the highest lensing
signal-to-noise ratio. These bins clearly prefer a larger subhalo mass
fraction. The subhalo mass fraction is not pulled down by the lower
mass bins, as their signal is noisy and can accommodate a higher
subhalo mass fraction.

These results suggest a subhalo mass fraction that increases with
host mass. To test this, we parametrized the subhalo mass frac-
tion as Asub × (〈M∗/h−2 M�〉/1010.5)αsub and fit for Asub and αsub.
The fit slightly improves with a minimum χ2 of 71, and we obtain
Asub = 0.15+0.12

−0.08h
2 M−1� and αsub = 0.34+0.36

−0.32, providing weak ev-
idence that the subhalo mass fraction increases with stellar mass.
Such a trend would be supported in a scenario where the most mas-
sive subhaloes were accreted most recently and had not much time
to be stripped of their dark matter (see e.g. Rodrı́guez-Puebla, Drory
& Avila-Reese 2012). Note, however, that an increasing contamina-
tion of central galaxies in the satellite sample towards higher stellar
masses, would be able to mimic such a trend as well. In fact, in
Section 4.3 we measure the satellite fraction and find evidence for
such a contamination. When we let the satellite fraction free in the
fit, fsub favours smaller values (fsub = 0.06+0.13

−0.04).
The lensing signal of the satellites indirectly constrains the stellar-

to-halo mass relation of the centrals of the haloes that host them.
On small scales, the lensing signal is determined by a combination
of the host halo mass and the subhalo mass fraction (assumed to
be constant again), and on scales of ∼1 Mpc, the hosting haloes
cause the characteristic bump in the lensing signal of the satellites,
whose amplitude depends on the average halo mass (see Section 3
of Sifón et al. 2015). If a mixed sample of centrals and satellites
is used to measure the stellar-to-halo mass relation, one can induce
a bias if the satellite contribution is not properly modelled. Here,
we have the data in hand to test whether this is the case in our
modelling. Hence we perform a halo model fit where we additionally
fit for the five parameters that describe the stellar-to-halo mass
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relation of the centrals and the two incompleteness parameters,
using the measurements of the satellites only. With this set-up, the
halo model provides satisfactory fits, with a best fit reduced χ2 of
62/(83 − 12) = 0.9. The parameter constraints are listed in Table 3.

In Fig. 9, we show the constraints on the stellar-to-halo mass
relation of central galaxies, obtained by fitting the lensing signal
and stellar mass function of the satellites only. The satellites prefer
a somewhat steeper relation at the high-mass end. The contours are
mostly overlapping with those from the fit to the centrals. This is an
important test of the halo model, as it shows that the uncertainties
on the assumptions in modelling the satellite signal do not lead
to large biases in the stellar-to-halo mass relation when we fit a
mixed sample of centrals and satellites. For comparison, we also
show the stellar-to-halo mass relation of centrals when we fit all
the galaxies in ‘rich’ groups simultaneously (hence fitting for the
satellite fraction). The results are consistent with the fits to the
centrals/satellites only.

It is interesting to note that the uncertainty on the stellar-to-halo
mass relation of centrals is actually smaller at M∗ > 1011 h−2 M�
when measured from the satellite signal. This counter-intuitive re-
sult can be understood as follows: groups contain more satellites
than centrals. Stacking many satellites reduces the statistical un-
certainties, which is somewhat counteracted by an increased cor-
relation between the radial bins of the lensing signal as the same
background galaxies are used multiple times. Furthermore, haloes
with more satellites, which are typically more massive, get a larger
effective weight. Moreover, we obtain additional constraints on the
parent halo mass from the lensing signal on small scales, as we fit
the subhalo mass fraction as a constant (which is an implicit prior).

Finally, we also determine the total stellar mass content in satel-
lites at a given group halo mass, by integrating over the CSMF of
the satellites. The results are shown in Fig. 9. The constraints are
tighter than those of the full sample, but completely consistent.

4.3 Satellite fractions

In our nominal runs, we fix the satellite fractions to zero and unity
when we analyse central and satellite samples, respectively. The
identification of centrals and satellites is, however, only robust in
groups with a multiplicity Nfof ≥ 5 (Robotham et al. 2011). This
opens up the possibility to perform a unique halo model test: we
can run it without informing the halo model of the nature of the
lens sample. The resulting satellite fraction constraints should be
consistent with 0 and 1 for the centrals and satellites, respectively.
A failure would indicate a problem with the halo model, or point
at impurities in the group catalogue. When we carry out this test
on the satellite sample, some parts of the chain get stuck at the
aforementioned χ2 plateau. As these regimes had clearly distinct
χ2 contributions from the stellar mass function, they could easily
be identified and removed before analysing the chains.

