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Abstract: Simple empirical expressions to estimate maximum seismic damage on the basis of four 

well known damage indices for planar regular steel/concrete composite moment resisting frames 

having steel I beams and concrete filled steel tube (CFT) columns are presented. These expressions 

are based on the results of an extensive parametric study concerning the inelastic response of a large 

number of frames to a large number of ordinary far-field type ground motions. Thousands of 

nonlinear dynamic analyses are performed by scaling the seismic records to different intensities in 

order to drive the structures to different levels of inelastic deformation. The statistical analysis of 

the created response databank indicates that the number of stories, beam strength ratio, material 

strength and ground motion characteristics strongly influence structural damage. Nonlinear 

regression analysis is employed in order to derive simple formulae, which reflect the influence of 

the aforementioned parameters and offer a direct estimation of the damage indices used in this 

study. More specifically, given the characteristics of the structure and the ground motion, one can 

calculate the maximum damage observed in column bases and beams. Finally, three examples serve 

to illustrate the use of the proposed expressions and demonstrate their accuracy and efficiency. 

Keywords: Steel/concrete composite frames; Moment resisting frames; Damage indices; Seismic 

assessment; Ordinary ground motions. 
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1. Introduction 

 

Damage in a structure under loading can be defined as the degradation or deterioration of its 

integrity resulting in reduction of its load capacity. In earthquake-resistant design of structures, 

some degree of damage in the structural members is generally accepted. This is done because the 

cost of a structure designed to remain elastic during a severe earthquake would be very large. Thus, 

existing seismic codes, e.g., EC8 [1], in an implicit way and more recent performance-based 

seismic design methods [2-4] in an explicit and more systematic way employ the concept of 

damage to establish structural performance levels corresponding to increasing levels of earthquake 

actions. These performance levels mainly describe the damage of a structure through damage 

indices, such as the inter-story drift ratio (IDR), or the member plastic rotations. 

Several methods to determine damage indices as functions of certain response parameters have 

been presented in the literature. In general, these methods can be noncumulative or cumulative in 

nature. The most commonly used parameter of the first class is ductility, which relates damage only 

to the maximum deformation and is still regarded as a critical design parameter by codes. To 

account for the effects of cyclic loading, simple rules of stiffness and strength degradation have 

been included in various noncumulative indices [5-7], mainly referred to reinforced concrete 

members. Cumulative-type indices can be divided in deformation based [8] or hysteresis based 

[9,10] formulations and methods that consider the effective distribution of inelastic cycles and 

generalize the linear law of low-cycle fatigue of metals through a hypothesis of linear damage 

accumulation [11]. Sucuoğlu and Erberik [12] developed low-cycle fatigue damage models for 

deteriorating systems on the basis of test data and analysis and Kamaris et al. [13] proposed a new 

damage model exhibiting strength and stiffness degradation which takes into account the 

phenomenon of low-cycle fatigue and the interaction between axial force and bending moment at a 

section of a beam-column steel member. Combinations of deformation and energy dissipation have 

been also proposed to establish damage indices [14]. In these methods damage is expressed as a 

linear combination of the damage caused by excessive deformation and that due to repeated cyclic 

loading effects [14]. An extensive review of damage indices used in the literature can be found in 

Powell and Allahabadi [15]. Finally, the concept of continuum damage mechanics [16] in 

conjunction with the finite element method of concentrated inelasticity has been employed in the 

analysis of steel and reinforced concrete structures [17,18] for the determination of their damage. 

The composite moment resisting frames (MRFs) having concrete-filled steel tube (CFT) 

columns and steel girders (CFT-MRFs) (Fig. 1) are a relatively new type of structures which offers 

significant advantages for use as the primary resistance systems in building structures subjected to 

seismic loading. The CFT-MRF systems exhibit desirable features, such as large energy dissipation 
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and increased strength and stiffness to control the drifts. For these reasons, they have increasingly 

investigated during the last decades for understanding their behaviour under seismic loads [19-21] 

and have been popular in mid-rise and high-rise buildings in Japan and the U.S. 

 

 

 

 

 

 

 

 

 

Fig. 1. CFT-MRF configuration 

 

The main objective of this paper is to study the seismic inelastic behaviour of CFT-MRFs and 

quantify their damage through simple expressions that relate the most commonly used damage 

indices of the literature with the characteristics of the frames and the ground motions. Similar 

expressions have been proposed by the authors for steel MRFs and x-braced frames [22], but 

research on CFT-MRFs is still missing. For that reason, a large number of CFT-MRFs are subjected 

to an ensemble of 100 ordinary (i.e. without near-fault effects) ground motions scaled to different 

intensities. A response databank is created and a regression analysis is performed in order to derive 

simple formulae that can be used for the prediction of damage. Two examples are utilized to 

illustrate the use of the proposed formulae and demonstrate their efficiency and accuracy. It should 

be pointed out that the seismic damage calculated herein is “probably expected” and not a 

deterministic damage value, since the procedures utilized in this paper are based on statistical 

formulae. 

The proposed methodology provides the means of a rapid and accurate damage assessment of 

existing structures, avoiding the use of the more sophisticated and time consuming non-linear 

dynamic analysis. It can also be utilized in the preliminary design of structures in the framework of 

a performance based design approach in order to size a frame to achieve a preselected damage level. 

