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Supporting Information1

Appendix S12

g2 statistics3

Consider a sufficiently large population of individuals in inbreeding equilibrium. SampleN individuals out4

of this population, each sequenced at a set of loci {1, . . . , L}. Strong inbreeding increases the dependence5

of loci being homozygous within an individual. Thus, inbreeding is assumed to have an effect on the joint6

distribution of homozygous loci within an individual compared to the marginal assortment of single-locus7

ones. Based on David et al. (2007) we recall three different estimators for the second-order heterozygosity8

disequilibrium g2, which reflects the excess of joint heterozygous loci relative to their expectation under9

random assortment. For a better comparison to the implementation in R, see the following table:10

Estimator Dataset Equation R function

ĝ2 small datasets without missing values eqn 3

ĝ2
′ small datasets that include missing values eqn 5 g2_microsats

ĝ̂2 large datasets; missing values do not differ too much

across loci (see last paragraph)

eqn 7 g2_snps

11

Notations and Mathematical background12

Let hi denote the true heterozygosity at locus i in the population. Due to scoring artefacts, the true13

value might differ from the apparent one, which will be denoted here by Hi. For our sample, define the14

indicator function Hik, i = 1, . . . , L, k = 1, . . . , N as follows: Set Hik = 1, if locus i is heterozygous in15

individual k and set Hik = 0 if locus i is found homozygous.16

Following Weir & Cockerham (1973), the second-order heterozygosity disequilibrium g2(i, j) between loci17

i and j might be quantified through the identity disequilibrium E[hihj ] = E[hi]E[hj ](1 + g2(i, j)). If one18

assumes independent scoring artefacts across the set of loci, then this identity also holds for the apparent19

heterozygosity, i.e. E[HiHj ] = E[Hi]E[Hj ](1 + g2(i, j)). Commonly, g2 is assumed to be constant for20

every pair of loci and defined via21

E[HiHj ] = E[Hi]E[Hj ](1 + g2). (eqn 1)

In practice, tightly linked pairs of loci probably have a higher g2, which is why in the following we will give22

an alternative to eqn 1 by averaging out over all locus pairs (i, j). To avoid confusions, let us denote the23

’averaged’ g2 by ḡ2, which will serve for a more robust estimator and goes back to David et al. (2007). The24
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well known decomposition for the variance Var [
∑

iHi] =
∑

i Var [Hi] +
∑

i

∑
j 6=i Cov [Hi, Hj ], together25

with26

Cov [Hi, Hj ] = E[HiHj ]− E[Hi]E[Hj ] = E[Hi]E[Hj ] g2

leads to an expression of ḡ2 of the form27

ḡ2 =

L∑
i=1

∑
j 6=i

E[HiHj ]

L∑
i=1

∑
j 6=i

E[Hi]E[Hj ]

− 1. (eqn 2)

For the averaged quantity ḡ2 in eqn 2 one can find an estimator given in eqn (8) in David et al. (2007)28

(corrected for typographical errors) given by29

ĝ2 =

L∑
i=1

∑
j 6=i

(
N∑

k=1

HikHjk

)
1

N−1

L∑
i=1

∑
j 6=i

(
N∑

k1=1

∑
k2 6=k1

Hik1Hjk2

) − 1, (eqn 3)

with little bias of order 1/N (see Appendix S1 in (David et al., 2007)). Problematically, real data30

sets, especially microsatellites ones, do have missing values, such that the apparent value Hik might be31

unknown for some pairs (i, k). In this case define32

H̃ik =


1, if locus i is heterozygous in individual k

0, if locus i is either homozygous in individual k, or unknown,

as well as Mik = 1 if the datum is missing at locus i in individual k and Mik = 0 otherwise.33

The expected values of Hi and H̃i are correlated via E[H̃i] = (1 −mi)E[Hi], where mi := 1
N

∑N
k=1Mik34

is the proportion of individuals with missing data at locus i. Equivalently, for the joint distribution one35

finds the identity E[H̃i H̃j ] = (1−mi−mj +mij)E[HiHj ], with mij being the proportion of individuals36

with missing values both at loci i and j. Note, that 1−mi−mj+mij is the exact proportion of individuals37

with non-missing values at both, loci i and j. The analogue of eqn 1 now reads38

E[H̃iH̃j ] =
(1−mi −mj +mij)

(1−mi)(1−mj)
E[H̃i]E[H̃j ](1 + g2),
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which, with the same procedure as above leads to the more robust averaged parameter39

ḡ2 =

L∑
i=1

∑
j 6=i

E[H̃ij H̃j ]

L∑
i=1

∑
j 6=i

(1−mi−mj+mij)
(1−mi)(1−mj)

E[H̃i]E[H̃j ]