The satellite fractions are shown in Fig. 10. For the centrals,
we find that the satellite fraction is consistent with zero, although
the uncertainty becomes very large at the low stellar mass end,
where the lensing signals are noisy. At the high stellar mass end,
we derive an upper limit on the satellite fraction of 0.05 at 1σ .
Varying assumptions in the halo model only changes the size of the
confidence interval, as discussed in Appendix B.

For the satellite sample, the satellite fraction is consistent with
unity at M∗ < 1011 h−2 M�, with a lower limit of 0.85. At higher
stellar masses, the satellite fraction drops and has a value of 0.10
for our most massive bin. To test if this is the result of particular
choices in our halo model, we vary the list of assumptions from

Figure 10. Halo model test: 68 per cent model uncertainty on the fitted
satellite fractions for centrals and satellites in ‘rich’ groups, as indicated in
the figure. The best-fitting models are indicated by the green solid lines.

Appendix B and determine the satellite fraction in each run. In all
cases, the resulting satellite fractions remain consistent with unity
at M∗ < 1011 h−2 M�, but drops at higher masses. How quickly it
decreases, and the size of the uncertainties, depends on the halo
model set up (see Appendix B).

These results suggest that a substantial fraction of satellites with
large stellar masses in ‘rich’ groups, are in fact centrals that reside
at the centre of the halo. The absence of a corresponding increase of
the satellite fraction of the central sample, suggests that the misiden-
tification of satellites could be due to groups actually consisting of
the projection of two or more groups along the line-of-sight, or of
being in the process of a merger. Alternatively, it could mean that the
most massive satellite galaxies are not following the NFW profile of
the dark matter, but are more centrally concentrated, residing closer
to the centre of the group. Note that the number of affected objects
is very small, as there are only few satellites galaxies with stellar
mass M∗ > 1011 h−2 M�; the group catalogue overall remains very
pure.

This test shows that the constraints from galaxy–galaxy lensing
and the stellar mass function can be used to test the performance
of group finders. Future, higher signal-to-noise data sets, combined
with clustering data, will be able to constrain the satellite fraction
at the few per cent level. These data sets therefore form a valuable
complement for demonstrating the fidelity of group catalogues.

5 C O N C L U S I O N S

In this work, we have studied how galaxies are related to their dark
matter haloes by measuring their stellar-to-halo mass relation, and
whether this relation depends on environment. We used data from
the ∼100 deg2 overlap between the GAMA and KiDS surveys: the
former provides the information about intrinsic lens properties, as
well as the group catalogue which enabled us to select galaxies in
groups (dense environments), while we used the shape measure-
ments and photometric redshift catalogues from KiDS to measure
the lensing signal around the GAMA galaxies.

The stellar-to-halo mass relation of central galaxies is poorly
constrained from the lensing signal alone, the reason being that
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in the halo model predictions of the weak lensing signal around
galaxies, lower halo masses can be partially compensated by higher
satellite fractions (as satellites typically reside in more massive
haloes). Thus informative priors need to be adopted on the satellite
fraction to constrain the stellar-to-halo mass relation from lensing
alone. This can be avoided by including the stellar mass function,
which provides sufficient additional constraints to break this degen-
eracy: both the stellar-to-halo mass relation and the satellite fraction
are better constrained when the lensing signal and the stellar mass
function are fitted simultaneously.

The stellar-to-halo mass relation can be described by a dou-
ble power law. At the high-mass end (M∗ > 5 × 1010 h−2 M�),
the stellar mass increases with halo mass as ∼M0.25

h . The ratio of
the dark matter to stellar mass has a minimum at a halo mass of
8 × 1011 h−1 M� with a value of Mh/M∗ = 56+16

−10 [h]. Our con-
straints are in fair agreement with recent results from the literature,
although small, systematic shifts in stellar mass (of order 0.10–0.15
dex) can improve the agreement. Systematic differences between
different stellar masses estimates (due to different assumptions in
the SED modelling, see e.g. Coupon et al. 2015) are typically of this
order and hence already form a limiting factor in comparisons of
stellar-to-halo mass relations from different works. This illustrates
the need for reducing systematic errors in stellar mass estimates
(which could be achieved by adopting standardized stellar mass
measures).