Thus, the designer can perform a high quality preliminary design based on elastic analysis and the 

proposed relationships, which can significantly decrease the need for iterations in an 

analysis/design procedure. This is very important when analysis is non-linear dynamic and time 

consuming. Finally, the main advantages of the proposed formulae are simplicity, accuracy and 

rapid damage estimation, which is usually done by advanced and costly methods of analysis. 
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2. Damage indices used in this study 

 

The proposed damage expressions are associated with four damage indices existing in the 

literature. These are the damage indices of Park and Ang [14], Bracci et al. [10], Roufaiel and 

Meyer [6] and Banon and Veneziano [5]. These indices have been selected here because i) are the 

most widely used in applications and ii) can be easily employed with the aid of the Ruaumoko 2D 

program [23]. In the following, a brief description of all these four damage indices will be given for 

reasons of completeness. 

The damage index DPA of Park and Ang [14] is expressed as a linear combination of the damage 

caused by excessive deformation and that contributed by repeated cyclic loading effects, as shown 

in the following equation: 

 

m
PA

u y u

D dE
Q

 

 
                            (1) 

 

In the above, the first part of the index is expressed as the ratio of the maximum experienced 

deformation δm to the ultimate deformation δu under monotonic loading. The second part is defined 

as the ratio of the dissipated energy dE  to the term (Qy δu)/β, where Qy is the yield strength and the 

coefficient β is a non-negative parameter determined from experimental calibration. In this work β 

is taken equal to 0.025 for the steel beams [24] and 0.03 for the CFT columns [25] of the frames 

used herein. 

Bracci et al. [10] suggested a damage index equal to the ratio of ‘damage consumption’ (loss in 

damage capacity) to ‘damage potential’ (capacity), defined as appropriate areas under the 

monotonic and the low-cycle fatigue envelopes. Thus, the ‘damage potential’ DP is defined as the 

total area between the monotonic load–deformation curve and the fatigue failure envelope. As 

damage proceeds, the load–deformation curve degrades, resulting in the damage Ds due to the loss 

of strength, while the irrecoverable deformation causes the deformation damage DD. Thus, this 

damage index DBRM is expressed as 
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Roufaiel and Meyer [6] proposed that the ratio between the secant stiffness at the onset of 

failure m mM   and the minimum secant stiffness reached so far x xM  , can be used as a good 
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indicator of damage. Based on that, they defined the modified flexural damage ratio (MFDR) or 

DRM as 

 

max[ , ]RMD MFDR MFDR MFDR                       (3) 
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where is the beam curvature due to a bending moment M, the term y yM   is the initial elastic 

stiffness and subscripts + and – denote the loading direction. 

The Banon and Veneziano [5] analysis is set in a probabilistic context and their model has been 

calibrated on the basis of 29 different tests on reinforced concrete elements and structures, selected 

from among the most representative ones in the technical literature. In particular, the damage 

parameters dl and d2 are defined, respectively, as the ratio of stiffness at yielding point to secant 

stiffness at failure, and the plastic dissipated energy Eh normalized with respect to the absorbed 

energy at the elastic limit. If the elastic-plastic model is used, d1 is obviously equal to the ratio of 

the maximum displacement xmax to the displacement at the elastic limit xy. Therefore, according to 

the notation introduced above, parameters d1 and d2 can be expressed as 

 

 1 max 2, 1 2y h y yd x x d E F x                       (5) 

 

where Fy is the yield strength. Furthermore, modified damage parameters 
*

1d  and 
*

2d  are introduced 

of the form 

 

*

1 1 1d d                              (6) 

 

*

2 2

bd ad                             (7) 

 

where a and b are two parameters which characterize the structural problem and are defined 

experimentally. For flexure, x and F are replaced by θ and M, respectively. Thus, the damage index 

DBV is defined as 

 

* 2 * 2

1 2( ) ( )BVD d d                           (8) 
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3. Plane regularCFT-MRFs used in this study 

 

3.1 Design and characteristics 

 

A family of 48 plane regular (orthogonal without setbacks) along their height CFT-MRFs are 

designed for the parametric study of this work aiming to cover a wide range of structural 

characteristics of this type of composite structures. These frames have storey height and bay width 

equal to 3 m and 5 m, respectively, and CFT column sections, as shown in Fig. 2, with b and t being 

the side and thickness, respectively, of the square steel tubular cross-section of columns containing 

concrete. Moreover, the frames have the following structural characteristics: number of stories, ns, 

with values 1, 3, 6, 9, 12, 15, 18 and 20, number of bays, nb = 3, steel yielding stress ratio es = 235 / 

fs with the yielding stress fs taking the values of 275 and 355 MPa, concrete strength ratio ec = 20 / fc 

with the compressive strength fc taking the values 20 MPa. Additionally, the beam-to-column 

stiffness ratio, ρ and column to beam strength ratio, α, taking various values within practical limits 

are also considered. 

 

 

Fig. 2. Typical geometry of frames considered with columns of square concrete filled steel tube (CFT) sections. 

