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Abstract

Background: Major biological and cultural innovations in late Pliocene hominin evolution are frequently linked to the
spread or fluctuating presence of C4 grass in African ecosystems. Whereas the deep sea record of global climatic change
provides indirect evidence for an increase in C4 vegetation with a shift towards a cooler, drier and more variable global
climatic regime beginning approximately 3 million years ago (Ma), evidence for grassland-dominated ecosystems in
continental Africa and hominin activities within such ecosystems have been lacking.

Methodology/Principal Findings: We report stable isotopic analyses of pedogenic carbonates and ungulate enamel, as well
as faunal data from ,2.0 Ma archeological occurrences at Kanjera South, Kenya. These document repeated hominin
activities within a grassland-dominated ecosystem.

Conclusions/Significance: These data demonstrate what hitherto had been speculated based on indirect evidence: that
grassland-dominated ecosystems did in fact exist during the Plio-Pleistocene, and that early Homo was active in open
settings. Comparison with other Oldowan occurrences indicates that by 2.0 Ma hominins, almost certainly of the genus
Homo, used a broad spectrum of habitats in East Africa, from open grassland to riparian forest. This strongly contrasts with
the habitat usage of Australopithecus, and may signal an important shift in hominin landscape usage.
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Introduction

The hominin fossil and archeological records of Africa exhibit

substantial anatomical and behavioral change during the Plio-

Pleistocene (,1.5–3.0 Ma), including the evolution of Homo and

Paranthropus, the origin of lithic technology and archeological sites,

the first evidence of large mammal butchery, lower limb

elongation and selection for endurance running, and thermoreg-

ulatory adaptations to hot, dry environments [1]. These

evolutionary innovations have been linked consistently to novel

selective pressures encountered as early hominins foraged

increasingly in more open, arid woodland and grassland habitats

that were replacing wooded biomes. However, the most finely

resolved evidence for environmental change is not from the fossil

and archeological sites themselves, but from deep sea core

records that indicate drier and more variable conditions in

tropical and subtropical Africa [2–8]. An increase in arid-adapted

vegetation is also reflected by morphological changes across many

African large mammal lineages and by the dispersal of the

Eurasian grazer Equus across Africa ,2.3 Ma [9,10]. Although

these data suggest that grassland-dominated ecosystems (defined

here as having .75% C4 plants and a graze-dependent fauna)

should be present as one extreme of the continental habitat

spectrum, actual documentation of both Pliocene grasslands and

of hominin activities in open habitats has until now eluded

paleoanthropologists. Here we use faunal and stable isotopic

evidence to demonstrate the earliest presence of a grassland-

dominated ecosystem, and archeological evidence for hominin

activities within this setting from the late Pliocene locality of

Kanjera South, Kenya (Fig. 1). At least one species of tool-

making hominin, almost certainly of the genus Homo [1], was

repeatedly using this open setting. In contrast, most other

Oldowan occurrences are situated in more wooded settings.

These findings indicate that by ,2.0 Ma tool-making hominins,

probably early Homo, accessed and used a broad spectrum of East

African habitats, from open grassland to riparian forest.
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The late Pliocene Oldowan occurrences at Kanjera South are

found on the northern margins of the Homa Mountain

Carbonatite Complex, Homa Peninsula, southwestern Kenya

(Fig. 1). The Homa Peninsula lies within the Nyanza Rift, which

presented a depositional low to the north of the site. The

lithological sequence at Kanjera South consists of 6 beds of the

Southern Member of the Kanjera Formation, from oldest to

youngest KS-1 to KS-6 [11,12]. Only KS-1 to KS-4 is described

here since archeological occurrences are known only within this

interval, from the top of Bed KS-1 through Bed KS-3.

KS-1 deposition began as a flow of pyroclastic material, possibly

as a lahar, from the Homa Mountain complex in the south

towards the depocenter in the Nyanza Rift graben. Lower KS-1

shows little internal stratification and no pedogenic development.

In contrast, the well-bedded, better sorted and pedogenically

modified upper parts of KS-1 represent reworking of the deposits

by ephemeral streams running across the fan of the original

pyroclastic flows. KS-2 represents a continuation of this environ-

mental setting, with deposition by anastomosing channels flowing

with intermittent, diffuse, generally low energy flow regimes and

better-developed pedogenesis than KS-1.