For the first time, we determined the stellar-to-halo mass rela-
tion of centrals in dense environments. We made use of the GAMA
group catalogue to select galaxies that reside in ‘rich’ groups (with
a multiplicity Nfof ≥ 5). We analysed the signals of both central
galaxies and satellite galaxies separately. We fit the halo model in
an informed setting, exploiting our prior knowledge of whether the
sample contained centrals or satellites. The stellar-to-halo mass
relation of central galaxies, determined from fitting the signals
of the centrals, was consistent with the one determined from fit-
ting the signal of the satellites, providing evidence that the uncer-
tainties of the assumptions in modelling the satellite contribution
in the halo model does not lead to biases when a mixed sample of
centrals and satellites is used to measure the stellar-to-halo mass
relation.

Interestingly, we find no large differences between the stellar-
to-halo mass relation from all galaxies, and from those that reside
in ‘rich’ groups. This shows that the stellar-to-halo mass relation
depends only weakly on environment.

The group catalogue enables another unique test of the halo
model: we fitted the signals of the centrals/satellites in ‘rich’ groups,
but without a fixed satellite fraction. The recovered satellite frac-
tions are consistent with 0 for the centrals. For the satellites, we
find an indication for an impurity in the group catalogue at the high
stellar mass end. This shows that galaxy–galaxy lensing, combined
with the stellar mass function (and in the future also clustering), can
be used as important robustness tests for the correct identification
of centrals/satellites in group finding algorithms.

The average subhalo masses of satellites in ‘rich’ groups are
typically 25 per cent of their host haloes. These constraints are
driven by massive satellites, which have the highest lensing sig-
nals. We find weak evidence for a subhalo mass fraction that
increases with stellar mass, which would be consistent with the
scenario where the most massive satellites are accreted most re-
cently and still retain most of their dark matter. We cannot, how-
ever, draw definite conclusions as impurities in the satellite sam-
ple, as is implied by the test described above, could mimic such a
trend.
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A P P E N D I X A : C OVA R I A N C E O F S T E L L A R
MASS FUNCTI ON

The errors on the stellar mass function are a combination of Pois-
son noise, cosmic variance and random errors in the stellar mass
estimates. Since the latter is much smaller than the bin sizes of the
stellar mass function, it should not affect the analysis. To estimate
the combined error coming from Poisson noise and cosmic variance,
we use a bootstrapping technique; we divide the GAMA catalogue
into patches and randomly select subsamples to form new realisa-
tions of the data. We use 10 000 bootstrap realisations to ensure the
results are converged. We experiment with different patch sizes and
redshift cuts; the fractional errors are shown in Fig. A1, together
with the Poisson noise contribution. This immediately reveals that
the contribution of Poisson noise is subdominant compared to the
contribution of cosmic variance. Secondly, it shows that the errors
depend on the bootstrap patch size or volume; the larger the patch
size, the larger the error.

We compare our errors to the predictions from the GETCV code
from Moster et al. (2011). Under the assumption that the galaxy bias
is linear and independent of scale, the cosmic variance contribution
to the stellar mass function is simply the product of the bias and
the variance in the distribution of dark matter. We compute it for
a patch size of 12×5 deg2 and divide the variance by 3, assuming
that the three GAMA patches are independent. We show the predic-
tions in Fig. A1. For z < 0.1, the bootstrap errors are smaller than
the prediction from Moster et al. (2011). For the higher redshifts,
however, our errors using patches of 2.5×3 deg2 and 5×3 deg2

agree quite well with the predictions in the range where the stellar
mass function is complete. This shows that the stellar mass func-
tion errors can be reliably determined via bootstrapping, as long as
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Figure A1. Fractional error on stellar mass function measurements, using all GAMA galaxies below z < 0.1, z < 0.15 and z < 0.2 for the left-hand, middle,
and right-hand panel, respectively. Stellar masses are in units log10(h−2 M�). The black lines show the errors obtained from bootstrapping for three different
patch sizes, as indicated in the plot. The red dotted-dashed line shows the Poisson contribution. The green dashed line shows the expected noise due to cosmic
variance, predicted using the GETCV code from Moster et al. (2011). The vertical dotted lines show the approximate stellar mass completeness limits. This
figure shows that cosmic variance is the dominant component in the stellar mass function errors, and that bootstrapping over too small volumes leads to
underestimated error bars.