 

The beam-to-column stiffness ratio ρ of a frame is based on the beam and column properties in 

the storey closest to the mid-height of the frame and calculated by 

 

 

 
b

c

I l

I l
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


                           (9) 

 

where I and l are the second moment of inertia and length of the steel member (column c or beam 

b), respectively. The concrete core is considered as cracked and the effective second moment of 

inertia for the composite section is defined according to EC4 [26]. Karavasilis et al. [27] have 
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introduced during the investigation of the inelastic seismic response of steel MRFs the beam 

strength ratio, α, which indicates how much stronger are the beams in comparison with the base 

columns. Following [27], the strength ratio, α, adopted here is defined as 

 

,1, ,RC av RB avM M                         (10) 

 

where MRC,1,av is the average of the plastic moments of resistance of the columns of the first storey 

(including the influence of axial load for gravity-earthquake loading combination) and MRB,av is the 

average of the plastic moments of resistance of the beams of all the stories of the frame. This 

parameter quantifies the structural capacity to avoid the formation of a global plastic mechanism 

which is developed when plastic hinges occur at the base of columns of the first floor and at the 

ends of beams. 

The CFT-MRFs are designed according to the structural Eurocodes 3 [28], 4 [26] and 8 [1] with 

the aid of the computer programs SAP2000 [29] and MATLAB [30]. The parametric study of this 

work is not based on the design of a 3D prototype building but on 2D CFT-MRFs. The seismic load 

combination consists of the gravity load G + 0.3Q = 27.5 kN/m on beams plus the earthquake load 

and the gravity load combination 1.35G + 1.5∙Q = 42.6 kN/m with G = 26 kN/m and Q = 5 kN/m 

being the dead and live floor loads, respectively. Columns are not subjected to biaxial flexure. The 

earthquake load is determined using design ground acceleration αg = 0.30g, soil type B (soil factor S 

= 1.2) and Spectrum Type 1 with behaviour factor q = 4. In addition to the satisfaction of the 

seismic strength demands in members, other seismic design checks include compliance with 

stability and drift criteria as well as capacity design considerations. 

Data for 24 of the 48 frames considered here, including values for ns, ρ, α, beam and column 

cross-sections and fundamental periods of vibration, are presented in Table 1, for 275 MPa yield 

steel stress. The sectional dimensions of the remaining 24 frames with 355 MPa yield steel stress 

are the same in order to clarify the effect of that material parameter. In this table, numeric forms, 

such as, 300×12.5 (1-4) and 300x10 (5-6), mean that the first four stories have CFT columns with 

square steel tubes of width b = 300 mm and thickness t = 12.5 mm, whereas the next two higher 

stories have CFT columns with square steel tubes of b = 300 mm and t = 10 mm, while numeric 

forms, such as, 400 (2-5), mean that stories from 2 to 5 have IPE 400 beams. 
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Table 1. Characteristics of CFT-MRFs considered in the study. 

No. ns ρ α T [s] Columns [CFT] (floors) Beams [IPE] (floors) 

1 1 0.274 1.917 0.354 220x10 (1) 240 (1) 

2 1 0.150 2.743 0.290 260x10 (1) 240 (1) 

3 1 0.084 4.506 0.237 300x12.5 (1) 240 (1) 

4 3 0.229 2.322 0.844 250x12.5 (1-3) 270 (1-3) 

5 3 0.125 3.435 0.749 300x12.5(1-3) 270 (1-3) 

6 3 0.082 4.489 0.690 340x12.5(1-3) 270 (1-3) 

7 6 0.254 2.246 1.277 300x12.5 (1-4), 300x10 (5-6) 330 (1-4), 300 (5-6) 

8 6 0.173 3.170 1.204 320x16 (1-4), 320x12.5 (5-6) 330 (1-4), 300 (5-6) 

9 6 0.083 5.118 1.093 400x16 (1-4), 350x20 (5-6) 330 (1-4), 300 (5-6) 

10 9 0.339 2.139 1.517 
320x16 (1-5), 320x12.5 (6-7), 

300x12.5 (8-9) 

360 (1), 400 (2-5), 360 (6-7), 330 

(8-9) 

11 9 0.191 2.847 1.416 
400x12.5 (1-5), 350x12.5 (6-7), 300x12.5 

(8-9) 

360 (1), 400 (2-5), 360 (6-7), 

330 (8-9) 

12 9 0.094 5.413 1.289 
450x20 (1-5), 420x20 (6-7),   

400x16 (8-9) 

360 (1), 400 (2-5), 360 (6-7), 

330 (8-9) 

13 12 0.300 2.383 1.753 
400x12.5 (1-5), 350x12.5 (6-8),  

320x12.5 (9-10), 300x10 (11-12) 

400 (1), 450 (2-5), 400 (6-8),  

360 (9-10), 330 (11-12) 

14 12 0.162 3.919 1.630 
420x20 (1-5), 400x16 (6-8),  

350x20 (9-10), 350x14 (11-12) 

400 (1), 450 (2-5), 400 (6-8),  

360 (9-10), 330 (11-12) 

15 12 0.077 6.895 1.517 
500x25 (1-5), 500x16 (6-8),  

450x16 (9-10), 400x20 (11-12) 

400 (1), 450 (2-5), 400 (6-8),  

360 (9-10), 330 (11-12) 

16 15 0.260 2.741 1.940 

420x16 (1-5), 400x14 (6-8),  

350x16 (9-11), 320x16 (12-13), 

320x12.5 (14-15) 