− 1,

where the underline stands for presence of missing data and the overbar again indicates averaging over40

all locus pairs. Eqn S1 in the Supplementary Informations in Hoffman et al. (2014) provide an estimator41

for ḡ2, which can be rewritten as42

ĝ2 =

L∑
i=1

∑
j 6=i

1
N−Mi−Mj+Mij

(
N∑

k=1

H̃ikH̃jk

)
L∑

i=1

∑
j 6=i

1
(N−1)(N−Mi−Mj)+MiMj−Mij

(
N∑

k1=1

∑
k2 6=k1

H̃ik1
H̃ik2

) − 1, (eqn 4)

where the Mi, Mij ∈ {1, . . . , N}, compared to the mi, mij , now relate to the absolute values of missing43

data at some loci in contrast to the relative ones. Eventhough, eqn S1 in Hoffman et al. (2014) differs44

from (eqn 4) at first glance, it is straightforward to verify their equality.45

Unfortunately, eqn 4 entails a weighting problem for loci with many missing data. To see this, image46

a pair of loci (i, j) with a considerable high fraction of missing values in the sample. In this case, any47

individual k which is heterozygous at both loci is downweighted, whereas in case of no missing data, it48

will be fully taken into account. Therefore one can update the formula to49

ĝ2
′ =

[
L∑

i=1

∑
j 6=i

((N − 1)(N −Mi −Mj) +MiMj −Mij)

]
L∑

i=1

∑
j 6=i

(
N∑

k=1

H̃ikH̃jk

)
[

L∑
i=1

∑
j 6=i

(N −Mi −Mj +Mij)

](
L∑

i=1

∑
j 6=i

N∑
k1=1

∑
k2 6=k1

H̃ik1
H̃ik2

) − 1, (eqn 5)

which now weights with the appropriate number of double non-missing data over all locus pairs (Hardy,50

2015). It is indeed eqn 5 (not eqn 4), which is implemented in the RMES software by David et al. (2007).51

The R package g2_microsats is also based on eqn 5.52

All estimators we have seen so far, require double summation over all loci and are thus unfeasible for53

large datasets. To fasten the algorithm, the Supplementary Information in Hoffman et al. (2014) provides54

another estimator based on the general decomposition of a double sum of the form
∑

i

∑
j 6=i ai aj into55 ∑n

i=1

∑
j 6=i ai aj =

(∑
i=1 ai

)2
−
∑

i=1 a
2
i , where ai ∈ R is some parameter and n ∈ N. The estimator56

reads57

ĝ̂2 =
1 +

(
B̂−Ĉ

)
/Â

1 + ˆ̄a
− 1, (eqn 6)
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where Â, B̂, Ĉ, ˆ̄a are encapsulated weighted sums of H̃ik:58

Â =
N

N − 1

( L∑
i=1

ˆ̃µi

)2
−

L∑
i=1

ˆ̃µ 2
i

− Ĵ
N − 1

, Ĵ =
1

N

N∑
k=1

h̃ 2
k −

L∑
i=1

ˆ̃µi,

B̂ =
1

N − 1

 N∑
k=1

h̃ 2
k −

1

N

(
N∑

k=1

h̃k

)2  , Ĉ =
N

N − 1

[
L∑

i=1

ˆ̃µi −
L∑

i=1

ˆ̃µ 2
i

]
,

ˆ̄a =

N∑
k=1

M̂k −N
(

L∑
i=1

ˆ̃µi
mi

1−mi

)2
+N

L∑
i=1

(
ˆ̃µi

mi

1−mi

)2
(N − 1)Â + Ĵ

, M̂k =

(
L∑

i=1

ˆ̃µi xik
1−mi

)2
−

L∑
i=1

(
ˆ̃µi xik

1−mi

)2

,

with ˆ̃µi := 1
N

∑N
i=1 H̃ik, xik := Mik and hk :=

∑L
k=1 H̃ik. A straightforward calculation leads to a59

simplification of eqn 6 that uses less normalisation steps, represented as60

ĝ̂2 =
D̂

1+Ê − 1, (eqn 7)

with61

D̂ := (N − 1)

N∑
k=1

(
H̃.k

)2 − H̃..(
H̃..

)2 − L∑
i=1

(
H̃i.

)2 − N∑
k=1

(
H̃.k

)2
+ H̃..

and62

Ê :=

1
N

N∑
k=1

[(
L∑

i=1

H̃i.
Mik

1−mi

)2

−
L∑

i=1

(
H̃i.

Mik

1−mi

)2]
+

L∑
i=1

(
H̃i.

mi

1−mi

)2
−
(

L∑
i=1

H̃i.
mi

1−mi

)2

(
H̃..

)2 − L∑
i=1

(
H̃i.

)2 ,

where we used the common notation for the marginalisation over all individuals or respectively over all63

loci; more precisely64

H̃.k =

L∑
i=1

H̃ik, H̃i. =

N∑
k=1

H̃ik, H̃.. =

L∑
i=1

N∑
k=1

H̃ik .

As mentioned in Hoffman et al. (2014), the estimator in eqn 6 and thus also the one in eqn 7 are subject65

to the assumption, that for each pair (i, j), the term mij−mi·mj

(1−mi)(1−mj)
can be approximated by the average66

over all pairs of loci. Thus, ĝ̂2 only serves as an estimator for g2, if in the underlying data set, the missing67

values between pairs do not differ greatly in frequency (which could potentially occur if data quality is68

very poor for certain individuals).69
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