Figure A2. Normalized correlation matrix of the stellar mass function, obtained using bootstrapping (left-hand panel), or modelled assuming that the
measurements are fully correlated and the only de-correlation happens through Poisson noise (right-hand panel), as detailed in the text.

the volume of the bootstrapped samples is large enough. This may
also explain why the jackknife errors on the stellar mass function
in Coupon et al. (2015) were a factor 2 smaller than the predicted
errors, determined by combining the cosmic variance contribution
from the GETCV code with the Poisson noise: their jackknifed volume
was roughly a factor 2 (4) smaller than our 2.5×3 deg2 (5×3 deg2)
patches at z < 0.15.

The covariance between the stellar mass function measurements
has been ignored in most observational studies, even though Leau-
thaud et al. (2011) have shown that it is important. The reason

why the covariance is large, is simple: if the stellar mass function
is a universal function, whose amplitude only differs due to local
density variations, one would expect the measurements to be fully
correlated. The main de-correlation mechanism is Poisson noise.
Lower-level de-correlation happens due to the scale dependence
and non-linearity of the bias.

We show the correlation matrix for three equally log-spaced stel-
lar mass bins and z < 0.15, determined by bootstrapping over
5×3 deg2 GAMA patches, in Fig. A2. The off-diagonals have
values in the range 0.95–0.99, confirming that the stellar mass
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function measurements are highly correlated. To test whether the de-
correlation is caused by Poisson noise, we have set the off-diagonals
to one, added the Poisson noise contribution to the diagonals, and
renormalized the covariance matrix. The resulting matrix is also
shown in Fig. A2. The covariance matrix is very similar to the
one obtained from bootstrapping, supporting the assumption that
Poisson noise is mainly responsible for the de-correlation.

Accounting for the covariance in the measurements is crucial. As
is shown in Smith (2012), the confidence contours of the parameters
used to model the luminosity function (in that case, a Schechter
function) change dramatically when the covariance is accounted for.
We therefore determine the inverse of the sample covariance matrix,
debiase that with a correction factor (Kaufmann 1967; Hartlap,
Simon & Schneider 2007), and use that to constrain the stellar mass
function in the halo model.

APPENDIX B: SENSITIVITY TESTS

In this appendix, we detail on the sensitivity of our results on as-
sumptions in the halo model.

B1 Stellar-to-halo mass relation of full sample

The tests we conducted are:

(i) Prior on β1: we replaced the Gaussian prior on β1 by a flat
one in the range [0,15] and found that it did not impact the results.
We only tested the impact of varying the prior on β1, as the other
parameters are constrained by the data.

(ii) Location of the knee of the satellite CSMF: in our fiducial
setup, we fix the location of the knee in the CSMF of the satellites
through M s

∗ = 0.56Mc
∗ . In principle, we could fit the location of the

knee, although it cannot become arbitrarily large as that implies that
the stellar mass of a satellite galaxy can be larger than that of the
central. Although this could be avoided with the use of priors, we
choose to avoid this issue altogether, fix the location of the knee and
test for the sensitivity of this assumption. We replaced the location
of the knee with M s

∗ = 0.4Mc
∗ and M s

∗ = 0.8Mc
∗ , respectively. For

0.4Mc
∗ , the fit slightly deteriorates (a minimum χ2 value of ∼88,

compared to ∼80 for the fiducial run). The stellar-to-halo mass rela-
tion is slightly shallower at the high-mass end (with a corresponding
power law slope at the high-mass end of β2 = 0.30+0.03

−0.06), such that
at a given stellar mass, galaxies reside in lower mass haloes. The
shift is not significant. For 0.8Mc

∗ , we obtain a best-fitting χ2 value
of ∼78. The stellar-to-halo mass relation steepens at the high-mass
end (with β2 = 0.21+0.04

−0.06), but not significantly so.
(iii) Including a quadratic term in equation (18): we included

b2 × (log10 M13)2 and also fit for b2. As the best-fitting χ2 value was
virtually unchanged, the data do not require this term. At the high-
mass end of the stellar-to-halo relation, the confidence intervals for
the halo masses at a given stellar mass shift down by an insignificant
amount of ∼0.5σ .