400 (1), 500 (2-5), 450 (6-8),  

400 (9-11), 360 (12-13), 

 330 (14-15) 

17 15 0.126 4.853 1.786 

500x20 (1-5), 450x22.5 (6-8),  

420x20 (9-11),  420x14 (12-13),  

400x14 (14-15) 

400 (1), 500 (2-5), 450 (6-8),  

400 (9-11) 360 (12-13),  

330 (14-15) 

18 15 0.070 7.186 1.702 

600x20 (1-5), 550x20 (6-8), 

 500x20 (9-10) 450x20 (11-12),  

420x20 (14-15) 

400 (1), 500 (2-5), 450 (6-8), 

400 (9-11) 360 (12-13),  

330 (14-15) 

19 18 0.281 3.390 2.143 

450x20 (1-5), 420x16 (6-9),  

400x16 (10-13), 350x16 (14-16),  

350x12.5 (17-18) 

450 (1), 500 (2-9), 450(10-12) 

400 (13-15), 360 (16-18) 

20 18 0.192 4.280 2.055 

500x20 (1-5), 450x20 (6-9), 

 420x20 (10-13), 420x12.5 (14-16),  

350x16 (17-18) 

450 (1), 500 (2-9), 450(10-12) 

400 (13-15), 360 (16-18) 

21 18 0.138 5.282 1.995 

550x20 (1-5), 500x20 (6-9), 

 450x20 (10-13), 420x16 (14-16),  

400x12.5 (17-18) 

450 (1), 500 (2-9), 450(10-12) 

400 (13-15), 360 (16-18) 

22 20 0.287 3.338 2.390 

450x20 (1-6), 420x16 (7-11), 

 400x16 (12-15), 350x16 (16-18),  

320x16 (19-20) 

450 (1-2), 500 (3-11),  

450 (12-14), 400 (15-17),  

360 (18-20) 

23 20 0.181 4.214 2.284 

500x20 (1-6), 450x22.5 (7-11),  

420x20 (12-15), 400x16 (16-18),  

350x20 (19-20) 

450 (1-2), 500 (3-11),  

450 (12-14), 400 (15-17),  

360 (18-20) 

24 20 0.101 6.300 2.162 

600x20 (1-6), 550x20 (7-11),  

500x20 (12-15), 450x20 (16-18),  

420x20 (19-20) 

450 (1-2), 500 (3-11),  

450 (12-14), 400 (15-17),  

360 (18-20) 
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3.2 Modelling for nonlinear analysis 

 

The 48 CFT-MRFs mentioned in the previous section, are subject to a set of 100 accelerograms 

and their response to those motions is determined through inelastic dynamic time-history analysis 

using Newmark’s constant average acceleration method with the aid of the computer analysis 

program Ruaumoko 2D [23]. Diaphragm action is assumed at every floor and the effect of large 

deformations is taken into account. Rayleigh type damping corresponding to 3% of the critical 

damping in the first and second mode is assumed. The deteriorating inelastic behaviour of all the 

frame members is modelled by means of zero-length plastic hinges. Finally, the effect of panel 

zones (PZs) was modelled by using the scissors model [31], assuming that the connections are rigid. 

The Ramberg–Osgood hysteresis model is selected for simulating the seismic behaviour of steel 

beams. Degradation effects can be included in the Ramberg-Osgood model with the aid of the 

Ruaumoko's strength degradation model, which consists of a backbone curve based on ductility 

demands [23], as shown in Fig. 3. The strength reduction variation of Fig. 3 can be defined using 

the three parameters: DUCT1, which is the ductility at which the strength degradation begins, 

DUCT2, which is the ductility at the end of strength degradation, DUCT3, which is the ductility at 

1% initial strength, and RDUCT, which is the ratio of the residual strength over the initial yield 

strength. The parameters which define the strength reduction variation of Ruaumoko's strength 

degradation model can be determined using the proposed relationships by Lignos and Krawinkler 

[33] in conjunction with the PEER/ATC 72-1 [34] guidelines. The modified Al-Bermani model 

developed by Skalomenos et al. [32] is used to simulate the hysteretic behaviour of CFT columns. 

This model is selected for two reasons: (i) the model was calibrated by Skalomenos et al. [32] for a 

wide range of values of the geometrical and strength parameters and (ii) the model is a simple 

concentrated plasticity model that can provide very good predictions of the force-deformation 

responses of CFT columns to cyclic loading, which exhibit material deterioration. Thus, the 

analytical models considered here account for nonlinearities due to yielding and local buckling of 

the steel beams and steel tubes of the CFT columns, cracking and crushing of concrete in the CFT 

columns and steel yielding and concrete cracking in the PZs. All the analytical models of frame 

components utilized here are based on concentrated plasticity theory and are presented in detail in 

Skalomenos et al. [32, 35], where the accuracy of the numerical response predictions is shown in a 

wide range of comparisons between numerical and experimental results. Finally, the 

modelling/analysis for the CFT columns take into account the bending moment – axial load (M – 

N) interaction diagram, such as the one described in Zhao et al. [36] according to Eurocode 4 [26]. 
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Fig. 3. Strength reduction variation using ductility terms [23]. 