KS-3 sees the transition to a wetter depositional environment, as

evidenced by soft sediment deformation and the presence of a

small channel, though stable land surfaces with pedogenesis

Figure 1. Placement map and stratigraphic diagram showing the location of Kanjera in southwestern Kenya and of the Southern
Exposures at Kanjera. The composite stratigraphic log shows the basal three beds of the Southern Member (KS-1 to KS-3) and the base of KS-4.
Spatially associated artifacts and fossils are found as diffuse scatters and also in more vertically discrete concentrations from the top of KS-1 through
KS-3, with KS-2 providing the bulk of the archeological sample.
doi:10.1371/journal.pone.0007199.g001
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continued to be found. KS-4 represents a continuation of this

moister trend, with clays being deposited either during the

transgression of a lake out of the depocenter to the north or

during the formation of a wetland system. The homogeneity of the

KS-4 clays favors the former interpretation, and the paleosol layers

interbedded in KS-4 indicate intervals of lake regression

sufficiently long for pedogenesis to take place.

A combination of biostratigraphy (co-occurrence of the equid

Equus sp., the suids Metridiochoerus andrewsi and M. modestus, and the

proboscidean Deinotherium sp.) as well as magnetostratigraphy (a

reversed sequence in Beds KS-1 to KS-4 with the presence of the

Olduvai subchron (1.95–1.77 Ma) in Beds KS-5 and KS-6)

indicate that the KS-1 to KS-3 archeological occurrences date

between ,2.3 Ma (the dispersal of Equus across Africa, first

occurrence of M. modestus) and 1.95 Ma (the base of the Olduvai

subchron) [1,11]. Given the apparent rapidity of deposition, an

age of ,2 Ma for the archeological occurrences seems most likely.

Except for artifacts and fauna found in thin, discontinuous

conglomerate lenses, hominin activity was the primary agent of

accumulation of the majority of archeological materials at this site

[11,13]. Discussion here focuses on KS-2 materials from the

169 m2 Excavation 1, which has yielded 2190 fossils and over

2471 artifacts with three dimensional coordinates from several

levels within the 1.5-m-thick sequence. KS-2 accumulated rapidly

and, based on the limited development of pedogenic features,

likely represents decades to centuries of deposition.

Results and Discussion

Habitats rich in plants using the C3 photosynthetic pathway,

such as woodland and dry forests, are well-documented between

10 and 2 Ma in East Africa (Fig. 2). Stable isotopic analysis of

pedogenic carbonates and occluded paleosol organic matter across

an 130 m transect of the Kanjera South locality provide the first

clear evidence of a grassland setting (.75% C4 vegetation) in this

10 million year sequence (Fig. 2, Tables S1 and S2). Evidence that

grassland habitats dominated the regional ecosystem beyond the

confines of our excavations is provided by large mammal

frequencies, particularly of the family Bovidae, as well as the

stable isotopic composition of tooth enamel from a suite of

herbivorous mammals. Large mammals often range extensively

during the course of a season or year [14,15] and so can provide a

sense of regional vegetation structure [16]. Predicted habitat and

dietary preferences of primates, ungulates and proboscideans from

Kanjera (Table S3) are based primarily on analogy with extant

relatives, degree of hypsodonty, functional analysis of limbs and

masticatory morphology, and stable isotopic analyses of South and

East African fossil and modern fauna [9,17–27]. Several taxa

(crocodile, Phalacrocoracidae [cormorant], hippopotamid) reflect

proximity to permanent water, perhaps a lake as suggested by KS-

4. The reduncine bovids are indicative of edaphic grasslands and

possibly woodland along the lake margin, whereas woodland is

suggested by the presence of several tragelaphine bovid fossils,

giraffe remains, and a Cercopithecus sp. monkey. The suid M.

modestus may also signal woodland [18]. A Hippotragus sp. bovid

fossil signals a woodland/grassland ecotone, whereas the antilo-

pine Antidorcas recki is best associated with bushland to grassland

habitats [9,22,24,25]. The equids, alcelaphine bovids, and

Theropithecus fossils are indicative of open, grassy environments.