(iv) Satellite distribution: we tested the assumption that the satel-
lite distribution follows the dark matter. We adopted both a flatter
and a steeper distribution, using cgal = 0.5cdm and cgal = 2.0cdm,
respectively, with cgal the concentration of the satellite distribution
and cdm the one of the dark matter. The resulting stellar-to-halo mass
relations were consistent with our nominal result.

(v) Subhalo mass: we assigned a zero subhalo mass to all satel-
lites, fsub = 0. Again, we found no significant changes compared to
our nominal result.

(vi) Alternative stellar-to-halo mass relation: we adopted an al-
ternative stellar-to-halo mass relation of the form:

Mc
∗(Mh) = M∗,0

(Mh/Mh,1)β1[
1 + (Mh/Mh,1)β3

](β1−β2)/β3
, (B1)

and additionally fit for β3. We adopted a Gaussian prior with zero
mean and a width of 5. The best-fitting χ2 takes a value of ∼75
(for 72 d.o.f.). We find β3 = 3.32+4.58

−1.90, which is consistent with
β3 = 1, our fiducial set-up. The stellar-to-halo mass relation is
slightly shallower at the high-mass end, but the 1σ contours just
overlap with our fiducial result. Adopting a stellar-to-halo mass
relation of the form Mc

∗(Mh) = M∗,0(Mh/Mh,1)β1 leads to a best-
fitting χ2 of ∼220, hence such a model is strongly disfavoured by
the data.

B2 Satellite fraction of full sample

We tested the impact of the list of halo model assumptions
from Appendix B1 on the recovered satellite fraction. Adopting
M s

∗ = 0.4Mc
∗ as the knee of the CSMF, the satellite fraction de-

creased on all scales by 0.02–0.04. Adopting equation (B1) as the
stellar-to-halo mass relation resulted in larger satellite fractions,
most noticeably at the high-mass end, where the satellite fraction
reached 0.09+0.06

−0.05. Changing the other assumptions led to smaller
changes (of the order of a few per cent).

B3 Satellites in rich groups

We investigated how our results for satellites in ‘rich’ groups
changed when we varied model assumptions (i)–(v) from Ap-
pendix B1. Fixing the location of the knee of the satellite CSMF
to M s

∗ = 0.4Mc
∗ significantly degraded the fit, with a minimum re-

duced χ2 value of 1.3 (compared to 0.9). Adopting M s
∗ = 0.8Mc

∗
instead degraded the fit a little bit, resulting in χ2

red = 1.1. The con-
fidence intervals of the satellite CSMF parameters shifted by up to
2.5σ (compared to the constraints in Table 3). The constraints on
fconc and fsub did not change significantly.

Changing the concentration of the satellite distribution did not
affect the fit. The only fit parameter that was affected is fconc. For
the cgal = 0.5cdm run, we obtained fconc = 1.35+0.25

−0.23, while for the
cgal = 2cdm run, we found fconc = 0.67+0.13

−0.11. This shows that fconc

is partly constrained through cgal, the distribution of satellites, and
that the concentration of the satellite distribution in ‘rich’ groups is
close to the concentration of the dark matter of the haloes that host
them.

When we included b2 × (log10 M13)2 in equation (18) and fit
for b2, the models provided an equally good fit to the data, with
χ2

red = 0.9, and we obtained b2 = −0.41+0.26
−0.33. The constraints on

fconc and fsub remained consistent with our nominal results.
Enforcing a zero subhalo mass led to poor fits, where the model

shear signal significantly underestimated the lensing data at small
scales for the high stellar mass bins.

B4 Satellite fraction test of group galaxies

We tested how the list of assumption in Appendix B1 affected the
halo model runs on centrals/satellites in ‘rich’ groups in which we
fitted for the satellite fraction. For the centrals, the satellite fraction
remained consistent with zero, but the confidence intervals changed
at M∗ > 2 × 1010h−2 M�: fixing the knee of the satellite CSMF to
M s

∗ = 0.4Mc
∗ , the satellite fraction is constrained to <0.01 for the

three highest stellar mass bins; when we adopted cgal = 0.5 × cdm the
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uncertainties increased instead and constrained to satellite fraction
to <0.15. Changing the other assumptions led to smaller variations.
For the satellites, the most extreme constraints came from the run
where we enforced a zero subhalo mass fraction, where the satellite
fraction of the highest stellar mass bin was 0.03+0.08

−0.03; when we
fixed the knee of the satellite CSMF to M s

∗ = 0.8Mc
∗ , we obtained

0.15+0.32
−0.12, the other extreme.
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