 

3.3 Model validation 

 

The composite MRF investigated experimentally by a pseudodynamic testing method by 

Herrera et al. [20] is used here to verify the validity of the aforementioned models for individual 

components (columns, beams, connections, and PZ) of a CFT-MRF by comparing its response to 

acceleration records at different seismic hazards as obtained experimentally and numerically with 

the aid of RUAUMOKO [23]. This frame is a 0.6-scale two-dimensional model of an external four-

story/two-bay CFT-MRF of a three-dimensional prototype building, as shown in Fig. 4(a). In 

addition to the four stories above the ground, the frame also has a basement level and consists of 

rectangular CFT columns, wide flange beams, and split-tee moment connections. A typical interior 

joint of the frame and its analytical model are shown in Fig. 4(b) to illustrate the connectivity 

between the element models. The column model end nodes are at the boundary of the PZ, and the 

beam model end nodes are connected through the connection model to the nodes on the PZ 

boundary at the face of the column. The beam end nodes and PZ boundary nodes have the same 

horizontal displacement, and their vertical and rotational DOFs are connected by the vertical and 

rotational springs of the spring connection model, respectively. 

In the analysis model, the P-Δ effects due to lateral displacements are taken into account through a 

leaning column with properties determined from the interior gravity frames of the prototype 

building. The leaning column is connected to the frame through loading beams attached to the 

midpoint of the steel girders at both bays of the structure with pin connections, as shown in Fig. 

4(a). Additionally, the column is continuous, pinned at its base and constrained to have the same 

lateral displacement as the floor at each floor level. Consistent with the pseudodynamic model 

designed for the experiment, the loading beams are modelled as rigid links with large stiffness 

values. The section properties of the leaning column are calculated as the sum of the section 
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properties of one-half of the interior columns tributary to the prototype building. The mass of the 

structure is assumed to be lumped to the nodes of the leaning column at the story heights. Stiffness 

and mass proportional damping (Rayleigh damping) are assumed with proportionality factors of 

0.1547 and 0.001194 for the stiffness and mass matrices, respectively, as a result of assumed 2% 

viscous damping in the first and third modes. The measured geometric and material properties of 

the structure members are utilized for determining the necessary parameters for the analytical 

models of individual components of the numerically analysed frame. It should be noted that the test 

structure has already been scaled down with the relevant multiplier factors by Herrera et al. [20]. As 

mentioned earlier, the experiment was conducted under different hazard levels. First, the frame was 

subjected to the Imperial Valley Array 04 (1979) ground motion record representing a frequently 

occurring earthquake (FOE). The accelerogram scale factor for the FOE level was 0.400. The 

maximum roof displacement was measured as 0.6% of the building height, and the structure 

remained primarily elastic. Second, the structure was loaded according to the Northridge Canoga 

Park (1994) ground motion record scaled to the design basis earthquake (DBE) level for this 

structure based on response spectrum for stiff soil conditions. The accelerogram scale factor for the 

DBE level was 1.275. The maximum roof displacement was measured as 3.0% of the building 

height, and the frame experienced inelastic deformation without significant strength degradation. 

After this test, the frame was straightened to eliminate the residual drift. Third, the structure was 

subjected to the Northridge Canoga Park (1994) ground motion record scaled to the maximum 

considered earthquake (MCE) level. The accelerogram scale factor for the MCE level was 1.912. 

The maximum roof displacement was measured as 3.7% of the building height. Plastic hinges 

formed in the beams, and a crack developed at the bottom of the first story middle column, resulting 

in a drop in shear capacity. Lastly, the frame was subjected to a second DBE, representing an 

aftershock. The maximum roof displacement was measured as 3.3% of the building height. The 

crack from the previous test propagated, and another crack was formed, but the frame did not 

collapse. Fig. 5(a) and (b) shows the computational and experimental displacement time-history 

results for the first and fourth floors corresponding to the design level (DBE), respectively, while 

Fig. 6(a) and (b), the same response quantities to the MCE loading. As can been seen from Figs. 5–

6, the analysis results closely follow the experimental ones. Significant inelastic response was 

observed for both steel and CFT column members. However, the extent of damage was larger for 

the steel girders, which experienced yielding and local buckling under both design level and MCE. 
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                                                        (a)                                                                                       (b) 

Fig. 4. (a) Test CFT-MRF by Herrera et al. [20] and (b) illustration of all models [35]. 
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Fig. 5. Comparisons of experimental and computational results: (a) first-floor and (b) fourth-floor displacement history 

for DBE test [35]. 
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Fig. 6. Comparisons of experimental and computational results: (a) first-floor and (b) fourth-floor displacement history 

for MCE test [35]. 
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4. Ground motions considered 

 

A set of 100 ordinary (far-field type) ground motions recorded at soils with average shear wave 

velocity vs,30 in the range between 360 and 800 m/s (classified according to Eurocode 8 [1] as soil 

type B) are selected from the PEER [37] database and are used for the nonlinear time history 

analyses of this study. Event magnitudes ranged from M 6.0 to M 7.5. The selection of these 

ordinary ground motions was made in such a way so that their geometric average spectrum is as 

close as possible to the Eurocode 8 [1] elastic spectrum for ground acceleration 0.30 g and soil type 

B. The acceleration response spectra of the selected 100 motions are shown in Fig. 7 against to the 

Eurocode 8 [1] elastic spectrum. A full list of all these ground motions with their characteristics can 

be found in Skalomenos [38]. 