In spite of the range of predicted habitat preferences, taxa that

preferred open, grassland habitats dominate the fauna (Tables S3

and S4). Seven hundred thirty two of the 886 fossils (82.6%)

attributable to zoological family are bovids; of the 143 fossils

identifiable to tribe, 132 (92%) are Antilopini or Alcelaphini,

which are indicators of open grassland ecosystems in modern

settings [9,27]. The high frequency of equids in KS-2 (11.6%) is

similar to the relative abundance of zebras in modern, grassland-

dominated ecosystems in East Africa such as the Serengeti,

Tanzania [11,28].

Isotopic analysis of enamel indicates that these taxa uniformly

had a large amount of grass in their diets, reflecting the dominance

of grass in the vegetation community (Fig. 3a) (Tables S3 and S4).

This is true even for taxa that normally have a C3-rich (fruit or

browse) diet (e.g., tragelaphine bovids and the monkey Cercopithecus

sp.). One of the two teeth from Deinotherium, an obligate browser,

has the most positive d 13C value ever documented for this taxon

[23,29]. This indicates Deinotherium at least occasionally consumed

C4 plants. The strong C4 signal occurs across the spectrum of

animals found at Kanjera South, including non-dispersing taxa

such as monkeys, rhinos, tragelaphine bovids, and suids. This

confirms that the grassland dietary signal is not simply the result of

dry season domination of the residential mammalian community

by migratory grazers congregating near a permanent water source.

These data provide the earliest isotopic evidence of an open

habitat and a grassland-dominated ecosystem in East Africa. The

presence of artifacts and archeological fauna both low and high in

the KS-2 sequence and in the underlying KS-1 and overlying KS-

3 indicates that hominins repeatedly visited this grass-rich area on

the landscape for hundreds or even thousands of years. These data

also substantively expand the known range of variation in

Oldowan hominin habitat usage. Paleosol carbonate studies from

the type locality of the Oldowan Industrial Complex, Olduvai

Gorge, Tanzania, suggest that the Bed I and lower Bed II (,1.7–

1.87 Ma) basin margin was frequently well-wooded [30,31].

Paleosol carbonate isotopic chemistry from the most informative

Bed I archeological occurrence, FLK I Level 22 (FLK Zinj),

suggests that artifacts and fossils were deposited in a grassy

woodland (Fig. 2). Stable isotopic analysis of enamel samples from

the extinct gazelle Antidorcas recki document an increasing amount

of graze and a decreasing amount of browse in their diet through

the Bed I sequence (Fig. 3b), consistent with a drying trend noted

by other lines of paleontological and geological evidence

[24,28,32]. Enamel samples of A. recki from FLK Zinj suggest a

mixed diet of browse and grass, whereas Kanjera A. recki was

predominantly grazing. Antidorcas recki individuals from the

relatively arid, upper portion of the Bed I sequence have more

negative d13C values than those in the Kanjera KS-2 sample,

suggesting that there was a greater proportion of open habitat at

Kanjera than at any time during the deposition of Bed I Olduvai.

Isotopic data at or in the vicinity of other Oldowan occurrences,

including the oldest archeological sites (2.5–2.6 Ma) at Gona,

Ethiopia [33] and 1.75–2.0 Ma occurrences at Koobi Fora, Kenya

[34] indicate hominin activities in habitat mosaics that on average

had 50% C3 vegetation (Fig. 2). Pollen data from Gona is

concordant with a well-wooded setting for hominin site activities

[35]. Vegetation mosaics including substantive woodland compo-

nents are also suggested for Pliocene and early Pleistocene

Oldowan sites in West Turkana, Kenya, and the Shungura

Formation, Ethiopia [36,37]. Finally, Oldowan hominin activities

in a riparian forest setting are suggested by paleoenvironmental

evidence from the Koobi Fora Formation in the Turkana basin,

Kenya, at ,2.0 Ma [38].

These findings indicate that by ,2.0 Ma Oldowan hominins

had access to and used a broad spectrum of East African habitats,

from open grassland to riparian forest. Stone tool manufacture

and archeological site formation at this time is most likely

attributable to the genus Homo. Associations between H. habilis

sensu lato (here including H. habilis and H. rudolfensis) and stone tools

Hominins in a Grassland
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are known in the geological record by 2.3 Ma [39,40]. The single

definitive stone tool user in the Plio-Pleistocene, H. erectus (here

including H. ergaster), appears in Africa by 1.8 Ma [41]. Overlap in

size, cranial morphology, and cranial scaling between H. habilis

and H. erectus suggest a close phylogenetic relationship between the

two species [42–44], and support the idea that late Pliocene stone

tool use was part of the behavioral repertoire of the evolving Homo

lineage. Brain size expansion and masticatory changes in the Homo

lineage have plausibly been linked to stone tool-dependent

foraging [1].

Paranthropus, also known prior to 2.0 Ma, has been argued to

have made stone tools based on hand bone morphology, and its

Figure 2. Stable carbon isotopic composition of paleosol carbonates from the late Miocene through Pleistocene of East Africa
[7,11,30,33,51–59]. Shaded intervals represent pedogenic nodules forming in C3 dominated and C4 dominated environments. Paleosol carbonate
d13C values of -2 or greater are approximately equivalent to floral communities with 75% or more C4 plants [31]. Intermediate values represent a mix
of C3 and C4 vegetation. Plant root systems associated with KS-2 archeological site formation could have extended into the top of KS-1, so paleosol
carbonate data from both KS-2 and the top of KS-1 are presented.
doi:10.1371/journal.pone.0007199.g002
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Figure 3. Stable carbon isotopic data of enamel from Kanjera South and other African localities. A. Stable carbon isotopic composition
of fossil mammal tooth enamel from KS-2 in Excavation 1. The KS-2 fauna is supplemented by several taxa unique to KS-1 or KS-3, or found on the
surface of the KS-1 to KS-3 sequence, to provide a more complete sense of the diet of the mammalian community during the deposition of the
archeological levels. The shading reflects the relative importance of C3 browse versus C4 grass in the diet, with d13C values greater than -1 reflecting a
diet with more than 75% C4 vegetation. Isotopic dietary classification follows others [23]. A probable ostrich (cf. Struthio) eggshell fragment was also
analyzed. B. Box and whiskers plots of the stable carbon isotopic composition of modern and fossil gazelles from Kanjera, Bed I Olduvai Gorge,
Tanzania, and Sterkfontein and Swartkrans, South Africa [60,61]. Like many modern antilopines, Antidorcas recki was able to switch between browse
and graze as necessary [9]. Numbers in parentheses after site name represent number of samples analyzed. Bed I localities are presented in
stratigraphic order, from oldest (DK I, ,1.87 Ma) to youngest (FLK NI, ,1.78 Ma) [3].
doi:10.1371/journal.pone.0007199.g003

Hominins in a Grassland

PLoS ONE | www.plosone.org 5 September 2009 | Volume 4 | Issue 9 | e7199



stratigraphic association with Oldowan artifacts in eastern and

southern Africa [45]. However, the developmental investment in

very large jaws and cheek teeth seen in Paranthropus would have

been unnecessary if a stone tool kit allowing extra-oral processing

of food was in use. Moreover, there is no perceptible change in the

archeological record after Paranthropus goes extinct, as might be

expected if two parallel tool traditions, one formed by Homo, the

other by Paranthropus, were in place during the late Pliocene and

early Pleistocene [1]. While Paranthropus may have used a non-

lithic technology [46], it is unlikely to have formed the Oldowan

occurrences under consideration here.

The breadth of habitat use inferred for early Homo by 2.0 Ma

contrasts strongly with that of Australopithecus, a precursor to Homo,

for which heterogeneous environments, all with significant

woodland or forest components, are documented consistently

[23,47]. The ,1.5 Ma H. erectus skeleton from Nariokotome,

Kenya, signals adaptive shifts in hominin mobility, foraging, and

thermoregulation towards the increased use of open, hot, and dry

environments [48–50]. These shifts are anticipated by the

recurrent use of open habitats by early Homo at Kanjera. The

Kanjera data do not, however, necessarily indicate that early Homo

used open habitats in preference to wooded ones. Combined

evidence from Oldowan sites suggests that early Homo was flexible

in its habitat use, and that the capacity to extract resources from a

range of open and more wooded environments was a vital

component of its adaptation.

Methods

Excavation 1 was carried out within a grid of 169 1m61m

squares, excavated in 5 cm spits following site stratigraphy. Fossil

and artifact-bearing horizons were dug with awls and dental picks.

A Topcon total station was used for the precise determination of

specimen N, E, and Z coordinates and in contour mapping.

Object dip and orientation was measured with a Brunton compass.