 

 

Fig. 7. Acceleration response spectra of the 100 earthquakes under consideration and comparison with Eurocode 8 [1] 

elastic spectrum. 

 

5. Methodology for computation of damage expressions 

 

In the present work, an extensive parametric study was conducted for the 48 CFT-MRFs of 

Table 1, which were subjected to the 100 ground motions of Fig. 7 for the evaluation of the damage 

expressions. The frames were analyzed with the program Ruaumoko 2D [23] using the incremental 

dynamic analysis method [39]. Thus, approximately 72000 analyses (=48 frames x 100 ground 

motions x 15 analyses on the average for every frame) were conducted in this work. These 15 on 

the average analyses for every frame correspond to 15 different PGA values for every ground 

motion. 

The ground motion intensity level was measured here by an intensity measure equal to the 

spectral acceleration Sa, of the motion corresponding to the fundamental period of each frame. The 

structural response was measured by a damage measure equal to the maximum damage index 
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among all storeys that was recorded during the time history of the analysis. More specifically, each 

ground motion was continuously scaled by increasing its Sa until the frame to become dynamically 

unstable and collapse, while no limit of maximum drift was considered. The results of the analysis 

were post-processed in order to create a databank with the response quantities of interest. 

The created databank is actually a spreadsheet with rows equal to the number of nonlinear 

analyses and columns equal to the response quantities of interest in columns and beams of a CFT-

MRF along its height. Those response quantities are the maximum values of the following damage 

indices:1) Park and Ang damage index, DPA, 2) Bracci et al. damage index, DB, 3) Roufaiel and 

Meyer damage index, DRM and 4) Banon and Veneziano damage index, DBV. Moreover, the columns 

of the databank were increased by adding the characteristics of the frames (ns, ρ, α) and the spectral 

acceleration Sa. 

 

6. Damage formulae for moment resisting frames 

 

In this section, simple formulae to estimate seismic damage, through four well known damage 

indices, of CFT-MRFs are proposed. Thus, with the aid of these simple expressions one can 

determine the maximum damage, D, of column bases or beams of this type of frames in terms of 

characteristics of the structure and the ground motions that excite them. 

By analyzing the response databank, the proposed relationship was identified and thus the 

expression 
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                    (11) 

 

with b1, b2, b3, b4 and b5 constants to be determined, was selected as a good candidate for 

approximating the response databank. The aforementioned relation is relatively simple and satisfies 

the physical constraint D=0 for Sa=0. However, for nonzero values of Sa for which structural 

members behave elastically, Eq. (11) gives nonzero values of damage either at columns or beams, 

while in reality damage there is zero. Thus, before using this equation, one should compute the 

internal forces (bending moments M and axial forces P) of the columns or beams by performing a 

linear elastic analysis and check if their values are in the elastic range. This can be done by 

checking if the computed (M,P) combination lies inside the area enclosed by the M-P interaction 

diagram of Fig. 8 taken from the Ruaumoko computer program [23], where M0, PYT and PYC 

denote the yield moment at P = 0, the axial tension yield force and the axial compression yield force 

of a section, respectively. If the members are in the elastic range, the value of damage is equal to 
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zero by default, otherwise the proposed relationship can be used. Use of the Levenberg–Marquardt 

algorithm [30] for nonlinear regression analysis of the results of the parametric study, led to the 

following expressions for each one of the four damage indices 

 

 

Fig. 8. M-P interaction diagram taken from the Ruaumoko computer program [23]. 
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b) for beams: 
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With D being any damage index of interest, the mean, median and standard deviation of the 

ratio of the “exact” value of D obtained from inelastic dynamic analyses over the approximate one 

calculated from Eqs (12) to (19), respectively., i.e., Dexact/Dapp, are used in order to express the 

central tendency and the dispersion of the error introduced by the proposed relations. Thus, these 

metrics for the damage indices used in this study are presented in Table 2. The values of those 

metrics show that the proposed formulae are fairly accurate. In addition, Fig. 9 depicts graphs of all 

the damage indices based on the proposed relationships versus their “exact” values for (a) columns 

and (b) beams. 

Eqs (12) to (19) can also be utilized in the preliminary performance based design of structures 

in conjunction with elastic analysis in order to decrease the need for iterations in the analysis/design 

procedure. For this purpose, a flowchart showing how the design process should be conducted to 

take advantage of these equations is depicted in Fig. 10. 

 

Table 2. Metrics of Dexact/Dapp for all damage indices considered in this study. 

Dexact/Dapp (Column Bases) Mean Median Standard Deviation 

DPAM 1.00 0.96 0.29 

DBRM 1.00 0.99 0.26 

DRMO 1.00 0.93 0.37 

DBVM 0.99 0.97 0.27 

Dexact/Dapp (Beams) Mean Median Standard Deviation 

DPAM 0.99 0.96 0.27 

DBRM 1.00 0.98 0.18 

DRMO 1.00 0.98 0.27 

DBVM 0.99 0.98 0.23 
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(a) 

 

 

(b) 

Fig. 9. Damage indices based on proposed equations versus exact values for (a) columns and (b) beams 
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Fig. 10. Design process including proposed equations 

 

7. Examples of application 

In this section, three numerical examples are presented in order to illustrate the use of the 

proposed expressions and demonstrate their advantages and precision by comparing the results 

derived by them to the “exact” values of damage obtained by nonlinear dynamic analyses. 

 

7.1 Three storey moment resisting frame 

A three storey-three bay CFT-MRF is examined, with a geometrical configuration similar to the 

one shown in Fig. 2. The seismic load combination consists of the gravity load G + 0.3Q = 27.5 

kN/m on beams plus the earthquake load and the gravity load combination 1.35G + 1.5∙Q = 42.6 

kN/m. The frame has been designed in accordance with the provisions of structural Eurocodes, 

using design ground acceleration αg = 0.30g, soil type B (soil factor S = 1.2) and Spectrum Type 1 

with behaviour factor q = 4. The yielding stress fs takes the value of 275 MPa. The design yielded 

CFT columns with square steel tubes of width b = 300 mm and thickness t = 12.5 mm and IPE 240 

beams for all the floors. 

The characteristic value α of the frame was computed on the basis of Equation (10) and found to 

be equal to 2.322. The expected ground motion was defined by the acceleration response spectrum 

of EC8 [1] with a PGA equal to 0.35 g and a soil of class B. The fundamental period of vibration, T, 

of the frame is equal to 0.844 s, while its spectral acceleration Sa corresponding to this period, 

derived in the basis of EC8 [1] spectrum, equals 0.64 g. 

Eight semi-artificial accelerograms compatible with the EC8 [1] spectrum were generated via a 

deterministic approach [40] on the basis of the eight real seismic records of Table 3. The response 
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spectra of these motions, in comparison with the EC8 [1] spectrum, are depicted in Fig. 11. 

Nonlinear time history analyses of the designed frame under these motions were performed. The 

four damage indices used here and observed in column bases and beams of the frame were 

computed with the aid of the program Ruaumoko 2D [23]. Then, the mean value of the maximum 

damage values for the eight semi-artificial accelerograms was evaluated for each damage index. 

Before using the proposed formulae, the internal forces (bending moments M and axial forces P) of 

the columns or beams were computed by performing a linear elastic analysis and it was checked if 

their values are in the elastic range as explained in Section 6. It was found that both the column 

bases and beams were not in the elastic range. Thus, the approximate values of the damage indices 

were computed with the aid of Eqs (12)-(19) and recorded together with the exact ones in Tables 4 

and 5 for column bases and beams, respectively. The proposed relations predict satisfactorily the 

damage of the beams (error = 5.6-9.5%) for all kinds of indices. For the columns bases damage is 

also predicted fairly well (error = 4.7-16.0%) for all kinds of indices. Thus, the predictions of the 

proposed formulae are quite close to the “exact” ones and as far as the columns are concerned, in 

most of the cases, on the safe (conservative) side as being larger than the “exact” ones. 

 

Table 3. Characteristics of ground motions used in the examples. 

No. Date Record Name Comp. Station Name PGA (g) 

1.  1992/04/25 Cape Mendocino NS 89509 Eureka 0.154 

2.  1992/06/28 Landers  N045 24577 Fort Irwin 0.114 

3.  1994/01/17 Northridge EW 24389 LA - Century City CC North 0.256 

4.  1994/01/17 Northridge EW 24538 Santa Monica City Hall 0.883 

5.  1994/01/17 Northridge EW 24400 LA - Obregon Park 0.355 

6.  1994/01/17 Northridge EW 127 Lake Hughes #9 0.165 

7.  1994/01/17 Northridge N035 90014 Beverly Hills- 12520 Mulhol 0.617 

8.  1994/01/17 Northridge EW 24401 San Marino, SW Academy 0.116 
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Fig. 11. Response spectra of ground motions used in the examples of Section 7. 

 

Table 4. Comparison between “exact” and approximate values of damage indices for columns of the CFT-MRF of the 

example of Section 7.1. 

Damage Index “Exact” Value Approximate Value Error(%) 

DPAM 0.157 0.187 16.0 

DBRM 0.436 0.411 5.6 

DRMO 0.273 0.287 4.7 

DBVM 0.203 0.240 15.7 

 

Table 5. Comparison between “exact” and approximate values of damage indices for beams of the CFT-MRF of the 

example of Section 7.1. 

Damage Index “Exact” Value Approximate Value Error(%) 

DPAM 0.355 0.335 5.6 

DBRM 0.544 0.500 8.1 

DRMO 0.315 0.295 6.4 

DBVM 0.494 0.447 9.5 

 

7.2 Six storey moment resisting frame 

 

A six storey-three bay CFT-MRF is examined, with a geometrical configuration similar to that 

shown in Fig. 2. The seismic load combination consists of the gravity load G + 0.3Q = 27.5 kN/m 

on beams plus the earthquake load and the gravity load combination 1.35G + 1.5∙Q = 42.6 kN/m. 

The frame has been designed in accordance with the provisions of structural Eurocodes, using 

design ground acceleration αg = 0.30g, soil type B (soil factor S = 1.2) and Spectrum Type 1 with 

behaviour factor q = 4. The yielding stress fs takes the value of 275 MPa. 
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The characteristic value α of the frame was computed on the basis of Equation (10) and found to 

be equal to 3.17. The fundamental period of vibration, T, of the frame and the corresponding 

spectral acceleration Sa from the EC8 [1] spectrum were equal to equal to 1.204 s and 0.45 g, 

respectively. 