Sediments were dry sieved through 1 mm mesh. Sedimentary,

taphonomic, and zooarcheological analyses indicate that the site

assemblages formed predominantly through hominin activity

[11,13]. In KS-1, KS-2 PS, and KS-3 there is a clear spatial

relationship between the artifacts and fauna. Many objects are

outsized clasts relative to grain size; a diverse array of skeletal parts

exhibiting a range of hydraulic transport potentials have been

recovered; artifact and fossil refits have been made; and both

percussion marks and cut marks have been found on bones.

Isotopic Analysis of Paleosol Carbonates
Pedogenic carbonates used in this analysis exhibited micro-

structure consistent with in situ formation without subsequent

recrystallization. The difference in the d 13C of occluded organic

matter and pedogenic carbonate fits theoretical predictions for

diagenetically unaltered materials. Diagenetic carbonate cements

from the Kanjera Formation have negative d 13C values (Table

S1), so that the positive signal reported here is unlikely to have

resulted through diagenetic alteration.

Paleosol carbonate samples were washed in double distilled water

and dried. The outer layers of the carbonate nodules were removed

using a dental burr and discarded. The inner part of each carbonate

nodule was crushed in an agate mortar and each sample was split

into two aliquots, the first treated with 2% NaOHCl solution at

60uC for 24 hours to remove any organic contamination. The

second aliquot was treated with 1M HCl until no reaction was

observed and the remaining organic matter was washed to

neutrality and freeze-dried. Organic samples were analyzed using

flash combustion CF-IRMS. Samples were combusted in a Carlo

Erba 1108 sample converter and the evolved gas was analyzed in a

Europa Geo 20/20 gas source mass spectrometer at the University

of Oxford. Results are reported using the standard delta per mil (%)

notation relative to the VPDB international standard (Table S2).

International and in-house standards analyzed along with the

organic samples gave standard deviation of 60.4% for carbon.

Isotopic Analysis of Enamel
Tooth enamel samples were carefully cleaned using an

aluminium oxide air abrasive system to remove any adhering

sediment and cementum. The outer surface of the enamel was

abraded further, removing the outermost portion that was most

likely to be diagenetically altered. Samples were then extracted

from the cleaned enamel using a 0.5 mm diamond dental burr.

Samples were ground and homogenized using an agate mortar.

Powdered enamel samples were treated with 2% NaOHCl

solution at 60uC for 24 hours to remove any organic contamina-

tion. Samples were then washed with double distilled water and

treated with 0.1M CH3COOH at 25uC for 6 hours under vacuum

to remove any secondary carbonate contamination. Samples were

rinsed to neutrality and dried. All enamel samples for isotopic

analysis were reacted with 100% phosphoric acid at 90uC in a

common acid bath system. The evolved CO2 was pre-concentrat-

ed using a cold finger system and was analyzed at the University of

Oxford using a VG Prism gas source isotope ratio mass

spectrometer running in dual inlet mode. Results are reported

using the standard delta per mil (%) notation relative to the VPDB

international standard. International and in-house standards

analyzed along with the enamel samples gave standard deviations

of 60.08% for carbon and 60.12% for oxygen.

Supporting Information

Table S1 Isotopic data from diagenetic sparry, pendant and

poikilotopic calcite cements from KS-1 and KS-2, and from samples

of carbonatite from the Homa Mountain carbonatite complex.

Found at: doi:10.1371/journal.pone.0007199.s001 (0.03 MB

DOC)

Table S2 Paleosol Carbonate Isotopic Data.

Found at: doi:10.1371/journal.pone.0007199.s002 (0.04 MB

DOC)

Table S3 Vertebrate taxon list from KS-2, Excavation 1.

Isotopic dietary classification of Kanjera mammalian fossils follows

others (23) using the isotopic data presented in Table S4. Obligate

grazers and obligate browsers consume an almost exclusive

(.95%) C4 or C3 diet, respectively. Variable grazers and variable

browsers consume a predominantly (75–95%) C4 or C3 diet,

respectively. Brower-grazer intermediate refers to taxa consuming

a mix of C4 and C3 vegetation.

Found at: doi:10.1371/journal.pone.0007199.s003 (0.04 MB

DOC)

Table S4 Stable isotopic composition of fossil eggshell and tooth

enamel from Excavation 1.

Found at: doi:10.1371/journal.pone.0007199.s004 (0.13 MB

DOC)
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