The records of the previous example are again used here. Nonlinear time history analyses of the 

designed frame under these motions were performed. The four damage indices used here and 

observed in column bases and beams of the frame were computed with the aid of the program 

Ruaumoko 2D [23]. Then, the mean value of the maximum damage values for the eight semi-

artificial accelerograms was calculated for each damage index. Before using the proposed formulae, 

the internal forces (bending moments M and axial forces P) of the columns or beams were 

computed by performing a linear elastic analysis and it was checked if their values are in the elastic 

range as explained in Section 6. It was found that only the column bases were in the elastic range. 

Thus, the values of the damage indices at the column bases were set equal to zero by default and 

Eqs (12)-(15) were not used in this case. Moreover, the approximate values of the damage indices 

for the beams were computed with the aid of Eqs (16)-(19) and recorded together with the exact 

ones in Table 6. The proposed relations predict the damage of the beams with high accuracy (error 

= 6.8 - 8.8%) for all kinds of indices, and they are on the safe (conservative) side, in most of the 

cases. 

 

Table 6. Comparison between “exact” and approximate values of damage indices for beams of the CFT-MRF of the 

example of Section 7.2. 

Damage Index “Exact” Value Approximate Value Error(%) 

DPAM 0.321 0.346 7.2 

DBRM 0.466 0.500 6.8 

DRMO 0.279 0.300 7.0 

DBVM 0.509 0.464 8.8 

 

7.3 Composite MRF of Herrera et al. [20] 

 

The composite MRF investigated experimentally by Herrera et al. [20] is used herein as an 

example for the validation of the proposed relationships. The characteristics of the frame and all its 

design details are given in subsection 3.3 and are different than that used for the parametric studies. 

This is done to test the proposed equations for a frame configuration different than that used for the 

calibration of the proposed equations. 

The characteristic value α of the frame was computed on the basis of Equation (10) and found to 

be equal to 1.087. The expected ground motion was defined by the acceleration response spectrum 

of EC8 [1] with a PGA equal to 0.35 g and a soil of class B. The fundamental period of vibration, 
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T, of the frame is equal to 1.108 s, while its spectral acceleration Sa corresponding to this period, 

derived in the basis of EC8 [1] spectrum, equals 0.49 g. 

The records of the example in subsection 7.1 are again used here. Nonlinear time history 

analyses of the designed frame under these motions were performed. The four damage indices used 

here and observed in column bases and beams of the frame were computed with the aid of the 

program Ruaumoko 2D [23]. Then, the mean value of the maximum damage values for the eight 

semi-artificial accelerograms was calculated for each damage index. Before using the proposed 

formulae, the internal forces (bending moments M and axial forces P) of the columns or beams 

were computed by performing a linear elastic analysis and it was checked if their values are in the 

elastic range as explained in Section 6. It was found that only the column bases were in the elastic 

range. Thus, the values of the damage indices at the column bases were set equal to zero by default 

and Eqs (12)-(15) were not used in this case. Moreover, the approximate values of the damage 

indices for the beams were computed with the aid of Eqs (16)-(19) and recorded together with the 

exact ones in Table 7. The proposed relations predict the damage of the beams fairly well (error = 

11.7 - 20.5%) for all kinds of indices, and they are on the safe (conservative) side, for the cases of 

Bracci et al. [10] and Roufaiel and Meyer [6] damage indices. The prediction of the damage indices 

of this example was not as accurate as that of the previous examples. This is logical, because the 

frame used here has different structural characteristics (e.g. storey height and bay width) than the 

frames used in the parametric studies. However, this prediction can be considered as satisfactory, 

since it was managed to estimate damage of a frame with different structural configuration and 

properties than those used for the derivation of the proposed equations. 

 

Table 7. Comparison between “exact” and approximate values of damage indices for beams of the CFT-MRF of the 

example of Section 7.3. 

Damage Index “Exact” Value Approximate Value Error(%) 

DPAM 0.462 0.408 11.7 

DBRM 0.432 0.512 15.6 

DRMO 0.389 0.448 13.2 

DBVM 0.658 0.523 20.5 

 

 

8. Conclusions 

A procedure in terms of simple formulae for estimating the maximum damage in regular multi-

storey CFT-MRFs subjected to ordinary (i.e. without near-fault pulses effects) ground motions has 

been presented. Particularly, simple and easy to use relationships were derived for the computation 

of four damage indices of the literature, which take into account the influence of basic 

characteristics of CFT-MRFs and ground motions, such as the number of stories, beam strength 
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ratio, steel yielding stress ratio and spectral acceleration. The scope of the frames used in this study 

is to represent the behaviour of a wide range of CFT-MRFs, including structures from low to high 

number of storeys, which can be implemented in common practice. It should be noticed herein that 

the proposed relations are valid for frames with characteristics similar to those of the frames used in 

the parametric study and for seismic sites where ordinary ground motions are expected. These 

expressions give a good approximation of damage and provide a rapid damage assessment of 

existing structures without the use of the more sophisticated and time consuming non-linear 

dynamic analysis. Finally, They can also be utilized in the preliminary design of structures in 

conjunction with elastic analysis in order to decrease the need for iterations in the analysis/design 

procedure. 
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